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Real-world distributed systems are rarely built as a monolithic system. Instead, they are a composition of

multiple interacting components that together ensure the desired system specification. Programming these

systems is challenging as one must deal with both concurrency and failures. This paper proposes techniques

for building reliable distributed systems with two central contributions: (1) We propose a module system

based on the theory of compositional trace refinement for dynamic systems consisting of asynchronously-

communicating state machines, where state machines can be dynamically created and communication topology

of the existing state machines can change at runtime; (2) We present ModP, a programming system that

implements our module system to enable compositional (assume-guarantee) testing of distributed systems.

We demonstrate the efficacy of our framework by building two practical distributed systems, a fault-tolerant

transaction commit service and a fault-tolerant replicated hash-table. Our framework helps implement these

systems modularly and validate them via compositional systematic testing. We empirically demonstrate that

using abstraction-based compositional reasoning helps amplify the coverage during testing and scale it to

real-world distributed systems. The distributed services built usingModP achieve performance comparable to

open-source equivalents.
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1 INTRODUCTION
Distributed systems are notoriously hard to get right. Programming these systems is challenging

because of the need to reason about numerous control paths resulting from the myriad interleaving

of messages and failures. Unsurprisingly, it is easy to introduce subtle errors while improvising to

fill in gaps between protocol descriptions and their concrete implementations [Chandra et al. 2007].

Existing validation methods for distributed systems fall into two categories: proof-based veri-
fication and systematic testing. Researchers have used theorem provers to construct correctness

proofs of both single-node systems [Chen et al. 2015; Hawblitzel et al. 2014; Klein et al. 2009; Leroy

2009; Sigurbjarnarson et al. 2016; Wang et al. 2014; Yang and Hawblitzel 2010] and distributed

systems [Hawblitzel et al. 2015; Padon et al. 2016; Wilcox et al. 2015]. To prove a safety property

on a distributed system, one typically needs to formulate an inductive invariant. Moreover, the

inductive invariant often uses quantifiers, leading to unpredictable verification time and requiring

significant manual assistance. While invariant synthesis techniques show promise, the synthesis of

quantified invariants for large-scale distributed systems remains difficult. In contrast to proof-based

verification, systematic testing explores behaviors of the system in order to find violations of safety

specifications [Guo et al. 2011; Killian et al. 2007b; Yang et al. 2009]. Systematic testing is attractive
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to programmers as it is mostly automatic and needs less expert guidance. Unfortunately, even

state-of-the-art systematic testing techniques scale poorly with increasing system complexity.

A distributed system is rarely built as a standalone monolithic system. Instead, it is composed

of multiple independent interacting components that together ensure the desired system-level

specification (e.g., our case study in Figure 1). One can scale systematic testing to large, industrial-

scale implementations by decomposing the system-level testing problem into a collection of simpler

component-level testing problems. Moreover, the results of component-level testing can be lifted to

the whole system level by leveraging the theory of assume-guarantee (AG) reasoning [Abadi and

Lamport 1995; Alur and Henzinger 1999; McMillan 2000]. We present a programming and testing

framework, ModP, based on the principles of AG reasoning for dynamic distributed systems. ModP
occupies a spot between proofs and black-box monolithic testing in terms of the trade-off between

validation coverage and programmer effort.

Actors [Agha 1986; Akka 2017; Armstrong 2007; Bykov et al. 2010; Pony 2017] and state ma-

chines [Desai et al. 2013; Harel 1987; Killian et al. 2007a] are popular paradigms for programming

distributed systems. These programming models support features like dynamic creation of machines

(processes), directed messaging using machine references (as opposed to broadcast), and a chang-

ing communication topology as references can flow through the system (essential for modeling

non-determinism like failures).ModP supports the actor [Agha 1986] model of computation and

proposes extensions to make it amenable to compositional reasoning.

These dynamic features have an important impact on assume-guarantee (AG) reasoning, which

typically relies on having clear component interfaces – e.g., wires between circuits or shared

variables between programs [Alur and Henzinger 1999; Lynch and Tuttle 1987]. In dynamic dis-

tributed systems, interfaces between modules can change as new state machines are instantiated or

communication topology changes, and this dynamic behavior depends on the context of a module.

While some formalisms for AG reasoning [Attie and Lynch 2001; Fisher et al. 2011] support such

dynamic features, they do not provide a programming framework for building practical dynamic

distributed systems. Thus, to the best of our knowledge, ModP is the first system that supports

assume-guarantee reasoning in a practical programming language with these dynamic features.

ModP introduces a module system to compositionally build a distributed system. AModP module
is a collection of dynamically-created and concurrently-executing state machines whose semantics

is a collection of traces over externally visible actions. We formalize refinement as trace containment

and define the semantics of ModP modules so that composition of modules P and Q behaves like

language intersection over the traces of P and Q . ModP provides operators for hiding actions of
a module, to construct a more abstract module. To ensure that compositional refinement holds

in the presence of hiding, an especially challenging problem in a language where permission

(machine-reference) to send events flows dynamically across machines, we use a methodology

based on permission-based capabilities control [Hennessy and Riely 2002; Riely and Hennessy 1998].

Finally,ModP introduces a notion of interfaces as a proxy for state machines. Instead of creating

state machines directly, ModP requires creating a machine indirectly as an instantiation of an

interface, with the binding from an interface to the machine specified explicitly by the programmer.

Separating the specification of the interface binding from the code that instantiates it allows

flexibility in specializing machines and substituting one machine for another.

We have implementedModP on top of P [Desai et al. 2013], a state machine based programming

language that supports the dynamic features required for building realistic asynchronous systems.

P has been used for implementing Windows device drivers [Desai et al. 2013] and for programming

safe robotics systems [Desai et al. 2017a,b]. The ModP compiler generates code for compositional

testing, which involves both safety and refinement testing of the decomposed system.We empirically
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Compositional Programming and Testing of Dynamic Distributed Systems 1:3

demonstrate that ModP’s abstraction-based decomposition helps the existing P systematic testing

(both explicit and symbolic execution) back-ends to scale to large distributed systems.

Fig. 1. Fault-Tolerant Distributed Services

Figure 1 shows two large distributed services that are

representative of challenges in real-world distributed sys-

tems: (i) atomic commit of updates to decentralized, par-

titioned data using two-phase commit [Gray and Lam-

port 2006], and (ii) replicated data structures such as

hash-tables and lists. These services use State Machine

Replication (SMR) for fault-tolerance. Protocols for SMR,

such as Multi-Paxos [Lamport 1998] and Chain Replica-

tion [van Renesse and Schneider 2004], in turn use other

protocols like leader election, failure detectors, and net-

work channels. To evaluateModP, we implemented each

sub-protocol (diagonal lines) as a separate module and

performed compositional reasoning at each layer of the

protocol stack. The AG approach would be to test each of the sub-protocol in isolation using

abstractions of the other protocols. For example, when testing the two-phase commit protocol,

we replace the Multi-Paxos based SMR implementation with its single process linearizability ab-

straction. Our evaluation demonstrates that such abstraction based decomposition provides orders

of magnitude test-coverage amplification compared to monolithic testing. Further, our approach

for checking refinement through testing is effective in finding errors in module abstractions. We

compare the performance of the hash-table distributed service against its open-source counterpart

by benchmarking it on a cluster; to demonstrate that the case study software stack implementation

is realistic and sufficiently detailed.

To summarize, this paper makes the following novel contributions:

1. We present a new theory of compositional refinement and a module system for the assume-

guarantee reasoning of dynamic distributed systems;

2. We implement a programming framework, ModP, that leverages this theory to enable composi-

tional systematic testing of distributed systems, and

3. UsingModP, we build two fault-tolerant distributed services for demonstrating the applicability

of compositional programming and testing; we present an empirical evaluation of the systematic

testing and runtime performance of these distributed services that combine 7 different protocols.

2 OVERVIEW
We illustrate the ModP framework for compositionally implementing, specifying, and testing

distributed systems by developing a simple client-server application.

2.1 Basic Programming Constructs in ModP

ModP builds on top of P [Desai et al. 2013], an actor-oriented [Agha 1986] programming language

where actors are implemented as state machines. A ModP program comprises state machines

communicating asynchronously with each other using events accompanied by typed data values.

Each machine has an input buffer, event handlers, and a local store. The machines run concurrently,

receiving and sending events, creating new machines, and updating the local store.

We introduce the key constructs ofModP through a simple client-server application (see Figure 2)

implemented as a collection ofModP state machines. In this example, the client sends a request

to the server and waits for a response; on receiving a response from the server, it computes the
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next request to send, and repeats this in a loop. The server waits for a request from the client; on

receiving a request it interacts with a helper protocol to compute the response for the client.

(a) Client State Machine (b) Server State Machine

Fig. 2. A Client-Server Application using ModP State Machines

Events and Interfaces. An event declaration has a name and a payload type associated with it.

Figure 2a (line 2) declares an event eRequest that must be accompanied by a tuple of type RequestType.

Figure 2a (line 6) declares the named tuple type RequestType. ModP supports primitive types like

int, bool, float, and complex types like tuples, sequences and maps. Each interface declaration has

an interface name and a set of events that the interface can receive. For example, the interface

ClientIT declared at Figure 2b (line 3) is willing to receive only event eResponse. Interfaces are like

symbolic names for machines. InModP, unlike in the actor model where an instance of an actor

is created using its name, an instance of a machine is created indirectly by performing new of

an interface and linking the interface to the machine separately. For example, execution of the

statement server = new ServerToClientIT at Figure 2a (line 17) creates a fresh instance of machine

ServerImpl and stores a unique reference to the new machine instance in server. The link between

ServerToClientIT and ServerImpl is provided separately by the programmer using the bind operation

(details in Section 2.2).

Machines. Figure 2a (line 10) declares a machine ClientImpl that is willing to receive event

eResponse, guarantees to send no event other than eRequest, and guarantees to create (by executing

new) no interface other than ServerToClientIT. The body of a state machine contains variables and

states. Each state can have an entry function and a set of event handlers. Each time the machine

transitions into a state, the entry function of that state is executed. After executing the entry

function, the machine tries to dequeue an event from the input buffer or blocks if the buffer is empty.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Compositional Programming and Testing of Dynamic Distributed Systems 1:5

Upon dequeuing an event from the input queue of the machine, the attached handler is executed.

Figure 2a (line 30) declares an event-handler in the StartPumpingRequests state for the eResponse event,

the payload argument stores the payload value associated with the dequeued eResponse event. The

machine transitions from one state to another on executing the goto statement. Executing the

statement send t,e,v adds event e with payload value v into the buffer of the target machine t.
Sends are buffered, non-blocking, and directed. For example, the send statement Figure 2a (line

25) sends eRequest event to the machine referenced by the server identifier. In ModP, the type of a
machine-reference variable is the name of an interface (Section 3.2).

Next, we walk through the implementation of the client (ClientImpl) and the server (ServerImpl)

machines in Figure 2. Let us assume that the interfaces ServerToClientIT, ClientIT, and HelperIT are

programmatically linked to the machines ServerImpl, ClientImpl, and HelperImpl respectively (we

explain these bindings in Section 2.2). A fresh instance of a ClientImpl machine starts in the Init

state and executes its entry function; it first creates the interface ServerToClientIT that leads to the

creation of an instance of the ServerImpl machine, and then transitions to the StartPumpingRequests

state. In the StartPumpingRequests state, it sends a eRequest event to the server with a payload value

and then blocks for a eResponse event. On receiving the eResponse event, it computes the next value

to be sent to the server and transitions back to the StartPumpingRequests state. The this keyword is

the “self” identifier that references the machine itself. The ServerImpl machine starts by creating

the HelperImpl machine and moves to the WaitForRequests state. On receiving a eResponse event, the

server interacts with the helper machine to compute the result that it sends back to the client.

Dynamism. There are two key features that lead to dynamism in this model of computation,

making compositional reasoning challenging: (1) Machines can be created dynamically during the

execution of the program using the new operation that returns a reference to the newly-created

machine. (2) References to machines are first class values and the payload in the sent event can

contain references to other machines. Hence, the communication topology can change dynamically
during the execution of the program.

2.2 Compositional Programming using ModP Modules
ModP allows the programmer to decompose a complex system into simple components where each

component is a ModP module. Figure 3 presents a modular implementation of the client-server

application. A primitive module in ModP is a set of bindings from interfaces to state machines.

Fig. 3. Modular Client-Server Implementation

ServerModule is a primitive module consist-

ing of machines ServerImpl and HelperImpl

where the ServerImpl machine is bound to

the ServerToClientIT interface and the HelperImpl

machine is bound to the HelperIT interface.

The compiler ensures that the creation of an

interface leads to the creation of a machine

to which it binds. For example, creation of

the ServerToClientIT interface (executing new

ServerToClientIT) by any machine inside the

module or by any machine in the environment

(i.e., outside ServerModule) would lead to the cre-

ation of an instance of ServerImpl machine.

The client-server application (Figure 2) can be implemented modularly as two separate modules

ClientModule and ServerModule; these modules can be implemented and tested in isolation. Modules

in ModP are open systems, i.e., machines inside the module may create interfaces that are not

bound in the module, similarly, machines may send events to or receive events from machines

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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that are not in the module. For example, the ClientImpl machine in ClientModule creates an interface

ServerToClientIT that is not bound to any machine in ClientModule, it sends eRequest and receives

eResponse from machines that are not in ClientModule.

Composition inModP (denoted | |) is supported by type checking. If the composition type checks

(typing rules for module constructors are defined in Section 4) then the composition of modules

behaves like language intersection over the traces of the modules. The compiler ensures that the

joint actions in the composed module (ClientModule || ServerModule) are linked appropriately, e.g.,

the creation of the interface ServerToClientIT (Figure 2a line 18) in ClientModule is linked to ServerImpl

in ServerModule and all the sends of eRequest events are enqueued in the corresponding ServerImpl

machine. The compiler generates C code for the module in the implementation declaration.

Note that the indirection enabled by the use of interfaces is critical for implementing the key

feature of substitution required for modular programming, i.e., the ability to seamlessly replace one

implementation module with another. For example, ServerModule' (Figure 3 line 11) represents a

module where the server protocol is implemented by a different machine ServerImpl'. In module

ClientModule || ServerModule', the creation of an interface ServerToClientIT in the client machine is

linked to machine ServerImpl'. The substitution feature is also critical for compositional reasoning,

in which case, an implementation module is replaced by its abstraction.

2.3 Compositional Testing using ModP Modules
Monolithic testing of large distributed systems is prohibitively expensive due to an explosion of

behaviors caused by concurrency and failures. TheModP approach to this problem is to use the

principle of assume-guarantee reasoning for decomposing the monolithic system-level testing

problem into simpler component-level testing problems; testing each component in isolation using

abstractions of the other components.

(a) Abstraction and Specifications (b) Test Declarations for Compositional Testing

Fig. 4. Compositional Testing of the Client-Server Application using ModP Modules

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Spec machines. In ModP, a programmer can specify temporal properties via specification

machines (monitors). spec s observes E1, E2 { .. } declares a specification machine s that observes
events E1 and E2. If the programmer chooses to attach s to a module M, the code in M is instrumented

automatically to forward any event-payload pair (e,v) to s if e is in the observes list of s; the
handler for event e inside s executes synchronously with the delivery of e . The specification

machines observe only the output events of a module. Thus, specification machines introduce a

publish-subscribe mechanism for monitoring events to check temporal specifications while testing

a ModP module. The module constructor assert s in P attaches specification machine s to module

P. In Figure 4a, ReqIdsAreMonoInc and ResIdsAreMonoInc are specification machines observing events

eRequest and eResponse to assert the safety property that the reqId and resId in the payload of these

events are always monotonically increasing. Note that ReqIdsAreMonoInc is a property of the client

machine and ResIdsAreMonoInc is a property of the server machine.

InModP, abstractions used for assume-guarantee reasoning are also implemented as modules.

For example, AbstractServerModule is an abstraction of the ServerModule where the AbstractServerImpl

machine implements an abstraction of the interaction between ServerImpl and HelperImpl machine.

The AbstractServerImpl machine on receiving a request simply sends back a random response.

ModP enables decomposing the monolithic problem of checking: (assert ReqIdsAreMonoInc,

ResIdsAreMonoInc in ClientModule || ServerModule) into four simple proof obligations.ModP allows

the programmer to write each obligation as a test-declaration. The declaration test tname: P

introduces a safety test obligation that the executions of module P do not result in a failure/error.

The declaration test tname: P refines Q introduces a test obligation that module P refines module

Q. The notion of refinement in ModP is trace-containment based only on externally visible actions,

i.e., P refines Q, if every trace of P projected onto the visible actions of Q is also a trace of Q.
ModP automatically discharges these test obligations using systematic testing. Using the theory

of compositional safety (Theorem 5.3), we decompose the monolithic safety checking problem

into two obligations (tests) test0 and test1 (Figure 4b). These tests use abstractions to check that

each module satisfies its safety specification. Note that interfaces and the programmable bindings

together enable substitution during compositional reasoning. For example, ServerToClientIT gets

linked to ServerImpl in implementation but to its abstraction AbstractServerImpl during testing.

Meaningful testing requires that these abstractions used for decomposition are sound. To this

end,ModP module system supports circular assume-guarantee reasoning (Theorem 5.4) to validate

the abstractions. Tests test2 and test3 perform the necessary refinement checking to ensure the

soundness of the decomposition (test0,test1). The challenge addressed by our module system is

to provide the theorems of compositional safety and circular assume-guarantee for a dynamic

programming model of ModP state machines.

ModP module system also provides module constructors like hide for hiding events (interfaces)

and rename for renaming of conflicting actions for more flexible composition. Hide operation

introduces privates events (interface) into a module, it can be used to converts some of the visible

actions of a module into private actions that are no longer part of its visible trace. For example,

assume that modules AbstractServerModule and ServerModule use event X internally for completely

different purposes. In that case, the refinement check between them is more likely to hold if X is not

part of the visible trace of the abstract module. Figure 4b (line 28-33) show how hide can be used in

such cases. Ensuring compositional refinement for a dynamic language likeModP is particularly

challenging in the presence of private events (Section 4.2)

2.4 Roadmap
ModP’s module system supports two key theorems for the compositional reasoning of distributed

systems: Compositional Safety (Theorem 5.3) and Circular Assume-Guarantee (Theorem 5.4). We use

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Section 3 through Section 5.1 to build up to these theorems. The module system formalized in this

paper can be adapted to any actor-oriented programming language provided certain extensions can

be applied. We describe these extensions that ModP state machines make to the P state machines

in Section 3. For defining the operational semantics of a module and to ensure that composition
is intersection, it is essential that constructed modules are well-formed. Section 4 presents the

type-checking rules to ensure well-formedness for a module. Section 5.1 presents the operational

semantics of a well-formed module. Finally, we describe how we apply the theory of compositional

refinement to test distributed systems (Section 6) and present our empirical results (Section 8).

3 ModP STATE MACHINES
A module inModP is a collection of the dynamic instances ofModP state machines. In this section,

we describe the extensions ModP state machines makes to P state machines in terms of syntactic

constructs and semantics. These extensions to P state machines are required for defining the

operational semantics of ModP modules (Section 4) and making them amenable to compositional

reasoning (Section 5.2).

(Extension 1): we add interfaces that are symbolic names for machines. In ModP, as described
in Section 2.1, an instance of a machine is created indirectly by performing new of an interface

(instead of new of a machine in P).
(Extension 2): we extend Pmachines with annotations declaring the set of receive, send and create

actions the dynamic instance of that machine can perform. These annotations are used to statically

infer the actions a module can perform based on the actions of its comprising machines.

(Extension 3): we extend the semantics of send in P to provide the guarantee that aModP state

machine can never receive an event (from any other machine) that is not listed in its receive set.

This is achieved by extending machine identifiers with permissions (more details in Section 3.2).

3.1 Semantics of ModP State Machines
Let E represent the set of names of all the events. Permissions is a nonempty subset of E; Let K
represent the set of all permissions (2

E \ {∅}). Let I and M represent the sets of names of all

interfaces and machines, respectively; these sets are disjoint from each other. Let S represent the

set of all possible values the local state of a machine could have during execution. The local state

of a machine represents everything that can influence the execution of the machine, including

control stack and data structures. The buffer associated with a machine is modeled separately. Let

B represent the set of all possible buffer values. The input buffer of a machine is a sequence of

(e,v) ∈ E × V pairs, where V represent the set of all possible payloads that may accompany any

event in a send action. Let Z be the set of all the machine identifiers.

AModP state machine is a tuple (MRecvs,MSends,MCreates, Rem, Enq,New, Local) where:
1. MRecvs ⊆ E is the nonempty set of events received by the machine.

2. MSends ⊆ E is the set of all events sent by the machine.

3. MCreates ⊆ I is the set of interfaces created by the machine.

4. Rem ⊆ S × B ×N × S is the transition relation for removing a message from the input buffer. If

(s,b,n, s ′) ∈ Rem, then the n-th entry in the input buffer b is removed and the local state moves

from s to s ′.

5. Enq ⊆ S × Z × E × V × S is the transition relation for sending a message to a machine. If

(s, id, e,v, s ′) ∈ Enq, then event e with payload v is sent to machine id and the local state of the

sender moves from s to s ′.

6. New ⊆ S × I × S is the transition relation for creating an interface. If (s, i, s ′) ∈ New, then the

machine linked against interface i is created and the machine moves from s to s ′.
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7. Local ⊆ S × Z × S × Z is the transition relation for local computation in the machine. The

state of a machine is a pair (s, id) ∈ S ×Z. The first component s is the machine local state. The

second component id is a placeholder used to store the identifier of a freshly-created machine

or to indicate the target of a send operation. If (s, id, s ′, id ′) ∈ Local, then the state can move

from (s, id) to (s ′, id ′), which allows us to model the movement of machine identifiers from s to
id and vice-versa. The role of id will become clearer when we use it to define the operational

semantics of the module (Section 5.1).

We refer to components of machinem ∈ M as MRecvs(m), MSends(m), MCreates(m), Rem(m),
Enq(m),New(m), and Local(m) respectively.We use IRecvs(i) to refer to the receive set corresponding
to an interface i ∈ I.

3.2 Machine Identifiers with Permissions
A machine can send an event to another machine only if it has access to the receiver’s machine

identifier. The capability of a machine to send an event to another machine can change dynamically

as machine identifiers can be passed from one machine to another. There are two key properties

required for the compositional reasoning of communicating state machines using our module

system: (1) a machine never receives an event that is not in its receive set, this property is required

when formalizing the open module semantics of ModP modules and its receptiveness to input

events (Section 5.1); (2) the capability to send a private (internal) event of a module does not leak
outside the module, this property is required to ensure that compositional refinement in the presence

of private events (Section 4.2). These properties are particularly challenging in the presence of

machine-identifier that can flow freely. Our solution is similar in spirit to permissions based

capability control for π -calculus [Hennessy and Riely 2002; Pierce and Sangiorgi 1996] where

permissions are associated with channels or locations and enforced using type-systems.

We concretize the set of machine identifiers Z as I × N × K . For our formalization, we are

interested in machine identifiers that are embedded inside the data structures in a machine local

state s ∈ S or a valuev ∈ V . Instead of formalizing all datatypes inModP, we assume the existence

of a function ids such that ids(s) is the set containing all machine identifiers embedded in s and
ids(v) is the set containing all machine identifiers embedded in v . An identifier (i,n,α) ∈ Z refers

to the n-th instance of an interface represented by i ∈ I. We refer to the final component α of

a machine identifier as its permissions. This set α represents all the events that may be sent via

this machine identifier using the send operation. The creation of an interface I returns a machine

identifier (I,n, β) ∈ Z referencing to the n-th instance of interface Iwhere β represents the receive

set associated with the interface I (β = IRecvs(I)). TheModP compiler checks that if an interface I
is bound to M in a module, then the received events of I are contained in the received events of M
(IRecvs(I) ⊆ MRecvs(M)). Hence, the events that can be sent using an identifier is a subset of the

events that the machine can receive. This mechanism ensures that a machine never receives an

event that it has not declared in its receive set. Note that the permissions embedded in a machine

identifier control the capabilities associated with that identifier.

In order to control the flow of these capabilities, ModP requires the programmer to annotate

each event with a set A ∈ 2
K
of allowed permissions. For an event e , the set A(e) represents any

permission that the programmer can put inside the payload accompanying e i.e., if v represents

any legal payload value with e then ∀(_, _,α) ∈ ids(v),α ∈ A(e). In other words, A(e) represents
the set of permissions that can be transferred from one machine to another using event e .
Finally, the modified send operation send t,e,v succeeds only if: (1) e is in the permissions

of machine identifier t, to ensure t receives only those events that are in its receives set, and

(2) all permissions embedded in v are in A(e), the send fails otherwise (captured as the (SendOk)
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condition when defining the semantics of send in Section 5.1). This changed semantics of send
based on permission-based capability control plays a key role in ensuring well-formedness of the

hide operation that adds private events to a module (Section 4.2).

To statically check the permission that is passed using an event, we need to reflect the permission

of a machine-reference stored in a variable in the variable’s type. Recollect that, the type of a

machine-reference variable is the name of an interface (Figure 2). An interface type represents the

set of machine-identifiers whose permission is the receives events set of the interface. In other

words, the type of a machine-identifier represents the permission stored in it. Thus, the static type

of the payload associated with an event can be used to infer the permissions that can be embedded

in it and the check (2) above for the correctness of the send operation can be performed statically.

Remark 3.1. The module system formalized in this paper can be adopted to any actor-oriented

programming language whose semantics is as described in Section 3.1 and can be extended with

the three features (Extension 1) − (Extension 3).

4 MODULES
ModP seeks to manage the complexity of a distributed system by designing it in a structured

way, at different levels of abstractions and modularly as the composition of interacting simpler

modules. Figure 5 presents the expression language supported byModP module system for module

construction.

α ∈ 2
E β ∈ 2

I i, i′, i1, ., ik ∈ I m1, .,mk ∈ M
P, Q ∈ ModuleExpr ::= bind i1 →m1, . . . , ik →mk

| P ∥ Q
| hide α in P
| hide β in P
| rename i → i′ in P

Fig. 5. Module constructors

The bind constructor creates a primitive

module as a collection of machinesm1, . . . ,mk
bound to interfaces i1, . . . , ik respectively (syn-

tax is a bit different from the examples in Sec-

tion 2). The composition (∥) constructor builds
a complex module from simpler ones. The hide

constructor creates an abstraction of a mod-

ule, by converting some of its visible actions

to private actions. The rename operation en-

ables reuse of modules (and resolution of conflicting actions) when composing modules to create

larger ones. The module language enables programmatic construction of modules, reuse of module

expressions and ease of assembling modules for compositional reasoning (Section 5.2).

Well-formed module. In theModP module system, a module P is a syntactic expression and

its well-formedness is checked using the judgment P ⊢ EPP , IPP , IP , LP , ERP , ESP , ICP . If module P
satisfies the judgment then we read it as: Module P is well-formed with private events EPP , private
interfaces IPP , interface definition map IP , interface link map LP , events received ERP , events sent ESP ,
and interfaces created ICP . The judgment derives the components on the right hand side which are

used for defining the operational semantics of a well-formed module (Section 5.1). We use dom(x)
and codom(x) to refer to the domain and codomain of any map x .

We next describe the components on the right hand side of the judgment:

1. Private events. EPP ∈ 2
E
represents the private events for module P , these events must not

cross the boundary of module P i.e. if a machine in P sends event e ∈ EPP , then the target must

be some machine in P and, if a machine in P receives e ∈ EPP , the sender must be some machine

in P . The send of a private event is an internal (invisible) action of a module.

2. Private interfaces. IPP ∈ 2
I
represents the interfaces that are declared private in P ; the creation

of any interface in IPP is an internal (invisible) action of P .

3. Interface definition map. IP ∈ I → M interface definition map that binds an interface name

i to a machine name IP [i]. Recollect that inModP model of computation dynamic instances of
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machines are created indirectly using interfaces. An interface definition map (IP ) is a collection
of bindings from interface names to machine names. These bindings are initialized using the

bind operation, so that if (i,m) ∈ IP then creation of an interface i in module P leads to the

creation of an instance ofm.

4. Interface link map. LP ∈ I → I → I is the interface link map that maps each interface

i ∈ dom(IP ) to a machine link map that binds interfaces created by the code of machine IP [i]
to an interface name. If the statement new x is executed by an instance of machine IP [i], an
interface actually created in lieu of the interface name x is provided by the machine specific link

map LP [i]. If (x ,x ′) ∈ LP [i], then the compiler interprets x in statement new x in the code of

machine IP [i] as creation of interface x ′
, creating an instance of machine IP [x ′].

The last three components of the judgment can be inferred using the first four components:

5. Events received. ERP ∈ 2
E
represent the set of events received by module P . It is inferred as the

set of non-private events received by machines in P , ERP =
⋃

m∈codom(IP ) MRecvs(m) \ EPP .
6. Events sent. ESP ∈ 2

E
represent the set of events sent by module P . It is inferred as the set of

non-private events sent by machines in P , ESP =
⋃

m∈codom(IP ) MSends(m) \ EPP .
7. Interfaces created. ICP ∈ 2

I
represent the set of interfaces created by module P . It is inferred

as the set of interfaces created by machines in P (interpreted based on its link map), ICP =⋃
(i,m)∈IP,x ∈MCreates(m){LP [i][x]}.

Exported interfaces. The domain of the interface definition map after removing the private interfaces

is the set of exported interfaces for module P ; these interfaces can be created either by P or its

environment.

Input and output actions. The input events of module P are the events that are received but not

sent by P i.e. ERP \ ESP . The input interfaces of P are the set of interfaces that are exported but

not created by P i.e. dom(IP ) \ (IPP ∪ ICP ). The output events of P are the sent events i.e. ESP and

the output interfaces are the created non-private interfaces of P i.e. ICP \ IPP . Informally, the input
actions of a module is the union of its input events and input interfaces, the output actions of a
module is the union of its output events and output interfaces (formally defined in Definition 5.2).

In the rest of this section, we describe the various module constructors and present the static

rules to ensure that the constructed module satisfies: (1) well-formedness conditions (WF1 − WF3)
required for defining the semantics of a module, and (2) the compositionality Theorems 5.1- 5.2.

Note. For simplicity, when describing the static rules we do not provide the derivation for the

last three components of the judgment as they can be inferred but we use them above the line.

4.1 Primitive Module
InModP, a primitive module is constructed using the bind operation. Programmatically initializing

IP using bind operation enables linking the creation of an interface I to either a concrete machine

Impl for execution or an abstract machine Abs for testing, a key feature required for substitution

during compositional reasoning.

(Bind)

f = {(i1,m1), . . . , (in,mn )} f ⊆ I → M(b1) ∀(i,m) ∈ f . IRecvs(i) ⊆ MRecvs(m)(b2)

bind i1 →m1, . . . , in →mn ⊢ {}, {}, f , {(i, x, x ) | (i,m) ∈ f ∧ x ∈ MCreates(m)}

Rule Bind presents the rule for bind i1 →m1, . . . , ik →mk that constructs a primitive module by

binding each interface ik to machinemk for k ∈ [1,n]. These bindings are captured in f ; condition
(b1) checks that f is a function. Condition (b2) checks that the received events of an interface are

contained in the received events of the machine bound to it (ensures (WF1) below). The resulting

module does not have any private events and interfaces. The function f is the interface definition
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map and the interface link map for interface i ∈ dom(f ) contains the identity binding for each

interface created by f (i) (ensures (WF2) below). The first entry for name x ever added to LP [i] is
the identity map (x ,x); subsequently, if interface x is renamed to x ′

(using rename constructor),

this entry is updated to (x ,x ′).
Well-formedness condition (WF1) helps ensure that a machine-identifier obtained by creating an

interface can be used to send only those events that are in the receives set of the target machine

((SendOk) in Section 3.2).

(WF1) Interface definition map is consistent: For each (i,m) ∈ IP , we have IRecvs(i) ⊆ MRecvs(m).
Well-formedness condition (WF2) ensures that the link map lookups used during the create action

always succeed.

(WF2) Interface link map is consistent: The domains of IP and LP must be identical and for each
(i,m) ∈ IP and x ∈ MCreates(m), we have x ∈ dom(LP [i]).

4.2 Hiding Events and Interfaces
Hiding events and interfaces in a module allows us to construct a more abstract module [Attie

and Lynch 2001]. There are two reasons to construct a more abstract version of a module P by

hiding events or interfaces. First, suppose we want to check that another module ServerModule

refines AbstractServerModule. But the event X is used for internal interaction among machines, for

completely different purposes, in both ServerModule and AbstractServerModule. Then, the check that

ServerModule refines AbstractServerModule is more likely to hold since sending of X is not a visible

action of AbstractServerModule. Second, hiding helps make a module more composable with other

modules. To compose two modules, the sent events and created interfaces of one module must

be disjoint from the sent events and created interfaces of the other (Section 4.3). This restriction

is onerous for large systems consisting of many modules, each of which may have been written

independently by a different programmer. To address this problem, we relax disjointness for private

events and interfaces, thus allowing incompatible modules to become composable after hiding

conflicting events and interfaces.

To illustrate hiding of an event and an interface, we revisit the ServerModule in Figure 3. To legally

hide an event in a module, it must be both a sent and received event of the module.

module HE_Server = hide eProcessReq , eReqSuccess , eReqFail in ServerModule

Module HE_Server is well-formed and eProcessReq, eReqSuccess, eReqFail become private events

in it. A send of event eProcessReq is a visible action in ServerModule but a private action in HE_Server.

To hide an interface in a module, it must be both an exported and created interface of the module.

module HI_Server = hide HelperIT in HE_Server

Module HI_Server is well-formed and interface HelperIT becomes a private interface in it. Creation of

interface HelperIT is a visible action in HE_Server but a private action in HI_Server.Hiding makes events
and interfaces private to a module and converts output actions into internal actions. All interactions
between the server and the helper machine in HI_Server are private actions of the module.

Avoiding private permission leakage. Not requiring disjointness of private events creates a

possibility for programmer error and a challenge for compositional refinement. When reasoning

about a module P in isolation, only its input events (that are disjoint from private events) would be

considered as input actions. This is based on the assumption that private events of a module are

exchanged only within a module, in other words, a private event of a module can never be sent by

any machine outside the module to any machine inside the module.

Recollect that a machine can send only those events to a target machine that are in the permission

set of the reference to the target machine (Section 3.2). Suppose a machine M in module P has a

private event e in its set of received events. Any machine that possesses a reference to an instance

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Compositional Programming and Testing of Dynamic Distributed Systems 1:13

of M could send e to this instance. If such a reference were to leak outside the module P to a machine

in a different module, it would create an obstacle to reasoning about P separately (and proving

the compositionality theorems for a module with private events), since private events targeted at

a machine inside P may now be sent by the environment. ModP ensures that such leakage of a

machine reference with permissions containing a private event cannot happen.

In ModP, there are two ways for permissions to become available to a machine: (1) by creating

an interface, or (2) by sending permissions to the machine in the payload accompanying some

event. To tackle private permission leakage through (1),ModP requires that an input interface does

not have a private event in its set of received events so that an interface with private permissions

cannot be created from outside the module. This is ensured by the condition (he2) below. To tackle

private permission leakage through (2), ModP enforces that (1) each send of event e adheres to the

specification (SendOk) in Section 3, and (2) the set of private events is disjoint from any permission

in A(e) for any non-private event e (ensure (WF3) below). Together, these two checks ensure that a

permission containing a private event does not leak outside the module through sends.

(WF3) Permissions to send private events does not leak: For all e ∈ ERP ∪ ESP and α ∈ A(e), we
have α ∩ EPP = ∅. This is a static check asserting the capabilities that can leak outside the module.

(HideEvent) (A∆B = (A \ B) ∪ (B \ A))
P ⊢ EPP , IPP , IP, LP , ERP , ESP , ICP α ⊆ ERP ∩ ES(he1)P

∀x ∈ ICP∆dom(IP ). IRecvs(x ) ∩ α = ∅(he2)
∀e ∈ (ERP ∪ ESP ) \ α . ∀α ′ ∈ A(e). α ∩ α ′ = ∅(he3)

hide α in P ⊢ EPP ∪ α, IPP , IP, LP

(HideInterface)

P ⊢ EPP , IPP , IP, LP , ERP , ESP , ICP β ⊆ dom(IP ) ∩ IC(hi1)
P

hide β in P ⊢ EPP , IPP ∪ β, IP, LP

Rule HideEvent handles the hiding of a set of events α in module P . This rule adds α to EPP .
Condition (he1) checks all events in β are both sent and received by module P ; this condition is

required to ensure that the resulting module is an abstraction of P . Conditions (he2) and (he3)

together ensure that once an event e becomes private, any permission containing e cannot cross
the boundary of the resulting module (ensure (WF3)). Rule HideInterface handles the hiding of a

set of interfaces β in module P . This rule adds β to IPP . Condition (hi1) is similar to the condition

(he1) of rule HideEvent; this condition ensures that the resulting module is an abstraction of P .

4.3 Module Composition
Module composition inModP enforces an extra constraint that the output actions of the modules

being composed are disjoint. The requirement of output disjointness i.e. output actions of P and Q
be disjoint in order to compose them is important for compositional reasoning, especially to ensure

that composition is intersection (Theorem 5.1). For defining the open system semantics of a module

P (Section 5.1), we require P to be receptive only to its input actions (sent by its environment). In

other words, for the input actions, P assumes that its environment will not send it any event sent

by P itself. Similarly, P assumes that its environment will not create an interface that is created by

P itself. Any input action of P that is an output action of Q is an output action of P ∥ Q and hence

not an input action of P ∥ Q . This property ensures that by composing P with a module Q (that

outputs some input action of P), we achieve the effect of constraining the behaviors of P. Thus,
the composition is a mechanism used to introduce details about the environment of a component,

which constrains its behaviors (composition is intersection), and ultimately allows us to establish

the safety properties of the component.

However, composition inevitably makes the size of the system larger thus making the testing

problem harder. Hence, we need abstractions of components to allow a precise yet compact modeling

of the environment. If one component is replaced by another whose traces are a subset of the

former, then the set of traces of the system only reduces, and not increases, i.e., no new behaviors
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are added (trace containment is monotonic with respect to composition Theorem 5.2). This permits

refinement of components in isolation.

(Composition) (A∆B = (A \ B) ∪ (B \ A))
P ⊢ EPP , IPP , IP, LP , ERP , ESP , ICP Q ⊢ EPQ , IPQ , IQ, LQ , ERQ , ESQ , ICQ dom(IP ) ∩ dom(IQ) = ∅(c1)

(ERP ∪ ERQ ∪ ESP ∪ ESQ ) ∩ (EPP ∪ EPQ ) = ∅(c2) ∀x ∈ (dom(IP )∆ICP ) ∪ (dom(IQ)∆ICQ ). IRecvs(x ) ∩ (EPP ∪ EPQ ) = ∅(c3)
∀e ∈ ERP ∪ ERQ ∪ ESP ∪ ESQ . ∀α ∈ A(e). α ∩ (EPP ∪ EPQ ) = ∅(c4) ICP ∩ ICQ = ∅(c5) ESP ∩ ESQ = ∅(c6)

P ∥ Q ⊢ EPP ∪ EPQ , IPP ∪ IPQ , IP ∪ IQ, LP ∪ LQ

Rule Composition handles the composition of P andQ . Condition (c1) enforces that the domains

of IP and IQ are disjoint, thus preventing conflicting interface bindings. Conditions (c2) ensures that

the input and output actions of P are not hidden by private events of Q and vice-versa. Conditions

(c3) and (c4) together check that private permissions of P ∥ Q do not leak out. Condition (c3)

checks that creation of an input interface of P does not leak a permission containing a private

event of Q and vice-versa. Condition (c4) checks that non-private events sent or received by P
do not leak a permission containing a private event of Q and vice-versa (ensure (WF3)). Condition

(c5) checks that created interfaces are disjoint; condition (c6) checks that sent events are disjoint.

Composition is associative and commutative.

Example. If the conditions (c1) to (c6) hold then the composition of two modules is a union of

its components. The composition operation acts as a language intersection. Consider the example

of ClientModule || ServerModule from Figure 3. The interface ServerToClientIT is an input interface

of ServerModule but becomes an output (no longer input) interface of ClientModule || ServerModule.

Similarly, eResponse is an input event of ClientModule but becomes an output event of the composed

module. Also, the union of the link-map and the interface definitionmaps ensures that the previously

unbounded interfaces in link-map are appropriately bound after composition.

4.4 Renaming Interfaces
The rename module constructor allows us to rename conflicting interfaces before composition. The

example in Figure 6 builds on top of the Client-Server example in Section 2.

Fig. 6. Renaming Interfaces Module Constructor

In module ServerModule', the interface

ServerToClientIT' is bound to machine

ServerImpl. The creation of HelperIT interface

(Figure 2b line 14) in ServerImpl machine

is bound to HelperImpl machine in both

ServerModule and ServerModule'. But, it is not

possible to compose modules ServerModule and

ServerModule' because of the conflicting bind-

ings of interface HelperIT (rule Composition

condition (c1)). Interface renaming comes to

the rescue in such a situation.

In Figure 6 (line 12), the interface name HelperIT is renamed to HelperIT'. The rename module

constructor updates the interface binding (HelperIT->HelperImpl) to (HelperIT' -> HelperImpl) and the

interface link map entry of (ServerToClientIT'->HelperIT->HelperIT) to (ServerToClientIT'->HelperIT

->HelperIT'). As a result, the composition of modules ServerModule and ServerModule' is now possible.

Recollect that each module has an interface link map (Section 4) that maintains a machine specific

mapping from the interface created by the code of a machine to the actual interface to be created in

lieu of the new operation. The interface link map plays a critical role enable renaming of interfaces

without changing the code of the involved machines. The execution of new HelperIT (Figure 2b line

14) in ServerImpl still leads to the creation of HelperImpl machine because of the indirection in the

interface link map, and the corresponding visible action is creation of interface HelperIT'.
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(Rename)

P ⊢ EPP , IPP , IP, LP , ERP , ESP , ICP
i ∈ dom(IP ) ∪ ICP (r1) i′ ∈ I \ (dom(IP ) ∪ ICP )(r2) A = {x | x ′ ∈ IPP ∧ x = ite(x ′ = i, i′, x ′)}(r4)

IRecvs(i) = IRecvs(i′)(r3) B = {(x, y) | (x ′, y) ∈ IP ∧ x = ite(x ′ = i, i′, x ′)}(r5)
C = {(x, y, z) | (x ′, y, z′) ∈ LP ∧ x = ite(x ′ = i, i′, x ′) ∧ z = ite(z′ = i, i′, z′)}(r6)

rename i → i′ in P ⊢ EPP , A, B, C

Rule Rename handles the renaming of interface i to i ′ in module P . Condition (r1) checks that i
is well-scoped; the set of dom(IP ) ∪ ICP is the universe of all interfaces relevant to P . Condition (r2)

checks that i ′ is a new name different from the current set of interfaces relevant to P . Condition
(r3) checks that the set of received events of i and i ′ are the same. Together with condition (b2) in

rule Bind, this condition ensures that the set of received events of an interface is always a subset of

the set of received events of the machine bound to it. Condition (r4) calculates inA the renamed set

of private interfaces. Condition (r5) calculates in B the renamed interface defintion map. Condition

(r6) calculates in C the renamed interface link map.

5 COMPOSITIONAL REASONING USING ModP MODULES
The ModP module system allows compositional reasoning of a module based on the principles of

assume-guarantee reasoning. For assume-guarantee reasoning, the module system must guarantee

that composition is intersection (Theorem 5.1), i.e., traces of a composed module are completely

determined by the traces of the component modules. We achieve this by first ensuring that a module

is well-formed (Section 4), and then defining the operational semantics (as a set of traces) of a

well-formed module such that its trace behavior (observable traces) satisfies the compositional

trace semantics required for assume-guarantee reasoning.

In Section 4, a ModP module is described as a syntactic expression comprising of the module

constructors listed in Figure 5. If the static rules are satisfied then any constructed module P is

well-formed and can be represented by its components (EPP , IPP , IP , LP , ERP , ESP , ICP ). In this

section, we present the operational semantics of a well-formed module (Section 5.1) that help

guarantee the key compositionality theorems described in Section 5.2.

5.1 Operational Semantics of ModP Modules
A key requirement for assume-guarantee reasoning [Alur et al. 1998; Lynch and Tuttle 1987]

is to consider each component as an open system that continuously reacts to input that arrives

from its environment and generates outputs. The transitions (executions) of a module include

non-deterministic interleaving of possible environment actions. Each component must be modeled

as a labeled state-transition system so that traces of the component can be defined based only on

the externally visible transitions of the system.

We refer to components on the right hand side of the judgment P ⊢ EPP , IPP , IP , LP , ERP , ESP , ICP
(Section 4) when defining the operational semantics of a well-formed module P . We present the

open system semantics of a well-formed module P as a labeled transition system.

Configuration. A configuration of a module is a tuple (S,B,C):
1. The first component S is a partial map from I × N to S × Z. If (i,n) ∈ dom(S), then S[i,n] is

the state of the n-th instance of machine IP [i]. The state S[i,n] has two components, local state

s ∈ S and a machine identifier id ∈ Z (as described in Section 3.1).

2. The second component B is a partial map from I × N to B. If (i,n) ∈ dom(B), then B[i,n] is the
input buffer of the n-th instance of the machine IP [i].

3. The third component C is a map from I to N. C[i] = n means that there are n dynamically

created instances of interface i .
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We present the operational semantics of a well-formed module P as a transition relation over its

configurations (Figure 7). Let (SP ,BP ,CP ) represent the configuration for a module P . A transition is

represented as (SP ,BP ,CP )
a−→ (S ′P ,B′

P ,C
′
P ) ∪ {error} where a is the label on a transition indicating

the type of step being taken. The initial configuration of any module P is defined as (S0P ,B0

P ,C
0

P )
where S0P and B0

P are empty maps, and C0

P maps each element in its domain (I) to 0.

Rules for local computation: Rules (R1)-(R2) present the rules for local computation of a ma-

chine. Rule Internal picks an interface i and instance number n and updates S[i,n] according to

the transition relation Local, leaving B andC unchanged. The map IP is used to obtain the concrete

machine corresponding to the interface i . Rule Remove-Event updates S[i,n] and B[i,n] according
to the transition relation (s,b, pos, s ′) ∈ Rem(IP [i]), the entry in pos-th position of B[i,n] is removed

and the local state in S[i,n] is updated to s ′ leaving the machine identifier (id) unchanged. The
transition for both these rules is labeled with ϵ to indicate that the computation is local and is an

internal transition of the module P .
Rules for creating interfaces: Let s0 ∈ S represent a state such that ids(s0) = ∅. Let b0 ∈ B be the

empty sequence over E ×V . Rules (R3)-(R8) present the rules for interface creation. In all the rules,

IP is used to look-up the machine name corresponding to an interface bound in module P . The first
two rules are triggered by the environment of P and the last four are triggered by P itself. The rule

Environment-Create creates an interface that is neither created nor exported by P ; consequently,
it updates C by incrementing the number of instances of i but leaves S and B unchanged. The rule

Input-Create creates an interface i exported by P that is not created by P . The instance number of

the new interface is C[i]; its local-store is initialized to (s0, id) where id in this case stores the “self”

identifier that references the machine itself. Note that the environment cannot create an interface

that is also created by P , which is based on the key assumption of output disjointness required for

compositional reasoning (Section 4.3). The rule Create-Bad creates a transition into error if the
interface i ′ being created bymachine (i,n) violates the predicateCreateOk(m,x) = x ∈ MCreates(m).
Thus, machine (i,n) may only create machines in MCreates(IP [i]).

We use machine (i,n) to refer to the n-th instance of the machine IP [i]. Output-Create-Outside
allows machine (i,n) to create an interface i ′′ that is not implemented inside P , indicated by

i ′′ < dom(IP ). Create of interface i ′′ will get bound to an appropriate machine when P is composed

with another module Q that has binding for i ′′ i.e. i ′′ ∈ dom(IQ). The predicate CreateOk(m,x) =
x ∈ MCreates(m) checks that if a machinem performs new x then x belongs to its creates set. Thus,

machine (i,n) may only create machines in MCreates(IP [i]). A well-formed module satisfies the

condition (WF1) together with the property that machines cannot create identifiers out of thin air

to guarantee that the set of permissions in any machine identifier is a subset of the received events

of the machine referenced by that identifier.

The rule Output-Create-Inside allows the creation of interface that is exported by P . An
interesting aspect of this rule is that the machine identifier made available to the creator machine

has permission IRecvs(i ′′) but the “self” identifier of the created machine is the entire receive set

which may contain some private events in addition to all events in IRecvs(i ′′). Allowing extra

private events in the permission of the “self” identifier is useful if the machine wants to send

permissions to send private events to a sibling machine inside P . In all these rules, the link map

(LP ) is used to look up the interface i ′′ to be created corresponding to new i ′. The condition (WF2)

holds for any well-formed module and guarantees that this lookup always succeeds.

Rules for sending events: Rules (R9)-(R13) present the rules for sending events. The first rule is

triggered by the environment of P and the last two are triggered by P itself. The rule Input-Send

enqueues a pair (e,v) into machine (i,n) if e ∈ MRecvs(IP [i]) and e is neither private in P nor

sent by P and v does not contain any machine identifiers with private events in its permissions.
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(Internal)(R1)
SP [i, n] = (s, id) (s, id, s ′, id′) ∈ Local(IP [i])

(SP , BP , CP )
ϵ−→ (SP [(i, n) 7→ (s ′, id′)], BP , CP )

(Remove-Event)(R2)
SP [i, n] = (s, id) BP [i, n] = b

(s, b, pos, s ′) ∈ Rem(IP [i])) b′ = rem(b, pos)

(SP , BP , CP )
ϵ−→ (SP [(i, n) 7→ (s ′, id)], BP [(i, n) 7→ b′], CP )

(Environment-Create)(R3)
i ∈ I \ (ICP ∪ dom(IP )) n = CP [i]

(SP , BP , CP )
i−→ (SP , BP , CP [i 7→ n + 1])

(Input-Create)(R4)
i ∈ dom(IP ) \ ICP n = CP [i] id = (i, n, IRecvs(i))

(SP , BP , CP )
i−→ (SP [(i, n) 7→ (s0, id)], BP [(i, n) 7→ b0], CP [i 7→ n + 1])

(Create-Bad)(R5)
SP [i, n] = (s, _) (s, i′, _) ∈ New(IP [i])

¬CreateOk(IP [i], i′)

(SP , BP , CP )
ϵ−→ error

(Output-Create-Outside)(R6)
SP [i, n] = (s, _) (s, i′, s ′) ∈ New(IP [i]) CreateOk(IP [i], i′)

i′′ = LP [i][i′] n′ = CP [i′′]
i′′ < dom(IP ) id′ = (i′′, n′, IRecvs(i′′))

(SP , BP , CP )
i′′−−→ (SP [(i, n) 7→ (s ′, id′)], BP , CP [i′′ 7→ n′ + 1])

(Output-Create-Inside)(R7)
SP [i, n] = (s, _) (s, i′, s ′) ∈ New(IP [i]) CreateOk(IP [i], i′)

i′′ = LP [i][i′] i′′ ∈ dom(IP ) \ IPP n′ = CP [i′′] id′ = (i′′, n′, IRecvs(i′′)) id′′ = (i′′, n′, MRecvs(IP [i′′]))

(SP , BP , CP )
i′′−−→ (SP [(i, n) 7→ (s ′, id′), (i′′, n′) 7→ (s0, id′′)], BP [(i′′, n′) 7→ b0], CP [i′′ 7→ n′ + 1])

(Create-Private)(R8)
SP [i, n] = (s, _) (s, i′, s ′) ∈ New(IP [i])

CreateOk(IP [i], i′) i′′ = LP [i][i′] i′′ ∈ IPP n′ = CP [i′′] id′ = (i′′, n′, IRecvs(i′′)) id′′ = (i′′, n′, MRecvs(IP [i′′]))

(SP , BP , CP )
ϵ−→ (SP [(i, n) 7→ (s ′, id′), (i′′, n′) 7→ (s0, id′′)], BP [(i′′, n′) 7→ b0], CP [i′′ 7→ n′ + 1])

(Input-Send)(R9)
BP [i, n] = b e ∈ MRecvs(IP [i]) \ (EPP ∪ ESP )

v ∈ V ∀(i′, n′, α ′) ∈ ids(v). α ′ ∈ A(e) ∧ n′ < CP [i′]

(SP , BP , CP )
((i,n),e,v )
−−−−−−−−−→ (SP , BP [(i, n) 7→ b ⊙ (e, v)], CP )

(Send-Bad)(R10)
SP [i, n] = (s, idt ) idt = (_, _, αt )

(s, idt , e, v, _) ∈ Enq(IP [i]) ¬SendOk(IP [i], αt , e, v)

(SP , BP , CP )
ϵ−→ error

(Output-Send-Outside)(R11)
SP [i, n] = (s, idt ) idt = (it , nt , αt ) it < dom(IP ) (s, idt , e, v, s ′) ∈ Enq(IP [i]) SendOk(IP [i], αt , e, v)

(SP , BP , CP )
((it ,nt ),e,v )
−−−−−−−−−−−→ (SP [(i, n) 7→ (s ′, idt )], BP , CP )

(Output-Send-Inside)(R12)
SP [i, n] = (s, idt )

idt = (it , nt , αt ) it ∈ dom(IP ) e ∈ ESP bt = BP [it , nt ] (s, idt , e, v, s ′) ∈ Enq(IP [i]) SendOk(IP [i], αt , e, v)

(SP , BP , CP )
((it ,nt ),e,v )
−−−−−−−−−−−→ (SP [(i, n) 7→ (s ′, idt )], BP [(it , nt ) 7→ bt ⊙ (e, v)], CP )

(Send-Private)(R13)
SP [i, n] = (s, idt )

idt = (it , nt , αt ) it ∈ dom(IP ) e ∈ EPP bt = BP [it , nt ] (s, idt , e, v, s ′) ∈ Enq(IP [i]) SendOk(IP [i], αt , e, v)

(SP , BP , CP )
ϵ−→ (SP [(i, n) 7→ (s ′, idt )], BP [(it , nt ) 7→ bt ⊙ (e, v)], CP )

Fig. 7. Rules for operational semantics of ModP modules

First, an event that is sent by P is not considered as an input event, which is safe since rules of

output-disjointness (Section 4.3) forbid composing P with another module that sends an event in

common with P . Second, only an event in the receives set of a machine is considered as an input

event, because any machine can send only those events that are in the permission of an identifier

and the permission set of an identifier is guaranteed to be a subset of the receives set of the machine

referenced by it (based on (WF1)). Finally, private events or payload values with private events in

its permissions are not considered as input because permission to send a private event cannot leak

out of a well-formed module (based on (WF3)).

Before executing a send statement the target machine identifier is loaded into the local store

represented by idt using an internal transition. The predicate SendOk(m̂,α , e,v) = e ∈ MSends(m̂)∧

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia

e ∈ α ∧ ∀(_, _, β) ∈ ids(v). β ∈ A(e) ) captures the (SendOk) specification described in Section 3.2.

Thus, machine (i,n) may only send events declared by it in MSends(IP [i]) and allowed by the

permission αt of the target machine and should not embed machine identifiers with private

permissions in the payload v . Note that the dynamic check (SendOk) helps guarantee the well-

formedness condition (WF3) and also ensures that a module receives only those events from other

modules that are its input events (and is expected to be receptive against).

The rule Output-Send-Outside sends an event to machine outside P whereas rules Output-

Send-Inside and Send-Private send an event to some machine inside P . In the former, the target

machinemt is not in the domain of IP , whereas in the later cases the target machine is inside the

module and hence present in domain of IP . For Send-Private, the label on the transition is ϵ as a

private event is sent. For brevity, we refer to a configuration (Sk ,Bk ,Ck ) as Gk
.

Definition 5.1 (Execution). An execution of P is a finite sequence G0
a1−→ . . . an−1−−−→ Gn

for some

n ∈ N such that Gi ai−→ Gi+1
for each i ∈ [0,n).

Let execs(P) represent the set of all possible executions of the module P . An execution is unsafe
ifGn ϵ−→ error ; otherwise, it is safe. The module P is safe, if for all τ ∈ execs(P), τ is a safe execution.

The signature of a module P is the set of labels corresponding to all externally visible transitions in

executions of P .

Definition 5.2 (Module-Signature). The signature of a module P is the set ΣP = (I \ IPP ) ∪
((I × N) × (ESP ∪ ERP ) × V). The signature is partitioned into the output signature (ICP \ IPP ) ∪
((I × N) × ESP ×V) and the input signature (I \ ICP ) ∪ ((I × N) × (ERP \ ESP ) × V).

The transitions in an execution labeled by elements of the output signature are the output

actions whereas transitions labeled by elements of the input signature are the input actions.

Definition 5.3 (Traces). Given an execution τ = G0
a1−→ . . . an−1−−−→ Gn

of P , the trace of τ is the

sequence σ obtained by removing occurrences of ϵ from the sequence a1, . . . ,an−1.

Let traces(P) represents the set of all possible traces of P . Our definition of a trace captures

externally visible operations that add dynamism in the system like machine creation and sends with

a payload that can have machine-references. If σ ∈ traces(P) then σ [ΣP ] represents the projection of
trace σ over the set ΣP where if σ = a0, . . . ,an , then σ [ΣP ] is the sequence obtained after removing

all ai such that ai < ΣP .

Definition 5.4 (Refinement). The module P refines the moduleQ , written P ≼ Q , if the following

conditions hold: (1) ICQ \ IPQ ⊆ ICP \ IPP , (2) dom(IQ) \ IPQ ⊆ (dom(IP )∪ ICP ) \ IPP , (3) ESQ ⊆ ESP ,
(4) ERQ ⊆ ERP ∪ ESP (note that (1)-(4) together imply ΣQ ⊆ ΣP ), (5) and for every trace σ of P the

projection σ [ΣQ ] is a trace of Q .

5.2 Assume-Guarantee Reasoning
The two fundamental compositionality results required for assume-guarantee reasoning are:

Theorem 5.1 (Composition Is Intersection). Let P ,Q and P | |Q be well-formed modules. For
any π ∈ Σ∗

P | |Q , π ∈ traces(P | |Q) iff π [ΣP ] ∈ traces(P) and π [ΣQ ] ∈ traces(Q). (Proof in Appendix)

Theorem 5.1 states that composition of modules behaves like language intersection, traces of a

composed module are completely determined by the traces of the component modules.

Theorem 5.2 (Composition Preserves Refinement). Let P , Q , and R be well-formed modules
such that P | |Q and P | |R are well-formed. Then R ≼ Q implies that P | |R ≼ P | |Q . (Proof in Appendix)
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Theorem 5.2 states that parallel composition is monotonic with respect to trace inclusion i.e. if

one module is replaced by another whose traces are a subset of the former, then the set of traces of

the resultant composite module can only be reduced. These theorems form the basis of our theory

of compositional refinement and are used for proving the theorems underlying our compositional

testing methodology (Theorems 5.3 and 5.4).

We present the two key theorems that describe the principles of circular assume-guarantee

reasoning used for analysis of ModP systems. First, we introduce a generalized composition

operation ∥ P, where P is a non-empty set of modules. This operator represents the composition

of all modules in P. The binary parallel composition operator is both commutative and associative.

Thus, ∥ P is a module obtained by composing modules in P in some arbitrary order. Let P and Q
be set of modules, we say that P is a subset of Q, if P can be obtained by dropping some of the

modules in Q.

Theorem 5.3 (Compositional Safety). Let ∥ P and ∥ Q be well-formed. Let ∥ P refine each
module Q ∈ Q. Suppose for each P ∈ P, there is a subset X of P ∪ Q such that P ∈ X, ∥ X is
well-formed, and ∥X is safe. Then ∥ P is safe. (Proof in Appendix)

When using Theorem 5.3 in practice, modules inP andQ typically consists of the implementation

and abstraction modules respectively. When proving the safety of any module P ∈ P, it is allowed

to pick any modules in Q for constraining the environment of P . To use Theorem 5.3, we need

to show that ∥ P refines each module Q ∈ Q which requires reasoning about all modules in P
together. The following theorem shows that the refinement between ∥ P and Q can also be checked

compositionally.

Theorem 5.4 (Circular Assume-Guarantee). Let ∥ P and ∥ Q be well-formed. Suppose for
each module Q ∈ Q there is a subset X of P ∪ Q such that Q < X, ∥X is well-formed, and ∥X refines
Q . Then ∥ P refines each module Q ∈ Q. (Proof in Appendix)

Theorem 5.4 states that to show that ∥ P refines Q ∈ Q, any subset of modules in P and Q can

be picked as long as Q is not picked. Therefore, it is possible to perform sound circular reasoning,
i.e., use Q1 to prove refinement of Q2 and Q2 to prove refinement of Q1. This capability of circular

reasoning is essential for compositional testing of the distributed systems we have implemented.

Note that ∥ P refines every submodule of Q is implied by ∥ P refines module ∥ Q. If ∥ P refines

∥ Q (a well-formed module), then using Theorem 5.1, ∥ P would refine each individual submodule

in Q as well. Similarly, if ∥ P refines every submodule of Q and ∥ Q is a well-formed module, then

∥ P refines module ∥ Q.

6 FROM THEORY TO PRACTICE.
Theorems 5.3 and 5.4 indicate that there are two kinds of obligations that result from assume-

guarantee reasoning—safety and refinement. Although these obligations can be verified using

proof techniques, the focus of ModP is to use systematic testing to falsify them. ModP allows

the programmer to write each obligation as a test declaration. The declaration test tname: P

introduces a safety test obligation that the executions of module P do not result in a failure (module

P is safe). The declaration test tname: P refines Q introduces a test obligation that module P
refines module Q. These test obligations are automatically discharged using ModP’ systematic

testing engine (Section 7).

We illustrate using the protocol stack in Figure 1, how we usedModP to compositionally test

a complex distributed system. We implemented two distributed services: (i) distributed atomic

commit of updates to decentralized, partitioned data using two-phase commit [Bernstein et al. 1986;
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Gray 1978; Gray and Lamport 2006], and (ii) distributed data structures: hash-table and list. These

distributed services use State Machine Replication (SMR) for fault-tolerance [Schneider 1990].

We implement distributed transaction commit using the two-phase commit protocol, which uses

a single coordinator state machine to atomically commit updates across multiple participant state
machines. Hashtable and list are implemented as deterministic state machines with PUT and GET
operations. These services by themselves are not tolerant to node failures. We use SMR to make the

two-phase commit and the data structures fault-tolerant by replicating the deterministic coordinator,

participant and hash-table (list) state-machines across multiple nodes. We implemented Multi-

Paxos [Lamport 1998] and Chain Replication [van Renesse and Schneider 2004] based SMR, these

protocols guarantee that a consistent sequence of events is fed to the deterministic (replicated) state

machines running on multiple nodes. These events could be operations on a data-structure or opera-

tions for two-phase-commit. Multi-Paxos and Chain Replication, in turn, use different sub-protocols.

Though both these protocols provide linearizability guarantees their implementations are very

different with distinct fault models and hence acts as a good case study for module (protocol) sub-

stitution. The protocols in the software stack use various OS services like timers, network channels,

and storage services which are not implemented inModP. We provide over approximating models
for these libraries inModP which are used during testing but replaced with library and OS calls for

real execution. We implemented each of the complex protocol described above as a separate module.

Protocol Specifications

2PC Transactions are atomic [Gray 1978] (2PCSpec)
Chain Repl. All invariants in [van Renesse and Schneider 2004], cmd-log con-

sistency (CRSpec)
Multi-Paxos Consensus requirements [Lamport 2001], log consis-

tency [Van Renesse and Altinbuken 2015] (MPSpec)

We implemented the safety specifi-

cations (as spec. machines) of all the

protocols as described in their respec-

tive paper. Table on the side shows

examples of specifications checked

for some of the distributed protocols.

Fig. 8. Compositional Testing of Transaction Commit Service

Figure 8 presents a simplified ver-

sion of the test-script used for com-

positionally testing the transaction-

commit service. The modules 2PC

, MultiPaxosSMR, ChainRepSMR represent

the implementations of the two-

phase commit, Multi-Paxos based

SMR, and Chain-Replication based

SMR protocols respectively. The mod-

ule SMRLinearizAbs represent the lin-

earizability abstraction of the SMR

service, both Multi-Paxos based SMR

and Chain-Replication based SMR

provide this abstraction. The mod-

ule SMRClientAbs represent the abstrac-

tion of any client of the SMR service.

OSServAbs implements the models for

mocking OS services like timers, net-

work channels, and storage. A failure

injector machine that randomly halts

machines in the program is also added as part of the OSServAbs. There are two sets of implementa-

tion modules Pm ={2PC, MultiPaxosSMR, OSServAbs} or Pc ={2PC, ChainRepSMR, OSServAbs} representing
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the Multi-Paxos and Chain-Replication based versions. The set of abstraction modules is Q ={

SMRClientAbs, SMRLinearizAbs, OSServAbs}. The test obligation mono represents the monolithic testing

problem for transaction-commit service.

Similar to property-based testing [Arts et al. 2008], the programmer can attach specifications

to modules under test using the assert constructor (e.g., Figure 8-line 5). Using Theorem 5.3, we

can decompose the problem into safety tests t1 and t2 under the assumption that each module

in Pm refines each module in Q. This assumption is then validated using the Theorem 5.4 and

tests t3, t4. The power of compositional reasoning is substitutability, if the programmer wants to

migrate the transaction commit service from using Multi-Paxos to use Chain Replication then he

just needs to validate ChainRepSMR in isolation using tests t6 and t7. The tests t5 and t8 are substitutes

for the refinement checks t4 andt7 since the spec. machines (from the table) assert the linearizability

abstraction of these protocols.

The test declarations used in practice are a bit more involved than Figure 8. There are two

main points: (1) For each test declaration, the programmer provides a finite test harness module

comprising non-deterministic machines that close the module under test by either supplying inputs

or injecting failures. The programmer may provide a collection of test harnesses modules for each

test declaration to cover various testing scenarios for each test obligation. (2) In some cases, the

module constructors like hide and rename have to be used to make modules composable or create

the right projection relation. Figure 8 (line 22-29) represent the test-script we used to perform test

t7. We had to hide internal events sent to the replicated machine to create the right projection

relation for refinement.

7 ModP TOOL CHAIN
In this section, we describe the implementation of the ModP toolchain (Figure 9).

Implementation

Specification

Abstraction

Test

Compiler 
Toolchain

ModP 
systematic 

testing 
tool

C# Code

Wrappers

Autogen
 C Impl.

ModP 
deployment 

tool

OS, libs

Wrappers

ModP
 Runtime

Autogen
 Impl.

Target Platform

(Reproducible) Error Trace

ModP Program

Fig. 9. ModP Programming Framework

Compiler.AModP program comprises

four blocks — implementation modules,

specifications monitors, abstraction mod-

ules and tests. The compiler static analy-

sis of the source code not only performs

the usual type-correctness checks on the

code of machines but also checks that con-

structed modules are well-formed, and test

declarations are legal. The compiler gen-

erates code for each test declaration; this

generated code makes all sources of non-

determinism explicit and controllable by the systematic testing engine, which generates executions

in the test program checking each execution against implicit and explicit specifications. For each
test declaration, the compiler generates a standalone program that can be independently analyzed by
the back-end systematic testing engine. The compiler also generates C code which is compiled and

linked against the ModP runtime to generate application executables.

Systematic testing engine.TheModP systematic testing engine efficiently enumerates executions

resulting from scheduling and explicit nondeterministic choices. The ModP compiler generates

a standalone program for each safety test declaration, we reuse the existing P testing backends

for safety test declarations (with modifications to take into account the extensions to P state

machines). There are two backends provided by P: (1) a sampling-based testing engine that explicitly

sample executions using delay-bounding based prioritization [Desai et al. 2015], and (2) a symbolic

execution engine with efficient state-merging using MultiSE [Sen et al. 2015; Yang et al. 2017].
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We extended the sampling based testing engine to perform refinement testing ofModP programs

based on trace containment. Our algorithm for checking P ≼ Q consists of two phases: (1) In the

first phase, the testing engine generates all possible visible traces of the abstraction module Q and

compactly caches them in memory. The abstraction modules are generally small and hence, all the

traces of Q can be loaded in memory for all our experiments. (2) In the second phase, the testing

engine performs stratified sampling of the executions in P , and for each terminating execution

checks if the visible trace is contained in the cache (traces of Q). A safety bug is reported as a

sequence of visible actions that lead to an error state. In the case of refinement checking, the tool

returns a visible trace in implementation that is not contained in the abstraction.

Distributed runtime. Figure 10 shows the structure of aModP application executing on distributed
nodes. We believe that themulti-container runtime is a generic architecture for executing programs

with distributed state-machines. Each node hosts a collection of Container processes. Container is a
way of grouping collection of ModP state machines that interact closely with each other and must

reside in a common fault domain. Each Container process hosts a listener, whose job is to forward

events received from other containers to the state machines within the container. State machines

within a container are executed concurrently using a thread pool and as an optimization interacts

without serializing/deserializing the messages.
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StateMachines
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Fig. 10. Structure of ModP application

Each node runs a NodeManager process which
listens for requests to create new Container pro-

cesses. Similarly, each Container hosts a single

ContainerManager that services requests for cre-
ations of new state machines within the con-

tainer. In the common case, each node has one

NodeManager process and one Container pro-

cess executing on it, but ModP also supports a

collection of Containers per node enabling em-

ulation of large-scale services running on only

a handful of nodes. AModP state machine can

create a fresh container by invoking runtimes’ CreateContainer function. A state machine can

create a new local or remote state machine by specifying the hosting container’s ID. Hence, the

ModP runtime enables the programmer to distribute state-machines across distributed nodes and

also group them within containers for optimizing the performance.

In summary, the runtime executes the generated C representation of the ModP program and

has the capability to (1) create, destroy and execute distributed state machines, (2) efficiently

communicate among state machines that can be distributed across physical nodes, (3) serialize data

values before sends and deserialize them after receives.

8 EVALUATION
We empirically evaluateModP framework by compositionally implementing and testing a fault-

tolerant distributed services software stack (Figure 1). The goal of our evaluation is twofold:

(1) Demonstrate that the theory of compositional refinement helps scale systematic testing to

complex large distributed systems. We show thatModP-based compositional testing leads to test-

amplification in terms of both: increasing the test-coverage and finding more bugs (faster) than

the monolithic testing approach (Section 8.2). We present anecdotal evidence of the benefits of

refinement testing, it helps find bugs that would have been missed otherwise when performing

abstraction-based compositional testing. (2) Demonstrate that the performance of the reliable
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(rigorously tested) distributed services built using ModP is comparable to the corresponding open-

source baseline. We evaluate the performance of the hash-table distributed service by benchmarking

it on Azure cluster (Section 8.3).

8.1 Programmer Effort
The Table below shows a five-part breakdown, in source lines of ModP code, of our implemen-

tation of the distributed service. The Impl. column represents the detailed implementation of

Protocol Impl. Specs. Abst. Test Test

Driver Decls

2 Phase Commit 441 61 41 35 128

Chain Rep. SMR 1267 220 173 130 105

Multi-Paxos SMR 1617 101 121 92 90

Data structures 276 25 - 89 25

Total 3601 Others = 1436

each module whose – generated C code can

be deployed on the target platform. Specs. col-

umn represents the component-level temporal

properties (monitors). Abst. column represents

abstractions of the modules used when testing

other modules. The Driver column represents

the different finite test-harnesses written for testing each protocol in isolation. The last column

represents the test declarations across protocols to compositionally validate the “whole-system”

level properties as described in Section 5.2.

8.2 Compositional Testing
The goal of our evaluation is to demonstrate the benefits of using the theory of compositional

refinement in testing distributed systems, and hence, we use the same backend engine (Section 7)

for testing both the monolithic test declaration and the corresponding compositional test decla-

rations. We use the existing systematic testing engine of P that supports state-of-the-art search

prioritization [Desai et al. 2015] and other efficient bug-finding techniques for analyzing the test

declarations. Note that the approach used for analyzing the test declarations is orthogonal to the

benefits of using compositional testing.

Compositional reasoning led to the state-space reduction and hence amplification of the test-

coverage, uncovering 20 critical bugs in our implementation of the software stack. To highlight

the benefits of usingModP-based compositional reasoning, we present two results in the context

of our case-study: (1) abstractions help amplify the test-coverage for both the testing backends,

the prioritized execution sampling and symbolic execution (Section 7), and (2) this test-coverage

amplification results in finding bugs faster than the monolithic approach. For monolithic testing,

we test the module constructed by composing the implementation modules of all the components.

Test-amplification via abstractions. Using abstractions simplifies the testing problem by

reducing the state-space. The reduction is obtained because a large number of executions in

the implementations can be represented by an exponentially small number of abstraction traces.

Fig. 11. Test-Amplification via Abstractions:
Chain Replication Protocol

To show the kind of amplification obtained for the sam-

pling based testing approach, we conducted an experi-

ment to count the number of unique executions in the

implementation of a protocol that maps to a trace in its

abstraction. Figure 11 present the graph for the chain

replication (CR) protocol with a finite test-harness that

randomly pumps in 5 update operations. The x-axis rep-
resents the traces in the abstraction sorted by y-axis
values, where the y-axis represents the number of ex-

ecutions in the implementation that maps (projects) to

the trace in abstraction. The linearizability abstraction

(guaranteed by chain replication protocol) has 1931 traces
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for the finite test-harness and there were exponentially many executions in the CR implementation.

We sampled 10
6
unique executions in the CR implementation for this experiment.

The graph in Figure 11 is highly skewed and can be divided into three regions of interest: region

(A) correspond to those traces in the abstraction to which no execution mapped from the samples

set of 10
6
implementation executions which could be either because these traces correspond to a

very low probability execution in implementation or are false positives, region (B) represent those

traces that correspond to low probability executions in the implementation and region (C) represent

those executions that may lead to a lot of redundant explorations during monolithic testing. Using

linearizability abstraction helps in mitigating this skewness and hence increases the probability

of exploring low probability behaviors in the system leading to amplification of test-coverage (as

in some cases exploring one execution in the abstraction is equivalent to exploring approx. 8779

executions in the implementation).

Protocol

Schedules Explored

Monolithic CST

MPaxos (bug1) 13 11

2PC (bug2) 1944 19

ChainR (bug3) 2018 13

MPaxos (bug4) NF 91

T2PC (bug5) NF 112

ChainR (bug6) NF 187

ChainR (bug7) NF 782

MPaxos (bug8) NF 2176

Fig. 12. CST vs. Monolithic Testing.
(NF: Bug not found)

Next, we show that the compositional testing approach helps the

sampling based back-end to find bugs faster. We randomly chose

8 bugs (out of 20) that we found in different protocols during the

development process. We compared the performance of composi-

tional testing (CST) against the monolithic testing approach where

the entire protocol stack is composed together and is considered

as a single monolithic system. We use number of schedules ex-

plored before finding the bug as the comparison metric. Figure 12

shows that ModP-based compositional approach helps the sam-

pling based back-end find bugs faster than the monolithic approach

and in most cases, the monolithic approach fails to find the bug

even after exploring 10
6
different schedules.

P also supports a symbolic execution back-end that uses the MultiSE [Sen et al. 2015; Yang et al.

2017] based approach for state-merging. To evaluate the test amplification obtained for the symbolic

execution back-end, we compared the performance of the testing engine for the monolithic testing

problem and its decompositions from Figure 8. We performed the test mono using the symbolic

engine for a finite test-harness where the 2PC performs 5 transactions. The symbolic engine could

not explore all possible execution of the problem even after 10 hrs. We performed the tests t1, t2,

t5, t8 (for the same finite test-harness) and the symbolic engine was able to explore all possible

executions for each decomposed test in 1.3 hours (total). The upshot of our module system is that

we can get complete test-coverage (guaranteeing absence of bugs) for a finite test-harness which

was not possible when doing monolithic testing.

Examples of bugs found. We describe few of these bugs in detail to illustrate the diversity of

bugs found in practice.

1. ChainR (bug7) represents a consistency bug that violates the update propagation invariant in [van

Renesse and Schneider 2004]. The bug was in the chain repair logic and can be reproduced only

when an intermediate node in the chain having uncommitted operations, first becomes a tail

node because of tail failure and then a head node on the head failure. This specific scenario could

not be uncovered using monolithic testing but was triggered when testing the Chain-Replication

protocol in isolation because of the state-space reduction obtained using abstractions.

2. MPaxos (bug4) represents a bug in our acceptor logic implementation that violates the P2c

invariant in [Lamport 2001]. For this bug to manifest, it requires multiple leaders (proposers)

in the Multi-Paxos system to make a decision on an incorrect promise from the acceptor. In

a monolithic system, because of the explosion of non-deterministic choices possible the prob-

ability of triggering a failure that leads to choosing multiple leaders is extremely low. When
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compositionally testing Multi-Paxos, we compose it with a coarse-grained abstraction of the

leader election protocol. The abstraction non-deterministically chooses any Multi-Paxos node as

a leader and hence, increasing the probability of triggering a behavior with multiple leaders.

3. Meaningful testing requires that the abstractions used during compositional reasoning are

sound abstractions of the components being replaced. We were able to uncover scenarios

where bugs could have been missed during testing because of an unsound abstraction. The

linearizability abstraction was used when testing the distributed services built on top of SMR. Our

implementation of the abstraction guaranteed that for every request there is a single response.

For Chain-Replication protocol (as described in [van Renesse and Schneider 2004]), in a rare

scenario when the tail node of the system fails and after the system has recovered, there is a

possibility that a request may be responded multiple times. Our refinement checker was able

to find this unsound assumption in the linearizability abstraction which led to modifying our

Chain-Replication implementation. This bug could have caused an error in the client of the

Chain-Replication protocol as it was tested against the unsound linearizability abstraction.

During compositional systematic testing, abstractions are used for decomposition. False positives

can occur if the abstractions used are too coarse-grained and contain behaviors not present in the

implementation. The number of false positives uncovered during compositional testing was low (4)

compared to the real bugs that we found. We think that this could be because the protocols that we

considered in this paper have well-studied and known abstractions.

8.3 Performance Evaluation
We would like to answer the question: Can the distributed applications build modularly using

ModP with the aim of scalable compositional testing rival the performance of corresponding

state-of-the-art implementations? We compare the performance of the code generated byModP
for the fault-tolerant hash-table built using Multi-Paxos against the hash-table built using the

popular open-source reference implementation of Multi-Paxos from the EPaxos codebase [Moraru

et al. 2013a,b]. All benchmarking experiments for the distributed services were run on A3 Virtual

Machine (with 4-core Intel Xeon E5-2660 2.20GHz Processor, 7GB RAM) instances on Azure.

Fig. 13. Performance of ModP HashTable using Multi-
Paxos (MP) is comparable with an open source baseline
implementation (mean over 60s close-loop client runs).

To measure the update throughput (when

there are no node failures in the system), we

use clients that pump in requests in a closed

loop; on getting a response for an outstand-

ing request, the client goes right back to send-

ing the next request. We scale the workload by

changing the number of parallel clients from 2

to 128. For the experiments, each replica exe-

cutes on a separate VM. Figure 13 summarizes

our result for one fault-tolerant (1FT = 3 paxos

nodes) and two fault-tolerant (2FT = 5 paxos

nodes) hash-tables. We find the systematically

testedModP implementation achieves between

72%(2FT, 64 clients) to 80% (1FT, 64 clients) of

peak throughput of the open source baseline

(EPaxos codebase [Moraru et al. 2013a,b]). The open source implementation of the E-Paxos protocol

suite is highly optimized and implemented in Go language (1169 LOC). We believe that the current

performance gap between the two implementations can be further reduced by engineering our

distributed runtime. The high-level points we would like to convey from these performance number
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is that, it is possible to build distributed services usingModP that are rigorously tested and have

comparable performance to the open source counterpart.

9 RELATEDWORK
Assume-Guarantee reasoning has been implemented in model checkers [Alur et al. 1998; McMillan

1992, 2017] and successfully used for hardware verification [Eiríksson 2000; Henzinger et al. 1999;

McMillan 2000] and software testing [Blundell et al. 2006]. However, the present paper is the first to

apply it to distributed systems of considerable complexity and dynamic behavior. We next situate

ModP with related techniques for modeling and analysis of distributed systems.

Formalisms and programming models. Formalisms for the modeling and compositional anal-

ysis of dynamic systems can be categorized into three foundational approaches: process algebras,

reactive modules [Alur and Henzinger 1999], and I/O automata [Lynch and Tuttle 1987].

(1) Process algebra. In the process algebra approach deriving from Hoare’s CSP [Hoare 1978] and

Milner’s CCS [Milner 1982], the π -calculus [Milner et al. 1992; Pierce and Turner 1997] has become

the de facto standard in modeling mobility and reconfigurability for applications with message-

based communication. The popular approach for reasoning about behavior in these formalisms is

the notions of equivalence and congruence: weak and strong bisimulation, etc., which involves

examining the state transition structure of the two systems being compared. There’s also a very large

literature on observational equivalence in π -calculus based on trace inclusion [Cortier and Delaune

2009]. Extensions of π -calculus such as asynchronous π -calculus, distributed join calculus [Fournet

and Gonthier 1996; Fournet et al. 1996], Dπ -calculus [Riely and Hennessy 1998] deal with distributed
systems challenges like asynchrony and failures respectively. ModP chooses Actors [Agha 1986] as
its model of computation, and our theory of compositional refinement uses trace inclusion based

only on the externally visible behavior as it greatly simplifies our refinement testing framework. In

ModP, abstractions (modules) are state machines capable of expressing arbitrary trace properties.

More recent work like session-types [Castagna et al. 2009; Dezani-Ciancaglini and De’Liguoro

2009; Honda et al. 2016] and behavioral-types [Ancona et al. 2016] that have their roots in process

calculi can encode abstractions in the type language (e.g., [Brady 2016]).

(2) Reactive modules. Reactive modules [Alur and Henzinger 1999] is a modeling language for

concurrent systems. Communication between modules is done via single-writer multiple-reader

shared variables and a shared global clock drives each module in lockstep. Dynamic Reactive

Modules [Fisher et al. 2011] (DRM) is a dynamic extension of Reactive Modules with support for the

dynamic creation of modules and dynamic topology. The semantics of dynamic reactive modules

are given by dynamic discrete systems [Fisher et al. 2011] to model the creation of module instances

and the refinement relation between dynamic reactive modules is defined using a specialized

notion of transition system refinement. DRM does not formalize a compositionality theorem for the

hide operation. Also, our module system is novel compared to DRM because of the fundamental

differences in the supported programming model.

(3) I/O automata. Dynamic I/O automata (DIOA) [Attie and Lynch 2001] is a compositional model

of dynamic systems, based on I/O automata [Lynch and Tuttle 1987]. DIOA is primarily a (set-

theoretic) mathematical model, rather than a programming language or calculus. Our notion of

parallel composition, trace monotonicity and trace inclusion based on externally visible actions is

inspired from DIOA and is formalized for the compositional reasoning of actor programs.ModP
incorporates these ideas into a practical programming framework for building distributed systems.

Verification of distributed systems. There has been a lot of work towards reasoning about

concurrent systems using program logics deriving from Hoare logic [Floyd 1993; Hoare 1969] –

which includes rely-guarantee reasoning [Gavran et al. 2015; Vafeiadis and Parkinson 2007; Xu

et al. 1997] and concurrent separation logic [Feng et al. 2007; Leino and Müller 2009; O’Hearn
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2007]. Actor services [Summers and Müller 2016] propose program logic for modular proofs of

actor programs. DISEL [Sergey et al. 2018] provides a language to compositionally implement and

verify distributed systems. The goal of these techniques is similar to ours, enable compositional

reasoning; they decompose reasoning along the syntactic structure of the program and emphasize

modularity principles that allow proofs to be easily constructed, maintained and reused. They

require fine-grained specifications at the level of event-handler, in our case programmer writes

specifications for components as abstractions. The focus on compositional testing instead of proof

allows us to attach an abstraction to an entire protocol rather than individual actions within that

protocol (e.g. Send-hooks in DISEL), thereby reducing the annotations required for validation. The

goal of this paper is to scale automated testing to large distributed services and to achieve this goal

we develop a theory of assume-guarantee reasoning for actor programs.

Many recent efforts like IronFleet [Hawblitzel et al. 2015], Verdi [Wilcox et al. 2015], and

Ivy [Padon et al. 2016] have produced impressive proofs of correctness for the distributed system

but the techniques in these efforts do not naturally allow for horizontal composition. McMil-

lan [McMillan 2016] extended Ivy with a specification idiom based on reference objects and circular

assume-guarantee reasoning to perform modular verification of a cache-coherence protocol.

Systematic testing of distributed systems. Researchers have built testing tools [Lauterburg

et al. 2009; Sen and Agha 2006] for automated unit testing of Java actor programs. Mace [Killian

et al. 2007a], TeaPot [Chandra et al. 1999] and P [Desai et al. 2013] provide language support for

implementation, specification and systematic testing of asynchronous systems. MaceMC [Killian

et al. 2007b] and MoDist [Yang et al. 2009] operate directly on the implementation of a distributed

system and explore the space of executions to detect bugs in distributed systems. DistAlgo [Liu

et al. 2012] supports asynchronous communication model, similar to ours, and allows extraction

of efficient distributed systems implementation from the high-level specification. None of these

programming frameworks tackle the challenges of compositional testing addressed in this paper.

The conclusion of most of the researchers who developed these systems is similar to ours: monolithic

testing of distributed systems does not scale [Guo et al. 2011].

McCaffrey’s article [McCaffrey 2016] provides an excellent summary of the approaches used in

the industry for systematic testing of distributed systems. Manual-targeted testing is an effective

technique where an expert programmer provides manually crafted test-cases for finding critical

bugs. But it requires considerable expertise and manual effort.ModP’s focus is on scaling automated

testing and hence do not consider manual-target testing as a baseline for comparison. Property-
based testing is another popular approach in industry for the semi-automatic testing of distributed

systems (e.g., QuickCheck tool) [Arts et al. 2008; Brown et al. 2014; Hughes et al. 2016]).ModP’s
compositional testing approach, as well as the monolithic testing method we compare it to, can both

be viewed as property-based testing since they assert the safety properties specified as monitors

given a non-deterministic test harness. The compositional testing methodology described in this

paper is orthogonal to the technique used for analyzing the test declarations, other approaches such

as manual-targeted or property-based testing can also be used for discharging the test declarations.

10 CONCLUSION
ModP is a new programming framework that makes it easier to build, specify, and compositionally

test asynchronous systems. It introduces a module system based on the theory of compositional

trace refinement for the actor model of computation. We use ModP to implement and validate

a practical distributed systems protocol stack. ModP is effective in finding bugs quickly during

development and get orders of magnitude more test-coverage than monolithic approach. The

distributed services built using ModP achieve performance comparable to state-of-the-art open

source equivalents.
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Appendix Summary

Formalism and Proofs:

1. Section 4.4 presents the renaming constructor.

2. Section A presents assumption that machine-identifiers cannot be created out of thin-air.

3. Section B presents all the theorems and proofs for the ModP module system.

A MODEL OF COMPUTATION (CONTD.)
Machine identifiers cannot be created out of thin air. A state machine can get access to a

machine identifier either through a remove transition (Rem) where some other machine sent the

identifier as a payload or through create transition (New) where it creates an instance of a machine.

The assumption that machine identifiers cannot appear “out-of-thin-air” is formalized as follows.

For allm ∈ M, s, s ′ ∈ S, id, id ′ ∈ Z, e ∈ E, v ∈ V , i ∈ I, b ∈ B, and n ∈ N:
1. (s, id, s ′, id ′) ∈ Local(m) ⇒ ids(s ′) ∪ {id ′} ⊆ ids(s) ∪ {id}.
2. (s,b,n, s ′) ∈ Rem(m) ⇒ ids(s ′) ⊆ ids(s) ∪ {ids(v) | ∃e . b[n] = (e,v)}).
3. (s, id, e,v, s ′) ∈ Enq(m) ⇒ ids(v) ∪ ids(s ′) ⊆ ids(s).
4. (s, i, s ′) ∈ New(m) ⇒ ids(s ′) ⊆ ids(s).
Invariants for Executions of a Module. During the execution of a module P , all reachable
configurations (SP ,BP ,CP ) satisfy the following invariants:

Lemma A.1: Invariants for Executions of a Module

Let P be a well formed module. For any execution τ ∈ execs(P) where τ is a sequence of
global configurations G0

a0−→ G1

a1−→ . . . an−1−−−→ Gn , all global configurations Gi satisfy the

invariants:

I1 dom(SP ) = dom(BP )
I2 ∀(i,n) ∈ dom(BP ). i ∈ dom(IP ) ∧ n < C[i]
I3 ∀i ∈ dom(IP ). C[i] = card({n | (i,n) ∈ dom(BP )})
I4 ∀(x ,n,α) ∈ ids(SP ) ∪ ids(BP ). x ∈ dom(IP ) ⇒ (x ,n) ∈ dom(BP )
I5 ∀(x ,n,α) ∈ ids(SP ) ∪ ids(BP ). n < CP [x]

Proof. The invariants (I1) - (I5) are inductive and can be proved by performing induction

over the length of the execution τ for all the transitions (rules) defined inModP operations semantics.

�
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B THEOREMS AND PROOFS
Theorems forModP Module System

The module system proposed in this paper provide the following important top-level

lemmas:

1. Composition Is Intersection: Composition behaves like language intersection. This

is captured by the Lemma B.1, which asserts that traces of a composed module are

completely determined by the traces of the component modules. This Lemma forms the

basis and used by the rest of the lemmas.

2. Composition Preserves Refinement: The traces of a composed module is a subset of

the traces of each component module. Hence, the composition of two modules creates a

new module which is equally or more detailed than its components. This is captured by

the Lemma B.4.

3. Circular Assume-Guarantee: Lemma B.5 states that to show ∥ P refines Q ∈ Q, any

subset of modules in P and Q can be picked as long as Q is not picked. Therefore, it is

possible to perform sound circular reasoning, i.e., useQ1 to proveQ2 andQ2 to proveQ1.

4. Compositional Safety Analysis: Lemma B.6 talks about implementation modules in

P and abstraction modules in Q. When proving safety of any module P ∈ P, it is allowed

to pick any modules in Q for constraining the environment of P .

5. Hide Event Preserves Refinement: Lemma B.7 states that the hide event operation

preserves refinement, is compositional and create a sound abstraction of the module.

6. Hide Interface Preserves Refinement: Lemma B.8 states that the hide interface op-

eration preserves refinement, is compositional and create a sound abstraction of the

module.

Definitions. We present the definitions needed for the formalisms and proofs in this section.

1. Let G be the set of all possible configurations. For a configuration G = (S,B,C), we refer to its

elements as GS , GB , and GC respectively.

2. Let last be a function that given an execution which is a sequence of alternating global con-

figuration and transition labels returns the last global configuration state. If τ = G0
a0−→ G1

a1−→
. . .

an−1−−−→ Gn
then last(τ ) = Gn

3. Let trace(τP) represent the trace corresponding to execution τP ∈ execs(P).
4. Two configurations G,G ′ ∈ G are compatible, if the following conditions hold:

(1) ∀(i,n) ∈ (dom(GS ) ∩ dom(G ′
S )), GS [i,n] = G ′

S [i,n],
(2) ∀(i,n) ∈ (dom(GB ) ∩ dom(G ′

B )), GB [i,n] = G ′
B [i,n],

(3) ∀i ∈ (dom(GC ) ∩ dom(G ′
C )), GC [i] = G ′

C [i]
Informally, two configurations are compatible, if each element in the configurations agree on

the common values in their domain.

5. Let union be a partial function from (G × G) to G satisfying the following properties:

1. (G,G ′) ∈ dom(union) iff G and G ′
are compatible.

2. (Gp ,Gq ,Gc ) ∈ union iff Gc = (Gp
S ∪G

q
S ,G

p
B ∪G

q
B ,G

p
C ∪G

q
C ).
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Lemma B.1: Compositional Is Intersection

Let P ,Q and P | |Q be well-formed. For any π ∈ Σ∗
P | |Q , π ∈ traces(P | |Q) iff π [ΣP ] ∈ traces(P)

and π [ΣQ ] ∈ traces(Q).

Proof. We prove this lemma by proving two simpler lemmas, Lemma B.2 and Lemma B.3.

The proof is decomposed into the following two implications:

Forward Implication for traces:

If σ ∈ traces(P | |Q) then the projection σ [ΣP ] ∈ traces(P) and the projection σ [ΣQ ] ∈ traces(Q).
This follows from the Lemma B.2.

Backward Implication for traces:

If there exists a sequence σ ∈ Σ∗
P | |Q such that σ [ΣP ] ∈ traces(P) and σ [ΣQ ] ∈ traces(Q), then

σ ∈ traces(P | |Q). This follows from the Lemma B.3. �

Lemma B.2

For any execution τc ∈ execs(P | |Q), there exists an execution τp ∈ execs(P) such that

trace(τp)[ΣP ] = trace(τc)[ΣP ] and there exists an execution τq ∈ execs(Q) such that

trace(τq)[ΣQ ] = trace(τc)[ΣQ ].

Proof. We perform induction over the length of execution τc of the composed module P | |Q .

InductiveHypothesis: For every executionτc ∈ execs(P | |Q), there exists an executionτp ∈
execs(P) such that trace(τp)[ΣP ] = trace(τc)[ΣP ], there exists an execution τq ∈ execs(Q)
such that trace(τq)[ΣQ ] = trace(τc)[ΣQ ], and last(τc ) = union(last(τp ), last(τq)).

We refer to the elements of the global configuration last(τc ) as last(τc )S , last(τc )B , last(τc )C .
Base case: The base case for the inductive proof is for an execution τc of length 0, τc ∈ execs(P | |Q).
The projection of the execution τc over the alphabet of the individual modules results in a execution

of length zero which belongs to the set of executions of all the modules. We know that, for the

base case there exists an execution τp ∈ execs(P) and τq ∈ execs(Q) of length zero such that

last(τc ) = union(last(τp ), last(τq)). Hence, the inductive hypothesis holds for the base case.
Inductive case: Let us assume that the hypothesis holds for any execution τc ∈ execs(P | |Q).
Let τp and τq be the corresponding executions for module P and Q such that trace(τc)[ΣP ] =
trace(τp)[ΣP ], trace(τc)[ΣQ ] = trace(τq)[ΣQ ] and last(τc ) = union(last(τp ), last(τq)).
To prove that the hypothesis is inductive we show that it also holds for the execution τ ′c ∈

execs(P | |Q) where τ ′c = τc
a−→ G and τ ′p ,τ

′
q be the corresponding executions of P and Q .

We perform case analysis for all possible transitions labels a.

• a = ϵ
This is the case when the composed module P | |Q takes an invisible transition. Lets say n-th
instance of an interface i identified by (i,n) ∈ dom(last(τc )S ) made an invisible transition. This

could be because the machine took any of the following transitions: Internal, Remove-Event,

Create-Bad,Output-Create-3, Send-Bad, and Output-Send-3.

Consider the case when i ∈ dom(IP ) i.e. machine corresponding to interface i is implemented in

module P .
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Based on the assumption that last(τc ) = union(last(τp ), last(τq)), we know that

last(τc )S [i,n] = last(τp )S [i,n] and last(τc )B [i,n] = last(τp )B [i,n]. Hence, if machine in-

stance (i,n) in P | |Q can make an invisible transition a when in global configuration last(τc ),
then the same invisible transition can be taken by module P in configuration last(τp ). Hence,
trace(τ ′p)[ΣP ] = trace(τ ′c)[ΣP ] (where τ ′p = τp

a−→ G ′
). Since a = ϵ , trace(τq)[ΣQ ] =

trace(τ ′c)[ΣQ ]
Note that the invisible transitions do not change the mapC . Since, the module P | |Q and P took the

same transition a and configuration of module Q has not changed, the resultant configurations

satisfy the property last(τ ′c ) = union(last(τ ′p ), last(τq)).
The same analysis can be applied to the case whenm ∈ dom(MQ ).

• a = i where i ∈ I
This is the case when the composed module or the environment takes the visible transition of

creating an interface i . We perform case analysis for all such possible transitions:

1. Environment-Create

Consider the case when the environment of module P | |Q takes a transition to create an

interface i . If i is created by P | |Q using the Environment-Create, then it can be created by

P and Q only using the Environment-Create rule. This comes from the fact that i does not
belong to ICP | |Q and dom(IP | |Q).
Hence the environment of both P and Q can take the transition and the resultant execu-

tions τ ′p ,τ
′
q will satisfy the condition last(τ ′c ) = union(last(τ ′p ), last(τ ′q), trace(τ ′c)[ΣP ] =

trace(τ ′p)[ΣP ], trace(τ ′c)[ΣQ ] = trace(τ ′q)[ΣQ ].
2. Input-Create

Our definition of composition and compatibility guarantees that if P | |Q is well-formed then:

1. dom(IP | |Q) = dom(IP ) ∪ dom(IQ)
2. dom(IP ) ∩ dom(IQ) = ∅
Hence, if the composed module P | |Q receives an input create request for i ∈ dom(IP ) ⊂ ICIP
from the environment, then either i ∈ dom(IP ), or i ∈ dom(IQ). Also, since i < ICP | |Q , it
implies that i < ICQ and i < ICP .

Consider the case when i ∈ dom(IP ). Based on the assumption that last(τc ) =
union(last(τp ), last(τq)), we know that last(τc )S [i,n] = last(τp )S [i,n] and

last(τc )B [i,n] = last(τp )B [i,n]. Hence, if P | |Q takes the visible Input-Create tran-

sition i , when in global configuration last(τc ), then the same transition can be taken by

module P in configuration last(τp ). i ∈ ΣQ (we know that i < (dom(IQ) ∪ ICQ )), hence Q
takes the Environment-Create transition. The resultant executions τ ′c , τ

′
p and τ ′q satisfy the

condition that last(τ ′c ) = union(last(τ ′p ), last(τ ′q)). Also, trace(τ ′c)[ΣP ] = trace(τ ′p)[ΣP ]
and trace(τ ′c)[ΣQ ] = trace(τ ′q)[ΣQ ] since all modules took the same labeled transition.

The same analysis can be applied to the case when i ∈ dom(IQ).
3. Output-Create-1

This is the case when a machine instance (i ′,n) ∈ dom(last(τc )S ) creates an interface i
and i < dom(IP | |Q) which means that interface i is implemented by some machine in the

environment of P | |Q .
Consider the case when i ′ ∈ dom(IP ) (which implies that i ′ < dom(IQ)), since i < dom(IP | |Q)
we know that i < dom(IP ) and i < dom(IQ).
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Based on the assumption that last(τc ) = union(last(τp ), last(τq)) we know that

S[τc ][i,n] = S[τp ][i,n] and B[τc ][i,n] = B[τp ][i,n] and hence if P | |Q takes the visible Output-

Create-1 transition when in global configuration last(τck), the same transition can be taken

by module P in configuration last(τpk ′).
i ∈ ΣQ and hence the environment of moduleQ creates an interface i (Environment-Create)
and the resultant executions satisfy the condition that last(τ ′c ) = union(last(τ ′p ), last(τ ′q)).

4. Output-Create-2

Similar analysis can be applied to prove that our inductive hypothesis holds when the com-

posed module P | |Q takes an Output-Create-2 transition.

�

Lemma B.3

For every pair of executions τp ∈ execs(P) and τq ∈ execs(Q), if there exists σ ∈ Σ∗
P | |Q such

that σ [ΣP ] = trace(τp)[ΣP ] and σ [ΣQ ] = trace(τq)[ΣQ ], then there exists an execution

τc ∈ execs(P | |Q) such that trace(τc)[ΣP | |Q ] = σ .

Proof. Given a pair of executions (p,q) and (p ′,q′), we define a partial order over pair of

executions as (p,q) ≼ (p ′,q′) iff p is a prefix of p ′ and q is a prefix of q′. We perform induction over

the pair of executions of module P and Q using the partial order.

Inductive Hypothesis: For any pair of executions (τp ,τq) of modules P andQ respectively,

if there exists σ ∈ Σ∗
P | |Q such that σ [ΣP ] = trace(τp)[ΣP ] and σ [ΣQ ] = trace(τq)[ΣQ ] then

there exists an execution τc ∈ execs(P | |Q) such that trace(τc)[ΣP | |Q ] = σ and last(τc ) =
union(last(τp ), last(τq)).

Base case: The inductive hypothesis hold trivially for the base case when the length of the

executions τp ,τq of modules P , Q is zero.

trace(τp)[ΣP ] = trace(τq)[ΣP ] = ϵ (ϵ ∈ Σ∗
P | |Q ).

we know that: there exists τp = (Sp
0
,B

p
0
,C

p
0
) ∈ execs(P), there exists τq = (Sq

0
,B

q
0
,C

q
0
) ∈ execs(Q)

and there exists τc = (Sc
0
,Bc

0
,Cc

0
) ∈ execs(P | |Q).

Hence, there exists an execution τc ∈ execs(P | |Q) such that trace(τc)[ΣP | |Q ] = ϵ
Finally, we have last(τc ) = union(last(τp ), last(τq)) as:
• Sc

0
= S

p
0
= S

q
0
= S0 (empty map)

• Bc
0
= B

p
0
= B

q
0
= B0 (empty map)

• Cc
0
= C

p
0
= C

q
0
= C0 (all elements map to 0)

Inductive case: Let us assume that the hypothesis holds for any pair of executions (τp ,τq) and any
σ . To prove that the hypothesis is inductive, we show that the hypothesis holds for the next pair

of executions in the partial order ((τ ′p ,τq), (τp ,τ ′q) and (τ ′p ,τ ′q) where τ ′p = τp
a−→ G ′

, τ ′q = τq
a−→ G ′′

and τ ′c = τc
a−→ G ′′′

).

Just to provide an intuition, (τ ′p ,τq) represents the case when module P takes a transition with

label a and a < ΣQ , similarly (τp ,τ ′q) represents the case when module Q takes a transition with

label a and a < ΣP . (τ ′p ,τ ′q) represents the case when module P and Q both take transition with

label a, as a ∈ ΣP ,a ∈ ΣQ .
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We perform case analysis for all possible transitions taken by module P and module Q . We

provide a proof for one such case:

1. Let us consider the case when module P takes a transition Output-Send-1 with label a =
((it ,nt ), e,v). Let (i,n) ∈ dom(last(τP )S ) be the machine that takes this transition. Hence,

σ ′ = σ .a and trace(τ ′p)[ΣP ] = σ ′[ΣP ].
Let us consider the case when it ∈ dom(IQ), and e ∈ MRecvs(it ) \ (EPQ ∪ ESQ ) (input event of
Q). Based on the assumption that last(τc ) = union(last(τp ), last(τq)) and the invariants I1-I6

about the state configurations, we know that (it ,nt ) ∈ dom(last(τq)B ).
Hence, Q can take a Input-Send transition with label a = ((it ,nt ), e,v) and therefore

trace(τ ′q)[ΣQ ] = σ ′[ΣQ ].
Finally, using same assumption last(τc ) = union(last(τp ), last(τq)) and the invariants I1-

I6, the composed module P | |Q can take the transition Output-Send-2 with the same label

a = ((it ,nt ), e,v). Hence, trace(τ ′c)[ΣP | |Q ] = σ ′
. The resultant executions still satisfy the

condition that last(τ ′c ) = union(last(τ ′p ), last(τ ′q)).
Note: Proving that executions of modules satisfy the property last(τc ) =

union(last(τp ), last(τq)) helps us prove a stronger property than what is needed for

the lemma.

Similar analysis was performed for all possible transitions taken by modules P and Q . �

Lemma B.4: Composition preserves refinement

Let P , Q , and R be three modules such that P ,Q and R are composable. Then the following

holds: (1) P | |R ≼ P and (2) P ≼ Q implies that P | |R ≼ Q | |R

Proof. (1) follows directly from the Lemma B.1. For (2), let σ be a trace of P | |R, then we know

that σ [ΣP ] is a trace of P and σ [ΣR ] is a trace of R. We know that, P ≼ Q therefore σ [Q] is a trace
of Q and using the Lemma B.1 σ [ΣQ | |R ] is a trace of Q | |R. �

Lemma B.5: Circular Assume-Guarantee

Let ∥ P and ∥ Q be well-formed. Suppose for each module Q ∈ Q there is a subset X of

P ⊕ Q such that Q < X, ∥ X is well-formed, and ∥ X refines Q . Then ∥ P refines each

module Q ∈ Q.

Proof. Definitions:

• Let Q be a collection of (n > 1) composable modules represented by the set {Q1,Q2, ...Qn}.
• Let P be a collection of (n′ > 1) composable modules represented by the set {P1, P2, ...Pn′}.
In this proof, we refer to ∥ P (composition of all modules in P) as module P

• Let ∀k .Xk be a subset of P ⊕ Q.

Let us assume that ∀Qk ∈ Q there exists a Xk such that Xk ≼ Qk .
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InductiveHypothesis:Our inductive hypothesis is that for every execution τP ∈ execs(P)
and for all Qk ∈ Q, there exists an execution τQk ∈ execs(Qk ) such that trace(τP)[ΣQk ] =
trace(τQk )[ΣQk ].
Note that the inductive hypothesis is over the executions of P but it implies that, if for all

Qk ∈ Q, there exists a Xk such that Xk ≼ Qk then for all traces σP ∈ traces(P) and for all

Qk ∈ Q we have σP[ΣQk ] ∈ traces(Qk ).

We prove our inductive hypothesis by performing induction over the length of execution τP .

• Base case: The base case is one where the length of execution τP is 0. The inductive hypothesis

trivially holds for the base case.

• Inductive case: Let us assume that the inductive hypothesis holds for any execution τp ∈
execs(P) of length k . To prove that the hypothesis is inductive, we show that the hypothesis

also holds for any execution τ ′p where τ ′p = τp
a−→ G.

We have to perform the case analysis for all possible transition labels a. We provide a proof for

some of these cases:

• a = ϵ (Invisible transition)

It can be easily seen that the inductive hypothesis holds for the case when the module P
takes an invisible transition.

• a = i where i ∈ I (creation of an interface)

a can be equal to i because of any of the following cases: (1) module P creates an interface

using the transitions: Output-Create-1, Output-Create-2 or (2) the environment creates it

using the transitions: Environment-Create, Input-Create.

Let us consider the case when a = i because P executes the Output-Create-1 transition.

Recollect that P is a composition of modules P1, P2, ..Pn′ . Using Lemma B.2, we can decompose

the execution τP of module P (τP ∈ execs(P)) into the executions τP1 ,τP2 , ... of the component

modules such that for all Pk ∈ P, trace(τP)[ΣPk ] = trace(τPk )[ΣPk ].
From the operational semantics of Output-Create-1, we know that i ∈ ICP and i < dom(IP).
Let us consider the case when there exists a module Pk ∈ P such that i ∈ ICPk , and from the

definition of composition we know that ∀j, j , k, i < ICPj .

If ∃j, s.t. j , k ∧ i ∈ ΣPj then Pj can take the Environment-Create transition to match the

visible action a = i .
If i ∈ ICQ , then for some Qk ∈ Q, i ∈ ICQk – (1).

If ∀Qk ∈ Qk , i < ICQ , then all Qk can take the Environment-Create transition to match the

visible action a = i .
Let us consider the case when only (1) is true. Since i ∈ ICQk and Xk ≼ Qk we have i ∈ ICXk .
Note that P and Q are well formed modules. Since (1)Qk < Xk (2) ∀j, j , k .i < ICPj ∧i < ICQ j ,

we know that Pk ∈ Xk .

Using Lemma B.3, and the fact that Xk ≼ Qk , we know that for any given τ ′Pk ∈ execs(Pk )
there exist τ ′Qk

such that trace(τ ′Pk )[ΣQk ] = trace(τ ′Qk )[ΣQk ].
Finally, we know that:

1. Inductive hypothesis holds for any execution τP and τ ′P = τP
i−→ G (Output-Create-1)

2. i ∈ ICQk and i ∈ ICPk .

3. ∀j, j , k .i < ICPj and ∀j, j , k .i < ICQ j .

4. there exists an execution τ ′Pk ∈ execs(Pk ) such that trace(τ ′P)[ΣPk ] = trace(τ ′Pk )[ΣPk ].
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5. there exists an execution τ ′Qk
∈ execs(Qk ) such that trace(τ ′Pk )[ΣQk ] = trace(τ ′Qk )[ΣQk ]

Hence, we can conclude that for the execution τ ′P there exists an execution τ ′Qk
such that

trace(τ ′P)[ΣQk ] = trace(τ ′Qk )[ΣQk ].
And using (3), we also know that for all Q j ∈ Qk , trace(τ ′P)[ΣQ j ] = trace(τQk )[ΣQ j ]
Hence, the inductive hypothesis holds for the execution τ ′P .
We do similar analysis to prove the other cases.

�

Lemma B.6: Compositional Safety Analysis

Let ∥ P and ∥ Q be well-formed. Let ∥ P refine each moduleQ ∈ Q. Suppose for each P ∈ P,

there is a subset X of P ⊕ Q such that P ∈ X, ∥X is well-formed, and ∥X is safe. Then ∥ P
is safe.

Proof. We describe a proof strategy using contradiction for a simplified system consisting of

two implementation modules P1, P2 and two abstraction modules Q1,Q2. For such a system, the

theorem states that if P1 ∥ P2 ≼ Q1, P1 ∥ P2 ≼ Q2 and P1 ∥ Q2, Q1 ∥ P2 are safe then P1 ∥ P2 is safe.
Lets say that there exists an error execution in τ e in P1 ∥ P2. Using the compositional refinement

Lemma, we can decompose the execution τ e into τ e
1
of P1 and τ e

2
of P2. Lets say the error was

because of module P1 taking a transition and hence τ e
1
is an error trace.

We know that P1 ∥ Q2 is safe which means that for all executions of module P1 ∥ Q2 there is no

execution of P1 that is equal to τ
e
1
after decomposition.

The above condition also implies that in the composed module P1 ∥ P2, module P2 using an

output action is triggering an execution in P1 which results in execution τ e
1
. And this output action

is not triggered by Q2 in the composition P1 ∥ Q2.

The above condition implies that P1 ∥ P2 ≼ Q2 does not hold which is a contradiction.

We generalized this proof strategy for proving the given lemma.

�

Lemma B.7: Hide Event Preserves Refinement

For all well-formed modules P andQ and a set of events α , if (hideα in P) and (hideα inQ)
are well-formed, then (1) P ≼ (hideα in P) and (2) if P ≼ Q , then (hideα in P) ≼
(hideα inQ).

Proof. Let hP = (hideα in P) and hQ = (hideα inQ).
We perform induction over the length of execution τhP of module hP

Inductive Hypothesis: For every execution τp ∈ execs(hP), there exists an execution

τp ∈ execs(hQ) such that trace(τhP)[ΣhQ ] = trace(τhQ)[ΣhQ ]

We prove our inductive hypothesis by performing induction over the length of execution τP .

• Base case: The base case is trivially satisfied by an execution of length zero.

• Inductive case: Let us assume that the hypothesis holds for any execution τhP ∈ execs(hP)
and the corresponding execution of module hQ be τhQ ∈ execs(hQ).
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To prove that the hypothesis is inductive we show that it also holds for the execution

τ ′hP ∈ execs(hP) where τ ′hP = τhP
a−→ G and τ ′hQ be the resultant executions of hQ .

Hide operation only converts visible actions into internal actions. Hence, it can be easily

shown that any execution of hP is also an execution of P , similarly for module hQ and Q ,
every execution of hQ is an execution of Q .
The above property, along with the fact that P ≼ Q helps us conclude that the inductive

hypothesis always holds.

�

Lemma B.8: Hide Interface Preserves Refinement

For all well-formed modules P and Q and a set of interfaces α , if (hideα in P) and

(hideα inQ) are well-formed, then (1) P ≼ (hideα in P) and (2) if P ≼ Q , then
(hideα in P) ≼ (hideα inQ).

Proof. The proof is similar to the proof for Lemma B.7. �
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