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Abstract

Constructive Formal Control Synthesis through Abstraction and Decomposition
by
Eric Shinwon Kim
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Murat Arcak, Co-chair

Processor Sanjit A. Seshia, Co-chair

Control synthesis is the problem of automatically constructing a control strategy that in-
duces a system to exhibit a declared behavior. Synthesis algorithms vary widely across
different classes of system dynamics and specifications. While continuous optimization has
traditionally been used to construct stabilizing controllers for physical systems modeled
with differential equations, temporal logic synthesis for finite state machines heavily lever-
ages discrete algorithms and data structures. Hybrid systems are a class of systems that
exhibit both continuous and discrete behaviors, which are necessary to capture phenomena
such as impacts for legged robots and congestion shockwaves in freeways. Tractable control
synthesis remains elusive because hybrid systems violate many of the fundamental topolog-
ical assumptions made by prior algorithms for purely continuous or discrete systems. This
thesis exploits compositionality and system structure to provide a suite of algorithmic and
theoretical techniques to tackle acute computational bottlenecks in hybrid control synthesis.

The first half of this thesis provides a framework for engineers to model control systems
and construct algorithmic pipelines for control synthesis. By explicitly capturing system
structure, this framework gives users the flexibility to rapidly iterate over and leverage a
library of optimizations for control synthesis. We demonstrate this framework in the context
of abstraction-based control, a synthesis workflow that translates continuous systems into
finite state machines by throwing away high precision information. Different optimization
techniques such as multi-scale grids, lazy abstraction, and decomposed synthesis, can all
be expressed as modifications to a computational pipeline. We demonstrate computational
gains while synthesizing safe motion primitives for numerous robotic examples.

The second half addresses distributed control synthesis where multiple controllers act as
agents that seek to jointly satisfy a specification and are restricted by some communication
topology. We introduce parametric assume-guarantee contracts as a formalism to derive
guarantees about the closed loop behavior of a collection of interacting components. Dynamic
contracts allow contract parameters to change at runtime and enable coordination of multiple



interacting sub-systems. These results are demonstrated in the context of a freeway ramp
meter and an adjacent arterial network.
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Chapter 1

Introduction

1.1 Designing Reliable Cyber-Physical Systems

Advances in computing hardware, communication, and sensing expand the capabilities of
existing systems and also facilitate new forms of automation. Smart grids and intelligent
cities can optimize the allocation of scarce resources and orchestrate the coordination of many
heterogeneous systems. Completely new applications are also possible such as autonomous
aerial and ground vehicles. Augmenting systems with more control modalities enables them
to be more efficient, safer, and endows them with exciting new capabilities.

The act of engineering systems is a delicate dance between endowing them with extend-
ing their functionality and certifying that they behave correctly and reliably. While novel
capabilities attract interest and investment in a new technology, societal trust in those very
technologies erodes when they exhibit unexpected or unintended behavior. Losing this trust
is detrimental because it often leads to the “trough of disillusionment” in Figure 1.1. Every
technology is ultimately judged by its impact on the real world. Systems with direct agency
over the physical world can exhibit many catastrophic failure modes; electric grids can ex-
perience blackouts, autonomous vehicles can execute unsafe maneuvers, and an air vehicle’s
autopilot system can cause a crash. The cost of failure is especially acute when human lives
are jeopardized.

Systems must be certified to a much higher standard when failure is not an option. The
burden of ensuring control systems are intelligent and safe falls on the algorithm designer.
Before they can be deployed, safety critical autonomous systems need to satisfy numerous
hard and soft requirements such as:

e Correctness: The system must behave as intended.
e Interpretability: A control system’s decisions must be justified and easy to understand.

e Robustness: The controller must perform as expected despite discrepancies between
the model and the true environment.
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Figure 1.1: The Gartner Hype Cycle describes how the expectations for new emerging tech-
nologies undergo distinct phases as they mature. Verification and synthesis tools are neces-
sary if one wants to leap over the trough of disillusionment and directly to the plateau of
productivity.

e Modularity: Extensible and easy to modify/interact with others.

Translating a designer’s intent into a correct implementation is notoriously difficult. Even
after restricting interest to the “cyber” part of cyber-physical systems, security vulnerabil-
ities regularly appear in mission critical software. Combining the two to create a cyber-
physical system only increases the surface area of issues and concerns that a control designer
must address. Furthermore, useful models for a system’s physical behaviors are imperfect
representations of the real world.

In light of the costs associated with development and validation of autonomous systems,
there is an acute need for methods to bridge the gap between an engineer’s intent and the
implementation of the final product. A formal specification is a mathematical description of
desirable behaviors that captures what a system should do instead of how to do it. Ideally,
the system design process incorporates methods to systematically and algorithmically reason
about whether the specification satisfies the system.

Tools for Cyber-Physical System Design

A control synthesizer is an algorithm or tool whose role is to take a formal specification and
a system model and automatically construct a control algorithm that causes the system to
enforce the specification. A controller designed to enforce the specification ensures that all
possible system behaviors satisfy it. A well designed control synthesizer will accelerate the



Control Theory Formal Methods
Bottlenecks Uncountable state space Combinatorics

Structural Assumptions Continuity Discrete
Workhorse Algorithms | Continuous optimization | SAT/SMT, BDDs

Table 1.1: Successful algorithms from the control theory and formal methods communities exploit
structural assumptions to abstract away critical bottlenecks.

design process by lifting the engineer’s level of reasoning from low level controller design to
declarative specifications.

The general robust control synthesis problem is easy to state mathematically. Translating
that mathematical problem into an efficient implementation on the other hand is nontrivial
because there is a gap between the theory and the algorithms used to solve it. The key
to successful development of design tools and algorithms is exploiting system structure,
whenever it is available.

The control theory and formal methods communities have both developed rich theoret-
ical frameworks and powerful tools to systematically reason about system properties and
dynamics. These tools make critical assumptions about the system and specification as
shown in Table 1.1. These assumptions are often reasonable for their respective domains,
but need to be dropped when tackling cyber-physical systems. The tools for controller
design for continuous systems are rooted in linear algebra and continuous optimization. Sta-
bility theory leverages convex optimization and sum of squares programming to search for
and verify Lyapunov functions. Receding horizon control uses a continuous optimizer in
the loop to generate control inputs that enforce constraints online. Unlike control theory,
the theoretical foundation of formal methods revolves instead around logic, computability
theory, and automata theory. Tools for verification and synthesis include model checkers,
Boolean satisfiability (SAT) solvers and satisfiability modulo theories (SMT) solvers, which
have each found successful applications in hardware verification, circuit synthesis, compilers,
and program synthesis.

Cyber-physical systems present a unique challenge because they often lack readily ex-
ploitable mathematical structure. Hybrid spaces with continuous and discrete components
don’t exhibit commonly assumed topological properties like continuity or finiteness. Tools
often have these assumptions embedded within them and are not readily generalized to tackle
cyber-physical systems.

One can view the process of designing reliable algorithms for autonomous systems as an
exercise in taming uncertainty and complexity. Different systems and specifications contain
domain specific structure, so algorithms designed for one system may not be applicable to
another one. This lack of flexibility is a hindrance for computationally challenging prob-
lems, where it is often necessary to let the user rapidly identify and algorithmically exploit
structure through analysis or experimentation. This thesis exploits compositionality and
system structure to provide a suite of algorithmic and theoretical techniques to tackle acute



’ H Part 1 ‘ Part 2 ‘
Controllers Centralized Distributed
Time Horizon Short Long
Specification Classes Safety + Reach Temporal logic
Composition Algorithm components | Control Systems
Sub-system Composition rules Flexible Restrictive
Notation Style Logical Set-based

Table 1.2: Key distinctions between approaches to controller synthesis in each half of this
thesis.

computational bottlenecks in control synthesis for hybrid systems.

Thesis Statement

Efficient control synthesis algorithms are enabled by a modular and constructive theoretical
framework that can algorithmically declare, identify, and exploit structure in the dynamics
and specification.

1.2 Thesis Organization and Contributions

This thesis is broken apart into two parts with different approaches to controller synthesis.
The two parts are complementary yet distinct in how they model systems, capture structure,
and compose systems. These differences are highlighted in Table 1.2.

Part 1: Constructive Algorithms for Control Synthesis

The first half of this thesis focuses on centralized control synthesis. A centralized controller
has access to full state information and can coordinate decisions across multiple controllable
inputs. We restrict ourselves to a specific variant of control synthesis, called “abstraction-
based control synthesis”, where a continuous system is translated into a finite state machine
that mimics the original dynamics. By restricting one’s interest to a finite domain, this
approach circumvents several thorny undecidability issues [86].

This part’s goal is to lay a theoretical foundation for developing extensible tools for
controller synthesis with finite abstractions. Successfully tackling high dimensional control
synthesis will require a variety of theoretical and algorithmic techniques and a method to
combine them. We show that the standard control synthesis algorithm can be decomposed
into smaller components and furthermore can be restructured to exploit structural properties
in the system and specification. By adopting a small, core framework it is easier for synthesis
algorithms to dynamically reconfigure themselves at runtime and explore trade-offs between



different requirements such as tractability and completeness. This will ultimately provide a
compositional foundation for one to combat acute computational bottlenecks that arise in
abstraction-based control.

e Chapter 3 Relational Interfaces for Control Systems

We present a compositional framework for representing systems, specifications, and
synthesis algorithms. It leverages the theory of relational interfaces by Tripakis et al.
[90] as a foundation, and adapts it to represent controller synthesis tasks. Interfaces are
stateless input-output components and can be viewed as a system or a specification.
They can capture features such as non-deterministic outputs and inputs that block.
Operators in the relational interface theory take existing interfaces and construct new
ones. We deconstruct many control synthesis operations, such as the robust controlled
predecessor, and reveal that they can be viewed as composite operators stitched to-
gether from a small set of atomic operators.

Contributions: This chapter provides a formal link between relational interfaces and
controller synthesis. The original theory of relational interfaces was motivated by
managing and reasoning about software requirements and design and not for synthesis.
One novel contribution is the introduction of a controlled predecessor operator that
takes advantage of a decomposed control system representation.

e Chapter 4 Abstracting Control Systems

A system’s abstraction summarizes its core behaviors in an abridged form. One can
reduce the complexity of the controller synthesis problem by solving it over a simpler
model. Proper abstractions faithfully represent the concrete system’s behaviors. Rea-
soning over abstractions yields results that can be extrapolated back into statements
about the concrete system. Interfaces are equipped with the notion of a refinement
partial order, which formalizes the relationship between concrete and abstract compo-
nents.

Operators like interface composition and variable hiding are monotone with respect to
the refinement relation and are used to move “horizontally” across the order. Other
operators like coarsening and refinement are used to move vertically within the order
and construct abstractions. The “direction” of new composite operators can easily
be established through simple reasoning about the cumulative directions of their con-
stituent operators. This allows one to guarantee the ability to refine discrete controllers
back to concrete ones via the refinement relation.

Contributions: ~ We demonstrate a variety of modifications to the control synthesis
pipeline such as dynamic coarsening and flexible abstraction-refinement.



e Chapter 5 Implementation and Benchmarks for Finite Abstraction-based
Control Synthesis
This chapter applies the insights from the prior two chapters to the abstraction-based
control synthesis pipeline. It includes details about how quantizers are implemented
in practice, demonstrates how abstractions can be constructed by computing forward
reachable sets, and showcases a computationally constrained control predecessor that
is aware of machine memory usage. A collection of benchmarks showcase how these
modifications to the synthesis pipeline reduce computation time, memory, and the
number of sample required to construct abstractions.

Contributions: We demonstrate novel techniques that have not appeared in prior tools.
These tools also contain some implicit assumptions which, aided through the relational
interface formulation, we reveal and relax.

Part 2: Distributed Control Synthesis with Formal Objectives

The second half of this thesis addresses distributed control, where control inputs are not
determined by a single centralized controller but instead by a collection of them. Distributed
controllers commonly arise in multi-agent robotics or in networked control systems such as
vehicular traffic networks. A distributed controller is often preferred to a centralized one
when computing a centralized controller is intractable or when the communication overhead
for a large controller is high.

When multiple systems with distributed controllers are interconnected, they induce new
behaviors. Naively and haphazardly interconnecting these systems can lead to unintended
and undesirable effects. In a distributed control setting, sub-controllers may have restricted
access to information about the global state or be unable to coordinate actions with others.
We use compositional reasoning to certify that these interacting components enforce global
behaviors.

e Chapter 6 Parametric Assume Guarantee Reasoning

An assume-guarantee contracts is a high level representation of a system’s behavior.
They capture input-output properties over signals and can be expressed in temporal
logic or as finite gain conditions. Whenever the system’s assumptions on the environ-
ment are satisfied, it ensures that the guarantees are satisfied. A parametric contract
consists of a collection of contracts indexed with a parameter domain, which can be
thought of as different environmental scenarios. We show that reasoning over the
parameter domain enables one to derive tight guarantees about the behavior of inter-
connected systems.

Contributions: This chapter bridges results and concepts from assume-guarantee rea-
soning to robust control theory. We generalize the small gain theorem, a classical result
from robust control, into a parametric assume-guarantee counterpart. This new small



gain theorem enables one to reason about contracts encoded in linear temporal logic
with continuous parameters.

Chapter 7 Dynamic Contracts and Coordination

This chapter adopts the parametric assume-guarantee reasoning rules from Chapter 6
and leverages them for distributed controller synthesis. Contracts for control synthe-
sis ensure that multiple systems do not inadvertently violate a specification by having
each sub-system agree to adhere to a restricting sub-system behaviors. Static contracts
are computed offline do not react to runtime conditions. This results in conservative
guarantees and sub-optimal behaviors in practice, especially when the contracts were
designed with a conservative environment model. Dynamic contracts consist of a li-
brary of static contracts. They update the restrictions on sub-system behaviors in
reaction to runtime conditions, yielding both tighter guarantees about the global sys-
tem behavior and permitting more aggressive actions. A contract coordinator is a
specially designed state machine that ensures that each sub-component satisfies a for-
mal specification. We show how dynamic contracts reduce delays on a distributed
traffic control example, while also guaranteeing that a temporal logic specification is
satisfied.

Contributions: Dynamic contracts bridge the gap between offline controller design
and real-time decision making. Previously, contracts did not account for real-time
state information and were unnecessarily conservative to ensure satisfaction of formal
guarantees with distributed controllers.

Chapter 8: Identifying Communication requirements

It is not possible to enforce certain specifications with a distributed control architecture
without any coordination amongst controllers, especially when systems contain cou-
pled dynamics and objectives. Even when all controllers have global state information,
they can still be uncertain about what actions other agents will perform. Collision
avoidance is one such example where a centralized coordinator is required to resolve
this uncertainty. The coordinator can be viewed as an agent that breaks symmetries or
imposes a priority amongst agents, but in practice can be implemented as a distributed
consensus protocol. We characterize where it is necessary for agents to communicate
with one another to satisfy a safety objective. This characterization can be gener-
alized to the case when there are communication delays. The coordination region is
constructed for an intersection collision avoidance example.

Contributions: The problem of identifying communication requirements in a control
theoretic setting had not previously been tackled. This novel formulation helps bridge
the gap between distributed and centralized controllers, especially in a safety critical
setting.



Chapter 2

Background

In this chapter we introduce the mathematical framework for discrete-time controller syn-
thesis and highlight key computational bottlenecks that arise during implementation.

2.1 Discrete-Time Control Systems

A discrete time interval is an ordered sequence of values. The open interval I = [a,b) where
a<b,a€ZsyU{—00}and b€ zU{oo} denotes a set of time values {a,a +1,...,b— 1}.
The closed interval [a, b] includes b, that is, [a,b] = [a,b — 1) When an interval consists of a
single point, a more concise notation is adopted [a] = [a, al.

Consider a space P representing some collection of values. The space of signals P[] is
given by a Cartesian product indexed by elements of the interval I:

Pl =]]P (2.1)

For a signal p[] € P[], let p[k| represent its value at time k € I. Similarly pa, ) and p[a, D]
respectively represent slices of the signal along intervals [a, b) and [a, b].

The set P* represents the collection of all signals of finite length and with respect to a
known start time (0 in the case below).

P*—U(l P>.
€N \k=0

The set P represents the collection of all signals of infinite length.

oI
k=0

Let X be a set of states and U be a set of control inputs. Variables z[k] € X u[k] € U
represent value of the state and control input at time step k. We model discrete time control



systems with the difference inclusion F': X x if — 2% that imposes a constraint on the state
evolution over time.

o[k + 1] € F(alk], ulk)). (2.2)

This is a model that can capture behaviors like non-determinism in the system dynamics or
blocking states which encode regions where the system model breaks down. Both of these
phenomena are encoded within the cardinality of |F'(z[k], u[k])| for a fixed state-input pair.

o When |F(x[k],u[k])| = 1, next state z[k + 1] is deterministically chosen.

o |F(x[k],u[k])] > 1, next state x[k + 1] is non-deterministically chosen. We view this
non-determinism as adversarial.

o |F(x[k],u[k])] = 0, the system blocks because no next state z[k + 1] may be chosen.
This can represent regions where the model F' breaks down.

2.2 Specifications and Controller Synthesis

In order to perform control synthesis, one needs to provide the algorithm both with dynamic
constraints and a desired behavior that ought to be satisfied. This desired behavior is
encoded as a specification, which is a constraint encoded as a subset of a signal space.

Definition 1 (Specification). A specification ¢ C X% is a subset of the state signal space.

The specification is said to be formal when it is written in a mathematical language and
designed in such a way that they can be algorithmically verified or as target behaviors for
control synthesis tools. FExamples of such specification languages include linear temporal
logic [71] and signal /metric temporal logic [52].

Two particularly relevant specifications for control synthesis encode safety and reach
objectives. An element of the signal space z]0, oo] satisfies a

e safety objective with safety set S C X if z[k] € S for all £k € N.
e reach objective with target set 7' C X if z[k] € T for some k € N.

e reach-avoid objective with safety set S C X and target set 7" C & if there exists some
k € N where z[k] € T and z[k'] € S for all k&' € [0, k).

Controller synthesis is the problem of taking a control system and constructing a con-
troller such that the closed loop behavior satisfies some specification. We first define a
memoryless controller, then generalize to controllers which may contain memory.
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Definition 2 (Controller). A controller for a system with state space X and U is char-
acterized by a map C' from finite sequences of observed states to a collection of admissible
mputs

C: X — M

Such a controller is said to be memoryless if C': X — 24 takes a state as input rather
than a sequence of states. Because controllers may output a collection of admissible values,
at runtime any of these values can be chosen.

Definition 3 (Closed Loop System Behaviors). A state-input signal is an element of the
closed loop behavior set if for all k € N the dynamics constraint x[k + 1] € F(x[k], u[k]) and
the controller constraint ulk] € C(z[0,k]) are satisfied.

The set of closed loop behaviors contains more than one element when the controller or
the dynamics exhibit non-determinism. A controller is said to enforce a specification ¢ from
an initial state x[0] if all potential closed loop behaviors from that state are contained within
0.

We are now ready to pose the controller synthesis problem.

Definition 4 (Control Synthesis). Given a system F : X x U — 2% and a specification
¢ C X%, construct a controller C' : X* — 2“ and a collection of initial states Xy C X such
that all closed loop behaviors from Xy satisfy the specification.

Ideally, the collection of initial states Xy is as large as possible. That is, if there exists a
satisfying control strategy from some initial state then that state is contained within Aj.

One common metaphor underlying many control synthesis algorithms is a zero-sum game
between a controller, which tries to enforce the specification, with an adversarial environ-
ment that tries to violate it. The environment in this case is embodied through the non-
determinism encoded in the dynamics. A winning strategy that guarantees specification
satisfaction can be converted into a controller. Such a strategy can be constructed by lever-
aging the principle of dynamic programming to temporally break apart the synthesis problem
into smaller problems that each correspond to a game played over a single time step. This
yields a sequence of states that encodes when and where the controller or environment wins.

The robust control predecessor is an operator that encodes the game over a single time
step. It takes a set of states Z and outputs a set of states cpre(F, Z) from which a controller
could ensure that the system F' will be in Z. The controller must be robust to any non-
determinism in the dynamics F. While both Z and cpre(F,Z) could be interpreted as
subsets of X, Z is associated with a time k + 1 while cpre(F, Z) is associated with time k.

Definition 5 (Robust Control Predecessor Operator). The robust controlled predecessor
operator takes as input the dynamics F : X x U — 2% and a set of states Z C X and yields
another set of states

epre(F, Z) = {x : Ju such that @ # F(z,u) C Z}. (2.3)
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Invariant

Reach Basin

Figure 2.1: Visualizations of the safety and reach game iterations as constructing a collection
of state space subsets. The safety game starts with the safe region S and shrinks it until a safe
invariant is computed, while for the reach game the initial target T is expanded until a reach basin
is computed. The fixed point Z, is not always guaranteed to be reached in a finite number of
iterations.

The operator evolves backwards in the sense that the set of states Z is associated with a time
step k

It encodes the collection of states x from which there exists an assignment to u that
guarantees that all potential next states F'(z,u) within will satisfy Z, despite any non-
determinism contained in F. The requirement @ C F'(z,u) also ensures that a next state
exists and the system execution does not block.

Using the controlled predecessor, we can solve for a region for which the target 7' can be
reached via the iteration:

Zo=T .
Zi1 =cpre(F,Z)UT (2.5)

The following iteration characterizes a maximal controlled invariant set that ensures the
safety constraint S is satisfied:

Z() = S
Z,L'+1 = cpre(F, Zl) ns

Both of these iterations can be visualized in Figure 2.1. The reach game begins with the
target 1" and then outputs a sequence of sets that grows until a reach basin is computed.
Likewise, the safety game begins with the safe set S and shrinks until a safe invariant is
computed.
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While in general the above iterations are not guaranteed to reach a fixed point in a finite
number of iterations, they are under certain technical conditions such as when the state
space is finite [86].

Illustrative Dubins Vehicle Example

As a simple, instructive example consider a planar vehicle that is tasked with reaching a
desired location. Let = {p,,py, 0} be the collection of state variables and u = {v,w} be a
collection input variables to be controlled. Let x™ = {p],p;, 0"} represent state variables
at a subsequent time step.

The discrete time dynamics are given by the collection of constraints

p: == p, + vcos(d) (Fy)
py == py +vsin(f) (Fy)
0" ==0+ %sin(w) (Fp)

where L = 1.4 is a constant representing the length of the vehicle. The continuous state
space is the hyperrectangle [—2,2] x [—2,2] x [, 7), where the last component is periodic
so —7 and 7 represent identical values. The input space for the forward velocity v is D(v) =
{0.25,0.5} and steering angle w is D(w) = {—1.5,0,1.5}.

Let F' collectively represent the constraints (F}) - (Fp) encoding the system dynamics.
The target region T" is [—0.4,0.4] x [-0.4,0.4] x [—m, 7); that is, the vehicle’s position must
reach a square but the orientation does not matter.

An approximate solution to the reach game with target T is depicted in Figure 2.2.
It is guaranteed to be an underapproximation of the true solution to the reach game. It is
generated with the techniques subsequently introduced in the first half of this thesis. Further
details are provided in Chapter 5.

2.3 Algorithmic Challenges

Many algorithmic issues are obfuscated from the elegant mathematical summary of control
synthesis.

1. Non-termination and undecidability: Each game iteration is associated with a
time step. If a fixed point is reached, then one may extrapolate the game’s results to
an infinite time horizon. The iterations in the safety, reach, and reach-avoid games are
unfortunately not guaranteed to terminate or reach a fixed point in general. Moreover,
the problem of identifying if a state space subset is reachable is undecidable, even for
a simple class of hybrid systems [42].

2. Computation How is the controlled predecessor computed and what are its runtime
requirements?
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e}

Figure 2.2: Approximate solution to the Dubins vehicle reach game visualized as a subset of the
state space.

3. Representation: What data structures are used to represent F', Z;, and regions S
and T? The domain of these sets can be infinite and it’s difficult to efficiently encode
them in memory. How can one leverage efficient data structures that capture salient
structural properties of these sets? How can one mitigate the cost of increased memory
requirements incurred as the state-input space grows?

This thesis tackles the above problems through a variety of approaches. The first half
of this thesis shows a modular framework for developing control synthesis algorithms that
reflect domain specific structure. It uses relational interfaces [90] to represent the controlled
predecessor cpre(-) and iterations (2.5) and (2.7) as a computational pipeline. By explicitly
representing it within a small yet powerful framework, it becomes easier to identify struc-
tural properties and modify this pipeline. Different modifications can encode heuristics to
extract computational gains or to encode favorable theoretical properties such as algorithm
termination. The second half of this thesis decomposes the control system and specification.
Unlike the first half, the controllers are distributed and either do not have access to another
system’s state or cannot coordinate their decisions with other controllers. Each of the closed
loop systems are then interconnected and “stitched” together. One can guarantee that they
satisfy a global specification using assume-guarantee reasoning.
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Part 1

Constructive Algorithms for Control
Synthesis
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Figure 2.3: Traditional abstraction-based control synthesis pipeline. The controller refinement step
only yields meaningful results if the discrete abstraction faithfully mimics the continuous dynamics.

A control synthesizer translates a declarative specification into an implementation that
fulfills those requirements. If properly implemented into the autonomy design process, syn-
thesizers can accelerate development and reduce time between design iterations.

The control synthesizer ideally outputs a robust controller. Errors in the the system
dynamics model, uncertainty in the specification, and noise in the state observation can all
cause the specification to be violated. The synthesizer can account for these error sources by
explicitly reasoning about them while constructing the controller. Synthesis in the robust
control setting reduces down to solving a zero-sum game between two agents. One agent is the
controller that seeks to enforce a specification. The aforementioned errors are aggregated into
another agent representing an adversarial environment that seeks to violate the specification.

In the first half part of the thesis, we focus on safety, reach, and reach-avoid specifications.
Controllers enforcing these specifications can be viewed as motion primitives that can serve
as building blocks for higher level algorithms such as graph based path planners [43] and
for temporal logic specifications [70]. Solutions to safety, reach, and reach-avoid games are
played over a series of time steps. They exhibit a temporal structure that can be exploited
by the principle of dynamic programming, which breaks apart the problem into a collection
of sub-problems over shorter time horizons [9]. The Hamilton-Jacobi-Isaacs (HJI) partial
differential equation characterizes the solutions to continuous time versions of these games
[7]. The strength of the HJI characterization is its generality. It is an elegant mathematical
solution that can accommodate nonlinear and time-varying dynamics and objectives [32].
This generality can be a liability in practice because the algorithms to solve the HJI equations
must accommodate a variety of systems and are not readily specialized to specific use cases.
The level set toolbox by Mitchell and Templeton [62] numerically solves the HJI equations
over a discrete grid, but runs into memory bottlenecks as the state dimension grows. The
HJI solution is represented as a lookup table representing a function over a discrete grid.

Control synthesis via finite abstractions presents an alternative approach to numerically
solving the HJI partial differential equation over a discrete grid. It is motivated by the
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following question:

If discretization is ultimately necessary to implement a control system algorithm, are there
any benefits to discretizing the original continuous mathematical problem statement as well?

Finite abstraction of continuous dynamical systems has been an active area of research
from the very birth of the hybrid systems community [3, 86]. Finite abstractions allow one
to circumvent thorny decidability issues [42] when mixing continuous and discrete dynamics
and also to synthesize controllers for temporal logic specifications.

Figure 2.3 depicts the traditional abstraction-based control synthesis pipeline which oc-
curs over three stages.

1. Abstracting the continuous state system into a finite automaton whose underlying
transitions faithfully mimic the original dynamics [86], [95].

2. Synthesizing a discrete controller by leveraging data structures and symbolic reasoning
algorithms to mitigate combinatorial state explosion.

3. Refining the discrete controller into a continuous one. Feasibility of this step is ensured
through the abstraction step.

A system relationship formalizes the ability to extrapolate properties from an abstraction
to the concrete system. Different system relationships enable extrapolation of different kinds
of properties, such as behavior satisfaction or controllability. If one can establish a bisimu-
lation relation between an abstract system and the original one, then verifying a property
on the abstract system is equivalent to doing so for the original system. The bisimulation
relationship thus establishes a necessary and sufficient condition for specification satisfac-
tion. A bisimulation relation isn’t always guaranteed to exist except for certain restricted
classes of systems such as timed automata as shwon by Alur and Dill [2]. Alternating
bisimulation relations are another system relation used for control synthesis [86] rather than
verification. While (alternating) bisimulation relations can only be constructed for a limited
class of hybrid systems, other system relationships are more general but also give weaker
guarantees. An (alternating) bisimulation relation can be relaxed into an (alternating) sim-
ulation relation which only encodes a sufficient condition. If a simulation relation exists,
then abstraction satisfaction of a property is a sufficient condition for the original system
to satisfy it. Approximate (bi)simulation relations are another relaxation that are utilized
when systems evolve over a metric space [33, 94, 35, 34, 72, 77]. Reissig et al. [76] developed
feedback refinement relations as an alternative to alternating simulation relations. It has a
slightly stricter condition that has more favorable theoretical properties. Namely, the refined
controller for feedback refinement relations is simpler to compute and represent in memory.

Related Work

There are a variety of tools that automate the abstraction, control synthesis, refinement
pipeline depicted in Figure 2.3. These tools PESSOA [60], SCOTS [78], MASCOT [44], ROCS [55],
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ARCS [16], TuLiP [93], conPAS2 [51] systematically translate continuous dynamics into finite
approximations and synthesize controllers through discrete reasoning. Two common compu-
tational bottlenecks arise in the finite abstraction approach. First, many existing algorithms
to construct finite abstractions are sample heavy; some even require an enumerative traver-
sal of the state-input space which grows exponentially with dimension. Second, even if an
abstraction were successfully constructed the synthesis algorithms do not always scale to
systems of higher dimensions.

Recent publications have solutions that exploit common topological and algebraic prop-
erties of dynamical systems. One solution by Hsu et al. [44] is to employ multi-scale grids
and hierarchical models that capture notions of locality in the state space. Another solution,
by Nilsson et al. [65] and Li and Liu [55] is known as abstraction-refinement or lazy ab-
straction. It incrementally constructs an abstraction while performing the control synthesis
step. A third solution is to represent systems as a collection of components and decompose
abstraction and synthesis algorithms with respect to the interconnection structure [61] [38].
These solutions have been developed in isolation and were not previously interoperable.

Methodology

The existing control synthesis formalism does not readily lend itself to algorithmic modifica-
tions that reflect and exploit structural properties in the system and specification. We use
the theory of relational interfaces by Tripakis et al. [90] as a foundation and augment it to
express control synthesis pipelines. Interfaces are used to represent both system models and
constraints. A small collection of atomic operators allows one to construct computational
pipelines in control synthesis by manipulating interfaces. This collection is powerful enough
to reconstruct many existing algorithms by stitching together atomic operators into compos-
ites. New operators can easily be added to encode desirable heuristics that exploit structural
properties in the system and specifications. Interfaces come equipped with a refinement par-
tial order that formalizes when one interface abstracts another. Interface composition and
variable hiding are monotone with respect to the refinement order and are used to move
horizontally across the order. Coarsening and refinement operators are used to move ver-
tically and construct abstractions. The “direction” of new composite operators can easily
be established through simple reasoning about the cumulative directions of their constituent
operators. This thesis focuses on preserving the refinement relation and sufficient conditions
to refine discrete controllers back to concrete ones. Additional guarantees regarding com-
pleteness, termination, precision, or decomposability can be encoded, but impose additional
requirements on the control synthesis algorithm and are beyond the scope of this section.

Contributions

This half of the thesis bridges the gap between theory and implementation by incorporating
compositionality into the theoretical foundation for control synthesis. To our knowledge,
the application of relational interfaces to robust abstraction-based control synthesis is new.
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The framework’s building blocks consist of a collection of small, well understood operators
that are nonetheless powerful enough to express many prior techniques. Encoding these
techniques as relational interface operations forces one to simplify, formalize, or remove
implicit assumptions that are embedded in existing tools. The framework also exhibits
numerous desirable features.

1. It enables compositional tools for controller synthesis by leveraging a theoretical foun-
dation with compositionality built into it. A compositional algorithmic framework
enables users to explicitly take advantage of system specific structure in the dynamics
and specification.

2. It enables a declarative approach to control synthesis by enforcing a strict separation
between the high level algorithm from its low level implementation. We rely on the
availability of an underlying data structure to encode and manipulate predicates. Low
level predicate operations, while powerful, make it easy to inadvertently violate the
refinement property. Conforming to the relational interface operations minimizes this
danger.

3. The framework explicitly captures the data flow in the algorithm. Doing so makes it
easier to introduce algorithmic and dynamic modifications the control synthesis pipeline
such as dynamically tuning hyper-parameters to account for memory constraints.

This framework is domain agnostic and applicable to robust control synthesis problems
over both continuous and discrete domains.

Organization

This half of the thesis consists of three chapters.

e Chapter 3 Introduces relational interfaces describes how they model systems, con-
straints, and algorithms.

e Chapter 4 Introduces the interface refinement order and a collection of operators used
to traverse it.

e Chapter 5 Applies the insights of the prior two chapter and contains a wealth of
domain specific optimizations applied to the finite abstraction-based control synthesis
pipeline. It also contains a collection of examples that showcase computational gains
compared to the standard pipeline.
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Chapter 3

Modeling Control Systems,
Constraints, and Algorithms with
Relational Interfaces

In this half of the thesis, systems are symbolic descriptions to represent the dynamic behavior
of an object. For instance, a ball’s movement is governed by a collection of differential
equations encoding the laws of physics, while a program’s execution is constrained by the
underlying hardware. They can be represented in a variety of ways including:

e Source code
e Mathematical equations and expressions
e Simulink models

One common facet of each of these models is that they use a compositional modeling
language to encode complex phenomena via the interaction of simple components. In the
case of source code the simple components are defined by the grammar of the programming
language while for mathematical equations and expressions it is the atomic mathematical
operations and functions.

We desire an expressive framework to capture many salient features of compositional de-
sign and analysis. The theory of relational interfaces [90] is a simple, yet powerful, framework
for modeling large complex systems by connecting smaller components. Interfaces can be
visualized as input-output blocks and will be used to represent both systems and specifica-
tions. Interfaces can also encode requirements and assumptions. The theory comes equipped
with a collection of operators to construct new interfaces from existing ones. We show how
the standard control synthesis procedure is implicitly represented by composing a sequence
of operations together.



20

P+
| T
I l e :
X1 ’&—1'\/; 2 > L
> o
’ 2 5 L 1
—P z

Figure 3.1: Discrete time control system encoded as a Simulink block diagram here.

Introductory Example

In the following simple example, we demonstrate that many control systems can be ex-
pressed as the composition of smaller atomic components and also expose subtle issues that
arise when components exhibit non-determinism or blocking inputs. Consider the following
discrete time control system depicted as the blue box in Figure 3.1:

= f(z,u) (3.1)
with two continuous current states x1,xo € R, two control inputs uy,us € R, and two next
states 21, x5 € R. Note that “:=" represents the assignment operation and is distinct from
a mathematical assertion “=” or a condition evaluation “==". Let f(z,u) be concretely
given by

()~ ()
xy )\ 22V/3x +uh ' '

The encoding map (3.1) directly maps the variables u;, us, 21, 7o to a next state zi, x5, but
this obfuscates some internal structure that is more clear when the system is viewed as the
blue box in Figure 3.1. Latent variables I; := 3z1, lo := /3x1, I3 := 22v/371, and ly = u}
capture intermediate computations, with Iy is also shared across updates for both z{ and

x4 . These latent variables correspond with wires that are fully contained inside the blue box
or the function body’s internal variables. The representation immediately below includes
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these latent variables and is a counterpart to that of Equation (3.2).

1 :=3x; (3.3)
ly =/l (3.4)
l3 1= xaly (3.5)
ly = uj (3.6)
rf =1y —uy +uy (3.7)
s =13+ 1y (3.8)

Interfaces are analogous to the blue box in Figure 3.1 and the blocks it contains. They
are memoryless and encode the system’s transition relation. Two interfaces are connected
in series if the output of one interface feeds into the input of another, such as the gain
and square root interfaces. Two components are connected in parallel if neither output is
connected to the other interface’s input, such as the summation components. Composing
smaller interfaces by connecting them yields another larger interface.

The unit delay blocks outside the blue box are not considered interfaces. They only
appear to break any algebraic loops and introduce state in the context of controller synthesis,
but they are not required for encoding the dynamics. Moreover, they can be mimicked for any
finite time horizon through series composition of the dynamics with itself. This is analogous
to function composition z[k + 2] = f(f(x[k], ulk]), u[k + 1]).

Motivation for Logical System Representation

Numerous issues arise when taking a set-based formulation from the previous chapter and
immediately above. For instance, the assignment operations (3.3) - (3.8) are not robust to
arbitrary rearrangements and place requirements on the execution order. It’s unclear what
happens when z; < 0, which causes the square root’s output to be undefined and for the
interface to block. Even if the square root’s input were non-negative, its implementation
may output either a negative or positive value because there are two choices for [ to satisfy
2=1.

We transition to a logical framework to cope with these issues. Predicates can accommo-
date both non-determinism and undefined outputs in a unified notation. They are functions
that output a Boolean value and can be interpreted as set indicated function or as con-
straints to be satisfied. We can replace 1 := f(z,u) above with a predicate representation
F(z,y,2") which only accepts those values of z,u,x% where there exists an assignment to
[y that satisfies each of the following constraints:

ZL‘T == lQ—Ug—I—ul
2
Ty == Toly + U

I € {|V321], —|v/3z1[}

a:120
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Notation

Relational interfaces are expressed as logical predicates. We briefly introduce predicates and
the operations used to manipulate them; a formal introduction is provided in [46]. Let T
denote logical true and L denote false. Operators —, A,V respectively represent negation,
conjunction, and disjunction. The implication a = b is shorthand for the formula —a V b.
The standard = asserts a statement that two objects are mathematically equivalent; set

equivalence = is used when those two are sets. In contrast, the operator == checks whether
two objects are equivalent, returning true if they are and false otherwise. A special instance
of == is logical equivalence <.

Variables are denoted by lower case letters. Each variable v is associated with a domain of
values D(v) that is analogous to the variable’s type. A composite variable is a set of variables
and is analogous to a bundle of wrapped wires. From a collection of variables vq,...,vy a
composite variable v can be constructed by taking the union v = v, U...Uv,; and the domain
D(v) = Hf‘il D(v;). Note that the variables vy, ..., vy above may themselves be composite.
As an example if v is associated with an M-dimensional Euclidean space RM then it is a
composite variable that can be broken apart into a collection of atomic variables vy, ..., vy
where D(v;) = R for all 4 := 1,..., M. The technical results herein do not distinguish
between composite and atomic variables.

Predicates are functions that map variable assignments to a Boolean value. Predicates
that stand in for expressions are denoted with capital letters. Boolean valued expressions
like “z € {4,5,12}” and “y == sin(x)” are predicates. The variables contained in those
expressions are unassigned in the sense that they are not associated with a single value. Once
all of a predicate’s variables are assigned it returns a Boolean value. Predicates without full
variable assignments yield newer predicates, e.g. assigning y = 1 in “(y == sin(x))” yields
the predicate “(1 == sin(z))”. Assignment of a composite variable v = vy U ... U vy means
that every v; is assigned to an element in D(v;).

Predicates can construct sets via set builder notation. A single predicate can instantiate
different sets if the domains differ, e.g. {z € D(x)|P(z)} and {(z,y) € D(x) x D(y)|P(z)}
are distinct sets but associated with the same predicate.

The standard Boolean operations can be applied to a predicate’s Boolean output to
construct new predicates. The negated predicate =P(v) is true for an assignment to v if and
only if P(v) is false. Predicates P and @) are logically equivalent (denoted by P < @) if and
only if P = () and ) = P are true for all variable assignments. The universal quantifier V
and existential quantifier 3 eliminate variables and yield new predicates. For instance, Jw P
and YwP are predicates that do not depend on w. Existential quantification is analogous
to projecting a set to a lower dimensional domain. If the variable w is actually a composite
variable w = wy U ... Uwy then JwP is simply a shorthand for Jw; ... JwyP.
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Figure 3.2: Three examples of relational interfaces with labeled inputs and outputs. The dynamics
interface I’ takes the current state x and controllable input u» as inputs. It outputs a subsequent
state 1 that is chosen non-deterministically. The non-determinism is constrained by the the pair
(z,u) and represents uncertainty in the dynamics model. Sink interface Z encodes a collection
of values to + that do not block. An invalid assignment to ™ would cause an error. The sink
cpre(F, Z) is constructed from F and Z via the relational interface operator cpre(-).

3.1 Relational Interfaces

Relational interfaces are predicates augmented with annotations about each variable’s role
as an input or output. They abstract away a component’s internal implementation and only
encode an input-output relation that characterizes that component’s behaviors.

Definition 6 (Relational Interface). A relational interface consists of a predicate M, a set
of input variables i, and a set of output variables o. We denote this triple as M(i,0).

For an interface M (i,0), we call (i,0) its input-output signature. An interface is a sink
if it contains no outputs and has signature like (i, &), and a source if it contains no inputs
with signature (&, 0). Sinks and sources can be interpreted as sets, while generic interfaces
can be interpreted as relations. Figure 3.2 depicts three interfaces that arise during control
synthesis.

Because interfaces effectively encode relations through their predicates, they can capture
features such as blocking inputs (i.e., disallowed inputs or inputs that cause errors) or non-
deterministic outputs. Certain assignments to the input variables may also cause system
executions to block, which occurs for that input if there does not exist an output that
satisfies the interface’s input-output relation. Blocking is a critical property that we leverage
to declare requirements. Sink interfaces can impose constraints through non-blocking inputs.
That is, any input assignment that causes a sink to block violates the constraint. Outputs
on the other hand exhibit non-determinism, which will be treated as an adversary. When
one interface’s outputs are connected to another interface’s inputs (done with an operator
that will soon be introduced), the outputs seek to cause blocking whenever possible. This is
reminiscent of the game interpretation of control synthesis.

The original motivation for relational interfaces was as a compositional design language
to reason about software and hardware requirements. While relational interfaces can be
used to model control systems and constraints, the theory is oblivious to concepts such as
controllable input and control system state. We view this as a powerful feature, rather
than a shortcoming, because it allows atomic operators to be reused in a variety of scenar-
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ios. To provide useful results however, control synthesis algorithms should only implement
semantically meaningful sequences of operators.

3.2 Atomic Operators

Operators manipulate relational interfaces. They take existing interfaces and interface vari-
ables as inputs and transform them into another interface. Composite operators can also be
defined by combining existing ones.

The first operator, output hiding, removes interface outputs.

Definition 7 (Output Hiding [90]). The output hiding operator ohide(w, M) over interface
M (i,0) and set of outputs w yields an interface with signature (i,0\ w).

ohide(w, M) = JwM (3.9)

Existentially quantifying out w ensures that the input-output behavior over the unhidden
variables is still consistent with potential assignments to w. The operator nb(-) is a special
variant of ohide(-) that hides all outputs, yielding a sink encoding all non-blocking inputs
to the original interface.

Definition 8 (Nonblocking Inputs Sink). Given an interface F(i,0), the nonblocking oper-
ator nb(F) yields a sink interface with signature (i, ) and predicate

nb(F) = JoF. (3.10)
If F(i,9) is a sink interface, then nb(F) = F yields itself. If F\(&,0) is a source interface,
then nb(F) = L if and only if F < L; otherwise nb(F) =T.

The interface composition operator takes multiple interfaces and “collapses” them into a
single input-output interface. It can be viewed as a generalization of function composition
in the special case where each interface encodes a total function (i.e., deterministic output
and inputs never block).

Definition 9 (Robust Interface Composition). Let M (i1, 01) and Ms(is, 00) be interfaces
with disjoint output variables o Moy = D and

’él Noy =9 (311)

signifying that outputs of interface Msy’s may not be fed back into inputs of M. Define new
composite variables

iOlg =01 N ’ig (312)
ilg = (21 U 22) \72012 (313)
019 = 01 U 09 (314)

!'Note that the interface composition operator is distinct from operator composition. The former takes
interfaces as inputs while the latter is a higher-order operation analogous to function composition.
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Figure 3.3: Visualization of the propagation of nonblocking inputs under series composition from
Definition 9. The interfaces from Example 1 are used. Interface Msy’s nonblocking set nb(Ms) =
(y > 0) is a subset of the possible outputs of M; which is the entire real line. Input values z < 2
to M7 may lead My to block, even though M; wouldn’t have blocked otherwise. The additional
constraint Vojo(M; = nb(Ms)) = (z > 2) prunes inputs to M; that could induce My to block
under an adversarial and nondeterministic output of M;.

and the composed interface
comp(Ml, MQ) = M; AN My A \V/012(M1 = nb(MQ)) (315)

with signature (i12,012). The interface subscripts may be swapped if instead the outputs of
My are fed into M.

We say that M; and M, were composed in parallel if i0o; = @ holds in addition to
Equation (3.11). Equation (3.15) under parallel composition reduces down to M; A My
(Lemma 6.4 in [90]) and the composition operator is both commutative and associative. If
1012 Z &, then the interfaces are composed in series and the composition operator is only
associative. Figure 3.7 depicts the series composition of F' and Z. If each interface has
deterministic outputs and represents a function, function composition is a special instance
of series composition of interfaces. Any acyclic interconnection can be composed into a single
interface through a systematic application of Definition 9’s binary composition operator.

Non-deterministic outputs are interpreted to be adversarial. Series composition of inter-
faces has a built-in notion of robustness to account for M;’s non-deterministic outputs and
blocking inputs to M, over the shared variables 7015. The series composition changes the
role of variables i012 C iy from inputs to outputs. The term Voio(M; = nb(M,)) in Equa-
tion (3.15) is a predicate over the composition’s input set i15. It ensures that if a potential
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ohide(y, comp(My, Mp))

—l (x> 2) A (2 €[Vx —2,y/x +2]) iy
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Figure 3.4: Depiction of ohide(y, comp(M;, M2)) with M; and My from Figure 3.3. The new
interface only input-output assignments to x and z that satisfy the expression (x > 2) A z €

WV —2,vVz +2].

output of M; may cause M to block, then comp(M;, My) must preemptively block.
Ilb(COIIlp(.]\417 MQ)) = 3012(M1 N Mg) VAN VOlg(Ml = Ilb(MQ)) (316)

Example 1 below explains the role of the right-most term for a series composition interfaces
and is accompanied by Figure 3.3 and 3.4.

Example 1. Consider an interface My(x,y) with predicate My(z,y) = (|ly — z| < 2), which
feeds into an interface M(y,z) with predicate My(y,z) = (2 == /y). My’s nonblocking
inputs nb(Ma)(y) are (y > 0). Substituting into the term J019(M1AMs) from Equation (3.16)
yields two equivalent expressions

JyIz(ly — 2| < 2N 2 == /y)
& (x> =2)

because for any x > —2 the assignments y := x 4+ 2 and z := \/x + 2 satisfy the expression.
However the series composition is not robust to an adversarial assignment toy. For instance,
x = —1,y = —1 satisfy My’s constraints but y = —1 is not a valid input to M. Substituting
into the term Yoi2(My = nb(Ms)) from (3.16) yields a tighter constraint on inputs.

VyVz(ly — 2| < 2=y >0)
< Vy(ly—z|>2Vy=>0)
& (z>2).
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Figure 3.5: Interpretation of ihide(-) operator as an angelic environment E that chooses a variable
assignment to u in reaction to a variable assignment to x. Note that ihide(u, A) and ohide(u, E)
are equivalent interfaces.

Any input © < 2 is disallowed because there exists a strictly negative y that satisfies |y — x| <
2. Thus,

comp(My, My) = (Jy — x[ < 2) A (z == Vy) A (2 = 2)
ohide(y, comp(My, My)) = (x > 2) Nz € [Vx — 2, Vx + 2]
nb(comp(My, Ms)) = (z > 2)

The final atomic operator is input hiding, which may only be applied to sinks. If the
sink is viewed as a constraint, an input variable is “hidden” by an angelic environment
that chooses an input assignment to satisfy the constraint. This operator is analogous to
projecting a set into a lower dimensional space.

Definition 10 (Hiding Sink Inputs). The input hiding operator ihide(w, M) over sink
interface M (i, @) and inputs w yields an interface with signature (i \ w, ).

ihide(w, M) = JwM (3.17)

Unlike the composition and output hiding operators, this operator is not included in the
standard theory of relational interfaces [90] and was added to encode a controller predecessor
introduced subsequently in Equation (3.21).

Useful Composite Operators

One extremely useful operator is to swap one interface variable with another.

Definition 11 (Input and Output Renaming). Consider an interface M with signature (i, 0).
The input renaming operation to swap i for i is defined as

irename(M.,i,1) = ohide(i, comp(Q;, M)) (3.18)
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Figure 3.6: Inputs and outputs can be renamed by composing an identity interface and hiding the
original variable.

where Q;(1,1) = (i == 1) is an identity interface. Similarly, the output renaming operation
to swap o for o is defined as

orename(M, 0,0) = ohide(o, comp(M,Q,)) (3.19)
where Q,(0,0) = (0 == 0) is an identity interface.

Renaming in practice is often quicker to compute if implemented directly rather than
via combining the ohide(-) and comp(-) operators. This can be implemented by swapping
variables in the predicate representation.

Another useful composite operator is domain filtering, which removes values from an
interface’s input domain. It reduces an interface’s input domain by composing it in parallel
with a sink interface that encodes a smaller domain. The operation is a special case of
comp(-) that imposes additional requirements about the interface signatures.

Definition 12 (Domain Filtering). Consider an interface M (i, 0) and a sink interface I(j, @)
that acts as a filter. Let the input variable sets satisfy 7 C i, meaning that the filter has fewer
inputs. The domain filtering operation

dfilter(l, M) = comp(l, M) (3.20)

discards any input-output assignments to M that violate I.

3.3 Control Synthesis as Robust Interface
Composition

Recall the set-based definition of the controlled predecessor from Equation (2.3)
cpre(F, Z) = {x : Ju such that @ # F(z,u) C Z}
Jdxt such that 2t € F(z,u)

= { x : Ju such that and
xzt € Z holds Vat € F(x,u)
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Figure 3.7: Control predecessor as a sequence of interface operations. Interface F'(z U u,z™)
represents system dynamics and sink interface Z(z+, @) represents a target set of states at the next
time step. The C interface represents a controller that takes the state xz as input and constrains
the potential control values u.

Translating this to a logical expression yields the expression that encodes a predicate condi-
tion on the variables z,u, and z™.
Ju(FztF AV2T(F = Z))

We now have all of the necessary atomic operators to express cpre(F, Z) through a sequence
of relational interface operators, whose collective effect is depicted visually in Figure 3.7.

Proposition 1. The controlled predecessor cpre(F, Z) from Equation (2.3) is equivalent to

cpre(F,Z) = ihide(u, ohide(zt, comp(F, Z))) (3.21)
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Proof. Applying the definitions of comp(-), ihide(:), and ohide(:) yields the expression
(3.22). One can safely move the 327 inside the parenthesis as in (3.23) because Vo (F = Z)
is a predicate that is independent of z*.

Judx™(F AN Z AV (F = Z))) (3.22)
= Ju(FzH(F AN Z) AV (F = Z))) (3.23)

To show equivalence of the above expressions with Equation (2.3), we simply need to show
equivalence of the following two predicates that depend on z and wu:

2 (FAZ) ANV2 ™ (F = 2) (3.24)
JxtF AVt (F = 7). (3.25)

It is easy to see that (3.24) implies (3.25) because Jz*(F A Z) implies dx+ F. To show the
reverse, suppose (3.25) is satisfied for a pair z and u. Any z* chosen to satisfy Jz*F must
also satisfy the constraint imposed by the sink Z. Otherwise, the clause Vz ™ (F = Z) would
be violated, contradicting satisfaction of (3.25). Therefore, (3.24) and (3.25) are equivalent
which completes the proof. O]

Both the safety game and reach game are possible to encode with relational interface
operators.

Definition 13 (Safety Game). Given a safety set interface S(x, ) and dynamics F, the
safety fized point is defined as the fixed point of the iteration

Zy=S (3.26)
Z; = safe(F, Z;,S) = comp(cpre(F,Z;_1),S) (3.27)

Let Z., denote the fixed point of the iteration, which occurs when Z; == safe(F, Z;, 5)
holds. If such a fixed point exists, then it can be viewed as a subset of the state space where
a controller can force closed loop system behaviors to lie in S forever. It is an invariant set.
The iterations of a safety game can also be viewed as a collection of interfaces generated by
applying relational interface operators, as depicted in Figure 3.8. The composition operation
over sinks encodes a conjunction in Equation (3.27). Recalling that sink interfaces correspond
to requirements to be satisfied, one may interpret each of the S interfaces in Figure 3.8 as
interfaces that monitor for constraint violations at every time step. This can be viewed as
an instance of domain filtering as in Definition 12. That is, the comp(-) in (3.27) can be
substituted with dfilter(-).

To encode a reach game, we use another operator refine(-), which is introduced later in
Definition 20 of Section 4.3. The refine(-) operation reduces down to set union when the
inputted interfaces are sinks that encode sets.
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Figure 3.8: Depiction of safety game iteration as a collection of interfaces generated by repeated
application of Equation (3.27). Starting from Zy = S, a sequence of sink interfaces Z; is generated.
This reflects each iteration of the safety game. The dynamics F' and safety set S are depicted
without an iteration/time index, which is appropriate if they are time invariant. In contrast, a
different control interface Cj is constructed via the ihide(-) operator at each iteration. The control
interfaces have dashed outlines because they are never explicitly constructed; we simply depict the
affects of the ihide(-) operator.

Definition 14 (Reach Game). Given a target set interface T'(z, ) and dynamics F, the
reach fixed point is defined as the fized point of the iteration

Zo=1 (3.28)
Z; = reach(F, Z;,T) = refine(cpre(F, Z;_1),T) (3.29)

The fixed point Z., of the reach game (if it exists) can be viewed as a set of initial states
for which a controller can cause the system to eventually enter 7.

The reach-avoid game can be encoded in a similar manner to the safety and reach games.
The reach-avoid fixed point represents the set of initial states for which a controller can cause
the system to eventually enter 7" while never exiting the safe region S beforehand.

Definition 15 (Reach-Avoid Game). Given a target set T, safety set S, and dynamics F,
the solution to the reach-avoid game is defined as the fized point of the iteration
Zy=1 (3.30)
Z; = reachavoid(F, Z;, S, T) = refine(comp(cpre(F, Z;_1),S),T) (3.31)
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Figure 3.9: Decomposed dynamics for a Dubins vehicle. The interface F' represents the monolithic
dynamics (right) and is the result of a parallel composition of three internal components (left).

3.4 Compositional Models and Decomposed Control
Predecessors

The game iterations above all rely on computing cpre(-), which so far has been defined
for a monolithic system F. Many large systems are actually constructed as a collection of
smaller components. One of the most common structural properties exhibited by continuous
domain control systems are a state space encoded as a Cartesian product and dynamics
characterized by a collection of component-wise updates. Consider a collection of state

variables © = {zy,...,zx} and 2zt = {z,... 2§} and v = {uy,...,up}. The dynamics
F(z,u,x%) could be denoted by some collection of smaller components to update each state
variable xj for i = 1,...,N. This decomposition can be encoded as a simple parallel

composition of systems with comp(-) and is logically equivalent to
N
F(x,u,z%) = /\ Fy(z,u,z}). (3.32)
i=1

In the language of relational interfaces, we can construct the monolithic interface from
Equation (3.32) as a parallel composition F' = comp(Fy,...,Fy). An example of such a
monolithic interface is depicted in Figure 3.9 for the Dubins vehicle.

A decomposed control predecessor avoids computing the monolithic system altogether.
Instead, it rearranges itself to reflect the system’s decomposition structure. The original
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Figure 3.10: Visualization of a decomposed control predecessor for the decomposed Dubins vehicle
dynamics in Figure 3.9. A sequence of interfaces that ultimately yields an interface that is equivalent
to the monolithic ohide(z*, comp(F, Z)). From the initial sink interface Z(py Up, U#T, @) in the
far left, the center left interface ohide(6", comp(Fy, Z)) is obtained by composing with Fj and
hiding #". Composing and hiding the F), interface and p; variable yields the center right interface.
The far right interface is equivalent to the monolithic ohide(z™, comp(F, Z)).

controlled predecessor
cpre(F,Z) = ihide(u, ohide(z™", comp(F, Z)))

was given for a monolithic interface F' encoding the control system dynamics. To use this
existing cpre(-) for system like (3.32), one could take the interfaces Fi, ..., Fiy, compute their
parallel composition, and substitute for F' above. Even with the component-wise abstraction
method described above, this could be computationally expensive. Constructing F' is also
premature because knowledge of the specification can drastically simplify the computation
of a controller. Experimental evidence (albeit in other domains) suggests that full knowledge
of the system dynamics may be unnecessary once a task is fixed [6].

The decomposed control predecessor avoids constructing F' by instead using an alternative
to cpre(-) that leverages the decomposition structure. This occurs by breaking apart the
term ohide(z™, comp(F, Z)). The key intuition is provided in Figure 3.10 on the Dubins
vehicle example. More generally, for a system composed in parallel ohide(x™, comp(F, 7))
can instead be replaced with the equivalent representation

ohide(z], comp(Fy,...,ohide(x},, comp(Fy, Z)) (3.33)

that avoids constructing F'. Equivalence of the decomposed controlled predecessor with
the original monolithic one can be shown via the associativity of comp(-) and the fact that
outputs x* = {p;, p;,0} are not shared across interfaces.

Empirical runtimes for the Dubins vehicle example appear later in Section 5.7. They
demonstrate that preemptively constructing the monolithic system dynamics F' is unneces-
sary and increases synthesis runtimes.
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Domain Filtering

Domain filtering is an operation that eliminates an interface’s input-output information for
a collection of input values. This operation is especially useful if one knows beforehand that
some input-output assignments to an interface are superfluous or unnecessary. Modeling the
system dynamics for a global state space is useful if the specification is unknown but may
be unnecessary for specific problem instances.

1. Embedding Safety into the Dynamics: For safety games, a certain region of
the state space is known to be unsafe so modeling the dynamics in that region is
unnecessary. SCOTS [78] incorporates this insight during the abstraction step by al-
lowing the user to preemptively reject any input samples that violate the safety con-
straint. This approach is reasonable if the safety constraint is known beforehand and
static, but comes at the cost of flexibility. The SCOTS approach would not work if
the safety region were for instance time varying. Recall Figure 3.8’s depiction of the
safety game. It shows the system F' is always composed in parallel with the (in this
case static) safety constraint S. Equation (3.27) encoded the safety game operator
safe(F, Z;,S) = dfilter(cpre(F, Z;_1),S) which indicates that the safe region S is
composed with cpre(F, Z;_1) after it is computed. The domain filtering method rear-
ranges this computation to be cpre(dfilter(F,S), Z;_1). This iteration has no notion
of safety but the safe set is hard coded into the dynamics via dfilter(F,S).

2. Filtering with Lifted Control Predecessor Projections: An approach appearing
in [48] combines domain filtering with notions from the decomposed control predeces-
sor. Each interface that encodes a portion of the dynamics is filtered by a set that
overapproximates the potential predecessor states. This set is generated from the game
iteration interface Z; and its construction is best explained by example. The interface
F, from the Dubins vehicle is filtered through these three steps:

a) Project the current sink interface Z; with signature (pf U p} U 6", J) to a lower
dimension interface Z with the input hiding operator ihide(p; U ot Z;). This
sink interface’s signature is (pf,@). The variables {p;, 0"} are hidden because
they are not outputted by F.

b) Compute the filter interface with ohide(p}, comp(F,, Z¥)). Any input that is
accepted by this filter satisfies a necessary condition for satisfaction of Z;.

¢) Apply the domain filter to F, eliminating state-input pairs that violate the filter’s
necessity condition.

The steps above also generalize to construct domain filtered versions of F}, and Fj.
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3.5 Reducing the Complexity of the Control
Synthesis Pipeline

The controlled predecessor cpre(-) appearing in Equation (3.21) is oblivious to the domains
of variables x,u, and x+. This generality is useful for describing a problem and serving
as a blank template, but lacks sufficient details to translate it into an algorithmic imple-
mentation. In existing control synthesis implementations, many structural assumptions are
implicitly encoded in the tool’s design choices. Whenever problem structure exists, pipeline
modifications refine the general control synthesis algorithm into a form that reflects the spe-
cific problem instance. They also allow a user to explicitly inject preferences into a problem
and reduce computational bottlenecks or to refine a solution.

The decomposed control predecessor and domain filtering techniques above yield the
same result as the original pipeline. They manage to reduce computational complexity by
rearranging the algorithmic procedure used to compute the result. While this approach
yields noticeable benefits, it ultimately runs into performance bottlenecks if the original
problem exhibits inherent memory lower bounds. The next chapter introduces the dual
notions of abstraction and refinement. Abstraction reduces a complicated problem into its
core, while refinement introduces additional details. Using these two allows one to modulate
the complexity of the problem and the conservatism of the synthesizer’s output.
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Chapter 4

Abstracting and Refining Control
Systems

Model complexity implicitly encodes a tradeoff between utility and tractability. Computing
the intermediate game iterations from Equation (2.5) and Equation (2.7) exactly is often
intractable for high-dimensional nonlinear dynamics. One method to construct tractable
algorithms for control synthesis is through the notion of abstraction. At its essence abstrac-
tion entails removing unnecessary information and distilling a problem to its core. A good
abstraction procedure captures a problem’s salient structure while discarding extraneous
information. For continuous systems tasked with satisfying a safety, reach, or reach-avoid
objective, small perturbations of the dynamics or the target sets do not substantially alter
the solution. Throwing away fine grained local information can be a reasonable trade-off if it
leads to noticeable computational gains, but determining the effectiveness of this approach
is domain specific.

In this chapter, we introduce the notion of a hierarchy of models and formalize what it
means to systematically discard information. We define a special kind of interface called
a quantizer that is an abstraction of the identity interface. The model hierarchy ensures
that reasoning performed over abstract models can be extrapolated to their concrete coun-
terparts. Traversing this hierarchy allows us to explore the tradeoffs between algorithmic
tractability and fidelity of the control synthesizer’s output. Chapter 5 applies the core the-
oretical framework in this chapter to the finite abstraction, synthesis, refinement pipeline
from Figure 2.3.

4.1 Interface Refinement

We formalize the notion of an abstract interface. At its essence, it encodes the principle
where abstract interfaces are more aggressive with blocking and exhibit more output non-
determinism. Abstractions are ideally simpler than the original interface, but are more
conservative. Thus if a property can be established for an abstract interface, it should also
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hold for the concrete interface as well. When a controller synthesis algorithm constructs a
controller enforcing a property on abstract system dynamics, the results can be extrapolated
or refined back to control the original system dynamics.

Definition 16 (Interface Refinement Relation). Let M (i, 0) and M(i,0) be interfaces. M
s an abstraction of M if and only if i = i, 0 = 0, and substituting predicates M and M into

~

nb(M) = nb(M) (4.1)
(m(M) A M) = M (4.2)

yields predicates equivalent to T, i.e., they are satisfied for all variable assignments. This
relationship is denoted by M =< M.

Definition 16 imposes two main requirements between the concrete interface M and
abstract interface M. Equation (4.1) encodes the condition where if M accepts an input,
then M must also accept it; that is, the abstract component is more aggressive with rejecting
invalid inputs. Second, if both systems accept the input then the abstract output set is a
superset of the concrete function’s output set. The abstract interface is a conservative
representation of the concrete interface because the abstraction accepts fewer inputs and
exhibits more non-deterministic outputs. If both the interfaces are sink interfaces, then
M < M reduces down to M C M when M , M are interpreted as sets. If both are source
interfaces then the set containment direction is flipped and M =< M reduces down to M C M.

The refinement relation < encodes a direction of conservatism such that any reasoning
done over the abstract models is sound and can be generalized to the concrete model.

Theorem 1 (Informal Substitutiability Result [90]). For any input that is allowed for the
abstract model, the output behaviors exhibited by an abstract model contains the output be-
haviors exhibited by the concrete model.

If a property on outputs has been established for an abstract interface, then it still holds
if the abstract interface is replaced with the concrete one. Informally, the abstract interface
is more conservative so if a property holds with the abstraction then it must also hold for
the true system.

The refinement relation satisfies the required reflexivity, transitivity, and antisymmetry
properties to be a partial order [90]. Figure 4.1 depicts a collection of interfaces in this order
and their relationships. This order has a bottom element L which is a universal abstraction.
Conveniently, the bottom element | signifies both Boolean false and the bottom of the
partial order. This interface blocks for all input values and always induces an error. In
contrast, boolean T plays no special role in the partial order. This interface never blocks
but introduces undesirable non-determinism into the system. While T exhibits totally non-
deterministic outputs, it also accepts all inputs. A blocking input is considered worse than
non-deterministic outputs in the refinement order.
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Figure 4.1: Example depiction of the refinement partial order. Each small plot on the left depicts
darkened input-output pairs that satisfy an interface’s predicate. Inputs (outputs) vary along the
horizontal (vertical) axis. Because B blocks on some inputs but A accepts all inputs B < A.
Interface C' exhibits more output non-determinism than A so C < A. Similarly D < B, D < C ,
T X C, etc. Note that B A C and C A B because C exhibits more output non-determinism and B
blocks for more inputs. The false interface L is a universal abstraction. The true interface T plays
no special role in this partial order and in fact is incomparable with interfaces B and D. Table 5.1
later shows how certain interfaces were obtained through coarsening.
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All aforementioned interface operators preserve the properties of the refinement relation
of Definition 16, in the sense that they are monotone with respect to the refinement partial
order. Proofs for Theorem 2 and 3 below are provided in [90]. The proof for the input hiding
operator is trivial and is omitted.

Theorem 2 (Composition Preserves Refinement). Let A < A and B < B. If the composition
is well defined, then comp(A, B) < comp(A, B).

Theorem 3 (Output Hiding Preserves Refinement). If A < B, then for any variable w

ohide(w, A) X ohide(w, B). (4.3)

Theorem 4 (Input Hiding Preserves Refinement). If A, B are both sink interfaces and
A = B, then thide(w, A) <X ihide(w, B) for any variable w.

One can think of using interface composition and variable hiding to horizontally (with
respect to the refinement order) navigate the space of all interfaces. The synthesis pipeline
encodes one navigated path and monotonicity of these operators yields guarantees about the
path’s end point. Composite operators such as cpre(-) chain together multiple incremental
steps. Furthermore since the composition of monotone operators is itself a monotone opera-
tor, any composite constructed from these parts is also monotone. In contrast, the coarsening
and refinement operators introduced later in Definition 18 and Definition 20 respectively are
used to move vertically and construct abstractions. The “direction” of new composite oper-
ators can easily be established through simple reasoning about the cumulative directions of
their constituent operators.

4.2 Interface Abstraction via Quantization

The core idea behind translating continuous dynamics into an approximate finite represen-
tation relies on discretizing both time and space. Many control synthesis tools construct
discrete time system models from continuous time models by fixing a sampling time step
and assume that controlled inputs have a zero order hold [76]. Spatial discretization or
coarsening is achieved by use of a quantizer interface that implicitly aggregates points in
a space into a partition or cover. It is possible to construct many different kinds of quan-
tizer interfaces, and their implementations depend on the data structure to represent finite
abstractions.

Definition 17 (Quantizer Interface). A quantizer Q(i,0) is any interface that abstracts the
identity interface (i == o) associated with the signature (i,0).
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Figure 4.2: An identity interface associated with predicate (i == o) is depicted at the very right
and the universal interface 1 at the left. The identity interface refines all other ones depicted
above.

Figure 4.2 depicts some non-trivial interfaces that abstract the identity interface. The ab-
straction occurs either by increasing output non-determinism, by filtering the input domain,
or some combination of both.

The coarsening operator takes an interface by connecting a quantizer interface in series
with the target interface. Its main use is to decrease the complexity of the system represen-
tation and make synthesis more computationally tractable.

Definition 18 (Input and Output Coarsening). Consider an interface M(i,0) and input
quantizer Q(i,1). Input coarsening

icoarsen(M,Q(i,1)) = ohide(i, comp(Q(i,i), M)) (4.4)

yields a new interface with signature (1,0). Similarly, given an output quantizer Q(o,0),
output coarsening

ocoarsen(M,Q)(0,0)) = ohide(o, comp(M,Q(0,0))) (4.5)
yields a new interface with signature (i, 0).

Coarsening reduces the number of non-blocking inputs and increases the output non-
determinism. The ohide(-) is only required because the comp(-) series composition operator
exposes the original variables (i/o for input/output hiding) as output variables to the new
interface. The corollary below readily follows from the fact that quantizers abstract the
identity interface, Theorem 2, and Theorem 3.

Corollary 1. Input and output coarsening operations icoarsen(-) in (4.4) and ocoarsen(-)
in (4.5) are monotone operations with respect to the interface refinement order <.
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4.3 Constructing Abstractions through Reachable Set
Overapproximations

Shared refinement [90] is an operation that takes two interfaces and merges them into a single
interface. In contrast to coarsening, it makes interfaces more precise. It is extensively used
in the abstraction step to convert dynamical systems models into a form that’s amenable to
the relational interface operations.

Black box functions, Simulink models, and source code files are all common representa-
tions of control systems, yet they do not readily lend themselves to the predicate operations
used to encode the relational interface operators. Many tools get around this issue by con-
structing system abstractions by starting from the universal abstraction L, then iteratively
refining it with a collection of smaller interfaces that represent input-output samples. The
predicate operations over finite domains are guaranteed to be computable. This property is
a key motivator behind abstracting transition relations over continuous spaces an approxi-
mate and finite counterpart. There are many data structures that could be used to represent
finite domain predicates including lookup tables, binary valued n-dimensional arrays, trees,
bitmaps, and Boolean circuits.

Directly translating the common control system representations into any of the above
data structures is non-trivial. An alternative method is to first generate a collection of
smaller interfaces that represent input-output samples, then construct a larger interface by
iteratively merging (or collapsing) the collection.

Shared refinement is another atomic operator [90] that merges the information contained
in multiple interfaces. Interfaces can be successfully merged whenever they do not contain
contradictory information. The shared refinability condition below formalizes when such a
contradiction does not exist.

Definition 19 (Shared Refinability [90]). Let M;(i,0) and M(i,0) be two interfaces that
operate on the same set of inputs and outputs. We say that they are shared refinable if for
all iputs 1.

(nb(M)) A nb(Msy)) = Jo(M, A My). (4.6)

For any inputs that do not block for all interfaces, the corresponding output sets have a
non-empty intersection. Figure 4.3 depicts two examples of interface pairs that do and don’t
meet the shared refinability condition.

Given a collection of shared refinable interfaces, they can be combined into a single one
that encapsulates all of their information.

Definition 20 (Shared Refinement Operation [90]). The shared refinement operation com-
bines two shared refinable interfaces and yields a new interface corresponding to the predicate.
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Figure 4.3: Example of pairs of interfaces that are and are not shared refineable. Inputs (outputs
are depicted on the horizontal (vertical) axis. (Left) The interfaces are not shared refinable because
for certain input assignments (highlighted in red) the sets of possible outputs are disjoint. The
output sets contradict one another and the interfaces cannot be merged. (Center) For each input
assignment that does not cause I3 and I; to block, the corresponding output sets are not disjoint.
(Right) Interface refine(I3,I4) in black.

More generally given a set of shared refinable interfaces My, ..., My we define:

refine(M,, ..., My) = (\/ nb(Mi)> A\ (nb(M;) = M) (4.8)

=1 =1

The left term expands the set of accepted inputs. The right term signifies that if an input
was accepted by multiple interfaces, the output must be consistent with each of them. Its
effect is to use multiple interfaces to move up the refinement order as will be depicted in
Example 4. The shared refinement operation reduces down to a disjunction for sink interfaces
and an conjunction for source interfaces.

Theorem 5 (Shared Refinement Yields a Least Upper Bound [90]). Given a collection of
shared refinable interfaces, the shared refinement operation yields the least upper bound with
respect to the refinement partial order in Definition 16.

Violation of the shared refinability requirement Part 4.6 can be detected if the outputted
interface is not refinement of the inputted ones. This is a useful check for ensuring that
reach set overapproximations are computed correctly.

Reachable Set Overapproximations are Abstractions

A common method to construct finite abstractions is through simulation and overapprox-
imation of forward reachable sets. This technique appears in tools such as PESSOA [60],
SCOTS [78], MASCOT [44], ROCS [55] and ARCS [16]. By covering a sufficiently large por-
tion of the interface input space, one can construct larger composite interfaces from smaller
ones via shared refinement.
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Sample interfaces are constructed in a sequence of steps.

1. Input-Output Sampling: Smaller interfaces are constructed by sampling regions of
the input space, constructing the associated forward reachable set, then constructing
an interface encoding a collection of input-output pairs. Restrict attention to a subset
of the interface input space.

2. Output Overapproximation: Computing the exact forward reachable set may be
intractable, in which case an over-approximation may be substituted while preserving
the abstraction.

3. Quantize: If desired, quantize the results of the previous two steps so that the interface
can be stored as a finite data structure.

Each of the previous steps take as input an interface and output an abstraction of that inter-
face. The refinement step merges the information contained within many sample interfaces.
The refinement step result is abstracted by all of the inputted sample interfaces.

4. Refine: Merge quantized samples to construct a larger interface that represents a
quantization of the original function. Its execution can be interleaved with sample
generation process; it does not need to wait for all samples to be generated before
starting to merge.

Figure 4.4 depicts a dataflow graph where the above operations serve as methods to
move down the interface partial order. The shared refinement operation combines multiple
interfaces to construct an abstraction of the original concrete interface.

Input-Output Sampling

A sink interface I(i, o) acts as a filter that prunes inputs outside of the relevant input
region. The source interface I'(,7') composed with F(i’,0) generates a forward reachable
set associated with the set of inputs. Both I(i, @) and I'(@,4') encode the same subset of
the D(i) = D(7’) space. The sampled interface is an abstraction in the sense that the original
interface refines the sampled interface.

Proposition 2 (Input-Output Sample Interface). Let (i, &) be an interface such that
I = nb(F) (4.9)

is valid. Define the renamed interface F' = irename(F,i,i'). Similarly, let interface O =
ohide(i', comp(I', F")) be a source that encodes the collection of potential output assignments
from the collection of input assignments that satisfy I. Input-output interface 10(i,0) =
comp(I,0) corresponds with the predicate I N O because the two are composed in parallel.
then 10 < F and the sample interface 10 is an abstraction of F.
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Figure 4.4: Visualization of finite abstraction algorithms as a dataflow graph traversing the refine-
ment partial order. Nodes represent interfaces and edges signify data dependencies for interface
manipulation operators. Multiple refine edges point to a single node because refinement combines
multiple interfaces. Input-output (IO) sample and coarsening are unary operations so the resulting
nodes only have one incoming edge. 10 sample edges represent lines 3-5 in Algorithm 2. Interface
F refines all others, and the final result is an abstraction F.

Figure 4.5: An interface representing an input-output sample of F. Here, F’ is identical to F
except with its input renamed 7. Outputs o do not depend on inputs 7, which distinguishes this
interface from a filtered interface.
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Figure 4.6: Instead of computing an exact O = comp(I’, F’), one can replace it with any OA
such that OA < O. Recall that OA < O for sink interfaces is equivalent to O C OA from a set
perspective.

Proof. Condition (4.1) is satisfied by assumption. Condition (4.2) is satisfied because any
assignment to 7, 0 that satisfies F' also satisfies 0. [

Critically, the interfaces generated via different input sample regions are shared refinable
with one another.

Proposition 3. Shared refinability is preserved under input-output sampling. That is, 10,
and 10y as constructed in Proposition 2 with interfaces Iy, Iy are shared refinable.

Proof. Note that I; = nb(/O;). Substituting /O; and IO, into the shared refinement con-
dition yields the following collection of equivalent predicates

(I} A Iy) = Fo(I01 A 105)) (
(It A I3) = Fo(Iy AT (I; AN F') NI ATi' (I N FY)) (
(L N Lo) = (It ANL) ATo (F'(I; ANF) AT (IL N FY) (4.12
(It AN y) = o (3i' (I AN F') NTi' (I N F')) (

Now suppose that an assignment to i satisfies I; A I5. From Equation (4.9), there must exist

as assignment to o such that F(i,0) is satisfied. Pick any such o and let ¢/ == i. These
assignments satisfy I AF” for j € 1,2, signifying that the shared refinement conditions above
are true. O

Output Overapproximation for Dynamic System Interfaces

The computation of the output interface O = comp(I’, F’) is analogous to computing a
function’s image and is intractable for general systems. One may instead safely use an
interface OA(@,z") that overapproximates the forward reachable set interface O(&,a™).
The interfaces satisfy the refinement relation OA < O signifying that OA is an abstraction
of O; recall that this relation is identical to O C O A when the source interfaces are interpreted
as sets or O = OA when using the predicate interpretation.

Proposition 4. An input-output interface 10 = comp(I,OA) constructed via an overap-
proximation (i.e. OA = O) satisfies the refinement relation comp(I,OA) <X F.
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Figure 4.7: Appending quantizers coarsens the input-output sample interface.

The above proposition is easy to prove by observing that comp(/,OA) < comp(/,0),
Proposition 2, and applying the transitivity property of the refinement relation partial order.

Proposition 5. Given an interface F, its renamed version F' = irename(F,i,i"), and two
interfaces I, I, let OA;(D,0) be a source interface that satisfies

3i'(I' A F') = OA;. (4.14)

That is, OA; is a superset of the set encoded by 3i'(I; N F').  The interfaces 10; =
comp(l,0A;) for j =1,2 are shared refinable.

Proof. Consider the predicate
(L AN L) = Fo(F'(I]NF)YNF(ILANF))
appearing in Proposition 3’s proof. Substituting in OA; and O A, above yields
(I NIy) = F0(OA; AN OA,) .

Validity of this formula is trivial after noting that Equation (4.14) is true. 0

Coarsening

To make the sample interface finite, the interface inputs and outputs are coarsened with
quantizers. An individual sampled abstraction is not useful for synthesis because it is re-
stricted to a local portion of the interface input space. However after sampling, many finite
interfaces are merged through shared refinement.

Making Control Synthesis Concrete

The next chapter showcases a collection of concrete modifications to the control synthesis
pipeline for the abstraction-based control synthesis case. These modifications reconstruct the
traditional abstraction-based control pipeline, as well as encoding domain specific heuristics
that empirically lead to favorable computational outcomes. The relational interfaces frame-
work is simple, but powerful. It uncovers some implicit assumptions in existing tools and
either remove them or make them explicit. Minimizing the number of assumptions ensures
applicability to a diverse collection of systems and specifications and compatibility with
future algorithmic modifications.
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Chapter 5

Implementation and Benchmarks for
Finite Abstraction-based Control
Synthesis

We apply the insights of the previous two chapters and apply it to the abstraction-based
control pipeline. They will provide a methodology to guide the control synthesizer develop-
ment. The most common use cases are continuous dynamical systems that are abstracted
over a rectangular grid; this chapter contains a collection of domain specific methods that
apply to this use case. Each of these methods resemble similar techniques in PESSOA [60],
SCOTS [78], MASCOT [44], ROCS [55] and ARCS [16], but by adopting the relational interfaces
framework we uncover some implicit assumptions and generalize or remove them.

Following a discussion on the data structures used to encode predicates, we will survey the
domain specific techniques which cover the quantizer implementation, different abstraction
and sampling methods, and using forward reach set overapproximations for abstraction.
Each of these techniques are independent and can be seamlessly combined when desired. We
present a variety of examples such as a vehicular traffic network and lunar lander, as well as
the previously introduced Dubins vehicle. They each highlight reductions in memory usage,
runtimes, samples, or some combination thereof. These techniques are included in a toolbox
Redax available at [1]. It is written in python 3.6 and uses the dd package as an interface
to CUDD[84], a library in C/C++ for constructing and manipulating binary decision diagrams
(BDD). All experiments (except for the sparsity-aware abstraction example) are run on a
single core of a 2013 Macbook Pro with 2.4GHz Intel Core i7 and 8 GB of RAM.

5.1 Predicate Data Structures

Relational interfaces are stored with data structures that encode predicates. We assume that
the standard predicate manipulation operations (conjunction, negation, variable elimination)
exist and are available. The relational interface operators are implemented with these low
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level predicate operations, but come with the refinement preservation guarantees Theorem 2-
4. Low level predicate operations, while powerful, make it easy to inadvertently violate the
refinement property. Conforming to the relational interface operations minimizes this danger.

There are two broad classes of data structures used to represent discrete sets and tran-
sition relations. Fxplicit data structures such as hash tables, graphs, bitmaps, or multi-
dimensional arrays represent elements as distinct locations in memory. The memory re-
quirements for explicit data structures generally scale linearly with the number of elements
in the set, but the number of elements in the set grows exponentially with the dimension.
Implementing the predicate operations on explicit data structures is generally straightfor-
ward.

Symbolic data structures represent the sets and transition relations implicitly as con-
straints. These data structures allow one to avoid the linear scaling associated with ex-
plicit data structures. Shallow and simpler symbolic data structures commonly appear as
(in)equality constraints in optimization tools or satisfiability checkers. Boolean functions can
be used to represent sets or relations. Decision trees and binary decision diagrams (BDD)
[15] are symbolic data structures that compress the Boolean function by detecting patterns.
Software implementations of BDD are equipped with the standard predicate operations [84].
We opt to use BDDs because they empirically exhibit the best performance on the benchmark
examples in this chapter.

5.2 Multi-Precision Quantizers

A key benefit of quantizing (or “abstracting”) continuous dynamics into finite representations
is that the predicate operations are finitely computable whereas for continuous representa-
tions they are not in general. While the loss of precision during the quantization step means
that the result of control synthesis is conservative, the granularity of the quantizers can be
modified. On the other hand, finer granularity solutions can cause the memory and computa-
tional requirements to store and manipulate the symbolic representation to exceed machine
resources. To counter this, one may inject coarser quantizers directly into the synthesis
pipeline to simplify computations and reduce memory usage whenever it becomes appar-
ent that the fixed point computation will require more computational resources than are
available.

We show a particular quantizer that is geared towards dynamic or variable precision
abstractions such as those that appear in tools ROCS, ARCS, and MASCOT |16, 44]. Afterwards,
we show how the quantizer can be used to coarsen interfaces via series composition. For
clarity, our quantizer will build off a one-dimensional quantizer that translates a real number
within a compact interval into a finite vector of bits. Remark 1 will briefly explain how to
construct quantizers for higher dimension spaces and unbounded domains.

Certain data structures like trees or binary decision diagrams (BDDs) [15] are natural
candidates for capturing and encoding a space’s hierarchical decomposition. A sequence of
bits can be used to traverse that data structure to arrive at a subset of that space. More bits
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N=0 - — =
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Figure 5.1: Varying length N of a bit vector leads to different granularity covers of an interval.
The don’t care term “—” signifies that the value of a certain bit does not matter. Bit vectors of
finite length are implicitly appended with an infinite sequence of don’t cares.

allow one to specify finer granularity sets. As an illustrative example, consider an interval
[0,1] that is to be covered. Let N represent a number of bits to construct a cover of [0, 1],
and assign a unique bit sequence to identify each set in the cover. Figure 5.1 depicts for
varying N how an interval can be covered by a collection of small intervals, while minimizing
overlaps. A greater N signifies that the cover can be constructed with finer intervals. A bit
vector 0105 . ..oy of length N can be used to specify an interval of width 2= such as

N N
Z 2 %0, Z 2 0, +27N| . (5.1)
k=1 k=1

If N = oo, then any value in [0, 1] can be encoded via the infinite weighted sum Y -, 2 %0y

For N = 0, the interval is [0, 1] itself. Figure 5.1 implicitly appends don’t care terms — to
the end of bit vectors. This allows finite length bit vectors (intervals) to be identical to the
disjunction (union) of longer bit vectors (smaller intervals) with a common prefix.

A quantizer acts by truncating a bit vector to a specified finite number of bits and
outputting the result. The effect of truncating bits is to implicitly widen or coarsen that
interval. A quantizer (0, 0) that only retains the first IV bits satisfies the following formula
and is depicted in Figure 5.2

QN(O,é):QN(OlU...,élu...) (52)
= /\ (ox == 0x) (5.3)

Even though the quantizer (Qn only depends on the N most significant bits, it im-
plicitly receives and emits infinite bit sequences. It ignores higher precision input bits and
non-deterministically assigns values to higher precision output bits. Equality with the Equa-
tion (5.3) is shown via the following simple equalities:

N
QN(O, 6) = (Ok == (A)k) ANTAT (54)
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Figure 5.2: A bit quantizer in Equation (5.3) with N = 2. Higher significant bits are outputted
but are replaced with a don’t care term “—” that can non-deterministically be true or false.

The input and output domains have identical cardinality but the quantizer is not a function
due to the non-deterministic output. It is easy to see that for two quantizers @)y, Qs with
precisions N, M € NU {oc} and N < M the relation Qn =< Qs holds. The quantizer is
multi-precision in the sense that multiple quantizers of varying precisions can be composed
with one another. A collection of quantizers composed in series also yields a single quantizer
with the minimum precision.

Table 5.1 summarizes how certain interfaces in Figure 4.1 were constructed by applying
the coarsening operation with different precision quantizers. Applying the output coarsening
operation increases output non-determinism resulting in thicker black bands vertically. The
input coarsening operation thickens the black bands horizontally but also causes the blocking
region shown as white gaps to grow.

Applying the bit quantizer definition above to the coarsening operations yields insight
into how it alters the original interface and a more efficient encoding.

Example 2 (Output Quantizer). Consider an interface F(i,0) where o =01 UoyU ... is a
composite variable representing an infinite bit vector. Let op,4 = 01 U ... U oyn be the most
significant bits and oy, = on41 U ... be the least significant bits.

ocoarsen(M,Q(o,0))
= ohide(o, comp(M, (0, 0)))

= 3o (/\ (o, == 6p) A F A T) (5.9)

N
= HOme (/\ (Ok == 6k) A HOleF> (510)
k=1

The last predicate has signature (i,0ms,) and is equivalent to the predicate o, F after the o
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bit are replaced with their respective o0 bits. In other words, the output non-determinism is
increased.

The effect of input coarsening is more complicated than that of output coarsening.

Example 3 (Input Quantizer). Consider an interface F(i,0) where i = i3 Uia U ... is
a composite variable representing an infinite bit vector. Let ipg = 191 U ...ix be the most
significant bits and 114, = in11U. . . be the least significant bits. The input coarsening operator
yields the following equivalent prediates.

icoarsen(F,Q(1,1)) (5.11)
— ihide(i, comp(Q(i, 1), F)) (5.12)
=3 /N\ (zk == zk> NF AYi </j\i (zk == zk) = nb(F))) (5.13)
Y k/\l (zk —— zk> A F AVimss ( k/\l (zk —— 1k> = Wlsbnb(F))> (5.14)
=3i [ A\ <2k —— zk> ) AVina (/\ <zk —— %) N Vz’lsbnb(F)> (5.15)

k

N N
T ( A (zk e %k> A 3@st> AVimes ( A (zk —— zk> = Vilsbnb(F)> (5.16)
k=1 k=1

The last predicate has signature (%msb, 0) and is equivalent to the predicate Ji;5F AVijg(nb(F))
after all i bits are replaced with their respective 1 bits. The JiyeF term increases output
non-determinism by taking a union of outputs generated by different lower significant bit
assignments. Term Vi g (nb(F')) imposes that if some input assignments can block, then all
other input assignments with identical most significant bits are also blocked.

These examples show that it is more efficient to directly eliminate the lower significant
bit variables through variable quantification rather than compute Equation (5.8) and Equa-
tion (5.13).

Remark 1. A multi-dimensional quantizer simply consists of multiple scalar quantizers.
The encoding for the interval [0,1] can be rescaled to an interval [a,b]. Additional bits can
be added to account for quantizers that do not contain a power of two number of bins, or for
quantizers that extend beyond a finite interval to the entire real line R.
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Original | Original New New Input | Output
Interface Grid Interface Grid Quant. | Quant.
A 128 x 128 C 128 x 16 | None Q4
B 64 x 128 D 32 x 16 Q5 Q4
C 128 x 16 T 128 x 1 | None Qo

D 32 x 16 uE 1x16 Qo None

Table 5.1: Interfaces from Figure 4.1 were obtained via applying input and output coarsen oper-
ations, e.g., interface D is obtained by applying quantizers Q)5 and (4 to B’s inputs and outputs
respectively. The new grid column indicates the finest grid of the new interface obtained by apply-
ing the specified quantizers. The actual grid may be coarser, e.g., interfaces T and L actually live
onal x1 grid.

5.3 Abstraction through Forward Reachable Set
Overapproximations

Computing the exact input-output sample interface for general nonlinear systems is not
always feasible. Many computationally efficient finite abstraction algorithms exist to instead
over-approzimate the behavior of the original continuous space control system. They leverage
properties of the system dynamics such as Lipschitz constants, growth bounds [76], matrix
measures [58], and mixed monotonicity [22] to generate appropriate bounds.

Consider the deterministic system dynamics F': X x U — X. Let OA: X x U — 2% be
any set-valued map that returns a superset of the true reachable set function of the control
system. We present two possible realizations of OA that are tailored for different classes of
dynamical systems. Both of these classes of dynamics have Euclidean state space X = R"
and control space U = R™. Let the two boxes [a®,0"] = {z € R" : ¢ < z < b*} and
[a“, "] C {x € R™: a" < x < b"} represents that are inputted to OA.

e An over-approximation method for non-linear systems with perturbed measurements
is presented in [76] and is called a “growth bound”. Let the centers of the state and
input box be ¢* = 1(b" + a”) and ¢* = (b* + a“), respectively. The radius of the
state box is given by r* = %(bx —a”). A local error bound § : R" — R>(" propagates
the uncertainty in each state coordinate independently based on the partition of the
state-control input space. This error bound resembles a Lipschitz bound for continuous
functions. The over-approximation function O A associated with this bound is defined
by

OA([a®,b7], [a", ")) = (F(c", ") + [-BG), B6))

where the + represents the Minkowski set addition.

(5.17)

e An efficient estimate of the reachable set of nonlinear, monotone dynamical systems
is presented in [63]. The authors consider discrete-time systems that are monotone
with respect to the nonnegative convex cone R>(" and with respect to the standard
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element-wise partial order <. The over-approximation function OA for this class is
given by
OA([a”,b"], [a",b"]) = {2 : F(a",a") <zt < F(b",0")}}. (5.18)

Monotone systems are a subclass of mixed monotone systems [22], for which there
exists a generalized procedure that accounts for increasing or decreasing components
of F.

5.4 Interface Sampling Methods

To our knowledge, all the control synthesis tools PESSOA [60], SCOTS [78], MASCOT [44], ROCS
[55], and ARCS [16] construct finite abstractions with an enumerative algorithm. That is, they
apply a number of operations that are proportional with the number of discrete states in the
abstraction. The pseudo-code presented in Algorithm 1 is one common method to construct
a system abstraction of F(x U wu,z"). It uses forward reachable set overapproximations
OutputOverapprox(-). It exhaustively traverses a collection of discrete states which each
correspond to a set within a partition. Note that := signifies an assignment operation and
is distinct from the operations for equality assertion = and equivalence checking ==.

Algorithm 1 Enumerative Abstraction

1: Fix spatial quantizers Q;, @,

2 Fi=1 > Universal Abstraction
3: for all partitions / C D(i) induced by Q; do

OA := OutputOverapprox(F, I)

OA := ocoarsen(OA, Q,)

10 := comp(I,0A)

F:=FVIO > Adds transitions. Assumes I disjointness.

Algorithm 1 has some desirable properties. It is an “anytime algorithm”, so even if the
loop terminates early, F is a valid abstraction, albeit one that may be of little use because
there will be parts of the input space that are not sampled. The input grid traversal on line
3 is actually a nested for loop with depth equal to the dimension of the input space. This is
the main source for the exponential runtime.

The abstraction F is constructed by iteratively adding transitions via the disjunction in
line 7. This approach imposes design constraints on other parts of Algorithm 1. Specifically,
disjointness of input sets is a key property enforced by line 3. Without disjointness, line
7 adds many more transitions than necessary and makes the interface exhibit unnecessary
non-determinism, causing one to make coarser abstractions rather than finer ones! ROCS
[55] and ARCS [16] do not fix a spatial quantizer like in Algorithm 1 and instead abstract
systems by implementing splitting/bisection operations to adaptively construct partitions.
However, both are still instances of an enumerative abstraction procedures.
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Algorithm 2 (visualized in Figure 4.4) is a generalization of Algorithm 1 that is both more
flexible and can exhibit dramatically reduced runtimes with comparable results. It is the
result of modifications to specific parts of Algorithm 1. First, line 7’s disjunction is changed
to a shared refinement operation. Shared refinement reduces down to the disjunction under
the input disjointness condition. Second, disjoint input sets are no longer generated by line
3’s loop. Instead, at each iteration any arbitrary subset of the input space can be chosen.
Third, the fixed quantization from line 1 is changed so that a desired quantization level can
be chosen at each iteration. On iterations with a smaller input set a finer granularity can be
chosen if desired, while for larger sets a coarser granularity can be chosen.

Algorithm 2 Abstraction Through Shared Refinement

~

1. Fi=1 > Universal Abstraction
2: repeat

3: Pick an input set I C D(q). > Sink Interface
4: OA := OutputOverapprox(F, I) > Source Interface
5: 10 := comp(I,0A) > Equal to I A O
6: Pick desired quantizatizers Q;, Q,

7: IO := icoarsen(/0, Q)

8: 10 := ocoarsen(/0, Q)

A

9: F :=refine(F,10)
10: until User specified condition

Example 4 illustrates the key idea behind how Algorithm 2 can leverage overlapping
input sets to implicitly create more discrete states than the number of loop iterations.

Example 4. Let I AN Oy and Is A\ Oy be two interfaces generated in the same manner as 10
in Proposition 2. The shared refinement interface outputted by Algorithm 2

(L VI) A (I = O1) A (I = O9) (5.19)
18 logically equivalent to
(L ANIo ANOLANO2)V (I1 A—=Ia AOy) V(=11 A s A Osg). (5.20)
If Iy and Iy correspond to disjoint sets, then this simplifies to the output of Algorithm 1
(I1 NOy) V (I3 A\ Oy) (5.21)

because Iy N Iy < L, Iy = =y and Iy = —Iy. If I and Iy are not disjoint, then (5.20)
can be viewed as three reach set overapproximations O1 N\ O, O1 and Os for three respective
disjoint input sets I1 \ Iy, =11 N\ Iy, and Iy N\ —15. By leveraging overlapping input domains,
Algorithm 2 has generated three discrete states despite only being provided two interfaces
Il VAN 01 and 12 A 02.
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Figure 5.3: A 8 x 8 partition induced by overlaying a 4 x 4 partition and a 5 x 5 partition. Note
that 42 + 52 < 82. For grids of dimension N, this technique reduces the number of iterations by a
factor of roughly 2V=1. An initial factor of roughly 2V is achieved by doubling the cell width along
each dimension, but iterating over two grids reduces this factor to 2V—1.

Suppose one needs to construct a finite abstraction over an 8 x 8 grid. Algorithm 1 would
exhaustively iterate over the full 64 element grid. Each iteration constructs an input interface
that is disjoint from the other ones. Switching to Algorithm 2 lets one use the overlapping
property of shared refinement to reduce the number of iterations while still inducing a grid of
the desired granularity. Figure 5.3 depicts a simple two dimensional version of the iteration
procedure where a higher granularity grid is constructed by two coarser grids that are offset
from one another. This technique generally yields a more conservative abstraction than the
one obtained by a full granularity traversal, but leads to a reduction in abstraction runtime.
The runtime is reduced by a factor that increases with the state dimension.

5.5 Sparsity-Aware Abstraction

Many dynamical systems consist of a collection of sub-components that exhibit low dimen-
sional structure. Sparsity-aware abstraction avoids abstracting a monolithic system directly
and instead abstracts its sub-components, then combines them together. Suppose that for all

ie{l,...,N}, F} is an abstract interface of F; constructed using the techniques introduced
in this section. Let F' = comp(F7,..., Fy) be a concrete monolithic interface that results

from composing the sub-interfaces. Rather than compute F' using sampling, one can instead
compute F = comp(Fl, - ,FN).

Section 5.7 showcases as an example the sparsity-aware abstraction of a large traffic
network of up to 51 dimensions. It can be viewed as a counterpart to the decomposed
control predecessor in Section 3.4, which avoided using the monolithic representation of
the system dynamics F' and instead had an incremental computation that reflected the
underlying dependency structure.
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Figure 5.4: Coarsening along the p; variable during synthesis with Figure 3.10’s example. The
inserted quantizer can be interpreted as coarsening either F,’s output, Z’s input, or both.

5.6 Computationally Constrained Synthesis

Tools for symbolic verification and synthesis extensively use the binary decision diagram data
structure to represent predicates. BDDs compress predicates by identifying and eliminating
redundant sub-structures. In practice, the sequence of interfaces Z; generated by the fixed
point iteration grows in complexity. This occurs even if the dynamics F' and the target set
T (or safe set S) have compact BDD representations. BDDs are implemented as graphs and
their complexity is measured in the number of nodes in that graph.

The coarsening operators are one method to combat this growth in complexity. To
maintain tractability, interfaces for both the winning region and dynamics are coarsened
whenever the winning region becomes too complex. In the context of the control synthesis
graph, this can be viewed as inserting a quantizer into the pipeline as depicted in Figure 5.4.
The quantizer effectively reduces the amount of information sent across iterations of the fixed
point iteration by reducing the size of Z’s BDD encoding. Heuristics to determine when and
how to quantize include:

e Downsampling with progress: The authors of [44] leverage the idea of dynamically coarsen-
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ing the dynamics and sets Z; while synthesizing controllers. Multi-layered synthesis starts
with the coarsest dynamics and monitors progress (or lack thereof) in the fixed point
calculation to decide when to switch amongst the levels. Whenever the game iteration is
making progress and hasn’t reached a fixed point, a coarser representation of the dynamics
is used. The hypothesis is that a fixed point can be reached faster because the state space
of a coarser representation has smaller cardinality.

The scheme in [44] precomputes abstractions of multiple granularities. Multi-layered coars-
ening also occurs along each state dimension uniformly and simultaneously.

o Greedy quantization: This heuristic entails selectively coarsening along certain variables
or dimensions by checking at runtime which variable, when coarsened, would cause Z; to
shrink the least. This reward function can be leveraged in practice because coarsening is a
much more computationally cheap operation than the composition operation. The winning
region can be coarsened until the BDD encoding complexity (i.e., number of nodes) reduces
below a desired threshold. The traditional reach game is theoretically guaranteed to reach
a fixed point, but in practice may not reach one due to limited computational resources.
In contrast, the coarsening scheme above is less computationally intensive, but is not
guaranteed to reach a fixed point as long as quantizers can be dynamically inserted into
the synthesis pipeline. It is guaranteed once the quantizers are always inserted at a fixed
precision.

Figure 5.10 shows this heuristic being applied to reduce memory usage at the expense of
answer fidelity. A fixed point is not guaranteed as long as quantizers can be dynamically
inserted into the synthesis pipeline, but is once quantizers are always inserted at a fixed
precision. Figure 5.11 depicts the reach basin computed using greedy quantization on the
Dubins vehicle example.

5.7 Examples

Double Integrator with Random State-Control Boxes
We illustrate the flexibility of Algorithm 2 with a simple double integrator with a drag term.

pr=p+Tv (5.22
vt =v+Ta— kTsgn(v)v® — Tg (5.23
where T'= 0.2, k = .1, g = 9.8 and sgn : R — {—1,1} maps a number to its sign (with the
convention sgn(0) = 1).

Figure 5.5 illustrates two sampling schemes when constructing the finite abstraction for
Equation (5.23). The first is an enumerative sampling over 16384 discrete grid cells, which
corresponds to Algorithm 1 as implemented in SCOTS or PESSOA. We also randomly sample
boxes of the state and control space by varying their width along each dimension and shifting
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Figure 5.5: Constructing the double integrator abstraction’s v+ component from Equation (5.23).
Algorithm 1 run over a full 16384 element grid (top left) and its intermediate result after 2000

iterations (top right). Randomly sampling boxes and applying Algorithm 2 yields a coarse but
useful approximation after 2000 iterations (bottom).

them. Note that the shifts and widths do not align with a predetermined and fixed grid and
many of the sampled boxes intersect with other samples. The random sampling technique
illustrates flexibility of Algorithm 2 and is not meant to be optimal with respect to sample
efficiency, but still shows how one does not need to sacrifice performance along these metrics
compared to Algorithm 1.

The continuous state space is the hyperrectangle [—10, 10] x [—16, 16] and the continuous
control input space is [0, 20]. Each state and control is allocated 7 bits to discretize the space
into 128 subintervals. Given an interval, an adversarial non-determinism gets to choose which
concrete value is used. For control inputs, this signifies imprecise actuation.

Figure 5.6 depicts the growth of the invariant set with additional samples. The invari-
ant set generated with the 2000 sample interface closely resembles the one generated with
the exhaustive grid traversal, even though the exhaustive traversal at the fixed granularity
requires 16384 samples.
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Figure 5.6: Double integrator controlled invariant set computed using the exhaustive grid traversal
of two 16384 element grids (left). The invariant set generated from the random sample abstraction
(right) grows with more samples. The different shades represent the invariant sets constructed after
400, 800, 1200, 1600, 2000 samples, where fewer samples represent darker contours.

Dubins Vehicle

Recall the Dubins vehicle example introduced in Section 2.2. An overapproximation of
a forward reachable set was represented as a hyper-rectangle. This hyper-rectangle was
computed by simple interval analysis techniques to compute output bounds for the sin(-) and
cos(+) functions. Each dimension is quantized with 7 bits of precision, which corresponds to
128 = 27 bins. The discrete state space consists of 221 or approximately 2 million values.
The 6 continuous state lies in a circular domain and the discretization is encoded using Gray
code.

We evaluate the effectiveness of three methods to speed up the abstraction and synthesis
steps:

1. Random Overlapping Samples: Figure 5.7 depicts an interface (F}) being con-
structed with random boxes generated by uniformly sampling their widths and offsets
along each dimension. The offsets and widths do not align with a predetermined and
fixed grid and many rectangles also overlap. Figure 5.8 depicts how the reach game’s
winning region increases in size as the number of samples increases.

2. Monolithic, Partially Decomposed, and Fully Decomposed Control Prede-
cessors: Figure 3.10 showed how the fully decomposed control predecessor is com-
puted, but there is a spectrum between a monolithic system, a partially decomposed
system, and fully decomposed system, where each decomposition has its own variant
of cpre(-). Figure 5.9 shows the synthesis runtimes associated with different system
decompositions, and depicts improved performance when one avoids preemptively con-
structing the monolithic interface.
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Figure 5.7: Discrete abstractions of interface F, with 3000 (upper left) and 6000 (upper right)
random samples, along with their corresponding solutions to the reach game (bottom). There are
“holes” in the 3000 sample interface’s domain, yet the winning region extends beyond the target
set. With additional samples, the holes are covered and the winning region grows. The rectangular
target region has 131k discrete states; the left set contains 258k states and the right 458k states.
Many samples are rejected because the interface outputs exit the domain D(p,) = [—2,2] over
which the quantizer was well defined.
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Figure 5.8: The number of states in the Dubins vehicle’s computed reach basin grows with
the number of random samples. The vertical axis is lower bounded by the number of states
in the target 131k and upper bounded by 631k, the number of states using an exhaustive
traversal. Naive implementations of the exhaustive traversal would require 1.2 x 107 samples.
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6 =P 0 Fy > 0 Fo—P
P ® W —p
Monolithic Partially Decomposed Fully Decomposed
cpre( ) cpre( ) cpre(-)
Decomposition Parallel Compose | Reach Game
Runtime (s) Runtime (s)
F (Monolithic) 0.56 103.09
vo, Fy (Partially Decomp.) 0.02 28.31
F, F, (Partially Decomp.) 0.01 28.71
Fyy, Fy (Partially Decomp.) 0.06 10.61
F,, F,, Fy (Fully Decomp.) n/a 4.42

Figure 5.9: A monolithic cpre(-) incurs unnecessary pre-processing and synthesis runtime costs
for the Dubins vehicle reach game. Each variant of cpre(-) above composes the interfaces Fy, F,
and Fy in different permutations. For example, Fj, represents comp(F;,F,) and F' represents
comp(Fy, Fy, Fy).

3. Greedy Quantization: The solution to the reach game requires 7127 BDD nodes to
encode. This is reasonable for a desktop computer but may not be acceptable if one
wants to store the resulting controller on an embedded, memory constrained device.
Figure 5.10 shows the growth of the intermediate interfaces Z; generated during the
reach game. It grows both in size (number of states) and encoding complexity (number
of BDD nodes) when a memory bound of 3000 BDD nodes is imposed. Figure 5.11
depicts the reach game solutions for various bounds on the BDD nodes.

Lunar Lander

We consider the lunar lander from OpenAl gym [12], a python simulation environment for
reinforcement learning research. The lander is set up within a physics simulation engine and
has six continuous state dimensions and two continuous input dimensions. After some minor
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Figure 5.10: Number of BDD nodes (red) and number of states in reach basin (blue) with respect
to the Dubins vehicle reach game iteration with a greedy quantization. The solid lines result from
the unmodified game with no coarsening heuristic. The dashed lines result from greedy coarsening
whenever the winning region exceeds 3000 BDD nodes.

modifications !, we identified the following discrete time dynamics
pi == p, +.01031v, (5.24)
py == py + 02250, (5.25)
== v, —.0539u; sin(f) + .0106u, cos(8) (5.26)
vy == vy, +.0359u; cos(f) + .00707usy sin(f) — .0267 (5.27)
0" == 0 + .05w (5.28)
w == w — .05598us,. (5.29)

Control input u; € {0} U [.5, 1] represents a main thruster mounted on the bottom of the
lander, and input us € [—1,—.5] U {0} U [.5, 1] represents a pair of side thrusters. Only one
side thruster can be activated at a time and both are aligned in such a way that they apply
both a torque and a linear force when activated. Both thrusters can only apply impulses
with magnitude greater than 0.5 when activated. This limits the system’s ability to exert
fine control over the system without resorting to high frequency chattering.

The continuous region of interest for our problem is p, € [-1,1], p, € [0,1.3], v, € [-1,1],
vy € [-1,1],0 € [-F, ] and w € [~.6,.6]. The discretized state space consists of ~137 billion
states obtained from a 256 x 256 x 64 x 64 x 32 x 16 grid. Inputs are constrained to discrete
sets u; € {0,.66,.83,1} and uy € {—.5,0,.5}.

'We removed a small dispersion term that induced additive actuation noise. The geometry of the lander
was changed to be a square instead of a trapezoid. The center of gravity and the point (ps,p,) = (0,0) were
not the same for the original dynamics.
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(a) Heuristic Limit: 3000 nodes. States in (b) Heuristic Limit: 5000 nodes. States in
final basin: 565536. Final basin BDD nodes: final basin: 608660. Final basin BDD nodes:
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Figure 5.11: Dubins vehicle reachable basins computed with greedy quantization predecessor.

Whenever the BDD representing the intermediate basin exceeded N € {3000,
was coarsened before applying cpre(-). Coarsening occurred along the dimension that reduced the

basin size the least.
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Figure 5.12: Projection of trajectories into the p, and p, dimentions with the target set’s
projection in blue.

While one could construct interfaces associated with each equation (5.24)-(5.29), the
positional components p} and p; would require finer grids than those above to capture a
changing state over the short time horizon. Instead of using the one-step dynamics above,
we instead use a sampled system with a period of 9 time steps. We refer to the interfaces
associated with the unrolled dynamics with the names shown in Table 5.2. The time to
construct all six interfaces was 430.5 seconds. A reach objective with a target region T is
specified by

pe €[=1,1) Ap, €[1.2,1.3] A6 € [—.15,.15] Av, € [=8,.1]

which corresponds to 73 million states of the full dimensional space. We iterate a custom
reach operator 20 iterations to construct a winning set with 344.6 million states. Trajectories
reaching the target are depicted in Figure 5.12. The control synthesis runtime was 4194 sec-
onds but a small portion of that includes applying the coarsening operation as detailed later.
These abstraction and synthesis runtime numbers were achieved using all the techniques in
this chapter (including those for the Dubins vehicle).

It also uses heterogeneous grids, where different interfaces have different can use quantiz-
ers of differing granularity for the same variable. While sampling over a longer time horizon
lets us use a coarser grid, it comes at the cost of increasing the number of interface inputs.
States # and w at time ¢ = 0 can influence state p, at future time steps through their effect
on v,. While p, can depend on # and w over time, its sensitivity to those values is small over
short horizons. Heterogeneous grids exploit this insight and allow small perturbations of 8
and w to be ignored. Table 5.2 shows how interface F, allocates less bits to those variables
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Interface | Output Input

Name | Variable Variables

F,, pr8 | pr 8 v, 6,0 3, w0, u, us
Fy, Py <8 | Py 81, 6,03 w0, u, up
F,, v+ 6 Uy 6, 0 < 5, w4, up, us
F,, vy 6 vy < 6, 0 < 5, w<—4, uy, us
Fy 0t <5 0 <5, w4, us
F, wt 4 w4, us

Table 5.2: Each row represents an interface of the unrolled lunar lander dynamics. The notation
Pz +— 8 signifies that p, is a continuous variable and the interface has allocated 8 bits to it. Different
interfaces can have different views of the same variable, e.g. interface F;, allocates 4 bits to w while
F),, allocates none. Inputs u; and ug are discrete so they do not adopt this notation.

than interfaces Fy and F,, which are much more sensitive to the same perturbations over
the same time horizon. Curiously, F,, assigns zero bits to w. This signifies that it only
assumes that w € [—.6,.6] but does not otherwise care what the specific value is due to the
low sensitivity.

Arterial Traffic Network

An arterial traffic corridor is a high capacity local road that is actuated by signalized inter-
sections.

The traffic network can be represented as directed graph with a set £ of edges or road
links and a set V of vertices or intersections. Every edge e is a directed arc from tail vertex
T(e) € {V U} to head vertex n(e) € V. By convention, an edge with 7(e) = & serves as
entry point to the network and edges that outflow the network are not explicitly modeled.
Let

Er ={e€ &|nle) =v}, and (5.30)
EM={ee&|1(e) =0} (5.31)

denote the incoming and outgoing edges of vertex v , respectively. The set of local edges to
edge e is given by
glocal(e) = 5:26) U gfélet) U (.C/,;;Elet) (532)

Each edge e € £ has an associated link occupancy z, € [0, Z.| at time step ¢ € 2o, where
the constant x. denotes the maximum vehicular capacity of edge e . Then, the n-dimensional
state space of the traffic model is

x =1Jlo z.] cr", (5.33)

ec&
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where n = |€]. An edge e is actuated if the traffic signal at vertex n(e) permits outward flow
from e to Sszlet). The controllable input u, associated with edge e is given by

(5.34)

)1 ifn(e) actuates e at time step ¢
10 otherwise .

The constant split ratio Bex € [0, 1] denotes the fraction of vehicles flowing from edge e
to edge k € f;flet) However, edge e can only send vehicles to k if k offers enough capacity.
For this purpose, the constant supply ratio ae, € [0, 1] denotes the capacity fraction of k
dedicated to e. Since the supply is split among actuated incoming edges, it follows that for

all k € £ and time steps t

> e =1. (5.35)
eeé'iT‘zk)

In the following, we introduce the system dynamics based on the modified cell transmis-
sion model, which exhibits FIFO property. As we will see, the outflow and state update
function of edge e depends only on the corresponding states of edges in Sf;&let) and &lcal(e),
respectively. Thus, the traffic network exhibits a sparsity property, which we can exploit to
compute abstractions more efficiently.

The flow out of edge e € £ is given by

fo" = u, min (me, Ce, Min {aek (T — xk)}> : (5.36)

keggety \ Ben

The minimization in Equation (5.36) implies that the flow of exiting vehicles of edge e cannot
exceed the current link occupancy, the constant saturation flow c., and the resulting supply
offered by edges in 5;&‘;). The saturation flow ¢, is a model parameter, which is determined
by, e.g., number of lanes and speed limits. The inflow of edge e is denoted by

=0 Bref™ (5.37)
keen,)
Based on the principle of mass conservation, the discrete-time update equation of state
xe associated with edge e is

) = min {je, T — fOUC 4 fi de} , (5.38)

where d, € [0,d,] represents a time-dependent exogenous flow entering edge e , and the
constant parameter d, is an upper bound. It is clear based on Equations (5.36) to (5.38),
that the state update equation of edge e depends only on the current states of edges in
glocal(e). Therefore, we can reduce the computation time of the abstraction drastically by
exploiting this sparse interconnection structure, as shown subsequently.
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Arterial Traffic Corridor

We consider an easily extensible network to show the applicability of the decomposed ab-
straction approach to more than three dimensions. The n-dimensional traffic network is
depicted in Figure 5.13 on the left side of the big plus sign.

Figure 5.13: Addition of a new block, consisting of three edges and one vertex, to the existing
n-dimensional traffic network. The dashed edges represent not explicitly modeled road links.

The dashed arrows represent road links that exit the network and are not explicitly
modeled. Since we want to evaluate the performance of our approach with respect to the
dimension of the state and input space, we consecutively add new blocks to the existing n-
dimensional network, as shown in Figure 5.13. Each newly added block consists of three edges
and one vertex, i.e., three road links and one signalized intersection. Thus, the dimension of
the state space in Equation (5.33) is increased by 3 per block. The input space grid doubles,
since we assume that every vertex actuates either the incoming arterial road edge or the two
North-South links.

The used parameters of the n-dimensional vehicular traffic network in Figure 5.13 are
as follows. The supply ratio ap, ., is equal 1 and the split ratio 8, ., is 0.8 if ¢ + 3 = j for
je{4,7,...,n—2}. Otherwise, both ratios are equal 0.5. The maximum vehicular capacity
Z. is 10 for all edges. Every state dimension is quantized in 10 equally spaced intervals.
Thus, the considered n-dimensional network has 10" state space grid points. For all arterial
road edges, the upper disturbance bound d. is 0 and the saturation flow ¢, is 6. For all
North-South edges, the bound is 1 and the corresponding flow is 2.

Results

Since the vehicular traffic network in Figure 5.13 is a monotone system, we can use a straight-
forward modification of Equation (5.18) as an over-approximation function to account for
exogenous flow entering the network. The time needed to compute the finite abstraction with
respect to the dimension of the state space is illustrated in Figure 5.14. All computations
are run on a single thread of an Intel Core i7-5500U (3.00GHz) with 8GB RAM.

Our proposed abstraction algorithm performs roughly linearly with respect to the state
space dimension, although the total number of transitions grows exponentially. For instance,
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Figure 5.14: Computation time of the transition function BDD.

there are 3.3 x 10%? valid transitions in the 51-dimensional traffic network. The nonlinear

effects are mostly due to the variable reordering heuristics of the CUDD BDD library [84].
The file size of the resulting transition function binary decision diagram (BDD) with

respect to the dimension of the state space is shown in Figure 5.15. Due to the memory-
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Figure 5.15: File size of the transition function BDD.

efficient data structure, the size of the BDD that encodes the transition function grows also
roughly linearly.

Based on the discrete abstraction, we can use the safety fixed point iteration in Equa-
tion (3.27) to synthesize a memoryless state-feedback controller for the arterial traffic corridor
in Figure 5.13. For instance, assume in the following that the occupancy of every edge has to
be smaller than % of the maximum vehicular capacity for all time steps, i.e., in our example
less than 8. After representing this safety specification as a BDD, we obtain a controller
for the 12-dimensional network after 46 iterations of the fixed point algorithm. The synthe-
sis takes 2.5 minutes and 0.9MB are needed to store the obtained controller as BDD. This
BDD represents all allowed inputs for each discrete state such that the formal specification
is fulfilled. In this example, there exist more than 2.1 x 10 allowed state-input combi-
nations. Instead of using the memory-efficient BDD data structure, it is possible to store
the controller as sparse matrix lookup table by explicitly enumerating the state and input
space. Based on the given dimensions 44 bits are needed to store a single allowed state-input
combination, resulting in 1.2TB of memory usage in contrast to 0.9MB for the BDD.
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In contrast to the 12-dimensional network, the 15-dimensional case takes 4.3 hours until
convergence. This exponential computation time increase has multiple reasons. In general,
contrary to the coordinate-wise, conjunctive representation of the transition function, a
controller cannot be represented in such a compressed form. Furthermore, the fixed point
algorithm determines all allowed state-input combinations. Since the number of discrete
control actions for every state grows exponentially with respect to the arterial corridor length,
the controller synthesis problem becomes intractable.



Part 11

Distributed Control Synthesis

70



71

Motivating Example: Distributed Traffic Control

Intelligent traffic management is an effective method to mitigate economic and environmental
costs of transportation without upgrading the underlying infrastructure [69]. The traditional
mechanism of traffic control in an urban setting is coordinating traffic lights. In freeway
networks, traffic is controlled using ramp meters or dynamic speed limits. Control-theoretic
aspects of traffic management have been widely studied in the literature [11, 20, 56, 92, 45,
36, 53].

Designing a traffic network controller requires careful tradeoffs among different objectives.

e Safety: Never experience severe congestion.
e Liveness: Freeway onramps and intersection queues must persistently be cleared.
e Reactivity: Whenever congestion appears, it will eventually dissipate.

The above specifications can be encoded in temporal logic. Formal control synthesis for
vehicular traffic networks has been tackled by Coogan et al. [23] by constructing discrete
abstractions and in by Sadraddini et al. [79] [80] by posing a receding horizon control problem
as a mixed integer linear program.

Both approaches exhibit computational bottlenecks as the traffic network size grows.
In the finite abstraction approach the number of states is exponential with respect to the
number of traffic links. Similarly, larger networks induce a larger number of decision variables
in the receding horizon approach. Because traffic networks can easily be expanded by adding
additional roads, they are a prime candidate for benchmark problems in formal synthesis
[21].

To combat the growth in computational complexity, both Kim et al. [49] and Sadraddini
et al. [82] exploit locality properties of traffic networks. By decomposing into a collec-
tion of smaller networks, existing controller synthesis algorithms can be applied to problems
with reduced state space, input space, and simpler specifications. In addition to computa-
tional complexity, there are numerous practical reasons for decomposition in the context of
a freeway network interacting with an arterial corridor. They are often under the control
of different government agencies and exhibit different control modalities. The California
Department of Transportation (Caltrans) is a state agency that maintains jurisdiction over
freeways and ramp metering. Traffic signals in local and arterial intersections are under the
jurisdiction of cities.

While solving a controller synthesis problem for a smaller network is computationally
simpler, naively stitching together the individual controllers does not guarantee that the
global network will satisfy its desired specification. The actions of individual sub-network
controllers can affect the dynamics of adjacent neighborhoods. Indeed, the lack of any coor-
dination has resulted in congestion and suboptimal performance at neighborhood boundaries
in the real world. Su et al. [85] studied the interaction between a real world signalized inter-
section and a freeway ramp meter. Figure 5.16 depicts a metered freeway onramp ramp and
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an upstream signalized intersection in San Jose, California. The study states that there is a
“strong dynamic interaction” and a “conflict of interest” between the two during peak hours
when the onramp becomes a bottleneck. They also emphasize the “[necessity| to coordinate
between [arterials and freeways]”. By modifying the signal green times to take into account
the onramp occupancy, the delay at the intersection was reduced.

A Distributed Approach to Formal Traffic Control Synthesis

This half of the thesis generalizes the insights behind Su et al.’s freeway-arterial coordination
study [85] to more general systems networks and temporal logic specifications. We build the
core mathematical machinery required for distributed formal controller synthesis. Consider
two interacting networks N} and Ny each with their own local specifications ¢; and ¢. The
“global” specification is assumed to be ¢; A ¢o. While a controller can be synthesized for N}
such that it satisfies ¢, the validity of that controller is predicated on the actions of the N5
controller and vice versa. Thus we run into a circular dependency resembling the problem
of “the chicken or the egg”.

To prevent controllers from inadvertently causing others to violate their specification,
they need to be augmented with additional promises that regulate their interaction. These
promises will come in the form of an assumption-guarantee contract. An individual network
may assume that adjacent networks will restrict their behaviors to an a priori agreed upon set
while simultaneously guaranteeing to those networks that its local behavior will be restricted.
Under this assume-guarantee framework, controllers that were initially designed in isolation
can be systematically recombined and provide certificates about the global system behavior.

Chapter 6 introduces assume-guarantee contracts and focuses on those contracts that
are in parametric form. A parameter domain corresponds to a collection of different sce-
narios such as “severe rush hour traffic” or “diverted traffic from an accident”. Parametric
assume-guarantee reasoning rules are introduced to reason about this domain and also to
derive guarantees on global behavior when components satisfying parametric contracts are
interconnected. We also show how parametric assume-guarantee reasoning can capture the
classical small-gain theorem for continuous systems.

Chapter 7 takes the core notions behind parametric assume-guarantee contracts and
repurposes them as dynamic contracts for control synthesis. A static contract encodes a
promise among agents that does not change with time. In practice this may lead to sub-
optimal and conservative behaviors because the static contract cannot react to conditions
at runtime. Dynamic contracts balance the tradeoff between performance and ensuring
guarantees about runtime behavior.

A coordinator does not always need to be active, especially when a specification is not
in immediate danger of being violated. In Chapter 8, we propose a method to identify when
the coordinator needs to be active when multiple systems are unable to enforce a safety
constraint without communicating with one another. In an example, this technique is used
to identify when it is useful for two vehicles to coordinate with one another when both
approach an intersection without a traffic signal.
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Signalized Intersections

Ramp meter light

Figure 5.16: Freeway-arterial interaction at the intersection studied by Su et al. [85]. A long
freeway ramp is actuated by a ramp meter that sets a rate that vehicles may enter the freeway.
During periods of high congestion on the freeway, this rate decreases and the vehicle queue may
spill back onto the signalized intersections upstream. Satellite Image Source: Google Maps.

Related Work

Recent approaches to tackling the scalability of control synthesis have focused on decompos-
ing a system into smaller components, synthesizing a controller for each component locally,
then recombining them using assume-guarantee reasoning. Each component can be anno-
tated with assume-guarantee contracts that captures the component’s behaviors in response
to various environments. By carefully taking into account the interconnection topology, dy-
namics, and specification it is possible to ensure that the local controllers collectively are
able to satisfy the original specification.

Assume-guarantee reasoning has been extensively used in compositional verification and
design [41, 67]. Control synthesis with assume-guarantee contracts is a less mature field. For
continuous spaces, contracts came in the form of a collection of co-designed invariant sets
such as zonotopes by Nilsson et al. [64] or directed sets by Kim et al. [50]. Li et al. [54]
and Jin et al. [47] have respectively mined assumptions and requirements as temporal logic
formulas. There are still some open fundamental questions on on how to model and incorpo-
rate assumptions within the synthesis procedure [10, 17]. Assume-guarantee reasoning has
also be applied in an extensive range of applications ranging from building automation [61]
and path planning for robotics [30, 31].

Numerous recent advances in distributed control synthesis incorporate or generalize core
concepts from robust control. Tarraf et al. [88] and Tabuada et al. [87] have both incor-
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porated notions of robustness for systems with discrete input-output alphabets. Small-gain
arguments were leveraged by Rungger and Zamani [77] to decompose the construction of
approximate discrete abstractions of continuous systems and Dallal and Tabuada [26] to
design customized decomposed abstractions for persistency specifications.



1)

Chapter 6

Parametric Assume-Guarantee
Reasoning

6.1 Assume-Guarantee Contracts

The contracts framework by Benveniste et al. [8] constitutes a formalism for (de)composition
oriented design of cyber-physical systems. Contracts capture system requirements and be-
haviors and can be used to systematically reason about interconnections and implementa-
tions. Potential use cases include quickly identifying inconsistent requirements, enabling
modularity and interchanability.

Assume-guarantee contracts are one specific formalism for contracts where assumptions
characterize the collection of valid environments of a component, while guarantees specify
the component’s commitment to enforce a subset of behaviors whenever the assumption
is satisfied. This chapter focuses on contracts for verification and deriving guarantees on
system behavior once components are interconnected. Chapter 7 then uses the assume-
guarantee framework to certify that the composition of distributed controllers satisfies a
desired property.

In this chapter we view a system F' as a collection of input-output behaviors F' C U[-| x

VI

Definition 21 (Assume-Guarantee Contract for a Dynamical System). An assume-guarantee
contract is a pair C = (Pa, @) consisting of an assumption ¢, C U[-] X Y[-] and a guarantee
¢y CUJ| x Y[] that encodes the requirement that the logical implication ¢, = ¢, holds.

A system satisfies C = (¢, @) if FNpy C ¢y (where ¢, ¢, are viewed as sets). Note that
an assume-guarantee specification is automatically satisfied if the assumptions are violated.
It can only be violated when the assumption is true and the guarantee is false.
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Interfaces vs. Contracts

The theories of assume-guarantee contracts [8] and relational interfaces both are designed
to be methods to reason about components and their interconnections. While similar in
spirit, they contain some subtle philosophical differences. Interface variables are each as-
sociated with input and outputs, while no such distinction is made in the core theory on
assume-guarantee contracts. While relational interfaces can be translated into an equiva-
lent contract, the input-output annotations for variables are lost. While the transformation
preserves refinement the same cannot be said about serial composition and conjunction as
demonstrated by Nuzzo [66, 68]. A new assumption projection operator is proposed to pre-
serve serial composition and compatibility checking. Finally, assumption violations or errors
are handled differently. Sink interfaces were used to model requirements and raises errors
whenever the inputted values caused blocking. In contrast, when contract assumptions are
violated this simply releases the component from needing to impose a guarantee. The coun-
terpart for shared refinement operation for relational interfaces is conjunction for contracts.
Conjunction for contracts is always defined, whereas the shared refinement only exists when
interfaces satisfy the shared refinability condition.

Contracts in this section are used to represent temporal logic properties instead of state-
less input-output relations, which was the case for relational interfaces in the first half of
this thesis.

Parametric Assume-Guarantee Contracts

Most assume-guarantee contracts make worst case assumptions about an environment’s be-
havior at design time. A system’s guarantee as a result is coarse in order to compensate for
the uncertainty about which environment a system will experience once deployed.

A parametric input-output specification ¢ : P — 24>Vl is a collection of specifications
indexed by elements in a parameter space P. Parametric input specifications and output
specifications are defined analogously.

In order to make guarantees more precise, we use parametric specifications to divide the
assumption ¢, into smaller regions ¢, (p,), where each p, can be thought of as an “environ-
mental scenario” parameterized over a set P,. Systems can provide a finer guarantee ¢, (py)
in response to a smaller set of environment behaviors ¥,(p,), as depicted for example in
Figure 6.1. The relationship between the assumption and the guarantee is specified by a
parameter map A : P, — P,.

Definition 22 (Parametric Assume-Guarantee Contracts). An assume-guarantee contract
(@a, Gg) is in parametric form if there exist parameter spaces P, and Py, parametric specifi-
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Ya(light) = Pg(A(light))
Ya(severe) = Pgy(A(severe))

o~ @

Figure 6.1: Parametric contracts can be used to encode different environmental scenarios such
as the input demand induced on a road segment. The output demand is a function of the input
demand.
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Input Demand levels
P3

A 4

A 4

2
U Y
Figure 6.2: An interconnection with exogenous environment and feedback.

cations Y (+),Y4(+), and a map X : P, — Py, such that

¢a - \/ 1/}a(p) (61)

PEPa

b9 =\ Yalp) = s(A\(p)) (6.2)

p€77a

A parametric assume-guarantee contract is itself a special instance of a regular assume-
guarantee contract, but is generated via a collection of contracts associated with a parameter
space. The parametric form resembles the shared refinement operation from relational in-
terfaces.

6.2 A Small Gain Theorem For Parametric
Assume-Guarantee Contracts

Consider the interconnection in Figure 6.2, which contains an exogenous environment and a
feedback loop. Suppose for each system F* where i € {1,2} the input space U' = U x U;
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is partitioned into an exogenous environment U’ component and a feedback component LI}.
In order for the interconnection to be valid the spaces must match U} = Y? and U7 = Y'.
The assume-guarantee contract framework [8] in its full generality ignores the roles of ports
as inputs and outputs. With Figure 6.2 in mind, we place the following restriction on
assumptions and guarantees.

The assumption parameter space is partitioned into two components P} = Pi, x P,
and the parametric input assumptions b, : Pj, X Pi; — 2U'l1 is the conjunction of two
components

Ui (Dher Do) = Ve (Dhe) N 100 (D) (6.3)

The parameter map \* : P! x P! F 73; is adjusted to account for this decomposition of
the input space.

Main Results

Due to the feedback loop in Figure 6.2, a few additional assumptions are required to derive
a new assume-guarantee contract for the interconnected system. First, the exogenous en-
vironment and internal feedback assumptions for at least one system need to be satisfied.
Second, the guarantees from one system need to imply that the assumptions for the other
system hold.

Theorem 6. Consider the interconnection of two systems F', F? depicted in Figure 6.2.
We assume the following.

1. Both systems satisfy their parametric assume guarantee contracts. That is for i €
{1,2}, F'n ¢, C ¢}, where ¢, and ¢!, are defined as

dv= \  (Whlbie) A (i) (6.4)
(Pl ;) EPE
¢; = /\ ( cize(pfze) A ¢ztf(pfzf) = @D;(Az(pfze:pz”‘))) (65)

(p}le 7p’;f)673}1

2. The guarantee parameter spaces are subsets of the feedback components of the assump-
tion parameter spaces, 1i.e., 7392 C P;f and 77; C ng. Moreover, the guarantee ’(/)Z()
from one system implies the feedback assumption @D;f(') and vice versa:

Vpe P, vip) = Vu;(p) (6.6)
Vpe P2 i,(p) = vi(p).

This condition is trivially satisfied if ¥}(-) = 1,;(-) and vice versa.
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3. There exist environment parameters pt, € Pl and p2, € P2, such that ¥} (pL.) and
2 (p2,) are satisfied.

ae

4. For either i = 1,2 there exists a feedback parameter péf[ | € P oy such that waf(paf[ 1)
18 true.

Without loss of generality let i = 1, define new feedback parameter maps ;\1() = A(pl., )
and \*(-) = M(p2,, ) associated with exogenous environment assumptions pl., p., and define
guarantee parameter iterations

Pylk + 1] = (A" 0 A%) (pg[K]) (6.8)
) (6.9)

with initializations py[0] = ;\1(paf [0]), pg[0] = S\Q(p;[O]). Then the guarantee simplifies to

/\ Uy (pylk /\ w2 (pilk (6.10)
For the case when i = 2 then a similar guarantee can be obtained by switching the indexes
in (6.8), (6.9), and (6.10).

Proof. Without loss of generality let + = 1. The existence of satisfying p.., p2, and p;;[0]
ensure that we can bootstrap an infinite sequence of implications from (6.5), (6.6) and (6.7).
The parameters in this implication are generated from the sequences (6.8) and (6.9).

wie(ple)Awie(pie)/\@Dif( o£10])

A (Wae pae A Yo (Paf[0]) = 1y (pg[0]))
A (@ ; [0]) = ¥ (py[0]))
A (Vze pae) af(pg[ ) = v2(p3[0]))
A (V2(P2[0]) = ¢a(p3[0]))
A( Vae pae) bay(P5[0]) = 1y (py[1]))
A .
This infinite conjunction sequence contains within it (6.10) as a subsequence. 0

A Small Gain Theorem for Hausdorff Continuous Parametric
Specifications
One of the weaknesses of Theorem 6 is that the guarantee (6.10) may be difficult to reason

about since it is an infinite conjunction of statements. The guarantee (6.10) can be simplified
dramatically by investigating the contraction properties of the parameter iterations (6.8) and
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(6.9). To achieve this simplification we assume that the parameter sets 77; for i = 1,2 are
equipped with distance metrics dp : P; x Py — Rsq and the input and output spaces
U[-] x Y[] are equipped with a distance metric. We opt for the Hausdorff pseudo-metric to
measure the difference between specifications. Given a metric d : X[-] x X[] = Rso U {oo}
between signals, the Hausdorff distance dg(¢q, ¢3) between ¢, C 2% and ¢, C 2% is

dH(%,d)b):maX(SHp inf d(a[],b[]), sup inf d(a['],bH)) (6.11)
al]€pq V1D b[-egp Al 1€Pa

If dg(¢a, dp) < €, then for each signal that satisfies ¢, there exists a signal that satisfies ¢,
that is at most € away and vice versa. The Hausdorff distnace can assume infinite values
and is a pseudo-metric because dg(dq, p) = 0 implies clg, = clg, rather than ¢, = ¢,. A
parametric specification with a metric-equipped parameter space is Hausdorff continuous if it
satisfies the standard e — ¢ definition. That is, any arbitrarily small bound on the Hausdorff
distance between specifications can be enforced for a sufficiently small parameter difference.

Theorem 7. (Small Gain Theorem for Parametric Assume-Guarantee Contracts) Let P,
and 7392 be metric spaces and @b;(),@/zg() be specifications on a metric space. If in addition
to the assumptions of Theorem 6 the following are also true:

1. Sequences generated by the iterations (6.8), (6.9) have nonempty w—limit sets W, W?
respectively.

2. The specifications w;,@bg vary continuously with parameters everywhere in 7391,7792,
where the Hausdorff distance dy is used as a metric between specifications. In other
words for both i = 1,2 for all € >0 and p € 77; there exists a 6 > 0 such that

dp(p, ') < 8" = du(Vy(p), ¥y (') < €
then the guarantee (6.10) is over-approximated by:

A vy A N el () (6.12)

p1€W1 p26W2
where cly is the closure of the specification set 1.

Proof. Without loss of generality, we seek to prove that the w; component of formula (6.10)
implies cly}(p') for a p' in the w-limit set W'. Suppose ¢ > 0. By Hausdorff continuity
of v, there exists a ¢ such that [p — p'| < & implies dp(1;(p),¥;(p')) < e. Because
p' € W1, there is a subsequence of (6.8) that converges to p' and for arbitrary 4. It follows
that (6.10) consists of an infinite sequence of intersections that converge to ¢,(p') with
arbitrary precision. Because of Hausdorff distance of zero implies that the closure of the
two sets are equivalent, this infinite intersection then implies that cli;(p') holds. Similar

arguments can be made for any p' € W' and for 1. O
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If the iterations (6.8) and (6.9) are contractions to a single point, then we can declare a
new parametric assume-guarantee contract for the interconnected system in Figure 6.2 that
is expressed between the exogenous inputs and the outputs.

Corollary 2. If in addition to the assumptions of Theorem 7, the iterations (6.8) and (6.9)
globally converge to fived points for any initial parameters py[0],p2;[0] then the intercon-
nected system of Figure 6.2 satisfies the parametric assume-guarantee contract associated
with

U:=UxU?
Y=Y x )
Pa = P;e X Pge
Py =P, x P,

wa(pcltapie) = ie(ptlze) /\ wge“ﬁte)
Uy (pgs p2) = clp) (N (Dhes P2e)) A A2 (N (Do D))

and \' : Py, x Pi, = P, and N : Py, x P2, — P, are the respective limit points of the
iterations (6.8) and (6.9) as a function of exogenous environment assumptions pl, and p?,.

Ensuring that Guarantees are Satisfiable

One technical issue with applying Theorem 7 to richer sets of behaviors is determining
whether the guarantees (6.10) or (6.12) are nonempty sets. It is advantageous to design
parametric specifications to ensure that satisfiability is maintained.

We link parameters to set containment through the notion of monotone specifications. Jin
et al. [47] have previous used them in the context of requirement mining. Given a partially
ordered parameter space Pgl equipped with an ordering relation <p1, the parametric output
specification ¢} : P} +— 2”1 is monotone if a <p1 b implies 4 (a) C ¢} (D).

Proposition 6 uses these notions of monotonicity and set containment to give a sufficient
condition for the guarantees to be nonempty.

Proposition 6. Suppose that

1. For both i = 1,2 and all nonempty subsets L of parameter space 73;, there exists a
lower bound p € Py such that p <pi q for all ¢ € L.

2. Parametric output guarantees 1y(-) and 2(-) are monotone specifications and for all
parameters p' € Pgl,pz € 735 the guarantees wé (ph), @bg(pz) are nonempty sets.

Then the guarantees (6.10) and (6.12) are satisfiable/nonempty.

Proof. Parameters that appear within the sequences (6.8) and (6.9) have a lower bound
from the first condition and second conditions. Let these lower bounds be denoted as [
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Figure 6.3: System interconnection for the classical small gain theorem. This interconnection is
related to Figure 6.2 via composite systems F', F? which incorporate the addition blocks.

and I* respectively. The sets 1, (I') and 12 (I*) are nonempty and (') C v;(py[k]) and
P2(1?) C P2(p2[k]) for all k € Zxo. Therefore, because ¢, (I') € Niez., ¥, (pylk]) and ¥7(1?) C
Niezoo ¥y (P3[K]), the guarantees (6.10) and (6.12) correspond to nonempty sets and are hence
satisfiable. O

Classical Small Gain Theorem as a Special Case

Theorem 7 and Proposition 6 recover the traditional small-gain theorem [28]. Given some
norm, let £ be the associated space of norm bounded signals. A signal x[-] has an associated
T-truncated norm |z[||r = |Irz[]|. The signal x[-] is pointwise multiplied with Iy the
indicator function on the time interval [0, T'] before the signal norm is taken. The L-extended
space L. is defined as {z[-] : VI' > 0, |z[]|r < oo} and it is clear that £ is a strict subset of
Le.

Corollary 3. (Classical Small Gain Theorem [28]) Let systems F' F? be input-output maps
F': L.~ L. and interconnected as in Figure 6.3. Let e'[-],e*[] € L. and u'[-],u?[] be
defined such that

u e'[] = y°[] (6.13)
u’l] = €[] = y'[]. (6.14)
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Suppose there are four constants v*,~2, 8%, 82 > 0 such that

' [l <A e'[]lr + B (6.15)
Y* [l < 7*le*[lr + 5 (6.16)

for all T. If ¥'4* < 1, then for all T:

]yl[”T S 1_;7172 (71|U1[]|T + 7172|u2[.”T + 71&2 + ﬁl) (617)
12 [|r < 1_;7172 (P12l + e e + 428 + B2). (6.18)

Proof. The interconnection defined by (6.13) and (6.14) is depicted in Figure 6.3 where
the dashed boxes correspond to F!, F? in Figure 6.2 used in Theorem 7. Via the triangle
inequality, the bounds (6.15) and (6.16) are replaced with

' e < Al [lr + 2 2L + 581 (6.19)
[ le < APe®[lr + 21y e + 62 (6.20)

The assumption parameters associated with the exogenous inputs u!, u? are bounds on their
truncated norms. The feedback assumptions pertain to norm bounds on y',y?. The param-
eter spaces are Py, Py, Py = RxgU {oo}. For system F', define the exogenous assumption,

feedback assumption, and guarantee as

ac(P) = ([’ [Jlr < p) (6.21)
ar (1) = ([V[]lr < 7) (6.22)
Uy(r) = (ly'[lr < 7) (6.23)

with the parameter iteration map A (p,r) = v'p + y'r + 1. With the above definitions,
the bounds (6.19) can be replaced with a parametric assume-guarantee contract. Analogous
definitions for £ lead to a similar reformulation of (6.20). The first condition of Theorem 6
is therefore satisfied. The second condition is satisfied because both the guarantees and
feedback assumptions are of the same form. The third and fourth conditions of Theorem 6
are satisfied because the existence of e'[], €*[:] € L, implies that their T-truncated norm is
finite for some T'. Via (6.15) and (6.16), y'[-], ¥*[-] also have finite T-truncated norm for an
identical T. Via the triangle inequality, u'[-], u*[-] must have finite T-truncated norm and
satisfy (6.21).

For fixed norm bounds on u![-], u2[:], the feedback iteration functions become A!(r) :=
A [l r 4y 4B and A2(r) := 2[u?[]|r+~2r+ B2 When 4142 < 1 the parameter iterations
converge to a pair of fixed points, which are given by the right hand sides of (6.17) and (6.18).
Theorem 7 certifies that these bounds are in fact enforced. We know these guarantees are
satisfiable via Proposition 6 because any subset of P;, P2 = R> U {00} has a lower bound
within Rso U {oco} and the guarantees 1/1;, 1/13 are non-empty for all parameters. ]
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6.3 Hausdorftf Continuity of Parametric Linear
Temporal Logic

The results from the previous section place relatively mild conditions on guarantee speci-
fications 1,(-) to provide a small gain result. These were satisfied when the parameteric
specification corresponded to sublevel sets of a norm on signals. In this section, we con-
sider a parametric variant of linear temporal logic (LTL) that satisfies the requirements of
Theorem 7. Regular LTL is defined in Section 10.1 contained in the Appendix.

In our problem formulation, LTL formulas ¢ C U* x Y* can be thought of as sets of
infinite length input-output sequences. We consider a variant of LTL where input predicates
are subsets of U of the form f(z) ~ p where ~€ {<,>} and f : U — R is a real-valued
function. Output predicates are defined analogously. We call this variant parametric LTL.
Definition 23 provides a syntax for these formulas.

Definition 23. Parametric linear temporal logic formulas are constructed with the syntax
below

¢p=TIf()~p[-¢|d1V 2|1 N2 | XD |F |G |1 Upy.
with parametric predicates f(-) ~ p where p € R and ~€ {<,>}.

The simplest parametric LTL formula is a parametric predicate, which takes the form
of sublevel or superlevel set of a function. The parameter p corresponds to the level. Un-
fortunately, even for continuous functions f(-), the Hausdorff distance between sublevel sets
does not vary continuously for all p € R. Consider the example given in Figure 6.4. Due
to the presence of a spurious local minimum, perturbing p from p = —1 to p = —1 — € for
any € > 0 causes the point at zero to vanish from the sublevel set. The Hausdorff distance
between the two sublevel sets is lower bounded in this example by /2 for all sufficiently
small neighborhoods around p = —1.

To alleviate this issue of disconnected sublevel sets appearing with spurious local minima,
we consider a fragment of LTL where the predicates are compact convex sets.

Definition 24. LTL formulas with convex parametric predicates are constructed with the
following syntaz.

o=TIC)<plg()Zqld1V 2| Xo|Fo|Go |1 Ugs.

where for each predicate f(-) < p associated with a convex f(-) we restrict p to the domain
[min, f(x),00] and similarly g(-) is concave with q € [—oo, max, g(z)].

We make the mild technical assumption that f(-) is uniformly continuous; that is, for all
€ > 0 there exists a § where d(z,y) < ¢ implies |f(z) — f(y)| < € for all appropriate z, y.
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Figure 6.4: Parametric sublevel sets of non-convex continuous functions are not necessarily Haus-
dorff continuous.

Proposition 7. The sublevel set of uniformly continuous convex predicates f(-) < p varies
continuously with parameter p € [min, f(x), oo] when the distance between predicates is given
by the Hausdorff metric.

Proof. Consider two predicates ¢¥(p) = f(x) < p and ¢¥(p') = f(x) < p’. Without loss of
generality, we assume that p < p’. Suppose € > 0. Let m™ > 0 be defined as

m*=|( sup f(z)|—p
2B (b (p))

m™ is the least upper bound on how much f(-) may increase by bloating the set 1 (p) by e.
Due to uniform continuity of f(-), m™ is finite. Because f(-) is convex its sublevel sets cannot
consist of many disjoint regions and {z : f(z) < p+am™} C B.(¢(p)) for all 0 < a < 1.
If |p— p'| < am™ then (p") C B.(¢(p)). An identical argument can be made when p’ < p.
Thus, if the parameters |p — p'| < am™ then the Hausdorff distance of the sublevel sets are
bounded above by €. O]

Note that the syntax in Definition 24 makes the curious choice of permitting disjunctions
V and not conjunctions A. This choice was made due to the following property of the
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Hausdorff distance
dy(AUB,CUD) <max(dy(A,C),dy(B, D)) (6.24)

which upper bounds the distance between sets after a union. No analogous property exists
for set intersections because they may be empty and the Hausdorff distance is ill defined. The
potential loss of convexity under unions and disjunctions is not an issue because convexity
of predicates in Definition 24 simply serves as a sufficient condition for predicates to be
Hausdorff continuous and is not necessary.

Theorem 8. Let 1)(-) be a parametric specification constructed with the convex predicate LTL
grammar from Definition 24. Define N € Z>q to be the number of times a predicate appears
in Y(-) and parameter space P = [min, fi(z),00] x ... x [min, fy(z),00]. Specifications
constructed with the grammar (-) are Hausdorff continuous where signals distances are
measured with a supremum metric, d(z[-],y[-]) = supgez., d(z[k], y[k])

Proof. Suppose € > 0. Let m; be defined as it appears at the end of the proof of Proposition 7
for predicate f;(p;) < pi. Let m = min;eqr . Ny m,. Suppose that x[-] = 1 (p) but z[-] K= ¥ (p')
and max;(|p; —p}|) < m. Each predicate p; in formula ¢ (p) has an associated infinite Boolean
sequence where the k-th value is T if and only if z[k] |= p;. For some time k, there must be
at least one predicate that is different; for it to be otherwise would contradict the assertion
that z[-] £ ¥ (p/). Given such a time step k, Proposition 7 and (6.24) guarantee that for
any time step k& when the difference arises, x[k] must be less than a distance € away from a
point y[k] that satisfies the same set of predicates for p’. Thus, ¥ (p) C B.(¢(p')) where the
e—expansion of ¥ (p’) is with respect to the supremum metric. A similar argument can be
made for the case when z[-] = ¢ (p) and z[-] £ ¥ (p). O

Theorem 8 augments Theorem 7 by providing a concrete instantiation of a class of Haus-
dorff continuous specifications with temporal logic operators.

6.4 Certification of Parametric Contracts

To apply the results from previous sections we need to show that each system satisfies
a parametric assume-guarantee contract. We pose a falsification problem that seeks to
construct a violation of the contract. Consider a system F with a state space X and initial
state set Xp. The notation y[-] € F(z[0], u[-]) signifies that output y[-] satisfies the dynamics
F permitted by x[0] and u[-]. Let (¢,, ¢,) be a parametric contract obtained from parametric
specifications 14, ¥, and parameter map A : P, — P,.
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Figure 6.5: An example network with two on-ramps x1, 3. Dashed arrows are exogenous network
links.

Problem 1. If there exist p, x[0], and u[-] that satisfy constraints (6.26), (6.27) and (6.28)
then F' does not satisfy the parametric assume-guarantee contract (¢q, ¢g).

find  p € Py, x[0] € Xy, ul]
subject to  ul-] E 1q(p)

yl] ¥ vg(A(p))

y[] € F(z[0],ul]).

The proper falsification engine to solve Problem 1 is implementation specific and depends
on both the system dynamics and specification representation.

For black-box systems and systems exhibiting complex, hybrid, and non-linear dynam-
ics, simulation-based falsification is the most practical method to certify that an assume-
guarantee contract is satisfied. Most existing simulation-based falsification algorithms are
sound but typically not complete. While the failure to falsify a contract does not imply
that the contract holds, it is evidence suggesting that the contract holds. Simulation-based
falsification tools are built into toolboxes S-TaLiRo[4] and Breach[29] for metric and signal
temporal logic.

If the falsification algorithm is complete and no violating p, z[0], and u[-] exist, then F
satisfies (¢q,¢y). The examples in the next section use a component of the BLuSTL tool-
box [75] to translate bounded time temporal logic specifications (6.26) and (6.27) into mixed
integer constraints for the optimization toolbox YALMIP [57].

6.5 Freeway Interconnection Example

This section applies Theorems 6 and 7 to a freeway traffic example. Consider the two
freeway segments depicted in Fig. 6.5, where the left segment has a main stretch of three
links xg,xo, 4 and two on-ramps x1,x3. The right segment has identical dynamics. We
use the cell transmission model (CTM) a macroscopic fluid-like model of freeway dynamics
developed by Daganzo [24]. Individual vehicles are not a component of this model. Each
discrete time instant represents a five minute interval.
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Freeway Dynamics

We first describe the dynamics for F'*, which are identical to the dynamics of F? besides a
variable renaming, and subsequently describe how the interconnected networks resemble the
small-gain interconnections (e.g. Figure 6.2) from previous sections.

Freeway segment F'''s state space X1 C Rx” represents the average occupancy over the
five minute period in each of the five links. We overload notation and refer to links and their
occupancy values using the same variable. The upper bound on occupancy is encoded with

a vector ™ = [40, 20, 40, 20,40]. The state update equations arise from conservation of
mass:

zolk + 1] = xolk] — fo" k] + fi[K]

a1k + 1) = 21 [k] — f{[k] + (K]

Tolk + 1] = @a[k] — F k] + £ (K] + £ [K]

w3lk + 1] = x3[k] — 5" [k] + f3[K]

Talk + 1] = @alk] = f k] + £ (K] + £ (K]

where fP"[k] and f2"'[k] respectively represent the flows exiting and entering link x; at time
k.

The flows into and out of a link are determined by demand and supply. A link’s demand
is the rate at which it would like to send vehicles to downstream links. The demand d;(z;[k])
that link x; exhibits is a non-decreasing function

d;i(z;[k]) = min(c;, z;[k]) (6.29)

where ¢; is a saturation rate.The primary links have saturation rates ¢y = ¢co = ¢4 = 10 and
on-ramps have saturation rates ¢; = c¢s = 5. All links also exhibit a supply function

s(x[k]) = 2" — @[k, (6.30)
which is the rate of incoming vehicles that it can accept from upstream. A link’s supply
is partitioned among upstream links, with links o, x4 allocating 80% of their supply to an
upstream highway link and 20% to on-ramps. Link z5’s supply and demand functions are
depicted in Figure 6.6. Congestion occurs when demand exceeds supply and the left term
in the minimization is active. The flows out of links 0, 1,2, 3 are the minimum between the
supply available to them and their demand:

S [k] = min (.8(40 — z4[k]), 10, zo[k])
P k] = min (.2(40 — z2[k]), 5, 21 [k])
S [k] = min (.8(40 — x4[k]), 10, z2[k])
S [k] = min (.2(40 — z4[k]), 5, x3[k])
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Interconnection between Networks

Figure 6.7 summarizes the input and output variables for each network. Network ' has a
vector of demands as its exogenous input ul, = (d°°¢, d$", d3") and the feedback input u} =
(s5) is the supply from downstream. Similarly, £ has exogenous input u2, = (s*°¢, d3", d3™)
and feedback input u2, = (d4). The outputs can be identified in a similar manner.

With the notions of demand and supply in mind, we can now consider how both networks

are affected by their interconnection and by exogenous environments. The flow f"* between

F' and F? is determined by d4 and s
U [k] = min (.8(40 — x5[k]), 10, z4[K]) .

Both systems experience an exogenous environment via the on ramp demands. The
upstream system F'! also experiences a demand d®°# for link 2y and the downstream network
F? experiences an exogenous supply for link zg.

Link xq allocates 80% of its supply to the exogenous environment. The flow into z, is
therefore

k] = min(.8(40 — xo[k]), d™°8).

The onramps z; with i € {1,3,6,8} allocate all supply to the environment so
fi k] = min((20 — ;[k]), 7).

Similarly, link xq’s outflow is governed by an exogenous environment so

JU k] = min(.8s%8 10, zg[k]).

Certifying Intermittent Congestion

Congestion is shown to be intermittent after the two segments are interconnected. Intermit-
tency is encoded via “always” and “eventually” temporal operators augmented with intervals

Gpa¢ = ¢ A X A XXp A XXX (6.31)

For both systems, all onramp demands are limited to always be less than 3. That is,
G(d™ < 3) (6.33)

for all + € {1,3,6,8}. All links are assumed to have an initial occupancy less than 5, i.e.,
Xo = Ilizg,..al0,5] C X.

From Figure 6.7, it’s clear that the upstream network F' is subjected to an exogenous
mainline demand d®*°¢ and the supply availability from downstream network F2. A static
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Figure 6.6: Supply (solid) that link zo provides to link xy and Demand (dashed) that link xo
creates for link x4

g dgr
dexog d4
L F? |

on on
dy dg

Figure 6.7: Although vehicular flow in Figure 6.5 is from left to right, the right network also affects
the left network. Demand’s influence (dashed lines) is directed forward while supply’s influence
(dotted lines) is directed backward.
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exogenous environment contract is imposed by assuming that the main line demand satisfies
the assumption with no free parameters

GiosFo2 (47 < 15). (6.34)

How does the supply from F? affect the demand outputted by F'? Via monotonicity
of the network dynamics, a greater supply availability means that F'' can expel vehicles
quicker and will be able to lower the demand it outputs. This relationship is encoded in the
parametric assume-guarantee contract below:

(b(ll = \/ G[073]F[072](S5(I5) Z 10 — S) (635)
s>0

o=\ (G[O,g}F[O,Q}(%(xE,) > 10 — ) (6.36)
s>0

= GiogFioz(di(1) < Ai(s)) (6.37)

A1(s) == .9s + 4. (6.38)

The falsification procedure encoded in Problem 1 failed to violate the assume-guarantee
contract for any parameter s > 0 and hence ' satisfies the parametric contract (¢, ¢y ).

Similarly the downstream network 2 is subjected to the demand from z, and exogenous
supply. The exogenous supply has a fixed assumption

G[Qg]F[QQ](SeXOg Z 5) (639)

It influences F} by outputting supply from x5 and the contract is

¢n = \/ Gio3F 0,2/ (da(4) < d) (6.40)
d>0

%=\ (G[o,B]F[0,2](d4($4) < d) (6.41)
d>0

= G[0’3}F[0’2}(85(l’5) > 10 — )\2(d>)) (642)

No(d) = .2d. (6.43)

Again, Problem 1 failed to violate the contract and F** therefore satisfies the contract (¢7, ¢7).
Each of the conditions for Theorem 6 have been proven to hold in this section.

1. The parametric contracts are satisfied for each network.

2. Guarantees from one network imply the feedback assumptions of the other network
because they are of the same form. In other words, pairs (6.40), (6.37) and (6.35),
(6.42) are identical parametric specifications.
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3. The exogenous assumptions are satisfied via (6.33), (6.34), and (6.39).

4. Leti = 2. For alarge enough d > 0, the feedback assumption wgf(d) = GgFpz(di(rs) <
d) is satisfied because dy has a maximum value of 10.

The composition of the parameter mapping functions A, Ay is a contraction and hence
converges in the limit to a fixed point (d,s) = (4.878,.975). Thus, via Theorem 7 the
following statement must also hold:

G[o,g]F[o,g](d4($4) S 4878) A G[073]F[072](S5(£L'5) Z 9025)
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Chapter 7

Dynamic Contracts for Distributed
Temporal Logic Control Synthesis

In the context of formal control synthesis, contracts have mainly come in the form of con-
trolled invariant sets [64, 83, 49, 82]. An individual subsystem treats the unknown coupling
from neighboring subsystems as disturbances and computes a control strategy that is robust
to that uncertainty. The invariant sets bound that uncertainty and satisfaction of a con-
tract is enforced as constraints in each sub-network’s MPC problem. These invariant sets
are typically computed offline and ignore real-time conditions, giving rise to unnecessary
conservatism.

We propose a method to dynamically change the contracts to attain a better optimum
based on real-time conditions. Each individual sub-network must first be “mined” for con-
tracts over a range of demand severity levels and different local scenarios. The mined
contracts are merged into a finite state machine that serves as a high-level coordinator.
Each graph node corresponds with the contract constraints imposed on each individual sub-
network. Unsafe regions of the graph are sets of scenarios where sub-networks’ promises
to each other are inconsistent. Edges in the coordinator graph are permitted only when a
smooth hand-off between contracts is ensured and recursive feasibility is maintained. Exis-
tence of some edges can be guaranteed offline, while additional edges may occasionally be
added at runtime. Our protocol accommodates a rich class of temporal specifications that
include safety, reachability, and recurrence properties.

Just as Chapter 6 showcased how parametric contracts permits one to have tighter guar-
antees for verification, this chapter shows how dynamic assume-guarantee contracts can
provide a richer class of guarantees for control synthesis.

7.1 Preliminaries

A discrete time interval I = [a,b) is a contiguous subset of N where a,b € NU {c0}, a < b,
and b ¢ [a,b). A closed discrete interval is given by [a, b] = [a,b) U [b]. Let z[a,b) and z]a, b]
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represent a slice of the signal x[0, c0) along the intervals [a, b) and [a, b] respectively.

Network Dynamics

We adopt the model from Sadraddini et al. [82]. A traffic network N can be represented
as a graph with a set of links £ representing roads and nodes S representing intersections.
Each link [ has an associated vehicle occupancy at time ¢t € N denoted by z![t] € [0, ¢!] with
a maximum capacity ¢! > 0. The entire network state space is X = [],..[0, .

Link I’s set of upstream links is £l and its set of downstream links is £}, . Vehicles
always flow from an upstream link to a downstream link. The maximum flow out of link [ is
¢ €10, ¢!]. Vehicle flow is controlled via traffic lights and ramp meters. Green and red lights
at intersections are represented via a control set U! € {0, ¢'}, with ! = 0 indicating that no
vehicles may exit link [ (red light). If [ is actuated by a ramp meter, then U' € [0, ¢'] is a
continuous variable. If a link is uncontrolled, we have U' = {¢'}. The control input space is
denoted by U = [, U". A non-ordered pair of links (I, k) is antagonistic if u' > 0 = u* = 0.
The set of all antagonistic pairs is denoted by A C £ x L.

Flow allocation is determined by functions specifying turning ratios 5 : £ x £ + [0,1]
and supply ratios a : £ X L+ [0,1]. The turning ratio 8(l, m) represents the proportion of
vehicles exiting [ and entering m, is nonzero only for m € £ and the ratio sum cannot
exceed one, i.e. > B(l,m) < 1. The supply ratio a(k, ) represents the proportion of

me£fﬂown
free space in [ allocated to upstream link k, and is nonzero only for k£ € Eflp.
A link I’s output g’ represents the total vehicles it would like to send and is given by:

y'[t] = min(2"[t], ¢', u'[t]), (7.1)

where the first two terms in the minimization represent the number of vehicles that want to
exit link [ and the third term controls the output demand. The flow exiting link [ is

a(k,l)
Bk, 1)

where the second term limits flow due to lack of supply downstream. The state update
equation is driven by conservation of mass:

F'1t) = min (y'[t], (" —2"[t])), (7.2)

2t +1] = min (¢, 2'[t] + Zme%p B(m, 1) fmt]

~ 111 + ). =

where d'[t] is the exogenous demand entering link [ at time t. We compactly represent the
dynamics above with

5
c
+
=)
I
g
=
=
=
=
&
=
\'I
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The congestion free region of a network is defined as the set v C X x U where for all
| € L the second term is not a unique minimizer in eq. (7.2) and ¢ is not a unique minimizer
of eq. (7.3). The freeflow condition is a local condition; that is, link I’s membership in the
freeflow region is determined only by adjacent links. Given the joint space X x U we define a
partial order <y Two points (z,u), (2/,u’) in this space satisfy (z,u)=<yxy(2',u’) if and
only if x < 2’/ and u < u coordinate-wise. Likewise, the disturbance space D is equipped
with a partial order <p.

Definition 25. A subset K C P s a lower set if for all g,v € P, r € K and q=3pr imply
qg€e K.

Definition 26. Monotone Dynamics The dynamics F(x,u,d) is monotone with respect to
the partial orders <yxy and =<p if and only if

(z,u) sy (2, 0') Nd=2pd = F(x,u,d)2xF (2’ ', d). (7.6)

The congestion free region ¢ is a lower set of X x U and exhibits monotone system
dynamics [82].

Metric Temporal Logic

To encode desirable discrete time behaviors of the traffic network, we use metric temporal
logic (MTL) as defined in Section 10.1 in the Appendix. These specifications will be encoded
as constraints for a model predictive control (MPC) solver. We introduce the notion of a
specification’s horizon because the MPC solvers can only reason over a finite time horizon. A
specification’s horizon h(¢) is the minimal length of a suffix required to determine satisfaction
of ¢. For example, h(Gygsy)) = 3 if ¢ is a predicate. The satisfaction of ¢ by signal
s[-] at time t is decided by s[t,t + h(¢)); satisfaction at time ¢ is independent of s[t'] for
& [t t+ h(9)).

Lower Specifications

Lower specifications from Kim et al [50] are an instance of a lower set over a signal domain
equipped with a partial order. If s[k]|=<yr[k] for all k£ in an appropriate time interval, then
s[1=xprl]-

Definition 27. Lower Specifications A specification ¢ C X[-] is a lower specification if for
all signals s[-],r[-| € X[], conditions s[-| = ¢ and r[-]=2xs]-] imply r[-] = ¢.

All of the specifications in this chapter are lower specifications. Specifications that adhere
to the following grammar are guaranteed to be lower specifications
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Definition 28 (Lower Specification Grammar [50]). Any specification ¢! constructed from
the following grammar is a lower specification.

=T || =du | &) AL | ULyl
P =T | " | i | ¢ A @y | $1U )b

where u' (respectively p*) is an atomic predicate that corresponds to a lower (respectively
upper) set.

7.2 Problem Statement and Approach

Problem Formulation

We partition a traffic network into N smaller sub-networks N%,i = 1,--- , N. A guideline for
partitioning traffic networks while taking into account formal specifications was introduced
by Sadraddini et al. [82]. We consider traffic specifications of the following form.

N
¢ = Gio,0) /\ (V' AFjo00)0") (7.9)
=1

where 1" is the congestion-free region of network A%, and ¢* is a bounded-time MTL formula
describing internal requirements of network N,

Problem 2 (Control Synthesis). Given a network N, an initial condition z[0] and a speci-
fication ¢ in the form (7.9), find a control strategy such that ¢ is satisfied.

An optimality criterion is added in Section 7.3.

Motivating Example

Consider a network N depicted in fig. 7.1 which consists of sub-networks N%,i = 1,--- ,4.
Sub-network A/ represents a high capacity freeway while the others are urban areas. All sub-
networks are interconnected via on(off)-ramps or urban roads. At each urban intersection,
50% of the vehicles proceed straight, 20% turn left, and 30% turns into an un-modeled
external environment (e.g., parking). We have ¢! = 15, ¢! = 40 for urban roads, ¢! = 60, ¢ =
25 for freeways and ¢¢ = 30,¢ = 15 for ramps. For all entry links to the network, let
d't] € [0,3¢'],t e N L.

We aim for multiple control objectives. First, the network must remain in congestion-free
region v at all times. Second, at each urban intersection traffic lights signalizing vertical
and horizontal flows become simultaneously red infinitely often, allowing pedestrians to pass

'The full, detailed, parameter valuations of the network, code and simulation results of this paper are
publicly available at https://github.com/ericskim/cdcl7dynamiccontracts.
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Figure 7.1: Example network N partitioned into four sub-networks A%, i = 1,---,4. Contract
obligations from section 7.3 are depicted on the right. Solid arrows indicate an obligation from
one network to an adjacent sub-network to limit incoming vehicular flow. Dashed arrows represent
recursive feasibility obligations from a sub-network to its future self.

through the intersection in any direction and making the congestion-free specification harder
to accomplish.
= G[O,Oo)( A %A Fp o= 0 Ay, = 0)). (7.10)
(Lk)eA

This specification is decomposable into the form in (7.9).

7.3 Contract-Based Model Predictive Control

We adopt a distributed model predictive control (MPC) approach to solve the controller syn-
thesis problem with temporal logic constraints, as solving the MPC problem for the entire
network N in real time is computationally intractable. A distributed controller synthesis
approach is enabled by having each sub-network concurrently compute an optimal control
trajectory independently. Each sub-network is unaware of adjacent network states during
this computation, yet they interact via sending and receiving vehicles to and from adja-
cent networks. Coordination is enforced by introducing assume-guarantee contracts between
networks into each sub-network’s MPC problem, ensuring that a sub-network does not in-
advertently violate an adjacent sub-network’s assumptions and that the distributed control
synthesis procedure is sound.

Optimization Objective and Constraints

The MPC algorithm executes at each time step ¢, and aims to minimize the total delay over
a horizon T
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T+t—1

J = Z Z (ZL‘Z[T] — fl[T]) (7.11)

7=t IleL

by computing a control sequence ult,t + T') given the current state z[t]. Above, z![r] — f![7]
is the number of vehicles that are forced to remain in [ at time 7. Cost (7.11) is a monotone
function with respect to state if the evolution is restricted to the congestion-free region [82].

Both the network dynamics and MTL specification ¢ can be encoded as mixed integer
constraints. The piecewise affine dynamics are encoded using the scheme by Mayne and
Rakovi¢ [59] where integer variables are used to detect membership within a set of state
space polytopes. Boolean variables that capture predicate satisfaction at different moments
in time [91, 74] allow one to encode satisfaction of bounded specification ¢’ with a finite
number of mixed integer constraints, given a sufficiently long MPC horizon.

Assumption 1. Fach sub-network N has a common MPC horizon T that is greater than
the longest specification horizon. That is, T > max; h(¢").

Specification ¢ requires that ¢’ be satisfied infinitely often. Unlike the optimization
procedure which executes with a receding horizon, the constraint ¢’ can be enforced period-
ically at times kT where k € N. Periodic enforcement of ¢’ for every kT translates to sets
of constraints over disjoint intervals [T, kT + h(¢')) each associated with a k € N. A MPC
iteration executing at kT will plan a trajectory over [k, (k + 1)T], k € N that satisfies ¢*. A
subsequent MPC iteration executing within that time interval ¢t € [kKT + 1, (k + 1)T") takes
into account a state trajectory over [T t] and input trajectories over [kT,¢) and can main-
tain satisfaction of ¢' at time kT simply by either i) Executing the input trajectory proposed
by the iteration at time k7T ii) Computing at time ¢ an input trajectory with lower cost that
still satisfies ¢° at time k7. While the first option is sufficient to enforce the specification,
computing a lower cost trajectory at time ¢ permits the MPC controller to react to incoming
vehicles from adjacent sub-networks.

Interconnections and Contracts

The distributed MPC scheme contains a circular dependency because each sub-network is
unaware of neighboring networks’ planned actions. Each sub-network needs to promise
neighboring sub-networks that they will satisfy each other’s assumptions, but the feasibility
of such a promise depends on the actions of one’s neighbors. Assume-guarantee contracts
are MPC constraints that break this dependency.

Definition 29 (Assume-Guarantee Contract (for distributed traffic control)). Network N’s
assume-guarantee contract C* along time interval kT, (k + 1)T] consists of

o Assumption ¢' (xL[kT],d.[kT, (k+1)T)) on the incoming demand and vehicles initially
in the network:
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/\‘ («'[kT] < 2 [kT]) (7.12)
(k+1)T—-1
AN CA (i< d) (7.13)

o Guarantee ¢, (. [kT+1, (k+1)T],y.[kT+1, (k+1)T]) on the terminal state and output

trajectory:
A\ @10k +1)T) < 2[(k +1)7)) (7.14)
(k+1)T
A (A W<y [t})) (7.15)

out

The contract C* is characterized by a set of parameters: the initial state z,[kT], external
demand d,[kT, (k+1)T), terminal state x,[(k+ 1)T], and output trajectory y.[kT, (k+1)T1])
over output links. Sub-network N*’s assumption component states conditions over local and
incoming links £' and £{ . The output guarantee is viewed as a signal y.[kT + 1, (k + 1)T])
that upper bounds output trajectories of y[kT + 1, (k + 1)) on links in L'

out*

Definition 30 (Contract Satisfaction). A sub-network satisfies an assume-guarantee con-
tract at time KT if for all x[kT| and d[kT,(k + 1)T') satisfying eq. (7.12) and eq. (7.13)
respectively, a control sequence ulkT,(k + 1)T') exists such that N* remains in the local
freeflow region ¢, and both the gquarantee gblg and MTL requirement ¢ are satisfied at kT .

Contract satisfaction for all assumption satisfying scenarios z[kT] and d[kT, (k + 1)T)
is difficult to certify for general non-linear dynamics. However, within the congestion free
region ¢ the dynamics exhibit a monotonicity property, where a partial ordering with respect
to state trajectories is preserved, and the initial state z,[kT| and demand d.[kT, (k + 1)T)
jointly yield the most adversarial environment. An environment that satisfies ¢’ cannot
violate the guarantee if z,[kT| and d'[kT, (k+1)T') do not violate the assumption [50]. Thus,
synthesizing a satisfying control sequence u’[kT, (k+1)T) for environmental scenario z,[kT]
and d,[kT, (k+1)T) such that the system satisfies the guarantees and remains congestion free
also ensures that the control sequence will be satisfactory under more benign scenarios [81].
A set of contracts is consistent if all sub-network assumptions are implied by the guarantees.

Definition 31 (Assume-Guarantee Parameter Consistency). A set of contracts C', ... C*
are consistent if if for all N*, input links | € Lt and times t € [kT, (k+ 1)T)
> B kA < dift). (7.16)

keLl,
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Figure 7.2: Three rows show different signals of the MPC algorithm over two MPC horizons where
T = 3. Arrow indicate the flow of dependencies amongst signals over time. The shaded regions
correspond to a network’s assumptions about its initial state (red) and incoming demand (blue).
The green patterned region is the guarantee over an output trajectory (recall that output y is a
function of state and input) and a terminal state. At time ¢ = 3, the assume-guarantee contract is
reset, and the overlap at x[3] between the initial state assumption and the state trajectory guaratee
ensures that recursive feasibility is maintained.

TN

Recursive Feasibility with Fixed Contracts

Recursive feasibility can be viewed as a network making a promise to its future self that
all future constraints will remain feasible. Recursive feasibility has two components, corre-
sponding to the specification gb’g constraint and the contract constraint eq. (7.15). Feasibility
of the ¢; constraint at the £7-th time step has already been established via the initial state
condition eq. (7.12).

Let contract C' is be periodically every T' steps with fixed parameters. Consider two
different MPC executions at times kT and (k +1)T. The guarantee constraint ¢/ along the
interval [(k + 1)T, (k + 2)T) is feasible when eq. (7.12) is satisfied at time (k + 1)7. The
MPC algorithm executing at time k7" imposes the terminal state guarantee z[(k + 1)7] <
x.[(k + 1)T], which implies that the initial state assumption at (k + 1)T with identical
contract C' is satisfied if:

N 2k + 1T < 2L[(k + 1)T). (7.17)

leLi

If C' satisfies eq. (7.17) then it is said to be a recursively feasible contract. The final MPC
problem for each sub-network requires enforcing the following constraints.
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Problem 3 (Distributed MPC). Under the assumption that input demand satisfies eq. (7.13),
each sub-network N computes a local control sequence ulkT, (k+ 1)T):

(k+1)T
argmin
u[kT,%gH)T) th:T ;
s.t. (z[kT, (k+ DT, ulkT, (k+ 1)T)) | ¢*
Guarantee eq. (7.15) to adjacent networks
Terminal State eq. (7.14)
Dynamics constraint eq. (7.4)

Assumption ¢!, is encoded in the constraint eq. (7.4).

Proposition 8 (Infinite Horizon Spec. Satisfaction). If each network N satisfies its assume-
guarantee contract, each assume-quarantee contract C* is recursively feasible, and the global
initial state x[0] satisfies each initial state eq. (7.12) assumption, then the distributed MPC
algorithm satisfies the global specification eq. (7.9).

7.4 Dynamic Contracts

Definition 29 introduced contracts that are uniquely parametrized by . [kT], d.[kT, (k+1)T),
z.[(k+1)T), and y.[kT, (k+1)T), which do not change over many MPC horizons. Fixed con-
tract parameters may lead to conservative guarantees if the network experiences less demand
than expected and d'[kT, (k + 1)T) < dL[kT,(k + 1)T) elementwise in eq. (7.13) because
conservative assumptions prevent aggressive responses to benign real-time conditions. Like-
wise when ! [7] in eq. (7.15) is small, the guarantee is too optimistic and perhaps infeasible
if a network experiences a sudden influx of vehicles.

Dynamic contracts allow parameters to switch at runtime. This enables the network to
react to real-time conditions and increase the space of feasible contracts.

In general, a sub-network A/* can satisfy a collection of m! assume-guarantee contracts,

Pt ={C(p1);---,C'(p,)}- (7.18)
each associated with different parameters (attributes)
'[kT]
KT, (k+ DT),
pIET, (k+ 1)T) = yfk Kk(;i)g]T’)
u [KT, (k +1)T),

Jz'

*

where p’ is used for notational compactness in eq. (7.18). Section 7.5 provides a method to
generate such a collection. Optimal control sequence u'[kT, (k + 1)T) and an induced delay
J? are also computed and stored during the contract generation process.
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Figure 7.3: Visualization of contract parameter roles over multiple intervals of length T'. Recursive
feasibility is encoded as an intra-network contract depicted as a initial state assumption ka] in
green and terminal guarantee x,[(k + 1)T] in blue. The inter-network contract is depicted as the
maximum incoming flow assumption d.[kT, (k + 1)T) in yellow and the maximum outgoing flow
guarantee z,[kT, (k + 1)T) in red.

Figure 7.4: Visualization of a single local coordinator associated with an individual network A/,
Each node represents a specific collection of assume-guarantee parameters. Transitions across
different parameters encode that a contract handoff is feasible and eq. (7.19) is satisfied. Infinite
horizon recursive feasibility corresponds to a cycle.

Designing a Contract Coordinator

A contract coordinator’s role is to ensure that parameters across multiple networks are
compatible and that parameter switches over time do not inadvertently cause specification
violations.

Preserving formal guarantees restricts how contract parameters may change at runtime.
First, contracts parameters must always be consistent in the sense of Definition 31. Second,
the notion of recursive feasibility needs to be modified to accommodate a changing set of
requirements.

Concretely, a contract coordinator is a transition system with state space P = Hlj\il P =
Hi]il{Ci(pﬁ), ...,C'(pl,,)} designed to ensure that these two properties are satisfied. Every
coordinator transition corresponds to a potential change in contract parameters for each
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v

Figure 7.5: Visualization of contract coordinator constructed from networks N' and N?2. The
finite state machine’s state space is the product of the individual coordinator parameter spaces and
the transitions are consistent with the individual coordinator transitions.

network and may execute every T' time steps. After a transition, each sub-network is notified
of the contract it must satisfy.

Consistent Contract Parameters

A coordinator state p € P is a tuple (p,lcl, e ,p]kVN) where each network N picks a single
contract C (p}%) it would like to satisfy. Not all elements of this space satisfy the contract
consistency requirement in definition 31. For instance in fig. 7.1 satisfaction of N''’s as-
sumption is determined by N? and N*’s guarantees. If contract parameters are such that
N2 N*s guarantees do not jointly imply assumption N''’s assumption, then these contract
parameters are inconsistent.

A subset P, C P of the parameter space that corresponds to all consistent network-wide
parameters. Set P, is enumerated via a depth first traversal over a tree with depth N and
branching factors m;. The traversal aggressively prunes branches of the contract space as
soon as a contract inconsistency parameter is identified.
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Contract Transitions and Recursive Feasibility

A contract transition is valid when each sub-network can promise its future self the ability
to satisfy the new contract via a transition from the old contract. Given two consistent
contract parameters p,p € P, where p is for use over [kT,(k + 1)T] and p is for use over
[(k+ DT, (k+ 2)T], a switch from p to p is wvalid if the following element-wise inequality
holds:

A\ 2k + D)T) < &k + 1)T). (7.19)

The left side is the terminal state guarantee from p and the right is the initial state assump-
tion of p. Recursive feasibility as in section 7.3 is a special case when p = p.

We define the contract parameters Viable Graph (VG) as a directed graph (P, &,), where
P, is the set of nodes, and &, C P, x P, is the set of edges such that V(p, p) € &,, the switch
from p to p is valid. We denote E = {(p,p)|(p,p) € &,}. A node p is a dead-end if EP = @. If
no dead-end is reached, then there always exists a consistent contract with feasible transition
options to other contracts, which by construction implies the following statement.

Proposition 9. Given a infinite-time contract parameter sequence pg,p1,---, where py 1s
used for control synthesis in the time interval [KT, (k+1)T], the specification (7.9) is satisfied
if (Pk, Prv1) € & and p € Py, Yk € N.

Optimal Contract Coordination

The recursive feasibility property and contract consistency require that no dead-end node in
VG is reached. By recursively removing the dead-end nodes and the edges leading to them,
we obtain a fixed point which characterizes the viable kernel graph (VKG) (P, To ), where
Por C Py and Ty, € Py X Py, with the extra property that Vp € 731,7&,557,@ # @. Once
a parameter contract of a node in VKG is chosen, there always exist a feasible handover
of the contract to another node in VKG, establishing infinite-time recursive feasibility and
consistency.

Each contract p’ corresponds to a cost J! for network N which is the delay induced if
control sequence ul[kT, (k+1)T) is applied starting from z[kT] under the demand assump-
tions d.[kT, (k + 1)T). Tt follows from monotonicity properties that J! is a upper-bound for
possible costs in real-time implementation. Given a contract parameter p = (p,ﬁl, cee péVN),
the sum of associated contract costs is

c(p) := Z JL(Pr,)- (7.20)

Now we determine which contract parameter from VKG nodes to choose at each time kT, k €
N. In order to aim for optimality, we choose the contract parameter for which the infinite-
horizon cost coo(p) = D pe @ c(pg) is minimal, where p = py, and o € (0,1) is a discount
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Figure 7.6: Visualization of a viability kernel (green) induced by inconsistent contract parameters
(red crosses). From any collection of contract parameters in the viability kernel, it is possible to
prevent the inconsistent contract parameters at any time in the future.

factor to make the cost properly defined. Denote the optimum cost to go from p by ¢ which
follows from Bellman’s equation [9]:

%(p) = c(p) + o min (J3,(p)) (7.21)
p'€EY .

In order to find ¢ (p),p € Pux, (7.21) is cast as a linear program. Finally, at time kT we

choose the optimal contract parameter p* € P,y with minimum ¢, (p).

7.5 Contract Mining

A delicate tradeoff exists between conservative assumptions which can accommodate an
influx of vehicles and aggressive guarantees which quickly dissipate vehicles in the network.
We present a heuristic to generate a set of assume-guarantee pairs for each sub-network.
Given a fixed assumption and N?, a miner is a bounded horizon optimization algorithm
that computes a control trajectory that induces minimal guarantees. Guarantee parameters
2t [(k + 1)T),y.[kT, (k + 1)T) are minimal if contract satisfaction as in Definition 30 is in-
feasible for any smaller guarantee pair such that 21[kT] < z'[kT] and [T, (k + 1)T) <
y.[kT, (k + 1)T) with element-wise inequality. The miner’s optimization objective can be
any monotone function of X x U; we opt to minimize a combination of the /; and [, norms.
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After mining, a guarantee is propagated into an assumption for adjacent networks via Equa-
tion (7.16) with the equality is replaced with an inequality, and the mining continues.
Algorithm 3 provides pseudocode which generates MaxIter guarantees for every sub-
network. The contract sets are initially empty. Infeasibility of the mining algorithm triggers
a multiplicative decrease in the initial conditions and disturbance by a factor v € (0, 1) until
the contract is satisfied. Propagation can be visualized over the bottom of Figure 7.1 where
inter-network promises (solid edges) and a network’s recursive feasibility constraint (dashed
edges) are both updated. Both contract parameters and the control sequence are saved.

Algorithm 3 Guarantee Mining Algorithm
1: Set N = Number of Sub-networks
2: for alli =1,...,MaxIter do
for alliec {1,...,N} do
while True do
Feas, z[], u[-], y[]= mine(N*,z[0], d[])
if Feas then
Break
(0] := yx[0], d[-] := ~yd[]
Add to N’s contract set
10: Propagate Guarantee

«

© PN

7.6 Example

Figure 7.1’s network is used to evaluate the efficacy of the dynamic contracts system. Al-
gorithm 3 is used to generate a set of 25 contract parameters for each sub-network. There
are |P,| = 1363 consistent contract parameters, of which 664 were members of the viability
kernel P, .. All optimization problems were posed and solved using Gurobi’s mixed integer
linear program solver [39]. We used the method in Section 7.4 to change contract parameters
as a feedback of system state every T' time steps. We simulated the network for 30 time
steps (5 rounds of contract transitions). The satisfaction of the specification was implicitly
implied by the fact that the MPC optimization problem was feasible at all times. Sample
results are illustrated in Figure 7.7.

We also compared the optimality of our results with other control methods. Table 7.1
shows the accumulated delay for different network conditions and control architectures. The
first column shows the subset of networks that experience a fully adversarial demand, e.g.
the (1,3) column means that N1, A experience the maximum number of incoming vehicles
and N2, N* experience no exogenous demand. As expected, the cumulative delay decreases
when the network load decreases. The fixed controller executes a control sequence without
state feedback in the interval (kT (k + 1)T"), but permits contract switches every T' steps.
The MPC controller with fixed contracts achieves similar objective values, but is not strictly
better than the fixed control with dynamic contracts, suggesting that contract constraints
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Table 7.1: Accumulated Delays for Different Control Methods

Networks Experiencing || Dynamic Contracts | Fixed Contracts | Dynamic Contracts

Full Demand Fixed Control MPC MPC
All 784 753 747
(1,4) 354 381 346
(2,4) 248 244 226
(1,2,4) 513 513 195
(1,2,3) 670 646 635
(1,2) 105 398 394
(1,3) 198 507 160
( 1) 238 249 229
2) 154 122 104
(4) 115 86 85
Vehicular Volume Over Time — Average
10 — — Maximum
. e T
0 /_——_;— | ! ! | |
0 5 10 15 20 25 30

Traffic Lights at South Eastern Intersection in N

0 8 10 15 20 25 30
t

Figure 7.7: Simulation Results: (Top) Aggregated state of the network over time. (Bottom) The
traffic lights history for the links in South-Eastern Intersection of N'. The lower color is for the
light corresponding to the link in North-South direction and the upper one stands for the link in
East-West direction. The pedestrian liveness requirement (both lights simultaneously getting red)
is satisfied in each round of contract transitions (shown by thick vertical block lines).

are a major impediment for achieving a lower delay. The dynamic contracts with MPC col-
umn outperforms both other control strategies. The performance gain is greater when the
exogenous demand has an asymmetric profile, when dynamic contracts assign higher priority
to sub-networks experiencing higher demand. This suggests the usefulness of dynamic con-
tracts. On the other hand, when the exogenous demands are uniformly entering the network
in different directions, the performance benefit gained from dynamic contracts is negligible,
which suggests that a fixed contract is appropriate for traffic networks with static demand
profiles.



108

Chapter 8

Identifying Communication
Requirements

Interaction amongst agents can come in various forms such as coupled dynamics, coupling
constraints, or a joint optimization objective. A common facet of multi-agent systems is the
use of a distributed control architecture, where each agent has authority over different sets
of actuators, and an accompanying communication network for agents to coordinate their
actions or observe others. Communication and collective decision making facilitate complex
interactions amongst agents and enable them to reliably achieve collective behaviors that
would otherwise be difficult to accomplish without some coordination protocol.

In this chapter, we consider the problem of satisfying a safety objective with a controller
that is distributed over multiple agents. We say that these agents are coordinating within
a given time step if they communicate and collectively agree upon actions to execute. As a
motivating example, consider two fully autonomous vehicles equipped with vehicle-to-vehicle
(V2V) communication and tasked with avoiding a collision. At one extreme are scenarios
where no communication is necessary due to a sufficiently large distance between the vehicles,
while at the other extreme are near miss scenarios where collisions are only avoided through
precise timing, actuation, or luck. Preemptive cooperation enabled by V2V communication
is designed to help the vehicles avoid these danger scenarios and for vehicles to negotiate
collision-free trajectories.

How can one distinguish between these extremes and determine when multi-system co-
ordination is and is not necessary to maintain a safety objective? We present a method
that takes a closed loop control system and a safety requirement, then identifies a subset of
the state space that is robustly safe against temporary communication losses. This subset
naturally shrinks with time as the duration of the communication loss increases. At its core,
our method iterates an appropriate operator which propagates a coordination-free region
and resembles fixed point algorithms in the literature on symbolic system verification. This
operator is defined such that it incorporates information about the system dynamics and
the controller architecture. These results are first used to consider a scenario when multiple
agents want to cooperate, but can only do so after some delay. We then develop a self-



109

triggered coordination scheme where agents can preemptively schedule when they would like
to communicate, while still maintaining safety guarantees.

This chapter tackles a new problem that has not, to the best of our knowledge, been
addressed within the control theory literature. Compared to other work, we do not assume
a decomposition of the state space[25, 18] nor is the objective assumed to be decomposable
[18]. Instead we only consider a decomposition of the control input space and can thus ac-
commodate instances when there are complex coupling dynamics that need to be reasoned
about collectively. This work leverages compositional tools and techniques developed for
formal controller synthesis. These may involve constructing abstractions compositionally
[77], decomposing the controller synthesis procedure [49][61], or decomposing the controller
itself [82]. Assume-guarantee reasoning has also been used for compositional synthesis with
multiple agents by abstracting out internal information that is irrelevant to reason about
system interactions [67]. Chapter 7 on dynamic contracts provided sufficient conditions for
multiple agents to jointly enforce a specification with communication limited to the contract
parameter space. It also assumed that the specification was decomposable. This work on the
other hand seeks to identify a set of states where it is necessary for agents to cooperate; com-
puting this set exactly is computationally difficult, so we leverage the theoretical machinery
of Chapter 4 to compute approximations. Our self-triggering communication scheme may
be compared to similar schemes in the self-triggered control literature [40], where often the
objective is to minimize the energy expended by sensors and actuators subjected to a sta-
bility constraint [13][37]. Our work instead seeks to minimize the communication overhead
incurred as multiple agents negotiate safe actions.

8.1 Formulation

Notation

Given two sets A and B, let |A|, 24, and A x B respectively represent A’s cardinality, A’s
power set (set of all subsets), and the Cartesian product between A and B. Let R, z represent
the real and integer numbers respectively, while R>¢ and Z>o = N are their non-negative
counterparts. With an appropriate universal set (2, A’s complement A® is defined as Q \ A.
Given a Cartesian product of M sets Hf\il A; and a subset L C Hf\il A;, the projection

operation 74, : sz\i1 A; — Aj; retains the coordinates associated with A; and is defined as:

A, (L) ={a; € Aj: I(ar,...,a;-1,a541,...,ap) such that (ay,...,an) € L} (8.1)

Signals and Systems

An interval [a, b] where a, b € z includes both end points. Let [a,b) = [a,b—1] and [a] = [a, a].
Given a space P, the space of trajectories evolving in P is P[-]. A trajectory p[-] over time
interval Z is a map p[-] : Z — P. Let X and U represent a system’s state and input spaces
respectively. Sets X'[] and U|[] are referred to as state and input trajectory sets. This chapter
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deals with systems where the input space U consists of N components so that U = Hiil UL
Each of these N components is thought of as an individual agent. The system’s discrete-time
dynamics are given by a relation f C X x U x X, which can also be viewed as a set-valued
function f: X xU — 2%, Let U(z) = {u € U : f(x,u) # &} denote the set of non-blocking
control inputs at x.

A memoryless controller for system f is a relation C C X x U. The set of states
B={xeX: (z,u) € C forall u € U} is the set of blocking states under controller C. A
controller may also be viewed as a function C' : X — 2¥ that maps states to sets of admissible
inputs (states with no corresponding control input map to an empty set). A controller C' and
system f can be interconnected into a closed loop system denoted as foC : X — 2% 2. The
next state x[k + 1] satisfies z[k + 1] € f o C(z[k])) if and only if there exists a u[k] € C'(z[k])
such that z[k+1] € f(x[k],u[k]). All sequences z[-] that satisfy the aforementioned condition
and z[0] € £ are said to be generated by the closed loop system f o C' with initial state set
LCX.

Control for Safety

Safety is a common requirement for cyber-physical systems. We encapsulate this notion of
safety as a region of the state space & C X that should never be exited. For a vehicle, set
S could represent a collision-free zone and a speed limit, while for a medical device & could
represent safe blood sugar levels.

Definition 32. Let S C X be a set of safe states. A control policy C : X — 2% and initial
set L C S s said to satisfy safety constraint S if all trajectories generated by a closed loop
system f o C with any initial state x[0] € L never exit S.

At each state x, there is a set of admissible control inputs C'(z) C U. A controller is
deterministic if |C(z)] = 1 only permits one action for all x € X. Although determinism
simplifies analysis of a closed loop system, deterministic controllers may be too restrictive
if the system needs to satisfy additional requirements on top of safety. For instance if two
vehicles want to avoid a collision, then a safe controller can simply enforce that both vehicles
have zero velocity but this prevents vehicles from reaching a desired location.

Loss of Safety Guarantees with a Distributed Controller

More permissive controllers can act as supervisors that restrict control actions only enough
to ensure safety. They are useful because they can be combined with other controllers that
seek to achieve other objectives such as reaching a region. When a distributed controller
is deployed on multiple systems without an underlying communication scheme, the non-
determinism contained in permissive controllers can lead to safety violations.

1Some U; may be multi-dimensional so N is not necessarily the dimension of .
2This notation was inspired by o’s usage as a function composition operator. However, it is not a
composition in the strictest sense where f(g(x)) = (f o g)(x).
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Figure 8.1: Motivating Collision Avoidance Example

Iftu = Hfil U; is decomposed into N inputs that are each under control from a different
agent, then each must concurrently select a single input u; such that

(ug,...,un) € C(x). (8.2)

It is this step where multiple agents concurrently select an input that leads to coordination
hazards. Whenever |C(x)| > 1 then assuring that (8.2) holds is not always possible without
explicit coordination and communication with other agents.

Example 5 (Illustrative Example). Consider a scenario depicted in Figure 8.1 where two
vehicles are facing one another and a collision is imminent. Both vehicles can choose between
staying in their lane or switching to the other lane and a collision is avoided only when one
vehicle switches. Clearly it is possible for a collision to be avoided as long as the two vehicles
are able to communicate and negotiate which one changes lanes. On the other hand suppose
that these vehicles are not equipped with V2V communications. If a collision does occur it is
not possible to assign fault to solely one vehicle because from both vehicles’ points of view its
action was safe as long as the other vehicle responded with the appropriate action. Instead
one can only attribute the fault to both agents’ failure to negotiate.

To formalize the notion of coordination, we first define a minimal independent controller
IND¢ associated with C'. The set of possible controller actions at x is IND¢(x) and depicted
in Figure 8.2.

INDo(z) = H 7, C (). (8.3)

The projection m,,C(z) of this controller onto each agent i’s individual component U;
yields the set of all control inputs permitted at state x without any information about
how other agents behave. Any input u; & m, C(z) indicates that agent i is either reckless
or malicious. If all agents pick a u; € my,C(z) then they have all reasonably attempted
to satisfy the safety condition by selecting a point (uq,...,uy) € INDc(x), but the joint
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Figure 8.2: For some fixed z € X, the original safe control set C'(x) (union of circular patterned
region) is projected onto the axes and yields my, (C(x)) and my, (C(z)) (thick lines on axes). Com-
bining the projections gives the coordination-free counterpart IND¢o(z) (darker regions) defined in
Section 8.2.

condition (uy,...,uy) € C(x) is not necessarily satisfied because C(x) C INDo(z). The
independent controller IND- may also be viewed as the set of possible control actions that
are reasonable in the undesirable situation where each agent believes itself to be the leader
and relies on the other agents to be followers that respond to the leader’s choice. The set
IND¢(z) € U is the minimal independent set that contains C'(z).

Throughout the rest of this chapter, we analyze properties of the new closed loop system
f o IND¢, which is derived from f o C' but exhibits additional behaviors due to the absence
of coordination.

Note that the set of trajectories that are exhibited under f o C' is a subset of those
exhibited under f oINDy. Thus, even though the original system foC may be safe, f o INDs
may exhibit unsafe trajectories.

Problem 4. Given a set of dynamics f, a distributed controller INDc, a safe region S,
and coordination-free interval I = [a,b) identify a subset of the state space L such that all
behaviors of f o INDo with initial state x[a] € L remain in S within the interval I.
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Remarks on Coordination with Mesh Networks

V2V technology also enables the creation of ad hoc vehicular mesh networks which enables
applications in cooperative cruise control, vehicular platoons, and congestion mitigation.
Suppose each agent is represented by a vertex in an undirected graph and two agents with a
V2V have their corresponding vertices connected by an edge. Such a graph can be grouped
into equivalence classes corresponding to its connected components. We assume that agents
in the same class can communicate instantly even if they are separated by more than one
edge.

Assumption 2. Fach agent in an equivalence class can coordinate with all other agents in
that class within each time step k.

In practice, Assumption 2 is a requirement that the time scale over which messages is
passed in the network are effectively instantaneous relative to the time scale of the physical
dynamics. The independence definition of Equation (8.3) was stated under the assumption
that each U; corresponded to one agent and that no agents cooperate. If agent cooperation
occurs over a mesh network with P connected components, then the independence condition
corresponds to the connected components of the graph. For each of [ =1, ..., P equivalence
classes, let U, be the Cartesian product of the coordinates U; that belong to that class.

INDo(z) = HWZJlC<x>‘ (8.4)
=1

This formulation allows for a platoon to be treated as a single agent instead of a collection of
vehicles. For notational simplicity, we simply assume that the decomposition into equivalence
classes is given and use Equation (8.3) throughout the rest of this chapter.

8.2 Coordination-Free Operator

Given some controller C' C X x U, we use the associated minimally restrictive independent
controller from Equation (8.3) as a formal characterization of all the possible actions with a
distributed implementation of C' in the absence of coordination.

The set of predecessor states which enforce membership within a region Z C X without
coordination is computed with the operator

IPRE(Z) ={z:x € mx(IND¢)} N{x : @ # f(x,u) C Z for all u € IND¢(z)} . (8.5)

The first set ensures that there is always a valid input because mx(IND¢) is a state domain
over which the controller produces admissible inputs. The second set takes into account the
system dynamics and ensures that all states are in Z. A state in IPRE(Z) is robust in the
sense that all future possible next states f(x,u) are contained in Z despite uncertainty about
which u € IND¢(x) is chosen.



114
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Figure 8.3: Two scenarios with intermittent connections. A high value signifies an established
connection.

Operator SIPREs below identifies states that can stay in Z and remain safely in & without
coordination
SIPREs(Z) = ZNIPRE(Z)NS. (8.6)

By iterating this operator k times, we can identify a region of the state space that remains
in S for k time steps despite communication losses. Both operators are simple modifications
on standard controllable predecessor operators [86].

Remarks about Algorithmic Implementation

Set intersection, union, negation, and projection are the main operations that are required
to compute Equation (8.5) and Equation (8.6) exactly. In a continuous domain, support
for these algebraic operations may only be possible to encode for a specific set of system
dynamics and constraints (consider for instance linear system dynamics and constraints
given as unions of polyhedra). However in the scenario where state and inputs spaces are
finite, binary decision diagrams (BDDs) are an efficient data structure that supports all of the
aforementioned operations [14, 15]. Instead of imposing constraints on the system dynamics
and safety region, we opt for the finite case by using a grid to approximate a continuous
domain. Moreover, there exists a rich theoretical literature of abstraction methods [86] [76]
and accompanying software tools such as [78] which construct approximately similar finite
systems such that Assumption 3 is satisfied, even if the state and input spaces of system f
are dense, continuous subsets of Euclidean space.

Assumption 3. Both X and U are finite sets.

8.3 Applications

We consider two applications. One is to characterize latency requirements for a wireless
communication system and the other is a design for a self-triggered coordination scheme.
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Maximum Allowed Connection Delay

Our first application involves N agents that seek to establish a wireless communication
channel subject to a maximum connection delay D € N. Once a connection is established, it
is assumed to be maintained as in the left of Figure 8.3 where D = 5. If all agents attempt
to initiate a connection starting at time k, then they are able to jointly choose a control
input starting at time k + D.

Definition 33. A system in state x[k| at time k is robustly safe to connection initialization
delays of length D if x[k,00) € S for all trajectories x[k, o) generated by the time varying
closed loop system

zlk + 1] € f o INDo(x[k]) if k € [k, k + D)
zlk+ 1] € foC(x[k]) if k € [k + D, o)
where we adopt the convention [k, k+ D) =@ if D = 0.

The approach to generating the set of states that are robust to connection initialization
delays of length D is as follows. We first identify an invariance set K where the system
f o C remains in S along an infinite horizon [k 4+ D, c0) once z[k + D] € K. Invariance set
K is distinct from safe set S because a state xz[k] € S\ K satisfies the safety condition at
time k but is not guaranteed to do so along an infinite horizon. With set K, we then iterate
SIPREs(K) D times to identify the states that are guaranteed to reach K at time k + D
without exiting S within [k, k + D).

To identify I, we define operators that are analogous to IPRE and SIPRE, except that
IND¢ is replaced with C

PRE(Z) ={z:z emx(C)} N {x: @ # f(z,u) C Z for all u € C(x)} (8.9)
SPREs(Z) =ZNPRE(Z)NS (8.10)

Lemma 1. Let K := lim; ,,, SPRE5(X). Then all trajectories x[k + D, 00) such that [k +
D] € K will never intersect the unsafe set SC.

Proof. The Tarski fixed point theorem [89] ensures that the limit on the right hand side
exists and is unique if X is a finite set and SPREg is a monotone operator. Assumption 3
ensures that X’ is finite, and monotonicity of SPREs with respect to the set containment
ordering can easily be verified. Note that & = SPRE5(X'). Membership of state x[k] in set
SPRES"™!(X) ensures that both z[k], z[k + 1] € K. By induction, given x[k+ D] € SPRE%(X)
and i > 0, trajectories from system foC will remain in S along the interval [k+ D, k+ D +1)
. Because the limit set exists, lim; ,,, SPRE5(X) is the set of points that are safe along the
interval [k + D, 00). O

Building on the previous lemma, iterating SIPRE D times yields a region where all trajec-
tories of length D are safe without coordination. The closed loop system under INDo must
never exit S within the interval [k, k 4+ D), and also must terminate at z[k + D] € K so that
the system under C' can ensure safety along the infinite horizon [k + D, 00).
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Proposition 10. Let K := lim; ., SPRE5(K). Then SIPREL(K) is the set of states that are
safe under INDo for k — 1 time steps.

Proof. Suppose x[0] € SIPREX(K). The set of possible states for x[1] under controller IND¢
is uniquely defined as SIPRE) '(K) and is non-empty. By induction, a sequence z[] =
2]0] . .. z[k] generated by closed loop system f o INDo must satisfy z[j] € SIPRE, 7 (K) for all
J €10, k]. By definition SIPRE).(K) = K. O

Self-triggered coordination

It is also possible to design a scheduler for triggering communication amongst agents. Each
agent maintains a countdown for the latest time communications can be initiated. As the
system executes, this time is updated to provide a constantly changing upper bound on the
latest time the agents need to communicate. For clarity, we assume that the connection
initialization delay as in the previous section is D = 0.

The fixed point computation in Proposition 10 yields a sequence of disjoint sets. Define
T : [0, F] — 2% such that

i = { S T LS sy
where F' € N is the first value where the sequence reaches a fixed point
F = argmin,ey_ SIPRES™ (K) = SIPRES(K). (8.12)
A modified inverse function 7' : X — [0, F] is given by:
T Hz)={ie[1,F]:zeTH]}. (8.13)

Because the collection T(1), ..., T(F) consists of disjoint sets, 7~ *(x) is well defined (i.e. a
singleton set) for each x € K. Because each agent has access to T and the state x, they
can independently determine the unique value for ¢ such that = € T'(¢). A countdown with
initial value ¢ is then initialized for each agent. When that value reaches ¢ = 0 then the
agents coordinate by selecting an action and also initialize a new countdown timer. This
framework exhibits reduced communication overhead compared to a centralized architecture,
while also preserving the guarantees that are otherwise impossible with a fully decentralized
and coordination free controller architecture.

The self-triggered system is defined by augmenting the original system with a countdown

that resets after coordination has been triggered.
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Definition 34. The system with a self-triggered communication architecture satisfies the
following dynamics.

f o INDo(x[k]) if i[k] > 0
zlk+1] = { foc(x(fk]) ifilk] = 0 (8.14)
, ilk] — 1 if ilk] >0
i+l = { Tl alk+ 1)) ifilk] =0 (8.15)

Note that when i[k] = 0, the counter is reset to T~ (x[k + 1]) after the state transition from
Equation (8.14) occurs.

Proposition 11. If z[k] € K, then all trajectories x|k, o) under the self-triggered commu-
nication system from Definition 34 will remain inside S.

8.4 Examples

In each of our examples, we use a modified version of the SCOTS symbolic controller synthesis
toolbox [78], which takes a continuous control system and creates a finite state machine that
serves as an abstract representation over which a controller is synthesized. In addition to
modifications to compute Equation (8.4) and Equation (8.6), we exploit internal system
dependencies to reduce the computation time of the abstraction [38]. Creating the discrete
abstraction depends on parameters such as the grid size and granularity. Consider a set
P = Hiil P; and a discretization parameter € RY,. Its corresponding discretization grid
is [P], == [IX,[Pi],, where [Pi],, := {a € P; : a = kn; with k € Z} is a grid over a single
dimension. A full introduction to the underlying theory appears in [86] and is beyond the
scope of this paper.

Invariance in a Circle

Two agents each have control over different axes and both need to remain within a circular
region.

T (8.16)

To = U9

Let X =U = [-1,1] x [-1,1]. Although the dynamics are independent, the safety region

is a circle with a radius 0.8 so & = {(x1, 22) : 22 + 23 < .64} so both agents must coordinate

with one another to avoid exiting S near the boundary. It is clear that the system can always
enforce safety within S simply by picking a control input (uy, us) := —(z1, x2).

A discretization of the system dynamics is constructed with a sampling period of ¢ = .01.

The state space grid [X], is constructed with n = [.01,.01] and input space grid is []. with

e = [.05,.05]. Figure 8.4 depicts all safe control inputs at (z,z2) = (—.62,.5) which is near
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Figure 8.4: Individual dots represent the synthesized safe control set from SCOTS under C(x) at
point z = (x1,22) = (—.62,—.5). Without discretization, the true safe action space would be the
shaded region in red. The dashed box shows the possible coordination-free actions IND¢ (), which
is not contained in the safe action space. Importantly, the synthesized safe inputs are a subset of
the true set. Note that ||z||2 &~ .796, which is near the boundary of S.

the boundary of S. The staircase shape of the boundary between the safe and unsafe inputs
is due to the discretization of the dynamics. Inputs towards the upper right move the state
to the interior of S, while safe inputs at the lower left hug the boundary between S and S¢.
If both systems jointly pick low values for u; and us then a violation occurs, however both
agents can pick ui, us = —1 if the other agent concedes and chooses a higher value.

Figure 8.5 depicts the propagation at various time steps of the coordination-free region
via the SIPRE operator in Section 8.2. Figure 8.5 shows that a system beginning at the origin
can experience an uncoordinated collision is possible after 29 discrete time steps which under
sampling period t = .29 corresponds to an interval of length .29 in continuous time. However
for the continuous system the worst case time step is roughly twice as much .8/v/2 ~ .565,
which is the case when uj,us € {—1,1} and maintain constant values over time. This is
mainly due to the discretization errors that arise when abstracting the continuous system to
a discrete one. Note that the discretization error does not jeopardize the safety guarantee.
Rather, the discrete case underestimates how much time is available for agents to avoid
communication, thus providing a more conservative guarantee.

Intersection Collision Avoidance

Consider two vehicles that are approaching an intersection with no stop sign or a traffic
signal. They are controlled independently but each are equipped with V2V radios and may
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Figure 8.5: Multiple snapshots at i = 1,14,29 as the region K \ SPRES(K) grows. One can alterna-
tively visualize SPRE(K) as a shrinking interior white region as the length of the communication-free
interval grows. Red regions represent areas where the system will imminently exit S unless the two
agents coordinate their actions, while blue regions in the interior are only unsafe if the agents do
not coordinate for a prolonged period. A fixed point was reached at i = 29.
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Figure 8.6: Intersection Collision Avoidance

communicate with one another. They also are equipped with enough sensors to identify the
position and velocity of all vehicles near the intersection. We consider a simple set of system
dynamics given by

Pi = (8.17)

with some constant K = .2. A higher value for k signifies higher air drag. Let Py, Py =
[~10,10] and V1, V, = [0,3]. The state space is X := [[_, (P; x V) and U := [[_,[~1,1].
The invariant region is the region where at least one vehicle is outside the intersection and
no collision has occurred and is succinctly encoded as the set

Si=A{z:(I;m| = 2)V (Ip2| = 2)}. (8.19)

We use the SCOTS toolbox to synthesize a supervisory controller C' and compute its cor-
responding invariance region K with the procedure in Section 8.3. The system dynamics dis-
cretization used a sampling period of t = .2, state space grid [X], parameter n = [.1, .1, .1, .1]
and input space grid [U]. parameter € = [.1, .1].

After synthesizing controller C', its decomposed counterpart IND¢ is analyzed. Within
K¢ even a centralized controller is unable to guarantee that a collision will not occur. This
unsafe region is to be avoided and communication is necessary to avoid it. Section 8.4
depicts the 3D projection of K¢ and the evolution of the unsafe region (SIPREZ(K))¢ with
no communication.
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Figure 8.7: (Left) Three dimensional projection of the four dimensional unsafe region K¢ for
centralized controller C' with vo = 2.8 held constant. Color scale shows the earliest potential collision
time. (Right) Figure shows the unsafe action region (SIPREZ(K))¢ for the system f o INDc(z)
expand as communication delay D increases.

Self-Triggered Coordination in a 2D Gridworld

Let there be N = 2 agents navigating a 2D grid. Both agents have identical dynamics to
Equation (8.16) as shown below with superscripts i = 1,2 as indexes for each agent.

S (8.20)

The sets X" = [—.2,.2] X [—.2,.2] and U’ = [—1,1] x [-1,1] for both ¢ = 1,2. A collision has
occurred between both agents in the region

SO = {(z',2?) € X' x X : max(|z] — 22|, |2} — 2%]) < 0.1}. (8.21)

SCOTS is again used to synthesize a centralized controller for the system. The discrete
abstraction was constructed with sampling period 7 = .01, state space grid [X], with pa-
rameter n = [.01,.01,.01,.01], and input space grid [U]. with parameter ¢ = [.2,.2,.2,.2].
Figure 8.8 shows the trajectory of the system with the self-triggering implementation and
how T~ (x[k]) as defined in Equation (8.13) varies with respect to time.
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Figure 8.8: (Top) Trajectories of both systems (Bottom) The solid line is the value for 7~ (x[k])
which underapproximates the actual time to when a collision is inevitable X¢. Because Equa-
tion (8.16) is fully actuated, the safe set IC and the invariance region S are identical.
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Chapter 9

Conclusion and Future Directions

This thesis has provided a variety of methods to tackle key algorithmic issues in controller
synthesis. One of its central goals was to foster a symbiotic relationship between theoret-
ical and algorithmic breakthroughs by easing the transfer of knowledge between the two.
It accomplished this by mapping continuous and discrete algorithms for robust controller
synthesis onto a common core framework, blending the two and making it easier to inte-
grate custom heuristics or domain specific structure in the algorithms. We’ve demonstrated
that this methodology enables the construction of novel control synthesis algorithms with
soundness guarantees. A well tested method to decrease the computational requirements in
control synthesis is to capture and encode structure in the synthesis algorithm. This thesis
has shown how locality and topological structure can be exploited to reduce the synthesizer
computation requirements. It has also shown that decomposing the system dynamics into
smaller components eliminates redundant work, and provides a method to derive guarantees
about the behavior that arises after interconnecting controlled systems.

Future breakthroughs in control synthesis will rely on a combination of theoretical and
algorithmic advances. These breakthroughs will span a variety of areas from more efficient
algorithms, to revisiting fundamental assumptions about how a constructed controller will
interact with other components in a cyber-physical system. The following areas are potential
directions for future research.

Efficient Algorithms for Symbolic Reasoning

A flexible framework for control synthesis ensures that future modifications and intuition can
be incorporated into existing workflows. The framework served as a powerful layer of ab-
straction to encode synthesis algorithms. Thus far, the burden of designing these algorithms
at this layer fell on the user who could declare that the dynamics exhibit a specific struc-
tural property. An alternative approach instead tasks the synthesizer with automatically
identifying structure in the control synthesis problem. For instance, the spectrum between
purely monolithic and purely distributed controllers could be characterized by the amount
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of information shared amongst the controllers. This value is not known a priori and could
be learned while synthesizing the controller.

The relational interfaces framework is a layer that lies on top of software packages for
manipulating and reasoning about predicates. This layer is domain agnostic in principle,
but is dramatically affected by the choice of this package. The first half of this thesis used
binary decision diagrams (BDDs) as an engine to perform quantifier elimination because they
empirically exhibited the best performance. While BDDs have outperformed approaches that
use multi-dimensional arrays, they still encounter memory bottlenecks when representing
higher dimensional sets. Swapping BDDs for more recent quantified Boolean formula solvers
such as CADET [73] could lead to substantial runtime and memory improvements.

Stochastic Models and Abstractions

Deploying robust control synthesis in the real world will require revisiting the foundations
and assumptions of robust control synthesis, which requires having a reasonable model of
an adversarial environment’s strength. Mismatches between the environment model and the
true real-world environment leads to two undesirable outcomes. When using too benign an
environment model the synthesizer result is overly optimistic about its capabilities; when
using too adversarial an environment model the resulting controller is conservative or may
be non-existent.

Balancing these two can be achieved via a more data-driven approach for calibrating the
environment model. Rather than encoding uncertainty about the environment as a non-
deterministic adversary, it can instead be represented as a stochastic entity. This approach
“smooths” the environmental model and circumvents the conservatism that naturally arises
from robust analysis and synthesis. Concepts from measure, information, and coding theory
will likely be useful for new definitions of stochastic refinement.

Beyond Zero-Sum Games

A core assumption in robust control is that the environment is adversarial and can react to
controller actions in its quest to violate the specification. The “environment” could consist
of many different entities with different goals and capabilities.

There is a spectrum between adversarial and cooperative agents and more often than
not they lie somewhere between these two extremes. For instance, some agents may intend
to be cooperative but be unable to precisely execute on that intention. Others can have
their own goals and cooperate the controller’s goals as long as they do not conflict with their
own. Most agents can only allocate attention and computational resources to a small set of
tasks, or have incomplete information about the environment current state. Constructing
controllers that operate in the real world reliable will require breaking free from zero-sum
games to a broader game theoretic framework that accommodates agents with more complex
interactions, incentives, and capabilities.
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Synthesizing Controllers with Architectural Constraints

The real world imposes many auxiliary constraints on controller design. While it may be
feasible mathematically to synthesize a controller, issues such as actuation and sensing de-
lays and communication constraints could invalidate the synthesized controller’s guarantees.
Novel control architectures could accommodate these constraints and mitigate shortcomings.
We’ve seen instances of centralized and distributed controllers. Other potential architectures
include imposing a priority ordering for sequential decision making or have control inputs
chosen over varying time horizons.

Blending Offline and Online Guarantees

Online and offline guarantees play distinct roles in designing autonomous systems. Comput-
ing guarantees offline benefits from additional computational resources and ideally is used to
compute system invariants that are true over long (or possibly infinite) time horizons. These
are especially useful for autonomous system designers who want certificates about control
system behavior before deploying them. The offline approach comes at the cost of requiring
an accurate generative model of the system environment beforehand to compute long horizon
guarantees. Guarantees computed online are tighter because they have much richer infor-
mation about the environment. These are typically only valid over a short time horizon,
but can be used for online planning and runtime verification. Constructing introspective
systems that can understand their own capabilities and deficiencies will require bridging the
gap between offline and online guarantees.
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Chapter 10

Appendix

10.1 Temporal Logic

Temporal logic [71] is a powerful formalism to encode complex timing requirements. It
augments the standard Boolean logic connectives with temporal operators, allowing one to
incorporate timing dependencies into statements about signals. Temporal logic has been
used as a specification language for controller synthesis and verification of cyber-physical
systems.

Linear temporal logic (LTL) is a specification language for discrete time signals [5]. An
LTL formula encodes a set of infinite length signals. Predicates are encoded as statements
that are true at a specific instant in time. A collection of temporal operators allows one to
make statements with temporal constraints.

Definition 35 (Linear Temporal Logic). Linear temporal logic formulas are constructed with
the syntax below

d=T|p| 20|01V 2| d1 N2 | X |Fop| G| 91Uy

where p is a predicate whose satisfaction is determined at each time step. The semantics of
the four temporal operators X, F, G, and U are summarized below:

o Specification X¢ with the “next” operator X is true if and only if ¢ is true at the next
time step.

e Specification F¢ with the “eventually” operator ¥ is true if and only if ¢ is true at the
current time step or there exists a future time step when ¢ is true.

e Specification Go with the “always” operator G is true if and only if ¢ is true at the
present and all future time steps.

o Specification 1 Uy with the “until” operator U is true if and only if ¢ is eventually
true and ¢y is true for all future time instances before ¢o becomes true.
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A proposition is a statement that is either true or false at a given time step, such as
“the number of vehicles in link 1 is less than 20” and can be interpreted as a subset of the
state-input space X x U. Boolean operators — (negation), A (intersection/conjunction), and
V (union/disjunction) are used to make new statements.

Metric temporal logic (MTL) [52] is another variant of temporal logic where the temporal
operators temporal operators associated with a given time interval. It has been applied to
both discrete time and continuous time signals.

Definition 36 (Metric Temporal Logic). Metric temporal logic formulas are constructed
with the syntax below

p=TI|p|=¢| 1V 2|1 Ab2 | Flapyd| Gap® | 01U 0002 (10.1)

where p is a predicate and |a,b) represents a continuous or discrete time interval. The
semantics of the three temporal operators Fig ), Gap), and Uy are summarized below:

o G, ¢ Specification ¢ holds for all times t € [a, b)
o F,1¢: Specification ¢ holds for some times t € [a,b)
o 01U )02 Specification ¢y holds at some time t € [a,b) and ¢1 holds for all time [a,t).

Because metric temporal logic was designed to accommodate continuous signals, it lacks
the next operator X from LTL because no notion of "next time step” exists. When applied
to discrete time signals, the next operator can still be mimicked with either Gy 2y or F[i o)
because the interval [1,2) represents a subsequent time step. Specifications can be composed
with one another to express more complex requirements. For instance, G 5F 31 < 11is a
recurrence property where for every ¢t € [0,5), v is satisfied at time ¢, + 1 or t + 2.

10.2 Ordered Relations

Binary relations are used to compare two elements in a set. They recover the typical notions
of equality and ordering when restricted to scalar variables, but generalize these notions for
more complex spaces.

Partial Orders

Definition 37 (Partially Ordered Set). A partial order (A, =<4) is a set A equipped with a
binary relation <4 that satisfies each of the following properties for all a,b,c € A:

1. (Reflezivity) If a=<aa
2. (Antisymmetry) If a=ab and b=<4a then a = b.

3. (Transitivity) If a=b and b= 4c then a=4c.



136

A partially ordered set (L, =<p) is called a complete lattice if every subset M of L has
a least upper bound and a greatest lower bound denoted as T, and L respectively. A
common instance of a partial order is the subset relation C over the set of subsets of a given
set. This order is also a complete lattice.

Monotone Functions

Monotone functions are maps that preserve order.

Definition 38 (Monotone Function). Let (P, <p) and (Q, <q) be two partially ordered sets.
A function f : P — @ is monotone if:

pi=2pp2 = [(p1)3qf(pe) (10.2)
for all py,ps € P.
Property 1 (Monotone Function Composition). Let f : B — C and g : A — B be two total

and monotone functions. Then the composition fog: A — C is also a monotone function
with respect to the orders (A, <) and (C,=¢).

Fixed Points of Monotone Functions

The Knaster-Tarski fixed point theorem guarantees that there exists a fixed point for a
monotone function over a complete lattice.

Theorem 9 (Knaster-Tarski Fixed Point Theorem [27]). Let (L, =<1) be a complete lattice
and f : L — L be a monotone function. The set of all fixed points is a complete lattice.

A corollary of the Knaster-Tarski fixed point theorem is that the map f contains a least
and greatest fixed point over (L= ) because complete lattices are non-empty [27].

Property 2 below signifies that the least and greatest fixed points of a monotone function
over a finite domain can be computed in a finite number of steps [19]. This is useful in
the context of control synthesis because the control predecessor operation is a monotone
function. The finiteness constraint can be satisfied by abstracting a state space into a finite
domain.

Property 2. Let L and T, be the bottom and top element respectively of the finite complete
lattice L. Then

o fHLo)Zpf ™ (Lr) and fHTL)=ZLf (TL).

e There exists an integer i’ such that for every i > i’
FU(LL) = fi(Lp).

e There exists an integer i such that for every i > 1

F(TL) = f(To).
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