
Ray: A Distributed Execution Engine for the Machine
Learning Ecosystem

Philipp Moritz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-124
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-124.html

August 16, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Ray: A Distributed Execution Engine for the Machine Learning Ecosystem

by

Philipp C Moritz

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Chair
Professor Ion Stoica

Professor Ken Goldberg

Summer 2019

Ray: A Distributed Execution Engine for the Machine Learning Ecosystem

Copyright 2019
by

Philipp C Moritz

1

Abstract

Ray: A Distributed Execution Engine for the Machine Learning Ecosystem

by

Philipp C Moritz

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

In recent years, growing data volumes and more sophisticated computational procedures
have greatly increased the demand for computational power. Machine learning and artificial
intelligence applications, for example, are notorious for their computational requirements.
At the same time, Moores law is ending and processor speeds are stalling. As a result,
distributed computing has become ubiquitous. While the cloud makes distributed hardware
infrastructure widely accessible and therefore offers the potential of horizontal scale, devel-
oping these distributed algorithms and applications remains surprisingly hard. This is due to
the inherent complexity of concurrent algorithms, the engineering challenges that arise when
communicating between many machines, the requirements like fault tolerance and straggler
mitigation that arise at large scale and the lack of a general-purpose distributed execution
engine that can support a wide variety of applications.

In this thesis, we study the requirements for a general-purpose distributed computa-
tion model and present a solution that is easy to use yet expressive and resilient to faults.
At its core our model takes familiar concepts from serial programming, namely functions
and classes, and generalizes them to the distributed world, therefore unifying stateless and
stateful distributed computation. This model not only supports many machine learning
workloads like training or serving, but is also a good fit for cross-cutting machine learning
applications like reinforcement learning and data processing applications like streaming or
graph processing. We implement this computational model as an open-source system called
Ray, which matches or exceeds the performance of specialized systems in many application
domains, while also offering horizontally scalability and strong fault tolerance properties.

i

To my parents Hugo and Birgit,
and my sisters Christine and Sophie,
for their constant love and support!

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1

2 The Distributed Computation Landscape 4
2.1 The Bulk Synchronous Parallel Model . 5
2.2 The Task Parallel Model . 6
2.3 The Communicating Processes Model . 8
2.4 The Distributed Shared Memory Model . 10

3 Motivation: Training Deep Networks in Spark 11
3.1 Introduction . 11
3.2 Implementation . 13
3.3 Experiments . 15
3.4 Related Work . 19
3.5 Discussion . 20

4 The System Requirements 26
4.1 Motivating Example . 28
4.2 Proposed Solution . 29
4.3 Feasibility . 31
4.4 Related Work . 32
4.5 Conclusion . 32

5 The Design and Implementation of Ray 33
5.1 Motivation and Requirements . 35
5.2 Programming and Computation Model . 39
5.3 Architecture . 42
5.4 Evaluation . 47

iii

5.5 Related Work . 56
5.6 Discussion and Experiences . 58
5.7 Conclusion . 60

6 Use Case: Large Scale Optimization 61
6.1 Introduction . 61
6.2 The Algorithm . 63
6.3 Preliminaries . 64
6.4 Convergence Analysis . 66
6.5 Related Work . 68
6.6 Experimental Results . 69
6.7 Proofs of Preliminaries . 71
6.8 Discussion . 74

7 Conclusion 76

Bibliography 79

iv

List of Figures

2.1 Building an inverted index with MapReduce . 6
2.2 Neural network task graph, source https://www.tensorflow.org/guide/graphs . . 7
2.3 A chatroom implementation in the actor framework 9

3.1 This figure depicts the SparkNet architecture. 13
3.2 Computational models for different parallelization schemes. 22
3.3 This figure shows the speedup τMa(b, τ,K)/Na(b) given by SparkNet’s paral-

lelization scheme relative to training on a single machine to obtain an accuracy
of a = 20%. Each grid square corresponds to a different choice of K and τ . We
show the speedup in the zero communication overhead setting. This experiment
uses a modified version of AlexNet on a subset of ImageNet (100 classes each
with approximately 1000 images). Note that these numbers are dataset specific.
Nevertheless, the trends they capture are of interest. 23

3.4 This figure shows the speedups obtained by the naive parallelization scheme and
by SparkNet as a function of the cluster’s communication overhead (normalized
so that C(b) = 1). We consider K = 5. The data for this plot applies to
training a modified version of AlexNet on a subset of ImageNet (approximately
1000 images for each of the first 100 classes). The speedup obtained by the
naive parallelization scheme is C(b)/(C(b)/K + S). The speedup obtained by
SparkNet is Na(b)C(b)/[(τC(b) + S)Ma(b,K, τ)] for a specific value of τ . The
numerator is the time required by serial SGD to achieve an accuracy of a, and
the denominator is the time required by SparkNet to achieve the same accuracy
(see Equation 3.1 and Equation 3.2). For the optimal value of τ , the speedup is
maxτ Na(b)C(b)/[(τC(b) + S)Ma(b,K, τ)]. To plot the SparkNet speedup curve,
we maximize over the set of values τ ∈ {1, 2, 5, 10, 25, 100, 500, 1000, 2500} and
use the values Ma(b,K, τ) and Na(b) from the experiments in the fifth row of
Figure 3.3. In our experiments, we have S ≈ 20s and C(b) ≈ 2s. 24

3.5 This figure shows the performance of SparkNet on a 3-node, 5-node, and 10-node
cluster, where each node has 1 GPU. In these experiments, we use τ = 50. The
baseline was obtained by running Caffe on a single GPU with no communication.
The experiments are performed on ImageNet using AlexNet. 25

v

3.6 This figure shows the performance of SparkNet on a 3-node cluster and on a 6-
node cluster, where each node has 4 GPUs. In these experiments, we use τ = 50.
The baseline uses Caffe on a single node with 4 GPUs and no communication
overhead. The experiments are performed on ImageNet using GoogLeNet. . . . 25

3.7 This figure shows the dependence of the parallelization scheme described in Sec-
tion 3.2 on τ . Each experiment was run with K = 5 workers. This figure shows
that good performance can be achieved without collecting and broadcasting the
model after every SGD update. 25

4.1 (a) Traditional ML pipeline (off-line training). (b) Example reinforcement learning

pipeline: the system continously interacts with an environment to learn a policy, i.e.,

a mapping between observations and actions. 27

5.1 Example of an RL system. 36
5.2 Typical RL pseudocode for learning a policy. 36
5.3 Python code implementing the example in Figure 5.2 in Ray. Note that @ray.remote in-

dicates remote functions and actors. Invocations of remote functions and actor methods

return futures, which can be passed to subsequent remote functions or actor methods

to encode task dependencies. Each actor has an environment object self.env shared

between all of its methods. 40
5.4 The task graph corresponding to an invocation of train policy.remote() in Figure 5.3.

Remote function calls and the actor method calls correspond to tasks in the task graph.

The figure shows two actors. The method invocations for each actor (the tasks labeled

A1i and A2i) have stateful edges between them indicating that they share the mutable

actor state. There are control edges from train policy to the tasks that it invokes. To

train multiple policies in parallel, we could call train policy.remote() multiple times. 41
5.5 Ray’s architecture consists of two parts: an application layer and a system layer. The

application layer implements the API and the computation model described in Sec-

tion 5.2, the system layer implements task scheduling and data management to satisfy

the performance and fault-tolerance requirements. 42
5.6 Bottom-up distributed scheduler. Tasks are submitted bottom-up, from drivers and

workers to a local scheduler and forwarded to the global scheduler only if needed (Sec-

tion 5.3). The thickness of each arrow is proportional to its request rate. 44
5.7 An end-to-end example that adds a and b and returns c. Solid lines are data plane

operations and dotted lines are control plane operations. (a) The function add() is

registered with the GCS by node 1 (N1), invoked on N1, and executed on N2. (b) N1

gets add()’s result using ray.get(). The Object Table entry for c is created in step 4

and updated in step 6 after c is copied to N1. 46

vi

5.8 (a) Tasks leverage locality-aware placement. 1000 tasks with a random object depen-

dency are scheduled onto one of two nodes. With locality-aware policy, task latency

remains independent of the size of task inputs instead of growing by 1-2 orders of magni-

tude. (b) Near-linear scalability leveraging the GCS and bottom-up distributed sched-

uler. Ray reaches 1 million tasks per second throughput with 60 nodes. x ∈ {70, 80, 90}
omitted due to cost. 48

5.9 Object store write throughput and IOPS. From a single client, throughput exceeds

15GB/s (red) for large objects and 18K IOPS (cyan) for small objects on a 16 core

instance (m4.4xlarge). It uses 8 threads to copy objects larger than 0.5MB and 1

thread for small objects. Bar plots report throughput with 1, 2, 4, 8, 16 threads.

Results are averaged over 5 runs. 49
5.10 Ray GCS fault tolerance and flushing. 50
5.11 Ray fault-tolerance. (a) Ray reconstructs lost task dependencies as nodes are removed

(dotted line), and recovers to original throughput when nodes are added back. Each

task is 100ms and depends on an object generated by a previously submitted task. (b)

Actors are reconstructed from their last checkpoint. At t = 200s, we kill 2 of the 10

nodes, causing 400 of the 2000 actors in the cluster to be recovered on the remaining

nodes (t = 200–270s). 51
5.12 (a) Mean execution time of allreduce on 16 m4.16xl nodes. Each worker runs on a

distinct node. Ray* restricts Ray to 1 thread for sending and 1 thread for receiving.

(b) Ray’s low-latency scheduling is critical for allreduce. 52
5.13 Images per second reached when distributing the training of a ResNet-101 TensorFlow

model (from the official TF benchmark). All experiments were run on p3.16xl instances

connected by 25Gbps Ethernet, and workers allocated 4 GPUs per node as done in

Horovod [116]. We note some measurement deviations from previously reported, likely

due to hardware differences and recent TensorFlow performance improvements. We

used OpenMPI 3.0, TF 1.8, and NCCL2 for all runs. 53
5.14 Time to reach a score of 6000 in the Humanoid-v1 task [21]. (a) The Ray ES implemen-

tation scales well to 8192 cores and achieves a median time of 3.7 minutes, over twice as

fast as the best published result. The special-purpose system failed to run beyond 1024

cores. ES is faster than PPO on this benchmark, but shows greater runtime variance.

(b) The Ray PPO implementation outperforms a specialized MPI implementation [97]

with fewer GPUs, at a fraction of the cost. The MPI implementation required 1 GPU

for every 8 CPUs, whereas the Ray version required at most 8 GPUs (and never more

than 1 GPU per 8 CPUs). 55

6.1 The left figure plots the log of the optimization error as a function of the num-
ber of passes through the data for SLBFGS, SVRG, SQN, and SGD for a ridge
regression problem (Millionsong). The middle figure does the same for a support
vector machine (RCV1). The right plot shows the training loss as a function
of the number of passes through the data for the same algorithms for a matrix
completion problem (Netflix). 68

vii

6.2 These figures show the log of the optimization error for SLBFGS, SVRG, SQN,
and SGD on a ridge regression problem (millionsong) for a wide range of step sizes. 69

6.3 These figures show the log of the optimization error for SLBFGS, SVRG, SQN,
and SGD on a support vector machine (RCV1) for a wide range of step sizes. . . 70

viii

List of Tables

2.1 The spectrum of distributed computing . 4

5.1 Ray API . 38
5.2 Tasks vs. actors tradeoffs. 38
5.3 Throughput comparisons for Clipper [30], a dedicated serving system, and Ray for two

embedded serving workloads. We use a residual network and a small fully connected

network, taking 10ms and 5ms to evaluate, respectively. The server is queried by clients

that each send states of size 4KB and 100KB respectively in batches of 64. 54
5.4 Timesteps per second for the Pendulum-v0 simulator in OpenAI Gym [21]. Ray allows

for better utilization when running heterogeneous simulations at scale. 54

ix

Acknowledgments

I am deeply grateful to the many people who were part of my PhD journey. They helped me
to grow professionally and as a person, and have made my time at Berkeley unforgettable.
Without them this thesis would not have been possible. I would like to thank:

My advisor Michael Jordan for bringing me to Berkeley, for inspiring and encouraging
me throughout my PhD, for bringing together such an exceptional and supportive group of
peers and for motivating all of us with his kindness, enthusiasm and positivity.

My advisor Ion Stoica for mentoring me. His obsession with real-world impact and
research that truly matters is unparalleled. He taught me many valuable lessons about
research, systems design, planning, products and execution and truly expanded my horizon.

Robert Nishihara, who has influenced my PhD journey like nobody else. His ability to
confidently bust through any obstacle that might arise has greatly inspired me and helped
me to not only see, but also reach the light at the end of the tunnel.

John Schulman with whom I collaborated closely at the beginning of my PhD. We have
had many great conversations over the years and he has been a source of inspiration and
ideas ever since!

Cathy Wu for countless discussions about research and life, her kindness and all the
unforgettable memories we forged.

I would like to thank all the members of the Ray team, including Stephanie Wang, Eric
Liang, Richard Liaw, Devin Petersohn, Alexey Tumanov, Peter Schafhalter, Si-Yuan Zhuang,
Zongheng Yang, William Paul, Melih Elibol, Simon Mo, William Ma, Alana Marzoev, and
Romil Bhardwaj. Thanks for a great collaboration. I have learned a lot from you!

I would like to thank my friends and colleagues from the research groups I have been
part of. SAIL has been incredible. It is hard to describe the amount of knowledge and ideas
that were transferred at our weekly research meetings, and the positivity and support from
all of you, including Stefanie Jegelka, Ashia Wilson, Horia Mania, Mitchell Stern, Tamara
Broderick, Ahmed El Alaoui, Esther Rolf, Chi Jin, Max Rabinovich, Nilesh Tripuraneni,
Karl Krauth, Ryan Giordano, John Duchi, and Nick Boyd. The AMPLab, RISELab and
BAIR have been a great community of friends and collaborators. Berkeley is unique for its
collaborative research style, and the lab culture plays a major role in that.

I would like to thank my quals and thesis committee, Ken Goldberg, Joey Gonzalez and
Fernando Perez for their insights, advice and support over the years!

My friend Fanny Yang for constant friendship and support, the many races and memories.
You truly made a difference!

Many friends who made this journey unforgettable, including Fan Wei, Olivia Anguli,
Richard Shin, Frank Li, Atsuya Kumano, Jordan Sullivan, Vinay Ramasesh, Jacob Stein-
hardt, Ludwig Schmidt, Reinhard Heckel, Jacob Andreas, Alyssa Morrow, Jeff Mahler,
Mehrdad Niknami, Smitha Milli, Marc Khoury and Sasha Targ.

My home for the last five years, a big house on the south side of Berkeley, called “Little
Mountain”. Rishi Gupta for founding it and everybody living there for the great time we
had together.

x

I would like to thank the Nishihara family for so kindly inviting and integrating me into
many family gatherings and making me feel at home in the Bay area.

This thesis is dedicated to my family. My parents Hugo and Birgit, who created the
right environment for me to thrive. Their unconditional love and support have made all
the difference. My sisters Christine and Sophie for being awesome life companions, for their
support and guidance over the year.

1

Chapter 1

Introduction

We are living in a remarkable time. In the span of a single human lifetime, we have seen the
birth of machines that can process data, automatically perform tasks and make decisions.
They have grown to have substantial real-world impact. If you are looking for any piece of
information, there is a good chance that Google can find it for you. If you want to buy a
product or get recommendations on what to buy, there is a large number of services on the
internet that will help you to spend money, including Amazon. If you want to quickly get
from A to B without having to worry about the details, ride sharing services like Uber or Lyft
are the way to go. And not only our personal lives but also society crucially depends on our
digital infrastructure. Science, education, our health care system and public administration
as well as corporations would be unable to operate and coordinate the work of so many people
without the help of computers. Computers are capable of running such diverse workloads as
crunching numbers for scientific simulations, running complex queries on relational data to
help operate large corporations or connecting people around the globe, and they are slowly
starting to perform some of the complex cognitive tasks that only humans were capable of
in the past. And fast forward another human lifetime, we will look back and realize that
todays capabilities pale in comparison to what will be possible then.

Much of the computation is happening in the cloud, a large collection of servers that
can be rented from providers like Amazon, Microsoft or Google. We typically use “edge”
devices like smartphones or laptops to interface with the digital world, but in most cases
the actual logic is implemented in the cloud. You become painfully aware of this if your
phone gets disconnected from the internet and many important applications stop working.
There are good reasons to shift much of the processing into the cloud: Moore’s law is ending,
therefore single-core performance is not getting much faster, which means compute heavy
application logic needs a large number of cores, which are typically only available on a cluster.
Computing in the cloud also improves resource usage as processors can be shared between
users and applications. One of the most important reasons why companies typically prefer
running application logic in the cloud rather than the edge is control: They can determine
the compute environment, have full access to the data and can secure private data and
algorithms more easily.

CHAPTER 1. INTRODUCTION 2

Given this trend, it is quite surprising that distributed programming in the cloud is still
very hard. Distributed systems is one of the more complex topics in computer science and
while there is a large amount of research in this field, there is less work on making it easier
for non-experts to build distributed software. If they want flexible systems, programmers
typically have to build distributed applications from low-level primitives like remote pro-
cedure call layers, distributed key-value stores and cluster managers, which requires a lot
of expertise, duplicates work between different distributed systems and makes the task of
debugging a distributed application even harder than it already is. Clearly distributed pro-
gramming in the cloud is not yet as easy as programming on a laptop where programmers
can choose from a rich set of high-level libraries, write complex applications with ease by
composing them, and inspect the flow of the program and stop and debug it if something
goes wrong.

These observations especially apply in the fields of machine learning and artificial intelli-
gence. In fact, artificial intelligence is one of the most computationally expensive workloads
due to ever increasing sizes of models and datasets. Many distributed systems have been
developed to handle the scale of these applications: There are distributed data processing
systems like MapReduce, Hadoop or Spark, stream processing systems like Flink or Kafka,
distributed training systems like distributed TensorFlow, PyTorch or MxNet, distributed
model serving systems like TensorFlow Serving or Clipper, and hyperparameter search tools
like Vizier. However, each of these systems have a fairly narrow design scope. Therefore,
in order to build end-to-end applications, practitioners often have to glue several systems
together, which incurs high costs: Data needs to be converted at the system boundaries
with costs for both development productivity and runtime efficiency, different fault toler-
ance mechanisms need to be combined into an overall strategy, each of the systems needs
to be managed and resources need to be allocated for each of them, which can lead to poor
cluster utilization. Even worse, emerging workloads such as reinforcement learning, online
learning and other cross-cutting applications need more flexible programming models and
have stringent performance requirements that often cannot be fulfilled by gluing together
existing systems. Practitioners are therefore often left to write their own distributed systems
for such workloads from low-level primitives, reinventing many mechanisms of distributed
systems like scheduling, data transfer or failure handling.

In this thesis, we instead advocate for a different approach. Instead of gluing together
separate distributed systems, different workloads like data processing, streaming, distributed
training and model serving should instead be implemented as reusable distributed libraries
that run on top of one general-purpose system. The system should expose a programming
model that is close to the programming models developers are familiar with from the single
machine setting. This allows to expose common functionality like debugging, monitoring, dis-
tributed scheduling and fault tolerance through an underlying distributed system and allows
us to bring the cluster programming experience much closer to programming a laptop. The
main contribution of this thesis is in designing a programming model for distributed com-
putation and an implementation of that model which can support a wide variety of different
distributed computing workloads, including the machine learning and artificial intelligence

CHAPTER 1. INTRODUCTION 3

applications mentioned above. The system and a number of libraries for different applica-
tions have been implemented together with a large number of collaborators at Berkeley and
many collaborators from both the wider open source community and various companies.

The thesis is organized as follows:

• In chapter 2, we give an overview over the spectrum of existing distributed program-
ming models from more specialized to general. This gives the reader an appreciation of
the design space and motivates the design decisions we make for the Ray programming
model.

• In chapter 3, we describe a system for distributed training that we built on top of
Apache Spark, which uses the BSP model, one of the programming models described
in chapter 2. The shortcomings of this approach, together with the insights from our
work in reinforcement learning (see [114] and [112]) were the main motivations for the
design of Ray. This material was previously published in [83].

• In chapter 4, we study the requirements of a general purpose distributed system that
can support emerging artificial intelligence applications like reinforcement learning.
This material was previously published in [93].

• In chapter 5, the main chapter of the thesis, we describe the design and implementation
of Ray. By decoupling the control and data plane and introducing stateful actors, it
can fulfill the requirements outlined in chapter 4 and serves as an execution engine for
a diverse set of tasks in distributed machine learning. This material was previously
published in [82].

• In chapter 6, we present an algorithm for large-scale optimization with a linear con-
vergence rate that is well-suited for the Ray architecture described in chapter 5. This
material was previously published in [81].

4

Chapter 2

The Distributed Computation
Landscape

To get more context on how a flexible distributed system should be designed, let us first
review existing solutions to make sure we are not reinventing the wheel and understand the
design space. In this chapter, we will focus on practical systems for distributed computing
(as opposed to research systems that demonstrate the viability of specific ideas). We will
also view these systems under the lens of their programming model, because that’s their most
important characteristic for users and for building distributed applications.

In table 2.1 we give an overview over existing parallel and distributed programming

Programming
Model

State Fault tolerance Systems

Bulk
Synchronous
Parallel

Iterative
Computation

stateless Checkpoint, Lineage MapReduce,
Hadoop,
Spark

Task Parallel Functional
Programming

stateless Lineage TensorFlow,
Dask, CIEL

Communicating
Processes

Actors,
Coroutines,
Message Passing

stateful,
but no
shared
state

Custom Orleans,
Erlang,
Akka, MPI

Distributed
Shared Memory

Threads fully
stateful

None Unix
Processes,
Unified
Parallel C

Table 2.1: The spectrum of distributed computing

CHAPTER 2. THE DISTRIBUTED COMPUTATION LANDSCAPE 5

models. The simplest way to do parallel computing is by executing a given function on a
number of data items in parallel and storing the results. This is the SIMD (single instruction,
multiple data) model, which is of course not sufficient, since more often than not the results
need to be aggregated. SIMD plus aggregation is the Bulk Synchronous Parallel (BSP) model
that we consider in section 2.1. Generalizing this pattern to arbitrary functions and data
dependencies, but still keeping pure functions and not supporting stateful computation, gives
the task parallel model, see section 2.2. Many applications like reinforcement learning or
interactive serving systems need state however, which motivates extending the programming
model to include stateful processes (see section 2.3). In the communicating processes model,
state is still partitioned and processes can only exchange state by explicitly communicating.
If we relax this restriction, we arrive at the distributed shared memory model (see section 2.4),
which supports fully distributed state.

2.1 The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) [129] model became very popular in the early days of
the world wide web to crawl websites and process large amounts of data e.g. for building
a search index. Implementations like MapReduce [33] or Hadoop [135] made it possible to
run programs at a massive scale on cheap commodity hardware, without having to worry
about faults. The programming model allows for a simple implementation, but is fairly
restrictive. The program logic often has to be completely re-thought to adapt programs to
this paradigm. In Fig. 2.2 we show how an inverted index can be built in MapReduce: In
this example we have three mappers (one for page X, one for page Y and one for page Z)
and two reducers (one for keys from A to L and one for keys from M to Z). Each mapper
splits its document into tokens and classifies each of them according to whether they should
be entered into the index or not. It then attaches the page to the token and sends all tokens
with first letter in A-L to the first reducer and each token with first letter in M-Z to the
second reducer. The reducers collect the tokens from each mapper, sort them and combine
them into the inverted index.

The implementation in a system like Spark [137] is relatively easy, see the following code
snippet. In the first two lines, we iterate through every document, convert it to lower case,
split it into tokens and attach the document identifier to each token. In the third line, we
then concatenate all the document identifiers corresponding to each token.

rdd.flatMap(lambda (document, contents):

[(token, [document]) for token in contents.lower().split()])

.reduceByKey(lambda a, b: a+b)

By chaining several such MapReduce phases together, we can express iterative compu-
tation in this model. By tracking the lineage of the computation, this model can be made
fault tolerant [139]. This computation model is however fairly restrictive. It does not sup-
port state and makes it hard to parallelize applications that cannot naturally be decomposed

CHAPTER 2. THE DISTRIBUTED COMPUTATION LANDSCAPE 6

Page X:
A trend in machine learning has been
toward using more parameters to model
larger datasets.
As a consequence, it is important to
design optimization algorithms for
these large-scale problems.

Page Y:
Training a machine learning model
such as a deep network is often one
step of many in real-world data analytics
pipelines.

Page Z:
Ray implements a dynamic task graph
computation model, i.e.,
it models an application as a graph of
dependent tasks that evolves during
execution. On top of this
model, Ray provides both an actor and a
task-parallel programming
abstraction.

A-L:

abstraction, Z
actor, Z
algorithm, X
analytics, Y
data, Y
dataset, X
deep, Y
graph, Z
large-scale, X

algorithm
dataset
large-scale

M-Z:

machine learning, X, Y
model, Y, Z
optimization, X
parameter, X
pipeline, Y
programming, Z
task, Z
task-parallel, Z

machine learning
optimization
parameter

analytics
data
deep

machine learning
model
pipeline

abstraction
actor
graph

programming
task
task-parallel

Figure 2.1: Building an inverted index with MapReduce

into a series of map reduce phases. While machine learning training can be expressed in this
model [35], performance and flexibility requirements, e.g. for model parallel training, lead
us to consider a generalization of the BSP model, the task parallel model.

2.2 The Task Parallel Model

The task parallel model allows the execution of arbitrary side-effect free functions in a
distributed way. Each function has input arguments and produces outputs. As soon as
all the inputs of a function are available, the function can run on one of the processors
and produce its outputs, which will then itself trigger the computation of all functions
that depend on these outputs. MapReduce computations are a special case of task parallel
computations, where each mapper is a function that transforms a data item, and each reducer
is a function that takes the transformed data items and combines them into the output. For
the general task parallel model, each function can be different and data can be passed
arbitrarily between them. In Fig. 2.2 we show how neural network computations are a
natural fit for the task parallel model. There is some input data at the bottom, which gets
reshaped and input into an affine layer (linear transform plus bias) and transformed with
a rectified linear nonlinearity. Afterwards, a second affine layer is applied and the result is

CHAPTER 2. THE DISTRIBUTED COMPUTATION LANDSCAPE 7

transformed with a softmax nonlinearity. The last function then computes the loss by taking
the cross entropy between the result and the ground truth labels.

Figure 2.2: Neural network task graph, source https://www.tensorflow.org/guide/graphs

The main part of this task parallel computation can be expressed in TensorFlow [1] in the
following way. The first three lines define the affine layer and the rectified linear nonlinearity.
The second three lines define the second affine layer and the last line applies the softmax
nonlinearity and computes the loss function.

weights1 = tf.Variable(...)

biases1 = tf.Variable(...)

hidden1 = tf.nn.relu(tf.matmul(images, weights1) + biases1)

weights2 = tf.Variable(...)

biases2 = tf.Variable(...)

logits = tf.matmul(hidden1, weights2) + biases2

result = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

CHAPTER 2. THE DISTRIBUTED COMPUTATION LANDSCAPE 8

These programs can be parallelized in distributed TensorFlow by annotating each func-
tion invocation with a device it shall be executed on. If there are functions that can be
executed in parallel (in the above example, all the computations are serial), this can give
large speedups. The task parallel programming model is more powerful than the BSP one
and more compatible with the way that serial programs are typically expressed. It can be
made fault tolerant either by checkpointing or by recording the lineage. However it cannot
support state, which is required by many real applications.

2.3 The Communicating Processes Model

The first distributed computation model we are considering that supports state is commu-
nicating processes [53]. It is a generalization of the task parallel model because every task
parallel program can be executed on communicating processes by scheduling the functions in
the right order onto the processes. There are several realizations of communicating processes,
including message passing implementations like MPI [44] or actor systems like Erlang [10],
Akka [4] or Orleans [15]. We will focus on actor systems here, because they are as powerful
as message passing systems but their programming model is more structured. The actor
model was actually formally proposed in the context of artificial intelligence [50]. It models
a distributed system as a collection of objects (called actors) that can invoke methods on
each other remotely. Each actor has its own state and a mailbox of incoming methods that
are invoked on it. Typically, these methods are executed in the order they arrive. Essentially,
actors are distributed versions of objects in object oriented programming. As an example for
a distributed actor application let us consider a simple chat service (in fact, WhatsApp, one
of the widely used chat services is implemented in Erlang)1. The architecture is shown in
Fig. 2.3. There is one manager actor that keeps track of the connected users and one client
proxy actor per user that forwards messages to the user’s device.

The code is as follows. The listen function takes as an argument the socket that is
going to be used for communication with the clients. It starts the manager actor with the
spawn call and registers it under the name client manager. Then the program accepts new
incoming clients with the accept method. For each new client, a new client proxy is started
with spawn in line 9 and it is registered with the manager in 10. The exclamation mark (!)
is Erlang’s syntax for sending a message to another actor. In this case, the connect message
is sent to client manager with the argument Socket. The manage clients is the main
function of the program and the one that the manager actor executes. The state of the actor
is in the Sockets argument, it is the list of client sockets. When the manager actor was
spawned in line 2, it was initialized as the empty list []. Whenever a new client connects,
its socket is added to the list (see line 16), upon termination of the client, it is removed (see
line 18). If new data is sent to the manager by one of the clients, it will be forwarded to all
other clients in line 20, implemented by the send data function.

1The example is taken from http://www.jerith.za.net/writings/erlangsockettut.html

CHAPTER 2. THE DISTRIBUTED COMPUTATION LANDSCAPE 9

Manager

Client Proxy Client Proxy Client Proxy

User User User

Figure 2.3: A chatroom implementation in the actor framework

1 listen(Port) ->

2 Pid = spawn(fun() -> manage_clients([]) end),

3 register(client_manager, Pid),

4 {ok, Listen} = gen_tcp:listen(Port, ?TCP_OPTIONS),

5 accept(Listen).

6

7 accept(Listen) ->

8 {ok, Socket} = gen_tcp:accept(Listen),

9 spawn(fun() -> handle_client(Socket) end),

10 client_manager ! {connect, Socket},

11 accept(Listen).

12

13 manage_clients(Sockets) ->

14 receive

15 {connect, Socket} ->

16 NewSockets = [Socket | Sockets];

17 {disconnect, Socket} ->

18 NewSockets = lists:delete(Socket, Sockets);

19 {data, Data} ->

20 send_data(Sockets, Data),

21 NewSockets = Sockets

22 end,

23 manage_clients(NewSockets).

24

25 send_data(Sockets, Data) ->

26 SendData = fun(Socket) -> gen_tcp:send(Socket, Data) end,

CHAPTER 2. THE DISTRIBUTED COMPUTATION LANDSCAPE 10

27 lists:foreach(SendData, Sockets).

Note that this example is one very common pattern to write distributed programs, the
client server model. It is a special case of communicating processes. In the general case,
there is no dedicated server and actors can call methods on each other in arbitrary patterns.
Actors can also be made fault tolerant. In Erlang this is done with supervision trees: Actors
are organized in a tree and if an actor fails, its parent will be notified and can restart the
actor and reset the state [10].

2.4 The Distributed Shared Memory Model

The most powerful distributed programming model is the distributed shared memory model.
In an ideal version, it would expose the whole cluster as a single large multicore machine,
which can be programmed using multiple execution threads that communicate by reading and
writing data from shared memory. In practice this ideal is however not achievable: Latencies
of accessing remote memory over the network are typically much larger than latencies of
accessing local memory. Therefore if programmers do not take into account the topology of
the cluster and just use distributed shared memory in an unstructured fashion, it can lead to
very inefficient programs. In addition, distributed shared memory architectures are typically
not fault tolerant. However, on specialized supercomputers with special networks, they can
lead to very efficient implementations for some workloads. On the cloud, where commodity
hardware is typically used, it would be hard to make this programming paradigm successful.

11

Chapter 3

Motivation: Training Deep Networks
in Spark

Optimization is a crucial step in machine learning. It is very computationally expensive
and in many cases has to be executed in a distributed fashion to complete in a reasonable
time frame. In the context of machine learning, the optimization problem to solve is to find
good parameters for a model given some data by minimizing a loss function. For highly
unstructured non-convex problems like optimizing the loss function of a deep neural net-
work, first-order optimization algorithms like stochastic gradient descent (SGD) are often
the method of choice. We can speed these methods up by distributing the gradient compu-
tation over minibatches. This can be quite demanding on the network interconnects because
the full model parameters are sent to and from each node in the network on each mini-
batch update. In this chapter1, we present an algorithm to run stochastic gradient descent
in parallel in the setting where communication is expensive. Instead of communicating the
parameters for each minibatch update, we run SGD locally on each node for a few iterations
and then average the parameters. While this is a feasible way to train deep neural networks
on a slow network, the research performed in this chapter also showed the limitations of data
transfer speeds on Spark and served as a motivation to separate the control and data plane
for Ray as described in chapter 5.

3.1 Introduction

Deep learning has advanced the state of the art in a number of application domains. Many
of the recent advances involve fitting large models (often several hundreds megabytes) to
larger datasets (often hundreds of gigabytes). Given the scale of these optimization prob-
lems, training can be time-consuming, often requiring multiple days on a single GPU using
stochastic gradient descent (SGD). For this reason, much effort has been devoted to leverag-

1This material was previously published in [83].

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 12

ing the computational resources of a cluster to speed up the training of deep networks (and
more generally to perform distributed optimization).

Many attempts to speed up the training of deep networks rely on asynchronous, lock-free
optimization [35, 28]. This paradigm uses the parameter server model [67, 52], in which one
or more master nodes hold the latest model parameters in memory and serve them to worker
nodes upon request. The nodes then compute gradients with respect to these parameters
on a minibatch drawn from the local data shard. These gradients are shipped back to the
server, which updates the model parameters.

At the same time, batch-processing frameworks enjoy widespread usage and have been
gaining in popularity. Beginning with MapReduce [34], a number of frameworks for dis-
tributed computing have emerged to make it easier to write distributed programs that lever-
age the resources of a cluster [141, 57, 88]. These frameworks have greatly simplified many
large-scale data analytics tasks. However, state-of-the-art deep learning systems rely on cus-
tom implementations to facilitate their asynchronous, communication-intensive workloads.
One reason is that popular batch-processing frameworks [34, 141] are not designed to support
the workloads of existing deep learning systems. SparkNet implements a scalable, distributed
algorithm for training deep networks that lends itself to batch computational frameworks
such as MapReduce and Spark and works well out-of-the-box in bandwidth-limited environ-
ments.

The benefits of integrating model training with existing batch frameworks are numerous.
Much of the difficulty of applying machine learning has to do with obtaining, cleaning, and
processing data as well as deploying models and serving predictions. For this reason, it is
convenient to integrate model training with the existing data-processing pipelines that have
been engineered in today’s distributed computational environments. Furthermore, this ap-
proach allows data to be kept in memory from start to finish, whereas a segmented approach
requires writing to disk between operations. If a user wishes to train a deep network on the
output of a SQL query or on the output of a graph computation and to feed the resulting
predictions into a distributed visualization tool, this can be done conveniently within a single
computational framework.

We emphasize that the hardware requirements of our approach are minimal. Whereas
many approaches to the distributed training of deep networks involve heavy communication
(often communicating multiple gradient vectors for every minibatch), our approach gracefully
handles the bandwidth-limited setting while also taking advantage of clusters with low-
latency communication. For this reason, we can easily deploy our algorithm on clusters
that are not optimized for communication. Our implementation works well out-of-the box
on a five-node EC2 cluster in which broadcasting and collecting model parameters (several
hundred megabytes per worker) takes on the order of 20 seconds, and performing a single
minibatch gradient computation requires about 2 seconds (for AlexNet). We achieve this
by providing a simple algorithm for parallelizing SGD that involves minimal communication
and lends itself to straightforward implementation in batch computational frameworks. Our
goal is not to outperform custom computational frameworks but rather to propose a system
that can be easily implemented in popular batch frameworks and that performs nearly as

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 13

Figure 3.1: This figure depicts the SparkNet architecture.

well as what can be accomplished with specialized frameworks.

3.2 Implementation

Here we describe our implementation of SparkNet. SparkNet builds on Apache Spark [141]
and the Caffe deep learning library [58]. In addition, we use Java Native Access for accessing
Caffe data and weights natively from Scala, and we use the Java implementation of Google
Protocol Buffers to allow the dynamic construction of Caffe networks at runtime.

The Net class wraps Caffe and exposes a simple API containing the methods shown in
Listing 3.1. The NetParams type specifies a network architecture, and the WeightCollection
type is a map from layer names to lists of weights. It allows the manipulation of network
components and the storage of weights and outputs for individual layers. To facilitate manip-
ulation of data and weights without copying memory from Caffe, we implement the NDArray

class, which is a lightweight multi-dimensional tensor library. One benefit of building on
Caffe is that any existing Caffe model definition or solver file is automatically compatible

class Net {

def Net(netParams: NetParams): Net

def setTrainingData(data: Iterator [(NDArray ,Int)])

def setValidationData(data: Iterator [(NDArray ,Int)])

def train(numSteps: Int)

def test(numSteps: Int): Float

def setWeights(weights: WeightCollection)

def getWeights (): WeightCollection

}

Listing 3.1: SparkNet API

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 14

val netParams = NetParams(

RDDLayer ("data", shape=List(batchsize , 1, 28, 28)),

RDDLayer ("label", shape=List(batchsize , 1)),

ConvLayer ("conv1", List("data"), kernel =(5,5), numFilters =20),

PoolLayer ("pool1", List("conv1"), pool=Max , kernel =(2,2),

stride =(2,2)),

ConvLayer ("conv2", List("pool1"), kernel =(5,5), numFilters =50),

PoolLayer ("pool2", List("conv2"), pool=Max , kernel =(2,2),

stride =(2,2)),

LinearLayer ("ip1", List("pool2"), numOutputs =500),

ActivationLayer ("relu1", List("ip1"), activation=ReLU),

LinearLayer ("ip2", List("relu1"), numOutputs =10),

SoftmaxWithLoss ("loss", List("ip2", "label "))

)

Listing 3.2: Example network specification in SparkNet

with SparkNet. There is a large community developing Caffe models and extensions, and
these can easily be used in SparkNet. By building on top of Spark, we inherit the advantages
of modern batch computational frameworks. These include the high-throughput loading and
preprocessing of data and the ability to keep data in memory between operations. In List-
ing 3.2, we give an example of how network architectures can be specified in SparkNet. In
addition, model specifications or weights can be loaded directly from Caffe files. An example
sketch of code that uses our API to perform distributed training is given in Listing 3.3.

Parallelizing SGD

To perform well in bandwidth-limited environments, we recommend a parallelization scheme
for SGD that requires minimal communication. This approach is not specific to SGD. Indeed,
SparkNet works out of the box with any Caffe solver.

The parallelization scheme is described in Listing 3.3. Spark consists of a single master
node and a number of worker nodes. The data is split among the Spark workers. In every
iteration, the Spark master broadcasts the model parameters to each worker. Each worker
then runs SGD on the model with its subset of data for a fixed number of iterations τ (we
use τ = 50 in Listing 3.3) or for a fixed length of time, after which the resulting model
parameters on each worker are sent to the master and averaged to form the new model
parameters. We recommend initializing the network by running SGD for a small number of
iterations on the master. A similar and more sophisticated approach to parallelizing SGD
with minimal communication overhead is discussed in [142].

The standard approach to parallelizing each gradient computation requires broadcasting

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 15

var trainData = loadData (...)

var trainData = preprocess(trainData). cache()

var nets = trainData.foreachPartition(data => {

var net = Net(netParams)

net.setTrainingData(data)

net)

var weights = initialWeights (...)

for (i <- 1 to 1000) {

var broadcastWeights = broadcast(weights)

nets.map(net => net.setWeights(broadcastWeights.value))

weights = nets.map(net => {

net.train (50)

// an average of WeightCollection objects

net.getWeights ()}). mean()

}

Listing 3.3: Distributed training example

and collecting model parameters (hundreds of megabytes per worker and gigabytes in total)
after every SGD update, which occurs tens of thousands of times during training. On our
EC2 cluster, each broadcast and collection takes about twenty seconds, putting a bound on
the speedup that can be expected using this approach without better hardware or without
partitioning models across machines. Our approach broadcasts and collects the parameters
a factor of τ times less for the same number of iterations. In our experiments, we set τ = 50,
but other values seem to work about as well.

We note that Caffe supports parallelism across multiple GPUs within a single node.
This is not a competing form of parallelism but rather a complementary one. In some of
our experiments, we use Caffe to handle parallelism within a single node, and we use the
parallelization scheme described in Listing 3.3 to handle parallelism across nodes.

3.3 Experiments

In Section 3.3, we will benchmark the performance of SparkNet and measure the speedup
that our system obtains relative to training on a single node. However, the outcomes of
those experiments depend on a number of different factors. In addition to τ (the number of
iterations between synchronizations) and K (the number of machines in our cluster), they
depend on the communication overhead in our cluster S. In Section 3.3, we find it instructive
to measure the speedup in the idealized case of zero communication overhead (S = 0). This
idealized model gives us an upper bound on the maximum speedup that we could hope to

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 16

obtain in a real-world cluster, and it allows us to build a model for the speedup as a function
of S (the overhead is easily measured in practice).

Theoretical Considerations

Before benchmarking our system, we determine the maximum possible speedup that could
be obtained in principle in a cluster with no communication overhead. We determine the
dependence of this speedup on the parameters τ (the number of iterations between synchro-
nizations) and K (the number of machines in our cluster).

Limitations of Naive Parallelization

To begin with, we consider the theoretical limitations of a naive parallelism scheme which
parallelizes SGD by distributing each minibatch computation over multiple machines (see
Figure 3.2b). Let Na(b) be the number of serial iterations of SGD required to obtain an
accuracy of a when training with a batch size of b (when we say accuracy, we are referring
to test accuracy). Suppose that computing the gradient over a batch of size b requires C(b)
units of time. Then the running time required to achieve an accuracy of a with serial training
is

Na(b)C(b). (3.1)

A naive parallelization scheme attempts to distribute the computation at each iteration by
dividing each minibatch between the K machines, computing the gradients separately, and
aggregating the results on one node. Under this scheme, the cost of the computation done
on a single node in a single iteration is C(b/K) and satisfies C(b/K) ≥ C(b)/K (the cost is
sublinear in the batch size). In a system with no communication overhead and no overhead
for summing the gradients, this approach could in principle achieve an accuracy of a in time
Na(b)C(b)/K. This represents a linear speedup in the number of machines (for values of K
up to the batch size b).

In practice, there are several important considerations. First, for the approximation
C(b/K) ≈ C(b)/K to hold, K must be much smaller than b, limiting the number of ma-
chines we can use to effectively parallelize the minibatch computation. One might imagine
circumventing this limitation by using a larger batch size b. Unfortunately, the benefit of us-
ing larger batches is relatively modest. As the batch size b increases, Na(b) does not decrease
enough to justify the use of a very large value of b.

Furthermore, the benefits of this approach depend greatly on the degree of communication
overhead. If aggregating the gradients and broadcasting the model parameters requires S
units of time, then the time required by this approach is at least C(b)/K + S per iteration
and Na(b)(C(b)/K + S) to achieve an accuracy of a. Therefore, the maximum achievable
speedup is C(b)/(C(b)/K + S) ≤ C(b)/S. We may expect S to increase modestly as K
increases, but we suppress this effect here.

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 17

Limitations of SparkNet Parallelization

The performance of the naive parallelization scheme is easily understood because its behavior
is equivalent to that of the serial algorithm. In contrast, SparkNet uses a parallelization
scheme that is not equivalent to serial SGD (described in Section 3.2), and so its analysis is
more complex.

SparkNet’s parallelization scheme proceeds in rounds (see Figure 3.2c). In each round,
each machine runs SGD for τ iterations with batch size b. Between rounds, the models on
the workers are gathered together on the master, averaged, and broadcast to the workers.

We use Ma(b,K, τ) to denote the number of rounds required to achieve an accuracy of a.
The number of parallel iterations of SGD under SparkNet’s parallelization scheme required
to achieve an accuracy of a is then τMa(b,K, τ), and the wallclock time is

(τC(b) + S)Ma(b,K, τ), (3.2)

where S is the time required to gather and broadcast model parameters.
To measure the sensitivity of SparkNet’s parallelization scheme to the parameters τ and

K, we consider a grid of values of K and τ . For each pair of parameters, we run SparkNet
using a modified version of AlexNet on a subset of ImageNet (the first 100 classes each
with approximately 1000 data points) for a total of 20000 parallel iterations. For each of
these training runs, we compute the ratio τMa(b,K, τ)/Na(b). This is the speedup achieved
relative to training on a single machine when S = 0. In Figure 3.3, we plot a heatmap of the
speedup given by the SparkNet parallelization scheme under different values of τ and K.

Figure 3.3 exhibits several trends. The top row of the heatmap corresponds to the case
K = 1, where we use only one worker. Since we do not have multiple workers to synchronize
when K = 1, the number of iterations τ between synchronizations does not matter, so
all of the squares in the top row of the grid should behave similarly and should exhibit
a speedup factor of 1 (up to randomness in the optimization). The rightmost column of
each heatmap corresponds to the case τ = 1, where we synchronize after every iteration
of SGD. This is equivalent to running serial SGD with a batch size of Kb, where b is the
batchsize on each worker (in these experiments we use b = 100). In this column, the speedup
should increase sublinearly with K. We note that it is slightly surprising that the speedup
does not increase monotonically from left to right as τ decreases. Intuitively, we might
expect more synchronization to be strictly better (recall we are disregarding the overhead
due to synchronization). However, our experiments suggest that modest delays between
synchronizations can be beneficial.

This experiment capture the speedup that we can expect from the SparkNet paralleliza-
tion scheme in the case of zero communication overhead (the numbers are dataset specific,
but the trends are of interest). Having measured these numbers, it is straightforward to
compute the speedup that we can expect as a function of the communication overhead.

In Figure 3.4, we plot the speedup expected both from naive parallelization and from
SparkNet on a five-node cluster as a function of S (normalized so that C(b) = 1). As ex-
pected, naive parallelization gives a maximum speedup of 5 (on a five-node cluster) when

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 18

there is zero communication overhead (note that our plot does not go all the way to S = 0),
and it gives no speedup when the communication overhead is comparable to or greater than
the cost of a minibatch computation. In contrast, SparkNet gives a relatively consistent
speedup even when the communication overhead is 100 times the cost of a minibatch com-
putation.

The speedup given by the naive parallelization scheme can be computed exactly and is
given by C(b)/(C(b)/K + S). This formula is essentially Amdahl’s law. Note that when
S ≥ C(b), the naive parallelization scheme is slower than the computation on a single
machine. The speedup obtained by SparkNet is Na(b)C(b)/[(τC(b) + S)Ma(b,K, τ)] for a
specific value of τ . The numerator is the time required by serial SGD to achieve an accuracy
of a from Equation 3.1, and the denominator is the time required by SparkNet to achieve
the same accuracy from Equation 3.2. Choosing the optimal value of τ gives us a speedup of
maxτ Na(b)C(b)/[(τC(b) + S)Ma(b,K, τ)]. In practice, choosing τ is not a difficult problem.
The ratio Na(b)/(τMa(b,K, τ)) (the speedup when S = 0) degrades slowly as τ increases, so
it suffices to choose τ to be a small multiple of S (say 5S) so that the algorithm spends only
a fraction of its time in communication.

When plotting the SparkNet speedup in Figure 3.4, we do not maximize over all positive
integer values of τ but rather over the set τ ∈ {1, 2, 5, 10, 25, 100, 500, 1000, 2500}, and we use
the values of Na(b) and Ma(b,K, τ) corresponding to the fifth row of Figure 3.3. Including
more values of τ would only increase the SparkNet speedup. The distributed training of
deep networks is typically thought of as a communication-intensive procedure. However,
Figure 3.4 demonstrates the value of SparkNet’s parallelization scheme even in the most
bandwidth-limited settings.

The naive parallelization scheme may appear to be a straw man. However, it is a
frequently-used approach to parallelizing SGD [95, 55], especially when asynchronous up-
dates are not an option (as in computational frameworks like MapReduce and Spark).

Training Benchmarks

To explore the scaling behavior of our algorithm and implementation, we perform experi-
ments on EC2 using clusters of g2.8xlarge nodes. Each node has four NVIDIA GRID GPUs
and 60GB memory. We train the default Caffe model of AlexNet [63] on the ImageNet
dataset [108]. We run SparkNet with K = 3, 5, and 10 and plot the results in Figure 3.5.
For comparison, we also run Caffe on the same cluster with a single GPU and no commu-
nication overhead to obtain the K = 1 plot. These experiments use only a single GPU on
each node. To measure the speedup, we compare the wall-clock time required to obtain an
accuracy of 45%. With 1 GPU and no communication overhead, this takes 55.6 hours. With
3, 5, and 10 GPUs, SparkNet takes 22.9, 14.5, and 12.8 hours, giving speedups of 2.4, 3.8,
and 4.4.

We also train the default Caffe model of GoogLeNet [124] on ImageNet. We run SparkNet
with K = 3 and K = 6 and plot the results in Figure 3.6. In these experiments, we use
Caffe’s multi-GPU support to take advantage of all four GPUs within each node, and we use

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 19

SparkNet’s parallelization scheme to handle parallelism across nodes. For comparison, we
train Caffe on a single node with four GPUs and no communication overhead. To measure
the speedup, we compare the wall-clock time required to obtain an accuracy of 40%. Relative
to the baseline of Caffe with four GPUs, SparkNet on 3 and 6 nodes gives speedups of 2.7
and 3.2. Note that this is on top of the speedup of roughly 3.5 that Caffe with four GPUs
gets over Caffe with one GPU, so the speedups that SparkNet obtains over Caffe on a single
GPU are roughly 9.4 and 11.2.

Furthermore, we explore the dependence of the parallelization scheme described in Sec-
tion 3.2 on the parameter τ which determines the number of iterations of SGD that each
worker does before synchronizing with the other workers. These results are shown in Fig-
ure 3.7. Note that in the presence of stragglers, it suffices to replace the fixed number of
iterations τ with a fixed length of time, but in our experimental setup, the timing was suf-
ficiently consistent and stragglers did not arise. The single GPU experiment in Figure 3.5
was trained on a single GPU node with no communication overhead.

3.4 Related Work

Much work has been done to build distributed frameworks for training deep networks. [29]
build a model-parallel system for training deep networks on a GPU cluster using MPI over
Infiniband. [35] build DistBelief, a distributed system capable of training deep networks on
thousands of machines using stochastic and batch optimization procedures. In particular,
they highlight asynchronous SGD and batch L-BFGS. Distbelief exploits both data paral-
lelism and model parallelism. [28] build Project Adam, a system for training deep networks
on hundreds of machines using asynchronous SGD. [67, 52] build parameter servers to exploit
model and data parallelism, and though their systems are better suited to sparse gradient
updates, they could very well be applied to the distributed training of deep networks. More
recently, [75] build TensorFlow, a sophisticated system for training deep networks and more
generally for specifying computation graphs and performing automatic differentiation. [55]
build FireCaffe, a data-parallel system that achieves impressive scaling using naive paral-
lelization in the high-performance computing setting. They minimize communication over-
head by using a tree reduce for aggregating gradients in a supercomputer with Cray Gemini
interconnects.

These custom systems have numerous advantages including high performance, fine-grained
control over scheduling and task placement, and the ability to take advantage of low-latency
communication between machines. On the other hand, due to their demanding communi-
cation requirements, they are unlikely to exhibit the same scaling on an EC2 cluster. Fur-
thermore, due to their nature as custom systems, they lack the benefits of tight integration
with general-purpose computational frameworks such as Spark. For some of these systems,
preprocessing must be done separately by a MapReduce style framework, and data is written
to disk between segments of the pipeline. With SparkNet, preprocessing and training are
both done in Spark.

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 20

Training a machine learning model such as a deep network is often one step of many in
real-world data analytics pipelines [121]. Obtaining, cleaning, and preprocessing the data
are often expensive operations, as is transferring data between systems. Training data for
a machine learning model may be derived from a streaming source, from a SQL query, or
from a graph computation. A user wishing to train a deep network in a custom system
on the output of a SQL query would need a separate SQL engine. In SparkNet, training a
deep network on the output of a SQL query, or a graph computation, or a streaming data
source is straightforward due to its general purpose nature and its support for SQL, graph
computations, and data streams [9, 47, 138].

Some attempts have been made to train deep networks in general-purpose computational
frameworks, however, existing work typically hinges on extremely low-latency intra-cluster
communication. [95] train deep networks in Spark on top of YARN using SGD and leverage
cluster resources to parallelize the computation of the gradient over each minibatch. To
achieve competitive performance, they use remote direct memory accesses over Infiniband
to exchange model parameters quickly between GPUs. In contrast, SparkNet tolerates low-
bandwidth intra-cluster communication and works out of the box on Amazon EC2.

A separate line of work addresses speeding up the training of deep networks using single-
machine parallelism. For example, Caffe con Troll [49] modifies Caffe to leverage both CPU
and GPU resources within a single node. These approaches are compatible with SparkNet
and the two can be used in conjunction.

Many popular computational frameworks provide support for training machine learning
models [76] such as linear models and matrix factorization models. However, due to the
demanding communication requirements and the larger scale of many deep learning problems,
these libraries have not been extended to include deep networks.

Various authors have studied the theory of averaging separate runs of SGD. In the
bandwidth-limited setting, [144] analyze a simple algorithm for convex optimization that
is easily implemented in the MapReduce framework and can tolerate high-latency commu-
nication between machines. [142] define a parallelization scheme that penalizes divergences
between parallel workers, and they provide an analysis in the convex case. [143] propose a
general abstraction for parallelizing stochastic optimization algorithms along with a Spark
implementation.

3.5 Discussion

We have described an approach to distributing the training of deep networks in communication-
limited environments that lends itself to an implementation in batch computational frame-
works like MapReduce and Spark. We provide SparkNet, an easy-to-use deep learning im-
plementation for Spark that is based on Caffe and enables the easy parallelization of existing
Caffe models with minimal modification. As machine learning increasingly depends on larger
and larger datasets, integration with a fast and general engine for big data processing such as
Spark allows researchers and practitioners to draw from a rich ecosystem of tools to develop

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 21

and deploy their models. They can build models that incorporate features from a variety
of data sources like images on a distributed file system, results from a SQL query or graph
database query, or streaming data sources.

Using a smaller version of the ImageNet benchmark we quantify the speedup achieved
by SparkNet as a function of the size of the cluster, the communication frequency, and the
cluster’s communication overhead. We demonstrate that our approach is effective even in
highly bandwidth-limited settings. On the full ImageNet benchmark we showed that our
system achieves a sizable speedup over a single node experiment even with few GPUs.

The code for SparkNet is available at https://github.com/amplab/SparkNet. We in-
vite contributions and hope that the project will help bring a diverse set of deep learning
applications to the Spark community.

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 22

(a) This figure depicts a serial run of SGD. Each block corresponds to a single SGD
update with batch size b. The quantity Na(b) is the number of iterations required to
achieve an accuracy of a.

(b) This figure depicts a parallel run of SGD on K = 4 machines under a naive paralleliza-
tion scheme. At each iteration, each batch of size b is divided among the K machines,
the gradients over the subsets are computed separately on each machine, the updates
are aggregated, and the new model is broadcast to the workers. Algorithmically, this
approach is exactly equivalent to the serial run of SGD in Figure 3.2a and so the number
of iterations required to achieve an accuracy of a is the same value Na(b).

(c) This figure depicts a parallel run of SGD on K = 4 machines under SparkNet’s
parallelization scheme. At each step, each machine runs SGD with batch size b for
τ iterations, after which the models are aggregated, averaged, and broadcast to the
workers. The quantity Ma(b,K, τ) is the number of rounds (of τ iterations) required to
obtain an accuracy of a. The total number of parallel iterations of SGD under SparkNet’s
parallelization scheme required to obtain an accuracy of a is then τMa(b,K, τ).

Figure 3.2: Computational models for different parallelization schemes.

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 23

25
00

10
00 50

0

10
0 25 10 5 2 1

τ

6

5

4

3

2

1

K

1.1 1.7 1.7 1.8 2.6 2.8 3.0 2.4 2.0

1.1 1.6 1.9 1.9 2.4 3.0 3.0 2.4 1.9

1.2 1.7 1.8 1.9 2.2 2.4 2.6 2.1 1.9

1.3 1.4 1.9 2.1 2.1 2.1 2.2 2.6 1.7

1.4 1.6 1.6 1.8 1.6 2.0 2.0 1.8 1.6

1.2 1.1 1.3 1.2 1.3 1.2 1.1 0.8 1.3

speedup to accuracy 20%

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Figure 3.3: This figure shows the speedup τMa(b, τ,K)/Na(b) given by SparkNet’s paral-
lelization scheme relative to training on a single machine to obtain an accuracy of a = 20%.
Each grid square corresponds to a different choice of K and τ . We show the speedup in the
zero communication overhead setting. This experiment uses a modified version of AlexNet
on a subset of ImageNet (100 classes each with approximately 1000 images). Note that these
numbers are dataset specific. Nevertheless, the trends they capture are of interest.

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 24

10−2 10−1 100 101 102 103

communication overhead S

0

1

2

3

4

5

sp
ee

du
p

Naive
SparkNet
No Speedup

Figure 3.4: This figure shows the speedups obtained by the naive parallelization scheme
and by SparkNet as a function of the cluster’s communication overhead (normalized so that
C(b) = 1). We consider K = 5. The data for this plot applies to training a modified version
of AlexNet on a subset of ImageNet (approximately 1000 images for each of the first 100
classes). The speedup obtained by the naive parallelization scheme is C(b)/(C(b)/K + S).
The speedup obtained by SparkNet is Na(b)C(b)/[(τC(b)+S)Ma(b,K, τ)] for a specific value
of τ . The numerator is the time required by serial SGD to achieve an accuracy of a, and the
denominator is the time required by SparkNet to achieve the same accuracy (see Equation 3.1
and Equation 3.2). For the optimal value of τ , the speedup is maxτ Na(b)C(b)/[(τC(b) +
S)Ma(b,K, τ)]. To plot the SparkNet speedup curve, we maximize over the set of values
τ ∈ {1, 2, 5, 10, 25, 100, 500, 1000, 2500} and use the values Ma(b,K, τ) and Na(b) from the
experiments in the fifth row of Figure 3.3. In our experiments, we have S ≈ 20s and
C(b) ≈ 2s.

CHAPTER 3. MOTIVATION: TRAINING DEEP NETWORKS IN SPARK 25

0 5 10 15 20

hours

0

5

10

15

20

25

30

35

40

45

a
cc

u
ra

cy

Caffe
SparkNet 3 node
SparkNet 5 node
SparkNet 10 node

Figure 3.5: This figure shows the perfor-
mance of SparkNet on a 3-node, 5-node,
and 10-node cluster, where each node has 1
GPU. In these experiments, we use τ = 50.
The baseline was obtained by running Caffe
on a single GPU with no communication.
The experiments are performed on Ima-
geNet using AlexNet.

0 20 40 60 80 100 120

hours

0

10

20

30

40

50

60

a
cc

u
ra

cy

Caffe 4 GPU
SparkNet 3 node 4 GPU
SparkNet 6 node 4 GPU

Figure 3.6: This figure shows the perfor-
mance of SparkNet on a 3-node cluster and
on a 6-node cluster, where each node has
4 GPUs. In these experiments, we use
τ = 50. The baseline uses Caffe on a single
node with 4 GPUs and no communication
overhead. The experiments are performed
on ImageNet using GoogLeNet.

0 2 4 6 8 10

hours

0

5

10

15

20

25

30

35

40

45

a
cc

u
ra

cy

20 iterations

50 iterations

100 iterations

150 iterations

Figure 3.7: This figure shows the dependence of the parallelization scheme described in
Section 3.2 on τ . Each experiment was run with K = 5 workers. This figure shows that
good performance can be achieved without collecting and broadcasting the model after every
SGD update.

26

Chapter 4

The System Requirements

As we have already seen in chapter 2, there are many different programming models for
distributed computing. In this chapter1 we study the requirements of a general purpose dis-
tributed system that can support emerging artificial intelligence applications like reinforce-
ment learning both in terms of the programming model and the system implementation.

The landscape of machine learning (ML) applications is undergoing a significant change.
While ML has predominantly focused on training and serving predictions based on static
models (Figure 4.1a), there is now a strong shift toward the tight integration of ML mod-
els in feedback loops. Indeed, ML applications are expanding from the supervised learning
paradigm, in which static models are trained on offline data, to a broader paradigm, ex-
emplified by reinforcement learning (RL), in which applications may operate in real envi-
ronments, fuse and react to sensory data from numerous input streams, perform continuous
micro-simulations, and close the loop by taking actions that affect the sensed environment
(Figure 4.1b).

Since learning by interacting with the real world can be unsafe, impractical, or bandwidth-
limited, many reinforcement learning systems rely heavily on simulating physical or vir-
tual environments. Simulations may be used during training (e.g., to learn a neural
network policy), and during deployment. In the latter case, we may constantly update the
simulated environment as we interact with the real world and perform many simulations
to figure out the next action (e.g., using online planning algorithms like Monte Carlo tree
search). This requires the ability to perform simulations faster than real time.

Such emerging applications require new levels of programming flexibility and perfor-
mance. Meeting these requirements without losing the benefits of modern distributed exe-
cution frameworks (e.g., application-level fault tolerance) poses a significant challenge. Our
own experience implementing ML and RL applications in Spark, MPI, and TensorFlow high-
lights some of these challenges and gives rise to three groups of requirements for supporting
these applications. Though these requirements are critical for ML and RL applications, we
believe they are broadly useful.

1This material was previously published in [93].

CHAPTER 4. THE SYSTEM REQUIREMENTS 27

Training
(off-
line)

Model
Serving

Data
sets

Models Query

Prediction

logs

Compute & Query
policy

(obs. à action)

Observation

Action

(a)

(b)
Figure 4.1: (a) Traditional ML pipeline (off-line training). (b) Example reinforcement learning
pipeline: the system continously interacts with an environment to learn a policy, i.e., a mapping
between observations and actions.

Performance Requirements. Emerging ML applications have stringent latency and
throughput requirements.

• R1: Low latency. The real-time, reactive, and interactive nature of emerging ML ap-
plications calls for fine-granularity task execution with millisecond end-to-end latency
[31].

• R2: High throughput. The volume of micro-simulations required both for training
[90] as well as for inference during deployment [119] necessitates support for high-
throughput task execution on the order of millions of tasks per second.

Execution Model Requirements. Though many existing parallel execution systems [33,
137] have gotten great mileage out of identifying and optimizing for common computational
patterns, emerging ML applications require far greater flexibility [40].

• R3: Dynamic task creation. RL primitives such as Monte Carlo tree search may
generate new tasks during execution based on the results or the durations of other
tasks.

• R4: Heterogeneous tasks. Deep learning primitives and RL simulations produce tasks
with widely different execution times and resource requirements. Explicit system sup-
port for heterogeneity of tasks and resources is essential for RL applications.

CHAPTER 4. THE SYSTEM REQUIREMENTS 28

• R5: Arbitrary dataflow dependencies. Similarly, deep learning primitives and RL
simulations produce arbitrary and often fine-grained task dependencies (not restricted
to bulk synchronous parallel).

Practical Requirements.

• R6: Transparent fault tolerance. Fault tolerance remains a key requirement for many
deployment scenarios, and supporting it alongside high-throughput and non-deterministic
tasks poses a challenge.

• R7: Debuggability and Profiling. Debugging and performance profiling are the most
time-consuming aspects of writing any distributed application. This is especially true
for ML and RL applications, which are often compute-intensive and stochastic.

Existing frameworks fall short of achieving one or more of these requirements (Sec-
tion 4.4). We propose a flexible distributed programming model (Section 5.2) to enable
R3-R5. In addition, we propose a system architecture to support this programming model
and meet our performance requirements (R1-R2) without giving up key practical require-
ments (R6-R7). The proposed system architecture (Section 5.3) builds on two principal
components: a logically-centralized control plane and a hybrid scheduler. The former en-
ables stateless distributed components and lineage replay. The latter allocates resources in
a bottom-up fashion, splitting locally-born work between node-level and cluster-level sched-
ulers.

The result is millisecond-level performance on microbenchmarks and a 63x end-to-end
speedup on a representative RL application over a bulk synchronous parallel (BSP) imple-
mentation.

4.1 Motivating Example

To motivate requirements R1-R7, consider a hypothetical application in which a physical
robot attempts to achieve a goal in an unfamiliar real-world environment. Various sensors
may fuse video and LIDAR input to build multiple candidate models of the robot’s environ-
ment (Fig. 2a). The robot is then controlled in real time using actions informed by a recurrent
neural network (RNN) policy (Fig. 2c), as well as by Monte Carlo tree search (MCTS) and
other online planning algorithms (Fig. 2b). Using a physics simulator along with the most
recent environment models, MCTS tries millions of action sequences in parallel, adaptively
exploring the most promising ones.

The Application Requirements. Enabling these kinds of applications involves simul-
taneously solving a number of challenges. In this example, the latency requirements (R1)
are stringent, as the robot must be controlled in real time. High task throughput (R2) is
needed to support the online simulations for MCTS as well as the streaming sensory input.

Task heterogeneity (R4) is present on many scales: some tasks run physics simulators,
others process diverse data streams, and some compute actions using RNN-based policies.

CHAPTER 4. THE SYSTEM REQUIREMENTS 29

Even similar tasks may exhibit substantial variability in duration. For example, the RNN
consists of different functions for each “layer”, each of which may require different amounts
of computation. Or, in a task simulating the robot’s actions, the simulation length may
depend on whether the robot achieves its goal or not.

In addition to the heterogeneity of tasks, the dependencies between tasks can be com-
plex (R5, Figs. 2a and 2c) and difficult to express as batched BSP stages.

Dynamic construction of tasks and their dependencies (R3) is critical. Simulations will
adaptively use the most recent environment models as they become available, and MCTS
may choose to launch more tasks exploring particular subtrees, depending on how promising
they are or how fast the computation is. Thus, the dataflow graph must be constructed
dynamically in order to allow the algorithm to adapt to real-time constraints and opportu-
nities.

4.2 Proposed Solution

In this section, we outline a proposal for a distributed execution framework and a program-
ming model satisfying requirements R1-R7 for real-time ML applications.

API and Execution Model

In order to support the execution model requirements (R3-R5), we outline an API that
allows arbitrary functions to be specified as remotely executable tasks, with dataflow depen-
dencies between them.

1. Task creation is non-blocking. When a task is created, a future [13] representing the
eventual return value of the task is returned immediately, and the task is executed
asynchronously.

2. Arbitrary function invocation can be designated as a remote task, making it possible to
support arbitrary execution kernels (R4). Task arguments can be either regular values
or futures. When an argument is a future, the newly created task becomes dependent
on the task that produces that future, enabling arbitrary DAG dependencies (R5).

3. Any task execution can create new tasks without blocking on their completion. Task
throughput is therefore not limited by the bandwidth of any one worker (R2), and the
computation graph is dynamically built (R3).

4. The actual return value of a task can be obtained by calling the get method on the
corresponding future. This blocks until the task finishes executing.

5. The wait method takes a list of futures, a timeout, and a number of values. It returns
the subset of futures whose tasks have completed when the timeout occurs or the
requested number have completed.

CHAPTER 4. THE SYSTEM REQUIREMENTS 30

The wait primitive allows developers to specify latency requirements (R1) with a time-
out, accounting for arbitrarily sized tasks (R4). This is important for ML applications, in
which a straggler task may produce negligible algorithmic improvement but block the entire
computation. This primitive enhances our ability to dynamically modify the computation
graph as a function of execution-time properties (R3).

To complement the fine-grained programming model, we propose using a dataflow exe-
cution model in which tasks become available for execution if and only if their dependencies
have finished executing.

Proposed Architecture

Our proposed architecture consists of multiple worker processes running on each node in the
cluster, one local scheduler per node, one or more global schedulers throughout the cluster,
and an in-memory object store for sharing data between workers (see Figure 5.5).

The two principal architectural features that enable R1-R7 are a hybrid scheduler and
a centralized control plane.

Centralized Control State

As shown in Figure 5.5, our architecture relies on a logically-centralized control plane [62].
To realize this architecture, we use a database that provides both (1) storage for the system’s
control state, and (2) publish-subscribe functionality to enable various system components
to communicate with each other.2

This design enables virtually any component of the system, except for the database, to
be stateless. This means that as long as the database is fault-tolerant, we can recover from
component failures by simply restarting the failed components. Furthermore, the database
stores the computation lineage, which allows us to reconstruct lost data by replaying the
computation [137]. As a result, this design is fault tolerant (R6). The database also makes
it easy to write tools to profile and inspect the state of the system (R7).

To achieve the throughput requirement (R2), we shard the database. Since we require
only exact matching operations and since the keys are computed as hashes, sharding is rela-
tively straightforward. Our early experiments show that this design enables sub-millisecond
scheduling latencies (R1).

Hybrid Scheduling

Our requirements for latency (R1), throughput (R2), and dynamic graph construction (R3)
naturally motivate a hybrid scheduler in which local schedulers assign tasks to workers or
delegate responsibility to one or more global schedulers.

2In our implementation we employ Redis [110], although many other fault-tolerant key-value stores could
be used.

CHAPTER 4. THE SYSTEM REQUIREMENTS 31

Workers submit tasks to their local schedulers which decide to either assign the tasks to
other workers on the same physical node or to “spill over” the tasks to a global scheduler.
Global schedulers can then assign tasks to local schedulers based on global information about
factors including object locality and resource availability.

Since tasks may create other tasks, schedulable work may come from any worker in the
cluster. Enabling any local scheduler to handle locally generated work without involving
a global scheduler improves low latency (R1), by avoiding communication overheads, and
throughput (R2), by significantly reducing the global scheduler load. This hybrid scheduling
scheme fits well with the recent trend toward large multicore servers [134].

4.3 Feasibility

To demonstrate that these API and architectural proposals could in principle support re-
quirements R1-R7, we provide some simple examples using the preliminary system design
outlined in Section 4.2.

Latency Microbenchmarks

Using our prototype system, a task can be created, meaning that the task is submitted
asynchronously for execution and a future is returned, in around 35µs. Once a task has
finished executing, its return value can be retrieved in around 110µs. The end-to-end time,
from submitting an empty task for execution to retrieving its return value, is around 290µs
when the task is scheduled locally and 1ms when the task is scheduled on a remote node.

Reinforcement Learning

We implement a simple workload in which an RL agent is trained to play an Atari game.
The workload alternates between stages in which actions are taken in parallel simulations
and actions are computed in parallel on GPUs. Despite the BSP nature of the example,
an implementation in Spark is 9x slower than the single-threaded implementation due to
system overhead. An implementation in our prototype is 7x faster than the single-threaded
version and 63x faster than the Spark implementation.3

This example exhibits two key features. First, tasks are very small (around 7ms each),
making low task overhead critical. Second, the tasks are heterogeneous in duration and in
resource requirements (e.g., CPUs and GPUs).

This example is just one component of an RL workload, and would typically be used
as a subroutine of a more sophisticated (non-BSP) workload. For example, using the wait

primitive, we can adapt the example to process the simulation tasks in the order that they
finish so as to better pipeline the simulation execution with the action computations on the

3In this comparison, the GPU model fitting could not be naturally parallelized on Spark, so the numbers
are reported as if it had been perfectly parallelized with no overhead in Spark.

CHAPTER 4. THE SYSTEM REQUIREMENTS 32

GPU, or run the entire workload nested within a larger adaptive hyperparameter search.
These changes are all straightforward using the API described in Section 5.2 and involve a
few extra lines of code.

4.4 Related Work

Static dataflow systems [33, 137, 56, 86] are well-established in analytics and ML, but
they require the dataflow graph to be specified upfront, e.g., by a driver program. Some, like
MapReduce [33] and Spark [137], emphasize BSP execution, while others, like Dryad [56] and
Naiad [86], support complex dependency structures (R5). Others, such as TensorFlow [1]
and MXNet [27], are optimized for deep-learning workloads. However, none of these systems
fully support the ability to dynamically extend the dataflow graph in response to both input
data and task progress (R3).

Dynamic dataflow systems like CIEL [84] and Dask [106] support many of the same
features as static dataflow systems, with additional support for dynamic task creation (R3).
These systems meet our execution model requirements (R3-R5). However, their architec-
tural limitations, such as entirely centralized scheduling, are such that low latency (R1) must
often be traded off with high throughput (R2) (e.g., via batching), whereas our applications
require both.

Other systems like Open MPI [44] and actor-model variants Orleans [22] and Erlang [11]
provide low-latency (R1) and high-throughput (R2) distributed computation. Though
these systems do in principle provide primitives for supporting our execution model re-
quirements (R3-R5) and have been used for ML [29, 6], much of the logic required for
systems-level features, such as fault tolerance (R6) and locality-aware task scheduling, must
be implemented at the application level.

4.5 Conclusion

Machine learning applications are evolving to require dynamic dataflow parallelism with
millisecond latency and high throughput, posing a severe challenge for existing frameworks.
We outline the requirements for supporting this emerging class of real-time ML applications,
and we propose a programming model and architectural design to address the key require-
ments (R1-R5), without compromising existing requirements (R6-R7). Preliminary, proof-
of-concept results confirm millisecond-level system overheads and meaningful speedups for a
representative RL application.

33

Chapter 5

The Design and Implementation of
Ray

This chapter1 contains the main contribution of the thesis. We describe the design and
implementation of Ray, a system for distributed computing that satisfies the requirements
described in chapter 4.

Over the past two decades, many organizations have been collecting—and aiming to
exploit—ever-growing quantities of data. This has led to the development of a plethora of
frameworks for distributed data analysis, including batch [33, 140, 56], streaming [24, 87,
64], and graph [72, 74, 46] processing systems. The success of these frameworks has made
it possible for organizations to analyze large data sets as a core part of their business or
scientific strategy, and has ushered in the age of “Big Data.”

More recently, the scope of data-focused applications has expanded to encompass more
complex artificial intelligence (AI) or machine learning (ML) techniques [60]. The paradigm
case is that of supervised learning, where data points are accompanied by labels, and where
the workhorse technology for mapping data points to labels is provided by deep neural net-
works. The complexity of these deep networks has led to another flurry of frameworks that
focus on the training of deep neural networks and their use in prediction. These frame-
works often leverage specialized hardware (e.g., GPUs and TPUs), with the goal of reducing
training time in a batch setting. Examples include TensorFlow [1], MXNet [27], and Py-
Torch [101].

The promise of AI is, however, far broader than classical supervised learning. Emerging
AI applications must increasingly operate in dynamic environments, react to changes in the
environment, and take sequences of actions to accomplish long-term goals [2, 93]. They
must aim not only to exploit the data gathered, but also to explore the space of possible
actions. These broader requirements are naturally framed within the paradigm of reinforce-
ment learning (RL). RL deals with learning to operate continuously within an uncertain
environment based on delayed and limited feedback [123]. RL-based systems have already

1This material was previously published in [82]

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 34

yielded remarkable results, such as Google’s AlphaGo beating a human world champion
[119], and are beginning to find their way into dialogue systems, UAVs [92], and robotic
manipulation [48, 130].

The central goal of an RL application is to learn a policy—a mapping from the state of the
environment to a choice of action—that yields effective performance over time, e.g., winning
a game or piloting a drone. Finding effective policies in large-scale applications requires
three main capabilities. First, RL methods often rely on simulation to evaluate policies.
Simulations make it possible to explore many different choices of action sequences and to learn
about the long-term consequences of those choices. Second, like their supervised learning
counterparts, RL algorithms need to perform distributed training to improve the policy based
on data generated through simulations or interactions with the physical environment. Third,
policies are intended to provide solutions to control problems, and thus it is necessary to
serve the policy in interactive closed-loop and open-loop control scenarios.

These characteristics drive new systems requirements: a system for RL must support
fine-grained computations (e.g., rendering actions in milliseconds when interacting with the
real world, and performing vast numbers of simulations), must support heterogeneity both
in time (e.g., a simulation may take milliseconds or hours) and in resource usage (e.g., GPUs
for training and CPUs for simulations), and must support dynamic execution, as results of
simulations or interactions with the environment can change future computations. Thus, we
need a dynamic computation framework that handles millions of heterogeneous tasks per
second at millisecond-level latencies.

Existing frameworks that have been developed for Big Data workloads or for supervised
learning workloads fall short of satisfying these new requirements for RL. Bulk-synchronous
parallel systems such as MapReduce [33], Apache Spark [140], and Dryad [56] do not sup-
port fine-grained simulation or policy serving. Task-parallel systems such as CIEL [85] and
Dask [106] provide little support for distributed training and serving. The same is true for
streaming systems such as Naiad [87] and Storm [64]. Distributed deep-learning frameworks
such as TensorFlow [1] and MXNet [27] do not naturally support simulation and serving.
Finally, model-serving systems such as TensorFlow Serving [125] and Clipper [30] support
neither training nor simulation.

While in principle one could develop an end-to-end solution by stitching together several
existing systems (e.g., Horovod [116] for distributed training, Clipper [30] for serving, and
CIEL [85] for simulation), in practice this approach is untenable due to the tight coupling of
these components within applications. As a result, researchers and practitioners today build
one-off systems for specialized RL applications [127, 90, 119, 96, 109, 97]. This approach
imposes a massive systems engineering burden on the development of distributed applications
by essentially pushing standard systems challenges like scheduling, fault tolerance, and data
movement onto each application.

In this main chapter of the thesis, we propose Ray, a general-purpose cluster-computing
framework that enables simulation, training, and serving for RL applications. The require-
ments of these workloads range from lightweight and stateless computations, such as for
simulation, to long-running and stateful computations, such as for training. To satisfy these

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 35

requirements, Ray implements a unified interface that can express both task-parallel and
actor-based computations. Tasks enable Ray to efficiently and dynamically load balance
simulations, process large inputs and state spaces (e.g., images, video), and recover from
failures. In contrast, actors enable Ray to efficiently support stateful computations, such as
model training, and expose shared mutable state to clients, (e.g., a parameter server). Ray
implements the actor and the task abstractions on top of a single dynamic execution engine
that is highly scalable and fault tolerant.

To meet the performance requirements, Ray distributes two components that are typically
centralized in existing frameworks [140, 56, 85]: (1) the task scheduler and (2) a metadata
store which maintains the computation lineage and a directory for data objects. This allows
Ray to schedule millions of tasks per second with millisecond-level latencies. Furthermore,
Ray provides lineage-based fault tolerance for tasks and actors, and replication-based fault
tolerance for the metadata store.

While Ray supports serving, training, and simulation in the context of RL applications,
this does not mean that it should be viewed as a replacement for systems that provide
solutions for these workloads in other contexts. In particular, Ray does not aim to substitute
for serving systems like Clipper [30] and TensorFlow Serving [125], as these systems address
a broader set of challenges in deploying models, including model management, testing, and
model composition. Similarly, despite its flexibility, Ray is not a substitute for generic data-
parallel frameworks, such as Spark [140], as it currently lacks the rich functionality and APIs
(e.g., straggler mitigation, query optimization) that these frameworks provide.

We make the following contributions:

• We design and build the first distributed framework that unifies training, simulation,
and serving—necessary components of emerging RL applications.

• To support these workloads, we unify the actor and task-parallel abstractions on top
of a dynamic task execution engine.

• To achieve scalability and fault tolerance, we propose a system design principle in which
control state is stored in a sharded metadata store and all other system components
are stateless.

• To achieve scalability, we propose a bottom-up distributed scheduling strategy.

5.1 Motivation and Requirements

We begin by considering the basic components of an RL system and fleshing out the key
requirements for Ray. As shown in Figure 5.1, in an RL setting, an agent interacts repeatedly
with the environment. The goal of the agent is to learn a policy that maximizes a reward.
A policy is a mapping from the state of the environment to a choice of action. The precise
definitions of environment, agent, state, action, and reward are application-specific.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 36

state (si+1)
(observation)

reward (ri+1)

action (ai)
Policy

improvement
(e.g., SGD)

trajectory: s0, (s1, r1), …, (sn, rn)

policy
Training Serving Simulation

Policy
evaluation

EnvironmentAgent

Figure 5.1: Example of an RL system.

// evaluate policy by interacting with env. (e.g., simulator)
rollout(policy, environment):

trajectory = []
state = environment.initial_state()
while (not environment.has_terminated()):

action = policy.compute(state) // Serving
state, reward = environment.step(action) // Simulation
trajectory.append(state, reward)

return trajectory

// improve policy iteratively until it converges
train_policy(environment):

policy = initial_policy()
while (policy has not converged):

trajectories = []
for i from 1 to k:

// evaluate policy by generating k rollouts
trajectories.append(rollout(policy, environment))
// improve policy
policy = policy.update(trajectories) // Training

return policy

Figure 5.2: Typical RL pseudocode for learning a policy.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 37

To learn a policy, an agent typically employs a two-step process: (1) policy evaluation and
(2) policy improvement. To evaluate the policy, the agent interacts with the environment
(e.g., with a simulation of the environment) to generate trajectories, where a trajectory
consists of a sequence of (state, reward) tuples produced by the current policy. Then,
the agent uses these trajectories to improve the policy; i.e., to update the policy in the
direction of the gradient that maximizes the reward. Figure 5.2 shows an example of the
pseudocode used by an agent to learn a policy. This pseudocode evaluates the policy by
invoking rollout(environment, policy) to generate trajectories. train policy() then uses
these trajectories to improve the current policy via policy.update(trajectories). This process
repeats until the policy converges.

Thus, a framework for RL applications must provide efficient support for training, serving,
and simulation (Figure 5.1). Next, we briefly describe these workloads.

Training typically involves running stochastic gradient descent (SGD), often in a dis-
tributed setting, to update the policy. Distributed SGD typically relies on an allreduce
aggregation step or a parameter server [66].

Serving uses the trained policy to render an action based on the current state of the
environment. A serving system aims to minimize latency, and maximize the number of
decisions per second. To scale, load is typically balanced across multiple nodes serving the
policy.

Finally, most existing RL applications use simulations to evaluate the policy—current RL
algorithms are not sample-efficient enough to rely solely on data obtained from interactions
with the physical world. These simulations vary widely in complexity. They might take a few
ms (e.g., simulate a move in a chess game) to minutes (e.g., simulate a realistic environment
for a self-driving car).

In contrast with supervised learning, in which training and serving can be handled sepa-
rately by different systems, in RL all three of these workloads are tightly coupled in a single
application, with stringent latency requirements between them. Currently, no framework
supports this coupling of workloads. In theory, multiple specialized frameworks could be
stitched together to provide the overall capabilities, but in practice, the resulting data move-
ment and latency between systems is prohibitive in the context of RL. As a result, researchers
and practitioners have been building their own one-off systems.

This state of affairs calls for the development of new distributed frameworks for RL that
can efficiently support training, serving, and simulation. In particular, such a framework
should satisfy the following requirements:

Fine-grained, heterogeneous computations. The duration of a computation can range from
milliseconds (e.g., taking an action) to hours (e.g., training a complex policy). Additionally,
training often requires heterogeneous hardware (e.g., CPUs, GPUs, or TPUs).

Flexible computation model. RL applications require both stateless and stateful compu-
tations. Stateless computations can be executed on any node in the system, which makes
it easy to achieve load balancing and movement of computation to data, if needed. Thus
stateless computations are a good fit for fine-grained simulation and data processing, such
as extracting features from images or videos. In contrast stateful computations are a good

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 38

Name Description

futures = f.remote(args) Execute function f remotely. f.remote()
can take objects or futures as inputs
and returns one or more futures.
This is non-blocking.

objects = ray.get(futures) Return the values associated with one
or more futures. This is blocking.

ready futures = ray.wait(futures, k, timeout) Return the futures whose corresponding
tasks have completed as soon as either
k have completed or the timeout expires.

actor = Class.remote(args) Instantiate class Class as a remote actor,
and return a handle to it. Call a method

futures = actor.method.remote(args) on the remote actor and return one or more
futures. Both are non-blocking.

Table 5.1: Ray API

fit for implementing parameter servers, performing repeated computation on GPU-backed
data, or running third-party simulators that do not expose their state.

Dynamic execution. Several components of RL applications require dynamic execution,
as the order in which computations finish is not always known in advance (e.g., the order
in which simulations finish), and the results of a computation can determine future compu-
tations (e.g., the results of a simulation will determine whether we need to perform more
simulations).

We make two final comments. First, to achieve high utilization in large clusters, such
a framework must handle millions of tasks per second.2 Second, such a framework is not
intended for implementing deep neural networks or complex simulators from scratch. Instead,
it should enable seamless integration with existing simulators [21, 14, 128] and deep learning
frameworks [1, 27, 101, 58].

2Assume 5ms single-core tasks and a cluster of 200 32-core nodes. This cluster can run (1s/5ms)× 32×
200 = 1.28M tasks/sec.

Tasks (stateless) Actors (stateful)
Fine-grained load balancing Coarse-grained load balancing
Support for object locality Poor locality support

High overhead for small updates Low overhead for small updates
Efficient failure handling Overhead from checkpointing

Table 5.2: Tasks vs. actors tradeoffs.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 39

5.2 Programming and Computation Model

Ray implements a dynamic task graph computation model, i.e., it models an application
as a graph of dependent tasks that evolves during execution. On top of this model, Ray
provides both an actor and a task-parallel programming abstraction. This unification differ-
entiates Ray from related systems like CIEL, which only provides a task-parallel abstraction,
and from Orleans [22] or Akka [4], which primarily provide an actor abstraction.

Programming Model

Tasks. A task represents the execution of a remote function on a stateless worker. When a
remote function is invoked, a future representing the result of the task is returned immedi-
ately. Futures can be retrieved using ray.get() and passed as arguments into other remote
functions without waiting for their result. This allows the user to express parallelism while
capturing data dependencies. Table 5.1 shows Ray’s API.

Remote functions operate on immutable objects and are expected to be stateless and side-
effect free: their outputs are determined solely by their inputs. This implies idempotence,
which simplifies fault tolerance through function re-execution on failure.
Actors. An actor represents a stateful computation. Each actor exposes methods that can
be invoked remotely and are executed serially. A method execution is similar to a task, in
that it executes remotely and returns a future, but differs in that it executes on a stateful
worker. A handle to an actor can be passed to other actors or tasks, making it possible for
them to invoke methods on that actor.

Table 5.2 summarizes the properties of tasks and actors. Tasks enable fine-grained load
balancing through leveraging load-aware scheduling at task granularity, input data locality, as
each task can be scheduled on the node storing its inputs, and low recovery overhead, as there
is no need to checkpoint and recover intermediate state. In contrast, actors provide much
more efficient fine-grained updates, as these updates are performed on internal rather than
external state, which typically requires serialization and deserialization. For example, actors
can be used to implement parameter servers [66] and GPU-based iterative computations
(e.g., training). In addition, actors can be used to wrap third-party simulators and other
opaque handles that are hard to serialize.

To satisfy the requirements for heterogeneity and flexibility (Section 5.1), we augment
the API in three ways. First, to handle concurrent tasks with heterogeneous durations,
we introduce ray.wait(), which waits for the first k available results, instead of waiting
for all results like ray.get(). Second, to handle resource-heterogeneous tasks, we enable
developers to specify resource requirements so that the Ray scheduler can efficiently manage
resources. Third, to improve flexibility, we enable nested remote functions, meaning that
remote functions can invoke other remote functions. This is also critical for achieving high
scalability (Section 5.3), as it enables multiple processes to invoke remote functions in a
distributed fashion.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 40

@ray.remote

def create_policy():

Initialize the policy randomly.

return policy

@ray.remote(num_gpus=1)

class Simulator(object):

def __init__(self):

Initialize the environment.

self.env = Environment()

def rollout(self, policy, num_steps):

observations = []

observation = self.env.current_state()

for _ in range(num_steps):

action = policy(observation)

observation = self.env.step(action)

observations.append(observation)

return observations

@ray.remote(num_gpus=2)

def update_policy(policy, *rollouts):

Update the policy.

return policy

@ray.remote

def train_policy():

Create a policy.

policy_id = create_policy.remote()

Create 10 actors.

simulators = [Simulator.remote() for _ in range(10)]

Do 100 steps of training.

for _ in range(100):

Perform one rollout on each actor.

rollout_ids = [s.rollout.remote(policy_id)

for s in simulators]

Update the policy with the rollouts.

policy_id =

update_policy.remote(policy_id, *rollout_ids)

return ray.get(policy_id)

Figure 5.3: Python code implementing the example in Figure 5.2 in Ray. Note that @ray.remote

indicates remote functions and actors. Invocations of remote functions and actor methods return

futures, which can be passed to subsequent remote functions or actor methods to encode task

dependencies. Each actor has an environment object self.env shared between all of its methods.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 41

policy1

T1
create_policy

T2
update_policy

A11
rollout

A12
rollout

policy2

T3
update_policy

rollout11

rollout12

A21
rollout

A22
rollout

rollout22

A10
Simulator

A20
Simulator

… ……

data	edges stateful edges
object task/method

control	edges

rollout21

T0
train_policy

Figure 5.4: The task graph corresponding to an invocation of train policy.remote() in Figure 5.3.

Remote function calls and the actor method calls correspond to tasks in the task graph. The figure

shows two actors. The method invocations for each actor (the tasks labeled A1i and A2i) have

stateful edges between them indicating that they share the mutable actor state. There are control

edges from train policy to the tasks that it invokes. To train multiple policies in parallel, we could

call train policy.remote() multiple times.

Computation Model

Ray employs a dynamic task graph computation model [39], in which the execution of both
remote functions and actor methods is automatically triggered by the system when their
inputs become available. In this section, we describe how the computation graph (Figure 5.4)
is constructed from a user program (Figure 5.3). This program uses the API in Table 5.1 to
implement the pseudocode from Figure 5.2.

Ignoring actors first, there are two types of nodes in a computation graph: data objects
and remote function invocations, or tasks. There are also two types of edges: data edges
and control edges. Data edges capture the dependencies between data objects and tasks.
More precisely, if data object D is an output of task T , we add a data edge from T to D.
Similarly, if D is an input to T , we add a data edge from D to T . Control edges capture the
computation dependencies that result from nested remote functions (Section 5.2): if task T1
invokes task T2, then we add a control edge from T1 to T2.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 42

Actor method invocations are also represented as nodes in the computation graph. They
are identical to tasks with one key difference. To capture the state dependency across
subsequent method invocations on the same actor, we add a third type of edge: a stateful
edge. If method Mj is called right after method Mi on the same actor, then we add a stateful
edge from Mi to Mj. Thus, all methods invoked on the same actor object form a chain that
is connected by stateful edges (Figure 5.4). This chain captures the order in which these
methods were invoked.

Stateful edges help us embed actors in an otherwise stateless task graph, as they capture
the implicit data dependency between successive method invocations sharing the internal
state of an actor. Stateful edges also enable us to maintain lineage. As in other dataflow
systems [140], we track data lineage to enable reconstruction. By explicitly including stateful
edges in the lineage graph, we can easily reconstruct lost data, whether produced by remote
functions or actor methods (Section 5.3).

5.3 Architecture

Ray’s architecture comprises (1) an application layer implementing the API, and (2) a system
layer providing high scalability and fault tolerance.

Local Scheduler

Actor Driver

Object Store

Global

Scheduler

Global

Scheduler

Object Table

Task Table

Function Table

Event Logs

Global Control Store (GCS)

Local Scheduler

Driver Worker

Object Store

Node

Global

Scheduler

Web UI

Debugging

Tools

Profiling Tools

Error Diagnosis

Local Scheduler

Worker Worker

Object Store

Node Node

A
p
p
 L

a
y
e
r

S
y
s
te

m
 L

a
y
e
r

(b
a
c
k
e
n
d
)

Figure 5.5: Ray’s architecture consists of two parts: an application layer and a system layer. The
application layer implements the API and the computation model described in Section 5.2, the
system layer implements task scheduling and data management to satisfy the performance and
fault-tolerance requirements.

Application Layer

The application layer consists of three types of processes:

• Driver: A process executing the user program.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 43

• Worker: A stateless process that executes tasks (remote functions) invoked by a driver
or another worker. Workers are started automatically and assigned tasks by the system
layer. When a remote function is declared, the function is automatically published to
all workers. A worker executes tasks serially, with no local state maintained across
tasks.

• Actor: A stateful process that executes, when invoked, only the methods it exposes.
Unlike a worker, an actor is explicitly instantiated by a worker or a driver. Like workers,
actors execute methods serially, except that each method depends on the state resulting
from the previous method execution.

System Layer

The system layer consists of three major components: a global control store, a distributed
scheduler, and a distributed object store. All components are horizontally scalable and
fault-tolerant.

Global Control Store (GCS)

The global control store (GCS) maintains the entire control state of the system, and it is a
unique feature of our design. At its core, GCS is a key-value store with pub-sub functionality.
We use sharding to achieve scale, and per-shard chain replication [104] to provide fault
tolerance. The primary reason for the GCS and its design is to maintain fault tolerance and
low latency for a system that can dynamically spawn millions of tasks per second.

Fault tolerance in case of node failure requires a solution to maintain lineage information.
Existing lineage-based solutions [140, 135, 85, 56] focus on coarse-grained parallelism and
can therefore use a single node (e.g., master, driver) to store the lineage without impacting
performance. However, this design is not scalable for a fine-grained and dynamic workload
like simulation. Therefore, we decouple the durable lineage storage from the other system
components, allowing each to scale independently.

Maintaining low latency requires minimizing overheads in task scheduling, which involves
choosing where to execute, and subsequently task dispatch, which involves retrieving remote
inputs from other nodes. Many existing dataflow systems [140, 85, 106] couple these by stor-
ing object locations and sizes in a centralized scheduler, a natural design when the scheduler
is not a bottleneck. However, the scale and granularity that Ray targets requires keeping
the centralized scheduler off the critical path. Involving the scheduler in each object trans-
fer is prohibitively expensive for primitives important to distributed training like allreduce,
which is both communication-intensive and latency-sensitive. Therefore, we store the object
metadata in the GCS rather than in the scheduler, fully decoupling task dispatch from task
scheduling.

In summary, the GCS significantly simplifies Ray’s overall design, as it enables every
component in the system to be stateless. This not only simplifies support for fault tolerance

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 44

(i.e., on failure, components simply restart and read the lineage from the GCS), but also
makes it easy to scale the distributed object store and scheduler independently, as all com-
ponents share the needed state via the GCS. An added benefit is the easy development of
debugging, profiling, and visualization tools.

Bottom-Up Distributed Scheduler

As discussed in Section 5.1, Ray needs to dynamically schedule millions of tasks per sec-
ond, tasks which may take as little as a few milliseconds. None of the cluster schedulers
we are aware of meet these requirements. Most cluster computing frameworks, such as
Spark [140], CIEL [85], and Dryad [56] implement a centralized scheduler, which can provide
locality but at latencies in the tens of ms. Distributed schedulers such as work stealing [17],
Sparrow [98] and Canary [102] can achieve high scale, but they either don’t consider data
locality [17], or assume tasks belong to independent jobs [98], or assume the computation
graph is known [102].

Global
Scheduler

Local Scheduler

Global
Scheduler

WorkerDriver Worker …

Global Control State (GCS)

Local Scheduler

WorkerWorker Worker

Submit
tasks

Schedule
tasks

Load
info

Node 1 Node N

Figure 5.6: Bottom-up distributed scheduler. Tasks are submitted bottom-up, from drivers and
workers to a local scheduler and forwarded to the global scheduler only if needed (Section 5.3). The
thickness of each arrow is proportional to its request rate.

To satisfy the above requirements, we design a two-level hierarchical scheduler consisting
of a global scheduler and per-node local schedulers. To avoid overloading the global scheduler,
the tasks created at a node are submitted first to the node’s local scheduler. A local scheduler
schedules tasks locally unless the node is overloaded (i.e., its local task queue exceeds a
predefined threshold), or it cannot satisfy a task’s requirements (e.g., lacks a GPU). If a local
scheduler decides not to schedule a task locally, it forwards it to the global scheduler. Since
this scheduler attempts to schedule tasks locally first (i.e., at the leaves of the scheduling
hierarchy), we call it a bottom-up scheduler.

The global scheduler considers each node’s load and task’s constraints to make scheduling
decisions. More precisely, the global scheduler identifies the set of nodes that have enough

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 45

resources of the type requested by the task, and of these nodes selects the node which provides
the lowest estimated waiting time. At a given node, this time is the sum of (i) the estimated
time the task will be queued at that node (i.e., task queue size times average task execution),
and (ii) the estimated transfer time of tasks remote inputs (i.e., total size of remote inputs
divided by average bandwidth). The global scheduler gets the queue size at each node and
the node resource availability via heartbeats, and the location of the task’s inputs and their
sizes from GCS. Furthermore, the global scheduler computes the average task execution and
the average transfer bandwidth using simple exponential averaging. If the global scheduler
becomes a bottleneck, we can instantiate more replicas all sharing the same information via
GCS. This makes our scheduler architecture highly scalable.

In-Memory Distributed Object Store

To minimize task latency, we implement an in-memory distributed storage system to store the
inputs and outputs of every task, or stateless computation. On each node, we implement the
object store via shared memory. This allows zero-copy data sharing between tasks running
on the same node. As a data format, we use Apache Arrow [8].

If a task’s inputs are not local, the inputs are replicated to the local object store before
execution. Also, a task writes its outputs to the local object store. Replication eliminates the
potential bottleneck due to hot data objects and minimizes task execution time as a task only
reads/writes data from/to the local memory. This increases throughput for computation-
bound workloads, a profile shared by many AI applications. For low latency, we keep objects
entirely in memory and evict them as needed to disk using an LRU policy.

As with existing cluster computing frameworks, such as Spark [140], and Dryad [56], the
object store is limited to immutable data. This obviates the need for complex consistency
protocols (as objects are not updated), and simplifies support for fault tolerance. In the case
of node failure, Ray recovers any needed objects through lineage re-execution. The lineage
stored in the GCS tracks both stateless tasks and stateful actors during initial execution; we
use the former to reconstruct objects in the store.

For simplicity, our object store does not support distributed objects, i.e., each object fits
on a single node. Distributed objects like large matrices or trees can be implemented at the
application level as collections of futures.

Implementation

Ray is an active open source project3 developed at the University of California, Berkeley.
Ray fully integrates with the Python environment and is easy to install by simply running
pip install ray. The implementation comprises ≈ 40K lines of code (LoC), 72% in C++
for the system layer, 28% in Python for the application layer. The GCS uses one Redis [110]
key-value store per shard, with entirely single-key operations. GCS tables are sharded by
object and task IDs to scale, and every shard is chain-replicated [104] for fault tolerance. We

3https://github.com/ray-project/ray

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 46

Object store

@ray.remote

def add(a, b):

return a + b

@ray.remote

def add(a, b):

return a + b

idc = add.remote(a, b)

c = ray.get(idc)

N1

Driver

Object Table

Function Table

@ray.remote

def add(a, b):

return a + b

N2

Worker

ida N1

idb N2

Global Control Store (GCS)

4

5

6

Local Scheduler

Object store

ida a

1

2

8

Global Scheduler

7

9

ida a idb b

0

3

Local Scheduler

(a) Executing a task remotely

Local Scheduler

idb b

@ray.remote

def add(a, b):

return a + b

@ray.remote

def add(a, b):

return a + b

idc = add.remote(a, b)

c = ray.get(idc)

N1

Driver

Object Table

Function Table

@ray.remote

def add(a, b):

return a + b

N2

Worker

ida N1

idb N2

Global Control Store (GCS)

Local Scheduler

ida a

1

ida aidc c

idc N2, N1 4

2

5

7 3

Global Scheduler

idc c

6

(b) Returning the result of a remote task

Figure 5.7: An end-to-end example that adds a and b and returns c. Solid lines are data plane
operations and dotted lines are control plane operations. (a) The function add() is registered with
the GCS by node 1 (N1), invoked on N1, and executed on N2. (b) N1 gets add()’s result using
ray.get(). The Object Table entry for c is created in step 4 and updated in step 6 after c is copied
to N1.

implement both the local and global schedulers as event-driven, single-threaded processes.
Internally, local schedulers maintain cached state for local object metadata, tasks waiting for
inputs, and tasks ready for dispatch to a worker. To transfer large objects between different
object stores, we stripe the object across multiple TCP connections.

Putting Everything Together

Figure 5.7 illustrates how Ray works end-to-end with a simple example that adds two objects
a and b, which could be scalars or matrices, and returns result c. The remote function add()

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 47

is automatically registered with the GCS upon initialization and distributed to every worker
in the system (step 0 in Figure 5.7a).

Figure 5.7a shows the step-by-step operations triggered by a driver invoking add.remote(a, b),
where a and b are stored on nodes N1 and N2, respectively. The driver submits add(a,
b) to the local scheduler (step 1), which forwards it to a global scheduler (step 2).4 Next,
the global scheduler looks up the locations of add(a, b)’s arguments in the GCS (step 3)
and decides to schedule the task on node N2, which stores argument b (step 4). The local
scheduler at node N2 checks whether the local object store contains add(a, b)’s arguments
(step 5). Since the local store doesn’t have object a, it looks up a’s location in the GCS
(step 6). Learning that a is stored at N1, N2’s object store replicates it locally (step 7). As
all arguments of add() are now stored locally, the local scheduler invokes add() at a local
worker (step 8), which accesses the arguments via shared memory (step 9).

Figure 5.7b shows the step-by-step operations triggered by the execution of ray.get() at
N1, and of add() at N2, respectively. Upon ray.get(idc)’s invocation, the driver checks the
local object store for the value c, using the future idc returned by add() (step 1). Since the
local object store doesn’t store c, it looks up its location in the GCS. At this time, there is no
entry for c, as c has not been created yet. As a result, N1’s object store registers a callback
with the Object Table to be triggered when c’s entry has been created (step 2). Meanwhile,
at N2, add() completes its execution, stores the result c in the local object store (step 3),
which in turn adds c’s entry to the GCS (step 4). As a result, the GCS triggers a callback
to N1’s object store with c’s entry (step 5). Next, N1 replicates c from N2 (step 6), and
returns c to ray.get() (step 7), which finally completes the task.

While this example involves a large number of RPCs, in many cases this number is much
smaller, as most tasks are scheduled locally, and the GCS replies are cached by the global
and local schedulers.

5.4 Evaluation

In our evaluation, we study the following questions:

1. How well does Ray meet the latency, scalability, and fault tolerance requirements listed
in Section 5.1? (Section 5.4)

2. What overheads are imposed on distributed primitives (e.g., allreduce) written using
Ray’s API? (Section 5.4)

3. In the context of RL workloads, how does Ray compare against specialized systems for
training, serving, and simulation? (Section 5.4)

4. What advantages does Ray provide for RL applications, compared to custom systems?
(Section 5.4)

4Note that N1 could also decide to schedule the task locally.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 48

100KB 1MB 10MB 100MB

Object size

10-5

10-4

10-3

10-2

10-1

M
e
a
n
 t

a
sk

 l
a
te

n
cy

 (
s)

Locality Aware

Unaware

(a) Ray locality scheduling

10 20 30 40 50 60 100

number of nodes

0.0

0.4

0.8

1.2

1.6

M
ill

io
n
s

o
f

ta
sk

s/
s

(b) Ray scalability

Figure 5.8: (a) Tasks leverage locality-aware placement. 1000 tasks with a random object de-
pendency are scheduled onto one of two nodes. With locality-aware policy, task latency remains
independent of the size of task inputs instead of growing by 1-2 orders of magnitude. (b) Near-linear
scalability leveraging the GCS and bottom-up distributed scheduler. Ray reaches 1 million tasks
per second throughput with 60 nodes. x ∈ {70, 80, 90} omitted due to cost.

All experiments were run on Amazon Web Services. Unless otherwise stated, we use
m4.16xlarge CPU instances and p3.16xlarge GPU instances.

Microbenchmarks

Locality-aware task placement. Fine-grain load balancing and locality-aware place-
ment are primary benefits of tasks in Ray. Actors, once placed, are unable to move their
computation to large remote objects, while tasks can. In Figure 5.8a, tasks placed without
data locality awareness (as is the case for actor methods), suffer 1-2 orders of magnitude
latency increase at 10-100MB input data sizes. Ray unifies tasks and actors through the
shared object store, allowing developers to use tasks for e.g., expensive postprocessing on
output produced by simulation actors.

End-to-end scalability. One of the key benefits of the Global Control Store (GCS)
and the bottom-up distributed scheduler is the ability to horizontally scale the system to
support a high throughput of fine-grained tasks, while maintaining fault tolerance and low-
latency task scheduling. In Figure 5.8b, we evaluate this ability on an embarrassingly parallel
workload of empty tasks, increasing the cluster size on the x-axis. We observe near-perfect
linearity in progressively increasing task throughput. Ray exceeds 1 million tasks per second
throughput at 60 nodes and continues to scale linearly beyond 1.8 million tasks per second
at 100 nodes. The rightmost datapoint shows that Ray can process 100 million tasks in
less than a minute (54s), with minimum variability. As expected, increasing task duration
reduces throughput proportionally to mean task duration, but the overall scalability remains
linear. While many realistic workloads may exhibit more limited scalability due to object
dependencies and inherent limits to application parallelism, this demonstrates the scalability
of our overall architecture under high load.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 49

1KB 10KB100KB 1MB 10MB100MB 1GB

object size

0

5000

10000

15000

20000

IO
P
S

0

2

4

6

8

10

12

14

16

th
ro

u
g
h
p
u
t

(G
B

/s
)

Figure 5.9: Object store write throughput and IOPS. From a single client, throughput exceeds
15GB/s (red) for large objects and 18K IOPS (cyan) for small objects on a 16 core instance
(m4.4xlarge). It uses 8 threads to copy objects larger than 0.5MB and 1 thread for small objects.
Bar plots report throughput with 1, 2, 4, 8, 16 threads. Results are averaged over 5 runs.

Object store performance. To evaluate the performance of the object store (Sec-
tion 5.3), we track two metrics: IOPS (for small objects) and write throughput (for large
objects). In Figure 5.9, the write throughput from a single client exceeds 15GB/s as ob-
ject size increases. For larger objects, memcpy dominates object creation time. For smaller
objects, the main overheads are in serialization and IPC between the client and object store.

GCS fault tolerance. To maintain low latency while providing strong consistency
and fault tolerance, we build a lightweight chain replication [104] layer on top of Redis.
Figure 5.10a simulates recording Ray tasks to and reading tasks from the GCS, where keys
are 25 bytes and values are 512 bytes. The client sends requests as fast as it can, having at
most one in-flight request at a time. Failures are reported to the chain master either from
the client (having received explicit errors, or timeouts despite retries) or from any server
in the chain (having received explicit errors). Overall, reconfigurations caused a maximum
client-observed delay of under 30ms (this includes both failure detection and recovery delays).

GCS flushing. Ray is equipped to periodically flush the contents of GCS to disk.
In Figure 5.10b we submit 50 million empty tasks sequentially and monitor GCS memory
consumption. As expected, it grows linearly with the number of tasks tracked and eventually
reaches the memory capacity of the system. At that point, the system becomes stalled and
the workload fails to finish within a reasonable amount of time. With periodic GCS flushing,
we achieve two goals. First, the memory footprint is capped at a user-configurable level (in
the microbenchmark we employ an aggressive strategy where consumed memory is kept as
low as possible). Second, the flushing mechanism provides a natural way to snapshot lineage
to disk for long-running Ray applications.

Recovering from task failures. In Figure 5.11a, we demonstrate Ray’s ability to
transparently recover from worker node failures and elastically scale, using the durable GCS
lineage storage. The workload, run on m4.xlarge instances, consists of linear chains of 100ms
tasks submitted by the driver. As nodes are removed (at 25s, 50s, 100s), the local schedulers

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 50

0 1 2 3 4 5 6 7 8 9 10
Time since start (s)

103 103

104 104

La
te

nc
y

(μ
s)

write
read
node dead

(a) A timeline for GCS read and write latencies as viewed from a client submitting tasks. The chain
starts with 2 replicas. We manually trigger reconfiguration as follows. At t ≈ 4.2s, a chain member
is killed; immediately after, a new chain member joins, initiates state transfer, and restores the chain
to 2-way replication. The maximum client-observed latency is under 30ms despite reconfigurations.

0 10000 20000 30000 40000 50000 60000
Elasped Time (seconds)

0

2000

4000

6000

8000

GC
S

Us
ed

 M
em

or
y

(M
B)

50 million no-op tasks

Ray, no GCS flush
Ray, GCS flush

(b) The Ray GCS maintains a constant memory footprint with GCS flushing. Without GCS
flushing, the memory footprint reaches a maximum capacity and the workload fails to complete
within a predetermined duration (indicated by the red cross).

Figure 5.10: Ray GCS fault tolerance and flushing.

reconstruct previous results in the chain in order to continue execution. Overall per-node
throughput remains stable throughout.

Recovering from actor failures. By encoding actor method calls as stateful edges
directly in the dependency graph, we can reuse the same object reconstruction mechanism
as in Figure 5.11a to provide transparent fault tolerance for stateful computation. Ray
additionally leverages user-defined checkpoint functions to bound the reconstruction time
for actors (Figure 5.11b). With minimal overhead, checkpointing enables only 500 methods
to be re-executed, versus 10k re-executions without checkpointing. In the future, we hope to
further reduce actor reconstruction time, e.g., by allowing users to annotate methods that

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 51

0 50 100 150 200
Time since start (s)

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

0

20

40

60

Nu
m

be
r o

f n
od

esOriginal tasks
Re-executed tasks

(a) Task reconstruction

100 200 300 400 500 600
Time since start (s)

0
100
200
300
400
500
600
700

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

Original tasks
Re-executed tasks
Checkpoint tasks

(b) Actor reconstruction

Figure 5.11: Ray fault-tolerance. (a) Ray reconstructs lost task dependencies as nodes are
removed (dotted line), and recovers to original throughput when nodes are added back. Each task
is 100ms and depends on an object generated by a previously submitted task. (b) Actors are
reconstructed from their last checkpoint. At t = 200s, we kill 2 of the 10 nodes, causing 400 of the
2000 actors in the cluster to be recovered on the remaining nodes (t = 200–270s).

do not mutate state.
Allreduce. Allreduce is a distributed communication primitive important to many ma-

chine learning workloads. Here, we evaluate whether Ray can natively support a ring
allreduce [126] implementation with low enough overhead to match existing implementa-
tions [116]. We find that Ray completes allreduce across 16 nodes on 100MB in ∼200ms
and 1GB in ∼1200ms, surprisingly outperforming OpenMPI (v1.10), a popular MPI imple-
mentation, by 1.5× and 2× respectively (Figure 5.12a). We attribute Ray’s performance
to its use of multiple threads for network transfers, taking full advantage of the 25Gbps
connection between nodes on AWS, whereas OpenMPI sequentially sends and receives data
on a single thread [44]. For smaller objects, OpenMPI outperforms Ray by switching to a
lower overhead algorithm, an optimization we plan to implement in the future.

Ray’s scheduler performance is critical to implementing primitives such as allreduce.
In Figure 5.12b, we inject artificial task execution delays and show that performance drops
nearly 2× with just a few ms of extra latency. Systems with centralized schedulers like Spark
and CIEL typically have scheduler overheads in the tens of milliseconds [131, 89], making such

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 52

10MB 100MB 1GB

Object size

100

101

102

103

104
It

e
ra

ti
o
n
 t

im
e
 (

m
ill

is
e
co

n
d
s)

OpenMPI

Ray*

Ray

(a) Ray vs OpenMPI

+0 +1 +5 +10

Added scheduler latency (ms)

0

100

200

300

400

500

600

700

800

It
e
ra

ti
o
n
 t

im
e
 (

m
ill

is
e
co

n
d
s)

Ray ring reduce latency
(16 nodes, 100MB)

(b) Ray scheduler ablation

Figure 5.12: (a) Mean execution time of allreduce on 16 m4.16xl nodes. Each worker runs on
a distinct node. Ray* restricts Ray to 1 thread for sending and 1 thread for receiving. (b) Ray’s
low-latency scheduling is critical for allreduce.

workloads impractical. Scheduler throughput also becomes a bottleneck since the number of
tasks required by ring reduce scales quadratically with the number of participants.

Building blocks

End-to-end applications (e.g., AlphaGo [119]) require a tight coupling of training, serving,
and simulation. In this section, we isolate each of these workloads to a setting that illustrates
a typical RL application’s requirements. Due to a flexible programming model targeted to
RL, and a system designed to support this programming model, Ray matches and sometimes
exceeds the performance of dedicated systems for these individual workloads.

Distributed Training

We implement data-parallel synchronous SGD leveraging the Ray actor abstraction to repre-
sent model replicas. Model weights are synchronized via allreduce (5.4) or parameter server,
both implemented on top of the Ray API.

In Figure 5.13, we evaluate the performance of the Ray (synchronous) parameter-server
SGD implementation against state-of-the-art implementations [116], using the same Tensor-
Flow model and synthetic data generator for each experiment. We compare only against
TensorFlow-based systems to accurately measure the overhead imposed by Ray, rather than
differences between the deep learning frameworks themselves. In each iteration, model replica
actors compute gradients in parallel, send the gradients to a sharded parameter server, then
read the summed gradients from the parameter server for the next iteration.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 53

4 8 16 32 64

Num GPUs (V100)

0
1000
2000
3000
4000
5000
6000
7000

M
e
a
n
 i
m

a
g
e
s

/
s

Horovod + TF

Distributed TF

Ray + TF

Figure 5.13: Images per second reached when distributing the training of a ResNet-101 TensorFlow
model (from the official TF benchmark). All experiments were run on p3.16xl instances connected
by 25Gbps Ethernet, and workers allocated 4 GPUs per node as done in Horovod [116]. We note
some measurement deviations from previously reported, likely due to hardware differences and
recent TensorFlow performance improvements. We used OpenMPI 3.0, TF 1.8, and NCCL2 for all
runs.

Figure 5.13 shows that Ray matches the performance of Horovod and is within 10% of
distributed TensorFlow (in distributed replicated mode). This is due to the ability to
express the same application-level optimizations found in these specialized systems in Ray’s
general-purpose API. A key optimization is the pipelining of gradient computation, trans-
fer, and summation within a single iteration. To overlap GPU computation with network
transfer, we use a custom TensorFlow operator to write tensors directly to Ray’s object store.

Serving

Model serving is an important component of end-to-end applications. Ray focuses primarily
on the embedded serving of models to simulators running within the same dynamic task
graph (e.g., within an RL application on Ray). In contrast, systems like Clipper [30] focus
on serving predictions to external clients.

In this setting, low latency is critical for achieving high utilization. To show this, in
Table 5.3 we compare the server throughput achieved using a Ray actor to serve a policy
versus using the open source Clipper system over REST. Here, both client and server pro-
cesses are co-located on the same machine (a p3.8xlarge instance). This is often the case
for RL applications but not for the general web serving workloads addressed by systems like
Clipper. Due to its low-overhead serialization and shared memory abstractions, Ray achieves
an order of magnitude higher throughput for a small fully connected policy model that takes
in a large input and is also faster on a more expensive residual network policy model, similar
to one used in AlphaGo Zero, that takes smaller input.

Simulation

Simulators used in RL produce results with variable lengths (“timesteps”) that, due to the
tight loop with training, must be used as soon as they are available. The task heterogene-

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 54

System Small Input Larger Input

Clipper 4400 ± 15 states/sec 290 ± 1.3 states/sec

Ray 6200 ± 21 states/sec 6900 ± 150 states/sec

Table 5.3: Throughput comparisons for Clipper [30], a dedicated serving system, and Ray for
two embedded serving workloads. We use a residual network and a small fully connected network,
taking 10ms and 5ms to evaluate, respectively. The server is queried by clients that each send
states of size 4KB and 100KB respectively in batches of 64.

ity and timeliness requirements make simulations hard to support efficiently in BSP-style
systems. To demonstrate, we compare (1) an MPI implementation that submits 3n parallel
simulation runs on n cores in 3 rounds, with a global barrier between rounds5, to (2) a Ray
program that issues the same 3n tasks while concurrently gathering simulation results back
to the driver. Table 5.4 shows that both systems scale well, yet Ray achieves up to 1.8×
throughput. This motivates a programming model that can dynamically spawn and collect
the results of fine-grained simulation tasks.

System, programming model 1 CPU 16 CPUs 256 CPUs
MPI, bulk synchronous 22.6K 208K 2.16M

Ray, asynchronous tasks 22.3K 290K 4.03M

Table 5.4: Timesteps per second for the Pendulum-v0 simulator in OpenAI Gym [21]. Ray allows
for better utilization when running heterogeneous simulations at scale.

RL Applications

Without a system that can tightly couple the training, simulation, and serving steps, rein-
forcement learning algorithms today are implemented as one-off solutions that make it diffi-
cult to incorporate optimizations that, for example, require a different computation structure
or that utilize different architectures. Consequently, with implementations of two represen-
tative reinforcement learning applications in Ray, we are able to match and even outperform
custom systems built specifically for these algorithms. The primary reason is the flexibility
of Ray’s programming model, which can express application-level optimizations that would
require substantial engineering effort to port to custom-built systems, but are transparently
supported by Ray’s dynamic task graph execution engine.

5Note that experts can use MPI’s asynchronous primitives to get around barriers—at the expense of
increased program complexity —we nonetheless chose such an implementation to simulate BSP.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 55

256 1024 8192

Number of CPUs

0

10

20

30

40

50

60

70

80

90
M

e
a
n
 t

im
e
 t

o
 s

o
lv

e
 (

m
in

u
te

s)

x x x

Reference ES

Ray ES

(a) Evolution Strategies

8x1 64x8 512x64

CPUs x GPUs

0

100

200

300

400

500

M
e
a
n
 t

im
e
 t

o
 s

o
lv

e
 (

m
in

u
te

s)

MPI PPO

Ray PPO

(b) PPO

Figure 5.14: Time to reach a score of 6000 in the Humanoid-v1 task [21]. (a) The Ray ES
implementation scales well to 8192 cores and achieves a median time of 3.7 minutes, over twice as
fast as the best published result. The special-purpose system failed to run beyond 1024 cores. ES
is faster than PPO on this benchmark, but shows greater runtime variance. (b) The Ray PPO
implementation outperforms a specialized MPI implementation [97] with fewer GPUs, at a fraction
of the cost. The MPI implementation required 1 GPU for every 8 CPUs, whereas the Ray version
required at most 8 GPUs (and never more than 1 GPU per 8 CPUs).

Evolution Strategies

To evaluate Ray on large-scale RL workloads, we implement the evolution strategies (ES)
algorithm and compare to the reference implementation [109]—a system specially built for
this algorithm that relies on Redis for messaging and low-level multiprocessing libraries for
data-sharing. The algorithm periodically broadcasts a new policy to a pool of workers and
aggregates the results of roughly 10000 tasks (each performing 10 to 1000 simulation steps).

As shown in Figure 5.14a, an implementation on Ray scales to 8192 cores. Doubling the
cores available yields an average completion time speedup of 1.6×. Conversely, the special-
purpose system fails to complete at 2048 cores, where the work in the system exceeds the
processing capacity of the application driver. To avoid this issue, the Ray implementation
uses an aggregation tree of actors, reaching a median time of 3.7 minutes, more than twice
as fast as the best published result (10 minutes).

Initial parallelization of a serial implementation using Ray required modifying only 7
lines of code. Performance improvement through hierarchical aggregation was easy to realize
with Ray’s support for nested tasks and actors. In contrast, the reference implementation
had several hundred lines of code dedicated to a protocol for communicating tasks and
data between workers, and would require further engineering to support optimizations like
hierarchical aggregation.

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 56

Proximal Policy Optimization

We implement Proximal Policy Optimization (PPO) [113] in Ray and compare to a highly-
optimized reference implementation [97] that uses OpenMPI communication primitives. The
algorithm is an asynchronous scatter-gather, where new tasks are assigned to simulation
actors as they return rollouts to the driver. Tasks are submitted until 320000 simulation
steps are collected (each task produces between 10 and 1000 steps). The policy update
performs 20 steps of SGD with a batch size of 32768. The model parameters in this example
are roughly 350KB. These experiments were run using p2.16xlarge (GPU) and m4.16xlarge
(high CPU) instances.

As shown in Figure 5.14b, the Ray implementation outperforms the optimized MPI im-
plementation in all experiments, while using a fraction of the GPUs. The reason is that Ray
is heterogeneity-aware and allows the user to utilize asymmetric architectures by expressing
resource requirements at the granularity of a task or actor. The Ray implementation can
then leverage TensorFlow’s single-process multi-GPU support and can pin objects in GPU
memory when possible. This optimization cannot be easily ported to MPI due to the need
to asynchronously gather rollouts to a single GPU process. Indeed, [97] includes two custom
implementations of PPO, one using MPI for large clusters and one that is optimized for
GPUs but that is restricted to a single node. Ray allows for an implementation suitable for
both scenarios.

Ray’s ability to handle resource heterogeneity also decreased PPO’s cost by a factor of
4.5 [42], since CPU-only tasks can be scheduled on cheaper high-CPU instances. In contrast,
MPI applications often exhibit symmetric architectures, in which all processes run the same
code and require identical resources, in this case preventing the use of CPU-only machines
for scale-out. Furthermore, the MPI implementation requires on-demand instances since
it does not transparently handle failure. Assuming 4× cheaper spot instances, Ray’s fault
tolerance and resource-aware scheduling together cut costs by 18×.

5.5 Related Work

Dynamic task graphs

Ray is closely related to CIEL [85] and Dask [106]. All three support dynamic task graphs
with nested tasks and implement the futures abstraction. CIEL also provides lineage-based
fault tolerance, while Dask, like Ray, fully integrates with Python. However, Ray differs
in two aspects that have important performance consequences. First, Ray extends the task
model with an actor abstraction. This is necessary for efficient stateful computation in
distributed training and serving, to keep the model data collocated with the computation.
Second, Ray employs a fully distributed and decoupled control plane and scheduler, instead
of relying on a single master storing all metadata. This is critical for efficiently supporting
primitives like allreduce without system modification. At peak performance for 100MB on 16
nodes, allreduce on Ray (Section 5.4) submits 32 rounds of 16 tasks in 200ms. Meanwhile,

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 57

Dask reports a maximum scheduler throughput of 3k tasks/s on 512 cores [32]. With a
centralized scheduler, each round of allreduce would then incur a minimum of ∼5ms of
scheduling delay, translating to up to 2× worse completion time (Figure 5.12b). Even with
a decentralized scheduler, coupling the control plane information with the scheduler leaves
the latter on the critical path for data transfer, adding an extra roundtrip to every round of
allreduce.

Dataflow systems

Popular dataflow systems, such as MapReduce [33], Spark [137], and Dryad [56] have widespread
adoption for analytics and ML workloads, but their computation model is too restrictive for
a fine-grained and dynamic simulation workload. Spark and MapReduce implement the
BSP execution model, which assumes that tasks within the same stage perform the same
computation and take roughly the same amount of time. Dryad relaxes this restriction but
lacks support for dynamic task graphs. Furthermore, none of these systems provide an ac-
tor abstraction, nor implement a distributed scalable control plane and scheduler. Finally,
Naiad [87] is a dataflow system that provides improved scalability for some workloads, but
only supports static task graphs.

Machine learning frameworks

TensorFlow [1] and MXNet [27] target deep learning workloads and efficiently leverage both
CPUs and GPUs. While they achieve great performance for training workloads consisting
of static DAGs of linear algebra operations, they have limited support for the more gen-
eral computation required to tightly couple training with simulation and embedded serving.
TensorFlow Fold [71] provides some support for dynamic task graphs, as well as MXNet
through its internal C++ APIs, but neither fully supports the ability to modify the DAG
during execution in response to task progress, task completion times, or faults. TensorFlow
and MXNet in principle achieve generality by allowing the programmer to simulate low-
level message-passing and synchronization primitives, but the pitfalls and user experience
in this case are similar to those of MPI. OpenMPI [44] can achieve high performance, but
it is relatively hard to program as it requires explicit coordination to handle heterogeneous
and dynamic task graphs. Furthermore, it forces the programmer to explicitly handle fault
tolerance.

Actor systems

Orleans [22] and Akka [4] are two actor frameworks well suited to developing highly available
and concurrent distributed systems. However, compared to Ray, they provide less support
for recovery from data loss. To recover stateful actors, the Orleans developer must explic-
itly checkpoint actor state and intermediate responses. Stateless actors in Orleans can be
replicated for scale-out, and could therefore act as tasks, but unlike in Ray, they have no

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 58

lineage. Similarly, while Akka explicitly supports persisting actor state across failures, it
does not provide efficient fault tolerance for stateless computation (i.e., tasks). For message
delivery, Orleans provides at-least-once and Akka provides at-most-once semantics. In con-
trast, Ray provides transparent fault tolerance and exactly-once semantics, as each method
call is logged in the GCS and both arguments and results are immutable. We find that in
practice these limitations do not affect the performance of our applications. Erlang [11] and
C++ Actor Framework [26], two other actor-based systems, have similarly limited support
for fault tolerance.

Global control store and scheduling

The concept of logically centralizing the control plane has been previously proposed in soft-
ware defined networks (SDNs) [25], distributed file systems (e.g., GFS [45]), resource man-
agement (e.g., Omega [115]), and distributed frameworks (e.g., MapReduce [33], BOOM [5]),
to name a few. Ray draws inspiration from these pioneering efforts, but provides significant
improvements. In contrast with SDNs, BOOM, and GFS, Ray decouples the storage of the
control plane information (e.g., GCS) from the logic implementation (e.g., schedulers). This
allows both storage and computation layers to scale independently, which is key to achieving
our scalability targets. Omega uses a distributed architecture in which schedulers coordinate
via globally shared state. To this architecture, Ray adds global schedulers to balance load
across local schedulers, and targets ms-level, not second-level, task scheduling.

Ray implements a unique distributed bottom-up scheduler that is horizontally scalable,
and can handle dynamically constructed task graphs. Unlike Ray, most existing cluster
computing systems [33, 140, 85] use a centralized scheduler architecture. While Sparrow [98]
is decentralized, its schedulers make independent decisions, limiting the possible scheduling
policies, and all tasks of a job are handled by the same global scheduler. Mesos [51] im-
plements a two-level hierarchical scheduler, but its top-level scheduler manages frameworks,
not individual tasks. Canary [102] achieves impressive performance by having each sched-
uler instance handle a portion of the task graph, but does not handle dynamic computation
graphs.

Cilk [17] is a parallel programming language whose work-stealing scheduler achieves prov-
ably efficient load-balancing for dynamic task graphs. However, with no central coordinator
like Ray’s global scheduler, this fully parallel design is also difficult to extend to support
data locality and resource heterogeneity in a distributed setting.

5.6 Discussion and Experiences

Building Ray has been a long journey. It started two years ago with a Spark library to
perform distributed training and simulations. However, the relative inflexibility of the BSP
model, the high per-task overhead, and the lack of an actor abstraction led us to develop a
new system. Since we released Ray roughly one year ago, several hundreds of people have

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 59

used it and several companies are running it in production. Here we discuss our experience
developing and using Ray, and some early user feedback.

The Ray API

In designing the API, we have emphasized minimalism. Initially we started with a ba-
sic task abstraction. Later, we added the wait() primitive to accommodate rollouts with
heterogeneous durations and the actor abstraction to accommodate third-party simulators
and amortize the overhead of expensive initializations. While the resulting API is rela-
tively low-level, it has proven both powerful and simple to use. We have already used this
API to implement many state-of-the-art RL algorithms on top of Ray, including A3C [77],
PPO [113], DQN [78], ES [109], DDPG [118], and Ape-X [54]. In most cases it took us just
a few tens of lines of code to port these algorithms to Ray. Based on early user feedback,
we are considering enhancing the API to include higher level primitives and libraries, which
could also inform scheduling decisions.

Limitations

Given the workload generality, specialized optimizations are hard. For example, we must
make scheduling decisions without full knowledge of the computation graph. Scheduling
optimizations in Ray might require more complex runtime profiling. In addition, storing
lineage for each task requires the implementation of garbage collection policies to bound
storage costs in the GCS, a feature we are actively developing.

Fault tolerance

We are often asked if fault tolerance is really needed for AI applications. After all, due to the
statistical nature of many AI algorithms, one could simply ignore failed rollouts. Based on
our experience, our answer is “yes”. First, the ability to ignore failures makes applications
much easier to write and reason about. Second, our particular implementation of fault
tolerance via deterministic replay dramatically simplifies debugging as it allows us to easily
reproduce most errors. This is particularly important since, due to their stochasticity, AI
algorithms are notoriously hard to debug. Third, fault tolerance helps save money since it
allows us to run on cheap resources like spot instances on AWS. Of course, this comes at
the price of some overhead. However, we found this overhead to be minimal for our target
workloads.

GCS and Horizontal Scalability

The GCS dramatically simplified Ray development and debugging. It enabled us to query the
entire system state while debugging Ray itself, instead of having to manually expose internal

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF RAY 60

component state. In addition, the GCS is also the backend for our timeline visualization
tool, used for application-level debugging.

The GCS was also instrumental to Ray’s horizontal scalability. In Section 6.6, we were
able to scale by adding more shards whenever the GCS became a bottleneck. The GCS
also enabled the global scheduler to scale by simply adding more replicas. Due to these
advantages, we believe that centralizing control state will be a key design component of
future distributed systems.

5.7 Conclusion

No general-purpose system today can efficiently support the tight loop of training, serving,
and simulation. To express these core building blocks and meet the demands of emerging AI
applications, Ray unifies task-parallel and actor programming models in a single dynamic
task graph and employs a scalable architecture enabled by the global control store and a
bottom-up distributed scheduler. The programming flexibility, high throughput, and low
latencies simultaneously achieved by this architecture is particularly important for emerging
artificial intelligence workloads, which produce tasks diverse in their resource requirements,
duration, and functionality. Our evaluation demonstrates linear scalability up to 1.8 million
tasks per second, transparent fault tolerance, and substantial performance improvements
on several contemporary RL workloads. Thus, Ray provides a powerful combination of
flexibility, performance, and ease of use for the development of future AI applications.

61

Chapter 6

Use Case: Large Scale Optimization

In this chapter1, we will study an optimization algorithm that addresses the challenge of
large scale optimization for machine learning. The algorithm makes it possible to improve
the convergence of large scale optimization by constructing a second order approximation of
the objective. We show a linear convergence rate of this algorithm in the stochastic setting
that is common in machine learning. The algorithm is well suited for implementation with the
distributed execution engine described in chapter 5, which can readily be used to parallelize
gradient computations over minibatches and also (potentially asynchronously) perform the
computations needed for the variance reduction step.

6.1 Introduction

A trend in machine learning has been toward using more parameters to model larger datasets.
As a consequence, it is important to design optimization algorithms for these large-scale prob-
lems. A typical optimization problem arising in this setting is empirical risk minimization.
That is,

min
w

1

N

N∑
i=1

fi(w), (6.1)

where w ∈ Rd may specify the parameters of a machine learning model, and fi(w) quantifies
how well the model w fits the ith data point. Two challenges arise when attempting to solve
Equation 6.1. First, d may be extremely large. Second, N may be extremely large.

When d is small, Newton’s method is often the algorithm of choice due to its rapid conver-
gence (both in theory and in practice). However, Newton’s method requires the computation
and inversion of the Hessian matrix ∇2f(w), which may be computationally too expensive
in high dimensions. As a consequence, practitioners are often limited to using first-order
methods which only compute gradients of the objective, requiring O(d) computation per
iteration. The gradient method is the simplest example of a first-order method, but much

1This material was previously published in [81].

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 62

work has been done to design quasi-Newton methods which incorporate information about
the curvature of the objective without ever computing second derivatives. L-BFGS [70], the
limited-memory version of the classic BFGS algorithm, is one of the most successful algo-
rithms in this space. Inexact Newton methods are another approach to using second order
information for large-scale optimization. They approximately invert the Hessian in O(d)
steps. This can be done by using a constant number of iterations of the conjugate gradient
method [37, 38, 94].

When N is large, batch algorithms such as the gradient method, which compute the
gradient of the full objective at every iteration, are slowed down by the fact that they have
to process every data point before updating the model. Stochastic optimization algorithms
get around this problem by updating the model w after processing only a small subset of the
data, allowing them to make much progress in the time that it takes the gradient method to
make a single step.

For many machine learning problems, where both d and N are large, stochastic gradient
descent (SGD) and its variants are the most widely used algorithms [105, 19, 20], often
because they are some of the few algorithms that can realistically be applied in this setting.

Given this context, much research in optimization has been directed toward designing
better stochastic first-order algorithms. For a partial list, see [61, 122, 41, 117, 59, 107, 132,
91, 43, 3]. In particular, much progress has gone toward designing stochastic variants of
L-BFGS [79, 133, 23, 18, 111, 120].

Unlike gradient descent, L-BFGS does not immediately lend itself to a stochastic ver-
sion. The updates in the stochastic gradient method average together to produce a downhill
direction in expectation. However, as pointed out in [23], the updates used in L-BFGS
to construct the inverse Hessian approximation overwrite one another instead of averaging.
Our algorithm addresses this problem in the same ways as [23], by computing Hessian vector
products formed from larger minibatches.

Though stochastic methods often make rapid progress early on, the variance of the es-
timates of the gradient slow their convergence near the optimum. To illustrate this phe-
nomenon, even if SGD is initialized at the optimum, it will immediately move to a point
with a worse objective value. For this reason, convergence guarantees typically require di-
minishing step sizes. One promising line of work involves speeding up the convergence of
stochastic first-order methods by reducing the variance of the gradient estimates [59, 107,
36, 117].

We introduce a stochastic variant of L-BFGS that incorporates the idea of variance reduc-
tion and has two desirable features. First, it obtains a guaranteed linear rate of convergence
in the strongly-convex case. In particular, it does not require a diminishing step size in
order to guarantee convergence (as partially evidenced by the fact that if our algorithm is
initialized at the optimum it will stay there). Second, it performs very well on large-scale
optimization problems, exhibiting a qualitatively linear rate of convergence in practice.

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 63

6.2 The Algorithm

We consider the problem of minimizing the function

f(w) =
1

N

N∑
i=1

fi(w) (6.2)

over w ∈ Rd. For a subset S ⊆ {1, . . . , N}, we define the subsampled function fS by

fS(w) =
1

|S|
∑
i∈S

fi(w). (6.3)

Our updates will use stochastic estimates of the gradient ∇fS as well as stochastic ap-
proximations to the inverse Hessian ∇2fT . Following [23], we use distinct subsets S, T ⊆
{1, . . . , N} in order to decouple the estimation of the gradient from the estimation of the
Hessian. We let b = |S| and bH = |T |.

Following [59], we occasionally compute full gradients, which we use to reduce the variance
of our stochastic gradient estimates.

The update rule for our algorithm will take the form

wk+1 = wk − ηkHkvk.

In the gradient method, Hk is the identity matrix. In Newton’s method, it is the inverse
Hessian (∇2f(wk))

−1. In our algorithm, as in L-BFGS, Hk will be an approximation to
the inverse Hessian. Instead of the usual stochastic estimate of the gradient, vk will be a
stochastic estimate of the gradient with reduced variance.

Code for our algorithm is given in Algorithm 1. Our algorithm is specified by several
parameters. It requires a step size η, a memory size M , and positive integers m and L.
Every m iterations, the algorithm performs a full gradient computation, which it uses to
reduce the variance of the stochastic gradient estimates. Every L iterations, the algorithm
updates the inverse Hessian approximation. The vector sr records the average direction in
which the algorithm has made progress over the past 2L iterations. The vector yr is obtained
by multiplying sr by a stochastic estimate of the Hessian. Note that this differs from the
usual L-BFGS algorithm, which produces yr by taking the difference between successive
gradients. We find that this approach works better in the stochastic setting. The inverse
Hessian approximation Hr is defined from the pairs (sj, yj) for r−M + 1 ≤ j ≤ r using the
standard L-BFGS update rule, which is described in Section 6.2. The user must also choose
batch sizes b and bH from which to construct the stochastic gradient and stochastic Hessian
estimates.

In Algorithm 1 and below, we use I to refer to the identity matrix. We use Fk,t to denote
the sigma algebra generated by the random variables introduced up to the time when the
iteration counters k and t have the specified values. That is,

Fk,t = σ

(
{Sk′,t′ : k′ < k or k′ = k and t′ < t}

∪ {Tr : rL ≤ mk + t}

)
.

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 64

Algorithm 1 Stochastic L-BFGS

Input: initial state w0, parameters m, M , and L, batch sizes b and bH , and step size η
1: Initialize r = 0
2: Initialize H0 = I
3: for k = 0, . . . do
4: Compute a full gradient µk = ∇f(wk)
5: Set x0 = wk
6: for t = 0, . . . ,m− 1 do
7: Sample a minibatch Sk,t ⊆ {1, . . . , N}
8: Compute a stochastic gradient ∇fSk,t(xt)
9: Compute a variance reduced gradient vt = ∇fSk,t(xt)−∇fSk,t(wk) + µk

10: Set xt+1 = xt − ηHrvt
11: if t ≡ 0 mod L then
12: Increment r ← r + 1
13: Set ur = 1

L

∑t−1
j=t−L xj

14: Sample Tr ⊆ {1, . . . , N} to define the stochastic approximation ∇2fTr(ur)
15: Compute sr = ur − ur−1
16: Compute yr = ∇2fTr(ur)sr
17: Define Hr as in Section 6.2

18: Set wk+1 = xi for randomly chosen i ∈ {0, . . . ,m− 1}

We will use Ek,t to denote the conditional expectation with respect to Fk,t.
We define the inverse Hessian approximation Hr in Section 6.2. Note that we do not actu-

ally construct the matrix Hr because doing so would require O(d2) computation. In practice,
we directly compute products of the formHrv using the two-loop recursion [[]Algorithm 7.4]no-
cedal2006numerical.

Construction of the Inverse Hessian Approximation Hr

To define the inverse Hessian approximation Hr from the pairs (sj, yj), we follow the usual
L-BFGS method. Let ρj = 1/s>j yj and recursively define

H(j)
r = (I − ρjsjy>j)>H(j−1)

r (I − ρjsjy>j) + ρjsjs
>
j , (6.4)

for r −M + 1 ≤ j ≤ r. Initialize H
(r−M)
r = (s>r yr/‖yr‖2)I and set Hr = H

(r)
r .

Note that the update in Equation 6.4 preserves positive definiteness (note that ρj > 0),

which implies that Hr and each H
(j)
r will be positive definite, as will their inverses.

6.3 Preliminaries

Our analysis makes use of the following assumptions.

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 65

Assumption 1. The function fi : Rn → R is convex and twice continuously differentiable
for each 1 ≤ i ≤ N .

Assumption 2. There exist positive constants λ and Λ such that

λI � ∇2fT (w) � ΛI (6.5)

for all w ∈ Rd and all nonempty subsets T ⊆ {1, . . . , N}. Note the lower bound trivially
holds in the regularized case.

We will typically force strong convexity to hold by adding a strongly-convex regularizer
to our objective (which can be absorbed into the fi’s). These assumptions imply that f has
a unique minimizer, which we denote by w∗.

Lemma 3. Suppose that Assumption 1 and Assumption 2 hold. Let Br = H−1r . Then

tr(Br) ≤ (d+M)Λ

det(Br) ≥
λd+M

((d+M)Λ)M
.

We prove Lemma 3 in Section 6.7.

Lemma 4. Suppose that Assumption 1 and Assumption 2 hold. Then there exist con-
stants 0 < γ ≤ Γ such that Hr satisfies

γI � Hr � ΓI (6.6)

for all r ≥ 1.

In Section 6.7, we prove Lemma 4 with the values

γ =
1

(d+M)Λ
and Γ =

((d+M)Λ)d+M−1

λd+M
.

We will make use of Lemma 5, a simple result for strongly convex functions. We include
a proof for completeness.

Lemma 5. Suppose that f is continuously differentiable and strongly convex with parame-
ter λ. Let w∗ be the unique minimizer of f . Then for any x ∈ Rd, we have

‖∇f(x)‖2 ≥ 2λ(f(x)− f(w∗)).

Proof. By the strong convexity of f ,

f(w∗) ≥ f(x) +∇f(x)>(w∗ − x) +
λ

2
‖w∗ − x‖2

≥ f(x) + min
v

(
∇f(x)>v +

λ

2
‖v‖2

)
= f(x)− 1

2λ
‖∇f(x)‖2.

The last equality holds by plugging in the minimizer v = −∇f(x)/λ.

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 66

In Lemma 6, we bound the variance of our variance-reduced gradient estimates. The proof
of Lemma 6, given in Section 6.7, closely follows that of [[]Theorem 1]johnson2013accelerating.

Lemma 6. Let w∗ be the unique minimizer of f . Let µk = ∇f(wk) and let vt = ∇fS(xt)−
∇fS(wk) + µk be the variance-reduced stochastic gradient. Conditioning on Fk,t and taking
an expectation with respect to S, we have

Ek,t[‖vt‖2] ≤ 4Λ(f(xt)− f(w∗) + f(wk)− f(w∗)). (6.7)

6.4 Convergence Analysis

Theorem 7 states our main result.

Theorem 7. Suppose that Assumption 1 and Assumption 2 hold. Let w∗ be the unique
minimizer of f . Then for all k ≥ 0, we have

E[f(wk)− f(w∗)] ≤ αkE[f(w0)− f(w∗)],

where the convergence rate α is given by

α =
1/(2mη) + ηΓ2Λ2

γλ− ηΓ2Λ2
< 1,

assuming that we choose η < γλ/(2Γ2Λ2) and that we choose m large enough to satisfy

γλ >
1

2mη
+ 2ηΓ2Λ2. (6.8)

Proof. Using the Lipschitz continuity of ∇f , which follows from Assumption 2, we have

f(xt+1) (6.9)

≤ f(xt) +∇f(xt)
>(xt+1 − xt) +

Λ

2
‖xt+1 − xt‖2

= f(xt)− η∇f(xt)
>Hrvt +

η2Λ

2
‖Hkvt‖2.

Conditioning on Fk,t and taking expectations in Equation 6.9, this becomes

Ek,t[f(xt+1)] (6.10)

≤ f(xt)− η∇f(xt)
>Hr∇f(xt) +

η2Λ

2
Ek,t‖Hkvt‖2,

where we used the fact that Ek,t[vt] = ∇f(xt). We then use Lemma 4 to bound the second
and third terms on the bottom line of Equation 6.10 to get

Ek,t[f(xt+1)] ≤ f(xt)− ηγ‖∇f(xt)‖2 +
η2Γ2Λ

2
Ek,t‖vt‖2.

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 67

Now, we bound Ek,t‖vt‖2 using Lemma 6 and we bound ‖∇f(xt)‖2 using Lemma 5. Doing
so gives

Ek,t[f(xt+1)]

≤ f(xt)− 2ηγλ(f(xt)− f(w∗))

+ 2η2Γ2Λ2(f(xt)− f(w∗) + f(wk)− f(w∗))

= f(xt)− 2η(γλ− ηΓ2Λ2)(f(xt)− f(w∗))

+ 2η2Γ2Λ2(f(wk)− f(w∗)).

Taking expectations over all random variables, summing over t = 0, . . . ,m− 1, and using a
telescoping sum gives

E[f(xm)]

≤ E[f(x0)] + 2mη2Γ2Λ2E[f(wk)− f(w∗)]

− 2η(γλ− ηΓ2Λ2)

(
m−1∑
t=0

E[f(xt)]−mf(w∗)

)
= E[f(wk)] + 2mη2Γ2Λ2E[f(wk)− f(w∗)]

− 2mη(γλ− ηΓ2Λ2)E[f(wk+1)− f(w∗)].

Rearranging the above gives

0 ≤ E[f(wk)− f(xm)] + 2mη2Γ2Λ2E[f(wk)− f(w∗)]

− 2mη(γλ− ηΓ2Λ2)E[f(wk+1)− f(w∗)]

≤ E[f(wk)− f(w∗)] + 2mη2Γ2Λ2E[f(wk)− f(w∗)]

− 2mη(γλ− ηΓ2Λ2)E[f(wk+1)− f(w∗)]

= (1 + 2mη2Γ2Λ2)E[f(wk)− f(w∗)]

− 2mη(γλ− ηΓ2Λ2)E[f(wk+1)− f(w∗)].

The second inequality follows from the fact that f(w∗) ≤ f(xm). Using the fact that η <
γλ/(2Γ2Λ2), it follows that

E[f(wk+1)− f(w∗)]

≤ 1 + 2mη2Γ2Λ2

2mη(γλ− ηΓ2Λ2)
E[f(wk)− f(w∗)].

Since we chose m and η to satisfy Equation 6.8, it follows that the rate α is less than one.
This completes the proof.

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 68

0 25 50 75 100
passes through data

30

15

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r) Millionsong

slbfgs
svrg
sqn
sgd

0 10 20 30
passes through data

10

5

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r) RCV1

0 5 10 15 20
passes through data

5

10

15

tr
a
in

in
g
 l
o
ss

Netflix

Figure 6.1: The left figure plots the log of the optimization error as a function of the number
of passes through the data for SLBFGS, SVRG, SQN, and SGD for a ridge regression problem
(Millionsong). The middle figure does the same for a support vector machine (RCV1). The
right plot shows the training loss as a function of the number of passes through the data for
the same algorithms for a matrix completion problem (Netflix).

6.5 Related Work

There is a large body of work that attempts to improve on stochastic gradient descent by
reducing variance. [117] propose stochastic dual coordinate ascent (SDCA). [107] propose
the stochastic average gradient method (SAG). [59] propose the stochastic variance reduced
gradient (SVRG). [132] develop an approach based on the construction of control variates.
More recently, [43] devise an online version of SVRG that uses streaming estimates of the
gradient to perform variance reduction.

Similarly, a number of stochastic quasi-Newton methods have been proposed. [18] pro-
pose a variant of stochastic gradient descent that makes use of second order information.
[79] analyze the straightforward application of L-BFGS in the stochastic setting and prove
a O(1/k) convergence rate in the strongly-convex setting. [23] propose a modified version of
L-BFGS in the stochastic setting and prove a O(1/k) convergence rate in the strongly-convex
setting. [120] propose a stochastic quasi-Newton method for minimizing sums of functions

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 69

0 25 50 75 100
passes through data

30

15

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r)

slbfgs

1e-6.0
1e-5.5
1e-5.0
1e-4.5
1e-4.0

0 25 50 75 100
passes through data

30

15

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r)

svrg

1e-4.5
1e-4.0
1e-3.5
1e-3.0
1e-2.5

0 25 50 75 100
passes through data

30

15

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r)

sqn

1e-3.0
1e-2.5
1e-2.0
1e-1.5
1e-1.0

0 25 50 75 100
passes through data

30

15

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r)

sgd

1e-5.0
1e-4.5
1e-4.0
1e-3.5
1e-3.0

Figure 6.2: These figures show the log of the optimization error for SLBFGS, SVRG, SQN,
and SGD on a ridge regression problem (millionsong) for a wide range of step sizes.

by maintaining a separate approximation of the inverse Hessian for each function in the sum.
[111] develop a stochastic version of L-BFGS for the online convex optimization setting. [133]
prove the convergence of various stochastic quasi-Newton methods in the nonconvex setting.
Our work differs from the preceding in that we guarantee a linear rate of convergence.

[73] independently propose a variance-reduction procedure to speed up stochastic quasi-
Newton methods and to achieve a linear rate of convergence. Their approach to updating the
inverse-Hessian approximation is similar to that of L-BFGS, whereas our method leverages
Hessian-vector products to stabilize the approximation.

6.6 Experimental Results

To probe our theoretical results, we compare Algorithm 1 (SLBFGS) to the stochastic
variance-reduced gradient method (SVRG) [59], the stochastic quasi-Newton method (SQN)
[23], and stochastic gradient descent (SGD). We evaluate these algorithms on several popular
machine learning models, including ridge regression, support vector machines, and matrix
completion. Our experiments show the effeciveness of the algorithm on real-world problems
that are not neccessarily (strongly) convex.

Because SLBFGS and SVRG require computations of the full gradient, each epoch re-
quires an additional pass through the data. Additionally, SLBFGS and SQN require Hessian-

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 70

0 10 20 30
passes through data

10

5

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r)

slbfgs

1e-4.5
1e-4.0
1e-3.5
1e-3.0
1e-2.5
1e-2.0

0 10 20 30
passes through data

10

5

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r)

svrg

1e-1.0
1e-0.5
1e0.0
1e0.5
1e1.0
1e1.5

0 10 20 30
passes through data

10

5

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r)

sqn

1e-3.5
1e-3.0
1e-2.5
1e-2.0
1e-1.5
1e-1.0

0 10 20 30
passes through data

10

5

0

lo
g
(o

p
ti

m
iz

a
ti

o
n
 e

rr
o
r)

sgd

1e-0.5
1e0.0
1e0.5
1e1.0
1e1.5
1e2.0

Figure 6.3: These figures show the log of the optimization error for SLBFGS, SVRG, SQN,
and SGD on a support vector machine (RCV1) for a wide range of step sizes.

vector-product calculations, each of which is about as expensive as a gradient calculation
[99]. The number of Hessian-vector-product computations per epoch introduced by this
is (bHN)/(bL), which in our experiments is either N or 2N . To incorporate these additional
costs, our plots show error with respect to the number of passes through the data (that is,
the number of gradient or Hessian-vector-product computations divided by N). For this
reason, the first iterations of SLBFGS, SVRG, SQN, and SGD all begin at different times,
with SGD appearing first and SLBFGS appearing last.

For all experiments, we set the batch size b to either 20 or 100, we set the Hessian batch
size bH to 10b or 20b, we set the Hessian update interval L to 10, we set the memory size M
to 10, and we set the number of stochastic updates m to N/b. We optimize the learning rate
via grid search. SLBFGS and SVRG use a constant step size. For SQN and SGD, we try
three different step-size schemes: constant, 1/

√
t, and 1/t, and we report the best one. All

experiments are initialized with a vector of zeros, except for the matrix completion problem,
where in order to break symmetry, we initialize the experiments with a vector of standard
normal random variables scaled by 10−5.

First, we performed ridge regression on the millionsong dataset [16] consisting of ap-
proximately 4.6 × 105 data points. We set the regularization parameter λ = 10−3. In this
experiment, both SLBFGS and SVRG rapidly solve the problem to high levels of precision.
Second, we trained a support vector machine on RCV1 [65], with approximately 7.8 × 106

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 71

data points. We set the regularization parameter to λ = 0. In this experiment, SGD and
SQN make more progress initially as expected, but SLBFGS finds a better optimum. Third,
we solve a nonconvex matrix completion problem on the Netflix Prize dataset, as formu-
lated in [103], with approximately 108 data points. We set the regularization parameter
to λ = 10−4. The poor performance of SVRG and SGD on this problem may be accounted
for by the fact that the algorithms are initialized near the vector of all zeros, which is a
stationary point (though not the optimum). Presumably the use of curvature information
helps SLBFGS and SQN escape the neighborhood of the all zeros vector faster than SVRG
and SGD.

Figure 6.1 plots a comparison of these methods on the three problems. For the convex
problems, we plot the logarithm of the optimization error with respect to a precomputed
reference solution. For the nonconvex problem, we simply plot the objective value as the
global optimum is not necessarily known.

Robustness to Choice of Step Size

In this section, we illustrate that SLBFGS performs well on convex problems for a large
range of step sizes. The windows in which SVRG, SQN, and SGD perform well are much
narrower. In Figure 6.2, we plot the performance of SLBFGS, SVRG, SQN, and SGD for
ridge regression on the millionsong dataset for step sizes varying over a couple orders of
magnitude. In Figure 6.3, we show a similar plot for a support vector machine on the RCV1
dataset. In both cases, SLBFGS performs well, solving the problem to a high degree of
precision over a large range of step sizes, whereas the performance of SVRG, SQN, and SGD
degrade much more rapidly with poor step-size choices.

6.7 Proofs of Preliminaries

Proof of Lemma 3

The analysis below closely follows many other analyses of the inverse Hessian approximation
used in L-BFGS [94, 23, 79, 80], and we include it for completeness.

Note that s>j yj = sj∇2fTj(uj)sj, it follows from Assumption 2 that

λ‖sj‖2 ≤ s>j yj ≤ Λ‖sj‖2. (6.11)

Similarly, letting zj = (∇2fTj(uj))
1/2sj and noting that

‖yj‖2

s>j yj
=
z>j ∇2fTj(uj)zj

z>j zj
,

Assumption 2 again implies that

λ ≤ ‖yj‖
2

s>j yj
≤ Λ. (6.12)

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 72

Note that using the Sherman-Morrison-Woodbury formula, we can equivalently write
Equation 6.4 in terms of the Hessian approximation Br = H−1r as

B(j)
r = B(j−1)

r −
B

(j−1)
r sjs

>
j B

(j−1)
r

s>j B
(j−1)
r sj

+
yjy
>
j

y>j sj
. (6.13)

We will begin by bounding the eigenvalues of Br. We will do this indirectly by bounding
the trace and determinant of Br. We have

tr(B(j)
r) = tr(B(j−1)

r)−
tr(B

(j−1)
r sjs

>
j B

(j−1)
r)

s>j B
(j−1)
r sj

+
tr(yjy

>
j)

y>j sj

= tr(B(j−1)
r)− ‖B

(j−1)
r sj‖2

s>j B
(j−1)
r sj

+
‖yj‖2

y>j sj

≤ tr(B(j−1)
r) +

‖yj‖2

y>j sj

≤ tr(B(j−1)
r) + Λ.

The first equality follows from the linearity of the trace operator. The second equality follows
from the fact that tr(AB) = tr(BA). The fourth relation follows from Equation 6.12. Since

tr(B(0)
r) = d

‖yr‖2

s>r yr
≤ dΛ,

it follows inductively that
tr(Bk) ≤ (d+M)Λ.

Now to bound the determinant, we write

det(B(j)
r) = det(B(j−1)

r)

det

(
I −

sjs
>
j B

(j−1)
r

s>j B
(j−1)
r sj

+
(B

(j−1)
r)−1yjy

>
j

y>j sj

)

= det(B(j−1)
r)

y>j sj

s>j B
(j−1)
r sj

= det(B(j−1)
r)

y>j sj

‖sj‖2
‖sj‖2

s>j B
(j−1)
r sj

≥ det(B(j−1)
r)

λ

λmax(B
(j−1)
r)

≥ det(B(j−1)
r)

λ

tr(B
(j−1)
r)

≥ det(B(j−1)
r)

λ

(d+M)Λ
.

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 73

The first equality uses det(AB) = det(A) det(B). The second equality follows from the
identity

det(I + u1v
>
1 + u2v

>
2) (6.14)

= (1 + u>1 v1)(1 + u>2 v2)− (u>1 v2)(v
>
1 u2)

by setting u1 = −sj, v1 = (B
(j−1)
r sj)/(s

>
j B

(j−1)
r sj), u2 = (B

(j−1)
r)−1yj, and v2 = yj/(y

>
j sj).

See [[]Lemma 7.6]dennis1977quasi for a proof, or simply note that Equation 6.14 follows
from two applications of the identity det(A + uv>) = (1 + v>A−1u) det(A) when I + u1v

>
1

is invertible and by continuity when it isn’t. The third equality follows by multiplying the
numerator and denominator by ‖sj‖2. The fourth relation follows from Equation 6.11 and

from the fact that s>j B
(j−1)
r sj ≤ λmax(B

(j−1)
r)‖sj‖2. The fifth relation uses the fact that the

largest eigenvalue of a positive definite matrix is bounded by its trace. The sixth relation
uses the previous bound on tr(B

(j−1)
r). Since

det(B(0)
r) =

(
‖yr‖2

s>r yr

)d
≥ λd,

it follows inductively that

det(Br) ≥
λd+M

((d+M)Λ)M
.

Proof of Lemma 4

Using Lemma 3 as well as the fact that Hr is positive definite, we have

λmax(Br) ≤ tr(Br) ≤ (d+M)Λ.

and

λmin(Br) ≥
det(Br)

λmax(Br)d−1
≥ λd+M

((d+M)Λ)d+M−1
.

Since we defined Br = H−1r , it follows that

1

(d+M)Λ
I � Hr �

((d+M)Λ)d+M−1

λd+M
I.

Proof of Lemma 6

Define the function gS(w) = fS(w) − fS(w∗) − ∇fS(w∗)
>(w − w∗) to get the linearization

of fS around the optimum w∗, and note that gS is minimized at w∗. It follows that for any w,
we have

0 = gS(w∗) ≤ gS

(
w − 1

Λ
∇gS(w)

)
≤ gS(w)− 1

2Λ
‖∇gS‖2.

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 74

Rearranging, we have

‖∇fS(w)−∇fS(w∗)‖2

≤ 2Λ(fS(w)− fS(w∗)−∇fS(w∗)
>(w − w∗)).

Averaging over all possible minibatches S ⊆ {1, . . . , N} of cardinality b and using the fact
that ∇f(w∗) = 0, we see that(

N

b

)−1 ∑
|S|=b

‖∇fS(w)−∇fS(w∗)‖2 (6.15)

≤ 2Λ(f(w)− f(w∗)).

Now, let µk = ∇f(wk) and vt = ∇fS(xt)−∇fS(wk) + µk. Conditioning on Fk,t and taking
an expectation with respect to S, we find

Ek,t[‖vt‖2] ≤ 2Ek,t[‖∇fS(xt)−∇fS(w∗)‖2] (6.16)

+ 2Ek,t[‖∇fS(wk)−∇fS(w∗)− µk‖2]
≤ 2Ek,t[‖∇fS(xt)−∇fS(w∗)‖2]

+ 2Ek,t[‖∇fS(wk)−∇fS(w∗)‖2]
≤ 4Λ(f(xt)− f(w∗) + f(wk)− f(w∗)).

The first inequality uses the fact that ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2. The second inequality
follows by noting that µk = Ek,t[∇fS(wk)−∇fS(w∗)] and that E[‖ξ − E[ξ]‖2] ≤ E[‖ξ‖2] for
any random variable ξ. The third inequality follows from Equation 6.15.

6.8 Discussion

This chapter introduces a stochastic version of L-BFGS and proves a linear rate of con-
vergence in the strongly convex case. Theorem 7 captures the qualitatively linear rate of
convergence of SLBFGS, which is reflected in our experimental results. We expect SLBFGS
to outperform other stochastic first-order methods in poorly conditioned settings where cur-
vature information is valuable as well in settings where we wish to solve the optimization
problem to high precision.

There are a number of interesting points to address in future work. The proof of The-
orem 7 and many similar proofs used to analyze quasi-Newton methods result in constants
that scale poorly with the problem size. At a deeper level, the point of studying quasi-Newton
methods is to devise algorithms that lie somewhere along the spectrum from gradient descent
to Newton’s method, reaping the computational benefits of gradient descent and the rapid
convergence of Newton’s method. Many of the proofs in the literature, including the proof
of Theorem 7, bound the extent to which the quasi-Newton method deviates from gradient
descent by bounding the extent to which the inverse Hessian approximation deviates from

CHAPTER 6. USE CASE: LARGE SCALE OPTIMIZATION 75

the identity matrix. Those bounds are then used to show that the quasi-Newton method
does not perform too much worse than gradient descent. A future avenue of research is to
study if stochastic quasi-Newton methods can be designed that provably exhibit superlinear
convergence as has been done in the non-stochastic case.

76

Chapter 7

Conclusion

In this thesis we have described Ray, a general-purpose distributed system that can be used
to implement a wide variety of distributed workloads. This is in contrast to most widely
used distributed systems like Hadoop, Apache Spark, Apache Flink, Kafka, Distributed
TensorFlow, etc. which are built with a specific use case in mind (e.g. data processing,
streaming, event processing, distributed machine learning training, etc.). These systems
typically expose APIs that are optimized for the specific workloads the system supports but
make it hard to build applications or libraries outside of the use cases they are designed
for. As a result, most end-to-end applications are built by gluing many distributed systems
together. This incurs overheads: Developers and system administrators need to be trained
to use and deploy these systems, separate resources need to be allocated for them, data
needs to be converted, they each have their own failure handling mechanisms that need to
be conciliated. For new applications (like distributed reinforcement learning or before that,
distributed machine learning), it is often necessary to build new distributed systems from
scratch and rewrite much of the logic in existing distributed systems like scheduling, data
transfers, error handling and fault tolerance.

Our approach is different: We provide a simple API based on well-known programming
constructs: Functions and classes. This has several advantages: First it makes it easy for de-
velopers to port existing serial code to our system. This is important because often systems
are initially written serially and scaled up only when the need arises. In fact there is a lot of
code already written that people would like to parallelize and Ray has a good programming
model to do so. Second, it allows to express arbitrary parallelism patterns and therefore
allows to express all distributed applications. In fact, a number of powerful libraries have
already been developed for Ray, including for distributed reinforcement learning [68], hy-
perparameter optimization [69], data processing [100], online planning [7] and traffic control
[136]. A few other ones, including for streaming, model serving and distributed training are
in the works. Because we can express all these workloads in one common framework, Ray
is also a great platform for end-to-end applications like reinforcement learning and online
learning.

However, computer systems are never good enough and theses are never complete. There

CHAPTER 7. CONCLUSION 77

are a number of directions we would like to see Ray develop and we will outline some of
them below.

Future Work

Implementation improvements. While the Ray programming model is very general,
there are currently a few limitations in the Ray implementation that should be addressed.
Currently, Ray supports workloads with runtimes on the order of several days or weeks well,
but there are certain long-running workloads (say on the order of months or years) that are
not well supported. There are a few improvements that would facilitate such longer running
workloads:

• Using a distributed garbage collection scheme based on reference counting, ownership
or a full garbage collector instead of the local least recently used (LRU) eviction policy
which is currently deployed. This will make sure that the system will not evict objects
that are very infrequently accessed.

• Making it possible to impose memory limits on Ray workers and actors for shared
memory, in-process memory and message queues. This will make sure that code with
memory leaks cannot use up all memory in the system and crash other important
processes as a result.

• Designing the GCS in such a way that no tables are stored there which grow substan-
tially during the execution of a program (this includes the profiling table and the task
table). While we handle growing tables by removing old keys, it is possible to construct
workloads that need to access already removed keys. Instead we should make sure such
tables are written to disk or get rid of them entirely.

• Making it possible to replicate the GCS or storing it in a durable or replicated database.
This will allow the system to survive even if the node(s) that run the GCS go down.
This is challenging because we need low latency at high throughput and also the GCS
needs to provide consistency for reads and writes.

Each of these improvements can be done incrementally within the current architecture.
A more radical approach is also possible. It would be desirable to simplify the system

architecture and write the system in such a way that there is a small “trusted base” of code
that if correct will guarantee the correct execution of Ray programs (including isolation and
fault tolerance properties). In that case we could attempt to formally define the semantics of
Ray programs and prove that the implementation adheres to the specification with program
verification tools. This would make it possible to write distributed mission critical software
with the highest demands for reliability in Ray.

CHAPTER 7. CONCLUSION 78

A serverless runtime for Ray. The Ray programming model is very general and more
powerful than existing serverless models like Amazon’s Lambda, Microsoft’s Azure Functions
or Google’s Cloud Functions. These struggle to support latency and throughput sensitive
applications like distributed machine learning training and interactive model serving, online
learning, streaming or reinforcement learning. Ray on the other hand supports latency and
throughput sensitive applications well and also enables stateful computation and placement
control via custom resources. These allow expressing a very wide variety of applications,
including ones that require

• co-location of data and compute,

• high performance data transfer patterns or

• specialized hardware accelerators.

An interesting future research challenge is to modify Ray’s runtime to be fully serverless, i.e.
allow multi-tenant environments with very strong isolation guarantees between tenants, and
allow pay-what-you-use. This will enable programmers to not worry about machines and
concentrate on building powerful cloud applications.

Building higher level distributed primitives and libraries. As we described earlier,
with Ray we shift the paradigm of building distributed software from gluing together special-
ized distributed systems to building libraries on top of one distributed system by composing
them to build distributed applications. Thinking about the right primitives and libraries to
build to facilitate this paradigm is a great avenue for further research. Concepts like worker
pools, distributed data structures, synchronization and locking primitives, scheduling prim-
itives (including exposing control over data aware scheduling), different strategies for fault
recovery etc. can be extracted from existing distributed systems and put into Ray libraries
to simplify writing distributed applications that need these primitives. There are also a
number of concrete distributed libraries that we have not built yet that would be valuable,
for example for scientific programming or web crawling.

An event based API. There is an increasing number of applications that are event based
in nature. Examples are backends for internet of things (IoT) applications. While these can
be implemented in the current programming model by calling methods in an actor whenever
the event happens, there are more natural programming models to express them. We think
reactive programming [12] would be a good fit to support such event based applications well.
Coming up with a proposal for an an API, implementing it on top of the current runtime and
validating it by writing some distributed event based applications would be an interesting
research project.

79

Bibliography

[1] Mart́ın Abadi et al. “TensorFlow: A system for large-scale machine learning”. In:
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI). Savannah, Georgia, USA. 2016.

[2] Alekh Agarwal et al. “A Multiworld Testing Decision Service”. In: arXiv preprint
arXiv:1606.03966 (2016).

[3] Alekh Agarwal et al. “A reliable effective terascale linear learning system”. In: The
Journal of Machine Learning Research 15.1 (2014), pp. 1111–1133.

[4] “Akka”. In: url: http://doc.akka.io/docs/akka/current/scala/actors.html.

[5] Peter Alvaro et al. “BOOM Analytics: exploring data-centric, declarative program-
ming for the cloud”. In: Proceedings of the 5th European conference on Computer
systems. ACM. 2010, pp. 223–236.

[6] Dario Amodei et al. “Deep speech 2: End-to-end speech recognition in english and
mandarin”. In: arXiv preprint arXiv:1512.02595 (2015).

[7] Thomas Anthony et al. “Policy Gradient Search: Online Planning and Expert Iter-
ation without Search Trees”. In: CoRR abs/1904.03646 (2019). arXiv: 1904.03646.
url: http://arxiv.org/abs/1904.03646.

[8] Apache Arrow. https://arrow.apache.org/.

[9] Michael Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In: Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’15. Melbourne, Victoria, Australia: ACM, 2015, pp. 1383–1394. isbn:
978-1-4503-2758-9. doi: 10.1145/2723372.2742797. url: http://doi.acm.org/
10.1145/2723372.2742797.

[10] Joe Armstrong. “Making Reliable Distributed Systems in the Presence of Software
Errors”. PhD thesis. The Royal Institute of Technology, Stockholm, Sweden, Dec.
2003. url: citeseer.ist.psu.edu/armstrong03making.html.

[11] Joe Armstrong et al. “Concurrent programming in ERLANG”. In: (1993).

[12] Engineer Bainomugisha et al. “A survey on reactive programming.” In: ACM Comput.
Surv. 45.4 (2013), 52:1–52:34. url: http://dblp.uni-trier.de/db/journals/
csur/csur45.html#BainomugishaCCMM13.

BIBLIOGRAPHY 80

[13] Henry C. Baker Jr. and Carl Hewitt. “The Incremental Garbage Collection of Pro-
cesses”. In: Proceedings of the 1977 Symposium on Artificial Intelligence and Pro-
gramming Languages. New York, NY, USA: ACM, 1977, pp. 55–59. doi: 10.1145/
800228.806932. url: http://doi.acm.org/10.1145/800228.806932.

[14] Charles Beattie et al. “DeepMind Lab”. In: arXiv preprint arXiv:1612.03801 (2016).

[15] Phil Bernstein et al. Orleans: Distributed Virtual Actors for Programmability and
Scalability. Tech. rep. MSR-TR-2014-41. Mar. 2014. url: https://www.microsoft.
com/en- us/research/publication/orleans- distributed- virtual- actors-

for-programmability-and-scalability/.

[16] Thierry Bertin-Mahieux et al. “The Million Song Dataset”. In: International Confer-
ence on Music Information Retrieval. 2011.

[17] Robert D. Blumofe and Charles E. Leiserson. “Scheduling Multithreaded Computa-
tions by Work Stealing”. In: J. ACM 46.5 (Sept. 1999), pp. 720–748. issn: 0004-5411.

[18] Antoine Bordes, Léon Bottou, and Patrick Gallinari. “SGD-QN: Careful quasi-Newton
stochastic gradient descent”. In: The Journal of Machine Learning Research 10 (2009),
pp. 1737–1754.

[19] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”. In:
International Conference on Computational Statistics. 2010, pp. 177–186.

[20] Léon Bottou and Yann LeCun. “Large scale online learning”. In: Advances in neural
information processing systems 16 (2004), p. 217.

[21] Greg Brockman et al. “OpenAI gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[22] Sergey Bykov et al. “Orleans: Cloud computing for everyone”. In: Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM. 2011, p. 16.

[23] Richard H Byrd et al. “A stochastic quasi-Newton method for large-scale optimiza-
tion”. In: arXiv preprint arXiv:1401.7020 (2014).

[24] Paris Carbone et al. “State Management in Apache Flink: Consistent Stateful Dis-
tributed Stream Processing”. In: Proc. VLDB Endow. 10.12 (Aug. 2017), pp. 1718–
1729. issn: 2150-8097.

[25] Martin Casado et al. “Ethane: Taking Control of the Enterprise”. In: SIGCOMM
Comput. Commun. Rev. 37.4 (Aug. 2007), pp. 1–12. issn: 0146-4833. doi: 10.1145/
1282427.1282382. url: http://doi.acm.org/10.1145/1282427.1282382.

[26] Dominik Charousset et al. “Native Actors: A scalable software platform for dis-
tributed, heterogeneous environments”. In: Proceedings of the 2013 workshop on Pro-
gramming based on actors, agents, and decentralized control. ACM. 2013, pp. 87–96.

[27] Tianqi Chen et al. “MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems”. In: NIPS Workshop on Machine Learning Sys-
tems (LearningSys’16). 2016.

BIBLIOGRAPHY 81

[28] Trishul Chilimbi et al. “Project Adam: Building an efficient and scalable deep learning
training system”. In: 11th USENIX Symposium on Operating Systems Design and
Implementation. 2014, pp. 571–582.

[29] Adam Coates et al. “Deep learning with COTS HPC systems”. In: Proceedings of The
30th International Conference on Machine Learning. 2013, pp. 1337–1345.

[30] Daniel Crankshaw et al. “Clipper: A Low-Latency Online Prediction Serving Sys-
tem”. In: 14th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 17). Boston, MA: USENIX Association, 2017, pp. 613–627. isbn: 978-
1-931971-37-9. url: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/crankshaw.

[31] Daniel Crankshaw et al. “The missing piece in complex analytics: Low latency, scal-
able model management and serving with Velox”. In: arXiv preprint arXiv:1409.3809
(2014).

[32] Dask Benchmarks. http://matthewrocklin.com/blog/work/2017/07/03/scaling.

[33] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-0782.
doi: 10.1145/1327452.1327492. url: http://doi.acm.org/10.1145/1327452.
1327492.

[34] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[35] Jeffrey Dean et al. “Large scale distributed deep networks”. In: Advances in Neural
Information Processing Systems. 2012, pp. 1223–1231.

[36] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. “SAGA: A Fast Incremental
Gradient Method With Support for Non-Strongly Convex Composite Objectives”. In:
Advances in Neural Information Processing Systems 27. 2014, pp. 1646–1654.

[37] Ron S Dembo, Stanley C Eisenstat, and Trond Steihaug. “Inexact Newton methods”.
In: SIAM Journal on Numerical analysis 19.2 (1982), pp. 400–408.

[38] Ron S Dembo and Trond Steihaug. “Truncated-Newton algorithms for large-scale
unconstrained optimization”. In: Mathematical Programming 26.2 (1983), pp. 190–
212.

[39] Jack B. Dennis and David P. Misunas. “A Preliminary Architecture for a Basic Data-
flow Processor”. In: Proceedings of the 2Nd Annual Symposium on Computer Archi-
tecture. ISCA ’75. New York, NY, USA: ACM, 1975, pp. 126–132. doi: 10.1145/
642089.642111. url: http://doi.acm.org/10.1145/642089.642111.

[40] Yan Duan et al. “Benchmarking deep reinforcement learning for continuous control”.
In: Proceedings of the 33rd International Conference on Machine Learning (ICML).
2016.

BIBLIOGRAPHY 82

[41] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for
online learning and stochastic optimization”. In: The Journal of Machine Learning
Research 12 (2011), pp. 2121–2159.

[42] EC2 Instance Pricing. https://aws.amazon.com/ec2/pricing/on-demand/.

[43] R. Frostig et al. “Competing with the empirical risk minimizer in a single pass”. In:
Conference on Learning Theory. 2015.

[44] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next Genera-
tion MPI Implementation”. In: Proceedings, 11th European PVM/MPI Users’ Group
Meeting. Budapest, Hungary, Sept. 2004, pp. 97–104.

[45] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google file system”.
In: ACM SIGOPS operating systems review. Vol. 37. 5. ACM. 2003, pp. 29–43.

[46] Joseph E. Gonzalez et al. “GraphX: Graph Processing in a Distributed Dataflow
Framework”. In: Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation. OSDI’14. Broomfield, CO: USENIX Association, 2014,
pp. 599–613. isbn: 978-1-931971-16-4.

[47] Joseph E Gonzalez et al. “Graphx: Graph processing in a distributed dataflow frame-
work”. In: Proceedings of OSDI. 2014, pp. 599–613.

[48] Shixiang Gu* et al. “Deep Reinforcement Learning for Robotic Manipulation with
Asynchronous Off-Policy Updates”. In: IEEE International Conference on Robotics
and Automation (ICRA 2017). 2017.

[49] Stefan Hadjis et al. “Caffe Con Troll: Shallow Ideas to Speed Up Deep Learning”.
In: Proceedings of the Fourth Workshop on Data Analytics in the Cloud. DanaC’15.
Melbourne, VIC, Australia: ACM, 2015, 2:1–2:4. isbn: 978-1-4503-3724-3. doi: 10.
1145/2799562.2799641. url: http://doi.acm.org/10.1145/2799562.2799641.

[50] Carl Hewitt, Peter Bishop, and Richard Steiger. “A Universal Modular ACTOR For-
malism for Artificial Intelligence”. In: Proceedings of the 3rd International Joint Con-
ference on Artificial Intelligence. IJCAI’73. Stanford, USA: Morgan Kaufmann Pub-
lishers Inc., 1973, pp. 235–245. url: http://dl.acm.org/citation.cfm?id=

1624775.1624804.

[51] Benjamin Hindman et al. “Mesos: A Platform for Fine-grained Resource Sharing
in the Data Center”. In: Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation. NSDI’11. Boston, MA: USENIX Association,
2011, pp. 295–308. url: http://dl.acm.org/citation.cfm?id=1972457.1972488.

[52] Qirong Ho et al. “More effective distributed ML via a stale synchronous parallel
parameter server”. In: Advances in Neural Information Processing Systems. 2013,
pp. 1223–1231.

BIBLIOGRAPHY 83

[53] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM 21.8
(Aug. 1978), pp. 666–677. issn: 0001-0782. doi: 10.1145/359576.359585. url:
http://doi.acm.org/10.1145/359576.359585.

[54] Dan Horgan et al. “Distributed Prioritized Experience Replay”. In: International
Conference on Learning Representations (2018). url: https://openreview.net/
forum?id=H1Dy---0Z.

[55] Forrest N. Iandola et al. “FireCaffe: near-linear acceleration of deep neural network
training on compute clusters”. In: CoRR abs/1511.00175 (2015). arXiv: 1511.00175.
url: http://arxiv.org/abs/1511.00175.

[56] Michael Isard et al. “Dryad: Distributed Data-parallel Programs from Sequential
Building Blocks”. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007. EuroSys ’07. Lisbon, Portugal: ACM, 2007,
pp. 59–72. isbn: 978-1-59593-636-3. doi: 10.1145/1272996.1273005. url: http:
//doi.acm.org/10.1145/1272996.1273005.

[57] Michael Isard et al. “Dryad: distributed data-parallel programs from sequential build-
ing blocks”. In: ACM SIGOPS Operating Systems Review. Vol. 41. 3. ACM. 2007,
pp. 59–72.

[58] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embedding”.
In: arXiv preprint arXiv:1408.5093 (2014).

[59] Rie Johnson and Tong Zhang. “Accelerating stochastic gradient descent using pre-
dictive variance reduction”. In: Advances in Neural Information Processing Systems.
2013, pp. 315–323.

[60] Michael I. Jordan and Tom M Mitchell. “Machine learning: Trends, perspectives, and
prospects”. In: Science 349.6245 (2015), pp. 255–260.

[61] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations. 2015.

[62] Diego Kreutz et al. “Software-defined networking: A comprehensive survey”. In: Pro-
ceedings of the IEEE 103.1 (2015), pp. 14–76.

[63] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems. 2012, pp. 1097–1105.

[64] Jonathan Leibiusky, Gabriel Eisbruch, and Dario Simonassi. Getting Started with
Storm. O’Reilly Media, Inc., 2012. isbn: 1449324010, 9781449324018.

[65] David D Lewis et al. “RCV1: A new benchmark collection for text categorization
research”. In: The Journal of Machine Learning Research 5 (2004), pp. 361–397.

BIBLIOGRAPHY 84

[66] Mu Li et al. “Scaling Distributed Machine Learning with the Parameter Server”.
In: Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation. OSDI’14. Broomfield, CO, 2014, pp. 583–598. isbn: 978-1-931971-
16-4.

[67] Mu Li et al. “Scaling distributed machine learning with the parameter server”. In:
11th USENIX Symposium on Operating Systems Design and Implementation. 2014,
pp. 583–598.

[68] Eric Liang et al. “RLlib: Abstractions for Distributed Reinforcement Learning”. In:
Proceedings of the 35th International Conference on Machine Learning. Ed. by Jen-
nifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research.
Stockholm Sweden: PMLR, Oct. 2018, pp. 3053–3062. url: http://proceedings.
mlr.press/v80/liang18b.html.

[69] Richard Liaw et al. “Tune: A Research Platform for Distributed Model Selection and
Training”. In: arXiv preprint arXiv:1807.05118 (2018).

[70] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method for large
scale optimization”. In: Mathematical Programming 45.1-3 (1989), pp. 503–528.

[71] Moshe Looks et al. “Deep learning with dynamic computation graphs”. In: arXiv
preprint arXiv:1702.02181 (2017).

[72] Yucheng Low et al. “GraphLab: A New Framework for Parallel Machine Learning”. In:
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence.
UAI’10. Catalina Island, CA, 2010, pp. 340–349. isbn: 978-0-9749039-6-5.

[73] Aurelien Lucchi, Brian McWilliams, and Thomas Hofmann. “A Variance Reduced
Stochastic Newton Method”. In: arXiv preprint arXiv:1503.08316 (2015).

[74] Grzegorz Malewicz et al. “Pregel: A System for Large-scale Graph Processing”. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’10. Indianapolis, Indiana, USA: ACM, 2010, pp. 135–146. isbn:
978-1-4503-0032-2.

[75] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. url: https://www.tensorflow.
org/.

[76] Xiangrui Meng et al. “MLlib: Machine Learning in Apache Spark”. In: Journal of
Machine Learning Research 17.34 (2016), pp. 1–7. url: http://jmlr.org/papers/
v17/15-237.html.

[77] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:
International Conference on Machine Learning. 2016.

[78] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature 518.7540 (2015), pp. 529–533.

BIBLIOGRAPHY 85

[79] Aryan Mokhtari and Alejandro Ribeiro. “Global convergence of online limited memory
BFGS”. In: arXiv preprint arXiv:1409.2045 (2014).

[80] Aryan Mokhtari and Alejandro Ribeiro. “RES: Regularized stochastic BFGS algo-
rithm”. In: IEEE Transactions on Signal Processing 62.23 (2014), pp. 6089–6104.

[81] Philipp Moritz, Robert Nishihara, and Michael Jordan. “A Linearly-Convergent Stochas-
tic L-BFGS Algorithm”. In: Proceedings of the 19th International Conference on Ar-
tificial Intelligence and Statistics. Ed. by Arthur Gretton and Christian C. Robert.
Vol. 51. Proceedings of Machine Learning Research. Cadiz, Spain: PMLR, Sept. 2016,
pp. 249–258. url: http://proceedings.mlr.press/v51/moritz16.html.

[82] Philipp Moritz et al. “Ray: A Distributed Framework for Emerging AI Applications”.
In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Im-
plementation. OSDI’18. Carlsbad, CA, USA: USENIX Association, 2018, pp. 561–577.
isbn: 978-1-931971-47-8. url: http://dl.acm.org/citation.cfm?id=3291168.
3291210.

[83] Philipp Moritz et al. “SparkNet: Training Deep Networks in Spark”. In: arXiv e-
prints, arXiv:1511.06051 (Nov. 2015), arXiv:1511.06051. arXiv: 1511.06051 [stat.ML].

[84] Derek G. Murray et al. “CIEL: A Universal Execution Engine for Distributed Data-
flow Computing”. In: Proceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation. NSDI’11. Boston, MA: USENIX Association, 2011,
pp. 113–126. url: http://dl.acm.org/citation.cfm?id=1972457.1972470.

[85] Derek G. Murray et al. “CIEL: A Universal Execution Engine for Distributed Data-
flow Computing”. In: Proceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation. NSDI’11. Boston, MA: USENIX Association, 2011,
pp. 113–126. url: http://dl.acm.org/citation.cfm?id=1972457.1972470.

[86] Derek G. Murray et al. “Naiad: A Timely Dataflow System”. In: Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP ’13.
Farminton, Pennsylvania: ACM, 2013, pp. 439–455. isbn: 978-1-4503-2388-8. doi:
10.1145/2517349.2522738. url: http://doi.acm.org/10.1145/2517349.

2522738.

[87] Derek G. Murray et al. “Naiad: A Timely Dataflow System”. In: Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP ’13.
Farminton, Pennsylvania: ACM, 2013, pp. 439–455. isbn: 978-1-4503-2388-8.

[88] Derek G Murray et al. “Naiad: a timely dataflow system”. In: Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM. 2013, pp. 439–
455.

[89] D.G. Murray. A Distributed Execution Engine Supporting Data-dependent Control
Flow. University of Cambridge, 2012. url: https://books.google.com/books?id=
ZebqoQEACAAJ.

BIBLIOGRAPHY 86

[90] Arun Nair et al. Massively Parallel Methods for Deep Reinforcement Learning. 2015.

[91] Yurii Nesterov. “Primal-dual subgradient methods for convex problems”. In: Mathe-
matical Programming 120.1 (2009), pp. 221–259.

[92] Andrew Ng et al. “Autonomous inverted helicopter flight via reinforcement learning”.
In: Experimental Robotics IX (2006), pp. 363–372.

[93] Robert Nishihara et al. “Real-Time Machine Learning: The Missing Pieces”. In: Work-
shop on Hot Topics in Operating Systems. 2017.

[94] Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, 2006.

[95] Cyprien Noel, Jun Shi, and Andy Feng. Large Scale Distributed Deep Learning on
Hadoop Clusters. 2015. url: http://yahoohadoop.tumblr.com/post/129872361846/
large-scale-distributed-deep-learning-on-hadoop.

[96] OpenAI. OpenAI Dota 2 1v1 bot. https://openai.com/the-international/. 2017.

[97] OpenAI Baselines: high-quality implementations of reinforcement learning algorithms.
https://github.com/openai/baselines.

[98] Kay Ousterhout et al. “Sparrow: Distributed, Low Latency Scheduling”. In: Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP
’13. Farminton, Pennsylvania: ACM, 2013, pp. 69–84. isbn: 978-1-4503-2388-8. doi:
10.1145/2517349.2522716. url: http://doi.acm.org/10.1145/2517349.

2522716.

[99] Barak A Pearlmutter. “Fast Exact Multiplication by the Hessian”. In: Neural Com-
putation 6.1 (1994), pp. 147–160.

[100] Devin Petersohn and Anthony D. Joseph. Scaling Interactive Data Science Transpar-
ently with Modin. Tech. rep. Electrical Engineering and Computer Sciences, University
of California at Berkeley, 2018.

[101] PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceler-
ation. http://pytorch.org/.

[102] Hang Qu et al. “Canary: A Scheduling Architecture for High Performance Cloud
Computing”. In: arXiv preprint arXiv:1602.01412 (2016).

[103] Benjamin Recht and Christopher Ré. “Parallel stochastic gradient algorithms for
large-scale matrix completion”. In: Mathematical Programming Computation 5.2 (2013),
pp. 201–226.

[104] Robbert van Renesse and Fred B. Schneider. “Chain Replication for Supporting High
Throughput and Availability”. In: Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6. OSDI’04. San Francisco,
CA: USENIX Association, 2004.

[105] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: The
Annals of Mathematical Statistics (1951), pp. 400–407.

BIBLIOGRAPHY 87

[106] Matthew Rocklin. “Dask: Parallel Computation with Blocked algorithms and Task
Scheduling”. In: Proceedings of the 14th Python in Science Conference. Ed. by Kathryn
Huff and James Bergstra. 2015, pp. 130–136.

[107] Nicolas L. Roux, Mark Schmidt, and Francis R. Bach. “A Stochastic Gradient Method
with an Exponential Convergence Rate for Finite Training Sets”. In: Advances in
Neural Information Processing Systems. 2012, pp. 2663–2671.

[108] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision (2015), pp. 1–42.

[109] Tim Salimans et al. “Evolution Strategies as a Scalable Alternative to Reinforcement
Learning”. In: arXiv preprint arXiv:1703.03864 (2017).

[110] Salvatore Sanfilippo. Redis: An open source, in-memory data structure store. https:
//redis.io/. 2009.

[111] Nicol N Schraudolph, Jin Yu, and Simon Günter. “A Stochastic Quasi-Newton Method
for Online Convex Optimization”. In: International Conference on Artificial Intelli-
gence and Statistics. 2007, pp. 436–443.

[112] John Schulman et al. “High-Dimensional Continuous Control Using Generalized Ad-
vantage Estimation”. In: International Conference on Learning Representations (ICLR)
(2016).

[113] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[114] John Schulman et al. “Trust Region Policy Optimization”. In: ICML. 2015, pp. 1889–
1897.

[115] Malte Schwarzkopf et al. “Omega: Flexible, Scalable Schedulers for Large Compute
Clusters”. In: Proceedings of the 8th ACM European Conference on Computer Sys-
tems. EuroSys ’13. Prague, Czech Republic: ACM, 2013, pp. 351–364. isbn: 978-1-
4503-1994-2. doi: 10.1145/2465351.2465386. url: http://doi.acm.org/10.
1145/2465351.2465386.

[116] Alexander Sergeev and Mike Del Balso. “Horovod: fast and easy distributed deep
learning in TensorFlow”. In: arXiv preprint arXiv:1802.05799 (2018).

[117] Shai Shalev-Shwartz and Tong Zhang. “Stochastic dual coordinate ascent methods
for regularized loss”. In: The Journal of Machine Learning Research 14.1 (2013),
pp. 567–599.

[118] David Silver et al. “Deterministic policy gradient algorithms”. In: ICML. 2014.

[119] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587 (2016), pp. 484–489.

[120] Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. “Fast large-scale optimization
by unifying stochastic gradient and quasi-Newton methods”. In: International Con-
ference on Machine Learning. 2014.

BIBLIOGRAPHY 88

[121] Evan R. Sparks et al. “KeystoneML: Optimizing Pipelines for Large-Scale Advanced
Analytics”. In: 33rd IEEE International Conference on Data Engineering, ICDE
2017, San Diego, CA, USA, April 19-22, 2017. 2017, pp. 535–546. doi: 10.1109/
ICDE.2017.109. url: https://doi.org/10.1109/ICDE.2017.109.

[122] Ilya Sutskever et al. “On the importance of initialization and momentum in deep
learning”. In: International Conference on Machine Learning. 2013, pp. 1139–1147.

[123] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
Vol. 1. 1. MIT press Cambridge, 1998.

[124] Christian Szegedy et al. “Going Deeper with Convolutions”. In: Computer Vision and
Pattern Recognition (CVPR). 2015. url: http://arxiv.org/abs/1409.4842.

[125] TensorFlow Serving. https://www.tensorflow.org/serving/.

[126] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. “Optimization of collective
communication operations in MPICH”. In: The International Journal of High Per-
formance Computing Applications 19.1 (2005), pp. 49–66.

[127] Yuandong Tian et al. “ELF: An Extensive, Lightweight and Flexible Research Plat-
form for Real-time Strategy Games”. In: Advances in Neural Information Processing
Systems (NIPS) (2017).

[128] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-
based control”. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on. IEEE. 2012, pp. 5026–5033.

[129] Leslie G Valiant. “A bridging model for parallel computation”. In: Communications
of the ACM 33.8 (1990), pp. 103–111.

[130] Jur Van Den Berg et al. “Superhuman performance of surgical tasks by robots using
iterative learning from human-guided demonstrations”. In: Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE. 2010, pp. 2074–2081.

[131] Shivaram Venkataraman et al. “Drizzle: Fast and Adaptable Stream Processing at
Scale”. In: Proceedings of the Twenty-Sixth ACM Symposium on Operating Systems
Principles. SOSP ’17. Shanghai, China: ACM, 2017.

[132] Chong Wang et al. “Variance reduction for stochastic gradient optimization”. In:
Advances in Neural Information Processing Systems. 2013, pp. 181–189.

[133] Xiao Wang, Shiqian Ma, and Wei Liu. “Stochastic Quasi-Newton Methods for Non-
convex Stochastic Optimization”. In: arXiv preprint arXiv:1412.1196 (2014).

[134] David Wentzlaff and Anant Agarwal. “Factored Operating Systems (fos): The Case
for a Scalable Operating System for Multicores”. In: SIGOPS Oper. Syst. Rev. 43.2
(Apr. 2009), pp. 76–85. issn: 0163-5980. doi: 10.1145/1531793.1531805. url:
http://doi.acm.org/10.1145/1531793.1531805.

[135] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

BIBLIOGRAPHY 89

[136] Cathy Wu et al. “Flow: Architecture and Benchmarking for Reinforcement Learning
in Traffic Control”. In: CoRR abs/1710.05465 (2017). arXiv: 1710.05465. url: http:
//arxiv.org/abs/1710.05465.

[137] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big Data Processing”.
In: Commun. ACM 59.11 (Oct. 2016), pp. 56–65. issn: 0001-0782. doi: 10.1145/
2934664. url: http://doi.acm.org/10.1145/2934664.

[138] Matei Zaharia et al. “Discretized Streams: Fault-tolerant Streaming Computation at
Scale”. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. SOSP ’13. Farminton, Pennsylvania: ACM, 2013, pp. 423–438. isbn: 978-
1-4503-2388-8. doi: 10.1145/2517349.2522737. url: http://doi.acm.org/10.
1145/2517349.2522737.

[139] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing”. In: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association. 2012, pp. 2–2.

[140] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing”. In: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association. 2012, pp. 2–2.

[141] Matei Zaharia et al. “Spark: cluster computing with working sets”. In: Proceedings of
the 2nd USENIX conference on Hot topics in cloud computing. Vol. 10. 2010, p. 10.

[142] Sixin Zhang, Anna Choromanska, and Yann LeCun. “Deep Learning with Elastic
Averaging SGD”. In: Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1. NIPS’15. Montreal, Canada: MIT Press,
2015, pp. 685–693. url: http://dl.acm.org/citation.cfm?id=2969239.2969316.

[143] Yuchen Zhang and Michael I Jordan. “Splash: User-friendly Programming Interface
for Parallelizing Stochastic Algorithms”. In: arXiv preprint arXiv:1506.07552 (2015).

[144] Martin Zinkevich et al. “Parallelized stochastic gradient descent”. In: Advances in
Neural Information Processing Systems. 2010, pp. 2595–2603.

