
Methods and Systems for Understanding Large-Scale
Internet Threats

Paul Pearce

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-98
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-98.html

August 5, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Methods and Systems for Understanding Large-Scale Internet Threats

by

Paul James Pearce

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Vern Paxson, Chair
Professor Deirdre K. Mulligan

Professor Stefan Savage
Professor David Wagner

Summer 2018

Methods and Systems for Understanding Large-Scale Internet Threats

Copyright 2018
by

Paul James Pearce

1

Abstract

Methods and Systems for Understanding Large-Scale Internet Threats

by

Paul James Pearce

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Vern Paxson, Chair

Large-scale Internet attacks are pervasive. A broad spectrum of actors from organized gangs
of criminals to nation-states exploit the modern, layered Internet to launch politically and econom-
ically motivated attacks. The impact of these attacks is vast, ranging from billions of users experi-
encing Internet censorship, to tens of millions of dollars lost annually to cybercrime. Developing
effective and comprehensive defenses to these large scale threats requires systematic empirical
measurement.

In this dissertation we develop empirical measurement methods and systems for understanding
politically and economically motivated Internet threats. Specifically, we examine the problems
of Internet censorship and advertising abuse in-depth and at-scale. To understand censorship, we
develop Augur and Iris, methods and accompanying systems that allow us to perform global, lon-
gitudinal measurement of Internet censorship at the TCP/IP and DNS layers of the network stack—
without the use of volunteers. This work addresses a range of both technical and extra-technical
challenges, at a scale and fidelity not previously achieved. In combating advertising abuse, we in-
vestigate and chronicle multiple facets of the ecosystem— from clickbots to large-scale botnets to
advertising injection—using a variety of empirical methods. Our work ultimately identifies funda-
mental structural weak-points leverageable for defense, resulting in dismantling botnets, cleaning
up ad networks, and protecting users.

i

For Judy

ii

Contents

Contents ii

1 Introduction 1

I Global Censorship Measurement 5

2 Censorship Introduction, Related Work and Ethics 6
2.1 Introduction . 6
2.2 Related Work . 7
2.3 Ethics . 10

3 Augur: Internet-Wide Detection of Connectivity Disruptions 12
3.1 Introduction . 12
3.2 Method Overview . 13
3.3 Putting the Method to Practice . 17
3.4 Augur Implementation and Experiment Data . 23
3.5 Validation and Analysis . 30
3.6 Discussion . 39
3.7 Augur Summary . 40

4 Iris: Global Measurement of DNS Manipulation 42
4.1 Introduction . 42
4.2 Method . 43
4.3 Dataset . 52
4.4 Results . 55
4.5 Iris Summary . 65

5 Censorship Discussion and Conclusion 68

II Understanding Advertising Abuse 70

6 Advertising Abuse Introduction and Related Work 71

iii

6.1 Introduction . 71
6.2 Related Work and Background . 73

7 What’s Clicking What? Clickbot Techniques and Innovations 78
7.1 Introduction . 78
7.2 Methodology . 79
7.3 The Fiesta Clickbot . 81
7.4 The 7cy Clickbot . 85
7.5 Discussion and Summary . 96

8 ZeroAccess: Background and Evolution 98
8.1 ZeroAccess Evolution and Takedown . 98
8.2 Technical Background . 100

9 The ZA Auto-Clicking and Search-Hijacking Malware 102
9.1 Introduction . 102
9.2 Methodology . 103
9.3 The ZeroAccess Platform . 104
9.4 The Auto-Clicking Module . 105
9.5 Serpent: The Search-Hijacking Module . 108
9.6 Summary . 116

10 Characterizing Large-Scale Click Fraud in ZeroAccess 117
10.1 Introduction . 117
10.2 Data Sources and Quality . 118
10.3 Analyzing Fraud . 121
10.4 Assessing ZA-Dirty Ad Units . 130
10.5 Summary . 135

11 Ad Injection at Scale: Assessing Deceptive Advertisement Modifications 136
11.1 Introduction and Background . 136
11.2 Impacted Properties . 137
11.3 Understanding Injectors in Revenue Chains . 138
11.4 Advertisers and Intermediates For Top Injectors 139
11.5 Summary . 143

12 Advertising Abuse Conclusion 144

13 Conclusion and Future Directions 145

Bibliography 147

iv

Acknowledgments

I must begin by thanking my amazing PhD advisor Vern Paxson. His support, understanding,
encouragement, and expertise on topics ranging from research to life were invaluable. Without his
guidance I would not be where I am today. Thank you.

I must also thank the faculty of the Center for Evidence based Security Research (CESR),
namely Stefan Savage and Geoff Voelker. Their council and feedback were instrumental in my
career. They both continually went above and beyond in facilitating my PhD, at times engaging
more as advisors than mentors. Thank you both.

Similarity, I thank Nick Feamster, whose guidance throughout the 2nd half of my PhD was
critical in achieving my career objectives. I also thank David Wagner, a resource and mentor
throughout my time in Berkeley.

PhD’s are a marathon, and it helps to have good friends to share the load. Thank you to 1044++
for the life part of work-life balance.

I owe a huge debt of gratitude to all of my fellow security students at UC Berkeley and the
broader CESR family. This includes but is not limited to: Devdatta Akhawe, Jethro Beekman, Joe
DeBlasio, Adrienne Porter Felt, David Fifield, Chris Grier, Grant Ho, Danny Huang, Mobin Javed,
Noah Johnson, Frank Li, Bill Marczak, Michael McCoyd, Brad Miller, Ariana Mirian, Austin
Murdock, and Kurt Thomas. Thank you all for the support and comradery.

The unsung heros of any PhD are the staff that make everything work. Chief among them are
Angie Abbatecola and Jon Kuroda. Thank you both for being awesome and continually going
above and beyond in keeping the department going.

Going back further, this degree was not possible without the opportunity of the California
Community College system, numerous professors at Chaffey Community College, and the sup-
port of several individuals whom facilitated my transfer to UC Berkeley as an undergraduate.
Among those who deserve recognition are: Tim Arner (Chaffey Community College Professor,
retired), Charles Hollenbeck (Chaffey Community College Professor, retired), Rebecca Miller
(former UC Berkeley Director of Student Affairs), Karen Pender (Chaffey Community College
Professor, retired), Ana Rafferty (UC Berkeley Transfer Specialist), and Sheila Humphreys (UC
Berkeley EECS Emerita Director of Diversity). Thank you all helping me get to this point in my
life and career.

Throughout my entire PhD I had the privilege to work with an amazing set of collaborators from
both academia and industry. I thank them all for the opportunity to collaborate, and acknowledge
that this work was not possible without their assistance.

I also thank my dissertation committee, Vern Paxson, Deirdre Mulligan, Stefan Savage, and
David Wagner, for enduring my qualifying exam slides and providing invaluable feedback on my
work’s direction and impact.

Additionally, I am grateful for the research assistance of the following throughout my graduate
career: David Anselmi, Manos Antonakakis, Richard Boscovich, Eric Brewer, Randy Bush, Chia
Yuan Cho, Jed Crandall, Hitesh Dharamdasani, Zakir Durumeric, David Fifield, Sarthak Grover,
Yunhong Gu, Brad Karp, Niels Provos, Moheeb Abu Rajab, the Google Safe Browsing Team, the

v

Microsoft Digital Crimes Unit (DCU), the Microsoft Malware Protection Center (MMPC), and the
Bing Ads Online Forensics Team.

My work was supported in part by National Science Foundation Awards CNS-0433702, CNS-
0831535, CNS-0905631, CNS-1213157, CNS-1237076 CNS-1237264, CNS-1237265, CNS-140-
6041, CNS-1518878, CNS-1518918, CNS-1540066, and CNS-1602399; by the Office of Naval
Research MURI grants N00014-09-1-1081 and N00014-12-1-0165; by the U.S. Army Research
Office MURI grant W911NF-09-1-0553; the Team for Research in Ubiquitous Secure Technology
(TRUST); and by gifts from Google, Microsoft, and the UCSD Center for Networked Systems
(CNS). Any opinions, findings, and conclusions or recommendations expressed in this dissertation
are those of the author and do not necessarily reflect the views of the sponsors.

And to Judy, my wife: You are the best person I know. Your immeasurable patience, love, and
support is what allows me to do what I do. Thank you for the journey thus far, and what is come.
Also I’m sorry I cold-called you (prior to our formal introduction) when we took EE20N. But it
seems to have worked out ok in the long run.

1

Chapter 1

Introduction

Internet security is defined by conflict. The value and power mediated by the global, interconnected
systems of today’s Internet in turn attract adversaries who seek to exploit these same systems for
economic, political or social gain. However, the underlying complexity of the Internet infrastruc-
ture, the layering of its services, and the indirect nature of its business relationships can make it
difficult to identify even the existence of adversaries manipulating systems for their benefit. Fur-
ther, identifying that an attack is taking place is only the first step in an ongoing challenge, as
adversaries have the luxury to define where and when their actions take place and responders are
forced to discover the landscape of the battle after it commences.

Studying these problems is challenging. While anecdotes and serendipitous findings are com-
mon, understanding the full nature of a particular action or attack requires systematic measurement—
frequently measurement of an actor who seeks to hide or camouflage their actions. Designing ef-
fective and comprehensive defenses requires sound understanding of not only specific problems,
but also the fundamental limitations and costs associated with those problems. In the context of
global-scale attacks such as cybercrime and censorship, acquiring this understanding is frequently
challenging and requires new types of research systems and measurement methods. Remediation
without systematic understanding of opponents’ costs, capabilities, and objectives risks developing
reactionary, incremental defenses lacking feasibility or robustness.

This dissertation brings empirical grounding and understanding to the study of global, hidden
Internet security threats. Our work is focused on both politically and economically motivated
attacks, spanning censorship (Part I) and cybercrime (Part II).

Part I: Global Censorship Measurement
Anecdotes and reports indicate that Internet censorship is widespread, affecting many countries
around the world [55, 112]. Despite this prevalence, empirical Internet measurements revealing
the scope and evolution of censorship remain comparatively sparse. This limitation stems from
fundamental technical and ethical difficulties in obtaining large-scale, consistent, and sound data,
from both numerous countries and multiple vantage points within those countries. Understanding

CHAPTER 1. INTRODUCTION 2

global manipulation practices is necessary to develop technologies and formulate policies that
effectively address censorship.

A more complete understanding of Internet censorship around the world requires diverse mea-
surements from a wide range of geographic regions and ISPs, not only across countries but also
within regions of a single country. Diversity is important even within countries, because political
dynamics can vary internally, and because different ISPs may implement filtering policies differ-
ently.

Unfortunately, most mechanisms for measuring Internet censorship globally rely on volunteers
who run measurement software deployed on their own Internet-connected devices (e.g., laptops,
phones, or tablets) [124, 134]. Because these tools rely on people to install software and perform
measurements, it is unlikely that they can ever achieve the scale required to gather continuous and
diverse measurements about Internet censorship.

Performing measurements of the scale and frequency necessary to understand the scope and
evolution of Internet censorship calls for fundamentally new techniques that do not require human
involvement or intervention. Part I of this work develops systems and methods that can perform
widespread, ethical, longitudinal measurements of multiple types of global Internet censorship.
To achieve the necessary reach and diversity, we have developed systems and methods that do not
require the participation of individual users in the countries of interest. This work addresses a range
of both technical and extra-technical challenges, at a scale and fidelity not previously achieved.

To enable global continuous measurement of TCP/IP Internet censorship, we develop Au-
gur (Chapter 3) [116, 117], a measurement regimen and accompanying system that soundly lever-
age potentially highly noisy TCP/IP side channels to measure reachability between two Inter-
net locations without access to measurement vantage points at the locations, or even at points
along the path between them (Section 3.2). Augur includes the use of sequential hypothesis test-
ing (Section 3.3) to develop statistical confidence in the face of network and side channel noise,
and techniques for responsibly addressing censorship measurement ethics. The validation of Au-
gur included a global censorship measurement study which examined the blocking practices of 179
countries and territories (Section 3.5).

Adversaries employ a variety of technical mechanisms to achieve Internet censorship. Augur
enables us to understand global TCP/IP censorship, but to further build a comprehensive picture of
censorship, we need techniques to examine additional commonly deployed blocking technologies.
Towards this goal we then develop Iris (Chapter 4) [119, 120], a scalable and accurate method to
measure global manipulation of DNS resolutions. Iris enables ongoing censorship measurement
from 151 countries and territories (Section 4.2). The deployment of Iris reveals new patterns in
global censorship, including the heterogeneity of censorship within countries (Section 4.4).

A critical problem in the field of censorship measurement is ethics (Section 2.3). The devel-
opment of methodologies that are both comprehensive and ethically responsible is challenging,
as these goals frequently conflict. By its nature, measuring censorship involves interacting with
content that an authority has deemed objectionable; exploring the scope and scale of that con-
tent potentially creates risk for those involved in the measurement. Both Augur (Section 3.2) and
Iris (Section 4.2) include approaches for reasoning about risk, as well as for reducing potential
harm via the use of network infrastructure for indirect censorship measurement.

CHAPTER 1. INTRODUCTION 3

Part II: Understanding Advertising Abuse
Cybercrime has evolved into a complex global ecosystem of criminal actors performing attacks
ranging from ransomware to denial-of-service to click fraud. The motivation for these attacks is
economic—criminals carry out these attacks in order to monetize users at a global scale [95, 115,
135]. This economic force means criminals focus their efforts on maximizing profit rather than
relying on specific technical mechanisms [136]. Past work has shown that solutions which focus
on the financial and relational aspects of cybercrime have the potential to be more effective than
incremental technological defenses [95].

One such form of cybercrime, advertising abuse, is a prevalent and lucrative attack that ex-
ploits the wealth of the online advertising ecosystem while masking criminal identity and activities
through the ecosystem’s byzantine structure [115, 135]. The scale and structure of these attacks
tilt the conflict in favor of the criminals, impacting users on a global scale [115]. Part II of this
work systematically examines advertising abuse both from an external perspective and internally
through collaborations with industry partners, across multiple monetization strategies and attacks.
Using a range of methods and data sources—from command-and-control infiltration, to direct
measurement, to industry data—we uncover the scale, structure, and nature of advertising fraud
attacks which, by their nature, are designed to be difficult to distinguish. With this understand-
ing, our work identifies fundamental structural weak-points leverageable for defense, resulting in
dismantling botnets, cleaning up ad networks, and protecting users.

We begin exploring advertising abuse with an execution-driven study of click fraud malware
and the supporting ad ecosystem (Chapter 7 [105]. By iteratively executing malware in isolation
with controlled network access, we were able to build tools for automated command-and-control
interaction (“milkers”). These tools allowed us to explore the ad abuse ecosystem at a scale not
possible with traditional malware execution. This exploration uncovered the breath and scale of
the ad fraud ecosystem, as well as the fundamentals of the business model. Despite this new
understanding of the ecosystem, our view was still limited to an external ad placement perspective.

To obtain a view of the ad fraud ecosystem at both a larger scale and from an internal perspec-
tive, we next perform an in-depth exploration of ZeroAccess (ZA) in Chapter 8. ZA was a vast and
complex peer-to-peer (P2P) botnet, serving as a delivery platform for advertising abuse malware
for more than four years. At its peak, ZA infected more than 1.9 million systems, resulting in
millions of dollars in advertising fraud per month.

Continuing to explore the advertising fraud ecosystem, we then develop an in-depth technical
analysis (Chapter 9) on the structure and function of the ZA malware [118]. This work led to
collaboration with Microsoft’s Digital Crime Unit and law enforcement, with the technical analysis
serving as Exhibit 1 in legal action against the criminal actors [104].

Chapters 7, 8, and 9 provide an external view of the structure and function of large-scale ad-
vertising abuse. In order to have a qualitatively different, insider view of ad fraud, in Chapter 10
we combine an array of data sources, including P2P measurements, command-and-control teleme-
try from botnet infiltration, along with click information from a top ad-network industry partner.
This work illuminated the rich, intertwined nature of malware-driven click fraud and the adver-
tising ecosystem it exploited, as well as how to develop effective remediations [115]. Using this

CHAPTER 1. INTRODUCTION 4

multifaceted approach, we identify fraudulent business relationships within the advertising net-
work stemming from complex multi-hop ad reseller chains, which were used as a focal point for
remediation. We also quantified the financial impact of ZA’s criminal activity.

A key result from from Chapters 9 and 10 is the complexity of multi-hop ad reseller chains,
and how those chains can be used to mask and “launder” fraud. Chapter 11 explores this issue
specifically, focusing on a different facet of the advertising abuse ecosystem—“ad injection”—
which affected tens of millions of users [135]. Similar to malware-driven click fraud, ad injection
generates revenue through a complex and intertwined ecosystem of intermediaries with opaque
business relationships used to launder ad views and clicks. But in the case of ad injection, software
that is likely unwanted or has misrepresented its purpose injects ads into the browsing experiences
of actual users. Via a collaboration with Google, Chapter 11 explores the structure and composition
of traffic intermediaries and advertisers that served as the revenue source feeding the injection
ecosystem. Our work enabled remediation for millions of users by identifying structural “choke
points” of three ad networks and 25 affiliate programs that were responsible for the majority of ad
injections.

5

Part I

Global Censorship Measurement

6

Chapter 2

Censorship Introduction, Related Work and
Ethics

2.1 Introduction
News reports, anecdotes, and policy briefings collectively suggest that Internet censorship—the
blocking and manipulation of content deemed to be objectionable by controlling entities—is per-
vasive [55]. Despite this prevalence, the nature of Internet censorship and the continuous evolu-
tion of how and where censorship is applied, measurements of censorship remain comparatively
sparse. The scale and diversity of Internet censorship practices makes it difficult to precisely mon-
itor where, when, and how censorship occurs, as well as what is censored. The potential risks in
performing the measurements make this problem even more challenging. As a result, many ac-
counts of censorship begin—and end—with anecdotes or short-term studies from only a handful
of vantage points.

Understanding the scope, scale, and evolution of Internet censorship requires global measure-
ments, performed at regular intervals. Unfortunately, the state of the art relies on techniques that,
by and large, require users to directly participate in gathering these measurements [71, 124, 134],
drastically limiting their coverage and inhibiting regular data collection.

These approaches remain difficult to deploy in practice: for example, some countries might
not have globally available VPN exits within them that some techniques rely upon [71], or may
have censors that block the network access required for the measurements [134]. Because such
approaches and tools rely on people to install software and perform measurements, it is unlikely
that they can ever achieve the scale required to gather continuous and diverse measurements about
Internet censorship.

Another approach is to opportunistically leverage a network presence in a given country using
browser-based active measurement of potential censorship [128]. This method can have difficulties
in obtaining fully global views, though, because it is driven by end-user browsing choices. Due to
its potential for implicating end users in attempting to access prohibited Internet sites, it can only
be used broadly to measure reachability to sites that would pose minimal additional risk to users,

CHAPTER 2. CENSORSHIP INTRODUCTION, RELATED WORK AND ETHICS 7

which limits its utility for measuring reachability to a broad range of sites.
Part I seeks to instead develop methods and tools to continuously monitor information about

Internet reachability, remotely, without the need for volunteers or user participation (willing or
unwilling). Such methods have the capability to capture the onset or termination of censorship
across regions and ISPs, as well as identify differences in censorship behaviors across both time
and space.

To achieve these goals we first introduce Augur (Chapter 3) [116,117], a method and accompa-
nying system that utilizes IP spoofing and TCP/IP side channels to measure reachability between
two Internet locations without directly controlling a measurement vantage point at either location.
Using these side channels, coupled with techniques to ensure safety by not implicating individ-
ual users, we develop scalable, statistically robust methods to infer network-layer filtering, and
implement a corresponding system capable of performing continuous monitoring of global censor-
ship. We validate our measurements of Internet-wide disruption in 179 countries (and territories)
over 17 days against sites known to be frequently blocked; we also identify the countries where
connectivity disruption is most prevalent.

Next, we develop Iris (Chapter 4) [119,120], a scalable and accurate method to measure global
manipulation of DNS resolutions using open infrastructure DNS resolvers. Iris facilitates large-
scale measurements that can expand our understanding of censorship beyond Augur’s IP-level
view. Iris reveals widespread DNS manipulation of many domain names; our findings both confirm
anecdotal reports and results from previous work, and reveal new patterns in DNS manipulation.

2.2 Related Work
Previous work spans several related areas. We begin discussing previous research which has per-
formed pointwise studies of censorship in specific countries, as well as tools that researchers have
developed to facilitate global censorship measurement studies. Next, we discuss previous stud-
ies that have highlighted the variability and volatility of censorship measurements over time and
across regions, which motivates our work. Finally we conclude with discussion of closely related
work on connectivity measurements using side channels, DNS manipulation, and open resolvers.

Country-specific censorship studies. In recent years many researchers have investigated the
whats, hows, and whys of censorship in particular countries. These studies often span a short
period of time and reflect a single vantage point within a target country, such as by renting vir-
tual private servers. For example, studies have specifically focused on censorship practices in
China [7, 31, 151, 154], Iran [11], Pakistan [82, 108], Syria [23], and Egypt [12]. Studies have also
explored the employment of various censorship methods, e.g., country-wide Internet outages [35],
injection of fake DNS replies [9, 97], blocking of TCP/IP connections [148], and application-level
blocking [36, 76, 114], and traffic throttling [4]. A number of studies suggest that countries some-
times change their blocking policies and methods in times surrounding political events. For ex-
ample, Freedom House reports 15 instances of Internet shutdowns—where the government cut off
access to Internet entirely—in 2016 alone [55]. Most of these were apparently intended to prevent

CHAPTER 2. CENSORSHIP INTRODUCTION, RELATED WORK AND ETHICS 8

citizens from reaching social media to spread prohibited information. In general, studies involving
direct measurements can shed more light on specific mechanisms that a censor might employ. By
contrast, the techniques we develop rely on indirect side channels and open DNS resolvers, which
limits the types of measurements that we can perform. On the other hand, our approach permits
a much larger scale than any of these previous studies, as well as the ability to conduct measure-
ments continuously. Although these studies provide valuable insights, their scale often involves a
single vantage point for a limited amount of time (typically no more than a few weeks). Our aim
is to shed light on a much broader array of Internet vantage points, continuously over time.

Global censorship measurement tools. Several research efforts developed platforms to measure
censorship by running experiments from diverse vantage points. For instance, CensMon [131]
used PlanetLab nodes in different countries, and UBICA [2] aimed to increase vantage points
by running censorship measurement software on home gateway devices and user desktops. In
practice, as far as we know, neither of these frameworks are still deployed and collecting data.
The OpenNet Initiative [112] has used its public profile to recruit volunteers around the world
who have performed one-off measurements from home networks each year for the past ten years.
OONI [134] and ICLab [71], two ongoing data collection projects, use volunteers to run both
custom software and custom embedded devices (such as Raspberry Pis [53]).

Although each of these frameworks can perform an extensive set of tests, they rely on volun-
teers who run measurement software on their Internet-connected devices. These human involve-
ments make it more challenging—if not impossible—to gather continuous and diverse measure-
ments.

Studies that highlight the temporal and spatial variability of connectivity disruptions. If
patterns of censorship and connectivity disruptions hold relatively static, then existing one-off mea-
surement studies would suffice to over time build up a global picture of conditions. Previous work,
however, has demonstrated that censorship practices vary across time; across different applica-
tions; and across regions and Internet service providers, even within a single country. For example,
previous research found that governments target a variety of services such as video portals (e.g.,
YouTube) [140], news sites (e.g.,bbc.com) [13], and blogs (e.g., livejournal.com) [5].
Censors also target circumvention and anonymity tools; most famously, the Great Firewall of China
has engaged in a decade-long cat-and-mouse game with Tor [49, 147, 148]. Ensafi [46] showed
that China’s Great Firewall (GFW) actively probes—and blocks upon confirmation—servers sus-
pected to abet circumvention. Many studies show that different countries employ different cen-
sorship mechanisms beyond IP address-blocking to censor similar content or applications, such
as Tor [139]. Occasionally, countries also deploy new censorship technology shortly before sig-
nificant political events. For example Aryan [11] studied censorship in Iran before and after the
June 2013 presidential election. Although these studies provide important data points, each re-
flects a snapshot at a single point in time and thus cannot capture ongoing trends and variations in
censorship practices.

CHAPTER 2. CENSORSHIP INTRODUCTION, RELATED WORK AND ETHICS 9

Measuring connectivity disruptions with side channels. Previous work has employed side
channels to infer network properties such as topology, traffic usage, or firewall rules between two
remote hosts [24, 48, 49, 123, 153]. Some of these techniques rely on the fact that the IP identifier
(IP ID) field can reveal network interfaces that belong to the same Internet router, the number of
packets that a device generates [24], or the blocking direction of mail server ports for anti-spam
purposes [123].

The SYN backlog also provides another signal that helps with the discovery of machines behind
firewalls [48, 153]. Ensafi et al. [47] observed that combining information from the TCP SYN
backlog (which initiates retransmissions of SYN ACK packets) with IP ID changes can reveal
packet loss between two remote hosts, including the direction along the path where packet drops
occurred; the authors demonstrated the utility of their technique by measuring the reachability of
Tor relays from China [49]. Our work builds on this technique by developing robust statistical
detection methods to disambiguate connectivity disruptions from other effects that induce signals
in these side channels.

Measuring DNS manipulation. The DNS protocol’s lack of authentication and integrity check-
ing makes it a prime target for attacks. Jones et al. presented techniques for detecting unauthorized
DNS root servers, though found little such manipulation in practice [75]. Jiang et al. identified a
vulnerability in DNS cache update policies that allows malicious domains to stay in the cache even
if removed from the zone file [73].

Several projects have explored DNS manipulation using a limited number of vantage points.
Weaver et al. explored DNS manipulation with respect to DNS redirection for advertisement pur-
poses [144]. The authors also observed incidents in which DNS resolvers redirected end hosts to
malware download pages. There are many country-specific studies that show how different coun-
tries use a variety of DNS manipulation techniques to exercise Internet censorship. For example,
in Iran the government expects ISPs to configure their DNS resolvers to redirect contentious do-
mains to a censorship page [11]. In Pakistan, ISPs return NXDOMAIN responses [108]. In China,
the Great Firewall injects forged DNS packets with seemingly arbitrary IP addresses [9]. These
studies however all drew upon a small or geographically limited set of vantage points, and for short
periods of time.

Using open resolvers. A number of studies have explored DNS manipulation at a larger scale
by probing the IPv4 address space to find open resolvers. In 2008, Dagon et al. found corrupt
DNS resolvers by running measurements using 200,000 open resolvers [34]; they do not analyze
the results for potential censorship. A similar scan by anonymous authors [8] in 2012 showed
evidence of Chinese DNS censorship affecting non-Chinese systems.

Follow-on work in 2015 by Kührer et al. tackled a much larger scope: billions of lookups
for 155 domain names by millions of open resolvers [93]. The study examined a broad range of
potentially tampered results, which in addition to censorship included malware, phishing, domain
parking, ad injection, captive portals, search redirection, and email delivery. They detected DNS
manipulation by comparing DNS responses from open resolvers with ground truth resolutions

CHAPTER 2. CENSORSHIP INTRODUCTION, RELATED WORK AND ETHICS 10

gathered by querying control resolvers. They then identified legitimate unmanipulated answers
using a number of heuristic filtering stages, such as treating a differing response as legitimate if its
returned IP address lies within the same AS the ground truth IP address.

We initially sought to use their method for conducting global measurements specifically for
detecting censorship. However, censorship detection was not a focus of their work, and the paper
does not explicitly describe the details of its detection process. In particular, other than examining
HTTP pages for “blocked by the order of . . . ” phrasing, the paper does not present a decision
process for determining whether a given instance of apparent manipulation reflects censorship or
some other phenomenon. In addition, their measurements leverage open resolvers en masse, which
raises ethical concerns for end users who may be wrongly implicated for attempting to access
banned content. In contrast, we frame a detailed, reproducible method for globally measuring
DNS-based manipulation in an ethically responsible manner.

In 2016, Scott et al. introduced Satellite [130], a system which leverages open resolvers to
identify CDN deployments and network interference using collected resolutions. Given a bipartite
graph linking domains queried with IP address answers collected from the open resolvers, Satellite
identifies strongly connected components, which represent domains hosted by the same servers.
Using metrics for domain similarity based on the overlap in IP addresses observed for two do-
mains, Satellite distinguishes CDNs from network interference as components with highly similar
domains (additionally, other heuristics help refine this classification).

2.3 Ethics
The design of our censorship measurement methods incorporates many considerations regarding
ethics. Our primary ethical concern is the risks associated with the measurements that Augur
and Iris conduct, as leveraging infrastructure we do not control potentially implicates otherwise
innocent users. A second concern is whether the measurements we generate introduce undue
query load on various pieces of Internet infrastructure. With these concerns in mind, we consider
the ethics of performing our measurements using the ethical guidelines of the Belmont Report [14]
and Menlo Report [41] to frame our discussion.

Additional information on the specific application of these guidelines to teach technique can
be found in Section 3.2 for Augur and Section 4.2 for Iris.

One important ethical principle is respect for persons; essentially, this principle states that an
experiment should respect the rights of humans as autonomous decision-makers. Sometimes this
principle is misconstrued as a requirement for informed consent for all experiments. In many
cases, however, informed consent is neither practical nor necessary; accordingly, Salganik [127]
characterizes this principle instead as “some consent for most things”. In the case of Augur and
Iris, obtaining the consent of parties is impractical.

In lieu of attempting to obtain informed consent, we turn to the principle of beneficence, which
weighs the benefits of conducting an experiment against the risks associated with the experiment.
Note that the goal of beneficence is not to eliminate risk, but merely to reduce it, and then ensure

CHAPTER 2. CENSORSHIP INTRODUCTION, RELATED WORK AND ETHICS 11

the benefits out-weigh the risks. The design of Augur (Section 3.2) and Iris (Section 4.2) rely
heavily on this principle.

The principle of justice states that the beneficiaries of an experiment should be the same pop-
ulation that bears the risk of that experiment. On this front, we envision that the beneficiaries
of the kinds of measurements that we collect using Augur and Iris will be wide-ranging: design-
ers of circumvention tools, as well as policymakers, researchers, and activists who are improving
communications and connectivity for citizens in oppressive regimes all need better data about the
extent and scope of Internet censorship.

A final guideline concerns respect for law and public interest, which essentially extends the
principle of beneficence to all relevant stakeholders, not only the experiment participants. This
principle is useful for reasoning about the externalities that our measurements create by increasing
load on Internet infrastructure for various DNS domains and IP addresses. To abide by this prin-
ciple, we rate-limit our measurements to ensure that the owners of these domains and IPs do not
face large expenses as a result of the queries that we issue.

12

Chapter 3

Augur: Internet-Wide Detection of
Connectivity Disruptions

3.1 Introduction
Advances in TCP/IP side-channel measurement techniques offer a new paradigm for obtaining
global-scale visibility into Internet connectivity. Ensafi et al. developed Hybrid-Idle Scan, a
method whereby a third vantage point can determine the state of network-layer reachability be-
tween two other endpoints [47]. This allows an off-path measurement system to infer whether two
remote systems can communicate with one another, regardless of where these two remote systems
are located. To perform these measurements, the off-path system must be able to spoof packets
(i.e., it must reside in a network that does not perform egress filtering), and one of the two end-
points must use a single shared counter for generating the IP identifier value for packets that it
generates. This technique provides the possibility of measuring network-layer reachability around
the world by locating endpoints within each country that use a shared IP ID counter. By measur-
ing the progression of this counter over time, as well as whether our attempts to perturb it from
other locations on the Internet, we can determine the reachability status between pairs of Internet
endpoints. This technique makes it possible to conduct measurements continuously, across a large
number of vantage points.

Despite the conceptual appeal of this approach, realizing the method poses many challenges.
One challenge concerns ethics: Using this method can make it appear as though a user in some
country is attempting to communicate with a potentially censored destination, which could imperil
users. To abide by the ethical guidelines set out by the Menlo [41] and Belmont [14] reports,
we exercise great care to ensure that we perform our measurements from Internet infrastructure
(e.g., routers, middleboxes), as opposed to user machines. A second challenge concerns statistical
robustness in the face of unrelated network activity that could interfere with the measurements, as
well as other systematic errors concerning the behavior of TCP/IP side channels that sometimes
only become apparent at scale. To address these challenges we introduce Augur. To perform
detection in the face of uncertainty, we model the IP ID increment over a time interval as a random

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 13

variable that we can condition on two different priors: with and without responses to our attempts
to perturb the counter from another remote Internet endpoint. Given these two distributions, we
can then apply statistical hypothesis testing based on maximum likelihood ratios.

We validate our Augur measurements of Internet-wide disruption in nearly 180 countries (and
dependent territories) over 17 days against both block lists from other organizations as well as
known IP addresses for Tor bridges. We find that our results are consistent with the expected
filtering behavior from these sites. We also identify the top countries that experience connectivity
disruption; our results highlight many of the world’s most infamous censors.

We begin in Section 3.2 with an overview of our method. We present Augur in Section 3.3,
introducing the principles behind using IP ID side channels for third-party measurement of cen-
sorship; discussing how to identify remote systems that enable us to conduct our measurements
in an ethically responsible manner; and delving into the extensive considerations required for ro-
bust inference. In Section 3.4, we present a concrete implementation of Augur. In Section 3.5,
we validate Augur’s accuracy and provide an accompanying analysis of global censorship prac-
tices observed during our measurement run. We offer thoughts related to further developing our
approach in Section 3.6 and summarize in Section 3.7.

This chapter is based on work that appeared in the IEEE Symposium on Security and Privacy
(S&P) [116] and IEEE Security & Privacy Magazine [117].

3.2 Method Overview
In this section, we provide an overview of the measurement method that we developed to detect
filtering. We frame the design goals that we aim to achieve and the core technique underlying our
approach. Then in Section 3.3 we provide a detailed explanation of the system’s operations.

Design Goals
We first present a high-level overview of the strategy underlying our method, which we base on in-
ducing and observing potential increments in an Internet host’s IP ID field. The technique relies on
causing one host on the Internet to send traffic to another (potentially blocked) Internet destination;
thus, we also consider the ethics of the approach. Finally, we discuss the details of the method,
including how we select the specific Internet endpoints used to conduct the measurements.

Ultimately, the measurement system that we design should achieve the following properties:

• Scalable. Because filtering can vary across regions or ISPs within a single country, the
system must be able to assess the state of filtering from a large number of vantage points.
Filtering will also vary across different destinations, so the system must also be able to
measure filtering to many potential endpoints.

• Efficient. Because filtering practices change over time, establishing regular baseline mea-
surements is important, to expose transient, short-term changes in filtering practices, such as
those that might occur around political events.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 14

Sp
oo

fe
d

SY
N RE

F

SYN-ACK

RST

RST

SYN-ACK

IPID(t1) = 6
IPID(t4) = 7

1
4 2

3

IPID(t1) = 6
IPID(t4) = 8
IPID(t6) = 10

Inbound Blocking Outbound Blocking

Reflector Site

SYN-ACK Sp
oo

fe
d

SY
N RE

F

SYN-ACK

1
4 2

SYN-ACK

Site

3

IPID(t1) = 6
IPID(t4) = 8

 No Direction Blocked

SYN-ACK
RST

Sp
oo

fe
d

SY
N RE

F

RST

RST

SYN-ACK

1
4 2

SYN-ACK

Site ReflectorReflector

Measurement
Machine

Measurement
Machine

Measurement
Machine

SYN-ACKs
RSTs

 3
 5

Figure 3.1: Overview of the basic method of probing and perturbing the IP ID side channel to
identify filtering. Reflectors are hosts on the Internet with a global IP ID. Sites are potentially
filtered hosts that respond to SYN packets on port 80. (In the right hand figure, we omit subsequent
measuring of the reflector’s IP ID by the measurement machine at time t6). Spoofed SYN packets
have a source field set to the reflector.

• Sound. The technique should avoid false positives and ensure that repeated measurements
of the same phenomenon produce the same outcome.

• Ethical. The system design must satisfy the ethical principles from the Belmont [14] and
Menlo [41] Reports: respect for people, beneficence, justice, and respect for law and public
interest.

We present a brief overview of the scanning method before explaining how the approach satisfies
the design goals above.

Approach
The strategy behind our method is to leverage the fact that when an Internet host generates and
sends IP packets, each generated packet contains a 16-bit IP identifier (“IP ID”) value that is in-
tended to assist endpoints in re-assembling fragmented IPv4 packets. Although path MTU discov-
ery now largely obviates the need for IP fragmentation, senders still generate packets with IP ID
values. There are only 216 unique IP ID values, but the intent is that subsequent packets from the
same host should have different IP ID values.

When an Internet host generates a packet, it must determine an IP ID to use for that packet.
Although different hosts on the Internet use a variety of mechanisms to determine the IP ID for
each packet (e.g., random, counter-based increment per-connection or per-interface), many hosts
use a single global counter to increment the IP ID value for all packets that originate from that
host, regardless of whether the packets it generates bear a relationship to one another. In these
cases where the host uses a single IP ID counter, the value of the counter at any time reflects how
many packets the host has generated. Thus, the ability to observe this counter over time gives an
indication of whether a host is generating IP packets, and how many.

The basic method involves two mechanisms:

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 15

• Probing: A mechanism to observe the IP ID value of a host at any time.

• Perturbation: A mechanism to send traffic to that same host from different Internet destina-
tions, which has the property of inducing the initial host to respond, thus incrementing its
IP ID counter.

We now describe the basic design for probing and perturbation, in the absence of various compli-
cating factors such as cross-traffic or packet loss. Figure 3.1 illustrates the process.

To probe the IP ID value of some host over time, a measurement machine sends unsolicited
TCP SYN-ACK packets to the host and monitors the responses—TCP RST packets—to track the
evolution of the host’s IP ID. We monitor the IP ID values at the host on one end of the path. We
call this host the reflector, to denote that the host reflects RST packets from both our measurement
machine and the endpoint that a censor may be trying to filter. This reflector is a machine in a
network that may experience IP filtering. We call the other endpoint of this connection the site, as
for our purposes we will commonly use for it a website operating on port 80.

To perturb the IP ID values on either end of the path, a measurement machine sends a TCP
SYN packet to one host, the site; the TCP SYN packet carries the (spoofed) source IP address
of a second machine, the reflector. We term this injection. If no filtering is taking place, the
SYN packet from the measurement machine to the site will elicit a SYN-ACK from the site to the
reflector, which will in turn elicit a RST from the reflector to the site (since the reflector had not
previously sent a TCP SYN packet for this connection). When the reflector sends a RST packet to
the site, it uses a new IP ID. If the reflector generates IP ID values for packets based on a single
counter, the measurement machine can observe whether the reflector generated a RST packet with
subsequent probes, because the IP ID counter will have incremented by two (one for the RST to
the site, one for the RST to our measurement machine). Figure 3.1 shows this process in the “no
direction blocked” scenario.

Suppose that filtering takes place on the path between the site and the reflector (i.e., one of the
other two cases shown in Figure 3.1). We term blocking that manifests on the path from the site to
the reflector as inbound blocking. In the case of inbound blocking, the site’s SYN-ACK packet will
not reach the origin, thus preventing the expected IP ID increment at the reflector. In the absence
of other traffic, the IP ID counter will increment by one. We show this in the second section of
Figure 3.1.

Conversely, we call blocking on the path from the reflector to the site outbound blocking;
in the case of outbound blocking, SYN-ACK packets from the site reach the reflector, but the
RST packets from the reflector to the site never reach the site. At this point, the site should
continue to retransmit SYN-ACK packets [138], inducing further increments in the IP ID value
at the reflector at various intervals, though whether and how it actually does so depends on the
configuration and specifics of the site’s operating system. The final section of Figure 3.1 shows the
retransmission of SYN-ACK packets and the increment of the global IP ID at two different times.
If our measurements reveal a site as inbound-blocked, filtering may actually be bidirectional. We
cannot differentiating between the two using this technique because there is no way to remotely
induce the reflector to send packets to the site.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 16

Ethics
The measurement method we develop generates spoofed traffic between the reflector and the site
which might cause an inexperienced observer of these measurements to (wrongly) conclude that
the person who operates or owns the reflector was willfully accessing the site. The risks of this type
of activity are unknown, but are likely to vary by country. Although the spoofed nature of the traffic
is similar to common large-scale denial-of-service backscatter [107] and results in no data packets
being exchanged between reflector and site, we nonetheless use extreme caution when selecting
each reflector. In this type of measurement, we must first consider respect for humans, by limiting
the potential harm to any person as a result of this experiment. One mechanism for demonstrating
respect for humans is to obtain informed consent; unfortunately, obtaining informed consent is
difficult, due to the scope, scale, and expanse of the infrastructure that we employ.

Salganik explains that the inability to obtain informed consent does not by itself reflect a dis-
regard of respect for humans [127]. Rather, we must take other appropriate measures to ensure
that we are abiding by the ethical principles from the Belmont [14] and Menlo [41] reports. To do
so, we develop a method that reduces the likelihood that we are directly involving any humans in
our experiments in the first place, by focusing our measurements on infrastructure. Specifically,
our method works to limit the endpoints that we use as reflectors to likely Internet infrastructure
(e.g., routers in the access or transit networks, middleboxes), as opposed to hosts that belong to
individual citizens (e.g., laptops, desktops, home routers, consumer devices). To do so, we use
the CAIDA Ark dataset [22], which contains traceroute measurements to all routed /24 networks.
We include a reflector in our experiments only if it appears in an Ark traceroute at least two hops
away from the traceroute endpoint. The Ark dataset is not comprehensive, as the traceroute mea-
surements are conducted to a randomly selected IP address in each /24 prefix. Restricting the set
of infrastructure devices to those that appear in Ark restricts the IP addresses we might be able to
discover with a more comprehensive scan.

Although this approach increases the likelihood that the reflector IP addresses are routers or
middleboxes as opposed to endpoints, the method is not fool-proof. For example, devices that are
attributable to individuals might still be two hops from the network edge, or a network operator
might be held accountable for the perceived actions performed by the machines. Our techniques do
not eliminate risk. Rather, in accordance with the ethical guideline of beneficence, they reduce it to
the point where the benefits of collecting these measurements may outweigh the risks of collecting
them. In keeping with Salganik’s recommendations [127], we aim to conduct measurements that
pose a minimal additional risk, given both the nature of the spoofed packets and the potential
benefits of the research.

The Internet-wide scans we conduct using ZMap [44] to detect possible reflectors introduce
concerns related to respect for law and public interest. Part of the respect of law and public
interest is to reduce the network load we induce on reflectors and sites, to the extent possible,
as unnecessary network load could drive costs higher for the operators of reflectors and sites; if
excessive, the probing traffic could also impede network performance. To mitigate these possible
effects, we follow the approach for ethical scanning behavior as outlined by Durumeric et al. [44]:
we signal the benign intent of our scans in the WHOIS entries and DNS records for our scanning

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 17

IPs, and provide project details on a website hosted on each scanning machine. We extensively
tested our scanning methods prior to their deployment; we also respect opt-out requests.

The measurement probes and perturbations raise similar concerns pertaining to respect for law
and public interest. We defer the details of the measurement approach to Section 3.3 but note that
reflectors and sites receive an average of one packet per second, with a maximum rate of ten SYN
packets in a one-second interval. This load should be reasonable, given that reflectors represent
Internet infrastructure that should be able to sustain modest traffic rates directed to them, and sites
are major websites that see much higher traffic rates than those we are sending. To ensure that our
TCP connection attempts do not use excessive resources on sites or reflectors, we promptly reset
any half-open TCP connections that we establish.

The ethical principle of justice states that the parties bearing the risk should be the same as those
reaping the benefits; the parties who would bear the risk (users in the countries where censorship
is taking place) may ultimately reap some benefit from the knowledge about filtering that our tools
provide through improved circumvention tools and better information about what is blocked.

3.3 Putting the Method to Practice
In this section, we present our approach for identifying reflectors and sites, and then develop in
detail how we perform the measurements described in Section 3.2.

Reflector Requirements
Suitable reflectors must satisfy four requirements:

1. Infrastructure machine. To satisfy the ethical guidelines that we outlined in Section 3.2,
the reflector should be Internet infrastructure, as opposed to a user machine.

2. RST packet generation. Reflectors must generate TCP RST packets when receiving SYN-
ACKs for unestablished connections. The RST packets increment the reflector’s IP ID
counter while ensuring that the site terminates the connection.

3. Shared, monotonically incrementing IP ID. If a reflector uses a shared, monotonic strictly
increasing per-machine counter to generate IP ID values for packets that it sends, the evo-
lution of the IP ID value—which the measurement machine can observe—will reflect any
communication between the reflector and any other Internet endpoints.

4. Measurable IP ID perturbations. Because the IP ID field is only 16 bits, the reflector must
not generate so much traffic so as to cause the counter value to frequently wrap around be-
tween successive measurement machine probes. The natural variations of the IP ID counter
must also be small compared to the magnitude of the perturbations that we induce.

Section 3.4 describes how we identify reflectors that meet these requirements.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 18

Site Requirements
Our method also requires that sites exhibit certain network properties, allowing for robust mea-
surements at reflectors across the Internet. Unlike reflectors, site requirements are not absolute. In
some circumstances, failure to meet a requirement requires discarding of a result, or limits possible
outcomes, but we can still use the site for some measurements.

1. SYN-ACK retransmission (SAR). SYN-ACK retries by sites can signal outbound blocking
due to a reflector’s RST packets not reaching the site. If a site does not retransmit SYN-
ACKs, we can still detect inbound blocking, but we cannot distinguish instances of outbound
blocking from cases where there is no blocking.

2. No anycast. If a site’s IP address is anycast, the measurement machine and reflector may
be communicating with different sites; in this case, RSTs from the reflector will not reach
the site that our measurement machine communicates with, which would result in successive
SYN-ACK retransmissions from the site and thus falsely indicate outbound blocking.

3. No ingress filtering. If a site’s network performs ingress filtering, spoofed SYN packets
from the measurement machine may be filtered if they arrive from an unexpected ingress,
falsely indicating inbound blocking.

4. No stateful firewalls or network-specific blocking. If a site host or its network deploys a
distributed stateful firewall, the measurement machine’s SYN packet may establish state at a
different firewall than the one encountered by a reflector’s RSTs, thus causing the firewall to
drop the RSTs. This effect would falsely indicate outbound blocking. Additionally, if a site
or its firewall drops traffic from some IP address ranges but not others (e.g., from non-local
reflectors), the measurement machine may falsely detect blocking.

Section 3.4 describes how we identify sites that satisfy these requirements.

Detecting Disruptions
As discussed in Section 3.2, we detect connectivity disruptions by perturbing the IP ID counter at
the reflector and observing how this value evolves with and without our perturbation.

Approach: Statistical detection. We measure the natural evolution of a reflector’s counter pe-
riodically in the absence of perturbation as a control that we can compare against the evolution
of the IP ID under perturbation. We then perturb the IP ID counter by injecting SYN packets and
subsequently measure the evolution of this counter. We take care not to involve any site or reflector
in multiple simultaneous measurements, since doing so could conflate two distinct results.

Ultimately, we are interested in detecting whether the IP ID evolution for a reflector changes as
a result of the perturbations we introduce. We can represent this question as a classical problem in
statistical detection, which attempts to detect the presence or absence of a prior (i.e., perturbation

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 19

or no perturbation), based on the separation of the distributions under different values of the prior.
In designing this detection method, we must determine the random variable whose distribution
we wish to measure, as well as the specific detection approach that allows us to distinguish the
two values of the prior with confidence. We choose IP ID acceleration (i.e., the second derivative
of IP ID between successive measurements) as ideally this value has a zero mean, regardless of
reflector. With a zero mean, the distribution of the random variable should be stationary and the
distribution should be similar across reflectors. Conceptually, this can be thought of as a reflector,
at a random time, being as likely to experience traffic “picking up” as not. However, subtle Internet
complexities such as TCP slow start bias this measure slightly. We discuss empirical measures of
these priors and their impact on our method in Section 3.4.

In contrast, the first derivative (IP ID velocity) is not stationary. Additionally, each reflector
would exhibit a different mean velocity value, requiring extensive per-reflector baseline measure-
ments to capture velocity behavior.

Detection framework: Sequential hypothesis testing (SHT). We use sequential hypothesis
testing (SHT) [78] for the detection algorithm. SHT is a statistical framework that uses repeated
trials and known outcome probabilities (priors) to distinguish between multiple hypotheses. The
technique takes probabilities for each prior and tolerable false positive and negative rates as input
and performs repeated online trials until it can determine the value of the prior with the specified
false positive and negative rates. SHT’s ability to perform online detection subject to tunable
false positive/negative rates, and its tolerance to noise, make it well-suited to our detection task.
Additionally, it is possible to compute an expectation for the number of trials required to produce
a detection, thus enabling efficient measurement.

We begin with the SHT formulation developed by Jung et al. [78], modifying it to accommodate
our application. For this application to hold, the IP ID acceleration must be stationary (discussed
more in Section 3.4), and the trials must be independent and identically distributed (i.i.d.). To
achieve i.i.d., we randomize our trial order and mapping between sites and reflectors and run
experiments over the course of weeks.

For a given site Si and reflector R j, we perform a series of N trials, where we inject spoofed
SYN packets to Si and observe IP ID perturbations at R j. We let Yn(Si,R j) be a random variable
for the nth trial, such that:

Yn(Si,R j) =

{
0 if no IP ID acceleration occurs
1 if IP ID acceleration occurs

during the measurement window following injection. We identify two hypotheses: H0 is the hy-
pothesis that no inbound blocking is occurring (the second derivative of IP ID values between suc-
cessive measurements should be observed to be positive, which we define as IP ID acceleration),
and H1 is the hypothesis that blocking is occurring (no IP ID acceleration). Following construc-
tions from previous work, we must identify the prior conditional probabilities of each hypothesis,
specifically:

Pr[Yn = 0|H0] = θ0, Pr[Yn = 1|H0] = 1−θ0

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 20

Pr[Yn = 0|H1] = θ1, Pr[Yn = 1|H1] = 1−θ1

The prior θ1 is the probability of no observed IP ID acceleration in the case of inbound blocking.
We can experimentally measure this prior as the probability of IP ID acceleration during our re-
flector control measurements, since the IP ID acceleration likelihood during control measurements
is the same as during inbound blocking (as no additional packets reach the reflector in both cases).
Intuitively, we can think of this value as 0.5 given the prior discussion of second-order value being
thought of as zero mean (i.e., in aggregate traffic, with no induced behavior, acceleration is as
likely to occur as deceleration).

The prior 1− θ0 is the probability of observed IP ID acceleration during injection. It can be
measured as the probability of IP ID acceleration during an injection period across all reflector in-
jection measurements. Assuming no blockage and perfect reflectors with no other traffic, this value
can be thought of as approaching 1. The prior can be estimated from all reflector measurements
under the assumption that blocking is uncommon for a reflector. However, even if the assumption
does not hold and blocking is common, the prior estimation is still conservative in that it drives the
prior closer to the θ1, making detection more difficult, increasing false negatives.

From the construction above, we define a likelihood ratio Λ(Y), such that:

Λ(Y) ≡ Pr[Y |H1]

Pr[Y |H0]
= Π

N
n=1

Pr[Yn|H1]

Pr[Yn|H0]

where Y is the sequence of trials observed at any point. We derive an upper bound threshold η1
such that:

Pr[Y1, . . .YN |H1]

Pr[Y1, . . .YN |H0]
≥ η1

and a similar lower bound threshold η0. Both η0 and η1 are bounded by functions of the tolerable
probability of false positives and negatives. We elaborate on these bounds and the impact of false
positives and negatives later in this section.

Figure 3.2 illustrates our detection algorithm, which performs a series of sequential hypothesis
tests; the rest of this section describes this construction in detail. The Inbound Blocking portion of
Figure 3.2 shows how SHT uses this construction to make decisions. This is extended to include
outbound blocking subsequently.

As each trial is observed, we update the likelihood ratio function Λ(Y) based on the prior
probabilities. Once updated, we compare the value of Λ(Y) against the thresholds η0 and η1. If
Λ(Y)≤ η0, we accept H1 and output Input or Bidirectional Blocking.

If Λ(Y)≥ η1, we accept H0, which is that IP ID acceleration occurred as a result of no inbound
blocking. This does not give us a result, as we still must decide between outbound blocking and
no blocking. To make this decision, we proceed to the second SHT phase,“Outbound Test,” which
is discussed subsequently.

A third output of the system is that Λ(Y) did not meet either threshold. If there are more trials
we restart the algorithm. If we have exhausted our trials, we output the result blockage that of Si
at R j is undetermined.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 21

Trial Yn(Si,Rj)

Update Y, Λ(Y)

n <= N

Continue to next trial

Output H1
(In/Bi Blocking)

Output Unknown

Λ(Y) ≤ η0

Λ(Y) ≥ η1

No

Yes

H0, Go to Outbound
(No In/Bi Blocking)

Yes

No

Yes

NoIn
bo

un
d

/ B
id

ire
ct

io
na

l T
es

t
O

ut
bo

un
d

Te
st

Trial Xn(Si,Rj)

Update X, Λ(X)

n <= N

Continue to next trial

Output K0
(Out Blocking)

Output
No In/Bi blocking

Λ(X) ≥ η1

Λ(X) ≤ η0

No

Yes

Output K1
(No Blocking)

Yes

No

Yes

No

SAR(Si)
Yes

Output
No In/Bi blocking

No

Figure 3.2: Flow chart of our algorithm to identify both inbound and outbound blocking using
a series of sequential hypothesis tests. Detailed descriptions of the notation and terminology are
given in Section 3.3.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 22

Outbound blocking detection with SHT. Given IP ID acceleration at the reflector, we must
distinguish outbound-only blocking from a lack of blocking whatsoever. To do so, we develop a
key new insight that relies on a secondary IP ID acceleration that should occur due to subsequent
SYN-ACK retries by the site.

To determine a site’s eligibility for outbound blocking detection, we must identify whether it
retries SYN-ACKs, and that the retries have reliable timing. Section 3.4 discusses these criteria
further. We abstract this behavior as a function SAR(Si) (for SYN-ACK Retry) that indicates
whether a site is suitable for outbound blocking detection. We define Xn(Si,R j) such that:

Xn(Si,R j) =

{
0 if no IP ID accel. during SAR
1 if IP ID accel. during SAR

We now formulate two new hypotheses, K0 such that outbound blocking is occurring (IP ID ac-
celeration occurs during the SAR time window), and K1 such that there is no connection blocking
(IP ID acceleration does not occur during the SAR window). From this:

Pr[Xn = 0|K0] = θ0, Pr[Xn = 1|K0] = 1−θ0

Pr[Xn = 0|K1] = θ1, Pr[Xn = 1|K1] = 1−θ1

In this construction 1− θ0 is the measurable probability of observing IP ID acceleration during
injection, and θ1 is the measurable prior probability of seeing no IP ID acceleration during the
SAR window across all of the reflector’s measurements. Similar arguments hold as above to why
these provide conservative estimations of the prior values. (We also discuss the measurable IP ID
acceleration during the SAR window in Section 3.4.) Figure 3.2 shows how this construction is
used to label Si,R j as either outbound-blocked or not blocked. If the thresholds are not met and
there are no more trials, we output that we know Si is not inbound-blocked, but we do not know
the outbound-block status.

Expected number of trials. The SHT construction from Jung et al. also provides a framework
for calculating the expected number of trials needed to arrive at a decision for H0 and H1. The
expected values are defined as:

E[N|H0] =
α ln β

α
+(1−α) ln 1−β

1−α

θ0 ln θ1
θ0
+(1−θ0) ln 1−θ1

1−θ0

,

E[N|H1] =
β ln β

α
+(1−β) ln 1−β

1−α

θ1 ln θ1
θ0
+(1−θ1) ln 1−θ1

1−θ0

. (3.1)

where α and β are also bounded by functions of the tolerable false positive and negative rates,
discussed subsequently. Similar constructions hold for K0 and K1. We investigate the expected
number of trials for both inbound and outbound blocking further in Section 3.4.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 23

False positives and negatives. Following the construction from Jung et al., α and β are both
tunable parameters which are bounded by our tolerance to both false positives and false negatives.
PF is defined as the false positive probability, and PD as the detection probability. The comple-
ment of PD, 1−PD is the probability of false negatives. These values express the probability of a
false result for a single SHT experiment. However, for our method, we perform numerous SHT
experiments across sites and reflectors. To account for these repeated trials we set both PF and
1−PD = 10−5. Given that as PF and 1−PD decrease, the expected number of trials to reach a
decision increases, our selection of a small value negatively impacts our ability to make decisions.
This effect is somewhat mitigated by the distance between experimentally observed priors, and is
explored in more detail in Section 3.4 and Figure 3.4.

3.4 Augur Implementation and Experiment Data
In this section, we discuss the deployment of our approach to measure connectivity disruptions
across the Internet, as well as the setup that we use to validate the detection method from Section 3.3.

Selecting Reflectors and Sites
Reflector selection. To find reflectors that satisfy the criteria from Section 3.3, we created a new
ZMap [44] probe module that sends SYN-ACK packets and looks for well-formed RST responses.
Our module is now part of the open-source ZMap distribution. Using this module, we scan the
entire IPv4 address space on port 80 to identify possible reflectors.

We then perform a second set of probes against this list of candidate reflectors to identify a
subset that conforms to the desired IP ID behavior. Our tool runs from the measurement machine
and sends ten SYN-ACK packets to port 80 of each host precisely one second apart, recording the
IP ID of each RST response. We identify reflectors whose IP ID behaviors satisfy the previously
outlined requirements: no IP ID wrapping, variable accelerations observed (indicating our packets
do induce perturbations in the IP ID dynamics), and a response to all probes. Because the mea-
surement machine induces packet generation at the reflector at a constant rate, any additional IP ID
acceleration must be due to traffic from other connections. We further ensure that the measurement
machine receives a response for each probe packet that it sends, ensuring that the reflector is stable
and reliable enough to support continuous measurements.

This selection method identifies viable reflectors, those that are responsive and exhibit the de-
sired IP ID behavior. We finally filter the viable reflectors that do not correspond to infrastructure,
as described in Section 3.2, which significantly reduces the number of available reflectors, as de-
scribed in Section 3.4.

Site selection. We begin with a list of sites, some of which are expected to be disrupted by
network filtering or censorship from a variety of vantage points. We seed our candidate sites with
the Citizen Lab list of potentially censored URLs [29], which we call the CLBL. This list contains
potentially blocked URLs, broken down by category. To further identify sensitive URLs, we use

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 24

Reflector
Datasets

Total
Reflectors

Num.
Countries

Median /
Country

All Viable 22,680,577 234 1,667
Ethically Usable 53,130 179 15
Experiment Sample 2,050 179 15

Table 3.1: Summary of our reflector datasets. All viable reflectors are identified across the IPv4
address space. Those ethically usable are routers at least two hops away from traceroute endpoints
in the Ark data, and we select a random subset as our experiment set. Note that the number of
countries includes dependent territories.

Reflector Dataset AF AS EU NA SA OC ME

All Viable 55 50 52 39 23 14 20
Ethically Usable 36 47 46 30 14 6 18
Experiment Sample 36 47 46 30 14 6 18

Table 3.2: The distribution of countries (and dependent territories) containing reflectors across
continents. Note the continent coverage of our experiment sample is identical to that of the eth-
ically usable dataset, as we sampled at least one ethically usable reflector per country in that
dataset. The continent labels are as follows: AF=Africa, AS=Asia, EU=Europe, NA=North Amer-
ica, SA=South America, OC=Oceana/Australia. We also label ME=Middle East, as a region with
frequent censorship.

Khattak et al.’s dataset [81] that probed these URLs using the OONI [111] measurement platform
looking for active censorship. After filtering the list, we distill the URLs down to domain names
and resolve all domains to the corresponding IP addresses using the local recursive DNS resolver
on a network in the United States. If a domain name resolves to more than one IP, we randomly
select one A record from the answers. To augment this list of sites, we randomly select domains
from the Alexa top 10,000 [3]. As with the CLBL, if a host resolves to multiple IPs, we select one
at random. Section 3.4 provides a breakdown of the site population. Section 3.4 explains how we
dynamically enforce site requirements.

Measurement Dataset
In this section, we describe the characteristics of the dataset that we use for our experiments.

Reflector dataset. The geographic distribution of reflectors illuminates the degree to which we
can investigate censorship or connectivity disruption within each country. Table 3.1 summarizes
the geographic diversity of our reflector datasets. The Internet-wide ZMap scan found 140 million
reachable hosts. Approximately 22.7 million of these demonstrated use of a shared, monotoni-

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 25

cally increasing IP ID. Using MaxMind [98] for country-level geolocation, these reflectors were
geographically distributed across 234 countries and dependent territories1 around the world, with
a median of 1,667 reflectors per country. This initial dataset provides a massive worldwide set of
reflectors to potentially measure, yet many may be home routers, servers, or user machines that we
cannot use for experimentation due to ethical considerations.

Merging with the Ark to ensure that the reflectors only contain network infrastructure reduces
the 22.7 million potential reflectors to only about 53,000. Despite this significant reduction, the
resulting dataset contains reflectors in 179 countries (and dependent territories), with a median of
15 reflectors per country. Table 3.2 gives a breakdown of reflector coverage by continent.

We select a subset of these reflectors as our final experiment dataset, randomly choosing up
to 16 reflectors in all 179 countries, yielding 1,947 reflectors (not all countries had 16 infrastruc-
ture reflectors). In addition to these reflectors, we added 103 high-reliability (stable, good priors)
reflectors primarily from China and the US to ensure good coverage with a stable set of reflec-
tors, resulting in 2,050 reflectors in the final dataset. These reflectors also exhibit widespread AS
diversity, with the resulting set of reflectors representing 31,188 ASes. Using the Ark dataset to
eliminate reflectors that are not infrastructure endpoints reduces this set to 4,214 ASes, with our
final experiment sample comprising 817 ASes.

Site dataset. Merging the CLBL with Khattak et al.’s dataset [81] yields 1,210 distinct IP ad-
dresses. We added to this set an additional 1,000 randomly selected sites from the Alexa top
10,000. To this set of sites we also added several known Tor bridges, as discussed in Section 3.5.
While this set consists of 2,213 sites, some sites appeared in both the CLBL and Alexa lists. Thus,
our site list contains a total of 2,134 unique sites, with a CLBL composition of 56.7%.

Experiment Setup
The selection process above left us able to measure connectivity between 2,134 sites and 2,050
reflectors. We collected connectivity disruption network measurements over 17 days, using the
method described in Section 3.3. We call one measurement of a reflector-site pair a run, involving
IP ID monitoring and one instance of blocking detection. Related, we define an experiment trial
as the complete measurement of one run for all reflector-site pairs. Over our 17-day window, we
collected a total of 207.6 million runs across 47 total trials, meaning we tested each reflector-site
pair 47 times.

Each run comprises of a collection of one-second time intervals. For each time interval, we
measure the IP ID state of the reflector independent of all other tasks. We begin each run by
sending a non-spoofed SYN to the site from the measurement machine. Doing so performs several
functions. First, it allows us to ensure that the site is up and responding to SYNs at the time of the
measurement. Second, it allows us to precisely measure if the site sends SYN-ACK retries, and
to characterize the timing of the retries. We record this behavior for each run and incorporate this

1Countries and dependent territories are defined by the ISO 3166-1 alpha-2 codes, which is the granularity of
Maxmind’s country geolocation.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 26

initial data point into the subsequent SHT analysis. We then wait four seconds before injecting
spoofed SYN packets towards the site. The reflector measurements during that window serve as
control measurements. During the injection window, we inject 10 spoofed SYN packets towards
the site.

For each run, we denote the SYN-ACK retry behavior and at what subsequent window we ex-
pect SYN-ACK retries to arrive at the reflector, and use this information to identify which window
to look for follow-on IP ID acceleration. At the end of the run, we send corresponding RST packets
for all SYNs we generated, to induce tear-down of all host state. We then cool down for 1 second
before starting a new run. We randomize the order of the sites and reflectors for testing per trial.
We test all reflector-site pairs before moving on to a new trial. For reasons discussed earlier, we
never involve the same reflector and site in two independent simultaneous measurements between
endpoints.

After each run, we ensure that (1) the reflector’s IP ID appeared to remain monotonically
increasing; (2) no packet loss occurred between the measurement machine and the reflector, and
(3) the site is up and responding to SYN packets. Additionally, we ensure that the IP ID does not
wrap during either the injection window or the SAR window. We discard the measurements if any
of these conditions fails to hold. After these validity checks, our dataset contains 182.5 million runs
across 1,960 reflectors and 2,089 sites. The reduction in number of sites and reflectors corresponds
to unstable or down hosts. We then apply SHT (Section 3.3) to analyze the reachability between
these site-reflector pairs.

Measured Priors and Expectations
A critical piece in the construction of our SHT framework is formulating the prior probabilities
for each of our hypotheses. Figure 3.3 shows CDFs of the measured prior probabilities of IP ID
acceleration for three different scenarios.

The IP ID acceleration of reflectors matches our intuition, where the acceleration decreasing
as frequently as it increases across the dataset. We show this with the “No Injection” CDF, with
nearly all reflectors having a probability of IP ID acceleration without injection of less than 0.5.
Many reflectors have a probability of acceleration far lower, corresponding to reflectors with low
or stable traffic patterns. We then use this per-reflector prior for θ1 in our SHT construction for
detecting inbound blocking. While we could instead estimate the value as 0.5, the expected number
of trials depends on the separation between the injection and non-injection priors, so if we are able
to use a smaller θ1 (per reflector), this greatly speeds up detection time.

Figure 3.3 also shows the probability of IP ID acceleration under injection. This value ap-
proaches 1 for many reflectors and is above 0.8 more than 90% of reflectors. Noticeably, it is,
however, quite low, and even 0 for a handful of reflectors. These correspond to degenerate or bro-
ken reflectors that we can easily identify due to their low priors, removing them from our experi-
ment (discussed more in Section 3.4). We use this experimentally measured prior as 1−θ0 in both
of our sequential hypothesis tests. This distribution provides a lower bound for the actual probabil-
ity of IP ID acceleration, as the experimentally measured value includes inbound blocking (i.e., if
some sites experience blocking, those values would lower the measured value). Inbound-blocked

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 27

0.0 0.2 0.4 0.6 0.8 1.0
Probability of IP ID Acceleration

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
re

fl
e
ct

o
rs

No Injection

Post Injection

Injection

Figure 3.3: CDF of probability of IP ID acceleration per reflector across the experiment.

runs lower the overall probability of acceleration. This still reflects a conservative measurement,
as a prior closer to control increases the likelihood of false negatives, not false positives.

Lastly, we also measure the probability of IP ID acceleration at the SYN-ACK retry point of
each run. We dynamically determine where this falls in each run using the properties the site
manifests during that run.2 As expected, the distribution closely matches the control distribution.
The differences in the curve are explained by the dataset containing outbound blocking. Such
blocking raises the probability of acceleration at that point, pulling the distribution slightly closer
to the injection case. We use this prior as θ1 during the outbound SHT test.

Once we have computed the priors, we can compute the expected number of trials to reach
each of our output states (on a per-reflector basis) using Equation 3.1. Figure 3.4 presents CDFs
of these results. More than 90% of reflectors have 40 or fewer expected trials needed to reach one
of the states. The remaining reflectors have a large tail and correspond to unstable or degenerate

2If a SYN-ACK retry occurs in the window adjacent to injection, we discard that and look for the next retry. If we
did not discard that measurement, the retry would correspond to non-acceleration rather than acceleration.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 28

0 20 40 60 80 100
Expected number of trials to accept hypothesis

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
re

fl
e
ct

o
rs

Inbound/Bidirectional Blocking

No Blocking

No Inbound/Bidirectional Blocking

Outbound Blocking

Figure 3.4: CDF of expected number of trials at false positive and negative probability of 10−5

to accept one of the four SHT hypothesis outcomes, per reflector. “No Inbound/Bidirectional
Blocking” means we passed our first SHT and did not detect inbound blocking, but have not yet
attempted to differentiate between no blocking and outbound blocking.

reflectors. We do not need to explicitly remove these reflectors from the dataset, but must refrain
from making decisions based on them in some cases.

Identifying and Removing Systematic Effects
Our initial selection of sites did not address some of our site requirements from 3.3, such as network
filtering or anycast IP addresses. Failure to identify these sites generates systematic effects within
our results dataset. Recall that we only wish to filter these sites when necessary. For example,
in the case of anycast sites, we can still classify them as inbound-blocked or not blocked, but we
cannot detect scenarios where the site is outbound-blocked.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 29

Problematic sites. We identify sites that fail to meet these requirements by conducting a set of
experiments with nine geographically diverse vantage points. These hosts reside in cloud service
providers and universities, all of which have limited to no network blocking as vantage points. We
perform these measurements concurrently with our primary blockage measurements. For each site,
we perform two measurements for each vantage point. The diversity of the vantage points enables
us to identify these network effects rather than identify censorship or blockage. These tests do not
need to be globally complete as the network effects manifest readily.

The first measurement ensures that a vantage point can have bidirectional communication with
a site. From a vantage point, we send five SYN packets to a site, evenly distributed over the
experiment run (approximately an hour). We monitor for SYN-ACK replies, which demonstrate
two-way communication. If a vantage point cannot reliably establish bidirectional communication
with a site, we exclude it from our further vantage-point measurements.

In the second measurement, the measurement machine sends a spoofed SYN packet to the
site with the IP address of a vantage point. Since we previously confirmed the vantage point can
communicate with the site, any missing SYN-ACKs or retransmissions are the result of sites not
conforming to our requirements, rather than blockage. If the vantage point does not receive a SYN-
ACK response from the site, ingress filtering or network origin discrimination may be occurring.
If the vantage point does receive a SYN-ACK, it responds with a RST packet. If the vantage point
continues to receive multiple SYN-ACKs, the site is not correctly receiving the vantage point’s
RST packets, suggesting the site host (or its network provider) may be anycast, employing a dis-
tributed stateful firewall, or discriminating by traffic origin. We repeat this experiment three times
to counter measurement errors introduced by random packet loss. If a vantage point never receives
a SYN-ACK, or only ever receives multiple SYN-ACK retries, we conservatively conclude the
site exhibits one of the unacceptable network properties from that vantage point. Thus, we disre-
gard its blockage results, except if the observed measurement results cannot be a false signal due
to the site’s properties. For example, if vantages observe only multiple SYN-ACK retries for a
site (indicating our measurements with that site may falsely identify outbound blocking), but our
measurements detect no blocking or only inbound blocking, we can still consider these results.

We find that this relatively small number of vantage points suffices to characterize sites, as
experiment results typically remained consistent across all vantage points. All online sites that we
tested were reachable from at least three vantage points, with 98.4% reachable at five or more. This
reachability affords us with multiple geographic vantage points to assess each site. For 98.6% of
sites, all reachable vantage points consistently assessed the site requirement status, indicating that
we can detect site network properties widely from a few geographically distinct locations. This
approach is ultimately best effort, as we may fail to detect sites whose behavior is more restricted
(e.g., filtering only a few networks).

Through our site assessment measurements, we identified 229 sites as invalid for inbound
blocking detection due to ingress filtering or network traffic discrimination. These sites were
widely distributed amongst 135 ASes, each of which may employ such filtering individually or
may experience filtering occurring at an upstream ISP.

We also flagged 431 sites as invalid for outbound blocking detection as they either lacked
a necessary site property (discussed in in Section 3.3) or did not respect RST packets (perhaps

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 30

filtering them). To distinguish between the two behaviors, we probed these sites with non-spoofed
SYN and RST packets using vantage points, similar to the experiments described earlier in this
section. For each site, we sent a SYN packet from a well-connected vantage, and responded with a
RST for any received SYN-ACK. If we continued receiving multiple SYN-ACK retries, the site did
not respect our RST packets. Otherwise, the site does properly respond to RST packets in the non-
spoofing setup, and might be exhibiting an undesirable site property (as listed in Section 3.3) in
our spoof-based connectivity disruption experiments. We iterate this measurement three times for
robustness against sporadic packet loss, concluding that a site ignores RST packets if any vantage
point observes multiple SYN-ACK retransmissions in all trials.

Using this approach, we identified that 64 sites (14.8% of sites invalid for outbound block-
ing detection) exhibited a non-standard SYN-ACK retransmission behavior, and conclude that the
remaining 367 sites (85.2%) are either anycast, deploying stateful firewalls, or discriminating by
network origin. These sites were distributed amongst 62 ASes. The majority are known anycast
sites, with 75% hosted by CloudFlare and 7% by Fastly, both known anycast networks.

We additionally checked all sites against the Anycast dataset produced by Cicalese et al. [27].
Our technique identified all but 3 IP addresses. We excluded those 3 sites from our results.

Problematic reflectors. A reflector could be subject to filtering practices that differ based on the
sender of the traffic, or the port on which the traffic arrives. This systematic effect can manifest as
a reflector with significant inbound or outbound blocking. From manual investigation, we identify
several reflectors that demonstrate this property independent of spoofed or non-spoofed traffic. In
all cases, such reflectors were outliers within their country. To remove these systematic effects, we
ignore reflectors in the 99th percentile of blockage for their country. Sites blocked by these reflec-
tors do not show a bias to the CLBL list (discussed more in Section 3.5). This process removed 91
reflectors from our dataset.

3.5 Validation and Analysis
The value of the method we develop ultimately rests on the ability to accurately measure con-
nectivity disruption from a large number of measurement vantage points. Validating its findings
presents challenges, as we lack widespread ground truth, presenting a chicken-and-egg scenario.
One approach, presented in Sections 3.5 and 3.5, is to analyze the aggregate results produced and
confirm they accord with reasonable assumptions about the employment of connectivity disruption.
While doing so does not guarantee correctness, it increases confidence in the observations. The
other approach is to corroborate our findings against existing ground truth about censored Internet
traffic. In Section 3.5, we perform one such analysis, providing a limited degree of more concrete
validation.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 31

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of blocked sites in the Citizen Lab Block List (CLBL)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
re

fl
e
ct

o
rs

Outbound

Outbound (No small refs)

Inbound/Bidirectional

Inbound/Bidirectional (No small refs)

Input Dataset CLBL Proportion

Figure 3.5: Bias of blocked sites towards CLBL sites. CLBL sites consist of 56.7% of our sites,
demarcated at the dotted vertical line. To reduce small value effects, we remove reflectors with
fewer than 5 blocked websites in curves labeled with “No small refs”.

Disruption Bias
Conceptually, one would expect the set of sites disrupted by a network censor to be biased towards
sites that are known to be commonly censored. From this notion, we can examine the set of sites
blocked by each reflector and ask how that population compares to the input population.

Figure 3.5 shows, in aggregate, the bias of connectivity disruption towards commonly censored
websites. 56.7% of websites in the input site dataset are from the CLBL, demarcated in the plot
with a vertical dotted line (which we call the CLBL bias line). If the detection we observed was
unrelated to censorship, we would expect to find roughly 56.7% of that reflector’s blocked sites
listed in the CLBL. The results, however, show a considerable bias towards CLBL sites for both
inbound and outbound filtering. We see this with the bulk of the graph volume lying to the right of
the vertical dotted CLBL bias line. Excluding reflectors with fewer than 5 blocked sites to avoid
small number effects, we observe that for 99% of reflectors, more than 56.7% of inbound filtering

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 32

0 10 20 30 40 50 60
Number of sites

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

p
o
rt

io
n
 o

f
re

fl
e
ct

o
rs

Outbound

Inbound/Bidirectional

Either

Figure 3.6: CDF of site filtering per reflector, separated by inbound/bidirectional and outbound
filtering.

is towards CLBL sites. Similarly, we find 95% of outbound filtering biased towards the CLBL.
This observed bias agrees with our prior expectations that we should find CLBL sites more widely
censored.

Aggregate Results
Site and reflector results. We first explore the extent of connectivity disruption from both the
site and reflector perspective. We might naturally assume that filtering will not manifest ubiqui-
tously. We do not expect to find a site blocked across the majority of reflectors; similarly, we
should find most sites not blocked for any given reflector. This should particularly hold since
approximately half of our investigated sites come from the Alexa top 10K most visited websites.
Although some popular Alexa websites contain potentially sensitive content (e.g., adult or social
media sites), many provide rather benign content and are unexpected targets of disruption.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 33

0 100 101 102 103

Number of reflectors (log scaled)

0.75

0.80

0.85

0.90

0.95

1.00

P
ro

p
o
rt

io
n
 o

f
si

te
s

Outbound

Inbound/Bidirectional

Either

Figure 3.7: CDF of site filtering across reflectors, separated by inbound/bidirectional and outbound
filtering. Note the log-scaled x-axis.

We observe the degree of filtering from the reflector perspective in Figure 3.6. Approximately
99% of reflectors encounter connectivity impediments in either direction for 20 or fewer sites,
with no reflector blocked for more than 60 sites. This finding concurs with the assumption that
site filtering at reflectors is not ubiquitous. On the other hand, connection disruption appears
widespread, as 60% of reflectors experience some degree of interference, corroborating anecdotal
observations of pervasive censorship.

We find inbound/bidirectional disruption occurs more commonly compared to outbound-only
filtering. In total, fewer than 30% of reflectors experience any outbound-only filtering, while over
50% of reflectors have blocked inbound packets from at least one site. This contrast is unsurprising,
because bidirectional filtering of a blacklisted IP address is a simple and natural censorship policy;
as a result, most results will appear as either inbound or bidirectional filtering.

Figure 3.7 depicts a similar outlook on connectivity disruption from the site viewpoint. We
again witness that inbound or bidirectional filtering affects more sites than outbound filtering.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 34

No. Site Category % Refs % Cnt.

1. hrcr.org Human Rights 41.7 83.0
2. alstrangers.livejournal.com Militants and Extremists 37.9 78.8
3. varlamov.ru Alexa 37.7 78.0

nordrus-norna.livejournal.com Hate Speech
4. www.stratcom.mil Foreign Relations & Military 37.5 78.6
5. www.demonoid.me Peer-to-Peer File Sharing 21.7 58.5
6. amateurpages.com Pornography 21.2 57.9

voice.yahoo.jajah.com Voice over Internet Protocol (VOIP)
amtrak.com Alexa

7. desishock.net Peer-to-Peer File Sharing 10.8 32.7
8. wzo.org.il Religous Conversion & Commentary 7.9 17.6
9. Hate Speechit.ru Hate Speech 7.3 14.5

10. anonymouse.org Anonymizers & Censorship Circum. 5.3 16.4

Table 3.3: Summary of the top 10 sites by the percent of reflectors experiencing inbound blocking.
Rows sharing rank reflect domains that share an IP address. We list a categorization of each
website using the CLBL definitions provided. We additionally report the percent of countries (and
dependent territories) for which we find a site inbound-blocked by at least one reflector.

Over 15% of sites are inbound-blocked along the path to at least one reflector, while only 7% of
sites are ever outbound-blocked. In total, connections to 79% of websites never appear disrupted,
and over 99% of sites exhibit inaccessibility by 100 reflectors (5%) or less. As before, these results
agree with our expectation that sites are typically not blocked across the bulk of reflectors.

Several sites show extensive filtering, as listed in Tables 3.3 and 3.4. Here, we have determined
reflector country-level geolocation using MaxMind [98]. We found six sites inbound-blocked for
over 20% of reflectors across at least half the countries (and dependent territories), with the human
rights website hrcr.org inaccessible by 41.7% of reflectors across 83% of countries. The top 10
inbound-blocked sites correspond closely with anticipated censorship, with 9 found in the Citizen
Lab Block List (CLBL). A surprisingly widely blocked Alexa-listed site is varlamov.ru, ranked
third; in fact, it actually redirects to LiveJournal, a frequent target of censorship [110, 146]. On a
related note, the IP address for amtrak.com is the sixth most inbound-blocked site—but it is co-
located with two CLBL websites, underscoring the potential for collateral damage that IP-based
blacklisting can induce.

The top outbound-blocked sites tell a similar tale, although with less pervasive filtering. The
most outbound disrupted site is nsa.gov, unreachable by 7.4% of reflectors across 23.3% of coun-
tries. Given the nature of this site, perhaps the site performs the filtering itself, rather than through
reflector-side disruption. All top 10 sites are known frequently blocked websites, listed in the
CLBL.

This aggregate analysis of connectivity disruption from both site and reflector perspective ac-
cords with our prior understanding that while disruption is not ubiquitous, it may be pervasive. It

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 35

No. Site Category % Refs % Cnt.

1. nsa.gov US Government-Run Military Website 7.4 23.3
2. scientology.org Minority Faiths 2.2 6.9
3. goarch.org Minority Faiths 1.9 4.4
4. yandex.ru Freedom of Expression 1.8 3.8
5. hushmail.com Email Provider 1.8 4.4
6. carnegieendowment.org Political Reform 1.6 4.4
7. economist.com Freedom of Expression 1.6 2.5
8. purevpn.com Anonymizers & Censorship Circumvention 1.4 1.9
9. freedominfo.org Freedom of Expression 1.3 3.1

10. wix.com Web Hosting Services 1.3 0.6

Table 3.4: Summary of the top 10 sites by the percent of reflectors experiencing outbound blocking.
We provide a categorization of each website using the CLBL definitions provided. We additionally
report the percent of countries (and dependent territories) for which we find a site inbound-blocked
by at least one reflector.

affects a large proportion of reflectors, and can widely suppress access to particular sites. The sites
for which our method detects interference closely correspond with known censored websites. This
concordance bolsters confidence in the accuracy of our method’s results.

C
H

A
PT

E
R

3.
A

U
G

U
R

:IN
T

E
R

N
E

T-W
ID

E
D

E
T

E
C

T
IO

N
O

F
C

O
N

N
E

C
T

IV
IT

Y
D

ISR
U

PT
IO

N
S

36

Figure 3.8: Global heat map showing the percentage of sites filtered for any reflector in countries around the world. China
experiences the highest average amount of filtering, at 5% of measurable sites filtered by a resolver within the country.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 37

No. Country
Num.
Ref.

Block
%

CLBL
%

Mean Blocked
In/Out

Med. Blocked
In/Out

Total Num.
Block. In/Out

1. China 36 5.0 70.9 11.2 / 1.8 1.5 / 0.0 70 / 33
2. Iran 14 3.4 55.7 10.8 / 1.4 0.0 / 0.0 53 / 17
3. Sudan 12 2.2 54.3 6.5 / 0.0 1.0 / 0.0 46 / 0
4. Russia 17 1.8 78.9 4.8 / 1.4 0.0 / 0.0 18 / 20
5. Latvia 14 1.8 81.6 3.3 / 1.6 2.0 / 0.0 22 / 19
6. Turkey 15 1.8 83.8 2.1 / 1.5 0.0 / 0.0 23 / 14
7. Hong Kong 16 1.7 88.9 2.8 / 1.4 0.0 / 0.0 14 / 22
8. Columbia 16 1.7 85.7 4.2 / 1.2 6.0 / 0.0 17 / 18
9. Libya 10 1.5 77.4 8.4 / 3.2 9.5 / 3.0 16 / 15
10. United Kingdom 16 1.4 90.0 3.1 / 0.8 2.0 / 0.0 19 / 11

Table 3.5: Summary of the top 10 countries ranked by the percentage of sites blocked at any
reflectors within each country (shown in the “Block %” column). Additionally, we list for each
country the number of reflectors within that country, the blockage bias towards CLBL sites, and
statistics on inbound versus outbound blockage.

Country-level connectivity disruption. Analysis of aggregate connectivity disruption across
countries provides another perspective for validation. Using reflector country geolocation provided
by MaxMind [98], Table 3.5 ranks the top 10 countries by percentage of blocked sites across any
reflectors in the country. Figure 3.8 portrays this at a global scale, illustrating that some degree of
connectivity disruption is experienced by hosts in countries around the world.

We see that many of the most disruptive countries correspond closely with countries known to
heavily censor, such as China, Iran, Sudan, Russia, and Turkey [112]. Of the top 10 countries, the
OpenNet Initiative [112] has reported Internet censorship of political or social material in every
country except Latvia and the United Kingdom.3 More recently, reports have documented Latvia
as heavily censoring gambling websites and political content [6,133]. Our results appear plausible
for the United Kingdom as well, which has a history of filtering streaming and torrent sites [16]
and adult content [106].

While we are aggregating at a country granularity, these disruptions may actually be imple-
mented in different ways within a single country. These differences result in non-uniform filtering
policies, as has been observed with the Great Firewall of China [49, 151] and UK adult content
filtering [106]. In Figure 3.9, we plot the variation in the number of sites blocked for reflectors
within each country. We remove countries without any site filtering. We observe that for most
countries, there exists some variation in the disruption experienced by reflectors within a country,
suggesting that interference indeed often differs across networks even within a country. The extent
of this behavior is widespread and highlights the importance of connectivity measurements from

3We list Hong Kong separately from China, although traffic from Hong Kong may traverse Chinese networks and
experience disruption.

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 38

0 20 40 60 80 100 120 140 160 180
Country sorted by total blocking

0

5

10

15

20

25

N
u
m

b
e
r

o
f

si
te

s
b
lo

ck
e
d

Median

75th Percentile

25th Percentile

Figure 3.9: Plot of the variations in site filtering experienced by reflectors within countries. We
elide countries without any disruption.

many vantage points, since findings may differ across nearby networks and geolocations.

Tor Bridge Case Study
In the previous section, we analyzed our method’s results in aggregate, finding them in line with
reasonable assumptions and existing reports of Internet censorship. Here, we use several known
Tor bridges as a case study providing an additional (though limited) check of correctness. This
validation increases confidence in our method, as we are able to replicate previous findings with
regards to which sites experience blocking, the country of censorship, and the directional nature of
disruption.

Our set of sites contains three Tor Obfuscation4 (obfs4) Bridges open on port 80, for which
we have some ground truth on their censorship. A prior study [52] tested all three bridges from
vantage points in the U.S., China, and Iran, over a five-month period. The first two bridges (TB1

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 39

and TB2) were included in the Tor Browser releases. Fifield and Tsai detected that only China
frequently inbound-blocked these, albeit inconsistently, likely due to the federated nature of the
Great Firewall of China. The third bridge (TB3) had been only privately distributed, and remained
unblocked throughout the study.

Our findings are consistent with this ground truth. Both TB1 and TB2 experienced inbound
filtering in China only, while connectivity to TB3 was never disrupted. Of the 36 reflectors in
China, we detected inbound filtering of TB1 for 8 reflectors, no filtering for 8 reflectors, and
inconclusive evidence for the remaining 20 (due to lack of a statistically significant signal during
our hypothesis testing). For TB2, 9 reflectors were inbound-blocked, 11 were unblocked, and
16 were undecided. TB3, expected to be unblocked, was accessible by 22 reflectors, with the
remaining 14 undetermined. These findings accord with prior results regarding the distributed and
disparate nature of Chinese Tor filtering.

3.6 Discussion
In this section, we discuss various aspects concerning the coverage, granularity, and accuracy of
the current measurements.

Coverage limitations. Ethical considerations when performing our measurements restricted the
reflectors from which we measure to a set of hosts that we can confidently conclude represent
Internet infrastructure in the interior of the network. Recall that we do so by measuring the Internet
topology and only using reflectors at least two traceroute hops into the network. This approach
drastically reduces the number of hosts that we can use as reflectors. In the future, more exhaustive
techniques to identify Internet infrastructure could increase the set of IP addresses that we might
use as reflectors.

Evasion Augur relies on the injection of spoofed SYN-ACK packets. A natural evasion mecha-
nism could use a stateful firewall to drop SYN-ACKs that do not correspond to a previously sent
SYN. Implementing such firewalls at scale poses significant challenges. Large networks frequently
have multiple transit links resulting in asymmetric routing; SYN packets may traverse a different
path than the SYN-ACKs. The censor would need to coordinate state across these links. Any errors
in state management would lead to blocking benign connections, resulting in collateral damage.

Alternatively, censors could switch to allowing through TCP control packets and only dis-
rupting data packets. Such an approach might complicate the censor’s own monitoring of their
blocking efforts as it runs counter to assumptions commonly made by diagnostic tools. Similarly,
it may introduce management burdens because it does not accord with common forms of packet
filtering.

Ambiguity in location and granularity of filtering. The current measurements only indicate
whether packets became filtered somewhere along the end-to-end path between a reflector and
a site; they do not indicate the location where that filtering might take place. As a result, our

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 40

techniques cannot disambiguate the scenario where a remote site blocks access from all reflectors
in an entire region from the scenario where an in-country censor filters traffic along that path. For
example, financial and commerce sites may block access from entire countries if they have no
customers in those regions.

Additionally, the current measurements only employ TCP packets using port 80. Thus, they
do not disambiguate filtering of IP addresses versus filtering of only port 80 traffic associated with
that IP address. An extension of our system might perform follow-up measurements on different
ports to determine whether filtering applies across all ports. On a related note, our techniques only
measure TCP/IP-based filtering; future work may involve correlating the measurements that we
observe with tools that measure global filtering at other layers or applications (e.g., HTTP, DNS).

Other sources of inaccuracy. Existing IP geolocation tools have known inaccuracies [70], par-
ticularly for Internet infrastructure (i.e., IP addresses that do not represent end hosts). As a result,
some of our results may not reflect precise characterizations of country-level filtering. As IP geolo-
cation techniques improve, particularly for IP addresses that correspond to Internet infrastructure,
we can develop more confidence in the country-level characterizations from Section 3.5. Addi-
tionally, various network mechanisms, including anycast, rerouting, traffic shaping, and transient
network failures, may make it difficult to disambiguate overt filtering actions from more benign
network management practices. Some of these effects may even operate dynamically: for example,
network firewalls may observe our probes over time, come to view them as an attack, and begin
to block our probes; in this case, our own measurements may give rise to filtering, rendering it
difficult to disambiguate reactive filtering of our measurements from on-path filtering between a
site and reflector, particularly since the latter may also change over time.

3.7 Augur Summary
Despite the pervasive practice of Internet censorship, obtaining widespread, continuous measure-
ments from a diversity of vantage points has proved elusive; most studies of censorship to-date have
been limited both in scale (i.e., concerning only a limited number of vantage points) and in time
(i.e., covering only a short time span, with no baseline measurements). The lack of comprehen-
sive measurements about Internet censorship stems from the difficulty of recruiting vantage points
across a wide range of countries, regions, and ISPs, as most previous techniques for measuring
Internet censorship have required some type of network presence in the network being monitored.

In this chapter, we tackled this problem with a fundamentally different type of approach: in-
stead of relying on in-country monitoring points for which we have no direct access, we exploit
recent advances in TCP/IP side-channel measurement techniques to collect measurements between
pairs of endpoints that we do not control. This ability to conduct measurements from “third-party”
vantage points that we control allows us to continuously monitor many more paths than was previ-
ously possible. Previous work introduced the high-level concept of these third-party side-channel
measurements; in this work, we transition the concept to practice through a working system that

CHAPTER 3. AUGUR: INTERNET-WIDE DETECTION OF CONNECTIVITY
DISRUPTIONS 41

abides by ethical norms and produces sound measurements in the presence of the measurement
artifacts and noise that inevitably manifest in real-world deployments.

The continuous, widespread measurements that we can collect with these techniques can ulti-
mately complement anecdotes, news reports, and policy briefings to ensure that we can back future
assessments of Internet filtering with sound, comprehensive data. Part of this transition to practice
involves further developing the system that we have developed to facilitate ongoing operation, in-
cluding automating the validation of the measurements that we collect. In Chapter 4 we expand on
and continue this work, by exploring DNS-based filtering, globally.

42

Chapter 4

Iris: Global Measurement of DNS
Manipulation

4.1 Introduction
Organizations may implement censorship at many layers of the Internet protocol stack; they might,
for example, block traffic based on IP address, manipulate DNS responses, or they might block
individual web requests based on keywords. Prior work has developed techniques to continuously
measure widespread manipulation at the transport [47, 116, Chapter 3] and HTTP [128] layers,
yet a significant gap remains in our understanding of global information control concerning the
manipulation of the Internet’s Domain Name System (DNS). Towards this goal, in this chapter we
develop and deploy a method and system to detect, measure, and characterize the manipulation of
DNS responses in countries across the entire world.

Developing a technique to accurately detect DNS manipulation poses major challenges. Al-
though previous work has studied inconsistent or otherwise anomalous DNS responses [75, 93],
these methods have focused mainly on identifying DNS responses that could reflect a variety of
underlying causes, including misconfigurations. In contrast, our work aims to develop methods
for accurately identifying DNS manipulation indicative of an intent to restrict user access to con-
tent. To achieve high detection accuracy, we rely on a collection of metrics that we base on the
underlying properties of DNS domains, resolutions, and infrastructure.

One set of detection metrics focuses on consistency—intuitively, when we query a domain from
different locations, the IP addresses contained in DNS responses should reflect hosting from either
a common server (i.e., the same IP address) or the same autonomous system. Another set of detec-
tion metrics focuses on independent verifiability, by comparison to independent information such
as the identity in the TLS certificate for the website corresponding to the domain. Each of these
metrics naturally lends itself to exceptions: for example, queries from different locations utilizing a
content distribution network (CDN) will often receive different IP addresses (and sometimes even
different CDNs). However, we can use violations of all of the metrics as a strong indicator of DNS
manipulation.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 43

In addition to achieving accurate results, another significant design challenge concerns ethics.
In contrast to systems that explicitly involve volunteers in collecting measurements, methods that
send DNS queries through open DNS resolvers deployed across the Internet raise the issue of
potentially implicating third parties who did not in fact agree to participate in the measurement.
Using “open resolvers” is potentially problematic, as most of these are not actual resolvers but
instead DNS forwarders in home routers and other devices [129]. A censor may misattribute
requests from these resources as individual citizens attempting to access censored resources.

Reasoning about the risks of implicating individual citizens requires detailed knowledge of
how censors in different countries monitor access to censored material and how they penalize such
actions. These policies and behaviors may be complex, varying across time, region, individuals
involved, and the nature of the censored content; such risks are likely intractable to accurately
deduce. To this end, our design takes steps to ensure that, to the extent possible, we only query
open DNS resolvers hosted in Internet infrastructure (e.g., within Internet service providers or
cloud hosting providers), in an attempt to eliminate any use of resolvers or forwarders in the home
networks of individual users. This step reduces the set of DNS resolvers that we can use for our
measurements from tens of millions to only a few thousand. However, we find that the resulting
coverage still suffices to achieve a global view of DNS manipulation, and—importantly—in a safer
way than previous studies that exploit open DNS resolvers.

Our work makes the following contributions. First, we design, implement, and deploy Iris, a
scalable, ethical system for measuring DNS manipulation. Second, we develop analysis metrics
for disambiguating natural variation in DNS responses for a domain from nefarious manipulation.
Third, we perform a global measurement study that highlights the heterogeneity of DNS manip-
ulation, across countries, resolvers, and domains. We find that manipulation varies across DNS
resolvers even within a single country.

This chapter is based on work that appeared in the USENIX Security Symposium [119] and
USENIX ;login:, [120].

4.2 Method
In this section we describe Iris, a scalable, lightweight system to detect DNS manipulation. We
begin by scoping the problem space, identifying the capabilities and limitations of various measure-
ment building blocks, and stating our assumptions about the threat model. We explain the process
by which we select (1) which domain names to measure, and (2) the vantage points to measure
them from, taking into consideration questions of ethics and scalability. We then describe, given
a set of measurement vantage points and DNS domain names, how we characterize the results of
our measurements and use them to draw conclusions about whether DNS manipulation is taking
place, based on either the consistency or the independent verifiability of the responses that we re-
ceive. Next, we consider our technical approach in light of existing ethical norms and guidelines,
and explain how various design decisions help us adhere to those principles as much as possible.
Finally, we discuss the implicit and technical limitations of Iris.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 44

Overview
We aim to identify DNS manipulation, which we define as the instance of a DNS response both
(1) having attributes (e.g., IP addresses, autonomous systems, web content) that are not consis-
tent with respect to a well-defined control set; and (2) returning information that is demonstrably
incorrect when compared against independent information sources (e.g., TLS certificates).

Approach Detecting DNS manipulation is conceptually simple: At a high-level, the idea en-
tails performing DNS queries through geographically distributed DNS resolvers and analyzing the
responses for activity that suggests that the responses for a DNS domain might be manipulated. De-
spite its apparent simplicity, however, realizing a system to scalably collect DNS data and analyze
it for manipulation poses both ethical and technical challenges. The ethical challenges concern se-
lecting DNS resolvers that do not implicate innocent citizens, as well as ensuring that Iris does not
induce undue load on the DNS resolution infrastructure; Section 4.2 explains the ethical guidelines
we use to reason about design choices. Section 4.2 describes how Iris selects a “safe” set of open
DNS resolvers; The technical challenges center around developing sound methods for detecting
manipulation, which we describe in Section 4.2 and Section 4.2.

Identifying DNS names to query Iris queries a list of sensitive URLs compiled by Citizen
Lab [29]. We call this list the Citizen Lab Block List (CLBL). This list of URLs is compiled
by experts based on known censorship around the world, divided by category. We distill the URLs
down to domain names and use this list as the basis of our dataset. We then supplement this list
by adding additional domain names selected at random from the Alexa Top 10,000 [3]. These
additional domain names help address geographic or content biases in the the CLBL while not
drastically increasing the total number of queries.

Assumptions and focus First, Iris aims to identify widespread manipulation at the scale of In-
ternet service providers and countries. We cannot identify manipulation that is targeted at specific
individuals or populations or manipulation activities that exploit high-value resources such as valid
but stolen certificates. Second, we focus on manipulation tactics that do not rely on stealth; we as-
sume that adversaries will use DNS resolvers to manipulate the responses to DNS queries. We
assume that adversaries do not return IP addresses that are incorrect but within the same IP pre-
fix as a correct answer [9, 11, 108]. Finally, when attributing DNS manipulation to a particular
country or dependent territory, we rely on the country information available from Censys [43]
supplemented with MaxMind’s [98] dataset to map a resolver to a specific country (or dependent
territory).

Ethics
Our primary ethical concern is minimizing the risks associated with issuing DNS queries via open
resolvers for potentially censored or manipulated domains, since these DNS queries could impli-
cate innocent users. A second concern is the query load that Augur induces on authoritative name-

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 45

servers. With these concerns in mind, we use the ethical guidelines of the Belmont Report [14]
and Menlo Report [41] to frame our discussion.

From the principles of respect for persons and beneficence (Section 2.3), we limit all of our
measurements to resolvers we are reasonably certain are part of the Internet infrastructure. We
also note that issuing DNS queries through tens of millions of resolvers has rapidly diminishing
returns, and that using only open resolvers that we can determine are unlikely to correspond to in-
dividual users greatly reduces the risk to any individual without dramatically reducing the benefits
of our experiment. We note that our consideration of ethics in this regard is a significant departure
from previous work that has issued queries through open DNS resolver infrastructure but has not
considered ethics [93].

From the principle of justice (Section 2.3) we envision that the beneficiaries of the kinds of
measurements that we collect using Iris will be those the bear the potential risk. Even in the event
that some entity in a country that hosts an open DNS resolver might bear some risk as a result of
the measurements we conduct, we envision that those same entities may ultimately benefit from
the research, policy-making, and tool development that Iris facilitates.

The additional guideline of respect for law and public interest (Section 2.3) helps us reason
about the externalities that our DNS queries create by increasing DNS query load on the name-
servers and resolvers. In keeping with this principle, we rate-limit our DNS queries for each DNS
domain based on peak and near peak query rate limitations and billing.

Open DNS Resolvers
To obtain a wide range of measurement vantage points, we use open DNS resolvers deployed
around the world; such resolvers will resolve queries for any client.

Measurement using open DNS resolvers is an ethically complex issue. Previous work has
identified tens of millions of these resolvers around the world [93]. Given their prevalence and
global diversity, open resolvers are a compelling resource, providing researchers with considerable
volume and reach. Unfortunately, open resolvers also pose a risk not only to the Internet but to
individual users.

Open resolvers can be the result of configuration errors, frequently on end-user devices such
as home routers [93]. Using these devices for measurement can incur monetary cost, and if the
measurement involves sensitive content or hosts, can expose the owner to harm. Furthermore,
open resolvers are also a common tool in various online attacks such as Distributed Denial-of-
Service (DDoS) amplification attacks [94]. Despite efforts to reduce both the prevalence of open
resolvers and their potential impact [113], they remain commonplace.

Due to these and the ethics considerations that we discussed in Section 4.2, we restrict the
set of open resolvers that we use to the few thousand resolvers that we are reasonably certain
are part of the Internet infrastructure (e.g., belonging to Internet service providers, online cloud
hosting providers), as opposed to attributable to any single individual. Figure 4.1 illustrates the
process by which Iris finds safe open DNS resolvers. We now explain this process in more detail.
Conceptually, the process comprises two steps: (1) scanning the Internet for open DNS resolvers;

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 46

Figure 4.1: Overview of Iris’s DNS resolver identification and selection pipeline. Iris begins with
a global scan of the entire IPv4 address space, followed by reverse DNS PTR lookups for all open
resolvers, and finally filtering resolvers to only include DNS infrastructure.

or (2) pruning the list of open DNS resolvers that we identify to limit the resolvers to a set that we
can reasonably attribute to Internet infrastructure.

By using DNS resolvers we do not control, we cannot differentiate between country-wide or
state-mandated censorship and localized manipulation (e.g., captive portals, malware [93]) at indi-
vidual resolvers. Therefore we must aggregate and analyze results at ISP or country scale.

Step 1: Scanning the Internet’s IPv4 space for open DNS resolvers Scanning the IPv4 ad-
dress space provides us with a global perspective on all open resolvers. To do so, we developed
an extension to the ZMap [44] network scanner to enable Internet-wide DNS resolutions1. This
module queries port 53 of all IPv4 addresses with a recursive DNS A record query. We use a
purpose-registered domain name we control for these queries to ensure there is a known correct
answer. We conduct measurements and scans from IP addresses having a PTR record identify-
ing the machine as a “research scanner.” These IP addresses also host a webpage identifying our
academic institution and offering the ability to opt-out of scans. From these scans, we select all
IP addresses that return the correct answer to this query and classify them as open resolvers. In
Section 4.3, we explore the population of open DNS resolvers that we use for our study.

1Our extension has been accepted into the open source project and the results of our scans are available as part of
the Censys [43] system.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 47

Figure 4.2: Overview of DNS resolution, annotation, filtering, and classification. Iris inputs a set
of domains and DNS resolvers and outputs results indicating manipulated DNS responses.

Step 2: Identifying Infrastructure DNS Resolvers Given a list of all open DNS resolvers on
the Internet, we prune this list to include only DNS resolvers that can likely be attributed to Inter-
net infrastructure. To do so, we aim to identify open DNS resolvers that appear to be authoritative
nameservers for a given DNS domain. Iris performs reverse DNS PTR lookups for all open re-
solvers and retains only the resolvers that have a valid PTR record beginning with the subdomain
ns[0-9]+ or nameserver[0-9]*. This filtering step reduces the number of usable open
resolvers—from millions to thousands—yet even the remaining set of open DNS resolvers pro-
vides broad country- and network-level coverage (characterized further in Section 4.3).

Using PTR records to identify infrastructure can have both false negatives and false positives.
Not all infrastructure resolvers will have a valid PTR record, nor will they all be authoritative
nameservers. These false negatives limit the scope and scale of our measurement, but are necessary
to reduce risk. Similarly, if a user operated their own authoritative nameserver on their home IP or
if a PTR record matched our naming criteria but was not authoritative, our method would identify
that IP as infrastructure (false positives).

Performing the Measurements
Given a list of DNS domain names to query and a global set of open DNS resolvers from which
we can issue queries, we need a mechanism that issues queries for these domains to the set of
resolvers that we have at our disposal. Figure 4.2 shows an overview of the measurement process.
At a high level, Iris resolves each DNS domain using the global vantage points afforded by the open
DNS resolvers, annotates the response IP addresses with information from both outside datasets
as well as additional active probing, and uses consistency and independent verifiability metrics
to identify manipulated responses. The rest of this section outlines this measurement process in
detail, while Section 4.2 describes how we use the results of these measurements to ultimately
identify manipulation.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 48

Step 1: Performing global DNS queries Iris takes as input a list of suitable open DNS resolvers,
as well as the combined CLBL and Alexa domain names. In addition to the DNS domains that we
are interested in testing, we include 3 DNS domains that are under our control to help us compute
our consistency metrics when identifying manipulation.

Querying tens of thousands of domains across tens of thousands of resolvers required the de-
velopment of a new DNS query tool, because no existing DNS measurement tool supports this
scale. We implemented this tool in Go [57]. The tool takes as input a set of domains and resolvers,
and coordinates random querying of each domain across each resolver. The tool supports a variety
of query types, multiple of which can be specified per run, including A, AAAA, MX, and ANY. For
each (domain, resolver) pair, the tool crafts a recursive DNS request and sends it to the resolver.
The recursive query requests that the resolver resolve the domain and return the ultimate answer,
logging all responses, including timeouts. The tool follows the set of responses to resolve each
domain to an IP address. For example, if a resolver returns a CNAME, the tool then queries the
resolver for resolution of that CNAME.

To ensure resolvers are not overloaded, the tool includes a configurable rate-limit. For our
experiments, we limited queries to resolvers to an upper bound of 5 per second. In practice, this
rate tends to be much lower due to network latency in both reaching the resolver, as well as the
time it takes the resolver to perform the recursive response. To cope with specific resolvers that
are unstable or timeout frequently, the tool provides a configurable failure threshold that halts a
specific resolver’s set of measurements should too many queries fail.

To ensure the domains we query are not overloaded, the tool randomizes the order of domains
and limits the number of resolvers queried in parallel such that in the worst case no domain expe-
riences more than 1 query per second, in expectation.

Step 2: Annotating DNS responses with auxiliary information Our analysis ultimately relies
on characterizing both the consistency and independent verifiability of the DNS responses that we
receive. To enable this classification we first must gather additional details about the IP addresses
that are returned in each of the DNS responses. Iris annotates each IP address returned in the set
of DNS responses with additional information about each IP address’s geolocation, autonomous
system (AS), port 80 HTTP responses, and port 443 HTTPS X.509 certificates. We rely on the
Censys [43] dataset for this auxiliary information; Censys provides daily snapshots of this infor-
mation. This dataset does not contain every IP address; for example, the dataset does not include
IP addresses that have no open ports, or adversaries may intentionally return IP addresses that re-
turn error pages or are otherwise unresponsive. In these cases, we annotate all IP addresses in our
dataset with AS and geolocation information from the Maxmind service [98].

Additional PTR and TLS scanning For each IP address, we perform a DNS PTR lookup to as-
sist with some of our subsequent consistency characterization (a process we detail in Section 4.2).
Another complication in the annotation exercise relates to the fact that in practice a single IP ad-
dress might host many websites via HTTP or HTTPS (i.e., virtual hosting). As a result, when
Censys retrieves certificates via port 443 (HTTPS) across the entire IPv4 address space, the certifi-

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 49

cate that Censys retrieves might differ from the certificate that the server would return in response
to a query via TLS’s Server Name Indication (SNI) extension. Such a discrepancy might lead
Iris to mischaracterize virtual hosting as DNS inconsistency. To mitigate this effect, for each re-
sulting IP address we perform an additional active HTTPS connection using SNI, specifying the
name originally queried. We annotate all responses with this information, which we use for answer
classification (examined further in Section 4.4).

Identifying DNS Manipulation
To determine whether a DNS response is manipulated, Iris relies on two types of metrics: consis-
tency metrics and independent verifiability metrics. We say that a response is correct if it satisfies
any consistency or independent verifiable metric; otherwise, we classify the response as manipu-
lated. In this section, we outline each class of metrics as well as the specific features we develop
to classify answers. The rest of this section defines these metrics; Section 4.4 explores the efficacy
of each of them.

Consistency

Access to a domain should have some form of consistency, even when accessed from various global
vantage points. This consistency may take the form of network properties, infrastructure attributes,
or even content. We leverage these attributes, both in relation to control data as well as across the
dataset itself, to classify DNS responses.

Consistency Baseline: Control Domains and Resolvers Central to our notion of consistency
is having a set of geographically diverse resolvers we control that are (presumably) not subject
to manipulation. These controls give us a set of high-confidence correct answers we can use to
identify consistency across a range of IP address properties. Geographic diversity helps ensure that
area-specific deployments do not cause false-positives. For example, several domains in our dataset
use different content distribution network (CDN) hosting infrastructure outside North America. As
part of our measurements we insert domain names we control, with known correct answers. We use
these domains to ensure a resolver reliably returns unmanipulated results for non-sensitive content
(e.g., not a captive portal).

For each domain name, we create a set of consistency metrics by taking the union of each metric
across all of our control resolvers. For example, if Control A returns the answer 192.168.0.10
and 192.168.0.11 and Control B returns 192.168.0.12, we create a set of consistent IP set
of (192.168.0.10, 192.168.0.11, 192.168.0.12). We say the answer is “correct”
(i.e., not manipulated) if, for each metric, the answer is a non-empty subset of the controls. Return-
ing to our IP example, if a global resolver returns the answer (192.168.0.10, 192.168.0.12),
it is identified as correct. When a request returns multiple records, we check all records and con-
sider the reply good if any response passes the appropriate tests.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 50

Additionally, unmanipulated passive DNS [10] data collected simultaneously with our experi-
ments across a geographically diverse set of countries could enhance (or replace) our consistency
metrics. Unfortunately we are not aware of such a dataset being available publicly.

IP Address The simplest consistency metric is the IP address or IP addresses that a DNS re-
sponse contains.

Autonomous System / Organization In the case of geographically distributed sites and services,
such as those hosted on CDNs, a single domain name may return different IP addresses as part of
normal operation. To attempt to account for these discrepancies, we also check whether different
IP addresses for a domain map to the same AS we see when issuing queries for the domain name
through our control resolvers. Because a single AS may have multiple AS numbers (ASNs), we
consider two IP addresses with either the same ASN or AS organization name as being from the
same AS. Although many responses will exhibit AS consistency even if individual IP addresses
differ, even domains whose queries are not manipulated will sometimes return inconsistent AS-
level and organizational information as well. This inconsistency is especially common for large
service providers whose infrastructure spans multiple regions and continents and is often the result
of acquisitions. To account for these inconsistencies, we need additional consistency metrics at
higher layers of the protocol stack (specifically HTTP and HTTPS), described next.

HTTP Content If an IP address is running a webserver on port 80, we include a hash of the
content returned as an additional consistency metric. These content hashes come from a port 80
IP address Censys crawl. This metric effectively identifies sites with limited dynamic content. As
discussed in Section 4.4, this metric is also useful in identifying sites with dynamic content but
shared infrastructure. For example, as these hashes are based on HTTP GET fetches using an IP
address as the Host in the header, this fetch uniquely fingerprints and categorizes CDN failures or
default host pages. In another example, much of Google’s web hosting infrastructure will return the
byte-wise identical redirection page to http://www.google.com/ for HTTP GETs without a
valid Google host header. These identical pages allow us to identify Google resolutions as correct
even for IP addresses acting as a Point-of-Presence.

HTTPS Certificate We label a response as correct if the hash of the HTTPS certificate presented
upon connection matches that of an IP returned via our controls. Note this is not an independent
verifiability metric, as the certificates may or may not be trusted, and may not even be correct for
the domain.

PTRs for CDNs From our control data, we classify domains as hosted on particular CDNs based
on PTR, AS, and certificate information. We consider a non-control response as consistent if the
PTR record for that response points to the same CDN.

http://www.google.com/

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 51

Independent Verifiability

In addition to consistency metrics, we also define a set of metrics that we can independently ver-
ify using external data sources, such as the HTTPS certificate infrastructure. We describe these
methods below.

HTTPS Certificate We consider a DNS response to be correct, independent of controls, if the
IP address presents a valid, browser-trusted certificate for the correct domain name when queried
without SNI. We further extend this metric to allow for common configuration errors, such as
returning certificates for *.example.com when requesting example.com.

HTTPS Certificate with SNI We add an additional metric that checks whether the certificate
returned from our follow-up SNI-enabled scans returns a valid, browser-trusted certificate for the
correct IP address.

Limitations
To facilitate global coverage in our measurements, our method has limitations that impact our
scope and limit our results.

Localized Manipulation Since Iris relies entirely on open infrastructure resolvers that we do
not control, in regions with few resolvers, we cannot differentiate between localized manipulation
by the resolver’s operator and ISP or country-wide manipulation. Analysis of incorrect results
focusing on consistency across ISP or country, or examination of webpage content, could aid in
identifying localized manipulation.

Domain Bias From our set of infrastructure resolvers, we measure manipulation of the CLBL
and a subset of Alexa top sites. Although the CLBL is a community-based effort to identify
sensitive content globally, by its very nature it is not complete. URLs and domains are missing,
and sensitive content may change faster than the list is updated. Similarly, the list may exhibit
geographic bias based on the language of the project and who contributes to it. This bias could
affect the relative volume and scope of manipulation that Iris can detect.

Evasion Although we focus on manipulation at ISP or country scale, an active adversary can
still attempt to evade our measurements. Upstream resolvers could use EDNS Client Subnet [32]
to only manipulate results for certain target IP ranges, or ISP resolvers could choose to manipulate
only their own customers. Country-wide firewalls that perform injection could identify our scan-
ning IP addresses and either not inject results or block our communication entirely. An adversary
could also exploit our consistency metrics and inject incorrect IP addresses within the same AS as
the targets.

*.example.com
example.com

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 52

Resolver
Datasets

Total
Resolvers

Number
Countries

Median /
Country

All Usable 4,197,543 232 659.5
Ethically Usable 6,564 157 6.0
Experiment Set 6,020 151 6.0

Table 4.1: DNS resolver datasets. We identify all correctly functioning open resolvers are across
the IPv4 address space. The experiment set consists of resolvers that passed additional functional
tests beyond our basic scan. Note that the number of countries includes dependent territories.

Geolocation Error We rely on Censys [43] and Maxmind [98] for geolocation and AS labeling
of infrastructure resolvers to perform country or ISP-level aggregation. Incorrect labeling would
identify country-wide manipulation as incomplete (false negatives), or identify manipulation in
countries where it is not present (false positives).

4.3 Dataset
In this section, we characterize the data collected and how we processed it to obtain the results
used in our analysis.

Open Resolver Selection
We initially identified a large pool of open DNS resolvers through an Internet-wide ZMap scan
using our DNS extension to ZMap in January 2017. In total, 4.2 million open resolvers responded
with a correct answer to our scan queries. This number excludes resolvers that replied with valid
DNS responses but had either a missing or incorrect IP resolution for our scan’s query domain.

The degree to which we can investigate DNS manipulation across various countries depends
on the geographic distribution of the selected DNS resolvers. By geolocating this initial set of
resolvers using Censys [43] and MaxMind [98], we observed that these resolvers reside in 232
countries and dependent territories2, with a median of 659 resolvers per country. Due to the ethical
considerations we outlined in Section 4.2, we restrict this set of resolvers to 6,564 infrastructure
resolvers, in 157 countries, again with a median of 6 resolvers per country. Finally, we remove
unstable or otherwise anomalous resolvers; Section 4.3 describes this process in more detail. This
filtering reduces the set of usable resolvers to 6,020 in 151 countries, with a median of 6 resolvers in
each. Table 4.1 summarizes the resulting population of resolvers; Table 4.2 shows the breakdown
across continents. We also use 4 geographically diverse resolvers for controlled experiments; the 2
Google Public DNS servers [62], a German open resolver hosted on Amazon AWS, and a resolver
that we manage at the University of California, Berkeley.

2Countries and dependent territories are defined by the ISO 3166-1 alpha-2 codes, the granularity of Maxmind’s
country geolocation.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 53

Resolver Dataset AF AS EU NA OC SA

All Usable 55 49 52 41 21 14
Ethically Usable 29 42 42 25 8 11
Experiment Set 26 41 41 24 8 11

Table 4.2: Number of countries (and dependent territories) containing usable resolvers by conti-
nent. AF=Africa, AS=Asia, EU=Europe, NA=North America, OC=Oceana/Australia, SA=South
America.

Response
Datasets

Total
Responses

Number
Resolvers

Number
Domains

All Responses 14,539,198 6,564 2,330
After Filtering 13,594,683 6,020 2,303

Table 4.3: DNS response dataset before and after filtering problematic resolvers, domains, and
failed queries.

Domain Selection
We investigate DNS manipulation for both domains known to be censored and domains for popular
websites. We began with the Citizen Lab Block List (CLBL) [29], consisting of 1,376 sensitive
domains. We augment this list with 1,000 domains randomly selected from the Alexa Top 10,000,
as well as 3 control domains we manage that should not be manipulated. Due to overlap between
the two domain sets, our combined dataset consists of 2,330 domains. We excluded 27 problematic
domains that we identified through our data collection process, resulting in our final population of
2,303 domains.

Response Filtering
We issued 14.5 million DNS A record queries for our 2,330 pre-filtered domains, across 6,564
infrastructure and control open resolvers during a 2 day period in January 2017. We observed
various erroneous behavior that required further filtering. Excluding these degenerate cases re-
duced our dataset collection to 13.5 million responses across 2,303 domains and 6,020 resolvers,
as summarized in Table 4.3. The rest of this section details this filtering process.

Resolvers We detected that 341 resolvers stopped responding to our queries during our exper-
iment. An additional 202 resolvers incorrectly resolved our control domain names, despite pre-
viously answering correctly during our Internet-wide scans. The common cause of this behavior
was rate limiting, as our Internet-wide scans queried resolvers only once, whereas our experiments
necessitated repeated queries. We identified another problematic resolver that exhibited a query

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 54

Failure Type Count % of Responses

Timeout 140,551 0.97%
Server Fail 107,826 0.74%
Conn Refused 7,823 0.05%
Conn Error 3,686 0.03%
Truncated 3,451 0.02%
NXDOMAIN 1,713 0.01%

Table 4.4: Breakdown of the 265,050 DNS responses that returned a non-success error code.

failure rate above 70% due to aggressive rate limiting. We eliminated these resolvers and their
associated query responses from our dataset, reducing the number of valid responses by 510K.

Domains Our control DNS resolvers could not resolve 15 domain names. We excluded these and
their associated 90K query responses from our dataset. We removed another 12 domains and their
72K corresponding query responses as their DNS resolutions failed an automated sanity check;
resolvers across numerous countries provided the same incorrect DNS resolution for each of these
domains, and the IP address returned was unique per domain (i.e., not a block page or filtering
appliance). We did not expect censors to exhibit this behavior; a single censor is not likely to
operate across multiple countries or geographic regions, and manipulations such as block pages
that use a single IP address across countries should also be spread across multiple domains. These
domains do not support HTTPS, and exhibit geographically specific deployments. With increased
geographic diversity of control resolvers or deployment of HTTPS by these sites, our consistency
or verifiability metrics would account for these domains.

Queries We filtered another 256K queries that returned failure error codes; 93.7% of all errors
were timeouts and server failures. Timeouts denote connections where the resolver did not respond
to our query within 15 seconds. Server failures indicate when a resolver could not recursively
resolve a domain within its own pre-configured time allotment (10 seconds by default in BIND).
Table 4.4 provides a detailed breakdown of error responses.

Returning an NXDOMAIN response code [108], which informs a client that a domain does
not exist, is an obvious potential DNS censorship mechanism. Unfortunately, some CDNs return
this error in normal operations, presumably due to rate limiting or client configuration settings.
We found that the most prevalent NX behavior occurred in the countries of Tonga and Pakistan;
both countries exhibited censorship of multiple content types, including adult and LGBT. Previ-
ous studies have observed NXDOMAIN blocking in Pakistan [108]. These instances comprise
a small percentage of overall NXDOMAIN responses. Given the many non-censorship NXDO-
MAIN responses and the relative infrequency of their use for censorship, we exclude these from
our analysis. Another 72K responses had a SUCCESS response code, but contained no IP ad-
dress in the response. This failure mode frequently coincide with CNAME responses that could not

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 55

Country % NXDOMAIN

Tonga 2.93%
Pakistan 0.37%

Bosnia/Herzegovina 0.12%
Isle of Man 0.04%
Cape Verde 0.04%

Table 4.5: The top 5 countries / dependent territories by the percent of queries that responded with
NXDOMAIN.

be resolved further. We excluded these queries. Table 4.5 provides a geographic breakdown of
NXDOMAIN responses.

After removing problematic resolvers, domains, and failed queries, the dataset comprises of
13,594,683 DNS responses. By applying our consistency and independent verifiability metrics,
we identify 41,778 responses (0.31%) as manipulated, spread across 58 countries (and dependent
territories) and 1,408 domains.

4.4 Results
We now evaluate the effectiveness of our DNS manipulation metrics and explore manipulated DNS
responses in the context of Internet censorship.

Evaluating Manipulation Metrics
To assess the effectiveness of the consistency and independent verifiability metrics, we quantify the
ability of each metric to identify unmanipulated responses (to exclude from further investigation).
Figure 4.3 shows each metric’s efficacy. The horizontal axis represents the fraction of responses
from a particular resolver that are classified as correct by a given metric. The vertical axis indicates
the number of resolvers that exhibit that same fraction of correct responses (again under the given
metric). For example, almost 6,000 resolvers had roughly 8% of their responses identified as
correct under the “Same CDN” metric. A narrow band indicates that many resolvers exhibit similar
fractions of correct responses under that metric (i.e., it is more stable). The closer the center mass
of a histogram lies to 1.0, the more effective its corresponding metric, since a larger fraction of
responses are classified as correct (i.e., not manipulation) using that metric.

The AS consistency metric (“Same AS”) is the most effective: it classified 90% of the DNS
responses as consistent. Similarly, identifying matching IP addresses between responses from our
control resolvers and our experiment resolvers flagged about 80% of responses as correct across
most resolvers. “Same HTTP Page” is also relatively effective, as many geographically distributed
deployments of the same site (such as with Points-of-Presence) have either identical content or
infrastructure error characteristics (see Section 4.2). This figure also illustrates the importance of

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 56

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of responses correct, by characteristic

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r

o
f

re
so

lv
e
rs

Same CDN

Correct Cert

Correct Cert w/ SNI

Same Cert

Same Cert w/ SNI

Same HTTP Page

Same IP Address

Same AS

Figure 4.3: The ability of each correctness metric to classify responses as correct. Table is ordered
(top to bottom, left to right) by the lines on the graph (left to right).

SNI, increasing the effectiveness of correct and valid HTTPS certificates from 38% to 55%. The
same HTTPS certificate (“Same Cert”) metric turns out to be more effective than simply having a
correct certificate (“Correct Cert”), because so many sites incorrectly deploy HTTPS.

Manipulated DNS Responses
We detect nearly 42,000 manipulated DNS responses; we now investigate the distribution of these
responses across resolvers, domains, and countries.

Manipulated responses by resolver Figure 4.4 shows the cumulative fraction of results that
return at least a certain fraction of manipulated responses: 88% of resolvers exhibited no manipu-
lation; for 96% of resolvers, we observe manipulation for fewer than 5% of responses. The modes
in the CDF highlight differences between resolver subpopulations, which upon further investiga-

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 57

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Proportion of responses manipulated

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

P
ro

p
o
rt

io
n
 o

f
re

so
lv

e
rs

Figure 4.4: The fraction of responses manipulated, per resolver. For 89% of resolvers, we observed
no manipulation.

tion we discovered reflected differing manipulation practices across countries. Additionally, 62%
of domains are manipulated by at least one resolver, which is expected given that more than half of
our selected domains are sensitive sites on the CLBL. We explore these variations in more detail
later in this section.

Manipulated responses by country Previous work has observed that some countries deploy
nation-wide DNS censorship technology [9]; therefore, we expected to see groups of resolvers
in the same country, each manipulating a similar set of domains. Table 4.6 lists the percent of
manipulated responses per resolver, aggregated across resolvers in each country. Resolvers in Iran
exhibited the highest degree of manipulation, with a median of 6.02% manipulated responses per
Iranian resolver; China follows with a median value of 5.22%. These rankings depend on the
domains in our domain list, and may merely reflect that the CLBL contained more domains that
are censored in these countries.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 58

Country (# Res.) Median Mean Max Min

Iran (122) 6.02% 5.99% 22.41% 0.00%
China (62) 5.22% 4.59% 8.40% 0.00%

Indonesia (80) 0.63% 2.81% 9.95% 0.00%
Greece (26) 0.28% 0.40% 0.83% 0.00%

Mongolia (6) 0.17% 0.18% 0.36% 0.00%
Iraq (7) 0.09% 1.67% 5.79% 0.00%

Bermuda (2) 0.04% 0.04% 0.09% 0.00%
Kazakhstan (14) 0.04% 0.30% 3.90% 0.00%

Belarus (18) 0.04% 0.07% 0.30% 0.00%

Table 4.6: Top 10 countries by median percent of manipulated responses per resolver. We addi-
tionally provide the mean, maximum, and minimum percent for resolvers in each country. The
number of resolvers per country is listed with the country name.

The top 10 countries shown in Table 4.6 all have at least one resolver that does not manipulate
any domains; IP address geolocation inaccuracy may partially explain this surprising finding. For
example, uncensored resolvers in Hong Kong may be incorrectly labeled as Chinese. Additionally,
for countries that do not directly implement the technical manipulation mechanisms but rather rely
on individual ISPs to do so, the actual manifestation of manipulation may vary across ISPs within a
single country. Localized manipulation by resolver operators in countries with few resolvers could
also influence these results. Section 4.4 investigates these factors further.

Figure 4.5 shows the representation of responses in our dataset by country. For example, the
leftmost pair of bars shows that, while less than 5% of all responses in our dataset came from Ira-
nian resolvers, the responses that we received accounted for nearly 40% of manipulated responses
in the dataset. Similarly, Chinese resolvers represented 1% of responses in the data but contributed
to 15% of the manipulated responses. In contrast, 30% of our DNS responses came from resolvers
in the United States, but accounted for only 5% of censored responses.

Table 4.7 shows the breakdown of the top manipulated responses, by the IP address that ap-
pears in the manipulated answer. The top two special-purpose (i.e., private) IP addresses appear
in the majority of responses within Iran. The third most common response is an OpenDNS (a
DNS filtering and security product [28]) blockpage indicating adult content. The fourth most fre-
quent response is an IP address hosting an HTTP error page known to be used in Turkey DNS
manipulation [18].

Private and special-purpose IPv4 addresses in manipulated DNS responses Of the roughly
42,000 manipulated DNS responses, 17,806 correspond to special-purpose IPv4 addresses as de-
fined by RFC 6890 [33]; the remaining 23,972 responses corresponded to addresses in the public
IP address space. Table 4.8 shows the extent to which countries return private IP addresses in
responses, for the top 10 countries ranked by the relative amount of DNS manipulation compared

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 59

Ira
n

Chi
na

In
do

ne
sia

Tu
rk

ey

Rus
sia

Uni
te

d
St

at
es

Fr
an

ce

Rom
an

ia

Arg
en

tin
a

New
 Z

ea
la
nd

All
Oth

er
s

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

p
.

o
f

re
sp

o
n
se

 t
y
p
e
s,

 b
y
 c

o
u
n
tr

y

Manipulated Responses

All Responses

Figure 4.5: The fraction of all responses in our dataset from each country (blue), and the fraction
of all manipulated responses in our dataset from the corresponding country (red).

to the total number of results from that country. For example, we observed more manipulated
responses from Turkey than Iraq, but Iris used more open DNS resolvers in Turkey, so observed
frequencies require normalization. Here, we notice that countries that manipulate DNS tend to
either return only special-purpose IP addresses in manipulated responses (as in the case of Iran,
Iraq, and Kuwait) or only public IP addresses (China).

Figure 4.6 presents the distribution of observed public IP addresses across manipulated re-
sponses in our dataset. The most frequently returned public IP address, an OpenDNS blockpage,
constituted almost 15% of all manipulated responses containing public IP addresses. The top ten
public IP addresses accounted for nearly 60% of responses.

Many IP answers have been observed in previous studies on Chinese DNS censorship [9, 50].
These addresses are seemingly arbitrary; they host no services, not even a fundamental webpage.
The 10 most frequent Chinese responses constituted almost 75% of Chinese responses. The re-
maining 25% are spread over a long tail of nearly 1,000 seemingly arbitrary non-Chinese IP ad-

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 60

Answer Results Names Category

10.10.34.36 12,144 140 Private
10.10.34.34 4,566 776 Private

146.112.61.106 3,495 801 OpenDNS Adult
195.175.254.2 3,137 129 HTTP Error Page

93.46.8.89 1,571 88 China*
118.97.116.27 1,212 155 Safe / Filtering

243.185.187.39 1,167 88 China*
127.0.0.1 876 267 Private

95.53.248.254 566 566 Resolver’s Own IP
95.53.248.254 565 565 Resolver’s Own IP

8.7.198.45 411 75 China*
202.169.44.80 379 113 Safe / Filtering

212.47.252.200 371 371 Resolver’s Own IP
212.47.254.200 370 370 Resolver’s Own IP
213.177.28.90 352 22 Gambling Blockpg
208.91.112.55 349 320 Blockpg
180.131.146.7 312 145 Safe / Filtering

203.98.7.65 303 78 China*
202.182.48.245 302 100 Adult Blockpg
93.158.134.250 258 86 Safe / Filtering

Table 4.7: Most common manipulated responses by volume, with manual classification for public,
non-resolver IP addresses. The category “China*” are IP addresses previously observed by Farnan
et al. in 2016 [50].

Country (# Res.) % Incor. % Pub.

Iran (122) 6.02% 0.01%
China (62) 4.52% 99.46%

Indonesia (80) 2.74% 95.08%
Iraq (7) 1.68% 1.49%

New Zealand (16) 1.59% 100.00%
Turkey (192) 0.84% 99.81%

Romania (45) 0.77% 100.00%
Kuwait (10) 0.61% 0.00%
Greece (26) 0.41% 100.00%
Cyprus (5) 0.40% 100.00%

Table 4.8: Percent of public IP addresses in manipulated responses, by country. Countries are
sorted by overall frequency of manipulation.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 61

1 10 100 1000
Unique answer, sorted by prevalence (log scaled)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
a
n
sw

e
rs

Figure 4.6: Manipulated but public IP addresses in our dataset. The horizontal axis is sorted by the
most common IP.

dresses.

Manipulation Within Countries
Figure 4.7 shows the DNS manipulation of each domain by the fraction of resolvers within a coun-
try, for the 10 countries with the most normalized amount of manipulation. Each point represents
a domain; the vertical axis represents the fraction of resolvers in that country that manipulate it.
Shading shows the density of points for that part of the distribution. The plot reveals several in-
teresting phenomena. One group of domains is manipulated by about 80% of resolvers in Iran,
and another group is manipulated by fewer than 10% of resolvers. This second group of domains
is manipulated by a smaller fraction of resolvers, also returning non-public IP addresses. These
effects are consistent with previously noted blackholing employed by DNS manipulation infras-
tructure [11]; this phenomenon deserves further investigation.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 62

Ira
n

Chi
na

In
do

ne
sia Ira

q

New
 Z

ea
la
nd

Tu
rk

ey

Rom
an

ia

Ku
w
ai
t

Gre
ec

e

Cyp
ru

s
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
.

m
a
n
ip

u
la

te
d
 r

e
sp

o
n
se

s
p
e
r

d
o
m

a
in

Top 25 Domain Names

Other Domain Names

1

10

100

D
e
n
si

ty
 o

f
D

o
m

a
in

s

Figure 4.7: The fraction of resolvers within a country that manipulate each domain.

Similarly, one set of domains in China experiences manipulation by approximately 80% of
resolvers, and another set experiences manipulation only half the time. In contrast, manipulation
in Greece and Kuwait is more homogeneous across resolvers.

Heterogeneity across a country may suggest a situation where different ISPs implement filter-
ing with different block lists; it might also indicate variability across geographic region within a
country. The fact that manipulation rates vary even among resolvers in a certain group within a
country may indicate either probabilistic manipulation, or the injection of manipulated responses (a
phenomenon that has been documented before [9]). Other more benign explanations exist, such as
corporate firewalls (which are common in the United States), or localized manipulation by resolver
operators.

Ceilings on the percent of resolvers within a country performing manipulation, such as no
domain in China experiencing manipulation across more than approximately 85% of resolvers,
suggest IP geolocation errors are common.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 63

0 5 10 15 20
Number of countries

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
d
o
m

a
in

 n
a
m

e
s

Figure 4.8: The number of countries (or dependent territories) that block each domain with ob-
served manipulated responses, sorted by manipulation prevalence.

Commonly Manipulated Domains
Commonly manipulated domains across countries Many domains experienced manipulation
across a range of countries. Figure 4.8 shows a CDF of the number of countries (or dependent
territories) for which at least one resolver manipulated each domain. 30% of domains were manip-
ulated in only a single country, while 70% were manipulated in 5 or fewer countries. No domain
was manipulated in more than 19 countries.

Table 4.9 highlights domains that experience manipulation in many countries (or dependent
territories). The 2 most manipulated domains are both gambling websites, each experiencing cen-
sorship across 19 different countries. DNS resolutions for pornographic websites are similarly
manipulated, accounting for the next 3 most commonly affected domains. Peer-to-peer file sharing
sites are also commonly targeted, particularly The Pirate Bay. The Tor Project [137] DNS domain
is the most widely interfered with domain amongst anonymity and censorship tools, manipulated
across 12 countries. Citizen Lab [30] also experienced manipulation across 4 countries. We note

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 64

Rank Domain Name Category # Countries # Res

1 www.pokerstars.com Gambling 19 251
2 betway.com Gambling 19 234
3 pornhub.com Pornography 19 222
4 youporn.com Pornography 19 192
5 xvideos.com Pornography 19 174
6 thepiratebay.org P2P sharing 18 236
7 thepiratebay.se P2P sharing 18 217
8 xhamster.com Pornography 18 200
9 www.partypoker.com Gambling 17 226

10 beeg.com Pornography 17 183

80 torproject.org Anon. & cen. 12 159
181 twitter.com Twitter 9 160
250 www.youtube.com Google 8 165
495 www.citizenlab.org Freedom expr. 4 148
606 www.google.com Google 3 56

1086 google.com Google 1 5

Table 4.9: Domain names manipulated in the most countries (or dependent territories), ordered by
number of countries with manipulated responses.

that www.google.com is impacted across more countries than google.com, unsurprising since
all HTTP and HTTPS queries to google.com immediately redirect to www.google.com; for ex-
ample, China manipulates www.google.com queries but disregards those for google.com. This
result underscores the need for domain datasets that contain complete domains and subdomains,
rather than simply second-level domains.

We also note that commonly measured sites such as The Tor Project, Google, and Twitter,
experience manipulation across significantly fewer countries than some sites. Such disparity points
to the need for a diverse domain dataset.

China focuses its DNS manipulation not just on adult content but also major English news
outlets, such as nytimes.com, online.wsj.com, and www.reuters.com. China is the only
country observed to manipulate the DNS responses for these domains; it also censored the Chinese
language Wikipedia domain.

Commonly manipulated categories Table 4.10 shows the prevalence of manipulation by CLBL
categories. We consider a category as manipulated within a country if any resolver within that
country manipulates a domain of that category. Domains in the Alexa Top 10K experienced the
most manipulation; these domains did not appear in the CLBL, which highlights the importance
of measuring both curated lists from domain experts as well as broad samples of popular websites.
Although no single domain experiences manipulation in more than 19 countries, several categories

www.google.com
google.com
google.com
www.google.com
www.google.com
google.com
nytimes.com
online.wsj.com
www.reuters.com

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 65

Rank Domain Category # Countries # Resolv.

1 Alexa Top 10k 36 442
2 Freedom of expr. 35 384
3 P2P file sharing 34 394
4 Human rights 31 288
5 Gambling 29 377
6 Pornography 29 342
7 Alcohol and drugs 28 274
8 Anon. & censor. 24 303
9 Hate speech 22 158

10 Multimedia sharing 21 293

20 Google 16 234
34 Facebook 10 175
38 Twitter 9 160

Table 4.10: Top 10 domain categories, ordered by number of countries (or dependent territories)
with manipulated answers.

experience manipulation in more than 30 countries, indicating that while broad categories appear
to be commonly targeted, the specific domains may vary country to country.

To study how manipulated categories vary across countries, we analyzed the fraction of re-
solvers within each country that manipulate a particular category. The top categories vary exten-
sively across countries. Table 4.11 shows the most frequently manipulated categories for the top
10 countries by normalized amounts of manipulation. The top category of manipulated content in
Iran, “provocative attire,” is not a category across any of the other top 10 countries. Manipulation
of domains randomly selected from Alexa but not in the CLBL (“Alexa Top 10k”) is prevalent
across numerous countries, again reinforcing the need for diverse domain datasets. Anonymity
and censorship tools are manipulated extensively across 85% of resolvers in China, but not across
the rest of the top 10. Pornography and gambling sites are manipulated throughout.

4.5 Iris Summary
Internet censorship is widespread, dynamic, and continually evolving; understanding the nature
of censorship thus requires techniques to perform continuous, large-scale measurement. Un-
fortunately, the state-of-the-art techniques for measuring manipulation—a common censorship
technique—rely on human volunteers, limiting the scale and frequency of measurements. This
work introduces a method for measuring DNS manipulation on a global scale by using as vantage
points open DNS resolvers that form part of the Internet’s infrastructure.

The major contributions of this chapter are: (1) Iris: a scalable, ethical system for measur-
ing DNS manipulation; (2) an analysis technique for disambiguating natural variation in DNS

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 66

Country Domain Category % of Resolv.

IR Provocative attire 90.98%
Alexa Top 10k 90.16%

Freedom of expr. 90.16%

CN Alexa Top 10k 85.48%
Freedom of expr. 85.48%
Anon. & censor. 85.48%

ID Pornography 57.50%
Alexa Top 10k 56.25%

P2P file sharing 52.50%

IQ Political Blog 57.14%
Alexa Top 10k 28.57%

Freedom of expr. 28.57%

NZ Alexa Top 10k 12.50%
Freedom of expr. 12.50%

P2P file sharing 12.50%

TR Alexa Top 10k 18.23%
Freedom of expr. 17.71%

Pornography 16.67%

RO Alexa Top 10k 37.78%
Gambling 37.78%

Freedom of expr. 2.22%

KW Alexa Top 10k 10.00%
Freedom of expr. 10.00%

P2P file sharing 10.00%

GR Gambling 50.00%
Alexa Top 10k 46.15%

CY Alexa Top 10k 40.00%
Gambling 40.00%

Table 4.11: Breakdown of the top 3 domain categories experiencing manipulation, per country.
Countries are ordered by the relative amount of manipulated responses for that country. Both
Greece (GR) and Cyprus (CY) only experience manipulated responses across 2 categories.

CHAPTER 4. IRIS: GLOBAL MEASUREMENT OF DNS MANIPULATION 67

responses (e.g., due to CDNs) from more nefarious types of manipulation; and (3) a large-scale
measurement study that highlights the heterogeneity of DNS manipulation, across countries, re-
solvers, and domains. Notably, we find that manipulation is heterogeneous across DNS resolvers
even within a single country. Iris supports regular, continuous measurement, which will ultimately
facilitate tracking DNS manipulation trends as they evolve over time; our next step is to opera-
tionalize such measurements to facilitate longitudinal analysis.

68

Chapter 5

Censorship Discussion and Conclusion

In Part I we developed Augur (Chapter 3) [116, 117] and Iris (Chapter 4) [119, 120], two methods
and accompying systems that allow us to ethnically, and without the need for volunteers, measure
censorship behavior globally at the TCP/IP and DNS layers. From our initial deployments, we
verified their accuracy, identified new censored content, and described heterogenous censorship
beheavior within countries, each at a global scale.

With the existance of tools like Augur and Iris, we can now begin to develop longitudinal,
continuous views of Internet censorship, censors and their behavior. This can provide us with the
ability to answer numerous questions previously difficult to address. These include:

• How do Internet censorship trends vary over time? Understanding how blocking changes
over time allows us to identify events and actions that influence a censor’s behavior. These
trends are critical, both qualitatively and quantitatively, for a range of social science research
aimed at understanding and addressing censorship.

• How do Internet censors respond to circumvention, and on what time scale? Related
to censorship trends is how censors respond to active circumvention of their efforts. Un-
derstanding how censors engage and on what time scales provides empirical grounding for
evaluating various defenses and enables constructing more effective circumventions.

• Does censorship vary between regions within countries? Examining how censorship
varies between regions provides insights into how censorship systems are deployed, both
technically and organizationally. These insights can better inform circumvention and policy
interventions. Augur and Iris’s use of multiple vantage points across a range of networks
within a country allows us actively explore and understand these deployments beyond our
initial results.

Being able to provide a comprehensive empirical footing for these questions can enable new lines
of research as well as serve as an invaluable resource for social scientists.

CHAPTER 5. CENSORSHIP DISCUSSION AND CONCLUSION 69

Next steps

The continuous, widespread measurements that we can collect with these techniques can comple-
ment anecdotes, news reports, and policy briefings to ensure that we can support future assessments
of Internet filtering with sound, comprehensive data. Part of this transition to practice involves
further developing the system that we have designed to facilitate ongoing operation, including au-
tomating the validation of the measurements that we collect and the correlation with other datasets
and tools. We aim to ultimately compare results produced by multiple methods, including datasets
from volunteer-based measurement platforms.

70

Part II

Understanding Advertising Abuse

71

Chapter 6

Advertising Abuse Introduction and
Related Work

6.1 Introduction
Profit drives modern cybercrime. Investments in malware, botnets, bullet-proof hosting, domain
names, and other infrastructure must all be justified by the greater revenue brought in by the scams
that use them. Thus, scammers relentlessly innovate to identify more lucrative niches to maximize
their returns (e.g., counterfeit goods, fake anti-virus, ransomware, credit card theft, cryptocurrency
mining, etc.). Monetization, however, also presents some of the greatest risks, since it represents
both a single point of vulnerability in the business model and a potential means of forensic attribu-
tion [69, 89, 99]. Thus, the ideal monetization strategy for an Internet scammer would not only tap
into great wealth, but would also effectively launder the money trail as well. As we will describe
in this chapter, the advertising ecosystem is remarkably well-suited to this need, and advertising
abuse provides perhaps the non plus ultra of all such monetization schemes.

First and foremost, online advertising represents an enormous revenue stream, generating over
$88 billion in revenue in 2017 and growing at over 20% per year [122]. Moreover, online advertis-
ing is a low-friction market designed to engage the broadest possible set of participants, and thus
presents few barriers-to-entry for potential bad actors. Unsurprisingly, criminal groups have devel-
oped a range of techniques for generating synthetic advertisement clicks for profit at the expense
of legitimate advertisers and ad networks [38]. Indeed, such click fraud accounts for as much as
10% of all advertising clicks, potentially defrauding advertisers of hundreds of millions of dollars
annually.

As a further difficulty, the ecosystem of online advertising is highly complex, and while oc-
casionally traffic flows directly from publisher to advertiser, in the common case instead a vast
array of middlemen—syndicators, subsyndicators, traffic aggregators and resellers—separates the
two endpoints of each ad click. While the path of such a click on the Internet is nominally visible
(a chain of redirects from one domain to the next), the chain of payment remains largely opaque.
Those on the buy-side and the sell-side of the traffic ecosystem negotiate their contracts bilaterally,
with a wide range of terms and conditions. Thus, no single party comes remotely close to having

CHAPTER 6. ADVERTISING ABUSE INTRODUCTION AND RELATED WORK 72

comprehensive visibility of who gets paid what for any given click. Finally, as we describe, click
fraud platforms can engage with a wide range of ad networks, who in turn mix this traffic with
other, more legitimate sources, further complicating any forensic analysis.

To better understand and defend against advertising abuse broadly, in this chapter we systemat-
ically examine multiple monetization strategies, attacks, and advertising abuse botnets—from both
an external and internal ad network perspective.

We begin in Chapter 7 by examining the operation and underlying economic models of two
families of common clickbots, “Fiesta” and “7cy.” By operating the malware specimens in a con-
trolled environment we reverse-engineer the protocols used to direct the clickbots in their activities.
We then devise a milker program that mimics clickbots requesting instructions, enabling us to ex-
tract over 360,000 click fraud directives from the clickbots’ control servers. We report on the
functioning of the clickbots, the steps they employ to evade detection, variations in how their con-
trollers operate them depending on their geographic locality, and the differing economic models
underlying their activity.

Next, in Chapter 8 we explore the timeline and history of ZeroAccess (ZA). ZeroAccess was
one of the largest botnets ever in operation, controlling an estimated 1.9 million infected computers
at its peak [109]. ZeroAccess was particularly known for monetization primarily via click fraud,
with losses to advertisers estimated at $2.7 million per month [149].

Chapter 9 explores the technical functionality of the ZeroAccess malware itself. Using a com-
bination of code analysis and empirical measurement, we document the distinct command-and-
control protocols used by each module, their infrastructure, and how they operate to defraud on-
line advertisers. This worked served as the legal basis of a law enforcement-driven takedown
(Section 8) of the botnet [90, 104].

Chapter 10 further expands our understanding of ZeroAccess-driven advertising abuse by lever-
aging an insider perspective. This chapter illuminates the intricate nature of ZeroAccess fraud
using a broad range of data sources, including peer-to-peer measurements, command-and-control
telemetry, and contemporaneous click data from one of the top ad networks. From this multifaceted
approach we construct a view into the scale and complexity of click fraud operations. By lever-
aging the dynamics associated with the takedown of ZeroAccess in December 2013, we employ
this coordinated view to identify “ad units” whose traffic (and hence revenue) primarily derived
from ZeroAccess. While it proves highly challenging to extrapolate from our direct observations
to a truly global view, by anchoring our analysis in the data for these ad units we estimate that the
botnet’s fraudulent activities plausibly induced advertising losses on the order of $100,000 per day.

Another facet of the ecosystem of advertising abuse is ad injection, an attack where ads are
inserted into a user’s browsing by software running on their system [135]. This attack harms tens of
millions of users and leverages the complexity of multi-hop ad reseller chains to launder fraudulent
traffic, masking it from the visibility of ad networks. In Chapter 11 we work with Google, exploring
the population of intermediaries and advertisers that support the abuse ecosystem through analysis
of injected click (revenue) chains, thus identifying structural “choke points” that were leveraged
for defense.

CHAPTER 6. ADVERTISING ABUSE INTRODUCTION AND RELATED WORK 73

6.2 Related Work and Background
As background, we provide an overview of the advertising ecosystem on the Web, how attack-
ers defraud Web advertising networks, specifically the methods by which ZeroAccess and other
botnets have perpetrated click fraud at scale, and the overall ecosystem of ad abuse malware and
botnets.

Web Advertising
Advertising on the Web works in terms of arrangements between advertisers, who wish to display
promotional content, and publishers, who receive visits from users who could potentially view
and respond to that content. Publishers receive payment for displaying the advertiser’s content,
which can consist of text, images, video, or other interactive (e.g., Flash-based or JavaScript-
based) media. Advertisements generally include links to the advertiser’s site to allow interested
users to directly engage with the advertiser by clicking on the advertisement and visiting the site.

In practice, advertisers and publishers often do not deal with each other directly. Instead, each
contracts with an advertising network that coordinates ad placement between many advertisers and
publishers. In a traditional arrangement, an advertiser buys a given volume of advertising from the
ad network, usually also specifying a set of keywords defining the context in which to show the ad.
Publishers then join an advertising network and display ads provided by the network.

When a user issues a search query, the resulting page includes organic search results, for which
the linked Web sites do not pay the search engine, as well as paid search ads, for which the linked
Web sites (the advertisers) pay the search engine for inclusion. These ads are typically placed
above the organic results or alongside on the right. They are formatted similarly to search results
except for a darker shade background and the word “Ad” or “Sponsored” somewhere nearby.

Search engines select ads based on the user’s search query. The search query is distilled into a
group of keywords after normalizing to remove misspellings and resolve ambiguities.

Search ad syndication networks. Search engines partner with thousands of Web sites, ser-
vices, and applications—collectively called publishers—to extend the reach of the search engine’s
advertisers to users beyond the search engine. Publishers include blog sites, news sites, niche
search engines, ad-supported browser addons, and other ad networks.

The publisher sends the user’s search query from the publisher’s Web site or app, or in the case
of blogs and news sites, the context of the article the user is reading, to the search engine’s ad
server to retrieve relevant ads in exchange for a cut of the advertising revenue. The publisher can
display relevant ads by embedding JavaScript provided by the ad server, which directs the user’s
browser to fetch the ads as illustrated in steps 1–6 in Figure 6.1. Alternatively, the publisher can
directly fetch relevant ads through server-to-server communication between the publisher and the
ad server (not shown in the figure). If the user clicks the ad, the user is taken to the advertiser’s site
through a series of redirects as shown in steps 6–11 in the figure. Each interaction at the ad server
is logged along with the publisher identifier for the publisher responsible for the traffic.

Publishers can, in turn, (sub)syndicate to other downstream publishers according to the search
ad network’s policy. The downstream publisher requests ads from the intermediate publisher,

CHAPTER 6. ADVERTISING ABUSE INTRODUCTION AND RELATED WORK 74

Publisher	 Adver.ser	

1.	 Web	 request	

3.	 JS	 requests	 ads	
2.	 Page	 with

	 JS	

4.	 Logs	 impression	
5.	 Returns	 ads	

6.	 Clicks	 on	 ad	

8.	 Logs	 click	
9.	 Redirect	

10.	 Web	 request	

11.	 Adver.ser	 page	

12.	 Clicks	 buy	 13.	 Checkout	 request	

14.	 Thanks	 page	 with	 conversi
on	 JS	

15.	 Conversion	 pixel	 request	

16.	 Logs	 Conversion	

7.	 Ad	 URL	 request	

Ad	 Server	 User	

Figure 6.1: Anatomy of a typical ad click, showing the various HTTP requests associated with a
user clicking on an advertisement, leading them to an advertiser’s landing page, and from there
possibly to additional interactions.

which then fetches them from the ad server. The search engine pays the intermediate publisher a
cut of the ad revenue. The intermediate publisher pays the downstream publisher a smaller cut and
retains the rest in exchange for the service it provided. Thus the search engine does not directly deal
with the downstream publisher, and in many cases never learns of its existence. Subsyndication
arrangements exist to help search ad networks scale to hundreds of thousands of publishers by
distributing the management overhead down tiers of aggregators.

For example, Google and Bing syndicate search ads to other search engines including Infospace
and Yahoo, respectively [60,103]. Infospace and Yahoo show these ads on Web sites they own and
operate, but also subsyndicate to smaller networks like Publishers Clearing House and Chitika
respectively, which then further subsyndicate to yet smaller publishers.

Revenue share. Search ads are typically charged on a cost-per-click (CPC) model, i.e., the

CHAPTER 6. ADVERTISING ABUSE INTRODUCTION AND RELATED WORK 75

advertiser pays only if the ad is clicked. For clicks on ads shown by a syndicate publisher, the
search engine typically retains 30% of the amount charged to the advertiser, and pays a 70% cut
to the publisher [83]. Publishers that sub-syndicate set their own revenue sharing agreements with
their downstream publishers.

Click Fraud
Click fraud is the practice of fraudulently generating clicks on ads without any intention of fruit-
fully interacting with the advertiser’s site. As a result, advertisers lose money, receiving no return
on their investment.

There are two primary motivations for click fraud. First, a malicious advertiser can employ
click fraud targeting a competitor’s ad to deplete their advertising budget [141]. A stronger mo-
tivation, however, lies with publishers, who directly profit from ads clicked on their site. Ad net-
works also profit from click fraud, though reputable ad networks that want to maintain long-term
relationships with advertisers will presumably attempt to identify and weed out click fraud activity.
Note that it is hard for an ad network to prove that a particular click was fraudulent because it is
equivalent to guessing the intent of the user behind the click.

Revenue sharing with (sub)syndicate publishers creates an economic incentive for these pub-
lishers to fraudulently attract clicks on ads shown by them. While a well-known publisher would
lose reputation if caught engaging in click fraud, followed by financial losses if ejected from the
syndication network, this disincentive does not exist for less well-known publishers. Less reputed
publishers may not have a reputation to protect, or may be able to reattach to the syndication net-
work at a different point if ejected. As a result, click fraud from relatively unknown publishers has
historically been rampant [132].

Click Fraud techniques have evolved considerably in the past several years. The direct approach
of hiring people to click on ads (termed click farms) [58], or running stand-alone scripts that
repeatedly retrieve the URLs associated with ads to simulating user clicks (stand-alone bots) [96],
are now easily detected by an ad network’s defenses. More complex approaches include search
engine hijacking [125], where a malicious in-browser plugin replaces ad links in results returned
for user searches by other ads, and the rise of click fraud botnets like ZeroAccess that coordinate
large numbers of malware-infected hosts to fetch and click ads unbeknownst to the user.

A number of case studies have chronicled the evolution of click fraud botnets over the years,
ranging from the early Clickbot.A botnet [37] to the TDL-4 botnet [125], the Fiesta and 7cy bot-
nets [105], and ZeroAccess itself [118,149]. Security researchers have similarly documented more
attacks in blog posts and in whitepapers [45,51,72]. Unlike previous studies, however, we analyze
the ZeroAccess botnet primarily from the perspective of the advertising network, supplemented
with insight from operational data derived from its P2P infrastructure and use of DNS. As a result,
we are able to present the first comprehensive characterization of monetization, distribution, and
activity of a massive click fraud botnet.

At the same time, malicious (sub)syndicated publishers have become better at avoiding de-
tection or identification. Using techniques such as referrer cloaking [42], or fetching ads through
other publishers that use the direct server-to-server mechanism, many sub-syndication publishers

CHAPTER 6. ADVERTISING ABUSE INTRODUCTION AND RELATED WORK 76

remain completely anonymous. Intermediate publishers complicit in this activity blend in traf-
fic from non-malicious small publishers to present a cleaner appearance in the aggregate to their
syndication parent. This blending results in even reputed publishers unwittingly facilitating click
fraud.

Click fraud mitigation and smart-pricing. Due to the large number and relative anonymity
of publishers in the (sub)syndicate network, search engines rely primarily on automated means,
supplemented with limited manual investigations, to protect their advertisers from click fraud.
Rule-based techniques [84, 141], correlation analysis [101, 102, 152], and bluff ads [66] have fo-
cused on detecting clicks from infected users before the advertiser is charged. Clustering [38] and
anomaly detection [39] have focused on detecting malicious publishers. Not-A-Bot (NAB) [65]
combats bot activity through detection mechanisms at the client. In the NAB system, the client ma-
chine has a trusted component that monitors keyboard and mouse input to attest to the legitimacy
of individual requests to remote parties. In addition to NAB, Juels et al. likewise propose dealing
with click fraud by certifying some clicks as “premium” or “legitimate” using an attester instead
of attempting to filter fraudulent clicks [77]. Smart-pricing [59] takes an economic approach to
mitigating the impact of click fraud. At a high level, smart-pricing maintains a normalization fac-
tor between 0 and 1 for each publisher based, in part, on the probability of conversions generated
by traffic sent by that publisher [61]. Conversions are actionable business results as defined by
the advertiser, such as an online sale or newsletter sign-up. Advertisers inform the ad server of a
conversion by embedding JavaScript provided by the ad server on the Web page corresponding to
the conversion (Figure 6.1, steps 12–16). The ad server uses cookies to link the conversion to an
earlier ad click, which is then associated with the publisher that was responsible for the click. For
a simplistic illustration, consider otherwise identical publishers X and Y that both send 100 legiti-
mate users, but X additionally blends in 100 fraudulent clicks. Consider further that 10 legitimate
users convert in each case. X therefore has half the conversion probability of Y (5% vs. 10%).
Smart-pricing normalizes CPC for X to effectively be half of that for Y , such that the advertiser has
the same effective cost per conversion.1 Implicit in the smart-pricing mechanism is the assump-
tion that click fraud traffic will not result in conversions, an assumption that the Serpent module
(Section 8) of ZeroAccess specifically tries to defeat.

Our work informs this debate with the latest generation of click fraud botnets, and identifies
potentially fruitful directions for building the next generation of mitigation capabilities.

Malware and botnets
Clickbots. The only prior academic work analyzing the functionality of a botnet performing click
fraud focused on a bot named Clickbot.A [37]. Clickbot.A conducted low-noise click fraud through
the use of syndicated search engines. Daswani et al. employed a combination of execution, reverse-
engineering, and server source code analysis to determine how Clickbot.A performed fraud. The
clickbot used compromised web servers for HTTP-based C&C, and restricted the number of clicks

1In practice, smart-pricing takes multiple features into account, and applying the normalization factor given dy-
namic bidding and publisher diversity is not as straight-forward

CHAPTER 6. ADVERTISING ABUSE INTRODUCTION AND RELATED WORK 77

performed for each bot, presumably to limit exposure to the ad agency. In addition to describing the
botnet behavior, the investigators estimate the total fraud against Google using economic aspects of
syndicate search and click pricing. Our work analyzes multiple clickbot specimens to understand
the changes in both the economic model and bot operation in two common clickbots. We expect
that criminals are constantly improving bot technology in order to remain competitive against ad
agencies that improve their fraud detection. Throughout this work we use Clickbot.A as a reference
for comparison.

Detecting Automated Search. Researchers have dedicated considerable effort to methods for
differentiating search queries from automated and human sources. Yu et al. observe details of bot
behavior in aggregate, using the characteristics of the queries to identify bots [152]. Buehrer et
al. focus on bot-generated traffic and click-through designed to influence page-rank [19]. Kang et
al. propose a learning approach to identify automated searches [80]. These efforts do not examine
bot binaries or C&C structure, focusing instead on techniques for the search engine to identify
automated traffic.

Botnets. There is extensive work examining botnets and reverse-engineering bots and their
C&C protocols [1, 21, 25, 26, 67, 74, 121]. Dispatcher is a technique that automatically reverse-
engineers botnet C&C messages and was used to uncover details in the MegaD spamming botnet
C&C protocol [21]. In a later work, Cho et al. used Dispatcher to conduct an extensive infiltration
of the MegaD botnet, developing milkers to determine the C&C structure and mine data about
the botnet’s internal operations [26]. We employ a similar milking technique to explore the C&C
structure of the clickbots under study.

78

Chapter 7

What’s Clicking What? Clickbot
Techniques and Innovations

7.1 Introduction
Online advertising forms a vital part of the modern Internet economy. Millions of websites profit
from an ecosystem of advertising networks and syndication chains. This widespread adoption of
internet advertising has given rise to systematic fraud. The percentage of fraudulent ad clicks,
called click fraud, has steadily increased over recent years. Estimates suggest the fraud-rate is as
high as 13.5% [54].

In the predominant form of click fraud, a malicious party sets up a website filled with ads and
deceives an advertising network into registering ad clicks, earning revenue for each click.1 Click-
bots, malware that automatically clicks on ads, can produce this fraudulent traffic. A challenge for
clickbot operators is producing traffic in such a way that advertising agencies do not detect it as
non-human or fraudulent.

In this chapter, we present an analysis of clickbot techniques and the associated infrastructure
that supports click fraud. We obtained samples of two clickbot families, which we named “Fiesta”
and “7cy,” in order to study the operation of clickbots. We executed the binaries in a controlled
environment to prevent harmful side effects, such as actually participating in click fraud. By mon-
itoring the controlled execution of the bots, we reverse-engineered their command and control
(C&C) protocols to determine how the bots respond to the commands they receive. This analysis
enabled us to develop C&C servers and websites for the bots to interact with, allowing greater
exploration of bot behaviors. We then devised a milker program that mimics a clickbot request-
ing instructions, enabling us to extract 366,945 click fraud directives from the clickbots’ control
servers.

Throughout our analysis, we compare both families of clickbots to Clickbot.A [37] in order
to illuminate how clickbots have evolved over time. At the time of publication, we found two

1 In a second form of click fraud, a malicious party deliberately focuses clicks on a competitors advertisements in
an attempt to exhaust that party’s advertising budget [92].

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 79

major innovations. The first regards the underlying economic model used by the Fiesta family.
In this model a middleman has emerged, acting as a layer of abstraction between ad syndicates
and the clickbots that generate traffic. This middleman provides an intermediary between the
traffic originator (bots and users) and the ad syndicates. Fiesta clickbots generate traffic that flows
towards this middleman and is then laundered through a series of ad syndicates in an effort to
hinder fraud detection.

The second innovation concerns complex behavior that attempts to emulate how humans browse
the web. 7cy mimics a human browsing the web by both randomizing the click targets as well as
introducing human-scale jitter to the time between clicks. Through the use of our milker we also
discover that 7cy control servers distribute fraud directives that vary by the geographic region of
the bot. Thus, while Fiesta generally uses indirection to accomplish click fraud, 7cy uses ran-
dom clicks, timing, and location-specific behavior to ostensibly present more realistic browsing
behavior.

In Section 7.2 describes our methodology for executing bots in a safe environment. Section 7.3
discusses the Fiesta clickbot in depth, and Section 7.4 looks at 7cy. We discuss potential defenses
and then summarize in Section 7.5.

This chapter is based on work that appeared in Detection of Intrusions and Malware & Vulner-
ability Assessment (DIMVA) [105].

7.2 Methodology
In this section we outline our environment and procedures for executing clickbots without risk of
malicious side effects. We studied two “families” of clickbots, Fiesta and 7cy, within our experi-
mental framework. 2 Since we obtained samples that did not have useful or consistent anti-virus
labels we took the names Fiesta and 7cy from domain names the bots visited while performing
click fraud.

We obtained the Fiesta and 7cy samples by infiltrating several malware Pay-Per-Install (PPI)
services as part of a larger study on malware distribution [20]. PPI services use varied means
to compromise machines and then distribute malware to the compromised hosts in exchange for
payment on the underground market [20]. We used behavioral characteristics to group multiple
harvested binaries representing different versions of a given family of malware. We selected Fiesta
and 7cy for further analysis because their connection behavior and content was the most interesting.
A third potential clickbot family remains unanalyzed.

We executed the clickbots in virtual machines hosted on VMware ESX servers. A central gate-
way, implemented using Click [85], moderates network access for the VMs. The gateway routes
each outbound connection to a “containment server” that decides on a per-flow basis whether traf-
fic is forwarded, dropped, rewritten, or reflected back into the contained network. The containment

2The MD5 hashes of the Fiesta specimens are c9ad0880ad1db1eead7b9b08923471d6 and
5bae55ed0eb72a01d0f3a31901ff3b24. The hashes of the 7cy specimens are 7a1846f88c3fba1a2b2a8794f2fac047,
b25d0683a10a5fb684398ef09ad5553d, 36ca7b37bb6423acc446d0bf07224696, and
782538deca0acd550aac8bc97ee28a79.

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 80

Clickbot

Internal Network

Sink

Click

Containment
Server

Internet 1 32

Figure 7.1: Our basic containment architecture, showing how a containment server can interact
with an infected VM and a “sink” server. The clickbot’s communication is routed through the
containment server (1), which can allow the traffic (perhaps modified) out to the Internet (2), or
redirect it back into the farm to the sink (3).

server makes these decisions based on packet header information as well as packet content. Figure
7.1 shows a simplified view of this approach.

Given this architecture, we implemented containment policies that allowed us to execute the
clickbot specimens safely. These policies required understanding the basic behavioral patterns
of the bots and the other parties involved. This was an iterative process in which we repeatedly
examined the bot behavior connection by connection, starting from a default-deny policy. Each
step in this iterative process involved manually examining connections and packet payloads by
hand to verify the nature of the communication. In some cases, this meant examining data logs,
and in other cases it involved manually visiting websites. We white-listed connections deemed
safe, and then restarted the bot in order to identify the next communication.

We needed the capability to replay pre-recorded communication and interact with the bot en-
tirely within the farm in order to explore each clickbot’s behavior and C&C protocol. Therefore,
we built a special HTTP “sink” server that impersonated the destinations of outbound clickbot
flows. This server allowed us to respond to network communication using a server under our con-

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 81

trol rather than releasing the traffic from the farm or dropping the flow. The sink server accepted
all incoming connections and returned pre-defined responses as a function of the HTTP header
data. Since the bot used HTTP for C&C as well as web browsing, we used the same HTTP server
to simulate both C&C and web traffic. Initially, we replayed previously seen C&C responses.
Then, we manually explored and perturbed the plain-text C&C protocol and fed these modified
responses back into the bots within the farm. Using this technique we reverse-engineered much of
the protocol used for both bot families. As we understood more of the C&C protocols, we mod-
ified the responses to change the behavior of the bot. Using our capability to replay previously
observed communications and explore new communication variants, we accelerated our analysis
and developed a broader understanding of the clickbots’ behavior.

7.3 The Fiesta Clickbot
We selected the Fiesta clickbot as the first specimen for in-depth analysis. The primary innovation
we discovered during this evaluation is the monetization opportunity created by separating traffic
generation (bots) from ad network revenue. In this model intermediate pay-per-click (PPC) ser-
vices “launder” clicks generated by bots and then deliver them to ad networks. The intermediate
PPC service abstracts the botmaster from advertising networks and is a new development since the
investigation into Clickbot.A. We have not found any record of the security community studying
the Fiesta clickbot. 3 In this section we describe Fiesta’s behavior and structure, then discuss an
economic model for click fraud based on our observations. We conclude with a discussion of the
bot’s prevalence.

C&C Structure
There are two key players in the operation of Fiesta: a botmaster running a C&C server, and the
self-described “Fiesta Pay-Per-Click (PPC) Profitable Traffic Solution.” Fiesta PPC operates a
store-front complete with signup and forum services. Although we named this clickbot Fiesta after
the Fiesta PPC service, we believe the PPC service and the botmaster to be separate entities with
different economic incentives. This relationship is discussed further in Section 7.3.

Immediately upon infection the Fiesta bot establishes an HTTP connection with the bot’s C&C
server. The server’s IP address is statically coded into the binary and remains constant for the
lifetime of the bot. Using this server, the bot performs a one-time connection that informs the
C&C server that a new infection has occurred. After this initial connection the bot settles into
a constant cycle of click fraud. Figure 7.2 gives a high-level overview of Fiesta’s behavior for a
single click. One click constitutes one act of click fraud and involves multiple queries to the C&C
server and multiple interactions with web pages. We observed our Fiesta bot performing about
three such clicks per minute.

3One variant observed was classified by an Anti-Virus vendor as the parasitic Murofet trojan [15]. We believe
this to be a case of mistaken identity resulting from a standard Fiesta binary becoming infected and playing host to an
instance of Murofet.

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 82

1. Receive Query List

Infected
PC

PPC Ad
Server

PPC Click
Server

PPC Search
Engine

1 2 3 4

Bot C&C
Server

2. Receive PPC Ad List
4. Click on PPC Ad3. Perform Fake Search

Figure 7.2: The basic behavioral architecture of the Fiesta clickbot. Communication occurs in the
order specified by the numeric labels. This pattern repeats indefinitely.

nerdy shirts cruise special fifa world cup qualifiers
potato canon among the hidden solution kitchen aid dishwashers
ftv plus scooby doo online games yahoo real estate
online video card cheap credit machine oakland newspaper
cheap insurance life uk camera disposable pentax tapes on self help
celtic names debt and consolidation bozeman schools. mt
justin om dallas nursing institute anniversary gifts by year
vxb bearings discount hotel booking station nightclub fire video

Table 7.1: A sample of search query terms returned to the bot by the Bot C&C Server during a
single exchange.

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 83

1 <?xml version="1.0" encoding="UTF-8"?>
2 <records>
3 <query>u2 tour</query>
4 ...
5 <record>
6 <title>Looking for u2 tour?</title>
7 <description>Find u2 tour here!</description>
8 <url>http://u2-tour.com</url>
9 <clickurl>http://CLICK_SERVER/click.php?c=UNIQUE_ID</clickurl>

10 <bid>0.0004</bid>
11 <fi>52</fi>
12 </record>
13 ...
14 <record>
15 <title>Style Fashion Show Review</title>
16 <description>Chanel</description>
17 <url>http://www.style.com</url>
18 <clickurl>http://CLICK_SERVER/click.php?c=UNIQUE_ID</clickurl>
19 <bid>0.0023</bid>
20 <fi>39</fi>
21 </record>
22 ...
23 </records>

Figure 7.3: Sample Fiesta ad C&C returned in response for a fake search for “u2 tour.” The C&C
syntax is abbreviated as necessary for space.

A fraudulent click begins with Fiesta requesting a list of search query terms from its C&C
server, shown as step 1 in Figure 7.2. In response the bot receives several hundred varied terms;
Table 7.1 shows some samples. We observed these terms changing frequently, appearing arbitrary
in nature, and containing typographical errors. Once the bot receives this query list, it randomly
selects one term that it will use for the remainder of this click.

After the bot selects a search query, the bot begins communicating with the Fiesta PPC service,
labeled step 2 in Figure 7.2. Initially the bot performs a request to receive ads that correspond to
the selected search query. In response, the PPC Ad Server returns approximately 25 ads in XML
format. Figure 7.3 shows an example of the PPC Ad Server XML response. Information contained
in each record includes an ad URL, title, keywords, and “bid.” The PPC Ad Server returns ads that
vary greatly. Some ads directly relate to the search, while others appear random. The bot selects
one of the ads at random from the PPC Ad Server response, biasing its selection towards high bid
values. After selecting an ad, the bot performs a search for the original search query at a search
engine operated by the PPC service. The bot then informs the search engine which ad it is about to
click via a separate HTTP request (step 3 in Figure 7.2). Lastly, the bot will contact the PPC Click
Server and actually perform the ad click (step 4 in Figure 7.2).

The PPC Ad Server returns ad URLs that point to the PPC Click Server. Each ad URL contains
a unique 190-character identifier that is used when the bot issues an HTTP request to the PPC Click
Server to signal a click. The PPC Click Server responds to all clicks with HTTP 302 redirect
responses, beginning the fraudulent click. Figure 7.4 shows the process that occurs once the bot
issues a request to the PPC Click Server, with arrows representing HTTP redirects. A single click

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 84

Fiesta Click
Server

Major Ad
Sub

Syndicate

Ad Sub
Syndicate 1

Ad Sub
Syndicate 2

Ad Sub
Syndicate 1

Legitimate
Ad Service 4

Legitimate
Ad Service 3

Legitimate
Ad Service 2

Legitimate
Websites

Legitimate
Ad Service 1

Click
s Money

Figure 7.4: The expanded Fiesta click redirection chain. This graph represents the possible redi-
rection paths beginning with a click on the Fiesta click-server and ending at a legitimate website.
One click will take one path through the graph. Redirections flow from left to right, and money
flows from right to left.

will cause the bot to receive redirects to three or four different locations, eventually settling on a
legitimate website such as style.com or accuweather.com. The resolution of this redirection
chain completes a single act of click fraud.

We believe the sites directly linked to the PPC Click Server along the redirection chains in Fig-
ure 7.4 are advertising sub-syndicates (i.e., entities that show ads generated by other ad networks
in exchange for some portion of generated revenue) that have entered into syndication agreements
with legitimate advertising services. The legitimate advertising services include BidSystems and
AdOn Network. We believe some of the ad sub-syndicates are illegitimate based on other ser-
vices hosted on the same IP addresses, as well as the frequency with which the sub-syndicate’s IP
addresses appear in malware reports.

Interestingly, the Fiesta bot issues requests to the Fiesta Ad Server with HTTP referrers from
Fiesta search engines, yet performs searches after issuing ad requests. This implies that the PPC
service could detect clicks occurring by this bot given the improper request ordering.

style.com
accuweather.com

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 85

Fiesta Economic Model
Based on our observations of the Fiesta clickbot and our investigation of the Fiesta PPC service, we
believe that we have identified the economic model of both the Fiesta PPC service and the Fiesta
clickbot. This model introduces the notion of a click fraud middleman whose job is to abstract
ad revenue from the generation of fraudulent traffic. This is a significant change in the economic
structure of the click fraud ecosystem that was not present for Clickbot.A.

We suspect that Fiesta PPC has entered into revenue sharing agreements with several advertis-
ing sub-syndicates. As part of this agreement, Fiesta PPC operates a search engine that displays
the ad sub-syndicate’s ads. Each of these ads is routed through the Fiesta Click Server. When an
ad click occurs, the revenue is divided between the parties. The Fiesta PPC service then distributes
the search engine traffic amongst their ad sub-syndicates through the use of the Fiesta PPC Click
Server.

Investigation of the Fiesta PPC website supports these theories. The site contains links to traffic
bid information based on region, web forums (which are currently not working), and an affiliate
application form.

Inserting a middleman into the click fraud path is an innovative structural development. A
PPC service allows botmasters to generate revenue without regard to the specifics or defenses of
advertising networks, while simultaneously allowing the middleman service to focus on ad revenue
without engaging in traffic generation.

Concurrent with our own work, a separate study discovered a business relationship between
the Fiesta PPC service and the operators of the Koobface botnet [142]. This study detailed the
economics of Koobface, revealing that the botnet generated some of its revenue by interacting with
various affiliate services in exchange for payment. Koobface utilized Fiesta PPC as an affiliate
in addition to other PPC services. We believe the Fiesta bot operator has established a similar
business relationship with the Fiesta PPC service.

Prevalence
We observed two different PPI services distributing Fiesta bots across a three month timespan. In
one instance, a PPI service served the Fiesta bot binary for over 12 hours. Through creative use of
the Google search engine combined with our own samples, we were able to locate four different
C&C server IP addresses across three different domain names. Since the C&C server used by our
bot was hard-coded into the binary and varied between dropper services, we suspect that Fiesta bots
released via different mechanisms use different C&C servers. Using the same Google techniques,
we have also identified 22 domain names that act as search engines for the Fiesta service, spread
across three IP addresses.

7.4 The 7cy Clickbot
Clickbot.A, 7cy and Fiesta differ significantly in their behavior. While Fiesta and Clickbot.A use
levels of indirection between organizations to launder clicks, 7cy attempts to evade detection by

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 86

1 GET /p6.asp?MAC=00-0C-29-24-29-12&Publicer=bigbuy HTTP/1.1
2 Host: in.7cy.net
3 User-Agent: ClickAdsByIE 0.7.4.3
4 Accept-Language: zh-cn,zh;q=0.5
5 Referer: http://in.7cy.net/p6.asp
6 Content-Type: application/x-www-form-urlencoded
7 Connection: Close

Figure 7.5: Initial 7cy C&C request. The MAC-based bot ID and user-agent are shown in bold.

1 http://housetitleinsurance.com
2 http://www.google.com/url?sa=t&source=web&ct=res&cd=8&url=http://housetitleins...
3 90
4 15
5 CLICK
6 /search/{|||}epl={|||}yt={|||}qs
7 RND
8 5
9 NOSCRIPT

Figure 7.6: Excerpt of response from C&C server. Note that whitespace between lines is removed.

simulating human web-browsing behavior. The 7cy C&C language controls the bot’s click behav-
ior by specifying an initial site to “surf,” a series of page content patterns for identifying desirable
links to click on, and an inter-click delay time. The bot then leverages timing by introducing a
random amount of jitter into the delay between clicks. Separately, the C&C directs the bot to
generate more browsing traffic during popular times such as the evening and the workday. Com-
pared to Fiesta, 7cy requires a substantially different C&C language and surrounding botmaster
infrastructure, which we detail next.

C&C Structure
A 7cy bot locates the C&C server by resolving the domain name in.7cy.net, and then communi-
cates with that server using HTTP. We show a sample C&C request in Figure 7.5. Line 1 includes
the bot’s network MAC address, presumably as a unique identifier. Line 3 presents a user-agent
specific to the bot family, as well as a version number.

After receiving a request, the C&C server will respond with one of three messages: (i) an
instruction to wait for a specified time period, (ii) an HTTP 302 response redirecting the bot to
another C&C server, or (iii) specific click fraud instructions. We refer to the latter as an instruction
“batch.” Each batch is comprised of “jobs,” and each job is comprised of “clicks.” Within a given
batch, each job specifies a different site to target for click fraud, and each click corresponds to an
HTML link to visit. Jobs specify web-surfing sessions: their clicks are applied to sites as they
result from previous clicks, rather than to the initial site. On average there are 18 jobs per batch
and 9 clicks per job.

Figure 7.6 shows an excerpt of one batch. Lines 1 through 4 constitute a header for a single job.

in.7cy.net

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 87

2
3

1

5 4

Figure 7.7: General progression of a 7cy “job.” Arrows represent HTTP requests and go from the
domain of the refer to the domain of the host. Note that the publisher is often a parking page.

Line 1 specifies the website at which the bot should begin the browsing session. Line 2 specifies
the referrer to use in the initial request to the target site, although an actual request to the referring
site is never made. Line 3 specifies a time limit after which new instructions will be requested if the
clicks have not been completed yet. Line 4 specifies the number of clicks in the job. The structure
seen in lines 5 through 9 describes a particular click. This structure (with possibly different values)
repeats the number of times denoted on line 4 to complete the job. Line 5 specifies the action
to perform. Several values other than CLICK have been observed, but seem to be ignored by
our specimens. Given the rarity of these other commands (less than 0.01% of total commands), we
suspect they are erroneous, or a new feature still in testing. Line 6 specifies token patterns to search
for on the current page when selecting the next click. Tokens are delimited by the five characters
“{|||}”. Line 8 specifies a time delay for the bot to wait before performing the next click. Once
all clicks in the job are specified, a new job header occurs or the C&C transmission ends.

After receiving a batch of instructions from the C&C server, a bot will begin traversing web
pages as described in the instructions. Many of the sites targeted by the bot are hosted at parked do-
mains. Examples include housetitleinsurance.com, quickacting.com, and soprts.com.
We call these websites publishers. These sites mainly consist of links and ads within the page body,
and keywords in the HTML meta tag which relate to the theme suggested by the domain name.
They may also provide a link to contact the owner and purchase the domain name.

Although the domains and advertising networks vary across jobs, the traffic patterns follow
progressions that we can aggregate into a graph, shown in Figure 7.7. Edges correspond to HTTP
requests made by the bot. The origin of an edge corresponds to the domain of the referrer used
in the request, and destination of an edge corresponds to the host to which the request is made.

housetitleinsurance.com
quickacting.com
soprts.com

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 88

1 GET / HTTP/1.0
2 Referer: http://www.google.com/url?sa=t&source=web&ct=res&cd=8&url?sa=t&source...
3 User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
4 Host: housetitleinsurance.com

1 HTTP/1.1 200 OK
2 Cache-Control: no-cache
3 Pragma: no-cache
4 Content-Length: 13776
5 X-AspNet-Version: 4.0.30319
6 Set-Cookie: SessionID=6492595d-c592-419a-bf16-0cad97eef767; path=/
7 Set-Cookie: VisitorID=5f68a43f-6cf3-4a2f-831c-127ce007b646&Exp=11/29/2013 8:38...
8 Set-Cookie: yahooToken=qs=06oENya4ZG1YS6...HO8xG7uLE1uBAe5qKwGUov0xhAWIvfCJZ1E...

Figure 7.8: Selected headers from request (top) and response (bottom) of a publisher’s webpage.

The first HTTP request a bot makes in a job is always for the URL of the publisher’s website,
using a referrer header mimicking a previous Google search (not actually performed) which could
plausibly lead the user to the publisher’s website (step 1). Next, the bot loads the publisher’s
website as a browser would, fetching all supporting objects (pictures, scripts, etc.) as dictated by
the initial request (steps 2, 3). Once the bot has downloaded the publisher’s webpage, it selects
an in-page ad matching the search pattern specified via C&C for clicking. If multiple links on the
page match the pattern, the bot makes a random selection. Each link on the webpage points to a
“trampoline” page at the publisher’s site, resulting in HTTP 302 redirects to the ad network and on
to the actual advertised site. This behavior allows the publisher and the ad network to detect when
the bot clicks on an ad. The bot follows this redirection chain (step 4) and loads the advertised
site (step 5). A job often includes several clicks designed to simulate link-clicking behavior on the
advertised site.

Specific Fraud Example
In order to demonstrate several details of the traffic produced by a 7cy bot, we now present excerpts
of traffic from an actual job. In this job, the publisher is housetitleinsurance.com, the ad
network is msn.com, and the advertised site is insureme.com. Figure 7.8 shows the bot’s initial
request to the publisher’s website and the corresponding response. Note that as the bot is now
issuing requests to published websites, the User-Agent presented in line 3 of the request has
been changed to Mozilla/4.0 rather than ClickAdsByIE.

In this instance, after the bot had loaded the publisher’s site the bot clicked on a link to the
publisher’s own domain. This caused the bot to send another series of requests to the publisher
as the corresponding site was loaded. Throughout this exchange, we observed that the publisher
changed a portion of the cookie originally set on the bot in Figure 7.8 and began including a value
similar to the cookie in links included on the page. This is seen in Figures 7.8-7.10 as the bold
portion of the cookie changes.

The use of cookies and referrers represents an increase in complexity over the techniques used

housetitleinsurance.com
msn.com
insureme.com

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 89

1 GET /?ld=4vnjCbJ-GAvwzaNZFHBC2hWDhbZSs2HbnQAVmreNgXqjJdT0CGnrnZiVXS01aPdMH1DdL...
2 Referer: http://housetitleinsurance.com/online/find/home/owner/find/home/owner...
3 ...yt=qs%3d06oENya4ZG1YS6...HO8xG7uLGV-ZMa5qKwGUov0xhAWIvfCJZ1EtVWLOl...
4 User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
5 Host: 948677.r.msn.com

1 HTTP/1.1 302 Object Moved
2 Cache-Control: no-cache, must-revalidate
3 Pragma: no-cache
4 Location: http://www.insureme.com/landing.aspx?Refby=614204&Type=home
5 Set-Cookie: MSConv=4vfcf6a1f935caa89943fce63a4bbf1574fc5c1f28c000945ebcd99d208...
6 Set-Cookie: MSAnalytics=4v76de0ef30bff74b972b5855ec3be14bc0c26342d22158a9ceaa6...
7 Content-Length: 202

Figure 7.9: Selected request (top) and response (bottom) headers for an advertised site’s URL.

1 GET /landing.aspx?Refby=614204&Type=home HTTP/1.0
2 Referer: http://housetitleinsurance.com/online/find/home/owner/find/home/owner...
3 ...yt=qs%3d06oENya4ZG1YS6...HO8xG7uLGV-ZMa5qKwGUov0xhAWIvfCJZ1EtVWLOl...
4 User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
5 Host: www.insureme.com

1 HTTP/1.1 301 Moved Permanently
2 Cache-Control: no-cache, no-store
3 Pragma: no-cache
4 Content-Length: 44447
5 Location: http://www.insureme.com/home-insurance-quotes.html
6 Set-Cookie: ASP.NET_SessionId=4u4vxv45vupmetvi2f4ghoqu; path=/; HttpOnly

Figure 7.10: Selected request (top) and response (bottom) headers for a request for an advertised
site.

by Clickbot.A [37]. Clickbot.A strips the referrer from requests in order to obscure the site at
which the traffic originated. While there are plausible reasons for removing the referrer in normal
use cases, removing the referrer does introduce a notable characteristic into the traffic. Likewise,
cookies help the traffic produced by 7cy to appear more natural and could potentially be used to
construct the illusion of a user or browsing session for an ad network.

The bot will ultimately browse away from the publisher’s website when a request is issued to
the ad network in order to obtain a redirect to the actual website being advertised. This request is
shown in Figure 7.9. Note that this request uses a Referer which includes a value similar to the
yahooToken value previously set as a cookie on the bot by the publisher. The changed portion
is shown in bold.

Lastly, a request is made to load the actual site being advertised. In this particular case the
parking page has been moved within the same domain so a 301 redirect is issued. This is unrelated
to the click fraud infrastructure. As shown in Figure 7.10 this request also includes a referrer header
which includes the yahooToken value used in other requests.

We summarize the pattern of traffic described above in Figure 7.11. Each line corresponds to

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 90

Publisher

Ad
Network

Advertised
Site

Ad URLU
ser ID

U
ser ID

R
eferrer

Target U
R

L Use
r I

D

Refe
rre

r

Figure 7.11: Flow of critical information in 7cy click fraud.

a piece of information and each bubble corresponds to a distinct server. The publisher’s domain
name is included in the referrer to both the ad network and the advertised site. The ad URL is
supplied by the publisher and contains the domain of the ad network. The target URL is supplied
by the ad network and contains the advertised site domain name. Lastly, the yahooToken likely
containing a user ID is set by the publisher and given to the ad network and the advertised site.

7cy Economic Model
While the economic structure of 7cy is relatively clear, the parties involved and their roles are
not. The pattern of traffic suggests that the advertised site (e.g., insureme.com) is paying the ad
network (e.g., msn.com), which is paying the publisher (e.g., housetitleinsurance.com).
Additionally, the domain names appear to be registered to multiple distinct parties. Unfortunately,
it is unclear whether the publisher is paying the botmaster, or the publisher itself is the botmaster.
If the publisher is paying the botmaster then it is unclear exactly how many distinct parties are
acting as publishers.

insureme.com
msn.com

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 91

!"

#!"

$!"

%!"

&!"

'#" '(" !" (" #")" $" *" %" +" &" ," (!"

!"#$%&'$()*

!"
*!"
(!!"
(*!"
#!!"
#*!"
)!!"

!" (" #")"

+,()%,-*

+-&./*0&1$%*&(*2$.,(34*

5%
$6

7$
(.
8*

Figure 7.12: Measurement of the amount of jitter introduced into inter-click delay by the clickbot
binary and surrounding infrastructure compared to jitter introduced by infrastructure alone.

Timing and Location Specific Behaviors
Timing Variance: In order to appear more human, the bot introduces jitter into the delays spec-
ified by the C&C language. The results labeled “Experiment” in Figure 7.12 show the differences
we observed between the time delay specified in the C&C and the bot’s actions in our contained
environment. We conducted these measurements by feeding the bot artificial C&C with specific
wait times while reflecting all HTTP traffic internally to a sink server within our farm. We then
measured the inter-arrival time of requests at that sink. In order to confirm that the jitter observed
was the result of the bot’s own behavior and not our honeyfarm environment, we also performed a
control experiment in which we made HTTP requests at a constant rate from within an inmate VM,
and then measured the variance in the same way as with the actual bot. The results labeled “Con-
trol” in Figure 7.12 indicate that the jitter introduced by the honeyfarm is infrequent, small, and
always positive. Combined, these results show that the 7cy clickbot is introducing both positive
and negative variance, on the order of seconds, into the inter-click delay.

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 92

0
2

0
0

0
4

0
0

0
6

0
0

0

Day 0 Day 1 Day 2 Day 3 Day 4

P
u

b
lis

h
e

r
D

o
m

a
in

 I
D

(a) Publisher domains seen from milking via the US over all 5 days of the study.

0
2

0
0

0
4

0
0

0
6

0
0

0

Day 0 Day 1 Day 2 Day 3 Day 4

P
u

b
lis

h
e

r
D

o
m

a
in

 I
D

(b) Publisher domains seen from milking via the US over all 5 days of the study, with domains plotted only
the first time they occur.

0
2

0
0

0
4

0
0

0
6

0
0

0

Day 0 Day 1 Day 2 Day 3 Day 4

P
u

b
lis

h
e

r
D

o
m

a
in

 I
D

(c) Publisher domains seen from milking via Japan over all 5 days of the study.

Figure 7.13: (Figure continued on next page.)

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 93

(d) Publisher domains seen from milking via the US during the 1st 24 hours.

0
2

0
0

0
4

0
0

0
6

0
0

0

Hr 0 Hr 4 Hr 8 Hr 12 Hr 16 Hr 20

P
u

b
lis

h
e

r
D

o
m

a
in

 I
D

Figure 7.13: (Continued) The plots above show the domains the milker was directed to for click
fraud as a function of time. The vertical axis represents all domains observed, ordered from most
frequently seen (bottom) to least frequently seen (top). Frequency was defined with respect to the
entire study. Note that Day 0 begins at 5am GMT.

Instructions Over Time: In order to gather data about the characteristics of the C&C over time
and the influence of bot location on the behavior of control servers, we also conducted a C&C
milking study of the 7cy infrastructure. As part of our study we build a milker which connected
to 7cy C&C servers via Tor [40] exit nodes in 9 countries throughout North America, Europe and
Asia. These countries were Canada (CA), Spain (ES), France (FR), Hong Kong (HK), Japan (JP),
South Korea (KR), Russia (RU), Singapore (SG), and the United States (US).

Our milker mimics the behavior of a 7cy bot by contacting the 7cy C&C server and requesting
work. We record all network traffic in the exchange, but do not carry out any of the fraud specified
by the C&C server. Our milker is implemented entirely in Python and is approximately 370 lines
of code. Our study milked the C&C server continuously for five days starting Thursday, January
13 2011, at 5am GMT.

All initial C&C requests, regardless of the Tor exit node, were sent to in.7cy.net. This
mimicked the behavior we observed in our actual specimens. Recall from Section 7.4 that the
C&C server’s responses can be classified as “Wait” (delay for a fixed time period), “Moved” (a
302 redirect to another server), or “Batch” (instructions for click fraud). On occasion the C&C
server returned a 400-level error code, empty response, or no response, all of which we classify as
“Other.” When connecting from Japan, the C&C server occasionally returned a web page which
seemed to be under development. We likewise classify this as “Other.”

We observe that the C&C servers target some sites for click fraud more often than others. The
C&C samples obtained by our milker contained 366,945 jobs directing traffic towards 7,547 unique
domains. An analysis of the traffic reveals that although 7,547 unique domains were seen across
all countries, 75% of jobs targeted only 1,614 of the domains.

in.7cy.net

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 94

Figure 7.13 shows the domains targeted by the 7cy bots with respect to both country and time.
The horizontal axis represents the time in seconds since the start of the milking study. The vertical
axis is the sorted target domain ID, where domain 0 is the most targeted domain, and domain 7,546
is targeted least. Figure 7.13a plots the domains sent to our US Tor exit node milker over the 5 day
period. The distinctive gaps in the data are the result of successive wait commands given to us by
the C&C server. Figure 7.13d is an expanded view of the first day of Figure 7.13a. We see that the
server seems to work on an hourly cycle, dispensing a minimum amount of click fraud instructions
to the most trafficked sites each hour. The US exit node received more click fraud instructions
during peak US Internet use times, such as the work day and evening. In non-peak hours, the US
exit node received more wait instructions to generate a lower volume of traffic. Interestingly, all
exit nodes except Japan and Korea showed timing patterns in sync with the US despite time zone
differences.

Japan and Korea, however, display a pattern similar to each other and distinct from other coun-
tries examined. Figure 7.13c shows domains served to the Japanese Tor exit nodes with respect
to time, over the entire 5-day milking period. This figure shows the same distinctive bands, how-
ever the distances between bands and widths vary. While these countries do appear to have a
strong, periodic schedule and do visit some sites considerably more than others, traffic appears to
be distributed relatively uniformly throughout the day.

Figure 7.13b shows the same data as Figure 7.13a except all duplicate domains have been
removed. This means once a specific domain has been observed at time t, it is no longer plotted for
time greater than t. This figure illustrates that although there is a clear periodic pattern to the traffic,
the domain names involved vary throughout the observed time. The other countries surveyed have
similar behavior.

Beyond differences in timing, the distinct behavior seen in Japan and Korea is also character-
ized by differences in the C&C instructions received. Table 7.2 depicts the requests and responses
made by the milker. Japan and Korea are redirected to 3.95622.com relatively frequently, al-
though no other countries are directed there. Similarly, Russia, Spain, Germany, Hong Kong,
Canada and the United States are redirected to 1.95622.com, although Japan and Korea are rarely
directed to that domain. Only Singapore received no redirects.

In addition to differences in traffic handling and timing, milked C&C revealed a correlation in
which domains were served to which countries. In order to determine the degree of correlation
between two countries, we calculate for each country the percentage of overlap of its domains to
the two countries’ combined set of domains. In order to develop a standard of correlation, Table 7.3
shows the result of correlating a randomly selected half of a country’s traffic with the remaining
half. This provides a standard for determining that two countries are similar. Pairwise analysis
of countries revealed that all countries other than Japan and Korea are strongly correlated. These
results are presented in more detail in Table 7.4, where we see that Japan and Korea are somewhat
correlated with each other and relatively uncorrelated with the rest of the world.

Although there is a strong correlation between domains served and country, the cause for this
correlation is not clear as the domains served to Japan and Korea appear similar to domains served
to all other countries. The domains which are more common in Japan and Korea do not appear
to host content in either Japanese or Korean nor contain ads specific to Japan or Korea. The

3.95622.com
1.95622.com

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 95

Total Moved to Moved to
Country Host Req. Wait Batch 1.95622.com 3.95622.com Other

CA 1.95622.com 193 24 167 0 0 2
in.7cy.net 2,947 338 2,360 193 0 56

ES 1.95622.com 217 35 178 0 0 4
in.7cy.net 2,935 327 2,333 216 0 59

FR 1.95622.com 215 18 192 0 0 5
in.7cy.net 2,883 336 2,252 215 0 80

HK 1.95622.com 323 26 290 0 0 7
in.7cy.net 2,253 438 1,465 323 0 27

JP 1.95622.com 10 0 10 0 0 0
3.95622.com 777 378 396 0 0 3

in.7cy.net 1,656 176 292 10 778 400
KR 1.95622.com 1 1 0 0 0 0

3.95622.com 1,191 598 590 0 0 3
in.7cy.net 1,286 22 37 1 1,193 33

RU 1.95622.com 139 14 121 0 0 4
in.7cy.net 3,520 259 3,048 139 0 74

SG in.7cy.net 4,238 160 4,000 0 0 78
US 1.95622.com 225 29 194 0 0 2

in.7cy.net 3,022 322 2,425 225 0 50

Table 7.2: Types of C&C responses received at geographically diverse locations.

CA ES FR HK JP KR RU SG US
Internal Correlation 63.7 61.7 59.8 55.6 43.7 65.2 68.0 74.4 63.0

Table 7.3: Correlation within each country if visits are partitioned randomly in half. Correlation is
measured as the percent of domains seen in both halves which were seen in either half.

CA ES FR HK JP KR RU SG US
US 79.5 79.6 78.0 72.5 32.0 12.1 81.0 83.3 100.0
JP 32.2 32.2 31.8 32.7 100.0 42.6 31.5 31.4 32.0
KR 12.4 12.3 12.1 12.3 42.6 100.0 12.0 12.1 12.1

Table 7.4: Correlation of domain names served to various countries. Note that all countries except
Japan and Korea are strongly correlated to each other as evidenced by their correlation to the US.

1.95622.com
3.95622.com

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 96

correlation between Japanese and Korean IP addresses and domains served may be related to the
ad network being targeted by the bot, rather than the target audience for the content on the domain.
We speculate that perhaps some ad networks are more tolerant of or prefer traffic from one country
as opposed to others, and so it is more profitable to direct traffic from those countries to those
ad networks. As the format of the ad URL is determined by the ad network, this viewpoint is
supported by the fact that a similar correlation was seen in tokens to search for in URLs to click
on.

The location and time-specific behaviors displayed by 7cy represent a notable departure from
the methods of Clickbot.A [37]. 7cy displays time-sensitive behavior both in the randomness
introduced to inter-click timings as well as the variations of traffic load with respect to time-of-
day. The evidence of location-specific behavior also represents an added degree of complexity
over Clickbot.A. These behaviors make bot-generated traffic appear more realistic and represent
an advance in emulating human behavior.

7.5 Discussion and Summary
In this chapter we presented an in-depth analysis of two distinct families of clickbots, Fiesta and
7cy, deriving extensive behavioral information about these families. This allowed us to establish a
profile of the capabilities of the bots as well as the economic motives and incentives of the parties
involved. Utilizing these insights into bot behavior and the structure of click fraud systems, we are
now able to discuss potential techniques for defenses and safeguards against bot-generated traffic.

Through our study of the Fiesta clickbot we have described a click fraud model in which
a service provider acts as a middleman for fraudulent traffic. The middleman pays money for
generated traffic, and generates his own revenue through agreements with ad sub-syndicates. This
previously undescribed approach could allow advances in traffic generation to be abstracted away
from advances in hiding fraudulent clicks, potentially driving click fraud innovation.

Studying the 7cy clickbot allowed us to observe the specific mechanisms employed by a click-
bot attempting to mimic the behavior of a human. The C&C protocol allows the botmaster to
dictate or sell traffic at a fine granularity. We observed the attempt to simulate human-like be-
haviors, including random browsing of the advertised site and randomized inter-click delays. By
milking 366,945 click fraud instructions from the C&C servers via IP addresses in 9 countries we
were able to study this botnet’s click fraud in detail and discover region-specific behavior.

Having described the behavior of both the Fiesta and 7cy clickbots, we would like to offer
a brief discussion of potential techniques for detecting bot-generated traffic. One approach sites
could employ is to develop a set of features characteristic of legitimate traffic and flag brows-
ing sessions which appear abnormal according to these features. Features which would address
the bots seen in this chapter include the user’s mouse movements on the page and the depth of
browsing through the site, as these bots differ significantly in these regards from a typical human.
Advertised sites may further this technique by correlating atypical features with the domain name
of the referrer, and in doing so build a list of publisher domains in use by botmasters. Another
conceivable detector is the invisible embedding of HTML links into a site’s pages. Any visitor

CHAPTER 7. WHAT’S CLICKING WHAT? CLICKBOT TECHNIQUES AND
INNOVATIONS 97

clicking such “honeylinks” is likely to be a bot. In addition to the above suggestions for potential
detection techniques, we have pursued collaboration with industry to enhance bot detection.

We build on this work in Chapters 8, 9, and 10, exploring the ecosystem of large-scale click
fraud botnets and their supporting ecosystem further.

98

Chapter 8

ZeroAccess: Background and Evolution

ZeroAccess was a vast and complex peer-to-peer (P2P) botnet that served as a delivery platform
to distribute a variety of malware modules over its lifetime, each with its unique command-and-
control (C&C) and monetization strategy [17].

8.1 ZeroAccess Evolution and Takedown
ZeroAccess was a complex botnet that has undergone several stages of evolution, which we recount
here. Although first described solely as a “rootkit,” ZeroAccess developed into a vast peer-to-peer
(P2P) botnet and malware delivery platform.

Early Life, 2009–2011
Initial reports of the “ZeroAccess rootkit” date to 2009 [56]. In 2010, the InfoSec Institute’s
detailed analysis described it as a “platform to deliver malicious software” [17]. At this stage, the
main malware delivered using ZeroAccess was “FakeAV”,1 with an estimated 250,000 computers
infected.

First generation P2P Botnet, 2011–2013
In May 2011 a radically new version of ZeroAccess emerged [109]. In this iteration, ZeroAccess
retained its kernel-mode rootkit components, but changed both its communication and moneti-
zation strategies. This version spread itself via exploit packs (e.g., BlackHole [68]) and social
engineering [64, 150].

The defining feature of this iteration of the botnet was the introduction of a decentralized, TCP-
based P2P communication protocol. The protocol used cryptography and obfuscation as well as
other common P2P features such as “supernodes” that served to orchestrate large portions of the

1FakeAV is malware that claims to be anti-virus software to extort users into paying money to remove fictitious
infections.

CHAPTER 8. ZEROACCESS: BACKGROUND AND EVOLUTION 99

network’s activity. The network allowed the botmasters to maintain decentralized control while
relaying commands and payloads to infected computers worldwide [149].

The P2P protocol included cryptographic signing of malicious payloads, which hardened the
botnet against attempted hijacking by preventing untrustworthy peers in the botnet from success-
fully delivering payloads other than those cryptographically signed by the actual botmaster [149].

In addition, the monetization strategy changed with this generation. ZeroAccess moved away
from FakeAV payloads and instead began distributing Bitcoin miners and click fraud modules.2

From a technical perspective, the primary click fraud malware used in this era operated in the
indiscriminate “auto-clicking” fashion we describe in Section 9.4.

Alongside the click fraud and Bitcoin payloads, ZeroAccess itself was also sold as a service
on underground forums [109], enabling cyber-criminals to use the ZeroAccess rootkit to distribute
their own malicious payloads.

This iteration of the botnet also saw an increase in botnet population. At the height of infections
in early 2012, estimates placed the botnet population at over 500,000 [100]. Despite the age of the
botnet and its subsequent evolution, as of August 2013 there were still over 30,000 computers
infected with this generation [109].

Second generation P2P Botnet, 2012–2013
In July 2012, ZeroAccess evolved into the form predominant as of November 2013. According
to Symantec, by August 2013, this generation had an estimated population of over 1.9 million
computers [109]. This iteration included several changes to the malware structure, the protocol,
and the payloads. The most distinguishing change to ZeroAccess in this era was a move away from
the kernel-mode rootkit component, with all of its functionality now replicated in user-space [109].
Other changes include a move to UDP from TCP for the P2P protocol (likely to improve network
performance), and minor changes in the protocol itself.

The monetization strategy also evolved. This version saw the introduction and massive distri-
bution of a new click fraud payload performing search-hijacking (linked to the MagicTraffic click
fraud affiliate program [79]), which we discuss in Section 9.5.

Takedown, Late 2013
On December 5, 2013, Microsoft’s Digital Crimes Unit and Europol orchestrated a takedown of
the Serpent and auto-clicking C&C servers [90, 104], using our technical report [118, Chapter 9]
as Exihbit 1 [104]. Since both click fraud modules had a centralized C&C server, a simple seizure
of these machines was able to temporarily disrupt click fraud activity. Since the ZeroAccess P2P
substrate was still intact the perpetrators were able to distribute an updated module with new C&C
IP addresses within hours and fraud resumed. For reasons unknown, the following day the mal-
ware authors distributed a new set of modules that halted all click fraud activity but left the P2P

2ZeroAccess’s shift away from FakeAV occurred just before a major takedown that resulted in the closure of most
FakeAV programs [88].

CHAPTER 8. ZEROACCESS: BACKGROUND AND EVOLUTION 100

network intact. Inspection of these modules revealed the ASCII text “WHITE FLAG” in apparent
surrender [63].

8.2 Technical Background

P2P communication
The P2P C&C substrate of ZeroAccess functions solely to deliver modules to infected machines.
This P2P protocol is well understood, has common P2P properties such as peer lists and supern-
odes [109, 126, 149], and allows ZeroAccess infected computers to communicate with each other
directly without the need for a centralized C&C server. Without payloads, ZeroAccess infections
simply maintain their P2P membership and functionality, but perform no malicious actions on their
own.

Infected ZeroAccess machines generate UDP P2P traffic on four well-known ports. The pro-
tocol is constructed in such a way that super nodes in the network have a vantage point of a large
portion of the infected population. ZeroAccess has distributed several modules with various mone-
tization strategies over its five-year lifespan. In this work we focus on the two most recent modules
distributed throughout 2013. Both these modules perform click fraud and both have a separate
HTTP-based C&C channel distinct from the P2P network.

ZeroAccess Modules
During the life of our study ZeroAccess utilized two primary monetization strategies, each using
a different module: The “auto-clicking” module (classic click fraud), and the search-hijacking
module, which we have named Serpent. Chapter 9 performs an in-depth technical analysis of each
of these modules beyond the following summary.

Auto-Clicking Module

The ZeroAccess auto-clicking module performs click fraud by simulating normal Web browser
behavior of a user clicking an ad. These clicks occur rapidly, require no user participation, and
are not visible to the user of the infected computer. Some users, however, may be alerted to the
presence of this module by the increased network activity; in one instance, we observed about
50 MB of click traffic per hour.

The auto-clicking module invokes an actual client Web browser, enabling realistic Web brows-
ing behavior including proper handling of HTML, CSS, JavaScript as well as browser-specific
quirks. The module periodically contacts the auto-clicking C&C to fetch a list of publisher Web
sites for the bot to visit. It navigates to the URL provided by the C&C in a hidden window, locates
the ad on the page, and simulates a user clicking on the ad by requesting the advertiser’s URL. The
browser faithfully follows the sequence of redirects from the URL until it loads the advertiser site.
The auto-clicking module then closes the hidden window and starts anew with the next publisher

CHAPTER 8. ZEROACCESS: BACKGROUND AND EVOLUTION 101

in the list provided by the C&C. Notably, the auto-clicking module does not simulate any user
actions on the advertiser page and thus does not trigger any conversions.

Serpent Module

The Serpent module interposes on a user’s normal interaction with various search engines to redi-
rect the unwitting user to an ad. Whereas the auto-clicking module simulates a user, Serpent sends
a real user to the advertiser.

The Serpent module includes a browser component that lays dormant until the user performs
a search on one of many search engines. The module silently sends a copy of the search query to
the Serpent C&C. The C&C responds with a set of URLs that correspond to ad click URLs for ads
related to the search query. Meanwhile, the browser renders the original search result page as the
user expects. When the user clicks on a search result Serpent intercepts the click and prevents the
browser from navigating to the site intended by the user. Instead, the module redirects the browser
to one of the URLs it received from the C&C, in effect creating the appearance of the user having
clicked an ad after performing a search on the publisher’s site (as opposed to the site on which the
user actually performed the search). If the user does not notice having been unwittingly redirected
to the advertiser’s site (a different site than intended), the user may continue browsing as normal.
Since the advertiser site is relevant to the user’s search query, the user may even convert. Note
that since all Serpent activity is gated on legitimate user activity, this type of click fraud attack is
extremely hard for an ad network to detect.

Parallel to this search-hijacking activity, Serpent also used a separate C&C protocol to perform
a type of auto-clicking. This auto-clicking protocol and ad network structure were separate from
the original auto-clicking module, although the auto-clicking behavior is largely similar.

DNS Queries
Serpent ships with a list of C&C IP addresses hard-coded into each module. These C&C IP’s
are encoded inside ASCII strings that appear to be domain names ending in .com, but are in fact
an obfuscated encoding of the numeric IP address. For each Serpent C&C function the malware
selects one of these pseudo-domains, decodes the domain into an IP address, and then initiates a
connection to that IP. Note that the malware does not need to perform a DNS query since the IP
address is encoded in the domain name itself. However, for some unknown reason, the malware
authors coded the module to perform a DNS query via Google’s public DNS server each time it
decodes the pseudo-domain—resulting in a DNS query for each C&C operation—and discards the
resulting DNS response (if any).

Most of the ZA Serpent pseudo-domains were not registered prior to our study. For this study
we registered all available pseudo-domains, and by observing these DNS queries we are able infer
operations the malware is performing. Section 10.2 discusses this DNS data, and the inferences it
enables, in more detail.

.com

102

Chapter 9

The ZA Auto-Clicking and
Search-Hijacking Malware

9.1 Introduction
As one of the largest click fraud botnets ever in existence, ZeroAccess’s operations are of unique
interest in understanding how mass click fraud campaigns are perpetrated. Much of ZeroAccess
has been well studied, including the infection vector and the peer-to-peer (P2P) command-and-
control (C&C) protocol [56, 109, 149, 150], and several reports have identified its use of click
fraud [109, 149]. However, we are unaware of public work documenting the click fraud process in
technical depth.

In this chapter we focus on documenting the click fraud behavior of the ZeroAccess botnet
and the infrastructure it uses in pursuit of this goal. We take a multifaceted approach, including
a combination of binary and network analysis, malware execution, and direct interaction with the
botnet C&C servers. In particular, we describe how ZeroAccess uses two different “modules” to
carry out distinct forms of click fraud: auto-clicking and search-hijacking.

Auto-Clicking: This ZeroAccess module automatically clicks on advertisements sent via the
module’s C&C. These clicks occur rapidly, unseen by the user and independent of any user in-
teraction. Section 9.4 describes the behavior and infrastructure of the ZeroAccess auto-clicking
module.

Search-Hijacking: This ZeroAccess module, which we have named Serpent, fetches ads re-
lating to real search queries generated by the user on the infected machine. When the user clicks
on a search result, the module intercepts the click and instead performs a separate fraudulent ad
click related to that search query. It then redirects the user to an advertiser’s Web site. Given the
user interaction and the click’s relation to the search query, such fraud may lead to advertising con-
version,1 resulting in higher revenue for the criminals. We discuss this process, and the associated

1In advertising, a conversion is a click that leads to some user interaction on the advertiser’s Web page. What
constitutes a conversion can vary based on advertiser. Such clicks are said to be “high quality” because of the user
interaction.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 103

MD5 Last Obtained

Auto-Clicking module
51ba6261e44c60b2f891fabfaa47d0ad Nov. 22, 2013

Search-Hijacking module
7128a957f5c9c9a69385f5332ca6338c Nov. 22, 2013
3aec103d38c7520229e18af260c5a00d Sep. 26, 2013
36616e8f309b35f8e090068690272239 June 14, 2013
8fa08c59e4d205e514f8a978678ba798 May 30, 2013

Table 9.1: Auto-Clicking fraud and Search-Hijacking module executables used in the analysis.

mechanisms used to achieve it, in greater depth in Section 9.5.
The remainder of this chapter first explains the mechanics of Internet advertising and click

fraud, the history of ZeroAccess, and our measurement methodology. We then describe the basic
structure of the ZeroAccess malware distribution platform and provide a detailed description of
each of its two click fraud modules. In particular we document how each click fraud module uses
its own C&C network (also distinct from that used by the ZeroAccess platform) with well over a
dozen server IP addresses implicated in our analysis.

This chapter is based on work that appeared as a technical report [118] and served a Exhibit
1 [104] in a legal action against the criminal operators of the botnet.

9.2 Methodology
In this section we describe our malware execution environment, manual analysis techniques, and
the ZeroAccess modules we examine.

Collecting Module Sample Executables
Table 9.1 lists the modules used in our analysis of the click fraud modules. We obtained our
samples of ZeroAccess by searching malware repositories for traffic patterns consistent with Zero-
Access command-and-control (C&C) behavior and executing each binary in our execution envi-
ronment (Section 9.2). We have identified thousands of binaries with ZeroAccess C&C behavior
found in October and November, 2013.

During execution, ZeroAccess retrieves the auto-clicking and search-hijacking modules for
execution. While ZeroAccess transfers modules in an encrypted form, using reverse engineered
decryption routines [149] we built a tool that automatically extracts modules from network traces.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 104

Monitored Execution Environment
We execute each binary in a virtualized environment provided by the GQ honeyfarm [91], which
supports monitoring malware execution while providing a flexible network containment policy. We
use Windows XP Service Pack 3 for all executions. The system can process thousands of binaries
per day.

In our experiments the execution environment allows ZeroAccess C&C P2P (UDP) traffic. For
all executions we forward HTTP traffic to the intended destination and redirect all other non-C&C
TCP traffic to internal sinks. For DNS, our service can answer all queries, even requests without
a valid answer or directed at external DNS servers. This feature ensures that domain takedowns
during our analysis have limited impact on malware execution. The configurable nature of the
DNS server behavior enables us to test ZeroAccess samples with and without DNS resolution. For
all other protocol types we provide a sink that will accept packets but does not respond.

In addition to network monitoring, our system collects operating system events, including pro-
cess creation, file modifications, and registry changes.

Binary Analysis
For static binary analysis we use IDA Pro 6.4 with the Hexrays decompiler.2 ZeroAccess dis-
tributes modules as standard Windows DLLs, a file format natively supported by IDA such that it
can disassemble and decompile the modules with Hexrays. We use static binary analysis to obtain
the encryption (and decryption) algorithms, domains, and other C&C protocol information for the
ZeroAccess modules.

Milking
A milker is a program that speaks a particular botnet’s C&C protocol and mimics the communica-
tions of that malware. Through the use of a milker, we can query information and commands at
a much larger scale, with finer granularity, and across more diverse geographic regions, than with
traditional malware executions. This technique also allows us to probe specific protocol behaviors
in a way that directly executing the malware might not manifest, and to obtain C&C commands
without potentially dangerous malware side effects.

For this work we created a milker for the ZeroAccess search-hijacking module’s C&C protocol
and used it to interact with the module’s C&C servers. The milker queries the C&C server and
retrieves a list of ads to click on, then simulates a click on one of the results using a headless Web
browser. The browser follows redirects, executes JavaScript, and in general is designed to perform
similarly to a victim’s browser. We ran our milker over several days and describe some of the data
gathered in detail in Section 9.5.

2https://www.hex-rays.com/products/ida/index.shtml

https://www.hex-rays.com/products/ida/index.shtml

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 105

9.3 The ZeroAccess Platform
In this section we describe the base ZeroAccess platform: the botnet software responsible for
coordinating communication among very large numbers (millions) of infected computers around
the world.

Infection
The first step in a ZeroAccess victim’s lifecycle is becoming infected with ZeroAccess. Like many
other malware families, ZeroAccess is distributed in a variety of ways, such as drive-by download,
social engineering, and pirated software [64]. Each distribution vector results in the installation of
software that participates in the ZeroAccess C&C.

An example of this process we have observed begins when a victim browses the Web and
inadvertently visits a compromised Web site hosting an exploit kit. The exploit kit detects the vic-
tim’s browser version and delivers an exploit payload. The payload has two functions: 1) exploit
a browser vulnerability, and 2) deliver malware. Upon successful browser exploitation, the pay-
load downloads and executes a ZeroAccess binary. Once executed, ZeroAccess has control of the
victim’s computer and begins to communicate using the P2P C&C protocol.

Command and Control
The ZeroAccess platform uses a P2P protocol for its C&C, with the primary function of distribut-
ing modules and performing updates. The P2P protocol, described in greater detail in other re-
ports [109,149], supports the promotion of a member to a super node. As described by Neville et al.,
super nodes store ZeroAccess modules and provide them to other nodes upon request [109]. In
addition to distributing modules to newly infected hosts, super nodes also host new versions of
modules when updated. It is important to note that aside from distributing the click fraud modules,
the P2P C&C protocol does not play a role in the execution of click fraud.

Once a victim has been infected with ZeroAccess, it begins by bootstrapping the P2P protocol
using a peer list embedded in the binary [109]. The P2P protocol discovers new peers, updates the
peer list, and adds itself to the peer list for new nodes to contact. Once the newly infected machine
joins the ZeroAccess P2P network, it begins to download modules as instructed by other peers in
the network. A super node hosts the modules, and the malware issues a download request to fetch
and then execute the module. This process occurs shortly after infection and results in a click fraud
module download. Once that module executes, the victim’s computer begins to carry out click
fraud using a separate C&C protocol as described in Sections 9.4 and 9.5. When an update to the
click fraud modules becomes available on the P2P network, the victim learns of the update from
one of its peers and contacts a super node to retrieve the latest version.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 106

9.4 The Auto-Clicking Module
The ZeroAccess auto-clicking module performs click fraud by simulating normal Web browser
behavior of a user clicking on a Web advertisement. This activity requires no user participation,
and is not visible to the user.3 We present the behavorial analysis of this module, treating the
module itself as a black box and observing its contained execution. We observed it performing
about one click every two minutes. To evade detection, these clicks were spread across multiple ad
networks.

Behavior
The function of the auto-clicking module is to simulate a user “click” on an advertisement. Fig-
ure 9.1 shows the operation of the module. The module begins by contacting one of its command-
and-control (CF-C&C) servers with a request for click fraud jobs (Step Ê). The C&C server returns
a scrambled payload containing a list of “click” jobs. Each job is identified by a host name, a first
hop URL and the HTTP Referer4 URL. The module then issues an HTTP request to another
CF-C&C server, setting the Host header value as specified by the job. This server then redirects
the request via an HTTP 303 redirect to a URL, the same URL as in the job (Step Ë). This forms
the first hop in the redirection chain. The module then retrieves the URL to which it is redirected,
setting the Referer header as given in the job (Step Ì). The redirect chain continues normally
from this point on, and after a series of redirects the bot fetches the ad URL, at which time the
advertiser gets charged (Step Í).

There is no visible activity in the foreground, so it is difficult for a user to detect that their
computer is performing click fraud in the background. This same process repeats multiple times.

Command and Control
This section describes how the bot communicates with the CF-C&C servers to fetch click jobs.
Table 9.2 lists the IP addresses of the CF-C&C servers that we observed the bot contacting for
fetching commands. Note that these change over time.

The bot contacts one of the CF-C&C servers over TCP port 12757, and sends an obfuscated
message (message string XORed by 0x72) identifying the browser User Agent string. In response,
the CF-C&C server sends a response (also obfuscated) that contains the following: a domain name,
list of first hop URLs to be contacted and a set of Referer headers to be set.

After receiving the first hop URLs, the auto-clicking module does not fetch the first hop URLs
directly. Instead, it first contacts one of the other CF-C&C servers over HTTP port 80, with
the Host header set to the domain name provided earlier. Presumably this is an authentication
mechanism; earlier versions of the module exhibited similar behavior of not fetching the URLs

3Some users, however, may be alerted to the presence of this module by the increased network activity; in one
instance, we observed about 50 MB of network traffic per hour.

4An HTTP Referer header provides the server with the URL of the referring page, that is, the page that pur-
portedy contained the URL being requested.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 107

Module

CF-C&C

(request)

(scrambled payload)

HTTP GET

HTTP 303 (redirect)

No user-visible
activity

First hop
server

.

.

.
Chain of HTTP and
JavaScript redirects leading
to advertiser site

1

2

4

HTTP GET

HTTP GET

HTTP 200

3

Browser (background)

Figure 9.1: Behavior of the auto-clicking module. The module begins by retrieving a list of “click”
jobs from its C&C server (Step Ê). For each job, it uses the system browser to retrieve the URL
(Step Ë) and follows HTTP and JavaScript redirects (Steps Ì and Í).

IP Address Observed Date Location

94.242.195.162 21 Nov 2013 Luxembourg
94.242.195.163 21 Nov 2013 Luxembourg
94.242.195.164 21 Nov 2013 Luxembourg
81.17.18.18 21 Nov 2013 Switzerland
81.17.26.189 21 Nov 2013 Switzerland
46.19.137.19 21 Nov 2013 Switzerland

Table 9.2: IP addresses of C&C servers observed for the auto-clicking module in Table 9.1. The
Obeserved Date gives the date on which we observed communication between the module and
these servers. Location is based on MAXMIND [98] GeoIP service.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 108

Hop URL Status Code Notes

1 http://46.19.137.19 . . . 303 Host name set to cvmrpznw.cm
2 http://[...].traffiliator.com . . . 302 Referer spoofed
3 http://unlimiclick.com/bd . . . 200
4 http://ads.clicksor.cn . . . 200
5 http://poomedia.com/ad . . . 200 Loaded in iframe
6 http://us.ad2mi.com . . . 302 Loaded in 1x1 pixel iframe
7 http://searchists.com/search . . . 200 JavaScript redirect
8 http://searchists.com/click/ . . . 302
9 http://click.local.com . . . 302
10 http://1389.r.msn.com . . . 302 Ad URL fetch, advertiser charged
11 Advertiser 200

Table 9.3: Example redirection chain corresponding to an auto-clicking module “click” from
November 21, 2013. [...] is a unique number, in this case 1556987547.

directly [149]. In response, the second CF-C&C server sends an HTTP 303 response code, redi-
recting the browser to one of the URLs in the list. At this point, the auto-clicking module inserts
a supplied Referer header and a click chain begins. After a series of redirects, the ad URL gets
fetched, resulting in the advertiser getting defrauded.

Example redirect chain
Table 9.3 shows a redirect chain generated by the auto-clicking module, starting from when the
bot contacts the C&C server to authenticate itself by setting the Host header. In response, the
CF-C&C server at 46.19.137.19 redirects the bot to 1556987547.traffiliator.com.
This URL was present in the original click fraud job list, and the bot now inserts the corresponding
referrer before fetching the URL, which eventually causes a banner to be fetched in an iframe
from poomedia.com. In addition to the banner, poomedia.com also populates the banner
iframe with a 1x1 pixel iframe. This second iframe is loaded with ad URLs and JavaScript code
that automatically fetches one of the links at random. This step results in an ad click, which is
eventually redirected through other publishers to the ad network, and eventually to an advertiser.

Entities
Depending on the syndication arrangement between different parties in a redirection chain, all of
them stand to gain from a fraudulent click that an advertiser pays for, and thus any one of the
publishers may be working with the botnet. Over time, from our observations and others [149],
different versions of this module have been seen to defraud all major CPC ad networks, including
AdCenter, AdWords, 7Search, affinity, and adsimilate. We speculate that this module evades ad
network detection by spreading click fraud across a large number of ad networks to hide the high
volume of click fraud performed.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 109

Since this click fraud is invisible to the end user (unlike the search-hijacking click fraud mod-
ule), the user is unlikely to convert. Given that, the use of smart pricing (cf. Section 6.2) should in
theory discount such malware-driven clicks. However, because of the large number of hops in the
syndication chain and the JavaScript redirects that hide the true length or source of the origin of the
traffic, it becomes extremely difficult for an ad network to identify that the traffic is being driven by
a malware source, as the click fraud traffic mixes in with other legitimate (and converting) traffic
from its known syndicators, thus undermining the use of smart-pricing.

9.5 Serpent: The Search-Hijacking Module
The search-hijacking module interposes on a user’s normal interaction with various search engines
in order to redirect the user to an advertisement that generates the botmaster revenue. Such search-
hijacking represents a more sophisticated type of click fraud. Whereas the auto-clicking module
simulates a real user, the search-hijacking sends a real user to the advertiser. Because the adver-
tiser’s site is relevant to the user’s search query, the user may in fact interact with the advertiser’s
site and trigger a conversion, as described in Section 8. We describe the module’s search-hijacking
behavior in more detail next, and then report on our analysis of this module.

Behavior
Once loaded, the module monitors the the interaction between the user on an infected PC and the
browser, waiting for the user to issue a search query to a search engine (Step Ê in Figure 9.2).
We have confirmed that the module recognizes and hijacks Web searches performed using Google,
Bing, Yahoo, Ask, and ICQ Search. The module captures the query terms, while allowing the
query to go through to the intended search engine (Step Ë). At the same time, the query terms
are sent to the search-hijacking module’s C&C (SH-C&C) server to retrieve a list of ad URLs to
be used for later hijacking (Step Ì). When the user clicks on a search or ad result (Step Í), the
normal click is hijacked and the intended URL is replaced with the replacement ad URL retrieved
from the SH-C&C server (Step Î). The browser then fetches and renders the replacement URL
instead of the intended search result URL (Step Ï). Although not shown in the figure, retrieving
the replacement URL may involve a chain of HTTP and JavaScript redirects. Table 9.4 gives an
example redirect chain of a click issued by the module.

The replacement and redirection process operates invisibly to the user. An unsuspecting user
will believe that the resulting page corresponds to the search result or ad on which the user clicked
on the search result page. It is important to note that neither the advertiser nor the ad network used
in the hijacked click may be aware that search-hijacking took place. From their point of view, a
hijacked user appears no different from a user arriving via normal search syndication.

Unlike traditional click fraud, such search-hijacking actually delivers a user to the advertiser.
Such a user may interact with the advertiser’s site and even convert, as described in Section 6.2.
Because some fraction of the users will convert, smart pricing may treat traffic from the affiliate
engaged in search-hijacking as legitimate and pay for each click.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 110

Module

Search
engine

HTTP GET

(search results)

HTTP GET

Intended
server

Hijack!

bike

Browser

SH-C&C

HTTP GET

(AD URLs)

2

3

1

4

5

6

Unwitting advertiser’s site

HTTP 200 (success)SA
LE!

Figure 9.2: Behavior of the search-hijacking module. Step Ê: A user enters a term into a search
engine. In this example, the user searches for “bike”. Step Ë: The user’s browser performs an
HTTP GET for that term. In response, the user is presented with the unaltered search result from
the search provider. Step Ì: In parallel to the user search, ZeroAccess sends the search term
(“bike”) to the ZeroAccess SH-C&C server. Step Í: The user clicks on a search result on the
unaltered results page. Step Î: ZeroAccess intercepts the click. Rather than going to the intended
click destination, the user is sent to one of the ad URLs supplied by the ZeroAccess SH-C&C in
Step Ì. Step Ï: The user’s browser displays the result of the ad click, an advertising landing page
related to their original query (“bike”).

Command and Control
The search-hijacking module’s command-and-control (SH-C&C) protocol uses HTTP with a hard-
coded set of server addresses. We now detail the different elements of this protocol.

Commands

The primary purpose of the SH-C&C channel is to retrieve a list of replacement URLs to which the
user will be redirected when clicking on a query result. When the user performs a search engine
query, the module makes an HTTP GET request to a SH-C&C server (Step Ì in Figure 9.2).
The HTTP GET request string is formed as shown in Figure 9.3. The user search terms, together
with additional parameters is first formatted using standard URL parameter encoding, using the
printf-style format string:

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 111

Hop URL Status Code

1 217.23.3.223/. . . 302
2 http://feed.hype-ads.com/. . . 302
3 http://search.freshcouponcode.com/search.php. . . 200
4 http://c.freshcouponcode.com/redrct.php. . . 200
5 http://c.freshcouponcode.com/click.php. . . 301
6 http://nn.xdirectx.com/clicklink.php. . . 302
7 http://2478799.r.msn.com/. . . 302
8 Advertiser 200

Table 9.4: Example of a redirect chain corresponding to a “click” issued by the search-hijacking
module on November 14, 2013. Non-final hops with 200-level status codes trigger Javascript or
Flash-type redirects.

Figure 9.3: Encoding of a ZeroAccess search-hijacking module search request. When the user
issues a search query, the module requests a list of URLs to which the user should be redirected.
The user’s query and other module parameters are combined using the standard URL parameter
encoding scheme. The resulting string is then Base64-encoded and padded by prepending 13 and
appending 10 apparently random Base64 encoding characters. The resulting string is then used to
form the HTTP GET request to the SH-C&C server. (Values denoted “· · ·” have been truncated for
space in this example.)

v=5.4&id=%08x&aid=%u&sid=%u&q=%.*s&eng=%.*s&os=%s&br=%S&s=%u

The parameter string is then encoded using Base64 encoding and padded with 13 randomly-
generated5 characters at the front and 10 similarly-generated characters at the end. The length
of the padding is such that a trivial decoding of the entire string does not reveal the contents of the
message. The resulting string is then sent to the SH-C&C server in the HTTP GET request.

5The malware generates the padding characters using the Windows random number API.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 112

IP Address v= Pseudo-Domain Purpose

195.3.145.108 5.4 dclixvfpttrlcnindvrnyeic.com Search request
5.4 evtrdtikvzwpscvrxpr.com
5.3 atenrqqtfrzozqrqbdzwkxzyuc.com

83.133.120.186 5.4 gozapinmagbclxbwin.com Search request
5.4 nbqkgysciuuhadgpjfquvpu.com
5.3 cjelaglawfoyidgyapv.com

83.133.120.187 5.4 jpciukjdkqxgreoikpgya.com Search request
5.4 qhdsxosxtvmhurwezsipzq.com
5.3 omakfdwkhrpqudxvapy.com †

217.23.3.225 5.4 hzhrjmeeczcgxodmqyz.com Search request
5.4 fnyxzjeqxzdpeocarhljdmyjk.com
5.3 sqdfmslznztfozshtidmigmsbh.com †

217.23.3.242 5.4 vdlhxlmqhfafeovqohwrbaskrh.com Search request
5.4 nmfvaofnginwocnidecxnpcs.com
5.3 euuqddlxgrnxlrjjbhytukpz.com †

188.40.114.195 2.1 qvhobsbzhzhdhenvzbs.com Click confirmation
188.40.114.228 ∗ 2.1 mbbcmyjwgypdcujuuvrlt.com Click confirmation

2.0 wuyigrpdappakoahb9.com
217.23.9.247 6.1 vzsjfnjwchfqrvylhdhxa.com Flash player identification

5.8 vjlvchretllifcsgynuq.com
83.133.124.191 ∗ 5.6 chvhcncpqttfpcibtmetg.com Flash player identification
178.239.55.170 1.2 jgvkfxhkhbbjoxggsve.com Unknown / JavaScript injection
83.133.120.16 1.2 xlotxdxtorwfmvuzfuvtspel.com Unknown / JavaScript injection

1.1 mkvrpknidkurcrftiqsfjqdxbn.com
83.133.124.191 — ezcfogjitbqwnornezx.com Fallback

— rwdtklvrqnffdqkyuugfklip.com
— uinrpbrfrnqggtorjdpqg.com

188.40.114.228 — jzlevndwetzyfryruytkzkb.com Fallback
— glzhbnbxqtjoasaeyftwdmhzjd.com
— kttvkzpwufmrditdojlgytxyb.com

46.249.59.47 — loanxohaktcocrovagkaa.com Fallback
— mxyawkwuwxdhuaidissclggy.com
— erspiwscuqslhjflgbbgcfbc.com

46.249.59.48 — spujplpdupiwbghiedhqeja.com Fallback
— xttfdqrsvlkvmtewgiqolttqi.com

217.23.9.140 — dxgplrlsljdjhqzqajkcau.com Fallback

Table 9.5: Pseudo-domains and IP addresses extracted from the search-hijacking module via mal-
ware executions and reverse engineering. The v= column shows the value of the v argument
used in requests. The Purpose column lists the class of commands sent to the SH-C&C server.
Communication attempts to (and DNS requests for) Fallback IP addresses occur when the mal-
ware is unable to establish communication with a pseudo-domain selected for another function.
When this occurs, the original SH-C&C message is sent to the fallback IP address. In this case, a
pseudo-domain corresponding to the fallback address does not appear in the HOST field; instead,
the original pseudo-domain appears. Pseudo-domains labeled with † were discovered via reverse
engineering, but not verified in observations of network requests, presumably due to limited exe-
cutions. IP addresses labeled with ∗ reflect addresses that were unexpected given the associated
pseudo-domains. This anomalous behavior occurred in a very small number of executions, per-
haps due to some kind of bug, or related to the fallback domains. We inferred the IP addresses
associated with predicted but not observed pseudo-domains via the de-obfuscation algorithm.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 113

IP Address Location

217.23.3.223 Netherlands
83.133.127.85 Germany

Table 9.6: IP addresses of the first hop servers in the ad click redirection chain for the search-
hijacking module.

Primary Rendezvous

Hardcoded into each version of the ZeroAccess search-hijacking module is a list of .com domains
of the form shown in Table 9.5. However, these domains are not resolved in the usual way using
the Domain Name System. Instead, each domain encodes an IP address directly. To make the
distinction clear, we call these pseudo-domain names. To obtain the IP address of a command-
and-control server, the module decodes one of the pseudo-domain names to an IP address using
the following algorithm given in which we extracted from the module binary.

1 from binascii import crc32
2 from struct import pack
3 from socket import inet_ntoa
4
5 def deobfuscate_domain(d):
6
7 b0 = crc32(d[0:5],0x7E873D53) & 0xFF
8 b1 = crc32(d[5:9],0x570848EB) & 0xFF
9 b2 = crc32(d[9:12],0x768772F3) & 0xFF

10 b3 = crc32(d[12:17],0x4775114F) & 0xFF
11
12 ip_as_int = b0 + (b1 << 8) \
13 + (b2 << 16) \
14 + (b3 << 24)
15 packed_ip = pack(’<I’, ip_as_int)
16
17 return inet_ntoa(packed_ip)

In addition to decoding to an IP address, the domain name may have been used for authentica-
tion as described in the next section.

Table 9.5 lists all pseudo-domain names and their associated IP addresses and domain names
associated with the search-hijacking module that we observed. In addition, Table 9.6 lists the IP
addresses of the first hop servers in the search-hijacking ad click redirection chain.

Authentication

Normally, an HTTP interaction progresses as follows: (1) the browser resolves the domain name in
the URL (e.g., www.google.com) to an IP address; (2) the browser connects to the Web server

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 114

at the given address; (3) in its request, the browser sends a Host header specifying the domain
name. Instead, the bot client skips the first step and from the pseudo-domain directly extracts the
associated IP address encoded in the name. It then connects to the Web server and still includes a
Host header with the pseudo-domain, even though it never resolved that name, and in fact could
not since the name is unregistered in some cases.

During our early exploration of the botnet, we observed that manipulating or removing the
Host header resulted in the SH-C&C protocol responding to messages with errors. After subse-
quent updates to the SH-C&C protocol, however, we were unable to reproduce this behavior.

This behavior, when active, could reflect usage of the domain name as way to authenticate
legitimate bot clients to the SH-C&C server. No normal Web browser can reach the server via the
domain name since it is not registered; and presumably no scanner trying to find Web servers will
know which domain name to include in the Host header to look like a bot client.

Encryption

In response to a SH-C&C message, the server sends back an HTTP octet-stream of RC4 encrypted
ciphertext. The response to search result C&C requests, once decrypted, provides a list of 0-or-
more replacement ad URLs. These URLs are used in Step Î of the hijacking process.

The target for each ad URL is a first hop ad server (Table 9.6), which when visited will begin
a 302-redirect chain. Along with this ad click URL is another URL to be used as a forged Referer
field in the subsequent ad fetch.

Rate Limiting

During our interaction with the ZeroAccess SH-C&C we observed advertisement click rate lim-
iting. When we performed frequent searches from a particular IP address, the SH-C&C initially
returned a large (more than 5) number of ads per query. The more we interacted with the adver-
tisements, though, the fewer ads were returned from subsequent servers. Specifically, we observed
rate limiting across the following dimensions independently: source IP address, search term, and
affiliate ID.

Rate limiting based on IP address or affiliate ID may imply the botnet attempting to limit the
amount of fraud performed by a particular entity, in order to avoid detection. Rate limiting based
on search term may reflect a limited supply of relevant ads for a particular term.

Secondary Rendezvous

Prior to establishing a connection to an IP addresses derived from an obfuscated SH-C&C domain,
the ZeroAccess malware performs a DNS request (an A-Record) for the domain. This DNS
request is generated by the ZeroAccess malware, and does not use any of the traditional Windows
API’s for resolving domains. The request always has DNS transaction ID 0x3333 and is always
sent to Google’s DNS server at 8.8.8.8.

Through both static reverse engineering and live malware executions, we have been unable to
ascertain the purpose for this DNS activity. When a new version of the search-hijacking module

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 115

is released, the domains associated with that module are generally not registered. Throughout the
lifetime of the module various domains will become registered, sometimes by security researchers.
However, the behavior of the ZeroAccess malware does not appear to be affected by the response
to these DNS requests. The malware never uses the IP addresses returned by these queries, and its
execution continues independent of the resolution status of the domain.

Other malware families have used similar functionality as a secondary rendezvous utilized to
regain control of the botnet in the event of a takedown [87]. Although we do not believe the current
ZeroAccess versions have such behavior, we are unable to definitively rule out such behavior.

Additional Functionality

In additional to the primary SH-C&C message that sends search terms and receives replacement
ad URLs, there are three other distinct types of SH-C&C communication. The four SH-C&C
messages have the same behavior with respect to how messages are formatted, obfuscated, and
encrypted. These messages correspond with the Purpose categories in Table 9.5. Each of the four
message types use the same primary rendezvous technique, although each pull from a distinct set
of domain names.

The three additional SH-C&C messages have the following syntax:

v=1.2&id=%u&aid=%u&sid=%u&os=%s
v=6.1&id=%08x&aid=%u&sid=%u&os=%s&fp=%s&ad=%u
v=2.1&id=%08x&aid=%u&sid=%u&kw=%s&url=%s&ref=%s&os=%s

Click confirmation: After a user’s click is hijacked, the malware sends a message of type v=2.1
to a SH-C&C server, reporting the click URL as the URL parameter. In response to this message
the SH-C&C server may direct the malware to perform additional clicks.
Flash player identification: Messages of type v=6.1 report the user’s Flash Player version to
SH-C&C servers. The version is relayed via the fp parameter.
Unknown / JavaScript injection: The intended purpose of type v=1.2 messages is unknown.
In practice these messages occur far less frequently than the other types of communication. In re-
sponse to this message from the malware, the SH-C&C will occasionally respond with ad network
JavaScript, which we suspect is then injected into webpages viewed by the user.

Module History
Between May 2013 and November 2013 we have observed two distinct versions of the search-
hijacking module (independent of changes to the included pseudo-domains). Initially (May and
part of June), the v parameter observed in search request messages was 5.3. During this time
the response to search queries was a list of plaintext advertisements. In June, the value of the v
parameter changed to 5.4, and the response to search queries took on the encrypted form described
above.

The v identifier for the other three categories of commands has also changed over time, as
shown in Table 9.5.

CHAPTER 9. THE ZA AUTO-CLICKING AND SEARCH-HIJACKING MALWARE 116

We have also examined samples that had different pseudo-domain names hardcoded into them.
Despite including different pseudo-domain names, the names generally decode to the same set of
IP addresses.

Advertising Networks
Over time, from our observations and others [149], this module has been seen to defraud a large
number of ad networks, including 7search, Affinity, Domain Development Corporation and Hoist
Media. Some of these ad networks overlap with those seen defrauded by the click fraud module,
but some we have only seen defrauded by the search-hijacking module.

9.6 Summary
In this chapter we have described two ZeroAccess modules, the auto-clicking module that performs
traditional click fraud by simulating user clicks on advertisements, and a more recent search-
hijacking module, which intercedes upon user clicks on Web search results, instead sending the
user to an advertisement related to the search. In both cases, the botmaster stands to earn a com-
mission from the click. We documented technical specifics for both forms in detail, including key
infrastructure components (domain names and IP addresses corresponding to C&C servers) we
have discovered via reverse-engineering of the modules and by observation of the malware’s live
execution.

117

Chapter 10

Characterizing Large-Scale Click Fraud in
ZeroAccess

10.1 Introduction
Click fraud is a scam that hits a criminal sweet spot by both tapping into the vast wealth of online
advertising and exploiting that ecosystem’s complex structure to obfuscate the flow of money to
its perpetrators.

In this chapter we illuminate these problems by characterizing the click fraud perpetrated by
ZeroAccess. Active in a variety of forms since 2009 [56], ZeroAccess was one of the largest botnets
in operation, commanding an estimated 1.9 million infected computers as of August 2013 [109].
More importantly, ZeroAccess was particularly known for monetization primarily via click fraud
(with losses to advertisers estimated at $2.7 million per month [149]). However, while the technical
aspects of ZeroAccess’s design and operations (e.g., infection vector, peer-to-peer C&C protocol)
are well documented [56, 109, 149, 150], the nature of its click fraud behavior and the attendant
monetization has seen less study. In part, this is because such analyses require a range of disparate
vantage points, including of the botnet itself, of infected hosts, and of impacted publishers.

By combining an array of data sources, including peer-to-peer measurements, C&C telemetry
from botnet infiltration, and click information from one of the top ad networks, we have constructed
a deep analysis to illuminate the rich, intertwined nature of modern click fraud and the advertis-
ing ecosystem it exploits. In particular, our work makes three contributions: First, we provide a
detailed description of the click fraud component of ZeroAccess, the innovations it introduced in
hijacking high-quality user search traffic, and the side effects by which we were able to track its ac-
tivity. Second, we show how to match botnet membership data, network telemetry, and ad network
click streams using a combination of timing information and reactions to external events (in this
case the Microsoft-initiated takedown of ZeroAccess click fraud infrastructure and the botmaster’s
immediate responses). Finally, using this technique we identify with high confidence 54 individual
“ad units” (here roughly corresponding to distinct traffic sellers) whose traffic volume (and hence
revenue) was predominantly rooted in ZeroAccess. By anchoring our analysis in these ad units,

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 118

we roughly estimate that the botnet produced on the order of a million fraudulent clicks a day,
plausibly inducing advertising losses on the order of $100,000 per day. However, the uncertainties
involved in extrapolating to this global picture loom large enough that we must caution that this
reflects a coarse-grained estimate, and accordingly we discuss the challenges involved in forensic
accounting of click fraud payouts.

Taken together, this chapter illustrates the complex nature of the click fraud problem and high-
lights the need for much better mechanisms for correlating traffic and payment streams.

This chapter is based on work that appeared at the ACM Conference on Computer and Com-
munications Security (CCS) [115].

10.2 Data Sources and Quality
Our study draws upon extensive, disparate sets of data. The individual datasets all suffer from
limitations or skews of various forms. Constructing our large-scale picture in a sound fashion
frequently requires cross-correlating different data sources in order to filter out spurious activity
and bring out the underlying signals that reflect different facets of ZeroAccess’s click fraud activity.
In this section we sketch each of the data sources, our use of it, and its associated data-quality
issues. A summary of all data used in this study is given in Table 10.1.

Click data. Via our partnership with one of the top ad networks, we acquired access to the
“clicks” that the network logged from Nov 28–Dec 6 2013, spanning the Takedown event. The
ad network views this data as highly sensitive from a business perspective and thus in our study
we use the data at reduced fidelity and present certain facets of it only in relative terms rather than
using absolute values.

In abstract terms, each “click” datum consists of a count of ad-following Web requests observed
arriving at the ad network from a given source, during a given interval, and associated with a given
ad unit. In the context of this work, an ad unit maps roughly to distinct traffic sellers. In particular,
our click data aggregated individual clicks into tuples consisting of 〈 one-hour interval, /24 subnet,
ad unit, count 〉. We believe this data to be of high quality: none of our analyses or cross-checks
raised questions regarding any potential inaccuracies or missing values.

Ad unit data. Our ad network partner also provided information for selected ad units in terms
of the conversion percentage for their ads, and their mean and median smart-pricing discounts,
with these latter being in normalized form so as not to reveal sensitive business information. The
data included those ad units we identified as very likely tainted by ZeroAccess activity, as well
as two randomly sampled populations of comparable size, and global baseline figures aggregated
across all ad units.

This data covers the same time period as the click data discussed above. It allows us to ex-
plore the relative effects of ZeroAccess’s activity compared to regular ad unit costs and conversion
efficacy.

ZeroAccess DNS telemetry. As discussed previously, vestigial code in Serpent’s modules
leads it to issue DNS requests to a number of different domains based on its current activity. Each
different Serpent function has a different set of domains associated with these lookups; as far as our

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 119

Dataset Granularity Quantity
ZA DNS telemetry, Dec 1–Dec 4

Timestamp millisecond 16,208,758
Domain Full query 12
IP /24 336,609

Supernode data, Dec 1–Dec 6
Timestamp millisecond 260,811,204
IP /32 1,137,118
IP /24 637,736
Bot type 32/64 bit OS 2

ZA module distribution, Jun 18–Apr 25
Timestamp second 51
Module ID 64-bit ID 51
Module MD5 Full MD5 sum 51

Milker data, Sept 10–Dec 5
Ad replacements Full URL 1,766
Redirects Full URL 10,796

Click data, Nov 28–Dec 6*
Timestamp hour buckets Over 10TB

of raw ad
server logs

IP address /24
Clicks hourly sum
Ad unit Anon ID

Ad unit data, Nov 28–Dec 6*
Timestamp hour buckets Around 2TB

of raw ad
server logs

IP address /24
Clicks hourly sum
Ad unit Anon ID

Table 10.1: Summary of datasets used in our study. *Precise quantities for click and ad unit data
intentionally omitted due to business sensitivities. We only use this data in aggregate.

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 120

extensive analysis could tell, the malware chooses randomly among the set for a given function.
The malware does not process any replies it receives for associated DNS requests, and thus does
not even require that the domains exist.

Indeed, during our study most of the domains did not exist. Beginning on Nov 28 2013 we
registered all such ZeroAccess domains not already registered (6 out of 12), and immediately began
receiving queries for them. The queries all came from Google’s public DNS server, 8.8.8.8,
and thus nominally did not identify the associated ZeroAccess system. However, Google includes
support for an EDNS0 option [32] that identifies the subnet originally associated with requests that
resolvers such as theirs issue. Thus, our data from this source has the form of tuples consisting
of 〈 timestamp, domain, /24 subnet 〉, where the timestamp has high precision (sub-second) as
recorded at our DNS server.

The domains we registered included 3 of the 5 associated with Serpent modules reporting that
users had searched, and the sole domain associated with Serpent reporting that a user had clicked
on a substituted search ad. (The other domains related to functionality not relevant for our click
fraud study.)

At first blush this data held promise for illuminating the fine-grained activity of (nearly) each
Serpent infectee. However, extensive analysis of the data revealed that lookups did not have a one-
for-one correspondence to individual Serpent actions. The data also included significant activity
clearly associated with timers, but not so sharply timer-driven that we could readily distinguish it
from legitimate activity. However, the data does provide us with a virtually complete list of IP ad-
dresses associated with ZeroAccess’s Serpent module, which allowed us to cross-check against
ZeroAccess supernode data to assess its completeness.

Supernode data. From a partner we acquired a list of nodes discovered by crawling the Zero-
Access peer-to-peer network from Dec 1–6 2013. Each entry consists of 〈 timestamp, address,
ZA-network 〉, where timestamp is high precision, address is the full /32 IP address, and ZA-
network reflects on which of the two (“32-bit” and “64-bit”) P2P networks the crawl found the
node.

Note that these nodes should reflect a superset of Serpent nodes, since not all ZeroAccess
infectees ran Serpent. Thus, from a click fraud perspective this data is potentially more complete
than that derived from the DNS data described above. However, by cross-checking the /24s seen in
the DNS data with the equivalent /24s seen in this data, we found that the supernode data included
only 200,708 of the 336,609 Serpent /24s. This discrepancy is explained by the design of the
P2P crawl resulting in a incomplete view of the P2P network. Thus we conclude that this data
reflects only about 60% of the entire ZeroAccess population. This shortfall becomes crucial in our
subsequent analysis as we aim to determine which ad units present in the ad network’s click data
clearly had significant ZeroAccess-generated clicks in their traffic.

ZA module distribution information. Beginning on Dec 4 2013, we ran ZeroAccess infectees
in 56 long-running, contained VM environments to allow them to participate in the P2P network
and thus receive module updates. Whenever one of them received a new module, we detected the
event in real-time and captured a copy of the module. This data allows us to track the evolution of
the botnet’s functionality.

In particular, this data source allows us to track the botnet’s partial recovery post-Takedown

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 121

(when the auto-clicking modules were updated), which we use in our subsequent analysis as one
of the signals for identifying ad units whose traffic has significant taint from ZeroAccess activity.
It also allows us to study the blending of Serpent traffic with auto-clicking.

Milker data. Drawing upon extensive reverse engineering, we developed an emulator for the
ZA-C&C protocol used by Serpent to request ads to substitute into those present in a user’s search
results. The emulator enabled us to “milk” ad replacements out of the C&C server by repeatedly
requesting ads from it, though the C&C server appeared to “dry up” in its ability to provide new
replacements after repeated queries. (The rate at which this drought occurred varied.)

Each C&C reply provided a URL to click on (along with a matching Referer). We followed
the URL using a fully functional headless Web browser displaying the curl User Agent (such a
User Agent prevents advertisers from being charged from our seeming clicks), which in general
would continue for each click until it ends at an advertiser’s landing page. In total, we captured
the redirection chains for 1,766 such clicks for a small sampling of search terms we selected from
trending shopping queries. 367 of the clicks transited our partner ad network.

Based on our DNS telemetry correlated with our click data, and supported in part by our small
scale milking experiment, we believe that the global impact of ZA was likely an order of magnitude
larger than seen by our partner ad network.

10.3 Analyzing Fraud
To build up our overall picture of ZeroAccess’s large-scale click fraud activity, we start with the
data most central to assessing ZeroAccess’s impact, namely the Click data provided by our ad
network partner. We then draw upon our other data sources to identify activity (primarily ad units)
associated with ZeroAccess clicks. We employ two main approaches—analyzing the behavior of
sources to the Takedown event, and looking at source “demographics” in terms of which subnets
contribute clicks—and then cross-correlate these two to develop our overall picture.

Takedown Dynamics
The Dec 5 2013 Takedown event abruptly severed C&C for ZeroAccess’s click fraud activity,
which in principle should manifest as a striking change in the activity of any source fueled by
ZeroAccess clicks. We then face the basic question of how to reliably detect this presumably sharp
signal without inadvertently treating benign variations in traffic rates as stemming from Zero-
Access.

Figure 10.1 shows the relative clicks per hour for four exemplary ad units, with the leftmost
vertical line marking Takedown. Here we have partitioned the examples into “good” ad units that
do not primarily receive ZeroAccess traffic and “dirty” ones that do (using a methodology we will
describe shortly). Normal click behavior prior to Takedown exhibits the expected diurnal pattern.
For good ad units, this pattern continues (Figure 10.1a), while for dirty ones, precisely at Takedown
their clicks cease or dramatically decrease (Figures 10.1c and 10.1d).

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 122

●

●
●●

●●●

●

●

●

●

●

●
●

●
●
●●

●
●

●
●

●

●

●

●
●
●●●

●

●

●

●

●●●

●

●

●

●
●
●●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●

●

●

●
●●●●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●●●●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

0 20 40 60 80 100 120 140

Clicks Per Hour: Good Ad Unit. ZA Taint: 0.0269 −> 0.0251

Hours since 2013−11−30 2300 UTC

C
lic

ks

(a)

●

●

●

●

●●
●

●●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●●
●

●

●
●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●●●
●●

●●

●●

●

●
●

●

●

●

●

●●●●
●
●
●●

●
●
●
●
●●

●

●●

●

●

●
●

●●
●
●

0 20 40 60 80 100 120 140

Clicks Per Hour: Good Ad Unit. ZA Taint: 0.1111 −> 0.02

Hours since 2013−11−30 2300 UTC

C
lic

ks

(b)

Figure 10.1: (Figure continued on next page.)

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 123

●

●●●●
●
●
●
●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●
●
●

●●●

●

●●●

●

●

●●●

●
●

●

●

●

●●

●●
●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●
●
●

●

●
●●

●

●
●
●
●
●

●

●

●

●

●
●●

●●
●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100 120 140

Clicks Per Hour: Dirty Ad Unit. ZA Taint: 0.4176 −> 0

Hours since 2013−11−30 2300 UTC

C
lic

ks

(c)

●

●●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●●

●●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●
●

●

●

●
●●

●
●

●

●

●
●
●

●

●

●
●

●

●
●

●●●●
●
●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

0 20 40 60 80 100 120 140

Clicks Per Hour: Dirty Ad Unit. ZA Taint: 0.5608 −> 0.197

Hours since 2013−11−30 2300 UTC

C
lic

ks

(d)

Figure 10.1: Clicks per hour prior to and after Takedown for 4 exemplary ad units. The thick
vertical line marks Takedown (8AM PST, Dec 5 2013). The dotted line to its right indicates the
release by the ZeroAccess botmaster of a new auto-clicking module to counteract the Takedown.
The thinner line to its right indicates the “WHITE FLAG” module release (per Section 8.1). The
plot titles also give the “ZA taint” (Section 10.3) pre- and post-Takedown (per Section 10.3). 10.1a
shows a typical large ad unit that does not see a significant drop in click traffic post-Takedown.
The ad unit in 10.1b exhibits a large drop in traffic that occurred prior to Takedown, highlighting
the surprising benign dyanmics manifest in the data. 10.1c shows an ad unit whose traffic almost
entirely consisted of fraudulent clicks. The ad unit in 10.1d clearly had a substantial proportion of
ZeroAccess traffic, but mixed in with legitimate or non-ZeroAccess clicks.

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 124

However, we cannot simply attribute ZA-dirtiness to any source that precipitously fell at the
time of Takedown, because such behavior also manifests for benign sources (per Figure 10.1b).
Such behavior can be attributed to advertising budget depletion or the end of specific advertis-
ing campaigns. This behavior necessitates the need for incorporating multiple signals to soundly
identify dirty sources.

One such signal concerns the effects of a secondary Takedown event. The dotted line in Fig-
ure 10.1 corresponds to the release of a new auto-clicking module as a response to the attempted
takedown. This module contained new C&C IP addresses, and resulted in auto-clicking click
fraud resuming for a subset of the botnet. We can see that some sources exhibit a spike in activity
coincident with this module’s appearance (Fig. 10.1d) while others do not (Fig. 10.1c).

Armed with these signals, we attempted to robustly identify dirty sources based on statistical
testing. We undertook numerous evaluations looking for robust indications of behavioral shifts.
For example, we compared the volume of each source’s click activity as seen during the hour of
the Takedown (denoted H-hour) versus during the previous hour (H− 1). Using the null hypoth-
esis that the relationship between these counts remained unaffected by the Takedown, we applied
Fisher’s Exact Test to assess the consistency of the shift between those hours as seen on a non-
Takedown day versus that seen on Takedown day.

The test identified a large number of sources with statistically significant deviations in the shift
for those hours, even for quite low p values (e.g., 0.001).1 Manual inspection of the most ex-
treme examples confirmed that many appeared to clearly reflect instances of ZeroAccess-affected
behavior.

However, when we then tested one non-Takedown day against another non-Takedown day,
we likewise found many statistically significant deviations, which clearly had nothing to do with
the Takedown and thus presumably nothing to do with ZeroAccess activity. The clear conclusion
(backed up by manual assessments of exemplars) is that the null hypothesis often fails to hold due
to frequent non-stationarity in the data. That is, a given click source’s patterns from one day to
the next can exhibit striking variations; two separate days are not well-modeled as independent
samples from the same underlying population. (Figure 10.1b shows such an instance.)

This lack of stationarity significantly complicates our analysis, and means that statistical testing
can only serve as a guide to help direct manual analysis due to the risk of false positives. (In
addition, the non-stationarity serves as a caution for applying any sort of training-based machine
learning to the problem of identifying fraudulent ad click sources.)

Subnet overlap
Conceptually separate from the Takedown dynamics, we can seek to identify dirty ad units by
assessing each source’s degree of “ZA taint” (i.e., proportion of individual sources potentially
associated with ZeroAccess activity). This taint can then provide us additional context with which
to interpret a given source’s Takedown dynamics.

1We used a one-sided test since we only had interest in a shift towards an abnormally low H-hour level.

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 125

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pre Takedown Click Volume Vs ZA Taint

H/[H−1]

R
at

io
 o

f Z
A

 ta
in

te
d

su
bn

et
s,

 p
re

 H
 h

ou
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
● ●

●

●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Takedown Click Volume vs ZA Taint

H/[H−1]

R
at

io
 o

f Z
A

 ta
in

te
d

su
bn

et
s,

 p
re

 H
 h

ou
r

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pre Takedown Click Volume Vs ZA Taint

H/[H−1]

R
at

io
 o

f Z
A

 ta
in

te
d

su
bn

et
s,

 p
re

 H
 h

ou
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
● ●

●

●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Takedown Click Volume vs ZA Taint

H/[H−1]

R
at

io
 o

f Z
A

 ta
in

te
d

su
bn

et
s,

 p
re

 H
 h

ou
r

Figure 10.2: Comparison of ad-unit click volume before and after the Takedown hour (H-hour) to
the amount ZeroAccess taint. The left shows this comparison on the day prior to Takedown, and the
right across Takedown. A large population of ad units has both higher-than-average ZeroAccess
taint and also shows a strong shift towards much fewer clicks on Takedown. The harmonics at
x = 0.5, x = 1.0, x = 1.5, etc., arise from ad units with very low click volumes.

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 126

ZA taint. For each ad unit, we consider its full set of clicks. Due to restrictions of the dataset,
we identify clicks based on one-hour granularity and /24 subnet of the source of each click. For
each hour, we compute the proportion of subnets appearing in the ad unit’s traffic that also appeared
during that hour in our Supernode data. We then term the mean value of that proportion as the ad
unit’s “ZA taint”. (We limit this computation to hours up to but not including H-hour, so as to not
skew the taint by the Takedown dynamics.)

Limitations of the supernode comparison. The Supernode data suffers from incompleteness.
By the nature of the ZeroAccess P2P network, no single node has a complete vantage point of
the entire network, and thus the matching for our taint computation may incur significant false
negatives. To gauge the impact of these false negatives, we compared the ZeroAccess supernode
data with our DNS telemetry. Our DNS telemetry gives us complete /24 subnet views of the
Serpent portion of the ZeroAccess botnet, but no vantage of the auto-clicking portion. Still, any
Serpent subnet missing from the Supernode data likely reflects incompleteness in the latter. If we
look for DNS telemetry subnets to show up within 1 hour in the Supernode data, then we find about
an 80% match. If we look for matches within 1 minute, this drops to 60%. Infectees repeatedly
show up in the Supernode data with such frequency that this latter comparison may in fact provide
a better estimate than the former (which allows for a degree of IP address churn to introduce false
positives).

A further limitation of our data is the reduction of address information to /24 subnets, which
results in us tainting all clicks from a given subnet as bad. Such false positives will result in some
benign ad units having increased ZeroAccess taint.

Combining Signals

C
H

A
PT

E
R

10.
C

H
A

R
A

C
T

E
R

IZ
IN

G
L

A
R

G
E

-SC
A

L
E

C
L

IC
K

FR
A

U
D

IN
Z

E
R

O
A

C
C

E
SS

127

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●
● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Takedown H−Hour Click Volume Ratio VS Min Previous H−Hour Ratio

Takedown day H / [H−1]

M
in

im
um

 P
re

vo
us

 H
 /

[H
−

1]

Figure 10.3: Comparison of the stability of traffic drops across H-hour per ad unit. We plot the Takedown H-hour ratio against
the minimum H-hour ratio seen on any other day. We denote ad units with ZA taint≥ 0.4 using solid red circles, and others with
hollow blue circles. Note that we have added small amounts of Gaussian jitter to prevent coincident points from completely
overlapping.

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 128

Given the limitations of the Supernode data, we cannot use the presence of these IPs as a sole
indicator. Instead, we look for ad units that exhibit both a high fraction of ZeroAccess taint as well
as uncharacteristic behavior at the various Takedown-related events.

To combine notions of taint and Takedown response, we calculate the ratio of the amount of
click traffic at H-hour to the previous hour, H

H−1 . Ratios closer to 0 denote sharp drops in traffic.
Dirty ad units might not exhibit a ratio of exactly 0 because of traffic from other sources, or click-
fraud events already “enqueued” from prior to the Takedown.

Figure 10.2 shows a comparison of the traffic-drop ratio to ZeroAccess taint for each ad unit.
We do this for H-hour on both the day before Takedown (left) and the day of Takedown (right). The
first plot shows a population of ad units with higher-than-average ZeroAccess taint centered around
a drop ratio of 1 (no major change across H-hour) on the day prior to Takedown. The second plot
shows a dramatic shift to a greatly reduced volume of traffic at H for that same population of ad
units with high ZA taint, with a large number of them approaching zero traffic.

Figure 10.3 explores the stability of traffic of each ad unit across H-hour over time. We plot
the Takedown traffic ratio across H-hour against the minimum H-hour ratio for all previous days.
Solid red circles denote ad units with ≥ 0.4 ZA taint. A large population of ad units with high
ZeroAccess taint exhibits atypically low H-hour ratios (below 0.5) compared to their previous
minimum (above 0.5). We deem these ad units as likely ZeroAccess dirty.

C
H

A
PT

E
R

10.
C

H
A

R
A

C
T

E
R

IZ
IN

G
L

A
R

G
E

-SC
A

L
E

C
L

IC
K

FR
A

U
D

IN
Z

E
R

O
A

C
C

E
SS

129

●

●
●

●●

●

●

● ● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

● ●

● ●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●●●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

● ●

●
●

●

●
●

●

●●

●

●

●
●

●●

●

●
●

●●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

H−Hour Click Volume Ratio VS R−Hour Ratio

Takedown day H / [H−1]

Ta
ke

do
w

n
da

y
R

 /
[R

−
1]

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

Figure 10.4: Ad unit response to Takedown (X axis, in terms of H-hour ratio) versus to subsequent dissemination of new
auto-clicking module (Y axis, in terms of R-hour ratio). Solid red circles indicate ad units with ZA taint≥ 0.4. Triangles below
the Y origin reflect ad units that had no traffic during either R−1 or R hours. Triangles above Y = 6 had traffic during R-hour
but not during R−1. Note that we have added small amounts of Gaussian jitter to prevent coincident points from completely
overlapping.

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 130

Secondary takedown information. Figure 10.4 shows the behavior of each ad unit across an-
other Takedown event, the distribution of the auto-clicking module shortly after Takedown, which
we denote as R-hour. Not all ZeroAccess infectees ran the new module, but those that did would
result in a dramatic rise in click activity at R-hour compared to just before R-hour; a change in the
opposite direction as what we would observe at H-hour. The figure shows the traffic drop ratio
across R-hour plotted against the drop across H-hour, again using solid red circles to denote ad
units with ≥ 0.4 ZA taint. Clearly, many ZeroAccess-tainted ad units showed sharp reactions to
both Takedown and the advent of the new module.

The distribution of an updated auto-clicking module at R-hour immediately restarted Zero-
Access’s click fraud. We would expect the resumption of click fraud to result in dirty ad units
having low ZeroAccess taint in the time between H-hour and R-hour (since no C&C servers exist
to drive click fraud), followed by a sudden increase in taint at R-hour.

Figure 10.5 compares taint as seen during these two regions of time (H-hour to R-hour, and
after R-hour). The left plot reflects a (presumably typical) non-Takedown day, while the right plot
shows Takedown day. The shift between the two is clear: a large number of ad units that had
significant taint prior to Takedown (solid red) show a jump in pre-R vs. post-R taint, reflecting the
activation of a significant number of ZeroAccess subnets within their traffic.

Finalizing determination of dirty ad units. Using these signals we generated a large set of
potentially dirty ad units, about 2,000 in number. We then manually inspected the activity of each
and produced a list of 54 we deem with high confidence as significantly “dirty” with ZeroAccess
traffic.

10.4 Assessing ZA-Dirty Ad Units
Having identified these dirty ad units, we now employ them as the basis for evaluating the strategy
used by the more sophisticated Serpent module to circumvent smart-pricing. We also leverage this
conservative set of ad units to estimate the total amount of fraud perpetrated by ZeroAccess, an
undertaking that strongly emphasizes the need for better attribution in the ad ecosystem.

Conversions and Smart-pricing
We next use our data to explore potential reasons for why ZeroAccess may have used both auto-
clicking and Serpent styles of click fraud. Recall from Section 8 that ad networks use automated
approaches to either detect (and block) specific click fraud attacks, or mitigate the impact of click
fraud (e.g., through smart-pricing) when ad networks can only estimate the amount of click fraud
in the aggregate. Clearly Serpent, which confuses a real user into clicking, is harder to detect (and
block) than auto-clicking.

We first examine whether we see evidence that Serpent indeed increases the chance of users
converting and, if that is the case, whether the blending of Serpent and auto-clicking avoids the
smart-pricing mitigation.

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 131

●

●

●

●
●

●

●

●

●●● ●● ●

●

●

●● ●● ●●

●

●

●

●

●

●

●

●● ●●

●

●●

●

● ●
●

●●●●●●●● ●● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●● ●●

●

●

●

●●

●

● ●

●

●

●●

●

●●

●

●●

●

● ●

●

● ●

●

●

●

●

●
●●●

● ●

●●●

●

●● ●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●● ●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●●

●
●

●
●

●●

●

●

●●●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●● ●
●

●

●

●

●

●

●
●● ●

●

●●●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
● ●●●● ●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●● ● ●●●

●

●

●

●

●

●

●● ●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●●

●

●

●● ●● ●●
●
●●

●
●

●

● ●●●●

●

● ●●● ●●●● ●●

●

●●●●●

●

●

●● ●● ●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●●●●

●

●

●●

●

● ●

●

●●●●● ●●●

●

●
●

●● ●●

●

●●●

●●

● ●●

●

●

●

●

●

●
●

● ●

●

●● ●●

●
●

●

●● ●
●

●●●●

●

●

● ●● ●● ● ●

●

●●● ●●

●

● ●●●

●

● ●

●

●●●● ●●
●

●●

●

●● ●

●

● ●
●

●

●

●●

●

●

●

●●● ● ●●

●

●

●● ●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●● ●

●

●

●

●

●

●●●

●

●

●

●

●

●●● ●

●

●

●

●●● ●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●● ●●

● ●●

●
●

●●

●

● ●●

●

●●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●● ●●

●

●

● ●

●

●

●●●

●

●●

●

●
●●●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●● ● ●●●

●

●

●
●

●
●● ●●

●

●

● ● ●

●

●

●

●

●

●●●

●

●

●

●●● ●●●●

●

●
●

●

●

●

●●

● ●●

●

● ●

●

●

●

●●
●

●

● ●●●● ●

●
●

●

●

●●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●●

●

●

●●

●

●
●

● ●●

●

●

●

● ●●● ●●●

●

●●

●

●
●

●
●

●
●● ●

●

●●

●

●●

●

●
●

●

● ●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●
●
●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

● ●●

●

●

●

●●●●● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●●●●

●

●

●
●

●

●●● ●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●●

●

●●

●

●● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

● ●●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●● ●●●●●●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●●

●

●
●●

●
●

●

●

●
●● ●●●

●

●
●

●

●
●● ●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

● ●

●

●● ●●

●

●

●

●

● ●●● ●

●
●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●●

●

●●●

● ●
●

●

●
●●

●

●●
●

●●● ●

●

●

●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

● ●●
●

● ●

●

●●●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●● ●●

●

● ●●●

●

● ●

●

●

● ●●● ●● ●

●

●● ●●

●

●●

●

● ●●●

●

●

●

●●

●

● ●●

●

●
●

●●●●

●

● ●●

●

●

●

●

●●

●

●

●●

●

●

●

●● ●

●

●●

●

● ●
●

●

●●

●

●

●

●

●●

●

●

● ●

●●

● ● ●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●● ●

●

● ●
●

●

●●●● ●●●●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●●

●

●●●

●

●

●

●●● ●

●

●

●
●

●

●● ●
●

●

●

●● ●● ●● ●● ●

●

●

●

●

●● ●●

●

●

●

●
●●● ●●●

●

●

●

●● ●

●

●

●● ●

●

●

●

●

●

●
●

●

● ●●

●

● ●● ●

●

●

●

●

●

●●

●

● ●●● ●●

●

● ●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ● ●●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●● ●● ●

●

●

●

●●●●

●

●●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

● ●●● ●●●●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●●● ●● ●

●

●

●●

●●● ●●

●

●

●

●

●

●

●

●

● ●

●● ●● ●●●●● ●●●

●

●●
●● ●● ● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

● ●●● ●

●

● ●

●

●

●

●

●
●

●● ●● ●●

●

●●

●

●●●●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●● ●●

●●
●

●

●

●

●

●
●

● ●● ● ●●

●

● ●●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●●●

●

●

●

●● ●● ●●●

●

●

●

● ●●●●●

●

●

●

● ●●● ●●

●

●

●

●
●

●

●

●

●●

●

●● ●●●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●●● ●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●● ●●●

●

●●
●

●

● ●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

● ●●●

●

●

●

●

●

●

●

●
●●

●
●

●●● ● ●

●

●

●

● ●●● ●● ●●●

●

●●●●

●

●

●
●●

●● ●

●
●

●

●

●

●

●

●

●●●
●

●●●

●

●●

●

●
●

●

●● ●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

● ●●● ●

●

●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●● ●

●

●
●●●

●

●

● ●
●●

●

●●●●●●

●

●

●

●

●

●

● ●●● ●●

●
●

● ●●

●
●

●

● ●●●● ●●

●

● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●●●● ●

●

●

●
●

●● ●

●

●●

●

●

● ●●●

●

●●

●

● ●

●

●

●

●● ● ●●

●
●

●

●

●

●

●
●

●●●●●

●

●●●●

●

●●●●

●

●

●

●

●●

●

●

●

●

● ● ●
●

●

●

● ●●●●●● ●● ●

●

●

● ●●●● ●

●

●

●

● ●

●

●●

●

●

●●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●●

●

●●

●

●

●

●

●
●

●●

●

● ●●

●

● ●● ●

●
●

●

●

●

●
●●●

●

●●

●●● ●●

●

●●

●

●

●

●

●●● ●

●

●

●

●
● ●●

●

●
●

●
●

●

●

●

●
●

● ●●

●

●

●

●●

●

●

●

●● ●●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●● ●●

●

●
●

●

●

●

● ●●

●

●

●

●
● ●

●

●

●
●

●

●

●

●● ●●●

●●
●● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●●

● ●

●●

●●●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●●

●

● ●●●● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●● ●

●

● ●● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●● ● ● ● ●

●

●

●●

●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●●

●

● ●●●●
●

●

●

● ●

●
●

●

●● ●

●

● ●

●

●

●

● ●

●

●

●●● ●●

●

●

●

●●
●

●

●

●●● ●●●

●

●

● ●●

●

●

●

●

●

●

●

●●● ●

●

●

●

● ●●

●

●●

●

●● ●● ●●

●

●●

●

●

●

●

●

●

●●● ●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●● ● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●● ●●

●

●

●
●

●●●

●

●● ●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●●

●

●●

●

●●● ●●

●

●

● ●●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●● ●●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ● ●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●● ●●● ●

●

●

●

● ●●●

●

● ●●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●● ●

●

●

●●

●

●

●

● ●●

●

●
●

●● ●

●

●

●● ●● ●●

●

●

●

● ●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

● ●●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

● ●● ● ●● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●● ●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●● ●
●

●

●● ●● ●●●●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●●●

●

●

●

●

●

●

●●●●

●
●

●●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●●●

●

●

●

●
●

● ●●●●●●●

●

●●

●
●

●● ●●●●●

●

●
●●●

●
●●●

●

●

●

● ●●●●● ●

●

●

●

●

●●● ●

●

●● ●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●
●

●

●● ● ●

●

● ●

●

● ●

●

● ●●

●

●

●

●●●

●

●

●

●● ●

●

●● ●● ●
●

● ●●

●

●

●

● ●●

●

●● ●●

●

●

●

●●●

●

● ● ●

●●

●

●●●

●●

●

●●● ●

●

●●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●●● ●

●

●

●

●

●

●

●

●●

●

● ●●●●

●

●

●

●
●

● ●

●

●

●

●

● ●

●●

●

●
●●

●

●

●

●

●●

● ●

●● ●●

●

● ●

●

●

●

●

●

●

●

●●
●

● ●●

●

● ●

●

●

●

● ● ●

●

●●

●

● ● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●●●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●

●

● ●

●●

●●● ● ●

●

●

●

●●

●

●
●

●

●

●

● ●● ● ●● ●● ●●● ●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●●● ●

●

●

● ●

●
●

●

●● ●● ●●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●●

●

●

●●

●

●●●

●

●●

●

●

●●●

●

●●●●

●

●

●
●

●

●

●

●

●

●●●
●●
●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ● ● ●

●

● ●●●●●

●

●

● ● ● ●●

●

●

●
●●●

●
●●●

●

●●

●

●● ●●● ●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●
● ●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●●● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●●●● ●●●●

●

●

● ●

●

●

●●

●

●

●

●

● ●●● ●
●

●

●

●

●

●
● ●

● ●

●

●●●●
●

●

●

●●● ●●

●

● ●●●● ●

●

●

●

●●●●●●● ●● ●●●● ●

●
●

●●

●

●

●● ●●●● ● ●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●● ●● ●

●

● ●
●●

●

●

●● ●●

●

● ●

●●

● ●●●●●

●

●●●

●
●

●

●●

●

●

●

● ●●
●

●

●

●

●●●

●●

●●●●●●●● ● ●

●

●

●

● ● ●● ●● ●●

●

●
●

●

●●

●

●

●

●

●

●●

● ●

● ●

●

● ●

●

●●

●

●

●

●● ●
●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●●

● ●●●

●

● ●

●

● ●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●
●

● ●

● ●

●

●

●
●

●● ●●

●

●

●

● ●●●

●

●

●●● ●●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

● ●
●

●

●

●●

●

●●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

● ●

●

● ●

●

● ●●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●●●

●

●●

●
●

●

●

●

●●●

●

●●

●

●

●

●● ●●●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●●●

●

● ●

●

● ●

●

●

●

●

●

●

●● ●

●

● ●● ●●● ●●●

●

●

●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●●● ●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●● ●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●●

● ●
●

●●

●

●●

●●●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●●●● ●●●●● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●●●

●

●

●

●● ●

●
●

●

●

●

●
●

●●● ●●

●

●
●

●

●

●

●

● ●●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●● ●●● ●

●

● ●

● ●

●

●

● ●

● ●

●
●

● ●●

●

●● ●●●●

●

●

● ●

●

●●

●
●

● ●●●● ●●●

●
●

●

●●● ●●● ● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●
●

● ●

●

●

●
● ●

●

●

●
●

●

●
● ●

●

●

● ●

●

●

●

●●

●

●

● ●●

●

●

●●●●●●

●

● ●

●

●●● ●● ● ●●

●

●

●

● ●

●

●
●

●●●

●

●

●

●

●

● ●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●● ● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●● ●●● ●● ●●● ● ●●

●

●

●●●● ●●
●

●

●

●
●

●

●

●● ●●

●

●●●

●

●

●●

●

●●

●

●
●

●●

●

● ●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●● ●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●●●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●● ●

●

●

●

●

●● ●● ● ●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●●

●

●● ●
●

●●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

● ●●●●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●● ●●●

●

●

●

● ● ●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

● ●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●● ●●●

●

●●●●●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●● ●●●

●

●

● ●

●●

●

●

●

●● ●

●

●

●

●●

●
●

●●●● ● ●●

●

●

●

●

●

●

●

●●

●

● ●● ●●●
●

●

●
●

●●

●

●● ●●●

●

●
●

●

●

●

●

●
●

●

●

●●
●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●●

●
●

●

●

●

●

●

● ●●●● ●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●●

●●

● ●● ●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●● ●

●

● ● ●●● ●●● ●● ●● ● ●

●

●● ●● ●

●

●

●

● ●

●

●

●
●

●●●● ● ●● ●●●

●

●

●

●

●●●●

●

●

●

●

●● ●●●
●

● ●● ●

●

●

●

●●● ●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●●

●

●

●

●

●● ●●

●
●

● ● ●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZA Taint Prior To Takedown

ZA Taint Hours H−>R−1

Z
A

 T
ai

nt
 H

ou
rs

 R
−

>
R

+
4

●

●●

●

●

●

●

●

●●●

● ●

●

●

●●● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●●●●●●

●

●●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●●● ●●

●

● ● ●●

●

●
●

● ●●● ●

●

● ●●

●

●●

●

●●

●

● ● ●●●

●

●

●

●

●
●

●

●

●●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●●●●

● ●● ●
●

●●

●

●

●

●

●

●

●

●

● ●●
●

● ●
●

●●

● ●

●

●

●

●

●

●

●

●● ●
●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●●

●

●

●

●● ●

●

●

●●●

●

●

●

●●

●

●

●●

●

● ●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●● ● ●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●
●●●●

●

●●● ●●●
●

●●

●

●

●

●●●●●

●

● ● ●●

●
●

● ● ● ●

●

●
●●●

●

●

●● ●●●●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●●
●

●

●
●

●

●

●
●

●
●

●●● ●●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●●

●

●

●

●

●● ●

●

●
●

●● ●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●
●●

● ●
●

●

●

●

●●● ●● ●●

●

●●● ●●●● ●

●

●

●

●

●●● ●●●● ●●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●●● ●

●

●

● ●● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

● ●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

● ●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●●

●

● ●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ● ●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

● ●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●● ●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

● ●●

●

●

●
●

●●●●

●

●

●

●
●

●●

● ●

●

●

●● ●● ●●

●

●
●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●

●●

●● ●●

●

●
●

●●●

●

●

●

●

●

● ●●

●

● ●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

● ●●●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

● ●●

●

●

●

● ●
●

●

●
●
●

●

●

●●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●

●

● ●● ●

●

●

●

●

●●

●

●● ●

●

● ●
●

● ●●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

● ●●●
●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●

●● ●●●

●

●● ●

●

●

●

●

●

●● ●●●

●

●

●

●

● ●

●
●

●

●● ●

●

●

●● ●

●
●

●

●●● ●●●

●

●

●

●●

●

●

●
●

●

●●

●
●

●●●

●

● ●●

●

●

●●

●

●

●

●

●
●

●

●● ●●●

●

●●● ●

●

●●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●● ●● ● ● ●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●

●

●
● ● ●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

● ●●●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●● ●●

●

● ● ●●●●● ●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●● ●● ●●

●

●

●

●
● ●

●

● ●●● ● ●

●

●●

●

●

●
● ●●

●

●

●

●●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●●●●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●●● ●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

● ●●

●●●●

●

●

●

●

●

●●

●

● ●

●

●●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

● ●●● ●●

●

●
●

●
●

●

●
●

●

●

● ● ●

●

● ●●

●

●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●●

●

● ●● ●

●

●

●

●●

●

● ●

●

●

●

● ●●●

●

●●

●

●

●

●

●

●

●

●● ●

●

● ●●●

● ●

●

●

●

●

●
●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●●● ●●●

●
●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●
●

●
●

●

●

●● ●

●

●●●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●●●

●

● ●●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

● ●●● ●●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●● ●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●

●

●

●

●

●● ● ●●●
●

●

●●

●

●●

●

●

●

●

●

●●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●● ●●●
●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●

●

●

●

●

● ●● ●●●● ●● ●●

●

●
●● ●

●

●● ●●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

● ● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

● ●●●●

●

●
●●

●

●

●

●

●

●

●●● ●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●● ●

●

● ●●

●

●

●

● ●
●

●● ●

●

●

●

●● ●●●

●

●●● ● ●●●●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●●●

●

●●

●

● ●

●●●●

●

●●● ● ●

●

●

●

●

●

● ●

●

● ●

●

● ●●● ●●● ●●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ● ●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●
●●●

●

●

●

●

●

● ●

●
●

●●

●

●●●

●

●● ●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●●

●
●

●

●

● ●
●

●
●

●

●

●●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ● ●●●

●

●

●

●●
●

●

● ●

●

●

●

●

●●●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●●●● ● ●●●

●

●

●● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●

●●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●●●

●

●
●

●
●●● ●

●

●

●
●

●

●

●

● ●● ●

●

●

●

●●●●
●

● ●

●●●

●

●

●

●●● ●●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
● ●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●●

●

● ●●

●

●

●

●●● ●●

●

●

●

●

●●●● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●●●
●

●

●

●

●

●● ●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

● ●
●

●

●●●

●

●

●
● ●

●

●

●

●●●

●

●

●

●

●

●●
●

● ●●

●

●

●

●
●

●

● ●

●

●●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●●

●
●●

●

● ●●

●

●

●

●

●

●

●

●●

● ● ●

●
●

● ●●
●

●● ●●● ●● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●●●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●●●●

●

●

●

●

●

●● ●

●

●

●● ●●

●

●●● ●

●

●

● ●

●

● ● ●● ●

●

●

●

●●● ●●●

●

● ●●●●●●

●

●

● ●

●

●●●●● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

● ●●● ●

●

●

●
●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●
●

●

●

●

● ●●●● ●

●

●

●

●●●

●

●

●●

●

●

●

●
●

● ●

●

●●

●

●

●

● ● ●●

●

●●

●

●●● ●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●●

●

●

●

●●

●

● ●

●

●● ●

●

●

●
●

●

●

●

●●

●

●

●
●

●● ●● ●●●

●

●

●

●

●

●

●
●

●●●● ●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●● ●●

●

●

●●

●

●●●●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●●

●

●● ●●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
● ●●

●

●

●
●

● ● ●●●

●

●

●

●

●
●● ●●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●●
●

●

● ●●●

●

●

●
●

●
●●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●● ●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●●●●● ●●

●
●

● ●●●

●

●

●

●●

●

●

●

●●●●● ●

●

●

●

●

●

●

●● ●

●

● ●●● ●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●
●●

●●

●●

●

●●

●

●●

●
●

● ●

●

●
●

●

●

●● ●

●

●

●

●●

●

●

●● ●● ●
●

●●●
●

●

●

●

●

●●● ● ● ●

●

●

●●●

●

●●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●●

●

● ● ●

●●

● ●

●

●● ●

●

●

●

●

●

●

●●
●

●

●●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●●●

●

●

●

●

●

● ● ●
●

● ● ●●●

●

●

●

● ●

●

●

●
●

●
●

●●● ●●●● ● ●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●● ●

●

●

●●● ●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●●●

●

● ●

●

●

● ●●

●

●●● ●●

●

●

●

●

●
●

● ● ●●
●

●●

●

● ● ●●

●

● ●

●

●●

●

●

●

●●

●

●
● ●●● ●

●

●

●●

●

●

●

●

●
● ●●●

●

●● ●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

● ●●●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●●●● ●● ●

●

●●

●

●

●●

●

●

●

●

●●●●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●
●●

●

●

●

●

●●●●●● ● ●●● ●●

●

●

●
●●

●

●

●● ●●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●●● ●● ● ●●

●

●

●

●

●

●●●●● ●

●●

●●● ●●
●

●

● ●

●

●●

●●
●

●

●

● ●● ●

●

●

●

●● ●

●

●●●●● ●●

●

● ●●
●

● ● ●●●● ●●

●

●
●●

●●●

● ●

●

●

●

●

●

●●●● ● ● ●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●● ●● ●

●

●●

●
●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●● ●● ●

●

●● ●● ●

●

●
●●●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●●

●

● ●

●●

●

● ●
●

●

●

●

●

●
● ●●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●●

●●
●

●●● ●●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●●●●● ●●●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

● ●
●

●● ●● ●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●●

● ●●●

●

●

● ●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ● ●●

●
●

●

●

●● ● ●● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●●● ●● ●● ●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●
●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●●

●

●

● ●●●

●

●

●
●

●

●●●●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●● ●
●

●● ●

●

●
●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●●●● ● ●

●

●

●

●

●● ●

●

●● ●● ●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

● ●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●● ●●●●● ● ●●

●

●
●

●●● ●●●

●

● ●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●●

●●

●
●●

●
●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●● ●

●

●
●●

●

●

●

● ●●●

●
●

●

●

●

●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●●

●

●● ●

●

●

●

●

●

●

●●●

●

●

●

● ●●

●

●●

●

●

●●●
●

● ● ●●

●

●

● ● ●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZA Taint After Takedown Vs After New Module

ZA Taint Hours H−>R−1

Z
A

 T
ai

nt
 H

ou
rs

 R
−

>
R

+
4

●

●

●

●
●

●

●

●

●●● ●● ●

●

●

●● ●● ●●

●

●

●

●

●

●

●

●● ●●

●

●●

●

● ●
●

●●●●●●●● ●● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

● ●●

●

●

●

●● ●●

●

●

●

●●

●

● ●

●

●

●●

●

●●

●

●●

●

● ●

●

● ●

●

●

●

●

●
●●●

● ●

●●●

●

●● ●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●● ●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●●

●
●

●
●

●●

●

●

●●●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●● ●
●

●

●

●

●

●

●
●● ●

●

●●●●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
● ●●●● ●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●● ● ●●●

●

●

●

●

●

●

●● ●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●●

●

●

●● ●● ●●
●
●●

●
●

●

● ●●●●

●

● ●●● ●●●● ●●

●

●●●●●

●

●

●● ●● ●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●●●●

●

●

●●

●

● ●

●

●●●●● ●●●

●

●
●

●● ●●

●

●●●

●●

● ●●

●

●

●

●

●

●
●

● ●

●

●● ●●

●
●

●

●● ●
●

●●●●

●

●

● ●● ●● ● ●

●

●●● ●●

●

● ●●●

●

● ●

●

●●●● ●●
●

●●

●

●● ●

●

● ●
●

●

●

●●

●

●

●

●●● ● ●●

●

●

●● ●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●● ●

●

●

●

●

●

●●●

●

●

●

●

●

●●● ●

●

●

●

●●● ●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●● ●●

● ●●

●
●

●●

●

● ●●

●

●●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●● ●●

●

●

● ●

●

●

●●●

●

●●

●

●
●●●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●● ● ●●●

●

●

●
●

●
●● ●●

●

●

● ● ●

●

●

●

●

●

●●●

●

●

●

●●● ●●●●

●

●
●

●

●

●

●●

● ●●

●

● ●

●

●

●

●●
●

●

● ●●●● ●

●
●

●

●

●●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●●

●

●

●●

●

●
●

● ●●

●

●

●

● ●●● ●●●

●

●●

●

●
●

●
●

●
●● ●

●

●●

●

●●

●

●
●

●

● ●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●
●
●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

● ●●

●

●

●

●●●●● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●●●●

●

●

●
●

●

●●● ●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●●

●

●●

●

●● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

● ●●● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●● ●●●●●●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●●

●

●
●●

●
●

●

●

●
●● ●●●

●

●
●

●

●
●● ●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

● ●

●

●● ●●

●

●

●

●

● ●●● ●

●
●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●●

●

●●●

● ●
●

●

●
●●

●

●●
●

●●● ●

●

●

●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

● ●●
●

● ●

●

●●●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●● ●●

●

● ●●●

●

● ●

●

●

● ●●● ●● ●

●

●● ●●

●

●●

●

● ●●●

●

●

●

●●

●

● ●●

●

●
●

●●●●

●

● ●●

●

●

●

●

●●

●

●

●●

●

●

●

●● ●

●

●●

●

● ●
●

●

●●

●

●

●

●

●●

●

●

● ●

●●

● ● ●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●● ●

●

● ●
●

●

●●●● ●●●●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●●

●

●●●

●

●

●

●●● ●

●

●

●
●

●

●● ●
●

●

●

●● ●● ●● ●● ●

●

●

●

●

●● ●●

●

●

●

●
●●● ●●●

●

●

●

●● ●

●

●

●● ●

●

●

●

●

●

●
●

●

● ●●

●

● ●● ●

●

●

●

●

●

●●

●

● ●●● ●●

●

● ●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

● ● ●●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●● ●● ●

●

●

●

●●●●

●

●●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

● ●●● ●●●●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●●● ●● ●

●

●

●●

●●● ●●

●

●

●

●

●

●

●

●

● ●

●● ●● ●●●●● ●●●

●

●●
●● ●● ● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

● ●●● ●

●

● ●

●

●

●

●

●
●

●● ●● ●●

●

●●

●

●●●●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●● ●●

●●
●

●

●

●

●

●
●

● ●● ● ●●

●

● ●●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●●●

●

●

●

●● ●● ●●●

●

●

●

● ●●●●●

●

●

●

● ●●● ●●

●

●

●

●
●

●

●

●

●●

●

●● ●●●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●●● ●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●● ●●●

●

●●
●

●

● ●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

● ●●●

●

●

●

●

●

●

●

●
●●

●
●

●●● ● ●

●

●

●

● ●●● ●● ●●●

●

●●●●

●

●

●
●●

●● ●

●
●

●

●

●

●

●

●

●●●
●

●●●

●

●●

●

●
●

●

●● ●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

● ●●● ●

●

●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●● ●

●

●
●●●

●

●

● ●
●●

●

●●●●●●

●

●

●

●

●

●

● ●●● ●●

●
●

● ●●

●
●

●

● ●●●● ●●

●

● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●●●● ●

●

●

●
●

●● ●

●

●●

●

●

● ●●●

●

●●

●

● ●

●

●

●

●● ● ●●

●
●

●

●

●

●

●
●

●●●●●

●

●●●●

●

●●●●

●

●

●

●

●●

●

●

●

●

● ● ●
●

●

●

● ●●●●●● ●● ●

●

●

● ●●●● ●

●

●

●

● ●

●

●●

●

●

●●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●●

●

●●

●

●

●

●

●
●

●●

●

● ●●

●

● ●● ●

●
●

●

●

●

●
●●●

●

●●

●●● ●●

●

●●

●

●

●

●

●●● ●

●

●

●

●
● ●●

●

●
●

●
●

●

●

●

●
●

● ●●

●

●

●

●●

●

●

●

●● ●●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●●● ●●

●

●
●

●

●

●

● ●●

●

●

●

●
● ●

●

●

●
●

●

●

●

●● ●●●

●●
●● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●●

● ●

●●

●●●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●●

●

● ●●●● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●● ●

●

● ●● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●● ● ● ● ●

●

●

●●

●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●●

●

● ●●●●
●

●

●

● ●

●
●

●

●● ●

●

● ●

●

●

●

● ●

●

●

●●● ●●

●

●

●

●●
●

●

●

●●● ●●●

●

●

● ●●

●

●

●

●

●

●

●

●●● ●

●

●

●

● ●●

●

●●

●

●● ●● ●●

●

●●

●

●

●

●

●

●

●●● ●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●● ● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●● ●●

●

●

●
●

●●●

●

●● ●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●●

●

●●

●

●●● ●●

●

●

● ●●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●● ●●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ● ●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●● ●●● ●

●

●

●

● ●●●

●

● ●●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●● ●

●

●

●●

●

●

●

● ●●

●

●
●

●● ●

●

●

●● ●● ●●

●

●

●

● ●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

● ●●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

● ●● ● ●● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●● ●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●● ●
●

●

●● ●● ●●●●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●●●

●

●

●

●

●

●

●●●●

●
●

●●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●●●

●

●

●

●
●

● ●●●●●●●

●

●●

●
●

●● ●●●●●

●

●
●●●

●
●●●

●

●

●

● ●●●●● ●

●

●

●

●

●●● ●

●

●● ●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●
●

●

●● ● ●

●

● ●

●

● ●

●

● ●●

●

●

●

●●●

●

●

●

●● ●

●

●● ●● ●
●

● ●●

●

●

●

● ●●

●

●● ●●

●

●

●

●●●

●

● ● ●

●●

●

●●●

●●

●

●●● ●

●

●●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●●● ●

●

●

●

●

●

●

●

●●

●

● ●●●●

●

●

●

●
●

● ●

●

●

●

●

● ●

●●

●

●
●●

●

●

●

●

●●

● ●

●● ●●

●

● ●

●

●

●

●

●

●

●

●●
●

● ●●

●

● ●

●

●

●

● ● ●

●

●●

●

● ● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●●●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●

●

● ●

●●

●●● ● ●

●

●

●

●●

●

●
●

●

●

●

● ●● ● ●● ●● ●●● ●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●●● ●

●

●

● ●

●
●

●

●● ●● ●●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●●

●

●

●●

●

●●●

●

●●

●

●

●●●

●

●●●●

●

●

●
●

●

●

●

●

●

●●●
●●
●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ● ● ●

●

● ●●●●●

●

●

● ● ● ●●

●

●

●
●●●

●
●●●

●

●●

●

●● ●●● ●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●
● ●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●●● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●●●● ●●●●

●

●

● ●

●

●

●●

●

●

●

●

● ●●● ●
●

●

●

●

●

●
● ●

● ●

●

●●●●
●

●

●

●●● ●●

●

● ●●●● ●

●

●

●

●●●●●●● ●● ●●●● ●

●
●

●●

●

●

●● ●●●● ● ●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●● ●● ●

●

● ●
●●

●

●

●● ●●

●

● ●

●●

● ●●●●●

●

●●●

●
●

●

●●

●

●

●

● ●●
●

●

●

●

●●●

●●

●●●●●●●● ● ●

●

●

●

● ● ●● ●● ●●

●

●
●

●

●●

●

●

●

●

●

●●

● ●

● ●

●

● ●

●

●●

●

●

●

●● ●
●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●●

● ●●●

●

● ●

●

● ●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●
●

● ●

● ●

●

●

●
●

●● ●●

●

●

●

● ●●●

●

●

●●● ●●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

● ●
●

●

●

●●

●

●●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

● ●

●

● ●

●

● ●●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●●●

●

●●

●
●

●

●

●

●●●

●

●●

●

●

●

●● ●●●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●●●

●

● ●

●

● ●

●

●

●

●

●

●

●● ●

●

● ●● ●●● ●●●

●

●

●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●●● ●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●● ●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●●

● ●
●

●●

●

●●

●●●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●●●● ●●●●● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●●●

●

●

●

●● ●

●
●

●

●

●

●
●

●●● ●●

●

●
●

●

●

●

●

● ●●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●● ●●● ●

●

● ●

● ●

●

●

● ●

● ●

●
●

● ●●

●

●● ●●●●

●

●

● ●

●

●●

●
●

● ●●●● ●●●

●
●

●

●●● ●●● ● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●
●

● ●

●

●

●
● ●

●

●

●
●

●

●
● ●

●

●

● ●

●

●

●

●●

●

●

● ●●

●

●

●●●●●●

●

● ●

●

●●● ●● ● ●●

●

●

●

● ●

●

●
●

●●●

●

●

●

●

●

● ●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●● ● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●● ●●● ●● ●●● ● ●●

●

●

●●●● ●●
●

●

●

●
●

●

●

●● ●●

●

●●●

●

●

●●

●

●●

●

●
●

●●

●

● ●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●● ●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●●●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●● ●

●

●

●

●

●● ●● ● ●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●●

●

●● ●
●

●●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

● ●●●●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●● ●●●

●

●

●

● ● ●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

● ●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●● ●●●

●

●●●●●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●● ●●●

●

●

● ●

●●

●

●

●

●● ●

●

●

●

●●

●
●

●●●● ● ●●

●

●

●

●

●

●

●

●●

●

● ●● ●●●
●

●

●
●

●●

●

●● ●●●

●

●
●

●

●

●

●

●
●

●

●

●●
●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●●

●
●

●

●

●

●

●

● ●●●● ●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●●

●●

● ●● ●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●● ●

●

● ● ●●● ●●● ●● ●● ● ●

●

●● ●● ●

●

●

●

● ●

●

●

●
●

●●●● ● ●● ●●●

●

●

●

●

●●●●

●

●

●

●

●● ●●●
●

● ●● ●

●

●

●

●●● ●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●●

●

●

●

●

●● ●●

●
●

● ● ●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZA Taint Prior To Takedown

ZA Taint Hours H−>R−1

Z
A

 T
ai

nt
 H

ou
rs

 R
−

>
R

+
4

●

●●

●

●

●

●

●

●●●

● ●

●

●

●●● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●●●●●●

●

●●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●●● ●●

●

● ● ●●

●

●
●

● ●●● ●

●

● ●●

●

●●

●

●●

●

● ● ●●●

●

●

●

●

●
●

●

●

●●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●●●●

● ●● ●
●

●●

●

●

●

●

●

●

●

●

● ●●
●

● ●
●

●●

● ●

●

●

●

●

●

●

●

●● ●
●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●●

●

●

●

●● ●

●

●

●●●

●

●

●

●●

●

●

●●

●

● ●

●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●● ● ●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●
●●●●

●

●●● ●●●
●

●●

●

●

●

●●●●●

●

● ● ●●

●
●

● ● ● ●

●

●
●●●

●

●

●● ●●●●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●●
●

●

●
●

●

●

●
●

●
●

●●● ●●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●●

●

●

●

●

●● ●

●

●
●

●● ●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●
●●

● ●
●

●

●

●

●●● ●● ●●

●

●●● ●●●● ●

●

●

●

●

●●● ●●●● ●●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●●● ●

●

●

● ●● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

● ●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

● ●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●●

●

● ●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ● ●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

● ●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●● ●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

● ●●

●

●

●
●

●●●●

●

●

●

●
●

●●

● ●

●

●

●● ●● ●●

●

●
●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●

●●

●● ●●

●

●
●

●●●

●

●

●

●

●

● ●●

●

● ●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

● ●●●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

● ●●

●

●

●

● ●
●

●

●
●
●

●

●

●●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●

●

● ●● ●

●

●

●

●

●●

●

●● ●

●

● ●
●

● ●●●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

● ●●●
●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●

●● ●●●

●

●● ●

●

●

●

●

●

●● ●●●

●

●

●

●

● ●

●
●

●

●● ●

●

●

●● ●

●
●

●

●●● ●●●

●

●

●

●●

●

●

●
●

●

●●

●
●

●●●

●

● ●●

●

●

●●

●

●

●

●

●
●

●

●● ●●●

●

●●● ●

●

●●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●● ●● ● ● ●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●

●

●
● ● ●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

● ●●●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●● ●●

●

● ● ●●●●● ●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●● ●● ●●

●

●

●

●
● ●

●

● ●●● ● ●

●

●●

●

●

●
● ●●

●

●

●

●●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●●●●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●●● ●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

● ●●

●●●●

●

●

●

●

●

●●

●

● ●

●

●●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

● ●●● ●●

●

●
●

●
●

●

●
●

●

●

● ● ●

●

● ●●

●

●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●●

●

● ●● ●

●

●

●

●●

●

● ●

●

●

●

● ●●●

●

●●

●

●

●

●

●

●

●

●● ●

●

● ●●●

● ●

●

●

●

●

●
●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●●● ●●●

●
●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●
●

●
●

●

●

●● ●

●

●●●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●●●

●

● ●●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

● ●●● ●●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●● ●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●●● ●

●

●

●

●

●

●

●● ● ●●●
●

●

●●

●

●●

●

●

●

●

●

●●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●● ●●●
●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●

●

●

●

●

● ●● ●●●● ●● ●●

●

●
●● ●

●

●● ●●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

● ● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

● ●●●●

●

●
●●

●

●

●

●

●

●

●●● ●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●● ●

●

● ●●

●

●

●

● ●
●

●● ●

●

●

●

●● ●●●

●

●●● ● ●●●●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●●●

●

●●

●

● ●

●●●●

●

●●● ● ●

●

●

●

●

●

● ●

●

● ●

●

● ●●● ●●● ●●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ● ●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●
●●●

●

●

●

●

●

● ●

●
●

●●

●

●●●

●

●● ●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●●

●
●

●

●

● ●
●

●
●

●

●

●●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ● ●●●

●

●

●

●●
●

●

● ●

●

●

●

●

●●●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●●●● ● ●●●

●

●

●● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●

●●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●●●

●

●
●

●
●●● ●

●

●

●
●

●

●

●

● ●● ●

●

●

●

●●●●
●

● ●

●●●

●

●

●

●●● ●●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
● ●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

● ●●
●

●

●

●

●●

●

● ●●

●

●

●

●●● ●●

●

●

●

●

●●●● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●●●
●

●

●

●

●

●● ●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

● ●
●

●

●●●

●

●

●
● ●

●

●

●

●●●

●

●

●

●

●

●●
●

● ●●

●

●

●

●
●

●

● ●

●

●●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●●

●
●●

●

● ●●

●

●

●

●

●

●

●

●●

● ● ●

●
●

● ●●
●

●● ●●● ●● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●●●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●●●●

●

●

●

●

●

●● ●

●

●

●● ●●

●

●●● ●

●

●

● ●

●

● ● ●● ●

●

●

●

●●● ●●●

●

● ●●●●●●

●

●

● ●

●

●●●●● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

● ●●● ●

●

●

●
●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●
●

●

●

●

● ●●●● ●

●

●

●

●●●

●

●

●●

●

●

●

●
●

● ●

●

●●

●

●

●

● ● ●●

●

●●

●

●●● ●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●●

●

●

●

●●

●

● ●

●

●● ●

●

●

●
●

●

●

●

●●

●

●

●
●

●● ●● ●●●

●

●

●

●

●

●

●
●

●●●● ●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●● ●●

●

●

●●

●

●●●●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●●

●

●● ●●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
● ●●

●

●

●
●

● ● ●●●

●

●

●

●

●
●● ●●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●●
●

●

● ●●●

●

●

●
●

●
●●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●● ●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●●●●● ●●

●
●

● ●●●

●

●

●

●●

●

●

●

●●●●● ●

●

●

●

●

●

●

●● ●

●

● ●●● ●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●
●●

●●

●●

●

●●

●

●●

●
●

● ●

●

●
●

●

●

●● ●

●

●

●

●●

●

●

●● ●● ●
●

●●●
●

●

●

●

●

●●● ● ● ●

●

●

●●●

●

●●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●●

●

● ● ●

●●

● ●

●

●● ●

●

●

●

●

●

●

●●
●

●

●●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●●●

●

●

●

●

●

● ● ●
●

● ● ●●●

●

●

●

● ●

●

●

●
●

●
●

●●● ●●●● ● ●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●● ●

●

●

●●● ●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●●●

●

● ●

●

●

● ●●

●

●●● ●●

●

●

●

●

●
●

● ● ●●
●

●●

●

● ● ●●

●

● ●

●

●●

●

●

●

●●

●

●
● ●●● ●

●

●

●●

●

●

●

●

●
● ●●●

●

●● ●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

● ●●●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●●●● ●● ●

●

●●

●

●

●●

●

●

●

●

●●●●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●
●●

●

●

●

●

●●●●●● ● ●●● ●●

●

●

●
●●

●

●

●● ●●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●●● ●● ● ●●

●

●

●

●

●

●●●●● ●

●●

●●● ●●
●

●

● ●

●

●●

●●
●

●

●

● ●● ●

●

●

●

●● ●

●

●●●●● ●●

●

● ●●
●

● ● ●●●● ●●

●

●
●●

●●●

● ●

●

●

●

●

●

●●●● ● ● ●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●● ●● ●

●

●●

●
●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●● ●● ●

●

●● ●● ●

●

●
●●●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●●

●

● ●

●●

●

● ●
●

●

●

●

●

●
● ●●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●●

●●
●

●●● ●●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●●●●● ●●●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

● ●
●

●● ●● ●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●●

● ●●●

●

●

● ●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ● ●●

●
●

●

●

●● ● ●● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●●● ●● ●● ●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●
●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●●

●

●

● ●●●

●

●

●
●

●

●●●●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●● ●
●

●● ●

●

●
●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●●●● ● ●

●

●

●

●

●● ●

●

●● ●● ●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

● ●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●● ●●●●● ● ●●

●

●
●

●●● ●●●

●

● ●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●●

●●

●
●●

●
●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●● ●

●

●
●●

●

●

●

● ●●●

●
●

●

●

●

●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●●

●

●● ●

●

●

●

●

●

●

●●●

●

●

●

● ●●

●

●●

●

●

●●●
●

● ● ●●

●

●

● ● ●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZA Taint After Takedown Vs After New Module

ZA Taint Hours H−>R−1

Z
A

 T
ai

nt
 H

ou
rs

 R
−

>
R

+
4

Figure 10.5: Comparison of ZA taint before and after R-hour, per ad unit. The X axis gives taint
from between the Takedown hour and just before the hour corresponding advent of the new auto-
clicking module post-Takedown; the Y axis as computed over the 4 hours starting with R-hour. The
left plot shows the day prior to Takedown, the right plot the day of Takedown. Solid red circles
reflect ad units that had a drop in H-hour ratio across the day before and after Takedown ≥ 0.5
(this corresponds to the population shift in Figure 10.2).

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 132

●

●

●

● ●
● ●

●

●●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●●

●● ●●

●

●●

●
● ●

●
●

●●

●

●

● ●

●

●

●

0.02 0.05 0.10 0.20 0.50

0.
02

0.
10

0.
50

5.
00

Proportion of ZA /24s Due to Serpent

N
or

m
al

iz
ed

 C
on

ve
rs

io
n

Figure 10.6: Relationship between the proportion of ZeroAccess traffic that includes Serpent and
the conversion rate for the dirty ad units. The X axis gives the proportion of an ad unit’s Zero-
Access subnets that also appeared in the DNS telemetry data, and thus include Serpent activity.
The Y axis reflects the normalized conversion rate across the set (1.0 = the mean rate of the set).
We log-scale both axes, discarding 3 ad units that had either no Serpent subnets or never converted.
The line shows a least-squares fit to the log-transformed data, corresponding to a power-law rela-
tionship with an exponent of about 0.36.

Figure 10.6 shows a clear but modest correlation between ZeroAccess’s use of Serpent (via
ad units with increased Serpent taint) and growing conversion, though with significant variation
across ad units. Keep in mind that other than Serpent, all of the ad unit’s conversions will be due
to legitimate user activity and not ZeroAccess. This result shows that the use of Serpent does add
conversions of fraudulent click activity.

Next, to understand if the combined blending of Serpent and auto-clicking avoided the smart-
pricing mitigations, we compare our sample of 54 dirty ad units to a random sample of ad units
of similar size. We find that compared to a random sample, those flagged as ZeroAccess dirty had
conversions rates of up to three times less. As a result, these dirty ad units were indeed subject to
the smart-pricing discount. Thus, it appears that if the intent of the Serpent module leveraging real
users was to avoid smart-pricing, then it failed to do so since the users forced to go to the advertiser
pages did not convert enough. If the intent behind leveraging real users, however, was simply to

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 133

avoid detection while accepting the smart-pricing discounted income, then it was successful.

Estimates and Challenges
Formulating a sound estimate of the global impact of ZeroAccess proves very difficult, not only
due to limitations in our data sets, but more fundamentally because of the sharply limited visi-
bility that the ad network ecosystem provides. Using some plausible assumptions, we can derive
estimates of ZeroAccess’s impact perhaps within an order of magnitude, and note that these paint
roughly a similar picture to that developed in the work of others [149]. Clearly, however, the im-
portant question of just which parties make how much profit due to this illicit activity poses thorny
methodological challenges.

Limitations within our ad network. Although our ad network partner provided access to the
complete click payout information for the 54 dirty ad units we identified, those ad units make up
only a subset of the likely total ZeroAccess traffic abusing their network. Methodologically, we
require an ad unit to exhibit a baseline level of traffic before we can label it as fraudulent (via
manual analysis). Ad units, however, exhibit a very long tail in their level of activity. The vast
majority provided (individually) so little traffic that although they exhibited numerous ZeroAccess
characteristics, such as high ZeroAccess taint, for any given such ad unit we could not rule out
these characteristics occurring simply by chance, and thus could not definitively label them as bad.
In aggregate, however, such ad units potentially account for a large volume of traffic, much more
than those of the 54 definitively dirty ad units that we identified. How to soundly attribute a portion
of that traffic as fraudulent remains an open question.

Limitations across ad networks. A further complication arises in identifying the breakdown
of fraud between our ad network partner versus other networks targeted by ZeroAccess. Our
“milking” data provides a qualitative impression of what this balance might look like, finding
that 367 of the 1,766 click chains transited our ad network partner. Superficially this suggests
that in total, ZeroAccess click activity might be about five times what our ad network partner
sees. However, along with the limited scale of the milking data, other basic factors, such as how
presented ads (and thus click chains) are influenced by IP address or search term, could result in
major shifts in this ratio. In addition, the milking data only reflects one instance of Serpent activity,
and we do not know if its distribution of ad networks accords with that of the auto-clicking module.

Limitations in DNS data. While our DNS telemetry gives us visibility into Serpent ad clicks,
the data suffers from significant noise. Moreover, we do not know how to extrapolate from pure
Serpent activity to the behavior of the auto-clicking module. When merging the DNS data with
other sources, we also encounter issues with both the granularity of the IP address information and
IP address churn, making attribution within our partner’s ad network problematic.

Assumptions and estimates. Given those major caveats, we now formulate some rough esti-
mates to get a sense of the overall scale of activity.

The 54 dirty ad units we identified generated over 100K clicks per day. It appears certain
that aggregate ZeroAccess activity far exceeds this lower bound, which we view as very solid (we
have high confidence those ad units all reflect ZeroAccess activity) but also very conservative.
Building on this foundation, given the large volume of suspicious-but-not-definitive ad units we

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 134

investigated—both the “long tail” with dubious but sparse activity, and those that appear to carry
ZeroAccess traffic blended with non-ZeroAccess traffic—we would argue that likely the total ac-
tivity within our ad network partner was at least a factor of 2x larger.

If we then take the 5x factor seen in our limited click chain milking to represent the volume
of traffic seen in other ad networks, we have a total extrapolation of 10x to our original conser-
vative estimate, yielding 1M fraudulent clicks per day. This range is consistent with the order of
magnitude of fraudulent clicks estimated from our DNS data.

According to our ad partner, the cost-per-click of this traffic after smart-pricing normalization
would be between 10–30 cents. Taking the low end of these ranges, we can construct an estimate
of the total click fraud impact of ZeroAccess as on the order of $100,000 per day, which aligns
with the estimate from Sophos of ZeroAccess generating up to $2.7 million in click fraud per
month [149].

We highlight, however, that enough uncertainties exist that our figure can only reflect a “best
guess” estimate. We also note that given the available data sources, we lack the ability to gauge
what fraction of this money makes it into the hands of the botnet owners after the long chain of
(sub)syndicates take their cut.

Discussion
Subsyndication is a problem. Subsyndication is the key business model enabling large-scale
click fraud. Even a single (trusted) publisher that is allowed to subsyndicate opens the flood gates
for click fraud traffic (blended with other legitimate traffic) entering the ad network unwittingly
through that publisher. Our Serpent milker encountered syndication chains as long as 13 domains
deep. It is no surprise therefore that we were able to definitively conclude significant ZA dirtiness
for only 54 ad units. There were many more where our analysis was inconclusive due to high levels
of blending that diluted the otherwise sharp signal presented by the Takedown.

One might argue that anonymous subsyndication is the real problem, and if publishers could
be forced to identify themselves, the search engine would be able to better police the ad network.
While this is true, we feel it is impractical. The level of blending we see suggests that many pub-
lishers are complicit in click-fraud, especially since everyone along the syndication chain benefits
financially from it. Even if the search engine could recursively force (sub)syndicates to set a pol-
icy that requires identifying their traffic sources—a hard problem in itself—there would be little
reason for the (sub)syndicates to enforce it.

Low signal to noise ratio. Our analysis would not have been possible absent the strong signal
injected into the ZeroAccess botnet by the Takedown. Even then we had to combine three large
datasets from three different vantage points. Such strong signals are too few and far between to
be an effective means of policing ad networks. The capability to inject more frequent (but perhaps
less intense) disruptions into botnets could create a strong temporal signal that could serve as a
basis for ongoing click fraud policing.

CHAPTER 10. CHARACTERIZING LARGE-SCALE CLICK FRAUD IN ZEROACCESS 135

10.5 Summary
In this chapter we undertook a detailed examination of the activity of one of the largest click
fraud botnets in operation, ZeroAccess. Through reverse-engineering and controlled execution,
we mapped out ZeroAccess’s click fraud component, including the innovations it introduced in
hijacking high-quality user search traffic. In the process we discovered side channels in the form
of vestigial DNS lookups that enabled us to track its large-scale activity. We then combined this
perspective with partial “supernode” data capturing the botnet’s peer-to-peer C&C activity in order
to match up botnet activity data with ad-unit click stream data provided by our major ad network
partner.

By leveraging the striking shifts induced in click activity by Microsoft’s takedown of Zero-
Access in Dec 2013, along with the ZeroAccess botmaster’s subsequent response, we combined
these diverse data sources to identify with high confidence 54 individual ad units whose traffic
volume (and hence revenue) primarily derived from ZeroAccess. Our ensuing analysis of these ad
units revealed that while the latest generation of click fraud botnets have circumvented many detec-
tion approaches, they are still mitigated (for now) by the smart-pricing mechanism. Extrapolating
from the known-bad ad units, we constructed an estimate that ZeroAccess likely generated on the
order of a million fraudulent clicks per day across all ad networks, with the overall ecosystem
revenue diverted by the botnet’s activity roughly on the order of $100,000 per day.

Finally, we note that the complexity of the online advertising ecosystem is such that no one
party comes remotely close to having comprehensive visibility into who gets paid what for any
given click. The hodgepodge of data sources required for our analysis starkly illustrates both the
tangled nature of the click fraud problem space and the pressing need for much better mechanisms
for correlating traffic and payment streams.

136

Chapter 11

Ad Injection at Scale: Assessing Deceptive
Advertisement Modifications

11.1 Introduction and Background
Subsequent to the rise and fall of large-scale botnet-driven fraud (Chapters 7-10) a new develop-
ment in the landscape of advertising abuse emerged: ad injection. In this scam, ads are injected
into a user’s browsing experience by either a network attacker or software running on the user’s
system. Since these advertisements are appearing in front of real users, the impressions and clicks
they generate are real, making the identification and remediation of the problem difficult. 1 As
browser extensions have gained wide-spread use, an ecosystem of deceptive extensions that mon-
etize installations via these injected advertisements arose. Such extensions operate on an affiliate
model, similar to ad syndicators, allowing extension authors to directly monetize installations by
entering into relationships with ad injectors. These injectors provide libraries to extension authors
which are then executed when users visit websites while the extension is loaded.

Ad injection differs from traditional advertising abuse in the open, legal nature in which these
extension authors and syndicators operate [86]. Broadly, the collection of extensions and software
that operate in this legal gray area are termed “unwanted software,” denoting the likelihood that
users did not willingly or knowingly consent to their installation, and do not desire their services.
The most notable example, Superfish, gained notoriety when it was discovered pre-installed on
Dell PCs in 2015 [86] 2. In addition to injecting ads, these extensions can reduce user safety by
introducing vulnerabilities into the browsing process [86].

Money enters the ad injection ecosystem from advertisers. Advertisers’ willingness, perhaps
unwittingly, to pay for traffic generated by these injectors drives the proliferation of ad injection.

1The concept of co-opting real user behavior is similar to the ZeroAccess malware [115,118]. ZeroAccess hijacked
non-ad user clicks, rewriting the destination, and ultimately turning those clicks into click fraud. The user may have
then engaged with the advertiser, stemming from hijacking confusion. Ad injection, however, inserts additional ads
into a user’s experience, causing real impressions and potentially further engagement from an interested user.

2This work predates the discovery of Superfish’s installation on Dell hardware, and the subsequent media atten-
tion [143].

CHAPTER 11. AD INJECTION AT SCALE: ASSESSING DECEPTIVE ADVERTISEMENT
MODIFICATIONS 137

The revenue from these advertisers sustains not only the ad injectors but also an entanglement of
intermediaries that connect advertisers to injectors.

Building on work with Google which identified and executed these deceptive extensions in
order to extract the revenue chains injected into various websites, this chapter focuses on exploring
the ecosystem of intermediaries and advertisers that support the ecosystem through analysis of
injected click (revenue) chains.

Our collaborators built systems that identified and analyzed the advertising injection behav-
ior from 50,870 browser extensions and 34,407 binary samples. For this analysis, we focused on
114,999 click chains injected by 398 browser extensions into three websites (termed properties)
that are well known to experience ad injection: Amazon.com, Google.com, and Walmart.com.
Chains were extracted by visiting these various websites, executing relevant representative search
queries, and then extracting the injected ad URLs. This chapter focuses on unraveling the complex
web of advertisers and intermediaries supporting the ecosystem.

In this context, an intermediary in the ad injection ecosystem is a business entity that in some
way connects advertisers to injectors. These entities can take on a variety of forms including traffic
resellers, traffic exchanges, and online product aggregators.

We find that although a handful of online retailers comprise the majority of advertisers encoun-
tered via ad injection, a large tail of less prolific advertisers are the subject for most of the ads. We
also identify a “choke point“ of three ad networks and 25 affiliate programs that were responsible
for the majority of ad injections.

This chapter starts with an overview of the ecosystem of advertisers and intermediaries in-
volved in ad injection. Following this overview, we closely examine the three largest ad injectors
to identify the major advertisers and intermediaries that these ad injectors depend on. We then char-
acterize the relationships among these three groups to understand the extent to which advertisers
and intermediaries are aware of ad injection and what potential bottlenecks exist in this ecosystem.

This chapter is based on a portion of work that appeared in the IEEE Symposium on Security
and Privacy (S&P) [135].

11.2 Impacted Properties
Using network traffic gathered from our dynamic execution of browser extensions [135], we recon-
structed and analyzed 114,999 ad revenue chains in order to understand the relationships between
ad injectors, intermediaries, and advertisers in this ecosystem. Based on the construction of the
dynamic execution engine, injections were only identified for a handful of top impacted properties.

Table 11.1 provides a breakdown of which properties are impacted in the ad revenue chains
we collected. 62,237 of our chains were injected into amazon.com, 37,718 were injected into
google.com, and 15,044 were injected into walmart.com. A majority of extensions injected ads into
all three properties, with the average number of hops in the chain varying based on the impacted
properties.

CHAPTER 11. AD INJECTION AT SCALE: ASSESSING DECEPTIVE ADVERTISEMENT
MODIFICATIONS 138

Impacted
Property

Triggered
Queries

Click
Chains

Ad Injection
Libraries

amazon.com 90 62,237 27
google.com 96 37,718 13
walmart.com 71 15,044 25

Table 11.1: Breakdown of each impacted property and its contribution to the dataset.

Injected
Ad Domain

Click
Samples

Avg
Hops

Advertising
Domains

superfish.com 63,891 3.6 891
dealply.com 20,209 9.2 526
datafastguru.info 3,899 4.9 407
display-trk.com 3,353 12.7 196
tfxiq.com 3,091 1.8 58
pangora.com 1,814 2.9 204
xingcloud.com 1,116 1.0 4
shoppingate.info 994 4.9 232
linkfeed.org 822 6.3 267
bestyoutubedownloader.com 688 1.0 1

Other 15,122 7.48 1,497

Table 11.2: List of the top 10 ad injectors we observe in our extension execution.

11.3 Understanding Injectors in Revenue Chains
In revenue chains, ad injectors are identified as the first hop domains, beginning with the impacted
property. We group together domains that share affiliation, as well as resolving shorteners and
content distribution networks (CDNs) to the next hop in the chain.

Table 11.2 is a breakdown of the top 10 injectors appearing in ad revenue chains. Ad chain
volume is heavily skewed towards a handful of injectors, with the top two injectors accounting for
73% of all injections. As is the case with client detection, Superfish is the dominate injector in our
revenue chains, accounting for 56% of all chains (originating from 60% of extensions). The next
most prevalent injector is the Dealply group. Dealply is a grouping of domains that share affiliation
(IP addresses, ad feeds) with the Dealply program. Dealply accounts for 18% of revenue chains
(29% of extensions). Datafastguru is the next largest contributor to revenue chains, accounting for
only 3.4% of chains (25% of extensions). As is the case with client detection, there is a long tail
of injectors contributing to the complete ecosystem.

The diversity of advertisers fueling each ad injector also varies greatly between injectors.
Some injectors (xingcloud.com, bestyoutubedownloader.com) have very few advertising landing

CHAPTER 11. AD INJECTION AT SCALE: ASSESSING DECEPTIVE ADVERTISEMENT
MODIFICATIONS 139

domains, likely indicating that the injector is the same party as the advertiser. Meanwhile other in-
jectors are supported by huge number of advertisers. Amongst top injectors, Superfish is supported
by the fewest advertisers, relative to click volume. Superfish injections average 1.39 advertisers
per 100 clicks. Dealply is supported by nearly double that rate, with an average of 2.60 advertisers
per 100 chains. Strikingly, Datafastguru has a much larger relative base of support, with a rate 4x
that of Dealply, at 10.44 advertisers per 100 clicks.

The diversity of advertisers for each of these top programs is explored in more depth in Sec-
tion 11.4.

Revenue chain length varies dramatically between ad injectors, with some injectors having
few to no intermediaries on average (tfxiq.com, xingcloud.com) and others having a large number
(display-trk.com). Shorter revenue chains denote fewer intermediaries (for a given click), and per-
haps simpler business relationships stemming from fewer syndication agreements. Shorter chains
may also denote more advertiser visibility into the origin of clicks. Superfish revenue chains have a
relatively small number of average hops, 3.61. Dealply chains, comparatively, have average length
2.5x that of Superfish, at 9.15 hops.

11.4 Advertisers and Intermediates For Top Injectors
By examining the intermediaries and advertisers associated with the top three ad injectors in greater
depth, we shed light on the relationships and affinities between intermediaries, advertisers, and
injectors. These three injectors, Superfish.com, Dealply.com, and Datafastguru.info account for
77% of all injections originating from 81% of extensions.

Advertiser Composition
While the ecosystem of ad revenue chains are extremely complex and intertwined, there are a
handful of advertisers that are responsible for most of the revenue chains. The top five advertisers
observed in traffic from each injected ad revenue chain are given in Table 11.3.

Online retailers (Sears.com, Walmart.com, Target.com, Wayfair.com, and Overstock.com) makeup
virtually all of the top advertisers supporting Superfish, Dealply, and Datafastguru. Exceptions are
Kobobooks.com, an eBook company, and Bizrate.com, a product aggregator.

Sears.com and Walmart.com account for almost 30% of the advertising landing pages reached
via Superfish injections, the dominate injector. Although these retailers each contribute to a sizable
portion of Superfish injections, the total advertiser population is long-tailed, with over 800 domains
totaling 59% of total chains.

Dealply and Datafastguru advertisers have a similar long tail, but with the relative makeup of
the top advertisers differing. The long tail of advertisers for these programs also contributes the
majority of total volume. The dominate advertiser supporting Datafastguru is ebay. While ebay is
present in the Dealply ecosystem, it is not a dominate source of advertising. The difference arises
from the much larger number of Datafastguru advertisers (relatively).

CHAPTER 11. AD INJECTION AT SCALE: ASSESSING DECEPTIVE ADVERTISEMENT
MODIFICATIONS 140

Ad
Injector

Advertiser
(.com)

% of
Inject.

Avg
Hops

Common Intermediaries
and Co-Occurrences

superfish sears 18% 3.25 DT,CI 100%
walmart 11% 2.83 PG 43%; DT 40%
kobobooks 6% 2.86 PG 92%
target 4% 5.11 CI 100%; BR,CI 53%
wayfair 2% 4.27 BR 85%

Other 59% 3.82 PG 37%; DT 30%;
BR 28%

dealply target 12% 10.50 CI 100%; CI,SF 51%
wayfair 5% 9.39 BR 88%; SF 50%
walmart 5% 10.44 BR 100%; BR,SF%
overstock 4% 10.87 ME,BR 98%;

ME,BR,SF 61%
sears 3% 10.53 CI 100%; CI,SF 47%

Other 71% 8.66 BR 59%; SF 38%;
PG 21%

datafast ebay 10% 2.23 DT 99%
target 10% 5.76 CI 100%; BR,CI 51%
bizrate 5% 1.15 None
wayfair 4% 4.24 BR 63%
sears 4% 5.37 CI 87%

Other 68% 5.39 BR 49%; AD 19%

DealTime DT ChannelIntelligence CI
PG Partners PG BizRate BR
SuperFish SF Mercent ME
Adnxs AD

Table 11.3: Top five advertisers for each of the top three injection programs. “Other” consists of
all chains not belonging to the top five advertisers. For each advertiser, interesting common and
co-occurring intermediaries are given.

CHAPTER 11. AD INJECTION AT SCALE: ASSESSING DECEPTIVE ADVERTISEMENT
MODIFICATIONS 141

Ad
Injector

Intermediary
% of
Ads

Hop After
Injector

Hop Before
Advertiser

superfish.com dealtime.com 40% 26% 0%
pricegrabber.com 34% 22% 9%
channelintelligence 27% 0% 27%
bizrate.com 23% 23% 1%
searchmarketing.com 11% 0% 9%

Other 18% 30% 54%

dealply.com bizrate.com 67% 57% 2%
superfish.com 43% 0% 9%
channelintelligence 21% 0% 18%
amung.com 19% 4% 1%
clk-analytics.com 17% 0% 0%

Other 78% 39% 70%

datafast.com bizrate.com 43% 41% 1%
frontdb.com 28% 0% 10%
pronto.com 21% 15% 0%
channelintelligence 19% 0% 17%
adnxs.com 16% 0% 6%

Other 67% 44% 66%

Table 11.4: Top five intermediaries for each of the top three injection programs. Injections is the
percent of that program’s chains for which a given intermediary was present.

Although the set of advertisers is long-tailed, the top 20 advertisers represent a significant
bottleneck, comprising 50% of advertising clicks.

Intermediary Overview
Similar to advertisers, intermediaries in ad revenue chains are also long-tailed. Table 11.4 gives a
breakdown of the top five most prevalent intermediaries for each of the top three programs.

Dealtime.com and Pricegrabber.com, both online product advertising aggregators, are the two
most prevalent intermediaries in the Superfish ecosystem. While both exist in Dealply and Datafast-
guru chains, they are not as prevalent. The two most common intermediaries across all three in-
jectors are Channelintelligance.com (a Google property that links advertisers to ad networks) and
Bizrate.

The Datafastguru ecosystem also introduces new intermediaries not seen in the other injectors,
such as pronto.com, a price comparison service, and Adnxs.com, a property of AppNexus, which
specializes in real-time ad exchanges.

CHAPTER 11. AD INJECTION AT SCALE: ASSESSING DECEPTIVE ADVERTISEMENT
MODIFICATIONS 142

Notably, Superfish has a presence in the Dealply ecosystem. In these chains Superfish appears
to serve the role of an intermediary instead of an injector. In its capacity as an intermediary,
Superfish plays a major role in driving traffic to all of the top Dealply advertisers.

Despite the large tail, only three intermediaries account for 57% of all first hops, representing
a serious bottleneck in relationships between injectors and advertisers.

Chain Length
Table 11.3 contains the average number of hops for each advertiser, broken down by program.
Sears.com and Walmart.com have a similar number of average hops (3.25 and 2.83, respective),
both lower than the Superfish average of 3.60. These short chains denote a small set of intermedi-
aries that link these advertisers to Superfish.

Dealply advertisers have distinctly more hops and intermediaries for the average chain. adver-
tisers such as Walmart.com that had relatively short chains under Superfish (2.83 hops on average)
have much longer chains (10.44 on average) under Dealply. This difference could denote Dealply
has a more layered ecosystem with more syndication and traffic reselling than the other programs.

Intermediary Relationships With Injectors And Advertisers
Table 11.4 shows the likelihood of the top five intermediaries being either the first hop after an
injector or the last hop before an advertiser. Such adjacency in the ad revenue chain denotes traffic
exchanged directly between parties, if not a direct business relationship. Each of these affinities is
given as the total percent of chains for a given injector (not a given intermediary). For short chains,
a single hop may be both the first and last hop.

Across the Superfish ecosystem several interesting affinities exist. For chains that traverse
Dealtime, almost all occur as the first hop, but less than half occur as the last hop. Pricegrabber
shows similar behavior. Channelintelligence shows very different affinity, as it never appears di-
rectly following Superfish, and almost exclusively appears as the last hop prior to an advertiser.
Bizrate has inverse affinity from Channelintelligence, with almost all appearances occurring adja-
cent to Superfish, and almost never adjacent to the advertiser.

None of the top intermediaries, besides Bizrate, show a clear likelihood for appearing adjacent
to Dealply in ad chains. This denotes a long-tail set of intermediaries linked directly to Dealply,
with this tail comprising more of the first hop volume than in the case of Superfish. Similar
properties hold for Datafastguru. This denotes a large set of business relationships with Dealply.

Intermediary Co-Occurrence
Just as some advertisers show affinity to specific sets of intermediaries, some intermediaries show
affinity for each other. Table 11.3 enumerates interesting co-occurrences of intermediaries per
advertiser and program.

CHAPTER 11. AD INJECTION AT SCALE: ASSESSING DECEPTIVE ADVERTISEMENT
MODIFICATIONS 143

wayfair.com is reachable only via bizrate.com, and target.com is reachable via dealtime only
when in conjunction with channelintelligence. sears is reachable only via channelintelligence, and
kobobooks only via pricegrabber.

These commonly co-occurring intermediaries may represent limited advertiser relationships
with ad networks supporting injection, also a potential bottleneck in injection revenue.

11.5 Summary
Ad injection is a lucrative and stealthy abuse scam that blurs the line between malware and soft-
ware. By leveraging real user interaction and behaviors to generate advertising impressions and
clicks, extension vendors and ad networks are able to monetize unsuspecting users’ browsing.

In this chapter we perform a systematic analysis of 114,999 ad chains collected from 398
browser extensions, examining the ecosystem of advertisers and intermediaries that support this
landscape. From this analysis we identify a structural “choke point“ of three ad networks and 25
affiliate programs which are responsible for a majority of all ad injections, and can be leveraged
for defense.

144

Chapter 12

Advertising Abuse Conclusion

In Part II we uncovered the scale, structure, and nature of advertising abuse across a variety of
monetization strategies and attacks. Our multifaceted approach leveraged multiple methods, data
sources, C&C infiltration, and industry data to describe attacks that by their very nature are diffi-
cult to identify. Our work identified fundamental structural weak-points leverageable for defense,
resulting in the dismantling of botnets, cleaning up of ad networks, and protection of users.

We began in Chapter 7 [105] with an external, malware-driven execution study of click fraud
malware and the ad networks that enable them. This work uncovered the breadth and scale of the
ad abuse ecosystem, but its external-only visibility was a fundamental limitation that necessitated
further study.

Next, in Chapters 8 and 9 [105, 118] we performed an in-depth analysis of ZeroAccess, a
botnet and malware distribution platform that harmed millions of users and was responsible for
millions of dollars in advertising fraud per month. Beginning with an overview of the malware and
its evolution, we explored the botnet’s structure, technical capabilities, and inner workings. This
work helped facilitate a Microsoft-led takedown of the botnet [90, 104], resulting in the demise of
the botnet and the cleanup of millions of infected PCs.

Chapter 10 [115] combined an array of external data sources, including P2P measurements
and C&C telemetry, with an internal ad network perspective, to identify the scale and scope of
ZeroAccess fraud. This multifaceted approach identified fraudulent business relationships within
the ad network, and was used as a focal point for remediation.

The demise of ZeroAccess signaled the end of the large-scale, botnet-driven click fraud era.
Subsequently new forms of advertising abuse, such as ad injection, began to emerge. Chap-
ter 11 [135] examines the complex ecosystem of ad networks, syndicators, and intermediates that
fueled the injection ecosystem. Our work identified and leveraged injector and ad network choke
points within the ecosystem, enabling remediation for millions of users.

145

Chapter 13

Conclusion and Future Directions

The impact of global Internet security problems such as censorship and cybercrime continued to
increase during the production of this dissertation. As systems and data also expand in complexity,
the need for empirical grounding continues to be critical. This work presents methods and systems
that not only enable the systematic understanding of these threats, but also open the door to new
avenues of research. This section frames the contributions of this dissertation and how they inform
future research directions.

Longitudinal and Continuous Censorship Measurement With the development of Augur and
Iris, we now have the ability to perform continuous censorship measurement around the globe.
This capability opens the door to new avenues of research: we can study the trends of censorship
within a single country as well as across groups of countries. Using multiple vantage points within
countries, we can begin to understand how censorship is deployed and the heterogeneity of deploy-
ment, at scale. Using this work we can identify the onset of new censorship and the dynamics of
blocking behavior around key political or social events. The ability to perform controlled repeated
measurements also allows us to understand the efficacy of various blocking techniques and eva-
sions, and how censors respond to these evasions. Understanding these facets of censor behavior
and technology will allow computer scientists to develop more effective, well-grounded defenses
and evasions, while also enabling social scientists and policy makers to study the interactions be-
tween users and censors at a scale not previously possible.

Combating Cybercrime with Information Sharing Cybercrime remains an ongoing challenge
for advertising networks. Systematic efforts across the community, including our work understand-
ing and remediating ZeroAccess, had measurable impact. Subsequently, criminals shifting their
techniques from bot- and malware-driven operations to unwanted software [135] and “in-house”
(i.e., criminals emulating users themselves at scale) operations [145].

With this continued prevalence of cybercrime attacks, companies struggle to identify and re-
mediate attacks at the speed and volume they occur. The ability to quickly and reliably share threat
information (e.g., IP addresses, malware samples, URLs, tactics) between targets is emerging as a

CHAPTER 13. CONCLUSION AND FUTURE DIRECTIONS 146

popular proactive defense, and, though of unproven utility, has become current industry best prac-
tice. This trend is supported by recent legislation (the Cybersecurity Information Sharing Act),
aimed at improving information sharing within the United States.

Within industry, this information sharing is commonly known as threat intelligence, an emerg-
ing market valued at over three billion US dollars. But despite significant industry capital and
supporting legislation, the scope, scale, quality, and efficacy of threat intelligence remains un-
studied. In order to answer these questions we need sound, well-designed evaluation metrics and
criteria that will allow us to develop effective deployment strategies.

The emergence of this field coupled with the methods and systems of this dissertation present
a unique opportunity to develop evaluation metrics, collection and curation methodologies, and
effective sharing strategies—ultimately with the aim of changing how we defend systems by en-
abling effective multi-vantage data-driven defenses that do not exist today.

Exploring Advanced Persistent Threats Anecdotal industry and initial academic findings sug-
gest state-sponsored advanced persistent threats (APTs) target a variety of organizations ranging
from human rights activists to governments. These long-term, covert, highly-targeted threats use
sophisticated malware, processes, and reconnaissance to manually compromise networks. The
continued growth of these state-sponsored attacks highlights the need for empirical grounding and
sound, rigorous understanding of these threats and how best to defend against them.

While this dissertation focused on criminals, many of the methods and systems are directly
applicable to nation-state actors. This natural extension is enabling ongoing work examining APT
target selection, recidivism, and ultimately a comprehensive understanding of how to reason about
and defend against nation-state adversaries.

147

Bibliography

[1] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multifaceted Approach to Under-
standing the Botnet Phenomenon. In ACM SIGCOMM, 2006.

[2] G. Aceto, A. Botta, A. Pescapè, N. Feamster, M. F. Awan, T. Ahmad, and S. Qaisar. Mon-
itoring Internet Censorship with UBICA. In International Workshop on Traffic Monitoring
and Analysis (TMA), 2015.

[3] Alexa Top Sites. http://www.alexa.com/topsites.

[4] C. Anderson. Dimming the Internet: Detecting throttling as a mechanism of censorship in
Iran. arXiv preprint arXiv:1306.4361, 2013.

[5] C. Anderson, P. Winter, and Roya. Global Network Interference Detection Over the RIPE
Atlas Network. In USENIX Workshop on Free and Open Communications on the Internet
(FOCI), 2014.

[6] G. Angioni. PokerStars, Full Tilt, and 888Poker Blacklisted in Latvia. https:
//www.pokernews.com/news/2014/08/pokerstars-full-tilt-and-
888poker-blacklisted-in-latvia-18971.htm, August 2014.

[7] Anonymous. GreatFire.org. https://en.greatfire.org/.

[8] Anonymous. The Collateral Damage of Internet Censorship by DNS Injection. ACM SIG-
COMM Computer Communication Review (CCR), 2012.

[9] Anonymous. Towards a Comprehensive Picture of the Great Firewall’s DNS Censorship. In
USENIX Workshop on Free and Open Communications on the Internet (FOCI), 2014.

[10] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building a Dynamic
Reputation System for DNS. In USENIX Security Symposium, 2010.

[11] S. Aryan, H. Aryan, and J. A. Halderman. Internet Censorship in Iran: A First Look. In
USENIX Workshop on Free and Open Communications on the Internet (FOCI), 2013.

[12] M. Bailey and C. Labovitz. Censorship and Co-option of the Internet Infrastructure. Tech-
nical Report CSE-TR-572-11, University of Michigan, Ann Arbor, MI, USA, July 2011.

http://www.alexa.com/topsites
https://www.pokernews.com/news/2014/08/pokerstars-full-tilt-and-888poker-blacklisted-in-latvia-18971.htm
https://www.pokernews.com/news/2014/08/pokerstars-full-tilt-and-888poker-blacklisted-in-latvia-18971.htm
https://www.pokernews.com/news/2014/08/pokerstars-full-tilt-and-888poker-blacklisted-in-latvia-18971.htm
https://en.greatfire.org/

BIBLIOGRAPHY 148

[13] BBC’s website is being blocked across China. http://www.bbc.com/news/world-
asia-china-29628356, October 2014.

[14] The Belmont Report - Ethical Principles and Guidelines for the Protection of Human Sub-
jects of Research. http://ohsr.od.nih.gov/guidelines/belmont.html.

[15] S. Bodmer and M. Vandegrift. Looking Back at Murofet, a ZeuSbot Variants Active History.
http://blog.damballa.com/?p=1008, Nov. 2010.

[16] D. Bolton. Putlocker Blocked in the UK by Internet Service Providers after High Court
Order. https://goo.gl/s8Hb43, May 2016.

[17] G. Bonfa. Step-by-Step Reverse Engineering Malware: ZeroAccess / Max++ /
Smiscer Crimeware Rootkit. http://resources.infosecinstitute.com/
step-by-step-tutorial-on-reverse-engineering-malware-the-
zeroaccessmaxsmiscer-crimeware-rootkit, November 2010.

[18] S. Bortzmeyer. Hijacking through Routing in Turkey. https://ripe68.ripe.net/
presentations/158-bortzmeyer-google-dns-turkey.pdf.

[19] G. Buehrer, J. W. Stokes, and K. Chellapilla. A Large-scale Study of Automated Web Search
Traffic. In Workshop on Adversarial Information Retrieval on the Web, 2008.

[20] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring Pay-per-Install: The Com-
moditization of Malware Distribution. In USENIX Security Symposium (USENIX), 2011.

[21] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher: Enabling Active Botnet
Infiltration using. Automatic Protocol Reverse-Engineering. In ACM Conference on Com-
puter and Communications Security (CCS), 2009.

[22] CAIDA. Archipelago (Ark) Measurement Infrastructure. http://www.caida.org/
projects/ark/.

[23] A. Chaabane, T. Chen, M. Cunche, E. D. Cristofaro, A. Friedman, and M. A. Kaafar. Cen-
sorship in the Wild: Analyzing Internet Filtering in Syria. In ACM Internet Measurement
Conference (IMC), 2014.

[24] W. Chen, Y. Huang, B. F. Ribeiro, K. Suh, H. Zhang, E. de Souza e Silva, J. Kurose, and
D. Towsley. Exploiting the IPID Field to Infer Network Path and End-System Characteris-
tics. In Workshop on Passive and Active Network Measurement (PAM), 2005.

[25] K. Chiang and L. Lloyd. A Case Study of the Rustock Rootkit and Spam Bot. In USENIX
Workshop on Hot Topics in Understanding Botnets (HotBots), 2007.

[26] C. Y. Cho, J. Caballero, C. Grier, V. Paxson, and D. Song. Insights from the Inside: A View
of Botnet Management from Infiltration. In USENIX Conference on Large-scale Exploits
and Emergent Threats (LEET), 2010.

http://www.bbc.com/news/world-asia-china-29628356
http://www.bbc.com/news/world-asia-china-29628356
http://ohsr.od.nih.gov/guidelines/belmont.html
http://blog.damballa.com/?p=1008
https://goo.gl/s8Hb43
http://resources.infosecinstitute.com/step-by-step-tutorial-on-reverse-engineering-malware-the-zeroaccessmaxsmiscer-crimeware-rootkit
http://resources.infosecinstitute.com/step-by-step-tutorial-on-reverse-engineering-malware-the-zeroaccessmaxsmiscer-crimeware-rootkit
http://resources.infosecinstitute.com/step-by-step-tutorial-on-reverse-engineering-malware-the-zeroaccessmaxsmiscer-crimeware-rootkit
https://ripe68.ripe.net/presentations/158-bortzmeyer-google-dns-turkey.pdf
https://ripe68.ripe.net/presentations/158-bortzmeyer-google-dns-turkey.pdf
http://www.caida.org/projects/ark/
http://www.caida.org/projects/ark/

BIBLIOGRAPHY 149

[27] D. Cicalese, D. Z. Joumblatt, D. Rossi, M. O. Buob, J. Aug, and T. Friedman. Latency-Based
Anycast Geolocation: Algorithms, Software, and Data Sets. IEEE Journal on Selected Areas
in Communications, June 2016.

[28] Cisco OpenDNS. https://www.opendns.com/.

[29] Citizen Lab. Block Test List. https://github.com/citizenlab/test-lists.

[30] Citizen Lab. https://citizenlab.org.

[31] R. Clayton, S. J. Murdoch, and R. N. M. Watson. Ignoring the Great Firewall of China. In
Privacy Enhancing Technologies Symposium (PETS), 2006.

[32] C. Contavalli, W. van der Gaast, D. C. Lawrence, and W. Kumari. Client Subnet in DNS
Queries. RFC 7871.

[33] M. Cotton, L. Vegoda, R. Bonica, and B. Haberman. Special-Purpose IP Address Registries.
RFC 6890.

[34] D. Dagon, N. Provos, C. P. Lee, and W. Lee. Corrupted DNS Resolution Paths: The Rise of a
Malicious Resolution Authority. In Networked and Distributed System Security Symposium
(NDSS), 2008.

[35] A. Dainotti, C. Squarcella, E. Aben, K. C. Claffy, M. Chiesa, M. Russo, and A. Pescapé.
Analysis of country-wide Internet outages caused by censorship. In ACM Internet Measure-
ment Conference (IMC), 2011.

[36] J. Dalek, B. Haselton, H. Noman, A. Senft, M. Crete-Nishihata, P. Gill, and R. J. Deibert. A
Method for Identifying and Confirming the Use of URL Filtering Products for Censorship.
In ACM Internet Measurement Conference (IMC), 2013.

[37] N. Daswani and M. Stoppelman. The Anatomy of Clickbot.A. In USENIX Workshop on
Hot Topics in Understanding Botnets (HotBots), 2007.

[38] V. Dave, S. Guha, and Y. Zhang. Measuring and Fingerprinting Click-spam in Ad Networks.
In ACM SIGCOMM, 2012.

[39] V. Dave, S. Guha, and Y. Zhang. ViceROI: Catching Click-Spam in Search Ad Networks.
In ACM Conference on Computer and Communications Security (CCS), 2013.

[40] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion Router.
In USENIX Security Symposium (USENIX), 2004.

[41] D. Dittrich and E. Kenneally. The Menlo Report: Ethical Principles Guiding Information
and Communication Technology Research. Technical report, U.S. Department of Homeland
Security, Aug 2012.

https://www.opendns.com/
https://github.com/citizenlab/test-lists
https://citizenlab.org

BIBLIOGRAPHY 150

[42] J. Dupre. What is Cloaking and Why Do Affiliate Marketers Use It? http:
//justindupre.com/what-is-cloaking-and-why-do-affiliate-
marketers-use-it/, May 2010.

[43] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A Search Engine
Backed by Internet-Wide Scanning. In ACM Conference on Computer and Communications
Security (CCS), 2015.

[44] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-Wide Scanning and
its Security Applications. In USENIX Security Symposium, 2013.

[45] B. G. Edelman. Google Click Fraud Inflates Conversion Rates and Tricks Advertisers into
Overpaying. http://www.benedelman.org/news/011210-1.html, Jan. 2010.

[46] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and V. Paxson. Examining How
the Great Firewall Discovers Hidden Circumvention Servers. In ACM Internet Measurement
Conference (IMC), 2015.

[47] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall. Detecting Intentional Packet Drops
on the Internet via TCP/IP Side Channels. In Workshop on Passive and Active Network
Measurement (PAM), 2014.

[48] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall. Idle Port Scanning and Non-interference
Analysis of Network Protocol Stacks Using Model Checking. In USENIX Security Sympo-
sium (USENIX), 2010.

[49] R. Ensafi, P. Winter, A. Mueen, and J. R. Crandall. Analyzing the Great Firewall of China
Over Space and Time. Privacy Enhancing Technologies Symposium (PETS), 2015.

[50] O. Farnan, A. Darer, and J. Wright. Poisoning the Well – Exploring the Great Firewall’s
Poisoned DNS Responses. In ACM Workshop on Privacy in the Electronic Society (WPES),
2016.

[51] Federal Bureau of Investigation. International Cyber Ring That Infected Millions of Com-
puters Dismantled. http://www.fbi.gov/news/stories/2011/november/
malware 110911, Nov. 2011.

[52] D. Fifield and L. Tsai. Censors’ Delay in Blocking Circumvention Proxies. In USENIX
Workshop on Free and Open Communications on the Internet (FOCI), 2016.

[53] A. Filastò and J. Appelbaum. OONI: Open Observatory of Network Interference. In
USENIX Workshop on Free and Open Communications on the Internet (FOCI), 2012.

[54] 5 Ways to Protect Against the Ad Fraud Surge in Q4. https://www.whiteops.com/
q4-ad-fraud-surge, Oct. 2017.

http://justindupre.com/what-is-cloaking-and-why-do-affiliate-marketers-use-it/
http://justindupre.com/what-is-cloaking-and-why-do-affiliate-marketers-use-it/
http://justindupre.com/what-is-cloaking-and-why-do-affiliate-marketers-use-it/
http://www.benedelman.org/news/011210-1.html
http://www.fbi.gov/news/stories/2011/november/malware_110911
http://www.fbi.gov/news/stories/2011/november/malware_110911
https://www.whiteops.com/q4-ad-fraud-surge
https://www.whiteops.com/q4-ad-fraud-surge

BIBLIOGRAPHY 151

[55] Freedom House. Freedom on the Net. 2016.

[56] M. Giuliani. ZeroAccess, an advanced kernel mode rootkit. http://www.prevx.com/
blog/171/ZeroAccess-an-advanced-kernel-mode-rootkit.html, Apr.
2011.

[57] The Go Programming Language. https://golang.org/.

[58] Google Ads: Ad Traffic Quality Resource Center Overview. http://www.google.com/
ads/adtrafficquality/.

[59] Google Inc. About smart pricing. AdWords Help, Apr. 2013.

[60] Google Inc. Google Services Agreement for InfoSpace LLC. http:
//www.sec.gov/Archives/edgar/data/1068875/000119312514121780/
d702452dex101.htm, March 2014.

[61] Google Inc. How Google uses conversion data. AdWords Help, May 2014.

[62] Google Public DNS. https://developers.google.com/speed/public-dns/.

[63] T. Greene. ZeroAccess bot-herders abandon click-fraud network. http://
www.networkworld.com/news/2013/121913-zeroaccess-277113.html,
Dec. 2013.

[64] C. Grier et al. Manufacturing Compromise: The Emergence of Exploit-as-a-Service. In
Proceedings of the ACM Conference on Computer and Communications Security (CCS),
October 2012.

[65] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy. Not-a-Bot: Improving Ser-
vice Availability in the Face of Botnet Attacks. In Usenix Symposium on Networked Systems
Design and Implementation (NSDI), 2009.

[66] H. Haddadi. Fighting Online Click-Fraud Using Bluff Ads. ACM SIGCOMM Computer
Communication Review (CCR), 2010.

[67] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measurements and Mitigation
of Peer-to-Peer-based Botnets: A Case Study on Storm Worm. In USENIX Conference on
Large-scale Exploits and Emergent Threats (LEET), 2008.

[68] F. Howard. Exploring the Blackhole exploit kit. http://
nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/.

[69] HSI seizes Silk Road underground black market website. http://www.ice.gov/news/
releases/1310/131002baltimore.htm, 2013.

http://www.prevx.com/blog/171/ZeroAccess-an-advanced-kernel-mode-rootkit.html
http://www.prevx.com/blog/171/ZeroAccess-an-advanced-kernel-mode-rootkit.html
https://golang.org/
http://www.google.com/ads/adtrafficquality/
http://www.google.com/ads/adtrafficquality/
http://www.sec.gov/Archives/edgar/data/1068875/000119312514121780/d702452dex101.htm
http://www.sec.gov/Archives/edgar/data/1068875/000119312514121780/d702452dex101.htm
http://www.sec.gov/Archives/edgar/data/1068875/000119312514121780/d702452dex101.htm
https://developers.google.com/speed/public-dns/
http://www.networkworld.com/news/2013/121913-zeroaccess-277113.html
http://www.networkworld.com/news/2013/121913-zeroaccess-277113.html
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/
http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/
http://www.ice.gov/news/releases/1310/131002baltimore.htm
http://www.ice.gov/news/releases/1310/131002baltimore.htm

BIBLIOGRAPHY 152

[70] B. Huffaker, M. Fomenkov, and k. claffy. Geocompare: a comparison of public and commer-
cial geolocation databases - Technical Report . Technical report, Cooperative Association
for Internet Data Analysis (CAIDA), May 2011.

[71] ICLab. ICLab: a Censorship Measurement Platform. https://iclab.org/.

[72] P. Ipeirotis. Uncovering an advertising fraud scheme. Or “the Internet is for
porn”. http://www.behind-the-enemy-lines.com/2011/03/uncovering-
advertising-fraud-scheme.html, Mar. 2011.

[73] J. Jiang, J. Liang, K. Li, J. Li, H. Duan, and J. Wu. Ghost Domain Name: Revoked yet Still
Resolvable. In Networked and Distributed System Security Symposium (NDSS), 2012.

[74] J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishnamurthy. Studying Spamming Botnets
Using Botlab. In Usenix Symposium on Networked Systems Design and Implementation
(NSDI), 2009.

[75] B. Jones, N. Feamster, V. Paxson, N. Weaver, and M. Allman. Detecting DNS Root Manip-
ulation. In Workshop on Passive and Active Network Measurement (PAM), 2016.

[76] B. Jones, T.-W. Lee, N. Feamster, and P. Gill. Automated Detection and Fingerprinting of
Censorship Block Pages. In ACM Internet Measurement Conference (IMC), 2014.

[77] A. Juels, S. Stamm, and M. Jakobsson. Combating Click Fraud Via Premium Clicks. In
USENIX Security Symposium (USENIX), 2007.

[78] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan Detection Using
Sequential Hypothesis Testing. In IEEE Symposium on Security and Privacy (S&P), 2004.

[79] Kaffeine. MagicTraffic : a look inside a Zaccess/Sirefef affiliate. http:
//malware.dontneedcoffee.com/2013/11/magictraffic-look-
inside-zaccesssirefef.html, 2013.

[80] H. Kang, K. Wang, D. Soukal, F. Behr, and Z. Zheng. Large-scale Bot Detection for Search
Engines. In International Conference on World Wide Web (WWW), 2010.

[81] S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan, V. Paxson, S. J. Murdoch, and
D. McCoy. Do You See What I See? Differential Treatment of Anonymous Users. In
Networked and Distributed System Security Symposium (NDSS), 2016.

[82] S. Khattak, M. Javed, P. D. Anderson, and V. Paxson. Towards Illuminating a Censorship
Monitor’s Model to Facilitate Evasion. In USENIX Workshop on Free and Open Communi-
cations on the Internet (FOCI), 2013.

[83] L. Kim. The Most Expensive Keywords in Google AdWords. http:
//www.wordstream.com/blog/ws/2011/07/18/most-expensive-
google-adwords-keywords, July 2011.

https://iclab.org/
http://www.behind-the-enemy-lines.com/2011/03/uncovering-advertising-fraud-scheme.html
http://www.behind-the-enemy-lines.com/2011/03/uncovering-advertising-fraud-scheme.html
http://malware.dontneedcoffee.com/2013/11/magictraffic-look-inside-zaccesssirefef.html
http://malware.dontneedcoffee.com/2013/11/magictraffic-look-inside-zaccesssirefef.html
http://malware.dontneedcoffee.com/2013/11/magictraffic-look-inside-zaccesssirefef.html
http://www.wordstream.com/blog/ws/2011/07/18/most-expensive-google-adwords-keywords
http://www.wordstream.com/blog/ws/2011/07/18/most-expensive-google-adwords-keywords
http://www.wordstream.com/blog/ws/2011/07/18/most-expensive-google-adwords-keywords

BIBLIOGRAPHY 153

[84] C. Kintana, D. Turner, J.-Y. Pan, A. Metwally, N. Daswani, E. Chin, and A. Bortz. The Goals
and Challenges of Click Fraud Penetration Testing Systems. In International Symposium on
Software Reliability Engineering (ISSRE), 2009.

[85] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular Router.
ACM Transactions Computer Systems, August 2000.

[86] B. Krebs. Security bug in dell pcs shipped since 8/15. https://
krebsonsecurity.com/2015/11/security-bug-in-dell-pcs-
shipped-since-815/.

[87] B. Krebs. Takedowns: The Shuns and Stuns That Take the Fight to the Enemy. In McAfee
Security Journal, volume 6, 2010.

[88] B. Krebs. Fake Antivirus Industry Down, But Not Out. http://
krebsonsecurity.com/2011/08/fake-antivirus-industry-down-
but-not-out/, August 2011.

[89] B. Krebs. Reports: Liberty Reserve Founder Arrested, Site Shuttered. http:
//krebsonsecurity.com/2013/05/reports-liberty-reserve-
founder-arrested-site-shuttered/, 2013.

[90] B. Krebs. ZeroAccess Botnet Down, But Not Out. http://krebsonsecurity.com/
tag/zeroaccess-takedown/, Dec. 2013.

[91] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson. GQ: Practical Containment for
Measuring Modern Malware Systems. In ACM Internet Measurement Conference (IMC),
2011.

[92] N. Kshetri. The Economics of Click Fraud. IEEE Symposium on Security and Privacy
(S&P), 2010.

[93] M. Kührer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz. Going Wild: Large-Scale
Classification of Open DNS Resolvers. In ACM Internet Measurement Conference (IMC),
2015.

[94] M. Kührer, T. Hupperich, C. Rossow, and T. Holz. Exit from Hell? Reducing the Impact of
Amplification DDoS Attacks. In USENIX Security Symposium, 2014.

[95] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, M. Félegyházi, C. Grier, T. Halvorson,
C. Kanich, C. Kreibich, H. Liu, D. McCoy, N. Weaver, V. Paxson, G. M. Voelker, and
S. Savage. Click Trajectories: End-to-End Analysis of the Spam Value Chain. In IEEE
Symposium on Security and Privacy (S&P), 2011.

[96] The Lote Clicking Agent. http://www.clickingagent.com/.

https://krebsonsecurity.com/2015/11/security-bug-in-dell-pcs-shipped-since-815/
https://krebsonsecurity.com/2015/11/security-bug-in-dell-pcs-shipped-since-815/
https://krebsonsecurity.com/2015/11/security-bug-in-dell-pcs-shipped-since-815/
http://krebsonsecurity.com/2011/08/fake-antivirus-industry-down-but-not-out/
http://krebsonsecurity.com/2011/08/fake-antivirus-industry-down-but-not-out/
http://krebsonsecurity.com/2011/08/fake-antivirus-industry-down-but-not-out/
http://krebsonsecurity.com/2013/05/reports-liberty-reserve-founder-arrested-site-shuttered/
http://krebsonsecurity.com/2013/05/reports-liberty-reserve-founder-arrested-site-shuttered/
http://krebsonsecurity.com/2013/05/reports-liberty-reserve-founder-arrested-site-shuttered/
http://krebsonsecurity.com/tag/zeroaccess-takedown/
http://krebsonsecurity.com/tag/zeroaccess-takedown/
http://www.clickingagent.com/

BIBLIOGRAPHY 154

[97] G. Lowe, P. Winters, and M. L. Marcus. The Great DNS Wall of China. Technical report,
New York University, 2007.

[98] MaxMind. https://www.maxmind.com/.

[99] D. McCoy, H. Dharmdasani, C. Kreibich, G. M. Voelker, and S. Savage. Priceless: The
Role of Payments in Abuse-advertised Goods. In ACM Conference on Computer and Com-
munications Security (CCS), 2012.

[100] K. McNamee. Malware Analysis Report. Botnet: ZeroAc-
cess/Sirefef. http://www.kindsight.net/sites/default/files/
Kindsight Malware Analysis-ZeroAcess-Botnet-final.pdf, Febru-
ary 2012.

[101] A. Metwally, D. Agrawal, and A. El Abbadi. DETECTIVES: DETEcting Coalition hiT
Inflation attacks in adVertising nEtworks Streams. In International Conference on World
Wide Web (WWW), 2007.

[102] A. Metwally, F. Emekçi, D. Agrawal, and A. El Abbadi. SLEUTH: Single-pubLisher attack
dEtection Using correlaTion Hunting. In Conference on Very Large Data Bases (VLDB),
2008.

[103] Microsoft, Yahoo! Change Search Landscape. http://www.microsoft.com/en-
us/news/press/2009/jul09/07-29release.aspx, July 2009.

[104] Microsoft Corporation. Zeroaccess botnet Legal Notice. https://
www.botnetlegalnotice.com/zeroaccess/.

[105] B. Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson. What’s Clicking What? Tech-
niques and Innovations of Todays Clickbots. In Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2011.

[106] S. Mitchell and B. Collins. Porn blocking: What the Big Four ISPs Actually
Did. http://www.alphr.com/networking/20643/porn-blocking-what-
the-big-four-isps-actually-did, August 2015.

[107] D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial-of-Service Activity. In
USENIX Security Symposium (USENIX), 2001.

[108] Z. Nabi. The Anatomy of Web Censorship in Pakistan. In USENIX Workshop on Free and
Open Communications on the Internet (FOCI), 2013.

[109] A. Neville and R. Gibb. ZeroAccess Indepth (Symantec Corporation White Pa-
per). http://www.symantec.com/content/en/us/enterprise/media/
security response/whitepapers/zeroaccess indepth.pdf, October
2013.

https://www.maxmind.com/
http://www.kindsight.net/sites/default/files/Kindsight_Malware_Analysis-ZeroAcess-Botnet-final.pdf
http://www.kindsight.net/sites/default/files/Kindsight_Malware_Analysis-ZeroAcess-Botnet-final.pdf
http://www.microsoft.com/en-us/news/press/2009/jul09/07-29release.aspx
http://www.microsoft.com/en-us/news/press/2009/jul09/07-29release.aspx
https://www.botnetlegalnotice.com/zeroaccess/
https://www.botnetlegalnotice.com/zeroaccess/
http://www.alphr.com/networking/20643/porn-blocking-what-the-big-four-isps-actually-did
http://www.alphr.com/networking/20643/porn-blocking-what-the-big-four-isps-actually-did
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/zeroaccess_indepth.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/zeroaccess_indepth.pdf

BIBLIOGRAPHY 155

[110] Q. Northon. China Blocks LiveJournal. https://www.wired.com/2007/03/
china-blocks-livejournal/, March 2007.

[111] Ooniprobe: A Network Interference Detection Tool. https://github.com/
thetorproject/ooni-probe.

[112] OpenNet Initiative. https://opennet.net/.

[113] Open Resolver Project. http://openresolverproject.org/.

[114] J. C. Park and J. R. Crandall. Empirical Study of a National-Scale Distributed Intrusion
Detection System: Backbone-Level Filtering of HTML Responses in China. In IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS), 2010.

[115] P. Pearce, V. Dave, C. Grier, K. Levchenko, S. Guha, D. McCoy, V. Paxson, S. Savage, and
G. M. Voelker. Characterizing Large-Scale Click Fraud in ZeroAccess. In ACM Conference
on Computer and Communications Security (CCS), 2014.

[116] P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson. Augur: Internet-Wide Detection of
Connectivity Disruptions. In IEEE Symposium on Security and Privacy (S&P), 2017.

[117] P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson. Towards Continual Measurement of
Global Network-Level Censorship. In IEEE Security & Privacy Magazine, Special Issue,
2018.

[118] P. Pearce, C. Grier, V. Paxson, V. Dave, D. McCoy, G. M. Voelker, and S. Savage. The
ZeroAccess Auto-Clicking and Search-Hijacking Click Fraud Modules. Technical report,
EECS Department, University of California, Berkeley, Dec 2013.

[119] P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster, N. Weaver, and V. Paxson. Global Mea-
surement of DNS Manipulation. In USENIX Security Symposium (USENIX), 2017.

[120] P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster, N. Weaver, and V. Paxson. Global Mea-
surement of DNS Manipulation. In USENIX ;login:, Winter 2017.

[121] M. Polychronakis, P. Mavrommatis, and N. Provos. Ghost turns Zombie: Exploring the
Life Cycle of Web-based Malware. In USENIX Conference on Large-scale Exploits and
Emergent Threats (LEET), 2008.

[122] Pricewaterhouse Coopers. IAB Internet Advertising Revenue Report: 2017 Full Year Re-
sults. https://www.iab.com/wp-content/uploads/2018/05/IAB-2017-
Full-Year-Internet-Advertising-Revenue-Report.REV2 .pdf, May
2018.

[123] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu. Investigation of triangular spamming: A stealthy and
efficient spamming technique. In IEEE Symposium on Security and Privacy (S&P), 2010.

https://www.wired.com/2007/03/china-blocks-livejournal/
https://www.wired.com/2007/03/china-blocks-livejournal/
https://github.com/thetorproject/ooni-probe
https://github.com/thetorproject/ooni-probe
https://opennet.net/
http://openresolverproject.org/
https://www.iab.com/wp-content/uploads/2018/05/IAB-2017-Full-Year-Internet-Advertising-Revenue-Report.REV2_.pdf
https://www.iab.com/wp-content/uploads/2018/05/IAB-2017-Full-Year-Internet-Advertising-Revenue-Report.REV2_.pdf

BIBLIOGRAPHY 156

[124] A. Razaghpanah, A. Li, A. Filastò, R. Nithyanand, V. Ververis, W. Scott, and P. Gill. Ex-
ploring the Design Space of Longitudinal Censorship Measurement Platforms. Technical
Report 1606.01979, ArXiv CoRR, 2016.

[125] E. Rodionov and A. Matrosov. The Evolution of TDL: Conquering x64. http://
go.eset.com/us/resources/white-papers/The Evolution of TDL.pdf,
2011.

[126] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann, C. J. Dietrich, and
H. Bos. SoK: P2PWNED — Modeling and Evaluating the Resilience of Peer-to-Peer Bot-
nets. In IEEE Symposium on Security and Privacy (S&P), May 2013.

[127] M. Salganik. Bit by Bit: Social Research for the Digital Age. http://
www.bitbybitbook.com/, 2016.

[128] Sam Burnett and Nick Feamster. Encore: Lightweight Measurement of Web Censorship
with Cross-Origin Requests. In ACM SIGCOMM, 2015.

[129] K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. On Measuring the Client-Side
DNS Infrastructure. In ACM Internet Measurement Conference (IMC), 2013.

[130] W. Scott, T. Anderson, T. Kohno, and A. Krishnamurthy. Satellite: Joint Analysis of CDNs
and Network-Level Interference. In USENIX Annual Technical Conference (ATC), 2016.

[131] A. Sfakianakis, E. Athanasopoulos, and S. Ioannidis. CensMon: A Web Censorship Mon-
itor. In USENIX Workshop on Free and Open Communications on the Internet (FOCI),
2011.

[132] L. Sinclair. Click fraud rampant in online ads, says Bing. http://
www.theaustralian.com.au/media/click-fraud-rampant-in-online-
ads-says-bing/story-e6frg996-1226056349034, May 2011.

[133] A. Spence. Russia Accuses Latvia of ”blatant censorship” after Sputnik News Site is Shut
Down. https://goo.gl/wIUUCr, Mar. 2016.

[134] The Tor Project. OONI: Open observatory of network interference. https://
ooni.torproject.org/.

[135] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy, A. Nappa,
V. Paxson, P. Pearce, N. Provos, and M. A. Rajab. Ad Injection at Scale: Assessing De-
ceptive Advertisement Modifications. In IEEE Symposium on Security and Privacy (S&P),
2015.

[136] K. Thomas, D. Huang, D. Wang, E. Bursztein, C. Grier, T. J. Holt, C. Kruegel, D. McCoy,
S. Savage, and G. Vigna. Framing dependencies introduced by underground commoditiza-
tion. In Workshop on the Economics of Information Security, 2015.

http://go.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf
http://go.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf
http://www.bitbybitbook.com/
http://www.bitbybitbook.com/
http://www.theaustralian.com.au/media/click-fraud-rampant-in-online-ads-says-bing/story-e6frg996-1226056349034
http://www.theaustralian.com.au/media/click-fraud-rampant-in-online-ads-says-bing/story-e6frg996-1226056349034
http://www.theaustralian.com.au/media/click-fraud-rampant-in-online-ads-says-bing/story-e6frg996-1226056349034
https://goo.gl/wIUUCr
https://ooni.torproject.org/
https://ooni.torproject.org/

BIBLIOGRAPHY 157

[137] The Tor Project. https://www.torproject.org/.

[138] Transmission Control Protocol. RFC 793, Sept. 1981.

[139] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson. SoK: Towards Grounding Censorship
Circumvention in Empiricism. In IEEE Symposium on Security and Privacy, 2016.

[140] G. Tuysuz and I. Watson. Turkey Blocks YouTube Days after Twitter Crackdown. http:
//www.cnn.com/2014/03/27/world/europe/turkey-youtube-blocked/,
Mar. 2014.

[141] A. Tuzhilin. The Lane’s Gifts v. Google Report. http://
googleblog.blogspot.com/pdf/Tuzhilin Report.pdf, 2005.

[142] N. Villeneuve. Koobface: Inside a Crimeware Network. http://www.infowar-
monitor.net/reports/iwm-koobface.pdf, Nov. 2010.

[143] J. Wakefield. Bbc news: Lenovo taken to task over ’malicious’ adware. https:
//www.bbc.com/news/technology-31533028.

[144] N. Weaver, C. Kreibich, and V. Paxson. Redirecting DNS for Ads and Profit. In USENIX
Workshop on Free and Open Communications on the Internet (FOCI), 2011.

[145] White Ops. The Methbot Operation. https://www.whiteops.com/methbot.

[146] S. Wilson. The Logic of Russian Internet Censorship. https://
www.washingtonpost.com/news/monkey-cag>e/wp/2014/03/16/the-
logic-of-russian-internet-censorship/, Mar. 2014.

[147] P. Winter. The Philippines are blocking Tor? Tor Trac ticket, June 2012. https://
bugs.torproject.org/6258.

[148] P. Winter and S. Lindskog. How the Great Firewall of China is Blocking Tor. In USENIX
Workshop on Free and Open Communications on the Internet (FOCI), 2012.

[149] J. Wyke. The ZeroAccess Botnet: Mining and Fraud for Massive Financial Gain.
http://www.sophos.com/en-us/why-sophos/our-people/technical-
papers/zeroaccess-botnet.aspx, September 2012.

[150] J. Wyke. ZeroAccess. http://www.sophos.com/en-us/why-sophos/our-
people/technical-papers/zeroaccess.aspx, 2012.

[151] X. Xu, Z. M. Mao, and J. A. Halderman. Internet Censorship in China: Where Does the
Filtering Occur? In Workshop on Passive and Active Network Measurement (PAM), 2011.

[152] F. Yu, Y. Xie, and Q. Ke. SBotMiner: Large Scale Search Bot Detection. In Conference on
Web Search and Data Mining (WSDM), 2010.

https://www.torproject.org/
http://www.cnn.com/2014/03/27/world/europe/turkey-youtube-blocked/
http://www.cnn.com/2014/03/27/world/europe/turkey-youtube-blocked/
http://googleblog.blogspot.com/pdf/Tuzhilin_Report.pdf
http://googleblog.blogspot.com/pdf/Tuzhilin_Report.pdf
http://www.infowar-monitor.net/reports/iwm-koobface.pdf
http://www.infowar-monitor.net/reports/iwm-koobface.pdf
https://www.bbc.com/news/technology-31533028
https://www.bbc.com/news/technology-31533028
https://www.whiteops.com/methbot
https://www.washingtonpost.com/news/monkey-cag>e/wp/2014/03/16/the-logic-of-russian-internet-censorship/
https://www.washingtonpost.com/news/monkey-cag>e/wp/2014/03/16/the-logic-of-russian-internet-censorship/
https://www.washingtonpost.com/news/monkey-cag>e/wp/2014/03/16/the-logic-of-russian-internet-censorship/
https://bugs.torproject.org/6258
https://bugs.torproject.org/6258
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/zeroaccess-botnet.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/zeroaccess-botnet.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/zeroaccess.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/zeroaccess.aspx

BIBLIOGRAPHY 158

[153] X. Zhang, J. Knockel, and J. R. Crandall. Original SYN: Finding machines hidden behind
firewalls. In IEEE Conference on Computer Communications (INFOCOM), 2015.

[154] J. Zittrain and B. G. Edelman. Internet filtering in China. IEEE Internet Computing, 2003.

	Contents
	Introduction
	Global Censorship Measurement
	Censorship Introduction, Related Work and Ethics
	Introduction
	Related Work
	Ethics

	Augur: Internet-Wide Detection of Connectivity Disruptions
	Introduction
	Method Overview
	Putting the Method to Practice
	Augur Implementation and Experiment Data
	Validation and Analysis
	Discussion
	Augur Summary

	Iris: Global Measurement of DNS Manipulation
	Introduction
	Method
	Dataset
	Results
	Iris Summary

	Censorship Discussion and Conclusion

	Understanding Advertising Abuse
	Advertising Abuse Introduction and Related Work
	-0.2emIntroduction
	Related Work and Background

	What's Clicking What? Clickbot Techniques and Innovations
	Introduction
	Methodology
	The Fiesta Clickbot
	The 7cy Clickbot
	Discussion and Summary

	ZeroAccess: Background and Evolution
	ZeroAccess Evolution and Takedown
	Technical Background

	The ZA Auto-Clicking and Search-Hijacking Malware
	Introduction
	Methodology
	The ZeroAccess Platform
	The Auto-Clicking Module
	Serpent: The Search-Hijacking Module
	Summary

	Characterizing Large-Scale Click Fraud in ZeroAccess
	Introduction
	Data Sources and Quality
	Analyzing Fraud
	Assessing ZA-Dirty Ad Units
	Summary

	Ad Injection at Scale: Assessing Deceptive Advertisement Modifications
	Introduction and Background
	Impacted Properties
	Understanding Injectors in Revenue Chains
	Advertisers and Intermediates For Top Injectors
	Summary

	Advertising Abuse Conclusion
	Conclusion and Future Directions
	Bibliography

