
Model-Free Cooperative Step Climbing for Under-actuated
Legged Millirobots

Guangzhao Yang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-108
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-108.html

June 28, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The author would like to thank the members of the Biomimetic Millisystems
Laboratory for their support, especially Carlos Casarez for his expertise in
VelociRoACH platform, Anusha Nagabandi for helping me understanding
different types of algorithms in reinforcement learning, and Professor
Ronald S. Fearing for all the insightful discussions and guidance.

Abstract

Legged millirobots have a wide range of real world applications due to their small size, high mobility,
and low manufacturing costs. They are able to go through narrow passages and tunnels which are
inaccessible to the larger robots, traverse in complex environments, and have higher potential to climb
over obstacles of their sizes compared to wheeled robots. This technical report presents the simulation
results of two VelociRoACH hexapedal legged robots collaboratively climbing over a step which cannot
be accomplished by one such robot. Two magnets and one tether are added to form and release the
connections between two robots in order to help with the robot alignment and provide a tether assist
force. When the robots are in each other’s vicinity, magnetic connections will be formed. After the
front robot successfully climbs over the obstacle, all connections will be released so that the front robot
can continue moving forward. Multiple reward functions are provided during di�erent stages of the
training process in order to learn the primitives for step climbing task such as going forward, keeping
aligned with each other, pushing and climbing. The experiments demonstrate that after training with
di�erent reward functions in the desirable order, the robots are able to climb up the steps with small
height variations using the same learned policy. Since a robot can overcome an obstacle taller than
itself with the help of other robots, given enough number of such legged millirobots, potentially they
are able to climb over any random obstacle by �rst climbing on top of others. The experiment videos
can be found at https://drive.google.com/drive/folders/1XRE5br1szYWwkqelqulygDXDQNhJAILl?
usp=sharing. The code can be found at https://github.com/philip324/roach_step_climbing and
https://github.com/philip324/rllab-philip.

https://drive.google.com/drive/folders/1XRE5br1szYWwkqelqulygDXDQNhJAILl?usp=sharing
https://drive.google.com/drive/folders/1XRE5br1szYWwkqelqulygDXDQNhJAILl?usp=sharing
https://github.com/philip324/roach_step_climbing
https://github.com/philip324/rllab-philip

Contents

� Introduction �

� Related Work �

� Model-Free Cooperative Step Climbing �
�.� Experiment Setup . �
�.� Learning Policies . �
�.� Reward Function Modi�cation . ��

�.�.� Flat Ground . ��
�.�.� Slope . ��
�.�.� Step . ��

� Results ��
�.� Cooperative Step Climbing Primitives . ��

�.�.� Primitive I: Aligning . ��
�.�.� Primitive II: Pitching Up . ��
�.�.� Primitive III: Climbing . ��

�.� Slope vs Step . ��

� Discussion ��

� Acknowledgements ��

Bibliography ��

�

� Introduction

Legged millirobots have a great potential in assisting human rescue teams in disaster scenarios because of
the size and mobility. Although millirobots cannot move heavy objects like the large-scale robots, they are
able to navigate through narrow spaces in collapsed buildings, helping the rescue team locate survivors
and provide optimal rescue strategies. Comparing to wheeled robots, the legged robots of the same size
are more capable of traversing through complex environment, especially the environments with a lot of
obstacles. Another advantage of the millirobots is that they can be produced in large quantities due to the
low manufacturing cost. Deploying a team of legged millirobots potentially allows them to cooperate with
each other in order to overcome larger obstacles. All of these advantages makes them some of the most
mission-capable small-scale robots available

While having all these advantages, legged millirobots are hard to control because they are under-actuated.
The robots in the simulation are modeled based on the VelociRoACH, a Robotic Autonomous Crawling
Hexapod (RoACH) experimental platform designed for high velocity running through its elegant minimal
hardware design [�]. There are only two motors on board to control all � legs, so we cannot control each
individual leg. Moreover, modeling the dynamics of the under-actuated legged millirobots is exceedingly
di�cult due to complicated ground contact physics when moving dynamically on complex terrains. There-
fore, climbing over a step that is higher than the robot itself poses a great challenge for an individual robot.

Figure �.�: Left: VelociRoACH in real world. Right: VelociRoACH in MuJoCo simulation

�

The contribution of this report is to present an approach for controlling under-actuated legged millirobots
in the MuJoCo simulation [�] such that they can overcome a step obstacle cooperatively. In order to make
the controller more robust, we establish � simple connections between the millirobots. Two magnetic
connections are crucial for aligning the robots, while the tether connection provides an extra force to help
the front robot pitch up against the step. Moreover, the report also demonstrates that by using di�erent
reward functions in a desired order during the learning process, we are able to learn the necessary primitives
intrinsically for the cooperative step climbing task. These reward functions describe di�erent general goals
at di�erent stages, and therefore enable the system to learn di�erent policies.

The structure of this technical report is as follows: Chapter � reviews some recent literature on robots
that overcome obstacles cooperatively with di�erent climbing mechanisms. In chapter �, we discuss the
simulation model/environment in which the experiments are conducted, and the model-free learning
algorithm we use to learn a combined policy for both robots in order to climb up the step cooperatively.
Moreover, we describe how we modify the reward function during the learning process in order to learn
the primitives for the step climbing task. Chapter � presents a primitive analysis on each of the three
cooperative climbing primitives when performed independently: aligning, pitching up, and climbing. In
chapter �, we discuss some limitations and drawbacks of this method, and things that we can improve in
the future.

�

� Related Work

Controlling Legged Millirobots: The VelociRoACH [�] is an under-actuated legged millirobot that is
controlled by two motors and can run at a high speed. Many of the prior closed-loop steering control
methods simplify the system dynamics and estimate each leg of the robot as a spring loaded inverted
pendulum (SLIP) model [�]. In order to deal with the complex dynamics of the system, prior work have
achieved success by using a model-based reinforcement learning method with Model Predictive Control
(MPC) [�], which is expressive and sample e�cient. However, model-based methods have more assumptions
and approximations comparing to model-free methods, and does not generalize well for other tasks. Since
we want the millirobots to be able to climb over di�erent obstacles, we choose a policy gradient method [�]
and conduct our experiments in the simulation with low sampling cost.

Figure �.�: Robots use claws or spines to climb the wall. Left: CLASH [�]. Middle: RiSE [�]. Right:
DynoClimber [�].

Climbing Obstacles: Climbing obstacles is hard because there is a huge variation in obstacle types. Many
robots have specialized climbing mechanisms such as claws and spines [�, �, �], which works well on rough
surfaces but not on smooth surfaces. Other robots use gecko-inspired adhesives [�, ��], which works better
on smooth surfaces than on rough surfaces. These robots are able to climb vertical walls successfully, but
the climbing mechanisms do not generalize. Vertigo uses two ���-degree tiltable propellers that produce
thrust angled both upwards and against the wall surface in order to climb the wall [��]. The propellers
allow the robot to climb the wall regardless of the types of wall surface. However, propellers consume
a lot of energy and take up too much space on the robot, and therefore it is not implementable on millirobots.

�

Figure �.�: Robots use gecko-inspired adhesives or propellers to climb the wall. Left: Stickybot [�]. Middle:
CLASH [��]. Right: VertiGo [��].

Robot Cooperation: Prior work on robot cooperation includes tether cooperation between robots. The
Dante II robot is able to continuously adjust the tether tension in order to maintain its stability while
traversing steep terrain [��]. Miki et al. proposed a novel cooperative system between an Unmanned
Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) [��]. These systems assume that one of the
robots is already at the top of an obstacle. However, this assumption may not always be valid under certain
circumstances. For instance, when a team of robots are searching in a collapsed building. The space is too
small for a UAV to �y without collision, and the robots have to be able to climb over an obstacle without an
anchor at the top of the obstacle. Casarez et al. used two legged millirobots with a magnetically detachable
tether connection to successfully get both robots to the top of an obstacle without a top anchor [��]. The
cooperative climbing task is separated into � speci�c primitives, which are hand-speci�ed. However, the
experiments are conducted in a low-friction channel in order to restrict the yaw of the robots. Instead, our
work uses model-free method to learn a cooperative policy such that it can control the yaw to stabilize the
robots. Moreover, the learned policy allows the robots to climb over di�erent types of obstacles (slopes and
steps) with slightly di�erent variations (angles and heights).

Figure �.�: Robots use tether to climb the wall. Left: Dante II [��]. Middle: UAV assists UGV to climb a cli�
[��]. Right: VelociRoACH [��].

�

� Model-Free Cooperative Step Climbing

In this work, we propose a method that allows small, dynamic legged millirobots to climb over an obstacle
higher than themselves cooperatively in MuJoCo simulation. In this section, we describe the simulation
environment in which the experiments are conducted, how we use Trust Region Policy Optimization (TRPO)
to learn a combined policy for both robots, and the reward function modi�cation during the learning process
in order to learn di�erent primitives for the step climbing task.

�.� Experiment Setup

Figure �.�: The yellow robot is the front robot, and the green robot is the back robot. The tether is indicated
by a black line, and two magnetic connections are indicated by two red lines. Each magnetic
connection is between a red dot and a blue dot, which represent the two polarities of a magnet.

�

In order to make the transfer from simulation to real world easier in the future, we model the robot in the
simulation based on the VelociRoACH millirobot with C-shaped legs. The dimension of the robot is ��cm
by �cm by �.�cm (length by width by height), and the mass of the robot is ��.�g. Moreover, we adjust the
sti�ness in leg joints such that the simulation model will have a relative leg sti�ness (krel,ind) of �.��, corre-
sponding with the animal data [��]. Finally, a shell is added to each robot in order to simplify the contact
between two robots. The shell is almost weightless, and therefore does not change the robot’s center of mass.

In the simulation, we use a step with a coe�cient of friction of � and height of �cm as the �nal obstacle
to overcome. The obstacle is at half a meter away from the front robot. Each robot has � legs and two
independent motors, each of which controls three legs on the same side of the robot. Moreover, there
are three extra connections between two robots to make the climbing easier. The robots are connected
by a tether which can be tightened and help the front robot to pitch up against the step. Two magnetic
connections will be formed when the robots are close to each other in order to help the robots stay aligned
and stabilize the yaw of the front robot when climbing the obstacle. Figure �.� shows the details of all three
connections.

�.� Learning Policies

Figure �.�: Diagram illustrating policy gradient. Instead of using line search, TRPO uses trust region as the
optimization method, and is able to guarantee a policy improvement as long as we optimize the
local approximation within a trusted region. st ,ut and rt represent the state, the action and the
reward at time t . � (u |s) is the distribution of actions given the current state.

TRPO is implemented to directly optimize the step climbing policy with guaranteed monotonic improve-
ment. Since this is a centralized multi-robot system, the state of the system consists of the state of the
obstacle and both robots. We de�ne the state of each robot to be s = [x ,�, z,�x ,�� ,�z ,�r ,�p ,�� ,�L,�R]T

�

where (x ,�, z) represent the center of mass, (�x ,�� ,�z) represent the linear velocity, (�r ,�p ,��) represent
the Euler angles which describes the pose, and (�L,�R) represent the motor positions of the robot.

We de�ne the action of the system to be the leg velocity of the robots and the forces of the connec-
tions: u = [ufront_left,ufront_right,uback_left,uback_right,utether,umag�,umag�]T . The action ut is selected based
on the current optimal policy �� (ut |st), which is a stochastic distribution of action ut given state st dur-
ing training time, and a deterministic distribution during test time. � is the parameter which represents
the weights in the neural network we use, and � will be updated in order to maximize the reward function rt .

The size of the neural network’s fully-connected hidden layers is �� by ��, and we choose such size because
it works well on other legged robots such as Ant_v�. We set batch size to be ����, step size to be �.��
seconds, and discount to be �.���. We want each episode to take �� seconds in simulation time. Since
the time step is � milliseconds, the path length is ����. However, we do not want to update the action
every � millisecond because the controller cannot run that fast in the real world. Instead, we update the
action every �.� second, which means that we need to repeat the same action �� times before updating to a
new action. Therefore, the actual path length we use is ���. Finally, we initialize our policy as a Gaussian
Multilayer Perceptron (MLP) policy. For each of the following task in the next section, we initialize the
learning with the trained policy from the previous task, and keep training the policy until it plateaus.

�.� Reward Function Modification

�.�.� Flat Ground

Instead of directly training the robots to climb over an obstacle, we �rst train them to walk forward in an
environment with no obstacles. Since we want both robots to �rst learn how to walk, we do not need any
connections between them. Therefore, the last three actions are set to zeros in this stage. Without loss of
generality, we assume that the obstacle is located at the positive side of x-axis, and we de�ne the positive
direction of x as the forward direction. The �rst reward function we use is

R� = rsrvl + (�x,� +�x,�) � �.� · [abs(��,�) + abs(��,�)] = r�

where rsrvl is the survival reward, �x,�, ��,�, �x,� and ��,� are the x and y velocities of the front and back
robots respectively. rsrvl is set to �.��, and it is obtainable as long as the simulation is still running. The
goal here is to encourage both robots to walk in the positive direction of x, and try to make them walk
as straight as possible by minimizing the y direction velocity. Since velocities are the major part of this
reward function, the actual initial locations of the robots do not matter. Therefore, it doesn’t matter where
the robots are initialized. Although both robots are able to walk straight forward at the end of the training,

��

Figure �.�: Flow chart illustrating the learning process

their trajectories are independent of each other. In order for the robots to get aligned, we update the reward
function as follows:

R� = r� + ralign � �.� · abs(�� � ��) = r� + r�

where ralign represents the alignment reward, and �� and �� represent the front and back robots’ y positions.
ralign is a binary reward which can be acquired if the back robot is behind the front robot and the distance
between two robots is less than �cm. When the these two conditions are met, two magnetic connections
will be formed in order to pull the robots together and keep them aligned.

During training, we initialize the front robot at the origin, and the back robot at (-�.�, �). Both robots have
a yaw of zero degree. We also add small random noises to the initial positions and poses of both robots to
avoid over-�tting. Since the reward function is designed for the robots to learn how to align themselves
before they start to climb the obstacle, no obstacle is needed at this stage.

��

�.�.� Slope

We train the policy with the reward function R� on both �at ground and slope with small angle such that
the robots are able to walk without slipping. When the robots start to slide and are not able to climb up the
slope, we add a yaw penalty to the reward function:

R� = r� + r� � p · abs(��,�) = r� + r� + r�

where ��,� is the yaw of the front robot, and p is the penalty weight. We want the front robot to learn
how to stabilize its yaw and not fall on its side when trying to climb up the slope. The penalty weight p
is crucial because we don’t want to penalize the yaw of the front robot too much so that the front robot
thinks the best strategy is to not move at all.

�.�.� Step

After the front robot is able to balance on a relatively steep slope (�� degrees), we use the same reward
function to train the robots to climb a small step. The step size should be small enough (less than �cm) such
that the front robot is able to climb over easily. Then, we �rst increase the height of the step to �cm and
change the reward function to

R� = r� + r� + r� + zfront,� + zrear,� = r� + r� + r� + r�

where zfront,� and zrear,� are the z components of the front end and rear end of the front robot. While
training, we gradually increase the height of the step up to �cm. We soon realize that it is hard for the front
robot to keep its yaw stable as the step height increases. Thus, we add two low-friction glass walls on each
side of the robots to form a channel to help stabilizing the yaw.

In order to climb over the step, the front robot needs to learn to pitch itself up against the step. A tether
connection will be formed when the front robot touches the step in order to help it pitch up against the
step. Next, the back robot needs to push the front robot so that it can reach the top of the step. Finally,
we release all connections once the hind legs of the front robot are close enough to the edge of the step
because we don’t want these connections keep pulling and stop the front robot from climbing up the step.

After the front the robot successfully overcomes the step with height of �cm in a narrow low-friction
channel, we keep training the policy while moving the glass walls further apart from each other. Eventually,
the width of the channel is ��cm, which is two times the length of the robot.

��

� Results

�.� Cooperative Step Climbing Primitives

Figure �.�: Diagram illustrating primitives I, II, and III of cooperative step climbing.

As shown in Figure �.�, we separate the cooperative step climbing task into the following three primitives:
(I) two robots align themselves in front of the obstacle; (II) the front robot pitches up against the step; (III)
the back robot pushes the front robot up the step. We conduct experiments for each primitive independently
in order to �nd the success rates of di�erent initial conditions and the state transition probabilities.

��

�.�.� Primitive I: Aligning

In primitive I, we want to see how well the policy is in terms of aligning the two robots. At the beginning
of primitive I, the front robot is initialized at the origin and its yaw ��,� is set to zero. The back robot is
initialized at some location (x�,��) behind the front robot and its yaw ��,� is set to

⇥
mod(tan��(�x), ��)��

⇤
such that it points towards the front robot. Moreover, we want to add small random noises to the position
and pose of the back robot. The initial position of the back robot is (x� + r cos(�),�� + r sin(�)), where r is
uniformly distributed between � and �cm, and � is uniformly distributed between � and �� . The initial
pose of the back robot is

⇥
mod(tan��(�x), ��) � � + �

⇤
, where � is uniformly distributed between ±�� · �

���
rad. Figure �.� shows the probabilities of success when the back robot is initiated at di�erent locations.
Each point represents the location the back robot is initiated, and the lines represents the bounds of initial
yaw of the back robot. We run at least ��� trials for each initial position.

Figure �.�: Primitive I: probability of success when the back robot is initiated at di�erent locations.

Since the magnetic connections will pull two robots together and keep them aligned if two robots are close
to each other, we claim that the goal of primitive I is achieved if the magnets are active. As shown in Figure
�.�, the point (-�.��, �) has the highest probability of success since it is the closest position to the front

��

Figure �.�: The magnets attract and pull two robots together in the simulation.

robot. As the initial position gets further away, the probability of success drops. This is because both robots
are trying to maximize the reward. Even though the front robot tries to slow down in order for the back
robot to catch up and obtain the alignment reward ralign, it won’t completely stop since it will lose the
forward velocity reward �x,�. Moreover, the robots have trouble aligning themselves when the back robot
is away from y-axis because we train the policy with the back robot having only small random variation in
y direction. Therefore, the policy have not seen these states during training. If the y deviation is large, the
back robot may catch up with the front robot and pass the front robot.

�.�.� Primitive II: Pitching Up

In primitive II, the robots start from an aligned position with both magnets active, and approach the step in
a line formation. Once the front robot detects the step, the tether connection will be established to help the
front robot to pitch up against the step. The tether may not be necessary for climbing the step because the
front robot can also pitch up by using the frictional force. However, the tether certainly helps speeding up
the climbing process, especially when climbing larger obstacles.

The experiment result in Figure �.� shows that it is pretty reliable to get the front legs of the front robot
on top of the step once they are aligned. In order to get more accurate transition probabilities, we run
the experiments for ���� trials. The three connections between the robots are the main reasons why
we are able to get a success rate that is close to ���%. The fact that the result is almost deterministic
implies that there isn’t much learning involved in this primitive. From the reward function’s perspec-
tive, we see that the tether connection guarantees the reward zfront,�, and the magnetic connections make
sure that the yaw penalty is small since the motions in primitive II are not as dynamic as those in primitive III.

��

Figure �.�: Picture showing the start and end states of primitive II in simulation.

Figure �.�: Primitive II transition probabilities for step size equal to �cm. "Start" represents the start state of
primitive II, namely that two robots are aligned in front of the step. "Success" represents the
end state of primitive II (or start state of primitive III), namely that the front robot successfully
pitches up against the step. "Flip Over" and "Lateral" represent the failure states in which the
front robot is either �ipped over or walking along the y-axis.

�.�.� Primitive III: Climbing

In primitive III, the robots start from the state in which the front robot has pitched up against the step and
all three connections are active. The goal state is that the front robot successfully climbs up the step. The
motions in this primitive are more dynamic, and thus the robots have a hard time keeping the yaw of the
front robot stable. Despite the three connections we have, the policy has to learn how to stabilize the yaw
while maximizing the rewards. As a result, the failure rate is much higher than the failure rate of primitive II.
Figure �.� below shows that the probability of �ipping over is much larger than "Aligned" and "Lateral" states.

��

Figure �.�: Picture showing the start and end states of primitive III in simulation.

Figure �.�: Primitive III transition probabilities for step size equal to �cm. "Start" represents the start state
of primitive III. "Success" represents the end state of primitive III, namely that the front robot
successfully reaches the top of the step. "Aligned" represents the start state of primitive II.

�.� Slope vs Step

We compare the performances when the robots try to overcome slopes with di�erent angles and steps with
di�erent heights. The angles of the slopes are ��, ��, �� and �� degrees respectively, and the tops of the
slopes are all �cm above the ground. The heights of the steps are �cm, �cm, �cm and �cm respectively.

As shown in Figure �.�, when the slope angle is �� degrees, the robots have no trouble climbing up the
slope and reach the top of the obstacle. Since the robots are able to walk without slipping on this ��-degree
slope, we do not have a "Pitched-up" state. The only observed failure state is that the front robot walks
along the y-axis ("Lateral" state). As the angle of the slope increases, it becomes harder for the front robot

��

to climb up the slope, and a new failure state "Flip Over" appears.

A slope with angle of �� degrees is a step, and we stop increasing the slope angle after �� degrees because
the front robot starts to have a much harder time to pitch up. To a certain extent, it is harder for the robots
to climb over a slope with a large angle (greater than �� degrees) than a step with the same height because
if the obstacle is a step, the back robot can push the front robot right at the edge of the step. On the other
hand, if the obstacle is a slope with a large angle, part of the back robot is on the slope and it keeps sliding
down. Therefore, the back robot is further away from the top edge of the slope and is not able to push as hard.

Figure �.�� shows the experiment results when the step height is equal to �cm, �cm, �cm and �cm. Since
the height of the robot in the simulation is about �.�cm, the �rst two steps are lower than the robot, and
the last two steps are higher than the robot. Unlike the experiments with a slope as the obstacle, one major
di�erence here is that the probability of ending up in "Flip Over" state is much higher. This is because the
robots have a harder time to keep the yaw of the front robot stable when climbing a step than a slope. A
slope can provide an extra frictional force to help stabling the yaw if the front robot starts to fall to one side
while a step cannot. Therefore, it is more likely for the robots to end up in "Lateral" state when climbing
the slope, and in "Flip Over" state when climbing the step.

Figure �.�: Two failure states. Left: "Flip Over". Right: "Lateral".

Another observation is that there is a huge drop in the transition probability from "Start" to "Success" (from
��.�% to ��%) when the slope’s angle increases from �� to �� degrees. One reason is that we have trained
the policy on slopes up to only �� degrees before switching to step, and a di�erent climbing strategy may
be needed in order for the robots to climb over a ��-degree slope. Therefore, this is an obstacle that the

��

robots have never seen before, and the learned policy does not generalize well.

The transition probability is summarized in table �.�. Finally, we collect �� successful trials, and conclude
that the average time of success is ��.��� seconds, and the standard deviation is �.��� seconds.

Table �.�: Summary of Figure �.� and Figure �.�.

��

Figure �.�: (a)-(d) show the state transition probability of the robots trying to overcome slopes with angles
equal to ��, ��, �� and �� degrees.

��

Figure �.��: (e)-(h) show the state transition probability of the robots trying to overcome steps with heights
equal to �cm, �cm, �cm and �cm.

��

� Discussion

In conclusion, we have demonstrated a model-free learning method to control under-actuated legged
millirobots to perform a speci�c cooperation task which allows one of the robots to overcome an obstacle
taller than the robot itself. Using di�erent reward functions in a desired order to train the policy, our
approach is able to intrinsically learn the primitives which are necessary for this cooperative step climbing
task. For a step with height equal to �cm, the result shows that each primitive has a success rate of at least
��% if the back robot starts at a location within three body lengths behind the front robot.

One limitation of our method is that we have three connections between the robots. While we can form and
release the magnetic connections by using electromagnets and controlling electric currents going through
the coil, we cannot do so with the tether connection because tether’s physical existence. In order for the
robots to move independently before and after the cooperation, the back robot needs to attach the tether
on the front robot and retrieve it afterwards. This attachment mechanism can be hard to implement on a
millirobot like VelociRoACH.

Another limitation is that we cannot use model-free learning method if we want to transfer from simu-
lation to real world, which is one direction for future work. We want to be able to transfer the results to
VelociRoACH millirobot. However, we are not able to collect as fast or as many samples in the real world as
in the simulation. Therefore, we need to develop a model-based learning method to learn the dynamics of
the system. Furthermore, we want to design the tether and magnetic connections on the real robot such
that either robot can be the front or the back robot because we don’t want to assign a speci�c role to each
robot.

Another interesting line of future work includes usingmore robots to overcome the obstacles. One advantage
of having more robots is that we may �nd di�erent climbing strategies for the same obstacle. Moreover,
more robots can provide more stability, and therefore we may be able to remove the tether and even
magnetic connections. However, when the number of robots increases, we can no longer use a centralized
control method because the state space and action space will become too large to search. If we use a
decentralized control method, there are other issues such as how the robots communicate and cooperate
with each other without knowing other robots’ full states.

��

� Acknowledgements

The author would like to thank the members of the Biomimetic Millisystems Laboratory for their support,
especially Carlos Casarez for his expertise in VelociRoACH platform, Anusha Nagabandi for helping me
understanding di�erent types of algorithms in reinforcement learning, and Professor Ronald S. Fearing for
all the insightful discussions and guidance.

��

Bibliography

[�] D. W. Haldane, K. C. Peterson, F. L. Garcia Bermudez, and R. S. Fearing, “Animal-inspired design and
aerodynamic stabilization of a hexapedal millirobot,” IEEE International Conference on Robotics and
Automation, pp. ����–����, May ����.

[�] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. ����–����, ����.

[�] D. W. Haldane and R. S. Fearing, “Roll oscillation modulated turning in dynamic millirobots,” IEEE
International Conference on Robotics and Automation (ICRA), pp. ����–����, May ����.

[�] A. Nagabandi, G. Yang, T. Asmar, R. Pandya, G. Kahn, S. Levine, and R. S. Fearing, “Learning image-
conditioned dynamics models for control of underactuated legged millirobots,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. ����–����, ����.

[�] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy optimization,”
International Conference on Machine Learning (ICML), ����.

[�] P. Birkmeyer, A. G. Gillies, and R. S. Fearing, “Clash: Climbing vertical loose cloth,” IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. ����–����, Sep ����.

[�] G. A. Lynch, J. E. Clark, P.-C. Lin, and D. E. Koditschek, “A bioinspired dynamical vertical climbing
robot,” The International Journal of Robotics Research, vol. ��, no. �, pp. ���–���, ����.

[�] M. J. Spenko, G. C. Haynes, J. A. Saunders, M. R. Cutkosky, A. A. Rizzi, R. J. Full, and D. E. Koditschek,
“Biologically inspired climbing with a hexapedal robot,” Journal of Field Robotics, vol. ��, no. �-�,
pp. ���–���, ����.

[�] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, and M. R. Cutkosky, “Smooth vertical surface
climbing with directional adhesion,” IEEE Transactions on Robotics, vol. ��, pp. ��–��, Feb ����.

[��] P. Birkmeyer, A. G. Gillies, and R. S. Fearing, “Dynamic climbing of near-vertical smooth surfaces,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. ���–���, Oct ����.

��

[��] P. Beardsley, R. Siegwart, M. Arigoni, M. Bischo�, S. Fuhrer, D. Krummenacher, D. Mammolo, and
R. Simpson, “Vertigo – a wall-climbing robot including ground-wall transition,” Dec ����. https:
//la.disneyresearch.com/publication/vertigo/.

[��] J. E. Bares and D. S. Wettergreen, “Dante ii: Technical description, results, and lessons learned,” The
International Journal of Robotics Research, vol. ��, no. �, pp. ���–���, ����.

[��] T. Miki, P. Khrapchenkov, and K. Hori, “UAV/UGV autonomous cooperation: UAV assists UGV to
climb a cli� by attaching a tether,” CoRR, vol. abs/����.�����, ����.

[��] C. Casarez and R. S. Fearing, “Step climbing cooperation primitives for legged robots with a reversible
connection,” IEEE International Conference on Robotics and Automation (ICRA), pp. ����–����, May
����.

[��] R. Blickhan and R. J. Full, “Similarity in multilegged locomotion: Bouncing like a monopode,” Journal
of Comparative Physiology A, vol. ���, pp. ���–���, Nov ����.

��

https://la.disneyresearch.com/publication/vertigo/
https://la.disneyresearch.com/publication/vertigo/

	Introduction
	Related Work
	Model-Free Cooperative Step Climbing
	Experiment Setup
	Learning Policies
	Reward Function Modification
	Flat Ground
	Slope
	Step

	Results
	Cooperative Step Climbing Primitives
	Primitive I: Aligning
	Primitive II: Pitching Up
	Primitive III: Climbing

	Slope vs Step

	Discussion
	Acknowledgements
	Bibliography

