
Avoiding Communication in First Order Methods for
Optimization

Aditya Devarakonda

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-92
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-92.html

July 24, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Avoiding Communication in First Order Methods for Optimization

by

Aditya Devarakonda

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Computational and Data Science and Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James W. Demmel, Chair
Professor Michael W. Mahoney

Professor Adityanand Guntuboyina

Summer 2018

Avoiding Communication in First Order Methods for Optimization

Copyright 2018
by

Aditya Devarakonda

1

Abstract

Avoiding Communication in First Order Methods for Optimization

by

Aditya Devarakonda

Doctor of Philosophy in Computer Science
and the Designated Emphasis

in

Computational and Data Science and Engineering

University of California, Berkeley

Professor James W. Demmel, Chair

Machine learning has gained renewed interest in recent years due to advances in computer hard-
ware (processing power and high-capacity storage) and the availability of large amounts of data
which can be used to develop accurate, robust models. While hardware improvements have fa-
cilitated the development of machine learning models in a single machine, the analysis of large
amounts of data still requires parallel computing to obtain shorter running times or where the
dataset cannot be stored on a single machine.

In addition to hardware improvements, algorithm redesign is also an important direction to fur-
ther reduce running times. On modern computer architectures, the cost of moving data (commu-
nication) from main memory to caches in a single machine is orders of magnitude more expensive
than the cost of performing floating-point operations (computation). On parallel machines the cost
of moving data from one processor to another over an interconnection network is the most expen-
sive operation. The large gap between computation and communication suggests that algorithm
redesign should be driven by the goal of avoiding communication and, if necessary, decreasing
communication at the expense of additional computation.

Many problems in machine learning solve mathematical optimization problems which, in most
non-linear and non-convex cases, requires iterative methods. This thesis is focused on deriving
communication-avoiding variants of the block coordinate descent method, which is a first-order
method that has strong convergence rates for many optimization problems. Block coordinate de-
scent is an iterative algorithm which at each iteration samples a small subset of rows or columns of
the input matrix, solves a subproblem using just the chosen rows or columns, and obtains a partial
solution. This solution is then iteratively refined until the optimal solution is reached or until con-
vergence criteria are met. In the parallel case, each iteration of block coordinate descent requires
communication. Therefore, avoiding communication is key to attaining high performance.

2

This thesis adapts well-known techniques from existing work on communication-avoiding
(CA) Krylov and s-step Krylov methods. CA-Krylov methods unroll vector recurrences and rear-
range the sequence of computation in way that defers communication for s iterations, where s is
a tunable parameter. For CA-Krylov methods the reduction in communication cost comes at the
expense of numerical instability for large values of s.

We apply a similar recurrence unrolling technique to block coordinate descent in order to obtain
communication-avoiding variants which solve the L2-regularized least-squares, L1-regularized
least-squares, Support Vector Machines, and Kernel problems. Our communication-avoiding vari-
ants reduce the latency cost by a tunable factor of s at the expense of a factor of s increase in
computational and bandwidth costs for the L2 and L1 least-squares and SVM problems. The CA-
variants for these problems require additional computation and bandwidth in order to update the
residual vector. For CA-kernel methods the computational and bandwidth costs do not increase.
This is because the CA-variants of kernel methods can reuse elements of the kernel matrix already
computed and therefore do not need to compute and communicate additional elements of the kernel
matrix.

Our experimental results illustrate that our new, communication-avoiding methods can obtain
speedups of up to 6.1× on a Cray XC30 supercomputer using MPI for parallel processing. For
CA-kernel methods we show modeled speedups of 26×, 120×, and 197× for MPI on a predicted
Exascale system, Spark on a predicted Exascale system, and Spark on a cloud system, respectively.
Furthermore we also experimentally confirm that our algorithms are numerically stable for large
values of s.

Finally, we also present an adaptive batch size technique which reduces the latency cost of
training convolutional neural networks (CNN). With this technique we have achieved speedups of
up to 6.25× when training CNNs on up to 4 NVIDIA P100 GPUs. Furthermore, we were able to
train the ImageNet dataset using the ResNet-50 network with a batch size of up to 524,228 which
would allow neural network training to attain a higher fraction of peak GPU performance than
training with smaller batch sizes.

i

To my parents Satya and Srinivas and to Aravind and Holly.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Iterative Machine Learning . 2
1.2 Communication-Avoiding Algorithms . 2
1.3 Thesis Contributions . 3

2 Background 6
2.1 Theoretical Performance Model . 6
2.2 Related Work . 7
2.3 Parallel Block Coordinate Descent . 9

3 Avoiding Communication in L2-Regularized Least-Squares 11
3.1 Block Coordinate Descent and Conjugate Gradients 13
3.2 Communication-Avoiding Derivation . 15
3.3 Algorithm Analysis . 20
3.4 Convergence Behavior . 26
3.5 Performance and Scalability Results . 35
3.6 Conclusions and Future Work . 39

4 Avoiding Communication in L1-Regularized Least-Squares 40
4.1 Communication-Avoiding Derivation . 41
4.2 Algorithm Analysis . 45
4.3 Convergence Behavior . 49
4.4 Performance and Scalability Results . 51
4.5 Conclusions and Future Work . 54

5 Avoiding Communication in Support Vector Machines 55
5.1 Communication-Avoiding Derivation . 57

iii

5.2 Algorithm Analysis . 60
5.3 Convergence Behavior . 62
5.4 Performance and Scalability Results . 64
5.5 Conclusions and Future Work . 67

6 Avoiding Communication in Kernel Methods 68
6.1 Communication-Avoiding Derivation . 70
6.2 Algorithm Analysis . 76
6.3 Convergence Behavior . 80
6.4 Predicted Performance Results . 81
6.5 Conclusions and Future Work . 86

7 Adaptive Batch Sizes for Deep Neural Networks 87
7.1 Related Work . 90
7.2 Adaptive Batch Sizing and its Effects . 91
7.3 Experimental Results . 94
7.4 Conclusions and Future Work . 101

8 Future Work 102

Bibliography 104

iv

List of Figures

2.1 Illustration of where coordinate descent (CD), block coordinate descent (BCD), Krylov
methods (for quadratic problems), and Newton’s method lie in the computation and
communication tradeoff space. The communication-avoiding variants of CD and BCD
reduce communication at the expense of computation. Note that this figure suggests
two ways to reduce communication. One way is to derive communication-avoiding
variants and the other to select an optimization method which has the appropriate com-
putation and communication tradeoff for the given parallel computers. 7

2.2 A high-level depiction of the Block Coordinate Descent method (independent of the
minimization problem being solved). The matrix A is 1D-row partitioned and w.l.o.g.
depicted as being dense. Vectors in the partitioned dimension are also partitioned (in
this case residual vector, r). Vectors in the non-partitioned dimension and all scalars
are replicated (in this case x). Each processor selects the same column indices (by
using the same random generator seed). Computation of (partial) dot-products is a
local GEMM operation. After that, the results are combined using an all-reduce with
summation. Due to data replication all processors can independently compute this
iteration’s solution and perform vector updates. 10

3.1 Comparison of convergence behavior against algorithm costs of Conjugate Gradients
(CG), BCD (with b = 1) and BDCD (with b′ = 1). Convergence is reported in terms of
the relative objective error and the experiments are performed on the news20 dataset
(m = 15935, n = 62061, nnz(A) = 1272569) obtained from LIBSVM [26]. We fix
the number of CG iterations to k = 100, BCD iterations to H = 100n and BDCD
iterations to H ′ = 100m. 14

3.2 Convergence behavior of BCD for several block sizes, b, such that 1 ≤ b < m on
several machine learning datasets. We plot relative solution error (top row, Figs. 3.2a-
3.2e) and relative objective error (bottom row, Fig. 3.2b-3.2f) with λ = 1000σmin.
We fix the relative objective error tolerance for news20 to 1e−2 and 1e−8 for a9a and
real-sim. Note that the X-axis for Figures 3.2b-3.2f is equivalent to the number of
iterations (modulo log10 scale). 27

3.3 Convergence behavior of BCD for several block sizes, b, such that 1 ≤ b < n. We plot
flops cost and bandwidth cost versus convergence with λ = 1000σmin. 29

v

3.4 Convergence behavior of BCD and CA-BCD with several values of s. We plot relative
solution error and relative objective error . The block size for each dataset is set to
b = 16. 30

3.5 Convergence behavior of BDCD for several block sizes, b′, such that 1 ≤ b′ < m. We
plot relative solution error and relative objective error with λ = 1000σmin. Note that
the X-axis is equivalent to the number of iterations (modulo log10 scale). 31

3.6 Convergence behavior of BDCD for several block sizes, b′, such that 1 ≤ b′ < m. We
plot flops cost and bandwidth cost versus convergence with λ = 1000σmin. 32

3.7 Convergence behavior of BDCD and CA-BDCD with several values of s. We plot
relative solution error and relative objective error. The block sizes for each dataset are:
news20 with b′ = 64, a9a with b′ = 16, and real-sim with b′ = 64. 33

3.8 We plot the relative objective error, norm of the primal residual (for BCD Figure 3.8a),
and norm of the dual residual (for BDCD Figure 3.8b) for the a9a dataset with block
sizes b = b′ = 16. 35

3.9 Strong scaling results for (CA-)BCD (top row, Figs. 3.9a-3.9b) and (CA-)BDCD (bot-
tom row, Figs 3.9c-3.9d). Ideal strong scaling behavior for BCD and BDCD to illus-
trate the performance improvements of the CA-variants. 37

3.10 Running time breakdown for the mnist8m dataset for b ∈ {1, 8} at scales of 64 and
1024 nodes. We plot the fastest timed run for each algorithm and setting. 38

3.11 Speedups achieved for CA-BCD on mnist8m for various settings of b and s. We show
speedups for 64 and 1024 nodes. 39

4.1 Solutions obtained by least-squares with L2-regularizer and L1-regularizer. 41
4.2 We compare the convergence of accelerated CD, CD, accelerated BCD, BCD against

their communication-avoiding variants (with s = 1000) for datasets in Table 4.2 with
λ = 100σmin, where σmin is the smallest singular value. 48

4.3 Running time vs. convergence of CA and non-CA variants of accelerated and non-
accelerated CD. 49

4.4 Running time vs. convergence of CA and non-CA variants of accelerated and non-
accelerated BCD. 50

4.5 Strong scaling and speedups of CA and non-CA accCD. 51
4.6 Computation and communication speedup results for various values of s. CA and

non-CA accCD. 52
4.7 Computation and communication speedup results for various values of s on CA and

non-CA accBCD with b = 8 for url and news20 and b = 2 for covtype. 53

5.1 Illustration of binary classification using various hyperplanes. H1 is a non-separating
hyperplane and a poor classifier for the data depicted. H2 is a valid separating hyper-
plane but does not maximize the margins between the two classes and the hyperplane.
H3 is a valid separating hyperplane and also maximizes the margins. 56

5.2 Duality gap vs. iterations and test error vs. iterations of SVM-L1, SVM-L2, and their
CA variants with s = 500. 63

vi

5.3 Strong scaling comparison of coordinate descent for SVM-L1 and its CA variant. . . . 64
5.4 Normalized running time breakdown of coordinate descent for SVM-L1 with various

settings for s. Note that s > 1 is the communication-avoiding algorithm. 66

6.1 Problems where ridge regression and SVM obtain poor results without kernelizing. . . 69
6.2 Relative solution error vs. iterations of solving the kernel ridge regression problem

using BDCD and CA-BDCD with s = 200. 82
6.3 Duality gap vs. iterations of DCD and CA-DCD with s = 200. 83
6.4 Speedups obtained for BDCD and CA-BDCD for various settings of b and s. 84
6.5 Strong scaling of DCD for kernel SVM and CA-DCD with s = 20, and s = 200. . . . 85

7.1 Comparison of the input-output transformation between logistic regression and a generic
deep neural network with d hidden layers. ai is the i-th sample from the input dataset,A,
and bi is its corresponding label. F0 is the nonlinear logistic function, Fj for 1 ≤ j ≤ d
are the nonlinear activation functions for the j-th hidden layer, and Fd+1 is the non-
linear output function. xLR and xNN are the solutions obtained from the logistic re-
gression and DNN model, respectively. Each node in the hidden layer is known as a
hidden unit or a neuron. 88

7.2 This convolution layer applies a 5×5×3 convolution filter to each 227×227×3 image
and results in a batch of 75 × 75 × 1 filtered output. “Filter Stride" is the number of
pixels the filter is shifted up or down before applying the filter. In general, convolution
layers apply several filters so the filters and filtered output are typically 4-D tensors. . . 89

7.3 Comparison of CIFAR-10 test errors for adaptive versus fixed small and large batch
sizes. The plots show the lowest test error and report mean ± standard deviation over
5 trials. 94

7.4 Comparison of CIFAR-100 test errors for adaptive versus fixed small and large batch
sizes. The plots show the lowest test error and report mean ± standard deviation over
5 trials. 96

7.5 Comparison of CIFAR-100 speedup (left vertical axis) and test errors (right vertical
axis) for adaptive (in red) vs. fixed batch sizes (in blue), where “LR” uses gradual
learning rate scaling for the first 5 epochs. We also report test error (black dots) to
illustrate that it does not change significantly for different combinations of batch sizes
and techniques used. 97

7.6 Comparison of CIFAR-100 test errors curves for adaptive versus fixed batch sizes. . . . 98
7.7 Comparison of ImageNet test errors curves for adaptive versus fixed batch sizes. 99
7.8 Comparison of ImageNet test errors curves for adaptive versus fixed batch sizes with

LR warmup. 100
7.9 Comparison of ImageNet test errors curves for adaptive batch sizes with LR warmup

and batch size increases of 2x, 4x, and 8x. 100

vii

List of Tables

3.1 Ops (F), Latency (L), Bandwidth (W) and Memory per processor (M) costs compar-
ison along the critical path of classical BCD (Thm. 3.3.1), BDCD (Thm. 3.3.2) and
communication-avoiding BCD (Thm. 3.3.6) and BDCD (Thm. 3.3.7) algorithms for
1D-block row and 1D-block column data partitioning, respectively. H and H ′ are the
number of iterations and b and b′ are the block sizes for BCD, and BDCD. We as-
sume that A ∈ Rm×n is sparse with fmn non-zeros that are uniformly distributed,
0 < f ≤ 1 is the density of A, P is the number of processors and s is the recurrence
unrolling parameter. We assume that the b× b and b′ × b′ Gram matrices computed at
each iteration for BCD and BDCD, respectively, are dense. 12

3.2 Critical path costs of Krylov methods. k is the number of iterations required for Krylov
methods to converge to a desired accuracy. We assume a 1D-block row layout if n < m
(1D-block column if n > m) and replicate the min(m,n)-dimensional vectors and
partition the max(m,n)-dimensional vectors. 13

3.3 Relative objective errors of CG, BDCD (b′ = 1) and BCD (b = 1). We normalize the
BDCD and BCD iterations to match reported CG iterations. If k is the CG iteration,
then BCD performs H = kn and BDCD performs H ′ = km iterations. 15

3.4 Properties of the LIBSVM datasets used in our experiments. We report the largest and
smallest singular values (same as the eigenvalues) of ATA. 26

3.5 LIBSVM datasets used in our performance experiments. 36

4.1 Ops (F), Latency (L), Bandwidth (W) and Memory per processor (M) costs compari-
son along the critical path of classical accBCD and CA-accBCD. H is the number of
iterations and we assume that A ∈ Rm×n is sparse with fmn non-zeros that are uni-
formly distributed, 0 < f ≤ 1 is the density of A

(
i.e. f = nnz(A)

mn

)
, P is the number

of processors and s is the recurrence unrolling parameter. fbm is the non-zeros of the
b × m matrix with b sampled columns from A at each iteration. We assume that the
b× b and Gram matrix computed at each iteration are dense. 45

4.2 Properties of the LIBSVM datasets used in our experiments. Epsilon and url did not
fit in DRAM of the local machine for the MATLAB experiments, so we use leu instead. 46

viii

4.3 We show the relative objective error of the CA-methods compared to the non-CA meth-
ods (shown in Figure 4.2). Machine precision is 2.2204e-16 for the MATLAB experi-
ments. We omit the url and epsilon datasets since they do not fit in the DRAM of the
single-machine platform used for these MATLAB experiments. 47

5.1 Properties of the LIBSVM datasets used in our numerical stability experiments. 62
5.2 Properties of the LIBSVM datasets used in our performance experiments. 64

6.1 Properties of the LIBSVM datasets used in our numerical stability experiments. 81

7.1 Comparison of CIFAR-100 forward and backward propagation running time over 100
epochs for adaptive versus fixed batch sizes. The table shows mean over 5 trials. 95

ix

Acknowledgments

I would like to acknowledge first and foremost the support from my advisor, Jim Demmel. His
guidance and advice has had a great influence in shaping my work. He has been a wonderful
mentor over the past six years and I have learned a lot from Jim’s rigorous approach to the design
and analysis of parallel algorithms. Thanks to my co-advisor Michael Mahoney whose advice and
guidance shaped the broader machine learning aspects in this thesis. In particular, the chapter on
kernel methods has benefited greatly from discussions with Michael. I would also like to thank
Adityanand Guntuboyina for his feedback during the early stages of this thesis. Last but not least,
I would like to thank Kathy Yelick for her comments and feedback on architectural trends and
performance tuning which have directly influenced the parallel implementations of the algorithms
presented in this thesis.

I would also like to acknowledge my co-authors and collaborators Jim Demmel, Kimon Foun-
toulakis, Michael Garland, Michael Mahoney, and Maxim Naumov. Thanks to Kimon Foun-
toulakis who has contributed to the research in several chapters. I have gained a lot of insight
about machine learning and optimization through our collaboration. Thanks to Michael Garland
and Maxim Naumov from whom I’ve learned a lot about deep learning and for their contributions
to Chapter 7.

I’d like to thank members of the Bebop group (alphabetical order): Grey Ballard, Ben Brock,
Aydın Buluç, Erin Carson, Razvan Carbunescu, Orianna DeMasi, Grace Dinh, Michael Driscoll,
Marquita Ellis, Andrew Gearhart, Evangelos Georganas, Laura Grigori, Nick Knight, Penporn
Koanantakool, Becca Roelofs, Alex Rusciano, Oded Schwartz, Harsha Simhadri, Edgar Solomonik,
and Yang You. I’d like to thank Michael Mahoney’s group (alphabetical order): Alex Gittens, Fred
Roosta, Julian Shun, and Shusen Wang, Peng Xu, and Jiyan Yang. I couldn’t have asked for better
colleagues.

Thanks to Ria Briggs, Roxana Infante, Tamille Choteau, Kostadin Ilov, Tiffany Reardon,
Shirley Salanio, Audrey Sillers, Angela Waxman, Matthew Santillan and the rest of the EECS
staff for their positivity and support. Thanks to the BiasBusters and EECS Peers communities.
Their tireless work and enthusiasm was a constant source of motivation during the writing of this
thesis.

I would like to acknowledge several funding sources whose support has made it possible to
complete this thesis. This includes support from the ParLab which was funded in part by Mi-
crosoft (Award #024263), Intel (Award #024894) and by matching funding by U.C. Discovery
(Award #DIG0710227), by NSF Grants CNS-0720906 and CCF-0747390. I would also like to
acknowledge support from an EECS department fellowship, the National Science Foundation for
the Graduate Research Fellowship (Grant No. DGE 1106400), the Department of Energy Office
of Science (DEGAS project), Cray, and NVIDIA (for support during my internship). Thanks to
the National Energy Research Scientific Computing Center for access to their supercomputing
resources.

1

Chapter 1

Introduction

The volume of data currently generated by sensor networks, social media, and computational sci-
ence has made manual data processing nearly impossible. The need to automatically process and
interpret this data has driven the rapid development and deployment of machine learning algo-
rithms and tools which have enabled progress in many critical fields. For example, the automotive
industry is researching and testing autonomous driving technologies to make the roads safer. The
pharmaceutical and biotechnology industries are leveraging machine learning in order to reduce
the decade long search to find breakthrough drugs. The field of scientific computing is also turning
to machine learning for answers to many important questions. For example, in high performance
computing, machine learning is being used to automatically tune machine and algorithm hyper-
parameters in order to maximize performance. In high-energy physics, deep neural networks are
being used to find important features in images from particle collisions. The number of fields that
are discovering new insights with the aid of machine learning is continually increasing.

Machine learning encompasses many different problems like regression, classification, cluster-
ing, and dimensionality reduction. All of these problems have the common task of creating models
from an input dataset which can subsequently be used as predictors (i.e., accurately classify, clus-
ter, etc.) on new data. All of these applications require some form of mathematical optimization
to find the best predictor (i.e., one that minimizes the prediction error) obtained by maximizing or
minimizing some objective function representing the machine learning problem being solved.

The rise of machine learning has coincided with a slowdown of Moore’s law and stagnation of
advances in single-core processor technology. Consequently, this has led many manufacturers to
increase the number of cores per processor rather than rely on improvements in clock-frequency
alone1. This shift in processor technology suggests that all machine learning algorithms must be
parallel in order to take advantage of the additional cores and in order to achieve peak processor
performance. This is especially true for many machine learning algorithms which use linear alge-
bra kernels (e.g., matrix multiply, solving a system of linear equations, etc.). Fast machine learning

1Moore’s law states that transistor densities (i.e., smaller transistors) double approximately every 12 to 18 months.
Moore’s law is closely related to Dennard scaling [43] which states that transistor size is roughly inversely proportional
to clock frequency.

CHAPTER 1. INTRODUCTION 2

algorithms are critical to making progress in the numerous fields relying on them and achieving
this goal requires advances in computer architecture, algorithm design, and software development.

1.1 Iterative Machine Learning
Machine learning problems, especially those which require mathematical optimization, are itera-
tive2. By iterative, we mean that an initial guess of the solution is refined until convergence criteria
are met. Iterative methods are especially useful when solution accuracy less than machine preci-
sion is sufficient. In practice, machine learning applications require just a few digits of accuracy
(typically less than single-precision accuracy) in order to avoid overfitting the solution to the input
dataset3.

This thesis studies block coordinate descent [122], which is a first-order method (i.e., method
which only use the first derivative of the optimization problem) to solve various machine learning
optimization problems. Block coordinate descent is an iterative method which selects a subset of
the rows or columns from the input dataset, solves the optimization problem for just the chosen
rows or columns, and updates the elements (or coordinates) of the solution which correspond to
the indices of the rows or columns chosen. The block size, i.e., the number of rows or columns
chosen, and how the rows or columns are chosen are important tuning parameters that depend on
the dataset and the parameters of the hardware used. We will study several choices of block size
but assume that the rows or columns are chosen uniformly at random.

1.2 Communication-Avoiding Algorithms
On modern computer architectures, computation, i.e., the time to perform a floating-point opera-
tion, is orders of magnitude less than the time to communicate. By communication we mean the
time to move data between levels of the memory hierarchy or the time to move data from one
processor to another over an interconnection network (infiniband, ethernet, etc.). This suggests
that the traditional approach to algorithm analysis which relies on just computational complexity
is not accurate and, in reality, that there is a tradeoff between computational and communication
complexity. A better model for an algorithm’s running time would be the sum of computational
cost and communication cost.

Machine learning problems routinely process datasets which do not fit in the main-memory of
a single machine. As a result, efficiently processing this data requires large numbers of machines.
While increasing the number of machines can result in fast computation time it also requires ex-
pensive communication. Since communication is orders of magnitude more expensive than com-
putation, performance degrades when communication becomes the dominant cost. This is further
exacerbated for iterative algorithms, like block coordinate descent, which require communication

2Note that solving linear systems can be solved directly. However, for non-linear and non-convex optimization
problems iterative methods are often the only option.

3Overfitting decreases the solution’s ability to generalize and perform as a good predictor for new data.

CHAPTER 1. INTRODUCTION 3

at every iteration until convergence. Therefore, rearranging machine learning algorithms to avoid
communication is a requirement to scaling these algorithms efficiently.

Communication-avoiding (CA) algorithms are a new class of algorithms which avoid com-
munication through careful algorithmic transformations [4] and attain large speedups on modern
parallel architectures. Much of numerical linear algebra has been reorganized to avoid communi-
cation and has led to significant performance improvements over existing state-of-the-art libraries
[4, 3, 20, 67, 113, 121]. Progress has also been made in iterative numerical linear algebra with the
development of CA-Krylov methods [20, 40, 67] and s-step methods [119, 29, 30, 72, 120]. The
results from CA-Krylov methods are particularly relevant to this thesis. The CA-Krylov methods
work extends existing s-step Krylov methods research by combining a new, matrix powers kernel
[40, 67, 85, 86] with extensively modified s-step Krylov methods to avoid communication [20, 40,
67]. These methods avoid communication by unrolling the vector update recurrences by a factor
of s and eliminating dependencies between the iterations (i.e., communication) through the use of
the matrix powers kernel along with an algebraic re-arrangement of the vector updates to break
dependencies. In practice, this rearrangement has resulted in large speedups. One drawback of
CA-Krylov methods is that the convergence and stability may be weaker than the standard Krylov
methods in finite precision as s increases. As a result, experimentally confirming the numerical
stability, in addition to deriving CA-variants of block coordinate descent methods, is an important
goal.

1.3 Thesis Contributions
Communication-avoiding algorithms have been studied for several decades and has resulted in the
development of numerous new algorithms that attain large speedups over the prior state-of-the-art
algorithms. In addition to the development of new algorithms, this work has also contributed the-
oretical lower bounds on communication and numerical error analysis. In particular, this thesis is
motivated by the techniques presented s-step and CA-Krylov methods literature, which we extend
in this thesis to iterative block coordinate descent algorithms for convex optimization problems.

We begin with background (Chapter 2) on notation, theoretical performance model, commu-
nication cost, relationship to CA-Krylov methods, and relationship to existing communication re-
ducing approaches in machine learning. Chapter 3 derives and analyzes communication-avoiding
algorithms which solve the primal and dual L2-regularized least-squares problem and comparison
to Krylov methods. Chapter 4 focuses on the L1-regularized least-squares problem which intro-
duces a non-linear optimization problem. Chapter 5 derives communication-avoiding algorithms
for binary classification using Support Vector Machines (SVM). Chapter 6 introduces and derives
communication-avoiding algorithms for kernel methods where regression and binary classifica-
tion is performed in a high-dimensional Hilbert space. Chapter 7 presents an adaptive batch size
technique which reduces communication for image classification in deep Convolutional Neural
Networks. Some of the material presented in this thesis have appeared in published work and,
where applicable, we cite the published manuscript, list co-authors, and describe the overlap. The
primary results and contributions of this thesis are:

CHAPTER 1. INTRODUCTION 4

• The derivation of new communication-avoiding block coordinate descent methods which
solve the L2-regularized least-squares (Chapter 3), L1-regularized least-squares (Chapter 4),
Support Vector Machines (Chapter 5), and kernel problems (Chapter 6).

• Algorithm analysis to derive computation, communication, and storage costs of the standard
block coordinate descent and new, communication-avoiding block coordinate descent algo-
rithms in Chapters 3, 4, and 5 for the various optimization problems. The analysis proves
the primary claim of this thesis, that the new communication-avoiding block coordinate de-
scent algorithms reduce the latency cost by a tunable factor, s, at the expense of a factor of s
additional computation and bandwidth.

• Derivations of computation, communication and storage costs of standard block coordinate
descent and new, communication-avoiding block coordinate descent algorithms for kernel
methods in Chapter 6. The proofs show that the communication-avoiding algorithms reduce
the latency cost by a factor of s and have the same computation and bandwidth costs as the
standard algorithm.

• Implementation of all the algorithms presented in Chapters 3-6 in MATLAB and presentation
of experimental results confirming the numerical stability of the communication-avoiding
block coordinate descent algorithms. These experiments illustrate that the new algorithms
have the same convergence behavior as the standard algorithms for large values of s. The val-
ues of s are chosen to be very large, beyond practical interest, in order to stress the potential
numerical instability as much as possible in order to provide confidence that our algorithms
are stable for a large range of s values.

• Implementation of algorithms described in Chapters 3-5 in C++ using MPI [62] for parallel
processing on a Cray XC30 supercomputer (Edison). We use 1D-block row layout when
solving the primal problems and 1D-block column layout when solving the dual problems.

• Strong scaling, running time breakdown, and convergence vs. running time experiments
in Chapters 3-5 which illustrate that the communication-avoiding block coordinate descent
algorithms can attain speedups of up to 6.1× over the standard algorithms on up to 12, 288
MPI processes with datasets obtained from the LIBSVM [26] data repository.

• Modeled strong scaling and speedup experiments for kernel methods in Chapter 6 which
illustrate that our communication-avoiding algorithms can attain model speedups of up to
26.97×, 120.44×, and 147.48× on a predicted Exascale system with MPI, with Spark, and
a cloud system with Spark, respectively.

• The derivation of a new adaptive batch size technique for training deep convolutional neural
networks in Chapter 7. We show that the batch size can be adaptively increased in addition
to learning rate decay.

• Implementation of the adaptive batch size technique written in PyTorch [98] with GPU ac-
celeration.

CHAPTER 1. INTRODUCTION 5

• Convergence vs. iterations experiments to illustrate that the adaptive batch size technique al-
lows us to dynamically increase the batch size without significantly altering the convergence
of training and test error for Alexnet, ResNet20, ResNet50, and VGG19 networks for image
classification problems.

• Performance experiments on 1 NVIDIA P100 GPU which illustrates speedups of up to 6.25×
for ResNet-20 and 3.54× for VGG19 when training on the CIFAR-100 dataset.

• Convergence vs. iterations experiments which illustrate that the ImageNet dataset can be
successfully trained using the ResNet-50 network on 4 NVIDIA P100 GPUs with a batch
size of 524, 288, which would allow neural network training to attain a higher fraction of
peak GPU performance than training with smaller batch sizes.

6

Chapter 2

Background

We begin this chapter by introducing the notation used in this thesis. We use A to refer to the input
matrix withm rows, which are the data points, and n columns, which are the features. We use y for
the m-dimensional vector of labels, x for the n-dimensional solution vector of primal optimization
problems, and α for the m-dimensional solution vector of dual optimization problems. We use the
scalar, b, to refer to the block size used for block coordinate descent. When we refer to algorithms
as coordinate descent it is an implicit way of saying that b = 1. We will use standard notation
for asymptotic computation and communication complexities of the algorithms analyzed. f(n) =
O(g(n)) states that there exists a constant c > 0 such that |f(n)| ≤ c|g(n)| for large enough n.
We use arg min when writing optimization problems to mean that the solution to the optimization
problem is the argument which minimizes the optimization problem. The notation [n] is used
as short form for {1, 2, . . . n}. When we use log in the algorithm analysis sections, it refers to
logarithms with base 2.

2.1 Theoretical Performance Model
In this work we assume that we are working on a homogenous parallel machine with P processors
that are interconnected using a binary tree. We assume that processors can communicate with each
other using point-to-point messages and collective messages. We use a parallel performance model
that has three terms: computation, bandwidth, and latency. The first term represents the floating-
point operations cost, bandwidth refers to the amount of data that is moved over a network, and
latency refers to the cost of sending a message. Note that each term of this model has associ-
ated hardware costs. We use γ to refer to the amount of time it takes to perform a floating-point
operation on data stored locally on the processor, β to refer to the reciprocal bandwidth of the in-
terconnection network, and ζ to refer to the hardware overhead for sending a message. We assume
that each processor can execute at peak processor speed (i.e. 1/γ) and ignore sequential commu-
nication (i.e. time to move data from DRAM to caches). We use F to refer to an algorithm’s per
processor floating-point operations cost along the critical path, W to refer to the number of words
moved from one processor to another, and L to refer to the number of messages sent or received

CHAPTER 2. BACKGROUND 7

Co
m
m
un
ic
at
io
n

Computational	Complexity

Coordinate	Descent	(CD)

Newton’s	method

Krylov Methods

Block	Coordinate	Descent	(BCD)

CA-CD

CA-BCD

Figure 2.1: Illustration of where coordinate descent (CD), block coordinate descent (BCD), Krylov
methods (for quadratic problems), and Newton’s method lie in the computation and communication
tradeoff space. The communication-avoiding variants of CD and BCD reduce communication at
the expense of computation. Note that this figure suggests two ways to reduce communication.
One way is to derive communication-avoiding variants and the other to select an optimization
method which has the appropriate computation and communication tradeoff for the given parallel
computers.

by a processor. From these quantities, the running time for an algorithm can be bounded by

T ≤ γF + βW + ζL. (2.1)

We assume equality in (2.1) when we use the model to predict the running time of an algorithm.
Finally, we use MPI [62] as the communication library to implement our parallel algorithms. Since
we assume a binary tree network topology, the cost of an MPI_Allreduce collective operation for
a message size of n words costs n logP in bandwidth and logP in latency.

2.2 Related Work
We begin a summary of related work by first comparing coordinate descent (CD) and block coor-
dinate descent (BCD) to other iterative methods which can be used to solve optimization problems.

CHAPTER 2. BACKGROUND 8

In particular, we will consider comparisons with Krylov methods and Newton’s method. We as-
sume that the matrix A is distributed between the processors and that the layout is chosen such
that the computation, bandwidth, and latency costs are as small as possible. Since A is distributed,
any computation with A requires communication. Since iterative methods use A at every iteration,
we can use number of iterations as a proxy for the latency cost. CD only requires dot-products
and is computationally the cheapest in terms of flops per iteration but may require many itera-
tions to converge. BCD requires a Gram matrix computation with a (tunable) block size number
of rows or columns of A. Therefore, BCD requires more flops per iteration which is more ex-
pensive than CD but can converge in fewer iterations. Krylov methods iteratively compute parallel
matrix-vector products withA (i.e. uses all rows and columns ofA) and requires fewer iterations to
converge than CD or BCD. Newton’s method for optimization is a second-order method, which re-
quires computing the Hessian. Once the Hessian is computed, Newton’s method converges rapidly
and requires the fewest number of iterations. Figure 2.1 illustrates the difference between CD,
BCD, Krylov, and Newton’s method in the computation and communication tradeoff space. Our
communication-avoiding CD and BCD algorithms (plotted in green) reduce the communication
cost by a factor of s at the expense of a factor of s additional bandwidth and computation. This
illustrates that communication can be reduced in two ways: implicitly by reducing the number
of iterations (e.g. pre-conditioning and/or using a higher-order method) and explicitly by deriving
communication-avoiding versions of the existing method. Our work focuses on the latter approach.

We will now summarize the related work and highlight the differences with this thesis. The
CoCoA framework [111] is a parallel optimization framework which starts by dividing data points
from an input matrix between parallel machines and then approximately solves a given optimiza-
tion problem using a second order method on only data points stored locally on each machine.
Naturally, solving the optimization problem locally on each machine would not yield a good solu-
tion to the global problem on all data points. In order to incorporate the solutions from non-local
data points all machines communicate their local solutions and combine them by summing or av-
eraging. CoCoA reduces communication by altering the number of local iterations (i.e., how accu-
rately the local problem is solved) performed before communicating local solutions. Suppose that
all data points are stored on a single processor, then CoCoA is essentially a Newton-type method
which converges faster and with no communication, but at the expense of higher flops cost per
iteration. However, if each processor stores only one data point, then CoCoA acts like dual coor-
dinate descent which has slower convergence and lots of communication, but with lower flops cost
per iteration. CoCoA strikes a tradeoff between convergence, communication, and computational
complexity by storing a subset of the data points (greater than 1 but less than m) and allowing a
tunable number of local iterations before communicating. As a result, CoCoA implicitly reduces
communication by selecting a trade off point between convergence rate and communication. In
contrast, our technique explicitly reduces communication by selecting a trade off point between
computation, bandwidth, and latency without altering the convergence behavior. Since CoCoA
uses a local dual coordinate descent algorithm, additional speedups might be possible by replacing
it with our communication-avoiding dual coordinate descent algorithm. This is left for future work.

HOGWILD! [100] is a lock-free approach to stochastic gradient descent (SGD). SGD is an al-
gorithm which solves optimization problems by iteratively sampling a small set of data points from

CHAPTER 2. BACKGROUND 9

the input matrix and solves a sub-problem on only those data points. When SGD is parallelized,
the small set of data points can be distributed between different processors and each processor
can solve the optimization problem on just its data points. Once each processor obtains a local
solution, the global solution can be obtained by summing local solutions. Note that the summa-
tion requires inter-processor synchronization, which HOGWILD! attempts to avoid. Unlike the
standard parallel SGD, HOGWILD! does not enforce synchronization. Without synchronization,
the global solution may be updated using stale local solutions (i.e., a processor has updated the
global solution using a local solution that is one of more iterations behind other processors). The
main results in HOGWILD! show that if the solution updates are sparse (i.e. each processor only
modifies a part of the solution) or that the solution updates are not too stale then running without
synchronization does not affect the final solution with high probability.

CYCLADES [95] uses a conflict-graph analysis of the solutions updates associated with groups
of data points in SGD to ensure that these updates are conflict free. If that is the case then data
points which lead to conflict-free updates can be assigned to different processors. As a result, the
race conditions associated with HOGWILD! can be avoided but at the expense of building and
analyzing a conflict-graph. In contrast to HOGWILD! and CYCLADES, our technique does not
alter convergence rates and does not require conflict-free updates.

DUAL-LOCO [65] introduces a framework which reduces communication between processors
by communicating a small matrix of randomly projected features. While DUAL-LOCO requires
just one communication round, it does not apply to proximal least-squares problems (i.e., Lasso,
elastic-net, etc.) and introduces an (additive) approximation error.

CA-SVM [124] eliminates communication in SVM by performing an initial K-means cluster-
ing as a pre-processing step to partition the data and subsequently training SVM classifiers locally
on each processor. Communication is reduced significantly, but at the cost of accuracy. Like Co-
CoA, CA-SVM uses dual coordinate descent to solve the local problem. Replacing it with our
CA-DCD algorithm may yield additional speedups.

P-packSVM [131] applies a similar approach to ours and derives a CA version of SVM using
stochastic subgradient descent on the primal SVM problem. However, we generalize the technique
to more optimization problems and, specifically, to dual coordinate descent for SVM which has
been shown to converge faster than subgradient descent [68].

There are many algorithms which solve least-squares [90, 47, 101, 102, 91], SVM, and kernel
problems [97, 27, 107, 81, 68]. In this thesis we focus on randomized variants of accelerated and
non-accelerated Coordinate Descent (CD) and Block Coordinate Descent (BCD) since they have
optimal convergence rates among the class of first-order methods [47, 90, 101, 102, 68, 27].

2.3 Parallel Block Coordinate Descent
Figure 2.2 illustrates the computations in parallel BCD. For the figure, we assume that A is tall
and skinny with more data points than features (we do not assume anything about the shape of
A in later chapters). We assume that A is partitioned row-wise so that the dot-products required
in BCD can be performed in parallel by all processors. Similarly we assume that vectors in the

CHAPTER 2. BACKGROUND 10

.	.	.

Proc0
A0 r0

x

Procp
Ap rp

x

.	.	.

x

2. Randomly	
sample	5
Coordinates	of	
:.	(ex.	columns)

.	.	.

3. Compute	partial
dot-products

x

r0

rp

x

x
MPI_Allreduce

5. Compute	
5	-dimensional	
solution	and	update	
coordinates	of	D.

.	.	.

x

x

6. Repeat	until	termination	criterion	is	met.

.	.	.

4. Sum	reduce	
dot-products	
and	replicate	
on	all	
processors.	

.	.	.

.	.	.

1. Partition	A	
(ex.	rows).	
Replicate	or	
partition	all	
vectors	

! !e.g.

e.g.

Figure 2.2: A high-level depiction of the Block Coordinate Descent method (independent of the
minimization problem being solved). The matrix A is 1D-row partitioned and w.l.o.g. depicted as
being dense. Vectors in the partitioned dimension are also partitioned (in this case residual vector,
r). Vectors in the non-partitioned dimension and all scalars are replicated (in this case x). Each
processor selects the same column indices (by using the same random generator seed). Computa-
tion of (partial) dot-products is a local GEMM operation. After that, the results are combined using
an all-reduce with summation. Due to data replication all processors can independently compute
this iteration’s solution and perform vector updates.

row-dimension are partitioned, but that vectors in the column-dimension are replicated. Note that
b > 1 implies that dot-products become GEMM (GEneral Matrix-Multiplication) computations.
After the GEMM computations an MPI_Allreduce with summation combines each processor’s
contributions. Since Allreduce redundantly stores results on all processors, computing the solution
to the subproblem and updating all vectors can be performed without communication. Finally,
this process is repeated until a termination criterion is met. The mathematical details (and com-
plexity) of solving the subproblem and updating vectors might vary based on the optimization
problem (proximal least-squares, SVM, etc.). However, parallel BCD’s sequence of operations
can be summarized by Figure 2.2. Each iteration requires synchronization, therefore, avoiding
these synchronization costs could lead to faster and more scalable BCD methods.

11

Chapter 3

Avoiding Communication in
L2-Regularized Least-Squares

The algorithms, analysis, and experimental results presented in this chapter are a result of joint
work with co-authors James Demmel, Kimon Fountoulakis, and Michael W. Mahoney. This work
also appeared as a technical report [45] and is currently under reviewer for publication.

We extend the communication-avoiding technique to machine learning where scalable algorithms
are especially important given the enormous amount of data. Block coordinate descent methods
are routinely used in machine learning to solve optimization problems [90, 101, 122]. Given a
sparse dataset A ∈ Rm×n where the rows are data points and the columns are features, the block
coordinate descent method can compute the regularized or unregularized least squares solution by
iteratively solving a subproblem using a block of b columns (or features) of A [90, 101, 122]. This
process is repeated until the solution converges to a desired accuracy or until the number of itera-
tions has reached a user-defined limit. If A is distributed (in 1D-row or 1D-column layout) across
P processors then the algorithm communicates at each iteration in order to solve the subproblem.
As a result, the running time for such methods is often dominated by communication cost which
increases with P . We briefly summarize our contributions:

• We present communication-avoiding algorithms for block coordinate descent and block dual
coordinate descent that provably reduce the latency cost by a factor of s.

• We analyze the operational, communication and storage costs of the classical and our new
communication-avoiding algorithms under two data partitioning schemes and describe their
performance tradeoffs.

• We perform numerical experiments to illustrate that the communication-avoiding algorithms
are numerically stable for all choices of s tested.

• We show performance results to illustrate that the communication-avoiding algorithms can
be up to 6.1× faster than the standard algorithms on up to 1024 nodes of a Cray XC30
supercomputer using MPI.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 12

Summary of Ops and Memory costs
Algorithm Data layout Ops cost (F) Memory cost (M)

BCD
1D-row

O
(
Hb2fm
P

+Hb3
)

O
(
fmn+m

P
+ b2 + n

)
CA-BCD O

(
Hb2sfm

P
+Hb3

)
O
(
fmn+m

P
+ b2s2 + n

)
BDCD

1D-column
O
(
H′b′2fn

P
+H ′b′3

)
O
(
fmn+n

P
+ b′2 +m

)
CA-BDCD O

(
H′b′2sfn

P
+H ′b′3

)
O
(
fmn+n

P
+ b′2s2 +m

)
Summary of Communication costs

Algorithm Data layout Latency cost (L) Bandwidth cost (W)
BCD

1D-row
O (H logP) O (Hb2 logP)

CA-BCD O
(
H
s

logP
)

O (Hb2s logP)
BDCD

1D-column
O (H ′ logP) O (H ′b′2 logP)

CA-BDCD O
(
H′

s
logP

)
O (H ′b′2s logP)

Table 3.1: Ops (F), Latency (L), Bandwidth (W) and Memory per processor (M) costs comparison
along the critical path of classical BCD (Thm. 3.3.1), BDCD (Thm. 3.3.2) and communication-
avoiding BCD (Thm. 3.3.6) and BDCD (Thm. 3.3.7) algorithms for 1D-block row and 1D-block
column data partitioning, respectively. H and H ′ are the number of iterations and b and b′ are the
block sizes for BCD, and BDCD. We assume that A ∈ Rm×n is sparse with fmn non-zeros that
are uniformly distributed, 0 < f ≤ 1 is the density of A, P is the number of processors and s is
the recurrence unrolling parameter. We assume that the b× b and b′ × b′ Gram matrices computed
at each iteration for BCD and BDCD, respectively, are dense.

Our results reduce the latency cost (at the expense of additional flops and bandwidth) in the
primal and dual block coordinate descent methods by a factor of s on distributed-memory ar-
chitectures, for dense and sparse updates without changing the convergence behavior, in exact
arithmetic. Our results show that our CA-methods attain speedups despite the increase in flops
and bandwidth costs. Table 3.1 summarizes the critical path costs of the algorithms considered
in this paper. Hereafter we refer to the primal method as block coordinate descent (BCD) and
the dual method as block dual coordinate descent (BDCD). The proofs in this paper assume that
A is sparse with fmn non-zeros that are uniformly distributed where 0 < f ≤ 1 is the density
of A (i.e. f = nnz(A)

mn
). Each iteration of BCD samples b columns of A (resp. b′ rows of A for

BDCD), uniformly at random without replacement. The resulting m× b (resp. b′ × n for BDCD)
sampled matrix contains fbm (resp. fb′n for BDCD) non-zeros. These assumptions simplify our
analysis and provide insight into scaling behavior for ideal sparse inputs. We leave extensions
of our proofs to general sparse matrices for future work. The rest of the chapter is organized as
follows: Section 3.1 summarizes existing methods for solving the regularized least squares prob-
lem and the communication cost model used to analyze our algorithms. Section 3.2 presents the
communication-avoiding derivations of the BCD and BDCD algorithms. Section 3.3 analyzes the

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 13

Ops and Memory Costs Comparison
Algorithm Ops cost (F) Memory cost (M)

Krylov methods [4] O
(
kfmn
P

)
O
(
fmn
P

+ min(m,n) + max(m,n)
P

)
Communication Costs Comparison

Algorithm Latency cost (L) Bandwidth cost (W)
Krylov methods [4] O(k logP) O (kmin(m,n) logP)

Table 3.2: Critical path costs of Krylov methods. k is the number of iterations required for Krylov
methods to converge to a desired accuracy. We assume a 1D-block row layout if n < m (1D-block
column if n > m) and replicate the min(m,n)-dimensional vectors and partition the max(m,n)-
dimensional vectors.

operational, communication and storage costs of the classical and communication-avoiding algo-
rithms under the 1D-block column and 1D-block row data layouts. Section 3.4 provides numerical
and performance experiments which show that the communication-avoiding algorithms are numer-
ically stable and attain speedups over the standard algorithms. Finally, we conclude in Section 3.6
and describe directions for future work.

3.1 Block Coordinate Descent and Conjugate Gradients
The regularized least-squares problem can be written as the following optimization problem:

arg min
x∈Rn

λ

2
‖x‖2

2 +
1

2m
‖Ax− y‖2

2 (3.1)

where A ∈ Rm×n is the data matrix, whose rows are data points and columns are features, y ∈ Rm

are the labels, x ∈ Rn are the weights, and λ > 0 is a regularization parameter. The unregularized
(λ = 0) and regularized (λ > 0) least squares problems have been well-studied in literature from
directly solving the normal equations to other matrix factorization approaches [41, 10] to Krylov
[10, 20, 105] and block coordinate descent methods [11, 111, 106, 115, 122]. Table 3.1 and 3.2
summarize the critical path costs of the iterative methods just described.

We briefly summarize the difference between the BCD and BDCD algorithms, but defer the
derivations to Section 3.2. The BCD algorithm solves the primal minimization problem (3.1),
whereas, the BDCD algorithm solves the dual minimization problem:

arg min
α∈Rm

λ

2

∥∥∥∥ 1

λm
ATα

∥∥∥∥2

2

+
1

2m
‖α− y‖2

2 (3.2)

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 14

0 1 2 3
Flops (F) 108

10-4

10-2

100

102

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b =1
BDCD b' =1
CG

0 2 4 6
Bandwidth (W) 106

10-4

10-2

100

102

0 2 4 6
Messages (L) 106

10-4

10-2

100

102

0 50 100
Passes over Data Matrix

10-4

10-2

100

102

Figure 3.1: Comparison of convergence behavior against algorithm costs of Conjugate Gradients
(CG), BCD (with b = 1) and BDCD (with b′ = 1). Convergence is reported in terms of the relative
objective error and the experiments are performed on the news20 dataset (m = 15935, n = 62061,
nnz(A) = 1272569) obtained from LIBSVM [26]. We fix the number of CG iterations to k = 100,
BCD iterations to H = 100n and BDCD iterations to H ′ = 100m.

where α ∈ Rm is the dual solution vector. The dual problem [106] can be obtained by deriving the
convex conjugate of (3.1) and has the following primal-dual solution relationship:

x =
1

λm
ATα. (3.3)

Figure 3.1 illustrates the tradeoff between convergence behavior and algorithm costs of CG,
BCD and BDCD. We plot the sequential flops cost and ignore the logP factor for latency. We allow
each algorithm to make 100 passes overA and plot the relative objective error, f(A,xopt,y)−f(A,xalg ,y)

f(A,xopt,y)
,

where f(A, x, y) = 1
2m
‖ATx− y‖2

2 + λ
2
‖x‖2

2. xopt is computed a priori from CG with a tolerance
of 10−15, and xalg is the solution obtained from each iteration of CG, BCD or BDCD. Since A is
not symmetric, CG requires two matrix-vector products at each iteration (one with A and another

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 15

Relative Objective Error Comparison
CG iteration CG error BDCD error BCD error

0 6.8735 6.8735 6.8735
1 4.5425 7.8231 1.2826
25 0.5115 0.0441 0.0104
50 0.1326 0.0043 0.0031
75 0.0283 5.0779e-04 0.0016

100 0.0058 1.9346e-04 0.0010

Table 3.3: Relative objective errors of CG, BDCD (b′ = 1) and BCD (b = 1). We normalize the
BDCD and BCD iterations to match reported CG iterations. If k is the CG iteration, then BCD
performs H = kn and BDCD performs H ′ = km iterations.

with AT). Therefore, the flops cost of CG is 2× the cost of a matrix-vector product with A. We
assume that the two matrix-vector products can be computed with a single pass over A.

If low-accuracy suffices, then BCD and BDCD converge faster in terms of flops and passes
over A. However, CG is more bandwidth efficient than BCD (but not BDCD) and is orders of
magnitude more latency efficient than BCD and BDCD. This suggests that reducing the latency
cost of BCD and BDCD is an important step in making these algorithms competitive.

3.2 Communication-Avoiding Derivation
In this section, we re-derive the block coordinate descent (BCD) and block dual coordinate descent
(BDCD) algorithms starting from the respective minimization problems. The derivation of BCD
and BDCD lead to recurrences which can be unrolled to derive communication-avoiding versions
of BCD and BDCD, which we will refer to as CA-BCD and CA-BDCD respectively.

Derivation of Block Coordinate Descent
The minimization problem in (3.1) can be solved by block coordinate descent with the b-dimensional
update

xh = xh−1 + Ih∆xh (3.4)

where xh ∈ Rn and Ih =
[
ei1 , ei2 , . . . , eib

]
∈ Rn×b, ∆xh ∈ Rb, and il ∈ [n] for l = 1, 2, . . . , b. By

substitution in (3.1) we obtain the minimization problem

arg min
∆xh∈Rb

λ

2
‖xh−1 + Ih∆xh‖2

2 +
1

2m
‖Axh−1 + AIh∆xh − y‖2

2

with the closed-form solution

∆xh =

(
1

m
IThATAIh + λITh Ih

)−1(
−λIThxh−1 −

1

m
IThATAxh−1 +

1

m
IThATy

)
. (3.5)

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 16

Algorithm 1 Block Coordinate Descent (BCD) Algorithm

1: Input: A ∈ Rm×n, y ∈ Rm, H > 1, x0 ∈ Rn, b ∈ Z+ s.t. b ≤ n
2: for h = 1, 2, · · · , H do
3: choose {il ∈ [n]|l = 1, 2, . . . , b} uniformly at random without replacement
4: Ih = [ei1 , ei2 , · · · , eib]
5: Γh = 1

m
IThATAIh + λITh Ih

6: ∆xh = Γ−1
h

(
−λIThxh−1 − 1

m
IThAT zh−1 + 1

m
IThATy

)
7: xh = xh−1 + Ih∆xh
8: zh = zh−1 + AIh∆xh
9: Output xH

The closed-from solution appears to require a matrix-vector multiply using the entire data ma-
trix to compute 1

m
IThATAxh−1. However, this can be avoided by introducing the auxiliary variable,

zh = Axh, which, by substituting (3.4), can be re-arranged into a vector update of the form

zh = Axh−1 + AIh∆xh = zh−1 + AIh∆xh (3.6)

and the closed-form solution can be written in terms of zh−1,

∆xh =

(
1

m
IThATAIh + λITh Ih

)−1(
−λIThxh−1 −

1

m
IThAT zh−1 +

1

m
IThATy

)
. (3.7)

In order to make the communication-avoiding BCD derivation easier, let us define

Γh =
1

m
IThATAIh + λITh Ih.

Then (3.7) can be re-written as

∆xh = Γ−1
h

(
−λIThxh−1 −

1

m
IThAT zh−1 +

1

m
IThATy

)
. (3.8)

This re-arrangement leads to the Block Coordinate Descent (BCD) method shown in Algorithm
1. The recurrence in lines 6, 7, and 8 of Algorithm 1 allow us to unroll the BCD recurrences and
avoid communication. We begin by changing the loop index from h to sk + j where k is the outer
loop index, s is the recurrence unrolling parameter and j is the inner loop index. Assume that we
are at the beginning of iteration sk + 1 and xsk and zsk were just computed. Then ∆xsk+1 can be
computed by

∆xsk+1 = Γ−1
sk+1

(
−λITsk+1xsk −

1

m
ITsk+1A

T zsk +
1

m
ITsk+1A

Ty

)
.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 17

Algorithm 2 Communication-Avoiding Block Coordinate Descent (CA-BCD) Algorithm

1: Input: A ∈ Rm×n, y ∈ Rm, H > 1, x0 ∈ Rn, b ∈ Z+ s.t. b ≤ n

2: for k = 0, 1, · · · , H
s

do
3: for j = 1, 2, · · · , s do
4: choose {il ∈ [n]|l = 1, 2, . . . , b} uniformly at random without replacement
5: Isk+j = [ei1 , ei2 , · · · , eib]

6: let Y =
[
Isk+1, Isk+2, · · · , Isk+s

]T
AT .

7: compute the Gram matrix, G = 1
m
Y Y T + λI .

8: for j = 1, 2, · · · , s do
9: Γsk+j are the b× b diagonal blocks of G.

10: ∆xsk+j = Γ−1
sk+j

(
− λITsk+jxsk − λ

∑j−1
t=1

(
ITsk+jIsk+t∆xsk+t

)
− 1

m
ITsk+jA

T zsk

− 1
m

∑j−1
t=1

(
ITsk+jA

TAIsk+t∆xsk+t

)
+ 1

m
ITsk+jA

Ty

)
11: xsk+s = xsk +

∑s
t=1 (Isk+t∆xsk+t)

12: zsk+s = zsk + A
∑s

t=1 (Isk+t∆xsk+t)

13: Output xH

By unrolling the recurrence for xsk+1 and zsk+1 we can compute ∆xsk+2 in terms of xsk and zsk

∆xsk+2 = Γ−1
sk+2

(
− λITsk+2xsk − λITsk+2Isk+1∆xsk+1

− 1

m
ITsk+2A

T zsk −
1

m
ITsk+2A

TAIsk+1∆xsk+1 +
1

m
ITsk+2A

Ty

)
.

By induction we can show that ∆xsk+j can be computed using xsk and zsk

∆xsk+j = Γ−1
sk+j

(
− λITsk+jxsk − λ

j−1∑
t=1

(
ITsk+jIsk+t∆xsk+t

)
− 1

m
ITsk+jA

T zsk −
1

m

j−1∑
t=1

(
ITsk+jA

TAIsk+t∆xsk+t

)
+

1

m
ITsk+jA

Ty

)
. (3.9)

for j = 1, 2, . . . , s. Due to the recurrence unrolling we can defer the updates to xsk and zsk
for s steps. Notice that the first summation in (3.9) computes the intersection between the co-
ordinates chosen at iteration sk + j and sk + t for t = 1, . . . , j − 1 via the product ITsk+jIsk+t.
Note that the intersection is not necessarily 0. For b > 1 we select coordinates without replace-
ment only for this iteration. The next iteration is allowed to choose b coordinates (again without
replacement) from all of the coordinates (i.e. not just the unchosen coordinates from the pre-
vious iteration). In general, when fusing s iterations the intersection is non-empty (in practice,

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 18

Algorithm 3 Block Dual Coordinate Descent (BDCD) Algorithm

1: Input: A ∈ Rm×n, y ∈ Rm, H ′ > 1, α0 ∈ Rm, b′ ∈ Z+ s.t. b′ ≤ m

2: Initialize: x0 ← −1
λm
ATα0

3: for h = 1, 2, · · · , H ′ do
4: choose {il ∈ [m]|l = 1, 2, . . . , b′} uniformly at random without replacement
5: Ih =

[
ei1 , ei2 , · · · , eib′

]
6: Θh = 1

λm2 IThAAT Ih + 1
m
ITh Ih

7: ∆αh = 1
m

Θ−1
h

(
−IThAxh−1 − IThαh−1 + ITh y

)
8: αh = αh−1 + Ih∆αh
9: xh = xh−1 + 1

λm
AT Ih∆αh

10: Output α′H and x′H

we have seen this in occur in our experiments). Communication can be avoided in this term by
initializing all processors to the same seed for the random number generator. The second sum-
mation in (3.9) computes the Gram-like matrices ITsk+jA

TAIsk+t for t = 1, . . . , j − 1. Com-
munication can be avoided in this computation by computing the sb × sb Gram matrix G =(

1
m

[
Isk+1, Isk+2, · · · , Isk+s

]T
ATA

[
+Isk+1, Isk+2, · · · , Isk+s

]
+ λI

)
once before the inner loop

and redundantly storing it on all processors. Finally, we can perform the vector updates

xsk+s = xsk +
s∑
t=1

(Isk+t∆xsk+t) , (3.10)

zsk+s = zsk + A
s∑
t=1

(Isk+t∆xsk+t) . (3.11)

The resulting CA-BCD algorithm is shown in Alg. 2.

Derivation of Block Dual Coordinate Descent
The solution to the primal problem (3.1) can also be obtained by solving the dual minimization
problem shown in (3.2) with the primal-dual relationship shown in (3.3). The dual problem (3.2)
can be solved using block coordinate descent which iteratively solves a subproblem in Rb′ , where
1 ≤ b′ ≤ m is a tunable block-size parameter. Let us first define the dual vector update for
αh ∈ Rm

αh = αh−1 + Ih∆αh. (3.12)

Here h is the iteration index, Ih =
[
ei1 , ei2 , . . . eib′

]
∈ Rm×b′ , il ∈ [m] for l = 1, 2, . . . b′ and

∆αh ∈ Rb′ . By substitution in (3.2), ∆αh is the solution to a minimization problem in Rb′ as

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 19

desired:

arg min
∆αh∈Rb′

1

2λm2
‖Aαh−1 + AIh∆αh‖2

2 +
1

2m
‖αh−1 + Ih∆αh − y‖2

2 . (3.13)

Finally, due to (3.3) we obtain the primal vector update for xh ∈ Rn

xh = xh−1 +
1

λm
AT Ih∆αh. (3.14)

From (3.12), (3.13), and (3.14) we obtain a block coordinate descent algorithm which solves the
dual minimization problem. Henceforth, we refer to this algorithm as block dual coordinate descent
(BDCD). Note that by setting b′ = 1 we obtain the SDCA algorithm [106] with the least-squares
loss function.

The optimization problem (3.13) which computes the solution along the chosen coordinates
has the closed-form

∆αh =

(
1

λm2
IThAAT Ih +

1

m
ITh Ih

)−1(−1

λm2
IThAATαh−1 −

1

m
IThαh−1 +

1

m
ITh y
)
. (3.15)

Let us define Θh ∈ Rb′×b′ such that

Θh =

(
1

λm2
IThAAT Ih +

1

m
ITh Ih

)
.

From this we have that at iteration h, we compute the solution along the b′ coordinates of the
linear system

∆αh =
1

m
Θ−1
h

(
−IThAxh−1 − IThαh−1 + ITh y

)
(3.16)

and obtain the BDCD algorithm shown in Algorithm 3. The recurrence in lines 7, 8, and 9 of
Algorithm 3 allow us to unroll the BDCD recurrences and avoid communication. We begin by
changing the loop index from h to sk + j where k is the outer loop index, s is the recurrence
unrolling parameter and j is the inner loop index. Assume that we are at the beginning of iteration
sk + 1 and xsk and αsk were just computed. Then ∆αsk+1 can be computed by

∆αsk+1 = − 1

m
Θ−1
sk+1

(
−ITsk+1Axsk − ITsk+1αsk + ITsk+1y

)
.

Furthermore, by unrolling the recurrences for xsk+1 and αsk+1 we can analogously to (3.9) show
by induction that

∆αsk+j =
1

m
Θ−1
sk+j

(
− ITsk+jAxsk −

1

λm

j−1∑
t=1

(
ITsk+jAA

T Isk+t∆αsk+t

)
− ITsk+jαsk −

j−1∑
t=1

(
ITsk+jIsk+t∆αsk+t

)
+ ITsk+jy

)
(3.17)

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 20

Algorithm 4 Communication-Avoiding Block Dual Coordinate Descent (CA-BDCD) Algorithm

1: Input: A ∈ Rm×n, y ∈ Rm, H ′ > 1, α0 ∈ Rm, b′ ∈ Z+ s.t. b′ ≤ m

2: Initialize: x0 ← −1
λm
ATα0

3: for k = 0, 1, · · · , H′
s

do
4: for j = 1, 2, · · · , s do
5: choose {il ∈ [m]|l = 1, 2, . . . , b′} uniformly at random without replacement
6: Isk+j =

[
ei1 , ei2 , · · · , eib′

]
7: let Y = A [Isk+1, Isk+2, . . . , Isk+s].
8: compute the Gram matrix, G′ = 1

λm2Y
TY + 1

m
I .

9: for j = 1, 2, · · · , s do
10: Θsk+j are the b′ × b′ diagonal blocks of G′.

11: ∆αsk+j = 1
m

Θ−1
sk+j

(
− ITsk+jAxsk − 1

λm

∑j−1
t=1

(
ITsk+jAA

T Isk+t∆αsk+t

)
−ITsk+jαsk −

∑j−1
t=1

(
ITsk+jIsk+t∆αsk+t

)
+ ITsk+jy

)
12: xsk+s = xsk + 1

λm
AT
∑s

t=1 (Isk+t∆αsk+t)
13: αsk+s = αsk +

∑s
t=1 (Isk+t∆αsk+t)

14: Output αH′ and xH′

for j = 1, 2, . . . , s. Note that due to unrolling the recurrence we can compute ∆αsk+j from xsk
and αsk which are the primal and dual solution vectors from the previous outer iteration. Since
the solution vector updates require communication, the recurrence unrolling allows us to defer
those updates for s iterations at the expense of additional computation. The solution vectors can
be updated by

xsk+s = xsk +
1

λm
AT

s∑
t=1

(Isk+t∆αsk+t) , (3.18)

αsk+s = αsk +
s∑
t=1

(Isk+t∆αsk+t) . (3.19)

The resulting CA-BDCD algorithm is shown in Alg. 4.

3.3 Algorithm Analysis
From the derivations in Section 3.2, we can observe that BCD and BDCD perform computations on
ATA and AAT , respectively. This implies that, along with the convergence rates, the shape of A is
a key factor in choosing between the two methods. Furthermore, the data partitioning scheme used
to distribute A between processors may cause one method to have a lower communication cost

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 21

than the other. In this section we analyze the cost of BCD and BDCD under two data partitioning
schemes: 1D-block column (feature partitioning) and 1D-block row (data point partitioning). In
both cases, we derive the associated operational, storage, and communication costs. We perform a
similar analysis of the CA-variants to illustrate that we provably avoid communication and describe
tradeoffs. Since A is sparse the analysis of the computational cost includes passes over the sparse
data structure instead of just the floating-point operations associated with the sparse matrix - sparse
matrix multiplication (i.e. Gram matrix computation). Therefore, our analysis gives bounds on the
local operations for each processor. We begin in Section 3.3 with the analysis of the BCD and
BDCD algorithms and then analyze our new, communication-avoiding variants in Section 3.3.

Classical Algorithms
We begin with the analysis of the BCD algorithm withA stored in a 1D-block row layout and show
how to extend this proof to BDCD with A in a 1D-block column layout.

Theorem 3.3.1. H iterations of the Block Coordinate Descent (BCD) algorithm with the matrix
A ∈ Rm×n stored in 1D-block row partitions with a block size b, on P processors along the critical
path costs

F = O

(
Hb2fm

P
+Hb3

)
ops, M = O

(
fmn+m

P
+ b2 + n

)
words of memory.

Communication costs

W = O
(
Hb2 logP

)
words moved, L = O (H logP) messages.

Proof. The BCD algorithm computes a b × b Gram matrix, Γh, solves a b × b linear system to
obtain ∆xh, and updates the vectors xh and zh. Computing the Gram matrix requires that each
processor locally compute a b × b block of inner-products and then perform an all-reduce (a re-
duction and broadcast) to sum the partial blocks. Since the b × m sub-matrix IThAT has bfm
non-zeros, the parallel Gram matrix computation (IThATAIh) requires O(b

2fm
P

) operations (there
are b2 elements of the Gram matrix each of which depend on fm non-zeros) and communicates
O (b2 logP) words, with O (logP) messages. In order to solve the subproblem redundantly on
all processors, a local copy of the residual is required. Computing the residual requires O

(
bfm
P

)
operations, and communicates O (b logP) words, in O (logP) messages. Once the residual is
computed the subproblem can be solved redundantly on each processor in O (b3) flops. Finally,
the vector updates to xh and zh can be computed without any communication in O

(
b+ bfm

P

)
flops

on each processor. The critical path costs of H iterations of this algorithm are O
(
Hb2fm
P

+Hb3
)

flops, O (Hb2 logP) words, and O (H logP) messages. Each processor requires enough memory
to store xh, Γh, ∆x, Ih and 1

P
-th of A, zh, and y. Therefore the memory cost of each processor is

n+ b2 + 2b+ fmn+2m
P

= O
(
fmn+m

P
+ b2 + n

)
words per processor.

If fm
P
> b, then computing the Gram matrix dominates solving the subproblem. Furthermore,

the storage cost of A dominates the cost of the Gram matrix.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 22

Theorem 3.3.2. H ′ iterations of the Block Dual Coordinate Descent (BDCD) algorithm with the
matrix A ∈ Rm×n stored in 1D-block column partitions with a block size b′, on P processors along
the critical path costs

F = O

(
H ′b′2fn

P
+H ′b′

3

)
ops, M = O

(
fmn+ n

P
+ b′

2
+m

)
words of memory.

Communication costs

W = O
(
H ′b′

2
logP

)
words moved, L = O (H ′ logP) messages.

Proof. Proof is similar to that of Theorem 3.3.1 with appropriate change of variables for BDCD.

If A is stored in a 1D-block column layout, then each processor stores a disjoint subset of the
features of A. Since BCD selects b features at each iteration, 1D-block column partitioning could
lead to load imbalance. In order to avoid load imbalance we re-partition the chosen b features into
1D-block row layout and proceed by using the 1D-block row BCD algorithm. Re-partitioning the
b features requires communication, so we begin by bounding the maximum number of features
assigned to a single processor. The bandwidth cost of re-partitioning is bounded by the processor
with maximum load (i.e. maximum number of features). These bounds only holds with high
probability since the features are chosen uniformly at random. To attain bounds on the bandwidth
cost we assume that each sampled row of A has fn non-zeros.

Lemma 3.3.3. Given a matrix A ∈ Rm×n and P processors such that each processor stores
Θ
(⌊

n
P

⌋)
features, if b features are chosen uniformly at random, then the worst case maximum

number of features, η(b, P), assigned to a single processor w.h.p. is:

η(b, P) =


O

(
b
P

+
√

b logP
P

)
if b > P logP,

O
(

log b
log log b

)
if b = P,

O
(

logP

log P
b

)
if b < P

logP
.

Proof. This is the well-known generalization of the balls and bins problem introduced by Gonnet
[58] and extended by Mitzenmacher [84] and Raab et. al. [99].

A similar result holds for BDCD with A stored in a 1D-block row layout.

Theorem 3.3.4. H iterations of the Block Coordinate Descent (BCD) algorithm with the matrix
A ∈ Rm×n stored in 1D-block column partitions with a block size b, on P processors along the
critical path costs

F = O

(
Hb2fm

P
+Hb3

)
ops, M = O

(
fmn+m

P
+ b2 + n

)
words of memory.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 23

For small messages, communication costs w.h.p.

W = O
((
b2 + η(b, P)fm

)
H logP

)
words moved, L = O (H logP) messages.

For large messages, communication costs w.h.p.

W = O
(
Hb2 logP +Hη(b, P)fm

)
words moved, L = O (HP) messages.

Proof. The 1D-block row partitioning scheme implies that the b×b Gram matrix, Γh, computation
may be load imbalanced. Since we randomly select b columns, some processors may hold multiple
columns while others hold none. In order to balance the computational load we perform an all-to-
all to convert the m× b sampled matrix into the 1D-block row layout. The amount of data moved
is bounded by the max-loaded processor, which from Lemma 3.3.3, stores O (η(b, P)) rows w.h.p.
in the worst-case. This requires W = O (η(b, P)fm logP) and L = O (logP) for small messages
or W = O (η(b, P)fn) and L = O (HP) for large messages. The all-to-all requires additional
storage on each processor ofM = O

(
bfn
P

)
words. Once the sampled matrix is converted, the BCD

algorithm proceeds as in Theorem 3.3.1. By combining the cost of the all-to-all over H iterations
and the costs from Theorem 3.3.1, we obtain the costs for the BCD algorithm with A stored in a
1D-block row layout.

The additional storage for the all-to-all does not dominate since b < n by definition.

Theorem 3.3.5. H ′ iterations of the Block Dual Coordinate Descent (BDCD) algorithm with the
matrix A ∈ Rm×n stored in 1D-block row partitions with a block size b′, on P processors along
the critical path costs w.h.p.

F = O

(
H ′b′2fn

P
+H ′b′

3

)
ops, M = O

(
fmn+ n

P
+ b′

2
+m

)
words of memory.

For small messages, communciation costs w.h.p.

W = O
((
b′

2
+ η(b′, P)fn

)
H ′ logP

)
words moved, L = O (H ′ logP) messages.

For large messages, communication costs w.h.p.

W = O
(
H ′b′

2
logP +H ′η(b′, P)fn

)
words moved, L = O (H ′P) messages.

Proof. Cost analysis similar to Thm. 3.3.4 proves this theorem.

Communication-Avoiding Algorithms
In this section, we derive the computation, storage, and communication costs of our communication-
avoiding BCD and BDCD algorithm under the 1D-block row and 1D-block column data layouts.
In both cases we show that our algorithm reduces the latency costs by a factor of s, but increase
flops and bandwidth by the same factor. Our experimental results will show that this tradeoff can
lead to speedups. We begin with the CA-BCD algorithm in 1D-block row layout and, then show
how this proof extends to CA-BDCD in 1D-block column layout.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 24

Theorem 3.3.6. H iterations of the Communication-Avoiding Block Coordinate Descent (CA-
BCD) algorithm with the matrix A ∈ Rm×n stored in 1D-block row partitions with a block size b,
on P processors along the critical path costs

F = O

(
Hb2sfm

P
+Hb3

)
ops, M = O

(
fmn+m

P
+ b2s2 + n

)
words of memory.

Communication costs

W = O
(
Hb2s logP

)
words moved, L = O

(
H

s
logP

)
messages.

Proof. The CA-BCD algorithm computes the sb × sb Gram matrix, G = 1
m
Y Y T + λI , where

Y =
[
Isk+1, Isk+2, · · · , Isk+s

]T
AT , solves s (b× b) linear systems to compute ∆xsk+j and updates

the vectors xsk+s and zsk+s. Computing the Gram matrix requires that each processor locally com-
pute a sb×sb block of inner-products and then perform an all-reduce (a reduction and broadcast) to
sum the partial blocks. This operation requires O

(
b2s2fm
P

)
operations (there are s2b2 elements of

the Gram matrix each of which depends on fm non-zeros), communicates O (s2b2 logP) words,
and requiresO (logP) messages. In order to solve the subproblem redundantly on all processors, a
local copy of the residual is required. Computing the residual requiresO

(
bsfm
P

)
flops, and commu-

nicates O (sb logP) words, in O (logP) messages. Once the residual is computed the subproblem
can be solved redundantly on each processor in O (b3s+ b2s2) flops. Finally, the vector updates to
xsk+s and zsk+s can be computed without any communication in O

(
bs+ bsfm

P

)
flops on each pro-

cessor. Since the critical path occurs every H
s

iterations (every outer iteration), the algorithm costs

O
(
Hb2sfm

P
+Hb3

)
flops, O (Hb2s logP) words, and O

(
H
s

logP
)

messages. Each processor re-

quires enough memory to store xsk+j , G, ∆xsk+j , Isk+j and 1
P

-th of A, zsk+j , and y. Therefore the
memory cost of each processor is n + s2b2 + 2sb + fmn+2m

P
= O

(
fmn+m

P
+ b2s2 + n

)
words per

processor.

Theorem 3.3.7. H ′ iterations of the Communication-Avoiding Block Dual Coordinate Descent
(CA-BDCD) algorithm with the matrix A ∈ Rm×n stored in 1D-block column partitions with a
block size b′, on P processors along the critical path costs

F = O

(
H ′b′2sfn

P
+H ′b′

3

)
ops, M = O

(
fmn+ n

P
+ b′

2
s2 +m

)
words of mem.

Communication costs

W = O
(
H ′b′

2
s logP

)
words moved, L = O

(
H ′

s
logP

)
messages.

Proof. Proof is similar to that of Theorem 3.3.6 with appropriate change of variables for CA-
BDCD.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 25

Now we analyze the operational and communication costs of CA-variants of the 1D-block
column BCD and 1D-block row BDCD algorithms.

Theorem 3.3.8. H iterations of the Communication-Avoiding Block Coordinate Descent (CA-
BCD) algorithm with the matrix A ∈ Rm×n stored in 1D-block column partitions with a block
size b, on P processors along the critical path costs

F = O

(
Hb2sfm

P
+Hb3

)
ops, M = O

(
(n+ bs)fm+m

P
+ b2s2 + n

)
words.

For small messages, communication costs w.h.p.

W = O
((
b2s+ η(sb, P)fm

)
H logP

)
words moved, L = O

(
H

s
logP

)
messages.

For large messages, communication costs w.h.p.

W = O
(
Hb2s logP +Hη(sb, P)fm

)
words moved, L = O

(
H

s
P

)
messages.

Proof. The 1D-block column partitioning scheme implies that the sb × sb Gram matrix compu-
tation may be load imbalanced. Since we randomly select sb columns, some processors may
hold multiple chosen columns while some hold none. In order to balance the computational load
we perform an all-to-all to convert the m × sb sampled matrix into the 1D-block row layout.
The amount of data moved is bounded by the max-loaded processor, which from Lemma 3.3.3,
stores O (η(sb, P)) rows w.h.p. in the worst-case. This requires W = O (η(sb, P)fm logP) and
L = O (logP) for small messages or W = O (η(sb, P)fm) and L = O (HP) for large messages.
The all-to-all requires additional storage on each processor of M = O

(
bsfm
P

)
words. Once the

sampled matrix is converted, the BCD algorithm proceeds as in Theorem 3.3.6. By combining the
cost of the all-to-all over H iterations and the costs from Theorem 3.3.6, we obtain the costs for
the CA-BCD algorithm with A stored in a 1D-block columns layout.

Note that the additional storage for the all-to-all may dominate if n < bs. Therefore, b and s
must be chosen carefully.

Theorem 3.3.9. H iterations of the Communication-Avoiding Block Dual Coordinate Descent
(CA-BDCD) algorithm with the matrix A ∈ Rm×n stored in 1D-block row partitions with a block
size b′, on P processors along the critical path costs

F = O

(
H ′b′2sfn

P
+H ′b′

3

)
ops,M = O

(
(m+ b′s)fn+ n

P
+ b′

2
s2 +m

)
words.

For small messages, communication costs w.h.p.

W = O
((
b′

2
s+ η(sb′, P)fn

)
H ′ logP

)
words moved, L = O

(
H ′

s
logP

)
msgs.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 26

Summary of datasets
Name Data Points (m) Features (n) f σmin σmax Source

news20 15, 935 62, 061 0.0013 1.7e−6 6.0e+5 LIBSVM [77]
a9a 32, 561 123 0.11 4.9e−6 2.0e+5 UCI [80]
real-sim 72, 309 20, 958 0.0024 1.1e−3 9.2e+2 LIBSVM [83]

Table 3.4: Properties of the LIBSVM datasets used in our experiments. We report the largest and
smallest singular values (same as the eigenvalues) of ATA.

For large messages, communication costs w.h.p.

W = O
(
H ′b′

2
s logP +H ′η(sb′, P)fn

)
words moved, L = O

(
H ′

s
P

)
messages.

Proof. A similar cost analysis to Theorem 3.3.8 proves this theorem.

The communication-avoiding variants that we have derived require a factor of s fewer messages
than their classical counterparts, at the cost of more computation, bandwidth and memory. This
suggests that s must be chosen carefully to balance the additional costs with the reduction in the
latency cost.

3.4 Convergence Behavior
We proved in Section 3.3 that the CA-BCD and CA-BDCD algorithms reduce latency (the domi-
nant cost) at the expense of additional bandwidth and computation. The recurrence unrolling we
propose may also affect the numerical stability of CA-BCD and CA-BDCD since the sequence
of computations and vector updates are different. In Section 3.4 we experimentally show that the
communication-avoiding variants are numerically stable (in contrast to some CA-Krylov methods
[20, 21, 22, 24, 23, 67]) and, in Section 3.5, we show that the communication-avoiding variants
can lead to large speedups on a Cray XC30 supercomputer using MPI.

Numerical Experiments
The algorithm transformations derived in Section 3.2 require that the CA-BCD and CA-BDCD op-
erate on Gram matrices of size sb× sb instead of size b× b every outer iteration. Due to the larger
dimensions, the condition number of the Gram matrix increases and may have an adverse affect on
the convergence behavior. We explore this tradeoff between convergence behavior, flops, commu-
nication and the choices of b and s for the standard and communication-avoiding algorithms. All
numerical stability experiments were performed in MATLAB version R2016b on a 2.3 GHz Intel
i7 machine with 8GB of RAM with datasets obtained from the LIBSVM repository [26]. Datasets

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 27

0 0.5 1 1.5 2
Iterations (H) 106

10-2

10-1

100

101

re
la

tiv
e

so
lu

tio
n

er
ro

r BCD b = 1
BCD b =8
BCD b =16

(a) news20

100 105

Messages (L)

10-3

10-2

10-1

100

101

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =0.01

(b) news20

0 2 4 6 8
Iterations (H) 104

10-4

10-2

100

re
la

tiv
e

so
lu

tio
n

er
ro

r BCD b = 1
BCD b =8
BCD b =16

(c) a9a

100 105

Messages (L)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =1e-08

(d) a9a

0 0.5 1 1.5 2 2.5
Iterations (H) 105

10-6

10-4

10-2

100

re
la

tiv
e

so
lu

tio
n

er
ro

r BCD b = 1
BCD b =8
BCD b =16

(e) real-sim

100 102 104 106

Messages (L)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =1e-08

(f) real-sim

Figure 3.2: Convergence behavior of BCD for several block sizes, b, such that 1 ≤ b < m on
several machine learning datasets. We plot relative solution error (top row, Figs. 3.2a-3.2e) and
relative objective error (bottom row, Fig. 3.2b-3.2f) with λ = 1000σmin. We fix the relative
objective error tolerance for news20 to 1e−2 and 1e−8 for a9a and real-sim. Note that the X-axis
for Figures 3.2b-3.2f is equivalent to the number of iterations (modulo log10 scale).

were chosen so that all algorithms were tested on a range of shapes, sizes, and condition num-
bers. Table 3.4 summarizes the important properties of the datasets tested. For all experiments,
we set the regularization parameter to λ = 1000σmin. The regularization parameter reduces the

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 28

condition numbers of the datasets and allows the BCD and BDCD algorithms to converge faster.
In practice, λ should be chosen based on metrics like prediction accuracy on the test data (or
hold-out data). Smaller values of λ would slow the convergence rate and require more iterations,
therefore we choose λ so that our experiments have reasonable running times. We do not explore
tradeoffs among λ values, convergence rate and running times in this paper. In order to measure
convergence behavior, we plot the relative solution error, ‖xopt−xh‖2‖xopt‖2 , where xh is the solution ob-
tained from the coordinate descent algorithms at iteration h and xopt is obtained from conjugate
gradients with tol = 1e−15. We also plot the relative objective error, f(A,xopt,y)−f(A,xh,y)

f(A,xopt,y)
, where

f(A, x, y) = 1
2m
‖Ax − y‖2

2 + λ
2
‖x‖2

2, the primal objective. We use the primal objective to show
convergence behavior for BCD, BDCD and their communication-avoiding variants. We explore
the tradeoff between the block sizes, b and b′, and convergence behavior to test BCD and BDCD
stability due to the choice of block sizes. Then, we fix the block sizes and explore the tradeoff be-
tween s, the recurrence unrolling parameter, and convergence behavior to study the stability of the
communication-avoiding variants. Finally, for both sets of experiments we also plot the algorithm
costs against convergence behavior to illustrate the theoretical performance tradeoffs due to choice
of block sizes and choice of s. For the latter experiments we assume that the datasets are parti-
tioned in 1D-block column for BCD and 1D-block row for BDCD. We plot the sequential flops
cost for all algorithms, ignore the logP factor for the number of messages and ignore constants.
We obtain the Gram matrix computation cost from the SuiteSparse [37] routine ssmultsym1.

Block Coordinate Descent

Recall that the BCD algorithm computes a b× b Gram matrix and solves a b-dimensional subprob-
lem at each iteration. Therefore, one should expect that as b increases the algorithm converges
faster but requires more flops and bandwidth per iteration. So we begin by exploring the block size
vs. convergence behavior tradeoff for BCD with 1 ≤ b < n.

Figure 3.2 shows the convergence behavior of the datasets in Table 3.4 in terms of the relative
solution error (Figs. 3.2a-3.2e) and relative objective error (Figs. 3.2b-3.2f). The x-axis for the
latter figures are on log10 scale. Note that the number of messages is equivalent to the number of
iterations, since BCD communicates every iteration. We observe that the convergence rates for all
datasets improve as the block sizes increase.

Figure 3.3 shows the convergence behavior (in terms of the objective error) vs. flops and
bandwidth costs for each dataset. From these results, we observe that BCD with b = 1 is more
flops and bandwidth efficient, whereas b > 1 is more latency efficient (from Figs. 3.2b-3.2f). This
indicates the existence of a tradeoff between BCD convergence rate (which depends on the block
size) and hardware-specific parameters (like flops rate, memory/network bandwidth and latency).

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 29

104 106 108

Flops (F)

10-3

10-2

10-1

100

101

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =0.01

(a) news20

100 105

Bandwidth (W)

10-3

10-2

10-1

100

101

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =0.01

(b) news20

104 106 108

Flops (F)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =1e-08

(c) a9a

100 102 104 106

Bandwidth (W)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =1e-08

(d) a9a

104 106 108

Flops (F)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =1e-08

(e) real-sim

100 105

Bandwidth (W)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD b = 1
BCD b =8
BCD b =16
tol =1e-08

(f) real-sim

Figure 3.3: Convergence behavior of BCD for several block sizes, b, such that 1 ≤ b < n. We plot
flops cost and bandwidth cost versus convergence with λ = 1000σmin.

Communication-Avoiding Block Coordinate Descent

Our derivation of the CA-BCD algorithm showed that by unrolling the vector update recurrences
we can reduce the latency cost of the BCD algorithm by a factor of s. However, this comes at the

1Symbolically executes the sparse matrix - sparse matrix multiplication and reports an estimate of the flops cost
(counting multiplications and additions).

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 30

0 0.5 1 1.5 2
Iterations (H) 105

10-2

10-1

100

101

re
la

tiv
e

so
lu

tio
n

er
ro

r

BCD
CA-BCD s =5
CA-BCD s =20
CA-BCD s =100

(a) news20

0 0.5 1 1.5 2
Iterations (H) 105

10-4

10-2

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD
CA-BCD s =5
CA-BCD s =20
CA-BCD s =100

(b) news20

0 1000 2000 3000 4000
Iterations (H)

10-10

10-5

100

re
la

tiv
e

so
lu

tio
n

er
ro

r

BCD
CA-BCD s =5
CA-BCD s =20
CA-BCD s =100

(c) a9a

0 1000 2000 3000 4000
Iterations (H)

10-10

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r BCD

CA-BCD s =5
CA-BCD s =20
CA-BCD s =100

mach

(d) a9a

0 0.5 1 1.5 2
Iterations (H) 104

10-10

10-5

100

re
la

tiv
e

so
lu

tio
n

er
ro

r

BCD
CA-BCD s =5
CA-BCD s =20
CA-BCD s =100

(e) real-sim

0 0.5 1 1.5 2
Iterations (H) 104

10-10

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BCD
CA-BCD s =5
CA-BCD s =20
CA-BCD s =100

mach

(f) real-sim

Figure 3.4: Convergence behavior of BCD and CA-BCD with several values of s. We plot relative
solution error and relative objective error . The block size for each dataset is set to b = 16.

cost of computing a larger sb × sb Gram matrix whose condition number is larger than the b × b
Gram matrix computed in the BCD algorithm. The larger condition number implies that the CA-
BCD algorithm may not be stable for s > 1 due to round-off error. We begin by experimentally
showing the convergence behavior of the CA-BCD algorithm on the datasets in Table 3.4 with
fixed block sizes of b = 16 for news20, a9a, and real-sim, respectively.

Figure 3.4 compares the convergence behavior of BCD and CA-BCD for s > 1. We plot the

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 31

0 2 4 6
Iterations (H) 105

10-2

10-1

100

101

re
la

tiv
e

so
lu

tio
n

er
ro

r BDCD b' = 1
BDCD b' =16
BDCD b' =64

(a) news20

100 102 104 106

Messages (L)

10-2

100

102

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =16
BDCD b' =64
tol =0.01

(b) news20

0 1 2 3 4
Iterations (H) 105

10-4

10-3

10-2

10-1

100

re
la

tiv
e

so
lu

tio
n

er
ro

r BDCD b' = 1
BDCD b' =8
BDCD b' =16

(c) a9a

100 102 104 106

Messages (L)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =8
BDCD b' =16
tol =1e-08

(d) a9a

0 2 4 6
Iterations (H) 105

10-3

10-2

10-1

100

re
la

tiv
e

so
lu

tio
n

er
ro

r BDCD b' = 1
BDCD b' =16
BDCD b' =64

(e) real-sim

100 102 104 106

Messages (L)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =16
BDCD b' =64
tol =1e-08

(f) real-sim

Figure 3.5: Convergence behavior of BDCD for several block sizes, b′, such that 1 ≤ b′ < m. We
plot relative solution error and relative objective error with λ = 1000σmin. Note that the X-axis is
equivalent to the number of iterations (modulo log10 scale).

relative solution error, relative objective error and statistics of the Gram matrix condition numbers.
The convergence plots indicate that CA-BCD shows almost no deviation from the BCD conver-
gence. While the Gram matrix condition numbers increase with s for CA-BCD, those condition
numbers are not so large as to significantly alter the numerical stability. Figures 3.4d and 3.4f

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 32

104 106 108 1010

Flops (F)

10-2

100

102

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =16
BDCD b' =64
tol =0.01

(a) news20

100 105

Bandwidth (W)

10-2

100

102

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =16
BDCD b' =64
tol =0.01

(b) news20

104 106 108

Flops (F)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =8
BDCD b' =16
tol =1e-08

(c) a9a

100 105

Bandwidth (W)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =8
BDCD b' =16
tol =1e-08

(d) a9a

104 106 108 1010

Flops (F)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =16
BDCD b' =64
tol =1e-08

(e) real-sim

100 105

Bandwidth (W)

10-10

10-5

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r

BDCD b' = 1
BDCD b' =16
BDCD b' =64
tol =1e-08

(f) real-sim

Figure 3.6: Convergence behavior of BDCD for several block sizes, b′, such that 1 ≤ b′ < m. We
plot flops cost and bandwidth cost versus convergence with λ = 1000σmin.

show that the objective error converges very close to machine precision, εmach ≈ 1e-16. The well-
conditioning of the real-sim dataset in addition to the regularization and small block size (relative
to n) makes the Gram matrices almost perfectly conditioned. Based on these results, it is likely
that the factor of s increase in flops and bandwidth will be the primary bottleneck.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 33

0 1 2 3 4
Iterations (H) 104

10-3

10-2

10-1

100

re
la

tiv
e

so
lu

tio
n

er
ro

r BDCD
CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

(a) news20

0 1 2 3 4
Iterations (H) 104

10-4

10-2

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r BDCD

CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

(b) news20

0 1 2 3 4
Iterations (H) 104

10-10

10-5

100

re
la

tiv
e

so
lu

tio
n

er
ro

r BDCD
CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

(c) a9a

0 1 2 3 4
Iterations (H) 104

10-10

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r BDCD

CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

mach

(d) a9a

0 0.5 1 1.5 2
Iterations (H) 104

10-10

10-5

100

re
la

tiv
e

so
lu

tio
n

er
ro

r

BDCD
CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

(e) real-sim

0 0.5 1 1.5 2
Iterations (H) 104

10-10

100

re
la

tiv
e

ob
je

ct
iv

e
er

ro
r BDCD

CA-BDCD s =5
CA-BDCD s =20
CA-BDCD s =100

mach

(f) real-sim

Figure 3.7: Convergence behavior of BDCD and CA-BDCD with several values of s. We plot
relative solution error and relative objective error. The block sizes for each dataset are: news20
with b′ = 64, a9a with b′ = 16, and real-sim with b′ = 64.

Block Dual Coordinate Descent

The BDCD algorithm solves the dual of the regularized least-squares problem by computing a
b′× b′ Gram matrix obtained from the rows of A (instead of the columns of A for BCD) and solves

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 34

a b′-dimensional subproblem at each iteration. Similar to BCD, we expect that as b′ increases, the
BDCD algorithm converges faster at the cost of more flops and bandwidth. We explore this tradeoff
space by comparing the convergence behavior (solution error and objective error) and algorithm
costs for BDCD with 1 ≤ b′ < m.

Figure 3.5 shows the convergence behavior on the datasets in Table 3.4 for various block
sizes and measures the relative solution error (Figs. 3.5a-3.5e) and relative objective error (Figs.
3.5b-3.5f). Similar to BCD, as the block sizes increase the convergence rates of each dataset im-
proves. However, unlike BCD, the objective error does not immediately decrease for some datasets
(news20 and a9a). This is expected behavior since BDCD minimizes the dual objective (see Sec-
tion 3.2) and obtains the primal solution vector, xh, by taking linear combinations of b′ rows of A
and xh−1. This also accounts for the non-monotonic decrease in the primal objective and primal
solution errors.

Figure 3.6 shows the convergence behavior (in terms of the objective error) vs. flops and
bandwidth costs of BDCD for the datasets and block sizes tested in Figure 3.5. We see that small
block sizes are more flops and bandwidth efficient while large block sizes are latency efficient
(from Figs. 3.5b-3.5f). Due to this tradeoff it important to select block sizes that balance these
costs based on machine-specific parameters.

Communication-Avoiding Block Dual Coordinate Descent

The CA-BDCD algorithm avoids communication in the dual problem by unrolling the vector up-
date recurrences by a factor of s. This allows us to reduce the latency cost by computing a larger
sb′×sb′ Gram matrix instead of a b′×b′ Gram matrix in the BDCD algorithm. The larger condition
number implies that the CA-BDCD algorithm may not be stable, so we begin by experimentally
showing the convergence behavior of the CA-BCD algorithm on the datasets in Table 3.4.

Figure 3.7 compares the convergence behavior of BDCD and CA-BDCD for s > 1 with block
sizes of b′ = 64, 16, and 64 for the news20, a9a and real-sim datasets, respectively. The results
indicate that CA-BDCD is numerically stable for all tested values of s on all datasets. While the
condition numbers of the Gram matrices increase with s, the numerical stability is not significantly
affected. The well-conditioning of the real-sim dataset in addition to the regularization and small
block size (relative to m) make the Gram matrices almost perfectly conditioned.

Stopping Criterion

At iteration h of BCD, we solve the subproblem

∆xh =

(
1

m
IThATAIh + λITh Ih

)−1(
−λIThxh−1 −

1

m
IThAT zh−1 +

1

m
IThATy

)
.

Note that the b-dimensional vector,
(
−λIThxh−1 − 1

m
IThAT zh−1 + 1

m
IThATy

)
, is the sub-sampled

primal residual vector and is explicitly computed at every iteration. Therefore, a natural stopping
criteria is to occasionally compute the full-dimensional residual to check for convergence. Figure
3.8a illustrates the convergence of the residual in comparison to the relative objective error (the

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 35

0 1000 2000 3000
Iterations (H)

10-10

10-5

100 ||r
primal

||
2

rel. objective error
tol = 1e-8

(a) BCD on a9a dataset (b = 16).

0 0.5 1 1.5 2 2.5
Iterations (H) 104

10-10

10-5

100

||r
primal

||
2

rel. objective error
||r

dual
||

2
tol = 1e-8

(b) BDCD on a9a dataset (b′ = 16).

Figure 3.8: We plot the relative objective error, norm of the primal residual (for BCD Figure
3.8a), and norm of the dual residual (for BDCD Figure 3.8b) for the a9a dataset with block sizes
b = b′ = 16.

optimal objective value is obtained with Conjugate Gradients) for the a9a dataset with b = 16.
Since the optimal objective value is, in general, unknown the residual can be used as an upper
bound on the objective error.

At iteration h of BDCD, we solve the b′-dimensional subproblem

∆αh = − 1

m

(
1

λm2
IThAAT Ih +

1

m
ITh Ih

)−1 (
−IThAxh−1 + IThαh−1 + ITh y

)
This b′−dimensional vector,

(
−IThAxh−1 + IThαh−1 + ITh y

)
, is the sub-sampled dual residual vec-

tor. One can similarly compute the full-dimensional dual residual occasionally to check for con-
vergence. Figure 3.8b illustrates the convergence of the dual residual in comparison to the relative
objective error, and the primal residual. We can observe that the dual residual is a lower bound on
the primal residual, therefore, the dual problem should be solved to higher accuracy.

3.5 Performance and Scalability Results
In Section 3.4 we showed tradeoffs between convergence behavior and algorithm costs for several
datasets. In this section, we explore the performance tradeoffs of standard vs. CA variants on
datasets obtained from LIBSVM [26]. We implemented these algorithms in C/C++ using Intel

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 36

Algorithm Name Data Points (m) Features (n) f residual tolerance (tol)

BCD
a9a 32, 561 123 0.11 1e-2

covtype 581, 012 54 0.22 1e-1
mnist8m 8, 100, 000 784 0.25 1e-1

BDCD
news20 15, 935 62, 061 0.0013 1e-2
e2006 3, 308 150, 360 0.0093 1e-2
rcv1 3, 000 47, 236 0.0017 1e-3

Table 3.5: LIBSVM datasets used in our performance experiments.

MKL for (sparse and dense) BLAS routines and MPI [62] for parallel processing. While Sections
3.3 and 3.4 assumed dense data for the theoretical analysis and numerical experiments, our parallel
implementation stores the data in CSR (Compressed Sparse Row) format. We used a Cray XC30
supercomputer (“Edison") at NERSC [89] to run our experiments on the datasets shown in Table
3.5. We used a 1D-row layout for (CA-)BCD and 1D-column layout for (CA-)BDCD. We ensured
that the parallel file I/O was load-balanced (i.e. each processor read roughly equal bytes) and found
that the non-zero entries were reasonably well-balanced with less than 5% load imbalance2. We
constrain the running time of (CA-)BCD and (CA-)BDCD by fixing the residual tolerance for each
dataset to the values described in Table 3.5. We ran many of these datasets for smaller tolerances
of 1e-8 and found that our conclusions did not significantly change.

We compares the strong scaling behavior of the standard BCD and BDCD algorithms against
their CA variants, shows the running time breakdown to illustrate the flops vs. communication
tradeoff, and compares the speedups attained as a function of the number of processors, block size
and recurrence unrolling parameter, s.

Strong Scaling

All strong scaling experiments were conducted with one MPI process per processor (flat-MPI) with
one warm-up run and three timed runs. Each data point in Figure 3.9 reports the timing breakdown
by averaging over three runs. Since there are many processors to choose from, we select the pro-
cessor with the longest running time for each run and then report the average time spent computing
the Gram matrix, solving the subproblem, and communicating. For each dataset in Figure 3.9 we
plot the BCD running times, the fastest CA-BCD running times for s ∈ {2, 4, 8, 16, 32}, and the
ideal scaling behavior. We show the scaling behavior of all datasets for b ∈ {1, 8} to illustrate how
the CA-BCD speedups are affected by the choice of block size, b. When the BCD algorithm is
entirely latency dominated (i.e. Figure 3.9a), CA-BCD attains speedups of 3.6× (mnist8m), 4.5×
(a9a) and 6.1× (covtype). When the BCD algorithm is flops and bandwidth dominated (i.e. Figure
3.9b), CA-BCD attains modest speedups of 1.2× (a9a), 1.8× (mnist8m), and 1.9× (covtype). The
strong scaling behavior of the BDCD and CA-BDCD algorithms is shown in Figures 3.9c and 3.9d.

2For datasets with highly irregular sparsity structure, additional re-balancing is likely required but we leave this
for future work.

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 37

 22

 24

 26

 28

210

212

214

216

218

 1 4 16 64 256 1024
of nodes

ru
nn

in
g

tim
e

(m
s)

(a) b = 1

 22

 24

 26

 28

210

212

214

216

218

 1 4 16 64 256 1024
of nodes

ru
nn

in
g

tim
e

(m
s)

(b) b = 8

 27
 28
 29
210
211
212
213
214
215
216
217

 1 2 4 8 16 32
of nodes

ru
nn

in
g

tim
e

(m
s)

(c) b′ = 1

 27
 28
 29
210
211
212
213
214
215
216
217

 1 2 4 8 16 32
of nodes

ru
nn

in
g

tim
e

(m
s)

(d) b′ = 8

Figure 3.9: Strong scaling results for (CA-)BCD (top row, Figs. 3.9a-3.9b) and (CA-)BDCD
(bottom row, Figs 3.9c-3.9d). Ideal strong scaling behavior for BCD and BDCD to illustrate the
performance improvements of the CA-variants.

CA-BDCD attains speedups of 1.6× (news20), 2.2× (rcv1), and 2.9× (e2006) when latency dom-
inates and 1.1× (news20), 1.2× (rcv1), and 3.4× (e2006) when flops and bandwidth dominated.
The e2006 dataset achieves greater speedup for b = 8 than b = 1. This is due to machine noise,
which caused larger latency times for b = 8.

While we did not experiment with weak scaling, we can observe from our analysis (in Section
3.3) that the BCD and BDCD algorithms achieve perfect weak scaling (in theory). It is likely
that the CA-BCD and CA-BDCD algorithms would attain weak-scaling speedups by reducing the
latency cost by a factor of s, if latency dominates.

Running Time Breakdown

Figure 3.10 shows the running time breakdown of BCD and CA-BCD for s ∈ {2, 4, 8, 16, 32}
on the mnist8m dataset. We plot the breakdowns for b ∈ {1, 8} at scales of 64 nodes and 1024
nodes to illustrate CA-BCD tradeoffs for different flops vs. communication ratios. Figures 3.10a

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 38

BCD
 s = 2

 s = 4
 s = 8

s = 16
s = 32

0

1

2

3

4

ru
nn

in
g

tim
e

(m
s)

105

(a) b = 1, 64 nodes

BCD
 s = 2

 s = 4
 s = 8

s = 16
s = 32

0

0.5

1

1.5

2

ru
nn

in
g

tim
e

(m
s)

105

(b) b = 8, 64 nodes

BCD
 s = 2

 s = 4
 s = 8

s = 16
s = 32

0

2

4

6

8

ru
nn

in
g

tim
e

(m
s)

104

(c) b = 1, 1024 nodes

BCD
 s = 2

 s = 4
 s = 8

s = 16
s = 32

0

1

2

3

4

ru
nn

in
g

tim
e

(m
s)

104

(d) b = 8, 1024 nodes

Figure 3.10: Running time breakdown for the mnist8m dataset for b ∈ {1, 8} at scales of 64 and
1024 nodes. We plot the fastest timed run for each algorithm and setting.

and 3.10b show the running time breakdown at 64 nodes for b = 1 and b = 8, respectively. In
both cases flops dominate and speedup for CA-BCD is from faster flops. CA-BCD with s > 1
increases the computational intensity and achieves higher flops performance through the use of
BLAS-3 GEMM operations. Flops scaling continues until CA-BCD becomes CPU-bound. For
b = 8, memory-bandwidth is saturated at s < 8. For s ≥ 8 CA-BCD becomes CPU-bound and
does not attain any speedup over BCD. Since communication is more bandwidth dominated, less
communication speedup is expected. On 1024 nodes (Figs. 3.10c and 3.10d), where latency is
more dominant, CA-BCD attains larger communication and overall speedups. These experiments
suggest that appropriately chosen values of s, can attain large speedups when latency dominates.

Speedup Comparison

Figure 3.11 summarizes the speedups attainable on the mnist8m dataset at 64 nodes and 1024 nodes
for several combinations of block sizes (b) and recurrence unrolling values (s). We normalize the
speedups to BCD with b = 1. At small scale (Figure 3.11a) we see speedups of 1.95× to 2.91×
since flops and bandwidth are the dominant costs. The speedup for larger block sizes is due to

CHAPTER 3. AVOIDING COMMUNICATION IN L2-REGULARIZED
LEAST-SQUARES 39

2.41x 2.71x 2.58x 2.8x 2.53x 2.1x

2.23x 2.59x 2.75x 2.91x 2.81x 2.55x

2.23x 2.61x 1.82x 2.84x 2.93x 2.83x

1x 1.51x 1.8x 1.82x 1.95x 1.8x

BCD s = 2 s = 4 s = 8 s = 16s = 32

8

4

2

1

B
lo

ck
 s

iz
e

(b
)

1

2

3

4

5

(a) Speedup of mnist8m on 64 nodes.

3.19x 4.49x 5.07x 5.79x 5.98x 5.15x

2.59x 3.47x 4.23x 4.53x 5.51x 5.93x

1.81x 2.07x 3.38x 4.6x 5.26x 5.61x

1x 1.54x 2x 2.28x 3.19x 3.62x

BCD s = 2 s = 4 s = 8 s = 16s = 32

8

4

2

1

B
lo

ck
 s

iz
e

(b
)

1

2

3

4

5

(b) Speedup of mnist8m on 1024 nodes.

Figure 3.11: Speedups achieved for CA-BCD on mnist8m for various settings of b and s. We show
speedups for 64 and 1024 nodes.

faster convergence (i.e. fewer iterations and messages) and due to the use of BLAS-3 matrix-
matrix operations. At large scale, when latency dominates, (Figure 3.11b) we observe greater
speedups of 3.62× to 5.98×. Overall, CA-BCD is fastest for all block sizes and at all scales tested.

3.6 Conclusions and Future Work
In this chapter, we have shown how to extend the communication-avoiding technique of CA-
Krylov subspace methods to block coordinate descent and block dual coordinate descent algo-
rithms in machine learning. We showed that in some settings, BCD and BDCD methods may
converge faster than traditional Krylov methods – especially when the solution does not require
high-accuracy. We analyzed the computation, communication and storage costs of the classical
and communication-avoiding variants under two partitioning schemes. Our experiments showed
that CA-BCD and CA-BDCD are numerically stable algorithms for all values of s tested, experi-
mentally showing the tradeoff between algorithm parameters and convergence. Finally, we showed
that the communication-avoiding variants can attain large speedups of up to 6.1× on a Cray XC30
supercomputer using MPI.

While CA-BCD and CA-BDCD appear to be stable, numerical analysis of these methods would
be interesting directions for future work. Extending the CA-technique to other algorithms (SGD,
L-BFGS, Newton’s method, etc.) would be particularly interesting. Performance comparisons
and analyzing the tradeoffs between the various CA methods is an important direction for future
work.

40

Chapter 4

Avoiding Communication in
L1-Regularized Least-Squares

The communication-avoiding accelerated block coordinate descent algorithm for solving the L1-
regularized least-squares presented in this chapter was developed with co-authors James Demmel,
Kimon Fountoulakis, and Michael W. Mahoney. This work was published under the title "Avoiding
Synchronization in First-Order Methods for Sparse Convex Optimization" in the IPDPS 2018 con-
ference proceedings and before publication as a technical report under the same title [46].

In this chapter, we are interested in solving regularized least-squares optimization problems, which
takes the form

arg min
x∈Rn

1

2
‖Ax− b‖2

2 + λ||x||1 (4.1)

Given a data matrixA ∈ Rm×n withm data points and n features, labels y ∈ Rm and regularization
parameter λ ∈ R, we would like to find a solution (or feature weights) x ∈ Rn. Figure 4.1
illustrates the difference between the solution obtained by least-squares with L2-regularizer (ridge)
and L1-regularizer (lasso). Unlike the ridge regularizer which uniformly shrinks x towards zero,
lasso biases x towards a sparse solution (at the corners of the L1 ball), where some weights are set
exactly to zero. The sparsity-inducing nature of the lasso problem is important when dealing with
high-dimensional data and for data interpretability. In the case of high-dimensional and large-scale
data, it becomes necessary to parallelize the computations in order to quickly and efficiently solve
the lasso problem.

The barrier to efficiently scaling lasso methods on distributed machines is communication cost.
Since these methods are iterative, communication is required at every iteration and is often the
performance bottleneck. We address this issue by deriving a communication-avoiding variant of an
existing lasso method which communicates once every s iterations, where s is a tuning parameter,
without altering the convergence rates or numerical stability.

In this chapter, we present empirical results for accelerated and non-accelerated Block Coor-
dinate Descent (BCD)[47] in terms of strong scaling, speedup, and convergence vs. running time

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 41

𝑥"

𝑥#

𝐿2−regularizer

𝑥"

𝑥#

𝐿1−regularizer

Figure 4.1: Solutions obtained by least-squares with L2-regularizer and L1-regularizer.

results for several LIBSVM datasets. We chose accelerated BCD since it has an optimal conver-
gence rate among the class of first-order methods [47, 90, 101, 102]. The contributions of this
chapter are:

• Derivation of a communication-avoiding variant of the accelerated BCD algorithm [47] for
the L1-regularized least squares problem.

• Derivation of operational, bandwidth, and latency costs for the standard and communication-
avoiding accelerated BCD which show that the communication-avoiding algorithm decreases
latency cost by a factor of s at the expense of a factor of s more computation and bandwidth.

• Numerical stability and convergence behavior results which indicate our communication-
avoiding algorithm is numerically stable for very large values of s.

• Implementation of the communication-avoiding accelerated BCD algorithm in C++ using
the Message Passing Interface (MPI) [62] for distributed-memory parallelism.

• Experimental results which illustrate that our method can perform 1.5×-5.1× faster on up to
12, 288 cores of a Cray XC30 supercomputer [89] on datasets obtained from LIBSVM [26].

4.1 Communication-Avoiding Derivation
In this section, we derive a communication-avoiding version of the accelerated block coordinate de-
scent (accBCD) algorithm for the Lasso problem. The derivation of CA-accBCD (Communication-
avoiding accBCD) relies on unrolling the vector update recurrences by a factor of s and re-
arranging the updates and dependent computations in a communication-avoiding manner. We
begin by describing the Lasso problem and then the communication-avoiding derivation. Given

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 42

Algorithm 5 Accelerated Block Coordinate Descent (accBCD) Algorithm [47, Alg. 2]

1: Input: A ∈ Rm×n, y ∈ Rm, H > 1, w0 ∈ Rn, z0 ∈ Rn, λ ∈ R, b ∈ Z+ s.t. b ≤ n
2: θ0 = b/n, w̃0 = Aw0, z̃0 = Az0 − b
3: q = dn/be
4: for h = 1, 2, · · · , H do
5: choose {il ∈ [n]|l = 1, 2, . . . , b} uniformly at random without replacement.
6: Ih = [ei1 , ei2 , · · · , eib]
7: Let Ah = AIh
8: v = largest eigenvalue of IThATAIh
9: ηh = 1

qθh−1v

10: rh = IThAT
(
θ2
h−1w̃h−1 + z̃h−1

)
11: gh = ITihzh−1 − ηhrh
12: ∆zh = Sληh(gh)− ITh zh−1

13: zh = zh−1 + Ih∆zh
14: z̃h = z̃h−1 + AIh∆zh
15: wh = wh−1 − 1−qθh−1

θ2h−1
Ih∆zh

16: w̃h = w̃h−1 − 1−qθh−1

θ2h−1
AIh∆zh

17: θh =

√
θ4h−1+4θ2h−1−θ

2
h−1

2

18: Output θ2
HwH + zH

a matrix A ∈ Rm×n with m data points and n features and a vector of labels y ∈ Rm, we would
like to find the solution x ∈ Rn that solves the optimization problem (4.1). The Lasso problem can
be solved using many iterative ML algorithms. In this section, we consider the accelerated block
coordinate descent algorithm described in [47, Algorithm 2] (reproduced as Algorithm 5). Note
that setting θ0 = 0 results in the non-accelerated block coordinate descent and coordinate descent
algorithms. As a result, our communication-avoiding derivation technique in this section should
be interpreted as a general technique that applies to accelerated or non-accelerated and coordinate
or block coordinate descent methods for the Lasso problem (4.1) by setting b and θ0 to appropriate
values. Let b ≤ n be the blocksize and q = dn/be be the number of blocks. Sα(β) is the soft-
thresholding operator defined as: sign(β) max(|β| − α, 0). If we use the prox operator we would
extend our CA-derivation to Newton-type methods. At each iteration we compute v, the Lipschitz
constant, which is the largest eigenvalue of the b × b Gram matrix corresponding to the chosen
column block of A. Our CA-technique also applies if the Lipschitz constant is approximately
computed.

The recurrences in lines 10 – 16 can be unrolled to avoid communication. We begin the
communication-avoiding derivation by changing the loop index from h to sk + j where k is the
outer loop index, s is the recurrence unrolling parameter, and j is the inner loop index. Let us
assume that we are at iteration sk + 1 and have just computed the vectors zsk, z̃sk, wsk, and w̃sk.

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 43

Algorithm 6 Communication-Avoiding Accelerated Block Coordinate Descent (CA-accBCD) Al-
gorithm

1: Input: A ∈ Rm×n, y ∈ Rm, H > 1, w0 ∈ Rn, z0 ∈ Rn, λ ∈ R, b ∈ Z+ s.t. b ≤ n
2: θ0 = b/n, w̃0 = Aw0, z̃0 = Az0 − y
3: q = dn/be
4: for k = 1, 2, · · · , H

s
do

5: for j = 1, 2, · · · , s do
6: choose {il ∈ [n]|l = 1, 2, . . . , b} uniformly at random without replacement.
7: Isk+j = [ei1 , ei2 , · · · , eib]
8: Let Ask+j = AIsk+j

9: θsk+j =

√
θ4sk+j−1+4θ2sk+j−1−θ

2
sk+j−1

2

10: Let Y = A
[
Isk+1, Isk+2, · · · , Isk+s

]
.

11: Compute the Gram matrix, G = Y TY .
12: for j = 1, 2, · · · , s do
13: v = large eigenvalue of ITsk+jA

TAIsk+j .
14: ηsk+j = 1

qθsk+j−1v

15: rsk+j = ITsk+jA
T
(
θ2
sk+j−1w̃sk + z̃sk

)
16: gsk+j = ITisk+j

zsk − ηsk+jrsk+j +
∑j−1

t=1 ITsk+jIsk+t∆zsk+t

−ηsk+j

∑j−1
t=1

(
θ2
sk+j−1

1−qθsk+t−1

θ2sk+t−1
− 1
)
ITsk+jA

TAIsk+t∆zsk+t

17: ∆zsk+j = Sληsk+j
(gsk+j)− ITsk+jzsk −

∑j−1
t=1 ITsk+jIsk+t∆zsk+t

18: zsk+s = zsk +
∑s

t=1 Iisk+t
∆zsk+t

19: z̃sk+s = z̃sk +
∑s

t=1AIisk+t
∆zsk+t

20: wsk+s = wsk −
∑s

t=1
1−qθsk+t−1

θ2sk+t−1
Iisk+t

∆zsk+t

21: w̃sk+s = w̃sk −
∑s

t=1
1−qθsk+t−1

θ2sk+t−1
AIisk+t

∆zsk+t

22: Output θ2
HwH + zH

From this ∆zsk+1 can be computed by1

rsk+1 = ITsk+1A
T
(
θ2
skw̃sk + z̃sk

)
gsk+1 = ITsk+1zsk − ηsk+1rsk+1

∆zsk+1 = Sληsk+1
(gsk+1)− ITsk+1zsk

By unrolling the vector update recurrences for zsk+1, w̃sk+1, and z̃sk+1 (lines 13,14, and 16),
1We ignore scalar updates since they can be redundantly stored and computed on all processors.

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 44

we can compute rsk+2, gsk+2, and ∆zsk+2 in terms of zsk, z̃sk, and w̃sk

rsk+2 = ITsk+2A
T

(
θ2
sk+1w̃sk − θ2

sk+1

1− qθsk
θ2
sk

AIsk+1∆zsk+1 + z̃sk + AIsk+1∆zsk+1

)
= θ2

sk+1ITsk+2A
T w̃sk + ITsk+2A

T z̃sk −
(
θ2
sk+1

1− qθsk
θ2
sk

− 1

)
ITsk+2A

TAIsk+1∆zsk+1

gsk+2 = ITsk+2zsk + ITsk+2Isk+1∆zsk+1 − ηsk+2rsk+2

∆zsk+2 = Sληsk+2
(gsk+2)− ITsk+2zsk − ITsk+2Isk+1∆zsk+1

By induction we can show that rsk+j , gsk+j , and ∆zsk+j can be computed in terms of zsk, z̃sk, and
w̃sk

rsk+j = θ2
sk+j−1ITsk+jA

T w̃sk + ITsk+jA
T z̃sk

−
j−1∑
t=1

(
θ2
sk+j−1

1− qθsk+t−1

θ2
sk+t−1

− 1

)
ITsk+jA

TAIsk+t∆zsk+t

(4.2)

gsk+j = ITsk+jzsk − ηsk+jrsk+j +

j−1∑
t=1

ITsk+jIsk+t∆zsk+t (4.3)

∆zsk+j = Sληsk+j
(gsk+j)− ITsk+jzsk −

j−1∑
t=1

ITsk+jIsk+t∆zsk+t

for j = 1, 2, . . . , s. Notice that due to the recurrence unrolling we can defer the updates to zsk,
wsk, z̃sk, and w̃sk for s iterations. The summation in (4.2) computes the Gram-like matrices,
ITsk+jA

TAIsk+t, for t = 1, 2, · · · , j − 1. Communication can be avoided in these computations by
computing the sb × sb Gram matrix G = [Isk+1, Isk+2, · · · , Isk+s]

TATA[Isk+1, Isk+2, · · · , Isk+s]
once before the inner loop2 and redundantly storing it on all processors. Communication can be
avoided in the summation in (4.3) by initializing the random number generator on all processors to
the same seed. Finally, at the end of the s inner loop iterations we can perform the vector updates

zsk+s = zsk +
s∑
t=1

Iisk+t
∆zsk+t

z̃sk+s = z̃sk +
s∑
t=1

AIisk+t
∆zsk+t

wsk+s = wsk −
s∑
t=1

1− qθsk+t−1

θ2
sk+t−1

Iisk+t
∆zsk+t

w̃sk+s = w̃sk −
s∑
t=1

1− qθsk+t−1

θ2
sk+t−1

AIisk+t
∆zsk+t

2G is symmetric so computing just the upper/lower triangular part reduces flops and message size by 2×.

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 45

Summary of operational and storage costs
Algorithm Ops cost (F) Memory cost (M)

accBCD O
(
Hb2fm
P

+Hb3
)

O
(
fmn+m

P
+ b2 + n

)
CA-accBCD O

(
Hb2sfm

P
+Hb3

)
O
(
fmn+m

P
+ b2s2 + n

)
Summary of communication costs

Algorithm Latency cost (L) Message Size cost (W)
accBCD O (H logP) O (Hb2 logP)

CA-accBCD O
(
H
s

logP
)

O (Hsb2 logP)

Table 4.1: Ops (F), Latency (L), Bandwidth (W) and Memory per processor (M) costs comparison
along the critical path of classical accBCD and CA-accBCD. H is the number of iterations and we
assume that A ∈ Rm×n is sparse with fmn non-zeros that are uniformly distributed, 0 < f ≤ 1

is the density of A
(

i.e. f = nnz(A)
mn

)
, P is the number of processors and s is the recurrence

unrolling parameter. fbm is the non-zeros of the b×m matrix with b sampled columns from A at
each iteration. We assume that the b× b and Gram matrix computed at each iteration are dense.

The resulting communication-avoiding accelerated block coordinate descent (CA-accBCD) algo-
rithm is shown in Algorithm 6. Since our communication-avoiding technique relies on rearranging
the computations, the convergence rates and behavior of the standard accelerated BCD algorithm
(Algorithm 5) is maintained (in exact arithmetic).

CA-accBCD computes a larger sb × sb Gram matrix every s iterations, which results in a
computation-communication tradeoff where CA-accBCD increases the flops and message size in
order to reduce the latency by s. If the latency cost is the most dominant term then CA-accBCD can
attain s-fold speedup over accBCD. In general there exists a tradeoff between s and the speedups
attainable. Table 4.1 summarizes the operational, storage, and communication costs of the CA and
non-CA methods.

4.2 Algorithm Analysis
We analyze the operational, communication, and storage costs of the Accelerated Block Coordinate
Descent (accBCD) and the Communication-Avoiding Accelerated Block Coordinate Descent (CA-
accBCD) method to illustrate that CA-accBCD avoids communication. We assume that the matrix
A ∈ Rm×n is uniformly sparse with fmn non-zeros where 0 < f ≤ 1 is the density of A and
1 ≤ b ≤ n is the blocksize. We further assume that the Gram matrix computed at each iteration,
the residual vectors, and the solution vectors are dense. We assume that A is stored in 1D-block
row layout so that the Gram matrix computation requires an all-reduce instead of a more expensive
all-to-all when A is stored in 1D-block column layout. Since A is sparse, we account for the cost
of traversing the sparse data structure to store A (this cost may dominate the cost of floating-point

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 46

Summary of datasets
Name Features Data Points f

url 3, 231, 961 2, 396, 130 0.000036
covtype 54 581, 012 0.22
news20 62, 061 15, 935 0.0013

Table 4.2: Properties of the LIBSVM datasets used in our experiments. Epsilon and url did not fit
in DRAM of the local machine for the MATLAB experiments, so we use leu instead.

computations) in addition to the computational cost. The costs of accBCD and CA-accBCD are
summarized in Table 4.1.

Classical Algorithm
We begin by analyzing the accBCD algorithm with the assumption that A is distributed row-wise
(1D-block row layout), that vectors in Rm are distributed between the processors, and that vectors
in Rn are replicated on all processors. We bound the amount of data moved by summing the
per-iteration message sizes overall iterations of the algorithm.

Theorem 4.2.1. H iterations of the Accelerated Block Coordinate Descent (accBCD) algorithm
with the matrix A ∈ Rm×n stored in 1D-block row partitions with a blocksize, b, on P processors
along the critical path costs

F = O

(
Hb2fm

P
+Hb3

)
ops, M = O

(
fmn+m

P
+ b2 + n

)
words of memory.

Communication requires

W = O
(
Hb2 logP

)
words moved, L = O (H logP) messages.

Proof. The accBCD algorithm for scalar Lipschitz constants, that are computed on-the-fly, requires
the computation of the Gram matrix IThATAIh, where AIh is the subsampled, m× b matrix whose
columns are chosen fromA uniformly at random without replacement. Since the non-zeros are dis-
tributed uniformly, AIh has bfm non-zeros. Communication is required for computing the Gram
matrix and rh (the former dominates). Due to the 1D-block row layout, each processor computes
a b× b partial Gram matrix which is combined (by summing) and then stored redundantly on each
processor at every iteration. The operational cost for computing the Gram matrix, G, is bounded
by O(b

2fm
P

) and also requires communication costs of O (b2 logP) words and O (logP). Once the
Gram matrix is computed the Lipschitz constant λmax(IThATAIh) (i.e. the max-eigenvalue of the
block) can be directly computed or estimated. Since we assume G is dense, this costs O(Hb3)
operations. Computing rh, z̃h, and zh requires a matrix-vector products w̃h and z̃h. This compu-
tation depends only on the non-zeros of AIh and, hence, requires O(Hbfm

P
) operations. Finally,

computing the gradient update, gh, the proximal solution, ∆zh, updating wh and zh all cost O(b)

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 47

Relative objective error
url covtype news20

CA-accCD 2.2176e-16 2.1514e-16 6.6324e-17
CA-CD 2.2204e-16 1.4203e-16 3.2567e-17
CA-accBCD 2.2204e-16 2.2616e-16 5.6153e-17
CA-BCD 2.2204e-16 2.6451e-16 8.8625e-17

Table 4.3: We show the relative objective error of the CA-methods compared to the non-CA meth-
ods (shown in Figure 4.2). Machine precision is 2.2204e-16 for the MATLAB experiments. We
omit the url and epsilon datasets since they do not fit in the DRAM of the single-machine platform
used for these MATLAB experiments.

and requires O(b logP) words to be moved and O (logP) messages. The remaining computations
are scalar computations which do not dominate. Since we perform H iterations the total cost is
O
(
Hb2fm
P

+Hb3
)

operations, O (Hb2 logP) words moved, and O (H logP) messages. We re-
quire enough memory to store A, the Gram matrix and several vectors. Due to the 1D-block row
layout m-dimensional vectors are partitioned and n-dimensional vectors are replicated. This costs
O
(
fmn+m

P
+ b2 + n

)
words of memory.

Communication-Avoiding Algorithm
The CA-accBCD method (see Alg. 6) re-arranges the algebra of the accBCD algorithm into a form
that allows us to avoid communication.

Theorem 4.2.2. H iterations of the Communication-Avoiding Accelerated Block Coordinate De-
scent (CA-accBCD) algorithm with the matrix A ∈ Rm×n stored in 1D-block row partitions with
a blocksize b, on P processors along the critical path costs

F = O

(
Hsb2fm

P
+Hb3

)
ops, M = O

(
fmn+m

P
+ b2s2 + n

)
words of memory.

Communication requires

W = O
(
Hsb2 logP

)
data moved, L = O

(
H

s
logP

)
messages.

Proof. The CA-accBCD algorithm computes the sb × sb Gram matrix, G = Y TY , where Y =
A
[
Isk+1, Isk+2, · · · , Isk+s

]
. Then it computes the Lipschitz constants for the b× b block-diagonals

which correspond to the Gram matrices ITsk+jA
TAIsk+j . Due to the 1D-block row layout, each

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 48

0 0.5 1 1.5 2

Iterations (H) 10
4

0.8

0.9

1

1.1

1.2

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

10
6

(a) url, blocksize = 8

0 100 200 300 400

Iterations (H)

0.5

1

1.5

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

10
6

accCD

CD

accBCD

BCD

SA-accCD s =1000

SA-CD s =1000

SA-accBCD s =1000

SA-BCD s =1000

(b) covtype, blocksize = 8

0 1 2 3 4
Iterations (H) 105

104

105

106

O
bj

ec
tiv

e
fu

nc
tio

n

(c) news20, blocksize = 8

Figure 4.2: We compare the convergence of accelerated CD, CD, accelerated BCD, BCD against
their communication-avoiding variants (with s = 1000) for datasets in Table 4.2 with λ = 100σmin,
where σmin is the smallest singular value.

processor can compute a local, partial Gram matrix and then communicates to sum the results
(using a reduction and then a broadcast). Since we have to compute a sb × sb Gram matrix,
the operational cost is O

(
s2b2fm
P

)
and requires O (s2b2 logP) data to be moved using O (logP)

messages. Computing the residual rsk+j for the next s iterations requires a matrix-vector product
using Y , which costs O

(
bsfm
P

)
operations, communicates (bs logP) data in (O logP) messages.

Once these are computed the Lipschitz constants can be computed locally and requires on flops:
O (sb3), for just the s diagonal b × b blocks. As in the proof of Theorem 4.2.1 the local vector
updates do not dominate the flops and do not require communication (similarly for the scalar
computations). Unlike accBCD, the critical path for CA-accBCD only occurs every s iterations
with a total of H

s
critical path computations. Multiplying the dominant costs by the quantity H

s

gives the operational, bandwidth, and latency costs. The algorithm requires enough memory to
store A, the sb× sb Gram matrix, and several vectors. This requires O

(
fmn+m

P
+ s2b2 + n

)
words

of memory.

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 49

0 20 40 60 80 100 120
Running Time (sec)

4

6

8

10

12

O
bj

ec
tiv

e

105

CD
CA-CD s =64
accCD
CA-accCD s =64

(a) url, Processors = 12288

0 0.5 1
Running Time (sec)

3.86

3.88

3.9

3.92

3.94

3.96

3.98

O
bj

ec
tiv

e

105

CD
CA-CD, s =16
accCD
CA-accCD s =32

(b) covtype, Processors = 3072

0 20 40 60 80 100 120
Running Time (sec)

104

105

O
bj

ec
tiv

e

CD
CA-CD, s =32
accCD
CA-accCD s =16

(c) news20, Processors = 768

Figure 4.3: Running time vs. convergence of CA and non-CA variants of accelerated and non-
accelerated CD.

4.3 Convergence Behavior
In this section we present experimental results for our communication-avoiding variant and ex-
plore the numerical and performance tradeoffs. The recurrence unrolling we propose requires
computations of Gram-like matrices whose condition numbers may adversely affect the numerical
stability of CA-accBCD. We also re-order the sequence of updates of the solution and residual
vectors, which could also lead to numerical instability. We begin with experiments that illustrate
that CA-accBCD is numerically stable.We explore the tradeoff between convergence behavior,
block size, and s (the recurrence unrolling parameter) for the CA-accBCD algorithm and compare
it to the behavior of the standard accBCD algorithm. All numerical stability experiments were
performed in MATLAB version R2016b on a 2.3 GHz Intel i7 machine with 8GB of RAM. The
datasets used in our experiments were obtained from the LIBSVM repository [26] and are summa-
rized in Table 4.2. We measure the convergence behavior by plotting the objective function value

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 50

0 50 100 150 200
Running Time (sec)

105

106

O
bj

ec
tiv

e

BCD b = 8
CA-BCD b = 8, s =32
accCD
CA-accBCD b = 8, s =32

(a) url, Processors = 12288

0 0.2 0.4 0.6 0.8 1
Running Time (sec)

3.86

3.88

3.9

3.92

3.94

3.96

3.98

O
bj

ec
tiv

e

105

BCD b = 2
CA-BCD b = 2, s =32
accBCD b = 2
CA-accBCD b = 2, s =32

(b) covtype, Processors = 3072

0 50 100 150
Running Time (sec)

103

104

O
bj

ec
tiv

e

BCD b = 8
CA-BCD b = 8, s =8
accBCD b = 8
CA-accBCD b = 8, s =8

(c) news20, Processors = 768

Figure 4.4: Running time vs. convergence of CA and non-CA variants of accelerated and non-
accelerated BCD.

1
2
‖Axh − y‖2

2 + λ‖xh‖1 at each iteration. For all experiments, we set λ = 100σmin. We report the
convergence vs. iterations to illustrate any differences in convergence behavior. Figure 4.2 shows
the convergence behavior of the datasets in Table 4.2 for several blocksizes and with s = 1000
for CA-accBCD. The results show that larger blocksizes converge faster than b = 1, but at the
expense of more computation and larger message sizes. Comparing CA-accBCD and accBCD we
observe no numerical stability issues for s as large as 1000 for all datasets tested (in theory we
can avoid communication for 1000 iterations). Table 4.3 shows the relative objective error of the
CA-methods compared to the non-CA methods. This suggests that the additional computation and
message size costs are the performance limiting factors and not numerical instability.

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 51

25

26

27

 3072 6144 12288
Processors (P)

R
un

ni
ng

 T
im

e
(s

ec
)

accCD
CA-accCD

(a) url strong scaling

2-2

2-1

 20

 21

 768 1536 3072
Processors (P)

R
un

ni
ng

 T
im

e
(s

ec
)

accCD
CA-accCD

(b) covtype strong scaling

23

24

25

26

192 384 768
Processors (P)

R
un

ni
ng

 T
im

e
(s

ec
)

accCD
CA-accCD

(c) news20 strong scaling

Figure 4.5: Strong scaling and speedups of CA and non-CA accCD.

4.4 Performance and Scalability Results
In this section, we present experimental results to show that the CA-methods are faster than
their non-CA variants. We consider the datasets in Table 4.2 which were chosen to illustrate
performance and speedups on over/under-determined, sparse and dense datasets to illustrate that
speedups are independent of those factors. We implement the algorithms in C++ using the Mes-
sage Passing Interface (MPI) [62] for high-performance, distributed-memory parallel processing.
The local linear algebra computations are performed using the Intel MKL library for Sparse and
Dense BLAS [78] routines. All methods were tested on a Cray XC30 supercomputer at NERSC
which has 24 processors per node and 128GB of memory. The implementation divides the dataset
row-wise, however, the CA-methods generalize to other data layout scheme. We choose row-wise
since it results in the lowest per iteration communication cost of O(logP) [45, 116]. All datasets
are stored using Compressed Sparse Row format (3-array variant). The solution vectors in Rn are
replicated on all processors and the residual vectors in Rm are distributed between all processors.

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 52

ac
cC

D 2 4 8 16 32 64 12
8

25
6

51
2

s

0

2

4

6

8

10

S
pe

ed
up

total
communication
computation
speedup = 1

(a) url speedup

ac
cC

D 2 4 8 16 32 64
s

0

2

4

6

S
pe

ed
up

total
communication
computation
speedup = 1

(b) covtype speedup

ac
cC

D 2 4 8 16 32 64 12
8

s

0

1

2

3

4

5

S
pe

ed
up

total
communication
computation
speedup = 1

(c) news20 speedup

Figure 4.6: Computation and communication speedup results for various values of s. CA and
non-CA accCD.

Convergence vs. Running Time
Figures 4.3 and 4.4 show the convergence vs. running time experiments for the datasets in Table
4.2. We present experiments on CD, accCD, BCD, accBCD and their communication-avoiding
variants. In all plots, we can observe that the accelerated methods convergence faster than the non-
accelerated methods. The BCD methods convergence faster than the CD methods as expected.
Since the CA-methods do not alter the convergence rates they are faster per iteration. For the
communication-avoiding methods, we plot two values of s, one value (in blue) where we observed
the best speedups and a larger value (in red) where we observed less speedups. Note that this
decrease in speedup for certain values of s is expected since the CA-methods tradeoff additional
message size and computation for a decrease in latency cost. We see CA-accCD speedups of
2.8×, 5.1×, and 2.8× for url, covtype, and news20, respectively. For CA-accBCD the speedups
decrease to 2.1×, 4.4×, and 1.5×, for url, covtype, and new20, respectively. The decrease in

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 53

1 2 4 8 16 32 64 12
8

Recurrence unrolling parameter (s)

0

1

2

3

4

S
pe

ed
up

total
communication
computation
speedup = 1

(a) url speedup

ac
cC

D 2 4 8 16 32 64 12
8

Recurrence unrolling parameter (s)

0

2

4

6

S
pe

ed
up

total
communication
computation
speedup = 1

(b) covtype speedup

ac
cC

D 2 4 8 16 32

Recurrence unrolling parameter (s)

0.5

1

1.5

S
pe

ed
up

total
communication
computation
speedup = 1

(c) news20 speedup

Figure 4.7: Computation and communication speedup results for various values of s on CA and
non-CA accBCD with b = 8 for url and news20 and b = 2 for covtype.

speedup is expected since the CA-accBCD method becomes less latency dominant (where CA-
methods are less efficient due to additional communication and message sizes costs).

Performance Scaling and Speedups
Figure 4.5 shows the performance strong scaling (problem size is fixed and number of processors is
increased) of the accCD vs. CA-accCD methods for different ranges of processors for the datasets
tested. We can observe that CA-accCD is faster for all datasets and for all processor ranges. Notice
that the gap between accCD and CA-accCD increases with the number of processors.

Figure 4.6 shows the communication, computation, and total speedups attained by CA-accCD
for several values of s over accCD. As expected, we see large communication speedups which
eventually decreases when the larger message size cost dominate latency. CA-accCD also attains
modest computation speedups over accCD. This is because computing the s2 entries of the Gram

CHAPTER 4. AVOIDING COMMUNICATION IN L1-REGULARIZED
LEAST-SQUARES 54

matrix (for CA-accCD) is more cache-efficient (uses a BLAS-3 routine) than computing s individ-
ual dot-products (uses a BLAS-1 routine). Once s becomes too large we see slowdowns compared
to accCD.

Figure 4.7 shows the communication, computation, and total speedups attained by CA-accBCD
for several values of s over accBCD. We use block sizes of b = 8 for news20 and url and b = 2
for covtype. The first thing we can observe is that the CA-accBCD speedups are less than for
CA-accCD. With b > 1 the computational and bandwidth costs are higher for accBCD. Since
CA-accBCD further increases computational and bandwidth costs by a factor of s, the reduced
speedups are expected.

The total speedups achieved by CA-accCD and CA-accBCD are between the respective speedups
for computation and communication. Depending on the ratio of computation to communication,
the CA-variants can attain large speedups. The url and epsilon datasets are likely to scale to more
processors, so additional speedups are be expected.

4.5 Conclusions and Future Work
We showed in this chapter that the CA technique used for L2-regularized least-squares can be
extended to the, non-linear, L1-regularizer. In particular, we have derived the CA variants of ac-
celerated BCD and illustrated that our variant attain the same convergence rates. We implemented
the CA and non-CA methods in C++ with MPI and showed that the CA implementations attain
speedups of 1.5× - 5.1× and can reduce communication by factors of 4.2× - 10.9× on a Cray
XC30 supercomputer. While we did not explore other parallel environments, our methods would
attain greater speedups on frameworks like Spark [56, 127] due to the large latency costs. An-
other interesting direction would be to extend the CA technique to higher-order methods (Newton,
quasi-Newton, etc.) and frameworks (like proxCoCoA+). Finally, generalizing the CA technique
to solve the elastic-net (g(x) = λ||x||22 + (1 − λ)||x||1) and other non-linear regularizers is an
important direction for future work.

55

Chapter 5

Avoiding Communication in Support Vector
Machines

The communication-avoiding dual coordinate descent algorithm for solving the linear SVM prob-
lem presented in this chapter was developed with co-authors James Demmel, Kimon Fountoulakis,
and Michael W. Mahoney. This work was published under the title "Avoiding Synchronization in
First-Order Methods for Sparse Convex Optimization" in the IPDPS 2018 conference proceedings
and before publication as a technical report under the same title [46].

In this chapter, we derive communication-avoiding coordinate descent algorithms for solving the
support vector machines (SVM) problem [32]. Unlike the previous chapters where we solved re-
gression problems, support vector machines primarily solve binary classification problems. Given
a dataset that is linearly separable (as illustrated in Figure 5.1), SVM attempts to find a hyper-
plane (like H3 in Figure 5.1) which maximizes the margins between the hyperplane and the two
classes. The maximum-margin hyperplane can be obtained by selecting two parallel hyperplanes
(one for each class) which run through data points closest to the other class. The region between
the two parallel hyperplanes is called the margin. Clearly the maximum-margin hyperplane is the
parallel hyperplane that lies halfway between the bounding hyperplanes. This approach is known
as hard-margin SVM and assumes that the dataset is linearly separable (necessary to create the
bounding hyperplanes). However, typical binary classification data is often noisy and unlikely to
be linearly separable. In this situation soft-margin SVM can be used to obtain a reasonable solution
to the binary classification problem by using the hinge-loss in order to balance misclassification
and maximizing the margin. It should be noted that the soft-margin SVM problem can obtain the
hard-margin solution (if desired) by setting the regularization parameter to a small value. We defer
the mathematical description of the soft-margin SVM problem to Section 5.1. The SVM problem
can be solved using many optimization algorithms, but we will limit the discussion to first-order
methods like stochastic sub-gradient descent [107] and coordinate descent [68]. Both first-order
methods have been shown to be computationally more efficient and have stronger convergence
rates for large, sparse datasets than related quadratic programming and interior point methods. In
practice, coordinate descent has been shown to outperform stochastic sub-gradient descent [68].

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 56

𝑥"

𝑥#
𝐻#

𝐻%

𝐻"

Figure 5.1: Illustration of binary classification using various hyperplanes. H1 is a non-separating
hyperplane and a poor classifier for the data depicted. H2 is a valid separating hyperplane but does
not maximize the margins between the two classes and the hyperplane. H3 is a valid separating
hyperplane and also maximizes the margins.

For this reason, this chapter will focus on deriving a communication-avoiding coordinate descent
algorithm to solve the dual soft-margin SVM problem. We solve the dual problem since we can
easily kernelize the dot-products and perform binary classification in a high-dimensional Hilbert
space. The ability to use kernels makes the SVM problem more widely applicable through the
development and use of domain or application specific kernels. Kernel methods are discussed in
more detail in Chapter 6. Similar to previous chapters, we leverage the s-step technique from CA-
Krylov and s-step Krylov methods [4, 20, 28, 67] in order to derive our communication-avoiding
algorithm for SVM. The contributions of this chapter are:

• Communication-avoiding derivation of the coordinate descent algorithm for soft-margin
SVM.

• Parallel computation and communication cost analysis of the standard algorithm and its
communication-avoiding variant.

• Numerical experiments to confirm the stability of the CA algorithm for large values of s,
where s is a tuning parameter that represents the number of coordinate descent iterations
whose computations are re-arranged to avoid communiction.

• Parallel strong scaling results which show that the CA algorithm can attain speedups of up
to 4× over the standard algorithm on up to 3, 072 cores of a Cray XC30 supercomputer.

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 57

Algorithm 7 Dual Coordinate Descent (DCD) for Linear SVM [68]

1: Input: A ∈ Rm×n, y ∈ Rm, H > 1, λ ∈ R, α0 ∈ Rm

2: x0 =
∑m

j=1 yiαiAi
3: for h = 1 . . . H do
4: ih ∈ [m], chosen uniformly at random.
5: eih ∈ Rm, the ih-th standard basis vector.
6: ηh = eTihAA

T eih + ω
7: gh = eTihye

T
ih
Axh−1 − 1 + ωeTihαh−1

8: g̃h = |min(max(eTihαh−1 − gh, 0), ν)− eTihαh−1|
9: if g̃h 6= 0 then

10: θh = min(max(eTihαh−1 − gh
ηh
, 0), ν)− eTihαh−1

11: else
12: θh = 0

13: αh = αh−1 + θheih
14: xh = xh−1 + θhe

T
ih
yAT eih

15: Output: xH

• Running time breakdown results that highlight the tradeoff between computation time and
communication time for various values of s.

Our technique derives an alternate form for coordinate descent for soft-margin SVM by re-arranging
the computations to obtain s solution updates per communication round. This allows us to obtain
an algorithm whose convergence behavior and sequence of solution updates are equivalent to the
original algorithm.

5.1 Communication-Avoiding Derivation
We are given a matrix A ∈ Rm×n, labels y ∈ Rm where yi are binary labels {−1,+1} for each
observation Ai (i-th row of A). Support Vector Machines (SVM) solves the optimization problem:

arg min
x∈Rn

1

2
||x||22 + λ

m∑
i=1

F (Ai, yi, x) (5.1)

where F (Ai, yi, x) is a loss function and λ > 0 is the penalty parameter. In this work, we consider
the two loss functions:

max(1− yiAix, 0) and max(1− yiAix, 0)2. (5.2)

We refer to the first as SVM-L1 and the second as SVM-L2. Recent work [68] has shown that
both variants of SVM can be solved efficiently using the dual problem. Therefore, in this work we

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 58

Algorithm 8 Communication-Avoiding Linear SVM

1: Input: A ∈ Rm×n, y ∈ Rm, H > 1, λ ∈ R, s ∈ Z+ α0 ∈ Rm

2: x0 =
∑m

j=1 yiαiAi
3: for k = 0, . . . , H

s
do

4: for j = 1 . . . s do
5: isk+j ∈ [m], chosen uniformly at random.
6: eisk+j

∈ Rm, the isk+j-th standard basis vector.

7: Ik =
[
eisk+1

, . . . , eisk+s

]
,Ak = ITkA

8: [r′sk+1, . . . , r
′
sk+s]

T = Akxsk
9: Gk = AkAT

k + ωIs
10: [ηsk+1, . . . , ηsk+s]

T = diag(Gk)
11: for j = 1, . . . , s do
12: βsk+j = eTisk+j

αsk +
∑j−1

t=1 e
T
isk+j

eisk+t
θsk+t

13: gsk+j = eTisk+j
yr′sk+j − 1 + ωβsk+j

+eTisk+j
y
∑j−1

t=1 θsk+te
T
isk+t

yeTisk+j
AAT eisk+t

14: g̃sk+j = |min(max(βsk+j − gsk+j, 0), ν)− βsk+j|
15: if g̃sk+j 6= 0 then
16: θsk+j = min(max(βsk+j − gsk+j

ηsk+j
, 0), ν)

−βsk+j

17: else
18: θsk+j = 0

19: αsk+s = αsk +
∑s

t=1 θsk+tesk+t

20: xsk+s = xsk +
∑s

t=1 θsk+te
T
isk+t

yAT eisk+t

21: Output: xH

will consider the dual optimization problem:

arg min
α∈Rm

1

2
αT Q̄α− 1Tα (5.3)

subject to 0 ≤ αi ≤ ν,∀i, (5.4)

where Q̄ = Q + D, where D = ωIm and Qij = yiyjAiA
T
j . For SVM-L1, ω = 0 and ν = λ and

for SVM-L2 ω = .5
λ

and ν =∞. The dual problem can be solved efficiently by coordinate descent
[68] and is shown in Algorithm 7.

The recurrences in lines 7-14 can be unrolled to avoid communication. We begin the CA
derivation by changing the loop index from h to sk + j where k is the outer loop index, s is the
(tunable) recurrence unrolling parameter, and j is the inner loop index. Let us assume that we
are at iteration sk + 1 and have just computed the vectors xsk and αsk. From this gsk+1 can be

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 59

computed by

gsk+1 = eTisk+1
yeTisk+1

Axsk − 1 + ωeTisk+1
αsk,

g̃sk+1 = |min(max(eTisk+1
αsk − gsk+1, 0), ν)− eTisk+1

αsk|,

θsk+1 =

{
min(max(eTisk+1

αsk − gsk+1

ηsk+1
, 0), ν)− eTisk+1

αsk , g̃sk+1 6= 0

0 , otherwise

αsk+1 = αsk + θsk+1eisk+1
, and

xsk+1 = xsk + θsk+1e
T
isk+1

yAT eisk+1
.

By unrolling the vector update recurrences for αsk+1 and xsk+1, we can compute gsk+2, g̃sk+2,
and θsk+2 in terms of αsk and xsk. We will ignore the quantities g̃sk+j and θsk+j in the subsequent
derivations for brevity. We introduce an auxiliary variable, βsk+j , for notational convenience.

βsk+2 = eTisk+2
αsk + θsk+1e

T
isk+2

eisk+1
,

gsk+2 = eTisk+2
yeTisk+2

Axsk − 1

+ θsk+1e
T
isk+1

yeTisk+2
yeTisk+2

AAT eisk+1
+ ωβsk+2,

By induction we can show that gsk+j can be computed in terms of αsk and xsk such that

βsk+j = eTisk+j
αsk +

j−1∑
t=1

eTisk+j
eisk+t

θsk+t, (5.5)

gsk+j = eTisk+j
yeTisk+j

Axsk − 1 + ωβsk+j

+ eTisk+j
y

j−1∑
t=1

θsk+te
T
isk+t

yeTisk+j
AAT eisk+t

, (5.6)

for j = 1, 2, . . . , s. Due to the recurrence unrolling, we can defer updates to αsk and xsk for s
iterations. The summation in (5.5) adds a previous update θsk+t if the coordinate chosen for update
at iteration sk + t is the same as iteration sk + j. Communication can be avoided in this step
by initializing the random number generator on all processors to the same seed. The summation
in (5.6) computes the inner-product eTisk+j

AAT eisk+t
. Communication can be avoided at this step

by computing the Gram-like matrix,
[
eisk+1

, . . . , eisk+s

]T
AAT

[
eisk+1

, . . . , eisk+s

]
, upfront at the

beginning of the outer loop. Note that the diagonal elements of the resulting matrix are the ηsk+j’s
required in the inner loop. Finally, at the end of the s inner loop iterations we can perform the
vector updates:

αsk+s = αsk +
s∑
t=1

θsk+tesk+t

xsk+s = xsk +
s∑
t=1

θsk+te
T
isk+t

yAT eisk+t
.

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 60

The resulting CA-SVM algorithm is shown in Alg. 8. The derivation we present in this section
only rearranges the algebra. Hence, the convergence rates and behavior of SVM (Alg. 7) do not
change (in exact arithmetic). However, in floating-point arithmetic this rearrangement may lead
to numerical instability. We will empirically show in Section 5.3 that CA-SVM is numerically
stable.

5.2 Algorithm Analysis
In this section, we derive the computation and communication costs of the standard dual coordinate
descent and the communication-avoiding dual coordinate descent algorithms which solve the soft-
margin SVM problem. From the derivation in Section 5.1 we can observe that dual coordinate
descent performs computations on AAT which requires n-dimensional dot-products. In order to
parallelize the dot-products, we partition the data in 1D-block column layout (feature partitioning).
This layout requires a single all-reduce at every iteration whereas 1D-block row layout requires a
more expensive all-to-all. We will assume that A is sparse with fmn non-zeros, where 0 < f ≤ 1
is the density of A with uniform distribution of non-zeros (so that each column has fm non-
zeros and each row has fn non-zeros. Since A is sparse, our analysis of the computational cost
includes the cost of passing over the sparse data structure instead of just counting the floating-point
operations associated with the sparse dot product.

Classical Algorithm
We begin with the analysis of the classical coordinate descent algorithm withA stored in 1D-block
column layout and then extend the proofs to the communication-avoiding algorithm.

Theorem 5.2.1. H iterations of the Dual Coordinate Descent (DCD) algorithm with the matrix
A ∈ Rm×n stored in 1D-block column partitions on P processors along the critical path costs

F = O

(
Hfn

P

)
ops, M = O

(
fmn+ n

P
+m

)
words of memory.

Communication costs

W = O (H logP) words moved, L = O (H logP) messages.

Proof. The DCD algorithm computes the step-size ηh at every iteration by computing an inner-
product with one randomly chosen row, Ai. Once the step-size is computed the vectors xh and
αh are updated at every iteration. Computing the inner-product requires each processor to locally
compute a partial inner-product with only the features stored locally and then perform an all-reduce
(a reduction and broadcast) to sum the partial results from each processor. Since each row of A
contains fn non-zeros, the parallel inner-product computation requires O

(
fn
P

)
operations. This

step also requires communicating a scalar (partial results from each processor) which requiresO(1)
words to be moved using O (logP) messages. Computing the gradient requires an inner-product

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 61

between row Ai and the vector x. This requires O
(
fn
P

)
operations, O (logP) word moved, and

O (logP) messages. Once the gradient has been computed, solution vector update requires scalar
operations which cost O(1) and no communication. The critical path costs of H iterations of this
algorithm areO

(
Hfn
P

)
ops,O (H logP) words moved, andO (H logP) messages. Each processor

requires enough memory to store the m-dimensional vectors α and b, n
P

columns of input matrix
A and n

P
elements of the solution vector x which costs fmn

P
+ 2m + n

P
= O

(
fmn+n

P
+m

)
words

of memory per processor.

Communication-Avoiding Algorithm
We derive the computation, communication, and storage costs of the communication-avoiding dual
coordinate descent algorithm. We operate under the same assumptions as those used to analyze
the costs of the classical algorithm. Note that in this section we will make use of s, the loop
unrolling parameter as defined in Section 5.1. From the analysis we will illustrate the asymptotic
behavior and tradeoffs due to avoiding communication. In addition to the analysis we will show
experimental results to illustrate that the conclusions from the analysis hold in practice.

Theorem 5.2.2. H iterations of the Communication-Avoiding Dual Coordinate Descent (CA-
DCD) algorithm with the matrix A ∈ Rm×n stored in 1D-block column partitions on P processors
along the critical path costs

F = O

(
Hfns

P
+Hs

)
ops, M = O

(
fmn+ n

P
+m+ s2

)
words of memory.

Communication costs

W = O (Hs logP) words moved, L = O

(
H

s
logP

)
messages.

Proof. The CA-DCD algorithm begins by randomly selecting s rows of A and subsequently com-
puting the s × s Gram matrix. Note that the diagonal elements are the step-sizes required for the
next s iterations. Computing the Gram matrix requires O

(
fns2

P

)
operations since there are s2 el-

ements of the Gram matrix to compute, each of which requires fn
P

multiplications. Once the Gram
matrix is computed the inner loop requires updating the residual by taking linear combinations
from previous solutions. This correction requires vector operations and costs O (s2) operations.
Once the s gradients are computed, the solution vector can be updated. Since we perform s up-
dates for every outer loop, this costs O

(
sn
P

)
. The critical path occurs every H

s
iterations so the total

algorithm cost are O
(
Hfn
P

+Hs2
)

ops, O (Hs logP) words moved, and O
(
H
s

logP
)

messages.
Each processor requires enough memory to store the m-dimensional vectors α and b, the input
matrix A and the solution vector x which costs fmn

P
+ s2 + 2m+ n

P
= O

(
fmn+n

P
+m+ s2

)
words

of memory per processor.

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 62

Summary of datasets
Name Features (n) Data Points (m) f
w1a 2, 477 300 0.04
leu 7, 129 38 1
duke 7, 129 44 1

Table 5.1: Properties of the LIBSVM datasets used in our numerical stability experiments.

The communication-avoiding variant that we derived requires a factor of s fewer messages
than their classical counterparts, at the cost of more computation, bandwidth and memory. Note
that the computation and memory costs are unlikely to dominate since we only perform BLAS-1
operations on sparse data. While our CA-variants reduce the latency cost by s, they increase the
flops and bandwidth costs by s (due to the s × s Gram matrix, Gk). Therefore, the best choice of
s depends on the relative algorithmic flops, bandwidth, latency costs and their respective hardware
parameters.

5.3 Convergence Behavior
The recurrence unrolling results in the computation of an s×sGram matrix, whose condition num-
ber may adversely affect numerical stability. So, we begin by verifying the stability of CA-SVM
through MATLAB experiments and then illustrate the speedups attainable through our approach.

We conduct numerical stability experiments in MATLAB R2016b on a 2.3GHz Intel i7 ma-
chine with 8GB of DRAM. We use binary classification datasets (summarized in Table 6.1) from
the LIBSVM [26] repository. We measure the convergence behavior by plotting the duality gap,
P (x)−D(α), where P (x) is the primal objective value and D(α) is the dual objective value. Due
to strong convexity, primal and dual linear SVM have the same optimal function value [68, 97]. In
addition to duality gap, we measure the test accuracy by randomly dividing A into a training set
(with 80% of the rows) and a test set (with the remaining rows). We set λ = 1 for all experiments
and show results for SVM-L1 and SVM-L2.

Figure 5.2 shows the convergence behavior and test accuracy of the datasets in Table 6.1. We
set s = 500 for the CA-variants and plot their duality gap. The potential condition number of
the Gram matrix grows with s, so we chose a large s for our experiments, to study the worst-case
convergence behavior. Since SVM-L2 solves a smoothed variant of the loss function, it converges
to the desired tolerance faster than SVM-L1. Depending on the dataset SVM-L1 may converge to a
higher accuracy than SVM-L2. Note that the choice of loss function does not affect the CA-variants
whose convergence matches their non-CA counterparts. We can observe for these experiments that
the CA-variants are numerically stable. In practice, the additional flops and bandwidth costs are
likely to be the limiting factor for the best choice of s.

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 63

0 2 4 6 8
Iterations (H) 105

10-5

100

105

D
ua

lit
y

G
ap

w1a dataset

SVM-L1
CA-SVM-L1 s =500
SVM-L2
CA-SVM-L2 s =500
tol =1e-06

(a) w1a convergence behavior

0 2 4 6 8 10
Iterations (H) 104

94

95

96

97

98

99

T
es

t A
cc

ur
ac

y
(%

)

SVM-L1
CA-SVM-L1 s = 500
SVM-L2
CA-SVM-L2 s = 500

(b) w1a test accuracy

0 500 1000 1500 2000
Iterations (H)

10-5

100

105

D
ua

lit
y

G
ap

leu dataset

SVM-L1
CA-SVM-L1 s =500
SVM-L2
CA-SVM-L2 s =500
tol =1e-08

(c) leu convergence behavior

0 100 200 300 400
Iterations (H)

0

20

40

60

80

100
T

es
t A

cc
ur

ac
y

(%
)

SVM-L1
CA-SVM-L1 s = 500
SVM-L2
CA-SVM-L2 s = 500

(d) leu test accuracy

0 1000 2000 3000 4000
Iterations (H)

10-5

100

105

D
ua

lit
y

G
ap

duke dataset

SVM-L1
CA-SVM-L1 s =500
SVM-L2
CA-SVM-L2 s =500
tol =1e-08

(e) duke convergence behavior

0 50 100 150 200
Iterations (H)

0

20

40

60

80

T
es

t A
cc

ur
ac

y
(%

)

SVM-L1
CA-SVM-L1 s = 500
SVM-L2
CA-SVM-L2 s = 500

(f) duke test accuracy

Figure 5.2: Duality gap vs. iterations and test error vs. iterations of SVM-L1, SVM-L2, and their
CA variants with s = 500.

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 64

Summary of datasets
Name Features (n) Data Points (m) f

gisette 5, 000 6, 000 0.991
news20.binary 1, 355, 191 19, 996 0.00034
rcv1.binary 20, 242 47, 236 0.0016

Table 5.2: Properties of the LIBSVM datasets used in our performance experiments.

25

26

27

28

29

 384 768 1536 3072
Processors (P)

R
un

ni
ng

 T
im

e
(s

ec
)

CD SVM
CA-CD SVM

(a) Gisette Strong Scaling

26

27

28

29

192 384 576
Processors (P)

R
un

ni
ng

 T
im

e
(s

ec
)

CD SVM
CA-CD SVM

(b) News20-binary Strong Scaling

27.0

27.2

27.4

27.6

27.8

28.0

 96 192 240
Processors (P)

R
un

ni
ng

 T
im

e
(s

ec
)

CD SVM
CA-CD SVM

(c) RCV1 Strong Scaling

Figure 5.3: Strong scaling comparison of coordinate descent for SVM-L1 and its CA variant.

5.4 Performance and Scalability Results
In this section, we present experimental results to show that the CA-methods that we explored in
Section 5.3 are faster than their non-CA variants. We consider the datasets in Table 5.2 which
were chosen to illustrate performance and speedups on over/under-determined, sparse and dense
datasets to illustrate that speedups are independent of those factors.

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 65

We implement the algorithms in C++ using the Message Passing Interface (MPI) [62] for high-
performance, distributed-memory parallel processing. The local linear algebra computations are
performed using the Intel MKL library for Sparse and Dense BLAS [78] routines. All methods
were tested on a Cray XC30 supercomputer at NERSC which has 24 processors per node and
128GB of memory [89]. The implementation divides the dataset column-wise, however, the CA-
methods generalize to other data layout schemes. We choose column-wise since it results in the
lowest per iteration communication cost of O(logP) [45, 116]. All datasets are stored using Com-
pressed Sparse Column format (3-array variant). The vectors in Rm are replicated on all processors
and vectors in Rn are distributed between all processors. The experiments in this section solve the
harder SVM-L1 problem with a duality gap tolerance of 1e-1. Since the CA-variants introduce an
additional tuning parameter (s), we search over powers of 2 from s = 2 to s = 256 and report the
running times for the best value and tradeoffs over different values of s.

Strong Scaling
Figure 5.3 shows the strong scaling results of the datasets in Table 5.2. The first thing we note
is that the CA-variant is faster at all processor settings for all datasets tested. As we increase the
number of processors the speedup obtained by the CA-variant also increases. When communica-
tion is the dominant cost for the standard DCD-SVM algorithm, the CA-variant can obtain large
speedups. For the gisette dataset where we were able to scale to 3072 cores, the CA-variant ob-
tained a speedup of 4×. For the news20.binary and rcv1.binary we obtained speedups of 2.1× and
1.4×, respectively. In addition to obtaining speedups, the CA-variant scales better and to more
cores than the non-CA variant. Despite reducing the latency cost, the CA-variant does not achieve
perfect strong scaling due to the additional bandwidth and flops cost.

Due to load balancing issues we were unable to scale to large core counts for news20.binary
and rcv1.binary and is the reason for non-powers of 2 core counts. The load balancer we currently
use takes the input file (stored in row-major order), transposes it (since we use 1D-block column
layout), and reads roughly a 1

P
fraction of the bytes (a proxy for the number of non-zeros) in the

input file. If a processor begins in the middle of a column then we skip to a newline character
(i.e. the beginning of the next column). If a processor ends in the middle of a column, then this
processor reads and stores this additional column. If the non-zeros in each column are distributed
non-uniformly, then this technique can lead to load imbalance. Another approach which counts
the number of non-zeros per column and distributes so that each processor stores roughly the same
number of non-zeros instead of bytes would likely perform better. This would also facilitate scaling
to larger core counts where we would likely observe larger speedups since s can be set to a even
larger values.

Timing Breakdown
Figure 5.4 shows the communication and computation time for each dataset in Table 5.2. We nor-
malize the running times relative to the non-CA algorithm (s = 1 in Figure 5.4). The running time
breakdown is reported at several values of s to show the communication time improvements and

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 66

 s = 1
 s = 2

 s = 4
 s = 8

 s = 16
 s = 32

 s = 64
s = 128

s = 256
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Computation
Communication

(a) Gisette Running Time

 s = 1
 s = 2

 s = 4
 s = 8

 s = 16
 s = 32

 s = 64
s = 128

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Computation
Communication

(b) News20-binary Running Time

 s = 1
 s = 2

 s = 4
 s = 8

 s = 16
 s = 32

 s = 64
s = 128

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Computation
Communication

(c) RCV1 Running Time

Figure 5.4: Normalized running time breakdown of coordinate descent for SVM-L1 with various
settings for s. Note that s > 1 is the communication-avoiding algorithm.

tradeoff with computation time. For all datasets we can observe that as s increases, the commu-
nication time decreases. Note that since every iteration of coordinate descent for SVM requires a
dot-product. This operation is latency-dominated since we communicate a scalar value and com-
pute a single n-dimensional dot-product 1. Since latency dominates, the CA algorithm can utilize
larger values of s. For the gisette dataset, we can see that communication is the overwhelming
cost and at s = 64 the CA algorithm can reduce the communication cost by a factor of 7. The
news20.binary and rcv1.binary datasets use smaller core counts therefore the communication and
total running time speedups are smaller. In some cases, we observe computation time speedups as
s increases despite the flops cost increase by s. This is due to the better memory bandwidth utiliza-
tion for the CA algorithm and through the use of BLAS-3 matrix multiply routines which attain
higher peak performance. Note that the additional flops and bandwidth costs eventually dominate

1Note that flops cost is often even smaller since these vectors are sparse.

CHAPTER 5. AVOIDING COMMUNICATION IN SUPPORT VECTOR MACHINES 67

when s is large. In this case, we observe that both flops and communication times increase relative
to the best value of s.

5.5 Conclusions and Future Work
In this chapter we derived a communication-avoiding dual coordinate descent algorithm to solve
the soft-margin SVM problem. We proved asymptotic bounds on computation, communication,
and storage. We illustrated with the analysis that the CA-variant reduces latency cost by a tunable
factor s at the expense of additional bandwidth and computation cost. Prior work on s-step methods
and CA-Krylov methods exhibited numerical instability for certain values of s. However, our
numerical stability results showed that our CA-variant is stable even for unreasonably large values
of s where the additional bandwidth and computational costs would likely dominate. Furthermore,
we experimentally evaluated the algorithm and showed that the CA-variant scales better and can
achieve speedups of up to 4× on 3,072 cores of a Cray XC30 system.

There are several directions for future work for the Support Vector Machines problem. While
we have derived CA-variants of the dual SVM problem, doing so for the primal problem is still
an open area. The number of iterations required for primal problem does not depend on m, the
number data points. Naturally, this is advantageous when the number of data points, m is larger
than the number of features, n [107]. We focused on dual coordinate descent, however, deriving
CA-variants of stochastic gradient/sub-gradient descent is also a fruitful direction. The theoreti-
cal computational cost analysis can be improved. We bounded the operational cost2, however, a
combination of flops and operational cost is required for a more accurate analysis. We also limited
ourselves to the 1D-block column partitioning. Exploring the performance and tradeoff space of
different data layouts is an important direction in obtaining the fastest implementation. We used a
trivial load balance to distribute the columns of the data matrix. This can likely be improved and
would allow the algorithm to scale to more cores.

2Defined as the cost of passing over the sparse data structure.

68

Chapter 6

Avoiding Communication in Kernel
Methods

We have derived communication-avoiding block coordinate descent algorithms for several primal
and dual machine learning problems. These results focus on regression and binary classification
problems which inherently perform a linear fit (regression) or linear separation (binary classifi-
cation) of the data. As one would expect non-linearity in the data cannot be fitted or separated
linearly. It is also important to note that ridge/lasso regression and linear SVM preserve the feature
dimension. Data which require higher than the input feature dimensions would obtain poor results
with ridge/lasso and linear SVM. In these cases, kernels methods can project the finite-dimensional
input features into higher, possibly infinite, dimensional feature spaces. As we have illustrated in
previous chapters, ridge/lasso and SVM perform dot-products with ATA (primal problem) and
AAT (dual problem) where A ∈ Rm×n with rows being data points and columns being features.
Introducing a kernel changes the features dimension such that the matrix A becomes another ma-
trix Φ(A) ∈ Rm×ξ where ξ ≥ n. After kernelizing, the primal and dual problems rely on the
Gram matrices Φ(A)TΦ(A) and Φ(A)Φ(A)T . Notice that for the primal problem we need to com-
pute dot-products with features which requires explicitly storing the high-dimensional features
and incurs large computational and storage costs. We can avoid this by instead working with the
dual problem which takes dot-products between data points. By defining a kernel function we
can perform regression and binary classification in high-dimensional feature spaces without ac-
tually computing the features. For example the kernel matrix obtained from the radial basis and
polynomial functions (which we will focus on in this chapter)

linear function: Ki,j = xTi xj,

Radial basis function (RBF): Ki,j = e−γ||xi−xj ||
2
2 ,

Polynomial function (Poly): Ki,j =
(
xTi xj

)d
,

requires only O(m2) storage and O(m2n) computation. The kernel matrix dimensions can be
reduced even further by using block coordinate descent where only b rows of the kernel matrix
need to be computed, where b can be tuned to reduce the storage and computational costs for a

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 69

-1 -0.5 0 0.5 1
x

1

0

0.2

0.4

0.6

0.8

1

1.2

x 2

(a) Ridge regression input before kernelizing.

0 0.2 0.4 0.6 0.8 1

x
1
2

0

0.2

0.4

0.6

0.8

1

1.2

x 2

(b) Ridge regression input after kernelizing.

-5 0 5
x

1

-5

0

5

x 2

class A
class B

(c) SVM input before kernelizing.

0 5 10 15 20

x
1
2

0

5

10

15

20

x 22

class A
class B

(d) SVM input after kernelizing.

Figure 6.1: Problems where ridge regression and SVM obtain poor results without kernelizing.

given machine. Figure 6.1 illustrates input data which are ill-suited for ridge regression and SVM
without a kernel function. For ridge regression, we can use the kernel (x1, x2) → (x2

1, x2) to
obtain transformed data that is linear and where ridge regression can now obtain a good fit. For
SVM, we can use the kernel (x1, x2) → (x2

1, x
2
2) to obtain transformed data which can now be

linearly classified. By using non-linear kernel functions and increasing the feature dimension, we
can obtain good results from ridge regression and linear SVM. In this chapter, we will focus on
solving the kernel ridge regression with Block Dual Coordinate Descent (BDCD) and kernel SVM
with Dual Coordinate Descent (DCD). The contributions of this chapter are:

• Derivation of communication-avoiding variants of BDCD and DCD to solve the kernel ridge
regression and kernel SVM problems, respectively.

• Derivation of operational, bandwidth and latency costs for the standard and communication-
avoiding BDCD and DCD which show that communication-avoiding algorithms reduces
latency by s, a tunable parameter, without changing the operational and bandwidth costs.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 70

This is in contrast to previous chapters where operational and bandwidth costs increase by a
factor of s.

• Numerical experiments to confirm the stability of communication-avoiding BDCD and DCD
for large values of s.

• Modeled strong scaling and speedup results on a predicted Exascale system (using MPI [62]
and Spark[127]) and an existing cloud system (using Spark). We leave actual implementation
for future work.

6.1 Communication-Avoiding Derivation
In this section, we introduce the kernel ridge regression problem and how to solve it using a
computationally-efficient block dual coordinate descent (BDCD) algorithm. Once we derive BDCD,
we show how to avoid communication by unrolling the BDCD vector updates and re-arranging the
computations. The resulting CA-KRR algorithm produces the same sequence of vector updates
and is mathematically equivalent (in exact arithmetic) to the existing algorithm.

Block Dual Coordinate Descent for Kernel Ridge Regression
Given a matrix A ∈ Rm×n with m data points and n features and labels y ∈ Rm (one for each data
point), we are interested in solving the kernel ridge regression (KRR) problem:

arg min
α∈Rm

λ

2

∥∥∥∥ 1

λm
Φ(A)Tα

∥∥∥∥2

2

+
1

2m
‖α− y‖2

2 . (6.1)

Note that Φ(A) ∈ Rm×ξ with ξ ≥ n is the matrix where each data point from the matrix A
is represented by a ξ-dimensional feature vector. Since the ξ-dimensional feature space can be
infinitely large, explicitly forming Φ(A) is prohibitively expensive. Fortunately, it is not necessary
to form Φ(A) explicitly by observing that the closed-form solution for (6.1),

α =

(
1

λm2
Φ(A)Φ(A)T +

1

m
Im

)−1(
1

m
y

)
, (6.2)

requires computation of the matrixK = Φ(A)Φ(A)T ∈ Rm×m. Notice thatK is finite-dimensional
and only requires dot-products between the high-dimensional feature vectors. As a result, we only
need access to the inner-product space1 associated with Φ(A). By defining an appropriate kernel
for the inner-product space, we can compute K without explicitly accessing the high-dimensional
feature space. While this technique reduces the computational and storage complexity, it still
requires computing and storing the kernel matrix, K. In order to further reduce this complexity,
we consider solving the kernel ridge regression problem using block dual coordinate descent.

1Note that we assume that the kernel function satisfies Mercer’s condition.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 71

Algorithm 9 Block Dual Coordinate Descent (BDCD) Algorithm for KRR

1: Input: A = [a1, a2, . . . am]T ∈ Rm×n, y ∈ Rm, H > 1, α0 ∈ Rm, b ∈ Z+ s.t. b ≤ m

2: for h = 1, 2, · · · , H do
3: choose {il ∈ [m] | l = 1, 2, . . . , y} uniformly at random without replacement
4: Ih = [ei1 , ei2 , · · · , eib]
5: Θh = 1

λm2 IThΦ(A)Φ(A)T Ih + 1
m
ITh Ih

6: rh = 1
m

(
−IThΦ(A)Φ(A)Tαh−1 + IThαh−1 + ITh y

)
7: ∆αh = Θ−1

h rh
8: αh = αh−1 + Ih∆αh
9: Output αH

BDCD solves (6.1) by iteratively solving a b-dimensional sub-problem by sampling b rows from
the matrix Φ(A) and updating the solution αh (where h is the iteration counter) according to the
rule:

αh = αh−1 + Ih∆αh, (6.3)

where Ih ∈ Rm×b is the matrix obtained by sub-sampling b columns from the identity matrix, Im.
The solution ∆αh can be obtained by solving the following (smaller) optimization problem:

arg min
∆αh∈Rb

λ

2

∥∥∥∥ 1

λm
Φ(A)Tαh−1 +

1

λm
Φ(A)T Ih∆αh

∥∥∥∥2

2

+
1

2m
‖αh−1 + Ih∆αh − y‖2

2 . (6.4)

The optimization problem (6.4) has the following closed-form solution

∆αh =

(
1

λm2
IThΦ(A)Φ(A)T Ih +

1

m
ITh Ih

)−1(
1

m
ITh y −

1

m
IThαh−1 −

1

λm2
IThΦ(A)Φ(A)Tαh−1

)
.

Note that unlike (6.2), solving for ∆αh only requires computation and storage of b rows of the
kernel matrix, Φ(A)Φ(A)T . The resulting BDCD algorithm is shown in Algorithm 9.

Derivation of CA-KRR
The recurrences in lines 6 and 8 of Algorithm 9 can be unrolled in order to avoid communication.
We begin by changing the loop index from h to sk + j where k is the outer loop index, s is the
recurrence unrolling parameter and j is the inner loop index. Assume that we are at the beginning
of iteration sk + 1 and wsk and αsk were just computed. Then ∆αsk+1 can be computed by

∆αsk+1 =

(
1

λm2
ITsk+1Φ(A)Φ(A)T Isk+1 +

1

m
ITsk+1Isk+1

)−1

(
1

m
ITsk+1y −

1

m
ITsk+1αsk −

1

λm2
ITsk+1Φ(A)Φ(A)Tαsk

)
.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 72

Algorithm 10 Communication-Avoiding BDCD for KRR (CA-KRR) Algorithm

1: Input: A = [a1, a2, . . . am]T ∈ Rm×n, y ∈ Rm, H > 1, α0 ∈ Rm, b ∈ Z+ s.t. b ≤ m

2: for k = 0, 1, · · · , H
s

do
3: for j = 1, 2, · · · , s do
4: choose {il ∈ [m] | l = 1, 2, . . . , b} uniformly at random without replacement
5: Isk+j = [ei1 , ei2 , · · · , eib]

6: compute sb rows of the kernel matrix by G = [Isk+1, Isk+2, . . . , Isk+s]
T Φ(A)Φ(A)T .

7: for j = 1, 2, · · · , s do
8: Extract elements from G required to compute ∆αsk+j .
9: Compute ∆αsk+j according to (6.5).

10: αsk+j = αsk +
∑s

t=1 Isk+t∆αsk+t

11: Output αH

After computing ∆αsk+1, αsk+1 can be computed according to (6.3). However, if we were to defer
the update and avoid forming αsk+1, then the solution for the next iteration, sk + 2, is

∆αsk+2 =

(
1

λm2
ITsk+2Φ(A)Φ(A)T Isk+2 +

1

m
ITsk+2Isk+2

)−1

(
1

m
ITsk+2y −

1

m
ITsk+2αsk −

1

λm2
ITsk+2Φ(A)Φ(A)Tαsk

− 1

λm2
ITsk+2Φ(A)Φ(A)T Isk+1∆αsk+1 −

1

m
ITsk+2Isk+1∆αsk+1

)
.

By induction we can show that

∆αsk+j =

(
1

λm2
ITsk+jΦ(A)Φ(A)T Isk+j +

1

m
ITsk+jIsk+j

)−1

(
1

m
ITsk+jy −

1

m
ITsk+jαsk −

1

λm2
ITsk+jΦ(A)Φ(A)Tαsk

−
j−1∑
t=1

(
1

λm2
ITsk+jΦ(A)Φ(A)T Isk+t∆αsk+t −

1

m
ITsk+jIsk+t∆αsk+t

))
, (6.5)

for j = 1, 2, . . . , s. By unrolling the recurrences, we can compute ∆αsk+j from αsk. Unlike
previous chapters where used an auxiliary vector, x, to implicitly represent Isk+jAX

Tαsk+j−1.
However, since AAT is replaced with its kernelized version Φ(A)Φ(A)T we can no longer use
an auxiliary vector. As a result, the communication-avoiding derivation differs from the one
used in Chapter 3. Communication can be avoided for s computations of ∆αsk+j by comput-
ing [Isk+1, . . . , Isk+j]

TΦ(A)Φ(A)T with a single round of communication. Once the sb rows of

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 73

the kernel matrix have been communicated, the remaining computations can be performed without
communication. After the sequence of s solutions have been computed, the solution vector, αsk+s,
can be updated by

αsk+s = αsk +
s∑
t=1

(Isk+t∆αsk+t) . (6.6)

The resulting CA-KRR algorithm is shown in Alg. 10. It is worth noting that the communication-
avoiding derivation just presented holds for any kernel function. However, the maximum attainable
value of s (the recurrence unrolling parameter) will depend on the computational complexity asso-
ciated with the chosen kernel function and the hardware parameters of the target parallel machine.

Dual Coordinate Descent for Kernel Support Vector Machines
In this section, we introduce the support vector machines problem and show how to solve it using
a computationally-efficient dual coordinate descent (DCD) algorithm. Once we derive DCD, we
show how to avoid communication by unrolling the DCD vector updates and re-arranging the
computations. The resulting CA-KSVM algorithm produces the same sequence of vector updates
and is mathematically equivalent (in exact arithmetic) to the existing algorithm. We are given a
matrix A ∈ Rm×n, labels y ∈ Rm where yi are binary labels {−1,+1} for each observation Ai
(i-th row of A). Support Vector Machines (SVM) solves the optimization problem:

arg min
x∈Rn

1

2
||x||22 + λ

m∑
i=1

F (Ai, yi, x) (6.7)

where F (Ai, yi, x) is a loss function and λ > 0 is the penalty parameter. In this work, we consider
the two loss functions:

max(1− yiAix, 0) and max(1− yiAix, 0)2. (6.8)

We refer to the first as SVM-L1 and the second as SVM-L2 (with a smoothed loss function).
Since we are interested in solving the kernel SVM problem we will instead consider solving the
dual optimization problem:

arg min
α∈Rm

1

2
αT Q̄α− 1Tα (6.9)

subject to 0 ≤ αi ≤ ν,∀i, (6.10)

where Q̄ = Q + D, where D = ωIm and Qij = yiyjΦ(Ai)Φ(Aj)
T . For SVM-L1, ω = 0 and

ν = λ and for SVM-L2 ω = .5
λ

and ν = ∞. The matrix Q ∈ Rm×m requires the computation
of the kernel matrix, Φ(A)Φ(A)T . In our derivation, we avoid using the matrix Q and instead use
diag(y)Φ(A)Φ(A)T diag(y) in order to make the computational cost clear. We use the operator
diag(.) to represent the transformation of y ∈ Rm into a diagonal matrix D̄ ∈ Rm×m such that

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 74

Algorithm 11 Dual Coordinate Descent (DCD) Algorithm for Kernel SVM

1: Input: A ∈ Rm×n, y ∈ Rm, H > 1, λ ∈ R, α0 ∈ Rm

2: for h = 1 . . . H do
3: ih ∈ [m], chosen uniformly at random.
4: eih ∈ Rm, the ih-th standard basis vector.
5: ηh = eTihΦ(A)Φ(A)T eih + ω

6: gh = eTihyΦ(A)Φ(A)T diag(y)αh−1 − 1 + ωeTihαh−1

7: g̃h = |min(max(eTihαh−1 − gh, 0), ν)− eTihαh−1|
8: if g̃h 6= 0 then
9: θh = min(max(eTihαh−1 − gh

ηh
, 0), ν)− eTihαh−1

10: else
11: θh = 0

12: αh = αh−1 + θheih
13: Output: αH

Di,i = yi for i = 1, 2, . . . ,m. For large values of m computing and storing Q is prohibitively
expensive. As a result, we solve the Kernel SVM problem using dual coordinate descent [2, 68]
which is shown in Algorithm 11.

The recurrences in lines 6 and 12 can be unrolled to avoid communication. In the CA derivation
of linear SVM we use the auxiliary vector, x, to replace AT diag(y)αh−1 in line 6 (first term) of
Alg. 11. However, we cannot do so with the kernel matrix Φ(A)Φ(A)T . As a result, the derivation
of kernel SVM differs from the derivation presented in Chapter 5. We begin the CA derivation
by changing the loop index from h to sk + j where k is the outer loop index, s is the (tunable)
recurrence unrolling parameter, and j is the inner loop index. Let us assume that we are at iteration
sk + 1 and have just computed the vector αsk. From this gsk+1 can be computed by

gsk+1 = eTisk+1
yeTisk+1

Φ(A)Φ(A)Tdiag(y)αsk − 1 + ωeTisk+1
αsk,

g̃sk+1 = |min(max(eTisk+1
αsk − gsk+1, 0), ν)− eTisk+1

αsk|,

θsk+1 =

{
min(max(eTisk+1

αsk − gsk+1

ηsk+1
, 0), ν)− eTisk+1

αsk, if g̃sk+1 6= 0

0 , otherwise

αsk+1 = αsk + θsk+1eisk+1
,

where isk+1 is a randomly chosen index from [m] and eisk+1
∈ Rm is the standard basis vector with

a 1 in the isk+1 position. By unrolling the vector update recurrences for αsk+1, we can compute
gsk+2, g̃sk+2, and θsk+2 in terms of αsk. We will ignore the quantities g̃sk+j and θsk+j in the subse-
quent derivations for brevity and since they depend on gsk+j which requires a kernel computation.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 75

Algorithm 12 Communication-Avoiding DCD for Kernel SVM (CA-KSVM) Algorithm

1: Input: A ∈ Rm×n, y ∈ Rm, H > 1, λ ∈ R, s ∈ Z+ α0 ∈ Rm

2: x0 =
∑m

i=1 yiαiAi
3: for k = 0, . . . , H

s
do

4: for j = 1 . . . s do
5: isk+j ∈ [m], chosen uniformly at random.
6: eisk+j

∈ Rm, the isk+j-th standard basis vector.

7: Ik =
[
eisk+1

, . . . , eisk+s

]
8: Compute s rows of the kernel matrix by G =

(
ITk y
)T ITkΦ(A)Φ(A)T diag(y)

9: for j = 1, . . . , s do
10: Extract elements from G to compute ηsk+j and gsk+j

11: Compute βsk+j according to (6.11)
12: Compute gsk+j according to (6.12)
13: g̃h = |min(max(βsk+j − gsk+j, 0), ν)− βsk+j|
14: if g̃h 6= 0 then
15: θsk+j = min(max(βsk+j − gsk+j

ηsk+j
, 0), ν)− βsk+j

16: else
17: θsk+j = 0

18: αsk+j = αsk +
∑s

t=1 θsk+teisk+t

19: Output: αH

We introduce an auxiliary variable, βsk+j , for notational convenience.

βsk+2 = eTisk+2
αsk + θsk+1e

T
isk+2

eisk+1
,

gsk+2 = eTisk+2
yeTisk+2

Φ(A)Φ(A)T diag(y)αsk − 1

+ θsk+1e
T
isk+1

yeTisk+2
Φ(A)Φ(A)T diag(y)eisk+1

+ ωβsk+2,

By induction we can show that gsk+j can be computed in terms of αsk and xsk such that

βsk+j = eTisk+j
αsk +

j−1∑
t=1

eTisk+j
eisk+t

θsk+t, (6.11)

gsk+j = eTisk+j
yeTisk+j

Φ(A)Φ(A)T diag(y)αsk − 1 + ωβsk+j

+ eTisk+j
y

j−1∑
t=1

θsk+te
T
isk+j

Φ(A)Φ(A)T diag(y)eisk+t
, (6.12)

for j = 1, 2, . . . , s. Due to the recurrence unrolling, we can defer updates to αsk for s itera-
tions. The summation in (6.11) adds a previous update θsk+t if the coordinate chosen for update
at iteration sk + t is the same as iteration sk + j. Communication can be avoided in this step by

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 76

initializing the random number generator on all processors to the same seed. In (6.12) we compute
the isk+j-th row of the kernel matrix, eTisk+j

Φ(A)Φ(A)T , and compute an inner product with αsk
and extract elements to be used in the summation. Note that the summations in (6.11) and (6.12)
essential perform an update to the residual. Communication can be avoided at this step by com-
puting s rows of the kernel matrix,

[
eisk+1

, . . . , eisk+s

]T
Φ(A)Φ(A)T , upfront at the beginning of

the outer loop. Note that the ηsk+j term can be extracted from the j-th row of the kernel matrix.
Finally, at the end of the s inner loop iterations we can perform the vector updates:

αsk+s = αsk +
s∑
t=1

θsk+tesk+t.

The resulting CA-KSVM algorithm is shown in Algorithm 12. The derivation we present in this
section only rearranges the algebra. Hence, the convergence rates and behavior of KSVM (Alg.
11) do not change (in exact arithmetic). However, in floating-point arithmetic this rearrangement
may lead to numerical instability. We explore the numerically stable of CA-KSVM in the next
section.

6.2 Algorithm Analysis
In this section, we derive the computation and communication costs of the block dual coordinate
descent and the communication-avoiding block dual coordinate descent algorithms which solve
the kernel ridge regression and kernel SVM problems. Note that when b = 1 we essentially
obtain the costs for DCD. As a result, we will derive the cost for BDCD/CA-BDCD and set b =
1 to obtain costs for DCD/CA-DCD for kernel SVM. From the derivation we can observe that
BDCD performs computations on AAT (for the linear kernel) which requires n-dimensional dot-
products. In order to parallelize the dot-products, we partition the data in 1D-block column layout
(feature partitioning). This layout requires a single all-reduce at every iteration whereas 1D-block
row layout requires a more expensive all-to-all. We will assume that A is sparse with fmn non-
zeros, where 0 < f ≤ 1 is the density of A with uniform distribution of non-zeros (so that
each column has fm non-zeros and each row has fn non-zeros. Since A is sparse, our analysis
of the computational cost includes the cost of passing over the sparse data structure instead of
just counting the floating-point operations associated with the sparse dot product. Note that the
radial basis function kernel requires the exp(·) instruction and the polynomial requires the pow(·)
instruction. Both instructions are more expensive than a multiply instruction, so we introduce a
new parameter,

µ :=
cycles for {exp, pow, sin, etc.}

cycles for multiply
,

to accurately capture the operational cost. Note that µ essentially counts the number of multiply
operations that can be computed in place of an expensive exp instruction, for example. On most
platform instructions like exp require an order of magnitude more cycles to complete thanmultiply
instructions.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 77

Classical Algorithm
We begin with the analysis of the classical BDCD algorithm with A stored in 1D-block column
layout and then extend the proofs to the communication-avoiding algorithm.

Theorem 6.2.1. H iterations of the Block Dual Coordinate Descent (BDCD) algorithm for kernel
ridge regression with the matrix A ∈ Rm×n stored in 1D-block column partitions on P processors
along the critical path costs

F = O

(
Hfbmn

P
+Hµbm+Hb3

)
ops, M = O

(
fmn

P
+ bm

)
words of memory.

Communication costs

W = O (Hbm logP) words moved, L = O (H logP) messages.

Proof. The BDCD algorithm computes a b × m block of the kernel matrix, IThΦ(A)Φ(A)T , at
every iteration by computing pair-wise vector operations (RBF: vector subtraction, Poly: dot-
product) with IThAil for l = 1, 2, . . . , b and ATj for j = 1, 2, . . . ,m. Note that there are bm total
vector combinations to be computed and each pair requires n

P
operations per processor since the

features are distributed. Combining the two costs gives us fbmn
P

operations. Note that we also
need an all-reduce to aggregate each processor’s contribution, which costs logP messages and
bm words (each processor computed a partial b × m matrix)2. After communication we need to
kernelize (RBF: multiply by −γ then exp operation, Poly: pow operation) the bm entries which
costs µbm operations followed by a matrix-vector product to compute IThΦ(A)Φ(A)Tαh−1 which
costs bm flops. Computing rh costs m flops and Θh can be computed by extracting relevant entries
from the matrix, IThΦ(A)Φ(A)T , and solving the linear-system ∆αh = Θ−1

h rh, which costs b3

operations and no communication. Finally, the solution vector αh can be updated in b operations
(since only b entries are updated) and no communication. Since we perform H iterations overall
to reach a desired tolerance the BDCD algorithms costs: O

(
H fbmn

P
+Hµbm+Hb3

)
operations,

O (Hbm logP) words moved, and O (H logP). Each processor requires enough memory to store
the m-dimensional vectors αh, the labels vector y, fmn

P
entries of input matrix A, and bm entries of

the kernel matrix, IThΦ(A)Φ(A)T . Storing these quantities costs fmn
P

+2m+ bm = O
(
fmn
P

+ bm
)

words of memory per processor.

We will now present the analysis for the classical Dual Coordinate Descent (DCD) algorithm
for kernel SVM with A, once again, stored in 1D-block column layout and extend the proofs to
CA-DCD for kernel SVM.

2For the radial basis function kernel each processor performs pairwise vector subtractions, entry-wise squaring(
which requires an additional fbmn

P operations
)
, and summation over the squared vector elements to obtain one partial

entry of the b×m matrix. Since ||Ai − Aj ||22 = AiA
T
i − 2AiA

T
j + AjA

T
j , if we pre-compute and redundantly store

AiA
T
i for i = 1, 2, . . . ,m on all processors, then we can avoid the vector subtractions, element-wise squaring, and

perform only the matrix multiply −2IThAAT in parallel.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 78

Theorem 6.2.2. H iterations of the Dual Coordinate Descent (DCD) algorithm for kernel SVM
with the matrixA ∈ Rm×n stored in 1D-block column partitions on P processors along the critical
path costs

F = O

(
Hfmn

P
+Hµm

)
ops, M = O

(
fmn

P
+m

)
words of memory.

Communication costs

W = O (Hm logP) words moved, L = O (H logP) messages.

Proof. The DCD algorithm computes one row of the kernel matrix, eTihΦ(A)Φ(A) ∈ R1×m, at
every iteration by computing pair-wise vector operations (operations that are appropriately chosen
for the kernel function being used). Since we only compute one row of the kernel matrix there
are m vector combinations to be computed and each pair requires n

P
operations per processor

due to the 1D-column partitioning. Note that computing one row of the kernel matrix requires
fmn
P

operations. Since each processor computes a partial row, we much communicate using an
all-reduce with summation. Communicating requires the movement of m logP words in logP
messages. Then we must kernelize the matrix row by applying an entry-wise operation (RBF:
multiply by −γ then exp operation, Poly: pow operation) which costs µm operations. Once the
kernel matrix row is computed we update it by performing an entry-wise multiplication with the
label vector yT , which costsm operations and no communication. After which ηh can be computed
easily by extracting one entry. Computing gh requires a dot-product between the updated kernel
matrix row and the solution vector, αh, which also requires m operations. Finally, the remaining
computations only require scalar quantities which are dominated by the previous matrix row and
kernelizing computation and vector updates. Since we perform H iteration of DCD, this costs
O
(
H fmn

P
+Hµm

)
operations, O (Hm logP) words moved, and O (H logP) messages. Each

processor requires enough memory to store the m-dimensional vector αh, a row of the kernel
matrix, the labels vector y, and fmn

P
entries of the input matrix A. Storing these quantities costs

fmn
P

+ 3m = O
(
fmn
P

+m
)

words of memory per processor.

Unlike previous chapters, kernel methods require additional computation and bandwidth when
computing a block of b rows of the kernel matrix3. This suggests that latency is relatively less
dominant and resulting speedups from the CA-BDCD and CA-DCD algorithms to be less than
those observed in previous chapters.

Communication-Avoiding Algorithm
In this section, we derive the computation, communication, and storage costs of CA-BDCD for
ridge regression and CA-DCD for kernel SVM. We operate under the same assumptions as those
used to analyze the costs of the classical algorithm. Note that in this section we will make use
of s, the loop unrolling parameter. From the analysis we will illustrate the asymptotic behavior

3Note that for kernel ridge regression b ≥ 1 and for kernel SVM b = 1.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 79

and tradeoffs due to avoiding communication. In addition to the analysis we will show predicted
experimental results.

Theorem 6.2.3. H iterations of the Communication-Avoiding Block Dual Coordinate Descent
(CA-BDCD) algorithm for kernel ridge regression with the matrix A ∈ Rm×n stored in 1D-block
column partitions on P processors along the critical path costs

F = O

(
Hfbmn

P
+Hµbm+Hb3

)
ops, M = O

(
fmn

P
+ sbm

)
words of memory.

Communication costs

W = O (Hbm logP) words moved, L = O

(
H

s
logP

)
messages.

Proof. The CA-BDCD algorithm begins by randomly selecting sb rows of A and subsequently
computing the sb×m kernel matrix, G. Computing G requires fsbmn

P
pair-wise vector operations.

Each processor computes a partial kernel matrix which requires communication to aggregate. The
communication costs sbm words communicated in logP messages. Once the sb rows of the kernel
matrix are communicated, we kernelize it by performing entry-wise operations, which requires
µsbm operations. Once the kernel matrix is computed, we can compute rsk+1 by performing a
matrix-vector multiply with bm entries from the kernel matrix and αsk, which requires bm oper-
ations. After which ∆αsk+1 can be computed with b3 computations. Once the first inner itera-
tion is computed, the residual rsk+j for j = 2, . . . s becomes stale and requires correction. Cor-

recting the residual requires the matrix vector products
(∑j−1

t=1 ITsk+jΦ(A)Φ(A)T Isk+t∆αsk+t

)
.

When j = s, we will have performed s(s − 1) matrix vector products each of which cost b2

operations. In total, the corrections cost an extra s(s − 1)b2 operations. Finally, the solution
vector αsk+j can be updated with sb operations. Note, however, that CA-BDCD requires H

s

outer iterations in order to obtain the same solution as BDCD. Therefore, H
s

iteration of CA-
BDCD cost O

(
Hfbmn

P
+Hµbm+Hb3

)
operation, O (Hbm logP) words moved in O

(
H
s

logP
)

messages. Each processor requires enough memory to store the m-dimensional vectors α and
the labels vector y, the input matrix A, and sbm entries of the kernel matrix. This costs costs
fmn
P

+ sbm+ 2m = O
(
fmn
P

+ sbm
)

words of memory per processor.

Theorem 6.2.4. H iterations of the Communication-Avoiding Dual Coordinate Descent (CA-
DCD) algorithm for kernel SVM with the matrix A ∈ Rm×n stored in 1D-block column partitions
on P processors along the critical path costs

F = O

(
Hfmn

P
+Hµm

)
ops, M = O

(
fmn

P
+ sm

)
words of memory.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 80

Communication costs

W = O (Hm logP) words moved, L = O

(
H

s
logP

)
messages.

Proof. The CA-DCD algorithm begins by randomly selecting b rows of A and subsequently com-
puting the s × m kernel matrix, G. Computing G requires fsmn

P
pair-wise vector operations to

compute partial entries on each processor. The entries can be aggregate through an all-reduce
with summations which costs sm words communicated in logP messages. Once the s rows of
the kernel matrix are communicated, we kernelize it by performing entry-wise operations, which
requires µsm operations. Note that we then need to perform entry-wise multiplications by the
label vector, y, which costs sm operations. The gradient, gsk+1, can be computed by performing
an inner-product with m entries from the kernel matrix and αsk, which requires m operations.
After which computing θsk+1 only requires scalar computations. Once the first inner iteration
is computed, the solution vector αsk becomes stale and requires correction. Correcting the so-
lution vector requires scalar products

(∑j−1
t=1 ITsk+jΦ(A)Φ(A)T Isk+t∆αsk+t

)
. When j = s, we

will have performed s(s − 1) scalar products. In total, the corrections cost an extra s(s − 1)
operations. Finally, the solution vector αsk+j can be updated with s operations. Note, however,
that CA-DCD requires H

s
outer iterations in order to obtain the same solution as DCD. There-

fore, H
s

iteration of CA-DCD cost O
(
Hfmn
P

+Hµm
)

operation, O (Hm logP) words moved in
O
(
H
s

logP
)

messages. Each processor requires enough memory to store the m-dimensional vec-
tors α and the labels vector y, the input matrix A, and sm entries of the kernel matrix. This costs
costs fmn

P
+ sm+ 2m = O

(
fmn
P

+ sm
)

words of memory per processor.

The communication-avoiding variant that we derived requires a factor of s fewer messages
than their classical counterparts, but the same computation and bandwidth costs. This is in contrast
to the previous chapters where the computational and bandwidth costs increase by a factor of s.
Note, however, that the storage costs increase for the CA-BDCD and CA-DCD algorithms. When
computing IThAATαh−1 we can introduce an auxiliary vector x ∈ Rn such that we now require two
computations: the matrix-vector product IThAxh−1 and a vector update for xh. However, kernel
methods cannot take advantage of this because Φ(A) has a large (possibly infinite) number of fea-
tures. Due to this we must compute IThΦ(A)Φ(A)T explicitly at the cost of additional computation
and bandwidth. CA-BDCD and CA-DCD simply increase the rows by a factor of s and computing
G =

[
ITsk+1, ITsk+1, . . . , ITsk+s

]
Φ(A)Φ(A). No additional computation nor bandwidth is required to

compute ITsk+jΦ(A)Φ(A)T Isk+t (used to correct the residual/gradient), since we can extract them
from G. The additional computation and bandwidth costs for kernel methods suggest that latency
is less dominant.

6.3 Convergence Behavior
The recurrence unrolling results in the computation of an sb ×m kernel matrix, whose condition
number may adversely affect numerical stability. So, we begin by verifying the stability of CA-
BDCD for kernel ridge regression and CA-DCD for kernel SVM through MATLAB experiment.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 81

Summary of datasets
Name Features (n) Data Points (m) f σmin σmax

abalone 4, 177 8 1 4.3e−5 2.3e4
w1a 2, 477 300 0.04 1.6e−4 6.2e3
breast-cancer 683 10 1 9.5e−16 1.1e15

Table 6.1: Properties of the LIBSVM datasets used in our numerical stability experiments.

The numerical stability experiments are conducted using MATLAB R2016b on a 2.3GHz Intel
i7 machine with 8GB of DRAM. We use datasets (summarized in Table 6.1) from the LIBSVM
[26] repository. We measure the convergence behavior for kernel ridge regression by plotting the
solution error, ||αopt−αh||2

||αopt||2 . The optimal solution, αopt, is obtained by computing the full (m ×m)
kernel matrix and solving for α exactly. For kernel SVM we compute the duality gap, P (αh) −
D(αh), where P (αh) is the primal objective value and D(αh) is the dual objective value. Due to
strong convexity, primal and dual linear SVM have the same optimal function value [68, 97]. We
set λ = 10σmin for kernel ridge regression and λ = 1 for kernel SVM. We show results using the
polynomial kernel with d = 2 and the radial basis function. Figure 6.2 illustrates the convergence
behavior of CA-BDCD and BDCD for the abalone and w1a datasets for two block sizes b = 1 and
b = 4. For CA-BDCD we use s = 200 which is large enough that we would expect numerical
instability to occur. Regardless of which kernel function is used, we can observe that b = 4
converges faster than b = 1, as expected. However, the faster convergence is at the expense of
additional computation and bandwidth. Therefore, b should be chosen to balance the computation
and communication costs. CA-BDCD with s = 200 matches the convergence of BDCD for both
settings of b. This shows that CA-BDCD is numerical stable and suggests that the computation
and communication tradeoff is the limiting factor for large values of s. Figure 6.3 shows the
convergence behavior of CA-DCD and DCD for the breast-cancer and w1a datasets in Table 6.1.
We show the convergence for the SVM-L1 and the smoothed SVM-L2 loss functions. Note that
SVM-L2 does not converge faster than SVM-L1 as observed in Chapter 5 for the linear kernel
(however, both loss functions converge to the desired tolerance). Once again we set s = 200 for
CA-DCD and plot the convergence. As expected, the convergence behavior of CA-DCD matches
that of DCD and is numerically stable at s = 200. Therefore, the value of s should chosen to
balance the computation and communication costs.

6.4 Predicted Performance Results
In this section, we show the predicted performance of BDCD, DCD, and their CA variants. We
use the running time model (introduced in Chapter 1),

T = γF + βW + αL,

where T is the running time, F is the computational cost, W is the bandwidth cost, and L is the

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 82

0 1 2 3 4
Iterations (H) 106

10-4

10-2

100

re
la

tiv
e

so
lu

tio
n

er
ro

r b = 1, s = 1
b = 1, s =200
b =4, s = 1
b =4, s =200
tol =1e-04

(a) abalone, Poly. kernel, d = 2.

0 5 10 15
Iterations (H) 104

10-4

10-2

100

re
la

tiv
e

so
lu

tio
n

er
ro

r b = 1, s = 1
b = 1, s =200
b =4, s = 1
b =4, s =200
tol =1e-04

(b) abalone, RBF kernel, γ = 1.

0 2 4 6 8
Iterations (H) 105

10-4

10-2

100

re
la

tiv
e

so
lu

tio
n

er
ro

r = 1, s = 1
 = 1, s =200
 =4, s = 1
 =4, s =200

tol =1e-04

(c) w1a, Poly. kernel, d = 2.

0 1 2 3 4
Iterations (H) 104

10-4

10-2

100

re
la

tiv
e

so
lu

tio
n

er
ro

r

 = 1, s = 1
 = 1, s =200
 =4, s = 1
 =4, s =200

tol =1e-04

(d) w1a, RBF kernel, γ = 1.

Figure 6.2: Relative solution error vs. iterations of solving the kernel ridge regression problem
using BDCD and CA-BDCD with s = 200.

number of messages of the algorithm obtained. The parameters γ (seconds per flop) is the inverse
of the flops speed of the hardware, β (seconds per byte) is the inverse bandwidth of the network,
and α (seconds per message) is the latency of the network. We use the algorithm costs derived
in Section 6.3 when modeling the running time. The results we obtain show the per iteration
running time and speedups. We assume that kernel ridge regression and kernel SVM use the radial
basis function. This requires an exp operation which has µ = 3 (i.e. 3× slower than a multiply
instruction) [50, Knights Landing]. We show results for three platforms: Exascale with MPI,

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 83

0 100 200 300
Iterations (H)

10-10

100

D
ua

lit
y

G
ap

SVM-L1
SVM-L2
CA-SVM-L1 s =200
CA-SVM-L2 s =200
tol =1e-04

(a) breast-cancer, Poly. kernel, d = 2.

0 0.5 1 1.5 2
Iterations (H) 104

10-5

100

105

D
ua

lit
y

G
ap

SVM-L1
SVM-L2
CA-SVM-L1 s =200
CA-SVM-L2 s =200
tol =1e-04

(b) breast-cancer, RBF kernel, γ = 0.1.

0 5 10 15
Iterations (H) 104

10-5

100

105

D
ua

lit
y

G
ap

SVM-L1
SVM-L2
CA-SVM-L1 s =200
CA-SVM-L2 s =200
tol =1e-04

(c) w1a, Poly. kernel, d = 2.

0 2 4 6 8 10
Iterations (H) 104

10-5

100

105

D
ua

lit
y

G
ap

SVM-L1
SVM-L2
CA-SVM-L1 s =200
CA-SVM-L2 s =200
tol =1e-04

(d) w1a, RBF kernel, γ = 0.1.

Figure 6.3: Duality gap vs. iterations of DCD and CA-DCD with s = 200.

Exascale with Spark, and Cloud with Spark. The hardware costs for the Exascale platform are
γ = 10e−13, β = 3.7e−10, and α = 5e−7 [25]. For Exascale with Spark we assume that the
computation and bandwidth speeds remain the same but increase the latency cost to α = 5e−6
where Spark was shown to be an order of magnitude slower than MPI in terms of latency for
iterative algorithms [56]. Finally, for Spark on Cloud we assume that the CPUs are the same as
Exascale, but replace the network with gigabit ethernet which has β = 8e−9 and α = 1.25e−3.
Note that we assume that the processors can attain peak γ performance and neglect sequential costs
(i.e. communication between DRAM and caches, etc.).

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 84

1.5
2x

1.5
3x

1.5
3x

1.5
3x

2.3
2x

2.3
5x

2.3
6x

2.3
6x

3.9
6x

4.0
8x

4.1
2x

4.1
4x

7.0
2x

7.4
8x

7.6
4x

7.7
3x

12
.11

x

13
.66

x

14
.26

x

14
.59

x

19
.38

x

23
.86

x

25
.85

x

26
.97

x

50 100 150 200
s

32

16

8

4

2

1

B
lo

ck
 s

iz
e

(b
)

50

100

150

200

(a) MPI on Exascale.

5.7
6x

6.0
5x

6.1
5x

6.2
x

11
.59

x
13

x
13

.54
x

13
.83

x

20
.17

x

25
.07

x

27
.28

x

28
.53

x

29
.59

x

41
.77

x

48
.41

x

52
.59

x

37
.54

x

59
.85

x

74
.64

x

85
.17

x

43
x

75
.26

x

10
0.3

6x

12
0.4

4x

50 100 150 200
s

32

16

8

4

2

1

B
lo

ck
 s

iz
e

(b
)

50

100

150

200

(b) Spark on Exascale.

14
.45

x

16
.75

x

17
.69

x

18
.2x

30
.42

x

43
.46

x

50
.71

x

55
.33

x

42
.91

x

74
.99

x

99
.86

x

11
9.7

2x

47
.95

x

92
.07

x

13
2.7

8x

17
0.4

7x

49
.44

x

97
.77

x

14
5.0

1x

19
1.2

2x

49
.84

x

99
.37

x

14
8.5

8x

19
7.4

8x

50 100 150 200
s

32

16

8

4

2

1

B
lo

ck
 s

iz
e

(b
)

50

100

150

200

(c) Spark on Cloud.

Figure 6.4: Speedups obtained for BDCD and CA-BDCD for various settings of b and s.

For kernel ridge regression we use a matrix with m = 220 data points, n = 220 features and
run on P = 220 processors, such that each processor stores one feature. The matrix is assumed
to be sparse with f = 0.1. We explore the performance of several values of block size, b =
1, 2, 4, 8, 16, 32 and s = 50, 100, 150, 200. Since convergence depends on the condition of the
matrix, we normalize the running times of CA-BDCD relative to BDCD with matching block
sizes and omit BDCD (i.e. the s = 1 column) since the speedups are 1×. Figure 6.4 shows the
modeled speedups for the three platform and programming model combinations. For Exascale,
where latency times are fast we observe speedups of 26× for b = 1 and s = 200. Speedups
decrease as b increases since computation and bandwidth costs become more dominant. Exascale
with Spark attains speedups of up to 120× due to the higher latency costs. Finally, Cloud with
Spark achieves the highest speedups of all configurations with s = 200 performing up to 197×

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 85

100 102 104 106 108

Processors (P)

10-8

10-6

10-4

10-2

R
un

ni
ng

 T
im

e
(s

)

KSVM
CA-KSVM s = 5
CA-KSVM s = 200

(a) MPI on Exascale.

100 102 104 106 108

Processors (P)

10-8

10-6

10-4

10-2

R
un

ni
ng

 T
im

e
(s

)

KSVM
CA-KSVM s = 5
CA-KSVM s = 200

(b) Spark on Exascale.

100 102 104 106 108

Processors (P)

10-8

10-6

10-4

10-2

R
un

ni
ng

 T
im

e
(s

)

KSVM
CA-KSVM s = 5
CA-KSVM s = 200

(c) Spark on Cloud.

Figure 6.5: Strong scaling of DCD for kernel SVM and CA-DCD with s = 20, and s = 200.

faster on a gigabit ethernet network.
For kernel SVM we show modeled strong scaling results using the same matrix for the number

of processor ranging from P = 1 to P = 220 by doubling. Note that the strong scaling and
speedup results are independent of the loss functions, SVM-L1 and SVM-L2, because we show
per iteration running times. The two loss functions only differ in scalar quantities so they have the
same algorithm costs. At P = 220 we observe speedups of 26×, 120×, and 197× for Exascale with
MPI, Exascale with Spark, and Cloud with Spark, respectively. As expected, larger latency costs
result in DCD losing scalability at smaller numbers of processors. On the other hand, CA-DCD
scales much further and attains larger speedups due to large latency costs.

CHAPTER 6. AVOIDING COMMUNICATION IN KERNEL METHODS 86

6.5 Conclusions and Future Work
In this chapter we derived communication-avoiding algorithms to solve the kernel ridge regression
and kernel SVM problems. We derived asymptotic bounds on computation, communication, and
storage. We illustrated with the analysis that the CA-variant reduces latency cost by a tunable
factor s while maintaining the same computation and bandwidth costs. We showed that these
methods are numerically stable even for very large values of s. Furthermore, we showed modeled
performance results that showed that the CA-variants scale better and can achieve large modeled
speedups up to 197× on three different platforms and programming model combinations.

There are several directions for future work. While we have derived CA-variants, we have only
explored modeled performance. As a result, implementation of these algorithms and exploring
the practical tradeoffs is important. While we focused on (block) dual coordinate descent deriv-
ing CA-variants of stochastic gradient/sub-gradient descent is also a fruitful direction. Comparing
the performance of CA-BDCD and CA-DCD with other approaches of reducing communication
in kernel methods would be fruitful. Introducing caching schemes to reduce the amount of com-
putation required to computing b rows of the kernel matrix is worth exploring. Caching could
potentially eliminate the computation and bandwidth costs for some iterations. In this situation
latency dominates and the CA-variants could yield greater speedups.

87

Chapter 7

Adaptive Batch Sizes for Deep Neural
Networks

The AdaBatch technique and experimental results in this chapter are a product of joint work with
co-authors Maxim Naumov and Michael Garland during an internship at NVIDIA. This work has
appeared as a technical report on arXiv [44].

The optimization problems explored thus far in this thesis were limited to the convex case. How-
ever, many of the problems solved by deep neural networks are non-convex. In this chapter, we
introduce an adaptive batch size (AdaBatch) technique that reduces the cost of communication
when training deep neural networks. The contributions of this chapter are:

• Illustrating that adaptively increasing batch size can augment or replace learning rate decay.

• Single-GPU and multi-GPU performance evaluation of a PyTorch implementation of our
technique compared to fixed batch size techniques on up to 4 NVIDIA P100 GPUs. Our
results show that we can attain speedups of 3.54× on VGG19 network and 6.25× on ResNet-
20 network using the CIFAR-100 dataset without changing the test error.

• Training the ImageNet dataset on the ResNet-50 network with a batch size of up to 524, 228,
which would allow neural network training to attain a higher fraction of peak GPU perfor-
mance than training with smaller batch sizes.

Deep neural networks (DNNs) have a long and well-documented history. Their resurgence due,
in part, to hardware improvements has led to rapid progress in several research areas; most notably,
in speech recognition and computer vision. While modern hardware has made the use of deep
neural networks practical, running time remains a bottleneck. Graphics Processing Units (GPUs)
have become particularly attractive in training DNNs due to their high computational throughput
and high flops to watts ratio. The main computational kernels for DNNs are dense convolutions
and dense matrix multiplications, which are well-suited for the GPU architecture.

Neural networks differ from the models (i.e. regularized least-squares, SVM, logistic regres-
sion, etc.) described in previous chapters in that neural networks utilize additional “hidden" layers

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 88

. . .
. . .

. . . F0

a1,	b1

am,	bm

xLR

Logistic	Regression

. . .

F1

a1,	b1

am,	bm
xNN

Deep	Neural	Network

F1

F1

Fd

Fd

Hidden	Layer	1

Hidden	Layer	d

. . .
. . .

. . .
Fd+1

Output	Layer

Figure 7.1: Comparison of the input-output transformation between logistic regression and a
generic deep neural network with d hidden layers. ai is the i-th sample from the input dataset,A,
and bi is its corresponding label. F0 is the nonlinear logistic function, Fj for 1 ≤ j ≤ d are the
nonlinear activation functions for the j-th hidden layer, and Fd+1 is the nonlinear output function.
xLR and xNN are the solutions obtained from the logistic regression and DNN model, respectively.
Each node in the hidden layer is known as a hidden unit or a neuron.

between the input and output layers. Figure 7.1 illustrates the input-output transformations for lo-
gistic regression and a simple, deep neural network1 with d hidden layers. Suppose that Stochastic
Gradient Descent (SGD) is used to solve the logistic regression (LR) problem. In this setting, the
gradient of the loss function for LR is computed using a randomly chosen mini-batch of samples
and then the solution, xLR, is updated. This process is repeated until a termination criterion is met.

On the other hand, solving the DNN requires a more complicated optimization technique
known as backpropagation [104]. The hidden layers introduce intermediate inputs and outputs,
therefore computing the gradient of the DNN requires two passes over the network. A forward
pass is required, which begins with a mini-batch of samples (at the input layer) and transforms
them into the output of hidden layer 1 using nonlinear function F1. The output from hidden layer
d−1 is similarly transformed into the output of hidden layer d until the result of the output layer is
computed. A backward pass is then performed which begins at the output layer by computing the
gradient of an error function (e.g. mean-squared error) with respect to the true labels and the com-
puted labels. By applying the chain-rule, the gradient at each hidden layer can be computed and
the hidden layer weights can be updated using the SGD update rule. Once the weights at hidden
layer 1 are updated, the next forward pass can begin. This process is repeated until a termination
criterion is met.

1The DNN depicted is a feedforward neural network. Also known as a Multi-Level Perceptron (MLP).

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 89

…

Batch	Size
3

227

227

3

5

5

Batch	Size

1
75

75

Filter Filtered	Output

RGB	Image

…

Filter	Stride	=	3

Figure 7.2: This convolution layer applies a 5×5×3 convolution filter to each 227×227×3 image
and results in a batch of 75×75×1 filtered output. “Filter Stride" is the number of pixels the filter
is shifted up or down before applying the filter. In general, convolution layers apply several filters
so the filters and filtered output are typically 4-D tensors.

Convolutional Neural Networks
Feedforward neural networks (FNNs), as illustrated in Figure 7.1, are characterized by fully-
connected layers. In other words, the output of each hidden unit is an input to every hidden unit in
the next hidden layer. In addition to fully-connected layers, convolutional neural networks (CNNs)
also consist of convolutional layers, pooling layers, and normalization layers. The use of convolu-
tional layers makes CNNs particularly well-suited for image classification problems in computer
vision. Figure 7.2 illustrates a typical convolutional or pooling layer which takes a mini-batch
of images2 and performs convolutions or a pooling operation (like max-pooling) using a series of
filters to obtain a series of filtered output. The filtered output is then passed to the next layer as the
input and so on until the output layer. In general, several filters are applied at each layer resulting
in 4-D tensors as filtered output.

Adaptive Batch Sizes
Stochastic Gradient Descent (SGD) and its variants are the most widely used optimization meth-
ods for training deep neural networks. Training a neural network requires large amounts of data,
therefore, implementations typically divide the training set into a series of batches of some fixed
batch size. Each batch is processed in sequence during training; however, the individual training

2We will use “batch size" to refer to the number of images in a mini-batch.

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 90

samples within a single batch may be processed in parallel [12, 59]. One pass over the batches (i.e.
the entire dataset) is referred to as an epoch.

The training process typically uses a static batch size, r, which is held constant throughout
training. However, static batch sizes force the user to resolve an important conflict. On one hand,
small batch sizes are desirable since they tend to perform better in terms of test accuracies [35,
70]. On the other hand, large batch sizes offer more data-parallelism which in turn improves
computational efficiency and scalability [60, 123].

This trade-off between small and large batch sizes can be resolved by adaptively increase the
batch size during training. We begin with a batch size r, typically the same batch size used for fixed
batch size training, and progressively increase the batch size between selected epochs as training
proceeds. We double the batch size at specific intervals and simultaneously adapt the learning rate
α so that the ratio α/r remains constant. The adaptive batch size technique has several advan-
tages. It delivers the accuracy of training with small batch sizes, while improving performance
by increasing the amount of work available per processor in later epochs. Furthermore, the large
batches used in later epochs expose sufficient parallelism to create the opportunity for distributing
work across many processors, where those are available. Our approach can also be combined with
other existing techniques for constructing learning rate decay schedules to increase batch sizes
even further.

We have applied our adaptive batch size method to training standard AlexNet, ResNet, and
VGG networks on the CIFAR-10, CIFAR-100, and ImageNet datasets. The experimental results,
detailed in Section 7.3, demonstrate that training with adaptive batch sizes attains similar test
accuracies with faster running times compared with training using fixed batch sizes. Furthermore,
we experimentally show that adaptive batch sizes can be combined with other large batch size
techniques to yield speedups of up to 6.25× while leaving test accuracies relatively unchanged.

7.1 Related Work
Previous work introduced gradual learning rate warmup and linear learning rate scaling in order to
attain batch sizes of 8192 for ImageNet CNN training in a large, distributed GPU cluster setting
[60]. More recently, the use of a layer-wise learning rate scaled by the norms of the gradients
allowed even higher batch sizes of 32,768 [123]. Both results use a fixed batch size throughout
training whereas our work changes the batch sizes during training. Furthermore, we show that our
work is complementary to these existing results.

The relationship between adaptive batch sizes and learning rates is well-known. In particu-
lar, this relationship was illustrated for strongly-convex, unconstrained optimization problems by
Friedlander & Schmidt [53]. This work showed that batch size increases can be used instead of
learning rate decreases. On the other hand, a batch size selection criterion based on estimates of
gradient variance, which are used to adaptively increase batch sizes, was introduced by Byrd et
al. [19]. Both approaches consider second-order, Newton-type methods. Our work complements
and adds to this research by exploring adaptive batch sizes for various neural network architectures.

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 91

Several authors have also studied adaptively increasing batch size with fixed schedules from the
context of accelerating the optimization method through variance reduction [34, 63]. Both works
study the theoretical and empirical convergence behavior of their adaptive batch size optimization
methods on convex optimization problems. In contrast an adaptive criterion to control the batch
size increases and illustration of their convergence on convex problems and convolutional neural
networks is developed by De et al. [38] and Balles et al. [6]. While both illustrate the practicality
of coupling adaptive batch sizes with learning rates, they do not explore the performance benefits
that can be gained through the use of adaptive batch sizes when coupled with existing large batch
size CNN training work [60, 123].

A very recent work illustrates that learning rate decay can be replaced with batch size increase
[110]. The aforementioned study shows that the batch size increase in lieu of learning rate decay
works on several optimization algorithms: SGD, SGD with momentum, and Adam. Furthermore,
it experiments with altering the momentum term with batch size increases and explores the effects
on convergence.

In addition, our research explores the performance tradeoffs from using an adaptive batch size
technique on popular CNNs and illustrates that our technique is complementary to existing fixed,
large batch size training techniques. Our results also independently verify that adaptive batch size
can practically replace learning rate decay and lead to performance improvements. In particular,
we show that adaptive batch size schedules can yield speedups that learning rate schedules alone
cannot achieve. Finally, by combining adaptive batch sizes with large batch size techniques we
show that even larger speedups can be achieved with similar test error performance.

7.2 Adaptive Batch Sizing and its Effects
The batch size and learning rate are intimately related tuning parameters [123, 60]. Recent work
has shown that adapting the learning rate either layerwise or over several iterations can enable
training with large batch sizes without sacrificing accuracy. We will illustrate that the relationship
between batch size and learning rate extends even further to learning rate decay. The following
analysis provides the basis for our adaptive batch size technique.

Learning Rate
In supervised learning, the training of neural networks consists of repeated forward and backward
propagation passes over a labelled data set. The data set is often partitioned into training, validation
and test parts, where the first is used for fitting the neural network function to the data and the others
for verification of the results.

Let a training data set be composed of data samples {(x, z∗)}, which are pairs of known inputs
x ∈ Rn and outputs z∗ ∈ Rm. Further, let these pairs be ordered and partitioned into q disjoint
batches of size r. For simplicity of presentation, we assume that the number of pairs is qr. In cases
where r does not divide the number of pairs evenly, implementations must in practice either pad
the last batch or correctly handle truncated batches.

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 92

Training a neural network with weights W can be interpreted as solving an optimization prob-
lem

arg min
W
L (7.1)

for some choice of loss function L. This optimization problem is often solved with a stochastic
gradient descent algorithm, where the weight updates at i-th iteration are performed using the
following rule

Wi+1 = Wi −
α

r
∆Wi (7.2)

for an update matrix ∆Wi computed with batch-size r and learning rate α.
The batch size and learning rate are independent tuning parameters. However, notice that factor

α
r

is proportional to batch size and inversely proportional to the learning rate. This suggests that we
may be able to augment learning rate decay with batch size increases. We will now illustrate that
augmenting learning rate decay with batch size increase is feasible (in the sense that convergence
behavior does not change significantly). According to Equation (7.2) after q iterations (i.e., one
epoch) with a learning rate α and batch size r we have

Wi+q = Wi −
α

r

q∑
i=1

∆Wi (7.3)

Suppose that we instead train with larger batch sizes by grouping β > 1 batches. Note that this
results in an effective batch size of βr and results in q̃ = q/β iterations for one epoch of training.
Under this setting we can write

Wi+q̃ = Wi −
α̃

βr

q̃∑
j=1

∆W̃j (7.4)

for an update matrix W̃j computed with batch size βr and learning rate α̃. Notice that this can be
re-written as an accumulation of β gradients with batch size r as follows:

Wi+q̃ = Wi −
α̃

βr

q̃∑
j=1

(
β∑
k=1

∆Wi′

)
(7.5)

where W̃j =
∑β

k=1 ∆Wi′ and index i′ = (j − 1)β + k. Notice that Wi+q might be similar to Wi+q̃

only if we set the learning rate α = α̃/β and assume that updates ∆Wi ≈ ∆Wi′ are similar in
both cases. This assumption was empirically shown to hold for fixed large batch size training with
gradual learning rate warmup [60] after the first few epochs of training.

Notice that the factor 1/β can be interpreted as a learning rate decay, when comparing Equa-
tion (7.3) and (7.5). This relationship has been used to justify linearly scaling the learning rate for
large batch size training [60]. On the other hand, we take advantage of this relationship to illustrate
that increasing the batch size can mimic learning rate decay. Naturally, the two approaches can be
combined as we will show in Section 7.3. In our experiments, we will consider adaptive batch sizes

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 93

which increase according to a fixed schedule. We ensure that the effective learning rates (α = α̃β)
for fixed batch size vs. adaptive batch size experiments are fixed throughout the training process
for fair comparison (see Section 7.3 for details).

Test Accuracy and Performance
Training with large batch sizes is attractive due to its performance benefits on modern deep learn-
ing hardware. For example, on GPUs larger batch sizes allow us to better utilize GPU memory
bandwidth and improve computational throughput [93, 94]. Larger batch sizes are especially im-
portant when distributing training across multiple GPUs or even multiple nodes since they can hide
communication cost more effectively than small batch sizes.

However, the performance benefits of large batch sizes come at the cost of lower test accura-
cies since large batches tend to converge to sharper minima [35, 70]. Through the use of learning
rate scaling [60] and layer-wise adaptive learning rates [123], larger batch sizes can attain better
accuracies. While both approaches increase the batch size, the batch size they use remains fixed
throughout training. We propose an approach that adaptively changes the batch size and progres-
sively exposes more parallelism. This approach also allows one to progressively add GPUs, if
available, to the training process.

Work per Epoch
Fixed batch sizes (small or large) require a fixed number of floating point operations (flops) per
iteration throughout the training process. Since our technique adaptively increases the batch size,
the flops per iteration progressively increases. Despite this increase, we can show that the flops per
epoch remains fixed as long as the computation required for forward and backward propagation is
a linear function of the batch size r.

For example, let us briefly illustrate this point on a fully connected layer with a weight matrix
W ∈ Rm×n, input X = [x1, ...,xr] ∈ Rn×r and error gradient V = [v1, ...,vr] ∈ Rm×r. Notice
that for a batch of size r the most computationally expensive operations during training are matrix-
matrix multiplications

Y = WX and (7.6)

U = W TV (7.7)

in forward and backward propagation, respectively. These operations require O(mnr) flops per
iteration and O(mnrq) flops per epoch. Notice that the amount of computation depends linearly
on the batch size r. If we select a new, larger batch size of βr, then the flops per iteration increase
to O(mnβr). However, increasing the batch size by a factor of β also reduces the number of
iterations required by a factor of β. As a result the flops per epoch remains fixed at O(mnrq)
despite requiring more flops per iteration. Since larger batch sizes do not change the flops per
epoch, they are likely to result in performance improvements due to better hardware efficiency.

Our experimental results in Section 7.3 confirm these conclusions for CNNs.

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 94

(a) VGG19 with Batch Norm. (b) ResNet-20

(c) AlexNet

Figure 7.3: Comparison of CIFAR-10 test errors for adaptive versus fixed small and large batch
sizes. The plots show the lowest test error and report mean ± standard deviation over 5 trials.

7.3 Experimental Results
In this section, we illustrate the accuracy tradeoffs and performance improvements of our adaptive
batch size technique. We test this technique using the VGG [109], ResNet [64], and AlexNet [76]
deep learning networks on CIFAR-10 [74], CIFAR-100 [75], and ImageNet [42] datasets. We
implement our algorithms using PyTorch version 0.1.12 with GPU acceleration. Our experimental
platform consists of 4 NVIDIA Tesla P100 GPUs interconnected via NVIDIA NVLink.

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 95

Fixed vs. Dynamic Batch Sizes
As we have illustrated in Section 7.1, learning rate decay is a widely used technique to avoid stag-
nation during training. While learning rate schedules may help improve test error, they rarely lead
to faster training times. We begin by performing experiments to validate our claim that adaptive
batch sizes can be used without significantly affecting test accuracy. For these experiments, we
use SGD with momentum of 0.9, weight decay of 5 × 10−4, and perform 100 epochs of training.
We use a base learning rate of α = 0.01 and decay it every 20 epochs. For the adaptive method
we decay the learning rate by 0.75 and simultaneously double the batch size at the same 20-epoch
intervals. The learning rate decay of 0.75 and batch size doubling combine for an effective learning
rate decay of 0.375; therefore, we use a learning rate decay of 0.375 for the fixed batch size exper-
iments for the most direct comparison. All experiments in this section are performed on a single
Tesla P100.

Figure 7.3 shows the test error on the CIFAR-10 dataset for (7.3a) VGG19 with batch normal-
ization, (7.3b) ResNet-20, and (7.3c) AlexNet. For AlexNet the fixed batch sizes are 256 and 4096.
For VGG19 and ResNet-20 the fixed batch sizes are 256 and 4096, which are smaller due to the
constraint of fitting within the memory of a single GPU. Figure 7.3 plots the best test error for each
batch size setting, but reports the mean and standard deviation over five trials in the legends. The
noticeable drops in test error every 20 epochs are due to the learning rate decay. We observed that
the adaptive batch size technique attained mean test errors within 1% of the smallest fixed batch
size. Compared to the largest fixed batch sizes, the adaptive technique attained significantly lower
test errors. Note that the fixed batch size experiments for VGG19 and ResNet-20 attain test errors
comparable to those reported in prior work [64].

Figure 7.4 shows similar results on the CIFAR-100 dataset for the same networks and batch
size settings. Once again, we see that the adaptive batch size technique attains test errors within
1% of the smallest fixed batch size. Our results indicate that learning rate schedules and batch
size schedules are related and complementary. Both can be used to achieve similar effects on test
accuracy. However, adapting the batch size provides the additional advantage of better efficiency
and scalability without the need to sacrifice test error.

Network Batch Size Forward Time (speedup) Backward Time (speedup)

VGG19_BN
128 933.79 sec. (1×) 1571.35 sec. (1×)
128-2048 707.13 sec. (1.32×) 1322.59 sec. (1.19×)

ResNet-20
128 256.59 sec. (1×) 661.35 sec. (1×)
128-2048 218.97 sec. (1.17×) 578.63 sec. (1.14×)

AlexNet
256 66.24 sec. (1×) 129.39 sec. (1×)
256-4096 44.34 sec. (1.49×) 89.69 sec. (1.44×)

Table 7.1: Comparison of CIFAR-100 forward and backward propagation running time over 100
epochs for adaptive versus fixed batch sizes. The table shows mean over 5 trials.

Table 7.1 quantifies the efficiency improvements that come from adaptive batch sizes. We

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 96

(a) VGG19 with Batch Norm. (b) ResNet-20

(c) AlexNet

Figure 7.4: Comparison of CIFAR-100 test errors for adaptive versus fixed small and large batch
sizes. The plots show the lowest test error and report mean ± standard deviation over 5 trials.

report the running times on the CIFAR-100 dataset over 100 epochs of training. We omit the
largest batch sizes from the table since they do not achieve comparable test errors. We also omit
CIFAR-10 performance results since it is the same dataset. For all networks tested, we observed
that the mean forward and backward propagation running times of adaptive batch sizes were better.

Multi-GPU Performance
While the speedups on a single GPU are modest, the ability to use batch sizes up to 4096 allows
for better scalability in multi-GPU settings. As we have illustrated, adaptively increasing the batch

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 97

(a) VGG19 with Batch Norm. (b) ResNet-20

Figure 7.5: Comparison of CIFAR-100 speedup (left vertical axis) and test errors (right vertical
axis) for adaptive (in red) vs. fixed batch sizes (in blue), where “LR” uses gradual learning rate
scaling for the first 5 epochs. We also report test error (black dots) to illustrate that it does not
change significantly for different combinations of batch sizes and techniques used.

size can act like a learning rate decay. In particular, we have experimentally shown that doubling
the batch size behaves similarly to halving the learning rate. This suggests that our adaptive batch
size technique can be applied to existing large batch size training techniques [60, 123]. In this
section, we will combine the former approach with our adaptive batch size technique and explore
the test error and performance tradeoffs. Note that we do not use the latter approach since we
would like to ensure our distributed batch sizes fit in each GPU’s memory. We use PyTorch’s
torch.nn.DataParallel facility to parallelize across the 4 Tesla P100 GPUs in our test system.

We perform our experiments on CIFAR-100 using VGG19 with Batch Normalization and
ResNet-20. We use SGD with momentum of 0.9 and weight decay of 5 × 10−4. The baseline
settings for both networks are fixed batch sizes of 128, base learning rate of 0.1, and learning rate
decay by a factor of 0.25 every 20 epochs. The adaptive batch size experiments start with large
initial batch sizes, perform gradual learning rate scaling over 5 epochs and double the batch every
20 epochs and decay learning rate by 0.5. We perform 100 epochs of training for all settings.

Figure 7.5 shows the speedups (left vertical axis) and test errors (right vertical axis) on (7.5a)
VGG19 and (7.5b) ResNet-20. All speedups are normalized against the baseline fixed batch size
of 128. The additional “LR” labels on the horizontal axis indicate settings which require a gradual
learning rate scaling in the first 5 epochs. Compared to the baseline fixed batch size setting, we see
that adaptive 1024–16384 batch size attains average speedups (over 5 trials) of 3.54× (VGG19)
and 6.25× (ResNet-20) with less than 2% difference in test error. Note that the speedups are
attained due to the well-known observation that large batch sizes train faster [60, 70, 35]. It is also
useful to note that our approach can scale to more GPUs due to the use of progressively larger

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 98

(a) VGG19 with Batch Norm. (b) ResNet-20

Figure 7.6: Comparison of CIFAR-100 test errors curves for adaptive versus fixed batch sizes.

batch sizes.
Figure 7.6 shows the test error curves for 4 batch size settings: fixed 128, adaptive 128–2048,

fixed 1024 with learning rate warmup, and adaptive 1024–16384 with learning rate warmup. We
report results for VGG19 with batch norm and ResNet-20 on the CIFAR-100 dataset. These exper-
iments illustrate that adaptive batch sizes converge to test errors that are similar (< 1% difference)
to their fixed batch size counterparts. Furthermore, the results indicate that adaptive batch sizes
can be coupled with the gradual learning rate warmup technique [60] to yield progressively larger
batch sizes during training. We conjecture that our adaptive batch size technique can also be cou-
pled with layer-wise learning rates [123] for even larger batch size training.

ImageNet Training with AdaBatch
In this section, we illustrate the accuracy and convergence of AdaBatch on ImageNet training
with the ResNet-50 network. Once again we use PyTorch as the deep learning framework and its
DataParallel API to parallelize over 4 NVIDIA Tesla P100 GPUs. Due to the large number of
parameters, we are only able to fit a batch of 512 in multi-GPU memory. When training batch sizes
> 512 we choose to accumulate gradients. For example, when training with a batch size of 1024 we
perform two forward and backward passes with batch size 512 and accumulate the gradients before
updating the weights. The effective batch size for training is thus 1024, as desired, however the
computations are split into two iterations with batch size 512. Due to this gradient accumulation3

we do not report performance results.
3PyTorch supports gradient accumulation which means that we can select a batch size that fits in single- or multi-

GPU memory and keep a running sum of gradients for several iterations before adding to the weight matrix and zeroing
out the gradient sum buffer. This feature allows us to train with large batch sizes implicitly.

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 99

(a) ResNet-50

Figure 7.7: Comparison of ImageNet test errors curves for adaptive versus fixed batch sizes.

Figure 7.7 shows the evolution of the test error over 90 Epochs of training. We train ResNet-
50 with a starting learning rate of 0.1 which is decayed by 0.1 every 30 epochs. The network
is trained using SGD with momentum of 0.9 and weight decay of 1 × 10−4. For the AdaBatch
experiment we double the batch size and decay the learning rate by 0.2 every 30 epochs. Note that
the effective learning rate for AdaBatch and fixed batch sizes is the same for fair comparison. As
the results indicate, AdaBatch convergence closely matches the fixed 4096 batch size. Fixed batch
sizes of 8192 and 16,384 do not converge to the test errors of fixed batch size 4096 and AdaBatch.
These results indicate that AdaBatch attains the same test error as fixed, small batches, but with the
advantage of eventually training with a large batch size of 16,384. Due to the progressively larger
batch sizes, it is likely that AdaBatch will achieve higher performance and train faster.

Figure 7.8 illustrates the test errors of large batch size ImageNet training using learning rate
warmup over the first 5 epochs [60]. For these experiments we use a baseline batch size of 256
when linearly scaling the learning rate. All other training parameters remain the same as in Figure
7.7. Figure 7.8a compares the test error curves of adaptive batch size 8192-32768 against fixed
batch sizes 8192, 16384, and 32768. Figure 7.8b performs the same experiment but with starting
batch sizes of 16384. In both experiments, we observe that adaptive batch sizes have similar
convergence behavior to the small, fixed batch size settings (8192 in Fig. 7.8a and 16384 in Fig.
7.8b). Furthermore, the adaptive batch size technique attains lower test errors than large, fixed
batch sizes.

Thus far, the adaptive batch size experiments have doubled the batch size at fixed intervals.
In Figure 7.9 we explore the convergence behavior of adaptive batch sizes with increase factors
of 2×, 4× and 8×. We use learning rate warmup with a baseline batch size of 256 for learning
rate scaling and with all other training parameters the same as in previous ImageNet experiments.
Figure 7.9a compares the test errors of fixed batch size 8192 and adaptive batch sizes starting at

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 100

(a) ResNet-50, starting batch size 8192. (b) ResNet-50, starting batch size 16384.

Figure 7.8: Comparison of ImageNet test errors curves for adaptive versus fixed batch sizes with
LR warmup.

(a) ResNet-50, starting batch size 8192. (b) ResNet-50, starting batch size 16384.

Figure 7.9: Comparison of ImageNet test errors curves for adaptive batch sizes with LR warmup
and batch size increases of 2x, 4x, and 8x.

8192 with batch size increase factors of 2×, 4×, and 8×. Our results indicate that the test error
curves of all adaptive batch size settings closely match the fixed batch size curve. The convergence
of adaptive batch size with 8× increase slows after Epoch 60, however the final test error is similar
to other curves. This experiment suggests that adaptive batch sizes enable ImageNet training with
batch sizes of up to 524288 without significantly altering test error. Figure 7.9b shows test error

CHAPTER 7. ADAPTIVE BATCH SIZES FOR DEEP NEURAL NETWORKS 101

curves with batch sizes starting at 16384. Unlike Figure 7.9a, increasing the batch size by 8×
results in poor convergence. This is a result of increasing the batch size too much and too early in
the training process. Therefore, it is important to tune the batch size increase factor proportional to
the starting batch size. With starting batch size of 16384, we are able to increase the batch size by
a factor of 4× without significantly altering final test error and attain a final batch size of 262144.

7.4 Conclusions and Future Work
In this paper we have developed an adaptive scheme that dynamically varies the batch size during
training. We have shown that using our scheme for AlexNet, ResNet and VGG neural network
architectures with CIFAR-10, CIFAR-100 and ImageNet datasets we can maintain the better test
accuracy of small batches, while obtaining higher performance often associated with large batches.
In particular, our results demonstrate that adaptive batch sizes can attain speedups of up to 6.25×
on 4 NVIDIA P100 GPUs with less than 1% accuracy difference when compared to fixed batch size
baselines. Also, we have briefly analysed the effects of choosing larger batch size with respect to
learning rate, test accuracy and performance as well as work per epoch. Our ImageNet experiments
illustrate that batch sizes of up to 524288 can be attained without altering test error performance.
In the future, we would like to explore the effects of different schedules for adaptively resizing the
batch size, including possibly shrinking it to improve convergence properties of the algorithm.

102

Chapter 8

Future Work

In this chapter we will present directions for future work. We have used block coordinate descent
to solve least-squares, support vector machines, and kernel problems. Block coordinate descent
is one among many methods one can use to solve optimization problems. Therefore, applying
the communication-avoiding technique presented in this thesis to other methods like Stochastic
Gradient Descent (SGD) [13, 71, 103], and quasi-Newton methods like the popular Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method (and its limited-memory variant) [17, 48, 49, 57, 108]
is an interesting direction for future work. Exploring the performance tradeoffs of the various
methods for each problem is also important and developing criteria for choosing the best method
for a specific input matrix, machine model, and programming model remains future work.

In Chapter 6, we showed predicted performance results for our CA-methods solving kernel
problems. Implementing the derived methods and exploring the actual performance tradeoff be-
tween CA and non-CA methods remains future work.

While we have shown in Chapter 7 that the adaptive batch size technique can yield large
speedups when training neural networks on GPUs, developing a generalizable criterion to de-
cide when to increase batch size would be fruitful. Furthermore, we showed that ImageNet can be
training using ResNet-50 with a batch size of 524, 288. Note that we used PyTorch’s gradient ac-
cumulation feature to simulate training with such a large batch size. Obtaining actual performance
results and exploring the tradeoff space at such a large batch size remains future work.

For much of the thesis (Chapter 3 - 6), we have considered a few convex optimization prob-
lems. However, there are numerous convex and non-convex optimization problems that we have
not considered. Extending our technique to other convex optimization problems is future work.
For non-convex problems, like neural networks, this becomes more challenging due to the large
number of neural network architectures which need to be considered and re-arranged to avoid com-
munication. It remains to be seen whether our technique can be automated for neural networks such
that a communication-avoiding version can be obtained without derivation by hand.

The choices of s in all chapters were tuned by hand to illustrate the potential speedups. How-
ever, it is impractical to hand-tune s given the large number possible machine architecture, pro-
gramming model, and dataset combinations. Therefore, designing an auto-tuner with low overhead
that finds reasonably good values of s is an important step in making our algorithms practical. We

CHAPTER 8. FUTURE WORK 103

made the implicit assumption in this thesis that computation and communication cannot be over-
lapped. However, if we assume that each processor has enough memory, then the rows or columns
of the input matrix required for the next iteration can be extracted while the previous iteration’s
partial Gram matrices are sum-reduced.

This could yield additional speedups over what we have observed from our experiments. Im-
plementation of all algorithms in other programming models, like Spark, would be impactful.
Preliminary work has already shown speedups, but further work is required in this area. Further-
more, if Spark is used in a cloud environment, where latency is more dominant than in MPI in a
supercomputing environment, then our algorithms should yield even larger speedups. Quantifying
those speedups is important.

We have assumed that double-precision floating-point numbers are used in the computations.
In most machine learning applications, much less precision is required. For single and reduced
precision, computation cost and bandwidth cost decrease but latency remains the same. As a
result, the CA-methods can obtain even larger speedups then observed in this thesis.

Finally, an error analysis of the CA-methods is necessary to understand how the forward and
backward error depend on s, block size, condition number of A, and λ, the regularization param-
eter. Note that the algorithm analysis uses the α-β model. More refined models are available and
further analysis in those models would yield more accurate algorithm running time predictions.

104

Bibliography

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. “LogGP: Incorporating
long messages into the LogP model for parallel computation”. In: Journal of parallel and
distributed computing 44.1 (1997), pp. 71–79.

[2] C. Allauzen, C. Cortes, and M. Mohri. “A Dual Coordinate Descent Algorithm for SVMs
Combined with Rational Kernels”. In: Int. J. Found. Comput. Sci. 22 (2011), pp. 1761–
1779.

[3] G. Ballard. “Avoiding Communication in Dense Linear Algebra”. PhD thesis. EECS De-
partment, University of California, Berkeley, 2013.

[4] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. “Com-
munication lower bounds and optimal algorithms for numerical linear algebra”. In: Acta
Numerica 23 (2014), pp. 1–155.

[5] G. Ballard, A. Buluc, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, and S. Toledo.
“Communication Optimal Parallel Multiplication of Sparse Random Matrices”. In: Pro-
ceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and
Architectures. SPAA ’13. New York, NY, USA: ACM, 2013, pp. 222–231.

[6] L. Balles, J. Romero, and P. Hennig. “Coupling Adaptive Batch Sizes with Learning Rates”.
In: Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence
(UAI). 2017, pp. 410–419.

[7] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009), pp. 183–202.

[8] Y. Bengio and Y. LeCun. “Scaling Learning Algorithms Towards AI”. In: Large Scale
Kernel Machines. MIT Press, 2007.

[9] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

[10] Ã. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and
Applied Mathematics, 1996.

[11] L. Bottou. “Large-scale machine learning with stochastic gradient descent”. In: Proceed-
ings of Computation Statistics. Springer, 2010, pp. 177–186.

[12] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization Methods for Large Scale Machine
Learning”. In: arXiv preprint arXiv:1606.04838 (2016).

BIBLIOGRAPHY 105

[13] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale Machine
Learning. Tech. rep. 2016.

[14] Box Plots. https://www.mathworks.com/help/stats/box-plots.html.

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[16] L. Breiman. “Better Subset Regression Using the Nonnegative Garrote”. In: Technometrics
37.4 (1995), pp. 373–384.

[17] C. G. Broyden. “The Convergence of a Class of Double-rank Minimization Algorithms 1.
General Considerations”. In: IMA Journal of Applied Mathematics 6.1 (1970), pp. 76–90.

[18] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. “Efficient algorithms for all-
to-all communications in multiport message-passing systems”. In: IEEE Transactions on
Parallel and Distributed Systems 8.11 (1997), pp. 1143–1156.

[19] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. “Sample size selection in optimization
methods for machine learning”. In: Mathematical programming 134.1 (2012), pp. 127–
155.

[20] E. Carson. “Communication-Avoiding Krylov Subspace Methods in Theory and Practice”.
PhD thesis. EECS Department, University of California, Berkeley, 2015.

[21] E. Carson and J. Demmel. “A residual replacement strategy for improving the maximum
attainable accuracy of s-step Krylov subspace methods”. In: SIAM Journal on Matrix Anal-
ysis and Applications 35.1 (2014), pp. 22–43.

[22] E. Carson and J. Demmel. “Accuracy of the s-step Lanczos method for the symmetric
eigenproblem in finite precision”. In: SIAM Journal on Matrix Analysis and Applications
36.2 (2015), pp. 793–819.

[23] E. Carson, N. Knight, and J. Demmel. “An efficient deflation technique for the comm-
unication-avoiding conjugate gradient method”. In: Electronic Transactions on Numerical
Analysis 43 (2014), pp. 125–141.

[24] E. Carson, N. Knight, and J. Demmel. “Avoiding Communication in Nonsymmetric Lanc-
zos-Based Krylov Subspace Methods”. In: SIAM Journal on Scientific Computing 35.5
(2013), S42–S61.

[25] C. Chan, D. Unat, M. Lijewski, W. Zhang, J. Bell, and J. Shalf. “Software Design Space
Exploration for Exascale Combustion Co-design”. In: Supercomputing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 196–212. ISBN: 978-3-642-38750-0.

[26] C.-C. Chang and C.-J. Lin. “LIBSVM: A library for support vector machines”. In: ACM
Transactions on Intelligent Systems and Technology 2 (3 2011), pp. 1–27.

[27] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. “Coordinate Descent Method for Large-scale L2-
loss Linear Support Vector Machines”. In: J. Mach. Learn. Res. 9 (June 2008), pp. 1369–
1398.

BIBLIOGRAPHY 106

[28] A. T. Chronopoulos. “A class of parallel iterative methods implemented on multiproces-
sors”. PhD thesis. University of Illinois Urbana-Champaign, Department of Computer Sci-
ence, 1987.

[29] A. T. Chronopoulos and C. W. Gear. “On the efficient implementation of preconditioned s-
step conjugate gradient methods on multiprocessors with memory hierarchy”. In: Parallel
Computing 11.1 (1989), pp. 37 –53.

[30] A. T. Chronopoulos and C. W. Gear. “s-step iterative methods for symmetric linear sys-
tems”. In: Journal of Computational and Applied Mathematics 25.2 (1989), pp. 153 –168.

[31] A. T. Chronopoulos and C. D. Swanson. “Parallel iterative S-step methods for unsymmetric
linear systems”. In: Parallel Computing 22.5 (1996), pp. 623–641.

[32] C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine Learning 20.3 (1995),
pp. 273–297.

[33] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, and T. Subramonian
R.and Von Eicken. LogP: Towards a realistic model of parallel computation. Vol. 28. 7.
ACM, 1993.

[34] H. Daneshmand, A. Lucchi, and T. Hofmann. “Starting Small - Learning with Adaptive
Sample Sizes”. In: Proceedings of The 33rd International Conference on Machine Learn-
ing. Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA:
PMLR, 2016, pp. 1463–1471.

[35] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D. Kalamkar, B. Kaul,
and P. Dubey. “Distributed deep learning using synchronous stochastic gradient descent”.
In: arXiv preprint arXiv:1602.06709 (2016).

[36] I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint”. In: Communications on Pure and Applied
Mathematics 57.11 (2004), pp. 1413–1457.

[37] Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar. “A survey
of direct methods for sparse linear systems”. In: Acta Numerica 25 (2016), pp. 383–566.

[38] S. De, A. Yadav, D. Jacobs, and T. Goldstein. “Big Batch SGD: Automated Inference using
Adaptive Batch Sizes”. In: arXiv preprint arXiv:1610.05792 (Oct. 2016).

[39] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters”.
In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113.

[40] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding Communication in
Computing Krylov Subspaces. Tech. rep. UCB/EECS-2007-123. EECS Department, Uni-
versity of California, Berkeley, 2007.

[41] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. “Communication-avoiding paral-
lel and sequential QR and LU factorizations”. In: SIAM Journal of Scientific Computing
(2008).

BIBLIOGRAPHY 107

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale Hi-
erarchical Image Database”. In: Conference on Computer Vision and Pattern Recognition.
2009.

[43] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. “Design
of ion-implanted MOSFET’s with very small physical dimensions”. In: IEEE Journal of
Solid-State Circuits 9.5 (1974), pp. 256–268.

[44] A. Devarakonda, M. Naumov, and M. Garland. “AdaBatch: Adaptive Batch Sizes for Train-
ing Deep Neural Networks”. In: arXiv preprint arXiv:1712.02029 (2017).

[45] A. Devarakonda, K. Fountoulakis, J. Demmel, and M. W. Mahoney. “Avoiding communi-
cation in primal and dual block coordinate descent methods”. In: arXiv preprint
arXiv:1612.04003 (2016).

[46] A. Devarakonda, K. Fountoulakis, J. Demmel, and M. W. Mahoney. “Avoiding Synchro-
nization in First-Order Methods for Sparse Convex Optimization”. In: arXiv preprint
arXiv:1712.06047 (2017).

[47] O. Fercoq and P. Richtárik. “Accelerated, Parallel, and Proximal Coordinate Descent”. In:
SIAM Journal on Optimization 25.4 (2015), pp. 1997–2023.

[48] R. Fletcher. “A new approach to variable metric algorithms”. In: The Computer Journal
13.3 (1970), pp. 317–322.

[49] R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[50] A. Fog. Instruction tables. http://www.agner.org/optimize/instruction_tables.pdf. 2018.

[51] K. Fountoulakis and J. Gondzio. “Performance of First- and Second-Order Methods for L1-
Regularized Least Squares Problems”. In: arXiv preprint arXiv:1503.03520 (Mar. 2015).

[52] K. Fountoulakis and R. Tappenden. “Robust Block Coordinate Descent”. In: arXiv preprint
arXiv:1407.7573 (July 2014).

[53] M. P. Friedlander and M. Schmidt. “Hybrid Deterministic-Stochastic Methods for Data
Fitting”. In: SIAM Journal on Scientific Computing 34.3 (2012), A1380–A1405.

[54] J. Friedman, T. Hastie, and R. Tibshirani. “A note on the group lasso and a sparse group
lasso”. In: arXiv preprint arXiv:1001.0736 (Jan. 2010).

[55] S. H. Fuller and L. I. Millett. “Computing performance: Game over or next level?” In:
Computer 1 (2011), pp. 31–38.

[56] A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt, J. Kottalam, J. Liu,
K. Maschhoff, S. Canon, J. Chhugani, P. Sharma, J. Yang, J. Demmel, J. Harrell, V. Kr-
ishnamurthy, M. W. Mahoney, and Prabhat. “Matrix factorizations at scale: A comparison
of scientific data analytics in spark and C+MPI using three case studies”. In: 2016 IEEE
International Conference on Big Data. 2016, pp. 204–213.

[57] D. Goldfarb. “A Family of Variable-Metric Methods Derived by Variational Means”. In:
Mathematics of Computation 24.109 (1970), pp. 23–26.

BIBLIOGRAPHY 108

[58] G. H. Gonnet. “Expected length of the longest probe sequence in hash code searching”. In:
Journal of the ACM (JACM) 28.2 (1981), pp. 289–304.

[59] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[60] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He. “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”. In:
arXiv preprint arXiv:1706.02677 (2017).

[61] S. L. Graham, M. Snir, and C. A. Patterson. Getting up to speed : the future of supercom-
puting. Washington, DC: National Academies Press, 2005. ISBN: 0-309-09502-6.

[62] W. D. Gropp, E. Lusk, N. Doss, and A. Skjellum. “A high-performance, portable imple-
mentation of the MPI message passing interface standard”. In: Parallel computing 22.6
(1996), pp. 789–828.

[63] R. Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J. Konečný, and S. Sallinen. “Stop
Wasting My Gradients: Practical SVRG”. In: Advances in Neural Information Processing
Systems 28. Curran Associates, Inc., 2015, pp. 2251–2259.

[64] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[65] C. Heinze, B. McWilliams, and N. Meinshausen. “Dual-loco: Distributing statistical esti-
mation using random projections”. In: Proceedings of AISTATS. 2016.

[66] G. E. Hinton, S. Osindero, and Y. W. Teh. “A Fast Learning Algorithm for Deep Belief
Nets”. In: Neural Computation 18 (2006), pp. 1527–1554.

[67] M. Hoemmen. “Communication-avoiding Krylov subspace methods”. PhD thesis. Univer-
sity of California, Berkeley, 2010.

[68] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. “A Dual Coor-
dinate Descent Method for Large-scale Linear SVM”. In: Proceedings of the 25th Inter-
national Conference on Machine Learning. ICML ’08. Helsinki, Finland: ACM, 2008,
pp. 408–415. ISBN: 978-1-60558-205-4.

[69] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International Conference
on Machine Learning. Vol. 37. Proceedings of Machine Learning Research. Lille, France,
2015, pp. 448–456.

[70] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. “On Large-
Batch Training for Deep Learning: Generalization Gap and Sharp Minima”. In: arXiv
preprint arXiv:1609.04836 (2016).

[71] J. Kiefer and J. Wolfowitz. “Stochastic Estimation of the Maximum of a Regression Func-
tion”. In: Ann. Math. Statist. 23.3 (Sept. 1952), pp. 462–466.

BIBLIOGRAPHY 109

[72] S. K. Kim and A. T. Chronopoulos. “An efficient nonsymmetric Lanczos method on paral-
lel vector computers”. In: Journal of Computational and Applied Mathematics 42.3 (1992),
pp. 357 –374.

[73] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.

[74] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Canadian Institute for Advanced Re-
search). 2009.

[75] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-100 (Canadian Institute for Advanced Re-
search). 2009.

[76] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: Advances in Neural Information Processing Systems 25.
Curran Associates, Inc., 2012, pp. 1097–1105.

[77] K. Lang. “NewsWeeder: Learning to Filter Netnews”. In: Proceedings of the 12th Interna-
tional Machine Learning Conference. 1995.

[78] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. “Basic Linear Algebra Sub-
programs for Fortran Usage”. In: ACM Trans. Math. Softw. 5.3 (Sept. 1979), pp. 308–323.

[79] J. D. Lee, Y. Sun, and M. A. Saunders. “Proximal Newton-Type Methods for Minimizing
Composite Functions”. In: SIAM Journal on Optimization 24.3 (2014), pp. 1420–1443.

[80] M. Lichman. UCI Machine Learning Repository. 2013.

[81] O. L. Mangasarian and D. R. Musicant. “Successive Overrelaxation for Support Vector
Machines”. In: Trans. Neur. Netw. 10.5 (Sept. 1999), pp. 1032–1037.

[82] J. Mareček, P. Richtárik, and M. Takáč. “Distributed block coordinate descent for mini-
mizing partially separable functions”. In: Numerical Analysis and Optimization. Springer,
2015, pp. 261–288.

[83] A. McCallum. SRAA: Simulated/Real/Aviation/Auto UseNet data. https://people.cs.
umass.edu/~mccallum/data.html.

[84] M. D. Mitzenmacher. “The Power of Two Choices in Randomized Load Balancing”. PhD
thesis. EECS Department, University of California, Berkeley, 1996.

[85] M. Mohiyuddin. “Tuning Hardware and Software for Multiprocessors”. PhD thesis. EECS
Department, University of California, Berkeley, 2012.

[86] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. “Minimizing Communication
in Sparse Matrix Solvers”. In: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis. SC ’09. Portland, Oregon: ACM, 2009, 36:1–
36:12. ISBN: 978-1-60558-744-8.

[87] M. Naumov. “Feedforward and Recurrent Neural Networks Backward Propagation and
Hessian in Matrix Form”. In: arXiv preprint arXiv:1709.06080 (2017).

[88] NERSC Cori Configuration. http://www.nersc.gov/users/computational-systems/
cori/configuration/.

BIBLIOGRAPHY 110

[89] NERSC Edison Configuration. http : / / www . nersc . gov / users / computational -
systems/edison/configuration/.

[90] Y. Nesterov. “Efficiency of Coordinate Descent Methods on Huge-Scale Optimization
Problems”. In: SIAM Journal on Optimization 22 (2012), pp. 341–362.

[91] A. Nitanda. “Stochastic Proximal Gradient Descent with Acceleration Techniques”. In:
Advances in Neural Information Processing Systems. 2014, pp. 1574–1582.

[92] NVIDIA. NVIDIA NVLink High-Speed Interconnect: Application Performance. 2014. URL:
http://www.nvidia.com/object/nvlink.html.

[93] NVIDIA. NVIDIA Tesla P100 GPU Architecture. 2016. URL: http://www.nvidia.com/
object/pascal-architecture-whitepaper.html.

[94] NVIDIA. NVIDIA Tesla V100 GPU Architecture. 2017. URL: http://www.nvidia.com/
object/volta-architecture-whitepaper.html.

[95] X. Pan. “Parallel Machine Learning Using Concurrency Control”. PhD thesis. EECS De-
partment, University of California, Berkeley, 2017.

[96] N. Parikh and S. Boyd. “Proximal Algorithms”. In: Foundations and Trends in Optimiza-
tion 1.3 (2014), pp. 127–239.

[97] J. Platt. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector
Machines. Tech. rep. 1998.

[98] PyTorch. pytorch.org. Accessed: 2017-10-12.

[99] M. Raab and A. Steger. ““Balls into Bins" − A Simple and Tight Analysis”. In: Random-
ization and Approximation Techniques in Computer Science. Springer, 1998, pp. 159–170.

[100] B. Recht, C. Ré, S. Wright, and F. Niu. “Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent”. In: Advances in Neural Information Processing Systems.
2011, pp. 693–701.

[101] P. Richtárik and M. Takáč. “Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function”. In: Mathematical Programming 144.1
(2014), pp. 1–38.

[102] Peter Richtárik and Martin Takáč. “Distributed Coordinate Descent Method for Learning
with Big Data”. In: J. Mach. Learn. Res. 17.1 (Jan. 2016), pp. 2657–2681.

[103] H. Robbins and S. Monro. “A Stochastic Approximation Method”. In: Ann. Math. Statist.
22.3 (Sept. 1951), pp. 400–407.

[104] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-
propagating errors”. In: Nature 323 (Oct. 1986), 533 EP –.

[105] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[106] S. Shalev-Shwartz and T. Zhang. “Stochastic dual coordinate ascent methods for regular-
ized loss”. In: The Journal of Machine Learning Research 14.1 (2013), pp. 567–599.

BIBLIOGRAPHY 111

[107] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. “Pegasos: primal estimated sub-
gradient solver for SVM”. In: Mathematical Programming 127.1 (2011), pp. 3–30.

[108] D. F. Shanno. “Conditioning of Quasi-Newton Methods for Function Minimization”. In:
Mathematics of Computation 24.111 (1970), pp. 647–656.

[109] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Im-
age Recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[110] S. L. Smith, P.-J. Kindermans, and Q. V. Le. “Don’t Decay the Learning Rate, Increase the
Batch Size”. In: arXiv preprint arXiv:1711.00489 (2017).

[111] V. Smith. “System-Aware Optimization for Machine Learning at Scale”. PhD thesis. EECS
Department, University of California, Berkeley, 2017.

[112] V. Smith, S. Forte, M. I. Jordan, and M. Jaggi. “L1-Regularized Distributed Optimization:
A Communication-Efficient Primal-Dual Framework”. In: arXiv preprint arXiv:1512.04011
(2015).

[113] E. Solomonik. “Provably efficient algorithms for numerical tensor algebra”. PhD thesis.
EECS Department, University of California, Berkeley, 2014.

[114] J. Stamper, A. Niculescu-Mizil, S. Ritter, G.J. Gordon, and K.R. Koedinger. “Algebra
2008-2009 from Challenge data set”. In: KDD Cup 2010 Educational Data Mining Chal-
lenge. 2010.

[115] M. Takáč, P. Richtárik, and N. Srebro. “Distributed Mini-Batch SDCA”. In: arXiv preprint
arXiv:1507.08322 (2015).

[116] R. Thakur and W. D. Gropp. “Improving the performance of collective operations in
MPICH”. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface.
Springer Verlag, 2003, pp. 257–267.

[117] R. Thakur and W. D. Gropp. “Improving the Performance of MPI Collective Communi-
cation on Switched Networks”. In: Technical report ANL/MCS-P1007-1102, Mathematics
and Computer Science Division, Argonne National Laboratory (2002).

[118] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 58.1 (1996), pp. 267–288.

[119] J. Van Rosendale. “Minimizing inner product data dependencies in conjugate gradient it-
eration”. In: IEEE Computer Society Press, Silver Spring, MD, 1983.

[120] H. F. Walker. “Implementation of the GMRES Method Using Householder Transforma-
tions”. In: SIAM Journal on Scientific and Statistical Computing 9.1 (1988), pp. 152–163.

[121] S. Williams, M. Lijewski, A. Almgren, B. Van Straalen, E. Carson, N. Knight, and J. Dem-
mel. “s-step Krylov subspace methods as bottom solvers for geometric multigrid”. In: Par-
allel and Distributed Processing Symposium, 2014 IEEE 28th International. IEEE. 2014,
pp. 1149–1158.

BIBLIOGRAPHY 112

[122] S. J. Wright. “Coordinate Descent Algorithms”. In: Math. Program. 151.1 (June 2015),
pp. 3–34.

[123] Y. You, I. Gitman, and B. Ginsburg. “Scaling SGD Batch Size to 32K for ImageNet Train-
ing”. In: arXiv preprint arXiv:1708.03888 (2017).

[124] Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc. “CA-SVM: Communication-
Avoiding Support Vector Machines on Distributed Systems”. In: 2015 IEEE International
Parallel and Distributed Processing Symposium. 2015, pp. 847–859.

[125] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. Mckenzie, J.-W. Chou, P.-H. Chung,
C.-H. Ho, C.-F. Chang, J.-Y. Weng, E.-S. Yan, C.-W. Chang, T.-T. Kuo, P. T. Chang, C.
Po, C.-Y. Wang, Y.-H Huang, Y.-X. Ruan, Y.-S. Lin, S.-D. Lin, H.-T. Lin, and C.-J. Lin.
“Feature engineering and classifier ensemble for KDD Cup 2010”. In: JMLR Workshop
and Conference Proceedings. 2011.

[126] M. Yuan and Y. Lin. “Model selection and estimation in regression with grouped vari-
ables”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68.1
(2006), pp. 49–67.

[127] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark: Cluster Com-
puting with Working Sets”. In: HotCloud’10. Boston, MA: USENIX Association, 2010.

[128] Y. Zhang, J. C. Duchi, and M. J. Wainwright. “Communication-efficient Algorithms for
Statistical Optimization”. In: J. Mach. Learn. Res. 14.1 (Jan. 2013), pp. 3321–3363.

[129] Y. Zhang and X. Lin. “DiSCO: Distributed Optimization for Self-Concordant Empiri-
cal Loss”. In: Proceedings of the 32nd International Conference on Machine Learning.
Vol. 37. 2015, pp. 362–370.

[130] Y. Zhang, M. J. Wainwright, and J. C. Duchi. “Communication-efficient algorithms for
statistical optimization”. In: Advances in Neural Information Processing Systems. 2012,
pp. 1502–1510.

[131] Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen. “P-packSVM: Parallel Primal grAdient
desCent Kernel SVM”. In: IEEE International Conference on Data Mining. 2009, pp. 677–
686. ISBN: 978-0-7695-3895-2.

[132] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. “Parallelized Stochastic Gradient De-
scent”. In: Advances in Neural Information Processing Systems. 2010, pp. 2595–2603.

