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Abstract

Extended Formulation Lower Bounds for Combinatorial Optimization

by

Jonah Brown-Cohen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Prasad Raghavendra, Chair

Linear and semidefinite programs are fundamental algorithmic tools, often providing conjec-
turally optimal results for a variety of combinatorial optimization problems. Thus, a natural
question is to understand the limitations of linear and semidefinite programming relaxations.
In particular, the goal is to prove unconditional lower bounds on the size of any linear or
semidefinite programming relaxation for a given problem.

In this dissertation, I will give two results of this flavor. First, I will show that any linear
programming relaxation for refuting random instances of constraint satisfaction problems
(e.g. k-SAT) requires super-polynomial size. This theorem can be understood as evidence
that refuting CSPs is hard, since it rules out a broad class of algorithms. Second, I will
show that any symmetric semidefinite programming relaxation for the matching problem
in general graphs requires exponential size. Since there is a polynomial time algorithm for
the matching problem, this result provides an example of the limitations of semidefinite
programming relaxations.
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Chapter 1

Introduction

One of the most powerful algorithmic paradigms in combinatorial optimization is that of
convex relaxation. Algorithms based on convex relaxations have been successfully applied to
many fundamental problems including maximum flow, bipartite matching, vertex cover, the
traveling salesperson problem, and decoding error correcting codes. In the case of constraint
satisfaction problems, semidefinite programming relaxations have been shown to give optimal
approximation algorithms assuming the Unique Games Conjecture [Rag08].

In all these cases, a natural goal is to understand the precise power and limits of convex
relaxations in solving particular classes of problems. One approach, as exemplified in [Rag08],
is to use NP-hardness or Unique Games-hardness reductions to prove some upper limit on the
performance of any polynomial time algorithm. Then, if a given convex relaxation achieves
this limit, we can indeed say that it performs optimally. This approach relies fundamentally
on unproven complexity assumptions, though of course many of these are quite reasonable.

An alternative method for understanding the power of convex relaxations is to restrict
the space of potential algorithms to a particular class of relaxations, and then prove that
no polynomial-size relaxation in this class can achieve performance above some threshold on
a given problem. Such lower bounds on the size of relaxations are unconditional, meaning
they do not depend on any unproven complexity assumption. Further, they often allow us
to more deeply understand the structure of convex relaxations.

A recent line of work beginning with [FKPT12, FMP+12], and based on the original
paper of Yannakakis [Yan88], has developed a method to prove such results for the very
broad classes of linear or semidefinite programming relaxations. The terminology in these
originating papers refers to such results as extended formulation lower bounds. In this thesis
I will prove lower bounds on the size of linear and semidefinite programs for a few well-studied
classes of problems.

1.1 Convex Relaxations

Convex relaxations generally take the following form. First, choose some combinatorial
optimization problem to be solved over a discrete domain (e.g. SAT, knapsack, the traveling
salesperson problem, graph matching). Second, relax the domain of the problem from a
discrete set to a larger continuous, convex set, and extend the objective function to this
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larger set. Third, solve the relaxed optimization problem, and use some method to translate
this continuous solution back into a discrete solution for the original problem. We begin by
introducing the basic setup for relaxations of combinatorial optimization problems.

Combinatorial Optimization

A typical instance of combinatorial optimization problem is comprised of an objective func-
tion f and a discrete domain of possible solutions S. The goal is to maximize f(s) over

elements s ∈ S from the solution domain. We will write opt(f)
def
= maxs∈S f(s) for this

maximum. Standard examples include max k-sat and matching.

Example 1.1.1 (max k-sat). An instance Φ of max k-sat is a collection of m constraints
C1, . . . Cm given by boolean disjunctions of k literals (variables or negated variables) from
x ∈ {0, 1}n. Some example constraints for the k = 3 case are

C1 = (x1 ∨ ¬x2 ∨ ¬x3)

C2 = (¬x7 ∨ x4 ∨ x2)

C3 = (x3 ∨ x5 ∨ x6)

...

Cn = (x9 ∨ ¬x1 ∨ x57)

The goal of the max k-sat problem is to find an assignment to the variables x that
maximizes the number of constraints that are satisfied (i.e. evaluate to true when the
assignment is plugged in). To put this in terms of the framework above, an instance Φ gives
rise to an objective function fΦ given by

fΦ(x) =
∑
i

Ci(x)

where Ci(x) is equal to one if x satisfies Ci and is zero otherwise. The domain of possible
solutions is S = {0, 1}n.

Example 1.1.2 (matching). An instance of the matching problem is given by a graph
G = (V,E). The goal is to find a collection of vertex-disjoint edges M ⊆ E (called a

matching) which maximizes the number of edges in M . When this maximum is |V |
2

then we
say that M has a perfect matching, since the matching achieving this maximum is incident
on every vertex.

For an instance G of matching the corresponding objective function is fG is very simple

fG(M) = |M |.

The solution domain, however, is much more complicated. It consists of all subsets M ⊆
E where every pair of edges e1, e2 ∈ M do not share vertices. This complexity in the
domain presents an important challenge for constructing linear or semidefinite programming
relaxations.
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Linear and Semidefinite Programming Relaxations

As mentioned before, a standard technique for solving combinatorial optimization problems
is to construct a convex relaxation. We will focus on two standard and very powerful types
convex relaxations: linear programs and semidefinite programs.

A linear programming relaxation for a combinatorial optimization problem is a way of
encoding the objective function f as a linear function wf defined on a polytope P (i.e. a
convex set defined by linear inequalities). In order for this encoding to be a relaxation,
we require that for every possible solution s there is a point ys in the polytope such that
wf (ys) = f(s). One can think of this as an embedding of the possible solutions s into the
polytope in a way that respects the linear objective function. In particular this implies that

opt(f) = max
s∈S

f(s) = max
s∈S

wf (ys) ≤ max
y∈P

wf (y).

That is, the optimal value of the linear programming relaxation is only higher than that of
the original problem. A useful linear programming relaxation is one that always has optimal
value close to (or ideally equal to) that of the original problem. We now give an example.

Example 1.1.3 (Linear Programming Relaxation for max 3-sat). Let Φ be a max 3-sat
instance. For every variable xi in Φ we define a variable yi ∈ R which is intended to indicate
the assignment to xi. For every constraint Cj in Φ we define variables cj,a ∈ R for a ∈ {0, 1}3

which are supposed to indicate which of the possible three-bit strings is assigned to the
variables of Cj. The polytope P is given by the linear constraints 0 ≤ yi ≤ 1, 0 ≤ cj,a ≤ 1,∑

a cj,a = 1 and consistency constraints of the form∑
a2,a3

cj,(1,a2,a3) = yi

whenever xi is the 1st variable in the constraint Cj (similar constraints are added if xi is
negated or included as the 2nd or 3rd variable).

Note that if we assign values from {0, 1} to each yi we can then, for each j set cj,a to
one for exactly one value of a, and zero for all the other values in a way that satisfies all
the constraints. In particular, we just set cj,a = 1 for the value of a corresponding to the
assignment to the variables in Cj indicated by yi. The linear objective function is given by

w(c, y) =
∑

j,a:Cj(a)=1

cj,a

which is intended to count the number of constraint variables that correspond to a satisfying
assignment. Indeed, if for each j we set cj,a as described above, this function will count the
number of constraints satisfied by the assignment corresponding to the {0, 1} values assigned
to each yi.

Thus, for every x ∈ {0, 1}n there is a setting of the variables c and y such that w(c, y) =
fΦ(x) and all the linear constraints are satisfied. That is, there is a point (cx, yx) in the
polytope P such that w(cx, yx) = fΦ(x).
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A semidefinite programming relaxation is exactly the same as a linear programming
relaxation except that instead of the domain being a polytope P it is instead a spectrahedron
S i.e. a subset of the positive semidefinite matrices (denoted Sr+), where the subset is
defined by linear inequalities in the matrix entries. The classic example of a semidefinite
programming relaxation is the Goemans-Williamson SDP, defined first in [GW95], which
introduced what is still the best known approximation algorithm for max cut. Indeed by
Raghavendra’s results in [Rag08], the algorithm based on this SDP achieves the best possible
approximation ratio for max cut assuming the Unique Games Conjecture.

1.2 Extended Formulation Lower Bounds

Lower bounds on the size of linear and semidefinite programming relaxations are often called,
for historical reasons, extended formulation lower bounds. The first results of this form
were proved by Yannakakis in [Yan91, Yan88]. He was interested in taking a given very
complicated polytope P , for example the convex hull of all TSP tours in a graph, and finding
a polytope Q, with fewer faces but living in a larger dimension, such that there exists a linear
map π with π(Q) = P . This more complicated polytope Q is called an extended formulation
for P , and corresponds to a linear program with more variables but hopefully many fewer
constraints than the original number required to define P . Yannakakis was able to prove
lower bounds for extended formulations of the TSP and Matching polytopes, under the
assumption that these extended formulations were “symmetric” in an appropriate sense.

This requirement that the extended formulation be symmetric is not without loss of
generality. In fact a series of papers [KPT10], [Goe09] and [Pas14] gave concrete examples of
polytopes for which there exist asymmetric extended formulations that are provably smaller
than any symmetric one. More recently, in [FKPT12, FMP+12], Fiorini et. al. showed how
to remove the assumption that the extended formulation be symmetric for the TSP polytope.
Rothvoß extended these results further to the Matching problem in [Rot14]. Various papers
were able to generalize this type of result to approximate constraint satisfaction [BFPS12,
CLRS13], and further to semidefinite programs [LRS15].

Much of the more recent work, especially for approximate constraint satisfaction, slightly
modifies the original framework of Yannakakis. Rather than attempt to prove that a fixed
polytope has no small extended formulation, these results instead introduce a model of linear
and semidefinite programming relaxations that coincides with the informal description given
in the last section. They then show that any linear or semidefinite programming relaxation
satisfying the requirements of this model cannot have small size for various optimization
problems. The results in this thesis are also phrased in terms of this model of linear and
semidefinite programming relaxations.

1.3 Results

In this thesis we will prove lower bounds on the size of extended formulations in two broad
cases. First, we will prove linear programming lower bounds for refuting random constraint
satisfaction problems. This result gives a simple distribution on instances which is hard to
refute for any small linear program. Further, we identify a threshold for the density (i.e.
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number of constraints per variable) below which no small linear program can refute the
instance, and above which there exist polynomial time refutation algorithms. Second, we
will prove lower bounds for symmetric semidefinite programs solving the matching problem.
Because there is a polynomial time algorithm for the matching problem, this result is best
understood as identifying a fundamental problem where symmetric SDPs provably do not
provide the best known algorithms.

1.4 Organization

In Chapter 2 we introduce basic notation and the general setup for proving lower bounds
for LP and SDP relaxations. In Chapter 3 we prove lower bounds on the size of linear
programming relaxations for refuting random constraint satisfaction problems. In Chapter 4
we prove lower bounds on the size of any symmetric semidefinite programming relaxation
for the matching problem.
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Chapter 2

Preliminaries

2.1 Notation

Sets. We will use [n] to denote the set {1, . . . , n}. We will use Sc to denote the complement
of the set S.

Probability. We will use PD [X], ED [X] and VD [X] to denote respectively the probability,
variance and expectation of X over the distribution D.

Linear Algebra. We will let Sr+ denote the cone of r× r real symmetric positive semidef-
inite (psd) matrices. We use 1 to denote the vector of all ones.

Polynomials. We write R[x] denote the set of polynomials in n real variables x =
(x1, . . . , xn) with real coefficients. For a set H ⊆ R[x] let 〈H〉 denote the vector space
spanned by H and let 〈H〉I denote the ideal generated by H.

Fourier Analysis. For a set Ω and distribution D on Ω we write L2(Ω,D) to denote the
space of functions f on Ω with inner product given by 〈f, g〉 = Ex∼D [f(x)g(x)]. When D
is the uniform distribution on Ω we will denote this space simply by L2(Ω). We will use
πp to denote the distribution on {−1, 1} which assigns probability p to −1 and probability

q
def
= 1− p to 1. We will use I(x = a) to denote the function of x that is equal to one if x = a

and zero otherwise. For x ∈ {−1, 1}n and a subset S we let χS(x) =
∏

i∈S xi be the Fourier
character corresponding to S.

Group Actions. If a group G acts on a set X, we will denote the (left) action of g ∈ G
on x ∈ X by g · x.
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2.2 Relaxations of Optimization Problems

We will be primarily interested in optimization problems over discrete domains. That is, we
will focus on problems where the goal is to find the optimum value of some function on some
finite set. We begin by introducing our model for maximization problems (minimization can
be handled in a completely analogous way).

Definition 2.2.1. A maximization problem P = (S,F) consists of:

• A finite set S of feasible solutions

• A finite set F of nonnegative objective functions.

We define optP(f)
def
= maxs∈S f(s) to be the maximum value of the objective function f on

the set S.

We will also need to formalize a notion of approximation for algorithms solving maxi-
mization problems.

Definition 2.2.2. Given two functions C̃, S̃ : F → R specifying approximation guarantees,
an algorithm (C̃, S̃)-approximately solves P if for all f ∈ F with maxs∈S f(s) ≤ S̃(f) it

computes f̃ ∈ R satisfying maxs∈S f(s) ≤ f̃ ≤ C̃(f).

2.3 Linear Programming Formulations

In this section we define a framework for linear programming formulations and show that
a small linear programming formulation implies the existence of a small non-negative rep-
resentation for a given problem. We begin with the definition of a linear programming
formulation of a maximization problem obtained by linearizing the objective functions and
possible solutions.

Definition 2.3.1 (LP formulation for P). Let P = (S,F) be a maximization problem. A
linear programming formulation of P of size R consists of a linear map A : Rk → RR and
b ∈ RR together with

1. Feasible solutions: a ys ∈ Rk with Ays ≤ b for all s ∈ S, i.e., the polytope{
y ∈ Rk

∣∣Ay ≤ b
}

contains the points {ys | s ∈ S},

2. Objective functions: a vector wf ∈ Rk satisfying 〈wf , ys〉 = f(s) for all f ∈ F and all
s ∈ S, i.e., the linearizations are exact on solutions.

An LP formulation for a problem P naturally gives rise to the following linear program-
ming relaxation for P :

LP(f) = max
y : Ay≤b

〈wf , y〉.

By the above definition, we have for each objective function f ∈ F

optP(f) = max
s∈S

f(s)
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= max
s∈S
〈wf , ys〉

≤ max
y : Ay≤b

〈wf , ys〉 = LP(f).

Thus, optP(f) ≤ LP(f), i.e. LP(f) is a relaxation of the maximization problem P . This
implies that an upper bound on the value of an LP relaxation provides an upper bound on
the optimum of the original maximization problem. Such an upper bound can be thought
of as a certificate that the maximum value of f is bounded. More formally, we make the
following definition:

Definition 2.3.2. Let c ≥ 0. An LP formulation of a maximization problem P certifies an
upper bound c on f if LP(f) ≤ c.

Next we show how a small LP formulation for a problem P gives rise to a small non-
negative representation.

Lemma 2.3.3 (Non-negative representation of an LP formulation). If a maximization prob-
lem P = (S,F) has a linear programming formulation of size R certifying upper bound c on
f ∈ F , then there exist real-valued, non-negative functions pi(f), qi(s) ≥ 0 for i ∈ {0 . . . R}
such that

c− f(s) =
R∑
i=0

pi(f)qi(s).

Proof. An LP formulation certifying an upper bound c on f implies the existence of A,b and
wf such that

max
y : Ay≤b

〈wf , y〉 ≤ c.

In particular c − 〈wf , y〉 is a non-negative function of y on the feasible region {y |Ay ≤ b}.
By linear programming duality, this implies that we can write c− 〈wf , y〉 as a non-negative
combination of the R constraint functions bi − 〈Ai, y〉, where Ai is the i-th row of A. In
particular, there exist non-negative numbers pi(f) such that

c− 〈wf , y〉 = p0(f) +
R∑
i=1

pi(f)(bi − 〈Ai, y〉).

Again by the definition of LP formulation there exist ys such that 〈wf , ys〉 = f(s) for all s.
Plugging this into the above equation yields

c− f(s) = p0(f) +
R∑
i=1

pi(f)(bi − 〈Ai, ys〉).

Now define qi(s)
def
= bi − 〈Ai, ys〉 for i ∈ {1 . . . R} and q0(s) ≡ 1. Then the above equation

simplifies to

c− f(s) =
R∑
i=0

pi(f)qi(s).
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2.4 Symmetric Semi-definite Programming
Formulations

In this section we define a framework for symmetric semidefinite programming formulations
and show that a symmetric SDP formulation implies a symmetric sum of squares repre-
sentation over a small basis. Our framework extends the one in [BPZ15] with a symmetry
condition; see also [LRST14].

Let G be a group with associated actions on S and F . The problem P is G-symmetric
if the group action satisfies the compatibility constraint (g · f)(g · s) = f(s). For a G-
symmetric problem we require G-symmetric approximation guarantees: C̃(g ·f) = C̃(f) and
S̃(g · f) = S̃(f) for all f ∈ F and g ∈ G.

We now define the notion of a semidefinite programming formulation of a maximization
problem.

Definition 2.4.1 (SDP formulation for P). Let P = (S,F) be a maximization problem
with approximation guarantees C̃, S̃. A (C̃, S̃)-approximate SDP formulation of P of size d
consists of a linear map A : Sd+ → Rk and b ∈ Rk together with

1. Feasible solutions: an Xs ∈ Sd+ with A(Xs) = b for all s ∈ S, i.e., the SDP{
X ∈ Sd+

∣∣A(X) = b
}

is a relaxation of conv {Xs | s ∈ S},

2. Objective functions: an affine function wf : Sd+ → R satisfying wf (Xs) = f(s) for all

f ∈ F with maxs∈S f(s) ≤ S̃(f) and all s ∈ S, i.e., the linearizations are exact on
solutions, and

3. Achieving guarantee: max
{
wf (X) | A(X) = b,X ∈ Sd+

}
≤ C̃(f) for all f ∈ F with

maxs∈S f(s) ≤ S̃(f).

If G is a group, P is G-symmetric, and G acts on Sd+, then an SDP formulation of P
with symmetric approximation guarantees C̃, S̃ is G-symmetric if it additionally satisfies
the compatibility conditions for all g ∈ G:

1. Action on solutions: Xg·s = g ·Xs for all s ∈ S.

2. Action on functions: wg·f (g ·X) = wf (X) for all f ∈ F with maxs∈S f(s) ≤ S̃(f).

3. Invariant affine space: A(g ·X) = A(X).

A G-symmetric SDP formulation is G-coordinate-symmetric if the action of G on Sd+ is by
permutation of coordinates: that is, there is an action of G on [d] with (g ·X)ij = Xg−1·i,g−1·j
for all X ∈ Sd+, i, j ∈ [d] and g ∈ G.

We now turn a G-coordinate-symmetric SDP formulation into a symmetric sum of squares
representation over a small set of basis functions.
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Lemma 2.4.2 (Sum of squares for a symmetric SDP formulation). If a G-symmetric max-
imization problem P = (S,F) admits a G-coordinate-symmetric (C̃, S̃)-approximate SDP
formulation of size d, then there is a set H of at most

(
d+1

2

)
functions h : S → R such that

for any f ∈ F with max f ≤ S̃(f) we have C̃(f) − f =
∑

j h
2
j + µf for some hj ∈ 〈H〉

and constant µf ≥ 0. Furthermore the set H is invariant under the action of G given by
(g · h)(s) = h(g−1 · s) for g ∈ G, h ∈ H and s ∈ S.

Proof. For any psd matrix M let
√
M denote the unique psd matrix with

√
M

2
= M . Note

that
√
M
√
M

ᵀ
= M also, since

√
M is symmetric.

Let A, b, {Xs | s ∈ S},
{
wf
∣∣ f ∈ F} comprise a G-coordinate-symmetric SDP formula-

tion of size d. We define the set H := {hij | i, j ∈ [d]} via hij(s) :=
√
Xs

ij. By the action of
G and the uniqueness of the square root, we have g · hij = hg·i,g·j, so H is G-symmetric. As

hij = hji, the set H has at most
(
d+1

2

)
elements.

By standard strong duality arguments as in [BPZ15], for every f ∈ F with max f ≤ S̃(f),
there is a U f ∈ Sd+ and µf ≥ 0 such that for all s ∈ S,

C̃(f)− f(s) = Tr[U fXs] + µf .

Again by standard arguments the trace can be rewritten as a sum of squares:

Tr[U fXs] = Tr
[(√

U f
√
Xs
)ᵀ (√

U f
√
Xs
)]

=
∑
i,j∈[d]

∑
k∈[d]

√
U f

ik ·
√
Xs

kj

2

.

Therefore C̃(f)− f =
∑

i,j∈[d]

(∑
k∈[d]

√
U f

ik · hkj
)2

+ µf , as claimed.
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Chapter 3

Linear Programming Lower Bounds

3.1 Introduction

In this chapter we will prove lower bounds on the size of linear programming relaxations
that refute random constraint satisfaction problems. In this setting, a random instance
of a CSP is chosen from some natural distribution. Examples of such distributions are:
sample uniformly at random from all instances with m constraints, or sample each possible
constraint independently with some fixed probability p. In either case, as the parameter (m
or p) is increased above a certain threshold, a random instance of the CSP is unsatisfiable
with high probability. In this regime the natural computational question is refutation. That
is, the goal is to efficiently find a proof that the instance is unsatisfiable.

Notice that as the parameter (m or p) increases further, eventually the refutation problem
becomes easy to solve as there are likely to be a constant size set of constraints which directly
contradict each other. Indeed, for a broad class of random CSPs polynomial time refutation
algorithms are known above a certain threshold [AOW15]. Intriguingly, below this threshold
there is a class of subexponential (but super-polynomial) time refutation algorithms that
smoothly trade-off between runtime and the parameter p [RRS16].

Linear programming relaxations for CSPs naturally give refutation algorithms. An LP
relaxation always provides a valid upper bound on the number of constraints satisfied by any
assignment. Therefore, if the value of solution from an LP relaxation is less than the number
of constraints in the instance, this is a proof that the instance is unsatisfiable. However,
previous work on LP lower bounds has relied on showing that every linear programming
relaxation of a given size does not perform better than some standard LP hierarchy (e.g. the
Sherali-Adams hierarchy) of similar size [CLRS13, KMR17].

These reductions to known lower bounds for some fixed LP hierarchy are effective for
proving worst-case LP lower bounds. However, they do not work for random instances of
CSPs because they output instances which are very far from random (in other words very
unlikely to be sampled from one of the natural distributions). In this chapter we prove super-
polynomial lower bounds on the size of linear programs for max k-sat and max k-xor for
random instances just below the threshold where efficient refutation algorithms are known
to exist.
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Theorem 3.1.1. Any linear programming relaxation that refutes random instances of

max k-xor or max k-sat with n
k
2
−ε constraints must have size at least nΩ(ε2 logn

log logn).

3.2 Preliminaries

In this section we introduce basic definitions and notation that will be used for the rest of
the chapter.

Random Instances of Constraint Satisfaction Problems

In this section we formally introduce the class of constraint satisfaction problems and our
model for random instances. Specifically, we will consider CSPs defined by a single boolean
predicate P applied to k-tuples of literals (i.e. possibly negated variables) from a set of n
variables.

Definition 3.2.1. A predicate P : {−1, 1}k → {0, 1} defines a constraint satisfaction prob-
lem CSP(P ). An instance I of CSP(P ) is given by a set of n variables x1, . . . , xn and a
set of m constraints (S, b), where S = (S1, . . . , Sk) is a scope of k distinct variable indices
and b ∈ {−1, 1}k is a string of k negations. The objective is: given an instance I, find an
assignment of values from {−1, 1}n to the variables x1, . . . , xn in order to maximize

fI(x)
def
=
∑
(S,b)

P (b1xS1 , . . . , bkxSk).

We will use optP (I) to denote this maximum.

Note that CSP(P ) is a maximization problem where the set of possible solutions is
S = {−1, 1}n and the set of objective functions F is the set of all fI for each instance I of
CSP(P ). We will also use En,k to denote the set of possible scopes i.e. the set of k-tuples of
distinct indices in [n]k.

We say that a predicate P supports a (t − 1)-wise uniform distribution on satisfying
assignments if there is a probability distribution ηP with the following properties:

• ηP is supported on P−1(1).

• For every set xS of (t− 1) input variables, the distribution of xS is uniform.

Note, for example, that the uniform distribution on satisfying assignments to max k-xor is
(k − 1)-wise uniform.

One natural distribution on random instances of CSPs is given by choosing ∆n constraints
(S, b) independently and uniformly at random, where ∆ ≥ 0 is called the constraint density.
For technical reasons we will use a slightly different distribution in our analysis. However,
our results for this modified distribution can be translated into similar results for the original
distribution with density ∆.

Definition 3.2.2. Given a parameter p ≥ 0 a random instance I of CSP(P ) on n variables
is sampled as follows:
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• Choose each constraint scope S independently with probability p.

• For each S chosen, sample a uniformly random string bS ∈ {−1, 1}k.

• Let I consist of all the constraints (S, bS) chosen by this process.

We will use D(p) to denote this distribution.

In short, each constraint scope is included independently with probability p and each
scope is assigned one uniform random string of negations. By analogy with the situation

where the number of constraints is fixed to ∆n, we will set ∆
def
=

p|En,k|
n

so that the expected
number of constraints in an instance sampled from D(p) is p|En,k| = ∆n. Standard Chernoff
bounds imply that the number of constraints chosen is close to ∆n with high probability.

Lemma 3.2.3. Let m be the number of constraints in an instance sampled from D(p).

P
D(p)

[|m−∆n| > ε∆n] ≤ 2 exp (−ε
2∆n

3
).

Proof. Every constraint scope is included independently with probability p so m is the sum
of |En,k| independent Bernoulli random variables. Thus

P
D(p)

[|m−∆n| > ε∆n] ≤ 2 exp (−ε
2∆n

3
).

Refutation

Let pc be the threshold for CSP(P ) above which a random instance sampled from D(p)
is unsatisfiable with high probability. If a random instance I of a CSP is sampled with
parameter p > pc, then with high probability I will be unsatisfiable. Thus, a natural
computational problem is to efficiently find a certificate that I is unsatisfiable. This is
known as refuting the instance I.

Definition 3.2.4. Let A be an algorithm that takes as input an instance I of CSP(P ) and
outputs a number. We say that A is a refutation algorithm for CSP(P ) if A always outputs
a valid upper bound on optP (I). If additionally A outputs 1 − δ with probability s over
the random choice of I sampled from a distribution µ, then we say that A is a δ-refutation
algorithm for µ with success probability s.

By Definition 2.3.1, any LP formulation for CSP(P ) immediately gives rise to a refutation
algorithm. Because random CSPs with parameter p > pc are not even 1− δ satisfiable (for
some constant δ) with high probability, it is natural to ask if it is possible to construct an
LP formulation that δ-refutes such CSPs with any reasonable probability. Our main result
shows that such an LP formulation must have super-polynomial size.
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Notation

We now introduce notation that we will use from now on. Recall that En,k denotes the set of
possible scopes S ∈ [n]k. Clearly |En,k| = n!

(n−k)!
is the number of possible constraint scopes.

We will encode assignments by x ∈ {−1, 1}n, sets of constraint scopes by y ∈ {−1, 1}|En,k|
and sets of negations by b ∈ {−1, 1}|En,k|·k. We will index coordinates of x by indices i ∈ [n],
coordinates of y by scopes S ∈ En,k and coordinates of b by pairs (S, j) of scopes S ∈ En,k
and indices j ∈ [k].

The coordinates of x are the assignment to the n variables in the instance. The coordinate
b(S,j) of b is the j-th entry of the string of negations bS for the constraint scope S. The
coordinate yS is the {−1, 1} indicator of whether the constraint on scope S is included. We
will also use the notation xS = (xS1 , . . . , xSk) and bS = (b(S,1), . . . , b(S,k)).

Note that every instance I in the support of D(p) can be described by a pair (y, b) where
y indicates which constraint scopes S are included in I and b indicates which negations are
applied on each scope, including those not included in I. We allow these coordinates of b
corresponding to scopes S not included in I to be arbitrary without affecting the instance.
For technical reasons, it will be useful to extend the distribution D(p) to a distribution on
pairs (y, b), where the coordinates bS for scopes S not included in I by y are also sampled
uniformly at random.

For a subset U ⊆ En,k we will write yU to denote the subset of coordinates of y cor-
responding to U . By extension we will write bU for the subset of coordinates b(S,j) of the

negations b with S ∈ U . Finally, we will use IU
def
= (yU , bU) to denote the instance I restricted

to the subset U . We will refer to IU as a restricted instance.
We will use UP to denote the (t−1)-wise uniform distribution supported on z ∈ {−1, 1}k

with P (z) = 1. We will use ηP to denote the density of UP with respect to the uniform
distribution on {−1, 1}k.

Using this notation, we can rewrite the CSP(P ) objective function from Definition 3.2.1
as

F (x, y, b)
def
= f(y,b)(x) =

∑
S∈En,k

I(yS = −1)P (bS ◦ xS) (3.2.1)

Blockwise-Dense Distributions

A key element of our proof lies in being able to approximately decompose any distribution
on instances into a convex combination of “simpler” distributions. The class of simple
distributions we will consider are are based on the following definition.

Definition 3.2.5. Let D be a distribution on instances I = (y, b). We say that D is
blockwise-dense relative to D(p) with parameter δ if for all instances I ′ we have

P
I∼D

[I = I ′] ≤ P
I∼D(p)

[I = I ′]
1−δ

.

That is, a blockwise-dense distributionD does not assign a much higher probability to any
instance than D(p) does. The exponent of 1− δ should be thought of as some constant with
a small value of δ > 0. Unfortunately, we will not be able to decompose any distribution
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into a convex combination of blockwise-dense distributions. In particular, a distribution
which fixes a set of d scopes and their corresponding negations cannot be decomposed into
blockwise-dense distributions if d is large enough. This example motivates the following
definition.

Definition 3.2.6. Let D be a distribution on instances I. We say that D is d-conjunctive
blockwise-dense (d-CBD) with parameter δ relative to D(p) if

1. There exists U ⊆ En,k with |U | ≤ d and a restricted instance I∗U such that
PI∼D [IU = I∗U ] = 1.

2. For every subset V ⊆ En,k \ U and every instance I ′V we have

P
I∼D

[IV = I ′V ] ≤ P
I∼D(p)

[IV = I ′V ]
1−δ

We call the coordinates in the subset U the fixed coordinates of D.

The basic intuition is that d-CBD distributions fix some small set of d coordinates and
then sample all other coordinates with probability not too much higher than the probability
assigned to them by D(p). In Section 3.5 we will show that any distribution can be decom-
posed into a convex combination of conjunctive blockwise-dense distributions plus an error
set which has small measure under D(p).

Sherali-Adams Pseudo-densities

The Sherali-Adams linear programming hierarchy is a sequence of LP relaxations of increas-
ing size. Intuitively, the d-th linear program in this sequence constructs locally defined
probability distributions on d-tuples of variables which locally satisfy the constraints. This
collection of local distributions gives rise to an object called a pseudo-density, because it
“acts like” a true probability density on small collections of variables. We now give the
formal definition for this object.

Definition 3.2.7. A degree-d Sherali-Adams pseudo-density H : {−1, 1}n → R+ for an
instance I = (y, b) is a non-negative function satisfying:

• For every non-negative d-Junta J(x) (i.e. function depending on only d input variables),
Ex [H(x)J(x)] ≥ 0.

• Ex [H(x)] = 1.

• For every constraint C, Ex [H(x) I(C(x) = 1)] = 1.



CHAPTER 3. LINEAR PROGRAMMING LOWER BOUNDS 16

3.3 Proof Overview

In this section we introduce our approach to proving LP lower bounds using pseudo-
calibration. The main idea is that we want to use the small non-negative representation
given by Lemma 2.3.3 to derive a contradiction. In particular, we want to find a function
H(x, I) that witnesses a violation of the equality c−fI(x) =

∑
i pi(I)qi(x). That is, we want

both

E[H(x, I)(c− fI(x))] < 0 and E

[
H(x, I)

R∑
i=0

pi(I)qi(x)

]
≥ 0

where the expectation is taken over random CSPs conditioned on being in the set of instances
I on which the LP succeeds.

One natural way to try to construct such an H is to first choose a planted distribution
D∗ on pairs (x, I) of assignments and instances, so that x always completely satisfies the
instance I. Next, let µ∗(x, I) be the density of D∗ relative to the distribution where I ∼ D(p)
and x ∼ {−1, 1}n independently. Since x always satisfies I we have

E
I∼D(p)

x∼{−1,1}n

[µ∗(x, I)(c− fI(x))] = E
(x,I)∼D∗

[c− fI(x)] < 0

for any c which is sufficiently less than the expected number of constraints in I. Furthermore,
since each of the qi(x) and pi(I) are non-negative we have by linearity of expectation

E
I∼D(p)

x∼{−1,1}n

[
µ∗(x, I)

R∑
i=0

qi(x)pi(I)

]
=

R∑
i=0

E
(x,I)∼D∗

[qi(x)pi(I)] ≥ 0.

Of course this cannot be a correct proof of a lower bound, because we have not yet used
that the LP formulation has size R at all. In particular, an LP for refuting a random CSP
need only be correct on some s fraction of instances. This implies that the small non-negative
representation is only guaranteed to exist for an s fraction of the I. Thus, µ∗ may only be
supported on those I in the 1− s fraction of instances where no non-negative representation
is guaranteed to exist, making it totally useless for proving lower bounds.

The solution to this problem is a technique called pseudo-calibration, which allows us
to construct a function H(x, I) with similar properties to µ∗(x, I), but which is much more
spread out over the space of possible instances. Briefly, H is constructed by simply dropping
the high-degree terms from the Fourier expansion of µ∗ over an appropriately chosen Fourier
basis.

3.4 Pseudo-Calibration

In this section we formally define the pseudo-calibration of the planted density and prove
bounds on its Fourier coefficients.
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The Planted Density

The first step to formally define pseudo-calibration is to choose a planted distribution D∗ as
described in Section 3.3.

Definition 3.4.1. An assignment and instance pair (x, I) is sampled from the planted
distribution D∗ as follows:

• Sample x uniformly at random from {−1, 1}n.

• Choose to include each constraint scope S independently with probability p.

• For each scope S chosen, sample zS ∼ UP and set bS = zS ◦ xS.

As with the distribution D(p), we can extend D∗ to a distribution on triples (x, y, b) by
sampling the coordinates bS for scopes S not included in y uniformly at random, as these
do not affect the satisfiability of the instance. Let µ∗(x, y, b) be the density of D∗ relative to
the distribution {−1, 1}n ×D(p).

Now we claim that

µ∗(x, y, b) ∝
∏

S∈En,k

I(yS = −1)ηP (bS ◦ xS) + I(yS = 1). (3.4.1)

Indeed for any fixed x, y, b we have

P
(y′,b′)∼D(p)
x′∼{−1,1}n

[(x′, y′, b′) = (x, y, b)]µ∗(x, y, b) =

(
2−(n+k|En,k|)

∏
S:yS=−1

p
∏

S:yS=1

(1− p)

)
· µ∗(x, y, b)

∝ 2−n
∏

S:yS=−1

2−kηP (bS ◦ xS)p
∏

S:yS=1

2−k(1− p)

= 2−n
∏

S:yS=−1

P
z∼UP

[z = bS ◦ xS]p
∏

S:yS=1

2−k(1− p)

= P
(x′,y′,b′)∼D∗

[(x′, y′, b′) = (x, y, b)]

Next we describe the appropriate Fourier basis for expanding µ∗. Let χα be the Fourier
basis for L2({−1, 1}n). That is, for α ⊆ [n]

χα(x) =
∏
i∈α

xi.

Let φβ be the p-biased Fourier basis for L2({−1, 1}|En,k|, π⊗|En,k|p ). That is, for β ⊆ En,k

φβ(y) =
∏
S∈β

φ(yS), φ(−1) = −
√
q

p
, φ(1) =

√
p

q
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where q = 1 − p. Finally, let ψγ be the Fourier basis for L2({−1, 1}|En,k|·k). That is, for
γ ⊆ En,k × [k]

ψγ(b) =
∏

(S,j)∈γ

b(S,j).

We can now write µ∗(x, y, b) as a function in the tensor product of the spaces spanned
by the χα, φβ and ψγ. That is

µ∗(x, y, b) =
∑
α,β,γ

µ̂∗(α, β, γ)χα(x)φβ(y)ψγ(b)

where the Fourier coefficients above are given by the inversion formula

µ̂∗(α, β, γ) = E
(x,y,b)∼D(p)

[µ∗(x, y, b)χα(x)φβ(y)ψγ(b)] = E
(x,y,b)∼D∗

[χα(x)φβ(y)ψγ(b)] .

Finally, we are ready to define the pseudo-calibrated density. For a pair d = (dx, dy) ∈ N2

let I(d)
def
= {(α, β, γ) | |α| ≤ dx, |β| ≤ |γ̄| ≤ dy}. That is, I(d) corresponds to the set of

Fourier coefficients where x has degree dx, each scope is included only if some of its negations
are included, and the number of scopes whose negations are included is at most dy. We will
use Ld to denote the linear projection operator onto the span of {χαφβψγ}(α,β,γ)∈I(d).

Definition 3.4.2. For d = (dx, dy) ∈ N2 we define the d-pseudo-calibration µ̄∗
def
= Ldµ∗ .

Equivalently

µ̄∗(x, y, b) =
∑

(α,β,γ)∈I(d)

µ̂∗(α, β, γ)χα(x)φβ(y)ψγ(b)

The Fourier Coefficients of the Planted Density

In this section we will compute bounds on the Fourier coefficients of the planted density
µ∗(x, y, b). A key fact that we will exploit is that µ∗ does not directly depend on x, but
rather only on tuples of the form bS ◦ xS = (b(S,1)xS1 , . . . , b(S,k)xSk). In order to formalize
this statement we will need the following definition:

Definition 3.4.3. Let γ ⊆ En,k × [k] and let α ⊂ [n]. Let ci = |{(S, j) ∈ γ | Sj = i}| be the
number of appearances of the coordinate i as Sj for some (S, j) ∈ γ. Then γ ` α (in words,
γ derives α) if ci is odd for every i ∈ α, and ci is even for every i /∈ α.

Recalling that for a pair (S, j) ∈ γ the value Sj is simply an index in [n], the above
definition says that every index i ∈ α must appear an odd number of times as some Sj,
and every i /∈ α must appear an even number of times. To see why this definition is useful
consider the following example. Suppose S1 = 1, S2 = 2, T1 = 2 and T2 = 3. Then

b(S,1)xS1b(S,2)xS2 · b(T,1)xT1b(T,2)xT2 = b(S,1)x1b(S,2)x2 · b(T,1)x2b(T,2)x3

= b(S,1)b(S,2)b(T,1)b(T,2)x1x3

def
= ψγ(b)χα(x)
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where the second to last equality used the fact that x2
2 = 1. Thus, when multiplying these

two monomials, corresponding to scope S and T respectively, the resulting product has the
form ψγ(b)χα(x) where γ ` α. This is due to the fact that x2 appeared an even number of
times and so was eliminated from the product.

We now proceed with the computation of the Fourier coefficient bounds for µ∗.

Lemma 3.4.4. If µ̂∗(α, β, γ) 6= 0 then γ ` α.

Proof. Let ηP be the density of the (t−1)-wise independent distribution supported on P−1(1),
and let ηP (z) =

∑
T η̂P (T )

∏
j∈T zj be its Fourier expansion. Recall from (3.4.1)

µ∗(x, y, b) ∝
∏

S∈En,k

I(yS = −1)ηP (bS ◦ xS) + I(yS = 1).

The only terms in the above product depending on either b or x are of the form

ηP (bS ◦ xS) =
∑
T⊆k

η̂P (T )
∏
j∈T

b(S,j)xSj .

We can use this formula to expand the expression for µ∗ as a sum of products of the variables
b and x and the indicators I(yS = ±1). Any term depending on b or x will then be a product,
over distinct S, of terms of the form∏

S

I(yS = ±1)η̂P (TS)
∏
j∈TS

b(S,j)xSj

where the TS ⊆ [k] are a sequence of subsets depending on S. In any such product over
distinct S all the variables b(S,j) for j ∈ TS are distinct. So letting γ = ∪S{(S, j) | j ∈ TS},
we have ∏

S

I(yS = ±1)η̂P (TS)
∏
j∈TS

b(S,j)xSj = ψγ(b)
∏
S

I(yS = ±1)η̂P (TS)
∏
j∈TS

xSj .

Furthermore, every xi appears exactly ci = |{(S, j) ∈ γ | Sj = i}| times in the product. If ci
is even xcii = 1, and if ci is odd xcii = xi. Thus,

ψγ(b)
∏
S

I(yS = ±1)η̂P (TS)
∏
j∈TS

xSj = ψγ(b)χα(x)
∏
S

η̂P (TS) I(yS = ±1)

where γ ` α. Now if we expand the indicator functions I(yS = ±1) in the φβ basis, we
conclude that µ∗(x, y, b) can be written as a linear combination of terms χα(x)φβ(y)ψγ(b)
where all such terms appearing with a non-zero coefficient satisfy γ ` α. There may be
additional cancellations between terms in the final Fourier expansion of µ∗ as some of the
basis functions with non-zero coefficients could appear multiple times. However, we can still
conclude that any non-zero coefficients µ̂∗(α, β, γ) must have γ ` α.
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Two additional definitions are required in order to state the formula for the Fourier
coefficients. First, we need notation for the set of scopes contained in γ ⊆ En,k × [k].

Definition 3.4.5. Let γ ⊆ En,k × [k]. Then γ̄
def
= {S | (S, j) ∈ γ for some j} is the set of

scopes S present in γ.

Second, we need notation for the minimum number of coordinates contained in any scope
S present in γ.

Definition 3.4.6. Let γ ⊆ En,k× [k]. Then r(γ)
def
= minS∈γ̄|{j | (S, j) ∈ γ}| is the minimum

arity of γ.

Now using Lemma 3.4.4 we can compute bounds on the Fourier coefficients of µ∗.

Lemma 3.4.7. If γ ` α, r(γ) ≥ t and β ⊆ γ̄ then

|µ̂∗(α, β, γ)| ≤ √pq|γ̄∩β|p|γ̄\β|

otherwise µ̂∗(α, β, γ) = 0.

Proof. The Fourier coefficients are given by

µ̂∗(α, β, γ) = E
(x,y,b)∼D(p)

[µ∗(x, y, b)χα(x)φβ(y)ψγ(b)] = E
(x,y,b)∼D∗

[χα(x)φβ(y)ψγ(b)] .

By Lemma 3.4.4 any non-zero Fourier coefficients must have γ ` α. In this case, letting
ci = |{(S, j) ∈ γ | Sj = i}| as in Definition 3.4.3, we have

χα(x)φβ(y)ψγ(b) = φβ(y)
∏

(S,j)∈γ

b(S,j)

∏
i∈α

xi

= φβ(y)
∏

(S,j)∈γ

b(S,j)

∏
i∈[n]

xcii

= φβ(y)
∏

(S,j)∈γ

b(S,j)xSj

where the second equality used the fact that γ ` α implies that xcii = xi for i ∈ α and xcii = 1
for i /∈ α. Expanding φβ as a product over scopes S ∈ En,k and grouping terms yields

χα(x)φβ(y)ψγ(b) =

 ∏
S∈β\γ̄

φ(yS)

 ∏
S∈β∩γ̄

φ(yS)
∏

j:(S,j)∈γ

b(S,j)xSj

 ∏
S∈γ̄\β

∏
j:(S,j)∈γ

b(S,j)xSj

 .

Now we claim that, for each S ∈ En,k, the term corresponding to S in the above product
is independent of all the other terms under the distribution D∗. This is clearly true for
the S ∈ β \ γ̄ terms, since under D∗ the variables yS depend only on the variables xS and
negations bS on scope S, but none of those variables appear in the above product. For the
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remaining terms, note that the distribution of bS ◦xS is independent of all other variables and
constraints except yS. This is because under D∗ both x and y are sampled independently,
and then each bS is sampled independently so that if yS = −1 the distribution of bS ◦ xS is
equal to the (t− 1)-wise uniform distribution supported on satisfying assignments to P , and
if yS = 1 then bS ◦ xS is uniform and independent of everything else. Therefore, taking the
expectation of χα(x)φβ(y)ψγ(b) over D∗ yields the product of expectations

E
(x,y,b)∼D∗

[χα(x)φβ(y)ψγ(b)]

=

 ∏
S∈β\γ̄

E [φ(yS)]

 ∏
S∈β∩γ̄

E

φ(yS)
∏

j:(S,j)∈γ

b(S,j)xSj

 ∏
S∈γ̄\β

E

 ∏
j:(S,j)∈γ

b(S,j)xSj

.
First, note that ED∗ [φ(yS)] = ED(p) [φ(yS)] = 0, and so the above product is zero whenever
β \ γ̄ 6= ∅. Thus all non-zero Fourier coefficients µ̂∗(α, β, γ) must have β ⊆ γ̄.

Second, suppose there exists some S∗ ∈ γ̄ such that |{j | (S∗, j) ∈ γ}| < t. Then the
distribution of the coordinates {b(S∗,j)xS∗j }(S∗,j)∈γ is uniform and independent of everything

else. This is because bS ◦ xS is sampled independently from a (t − 1)-wise uniform distri-
bution if yS = −1 and from the uniform distribution if yS = 1. Thus, in both cases the
aforementioned coordinates are uniform and independent of all other variables. This implies
that

E

 ∏
j:(S∗,j)∈γ

b(S∗,j)xS∗j

 = 0 = E

φ(yS∗)
∏

j:(S∗,j)∈γ

b(S∗,j)xS∗j

 .
So we conclude that whenever such an S∗ exists, the Fourier coefficient is zero. Taking the
contrapositive, we have that all nonzero Fourier coefficients must have r(γ) ≥ t.

Next, for S ∈ β ∩ γ̄∣∣∣∣∣∣ED∗
φ(yS)

∏
j:(S,j)∈γ

b(S,j)xSj

∣∣∣∣∣∣ =

∣∣∣∣∣∣p · φ(−1)E

 ∏
j:(S,j)∈γ

b(S,j)xSj | yS = −1

+ q · φ(1) · 0

∣∣∣∣∣∣
≤ |p · φ(−1)| = √pq

where in the first equality we have used the fact that bS ◦xS is uniformly random conditioned
on yS = 1, and the inequality follows from the fact that the variables b and x are bounded
by one. Finally, for S ∈ γ̄ \ β, we have by the same argument∣∣∣∣∣∣ED∗

 ∏
j:(S,j)∈γ

b(S,j)xSj

∣∣∣∣∣∣ =

∣∣∣∣∣∣p · E
 ∏
j:(S,j)∈γ

b(S,j)xSj | yS = −1

+ q · 0

∣∣∣∣∣∣ ≤ p.

Plugging these bounds into the original product of expectations completes the proof.
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The Planted Density for max k-xor and max k-sat

At this point it is instructive to see what the planted density looks like for a concrete example.
For the max k-xor problem the predicate is simply the sum of the input bits modulo two.
Thus, P (x) = 1

2
− 1

2

∏
i xi. The uniform distribution on all satisfying assignments to P

is k − 1-wise independent. Also note that the planted density for max k-sat is exactly
the same as that for max k-xor. This is because the k − 1-wise independent distribution
supported on satisfying assignments to the max k-sat predicate can be taken to be the
uniform distribution on assignments satisfying the max k-xor predicate on the same bits.
Combining these facts, and using the above analysis we can precisely compute the Fourier
expansion of µ̄∗ for max k-xor (and max k-sat).

µ∗(x, y, b) =
∑
α

χα(x)
∑
γ`α

r(γ)≥k

χγ(b)
∑
β⊆γ̄

(−√pq)β∩γ̄pγ̄\βφβ(S)

Since each scope has size k, the fact that r(γ) ≥ k implies that for each scope S, either the
full product of the k bits bS appears in χγ or none of them do. Thus, all that matters in the
above Fourier expansion is if the parity of bS is odd or even. This makes sense, because for
the max k-xor predicate all that is relevant about the negations is their parity. Let us use cS

to denote this parity and let cγ
def
=
∏

S∈γ̄ cS. Now, observing that I(yS = −1) = p−√pqφ(yS)
we can rewrite the above expression as

µ∗(x, y, b) =
∑
α

χα(x)
∑
γ`α

r(γ)=k

I(yγ̄ = −1)cγ.

Now imagine fixing y and b to some value i.e. fixing some instance of max k-xor. In this
case, the above expansion of µ∗ simplifies to a function of x. For each parity χα(x) we have
a sum over derivations of α by the constraints included in the instance y. The coefficients
of the sum are ±1 depending on whether the negations on a given constraint have odd or
even parity. Here the derivations of α by some set of constraints correspond exactly to linear
combinations over F2 of the set of constraints when thought of as vectors in F2.

Further the pseudo-calibrated density µ̄∗ is obtained by restricting |α| ≤ dx and |γ̄| ≤ dy.
This corresponds above to only considering length dy derivations of parities of size dx.
The reader familiar with the Grigoriev/Schoenebeck gap instances for the Sum-of-Squares
sdp[Gri01, Sch08] might recognize the similarity with this pseudo-calibrated density. Indeed
the only difference is that in the above SoS gap instances, the sum is over small-width deriva-
tions as opposed to small length derivations of a given parity. However, for the parameter
regime we are interested in, small-width and small-length derivations coincide with high
probability over y and b. This is follows from vertex expansion of the constraint graph, see
for example [OW14].

Thus, by previous results we have the following lemma:

Lemma 3.4.8. Let µ̄∗(x, y, b) be the pseudo-calibrated density for max k-xor and

max k-sat and for I = (y, b) let HI(x)
def
= µ̄∗(x, y, b). Then with high probability over

I, we have that HI(x) is a degree-dx Sherali-Adams pseudo-density.
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Norm Bounds for the Pseudo-calibrated Density

Now that we have computed bounds for the Fourier coefficients of the planted density µ∗ we
can use them to obtain bounds on the L2 norm of the pseudo-calibrated density µ̄∗ when it
is averaged over a conjunctive blockwise-dense distribution. The first step is to estimate the
number of nonzero Fourier coefficients µ̂∗(α, β, γ) for each fixed α.

Lemma 3.4.9. Fix α ⊆ [n] and let l ≤ cn
k

for a sufficiently small constant c > 0. The
number of Fourier coefficients with µ̂∗(α, β, γ) 6= 0 and |γ̄| = l is at most

C lnkl−
tl+|α|

2 l
tl+|α|

2
−l

where C is a constant depending only on k and t.

Proof. By Lemma 3.4.7 all nonzero Fourier coefficients must satisfy γ ` α, r(γ) ≥ t and
β ⊆ γ̄. For fixed α we first count the number of γ with |γ̄| = l, γ ` α, and r(γ) ≥ t. To do
so we think of choosing γ by first choosing numbers s1, . . . , sl and then selecting l subsets
S1, . . . , Sl ⊆ [n] with |Si| = si. Further, we think of selecting each subset Si by filling in si
slots with indices from [n]. Since r(γ) ≥ t we have that t ≤ si ≤ k for all i. Let s =

∑
i si.

Now we count the number of ways to fill in the s slots so that γ ` α. We will slightly
over-count, by allowing indices to appear more than once in each Si and allowing pairs Si
and Sj to be identical. For γ ` α to hold, some subset T of the s slots must be assigned the
indices from α since each such index appears an odd number of times in γ. There are

(
s
|α|

)
ways to select the subset T and |α|! ways to assign the indices from α to T .

Further, the slots outside of T must be assigned indices that come in matching pairs,
since each such index must appear an even number of times. In this case the total number d

of distinct indices appearing in slots outside of T is at most s−|α|
2

. This follows from the fact
that there are s−|α| slots outside of T and each index must appear at least twice. There are(
n
d

)
choices for the d indices and at most ds−|α| ways to assign these indices to the remaining

slots. Putting this all together we have that the total number of ways to assign indices to
the s slots is

(
s

|α|

)
|α|!

s−|α|
2∑

d=1

(
n

d

)
ds−|α| ≤

(
s

|α|

)
|α|!

(
s− |α|

2

)(
n

s−|α|
2

)(
s− |α|

2

)s−|α|

≤ (es)|α|
s

2

(
en

(s−|α|)
2

) s−|α|
2 (

s− |α|
2

)s−|α|
≤ s

2
(en)

s−|α|
2 (es)

s+|α|
2

where the second to last inequality uses the bounds
(
n
k

)
≤
(
en
k

)k
and n! ≤ nn.

Now note that if we sum the above bound over all sequences s1, . . . sl each γ will be
counted l! times, once for each ordering of the subsets S1, . . . , Sl comprising γ. Thus the
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total number of γ where γ ` α and r(γ) ≥ t is at most

|{γ | γ ` α, r(γ) ≥ t}| ≤ 1

l!

∑
s1,...,sl

s

2
(en)

s−|α|
2 (es)

s+|α|
2

=
1

l!

∑
s1,...,sl

s

2
(en)

s−|α|
2 (es)

s−tl
2 (es)

tl+|α|
2 .

Since r(γ) ≥ t we have s ≥ tl. Further s ≤ kl = cn, so (es)
s−tl
2 ≤ (en)

s−tl
2 . Plugging this in

to the above inequality we have

|{γ | γ ` α, r(γ) ≥ t}| ≤ 1

l!

∑
s1,...,sl

s

2
(en)

s−|α|
2 (en)

s−tl
2 (es)

tl+|α|
2

≤ kl

l!

kl

2
(en)kl−

tl+|α|
2 (ekl)

tl+|α|
2

≤ l−l2l(ek)l
k

2
(en)kl−

tl+|α|
2 (ekl)

tl+|α|
2

≤ C lnkl−
tl+|α|

2 l
tl+|α|

2
−l

where in the last inequality C is a constant depending only on k and t. Finally, since β ⊆ γ̄
there are 2l possible values of β for each γ satisfying γ ` α and r(γ) ≥ t. Combining this
with the above bound completes the proof.

Now we are ready to compute the L2-norm of the degree-s part of µ̄∗ after averaging over
a CBD distribution.

Lemma 3.4.10. Let dy ≤ ε
10

logn
log logn

, let l ≤ dy and set δ ≤ ε
2k

. Let D be an l-CBD

distribution with parameter δ and fixed block U . For each fixed assignment x′U to the variables
of the scopes contained in U define

Hx′U
(x) = E

(y,b)∼D
[µ̄∗((x, x

′
U), y, b)]

and set p = ∆n
|En,k|

where ∆n = n
t
2
−ε. Then∑
|α|=s

Ĥx′U
(α)2 ≤ O(n−

ε
k
s)

Proof. First fix α ⊆ [n] \ U with |α| = s. We will compute a bound on Ĥx′U

2
(α). Let U

be the fixed block of the CBD distribution D. By fixing yU = y∗U , bU = b∗U and xU = x′U
in µ̄∗(x, y, b) some of the distinct Fourier basis functions in the expansion of µ̄∗ will restrict
to the same function, and the corresponding Fourier coefficients will add. In particular, let
N(U) be the set of coordinates of negations for scopes S ∈ U and V (U) the set of coordinates
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for variables in the scopes in U . The Fourier coefficients will, after the restriction on U , be
the result of adding up terms as follows

µ̂∗|U(α, β, γ) =
∑

A⊆V (U)
B⊆U

C⊆N(U)

µ̂∗(α ∪ A, β ∪B, γ ∪ C)χA(x′U)φB(y∗U)ψC(b∗U)

By Lemma 3.4.7 the magnitude of every non-zero Fourier coefficient of µ∗ is bounded by

|µ̂∗(α, β, γ)| ≤ √pq|γ̄∩β|p|γ̄\β|.

Using the fact that |φ(yS)| ≤
√

q
p

and |ψ(b)| = |χ(x)| = 1 we have

|µ̂∗|U(α, β, γ)| ≤
∑

A⊆V (U)
B⊆U

C⊆N(U)

√
pq|γ̄∩β|p|γ̄∪B\β|

≤ 2(k+1)d√pq|γ̄∩β|p|γ̄\β|.

Observe that

Hx′U
(x) =

∑
α

χα(x)
∑

β,γ:γ̄≤dy

µ̂∗|U(α, β, γ) E
y,b

[φβ(y)ψγ(b)]

Thus we have

|Ĥx′U
(α)| ≤

∑
β,γ:γ̄≤dy

|µ̂∗|U(α, β, γ)||E
y,b

[φβ(y)ψγ(b)]|

≤
∑

β,γ:γ̄≤dy

2(k+1)dp(1−δ)|γ̄∩β|p|γ̄\β| I(µ̂∗|U(α, β, γ) 6= 0)

≤
∑

β,γ:γ̄≤dy

2(k+1)dp(1−δ)|γ̄| I(µ̂∗|U(α, β, γ) 6= 0)

Further, since we have fixed all variables xU , yU , bU in µ∗ corresponding to the set of scopes
U , we still have that µ̂∗|U(α, β, γ) 6= 0 only when γ ` α, r(γ) ≥ t and β ⊆ γ̄. Combining
this with Lemma 3.4.9 we have

Ĥx′U

2
(α) ≤ 22(k+1)d

 dy∑
r=
|α|
k

p(1−δ)r · Crnkr−
tr+|α|

2 r
tr+|α|

2
−r


2

≤ 2C2(k+1)dn−|α|

 dy∑
r=
|α|
k

nδkr−
δ
2
tr−(1−δ)εrr

tr+|α|
2
−r


2
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≤ 2C2(k+1)dn−|α|

 dy∑
r=
|α|
k

n−
ε
2
rr

tr+|α|
2
−r


2

Using that dy ≤ ε
10

logn
log logn

we conclude that the term with r raised to a power is negligible

compared to the term with n and so

Ĥx′U

2
(α) ≤ O(n−(1+ ε

k
)|α|)

Summing over all
(
n
|α|

)
choices for α completes the proof.

3.5 Conjunctive Blockwise-Dense Decompositions

In this section we show that any distribution can be decomposed into a convex combination
of distributions, each of which is conjunctive blockwise dense, along with an error set which
is small in an appropriate sense. The proof of this fact is inspired by that in [KMR17].
The main difference is that the error set in their decomposition has small measure under the
distribution which was decomposed, whereas in our case the error set only has small measure
under the background distribution D(p). This means our error set may actually contain all
the probability mass of the decomposed measure. However, this allows us to decompose any
distribution in this way, and is actually necessary for our application.

Lemma 3.5.1. Let D be a probability distribution supported on instances I = (y, b) ∈
En,k × (En,k × {−1, 1}k). Then there is a partition of En,k × (En,k × {−1, 1}k) into subsets
A1, · · ·Al, B, C such that

1. For each i the distribution D|Ai is 2
δ
t-CBD with parameter δ.

2. PD(p) [B] ≤ nk+1
(
p
2k

)t
.

3. PD [C] ≤ O(exp(−n)).

Proof. The proof follows from the analysis of a greedy algorithm which constructs the desired
partition along with the two error sets.

Algorithm 3.5.2. Let D be as in the statement of the lemma. We define a recursive
function which takes as input a set of instances A and builds up a partition as described in
the lemma. Initially let B = ∅, let C = {I | |I| = (1 ± ε)∆n} and let A be the set of all
instances excluding C.
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Decompose(A).

1. If D|A is blockwise-dense, then add A to the partition and end the recursion.

2. If PD(p) [A] ≤ 2−ktpt, then assign B ← A ∪B, and end the recursion.

3. Set (A′, B′) ←Truncate(A), then assign B ← B′ ∪ B. If PD(A′) ≤ exp(−n) set
C ← A′ ∪ C and end the recursion.

4. Choose U ⊆ En,k to be a maximal set such that there exist I∗U with

P
D|A′

[IU = I∗U ] > P
D(p)

[IU = I∗U ]1−δ

5. Assign A0 ← A′ ∩ {I | IU = I∗U}.

6. Assign A1 ← A′ ∩ {I | IU 6= I∗U}.

7. Add A0 to the partition and call Decompose(A1).

The algorithm calls the following truncation subroutine, which iteratively removes in-
stances from a set A so as to truncate those which appear with much higher probability
under D than under D(p).

Algorithm 3.5.3. This subroutine takes as input a set of instances A and constructs a
partition of A into two sets A′, B′.

Truncate(A).

1. If PD [A] ≤ exp(−n) set A′ ← A and terminate.

2. If for all I ′ ∈ A we have PD|A [I = I ′] < 2ktp−t PD(p)|A [I = I ′], set A′ ← A and termi-
nate.

3. Else choose I∗ which maximizes
PD|A [I=I∗]

PD(p)|A [I=I∗]
and set B′ ← B′ ∪ {I∗}.

4. Call Truncate(A \ I∗).

We prove the lemma through a series of claims.

Claim 3.5.4. In any execution of Decompose that makes it to the end of the function we
must have D|A0 is conjunctive blockwise-dense with fixed block U .

Proof. To see why let V ⊆ En,k \ U and suppose that there exists I ′V such that

PD|A0
[IV = I ′V ] > PD(p) [IV = I ′V ]1−δ. Then

P
D|A

[IU∪V = (I∗U , I
′
U)] ≥ P

D(p)
[IU = I∗U ]1−δ · P

D(p)
[IV = I ′V ]

1−δ

= P
D(p)

[IU∪V = (I∗U , I
′
U)]

1−δ

which contradicts the maximality of U .
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Next we show that Truncate does not remove too much probability mass from D(p).

Claim 3.5.5. If (A′, B′) = Truncate(A), then PD(p) [A′] ≥
(

1− n
(
p
2k

)t)PD(p) [A].

Proof. Let Ai denote the input to the i-th recursive call to Truncate. Now note that in
each recursive call if PD(p) [Ai] decreases by a factor of (1−η) after removing I∗, then PD [Ai]

decreases by a factor of (1− η
(
p
2k

)−t
). Thus after nη−1

(
p
2k

)
recursive calls,

P
D(p)

[Ai] = exp

(
−n
( p

2k

)t)
P
D(p)

[A0] ≥
(

1− n
( p

2k

)t)
P
D(p)

[A0]

while on the other hand

P
D

[Ai] = exp(−n)P
D

[A0] ≤ exp(−n).

Since the subroutine terminates once PD [Ai] ≤ exp(−n), the claim is proven.

Next we show that the fixed block U is not too large.

Claim 3.5.6. |U | ≤ 2
δ
t.

Proof. If the call to Truncate does not return a set A′ with PD [A′] ≤ exp(−n), then we
must have for all I ′

P
D|A′

[I = I ′] < 2ktp−t P
D(p|A′ )

[I = I ′] .

Thus, for any restricted instance I ′U after the truncation step

P
D|A′

[IU = I ′U ] ≤ 2ktp−t P
D(p)|A′

[IU = I ′U ] .

Thus, we have that for the instance I∗U ,

P
D(p)

[IU = I∗U ]1−δ ≤ 2ktp−t P
D(p)|A′

[IU = I∗U ] = 2ktp−t
PD(p)|A′ [IU = I∗U ]

PD(p) [A′]
.

Since we have passed the second step in the algorithm, PD(p) [A′] ≥ 2−ktpt. Using this fact
and rearranging terms gives

22ktp−2t ≥ P
D(p)

[IU = I∗U ]−δ ≥ 2δk|U |p−δ|U |,

where the last inequality comes from the definition of D(p). Thus |U | ≤ 2
δ
t.

To wrap up the proof of the lemma, note that Decompose is called recursively at most
nk times, because we fix at least one constraint scope in every call that does not terminate.

Thus, by 3.5.5 the total probability mass added to B is at most nk+1
(
p
2k

)t
.
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3.6 Proof of LP Lower Bounds

In this section we prove lower bounds for LP formulations of CSPs. We proceed with the
approach based on pseudo-calibration as introduced in Section 3.3. In particular, assume
there exists an LP formulation for a CSP which certifies the upper bound c on a subset
of instances A ⊂ {−1, 1}|En,k| × {−1, 1}|En,k|k of measure s under D(p). We will identify a
subset B ⊆ A of instances and some λ > 0 such that both

E
{−1,1}n×D(p)

[I((y, b) ∈ B)µ̄∗(x, y, b)(c− F (x, y, b))] < −λ (3.6.1)

and

E
{−1,1}n×D(p)

[
I((y, b) ∈ B)µ̄∗(x, y, b)

R∑
i=0

pi(y, b)qi(x)

]
≥ −λ. (3.6.2)

This will then contradict the fact that the LP formulation certifies the upper bound c on the
instances in A.

Setting Parameters. For the rest of this section let d = (dx, dy) where dx = dy =

ε logn
10 log logn

, and let µ̄∗ be the d-pseudo-calibration of µ∗. Additionally, set p = ∆n
|En,k|

where

∆n = n
t
2
−ε.

The first step will be to prove that Ex [µ̄∗(x, y, b)(c− F (x, y, b))] is negative with high
probability over instances I = (y, b). This follows almost immediately whenever µ̄∗(x, y, b)
is a Sherali-Adams pseudo-density with high probability over instances.

Lemma 3.6.1. Let c = (1− η)∆n and assume µ̄∗(x, y, b) is a Sherali-Adams pseudo-density
with probability 1− o(1) over instances (y, b). Let m = m(y, b) be the number of constraints
in the instance (y, b) and let E be the event that both:

1. |m(y, b)−∆n| ≤ η
2
∆n

2. Ex [µ̄∗(x, y, b)(c− F (x, y, b))] ≤ −η
2
∆n.

Then
P

(y,b)∼D(p)
[E] = 1− o(1).

Proof. For all (y, b) such that µ̄∗ is a Sherali-Adams pseudo-density and m ≥ (1− η
2
)∆n

E
x

[µ̄∗(c− F )] = c−m ≥ η

2
∆n

By Lemma 3.2.3 |m(y, b)−∆n| ≤ η
2
∆n with probability at least 1− 2 expΩ(η2∆n) = 1− o(1).

Since µ̄∗ is a Sherali-Adams pseudo-density with probability 1−o(1) the desired result follows
by the union bound.

The next lemma will rely on the following concentration bound based on hypercontrac-
tivity.
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Theorem 3.6.2 ([O’D14] Chapter 9). Let f : {−1, 1} → R have degree at most k. Then for

any t ≥
√

2e
k

we have

P
x∼{−1,1}n

[|f(x)| ≥ t‖f‖2] ≤ exp

(
− k

2e
t
2
k

)
.

Lemma 3.6.3. Let d ≤ dx
k

. Let D be a d-CBD distribution with parameter δ ≤ ε
2k

and
fixed block U . Suppose further that D is supported on instances (y, b) where µ̄∗(x, y, b) is a
Sherali-Adams pseudo-density. For each fixed let H(x) = ED [µ̄∗]. Then

P
x

[
H(x) ≤ −O

(
n−

ε
4k

)]
≤ O

(
exp

(
− 1

2e
n

ε
2k

))
.

Proof. We begin by breaking up the probability by conditioning on each possible setting of
the variables xU .

P
x

[
H(x) ≤ −O

(
n−

ε
4k

)]
=

1

2k|U |

∑
x′U

P
xUc

[
H(x′U , xUc) ≤ −O

(
n−

ε
4k

)]
(3.6.3)

Next let Hx′U
(x) = H(x′U , x). Since D is supported only on instances where µ̄∗(x, y, b) is a

Sherali-Adams pseudo-density we have that

E
x

[
Hx′U

(x)
]

= E
x

[H(x) I(xU = x′U)]

= E
D

[
E
x

[µ̄∗(x, y, b) I(xU = x′U)]
]

≥ 0

because the inner expectation is the average of a Sherali-Adams pseudo-density times a
non-negative junta on kd ≤ dx variables.

Let H=s
x′U

denote the degree s part of Hx′u . We have by Lemma 3.4.10 that∥∥∥H=s
x′U

∥∥∥2

2
≤ O

(
n−

ε
k
s
)
.

Therefore by Theorem 3.6.2 we have

P
x

[
|H=s

x′U
(x)| ≥ tO

(
n−

ε
2k
s
)]
≤ exp

(
− s

2e
t
2
s

)
.

Setting t = n
εs
4k and summing over s ≥ 1 yields

P
x

[∣∣∣∣∣
dx∑
s=1

H=s
x′U

(x)

∣∣∣∣∣ ≥ O
(
n−

ε
4k

)]
≤ O

(
exp

(
− 1

2e
n

ε
2k

))
.

Since Hx′U
(x) = E

[
Hx′U

]
+
∑dx

s=1 H
=s
x′U

(x) and we already have that E
[
Hx′U

]
≥ 0, we conclude

that

P
x

[∣∣Hx′U
(x)
∣∣ ≥ −O (n− ε

4k

)]
≤ O

(
exp

(
− 1

2e
n

ε
2k

))
.

Plugging this in to 3.6.3 completes the proof.
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We are now ready to prove our main result.

Theorem 3.6.4. Let P be a predicate supporting a (t − 1)-wise uniform distribution on

satisfying assignments. Let ∆n = n
t
2
−ε and set p = ∆n

|En,k|
. Assume µ̄∗(x, y, b) is a Sherali-

Adams pseudo-density with probability 1− o(1) over CSP(P ) instances (y, b) ∼ D(p). Then
for any constant η > 0, any linear programming formulation that η-refutes random instances

of CSP(P ) with constant probability must have size at least nΩ(ε2 logn
log logn).

Proof. Let c > 0 be a sufficiently small constant to be set later. Suppose that there is a

linear programming formulation of size R ≤ ncε
2 logn
log logn for η-refuting random instances of

CSP(P ). By Lemma 2.3.3 this means there exists a set A of constant measure under D(p),
and non-negative functions pi(y, b), qi(x) such that, for c = (1− η)∆n:

c− F (x, y, b) =
R∑
i=0

pi(y, b)qi(x) (3.6.4)

whenever (y, b) ∈ A. We will derive a contradiction by multiplying each side of the above
equation by µ̄∗ and then averaging over (x, y, b).

Let m(y, b) be the number of constraints in (y, b) and let E be the event defined in
Lemma 3.6.1. By the lemma, PD(p) [E] = 1 − o(1). Thus, letting A′ = A ∩ E we have
PD(p) [A′] is constant, because A has constant measure. We now restrict (3.6.4) to instances
in A′ and normalize the equation by dividing both sides by ∆n. Note that by the definition
of E we have | 1

∆n
(c− F (x, y, b))| ≤ 1 + η

2
for all x, and for all (y, b) ∈ E.

Thus, we must have the same bound for the right hand side of (3.6.4)

1

∆n

R∑
i=0

pi(y, b)qi(x) ≤ 1 +
η

2
(3.6.5)

Now, since the pi, are non-negative, we can re-normalize each pi to be a density relative to
D(p) by simply rescaling pi by E [pi]

−1 and qi by E [pi]. After this rescaling, averaging (3.6.5)
over (y, b) implies that

∑
i qi(x) ≤ 1 + η

2
for all x.

Let Di be the probability distribution given by the density pi, let δ ≤ ε
2k

and let r =

ε2 logn
100k2 log logn

. By Lemma 3.5.1 we can partition A′ into sets A1, . . . AN , Bi, Ci such that

each Aj is a 2
δ
r-CBD distribution with parameter δ, PD(p) [Bi] ≤ nk+1

(
p
2k

)r
, and PDi [Ci] ≤

O(exp(−n)). Note that with these parameter settings we have 2
δ
r ≤ ε logn

10 logn
i.e. each density

is d-CBD for d ≤ dx
k

. Letting B′i
def
= A′ ∩Bi and Hi,j(x)

def
= EDi|Aj [µ̄∗] yields

E [I((y, b) /∈ B′i)µ̄∗(x, y, b)pi(y, b)] =
∑
j

P
Di

[Aj] E
Di|Aj

[µ̄∗] + P
Di

[Ci] E
Di|Ci

[µ̄∗]

=
∑
j

P
Di

[Aj]Hi,j(x) + P
Di

[Ci] E
Di|Ci

[µ̄∗]
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Since PDi [Ci] ≤ O(exp(−n)) the second term above is bounded in magnitude by

|P
Di

[Ci] E
Di|Ci

[µ̄∗]| ≤ O(exp(−n))‖µ̄∗‖∞ ≤ O(exp(−n)) · ndx+2dy. (3.6.6)

Further, since each distribution Di is d-CBD for d ≤ dx
k

we have by Lemma 3.6.3 that for
each i, j

P
x

[
Hi,j(x) ≤ −O

(
n−

ε
4k

)]
≤ O

(
exp

(
− 1

2e
n

ε
2k

))
.

Since the
∑

i qi(x) ≤ 1− η
2

we conclude that∑
i,j

P
Di

[Aj]E
x

[qi(x)Hi,j(x)] ≥
∑
j

P
Di

[Aj] ·
(
−O

(
n−

ε
4k

))
≥ −O

(
n−

ε
4k

)
Let B = ∪iB′i. Then the above inequality combined with (3.6.6) implies that∑

i

E [I((y, b) /∈ B)µ̄∗(x, y, b)pi(y, b)qi(x)] ≥ −O
(
n−

ε
4k

)
.

To summarize, averaging the right hand side of (the normalized version of) (3.6.4) multiplied
by µ̄∗ and restricted to instances not in B has expectation that is at least a small negative
number. Now observe that by our choice of r and R we have

P
D(p)

[B] ≤ Rnk+1
( p

2k

)r
≤ n−Ω(ε2 logn

log logn).

Recall on the left hand side of (3.6.4) we have that

1

∆n
E
x

[µ̄∗(x, y, b)(c− F (x, y, b))] ≤ −η
2

whenever (y, b) ∈ A′. Further, B ⊆ A′ and A′ has constant measure under D(p), so B cannot
be all of A′. We conclude that

1

∆n
E
x,y,b

[I((y, b) /∈ B)µ̄∗(x, y, b)(c− F (x, y, b))] ≤ −η
2

For η ≥ O
(
n−

ε
4k

)
this yields the desired contradiction.

Finally, Lemma 3.4.8 implies that µ̄∗ is a Sherali-Adams pseudo-density with high prob-
ability for both max k-sat and max k-xor. This immediately proves Theorem 3.1.1.
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Chapter 4

Semidefinite Programming Lower
Bounds

4.1 Introduction to SDP Lower Bounds

In his seminal work, [Yan91, Yan88] showed that any symmetric linear program for the
matching problem has exponential size. [Rot14] recently showed that one can drop the
symmetry requirement: any linear program for the matching problem has exponential size.
Since it is possible to optimize over matchings in polynomial time, it follows that there is a
gap between problems that have small linear formulations and problems that allow efficient
optimization.

In light of this gap, it is reasonable to ask whether semidefinite programming (SDP) can
characterize all problems that allow efficient optimization. Semidefinite programs generalize
linear programs and can be solved efficiently both in theory and practice (see [VB96]). SDPs
are the basis of some of the best algorithms currently known, for example the approximation
of [GW95] for max cut .

Following prior work (see for example [GPT11]) we define the size of an SDP formulation
as the dimension of the psd cone from which the polytope can be obtained as an affine
slice. Some recent work has shown limits to the power of small SDPs. [BDP13, BDP15]
nonconstructively give an exponential lower bound on the size of SDP formulations for
most 0/1 polytopes. [LRS15] give an exponential lower bound for solving the traveling
salesperson problem (TSP) and approximating max 3-sat. However the question of whether
the matching problem has a small SDP remains open. We give a partial negative answer to
this question by proving the analog of Yannakakis’s result for semidefinite programs:

Theorem. Any symmetric SDP for the matching problem has exponential size.

We also show that for the asymmetric metric traveling salesperson problem the optimal
symmetric semidefinite formulation of a given size is essentially achieved by the respective
level of the Lasserre hierarchy.



CHAPTER 4. SEMIDEFINITE PROGRAMMING LOWER BOUNDS 34

Main Result

The question of whether the matching problem admits a small SDP relaxation remains open.
The main result of this chapter is an analogue of the theorem of [Yan91, Yan88] for SDP
relaxations of the matching problem. Specifically, we show the following.

Theorem 4.1.1. There exists an absolute constant α > 0 such that for every ε ∈ [0, 1),
every symmetric SDP relaxation approximating the perfect matching problem within a factor
1− ε

n−1
has size at least 2αn.

Analogous to the work of [LRST14] on MaxCSPs, we will show that among all symmetric
SDP relaxations for the matching problem, the Lasserre SDP hierarchy is optimal. We will
then appeal to a result by [Gri01] that shows that Ω(n)-rounds of the Lasserre SDP hierarchy
cannot refute the existence of a perfect matching in an odd clique of size n.

The key technical obstacle in going from MaxCSPs to the matching problem is the non-
trivial algebraic structure of the underlying solution space, namely the space of all perfect
matchings. Specifically, given a multilinear polynomial F , testing whether the polynomial F
is identically zero over all perfect matchings is non-trivial in itself. In contrast, a multilinear
polynomial is nonzero over the solution space of a MaxCSP, namely the set {0, 1}n, if and
only if all the coefficients of the polynomial are zero. Roughly speaking, for the Lasserre
SDP relaxation to be optimal for the matching problem, it must at least be powerful enough
to detect whether a given polynomial is identically zero over matchings. We show that every
multilinear polynomial F that is identically zero over all perfect matchings can be certified as
such via a degree 2 deg(F )− 1 derivation, starting from the linear and quadratic constraints
that define the space of perfect matchings.

Our second result shows the optimality of Lasserre SDP relaxations among all symmetric
SDP relaxations for approximating the asymmetric metric traveling salesperson problem.
The formal statement of the result is as follows.

Theorem. For every constant ρ > 0, if there exists a symmetric SDP relaxation of size

r <
√(

2n
k

)
− 1 which achieves a ρ-approximation for asymmetric metric TSP instances

on 2n vertices, then the (2k − 1)-round Lasserre relaxation achieves a ρ-approximation for
asymmetric metric TSP instances on n vertices.

4.2 The perfect matching problem

We now present the perfect matching problem PM(n) as a maximization problem in the
framework of Section 2.4 and show that any symmetric SDP formulation has exponential
size.

Let n be an even positive integer, and let Kn denote the complete graph on n vertices.
The feasible solutions of PM(n) are all the perfect matchings M on Kn. The objective
functions fF are indexed by the edge sets F of Kn and are defined as fF (M) := |M ∩ F |.
For approximation guarantees we use S̃(f) := max f and C̃(f) := max f +ε/2 for some fixed
0 ≤ ε < 1 as in [BP15]. Since S̃(f) = max f ≤ (n− 1)/2 when f is associated with an odd
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set, we have (1 − ε/(n − 1))C̃(f) ≥ S̃(f), which establishes an inapproximability ratio of
1− ε/(n− 1).

The alternating group An acts naturally on PM(n) via permutation of vertices, and the
guarantees C̃, S̃ are An-symmetric. Our main theorem is an exponential lower bound on the
size of any An-coordinate-symmetric SDP extension of PM(n).

Theorem 4.2.1. There exists an absolute constant α > 0 such that for all even n and every
0 ≤ ε < 1, every An-coordinate-symmetric (C̃, S̃)-approximate SDP extended formulation for
the perfect matching problem PM(n) has size at least 2αn. In particular, every An-coordinate-
symmetric SDP extended formulation approximating the perfect matching problem PM(n)
within a factor of 1− ε/(n− 1) has size at least 2αn.

Lower bounds on matching

A key step in proving our lower bound is obtaining low-degree derivations of approximation
guarantees for objective functions of PM(n). Therefore we start with a standard repre-
sentation of functions as polynomials. We define the matching constraint polynomials Pn
as:

Pn := {xuvxuw | u, v, w ∈ [n] distinct}

∪

 ∑
u∈[n],u 6=v

xuv − 1

∣∣∣∣∣∣ v ∈ [n]


∪
{
x2
uv − xuv | u, v ∈ [n] distinct

}
.

(4.2.1)

Intuitively, the first set of polynomials ensures that no vertex is matched more than once, the
second set ensures that each vertex is matched, and the third set ensures that each coordinate
is 0-1 valued. We observe that the ring of real valued functions on perfect matchings is
isomorphic to R[{xuv}{u,v}∈([n]

2 )]/〈Pn〉I with xuv representing the indicator function of the

edge uv being contained in a perfect matching.
Now we formulate low-degree derivations. Let P denote a set of polynomials in R[x]. For

polynomials F and G, we write F '(P,d) G, or F is congruent to G from P in degree d, if
and only if there exist polynomials {q(p) : p ∈ P} such that

F +
∑
p∈P

q(p) · p = G

and maxp deg(q(p)·p) ≤ d. We often drop the dependence on P when it is clear from context.
We shall write F ≡ G for two polynomials F and G defining the same function on perfect
matchings, i.e., F −G ∈ 〈Pn〉I .

A crucial part of our argument is the result that any F ∈ 〈Pn〉I can be generated by
low-degree coefficients from Pn:

Theorem 4.2.2. For every polynomial F ∈ R[{xuv}{u,v}∈(n2)], if F ∈ 〈Pn〉I then

F '(Pn,2 degF−1) 0.
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The proof is presented in Section 4.2. We will also make use of the following proposition,
whose proof appears in Section 4.2:

Proposition 4.2.3. Let n ≥ 10, let k < n/2 and let H be an An-symmetric set of functions
on the set of perfect matchings of Kn of size less than

(
n
k

)
. Then for every h ∈ H there is a

vertex set W ⊆ [n] of size less than k such that h depends only on the (at most
(
k−1

2

)
) edges

in W .

We now have all the ingredients to present the proof of our main theorem.

Proof of Theorem 4.2.1. Fix an even integer n ≥ 10 and let k = dβne for some small enough
constant 0 < β < 1/2 chosen later. Suppose for a contradiction that PM(n) admits a

symmetric SDP extended formulation of size d <
√(

n
k

)
− 1.

Let m equal n/2 or n/2−1, whichever is odd. Let S = [m] and let T = {m+ 1, . . . , 2m}.
If m = n/2 then let U = {2m+ 1, 2m+ 2}, otherwise let U = ∅. Note that S ∪ T ∪U = [n]
and |S| = |T | = m = Θ(n). Consider the objective function for the set of edges E[S] on S.
Since |S| is odd we have max fE[S] = (|S| − 1)/2, from which we derive:

f(x)
def
= C̃(fE[S])− fE[S](x) =

|S| − 1

2
+
ε

2
−
∑
u,v∈S

xuv ≡
1

2

∑
u∈S,v∈T∪U

xuv −
1− ε

2
. (4.2.2)

By Lemma 2.4.2, as
(
d+1

2

)
<
(
n
k

)
, there is a constant µf ≥ 0 and an An-symmetric set H of

functions of size at most
(
n
k

)
on the set of perfect matchings with

f ≡
∑
g

g2 + µf with each g ∈ 〈H〉.

By Proposition 4.2.3, every h ∈ H depends only on the edges within a vertex set of size less
than k, and hence can be represented by a polynomial of degree less than k/2 over perfect
matchings. As the g are linear combinations of the h ∈ H, they can also be represented by
polynomials of degree less than k/2, which we assume for the rest of the proof.

Applying Theorem 4.2.2 with (4.2.2), we conclude

1

2

∑
u∈S,v∈T∪U

xuv −
1− ε

2
'(Pn,2k−1)

∑
g

g2 + µf .

We now apply the following substitution: set x2m+1,2m+2 := 1 if U is not empty, set
xu+m,v+m := xuv for each uv ∈ E[S], and set xuv := 0 otherwise. Intuitively, the substi-
tution ensures that U is matched, ensures the matching on T is identical to the matching
on S, and ensures every edge is entirely within S, T , or U . The main point is that the
substitution maps every polynomial in Pn either to 0 or into Pm.

Applying this substitution we obtain a new polynomial identity on the variables
{xuv}{u,v}∈(S2):

−1− ε
2
'(Pm,2k−1)

∑
g

g2 + µf .
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This equation is a sum of squares refutation of the existence of a perfect matching in a
clique of size m, i.e. an odd clique. By [Gri01, Corollary 2] (see also [BGIP99]), it follows
that 2k − 1 = Ω(m) = Ω(n), a contradiction when β is chosen small enough.

Proof of Proposition 4.2.3

Here we show that functions on perfect matchings with high symmetry are actually juntas :
they depend only on the edges of a small vertex set. The key is the following lemma stating
that perfect matchings coinciding on a vertex set belong to the same orbit of the pointwise
stabilizer of the vertex set. For any set W ⊆ [n] let E[W ] denote the edges of Kn with both
endpoints in W .

Lemma 4.2.4. Let S ⊆ [n] with |S| < n/2 and let M1 and M2 be perfect matchings in Kn.
If M1 ∩ E[S] = M2 ∩ E[S] then there exists σ ∈ A([n] \ S) such that σ ·M1 = M2.

Proof. Let δ(S) denote the edges with exactly one endpoint in S. There are three kinds of
edges: those in E[S], those in δ(S), and those disjoint from S. We construct σ to handle
each type of edge, then fix σ to be even.

To handle the edges in E[S] we set σ to the identity on S, since M1 ∩E[S] = M2 ∩E[S].
To handle the edges in δ(S) we note that V (M1∩δ(S)) equals V (M2∩δ(S)) when both are

restricted to S, since M1 and M2 are perfect matchings. Therefore for each edge (s, v) ∈M1

with s ∈ S and v /∈ S there is a unique edge (s, w) ∈M2 with w /∈ S; we extend σ to map v
to w for each such s.

To handle the edges disjoint from S, we again use the fact that M1 and M2 are perfect
matchings, so the number of edges in each that are disjoint from S is the same. We extend
σ to be an arbitrary bijection on those edges.

We now show that we can choose σ to be even. Since |S| < n/2 there is an edge
(u, v) ∈M2 disjoint from S. Let τu,v denote the transposition of u and v and let σ′ := τu,v ◦σ.
We have σ′ ·M1 = σ ·M1 = M2, and either σ or σ′ is even.

We also need the following lemma, which has been used extensively for symmetric linear
extended formulations. See references [Yan88, Yan91, KPT10, BP11, LRST14] for examples.

Lemma 4.2.5 ([DM96, Theorems 5.2A and 5.2B]). Let n ≥ 10 and let G ≤ An be a group.
If |An : G| <

(
n
k

)
for some k < n/2, then there is a subset W ⊆ [n] such that |W | < k, W is

G-invariant, and A([n] \W ) is a subgroup of G.

We combine the previous two lemmas to prove Proposition 4.2.3.

Proof. Applying Lemma 4.2.5 to the stabilizer of h, we obtain a subset W ⊆ [n] of size less
than k such that h is stabilized by A([n] \W ), i.e.,

h(M) = (g · h)(M) = h(g−1 ·M)

for all g ∈ A([n] \W ).
Therefore for every perfect matching M the function h is constant on the A([n]\W )-orbit

of M . As the orbit is determined by M ∩ E[W ] by Lemma 4.2.4, so is the function value
h(M). Therefore h depends only on the edges in E[W ].
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Low-degree certificates for matching ideal membership

In this section we prove Theorem 4.2.2 showing that every degree d polynomial identically
zero over perfect matchings is congruent to 0 within degree O(d).

For a partial matching M , let xM :=
∏

e∈M xe denote the product of edge variables for
the edges in M .

We rely on the following lemma, whose proof appears in Section 4.2.

Lemma 4.2.6. For any polynomial F , there is a constant cF with
∑

σ∈Sn σF '(Pn,degF ) cF .

The next lemma will allow us to apply induction:

Lemma 4.2.7. If L is a polynomial with L '(Pn−2,d) 0 for some d, and a, b are the two
additional vertices in Kn, then Lxab '(Pn,d+1) 0.

Proof. It is enough to prove the claim for L ∈ Pn−2. For L = x2
e − xe and L = xuvxuw the

claim is trivial since L ∈ Pn also. The remaining case is L =
∑

u∈Kn−2
xuv − 1 for some

v ∈ Kn−2. Then

Lxab =

(∑
u∈Kn

xuv − 1

)
xab − xavxab − xbvxab 'd+1 0.

We are now ready to prove Theorem 4.2.2.

Proof of Theorem 4.2.2. We use induction on the degree d of F . If d = 0 then F = 0 and
the statement holds trivially. (Note that '−1 is just equality.) The case d = 1 rephrased
means that the affine space spanned by the characteristic vectors of all perfect matchings is
defined by the

∑
v xuv − 1 for all vertices u. This follows from Edmonds’s description of the

perfect matching polytope by linear inequalities in [Edm65].
For the case d ≥ 2 we first prove the following claim:

Claim. If F ∈ 〈Pn〉I is a degree d polynomial and σ ∈ Sn is a permutation of vertices, then

F '(Pn,2d−1) σF.

We use induction on the degree. If d = 0 or d = 1 the claim follows from the corresponding
cases d = 0 and d = 1 of the theorem. For d ≥ 2 it is enough to prove the claim when σ
is a transposition of two vertices a and u. Note that in F − σF all monomials which are
independent of both a and u cancel:

F − σF =
∑

e : a∈e or u∈e

Lexe (4.2.3)

where each Le has degree at most d− 1. We now show that every summand is congruent to
a sum of monomials containing edges incident to both a and u. For example, for e = {a, b}
in (4.2.3) we apply the generator

∑
v xuv − 1 to find:

Labxab 'd+1 Labxab
∑
v

xuv 'd+1

∑
v

Labxabxuv.
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Therefore
F − σF 'd+1

∑
bv

L′bvxabxuv

for some polynomials L′bv of degree at most d−1. We may assume that L′bv does not contain
variables xe with e incident to a, b, u, v, as these can be removed using generators like xabxac
or x2

ab−xab. Moreover, it can be checked that L′bv is zero on all perfect matchings containing
{a, b} and {u, v}. By induction, L′bv '(Pn−4,2d−3) 0 (identifying Kn−4 with the graph Kn \
{a, b, u, v}), from which L′bv '(Pn,2d−1) 0 follows by two applications of Lemma 4.2.7. (The
special case a = v, b = u is also handled by induction and one application of Lemma 4.2.7.)
This concludes the proof of the claim.

We now apply the claim followed by Lemma 4.2.6:

F '2d−1
1

n!

∑
σ∈Sn

σF 'd
cF
n!

for a constant cF . As F ∈ 〈Pn〉I , it must be that cF = 0, and therefore F '2d−1 0.

Deriving that symmetrized polynomials are constant

In this section we prove Lemma 4.2.6. The first step is to reduce every polynomial to a linear
combination of the xM .

Lemma 4.2.8. For every polynomial F there is a polynomial F ′ with degF ′ ≤ degF and
F '(Pn,degF ) F

′, where all monomials of F ′ have the form xM for some partial matching M .

Proof. It suffices to prove the lemma when F is a monomial. Let F =
∏

e∈A x
ke
e for a set A

of edges with multiplicities ke ≥ 1. From x2
e '2 xe it follows that xke 'k xe for all k ≥ 1,

hence F 'degF

∏
e∈A xe. If A is a partial matching we are done, otherwise there are distinct

e, f ∈ A with a common vertex, hence xexf '2 0 and F 'degF 0.

Lemma 4.2.9. For any partial matching M on 2d vertices and a vertex a not covered by
M , we have

xM '(Pn,d+1)

∑
M1=M∪{a,u}
u∈Kn\(M∪{a})

xM1 . (4.2.4)

Proof. We use the generators
∑

u xau − 1 to add variables corresponding to edges at a, and
then use xauxuv to remove monomials not corresponding to a partial matching:

xM '(Pn,d+1) xM
∑
u∈Kn

xau '(Pn,d+1)

∑
M1=M∪{a,u}
u∈Kn\(M∪{a})

xM1 .

This leads to a similar congruence using all containing matchings of a larger size:
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Lemma 4.2.10. For any partial matching M of 2d vertices and d ≤ k ≤ n/2, we have

xM '(Pn,k)
1(

n/2−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′ (4.2.5)

Proof. We use induction on k − d. The start of the induction is with k = d, when the sides
of (4.2.5) are actually equal. If k > d, let a be a fixed vertex not covered by M . Applying
Lemma 4.2.9 to M and a followed by the inductive hypothesis gives:

xM '(Pn,d+1)

∑
M1=M∪{a,u}
u∈Kn\(M∪{a})

xM1 '(Pn,k)
1(

n/2−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{a,u}
u∈Kn\(M∪{a})

xM ′ .

Averaging over all vertices a not covered by M , we obtain:

xM '(Pn,k)
1

n− 2d

1(
n/2−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{a,u}
a,u∈Kn\M

xM ′

=
1

n− 2d

1(
n/2−d−1
k−d−1

)2(k − d)
∑
M ′⊃M
|M ′|=k

xM ′

=
1(

n/2−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′ .

where in the second step the factor 2(k − d) accounts for the number of ways to choose a
and u.

We are now ready to prove the main lemma.

Proof of Lemma 4.2.6. Given Lemma 4.2.8, it suffices to prove the claim for F = xM for some
partial matching M . Note that if |M | = k the size of the stabilizer of M is 2kk!(n − 2k)!,
then apply Lemma 4.2.10 with d = 0:∑

σ∈Sn

σxM = 2kk!(n− 2k)!
∑

M ′ : |M ′|=k

xM ′ 'k 2kk!(n− 2k)!

(
n/2

k

)
.
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4.3 The Metric Traveling Salesperson Problem (TSP)
revisited

In this section, we prove that a particular Lasserre SDP is optimal among all symmetric
SDP relaxations for the asymmetric metric traveling salesperson problem on Kn. The fea-
sible solutions of the problem are all permutations σ ∈ Sn. A permutation σ corresponds
to the tour in Kn in which vertex i is the σ(i)-th vertex visited. An instance I of TSP
is a set of non-negative distances dI(i, j) for each edge (i, j) ∈ Kn, obeying the trian-
gle inequality. The value of a tour σ is just the sum of the distances of edges traversed
valI(σ) =

∑
i dI(σ

−1(i), σ−1(i + 1)). The objective functions are all the valI . Note that
TSP is a minimization problem rather than a maximization problem, but the framework
presented in Section 2.4 generalizes naturally to minimization problems by just flipping the
inequalities. We shall use approximation guarantees S̃(f) = min f and C̃(f) = min f/ρ
for a factor ρ ≥ 1, and for clarity, instead of (C̃, S̃)-approximate formulation we shall use
formulation within a factor ρ.

The natural action of An on TSP is by permutation of vertices, which means here that
An acts on Sn by composition from the left: (σ1 · σ2)(i) = σ1(σ2(i)). Obviously, the problem
TSP is An-symmetric.

The ring of real-valued functions on the set Sn of feasible solutions is isomorphic to
R[{xij}{i,j}∈[n]]/〈Qn〉I , with xij being the indicator of σ(i) = j, and Qn is the set of TSP
constraints :

Qn =

∑
i∈[n]

xij − 1

∣∣∣∣∣∣ j ∈ [n]

 ∪
∑
j∈[n]

xij − 1

∣∣∣∣∣∣ i ∈ [n]


∪ {xijxik | i, j, k ∈ [n]} ∪ {xijxkj | i, j, k ∈ [n]}
∪
{
x2
ij − xij

∣∣ i, j ∈ [n]
}
.

We emphasize that the variables xij do not directly encode the edges of a Hamiltonian
cycle but instead specify a permutation of n vertices, encoded as perfect bipartite matching
on Kn,n.

The Lasserre Hierarchy for TSP is defined as follows. The (dual of) the k-th level Lasserre
SDP relaxation for a TSP instance I is given by

Maximize C

subject to valI −C '(Qn,k)

∑
p

p2 for some polynomials p.

We now state our main theorem regarding optimal SDP relaxations for TSP.

Theorem 4.3.1. Suppose that there is some coordinate A2n-symmetric SDP relaxation of

size r <
√(

n
k

)
−1 approximating TSP within some factor ρ ≥ 1 for instances on 2n vertices.

Then the (2k − 1)-level Lasserre relaxation approximates TSP within the factor of ρ on
instances on n vertices.
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To prove Theorem 4.3.1 there is an equivalent of Proposition 4.2.3 we need for TSP tours,
so that a small set of invariant functions depends only on the positions of a small number
of indices. We start with the following proposition.

Proposition 4.3.2. Let H be an An-symmetric set of functions of size
(
n
k

)
on the set of

TSP tours σ ∈ Sn. Then for every h ∈ H there is a set W ⊆ [n] of size less than k, such
that h(σ) depends only on the positions of the vertices in W in the tour σ, and the sign of σ
as a permutation.

Proof. For every h ∈ H we can apply Lemma 4.2.5 to the stabilizer of h to obtain a subset
W ⊆ [n] of size at most k such that h is stabilized by A([n] \W ). Thus for every tour σ, h
is constant on the A([n] \W )-orbit of σ. This orbit is clearly determined by the positions of
the vertices in W and, since A([n] \W ) preserves signs, the sign of the permutation σ.

Next we give a reduction which allows us to eliminate the dependence of the functions
h ∈ H on the sign of the permutation σ. In particular we encode every TSP tour σ on an n
vertex graph as some new tour Φ(σ) in a 2n vertex graph, such that Φ(σ) is always an even
permutation in S2n.

Lemma 4.3.3. Let I be an instance of TSP on Kn. Then there exists an instance I ′ of
TSP on K2n and an injective map Φ : Sn → S2n such that

1. valI(σ) = valI′(Φ(σ)) for all σ ∈ Sn.

2. For every tour τ ∈ S2n there exists σ ∈ Sn such that valI′(Φ(σ)) ≤ valI′(τ)

3. For all σ ∈ Sn the permutation Φ(σ) is even.

Proof. Given a TSP instance I on Kn we construct a new instance I ′ on K2n as follows:

• For every vertex i ∈ I add a pair of vertices i and i′ to I ′.

• For every distance d(i, j) in I add 4 edges all with the same distance d(i, j) = d(i′, j) =
d(i, j′) = d(i′, j′) to I ′.

• For every pair of vertices i, i′ ∈ I ′ add an edge of distance zero, i.e. set d(i, i′) = 0.

We will call a tour τ ∈ S2n canonical if it visits i′ immediately after i, i.e. σ(i′) = σ(i) + 1.
We will write T for the set of canonical tours in S2n. It is easy to check using the triangle
inequality that for every tour τ there is a canonical tour with no larger value. For every tour
σ in I define Φ(σ) to be the corresponding canonical tour in I ′. That is Φ(σ)(i) = 2σ(i)− 1
and Φ(σ)(i′) = 2σ(i). Note that Φ : Sn → S2n is an injective map whose image is all of T .
By construction we have:

valI(σ) ≡ valI′(Φ(σ))

which proves property (1). Property (2) follows from the fact that every tour τ ∈ S2n has a
canonical tour with no larger value, and that T is the image of Φ.

For property (3), note that every canonical tour is an even permutation. To see why sup-
pose σ ∈ Sn is given by σ = (i1, j1)(i2, j2), . . . , (im, jm) where (i, j) denotes the permutation
that swaps i and j. Then Φ(σ) = (i1, j1)(i′1, j

′
1), . . . , (im, jm)(i′m, j

′
m) is comprised of 2m swap

permutations, and is therefore even.
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The last ingredient we need is a version of Theorem 4.2.2 for the TSP.

Theorem 4.3.4. If F is a multilinear polynomial whose monomials are partial matchings
on Kn,n and F ∈ 〈Qn〉I , then F '(Qn,2 degF−1) 0.

Because Qn is so similar to Pn, it should come as no surprise that the proof of the above
theorem is extremely similar to the proof of Theorem 4.2.2. We include the full proof for
completeness, but defer it to Section 4.3. We now have all the tools necessary to prove
Theorem 4.3.1.

Proof of Theorem 4.3.1. First let I be an instance of TSP on Kn. Use Lemma 4.3.3 to
construct a TSP instance I ′ on K2n and the corresponding map Φ. Now assume we have

an arbitrary A2n-symmetric SDP relaxation of size d <
√(

2n
k

)
− 1 for TSP on K2n. By

Lemma 2.4.2 there is a corresponding A2n-symmetric family of functions H′ of size
(
d+1

2

)
such that whenever minτ valI′(τ) ≥ S̃(valI′) we have:

valI′(τ)− C̃(valI′) ≡
∑
j

hj(τ)2 + µI′ where hj ∈ 〈H′〉 and µI′ ≥ 0 .

Let h′ ∈ H′. By Proposition 4.3.2 h′(τ) depends only on some subset W ′ of size at most k,
and possibly on the sign of τ .

Now we restrict the above relaxation to the image of Φ. By Lemma 4.3.3 this does not
change the optimum. Using the fact that valI(σ) ≡ valI′(Φ(σ)) and setting µI = µI′ then
gives rise to a new relaxation where whenever minσ valI(σ) ≥ S̃(valI) we have:

valI(σ)− C̃(valI) ≡
∑
j

hj(Φ(σ))2 + µI where hj ∈ 〈H′〉 and µI ≥ 0

as S̃(valI) = S̃(valI′) and C̃(valI) = C̃(valI′) by Lemma 4.3.3. Next for each h′ ∈ H′ define
h : Sn → R by h(σ) = h′(Φ(σ)). Since Φ(σ) is even, we then have that each h depends only
on the position of some subset W ⊆ [n] of size at most k. Such a function can be written as
a degree k polynomial p in the variables xij so that p(xσ) ≡ f(σ) on the vertices of PTSP (n).
Now by Theorem 4.3.4 we have that p '(Qn,2k−1) h. Since µI ≥ 0 it is clearly the square of

a (constant) polynomial, and we conclude that whenever minσ valI(σ) ≤ S̃(valI) we have:

fI(x)−min fI/ρ '(Qn,2k−1)

∑
p

p(x)2

which is precisely the statement that the (2k − 1)-level Lasserre relaxation for PTSP (n) is a
ρ-approximation.

Low-degree certificates for tour ideal membership

In this section we prove Theorem 4.3.4 showing that every degree d polynomial identically
zero over TSP tours is congruent to 0 within degree O(d).
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Note that any partial tour τ can be thought of as a partial matching M in Kn,n, namely
if τ(i) = j, then M includes the edge (i, j). Because of this, it will come as no surprise that
the proof proceeds in a very similar manner to Section 4.2, and hereafter we shall always
refer to partial matchings on Kn,n rather than on Kn.

For a partial matching M , let xM :=
∏

e∈M xe denote the product of edge variables for
the edges in M . The first step is to reduce every polynomial to a linear combination of the
xM .

Lemma 4.3.5. For every polynomial F there is a polynomial F ′ with degF ′ ≤ degF and
F '(Qn,degF ) F

′, where all monomials of F have the form xM for some partial matching M .

Proof. It is enough to prove the lemma when F is a monomial: F =
∏

e∈A x
ke
e for a set

A ⊆ E[Kn,n] of edges with multiplicities ke ≥ 1. From x2
e '2 xe it follows that xke 'k xe for

all k ≥ 1, hence F 'degF

∏
e∈A xe, proving the claim if A is a partial matching. If A is not

a partial matching, then there are distinct e, f ∈ A with a common vertex, hence xexf '2 0
and F 'degF 0.

The rest of the proof proceeds identically to Theorem 4.2.2, but we let the symmetric
group act on polynomials slightly differently. If Kn,n = Un∪Vn is the bipartite decomposition
of Kn,n, then we only let the permutation group act on the labels of vertices of Un, i.e.
σx(a,b) = x(σ(a),b). We show that under this action, symmetrized polynomials are congruent
to a constant, which can again be seen in the same sequence of lemmas:

Lemma 4.3.6. For any partial matching M on 2d vertices and a vertex a ∈ Un not covered
by M , we have

xM '(Qn,d+1)

∑
M1=M∪{a,u}
v∈Vn\(M∩Vn)

xM1 . (4.3.1)

Proof. We use the generators
∑

v xav − 1 to add variables corresponding to edges at a, and
then use xavxbv to remove monomials not corresponding to a partial matching:

xM '(Qn,d+1) xM
∑
v∈Vn

xav '(Qn,d+1)

∑
M1=M∪{a,v}
v∈Vn\(M∩Vn)

xM1 .

This leads to a similar congruence using all containing matchings of a larger size:

Lemma 4.3.7. For any partial matching M of 2d vertices and d ≤ k ≤ n, we have

xM '(Qn,k)
1(
n−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′ (4.3.2)
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Proof. We use induction on k− d. The start of the induction is when k = d, when the sides
of Equation (4.3.2) are equal.

If k > d, let a ∈ Un be a fixed vertex not covered by M . Applying Lemma 4.3.6 to M
and a followed by the inductive hypothesis gives:

xM '(Qn,d+1)

∑
M1=M∪{a,u}
u∈Vn\(M∩Vn)

xM1 '(Qn,k)
1(

n−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{a,u}
u∈Vn\(M∩Vn)

xM ′ .

Averaging over all vertices a ∈ Un not covered by M , we obtain

xM '(Qn,k)
1

n− d
1(

n−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{a,u}
a∈Un\(M∩Un)
u∈Vn\(M∩Vn)

xM ′

=
1

n− d
1(

n−d−1
k−d−1

)(k − d)
∑
M ′⊃M
|M ′|=k

xM ′

=
1(
n−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′ .

Corollary 4.3.8. For any polynomial F , there is a constant cF with
∑

σ∈Sn σF '(Qn,degF )

cF .

Proof. In view of Lemma 4.3.5, it is enough to prove the claim for F = xM for some partial
matching M on 2k vertices, which is an easy application of Lemma 4.3.7 with d = 0:∑

σ∈Sn

σxM = (n− k)!
∑

M ′ : |M ′|=k

xM ′ 'k (n− k)!

(
n

k

)
.

The next lemma will allow us to apply induction:

Lemma 4.3.9. If L is a polynomial with L '(Qn−2,d) 0 and a, b are the additional vertices
in Qn then Lxabxba '(Qn,d+2) 0.

Proof. It is enough to prove the claim when L is from Qn−2. For L = x2
e − xe, L = xuvxuw,

and L = xuvxwv the claim is trivial, as then L ∈ Qn. The remaining cases are

1. L =
∑

u∈Un−2
xuv − 1 for some v ∈ Vn−2
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2. L =
∑

v∈Vn−2
xuv − 1 for some u ∈ Un−2

. We only deal with the first case, as the second one is analogous. Then

Lxabxba =

(∑
u∈Un

xuv − 1

)
xabxba − xavxabxba − xbvxabxba '(Qn,d+1) 0.

We are now ready to prove Theorem 4.3.4.

Proof of Theorem 4.3.4. We use induction on the degree d of F . The case d = 0 is obvious,
as then clearly F = 0. (Note that '−1 is just equality.) The case d = 1 rephrased means
that the affine space spanned by the characteristic vectors of all perfect matchings is defined
by the

∑
v xuv − 1 for all vertices u. This follows again from Edmonds’s description of the

perfect matching polytope by linear inequalities in [Edm65] (valid for any graph in addition
to K2n and Kn,n).

For the case d ≥ 2 we first prove the following claim:

Claim. If F ∈ 〈Qn〉I is a degree d polynomial and σ ∈ Sn is a permutation of vertices, then

F '(Qn,2d−1) σF.

We use induction on the degree. If d = 0 or d = 1 the claim follows from the corresponding
cases d = 0 and d = 1 of the theorem. For d ≥ 2 it is enough to prove the claim when σ is
a transposition of two vertices a and u. Note that in F − σF all monomials which do not
contain an xe with e incident to a or u on the left cancel:

F − σF =
∑

e : e=(a,r) or e=(u,r)

Lexe (4.3.3)

where each Le has degree at most d− 1. We now show that every summand is congruent to
a sum of monomials containing edges incident to both a and u on the left. For example, for
e = {a, b} in (4.3.3), we apply the generator

∑
v xuv − 1 to find:

Labxab 'd+1 Labxab
∑
v

xuv 'd+1

∑
v

Labxabxuv.

Therefore
F − σF 'd+1

∑
bv

L′bvxabxuv

for some polynomials L′bv of degree at most d−1. We may assume that L′bv does not contain
variables xe with e incident to a, u on the left or b, v on the right, as these can be removed
using generators like xabxac or x2

ab − xab. Moreover, since F is zero on all perfect matchings,
it can be checked that L′bv is zero on all perfect matchings containing {a, b} and {u, v}. By
induction, L′bv '(Qn−4,2d−3) 0 (identifying Kn−4 with the graph Kn \ {a, b, u, v}), from which
L′bv '(Qn,2d−1) 0 follows by two applications of Lemma 4.3.9. (The special case a = v, b = u
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is also handled by induction and one application of Lemma 4.3.9.) This concludes the proof
of the claim.

We now apply the claim followed by Corollary 4.3.8:

F '2d−1
1

n!

∑
σ∈Sn

σF 'd
cF
n!

for a constant cF . As F ∈ 〈Qn〉I , it must be that cF = 0, and therefore F '2d−1 0.
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[BFPS12] Gábor Braun, Samuel Fiorini, Sebastian Pokutta, and David Steurer, Approxi-
mation limits of linear programs (beyond hierarchies), FOCS, 2012, pp. 480–489.

[BGIP99] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi, Linear gaps
between degrees for the polynomial calculus modulo distinct primes, Proceedings
of the thirty-first annual ACM symposium on Theory of computing, ACM, 1999,
pp. 547–556.
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