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Abstract

Visual Dynamics Models for Robotic Planning and Control

by

Alex Xavier Lee

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Co-chair

Assistant Professor Sergey Levine, Co-chair

For a robot to interact with its environment, it must perceive the world and understand how the
world evolves as a consequence of its actions. This thesis studies a few methods that a robot can use
to respond to its observations, with a focus on instances that can leverage visual dynamic models.
In general, these are models of how the visual observations of a robot evolves as a consequence
of its actions. This could be in the form of predictive models that directly predict the future in
the space of image pixels, in the space of visual features extracted from these images, or in the
space of compact learned latent representations. The three instances that this thesis studies are
in the context of visual servoing, visual planning, and representation learning for reinforcement
learning. In the first case, we combine learned visual features with learning single-step predictive
dynamics models and reinforcement learning to learn visual servoing mechanisms. In the second
case, we use a deterministic multi-step video prediction model to achieve various manipulation
tasks through visual planning. In addition, we show that conventional video prediction models are
unequipped to model uncertainty and multiple futures, which could limit the planning capabilities
of the robot. To address this, we propose a stochastic video prediction model that is trained with
a combination of variational losses, adversarial losses, and perceptual losses, and show that this
model can predict futures that are more realistic, diverse, and accurate. Unlike the first two cases,
in which the dynamics model is used to make predictions for decision-making, the third case learns
the model solely for representation learning. We learn a stochastic sequential latent variable model
to learn a latent representation, and then use it as an intermediate representation for reinforcement
learning. We show that this approach improves final performance and sample efficiency.
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Chapter 1

Introduction

Robots have the potential to help people and improve human lives. In robotic manipulation, robots
can, for example, help perform tasks in the house, at a factory, or in surgical procedures. These
robots can perform tedious and repetitive tasks, such as house cleaning and manufacturing, and
thus free up people to do tasks that they find more enjoyable. Or, these robots can specialize
in tasks that require a high level of accuracy and precision, such as surgeries, and thus enable
surgical procedures to be safer and more accessible to patients. In mobile robotics, self-driving
cars can reduce car accidents and traffic, delivery drones can reduce delivery times and costs, and
ambulance drones can deliver critical medical equipment to a patient going through an emergency.

All of these robotic tasks share the same challenges: the robot needs to perceive and understand
its complex environment in order to decide how to interact with it. Specifically, since we live in a
world with a myriad of visual information, it is important for robots to be equipped with perception
skills that can process visual observations, such as images from camera sensors.

This thesis studies a few methods that a robot can use to respond to its observations, with a
focus on instances that leverage dynamic models of image observations. We consider the case
where a robot continuously perceives its environment and adapts its execution based on those
observations. The robot executes closed-loop trajectories, which can manifest itself in various
forms. In this thesis we study three methods that use visual dynamics models:

• The single-step predictive model is used to choose actions based on predictions of the im-
mediate the future.

• The multi-step predictive model is used to plan a trajectory based on predictions from mul-
tiple steps into the future.

• The model is used for representation learning to improve and speed up the learning, but its
predictions are not used for decision-making.

Although the techniques presented here are general and can be applied to any sensor modality,
this thesis focuses on image observations due to the challenging nature of perceiving and modeling
high-dimensional image observations.
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In order for the robot to perceive and act in its environment, it should understand how the
world evolves as a consequence of its actions, which can be accomplished using a visual dynamics
model. A visual dynamics model is a model of how the visual observations of a robot evolve as a
consequence of its actions. This could be in the form of a video prediction model, which predicts
future video frames conditioned on past and current frames, as well as a sequence of future actions.
These models directly predict the future in the space of image pixels. Alternatively, the model
could predict the future in some visual feature space, where the features are extracted from the
image observations. In general, these dynamics models operate directly on images or on features
that can readily be extracted from the images, as opposed to some ground-truth state. These models
allow the robot to predict the consequences of its actions, either one step or multiple steps into the
future, and then act intelligently based on these predictions. Alternatively, the model could be used
specifically for representation learning, without using its predictions for decision-making.

The contributions of this thesis are as follows:

• Chapter 2 considers the case where single-step dynamics models are used in the context
of visual servoing. Visual servoing is a classical problem in robotics and, in fact, several
robotic problems can be formulated as such. Examples of visual servoing problems include
path following, space docking, and manipulation. Visual servoing involves choosing actions
that move a robot in response to camera observations in order to reach a goal configuration.
An ubiquitous approach to servoing involves using one-step dynamics models, and choosing
actions that minimize errors between the one-step prediction and the goal configuration. This
error is classically defined in the space of poses or feature points extracted from images, or
more recently, directly in the space of pixel intensities. We propose a different approach
that uses spatial feature maps, derived from a deep convolutional neural network pre-trained
on image classification, and learned dynamics models in the space of these feature maps.
However, using these feature maps introduces a new problem. The features have arbitrary
units and their relative magnitudes can be scaled arbitrarily. This is problematic since the
scale determines how much a particular feature is penalized in the error and, depending on
the task, we may want to penalize some features more than others. To address this, we
learn a relative scaling of the feature maps by formulating the visual servoing problem as
a sample-efficient reinforcement learning problem. The overall approach combines learned
visual features with learning predictive dynamics models and reinforcement learning to learn
visual servoing mechanisms. This work was published previously as Lee et al. (2017).

• Chapter 3 considers the case in which multi-step dynamics models are used for visual plan-
ning, in order to solve manipulation tasks involving pushing objects to desired positions on a
table. This work uses a multi-step video prediction model, which enables the robot to predict
which sequence of actions results in the best outcome, and then use those actions to solve
a task. The video prediction model predicts future frames by predicting spatial transforma-
tions of pixels over time, conditioned on the current and past frames as well as a sequence
of actions. This allows us to define cost functions in terms of desired pixel motions that
are provided as a user input, and then use these cost functions to determine which actions
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lead to the best outcome. This work proposes a deterministic video prediction model and
demonstrates that it can be used for visual planning. Using this method, we are able to ac-
complish tasks that involve pushing objects on a table by a robot manipulator. These tasks
are intuitively specified by a human, who indicates the desired motions of objects that lie on
a table. This work appeared previously as Ebert et al. (2017).

• The aforementioned visual planning work uses a deterministic video prediction model that
is trained with standard pixel-wise regression losses. This leads to blurry and unrealistic
predictions for complex environments with inherent uncertainty and ambiguity. However,
it is imperative to have an accurate predictive model, especially for long horizons, in order
to equip the robot with better planning capabilities. Chapter 4 presents a stochastic video
prediction model that is trained with a combination of variational losses, adversarial losses,
and perceptual losses. We show that the proposed approach leads to predictions that are
more realistic, diverse, and accurate, even for several time steps into the future. This work
was previously presented in Lee et al. (2018).

• The approach in Chapter 5 considers to explicitly learn representations that can accelerate
reinforcement learning from images. This work learns a compact latent representation space
using a stochastic sequential latent variable model, and then uses the representation in an
actor-critic reinforcement learning framework, where the critic model is learned within this
latent space. By learning a critic within a compact state space, we can learn much more
efficiently than standard reinforcement learning methods. We show that the proposed method
outperforms both model-free and model-based alternatives in terms of final performance and
sample efficiency, on a range of difficult image-based control simulated benchmark tasks.
This work is currently in preparation (Lee et al., 2019).

• Finally, we conclude and discuss future directions in Chapter 6.
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Chapter 2

Learning Visual Servoing with Deep
Features and Fitted Q-Iteration

2.1 Introduction
Visual servoing is a classic problem in robotics that requires moving a camera or robot to match a
target configuration of visual features or image intensities. Many robot control tasks that combine
perception and action can be posed as visual servoing, including navigation (DeSouza and Kak,
2002; Chen et al., 2006), where a robot must follow a desired path; manipulation, where the robot
must servo an end-effector or a camera to a target object to grasp or manipulate it (Malis et al.,
1999; Corke, 1993; Hashimoto, 1993; Hosoda and Asada, 1994; Kragic and Christensen, 2002);
and various other problems, as surveyed in Hutchinson et al. (1996). Most visual servoing methods
assume access to good geometric image features (Chaumette and Hutchinson, 2006; Collewet et al.,
2008; Caron et al., 2013) and require knowledge of their dynamics, which are typically obtained
from domain knowledge about the system. Using such hand-designed features and models prevents
exploitation of statistical regularities in the world, and requires manual engineering for each new
system.

In this work, we study how learned visual features, learned predictive dynamics models, and
reinforcement learning can be combined to learn visual servoing mechanisms. We focus on target
following, with the goal of designing algorithms that can learn a visual servo using low amounts
of data of the target in question, so as to be easy and quick to adapt to new targets. Successful
target following requires the visual servo to tolerate moderate variation in the appearance of the
target, including changes in viewpoint and lighting, as well as occlusions. Learning invariances to
all such distractors typically requires a considerable amount of data. However, since a visual servo
is typically specific to a particular task, it is desirable to be able to learn the servoing mechanism
very quickly, using a minimum amount of data. Prior work has shown that the features learned
by large convolutional neural networks on large image datasets, such as ImageNet classification
(Deng et al., 2009), tend to be useful for a wide range of other visual tasks (Donahue et al., 2014).
We explore whether the usefulness of such features extends to visual servoing.



CHAPTER 2. LEARNING VISUAL SERVOING WITH DEEP FEATURES AND FQI 5

To answer this question, we propose a visual servoing method that uses pre-trained features, in
our case obtained from the VGG network (Simonyan and Zisserman, 2015) trained for ImageNet
classification. Besides the visual features, our method uses an estimate of the feature dynamics
in visual space by means of a bilinear model. This allows the visual servo to predict how motion
of the robot’s camera will affect the perceived feature values. Unfortunately, servoing directly on
the high-dimensional features of a pre-trained network is insufficient by itself to impart robustness
on the servo: the visual servo must not only be robust to moderate visual variation, but it must
also be able to pick out the target of interest (such as a car that the robot is tasked with following)
from irrelevant distractor objects. To that end, we propose a sample-efficient fitted Q-iteration
procedure that automatically chooses weights for the most relevant visual features. Crucially, the
actual servoing mechanism in our approach is extremely simple, and simply seeks to minimize the
Euclidean distance between the weighted feature values at the next time step and the target. The
form of the servoing policy in our approach leads to an analytic and tractable linear approximator
for the Q-function, which leads to a computationally efficient fitted Q-iteration algorithm. We
show that we can learn an effective visual servo on a complex synthetic car following benchmark
using just 20 training trajectory samples for reinforcement learning. We demonstrate substantial
improvement over a conventional approach based on image pixels or hand-designed keypoints, and
we show an improvement in sample-efficiency of more than two orders of magnitude over standard
model-free deep reinforcement learning algorithms.

The environment for the synthetic car following benchmark is available online as the package
CitySim3D1, and the code to reproduce our method and experiments is also available online2.
Supplementary videos of all the test executions are available on the project’s website3.

2.2 Related Work
Visual servoing is typically (but not always) performed with calibrated cameras and carefully de-
signed visual features. Ideal features for servoing should be stable and discriminative, and much
of the work on visual servoing focuses on designing stable and convergent controllers under the
assumption that such features are available (Espiau et al., 2002; Mohta et al., 2014; Wilson et al.,
1996). Some visual servoing methods do not require camera calibration (Jagersand et al., 1997;
Yoshimi and Allen, 1994), and some recent methods operate directly on image intensities (Caron
et al., 2013), but generally do not use learning to exploit statistical regularities in the world and
improve robustness to distractors.

Learning is a relatively recent addition to the repertoire of visual servoing tools. Several meth-
ods have been proposed that apply ideas from reinforcement learning to directly acquire visual
servoing controllers (Lampe and Riedmiller, 2013; Sadeghzadeh et al., 2015). However, such
methods have not been demonstrated under extensive visual variation, and do not make use of
state-of-the-art convolutional neural network visual features. Though more standard deep rein-

1https://github.com/alexlee-gk/citysim3d
2https://github.com/alexlee-gk/visual_dynamics
3http://rll.berkeley.edu/visual_servoing

https://github.com/alexlee-gk/citysim3d
https://github.com/alexlee-gk/visual_dynamics
http://rll.berkeley.edu/visual_servoing
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forcement learning methods (Lange et al., 2012; Mnih et al., 2013; Levine et al., 2016a; Lillicrap
et al., 2016) could in principle be applied to directly learn visual servoing policies, such methods
tend to require large numbers of samples to learn task-specific behaviors, making them poorly
suited for a flexible visual servoing algorithm that can be quickly repurposed to new tasks (e.g. to
following a different object).

Instead, we propose an approach that combines learning of predictive models with pre-trained
visual features. We use visual features trained for ImageNet (Deng et al., 2009) classification,
though any pre-trained features could in principle be applicable for our method, so long as they
provide a suitable degree of invariance to visual distractors such as lighting, occlusion, and changes
in viewpoint. Using pre-trained features allows us to avoid the need for large amounts of experi-
ence, but we must still learn the policy itself. To further accelerate this process, we first acquire
a predictive model that allows the visual servo to determine how the visual features will change
in response to an action. General video prediction is an active research area, with a number of
complex but data-hungry models proposed in recent years (Oh et al., 2015; Watter et al., 2015;
Mathieu et al., 2016; Xue et al., 2016; Lotter et al., 2017; Jia et al., 2016; Walker et al., 2016;
Vondrick et al., 2016).

However, we observe that convolutional response maps can be interpreted as images and, under
mild assumptions, the dynamics of image pixels during camera motion can be well approximated
by means of a bilinear model (Censi and Murray, 2015). We therefore train a relatively simple
bilinear model for short-term prediction of visual feature dynamics, which we can use inside a
very simple visual servo that seeks to minimize the error between the next predicted feature values
and a target image.

Unfortunately, simply training predictive models on top of pre-trained features is insufficient to
produce an effective visual servo, since it weights the errors of distractor objects the same amount
as the object of interest. We address this challenge by using an efficient Q-iteration algorithm to
train the weights on the features to maximize the servo’s long-horizon reward. This method draws
on ideas from regularized fitted Q-iteration (Gordon, 1995; Ernst et al., 2005; Farahmand et al.,
2009) and neural fitted Q-iteration (Riedmiller, 2005) to develop a sample-efficient algorithm that
can directly estimate the expected return of the visual servo without the use of any additional
function approximator.

2.3 Problem Statement
Let yt be a featurization of the camera’s observations xt and let y∗ be some given goal feature
map. For the purposes of this work, we define visual servoing as the problem of choosing controls
ut for a fixed number of discrete time steps t as to minimize the error ‖y∗ − yt‖.

We use a relatively simple gradient-based servoing policy that uses one-step feature dynamics,
f : {yt,ut} → yt+1. The policy chooses the control that minimizes the distance between the goal
feature map and the one-step prediction:

π(xt,x∗) = arg min
u
‖y∗ − f(yt,u)‖2 . (2.1)
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Figure 2.1: Multiscale bilinear model. The function h maps
images x to feature maps y(0), the operator d downsamples the
feature maps y(l−1) to y(l), and the bilinear function f (l) predicts
the next feature ŷ(l). The number of channels for each feature
map is nc, regardless of the scale l.

Figure 2.2: Dilated VGG-16 net-
work. The intermediate feature maps
drawn in a lighter shade are outputs
of max-pooling layers. The features
maps in the conv4 and conv5 blocks
are outputs of dilated convolutions
with dilation factors of 2 and 4, re-
spectively.

Learning this policy amounts to learning the robot dynamics and the distance metric ‖·‖.
To learn the robot dynamics, we assume that we have access to a dataset of paired observations

and controls xt,ut,xt+1. This data is relatively easy to obtain as it involves collecting a stream of
the robot’s observations and controls. We use this dataset to learn a general visual dynamics model
that can be used for any task.

To learn the distance metric, we assume that the robot interacts with the world and collects
tuples of the form xt,ut, ct,xt+1,x∗. At every time step during learning, the robot observes xt
and takes action ut. After the transition, the robot observes xt+1 and receives an immediate cost
ct. This cost is task-specific and it quantifies how good that transition was in order to achieve
the goal. At the beginning of each trajectory, the robot is given a goal observation x∗, and it
is the same throughout the trajectory. We define the goal feature map to be the featurization of
the goal observation. We learn the distance metric using reinforcement learning and we model the
environment as a Markov Decision Process (MDP). The state of the MDP is the tuple of the current
observation and the episode’s target observation, st = (xt,x∗), the action ut is the discrete-time
continuous control of the robot, and the cost function maps the states and action (st,ut, st+1) to a
scalar cost ct.
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2.4 Visual Features Dynamics
We learn a multiscale bilinear model to predict the visual features of the next frame given the
current image from the robot’s camera and the action of the robot. An overview of the model is
shown in Figure 2.1. The learned dynamics can then be used for visual servoing as described in
Section 2.5.

Visual Features
We consider both pixels and semantic features for the visual representation. We define the function
h to relate the image x and its feature y = h (x). Our choice of semantic features are derived from
the VGG-16 network (Simonyan and Zisserman, 2015), which is a convolutional neural network
trained for large-scale image recognition on the ImageNet dataset (Deng et al., 2009). Since spatial
invariance is undesirable for servoing, we remove some of the max-pooling layers and replace the
convolutions that followed them with dilated convolutions, as done by Yu and Koltun (2016). The
modified VGG network is shown in Figure 2.2. We use the model weights of the original VGG-16
network, which are publicly available as a Caffe model (Jia et al., 2014). The features that we use
are the outputs of some of the intermediate convolutional layers, that have been downsampled to a
32× 32 resolution (if necessary) and standarized with respect to our training set.

We use multiple resolutions of these features for servoing. The idea is that the high-resolution
representations have detailed local information about the scene, while the low-resolution represen-
tations have more global information available through the image-space gradients. The features at
level l of the multiscale pyramid are denoted as y(l). The features at each level are obtained from
the features below through a downsampling operator d(y(l−1)) = y(l) that cuts the resolution in
half.

Bilinear Dynamics

The features y
(l)
t are used to predict the corresponding level’s features y

(l)
t+1 at the next time step,

conditioned on the action ut, according to a prediction function f (l)(y
(l)
t ,ut) = ŷ

(l)
t+1. We use a

bilinear model to represent these dynamics, motivated by prior work (Censi and Murray, 2015).
In order to servo at different scales, we learn a bilinear dynamics model at each scale. We con-
sider two variants of the bilinear model in previous work in order to reduce the number of model
parameters.

The first variant uses fully connected dynamics as in previous work but models the dynamics
of each channel independently. When semantic features are used, this model interprets the feature
maps as being abstract images with spatial information within a channel and different entities or
factors of variation across different channels. This could potentially allow the model to handle
moving objects, occlusions, and other complex phenomena.

The fully connected bilinear model is quite large, so we propose a bilinear dynamics that en-
forces sparsity in the parameters. In particular, we constrain the prediction to depend only on
the features that are in its local spatial neighborhood, leading to the following locally connected
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bilinear model:

ŷ
(l)
t+1,c = y

(l)
t,c +

∑
j

(
W

(l)
c,j ∗ y

(l)
t,c +B

(l)
c,j

)
ut,j +

(
W

(l)
c,0 ∗ y

(l)
t,c +B

(l)
c,0

)
. (2.2)

The parameters are the 4-dimensional tensor W (l)
c,j and the matrix B(l)

c,j for each channel c, scale
l, and control coordinate j. The last two terms are biases that allow to model action-independent
visual changes, such as moving objects. The ∗ is the locally connected operator, which is like a
convolution but with untied filter weights4.

Training Visual Feature Dynamics Models
The loss that we use for training the bilinear dynamics is the sum of the losses of the predicted
features at each level,

∑L
l=0 `

(l), where the loss for each level l is the squared `-2 norm between
the predicted features and the actual features of that level, `(l) = ‖y(l)

t+1 − ŷ
(l)
t+1‖2.

We optimize for the dynamics while keeping the feature representation fixed. This is a su-
pervised learning problem, which we solve with Adam (Kingma and Ba, 2015). The training set,
consisting of triplets xt,ut,xt+1, was obtained by executing a hand-coded policy that moves the
robot around the target with some Gaussian noise.

2.5 Learning Visual Servoing with Reinforcement Learning
We propose to use a multiscale representation of semantic features for servoing. The challenge
when introducing multiple scales and multi-channel feature maps for servoing is that the features
do not necessarily agree on the optimal action when the goal is unattainable or the robot is far
away from the goal. To do well, it’s important to use a good weighing of each of the terms in the
objective. Since there are many weights, it would be impractically time-consuming to set them by
hand, so we resort to learning. We want the weighted one-step lookahead objective to encourage
good long-term behavior, so we want this objective to correspond to the state-action value function
Q. So we propose a method for learning the weights based on fitted Q-iteration.

Servoing with Weighted Multiscale Features
Instead of attempting to build an accurate predictive model for multi-step planning, we use the
simple greedy servoing method in Equation (2.1), where we minimize the error between the target
and predicted features for all the scales. Typically, only a few objects in the scene are relevant, so

4 The locally connected operator, with a local neighborhood of nf × nf (analogous to the filter size in convolu-
tions), is defined as:

(W ∗ y)kh,kw
=

kh+bnf/2c∑
ih=kh−bnf/2c

kw+bnf/2c∑
iw=kw−bnf/2c

Wkh,kw,ih−kh,iw−kw
yih,iw

.
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the errors of some channels should be penalized more than others. Similarly, features at different
scales might need to be weighted differently. Thus, we use a weighting w

(l)
c ≥ 0 per channel c and

scale l:

π(xt,x∗) = arg min
u

∑
c

L∑
l=0

w
(l)
c

|y(l)
·,c |

∥∥∥y(l)
∗,c − f (l)

c

(
y

(l)
t,c,u

)∥∥∥2

2
+
∑
j

λju
2
j , (2.3)

where | · | denotes the cardinality operator and the constant 1/|y(l)
·,c | normalizes the feature errors by

its spatial resolution. We also use a separate weight λj for each control coordinate j. This opti-
mization can be solved efficiently since the dynamics is linear in the controls (see Appendix A.1).

Q-Function Approximation for the Weighted Servoing Policy
We choose a Q-value function approximator that can represent the servoing objective such that the
greedy policy with respect to the Q-values results in the policy of Equation (2.3). In particular, we
use a function approximator that is linear in the weight parameters θ> =

[
w> λ>

]
:

Qθ,b(st,u) = φ(st,u)>θ + b, φ (st,u)> =

[[
1

|y(l)
·,c |

∥∥∥y(l)
∗,c − f (l)

c

(
y

(l)
t,c,u

)∥∥∥2

2

]>
c,l

[
u2
j

]>
j

]
.

We denote the state of the MDP as st = (xt,x∗) and add a bias b to the Q-function. The servoing
policy is then simply πθ(st) = arg minu Qθ,b(st,u). For reinforcement learning, we optimized for
the weights θ but kept the feature representation and its dynamics fixed.

Learning the Q-Function with Fitted Q-Iteration
Reinforcement learning methods that learn a Q-function do so by minimizing the Bellman error:∥∥∥∥Q (st,ut)−

(
ct + γmin

u
Q (st+1,u)

)∥∥∥∥2

2

. (2.4)

In fitted Q-iteration, the agent iteratively gathers a dataset {s(i)
t ,u

(i)
t , c

(i)
t , s

(i)
t+1}Ni of N samples

according to an exploration policy, and then minimizes the Bellman error using this dataset. We
use the term sampling iteration to refer to each iteration j of this procedure. At the beginning of
each sampling iteration, the current policy with added Gaussian noise is used as the exploration
policy.

It is typically hard or unstable to optimize for both Q-functions that appear in the Bellman error
of Equation (2.4), so it is usually optimized by iteratively optimizing the current Q-function while
keeping the target Q-function constant. However, we notice that for a given state, the action that
minimizes its Q-values is the same for any non-negative scaling α of θ and for any bias b. Thus,
to speed up the optimization of the Q-function, we first set α(k− 1

2
) and b(k− 1

2
) by jointly solving for

α and b of both the current and target Q-function:

min
α≥0,b

1

N

N∑
i=1

∥∥∥∥Qαθ(k−1),b

(
s

(i)
t ,u

(i)
t

)
−
(
c

(i)
t + γmin

u
Qαθ(k−1),b

(
s

(i)
t+1,u

))∥∥∥∥2

2

+ ν ‖θ‖2
2 . (2.5)
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This is similar to how, in policy evaluation, state values can be computed by solving a linear
system. We regularize the parameters with an `-2 penalty, weighted by ν ≥ 0. We use the term
FQI iteration to refer to each iteration k of optimizing the Bellman error, and we use the notation
(k− 1

2
) to denote an intermediate step between iterations (k−1) and (k). The parameters θ can then be

updated with θ(k− 1
2

) = α(k− 1
2

)θ(k−1). Then, we update θ(k) and b(k) by optimizing for θ and b of
the current Q-function while keeping the parameters of the target Q-function fixed:

min
θ≥0,b

1

N

N∑
i=1

∥∥∥∥Qθ,b

(
s

(i)
t ,u

(i)
t

)
−
(
c

(i)
t + γmin

u
Q

θ(k− 1
2 ),b(k−

1
2 )

(
s

(i)
t+1,u

))∥∥∥∥2

2

+ ν ‖θ‖2
2 . (2.6)

A summary of the algorithm used to learn the feature weights is shown in Algorithm 1.

Algorithm 1 FQI with initialization of policy-independent parameters

1: procedure FQI(θ(0), σ2
exploration, ν)

2: for s = 1, . . . , S do . sampling iterations
3: Gather dataset {s(i)

t ,u
(i)
t , c

(i)
t , s

(i)
t+1}Ni using exploration policy N (πθ(0) , σ2

exploration)
4: for k = 1, . . . , K do . FQI iterations
5: Fit α(k− 1

2
) and b(k− 1

2
) using (2.5)

6: θ(k− 1
2

) ← α(k− 1
2

)θ(k−1)

7: Fit θ(k) and b(k) using (2.6)
8: end for
9: θ(0) ← θ(K)

10: end for
11: end procedure

2.6 Experiments
We evaluate the performance of the model for visual servoing in a simulated environment. The
simulated quadcopter is governed by rigid body dynamics. The robot has 4 degrees of freedom,
corresponding to translation along three axis and yaw angle. This simulation is inspired by tasks in
which an autonomous quadcopter flies above a city, with the goal of following some target object
(e.g., a car).

Learning Feature Dynamics and Weights with FQI
The dynamics for each of the features were trained using a dataset of 10000 samples (correspond-
ing to 100 trajectories) with Adam (Kingma and Ba, 2015). A single dynamics model was learned
for each feature representation for all the training cars (Figure 2.3). This training set was generated
by executing a hand-coded policy that navigates the quadcopter around a car for 100 time steps per
trajectory, while the car moves around the city.
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Figure 2.3: Cars used to learn the dynamics and
the feature weights. They were also used in some
of the test experiments.

Figure 2.4: Novel cars used only in the test ex-
periments. They were never seen during training or
validation.
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Figure 2.5: Costs of test executions using various feature dynamics models, where the feature weights are
optimized with FQI. We test on cars that were used during learning (left plot) and on novel cars that were
only used at test time (right plot). The reported values are the mean and standard error across 100 trajectories,
of up to 100 time steps each. The policies based on pixel intensities use either fully connected or locally
connected dynamics, whereas all the policies based on VGG features use locally connected dynamics. The
policies based on deeper VGG features generally achieve better performance, except for the deepest feature
representation, VGG conv5 3, which is not as suitable for approximating Q-values. The policies based
on pixel intensities and VGG conv5 3 features perform worse on the novel cars. However, VGG features
conv1 2 through conv4 3 achieve some degree of generalization on the novel cars.

We used the proposed FQI algorithm to learn the weightings of the features and control regu-
larizer. At every sampling iteration, the current policy was executed with Gaussian noise to gather
data from 10 trajectories. All the trajectories in our experiments were up to 100 time steps long.
The immediate cost received by the agent encodes the error of the target in image coordinates
(details in Appendix A.2). Then, the parameters were iteratively updated by running K = 10
iterations of FQI. We ran the overall algorithm for only S = 2 sampling iterations and chose the
parameters that achieved the best performance on 10 validation trajectories. These validation tra-
jectories were obtained by randomly choosing 10 cars from the set of training cars and randomly
sampling initial states, and executing the policy with the parameters of the current iteration. All
the experiments share the same set of validation trajectories.
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Comparison of Feature Representations for Servoing
We compare the servoing performance for various feature dynamics models, where the weights are
optimized with FQI. We execute the learned policies on 100 test trajectories and report the average
cost of the trajectory rollouts on Figure 2.5. The cost of a single trajectory is the (undiscounted)
sum of costs ct. We test the policies with cars that were seen during training as well as with a set
of novel cars (Figure 2.4), to evaluate the generalization of the learned dynamics and optimized
policies.

The test trajectories were obtained by randomly sampling 100 cars (with replacement) from
one of the two sets of cars, and randomly sampling initial states (which are different from the ones
used for validation). For consistency and reproducibility, the same sampled cars and initial states
were used across all the test experiments, and the same initial states were used for both sets of cars.
These test trajectories were never used during the development of the algorithm or for choosing
hyperparameters.

From these results, we notice that policies based on deeper VGG features, up to VGG conv4 3,
generally achieve better performance. However, the deepest feature representation, VGG conv5 3,
is not as suitable for approximating Q-values. We hypothesize that this feature might be too spa-
tially invariant and it might lack the necessary spatial information to differentiate among different
car positions. The policies based on pixel intensities and VGG conv5 3 features perform worse on
the novel cars. However, VGG features conv1 2 through conv4 3 achieve some degree of general-
ization on the novel cars.

We show sample trajectories in Table 2.1. The policy based on pixel-intensities is susceptible
to occlusions and distractor objects that appear in the target image or during executions. This is
because distinguishing these occlusions and distractors from the cars cannot be done using just
RGB features.

Comparison of Weightings from Other Optimization Methods
We compare our policy using conv4 3 feature dynamics, with weights optimized by FQI, against
policies that use these dynamics but with either no feature weighting or weights optimized by other
algorithms.

For the case of no weighting, we use a single feature weight w but optimize the relative weight-
ing of the controls λ with the cross entropy method (CEM) (De Boer et al., 2005). For the other
cases, we learn the weights with Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015). Since the servoing policy is the minimizer of a quadratic objective (Equation (2.3)), we
represent the policy as a neural network that has a matrix inverse operation at the output. We train
this network for 2 and 50 sampling iterations, and use a batch size of 4000 samples per iteration.
All of these methods use the same feature representation as ours, the only difference being how the
weights w and λ are chosen.

We report the average costs of these methods on the right of Figure 2.6. In 2 sampling iterations,
the policy learned with TRPO does not improve by much, whereas our policy learned with FQI
significantly outperforms the other policies. The policy learned with TRPO improves further in 50
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Feature
Dynamics

Observations from Test Executions Cost

pixel,
locally
connected

0.95

6.26

14.49

VGG
conv4 3

0.38

0.48

1.02

Table 2.1: Sample observations from test executions in our experiments with the novel cars, and the costs
for each trajectory, for different feature dynamics. We use the weights learned by our FQI algorithm. In each
row, we show the observations of every 10 steps and the last one. The first observation of each trajectory
is used as the target observation. The trajectories shown here were chosen to reflect different types of
behaviors. The servoing policy based on pixel feature dynamics can generally follow cars that can be
discriminated based on RGB pixel intensities (e.g., a yellow car with a relatively uniform background).
However, it performs poorly when distractor objects appear throughout the execution (e.g., a lamp) or when
they appear in the target image (e.g., the crosswalk markings on the road). On the other hand, VGG conv4 3
features are able to discriminate the car from distractor objects and the background, and the feature weights
learned by the FQI algorithm are able to leverage this. Additional sample executions with other feature
dynamics can be found in Table A.2 in the Appendix.

iterations; however, the cost incurred by this policy is still about one and a half times the cost of
our policy, despite using more than 100 times as many trajectories.

Comparison to Prior Methods
We also consider other methods that do not use the dynamics-based servoing policy that we pro-
pose. We report their average performance on the left of Figure 2.6.

For one of the prior methods, we train a convolutional neural network (CNN) policy end-to-
end with TRPO. The policy is parametrized as a 5-layer CNN, consisting of 2 convolutional and 3
fully-connected layers, with ReLU activations except for the output layer; the convolutional layers
use 16 filters (4× 4, stride 2) each and the first 2 fully-connected layers use 32 hidden units each.
The policy takes in raw pixel-intensities and outputs controls.
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Figure 2.6: Comparison of costs on test executions of prior methods against our method based on VGG
conv4 3 feature dynamics. These costs are from executions with the training cars; the costs are compara-
ble when testing with the novel cars (Table A.1). The first two methods use classical image-based visual
servoing (IBVS) with feature points from an off-the-shelf keypoint detector and descriptor extractor (ORB
features), and with feature points extracted from bounding boxes predicted by a state-of-the-art visual tracker
(C-COT tracker), respectively. The third method trains a convolutional neural network (CNN) policy end-
to-end with Trust Region Policy Optimization (TRPO). The other methods use the servoing policy based on
VGG conv4 3 feature dynamics, either with unweighted features or weights trained with TRPO for either 2
or 50 iterations. In the case of unweighted features, we learned the weights λ and a single weight w with the
cross entropy method (CEM). We report the number of training trajectories in parenthesis for the methods
that require learning. For TRPO, we use a fixed number of training samples per iteration, whereas for CEM
and FQI, we use a fixed number of training trajectories per iteration. We use a batch size of 4000 samples
for TRPO, which means that at least 40 trajectories were used per iteration (since trajectories can terminate
early, i.e. in less than 100 time steps).

This policy achieves a modest performance (although still worse than the policies based on
conv4 3 feature dynamics) but it requires significantly more training samples than any of the other
learning-based methods. We also trained CNN policies that take in extracted VGG features (with-
out any dynamics) as inputs, but they perform worse (see Table A.3 in the Appendix). This suggests
that given a policy parametrization that is expressive enough and given a large number of train-
ing samples, it is better to directly provide the raw pixel-intensity images to the policy instead of
extracted VGG features. This is because VGG features are not optimized for this task and their
representation loses some information that is useful for servoing.

The other two prior methods use classical image-based visual servoing (IBVS) (Chaumette and
Hutchinson, 2006) with respect to Oriented FAST and Rotated BRIEF (ORB) feature points (Rublee
et al., 2011), or feature points extracted from a visual tracker. For the former, the target features
consist of only the ORB feature points that belong to the car, and this specifies that the car is
relevant for the task. For the tracker-based method, we use the Continuous Convolution Operator
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Tracker (C-COT) (Danelljan et al., 2016) (the current state-of-the-art visual tracker) to get bound-
ing boxes around the car and use the four corners of the box as the feature points for servoing. We
provide the ground truth car’s bounding box of the first frame as an input to the C-COT tracker.
For all of the IBVS methods, we provide the ground truth depth values of the feature points, which
are used in the algorithm’s interaction matrix5.

The first method performs poorly, in part because ORB features are not discriminative enough
for some of the cars, and the target feature points are sometimes matched to feature points that
are not on the car. The tracker-based method achieves a relatively good performance. The gap in
performance with respect to our method is in part due to the lack of car dynamics information in
the IBVS model, whereas our method implicitly incorporates that in the learned feature dynamics.
It is also worth noting that the tracker-based policy runs significantly slower than our method. The
open-source implementation of the C-COT tracker6 runs at about 1 Hz whereas our policy based
on conv4 3 features runs at about 16 Hz. Most of the computation time of our method is spent
computing features from the VGG network, so there is room for speedups if we use a network that
is less computationally demanding.

2.7 Discussion
Manual design of visual features and dynamics models can limit the applicability of visual ser-
voing approaches. We described an approach that combines learned visual features with learning
predictive dynamics models and reinforcement learning to learn visual servoing mechanisms. Our
experiments demonstrate that standard deep features, in our case taken from a model trained for
object classification, can be used together with a bilinear predictive model to learn an effective
visual servo that is robust to visual variation, changes in viewing angle and appearance, and occlu-
sions. For control we propose to learn Q-values, building on fitted Q-iteration, which at execution
time allows for one-step lookahead calculations that optimize long term objectives. Our method
can learn an effective visual servo on a complex synthetic car following benchmark using just 20
training trajectory samples for reinforcement learning. We demonstrate substantial improvement
over a conventional approach based on image pixels or hand-designed keypoints, and we show an
improvement in sample-efficiency of more than two orders of magnitude over standard model-free
deep reinforcement learning algorithms.

5The term interaction matrix, or feature Jacobian, is used in the visual servo literature to denote the Jacobian of
the features with respect to the control.

6https://github.com/martin-danelljan/Continuous-ConvOp
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Chapter 3

Self-Supervised Visual Planning with
Temporal Skip Connections

3.1 Introduction

Figure 3.1: The robot learns
to move new objects from self-
supervised experience.

Chapter 2 exemplifies how single-step dynamics models can be
used in the context of visual servoing. Although these models are
sufficient to accomplish tasks that can be solved greedily, multi-
step dynamics models are necessary to accomplish more complex
tasks that require planning. In this chapter, we use multi-step dy-
namics models for this purpose.

In order for a robot to be able to predict what will happen in
response to its actions, it needs a representation of the environment
that is suitable for prediction. The last chapter uses visual features
for its representation, in which the features were extracted using a
pre-trained network. However, in complex and open-world envi-
ronments, it is difficult to construct a concise and sufficient repre-
sentation for prediction. At a high level, the number and types of
objects in the scene might change substantially trial to trial, mak-
ing it impossible to provide a single fixed-size representation. At a
low level, the type of information that is important about each ob-
ject might change from object to object: the motion of a rigid box
might depend only on its shape and friction coefficient, while the
motion of a deformable stuffed animal might depend on a variety
of other factors which are hard to determine by hand. Instead of engineering representations for
different object types and object scenes, we can instead directly predict the robot’s sensory obser-
vations. The rationale behind this is that, if the robot is able to predict future observations, it has
acquired a sufficient understanding of the environment that it can leverage for planning actions.

A major challenge in directly predicting visual observations for robotic control lies in deducing
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the spatial arrangement of objects from ambiguous observations. For example, when one object
passes in front of another, the robot must remember that the occluded object still persists. In
human visual perception, this is referred to as object permanence, and is known to take several
months to emerge in infants (Bogartz et al., 2000). When the robot is commanded to manipulate
an object which can become occluded during a manipulation, it must be able to accurately pre-
dict how that object will respond to an occlusion. In this work, we propose a visual predictive
model for robotic control that can reason about spatial arrangements of objects in 3D, while using
only monocular images and without providing any form of camera calibration. Previous learning
methods have proposed to explicitly model object motion in image-space (Finn and Levine, 2017;
De Brabandere et al., 2016) or to explicitly model 3D motion using point cloud measurements
from depth cameras (Byravan and Fox, 2017), and lacked the capability to maintain information
about objects which are occluded during the predicted motion. We propose a simple model that
does not require explicitly deducing full 3D structure in the scene, but does provide effective han-
dling of occlusions by storing the appearance of occluded objects in memory. Furthermore, unlike
prior prediction methods (Byravan and Fox, 2017; Walker et al., 2015) our model does not require
any additional, external systems for providing point-to-point correspondences between frames of
different time-steps.

The technical contribution of this work is three-fold. First, we present a video prediction
method that can more accurately maintain object permanence through occlusions, by incorpo-
rating temporal skip connections. Second, we propose a planning objective for control through
video prediction that leads to significantly improved long-term planning performance, including
planning through occlusions, when compared to prior work (Finn and Levine, 2017). Finally, we
propose a mechanism for planning with both discrete and continuous actions with video prediction
models. Our evaluation demonstrations that these components can be combined to enable a learned
video prediction model to perform a range of real-world pushing tasks. Our experiments include
manipulation of previously unseen objects, handling multiple objects, pushing objects around ob-
structions, and moving the arm around and over other obstacle-objects, representing a significant
advance in the range and complexity of skills that can be acquired through entirely self-supervised
learning.

3.2 Related Work
Large-Scale, Self-Supervised Robotic Learning. Large-scale robotic data collection has been
explored in a number of recent works. John Oberlin (2015) proposed to collect object scans using
multiple robots. Several prior works have focused on autonomous data collection for individual
skills, such as grasping (Pinto and Gupta, 2016; Levine et al., 2016b) or obstacle avoidance (Kahn
et al., 2017; Gandhi et al., 2017). In contrast to these methods, our approach learns predictive
models that can be used to perform a variety of manipulations, and does not require a success
measure or reward function during data collection. Several prior approaches have also sought to
learn inverse or forward models from raw sensory data without any supervision (Agrawal et al.,
2016; Finn and Levine, 2017). While these methods demonstrated effective generalization to new
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objects, they were limited in the complexity of tasks and time-scale at which these tasks could be
performed. The method proposed by Agrawal et al. (2016) was able to plan single pokes, and then
greedily execute multiple pokes in sequence. The method of Finn and Levine (2017) performed
long-horizon planning, but was only effective for short motions. In our comparisons to this method,
we demonstrate a substantial improvement in the length and complexity of manipulations that can
be performed with our models.

Sensory Prediction Models. Action-conditioned video prediction has been explored in the con-
text of synthetic video game images (Oh et al., 2015; Chiappa et al., 2017) and robotic manip-
ulation (Boots et al., 2014; Finn et al., 2016a; Kalchbrenner et al., 2017), and video prediction
without actions has been studied for unstructured videos (Mathieu et al., 2016; Xingjian et al.,
2015; Vondrick et al., 2016) and driving (Lotter et al., 2017; De Brabandere et al., 2016).

Several works have sought to use more complex distributions for future images, for example by
using autoregressive models (Kalchbrenner et al., 2017; Reed et al., 2017). While this often pro-
duces sharp predictions, the resulting models are extremely demanding computationally, and have
not been applied to real-world robotic control. In this work, we extend video prediction methods
that are based on predicting a transformation from the previous image (Finn et al., 2016a; De Bra-
bandere et al., 2016). Prior work has also sought to predict motion directly in 3D, using 3D point
clouds obtained from a depth camera (Byravan and Fox, 2017), requiring point-to-point correspon-
dences over time, which makes it hard to apply to previously unseen objects. Our predictive model
is effective for a wide range of real-world object manipulations and does not require 3D depth
sensing or point-to-point correspondences between frames. Prior work has also proposed to plan
through learned models via differentiation, though not with visual inputs (Lenz and Saxena, 2015).
We instead use a stochastic, sampling-based planning method (Rubinstein and Kroese, 2013; Finn
and Levine, 2017), which we extend to handle a mixture of continuous and discrete actions.

3.3 Preliminaries
In this section, we define our image-based robotic control problem, present a formulation of visual
model predictive control (visual MPC) over pixel motion, and summarize prior video prediction
models based on image transformation.

Visual Model Predictive Control
Our visual MPC problem formulation follows the problem statement outlined in prior work (Finn
and Levine, 2017). We assume that the user defines a goal for the robot in terms of pixel motion:
given an image from the robot’s camera, the user can choose one or more pixels in the image,
and choose a destination where each pixel should be moved. For example, the user might select
a pixel on an object and ask the robot to move it 10 cm to the left. Formally, the user specifies P
source pixel locations d(1)

0 , . . . , d
(P )
0 in the initial image I0, and P goal locations g(1), . . . , g(P ). The

source and goal pixel locations are denoted by the coordinates (x
(i)
d , y

(i)
d ) and (x

(i)
g , y

(i)
g ). Given a
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goal, the robot plans for a sequence of actions a1:T over T time steps, where T is the planning
horizon. The problem is formulated as the minimization of a cost function c which depends on the
predicted pixel positions d(j)

t . The planner makes use of a learned model that predicts pixel motion.
Given a distribution over pixel positions Pt0,d(i) ∈ RH×W ,

∑
H,W Pt0,d(i) = 1 at time t = 0, the

model predicts distributions over its positions Pt,d(i) at time t ∈ {1, . . . , T}. To achieve the best
results with imperfect models, the actions can be iteratively replanned at each real-world time step
τ ∈ {0, ..., τmax} following the framework of model-predictive control (MPC): at each real-world
step τ , the model is used to plan T steps into the future, and the first action of the plan is executed.
At the first real-world time step τ = 0, the distribution Pt=0,d(i) is initialized as 1 at the location of
the designated pixel and zero elsewhere. In subsequent steps (τ > 0), the 1-step ahead prediction
of the previous step is used to initialize Pt=0,d(i) . The cost c is a function of Pt,d(i) at all predicted
time steps 0...T . Prior work proposed to use the negative log-probability of placing each pixel at
its goal location as the cost (Finn and Levine, 2017). We will discuss in Section 3.5 how perfor-
mance can be improved substantially by instead using expected distances. Planning is performed
using the cross-entropy method (CEM), a gradient-free optimization procedure that consists of it-
eratively resampling action sequences and refitting Gaussian distributions to the actions with the
best predicted cost. Further details can be found in prior work (Finn and Levine, 2017).

Video Prediction via Pixel Transformations
Visual MPC requires a model that can effectively predict the motion of the selected pixels d(1)

0 , . . . ,

d
(P )
0 up to T steps into the future. In this work, we extend the model proposed in (Finn et al.,

2016a), where this flow prediction capability emerges implicitly, and therefore no external pixel
motion supervision is required. Future images are generated by transforming past observations.
The model uses stacked convolutional LSTMs that predict a collection of pixel transformations at
each time step, with corresponding composition masks. In this model, the previous image It is
transformed by N separate transformations, and all of the transformed images Ĩ(i)

t are composited
together according to weights obtained from the predicted masks. Intuitively, each transformation
corresponds to the motion of a different object in the scene, and each mask corresponds to the
spatial extents of that object. Let us denote the N transformed images as Ĩ(1)

t , ..., Ĩ
(N)
t , and the

predicted masks as M1, ...MN , where each 1-channel mask is the same size as the image. The
next image prediction is then computed by compositing the images together using the masks:
Ît+1 =

∑N
i=1 Ĩ

(i)
t Mi. To predict multiple time steps into the future, the model is applied recursively.

These transformations can be represented as convolutions, where each pixel in the transformed
image is formed by applying a convolution kernel to the previous one. This method can represent
a wide range of local transformations. When these convolution kernels are normalized, they can
be interpreted as transition probabilities, allowing us to make probabilistic predictions about future
locations of individual pixels. To predict the future positions of the designated pixels d(i), the
same transformations which are used for the images are applied to Pt,d(i) such that Pt+1,d(i) =
1
Ps

∑N
i=1 P̃

(i)

t,d(i)
Mi, where 1

Ps
is a normalizing constant to ensure that Pt+1,d(i) adds up to 1 over

the spatial dimension of the image. Since this prior predictive model outputs a single image at
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each time step, it is unable to track pixel positions through occlusions. Therefore, this model
is only suitable for planning motions where the user-selected pixels are not occluded during the
manipulation, which restricts its use in cluttered environments or with multiple selected pixels. In
the next section, we discuss our proposed occlusion-aware model, which lifts this limitation by
employing temporal skip connections.

3.4 Skip Connection Neural Advection Model
To enable effective tracking of objects through occlusions, we propose an extension to the dynamic
neural advection (DNA) model (Finn et al., 2016a) that incorporates temporal skip connections.
This model uses a similar multilayer convolutional LSTM structure; however, the transformations
are now conditioned on a context of previous images. In the most generic version, this involves
conditioning the transformation at time t on all of the previous images I0, ...It, though in practice
we found that a greatly simplified version of this model performed just as well in practice. We will
therefore first present the generic model, and then describe the practical simplifications. We refer
to this model as the skip connection neural advection model (SNA), since it handles occlusions by
copying pixels from prior images in the history such that when a pixel is occluded (e.g., by the
robot arm or by another object) it can still reappear later in the sequence. When predicting the next
image Ît+1, the generic SNA model transforms each image in the history according to a different
transformation and with different masks to produce Ît+1 (see Figure B.2 in the appendix):

Ît+1 =
t∑

j=t−T

N∑
i=1

Mi,j Ĩ
(i)
j (3.1)

In the case where t < T , negative values of j simply reuse the first image in the sequence. This
generic formulation can be computationally expensive, since the number of masks and transfor-
mations scales with T × N . A more tractable model, which we found works comparably well
in practice in our robotic manipulation setting, assumes that occluded objects are typically static
throughout the prediction horizon. This assumption allows us to dispense the intermediate trans-
formations and only provide a skip connection from the very first image in the sequence, which is
also the only real image, since all of the subsequent images are predicted by the model:

Ît+1 = I0MN+1 +
N∑
i=1

Ĩ
(i)
t Mi (3.2)

This model only needs to output N + 1 masks. We observed similar prediction performance when
using a transformed initial image Ĩ0 in place of I0, and therefore used the simplified model in
Equation (3.2) in all of our experiments. We provide an example of the model recovering from
occlusion in Figure 3.5. In the figure, the arm moves in front of the designated pixel, marked
in blue in Figure 3.3. The graphs in Figure 3.4 show the predicted probability of the designated
pixel, which is stationary during the entire motion, being at its original position at each step.
Precisely when the arm occludes the designated pixel, the pixel’s probability of being at this point
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Figure 3.2: Simplified SNA model based on Equation (3.2). The red arrow indicates where the image
from the first time step I0 is concatenated with the transformed images Ĩ(i)

t multiplying each channel with a
separate mask to produce the predicted frame for step t+ 1.

decreases. This indicates that the model is ‘unsure’ where this pixel is. When the arm unoccludes
the designated pixel, it should become visible again, and the probability of the designated pixel
being at its original position should go up. In the case of the DNA model and its variants (Finn
et al., 2016a), the probability mass does not increase after the object reappears. This is because the
DNA model cannot recover information about object that it has ‘overwritten’ during its predictions.
Consequently, for these models, the probability stays low and moves with the arm, which causes
the model to believe that the occluded pixel also moves with the arm. We identified this as one of
the major causes of planning failure when using the prior models. By contrast, in the case of our
SNA model, the probability of the correct pixel position increases again rapidly right after the arm
unoccludes the object. Furthermore, the probability of the unoccluded object’s position becomes
increasingly sharp at its original position as the arm moves further away.

3.5 Visual MPC with Pixel Distance Costs
The choice of objective function for visual MPC has a large impact on the performance of the
method. Intuitively, as the model’s predictions get more uncertain further into the future, the
planner relies more and more on the cost function to provide a reasonable estimate of the overall
distance to the goal. Prior work used the probability of the chosen pixel(s) reaching their goal
position(s) after T time steps, as discussed in Section 3.3. When the trajectories needed to reach
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Figure 3.3: The blue dot indi-
cates the designated pixel

Figure 3.4: Predicted probability Pd(0)(t) of the designated pixel be-
ing at the location of the blue dot indicated in Figure 3.3 for the DNA
model (left) and the SNA model (right).

(a) Skip connection neural advection (SNA) does not erase or move objects in the background

(b) Standard DNA (Finn and Levine, 2017) exhibits undesirable movement of the distribution
Pd(0)(t) and erases the background

Figure 3.5: Top rows: Predicted images of arm moving in front of green object with designated pixel
(as indicated in Figure 3.3). Bottom rows: Predicted probability distributions Pd(0)(t) of designated pixel
obtained by repeatedly applying transformations.
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Figure 3.6: Integrating actions in the vertical direction enables moving over obstacles. This results in more
natural and shorter paths. Top row: executed trajectory, left: red diamond indicates designated pixel, green
dot indicates goal, 2nd and 3rd row: predictions and probability of designated pixel at time step 3.

the goal are long, the objective provides relatively little information about the progress towards
the goal, since most of the predicted probabilities will have a value close to zero at the goal-pixel.
In this work, we propose a cost function that still makes use of the uncertainty estimates about
the pixel position, but provides a substantially smoother planning objective, resulting in improved
performance for more complex, longer-horizon tasks. A straightforward choice of smooth cost
function in deterministic settings is the Euclidean distance between the current and desired location
of the desired pixel(s), given by ‖dt′−g‖2. Since our video prediction model produces a distribution
over the pixel location at each time step, we can use the expected value of this distance as a cost
function, summed over the entire horizon T :

ct+1:t+T (g) = c(It−1:t,xt−1:t, at:t+T , dt, g)

=
∑

t′=t+1,...,t+T

Edt′∼Pt′,d(i) [‖dt′ − g‖2] (3.3)

where the expectation can be computed by summing over all of the positions in each predicted im-
age, and the cost corresponds to a (element-wise) Hadamard product of the pixel location probabil-
ity map and the distances between each pixel position and the goal. This cost function encourages
the movement of the designated objects in the right direction for each step of the execution, regard-
less of whether the g position can be reached within T time steps. For multi-objective tasks with
multiple designated pixels d(i) the costs are summed to together weighting them equally. Although
the use of well-shaped cost functions in MPC has been explored extensively in prior work (Li et al.,
2005), the combination of cost shaping and visual MPC has not been studied extensively.

3.6 Sampling-Based MPC with Continuous and Discrete
Actions

The choice of action representation for visual MPC has a significant effect on the performance
of the resulting controller. The action representation must allow the planner sufficient freedom to
maneuver the arm to perform a wide variety of tasks, while constraining sufficiently so as to create
a tractable search space. We found that a particularly well-suited action representation for tabletop
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manipulation can be constructed by combining continuous and discrete actions, in contrast to prior
work that used only continuous end-effector motion vectors as actions (Finn and Levine, 2017).
The actions consist of the horizontal motion of the end-effector, as well as a discrete “lift” action
that allows the robot to command the end-effector to lift off the table vertically. The discrete lifting
action can take on N values (4 in our implementation) that specify for how many time steps the
robot should lift the end-effector off the table. Unlike with continuous vertical motion commands,
these discrete commands result in the end-effector staying off the table for multiple time steps even
during random data collection. In order to incorporate this hybrid action space into the stochastic
CEM-based optimization in visual MPC, we sample real-valued parameters for the discrete action,
and then round them to the nearest valid integer to obtain discrete actions. As usual with CEM,
we iteratively refit a multivariate Gaussian distribution to the best performing samples (which in
our case are chosen to be in the 90th percentile of samples), treating the entire action vector as if
it was continuous. Figure 3.6 shows an example of a situation where the discrete vertical motion
component of the action is used by our model to lift the gripper over the object in order to push it
from the opposite side.

3.7 Experiments
Our experimental evaluation compares the proposed occlusion-aware SNA video prediction model,
as well as the improved cost function for planning, with a previously proposed model based on
dynamic neural advection (DNA) (Finn and Levine, 2017). We use a Sawyer robot, shown in Fig-
ure 3.1, to push a variety of objects in a tabletop setting. In the appendix, we include a details
on hyperparameters, analysis of sample complexity, and a discussion of robustness and limita-
tions. We evaluate long pushes and multi-objective tasks where one object must be pushed without
disturbing another. The supplementary video and links to the code and data are available on the
project’s website1

Figure 3.7: Pushing task. The desig-
nated pixel (red diamond) needs to be
pushed to the green circle.

Figure 3.7 shows an example task for the pushing bench-
mark. We collected 20 trajectories with 3 novel objects and
1 training object. Table 3.1 shows the results for the push-
ing benchmark. The column distance refers to the mean
distance between the goal pixel and the designated pixel at
the final time-step. The column improvement indicates how
much the designated pixel of the objects could be moved
closer to their goal (or further away for negative values)
compared to the starting location. The true locations of the
designated pixels after pushing were annotated by a human.

The results in Table 3.1 show that our proposed planning
cost in Equation (3.3) substantially outperforms the plan-
ning cost used in prior work (Finn and Levine, 2017). The
performance of the SNA model in these experiments is comparable to the prior DNA model (Finn

1https://sites.google.com/view/sna-visual-mpc

https://sites.google.com/view/sna-visual-mpc
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seen unseen

distance
mean and
standard
deviation

improvement
mean and
standard
deviation

distance
mean and
standard
deviation

improvement
mean and
standard
deviation

random actions 29.4± 3.2 −0.9± 2.3 N/A N/A

DNA with the distance metric of
Finn and Levine (2017) 25.9± 12.2 5.2± 13.7 24.6± 10.6 2.1± 12.4

DNA with our distance metric 9.2 ± 7.4 15.0 ± 11.5 17.5 ± 10.2 8.3 ± 11.8
SNA with our distance metric 13.0 ± 5.6 12.4 ± 8.8 18.2 ± 9.5 7.7 ± 10.5

Table 3.1: Results of the pushing benchmark on 20 different object/goal configurations. Units are pixels in
the 64× 64 images.

and Levine, 2017) when both use the new planning cost, since this task does not involve any occlu-
sions. Although the DNA model has a slightly better mean distance compared to SNA, it is well
within the standard deviation, suggesting that the difference is not significant.

To examine how well each approach can handle occlusions, we devised a second task that
requires the robot to push one object, while keeping another object stationary. When the stationary
object is in the way, the robot must move the goal object around it, as shown in Figure 3.8 on
the left. While doing this, the gripper may occlude the stationary object, and the task can only be
performed successfully if the model can make accurate predictions through this occlusion. These
tasks are specified by picking one pixel on the target object, and one on the obstacle. The obstacle
is commanded to remain stationary, while the target object destination location is chosen on the
other side of the obstacle.

We used four different object arrangements, with two training objects and two objects that
were unseen during training. We found that, in most of the cases, the SNA model was able to find
a valid trajectory, while the prior DNA model was mostly unable to find a solution. Figure 3.8
shows an example of the SNA model successfully predicting the position of the obstacle through
an occlusion and finding a trajectory that avoids the obstacle. These findings are reflected by our
quantitative results shown in Table 3.2, indicating the importance of temporal skip connections.

3.8 Discussion
We showed that visual predictive models trained entirely with videos from random pushing mo-
tions can be leveraged to build a model-predictive control scheme that is able to solve a wide
range multi-objective pushing tasks in spite of occlusions. We also demonstrated that we can com-
bine both discrete and continuous actions in an action-conditioned video prediction framework to
perform more complex behaviors, such as lifting the gripper to move over objects.
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Figure 3.8: Left: Task setup with green dot marking the obstacle. Right, first row: the predicted frames
generated by SNA. Second row: the probability distribution of the designated pixel on the moving object
(brown stuffed animal). Note that part of the distribution shifts down and left, which is the indicated goal.
Third row: the probability distribution of the designated pixel on the obstacle-object (blue power drill).
Although the distribution increases in entropy during the occlusion (in the middle), it then recovers and
remains on its original position.

seen unseen

moved
improvement

mean and
standard
deviation

stationary
improvement

mean and
standard
deviation

moved
improvement

mean and
standard
deviation

stationary
improvement

mean and
standard
deviation

DNA (Finn and Levine, 2017) 3.5± 5.0 −1.4± 0.4 0.8± 1.1 −1.1± 0.9
SNA (ours) 8.2 ± 2.9 −0.9 ± 0.7 10.6 ± 3.7 −1.5 ± 0.9

Table 3.2: Results for multi-objective pushing on 8 object and goal configurations with 2 seen and 2 novel
objects. Values indicate improvement in distance from starting position, higher is better. Units are pixels in
the 64× 64 images.

Although our method achieves significant improvement over prior work, it does have a num-
ber of limitations. The behaviors in our experiments are relatively short. In principle, the visual
MPC approach can allow the robot to repeatedly retry the task until it succeeds, but the ability
to retry is limited by the model’s ability to track the target pixel: the tracking deteriorates over
time, and although our model achieves substantially better tracking through occlusions than prior
work, repeated occlusions still cause it to lose track. Improving the quality of visual tracking
of the designated pixels may allow the system to retry the task until it succeeds. More complex
behaviors, such as picking and placing (e.g., to arrange a table setting), may also be difficult to
learn with only randomly collected data. We expect that more goal-directed data collection would
substantially improve the model’s ability to perform complex tasks. Furthermore, better predictive
models that incorporate hierarchical structure or reason at variable time scales would further im-
prove the capabilities of visual MPC to carry out temporally extended tasks. Fortunately, as video
prediction methods continue to improve, we expect methods such as ours to further improve in
their capability.
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Chapter 4

Stochastic Adversarial Video Prediction

4.1 Introduction
Chapter 3 uses a deterministic video prediction model for planning and determining which ac-
tions can bring about desired outcomes. Unfortunately, accurate and naturalistic video prediction
remains an open problem.

Ambiguity is a major challenge in video prediction. While frames in the immediate future
can be extrapolated with high precision, the space of possibilities diverges beyond a few frames,
and the problem becomes multimodal. Methods that use deterministic models and loss functions
unequipped to handle this inherent uncertainty, such as mean-squared error (MSE), will average
together possible futures, producing blurry predictions. Prior works have explored stochastic mod-
els for video prediction (Babaeizadeh et al., 2018; Denton and Fergus, 2018), using the framework
of variational autoencoders (VAEs) (Kingma and Welling, 2014). These models predict possible
futures by sampling latent variables. During training, they optimize a variational lower bound
on the likelihood of the data in a latent variable model. However, the posterior is still a pixel-
wise MSE loss, corresponding to the log-likelihood under a fully factorized Gaussian distribution.
This causes them to make blurry and unrealistic predictions when the latent variables alone do not
adequately capture the uncertainty.

Another relevant branch of recent work has been generative adversarial networks (GANs)
(Goodfellow et al., 2014) for image generation. Here, a generator network is trained to produce
images that are indistinguishable from real images, using a learned discriminator network trained
to classify images as real or generated. The discriminator looks at the whole image, and is capable
of modeling the joint distribution of pixels. Although this overcomes the limitations of pixel-wise
losses, GANs are notoriously susceptible to mode collapse, especially in the conditional setting.
This makes them difficult to apply to generation of diverse and plausible futures, conditioned on
context frames.

To address these challenges, we propose a model that combines adversarial losses and latent
variables to enable realistic stochastic video prediction. Our model consists of a video prediction
network that can produce multiple futures by sampling time-varying stochastic latent variables.
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Figure 4.1: Example results. While the SV2P method (Babaeizadeh et al., 2018) produces blurry images,
our method maintains sharpness and realism through time. The prior SVG-LP method (Denton and Fergus,
2018) produces sharper predictions of the arm, but still blurs out objects in the background or objects that
interact with the robot.

At training time, an inference network estimates the distribution of these latent variables, and
video discriminator networks classify generated videos from real. The full training objective is the
variational lower bound used in VAEs combined with the adversarial loss used in GANs, as well as
a perceptual loss that we introduce to further improve realism. This enables us to capture stochastic
posterior distributions of videos while also modeling the spatiotemporal joint distribution of pixels.

The primary contribution of our work is an stochastic video prediction model based on VAE-
GANs. Our experiments show that the VAE component greatly improves the diversity of the
generated images, while the adversarial loss attains prediction results that are substantially more
realistic than state-of-the-art methods, as shown in Figure 4.1. We further introduce a perceptual
loss that incorporates features from the GAN discriminator into the reconstruction objective for
each frame, and show that this substantially improves the accuracy of the predicted videos over
our standard VAE-GAN video model. We present a comparison of various of prediction models
and losses, including VAE, GAN, and VAE-GAN models, and evaluate them on prediction realism,
diversity, and accuracy.

4.2 Related Work
Recent developments have led to impressive results in video generation and prediction. Earlier
approaches to prediction focused on models that generate pixels directly using both feed-forward
(Ranzato et al., 2014; Mathieu et al., 2016) and recurrent (Oh et al., 2015; Xingjian et al., 2015)
architectures. An alternative to generating pixels is transforming them by applying a constrained
geometric distortion to a previous frame (Finn et al., 2016a; De Brabandere et al., 2016; Xue et al.,
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2016; Byravan and Fox, 2017; Vondrick and Torralba, 2017; van Amersfoort et al., 2017; Liu et al.,
2017; Chen et al., 2017; Lu et al., 2017; Walker et al., 2015; 2016; Liang et al., 2017). Predictions
are also affected by the training objective. Minimizing MSE loss can lead to strong results for
deterministic synthetic videos (Oh et al., 2015; Chiappa et al., 2017), but on stochastic real-world
videos, this loss can result in blurry predictions, as the model averages different futures.

Handling uncertainty is critical for addressing this issue. One approach is to model the full
joint distribution using pixel-autoregressive models (van den Oord et al., 2016; Kalchbrenner et al.,
2017; Reed et al., 2017), though training and inference are impractically slow. Another approach is
to train a latent variable model, such as in variational autoencoders (VAEs) (Kingma and Welling,
2014). Conditional VAEs have been used for prediction of optical flow (Walker et al., 2016), single-
frame prediction (Xue et al., 2016), and stochastic multi-frame video prediction (Babaeizadeh
et al., 2018; Denton and Fergus, 2018). While these models can model distributions over possible
futures, the prediction distribution is still fully factorized over pixels, which still tends to produce
blurry predictions.

Adversarial losses (Goodfellow et al., 2014) for image generation can produce substantially
improved realism. However, these networks tend to be difficult to train and are susceptible to mode
collapse. A number of prior works have used adversarial losses for deterministic video prediction
(Mathieu et al., 2016; Vondrick and Torralba, 2017; Villegas et al., 2017; Lu et al., 2017; Zhou
and Berg, 2016; Bhattacharjee and Das, 2017). Several prior works have also sought to produce
unconditioned video generations (Vondrick et al., 2016; Saito et al., 2017; Tulyakov et al., 2018)
and conditional generation with input noise (Chen et al., 2017; Tulyakov et al., 2018; Wang et al.,
2018). We show that a GAN model with input noise can indeed generate realistic videos, but fails
to adequately cover the space of possible futures.

Prior works have combined VAEs and GANs to produce stochastic and realistic predictions.
Walker et al. (2017) predicts videos of humans by decomposing the problem into a VAE that
predicts stochastic future poses and a GAN that generates videos conditioned on those poses and
an image. VAE-GANs, which jointly optimize the VAE and GAN losses, have shown promising
results for unconditional and conditional image generation (Larsen et al., 2016; Bao et al., 2017;
Zhu et al., 2017), but have not been applied to video prediction. The video prediction setting
presents two important challenges. First, conditional image generation can handle large appearance
changes between the input and output, but suffer when attempting to produce large spatial changes.
The video prediction setting is precisely the opposite—the appearance remains largely the same
across frames, but the most important changes are spatial. Secondly, video prediction involves
sequential prediction, where it’s increasingly difficult to predict farther into the future.

4.3 Video Prediction with Stochastic Adversarial Models
Our goal is to learn a stochastic video prediction model that can predict videos that are diverse
and perceptually realistic, and where all predictions are plausible futures for a given initial image.
In practice, we use a short initial sequence of images (typically two frames), though we will omit
this in our derivation for ease of notation. Our model consists of a recurrent generator network
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G, which is a deterministic video prediction model that maps an initial image x0 and a sequence
of latent random codes z0:T−1, to the predicted sequence of future images x̂1:T . Intuitively, the
latent codes encapsulate any ambiguous or stochastic events that might affect the future. At test
time, we sample videos by first sampling the latent codes from a prior distribution p(zt), and then
passing them to the generator. We use a fixed unit Gaussian prior,N (0, 1). The training procedure
includes elements of variational inference and generative adversarial networks. Before describing
the training procedure, we formulate the problem in the context of VAEs and GANs.

Variational Autoencoders
Our recurrent generator predicts each frame given the previous frame and a random latent code.
The previous frame passed to the generator is denoted as x̃t−1 to indicate that it could be a ground
truth frame xt−1 (for the initial frames) or the last prediction x̂t−1. The generator specifies a
distribution p(xt|xt−1, zt−1), parametrized as a fixed-variance Laplacian distribution with mean
x̂t = G(xt−1, zt−1). The likelihood of the data p(x1:T |x0) cannot be directly maximized, since
it involves marginalizing over the latent variables, which is intractable in general. Thus, we in-
stead maximize the variational lower bound of the log-likelihood. We approximate the posterior
with a recognition model q(zt|xt:t+1), which is parametrized as a conditionally Gaussian distribu-
tion N (µzt , σ

2
zt), represented by a network E(xt:t+1). The encoder E is conditioned on adjacent

frames in order to have time-varying latent variables, where each latent zt is temporally local and
capture the ambiguity of the transition from frame xt to xt+1. This is a sensible choice for latent
variables that are independent and identically distributed, which is the case for the per-time-step
unit Gaussian prior. Another choice is to use temporally correlated latent variables, which would
require a stronger prior (e.g. as in (Denton and Fergus, 2018)). For simplicity, we opted for the
former.

During training, the latent code is sampled from q(zt|xt:t+1). The generation of each frame
can be thought of as the reconstruction of frame x̂t+1, where the ground truth frame xt+1 (along
with xt) is encoded into a latent code zt, and then it (along with the last frame) is mapped back to
x̂t+1. Since the latent code has ground truth information about the frame being reconstructed, the
model is encouraged to use it during training. To allow back-propagation through the encoder, the
reconstruction term is rewritten using the re-parametrization trick,

L1(G,E) = Ex0:T ,z0:T−1∼E(x0:T )

[∑T−1

t=0
||xt+1 −G(x̃t, zt)||1

]
. (4.1)

To enable sampling from the prior at test time, a regularization term encourages the approximate
posterior to be close to the prior distribution,

LKL(E) = Ex0:T

[∑T−1

t=0
DKL(E(xt:t+1)||p(zt))

]
. (4.2)

Given some weight hyperparameters λ1 and λKL, a VAE is trained to optimize

min
G,E

λ1L1(G,E) + λKLLKL(E). (4.3)
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Figure 4.2: Our proposed video prediction model. (a) During testing, we synthesize new frames by sam-
pling random latent codes z from a prior distribution p(z) independently at each time step. The generator
G takes a previous frame and a latent code to synthesize a new frame. (b) During training, the generator
is optimized to predict videos that match the distribution of real videos, using learned discriminators. The
discriminators operate on entire sequences. We sample latent codes from two distributions: (1) the prior
distribution, and (2) a posterior distribution approximated by a learned encoder E. For the latter, the regres-
sion L1 and feature matching LP losses are used. Separate discriminators D and DVAE are used depending
on the distribution used to sample the latent code.

Generative Adversarial Networks
Without overcoming the problem of modeling pixel covariances, it is likely not possible to produce
sharp redictions. Indeed, as shown in our experiments, the pure VAE model tends to produce blurry
futures. We can force the predictions to stay on the video manifold by matching the distributions of
predicted and real videos. Given a classifier D that is capable of distinguishing generated videos
x̂1:T from real videos x1:T , the generator can be trained to match the statistics of the real data
distribution using this objective,

LGAN(G,D) = Ex1:T
[logD(x1:T )] + Ex1:T ,zt∼p(zt)|T−1

t=0
[log(1−D(G(x0, z0:T−1)))]. (4.4)

The overloaded notationG(x0, z0:T−1) indicates the generated sequence x̂1:T . The classifier, which
is not known a priori and is problem-specific, is realized as a deep discriminator network that is
adversarially learned. A GAN is trained to optimize

min
G

max
D
LGAN(G,D). (4.5)
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Stochastic Adversarial Video Prediction
The VAE and GAN models provide complementary strengths. GANs use a learned loss function
through the discriminator, which learns the statistics of natural videos. However, GANs can suffer
from the problem of mode collapse, especially in the conditional setting (Pathak et al., 2016; Isola
et al., 2017; Zhu et al., 2017). VAEs explicitly encourage the latent code to be more expressive
and meaningful, since the learned encoder produces codes that are useful for making accurate
predictions at training time. Our stochastic adversarial video prediction (SAVP) model combines
both approaches, shown in Figure 4.2. Another term LVAE

GAN is introduced, which is analogous to
LGAN except that it uses latent codes sampled from q(zt|xt:t+1) and a video discriminator DVAE.

In the video prediction setting, predicted videos should not only match the statistics of real
videos, but the individual samples should also be accurate. That is the role of the L1 reconstruction
loss, which brings samples from the posterior closer to the ground truth. However, this loss has the
limitations of pixel-wise losses. We attempt to overcome this by using a perceptual loss,

LP (G,E,DVAE) = Ex0:T ,z0:T−1∼E(x0:T ) [dDVAE (x̂1:T ,x1:T )] . (4.6)

The function dDVAE computes the sum of cosine distances of all the intermediate features given by
DVAE. This loss serves a similar role as the reconstruction loss, except that in the feature space of
the learned discriminator. Our SAVP model is trained by alternating optimization of the following
objectives,

max
D,DVAE

LGAN(G,D) + LVAE
GAN(G,E,DVAE), (4.7)

min
G,E

λ1L1(G,E) + λKLLKL(E) + λLGAN(G,D) + λLVAE
GAN(G,E,DVAE) + λPLP(G,E,DVAE).

(4.8)

Network Architectures
The generator is a convolutional LSTM (Xingjian et al., 2015) that predicts pixel-space transfor-
mations between the current and next frame, with additional skip connections with the first frame
as done in SNA (Ebert et al., 2017). At every time step, the network is conditioned on the current
frame and latent code. After the initial frames, the network is conditioned on its own predictions.
The conditioning on the latent codes is realized by concatenating them along the channel dimen-
sion to the inputs of all the convolutional layers of the convolutional LSTM.

The video discriminator is a feed-forward convolutional network with 3D filters, based on
SNGAN (Miyato et al., 2018) but with the filters “inflated” from 2D to 3D. The network takes in a
spatiotemporal cube of all the predicted pixels and outputs a single logit. The ground-truth context
frames are not provided to the network. We found that spectral normalization in the discriminator
and conditioning only on the predicted frames were important for a stable training. We also found
that image discriminators that operate on single frames were not necessary. See the supplemental
material for additional details.
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4.4 Experiments
Our experimental evaluation studies the realism, diversity, and accuracy of the videos generated
by our approach and prior methods, and evaluates the importance of various design decisions,
such as the presence of the variational and adversarial objectives. Evaluating the performance of
stochastic video prediction models is exceedingly challenging: not only should the samples from
the model be physically realistic and visually plausible given the context frames, but the model
should also be able to produce diverse samples that match the conditional distribution in the data.
This is difficult to evaluate precisely: realism is not accurately reflected with simple metrics of
reconstruction accuracy, and the true conditional distribution in the data is unknown, since real-
world datasets only have a single future for each initial sequence. Below, we discuss the metrics
that we use for evaluation. No single metric alone provides a clear answer as to which model is
better, but considering multiple metrics can provide us with a more complete understanding of the
performance and trade-offs of each approach.

Evaluation Metrics
Realism: comparisons to real videos using human judges. The realism of the predicted videos
is evaluated based on a real vs. fake two-alternative forced choice (2AFC) test. Human judges on
Amazon Mechanical Turk (AMT) are presented with a pair of videos—one generated and one
real—and asked to identify the generated “fake” video. We use the implementation from Zhang
et al. (2016), modified for videos. Each video is 12 frames long (2 context frames and 10 predicted
frames) and shown over 3 seconds. For each method, we gather 1000 judgments from 25 human
judges. Each human evaluator is provided with 10 training trials followed by 40 test trials. A
method that produces perfectly realistic videos would achieve a 50% fooling rate.

Diversity: distance between samples. Realism is not the only factor in determining the perfor-
mance of a video prediction model: aside from generating predictions that look physically plausi-
ble and realistic, a successful model must also adequately cover the range of possible futures. We
compute diversity as the average distance between randomly sampled video predictions, similar
to Zhu et al. (2017). Distance is measured using the Learned Perceptual Image Patch Similarity
(LPIPS) metric (Zhang et al., 2018).

Accuracy: similarity of the best sample. One weakness of the above metric is that the samples
may be diverse but still not cover the feasible output space. Though we do not have the true output
distribution, we can still leverage the single ground truth instance. This can be done by sampling
the model a finite number of times, and evaluating the similarity between the best sample and the
ground truth. This has been explored in prior work on stochastic video prediction (Babaeizadeh
et al., 2018; Denton and Fergus, 2018), using peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) as the evaluation metric.

While PSNR and SSIM are commonly used for video prediction, these metrics are not nec-
essarily indicative of prediction quality. In video prediction, structural ambiguities and geometric
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deformations are a dominant factor, and SSIM is not an appropriate metric in such situations (Sam-
pat et al., 2009; Zhang et al., 2018). To partially overcome the limitations of these metrics, we also
evaluate using the LPIPS metric, which has been shown to correlate well with human percep-
tion (Zhang et al., 2018). This distance is measured in the AlexNet feature space (pretrained on
ImageNet classification) with linear weights calibrated to match human judgements.

Datasets
We evaluate on two real-world datasets: the BAIR action-free robot pushing dataset (Ebert et al.,
2017) and the KTH human actions dataset (Schuldt et al., 2004). The BAIR dataset consists of
a randomly moving robotic arm that pushes objects on a table. The KTH dataset consists of a
human subject doing one of six activities: walking, jogging, running, boxing, hand waving, and
hand clapping. In both cases, we condition on 2 frames and train to predict the next 10 frames.
The frame resolution is 64× 64.

Methods: Ablations and Comparisons
We compare the following variants of our method, in our effort to evaluate the effect of each loss
term. Videos, code, and models are available at our website1.

• Ours, SAVP. Our stochastic adversarial video prediction model, with the VAE and GAN
losses. The GAN loss includes the perceptual loss.

• Ours, VAE-only. An ablation of our model with only a conditional VAE, with the recon-
struction L1 loss but without the adversarial nor perceptual loss.

• Ours, GAN-only. An ablation of our model with only a conditional GAN, without the
variational autoencoder. This model still takes a noise sample as input, but the noise is
sampled from the prior during training. This model uses reconstruction and perceptual losses
similar to L1 and LP, but using predictions sampled from the prior.

We also compare to prior stochastic VAE-based methods Stochastic Variational Video Pre-
diction (SV2P) (Babaeizadeh et al., 2018) and Stochastic Video Generation (SVG) (Denton and
Fergus, 2018), both of which use the MSE reconstruction loss and no adversarial loss.

Experimental Results
We show qualitative results on the BAIR and KTH datasets in Figure 4.3 and Figure 4.4, respec-
tively. For the quantitative results, we evaluate the realism, diversity, and accuracy of the predicted
videos.

1https://alexlee-gk.github.io/video_prediction

https://alexlee-gk.github.io/video_prediction


CHAPTER 4. STOCHASTIC ADVERSARIAL VIDEO PREDICTION 36

Method BAIR Dataset KTH Dataset

SAVP (no LP) 0.0411 ± 0.0019 0.0564 ± 0.0015
SAVP 0.0386 ± 0.0018 0.0500 ± 0.0013

Table 4.1: LPIPS distance of the best sample, perceptual loss ablation. The distance (lower is better) is
computed as the average over 10 prediction steps. The accuracy of our model is better when the perceptual
loss is used.

Realism. In Figure 4.5, variants of our method are compared to prior work. Our SAVP model
achieves the highest fooling rate, significantly outperforming prior methods SVG-LP and SV2P.
Among the VAE-based methods without adversarial losses, our VAE-only model also achives the
highest realism. The SV2P method produces blurry and unrealistic videos. The SV2P method is
unable to predict humans when sampling from the prior on the KTH dataset, and thus we do not
include it in the KTH experiments. The pure GAN produces realistic results, but less realistic than
our SAVP model.

Diversity. Diversity results are also shown in Figure 4.5. While the GAN-only approach achieves
realistic results, it shows significantly lower diversity than the VAE-based methods. This is an
example of the commonly known phenomenon of mode-collapse, where multiple latent codes
produce the same or similar images on the output (Goodfellow, 2016). Intuitively, the VAE-based
methods explicitly encourage the latent code to be more expressive by using an encoder from the
output space into the latent space during training. This is verified in our experiments, as the VAE-
based variants, including our SAVP model, achieve higher diversity than our GAN-only models on
both datasets.

Accuracy. In Figure 4.6, we show similarity results as a function of time. Our SAVP method
outperforms all the other methods on the LPIPS metric. On the BAIR dataset, our VAE-only
variant and SVG-LP achieve similar accuracies, except for the first two time steps. We found that a
learned prior, such as the one used by SVG-LP, contributes to higher accuracy at the beginning of
the sequence. For simplicity, our models use the standard univariate Gaussian prior. On the KTH
dataset, SVG-LP is significantly worse than any of our methods. We noticed that this is because
SVG struggles to model different backgrounds, which is the case for the KTH dataset.

In stochastic domains, such as BAIR, there is correlation between diversity and accuracy of the
best sample: a model with diverse predictions is more likely to sample a video that is close to the
ground truth. For this reason, the GAN-only variant achieves significantly lower similarities than
our other variants. The effect is less pronounced in domains that are less stochastic, such as KTH.

Finally, we evaluate the importance of the perceptual loss on our model in Table 4.1, which
shows that the perceptual loss substantially improves the LPIPS accuracy on BAIR.
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4.5 Discussion
We develop a video prediction model that combines latent variables trained via a variational lower
bound with an adversarial loss to produce a high degree of visual and physical realism. VAE-style
training enables our method to make diverse stochastic predictions, and our experiments show that
the adversarial and perceptual losses are effective at producing predictions that are more visually
realistic according to human raters and more accurate. Evaluation of video prediction models is a
major challenge, and we evaluate our method, as well as ablated variants that consist of only the
VAE or only the GAN loss, in terms of a variety of quantitative and qualitative measures, including
human ratings, diversity, and accuracy of the predicted samples. Our results demonstrate that our
approach produces more realistic and accurate predictions than prior methods, while preserving
the sample diversity of VAE-based methods.
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Figure 4.3: Qualitative results (BAIR action-free dataset). Unless labeled otherwise, we show the closest
generated sample to ground truth (out of a 100) using LPIPS distance. SV2P produces blurry results. The
VAE-based methods SVG-LP and our VAE-only ablation predict sharper robot arms, but still blur the objects
that are being touched by the robot. The GAN-only method produce sharper predictions, but it is susceptible
to visual artifacts due to training difficulties. We show three results for our SAVP model: using the closest
and random samples. Note that there is large variation between the samples in the arm motion. Videos of
the test set can be found at: https://alexlee-gk.github.io/video_prediction.

https://alexlee-gk.github.io/video_prediction
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Figure 4.4: Qualitative results (KTH dataset). We show the closest generated sample to ground truth
(out of a 100) using LPIPS distance. The VAE-based methods SVG-LP and our VAE-only ablation generate
images where small limbs disappear further into the future, whereas our SAVP method preserves them. In
some cases, the SVG-LP method struggles to predict the background, such as in the sequence of the running
person. The GAN-only method produces images with visual artifacts, especially further into the future.
Our SAVP model produces sharper and more realistic predictions. Videos of the test set can be found at:
https://alexlee-gk.github.io/video_prediction.

https://alexlee-gk.github.io/video_prediction
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Figure 4.5: Realism vs diversity. We measure realism using a real vs fake Amazon Mechanical Turk
(AMT) test, and diversity using average LPIPS distance between samples. Higher is better on both metrics.
Our SAVP method achieves the highest realism compared to our ablations and VAE methods from prior
work. All the methods are diverse, except for the pure GAN due to mode collapse. Our SAVP method,
improves along the realism axis compared to a pure VAE method, and improves along the diversity axis
compared to a pure GAN method. These metrics are computed using predicted videos that are 10 time steps
long. The error bars show the standard error.
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Figure 4.6: Similarity of the best sample. We show the similarity (higher is better) between the best
sample (of 100) as a function of prediction time step. The VAE methods tend to achieve the highest SSIM
while our SAVP method consistently achieves the best LPIPS. Among our ablations, the GAN-only method
achieves the worst SSIM and LPIPS. On the KTH dataset, all of our variants perform significantly better
than the SVG method from prior works. Note that the models were only trained to predict 10 future frames
(indicated by the vertical line), but are being tested on longer sequences. The error bars show the standard
error.
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Chapter 5

Stochastic Latent Actor-Critic: Deep
Reinforcement Learning with a Latent
Variable Model

5.1 Introduction
The previous chapters use dynamics models for model-based control, i.e. the predictions from
the models are used decision-making. The drawback of this is that the performance of the agent
depends on the correctness of these predictions. In this chapter, we show that dynamics models can
be used to improve sample efficiency and assymptotic performance in the context of reinforcement
learning (RL), but without using the predictions from the models for decision-making.

Deep RL algorithms can automatically learn to solve certain tasks from raw, low-level obser-
vations such as images. However, these kinds of observation spaces present a number of chal-
lenges in practice: on one hand, it is difficult to directly learn from these high-dimensional inputs,
but on the other hand, it is also difficult to tease out a compact representation of the underlying
task-relevant information from which to learn instead. For these reasons, deep RL directly from
low-level observations such as images remains a challenging problem. Particularly in continuous
domains governed by complex dynamics, such as robotic control (Tassa et al., 2018; Brockman
et al., 2016), standard approaches still require separate sensor setups to monitor details of interest
in the environment, such as the joint positions of a robot or specific pose information of objects
of interest. To instead be able to learn directly from the more general and rich modality of vision
would greatly advance the current state of our learning systems, so we aim to study precisely this.
Standard model-free deep RL aims to use direct end-to-end training to explicitly unify these tasks
of representation learning and task learning. However, solving both problems together is difficult,
since an effective policy requires an effective representation, but in order for an effective represen-
tation to emerge, the policy or value function must provide meaningful gradient information using
only the model-free supervision signal (i.e., the reward function). In practice, learning directly
from images with standard RL algorithms can be slow, sensitive to hyperparameters, and ineffi-
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cient. In contrast to end-to-end learning with RL, predictive learning can benefit from a rich and
informative supervision signal before the agent has even made progress on the task or received any
rewards. This leads us to ask: can we explicitly learn a latent representation from raw low-level
observations that makes deep RL easier, through learning a predictive latent variable model?

Predictive models are commonly used in model-based RL for the purpose of planning (Deisen-
roth and Rasmussen, 2011; Finn and Levine, 2017; Nagabandi et al., 2018; Chua et al., 2018;
Zhang et al., 2019) or generating cheap synthetic experience for RL to reduce the required amount
of interaction with the real environment (Sutton, 1991; Gu et al., 2016). However, in this work,
we are primarily concerned with their potential to alleviate the representation learning challenge
in RL. We devise a stochastic predictive model by modeling the high-dimensional observations
as the consequence of a latent process, with a Gaussian prior and latent dynamics, as illustrated
in Figure 5.1. A model with an entirely stochastic latent state has the appealing interpretation of
being able to properly represent uncertainty about any of the state variables, given its past obser-
vations. We demonstrate in our work that fully stochastic state space models can in fact be learned
effectively: With a well-designed stochastic network, such models outperform fully deterministic
models, and contrary to the observations in prior work (Hafner et al., 2019; Buesing et al., 2018),
are actually comparable to (if not better than) mixed deterministic/stochastic models. Finally, we
note that this explicit representation learning, even on low-reward data, allows an agent with such a
model to make progress on representation learning even before it makes progress on task learning.

Equipped with this model, we can then perform RL in the learned latent space of the pre-
dictive model. We posit—and confirm experimentally—that our latent variable model provides a
useful representation for RL. Our model represents a partially observed Markov decision process
(POMDP), and solving such a POMDP exactly would be computationally intractable (Astrom,
1965; Kaelbling et al., 1998; Igl et al., 2018). We instead propose a simple approximation that
trains a Markovian critic on the (stochastic) latent state and trains an actor on a history of observa-
tions and actions. The resulting stochastic latent actor-critic (SLAC) algorithm loses some of the
benefits of full POMDP solvers, but it is easy and stable to train. It also produces good results, in
practice, on a range of challenging problems, making it an appealing alternative to more complex
POMDP solution methods.

The main contributions of our SLAC algorithm are useful representations learned from our
stochastic sequential latent variable model, as well as effective RL in this learned latent space. We
show experimentally that our approach substantially improves on both model-free and model-based
RL algorithms on a range of image-based continuous control benchmark tasks, attaining better final
performance and learning more quickly than algorithms based on (a) end-to-end deep RL from
images, (b) learning in a latent space produced by various alternative latent variable models, such
as a variational autoencoder (VAE) (Kingma and Welling, 2014), and (c) model-based RL based
on latent state-space models with mixed deterministic/stochastic variables (Hafner et al., 2019).
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5.2 Related Work

Representation learning in RL. End-to-end deep RL can in principle learn representations di-
rectly as part of the RL process (Mnih et al., 2013). However, prior work has observed that RL
has a “representation learning bottleneck”: a considerable portion of the learning period must
be spent acquiring good representations of the observation space (Shelhamer et al., 2016). This
motivates the use of a distinct representation learning procedure to acquire these representations
before the agent has even learned to solve the task. The use of unsupervised learning to learn
such representations has been explored in a number of prior works (Lange and Riedmiller, 2010;
Finn et al., 2016b). In contrast to this class of representation learning algorithms where temporal
connections between data are not explicitly considered, we utilize a latent-space dynamics model,
which we find in empirical comparisons to result in substantially better representations for RL.
By modeling covariances between consecutive latent states, we make it feasible for our proposed
stochastic latent actor-critic (SLAC) algorithm to perform Bellman backups directly in the latent
space of the learned model. In contrast to prior work that also uses latent-space dynamical system
models (Watter et al., 2015; Karl et al., 2017; Zhang et al., 2019; Hafner et al., 2019), our ap-
proach benefits from the good asymptotic performance of model-free RL, while at the same time
leveraging the improved latent space representation for sample efficiency, despite not using any
model-based rollouts for data augmentation.

Partial observability. Our work is also related to prior research on RL under partial observ-
ability. Prior work has studied end-to-end RL with recurrent models (Hausknecht and Stone, 2015;
Zhu et al., 2018), as well as explicit modeling of the POMDP (Astrom, 1965; Kaelbling et al., 1998)
to incorporate belief state into the policy. Prior work has also proposed to train a mixed determin-
istic/stochastic hidden state model jointly with a policy for the purpose of solving POMDPs (Igl
et al., 2018). Our approach is closely related to this prior method, in that we also use model-free
RL with a hidden state representation that is learned via prediction. However, our model learns a
fully stochastic latent state, and we focus on tasks with high-dimensional image observations for
complex underlying continuous control tasks, in contrast to (Igl et al., 2018), which evaluates on
Atari tasks and low-dimensional continuous control tasks that emphasize partial observability and
knowledge-gathering actions. Our method learns a critic directly on the latent state. This makes
our method simpler and more scalable, but at the cost of not being able to reason about the full
belief state. In this sense, the strengths of our approach and (Igl et al., 2018) are complementary,
and combining their strengths would be an interesting direction for future work.

Model stochasticity. Previous works have typically observed that mixed deterministic-stochastic
state space models are more effective (Hafner et al., 2019; Igl et al., 2018; Buesing et al., 2018)
than fully stochastic ones. In these models, the state of the underlying MDP is modeled with the
deterministic state of a recurrent network (e.g., LSTM (Hochreiter and Schmidhuber, 1997) or
GRU (Cho et al., 2014)), and optionally with some stochastic random variables. As mentioned
earlier, a model with a latent state that is entirely stochastic has the appealing interpretation of
learning a representation that can properly represent uncertainty about any of the state variables,
given past observations. We demonstrate in our work that fully stochastic state space models can in
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fact be learned effectively and, with a well-designed stochastic network, such models substantially
outperform both fully deterministic and mixed deterministic/stochastic models.

5.3 Reinforcement Learning and Modeling
This work addresses the problem of learning maximum entropy policies from high-dimensional
observations in POMDPs, by simultaneously learning a latent representation of the underlying
MDP state using variational inference and learning the policy in a maximum entropy RL frame-
work. In this section, we describe maximum entropy RL (Ziebart, 2010; Haarnoja et al., 2018a;
Levine, 2018) in fully observable MDPs, as well as variational methods for training latent state
space models for POMDPs.

Maximum Entropy RL in Fully Observable MPDs
In a Markov decision process (MDP), an agent at time t takes an action at ∈ A from state st ∈ S
and reaches the next state st+1 ∈ S according to some stochastic transition dynamics p(st+1|st, at).
The initial state s1 comes from a distribution p(s1), and the agent receives a reward rt on each of
the transitions. Standard RL aims to learn the parameters φ of some policy πφ(at|st) such that the
expected sum of rewards is maximized under the induced trajectory distribution ρπ. This objective
can be modified to incorporate an entropy term, such that the policy also aims to maximize the
expected entropy H(πφ(·|st)) under the induced trajectory distribution ρπ. This formulation has
a close connection to variational inference (Ziebart, 2010; Haarnoja et al., 2018a; Levine, 2018),
and we build on this in our work. The resulting maximum entropy objective is

φ∗ = arg max
φ

T∑
t=1

E
(st,at)∼ρπ

[r(st, at) + αH(πφ(·|st))], (5.1)

where r is the reward function, and α is a temperature parameter that controls the trade-off between
optimizing for the reward and for the entropy (i.e., stochasticy) of the policy. Soft actor-critic
(SAC) (Haarnoja et al., 2018a) uses this maximum entropy RL framework to derive soft policy
iteration, which alternates between policy evaluation and policy improvement within the described
maximum entropy framework. SAC then extends this soft policy iteration to handle continuous
action spaces by using parameterized function approximators to represent both the Q-function Qθ

(critic) and the policy πφ (actor). The soft Q-function parameters θ are optimized to minimize the
soft Bellman residual,

JQ(θ) = E
(st,at,rt,st+1)∼D

[
1

2
(Qθ(st, at)− (rt + γVθ̄(st+1)))

]
, (5.2)

Vθ̄(st+1) = E
at+1∼πφ

[Qθ̄(st+1, at+1)− α log πφ(at+1|st+1)] , (5.3)



CHAPTER 5. STOCHASTIC LATENT ACTOR-CRITIC 46

where D is the replay buffer, γ is the discount factor, and θ̄ are delayed parameters. The policy
parameters φ are optimized to update the policy towards the exponential of the soft Q-function,

Jπ(φ) = E
st∼D

[
E

at∼πφ
[α log(πφ(at|st))−Qθ(st, at)]

]
. (5.4)

Results of this stochastic, entropy maximizing RL framework demonstrate improved robustness
and stability. SAC also shows the sample efficiency benefits of an off-policy learning algorithm,
in conjunction with the high performance benefits of a long-horizon planning algorithm. Precisely
for these reasons, we choose to extend the SAC algorithm in this work to formulate our SLAC
algorithm.

Sequential Latent Variable Models and Amortized Variational Inference in
POMDPs
To learn representations for RL, we use latent variable models trained with amortized variational
inference. The learned model must be able to process a large number of pixels that are present
in the entangled image x, and it must tease out the relevant information into a compact and dis-
entangled representation z. To learn such a model, we can consider maximizing the probabil-
ity of each observed datapoint x from some training set D under the entire generative process
p(x) =

∫
p(x|z)p(z) dz. This objective is intractable to compute in general due to the marginal-

ization of the latent variables z. In amortized variational inference, we utilize the following bound
on the log-likelihood (Kingma and Welling, 2014),

Ex∼D [log p(x)] ≥ Ex∼D [Ez∼q [log p(x|z)]−DKL (q(z|x) ‖ p(z))] . (5.5)

We can maximize the probability of the observed datapoints (i.e., the left hand side of Equa-
tion (5.5)) by learning an encoder q(z|x) and a decoder p(x|z), and then directly performing
gradient ascent on the right hand side of the equation. In this setup, the distributions of interest are
the prior p(z), the observation model p(x|z), and the posterior q(z|x).

Although such generative models have been shown to successfully model various types of com-
plex distributions (Kingma and Welling, 2014) by embedding knowledge of the distribution into an
informative latent space, they do not have a built-in mechanism for the use of temporal information
when performing inference. In the case of partially observable environments, as we discuss below,
the representative latent state zt corresponding to a given non-Markovian observation xt needs to
be informed by past observations.

Consider a partially observable MDP (POMDP), where an action at ∈ A from latent state
zt ∈ Z results in latent state zt+1 ∈ Z and emits a corresponding observation xt+1 ∈ X . We make
an explicit distinction between an observation xt and the underlying latent state zt, to emphasize
that the latter is unobserved and the distribution is not known a priori. Analogous to the fully
observable MDP, the initial state distribution is p(z1), the transition probability distribution is
p(zt+1|zt, at), and the reward is rt. In addition, the observation model is given by p(xt|zt).

As in the case for VAEs, a generative model of these observations xt can be learned by maxi-
mizing the log-likelihood. In the POMDP setting, however, we note that xt alone does not provide
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all necessary information to infer zt, and thus, prior temporal information must be taken into ac-
count. This brings us to the discussion of sequential latent variable models. The distributions of
interest are the priors p(z1) and p(zt+1|zt, at), the observation model p(xt|zt), and the approxi-
mate posteriors q(z1|x1) and q(zt+1|xt+1, zt, at). The log-likehood of the observations can then be
bounded, similarly to the VAE bound in Equation (5.5), as

log p(x1:τ+1|a1:τ ) ≥ E
z1:τ+1∼q

[
τ+1∑
t=1

log p(xt|zt)−DKL (q(z1|x1) ‖ p(z1))

+
τ∑
t=1

−DKL (q(zt+1|xt+1, zt, at) ‖ p(zt+1|zt, at))
]
. (5.6)

Prior work (Hafner et al., 2019; Buesing et al., 2018; Doerr et al., 2018) has explored modeling
such non-Markovian observation sequences, using methods such as recurrent neural networks with
deterministic hidden state, as well as probabilistic state-space models. In this work, we enable
the effective training of a fully stochastic sequential latent variable model, and bring it together
with a maximum entropy actor-critic RL algorithm to create SLAC: a sample-efficient and high-
performing RL algorithm for learning policies for complex continuous control tasks directly from
high-dimensional image inputs.

5.4 Joint Modeling and Control as Inference

z1 · · · zτ zτ+1

a1 aτ aτ+1

x1 xτ xτ+1

Oτ+1

Figure 5.1: Graphical model of
POMDP with optimality variables.

Our method aims to learn maximum entropy policies from
high-dimensional, non-Markovian observations in a POMDP,
while also learning a model of that POMDP. The model allevi-
ates the representation learning problem, which in turn helps
with the policy learning problem. We formulate the control
problem as inference in a probabilistic graphical model with
latent variables, as shown in Figure 5.1.

For a fully observable MDP, the control problem can be
embedded into a graphical model by introducing a binary ran-
dom variable Ot, which indicates if time step t is optimal.
When its distribution is chosen to be p(Ot = 1|st, at) ∝
exp(r(st, at)), then maximization of p(O1:T ) via approximate
inference in that model yields the optimal policy for the maximum entropy objective (Levine,
2018).

In a POMDP, the distribution can analogously be given by p(Ot = 1|zt, at) ∝ exp(r(zt, at)).
Instead of maximizing the likelihood of the optimality variables alone, we jointly model the obser-
vations (including the observed rewards of the past time steps) and learn maximum entropy policies
by maximizing the likelihood p(x1:τ+1,Oτ+1:T |a1:τ ). This objective represents both the likelihood
of the observed data from the past τ steps, as well as the optimality of the agent’s actions for future
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steps. We factorize our variational distribution into a product of recognition terms q(z1|x1) and
q(zt+1|xt+1, zt, at), and a policy term π(aτ+1|x1:τ+1, a1:τ ) that is independent of z:

q(z1:τ+1, aτ+1|x1:τ+1, a1:τ ) = q(z1|x1)
τ∏
t=1

q(zt+1|xt+1, zt, at)π(aτ+1|x1:τ+1, a1:τ ). (5.7)

The posterior over the actions represents the agent’s policy π. We make a design choice in con-
ditioning this policy directly on observations and actions, instead of the latent state, because this
approximation allows us to directly execute the policy without having to perform inference on the
latent belief state at run time. We use the posterior from Equation (5.7) and maximize the evidence
lower bound (ELBO) of the marginal likelihood,

log p(x1:τ+1,Oτ+1:T |a1:τ ) ≥ E
(z1:τ+1,a1:τ )∼q

[
τ+1∑
t=1

log p(xt|zt)

−DKL (q(z1|x1) ‖ p(z1))−
τ∑
t=1

DKL (q(zt+1|xt+1, zt, at) ‖ p(zt+1|zt, at))

+ r(zτ+1, aτ+1)− log π(aτ+1|x1:τ+1, a1:τ ) + V (zτ+1)

]
. (5.8)

This derivation assumes that the reward function, which determines p(O|x, a), is known. How-
ever, in many RL problems, this is not the case. In that situation, we can simply append the reward
to the observation, and learn the reward along with p(x|z). This requires no modification to our
method other than changing the observation space, and we use this approach in all of our experi-
ments.

5.5 Stochastic Latent Actor Critic
We now describe our stochastic latent actor critic (SLAC) algorithm, which approximately maxi-
mizes the ELBO of Equation (5.8) using function approximators to model the prior and posterior
distributions.

Latent Variable Model: The first part of the ELBO corresponds to training the latent variable
model to maximize the likelihood of the observations, analogous to the ELBO in Equation (5.6)
for the sequential latent variable model. The distributions of the latent variable model are diag-
onal Gaussian distributions, where the means and variances are outputs of neural networks. The
distribution parameters ψ of this model are optimized to maximize the first part of the ELBO,

JM(ψ) = E
(x1:τ+1,a1:τ ,r1:τ )∼D

[
E

z1:τ+1∼qψ

[
τ+1∑
t=1

log pψ(xt|zt)

−DKL (qψ(z1|x1) ‖ pψ(z1))−
τ∑
t=1

DKL (qψ(zt+1|xt+1, zt, at) ‖ pψ(zt+1|zt, at))
]]

. (5.9)
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We sample from the filtering distribution qψ(z1:τ+1|x1:τ+1, a1:τ ) by using the reparameterization
trick.

Critic and Actor: The second part of the ELBO corresponds to the maximum entropy RL
objective. As in the fully observable case from Section 5.3 and as described by Levine (Levine,
2018), this optimization can be solved via message passing of soft Q-values, except that we use
the latent states z rather than the standard states s. For continuous state and action spaces, this
message passing is approximated by minimizing the soft Bellman residual, which we use to train
our soft Q-function parameters θ,

JQ(θ) = E
(x1:τ+1,a1:τ ,rτ )∼D

[
E

z1:τ+1∼qψ

[
1

2

(
Qθ(zτ , aτ )

−
(
rτ + γ E

aτ+1∼πφ
[Qθ̄(zτ+1, aτ+1)− α log πφ(aτ+1|x1:τ+1, a1:τ )]

))2
]]

, (5.10)

where θ̄ are delayed parameters, obtained as exponential moving averages of θ. Notice that the
latents zτ and zτ+1, which are used in the Bellman backup, are sampled from the same joint, i.e.
zτ+1 ∼ qψ(zτ+1|xτ+1, zτ , aτ ). Next, the policy parameters φ are optimized to update the policy
towards the exponential of that soft Q-function, analogously to soft actor-critic (Haarnoja et al.,
2018a) as shown in Equation (5.4):

Jπ(φ) = E
(x1:τ+1,a1:τ )∼D

[
E

z1:τ+1∼qψ

[
E

aτ+1∼πφ
[α log πφ(aτ+1|x1:τ+1, a1:τ )−Qθ(zτ+1, aτ+1)]

]]
.

(5.11)
We again use the reparameterization trick to sample from the policy, and the policy loss only uses
the last sample zτ+1 of the sequence. Finally, we note that for the expectation over latent states
in the Bellman residual in Equation (5.10), rather than sampling latent states z ∼ Z , we sample
latent states from the filtering distribution qψ(z1:τ+1|x1:τ+1, a1:τ ). This design choice allows us to
minimize the critic loss for samples that are most relevant for Q, while also allowing the critic loss
to use the Q-function in the same way as implied by the policy loss in Equation (5.11).

SLAC is outlined in Algorithm 2. The actor-critic component follows prior work, with au-
tomatic tuning of the temperature α and two Q-functions to mitigate underestimation (Fujimoto
et al., 2018; Haarnoja et al., 2018a;b). SLAC can be viewed as a variant of SAC (Haarnoja et al.,
2018a) where the critic is trained on the stochastic latent state of our sequential latent variable
model. The backup for the critic is performed on a tuple (zτ , aτ , rτ , zτ+1), sampled from the pos-
terior q(zτ+1, zτ |x1:τ+1, a1:τ ). The critic can, in principle, take advantage of the perfect knowledge
of the state zt, which makes learning easier. However, the actor does not have access to zt, and
must make decisions based on a history of observations and actions. SLAC is not a model-based
algorithm, in that in does not use the model for prediction, but we see in our experiments that
SLAC has better sample efficiency than prior model-based algorithms.
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Algorithm 2 Stochastic Latent Actor-Critic (SLAC)
Require: E, ψ, θ1, θ2, φ . Environment and initial parameters for model, actor, and critic

x1 ∼ Ereset() . Sample initial observation from the environment
D ← (x1) . Initialize replay buffer with initial observation
for each iteration do

for each environment step do
at ∼ πφ(at|x1:t, a1:t−1) . Sample action from the policy
rt,xt+1 ∼ Estep(at) . Sample transition from the environment
D ← D ∪ (at, rt,xt+1) . Store the transition in the replay buffer

end for
for each gradient step do

ψ ← ψ − λM∇ψJM(ψ) . Update model weights
θi ← θi − λQ∇θiJQ(θi) for i ∈ {1, 2} . Update the Q-function weights
φ← φ− λπ∇φJπ(φ) . Update policy weights
θ̄i ← νθi + (1− ν)θ̄i for i ∈ {1, 2} . Update target critic network weights

end for
end for

5.6 Latent Variable Model

z21 · · · z2τ z2τ+1

z11 · · · z1τ z1τ+1

x1 xτ xτ+1

a1 aτ

Figure 5.2: Diagram of our full model. Solid arrows
show the generative model, dashed arrows show the in-
ference model. Rewards are not shown for clarity.

The architecture in our implementation
factorizes the latent variable zt into two
stochastic layers, z1

t and z2
t , as shown in

Figure 5.2. We found this design to provide
a good balance between ease of training
and expressivity, producing good recon-
structions and generations and, crucially,
providing good representations for rein-
forcement learning. Unlike models from
prior work (Hafner et al., 2019; Buesing
et al., 2018; Doerr et al., 2018), which have
deterministic and stochastic paths and use
recurrent neural networks, ours is fully stochastic, i.e. our latent state is a Markovian latent ran-
dom variable formed by the concatenation of z1

t and z2
t . Inference over the latent variables is

performed using amortized variational inference, with all training done via reparameterization.
Hence, the computation graph can be deduced from the diagram by treating all solid arrows as part
of the generative model and all dashed arrows as part of approximate posterior.



CHAPTER 5. STOCHASTIC LATENT ACTOR-CRITIC 51

The generative model consists of the following probability distributions:

z1
1 ∼ p(z1

1)

z2
1 ∼ pψ(z2

1|z1
1)

z1
t+1 ∼ pψ(z1

t+1|z2
t , at)

z2
t+1 ∼ pψ(z2

t+1|z1
t+1, z

2
t , at)

xt ∼ pψ(xt|z1
t , z

2
t )

rt ∼ pψ(rt|z1
t , z

2
t , at, z

1
t+1, z

2
t+1).

The initial distribution p(z1
1) is a multivariate standard normal distribution N (0, I). All of the

other distributions are conditional and parametrized by neural networks with parameters ψ. The
networks for pψ(z2

1|z1
1), pψ(z1

t+1|z2
t , at), pψ(z2

t+1|z1
t+1, z

2
t , at), and pψ(rt|z1

t , z
2
t , at, z

1
t+1, z

2
t+1) con-

sist of two fully connected layers, each with 256 hidden units, and a Gaussian output layer. The
Gaussian layer is defined such that it outputs a multivariate normal distribution with diagonal vari-
ance, where the mean is the output of a linear layer and the diagonal standard deviation is the
output of a fully connected layer with softplus non-linearity. The observation model pψ(xt|z1

t , z
2
t )

consists of 5 transposed convolutional layers (256 4× 4, 128 3× 3, 64 3× 3, 32 3× 3, and 3 5× 5
filters, respectively, stride 2 each, except for the first layer). The output variance for each image
pixel is fixed to 0.1.

The variational distribution q, also referred to as the inference model or the posterior, is repre-
sented by the following factorization:

z1
1 ∼ qψ(z1

1|x1)

z2
1 ∼ pψ(z2

1|z1
1)

z1
t+1 ∼ qψ(z1

t+1|xt+1, z
2
t , at)

z2
t+1 ∼ pψ(z2

t+1|z1
t+1, z

2
t , at).

Note that the variational distribution over z2
1 and z2

t+1 is intentionally chosen to exactly match the
generative model p, such that this term does not appear in the KL-divergence within the ELBO,
and a separate variational distribution is only learned over z1

1 and z1
t+1. This intentional design

decision simplifies the inference process. The networks representing the distributions qψ(z1
1|x1)

and qψ(z1
t+1|xt+1, z

2
t , at) both consist of 5 convolutional layers (32 5× 5, 64 3× 3, 128 3× 3, 256

3× 3, and 256 4× 4 filters, respectively, stride 2 each, except for the last layer), 2 fully connected
layers (256 units each), and a Gaussian output layer. The parameters of the convolution layers are
shared among both distributions.

The latent variables have 32 and 256 dimensions, respectively, i.e. z1
t ∈ R32 and z2

t ∈ R256. For
the image observations, xt ∈ [0, 1]64×64×3. All the layers, except for the output layers, use leaky
ReLU non-linearities. Note that there are no deterministic recurrent connections in the network—
all networks are feedforward, and the temporal dependencies all flow through the stochastic units
z1
t and z2

t

For the reinforcement learning process, we use a critic network Qθ consisting of 2 fully con-
nected layers (256 units each) and a linear output layer. The actor network πφ consists of 5 con-
volutional layers, 2 fully connected layers (256 units each), a Gaussian layer, and a tanh bijector,
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Figure 5.3: Example image observations for our continuous control benchmark tasks: DeepMind Con-
trol’s cheetah run, walker walk, ball-in-cup catch, and finger spin, and OpenAI Gym’s half cheetah, walker,
hopper, and ant (left to right). Images are rendered at a resolution of 64× 64 pixels.

which constrains the actions to be in the bounded action space of [−1, 1]. The convolutional layers
are the same as the ones from the latent variable model, but the parameters of these layers are not
updated by the actor objective. The same exact network architecture is used for every one of the
experiments in the paper.

5.7 Experimental Evaluation
We evaluate SLAC on numerous image-based continuous control tasks from both the DeepMind
Control Suite (Tassa et al., 2018) and OpenAI Gym (Brockman et al., 2016), as illustrated in Fig-
ure 5.3. We also evaluate on multiple simulated manipulation tasks with two different robotic
manipulators. Aside from the value of action repeats (i.e. control frequency) for the tasks, we kept
all of SLAC’s hyperparameters constant across all tasks in all domains. Training and evaluation
details are given in Appendix D.1. Additionally, visualizations of our results and code are available
on the project website.1

Comparative Evaluation on Continuous Control Benchmark Tasks
To provide a comparative evaluation against prior methods, we evaluate SLAC on four tasks (chee-
tah run, walker walk, ball-in-cup catch, finger spin) from the DeepMind Control Suite (Tassa et al.,
2018), and four tasks (cheetah, walker, ant, hopper) from OpenAI Gym (Brockman et al., 2016).
Note that the Gym tasks are typically used with low-dimensional state observations, while we
evaluate on them with raw image observations. We compare our method to the following state-of-
the-art model-based and model-free algorithms:

SAC (Haarnoja et al., 2018a): This is an off-policy actor-critic algorithm, which represents a
comparison to state-of-the-art model-free learning. We include experiments showing the perfor-
mance of SAC based on true state (as an upper bound on performance) as well as directly from raw
images.

D4PG (Barth-Maron et al., 2018): This is also an off-policy actor-critic algorithm, learning
directly from raw images. The results reported in the plots below are the performance after 108

training steps, as stated in the benchmarks from (Tassa et al., 2018).
1https://alexlee-gk.github.io/slac/

https://alexlee-gk.github.io/slac/
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Figure 5.4: Experiments on the DeepMind Control Suite. SLAC (ours) converges to similar or better final
performance than the other methods, while almost always achieving reward as high as the upper bound SAC
baseline that learns from true state. Note that for these experiments, 1000 environments steps corresponds
to 1 episode.

PlaNet (Hafner et al., 2019): This is a model-based RL method for learning from images,
which uses a mixed deterministic/stochastic sequential latent variable model, but without explicit
policy learning. Instead, the model is used for planning with model predictive control (MPC),
where each plan is optimized with the cross entropy method (CEM).

DVRL (Igl et al., 2018): This is an on-policy model-free RL algorithm that also trains a mixed
deterministic/stochastic latent-variable POMDP model. DVRL uses the full belief over the latent
state as input into both the actor and critic, as opposed to our method, which trains the critic with
the latent state and the actor with a history of actions and observations.

Our experiments on the DeepMind Control Suite in Figure 5.4 show that the sample efficiency
of SLAC is comparable or better than both model-based and model-free alternatives. This indi-
cates that overcoming the representation learning bottleneck, coupled with efficient off-policy RL,
provides for fast learning similar to model-based methods, while attaining final performance com-
parable to fully model-free techniques that learn from state. SLAC also substantially outperforms
DVRL. This difference can be explained in part by the use of an efficient off-policy RL algorithm,
which can better take advantage of the learned representation.

We also evaluate SLAC on continuous control benchmark tasks from OpenAI Gym in Fig-
ure 5.5. We notice that these tasks are much more challenging than the DeepMind Control Suite
tasks, because the rewards are not as shaped and not bounded between 0 and 1, the dynamics are
different, and the episodes terminate on failure (e.g., when the hopper or walker falls over). PlaNet
is unable to solve the last three tasks, while for the cheetah task, it learns a suboptimal policy that
involves flipping the cheetah over and pushing forward while on its back. To better understand
the performance of fixed-horizon MPC on these tasks, we also evaluated with the ground truth dy-
namics (i.e., the true simulator), and found that even in this case, MPC did not achieve good final
performance, suggesting that infinite horizon policy optimization, of the sort performed by SLAC
and model-free algorithms, is important to attain good results on these tasks.

For the plots in Figure 5.4 and Figure 5.5, we show the mean and standard deviation over 4
random seeds with 10 evaluation trajectories per seed. We compare all methods using a fixed action
repeat per task, except for the reported D4PG numbers from (Tassa et al., 2018), which we could
not rerun ourselves due to lack of open-source code. Due to action repeats, the number of samples
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Figure 5.5: Experiments on the OpenAI Gym benchmark tasks from iamges. SLAC (ours) converges to
higher performance than both PlaNet and SAC on all four of these tasks. The number of environments steps
in each episode is variable, depending on the termination.

used for training is only a fraction of the environment steps reported in our plots. For example, an
episode with 1000 environment steps at an action repeat of 4 only receives 250 observations. See
Appendix D.1 for details.

Our experiments show that SLAC successfully learns complex continuous control benchmark
tasks from raw image inputs, while demonstrating both high sample efficiency as well as high
task performance through the use of explicit representation learning in conjunction with a robust
maximum-entropy actor-critic RL algorithm.

Simulated Robotic Manipulation Tasks
Beyond standard benchmark tasks, we also aim to illustrate the flexibility of our method by demon-
strating it on a variety of image-based robotic manipulation skills. The reward functions for these
tasks can be found in Appendix D.2, and videos of these behaviors can be found on the supple-
mentary website2. In Figure 5.6, we show illustrations of SLAC’s execution of these manipulation
tasks of using a simulated Sawyer robotic arm to push open a door, close a drawer, and reach out
and pick up an object. Our method is able to learn these contact-rich manipulation tasks from raw
images, succeeding even when the object of interest actually occupies only a small portion of the
image.

In our next set of manipulation experiments, we use the 9-DoF 3-fingered DClaw robot to rotate
a valve (Zhu et al., 2019) from various starting positions to various desired goal locations, where
the goal is illustrated as a green dot in the image. In all of our experiments, we allow the starting
position of the valve to be selected randomly between [−π, π], and we test three different settings
for the goal location (see Figure 5.7). First, we prescribe the goal position to always be fixed. In
this task setting, we see that SLAC, SAC from images, and SAC from state all perform similarly
in terms of both sample efficiency as well as final performance. However, when we allow the goal
location to be selected randomly from a set of 3 options {−π

2
, 0, π

2
}, we see that SLAC and SAC

from images actually outperform SAC from state. This interesting result can perhaps be explained
by the fact that, when learning from state, the goal is specified with just a single number within

2https://alexlee-gk.github.io/slac/

https://alexlee-gk.github.io/slac/
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Figure 5.6: Qualitative results of SLAC learning to perform manipulation tasks such as opening a door,
closing a drawer, and picking up a block with the Sawyer robot. SLAC is able to learn these contact-rich
manipulation tasks from raw images, succeeding even when the object of interest occupies only a small
portion of the image.
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Figure 5.7: Experiments on the DClaw task (a) of turning a valve to a desired location, as shown by a green
dot, including comparisons for achieving a (a) fixed goal, (b) three possible goals, and (c) random goals.

the state vector, rather than with the redundancy of numerous green pixels in the image. Finally,
when we allow the goal position of the valve to be selected randomly from [−π

2
, π

2
], we see that

SLAC’s explicit representation learning improves substantially over image-based SAC, performing
comparable to the oracle baseline that receives the true state observation.

Evaluating the Latent Variable Model
We next study the tradeoffs between different design choices for the latent variable model. We
compare our fully stochastic model, as described in Section 5.6, to a standard non-sequential VAE
model (Kingma and Welling, 2014), which has been used in multiple prior works for representation
learning in RL (Higgins et al., 2017; Ha and Schmidhuber, 2018; Nair et al., 2018), the mixed
deterministic/stochastic model used by PlaNet (Hafner et al., 2019), as well as three variants of
our model: a simple filtering model that does not factorize the latent variable into two layers of
stochastic units, a fully deterministic model that removes all stochasticity from the hidden state
dynamics, and a mixed model that has both deterministic and stochastic transitions, similar to the
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Figure 5.8: Comparison of dif-
ferent design choices for the la-
tent variable model.

PlaNet model, but with our architecture. In all cases, we use the RL
framework of SLAC and only vary the choice of model for repre-
sentation learning. As shown in the comparison in Figure 5.8, our
fully stochastic model substantially outperforms prior models as
well as the deterministic and simple variants of our own model. Al-
though even the naı̈ve VAE model provides for fast learning in the
beginning, the performance of these models quickly saturates. The
mixed deterministic/stochastic variant of our model nearly matches
the performance of the final fully stochastic variant but, contrary to
the conclusions in prior work (Hafner et al., 2019; Buesing et al.,
2018), the fully stochastic model performs on par or better, while
retaining the appealing interpretation of a stochastic state space be-
lief model.

Qualitative Predictions from the Latent Variable Model
We show example image samples from our learned sequential latent variable model for the cheetah
task in Figure 5.9, and we include the other tasks in Appendix D.3. Samples from the posterior
show the images xt as constructed by the decoder pψ(xt|zt), using a sequence of latents zt that
are encoded and sampled from the posteriors, qψ(z1|x1) and qψ(zt+1|xt+1, zt, at). Samples from
the prior, on the other hand, use a sequence of latents where z1 is sampled from p(z1) and all re-
maining latents zt are from the propagation of the previous latent state through the latent dynamics
pψ(zt+1|zt, at). Note that these prior samples do not use any image frames as inputs, and thus they
do not correspond to any ground truth sequence. We also show samples from the conditional prior,
which is conditioned on the first image from the true sequence: for this, the sampling procedure is
the same as the prior, except that z1 is encoded and sampled from the posterior qψ(z1|x1), rather
than being sampled from p(z1). We notice that the generated images samples can be sharper and
more realistic by using a smaller variance for pψ(xt|zt) when training the model, but at the expense
of a representation that leads to lower returns. Finally, note that we do not actually use the samples
from the prior for training.
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Figure 5.9: Example image sequence seen for the cheetah task (first row), corresponding posterior sample
(reconstruction) from our model (second row), and generated prediction from the generative model (last two
rows). The second to last row is conditioned on the first frame (i.e., the posterior model is used for the first
time step while the prior model is used for all subsequent steps), whereas the last row is not conditioned
on any ground truth images. Note that all of these sampled sequences are conditioned on the same action
sequence, and that our model produces highly realistic samples, even when predicting via the generative
model.

5.8 Discussion
We presented SLAC, an efficient RL algorithm for learning from high-dimensional image inputs
that combines efficient off-policy model-free RL with representation learning. SLAC learns a
compact latent representation space using a stochastic sequential latent variable model, and then
learns a critic model within this latent space. By learning a critic within a compact state space,
SLAC can learn much more efficiently than standard RL methods. Through representation learning
in conjunction with effective task learning in the learned latent space, our method outperforms both
model-free and model-based alternatives in terms of final performance and sample efficiency, on a
range of difficult image-based control tasks.

While our current SLAC algorithm is fully model-free, in that predictions from the model are
not utilized to speed up training, a natural extension of our approach would be to use the model pre-
dictions themselves to generate synthetic samples. Incorporating this additional synthetic model-
based data into a mixed model-based/model-free method could further improve sample efficiency
and performance. More broadly, the use of explicit representation learning with RL has the poten-
tial to not only accelerate training time and increase the complexity of achievable tasks, but also
enable reuse and transfer of our learned representation across tasks.
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Chapter 6

Conclusion

This thesis studies how visual dynamics models can be incorporated for robotic planning and
control. These studies are conducted in the context of visual servoing, visual planning, and repre-
sentation learning for reinforcement learning.

For visual servoing, we describe an approach that combines learned visual features with learn-
ing predictive dynamics models and reinforcement learning to learn visual servoing mechanisms.
The visual dynamics model consists of a one-step predictive model in the space of deep spatial
feature maps, which allows the robot to reactively choose an action so as to minimize the distance
between the predicted feature of the next time step and the feature of the desired goal. We illustrate
this on a complex synthetic car following benchmark. We demonstrate substantial improvement
over a conventional approach based on image pixels or hand-designed keypoints, and we show an
improvement in sample efficiency of more than two orders of magnitude over standard model-free
deep reinforcement learning algorithms.

For visual planning, we propose a deterministic video prediction model and use it for planning.
The model predicts future frames by predicting pixel transformations, conditioned on the current
and past frames and a sequence of actions. This choice allows to define cost functions in terms of
desired pixel motions specified by a human, and then find actions that the model predicts would
lead to desired outcomes. We demonstrate this in a range of pushing tasks involving the motion
of one or more objects, which is achieved by specifying the desired motion of these objects. We
also demonstrate that this framework allows for more complex behaviors to arise, such as lifting
the gripper to move over objects that should not be moved, as well as sequentially moving objects
to achieve the desired motions of multiple objects.

Then, we present SAVP, a stochastic adversarial video prediction model that overcomes the
limitations of deterministic models and the losses used in conventional video prediction models.
We develop a video prediction model that combines latent variables trained via a variational lower
bound with an adversarial loss to produce a high degree of visual and physical realism. VAE-
style training enables our method to make diverse stochastic predictions, and the adversarial and
perceptual losses are effective at producing predictions that are more visually realistic and accurate.
We demonstrate that our approach produces more realistic and accurate predictions than prior
methods, while preserving the sample diversity of VAE-based methods.
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Lastly, we present SLAC, an efficient RL algorithm for learning from high-dimensional image
inputs that combines efficient off-policy model-free RL with representation learning. Through
representation learning in conjunction with effective task learning in the learned latent space, our
method achieves improved sample efficiency and final task performance as compared to both prior
model-based and model-free RL methods.

In control problems, models are conventionally used in model-based algorithms where pre-
dictions coming from a predictive model are directly used to choose actions, either reactively or
by planning. This is the case for the first two problems studied in this thesis and also for many
model-based reinforcement learning algorithms. Although model-based methods are appealing
due to their sample efficiency, their asymptotic performance typically cannot match the returns of
model-free methods, often due to inaccuracies of the model. For this reason, an interesting and
active area of research is the combination of model-based and model-free techniques to achieve
the benefits of sample-efficient learning without sacrificing final performance. Ideally, a model
should help the agent learn faster, but it should not hinder the final performance of the agent. Our
proposed algorithm SLAC is a step in that direction.

Although our SLAC algorithm does not use predictions from the model to speed up learning,
a natural extension would be to use the model to generate synthetic data, which can then be in-
corporated into a model-free method to further improve sample efficiency and performance. More
broadly, the use of dedicated representation learning with control has the potential to not only ac-
celerate training, but also make it feasible to transfer representations across tasks, so as to leverage
all experience from all tasks seen so far.
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Silvia Chiappa, Sébastien Racanière, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. In International Conference on Learning Representations (ICLR), 2017.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn encoder–decoder for statistical
machine translation. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Neural Information Pro-
cessing Systems (NeurIPS), 2018.

Christophe Collewet and Eric Marchand. Photometric visual servoing. Transactions on Robotics,
2011.

Christophe Collewet, Eric Marchand, and Francois Chaumette. Visual servoing set free from image
processing. In International Conference on Robotics and Automation (ICRA), 2008.

Peter I. Corke. Visual control of robot manipulators – A review. Visual servoing, 1993.



BIBLIOGRAPHY 62

Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, and Michael Felsberg. Beyond cor-
relation filters: Learning continuous convolution operators for visual tracking. In European
Conference on Computer Vision (ECCV), 2016.

Pieter-Tjerk De Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 2005.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In
Neural Information Processing Systems (NeurIPS), 2016.

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In International Conference on Machine Learning (ICML), 2011.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition (CVPR), 2009.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In International
Conference on Machine Learning (ICML), 2018.

Guilherme N. DeSouza and Avinash C. Kak. Vision for mobile robot navigation: A survey. Trans-
actions on Pattern Analysis and Machine Intelligence, 2002.

Andreas Doerr, Christian Daniel, Martin Schiegg, Duy Nguyen-Tuong, Stefan Schaal, Marc Tou-
ssaint, and Sebastian Trimpe. Probabilistic recurrent state-space models. In International Con-
ference on Machine Learning (ICML), 2018.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. In
International Conference on Machine Learning (ICML), 2014.

Frederik Ebert, Chelsea Finn, Alex Lee, and Sergey Levine. Self-supervised visual planning with
temporal skip connections. In Conference on Robot Learning (CoRL), 2017.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 2005.

Bernard Espiau, Francois Chaumette, and Patrick Rives. A new approach to visual servoing in
robotics. Transactions on Robotics and Automation, 2002.

Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csaba Szepesvári, and Shie Mannor. Reg-
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Appendix A

Learning Visual Servoing with Deep
Features and Fitted Q-Iteration

A.1 Linearization of the Bilinear Dynamics
The optimization of Equation (2.3) can be solved efficiently by using a linearization of the dynam-
ics,
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t,c is the Jacobian matrix with partial derivatives ∂f
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point. Since the bilinear dynamics are linear with respect to the controls, this linearization is exact
and the Jacobian matrix does not depend on ū. Without loss of generality, we set ū = 0.

Furthermore, the bilinear dynamics allows the Jacobian matrix to be computed efficiently
by simply doing a forward pass through the model. For the locally bilinear dynamics of Equa-
tion (2.2), the j-th column of the Jacobian matrix is given by
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A.2 Servoing Cost Function for Reinforcement Learning
The goal of reinforcement learning is to find a policy that maximizes the expected sum of rewards,
or equivalently, a policy that minimizes the expected sum of costs. The cost should be one that
quantifies progress towards the goal. We define the cost function in terms of the position of the
target object (in the camera’s local frame) after the action has been taken,

c(st,ut, st+1) =


√(

pxt+1

pzt+1

)2

+
(

pyt+1

pzt+1

)2

+
(

1
pzt+1
− 1
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)2

, if ||pt+1||2 ≥ τ and car in FOV

(T − t+ 1) c(·, ·, st), otherwise,
(A.3)
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where T is the maximum trajectory length. The episode terminates early if the camera is too close
to the car (less than a distance τ ) or the car’s origin is outside the camera’s field of view (FOV).
The car’s position at time t is pt = (pxt ,p

y
t ,p

z
t ) and the car’s target position is p∗ = (0, 0,pz∗), both

in the camera’s local frame (z-direction is forward). Our experiments use T = 100 and τ = 4 m.

A.3 Experiment Details

Task Setup
The camera is attached to the vehicle slightly in front of the robot’s origin and facing down at an
angle of π/6 rad, similar to a commercial quadcopter drone. The robot has 4 degrees of freedom,
corresponding to translation and yaw angle. Pitch and roll are held fixed.

In our simulations, the quadcopter follows a car that drives at 1 m s−1 along city roads during
training and testing. The quadcopter’s speed is limited to within 10 m s−1 for each translational
degree of freedom, and its angular speed is limited to within π/2 rad s−1. The simulator runs at
10 Hz. For each trajectory, a car is chosen randomly from a set of cars, and placed randomly on
one of the roads. The quadcopter is initialized right behind the car, in the desired relative position
for following. The image observed at the beginning of the trajectory is used as the goal observation.

Learning Feature Dynamics
The dynamics of all the features were trained using a dataset of 10000 triplets xt,ut,xt+1. The
observations are 128×128 RGB images and the actions are 4-dimensional vectors of real numbers
encoding the linear and angular (yaw) velocities. The actions are normalized to between−1 and 1.

The training set was generated from 100 trajectories of a quadcopter following a car around
the city with some randomness. Each trajectory was 100 steps long. Only 5 training cars were
shown during learning. The generation process of each trajectory is as follows: First, a car is
chosen at random from the set of available cars and it is randomly placed on one of the roads.
Then, the quadcopter is placed at some random position relative to the car’s horizontal pose, which
is the car’s pose that has been rotated so that the vertical axis of it and the world matches. This
quadcopter position is uniformly sampled in cylindrical coordinates relative to the car’s horizontal
pose, with heights in the interval 12 m to 18 m, and azimuthal angles in the interval −π/2 rad to
π/2 rad (where the origin of the azimuthal angle is the back of the car). The radii and yaw angles
are initialized so that the car is in the middle of the image. At every time step, the robot takes an
action that moves it towards a target pose, with some additive Gaussian noise (σ = 0.2). The target
pose is sampled according to the same procedure as the initial pose, and it is sampled once at the
beginning of each trajectory.

We try the fully and locally connected dynamics for pixel intensities to better understand the
performance trade-offs when assuming locally connected dynamics. We do not use the latter for
the semantic features since they are too high-dimensional for the dynamics model to fit in memory.
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The dynamics models were trained with Adam using 10000 iterations, a batch size of 32, a learning
rate of 0.001, and momentums of 0.9 and 0.999, and a weight decay of 0.0005.

Learning Weighting of Feature Dynamics with Reinforcement Learning
We use CEM, TRPO and FQI to learn the feature weighting and report the performance of the
learned policies in Table A.1. We use the cost function described in Appendix A.2, a discount
factor of γ = 0.9, and trajectories of up to 100 steps. All the algorithms used initial weights of
w = 1 and λ = 1, and a Gaussian exploration policy with the current policy as the mean and a
fixed standard deviation σexploration = 0.2.

For the case of unweighted features, we use CEM to optimize for a single weight w and for
the weights λ. For the case of weighted features, we use CEM to optimize for the full space
of parameters, but we only do that for the pixel feature dynamics since CEM does not scale for
high-dimensional problems, which is the case for all the VGG features. Each iteration of CEM
performs a certain number of noisy evaluations and selects the top 20% for the elite set. The
number of noisy evaluations per iteration was 3 times the number of parameters being optimized.
Each noisy evaluation used the average sum of costs of 10 trajectory rollouts as its evaluation
metric. The parameters of the last iteration were used for the final policy. The policies with
unweighted features dynamics and the policies with pixel features dynamics were trained for 10
and 25 iterations, respectively.

We use TRPO to optimize for the full space of parameters for each of the feature dynamics
we consider in this work. We use a Gaussian policy, where the mean is the servoing policy of
Equation (2.3) and the standard deviation is fixed to σexploration = 0.2 (i.e. we do not learn the
standard deviation). Since the parameters are constrained to be non-negative, we parametrize the
TRPO policies with

√
w and

√
λ. We use a Gaussian baseline, where the mean is a 5-layer

CNN, consisting of 2 convolutional and 3 fully connected layers, and a standard deviation that
is initialized to 1. The convolutional layers use 16 filters (4 × 4, stride 2) each, the first 2 fully-
connected layers use 32 hidden units each, and all the layers except for the last one use ReLU
activations. The input of the baseline network are the features (either pixel intensities or VGG
features) corresponding to the feature dynamics being used. The parameters of the last iteration
were used for the final policy. The policies are trained with TRPO for 50 iterations, a batch size of
4000 samples per iteration, and a step size of 0.01.

We use our proposed FQI algorithm to optimize for the weights w,λ, and surpass the other
methods in terms of performance on test executions, sample efficiency, and overall computation
efficiency1. The updates of the inner iteration of our algorithm are computationally efficient; since
the data is fixed for a given sampling iteration, we can precompute φ (st,ut) and certain terms of
φ (st+1, ·). The parameters that achieved the best performance on 10 validation trajectories were
used for the final policy. The policies are trained with FQI for S = 2 sampling iterations, a batch
size of 10 trajectories per sampling iteration, K = 10 inner iterations per sampling iteration, and a

1Our policy based on conv4 3 features takes around 650 s to run K = 10 iterations of FQI for a given batch size
of 10 training trajectories.
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Policy Optimization Algorithm

Feature
Dynamics

unweighted
feature

dynamics
+ CEM (1500)

feature
dynamics
+ CEM
(3250)

feature
dynamics
+ TRPO
(≥ 80)

feature
dynamics
+ TRPO
(≥ 2000)

ours,
feature

dynamics
+ FQI (20)

pixel, FC 8.20± 0.66 7.77± 0.66 9.56± 0.62 8.03± 0.66 7.92± 0.67
pixel, LC 8.07± 0.74 7.13± 0.74 10.11± 0.60 7.97± 0.72 7.98± 0.77
VGG conv1 2 2.22± 0.38 2.06± 0.35 1.66± 0.31 1.89± 0.32
VGG conv2 2 2.40± 0.47 2.42± 0.47 1.89± 0.40 1.40± 0.29
VGG conv3 3 2.91± 0.52 2.87± 0.53 1.59± 0.42 1.56± 0.40
VGG conv4 3 2.70± 0.52 2.57± 0.49 1.69± 0.41 1.11 ± 0.29
VGG conv5 3 3.68± 0.47 3.69± 0.48 3.16± 0.48 2.49± 0.35

(a) Costs when using the set of cars seen during learning.

Policy Optimization Algorithm

Feature
Dynamics

unweighted
feature

dynamics
+ CEM (1500)

feature
dynamics
+ CEM
(3250)

feature
dynamics
+ TRPO
(≥ 80)

feature
dynamics
+ TRPO
(≥ 2000)

ours,
feature

dynamics
+ FQI (20)

pixel, FC 8.84± 0.68 8.66± 0.70 10.01± 0.62 8.75± 0.67 9.00± 0.70
pixel, LC 8.37± 0.75 7.17± 0.75 11.29± 0.57 8.25± 0.71 8.36± 0.79
VGG conv1 2 2.03± 0.43 1.79± 0.36 1.42± 0.33 1.78± 0.37
VGG conv2 2 2.01± 0.44 2.00± 0.45 1.26± 0.30 1.28± 0.30
VGG conv3 3 2.03± 0.47 2.08± 0.47 1.46± 0.37 1.04± 0.31
VGG conv4 3 2.40± 0.50 2.57± 0.53 1.48± 0.36 0.90 ± 0.26
VGG conv5 3 3.31± 0.45 3.55± 0.50 2.76± 0.42 2.56± 0.41

(b) Costs when using novel cars, none of which were seen during learning.

Table A.1: Costs on test executions of the dynamics-based servoing policies for different feature dynam-
ics and weighting of the features. The reported numbers are the mean and standard error across 100 test
trajectories, of up to 100 time steps each. We test on executions with the training cars and the novel cars;
for consistency, the novel cars follow the same route as the training cars. We compare the performance of
policies with unweighted features or weights learned by other methods. For the case of unweighted feature
dynamics, we use the cross entropy method (CEM) to learn the relative weights λ of the control and the
single feature weight w. For the other cases, we learn the weights with CEM, Trust Region Policy Opti-
mization (TRPO) for either 2 or 50 iterations, and our proposed FQI algorithm. CEM searches over the
full space of policy parameters w and λ, but it was only ran for pixel features since it does not scale for
high-dimensional problems. We report the number of training trajectories in parenthesis. For TRPO, we
use a fixed number of training samples per iteration, whereas for CEM and FQI, we use a fixed number of
training trajectories per iteration. We use a batch size of 4000 samples for TRPO, which means that at least
40 trajectories were used per iteration, since trajectories can terminate early, i.e. in less than 100 time steps.



APPENDIX A. LEARNING VISUAL SERVOING WITH DEEP FEATURES AND FQI 75

Dynamics Observations from Test Executions Cost

pixel,
fully
connected

24.74

16.69

pixel,
locally
connected

24.92

16.47

VGG
conv1 2

15.91

1.57

VGG
conv2 2

7.53

2.56

VGG
conv3 3

6.01

3.76

VGG
conv4 3

5.94

4.31

VGG
conv5 3

15.51

17.39

Table A.2: Sample observations from test executions in our experiments, and the costs for each trajectory,
for different feature dynamics. We use the weights learned by our FQI algorithm. This table follows the
same format as Table 2.1. Some of the trajectories were shorter than 100 steps because of the termination
condition (e.g. the car is no longer in the image). The first observation of each trajectory is used as the target
observation. The policies based on deeper VGG features, up to VGG conv4 3, are generally more robust to
the appearance changes between the observations and the target observation, which are typically caused by
movements of the car, distractor objects, and occlusions.
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Figure A.1: Costs of validation executions using various feature dynamics models, where the feature
weights are optimized with FQI (left plot) or TRPO (right plot). The reported values are the mean and
standard error across 10 validation trajectories, of up to 100 time steps each.

regularization coefficient of ν = 0.1. We found that regularization of the parameters was important
for the algorithm to converge. We show sample trajectories of the resulting policies in Table A.2.

The FQI algorithm often achieved most of its performance gain after the first iteration. We ran
additional sampling iterations of FQI to see if the policies improved further. For each iteration, we
evaluated the performance of the policies on 10 validation trajectories. We did the same for the
policies trained with TRPO, and we compare the learning curves of both methods in Figure A.1.

Learning End-to-End Servoing Policies with TRPO
We use TRPO to train end-to-end servoing policies for various observation modalities and report
the performance of the learned policies in Table A.3. The policies are trained with the set of training
cars, and tested on both this set and on the set of novel cars. The observation modalities that we
consider are ground truth car positions (relative to the quadcopter), images of pixel intensities from
the quadcopter’s camera, and VGG features extracted from those images. Unlike our method and
the other experiments, no feature dynamics are explicitly learned for these experiments.

We use a Gaussian policy, where the mean is either a multi-layer perceptron (MLP) or a con-
volutional neural net (CNN), and the standard deviation is initialized to 1. We also use a Gaussian
baseline, which is parametrized just as the corresponding Gaussian policy (but no parameters are
shared between the policy and the baseline). For the policy that takes in car positions, the mean



APPENDIX A. LEARNING VISUAL SERVOING WITH DEEP FEATURES AND FQI 77

Observation Modality

ground truth car position 0.59± 0.24

raw pixel-intensity images 3.23± 0.22
VGG conv1 2 features 7.45± 0.40
VGG conv2 2 features 13.38± 0.53
VGG conv3 3 features 10.02± 0.49

(a) Costs when using the set of cars seen during learning.

Observation Modality

ground truth car position 0.59± 0.24

raw pixel-intensity images 5.20± 0.40
VGG conv1 2 features 8.35± 0.44
VGG conv2 2 features 14.01± 0.47
VGG conv3 3 features 10.51± 0.65

(b) Costs when using a new set of cars, none of which were seen during learning.

Table A.3: Costs on test executions of servoing policies that were trained end-to-end with TRPO. These
policies take in different observation modalities: ground truth car position or image-based observations.
This table follows the same format as Table A.1. The mean of the first policy is parametrized as a 3-layer
MLP, with tanh non-linearities except for the output layer; the first 2 fully connected layers use 32 hidden
units each. For the other policies, each of their means is parametrized as a 5-layer CNN, consisting of
2 convolutional and 3 fully-connected layers, with ReLU non-linearities except for the output layer; the
convolutional layers use 16 filters (4× 4, stride 2) each and the first 2 fully-connected layers use 32 hidden
units each. All the policies are trained with TRPO, a batch size of 4000 samples, 500 iterations, and a
step size of 0.01. The car position observations are not affected by the appearance of the cars, so the test
performance for that modality is the same regardless of which set of cars are used.

is parametrized as a 3-layer MLP, with tanh non-linearities except for the output layer; the first
2 fully connected layers use 32 hidden units each. For the other policies, each of their means is
parametrized as a 5-layer CNN, consisting of 2 convolutional and 3 fully-connected layers, with
ReLU non-linearities except for the output layer; the convolutional layers use 16 filters (4 × 4,
stride 2) each and the first 2 fully-connected layers use 32 hidden units each.

The CNN policies would often not converge for several randomly initialized parameters. Thus,
at the beginning of training, we tried multiple random seeds until we got a policy that achieved a
relatively low cost on validation trajectories, and used the best initialization for training. The MLP
policy did not have this problem, so we did not have to try multiple random initializations for it.
All the policies are trained with a batch size of 4000 samples, 500 iterations, and a step size of
0.01. The parameters of the last iteration were used for the final policy.
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Classical Image-Based Visual Servoing
Traditional visual servoing techniques (Feddema and Mitchell, 1989; Weiss et al., 1987) use the
image-plane coordinates of a set of points for control. For comparison to our method, we evaluate
the servoing performance of feature points derived from bounding boxes and keypoints derived
from hand-engineered features, and report the costs of test executions on Table A.4.

We use bounding boxes from the C-COT tracker (Danelljan et al., 2016) (the current state-of-
the-art visual tracker) and ground truth bounding boxes from the simulator. The latter is defined as
the box that tightly fits around the visible portions of the car. We provide the ground truth bounding
box of the first frame to the C-COT tracker to indicate that we want to track the car. We use the
four corners of the box as the feature points for servoing to take into account the position and scale
of the car in image coordinates.

We provide the ground truth depth values of the feature points for the interaction matrices. In
classical image-based visual servoing, the control law involves the interaction matrix (also known
as feature Jacobian), which is the Jacobian of the points in image space with respect to the camera’s
control (see Chaumette and Hutchinson (2006) for details). The analytical feature Jacobian used in
IBVS assumes that the target points are static in the world frame. This is not true for a moving car,
so we consider a variant where the feature Jacobian incorporates the ground truth dynamics of the
car. This amounts to adding a non-constant translation bias to the output of the dynamics function,
where the translation is the displacement due to the car’s movement of the 3-dimensional point in
the camera’s reference frame. Note that this is still not exactly equivalent to having the car being
static since the roads have different slopes but the pitch and roll of the quadcopter is constrained to
be fixed.

For the hand-crafted features, we consider SIFT (Lowe, 2004), SURF (Bay et al., 2006) and
ORB (Rublee et al., 2011) keypoints. We filter out the keypoints of the first frame that does not
belong to the car and use these as the target keypoints. However, we use all the keypoints for the
subsequent observations.

The servoing policies based on bounding box features achieve low cost, and even lower ones if
ground truth car dynamics is used. However, servoing with respect to hand-crafted feature points
is significantly worse than the other methods. This is, in part, because the feature extraction and
matching process introduces compounding errors. Similar results were found by Collewet and
Marchand (2011), who proposed photometric visual servoing (i.e. servoing with respect to pixel
intensities) and showed that it outperforms, by an order of magnitude, classical visual servoing that
uses SURF features.

Classical Position-Based Visual Servoing
Position-based visual servoing (PBVS) techniques use poses of a target object for control (see
Chaumette and Hutchinson (2006) for details). We evaluate the servoing performance of a few
variants, and report the costs of test executions on Table A.5.

Similar to our IBVS experiments, we consider a variant that uses the car pose of the next time
step as a way to incorporate the ground truth car dynamics into the interaction matrix. Since the



APPENDIX A. LEARNING VISUAL SERVOING WITH DEEP FEATURES AND FQI 79

Observation Modality (Feature Points)

corners of bounding box from C-COT tracker (0.75) 1.70± 0.30
corners of ground truth bounding box (0.75) 0.86± 0.25
corners of next frame’s bounding box from C-COT tracker (0.65) 1.46± 0.22
corners of next frame’s ground truth bounding box (0.65) 0.53± 0.05

SIFT feature points (0.30) 14.47± 0.75
SURF feature points (0.60) 16.37± 0.78
ORB feature points (0.30) 4.41± 0.60

Table A.4: Costs on test executions when using classical image-based visual servoing (IBVS) with respect
to feature points derived from bounding boxes and keypoints derived from hand-engineered features. Since
there is no learning involved in this method, we only test with one set of cars: the cars that were used for
training in the other methods. This table follows the same format as Table A.1. This method has one hyper-
parameter, which is the gain for the control law. For each feature type, we select the best hyperparameter
(shown in parenthesis) by validating the policy on 10 validation trajectories for gains between 0.05 and 2, in
increments of 0.05. The servoing policies based on bounding box features achieve low cost, and even lower
ones if ground truth car dynamics is used. However, servoing with respect to hand-crafted feature points is
significantly worse than the other methods.

Policy Variant

Observation Modality (Pose) Use Rotation Ignore Rotation

car pose (1.55) 0.58 ± 0.25 (1.90) 0.51 ± 0.25
next frame’s car pose (1.00) 0.0059± 0.0020 (1.00) 0.0025± 0.0017

Table A.5: Costs on test executions when using classical position-based visual servoing (PBVS). Since
there is no learning involved in this method, we only test with one set of cars: the cars that were used
for training in the other methods. This table follows the same format as Table A.1. This method has one
hyperparameter, which is the gain for the control law. For each condition, we select the best hyperparameter
(shown in parenthesis) by validating the policy on 10 validation trajectories for gains between 0.05 and 2,
in increments of 0.05. These servoing policies, which use ground truth car poses, outperforms all the other
policies based on images. In addition, the performance is more than two orders of magnitude better if ground
truth car dynamics is used.

cost function is invariant to the orientation of the car, we also consider a variant where the policy
only minimizes the translational part of the pose error.

These servoing policies, which use ground truth car poses, outperforms all the other policies
based on images. In addition, the performance is more than two orders of magnitude better if
ground truth car dynamics is used.
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Appendix B

Self-Supervised Visual Planning with
Temporal Skip Connections

B.1 Hyperparameters
The video prediction network was trained on sequences of 15 steps taken from 44000 trajectories
of length 30 by randomly shifting the 15-step long window thus providing a form of data augmen-
tation. The model was trained on 66000 iterations with a minibatch-size of 32, using a learing
rate of 0.001 with the Adam optimizer Kingma and Ba (2015). For visual MPC we use niter = 3
CEM-iterations. At every CEM iteration M = 200 action sequences are sampled and the best
K = 10 samples are selected, fitting a Gaussian to these examples. Then new actions are sampled
according to the fitted distribution and the procedure is repeated for niter iterations.

B.2 Prototyping in Simulation
The visual MPC algorithm has been prototyped and tested on a simple block pushing task simulated
in the MuJoCo physics engine. The code has been made available in the same repository. Using the
simulator, training data could be collected orders of magnitude faster. Furthermore a benchmark
was set up which does not require any manual reset or manual labeling of the objects’ positions.
The main downside of simulation however is that the complexity of both real-world dynamics and
real-world visual scenes cannot be matched. (More realistic simulators exist, but require very large
computational resources and large amounts of hand-engineering for setup).

B.3 Dependence of Model Performance on Amount of
Training Data

We tested the effect of using different amounts of training data and compare the results visually, see
Figure B.1. The complete size of the data set is 44000 trajectories. For this evaluation all models
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(a) using 5% of data

(b) using 10% of data

(c) using 100% of data

Figure B.1: Top rows: Predicted images. Bottom rows: Predicted probability distributions of designated
pixel on the green object, marked in Figure 3.3. When using only 5% of the data (of 44000 trajectories in
total), the model is not able to predict object movement at all (in fact the arm passes through the objects) and
the distribution remains on the initial position of the object. For 30% percent the object distribution appears
much more smeared than with 100% of the data.

were trained for 76000 iterations. The quality of the predictions for the probability distribution of
the designated pixel vary widely with different amounts of training data and the quality of these
predictions is crucial for the performance of visual MPC. The fact that performance still improves
with very large amounts of training data suggests that the model has sufficient expressive power to
leverage this amount of experience. In the future we will investigate the effect of using even more
data and evaluate the effect of a larger number of different training objects.
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B.4 Failure Cases and Limitations
Visual MPC fails when objects have vastly different appearance than those used in training. For
example when objects are much bigger than any of the training objects these methods tend to
perform poorly. Also we observed failure for one object with a very bright color which did not
occur in the training set. However the model usually generalizes well to novel objects of similar
size and appearance as the training objects. Apart from that we observed two main failure modes:
The first one occurs when the probability mass of the designated pixel, Pt,d(i) drifts away from
the object of interest (as discussed in the Section 3.8) since there is no feedback correcting the
position of the designated pixel. To alleviate this problem a tracker can be integrated into the
system enabling visual MPC to keep retrying when object behave differently than expected.

The second failure mode occurs when visual MPC does not find an action sequence which
moves the designated pixel closer to the goal. This can happen, when the goalpoint for pushing
the object is far away and it is very unlikely to sample a trajectory moving closer to the goal. In
some cases the problem can be avoided simply by increasing the number of samples used when
applying CEM. However this slows down the planning process. In order to enable more temporally
extended action sequences a potential solution could be to increase the efficiency of the sampling
process e.g. by introducing macro-actions which consist of a sequence of actions.

B.5 Robustness of the Model
We did not find any negative influence of clutter in the workspace, as long as the object to be
moved has a free way path to its goal. When an obstacle is on the path it can be marked by
a second designated pixel to avoid collision using an additional cost function. In this case the
planner usually manages to find a way around the obstacle. However visual MPC with the current
type of model is not yet capable of reasoning by itself that it has to push and object around obstacles
when it is not marked explicitly. The reason is that the model has large uncertainty when multiple
collisions occur (i.e. when the arm pushes object 1 and object 1 collides with object 2).

Our model is robust to small changes of the viewpoint (in the order of several centimetres in
translation and several degrees in orientation). A likely reason is that during data collection the
camera has been slightly displaced in position. Robustness could be improved by training a model
from several viewpoints at the same time. As the prediction problem also becomes harder in this
way more data might be required.

B.6 General skip connection neural advection model
We show a diagram of the general skip connection neural advection model in Figure B.2
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Figure B.2: General SNA model based on Equation (3.1).

Alternative Model Architectures
Instead of copying pixels from the first image of the sequence I0, the pixels in the first image can
also be transformed and then merged together with the transformed pixels from the previous time
step as

Ît+1 = Ĩ0MN+1 +
N∑
i=1

Ĩ
(i)
t Mi (B.1)

where Ĩ0 is the transformed background. We tested this model on various pushing task and found
that performance is comparable to the SNA model.
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Appendix C

Stochastic Adversarial Video Prediction

C.1 Networks and Training Details

Network Details
Generator.

Our generator network, shown in Figure C.1, is inspired by the convolutional dynamic neural
advection (CDNA) model proposed by (Finn et al., 2016a). The video prediction setting is a se-
quential prediction problem, so we use a convolutional LSTM (Hochreiter and Schmidhuber, 1997;
Xingjian et al., 2015) to predict future frames. We initialize the prediction on the initial sequence of
ground truth frames (2 frames for both datasets), and predict 10 future frames. The model predicts
a sequence of future frames by repeatedly making next-frame predictions and feeding those pre-
dictions back to itself. For each one-step prediction, the predicted frame is given by a compositing
layer, which composes intermediate frames with predicted compositing masks. The intermediate
frames include the previous frame, transformed versions of the previous frame, and a frame with
pixels directly synthesized by the network. The transformed versions of the frame are produced by
convolving in the input image with predicted convolutional kernels, allowing for different shifted
versions of the input. In more recent work, the first frame of the sequence is also given as one of
the intermediate frames (Ebert et al., 2017).

To enable stochastic sampling, the generator is also conditioned on time-varying latent codes,
which are sampled at training and test time. Each latent code zt is an 8-dimensional vector. At each
prediction step, the latent code is passed through a fully-connected LSTM to facilitate correlations
in time of the latent variables. The encoded latent code is then passed to all the convolutional
layers of the main network, by concatenating it along the channel dimension to the inputs of these
layers. Since they are vectors with no spatial dimensions, they are replicated spatially to match the
spatial dimensions of the inputs.

We made a variety of architectural improvements to the original CDNA (Finn et al., 2016a) and
SNA (Ebert et al., 2017) models, which overall produced better results on the per-pixel loss and
similarity metrics. Each convolutional layer is followed by instance normalization (Ulyanov et al.,
2016) and ReLU activations. We also use instance normalization on the LSTM pre-activations (i.e.,
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Figure C.1: Architecture of our generator network. Our network uses a convolutional LSTM (Hochreiter
and Schmidhuber, 1997; Xingjian et al., 2015) with skip-connection between internal layers. As proposed
by Finn et al. (2016a), the network predicts (1) a set of convolution kernels to produce a set of transformed
input images (2) synthesized pixels at the input resolution and (3) a compositing mask. Using the mask,
the network can choose how to composite together the set of warped pixels, the first frame, previous frame,
and synthesized pixels. One of the internal feature maps is given to a fully-connected layer to compute
the kernels that specify pixel flow. The output of the main network is passed to two separate heads, each
with two convolutional layers, to predict the synthesized frame and the composite mask. These two outputs
use sigmoid and softmax non-linearities, respectively, to ensure proper normalization. We enable stochastic
sampling of the model by conditioning the generator network on latent codes. These are first passed through
a fully-connected LSTM, and then given to all the convolutional layers of the the convolutional LSTM.

the input, forget, and output gates, as well as the transformed and next cell of the LSTM). In ad-
dition, we modify the spatial downsampling and upsampling mechanisms. Standard subsampling
and upsampling between convolutions is known to produce artifacts for dense image generation
tasks (Odena et al., 2016; Zhao et al., 2017; Niklaus et al., 2017). In the encoding layers, we
reduce the spatial resolution of the feature maps by average pooling, and in the decoding layers,
we increase the resolution by using bilinear interpolation. All convolutions in the generator use a
stride of 1.

Encoder.

The encoder is a standard convolutional network that, at every time step, encodes a pair of images
xt and xt+1 into µzt and log σzt . The latent variable zt is sampled at every time step and the same
encoder network with shared weights is used at every step. The encoder architecture consists of
three convolutional layers, followed by average pooling of all the spatial dimensions. Two separate
fully-connected layers are then used to estimate µzt and log σzt , respectively. The convolutional
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layers use instance normalization, leaky ReLU non-linearities, and stride 2. This encoder architec-
ture is the same one used in BicyleGAN (Zhu et al., 2017) except that the inputs are pair of images,
concatenated along the channel dimension.

Discriminator.

The discriminator is a 3D convolutional neural network that takes in all the images of the video
at once. We use spectral normalization and the SNGAN discriminator architecture (Miyato et al.,
2018), except that we “inflate” the convolution filters from 2D to 3D. The two video discriminators,
D and DVAE, share the same architecture, but not the weights, as done in BicycleGAN (Zhu et al.,
2017).

Training Details
Our generator network uses scheduled sampling during training as in Finn et al. (2016a), such
that at the beginning the model is trained for one-step predictions, while by the end of training
the model is fully autoregressive. We trained all models with Adam (Kingma and Ba, 2015) for
300000 iterations, linearly decaying the learning rate to 0 for the last 100000 iterations. The same
training schedule was used for all the models, except for SVG, which was trained by its author.
Our GAN-based variants used an optimizer with β1 = 0.5, β2 = 0.999, learning rate of 0.0002,
and a batch size of 16. The VAE models (including SV2P from prior work) used an optimizer
with β1 = 0.9, β2 = 0.999, learning rate of 0.001, and a batch size of 32. For our VAE-based
variants, we linearly anneal the weight on the KL divergence term from 0 to the final value λKL

during training, as proposed by Bowman et al. (2016), from iterations 50000 to 100000.
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Appendix D

Stochastic Latent Actor-Critic: Deep
Reinforcement Learning with a Latent
Variable Model

D.1 Training and Evaluation Details
The control portion of our algorithm uses the same hyperparameters as SAC (Haarnoja et al.,
2018a), except for a smaller replay buffer size of 100000 environment steps (instead of a million)
due to the high memory usage of image observations. All of the parameters are trained with the
Adam optimizer (Kingma and Ba, 2015), and we perform one gradient step per environment step.
The Q-function and policy parameters are trained with a learning rate of 0.0003 and a batch size
of 256. The model parameters are trained with a learning rate of 0.0001 and a batch size of 32. We
use sequences of length τ = 8 for all the tasks. Note that the sequence length can be less than τ
for the first t steps (t < τ ) of each episode.

We use action repeats for all the methods, except for D4PG for which we use the reported
results from prior work (Tassa et al., 2018). The number of environment steps reported in our
plots correspond to the unmodified steps of the benchmarks. Note that the methods that use action
repeats only use a fraction of the environment steps reported in our plots. For example, 3 million
environment steps of the cheetah task correspond to 750000 samples when using an action repeat
of 4. The action repeats used in our experiments are given in Table D.1.

Unlike in prior work (Haarnoja et al., 2018a;b), we use the same stochastic policy as both the
behavioral and evaluation policy since we found the deterministic greedy policy to be comparable
or worse than the stochastic policy.
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Benchmark Task
Action
repeat

Original control
time step

Effective control
time step

DeepMind
Control Suite

cheetah run 4 0.01 0.04
walker walk 2 0.025 0.05
ball-in-cup catch 4 0.02 0.08
finger spin 2 0.02 0.04

OpenAI Gym

HalfCheetah-v2 1 0.05 0.05
Walker2d-v2 4 0.008 0.032
Hopper-v2 2 0.008 0.016
Ant-v2 4 0.05 0.2

Table D.1: Action repeats and the corresponding agent’s control time step used in our experiments.

D.2 Reward Functions for the Manipulation Tasks
Sawyer Door Open

r = −|θdoor − θdesired| (D.1)

Sawyer Drawer Close

dhandToHandle = ||xyzhand − xyzhandle||22
ddrawerToGoal = |xdrawer − xgoal|

r = −dhandToHandle − ddrawerToGoal (D.2)

Sawyer Pick-up

dtoObj = ||xyzhand − xyzobj||22
rreach = 0.25(1− tanh(10.0 ∗ dtoObj))

rlift =

{
1 if object lifted
0 else

r = max(rreach, r lift) (D.3)

D.3 Additional samples from our model
We show additional samples from our model in Figure D.1, Figure D.2, and Figure D.4. Samples
from the posterior show the images xt as constructed by the decoder pψ(xt|zt), using a sequence
of latents zt that are encoded and sampled from the posteriors, qψ(z1|x1) and qψ(zt+1|xt+1, zt, at).
Samples from the prior, on the other hand, use a sequence of latents where z1 is sampled from p(z1)



APPENDIX D. STOCHASTIC LATENT ACTOR-CRITIC 89

and all remaining latents zt are from the propagation of the previous latent state through the latent
dynamics pψ(zt+1|zt, at). These samples do not use any image frames as inputs, and thus they do
not correspond to any ground truth sequence. We also show samples from the conditional prior,
which is conditioned on the first image from the true sequence: for this, the sampling procedure is
the same as the prior, except that z1 is encoded and sampled from the posterior qψ(z1|x1), rather
than being sampled from p(z1).
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Figure D.1: Example image sequences, along with generated image samples, for three of the DM Control
tasks that we used in our experiments. See Figure 5.9 for more details and for image samples from the
cheetah task. Continues on Figure D.3.
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Figure D.2: Example image sequences, along with generated image samples, for the four OpenAI Gym
tasks that we used in our experiments.
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Figure D.3: Continuation of Figure D.2. Example image sequences, along with generated image samples,
for the four OpenAI Gym tasks that we used in our experiments.
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Figure D.4: Example image sequences, along with generated image samples, for the manipulation tasks
that we used in our experiments. Note that these image samples are difficult to interpret as image strips, so
we instead recommend the videos of these samples that are on the project website.
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