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Abstract

Algorithmic Improvisation

by

Daniel Juon Fremont

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

The increasing use of autonomy for safety-critical tasks, from operating power grids to driv-
ing cars, has led to an acute need for reliable and secure systems. The ideal approach to
obtaining rigorous reliability guarantees is to automatically construct systems from formal
specifications using correct-by-construction synthesis. A new dimension in this area is the
synthesis of randomized systems, which, as we show in this thesis, enables a broad range of
new applications in safe autonomy and other fields. This is because randomness can provide
several crucial benefits to a system, including robustness, variety, and unpredictability. For
example, a robot following a random route can be harder for an adversary to intercept,
making the system more secure; a synthetic data generator for a machine learning algorithm
can use randomness to produce diverse training data, making the ML model more robust.
When building these types of systems, we cannot simply add randomness in an ad hoc way:
we need provable guarantees that the system is safe and satisfies our desired specifications.
The key question, then, is how can we automatically synthesize a system with random behav-
ior but formal guarantees? Our answer to this question is algorithmic improvisation. This
thesis proposes a theory of algorithmic improvisation enabling the correct-by-construction
synthesis of randomized systems, and explores its applications to safe autonomy.

The first part of the thesis studies the theory of algorithmic improvisation in depth. We
begin by introducing control improvisation (CI), the core computational problem of algo-
rithmic improvisation, which requires constructing an improviser, a randomized algorithm
generating finite sequences of symbols subject to hard, soft, and randomness constraints. We
develop a general approach to building improvisers, instantiate it to obtain efficient synthesis
algorithms for several practical classes of CI problems, and prove hardness results for more
difficult classes. Next, we generalize CI to the reactive control improvisation (RCI) problem,
which allows us to synthesize open systems that interact with an uncontrolled and potentially
adversarial environment: our goal is an improvising strategy that ensures the hard, soft, and
randomness constraints hold no matter what actions are taken by the environment. We
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again give efficient algorithms for constructing improvising strategies in some useful cases,
and hardness results in others. Finally, we investigate language-based improvisation, a vari-
ant of algorithmic improvisation which uses a probabilistic programming language to provide
greater control over the distribution of the improviser. We design a domain-specific proba-
bilistic programming language, Scenic, for defining distributions over scenes, configurations
of physical objects and agents. Scenic significantly decreases the effort required to specify
the highly complex environments of systems like self-driving cars.

In the second part of the thesis, we demonstrate how algorithmic improvisation can help with
the design, analysis, and testing of autonomous systems. First, we show how to synthesize
randomized planners for mobile robots, for example a patrolling security robot which uses
randomness to make its route less predictable while still guaranteeing safety and efficiency
requirements. Next, we study using algorithmic improvisation to create human models with
realistic stochasticity and tunable behavior, a vital prerequisite for the design of a system
which interacts with people. Finally, we propose a methodology for using language-based
improvisation to train, test, and debug cyber-physical systems like autonomous cars by
generating synthetic data from customizable distributions. We apply our methodology to
an industrial convolutional neural network for object detection, finding bugs in the system,
eliminating them through retraining, and boosting the performance of the network beyond
what could be achieved with prior techniques by using Scenic to design training sets in a
more intelligent way.

In summary, algorithmic improvisation is a mathematical framework for synthesizing ran-
domized systems satisfying formal specifications. It has already proved useful in a wide range
of fields, including robotics, cyber-physical systems, computer music, and machine learning,
and shows promise in a variety of further applications to the design of secure and dependable
systems.
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Chapter 1

Introduction

As computers are integrated into every aspect of our lives, and are given control of ever more
complex tasks, the need for dependable, secure systems has become acute. With little or no
human supervision, computers routinely operate safety-critical systems such as power grids,
airplanes, and cars, whose failures can have catastrophic consequences, Ensuring the safety
and reliability of such systems is increasingly important, yet providing such guarantees is
increasingly difficult due to massive system complexity1, massive diversity of environments
(compare the environment of an autonomous car to that of a traditional computer program),
and the growing use of black-box machine learning (ML) algorithms to handle such environ-
ments. As a result, we have seen software bugs with increasingly dire consequences, ranging
from the destruction of expensive systems in the failure of the Ariane 5 rocket [72, 110] and
the shutdown of critical utilities in the 2015 hacking of the Ukrainian power grid [194] to
loss of life in accidents involving semi- or fully-autonomous vehicles [181, 183].

One promising approach to avoid such disasters is to use formal methods, which provides
rigorous techniques to design, model, and analyze systems based on formal, mathemati-
cal reasoning [185, 36]. The starting point of formal methods is specification, the process
of encoding the properties a system is intended to satisfy into a precise, machine-readable
formalism: a formal specification. Given a system and a specification for it, verification algo-
rithms generate either a proof that the system satisfies the specification or a counterexample
showing how it can violate the specification. More powerfully, one can start with only a
specification and use an algorithm to automatically generate an implementation for the sys-
tem which is guaranteed to satisfy the specification: this is correct-by-construction synthesis.
Synthesis has been widely studied and successfully used in practice to design both hardware
and software [83, 56]. However, most synthesis techniques target the design of deterministic
systems. In this thesis, we argue that there are many situations where we want a system to
exhibit behavior which is to a certain extent random.

1For example, as of 2016 some cars ran software containing 150 million lines of code — this is up from
only 10 million lines in 2010, and with the imminent deployment of self-driving cars, we can expect further
explosive growth [22].
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1.1 Synthesis of Randomized Systems
There are a number of different reasons why randomness can be desirable in a system,
corresponding to several crucial benefits that randomness can provide:

Variety. A black-box fuzz tester for a network service should generate packet sequences
which conform to the protocol (perhaps only most of the time), but the space of such
sequences may be too large to search exhaustively — randomness lets us cover the space
evenly. Likewise, in computer music improvisation we can use randomness to generate
diverse variations on a given melody, subject to the conventions of the genre [44].

Robustness. A controller for a robot exploring an unknown environment can use random-
ness to reduce systematic bias and increase coverage without needing to construct a
detailed map or assume the environment is static [182]. Similarly, a scheduler for a
power microgrid can use randomness to gain robustness to correlated failures [2].

Unpredictability. A controller for a surveillance robot can use randomness to make its
route less predictable and thereby more difficult to plan against in advance [81]. Simi-
larly, a compiler can introduce randomness into a program to make it more difficult for
an attacker to develop exploits based on low-level details of the implementation [105].

Realism. A lighting controller for a house that mimics typical human behavior when its oc-
cupant is on vacation can use randomness to realistically model the human’s stochastic
behavior [2]. Similarly, a synthetic data generator for an ML algorithm needs random-
ness to model the distribution of the real-world data the algorithm will be used on [64].

Note how the fuzz testing and synthetic data generation applications show that building
randomized systems can be helpful even when designing deterministic systems: we can build
randomized generators producing specialized tests, environment behaviors, or training data
to help us design the actual system of interest. Furthermore, since testing only requires
that the system can be simulated, it applies to systems which are currently well out of
reach of formal verification, including cyber-physical systems like autonomous cars. Such
systems, particularly those using ML, pose serious challenges for formal methods [155, 149],
with most techniques not scaling to realistic systems and specifications [111, 191], but test
generation is eminently scalable and widely-used in practice [114]. So a general way to
construct randomized systems with desired properties would allow us to do intelligent testing
and training of a wide variety of safety-critical systems.

In fact, in all of these applications — software fuzz testing, music improvisation, robotic
planning, microgrid scheduling, human behavior modeling, and synthetic data generation
— there are constraints on the behavior of the system that we construct. For example,
the patrolling robot should not run into obstacles. To automatically build systems which
are guaranteed to satisfy such constraints, we can use correct-by-construction synthesis.
However, as we mentioned above, no existing synthesis algorithms allow a requirement for
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randomness as part of the system’s specification, and we cannot just add randomness to
the system in an ad hoc way, since this could easily break correctness. Furthermore, even if
adding randomness does not break functional correctness, there are likely trade-offs between
the amount of randomness added and efficiency or some other quantitative objective. To ex-
plore such trade-offs, we need to integrate the requirement for randomness into the synthesis
process.

The question, then, is how can we automatically synthesize a system with random but
controlled behavior? Our answer to this question is algorithmic improvisation.

1.2 Algorithmic Improvisation
Algorithmic improvisation describes a class of problems requiring the synthesis of a random-
ized algorithm, called an improviser, which must satisfy three different types of constraints:

Hard Constraint. The behavior of the improviser must always satisfy some desired prop-
erty, given by a formal specification. This hard constraint is just like the specification
in traditional synthesis, which defines functional correctness properties the synthesized
implementation must respect.

Soft Constraint. The behavior of the improviser must satisfy some other given property
to a certain extent, which can be tuned according to a parameter. In this thesis, we
will consider soft constraints which require a property to hold with at least a given
probability, although other types of quantitative requirements are useful as well.

Randomness Constraint. The behavior of the improviser must exhibit a specified type of
randomness. There are again several ways this can be formalized; here, we will mainly
study constraints which require the distribution of the improviser’s behavior to be
sufficiently close to uniform.

The intuition for why algorithmic improvisation combines hard, soft, and randomness
constraints is straightforward: the hard constraint is inherited directly from traditional syn-
thesis problems, allowing us to give formal guarantees about the behavior of the system we
construct. The randomness constraint ensures we obtain a diversity of behaviors, rather than
simply finding one way to satisfy the hard constraint. Finally, the soft constraint allows us to
control more precisely how randomness is added to the system, and to trade off randomness
for correctness.

We can see how algorithmic improvisation captures the applications of randomized syn-
thesis mentioned above through a couple of examples. In the case of robotic planning,
consider generating routes for a surveillance robot. The hard constraint allows us to en-
force safety properties like avoiding collisions, as well as mission goals like visiting each of a
designated set of locations. Through the randomness constraint, we can achieve a random-
ized policy for the robot that accomplishes the mission while making it difficult for a third
party to predict the robot’s trajectory in advance. Finally, we can use the soft constraint to
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Figure 1.1: Three improvised trajectories for a patrolling drone (solid) which must visit the
circled locations while avoiding collisions with another drone (dashed).

ensure that the generated routes are usually close in length to the shortest possible route,
rather than achieving randomness by being arbitrarily circuitous. Figure 1.1 shows several
trajectories generated using algorithmic improvisation in this way (see Chapter 6 for details).

These types of constraints again prove useful in a completely different domain, namely
software fuzz testing. Suppose we want to generate audio files to test a media player applica-
tion. Two popular heuristics in fuzz testing are the generative approach, using a grammar to
generate random files in a given file format, and the mutational approach, generating random
variations on real-world seed files [165]. Using algorithmic improvisation, we can synthesize
a test generator which combines both approaches: we enforce the file format using the hard
constraint, ensure similarity (most of the time) to a seed input using the soft constraint, and
ensure a diversity of files using the randomness constraint.

A New Class of Computational Problems

In both examples above, all three fundamental aspects of algorithmic improvisation — hard,
soft, and randomness constraints — are essential, and this is equally true for the other
applications we consider in this thesis. However, existing techniques in the literature only
capture some of these aspects., as summarized in Table 1.1.

In one direction, simple probabilistic models like the factor oracles used in music improvi-
sation [9] and the heuristics in mutational fuzz testing [165] allow creating random variations
with tunable similarity to a seed input, a kind of soft constraint. However, enforcing prob-
ability bounds like our randomness constraint is not directly supported by such techniques,
and at any rate they do not allow imposing hard constraints. Conversely, algorithms for uni-
form random sampling from the languages of automata and grammars [86, 93] and from the
satisfying assignments of a Boolean formula [89, 15, 29] allow hard but not soft constraints.
As we will see in Chapter 3, however, our work is closely connected to such algorithms and
builds on top of them.
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Table 1.1: Related work allowing synthesis under hard, soft, or randomness constraints. The
symbol ∼ indicates that the method allows defining randomized algorithms but not ensuring
that a randomness constraint is satisfied. The Adversarial column indicates whether the
synthesized algorithm must be correct in the presence of a potentially-adversarial environ-
ment (providing input to the algorithm). Citations are to representative or survey papers.

Hard Soft Random Adversarial

Factor Oracles [9] � X ∼ �
Sampling from Automata/Grammars [86, 93] X � X �
Sampling from Boolean Formulas [89, 15, 29] X � X �
Probabilistic Programming [79] X X ∼ �
Reactive Synthesis [56] X � � X
Program Synthesis [83] X � � X

Control Improvisation [63, 62] X X X �
Reactive Control Improvisation [67] X X X X

Possibly the closest prior work to ours is the field of probabilistic programming languages
(PPLs) [79]. Such languages allow the construction of generative processes subject to hard
and soft constraints, although they do not provide a way to check that the resulting distri-
bution will satisfy our randomness constraint. However, we will see in Chapter 5 that PPLs
are ideally suited to a variant of algorithmic improvisation where we need more complex
and interdependent hard, soft, and randomness constraints, and detailed control over the
generative process underlying the improviser.

Finally, in an orthogonal direction, there has also been much work on the synthesis of
reactive systems [56] which interact with a potentially-adversarial environment. As we men-
tioned above, reactive synthesis algorithms have focused on deterministic systems2, and do
not provide a way to ensure randomness. The same is true of work on program synthesis [83],
which generates a program which is correct even when its input is chosen adversarially, but
does not support randomness constraints. Although there have been proposals to synthesize
multiple variants of programs to make the task of developing exploits harder [113, 30], these
approaches are heuristic and provide no diversity guarantees.

As a result, algorithmic improvisation is a fundamentally new type of problem in computer
science, and requires the development of its own theory. A primary goal of this thesis is to
develop such a theory, as we will detail in the next section. First, however, we close our
general discussion of algorithmic improvisation with a history of the concept.

2Although potentially with stochastic environments; see Chapter 4 for a discussion.
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The History of Algorithmic Improvisation

Algorithmic improvisation was originally conceived by Sanjit A. Seshia and David Wessel
in 2013. The core computational problem of algorithmic improvisation, control improvisa-
tion (CI), was introduced by Donzé et al. [43, 44]. Their main motivating application was
computer music improvisation (a topic with a long history; see e.g. Rowe [147]), specifically
generating random variations of a given melody subject to the conventions of the music genre.
Thus, although their problem definition was somewhat different than the one we use here,
it contained the three essential elements of algorithmic improvisation: a hard constraint,
a tunable soft constraint, and a randomness constraint. The name “control improvisation”
(alternatively, “controlled improvisation”), coined by Seshia, reflects the problem’s original
application to music improvisation, as well as its applicability to various control tasks, such
as robotic planning; in fact, the initial formulation of CI was a randomized variant of super-
visory control [25].

Our work on algorithmic improvisation began in Fremont et al. [63], which redefined
control improvisation, giving a definition suited to a broader range of applications. We also
studied the theory of the problem in depth for the first time, which allowed us to give the
first algorithms for CI with formal guarantees: by contrast, the improvisation algorithm
proposed by Donzé et al. [43, 44] was heuristic, not providing a guarantee of satisfying the
soft constraint (or a way of checking whether the soft and randomness constraints were in
fact compatible). We also further studied the application of CI to music improvisation [178,
177], as well as a new application to human behavior modeling [2]. Next, we refined the
definition of CI in Fremont et al. [62], obtaining the formulation used in this thesis and
further extending its theory in several directions. In Fremont and Seshia [67] we proposed a
more far-reaching generalization, reactive control improvisation, which allows the synthesis
of randomized reactive systems. Finally, inspired by control improvisation, in Fremont et
al. [64] we explored a different variant of algorithmic improvisation based on probabilistic
programming languages. All of this work (excluding that on music improvisation, for which
see Valle [176]) comprises the content of this thesis, which we now describe in detail.

1.3 Thesis Contributions
This thesis proposes a theory of algorithmic improvisation enabling the correct-by-construction
synthesis of randomized systems, and explores its applications to safe autonomy.

The thesis is divided into two parts: in Part I, we lay the theoretical foundations of algo-
rithmic improvisation, defining and studying the problems of control improvisation (Chap-
ter 3), reactive control improvisation (Chapter 4), and language-based improvisation (Chap-
ter 5). As we have suggested above, these problems have many applications, including
software and protocol fuzz testing, microgrid scheduling, and computer music improvisa-
tion. Part II develops in detail three of these applications that are particularly relevant to
the challenge of building safe autonomous systems: robotic planning (Chapter 6), human
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behavior modeling (Chapter 7), and synthetic data generation for cyber-physical systems
(Chapter 8). We now give an overview of each of these chapters.

1.3.1 Theory

In Part I, we study the theory of algorithmic improvisation in three different forms:

Control Improvisation

We begin in Chapter 3 by introducing control improvisation (CI), the computational problem
at the core of algorithmic improvisation. Control improvisation is the problem of construct-
ing an improviser, a randomized algorithm generating finite sequences of symbols satisfying
three requirements: a hard constraint which must always be satisfied (like the specification
in traditional synthesis), a soft constraint which need only be satisfied with some proba-
bility, and a randomness constraint requiring that the improviser’s output distribution be
sufficiently uniform.

We prove a precise characterization of when CI problems are solvable, and give a gen-
eral procedure for constructing improvisers by reducing the problem to model counting and
uniform sampling. We use this procedure to develop polynomial-time synthesis algorithms
for several practical classes of CI problems where the hard and soft constraints are defined
by deterministic finite automata or unambiguous context-free grammars. We also analyze
various more general classes of CI problems, showing that their complexity is equivalent to
the counting class #P (our complexity results are summarized on the left of Table 1.2). This
is true in particular for CI problems with specifications given by Boolean formulas, but we
show how to approximately solve such CI problems using only an NP oracle, or in practice,
a SAT solver. Finally, we discuss a generalization of CI allowing multiple hard and soft
constraints, giving an EXP synthesis algorithm as well as evidence that multiple constraints
do in fact increase the difficulty of the problem.

Chapter 3 is based on Fremont et al. [63] and its extended version [62], joint work with
Alexandre Donzé, Sanjit A. Seshia, and David Wessel. These papers generalize the initial
CI proposal by Donzé et al. [43, 44].

Reactive Control Improvisation

Next, in Chapter 4 we generalize control improvisation by adding reactivity, allowing the
synthesis of open systems that interact over time with an uncontrolled and potentially ad-
versarial environment. Like CI, reactive control improvisation (RCI) has hard, soft, and
randomness constraints, but instead of an improviser we now seek an improvising strategy
which ensures these constraints regardless of the actions taken by the environment.

We again begin our study of RCI by analyzing when the problem is solvable. To do this,
we introduce the notion of the width of a 2-player game, which counts the number of ways a
player can win from a given position (generalizing the usual concept of a “winning” position).
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Table 1.2: Complexity of the control improvisation (CI) problem (left) and reactive CI prob-
lem (right) for various types of hard and soft specifications H, S. DFA/NFA: determin-
istic/nondeterministic finite automaton. (U)CFG: (unambiguous) context-free grammar.
RSG: reachability or safety game. LTL: formula of linear temporal logic.

H\S DFA UCFG CFG NFA

DFA poly-time
UCFG

CFG #P-equivalent
NFA

H\S RSG DFA NFA LTL

RSG
poly-time

DFA

NFA

CFG poly-space
LTL

Using width, we prove a precise characterization of when RCI problems can be solved;
interestingly, we show that some simple RCI problems can only be solved by strategies with
memory, even when the corresponding non-randomized 2-player games admit memoryless
strategies. We also give a general construction of an improvising strategy based on computing
widths, and instantiate it to provide a polynomial-time synthesis algorithm for RCI problems
based on safety/reachability games and more generally, DFAs. We prove that for more
general specifications including temporal logic formulas (popular in reactive synthesis), the
complexity of RCI increases to PSPACE (our complexity results are summarized on the right
of Table 1.2). However, in all cases we show that finding a randomized strategy using RCI
is no harder, in a coarse-grained complexity sense, than finding a single winning strategy.

Chapter 4 is based on joint work with Sanjit A. Seshia [67].

Language-Based Improvisation

We conclude our theoretical study of algorithmic improvisation in Chapter 5 with an inves-
tigation of language-based improvisation (LBI). In LBI, specifications are represented using
a probabilistic programming language, which in addition to supporting declarative hard and
soft constraints also allows detailed control of probability distributions. This enables ap-
plications of algorithmic improvisation where we want non-uniform distributions, as when
generating synthetic training data for a machine learning algorithm which must match the
distribution of real-world data.

We design a domain-specific probabilistic programming language, Scenic, for defining
distributions over scenes, configurations of physical objects and agents. Scenes, which form
the environments of cyber-physical systems like autonomous cars and robots, are a highly
complex domain, making it possible for a DSL to significantly decrease the effort required
to specify reasonable distributions for training and testing data. Scenic is designed with
this in mind: we illustrate with examples many features of the language which simplify the
task of environment modeling, as well as giving a detailed description of its syntax and a
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Figure 1.2: A Scenic program describing a badly-parked car, and two sampled scenes.

formal operational semantics. Finally, we show how the domain-specific design of Scenic
enables specialized algorithms for scene improvisation, the problem of sampling scenes from
a Scenic program, which would not be possible with general-purpose probabilistic pro-
gramming languages. Figure 1.2 shows an example Scenic program, as well as two scenes
sampled from it.

Chapter 5 is based on joint work with Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia [64, 65].

1.3.2 Applications

In Part II, we explore several applications of algorithmic improvisation to the construction
of safe autonomous systems:

Robotic Planning

Chapter 6 investigates the use of algorithmic improvisation to synthesize randomized planners
for mobile robots. In particular, we study surveillance problems where a robot must visit
a set of locations (while ensuring safety or other constraints), using randomness to make
its route less predictable, as in Figure 1.1. We show how to formulate such problems as
instances of control improvisation if the environment is known ahead of time, or reactive
control improvisation if not. We present experiments demonstrating both formulations,
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Figure 1.3: Human (red, top) and improvised power consumption traces.

constructing planners using our improvisation schemes for finite automata specifications
developed in Chapters 3 and 4. We test these planners on an actual drone as well as in
simulation.

Chapter 6 is based on Fremont et al. [63] and Fremont and Seshia [67], as cited above
for Chapters 3 and 4. It also references experiments conducted jointly with Ankush Desai,
Brent Schlotfeldt, Yasser Shoukry, and Dinesh Thakur.

Human Modeling

Next, Chapter 7 studies using algorithmic improvisation to synthesize models of human
behavior subject to constraints. Such models are critical when designing systems like au-
tonomous cars which must interact with humans: without a model of how humans behave,
we cannot even do meaningful testing, let alone formal verification.

We focus on a case study in home automation, where the task is to design a lighting con-
troller which mimics typical human behavior to obscure the fact that the occupant is away,
while also respecting soft constraints on power consumption. We show how to partially for-
mulate this task as a multi-constraint control improvisation problem as studied in Chapter 3.
However, while this formulation allows us to impose constraints on the controller, it does
not allow us to learn the concept of what behaviors are “human-like” directly from historical
human data. We therefore propose a heuristic procedure which first learns a probabilistic
model from data, then iteratively adjusts the model until the soft constraints are satisfied.
Experiments demonstrate that this approach yields synthetic lighting behaviors that satisfy
our desired constraints, while still being qualitatively and quantitatively similar to human
behaviors (see Figure 1.3 for examples).

Chapter 7 is based on joint work with Ilge Akkaya, Rafael Valle, Alexandre Donzé,
Edward A. Lee, and Sanjit A. Seshia [2].
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Synthetic Data Generation

Finally, Chapter 8 proposes a methodology for using language-based improvisation, intro-
duced in Chapter 5, to train, test, and debug cyber-physical systems by generating synthetic
data from specialized distributions. In particular, such data can be used to design more
effective training sets by emphasizing rare events, assess system performance under different
conditions, find the root cause of bugs by constructing orthogonal variations on a single
failure case, and eliminate bugs by generalizing failure cases into broader scenarios suitable
for retraining.

We demonstrate all of these applications using Scenic, the language developed in Chap-
ter 5, to specify environment distributions for a number of different systems. Our main
case study examines a convolutional neural network used for object detection in autonomous
cars, using Scenic to generate synthetic traffic images in a video game with high-fidelity
rendering. Using our methodology, we are able to find bugs in the system and eliminate them
through retraining. We also boost the performance of the network significantly beyond what
could be achieved by prior synthetic data generation techniques, using Scenic to design
training sets in a more intelligent way. In addition to this case study, we mention several
other experiments where we have successfully applied our methodology to controllers as well
as perception systems, using several other simulators.

Chapter 8 is primarily based on Fremont et al. [64], as cited above for Chapter 5. It also
references some results from joint work with Tommaso Dreossi, Shromona Ghosh, Edward
Kim, Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia [47], as well as
unpublished work with Johnathan Chiu.
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Chapter 2

Background

In this chapter we define various fundamental concepts which will be used throughout the
thesis. We start with basic mathematical concepts in Section 2.1. The main notions we need
from the theory of computation, in particular complexity theory, are described in Section 2.2.
Next, Section 2.3 defines several formalisms we will use to represent specifications, namely
finite automata, context-free grammars, and Boolean formulas. Finally, Section 2.4 outlines
prior work on counting and uniform sampling, both core problems underlying algorithmic
improvisation.

2.1 Basic Concepts and Notation
For basic mathematical concepts, we generally use standard notation; here we mention sev-
eral symbols that can be ambiguous or are not fully standardized. We denote by N the natural
numbers, i.e. the nonnegative integers (note we include zero). For any positive k ∈ N, we
use [k] to denote the set {1, . . . , k}. For any x ∈ R we write bxc and dxe for the floor and
ceiling of x, respectively the greatest integer which is at most x and the least integer which
is at least x.

Given a set Σ, the Kleene star Σ∗ denotes the set of all finite sequences of elements of
Σ. Following the convention in formal language theory, we sometimes call Σ an alphabet, in
which case its elements are symbols and a sequence w ∈ Σ∗ is a word (or string) over Σ. Any
set of words S ⊆ Σ∗ is called a language, and we write S for its complement Σ∗ \ S. Given
a word w ∈ Σ∗, we denote its length by |w|. We denote the empty word of length zero by
λ. We write Σn for the set of words of length n, and Σ≤n for the words of length at most
n. Finally, we define Σm:n = {w ∈ Σ∗ |m ≤ |w| ≤ n}, the words whose length is between m
and n.
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2.2 Computational Models and Complexity
Next we briefly describe the mathematical formalism from the theory of computation which
underlies our work. For formal definitions of all of the concepts in this section, see Arora
and Barak [8].

Algorithms and Computational Problems

When referring to computational procedures we will use the generic term algorithm. Since we
will usually only be concerned with questions of coarse-grained complexity, e.g. can a problem
be solved in polynomial time or not, the exact details of the model are not important. For
concreteness, the reader can view “algorithm” as referring to a Turing or RAM machine
(the latter being what is meant in the few cases where we discuss fine-grained complexity,
e.g. linear vs. quadratic time). We will often discuss randomized algorithms, which can be
formalized in the usual way by adding to the machine the ability to flip an unbiased coin
(with the result being written to memory or determining which of two states the machine
enters).

The input and output of an algorithm are binary strings, i.e. elements of {0, 1}∗, which
we can think of as representing numbers or other objects by an appropriate encoding. Thus
we can think of a computational problem as a function f : {0, 1}∗ → {0, 1}∗ mapping
problem instances to the corresponding answers. An algorithm solves the problem if given
any instance x ∈ {0, 1}∗ as input the algorithm eventually terminates and outputs f(x). For
decision problems whose answer is yes or no, we can alternatively represent the problem as a
language P ⊆ {0, 1}∗ whose elements are the problem instances for which the answer is yes.

It will sometimes be useful for us to discuss algorithms which use another algorithm as
a subroutine. If A is an algorithm which internally uses a black-box algorithm for solving
the problem P , we formalize A in the usual way as an oracle machine AP , which has a
special primitive operation for querying its oracle for P on an instance which has already
been written to memory. This operation takes a single step, so that the runtime of A does
not include any time needed to actually solve the queried instances of P (which would be
nonzero in practice, with the oracle being implemented by another algorithm).

Computational Complexity

To measure the difficulty of solving various computational problems, we use the standard no-
tions of complexity classes and reductions. We make use of the following standard complexity
classes of decision problems:

P: Decision problems solvable in polynomial time.

NP: Problems solvable in polynomial time by a nondeterministic machine, i.e. a machine
which may fork into multiple independent runs, the entire machine accepting if and
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only if any of the individual runs do. Informally, this class consists of problems whose
solutions can be verified in polynomial time.

PH: The polynomial-time hierarchy, whose first level is NP. Informally, thinking of the
acceptance condition for an NP-machine as existentially quantifying over the nonde-
terminism of the machine, each successive level of the hierarchy adds one additional
quantifier (e.g. at level 2 we have problems of the form P (x) = ∀y.∃z.M(x, y, z) with
M a polynomial-time algorithm).

PP: Problems solvable in polynomial time by a nondeterministic machine whose acceptance
condition is that a majority of its runs accept. Equivalently, problems solvable by a
polynomial-time randomized algorithm which returns the correct answer strictly more
than half the time.

PSPACE: Problems solvable using polynomial space (i.e. memory).

EXP: Problems solvable in exponential time.

We also use two standard classes of function problems, whose answer is a number (encoded
in binary as above) rather than simply yes or no:

FP: Function problems solvable in polynomial time.

#P: Counting problems, i.e. function problems defined by a polynomial-time nondetermin-
istic machine (as for NP), where the answer is how many runs of the machine are
accepting.

We use these classes to measure the difficulty of problems in the ordinary way. A problem
P is hard for a complexity class C if every problem in the class can be reduced to P : informally,
an algorithm for P can be used to solve every problem in C. The type of reduction used
depends on the class: for almost all of the classes above, the usual choice is a polynomial-
time many-one reduction, also called a Karp reduction. A Karp reduction from P to Q is a
function f : {0, 1}∗ → {0, 1}∗ which is computable in polynomial time and has the property
that for all instances x ∈ {0, 1}∗, we have x ∈ P if and only if f(x) ∈ Q. The one exceptional
class is #P, for which completeness is defined (following Valiant [174]) using a polynomial-
time Turing reduction, also called a Cook reduction. A Cook reduction from P to Q is a
polynomial-time oracle Turing machine RQ which computes P given an oracle for Q. This
is a more powerful type of reduction, since the machine is allowed to query any number of
instances of Q, whereas in a Karp reduction we can only apply the mapping f once and not
do any additional computation.

A problem P is complete for a complexity class C if P is C-hard and P ∈ C: intuitively, P
is one of the hardest problems in C. Thus, when P is C-complete we will say its complexity
is C. For example, the SAT problem (defined below) is NP-complete, and therefore not in
P unless P = NP, so we say that SAT has complexity NP.
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Sometimes it will be convenient to compare the complexity of a function problem P to a
class of decision problems C: we say a problem P is C-equivalent if there are Cook reductions
from P to some C-complete problem and vice versa. So for example a #P-equivalent problem
P is not necessarily itself a counting problem, but has the same difficulty: an algorithm for
P can be used to solve all counting problems, and there is some counting problem that can
be used to solve P .

2.3 Specification Formalisms
Informally, a specification for a system is a property which the system should have. The
simplest and most common type of property are trace properties : these are properties of
individual behaviors of the system, which the overall system satisfies if all of its possible
behaviors do. For example, given a mobile robot, the property of always reaching a particular
location is a trace property (for any given behavior, we either reach the location or we don’t).
Viewing the behavior of the system as a word over some alphabet (a trace), a trace property
is simply a language, consisting of the set of traces which satisfy the property. In the robot
example, traces might be sequences of visited locations, and we could specify that a particular
location X is reached using the language consisting of all words which include the symbol
X.

In order to develop algorithms operating on specifications, we need a finite, formal, and
precisely-defined encoding of the desired property, or its equivalent language. Thus in this
thesis the term specification, unless stated otherwise, means a finite representation of a
language. Given a specification S, we write L(S) for the language it defines. In practice
we do not work with languages as explicit sets of words, since they could be very large or
even infinite. Rather, we use more or less implicit representations which define a language
through some other formalism like automata or logical formulas. Below, we describe the
main types of specifications we use (see Hopcroft et al. [87] for more detailed discussions of
automata and grammars).

Finite Automata

A deterministic finite automaton (DFA) consists of a finite alphabet Σ, a set of states Q, an
initial state q0 ∈ Q, a set of accepting states F ⊆ Q, and a transition function δ : Q×Σ→ Q.
A DFA D runs on an input word w ∈ Σ∗ by starting in q0 and reading each successive symbol
of w, moving between states according to δ (i.e. at state s, if the next symbol is a, we move
to the state δ(s, a)). The sequence of states obtained in this way is the path corresponding
to w. This terminology is suggested by the fact that we can view a DFA as a directed
(multi-)graph whose vertices are states and whose edges represent transitions, labeled by the
input symbol which triggers them: a path through the DFA for the word w is exactly a path
through the graph (starting from q0) whose edge labels spell out w. If the path ends at an
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Figure 2.1: A DFA accepting all words in {a, b}∗ which do not have 4 bs in a row.

accepting state, we say it is an accepting path, and D accepts w; otherwise D rejects w. A
DFA D defines a language L(D) over Σ given by the set of all words accepted by D.

An example DFA over the alphabet Σ = {a, b} is shown in Figure 2.1. We visualize the
DFA as a graph in the standard way, with accepting states having a doubled border and the
initial state indicated by an incoming arrow. For example, the DFA accepts the empty word
λ, since the initial state is accepting, and also the word bab, since the second state from the
left is accepting, but rejects the word bbbba, since the rightmost state is not accepting. It is
easy to see that the language of this DFA consists exactly of those words which never have
4 or more consecutive bs.

A nondeterministic finite automaton (NFA) is a generalized DFA where we allow nonde-
terministic transitions : for a given state and input symbol, there can be multiple possible
transitions (in the graph view, a vertex can have multiple outgoing edges with the same la-
bel). Thus the transition function δ becomes a transition relation δ ⊆ Q×Σ×Q specifying
which states we can move to given the current state and input symbol. As a result, a single
word w ∈ Σ∗ can now have multiple paths corresponding to it, and the acceptance condition
for the NFA is that at least one of these paths is an accepting path.

There are well-known algorithms for performing various basic operations on finite au-
tomata: in particular, we can complement the language of a DFA by flipping the accepting/non-
accepting states, and we can intersect the languages of two DFAs by constructing their
product DFA [87].

Context-Free Grammars

A context-free grammar (CFG) consists of a finite alphabet Σ (of terminal symbols), a set
of variables (or nonterminal symbols) V , a start symbol S ∈ V , and a set of productions
P ⊆ V × (V ∪ Σ)∗. The productions are rewrite rules allowing a variable to be replaced by
a sequence of terminal and nonterminal symbols. For example, the production (X, aY bY ),
which we can write as the rule X → aY bY , allows us to expand the word cXY into caY bY Y .
We say a word w ∈ Σ∗ can be derived from a CFG G if it is possible to reach w using the
rewrite rules starting from the start symbol S. The language L(G) of the grammar is the
set of all derivable words in Σ∗.

A derivation of a word w ∈ L(G) can be represented by a derivation tree with S as the
root and the (ordered) children of a nonterminal node being the symbols it was expanded
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Figure 2.2: Ambiguous and unambiguous CFGs for nested parentheses, and an example
derivation tree.

into by a production. It is possible for a single word to have multiple derivation trees, so
that the grammar allows the word to be parsed in more than one way. When this happens
we say that G is ambiguous. An example is shown in Figure 2.2: the grammar at left for
correctly-nested parentheses is ambiguous, since the word ()()() can be parsed in two ways:
either the first two pairs of parentheses share a parent in the tree, or the last two do. The
grammar in the middle, on the other hand, has the same language but is unambiguous, with
the unique derivation tree for ()()() shown on the right. This grammar also indicates how
we can always write a CFG in a special form where the right-hand side of every production
has at most two symbols (we will return to this as needed later) [87].

Boolean Formulas

Another important type of specification are Boolean formulas (equivalently, sentences of
propositional logic) [17]. A Boolean formula is an expression built by applying the Boolean
operations AND (conjunction, written ∧), OR (disjunction, written ∨), and NOT (negation,
written ¬) to Boolean variables which can take the values true (>) and false (⊥). Given
an assignment of truth values to the variables of a formula, the formula evaluates to true or
false according to the usual semantics of the Boolean operations. For example, the formula
x∧¬(y ∧ z) is true if x and y are true and z is false. Assignments which cause a formula to
evaluate to true are called satisfying assignments or models of the formula. We can view a
Boolean formula as defining a language of words of some fixed length n by mapping words
of Σn to truth assignments of Boolean variables by a suitable encoding. The language of the
formula is then simply all words whose encodings are satisfying assignments of the formula.

If a formula has a satisfying assignment it is said to be satisfiable, whereas if it has
no satisfying assignments it is unsatisfiable. The problem SAT of determining whether
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a Boolean formula is satisfiable is NP-complete (see Arora and Barak [8]). Despite this,
SAT solvers using heuristic search techniques have been very successful in a wide variety of
applications. For a comprehensive survey of the theory and practice of SAT and many of
its generalizations, see Biere et al. [17].

We will occasionally make use of two normal forms of Boolean formulas. A formula in
conjunctive normal form (CNF) is a conjunction of clauses, each of which is a disjunction of
literals, which are variables and their negations. For example, (x∨¬y)∧z is a CNF formula.
Disjunctive normal form (DNF) is the dual form, being a disjunction of cubes, each of which
is a conjunction of literals. For example, the negation of the formula above, (¬x∧ y)∨¬z, is
a DNF formula. Any Boolean formula can be efficiently converted into CNF while preserving
satisfiability [17].

Finally, we will also occasionally make use of quantified Boolean formulas (QBFs). The
existential (∃) and universal (∀) quantifiers have their usual meanings: the formula ∃x.φ(x)
is true when either φ(⊥) or φ(>) are, and ∀x.φ(x) is true when both are. The problem
QBF of determining whether a quantified Boolean formula is true (or satisfiable if it has
free, i.e. unquantified, variables) is PSPACE-complete (again, see Arora and Barak [8]). A
QBF is said to be in prenex normal form if it consists of a sequence of quantifiers followed
by a quantifier-free formula; the latter is called the matrix of the formula. For example,
∃x.∀y.(x ∨ y) is in prenex normal form, while the equivalent formula ∃x.(x ∨ ∀y.y) is not.
Any QBF can be efficiently converted into prenex normal form with a CNF matrix while
preserving truth/satisfiability [21].

2.4 Counting and Uniform Sampling
As we will see, algorithmic improvisation will require us to solve harder problems than simply
finding a solution to a specification (i.e. a word in its language): we will need to count how
many solutions there are, and uniformly sample from those solutions. There is a large body
of work on these problems for different types of specifications, much of which we will build
on below, so we summarize it here.

There is a close connection between counting and uniform sampling, going back to Wilf
[184], who first showed in a general setting how algorithms for counting can be used to per-
form uniform sampling. The essential idea is to perform a random walk on partial solutions :
if for example there are two ways A and B to extend our current partial solution, we use
counting to determine how many solutions are consistent with A and how many are consis-
tent with B, then pick A or B randomly with probability proportional to these counts. This
type of construction has been used in many settings, for example by Hickey and Cohen [86]
to do efficient uniform generation of strings from the languages of DFAs and unambiguous
CFGs. The procedure was generalized in the context of SAT by Jerrum et al. [89], who
showed that approximate counting suffices to do uniform sampling, and also that there is an
efficient reduction in the opposite direction, from (almost-) uniform sampling to approximate
counting.
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For counting the languages of DFAs and unambiguous CFGs, there are classical polynomial-
time algorithms by Hickey and Cohen [86] based on dynamic programming, who as mentioned
above used them to do uniform sampling from such languages. In the case of grammars,
faster algorithms were later developed, culminating in that of McKenzie [118]. For non-
deterministic automata and ambiguous grammars, the problems are much more difficult,
with counting being #P-complete and the best known sampling algorithms requiring quasi-
polynomial (nΘ(logn)) time [93, 80]1.

The problem of counting the number of solutions to a Boolean formula is #SAT, also
called model counting. #SAT is a prototypical #P-complete problem [174], and there are
many types of exact and approximate algorithms for it, most of which use SAT solvers
internally (see Gomes et al. [74] for a survey). In fact, it had long been known theoretically
that approximate model counting (with some probability of failure) and sampling could be
done in polynomial time relative to an NP oracle (first observed explicitly by Jerrum et al.
[89], drawing on Stockmeyer [164] and Valiant and Vazirani [175]), and more recently that
this is true even for exact uniform sampling [15]. These algorithms were largely of theoretical
interest since the NP queries they generated were too difficult for even modern SAT solvers.
However, in the last several years significant progress has been made on practical approximate
model counting algorithms using the same universal hashing paradigm as the theoretical
algorithms, to the point where they can handle quite large problems. For a survey up to
2015, see Meel et al. [120]; however, this is an active research area, and there have already
been significant further improvements, e.g. Chakraborty et al. [28] and Soos and Meel [161].
Details of the hashing-based approach, as well as a discussion of many of its applications,
can be found in Meel [119].

We will also use an extension of model counting, projected model counting, which given
a Boolean formula φ(x, y) with two sets of variables asks how many assignments to x can
be extended to a complete satisfying assignment of φ (the name arising since the problem
counts models of φ projected onto a subset of its variables). The projected uniform sampling
problem analogously asks us to uniformly sample from these assignments to x. The pro-
jected model counting problem was originally introduced by Valiant [174] under the name
#NSAT, for “nondeterministic SAT”, although practical algorithms were developed only
recently. The hashing-based model counting and sampling algorithms in particular can be
straightforwardly extended to handle projection [29].

As a final note, we have worked on various further generalizations of model counting and
sampling:

• weighted model counting and sampling, where different solutions contribute more or
less to the total count, or are sampled with higher/lower probabilities, according to a
specified weight function (useful for example in probabilistic inference) [26];

1In fact, it was very recently shown that approximate counting for NFAs can be done in polynomial
time [6], which implies that sampling can also be done in polynomial time by the random-walk reduction.
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• generating multiple samples at once when strict independence is not required, in par-
ticular when trying to cover the space of solutions evenly (e.g. in constrained-random
verification or other test generation settings) [27];

• maximum model counting, which combines counting and optimization, asking for an
assignment to one set of variables which maximizes the number of solutions in a second
set (useful for quantitative information flow analysis of programs) [66].

Since we have not used these more general problems in our work on algorithmic improvisation
so far, we do not discuss them in this thesis. However, they could well be useful for extended
versions of control improvisation allowing greater control over the distribution of behaviors
or with quantitative soft constraints, which we will discuss as future work in Chapter 3.
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Part I

Theory
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Chapter 3

Control Improvisation

In this chapter, we define and study control improvisation (CI), the core computational
problem of algorithmic improvisation [63, 62]. CI provides the foundation for the more
sophisticated versions of algorithmic improvisation we will consider in Chapters 4 and 5,
but it is also practically useful in its own right. As we mentioned in the Introduction, its
original application was computer music improvisation [44]; we will discuss two additional
applications, robotic planning and human behavior modeling, in Chapters 6 and 7.

As we saw in Chapter 1, the fundamental goal in algorithmic improvisation is to construct
an algorithm whose behavior is subject to hard, soft, and randomness constraints. In control
improvisation, these behaviors are finite sequences of symbols from a finite alphabet, which
can represent musical notes or actions for a robot, for example. The hard and soft constraints
are defined using finite automata, Boolean formulas, or some other specification formalism,
while the randomness constraint simply requires that no sequence be generated with too
high or too low probability. A probabilistic algorithm which generates such sequences, while
satisfying all three types of constraints, is called an improviser. The control improvisation
problem, then, is to construct an improviser for a given set of constraints. In fact, we do not
simply want improvisers for particular constraints, but rather a synthesis algorithm: a general
procedure for constructing improvisers from specifications, which we call an improvisation
scheme. We define all of these concepts formally in Section 3.1.

We then proceed to study the theory of CI, starting in Section 3.2 with the most fun-
damental question: when is a CI problem solvable? This is a more subtle question than
in traditional synthesis problems, where solving the problem typically amounts to finding a
single solution to a (possibly quantified) constraint satisfaction problem. For CI, it is not
enough for the hard and soft constraints to have a solution, since the randomness constraint
requires us to produce many different sequences, and therefore we must have many solutions
available to choose from. We show exactly how many solutions are required, giving a precise
characterization of when CI problems are feasible.

Our proof of the CI feasibility conditions is constructive, providing a recipe for how
to build improvisers. In Section 3.3, we turn this construction into a generic improvisation
scheme, applying to any kind of specification which supports several operations: intersection,
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difference, counting, and uniform sampling. When these operations can be implemented
efficiently, our result yields an efficient improvisation scheme. This result also allows us to
show that under very general conditions (i.e., for any kind of specification which can be
checked on a trace in polynomial time), the complexity of CI is at most #P.

Next, in Section 3.4 we investigate the complexity of CI in more detail, establishing
it to be either P or #P for several practical types of specifications. Specifically, we con-
sider finite automata, context-free grammars, and Boolean formulas. For deterministic finite
automata and unambiguous context-free grammars, we construct polynomial-time improvi-
sation schemes. For nondeterministic finite automata and general context-free grammars,
we show that CI is #P-equivalent; interestingly, this is also true when both the hard and soft
constraints are unambiguous grammars. For Boolean formulas, CI is trivially #P-equivalent,
but we give an approximate improvisation scheme using only an NP oracle, which therefore
can be implemented using a SAT solver.

Finally, in Section 3.5 we discuss a more general version of CI which allows multiple
hard and soft constraints: multi-constraint control improvisation (MCI). This generalization
arises naturally in some applications, for example the human-like lighting control applica-
tion we will discuss in Chapter 7. We perform much of the same analysis we did earlier
for CI, investigating when MCI problems are feasible and the complexity of solving them.
However, MCI turns out to be far more involved than CI, and we are not able to establish
simple feasibility conditions or pin down its complexity exactly. We do show that for DFA
specifications the problem is already #P-hard, suggesting that allowing multiple constraints
makes the CI problem significantly more difficult.

We conclude the chapter in Section 3.6 with a summary and directions for future work.

3.1 Problem Definition
We start by formally defining the control improvisation problem and its associated concepts.
As was discussed in Chapter 1, the definitions have changed in some (mostly minor) ways
over time. We will use the definitions from Fremont et al. [62], noting from time to time
how they differ from the earlier definitions in Donzé et al. [43, 44] and Fremont et al. [63]
and the reasons for the change.

3.1.1 Elements of the Definition

The control improvisation problem is defined in terms of several elements. First, we have
a finite alphabet Σ of symbols which the improviser may output. For example, for a robot
moving in a two-dimensional (2D) gridworld, Σ could be the set of possible movements
{North, South, East,West, Stop}, so that a word over Σ corresponds to a behavior of the
robot.

Next, we need representations of the hard and soft constraints. The hard constraint
is straightforward, since it simply restricts the output of the improviser, saying that all
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generated sequences must have some desired property (in the robot example, we could require
that the robot not move into a location where there is an obstacle, for instance). We can
therefore represent it by a hard specification H over Σ, whose language L(H) ⊆ Σ∗ consists
of the words having the property. Together with bounds defining the desired lengths, this
defines the improvisations, the words the improviser is allowed to generate:

Definition 3.1. Fix a finite alphabet Σ, a hard specification H over Σ, and length bounds
m,n ∈ N. An improvisation is any word w ∈ L(H) such that m ≤ |w| ≤ n. We write I for
the set of all improvisations.

The soft constraint is similar to the hard constraint in that it specifies a property which
the output of the improviser must satisfy, except that the property need only hold with
at least some probability 1 − ε. Therefore, we can represent the soft constraint by a soft
specification S over Σ, together with the error probability ε. We call improvisations which
satisfy the soft specification admissible:

Definition 3.2. Fix a soft specification S over Σ and an error probability ε ∈ [0, 1]. An
improvisation w ∈ I is admissible if w ∈ L(S), and we write A for the set of all admissible
improvisations.

Finally, the randomness constraint requires that every improvisation be generated with
a probability within a desired range [λ, ρ] (with 0 ≤ λ ≤ ρ ≤ 1). This requirement is
designed to accommodate two different needs for randomness. In fuzz testing, for example,
in order to ensure coverage we might put λ > 0 to require that every test case can be
generated. By contrast, in music improvisation or robotic planning it is not important
that every possible melody or plan can be generated; rather, we simply want no single
improvisation to arise too frequently. So in such applications we might put λ = 0 but
ρ < 1. Our definition allows any combination of these two cases. Note that if there are N
improvisations (i.e. |I| = N), then setting λ or ρ equal to 1/N forces the distribution to be
uniform. So random sampling as used in fuzz testing or constrained-random verification is
a special case of control improvisation. We also note that other randomness requirements
are possible, for example ensuring variety by imposing some minimum distance between
generated improvisations. This could be reasonable in a setting such as music or robotics
where there is a natural metric on the space of improvisations, but we choose to keep our
setting general and not assume such a metric.

Running Example. Throughout the chapter, we will illustrate our concepts and algorithms
with a simple example. Suppose we want to generate variations of the binary string s = 001
which have length 3, subject to the constraint that there cannot be two consecutive 1s. We
can formalize this as a CI problem as follows:

Alphabet. Σ = {0, 1}, since we want to generate binary strings.

Length Bounds. m = n = 3, so that the length must be exactly 3.
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Hard Constraint. H is a DFA accepting all strings that do not have two 1s in a row.

Soft Constraint. S is a DFA accepting words with Hamming distance at most 1 from s,
to ensure that our variations are usually similar to s. We can put the error probability
ε = 1/4 for the similarity property to hold at least 3/4 of the time.

Randomness Constraint. ρ = 1/4, which implies the improviser can generate at least 4
words. We leave λ = 0 since we only care that sufficiently many improvisations can be
generated.

Then for example the word 000 is an admissible improvisation, satisfying both hard
and soft constraints, and so is in A. The word 010 on the other hand satisfies H but not
S (having Hamming distance 2 from s), so it is in I but not A. All together we have
I = {000, 001, 010, 100, 101} and A = {000, 001, 101}, while words like 011 and 00100 are
not improvisations at all.

3.1.2 The Control Improvisation Problem

Combining all of the elements above, we obtain our definitions of an acceptable distribution
over improvisations and thus of an improviser:

Definition 3.3. Given a CI instance C = (H,S,m, n, ε, λ, ρ) with elements as described
above, a distribution on words D : Σ∗ → [0, 1] is an improvising distribution if it satisfies
the following requirements:

Hard constraint: Pr[w ∈ I | w ← D] = 1

Soft constraint: Pr[w ∈ A | w ← D] ≥ 1− ε

Randomness constraint: ∀w ∈ I, λ ≤ D(w) ≤ ρ

If an improvising distribution exists, we say that C is feasible. An improviser for a feasible C
is a probabilistic algorithm, taking no input and with finite expected runtime, whose output
distribution is an improvising distribution.

Running Example. The CI instance C = (H,S, 3, 3, 1/4, 0, 1/4) described in our running
example above is feasible: for example, we could generate each of the improvisations 000,
001, 101, and 100 with probability 1/4. The first three are admissible, so we would generate
an admissible improvisation with probability 3/4 = 1− ε and satisfy the soft constraint. On
the other hand, if we tightened the soft constraint by setting ε = 0, the problem would be
infeasible: ε = 0 means we can only generate admissible improvisations, and since there are
only 3 of these (|A| = 3), we cannot possibly give them all probability at most ρ = 1/4.
We could make the problem feasible again by relaxing the randomness constraint, reducing
ρ to 1/3 so that we could simply sample from {000, 001, 101} uniformly at random. Note
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that this would not be an improvising distribution if λ > 0, since the improvisation 010 is
generated with probability 0.

Definition 3.4. Given a CI instance C, the control improvisation (CI) problem is to decide
whether C is feasible, and if so to generate an improviser for C. For this problem, the size
of the instance C is measured with m and n being represented in unary, and ε, λ, and ρ
represented in binary.

We measure the size of CI instances as being linear in the values of m and n (rather than
their binary encodings) to simplify our discussion of the computational complexity of the CI
problem. Since an improviser must generate words of length at least m, its runtime cannot
be less than m. So if we encoded m and n in binary in a CI instance, all improvisers would
have to run in at least exponential time in the size of the instance (whereas, of course, we
want improvisers whose runtimes are small polynomials in |H|, |S|, etc.). By encoding m
and n in unary, we allow a linear-time improviser, for example, to take time proportional to
n while still being linear in the size of the hard and soft specifications.

As mentioned above, we are interested not only in solving particular CI problems, but
general algorithms for entire classes of such problems. The most natural classes of CI prob-
lems are those whose hard and soft constraints are defined by specifications of a particular
type. For example, we can consider CI problems defined by DFAs, or by CFGs. Such classes
allow us to study the trade-off between expressivity and complexity: small finite automata
can only express simple properties, but admit very efficient algorithms for reasoning about
them. Conversely, using Boolean formulas we can encode very complex constraints in a
compact form, but analyzing the constraints becomes much more difficult.

Definition 3.5. If A and B are classes of specifications, CI(A,B) is the class of CI instances
C = (H,S,m, n, ε, λ, ρ) where H ∈ A and S ∈ B. When discussing decision problems, we use
the same notation for the feasibility problem associated with the class: given C ∈ CI(A,B),
decide whether it is feasible.

For example, CI(UCFG,DFA) is the class of instances where the hard specification is
an unambiguous context-free grammar and the soft specification is a deterministic finite
automaton.

Given a class of CI problems, we call an algorithm for solving them an improvisation
scheme. This is exactly analogous to a classical synthesis algorithm: for example, an al-
gorithm for reactive synthesis from LTL formulas takes a specification in the form of an
LTL formula and generates an implementation satisfying it [136]. Likewise, an improvisa-
tion scheme takes a specification in the form of a CI instance and generates an improviser
satisfying its requirements. For such a scheme to be efficient, the scheme itself as well as
the improvisers it produces should have small runtimes with respect to the size of the input
specification.

Definition 3.6. A polynomial-time improvisation scheme for a class P of CI instances is an
algorithm S with the following properties:
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Correctness: For every instance C ∈ P , if C is feasible then S(C) is an improviser for C,
and otherwise S(C) = ⊥ (a symbol indicating no improviser exists).

Scheme efficiency: There is a polynomial p : R→ R such that the runtime of S on every
C ∈ P is at most p(|C|).

Improviser efficiency: There is a polynomial q : R → R such that for every C ∈ P , if
G = S(C) 6= ⊥ then G has expected runtime at most q(|C|).

Exponential-time and polynomial-space improvisation schemes are defined analogously.

Note that both efficiency requirements are necessary: otherwise, we could have a trivial
scheme which did nothing itself but offloaded an exponential search into the improviser it
generates.

As we have now seen, the control improvisation problem is a problem of randomized
synthesis: taking hard, soft, and randomness specifications and generating an improviser
satisfying them. An improvisation scheme is a uniform way to do this for an entire class of
specifications. In the remainder of the chapter, we will study theoretically when CI problems
can be solved and which classes of problems admit efficient improvisation schemes.

3.2 Existence of Improvisers
A control improvisation problem need not have a solution: for example, if there are no words
satisfying the hard specification, obviously an improviser cannot exist. However, there are
more subtle cases: as we saw in the running example above, even if the hard, soft, and
randomness requirements are all satisfiable individually, they can conflict with each other.
In fact, part of the utility of the formulation of the CI problem is that it allows studying
such trade-offs: how much can we strengthen a soft requirement while maintaining a given
amount of randomness, or how much randomness can we introduce into a system without
compromising its correctness? Thus, our first goal studying the theory of CI is to determine
precise conditions for when a CI problem can be solved.

As we saw above, a CI instance being feasible means that an improvising distribution
exists. A first observation is that since the set of improvisations I is finite, we can parametrize
all distributions over I with finitely many variables representing the probability of each word
w ∈ I. Then the requirements in Definition 3.3 on an improvising distribution are just
linear inequalities, and so the existence of such a distribution is equivalent to the feasibility
of a linear program. We will return to this formulation in Section 3.5, where the linear
program will be written out formally for the more general case of multi-constraint control
improvisation. However, for ordinary CI problems it is more instructive to try to build an
improvising distribution directly. We can do this in a constructive way, thereby yielding not
just an improvising distribution but an improviser (an algorithm) as well.

The intuition behind our construction is as follows. To satisfy the hard constraint, we can
generate only members of I; within I, we should prefer members of A, which satisfy the soft
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specification, to members of I \ A, which do not. Therefore, to satisfy the soft specification
with as high a probability as possible, we assign the minimum allowed probability λ to each
element of I \ A, spreading the remainder of the probability uniformly over A. This will
certainly satisfy the hard constraint and the lower bound of the randomness constraint, but
may violate the upper bound, since each element of A could receive more than probability
ρ. In that case, we instead clamp the probabilities of each element of A at ρ, and spread the
remainder uniformly over I\A. In order for this strategy to yield an improvising distribution,
various conditions on the sizes of I and A must be satisfied. These conditions turn out to be
necessary for an improvising distribution, so we get an exact characterization of feasibility:

Theorem 3.1. For any C = (H,S,m, n, ε, λ, ρ), the following are equivalent:

1. C is feasible.

2. The following inequalities hold:

a) 1/ρ ≤ |I| ≤ 1/λ

b) (1− ε)/ρ ≤ |A|
c) |I| − |A| ≤ ε/λ

3. There is an improviser for C.

Proof. (1)⇒(2): Suppose D is an improvising distribution. Then

ρ|I| =
∑
w∈I

ρ ≥
∑
w∈I

D(w) = Pr[w ∈ I | w ← D] = 1,

so |I| ≥ 1/ρ. Similarly,

λ|I| =
∑
w∈I

λ ≤
∑
w∈I

D(w) = Pr[w ∈ I | w ← D] = 1,

so |I| ≤ 1/λ. Since A ⊆ I, we also have

ρ|A| =
∑
w∈A

ρ ≥
∑
w∈A

D(w) = Pr[w ∈ A | w ← D] ≥ 1− ε,

and therefore |A| ≥ (1− ε)/ρ. Finally, we have

λ|I \ A| =
∑
w∈I\A

λ

≤
∑
w∈I\A

D(w)

= Pr[w ∈ I \ A | w ← D]

= Pr[w ∈ I | w ← D]− Pr[w ∈ A | w ← D]

≤ 1− (1− ε) = ε,

so |I| − |A| ≤ ε/λ.
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(2)⇒(3): Define εopt = max(1 − ρ|A|, λ|I \ A|) (the notation for this quantity will be ex-
plained later). Since |I \ A| ≤ |I| ≤ 1/λ, we have 0 ≤ εopt ≤ 1. Let D be the
distribution on I which picks uniformly from A with probability 1− εopt and otherwise
picks uniformly from I \ A. Note that this distribution is well-defined, since if A = ∅
then εopt = 1, and if I \A = ∅ then ρ|A| = ρ|I| ≥ 1 and so εopt = 0. Clearly, D satisfies
the hard constraint.

Now if εopt = 1− ρ|A| we have εopt ≤ 1− ρ · (1− ε)/ρ = ε. Otherwise, εopt = λ|I \A| ≤
λ(ε/λ) = ε. So in either case we have Pr[w ∈ A | w ← D] = 1 − εopt ≥ 1 − ε, and D
satisfies the soft constraint.

For any w ∈ A, we have D(w) = (1 − εopt)/|A| ≤ (1 − (1 − ρ|A|))/|A| = ρ. If εopt =
1−ρ|A|, then D(w) = ρ ≥ λ; otherwise εopt = λ|I \A|, so D(w) = (1−λ|I \A|)/|A| =
(1−λ|I|+λ|A|)/|A| ≥ (1−1+λ|A|)/|A| = λ. Thus D(w) ≥ λ in either case. Similarly,
for any w ∈ I \A we have D(w) = εopt/|I \A| ≥ λ|I \A|/|I \A| = λ. If εopt = 1−ρ|A|,
then D(w) = (1− ρ|A|)/|I \A| = (1− ρ|A|)/(|I|− |A|) ≤ (1− ρ|A|)/((1/ρ)−|A|) = ρ;
otherwise εopt = λ|I \ A|, so D(w) = (λ|I \ A|)/|I \ A| = λ ≤ ρ. Therefore for any
w ∈ I we always have λ ≤ D(w) ≤ ρ, and thus D satisfies the randomness constraint.

This shows that D is an improvising distribution. Since it has finite support and
rational probabilities, there is a probabilistic algorithm with finite expected runtime
sampling from it, and this algorithm is an improviser for C.

(3)⇒(1): The output distribution of an improviser is an improvising distribution, so if an
improviser for C exists then C must be feasible.

Remark. In the Theorem, if λ = 0, i.e. we impose no lower bound on the probabilities
of individual improvisations, we treat division by zero as yielding ∞, so that both the
inequalities involving λ are trivially satisfied. The remaining inequalities are precisely those
given in the corresponding theorem in the first paper on the theory of CI [63, Theorem 3.1],
which did not allow a lower bound in the randomness requirement.

Theorem 3.1 shows that whenever improvisers exist, there is one of a quite simple form:
it flips a biased coin to pick one of two sets (A or I \ A), and then samples from that set
uniformly at random. Of course there can be many other improvising distributions which
assign a variety of probabilities between λ and ρ, but one of this form is guaranteed to exist.
This suggests that algorithms for solving CI problems should be closely related to algorithms
for uniform sampling from constraints, which in fact we will see later in the chapter.

Running Example. Recall that for our running example we have I = {000, 001, 010, 100, 101}
and A = {000, 001, 101}, so |I| = 5 and |A| = 3. We noted above that this CI problem is
feasible with ε = ρ = 1/4 and λ = 0. This is consistent with Theorem 3.1: the inequalities
involving λ drop out since λ = 0, and we have 1/ρ = 4 ≤ |I| and (1 − ε)/ρ = 3 ≤ |A|. On
the other hand, this last inequality would not be satisfied if we decreased ε below 1/4, and
indeed as we saw above the problem does become infeasible in that case.
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Since the intuition behind our construction was to satisfy the soft constraint with as high
a probability as possible, we might expect it to be somehow optimal among all improvising
distributions. In fact, the error probability εopt achieved by our construction is the smallest
error probability consistent with the hard and randomness constraints, justifying the notation
we use for it:

Corollary 3.1. Let εopt = max(1 − ρ|A|, λ|I \ A|). Then C is feasible if and only if 1/ρ ≤
|I| ≤ 1/λ and ε ≥ εopt.

Proof. Immediate from Theorem 3.1, noting that ε ≥ εopt if and only if inequalities (2b) and
(2c) in the Theorem hold.

Running Example. With ρ = 1/4 and λ = 0 as above, we have εopt = max(1/4, 0) = 1/4,
mirroring our observation above that the problem becomes infeasible with ε < 1/4. If we
increased λ to 1/5, since |I \ A| = 2 we would have εopt = max(1/4, 2/5) = 2/5 and so it
would not be possible to generate an admissible improvisation more than 3/5 of the time.
This makes sense, since |I| = 5 and so to satisfy λ = 1/5 we will need to use the uniform
distribution over I, obtaining an admissible improvisation with probability |A|/|I| = 3/5.

3.3 A Generic Improvisation Scheme
Now that we understand when CI problems are solvable, the next step is to develop algo-
rithms for solving them. The proof of Theorem 3.1 suggests a generic procedure, requiring a
few basic operations on specifications that were used in the construction of an improvising
distribution:

Intersection: Given two specifications X and Y , compute a specification Z such that
L(Z) = L(X ) ∩ L(Y).

Difference: Given two specifications X and Y , compute a specification Z such that L(Z) =
L(X ) \ L(Y).

Counting: Given a specification X and n,m ∈ N in unary, compute |L(X ) ∩ Σm:n|.

Uniform Sampling: Given a specification X and n,m ∈ N in unary, sample uniformly at
random from L(X ) ∩ Σm:n.

If these operations can be implemented efficiently for a particular class of specifications,
then we can efficiently solve the corresponding CI problems:

Theorem 3.2. Suppose Spec is a class of specifications that supports the operations above.
Suppose further that the operations can be done in polynomial time (expected time for uniform
sampling). Then there is a polynomial-time improvisation scheme for CI(Spec,Spec).
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Proof. Given a problem C ∈ CI(Spec,Spec) with C = (H,S,m, n, ε, λ, ρ), the scheme works
as follows. First, we construct representations of all the sets we need. Note that L(H) ∩
Σm:n = I by definition. Applying intersection to H and S, we get a specification A such
that L(A) ∩ Σm:n = L(H) ∩ L(S) ∩ Σm:n = I ∩ L(S) = A. Finally, applying difference to H
and S gives a specification B such that L(B) ∩ Σm:n = I \ A.

Next, applying counting to H and A with bounds n and m, we compute |I| and |A|. We
can then check whether the inequalities in Theorem 3.1 are satisfied. If not, then C is not
feasible and we return ⊥. Otherwise, C is feasible and we will build an improviser sampling
from the same distribution constructed in the proof of Theorem 3.1. As there, let εopt =
max(1− ρ|A|, λ|I \A|) (easily computed since we know |I| and |A|, and |I \A| = |I| − |A|),
and let D be the distribution on I that with probability 1 − εopt picks uniformly from A
and otherwise picks uniformly from I \A. Since the inequalities in Theorem 3.1 are true, its
proof shows that D is an improvising distribution for C.

We can easily build a probabilistic algorithm G sampling from D: it simply flips a coin,
applying uniform sampling to A with probability 1 − εopt and otherwise applying uniform
sampling to B (with length boundsm and n). Since L(A)∩Σm:n = A and L(B)∩Σm:n = I\A,
the output distribution of G is D and so G is an improviser for C.

This procedure is clearly correct. Since the intersection and difference operations take
polynomial time, the constructed specifications A and B have sizes polynomial in |H| and
|S|, and thus in |C|. So the subsequent counting and sampling operations performed on these
specifications will also be polynomial in |C| (recalling that n and m are encoded in unary).
In particular, the computed values of |I| and |A| have polynomial bitwidth, so the same is
true of εopt, and the arithmetic performed by the procedure also takes time polynomial in
|C|. Therefore in total the procedure runs in polynomial time. The improvisers generated by
the procedure run in expected polynomial time, since the bitwidth of εopt is polynomial and
uniform sampling takes expected polynomial time. So the procedure is a polynomial-time
improvisation scheme.

Running Example. Recall that for our running example C = (H,S, 3, 3, 1/4, 0, 1/4), we have
I = {000, 001, 010, 100, 101} and A = {000, 001, 101}. In Section 3.4.1 we will see that all
the operations needed by Theorem 3.2 can be performed efficiently for DFAs like H and S.
Applying intersection and difference, we obtain DFAs A and B such that L(A) = A and
L(B) = I\A = {010, 100}. Applying counting toH andA we find that |I| = 5 and |A| = 3, so
the inequalities in Theorem 3.1 are satisfied. Next we compute εopt = max(1−ρ|A|, λ|I\A|) =
max(1/4, 0) = 1/4. Finally, we return an improviser G that samples uniformly from L(A)
with probability 1 − εopt = 3/4 and from L(B) with probability εopt = 1/4. So G returns
000, 001, and 101 with probability 3/4 · 1/3 = 1/4 each, and 010 and 100 with probability
1/4 · 1/2 = 1/8 each. This distribution satisfies the hard, soft, and randomness constraints,
so it is indeed an improviser for C.
Remark. Note that all 4 types of operations used in Theorem 3.2 are in some sense necessary.
As we will see later, we can use the fact that the feasibility of a CI instance depends on the
sizes of I and A to reduce counting to CI feasibility. Once the size of a set S is known,
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uniform sampling becomes a special case of CI, simply letting the hard specification encode
S and putting λ = ρ = 1/|S|. Finally, it is easy to see how CI feasibility can be used to
solve decision versions of intersection and difference, building CI instances which are feasible
if and only if two sets have nonempty intersection or difference.

Although Theorem 3.2 was stated in terms of polynomial time for simplicity, its con-
struction only uses the operations on specifications as black boxes, and therefore relativizes
to any amount of computational resources needed to perform the operations. More precisely,
if the operations can be done in polynomial time relative to an oracle O, then the Theorem
yields an improvisation scheme that is polynomial-time relative to O (where both the scheme
and the improvisers it generates may query O). This closely relates the complexity of CI
to the complexities of the 4 operations, and in particular to counting and sampling, since
these are typically the most difficult (e.g. for Boolean formulas, intersection and difference
are straightforward but counting and sampling are very hard). In the next section we will
follow this approach to determine the complexity of CI for a variety of different types of
specifications.

However, without any reasoning about specific types of specifications we can already use
Theorem 3.2 to upper bound the complexity of CI for a very broad range of specifications:
any property testable in polynomial time. For such specifications, counting and sampling can
be done with a #P oracle, which leads to a polynomial-time improvisation scheme relative
to a #P oracle. Applying Theorem 3.2 abstractly is somewhat tricky since we need to keep
track of the runtimes of the polynomial-time algorithms testing the specifications, so we
again implement the construction used in its proof directly. In fact, using Toda’s theorem
we can generalize the result so that it applies to any specification testable using a PH oracle:

Theorem 3.3. Suppose Spec is a class of specifications such that membership in the lan-
guage of any X ∈ Spec can be decided in polynomial time relative to a PH oracle. Then
CI(Spec,Spec) has an improvisation scheme that is polynomial-time relative to a #P oracle.

Proof. By assumption there is a polynomial-time algorithmMPH(w,X ) that decides whether
w ∈ L(X ) for any specification X ∈ Spec. Then IC = {w ∈ L(HC) |mC ≤ |w| ≤ nC} = {w ∈
Σ∗ |mC ≤ |w| ≤ nC∧MPH(w,HC) = 1}, so whether w ∈ IC is decidable in time polynomial in
|w| and |C| relative to a PH oracle. Similarly, AC = IC∩L(SC) = IC∩{w ∈ Σ∗ |MPH(w,SC) =
1}, so whether w ∈ AC is decidable in time polynomial in |w| and |C| relative to a PH oracle.
Since any w ∈ IC has length at most nC, and in particular polynomial in |C|, this shows that
the relations RI = {(C, w)|w ∈ IC}, RA = {(C, w)|w ∈ AC}, and RI\A = {(C, w)|w ∈ IC\AC}
are NPPH-relations1. Therefore computing |IC| = |{w ∈ Σ∗ |(C, w) ∈ RI}| is a #PPH problem,
and likewise for |AC|. Furthermore, sampling uniformly from AC and IC \AC is equivalent to
sampling uniformly from the witnesses of C under the relations RA and RI\A respectively.
This can be done in polynomial expected time relative to a #PPH oracle (relativizing the
algorithms of Jerrum et al. [89] or Bellare et al. [15]). So the construction in Theorem 3.2

1In the terminology of Bellare et al. [15], relativized to the PH oracle; these relations (unrelativized) are
called p-relations by Jerrum et al. [89].



CHAPTER 3. CONTROL IMPROVISATION 33

yields an improvisation scheme for CI(Spec,Spec) that is polynomial-time relative to a
#PPH oracle.

To remove the PH oracle, note that PPPH ⊆ PPP by the stronger form of Toda’s theorem
[171]. Since #PPH ⊆ FPPPPH

by a standard binary search argument, we have #PPH ⊆
FPPPPH

⊆ FPPPP
= FPPP ⊆ FP#P. So the polynomial-time improvisation scheme (and the

improvisers it generates) can simulate the #PPH oracle using only a #P oracle.

3.4 Complexity of Control Improvisation
By Theorem 3.3, for a very wide class of specifications the complexity of CI is between P and
#P. In this section we examine several natural classes of CI problems and pin down their
complexity as being at one end or the other of this range.

3.4.1 Finite Automata

Finite automata are a simple and tractable form of specification capturing the notion of
finite-memory properties. These are properties which can be tested by examining a word
left-to-right, only being able to remember a finite number of already-seen symbols. Examples
of such specifications include properties of a word w which hold if and only if each subword
of w of a fixed constant length satisfied some condition. Such properties are useful, for
example, in music improvisation:
Example (Factor Oracles). A practical approach to computer music improvisation, used for
example in the well-known OMax system [10], uses a data structure called the factor oracle,
originally introduced for string matching [3, 37]. Given a word wref of length n representing
a reference melody as a sequence of notes, the corresponding factor oracle F is an automaton
with the following key properties: F has n+ 1 states, all accepting and arranged in a linear
chain. There are direct transitions moving along the chain, labeled with the corresponding
symbol of wref, and potentially additional forward and backward transitions. Figure 3.1
shows the factor oracle for the word wref = bbac.

Note that when we follow the direct transitions, we exactly reproduce the corresponding
part of wref. The extra forward and backward transitions allow us to jump around inside
wref, producing a word which is the concatenation of different subwords (factors) of wref.
The more non-direct transitions we use, the more dissimilar the resulting word will be to
wref. Therefore, we can use the factor oracle for improvisation by assigning probabilities
to the transitions, giving the bulk of the probability to direct transitions. This turns the
automaton into a generative Markov model generating variations on wref [9]. The first paper
on control improvisation by Donzé et al. [44] used this model to satisfy the equivalent of our
soft and randomness constraints, heuristically enforcing a hard constraint on top of it (but
without providing guarantees of being able to do so).

Here, we can still make use of the factor oracle F by encoding the notion of divergence
from wref that F captures as a DFA. Specifically, we can require that the number of non-
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Figure 3.1: Factor oracle corresponding to the word wref = bbac. The direct transitions are
shown in bold.

direct transitions taken by F on any generated word w be large enough to not reproduce
wref too strictly, but small enough so as to get a recognizable variation on it. Since DFAs
cannot do unbounded counting, we use a sliding window of some finite size k. Then our soft
specification S can be that at any point as F processes w, the number of the previous k
transitions which were non-direct lies in some interval [`, h]. This predicate can be encoded
as a DFA of size O(|F | · 2k) as follows: we have a copy of F , denoted Fs, for every string
s ∈ {0, 1}k, each bit of s indicating whether the corresponding previous transition (out of
the last k) was non-direct. As each new symbol is processed, we execute the current copy
of F as usual, but move to the appropriate state of the copy of F corresponding to the new
k-transition history, i.e., if we were in Fs, we move to Ft where t consists of the last k−1 bits
of s followed by a 0 if the transition we took was direct and a 1 otherwise. Making the states
of Fs accepting if and only if the number of 1s in s is in [`, h], this automaton represents α
as desired. The size of the automaton grows exponentially in the size of the window, but for
small windows it can be reasonable.

Finite automata can also capture safety and reachability properties in robotic planning
when the state space of the robot and its environment is finite, as on a gridworld:

Example (Patrolling in a Grid World). Consider synthesizing a route for a security robot
which patrols a museum. Discretizing the map into a grid, a route can be viewed as a
word over the four movement directions the robot can take at each step. Specifications like
avoiding collisions with static obstacles and visiting a set of important locations can then
easily be encoded as DFAs and enforced by the hard constraint. The randomness constraint
then allows us to generate many different routes satisfying these specifications, so that the
robot’s position is harder to predict ahead of time. To prevent such random routes from
being too inefficient, we can use the soft constraint to, for example, require that the robot
usually complete its tour within a certain amount of time. We will discuss this example in
more detail in Chapter 6.

For deterministic finite automata, there are efficient classical algorithms for counting and
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uniform sampling [86], which allow us to use Theorem 3.2 and obtain a polynomial-time
improvisation scheme:

Theorem 3.4. There is a polynomial-time improvisation scheme for CI(DFA,DFA).

Proof. We instantiate the operations needed by Theorem 3.2.

Intersection: Given two DFAs X and Y , we can construct a DFA Z such that L(Z) =
L(X )∩L(Y) with the standard product construction. The time needed to do this and
the size of Z are both O(|X ||Y|).

Difference: Given two DFAs X and Y , we can construct a DFA Z such that L(Z) =
L(X )\L(Y) by complementing Y with the standard construction, and then taking the
product with X . The time required and resulting automaton size are polynomial, as
for intersection.

Counting: Using the dynamic programming algorithm of Hickey and Cohen [86] (which
does counting as a preliminary step to uniform sampling, along the lines of Wilf [184]),
for any ` ∈ N we can compute |L(X )∩Σ`| in time polynomial in |X | and `. Summing
these for all ` from m to n, we obtain |L(X ) ∩ Σm:n| as desired2.

Uniform Sampling: As mentioned above, the algorithm of Hickey and Cohen [86] also
allows us to sample uniformly from |L(X ) ∩ Σ`| for any length ` ∈ N in polynomial
time. Since we want to sample uniformly from all words of lengths fromm to n, we pick
a random length ` in this range with probability proportional to the number of words of
that length. Specifically, for each ` from m to n we compute the count c` = |L(X )∩Σ`|
as above. We then pick a random ` so that the probability of obtaining the value j is
cj/
∑

k ck. Sampling from |L(X )∩Σ`| uniformly at random, the probability of obtaining
any w ∈ L(X )∩Σm:n is (c|w|/

∑
k ck) · (1/|L(X )∩Σ|w||) = 1/

∑
k ck = 1/|L(X )∩Σm:n|,

as desired. Computing the counts and performing the sampling take polynomial time
in total.

Since we can perform all of these operations in polynomial time, Theorem 3.2 yields a
polynomial-time improvisation scheme.

This construction depends critically on the fact that the automata involved are determin-
istic, because the algorithm of Hickey and Cohen [86] actually counts and samples accepting
paths through the automaton rather than accepting words. For deterministic automata,
every word in the language has exactly one corresponding accepting path, so that the algo-
rithm effectively counts and samples words. However, for nondeterministic automata, there

2In practice, invocations of the algorithm of Hickey and Cohen [86] to compute the sizes of slices of a
language of different lengths should not be done independently. The algorithm builds a memoization table
storing the sizes of the `-slice of the language for all ` up to the desired length, so we can simply run the
algorithm once for length n and query the table for all smaller lengths.
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can be multiple accepting paths for a single word in the language, which will cause it to be
over-counted. It is easy to construct an NFA with language consisting of two words {A,B},
with A having a single accepting path and B having exponentially-many accepting paths.
On such an automaton, the algorithm of Hickey and Cohen [86] would yield a count with
exponentially-large error, and would sample A with only exponentially-small probability.
This phenomenon is not simply a flaw with this particular algorithm: counting the language
of an NFA is known to be hard, yielding a lower bound on the complexity of CI with such
specifications:

Theorem 3.5. CI(NFA,DFA) and CI(DFA,NFA) are #P-hard.

Proof. We prove this for CI(NFA,DFA) — the other case is similar. As shown by Kannan
et al. [93], the problem of determining |L(M) ∩ Σ`| given an NFA M over an alphabet Σ
and ` ∈ N in unary is #P-complete. We give a polynomial-time reduction from this problem
to checking feasibility of a CI instance in CI(NFA,DFA) (note that as per the definition of
#P-completeness, we may use a Cook reduction, i.e., we may call the CI(NFA,DFA) oracle
multiple times).

For any NFAM, length ` ∈ N, and positive N ∈ N, consider the CI(NFA,DFA) instance
CN = (M, T , `, `, 0, 0, 1/N) where T is the trivial DFA accepting all of Σ∗. Clearly for this
instance we have I = A = L(M) ∩ Σ`. Since ε = λ = 0 and ρ = 1/N , by Theorem 3.1 we
have that CN is feasible if and only if |L(M) ∩ Σ`| ≥ 1/(1/N) = N . So we can determine
whether the latter is the case using a feasibility query for a CI(NFA,DFA) instance. Since
|L(M) ∩ Σ`| ≤ |Σ|`, using binary search we can find the exact value of |L(M) ∩ Σ`| with
polynomially-many such queries (recalling that ` is given in unary).

This result indicates that control improvisation problems with NFA specifications proba-
bly do not admit a polynomial-time improvisation scheme. However, this does not necessarily
mean that such problems are unsolvable in practice: in Section 3.4.3 we will see how to solve
them approximately using SAT solvers.

Finally, we note that the original report on control improvisation, Donzé et al. [43], con-
sidered using an even more powerful class of automata as specifications, namely probabilistic
automata (PFAs) [139]. Under the original definition, CI with PFA specifications was ac-
tually undecidable [63], due to the undecidability of the problem of checking whether the
language of a PFA is empty [126, 38]. However, the latter result depends on the language
of the automaton being able to contain arbitrarily-long words, and therefore does not apply
to our definition of CI, which includes a length bound. Indeed, since testing whether a word
is in the language of a PFA can be done in polynomial time [139], CI problems with PFA
specifications can be solved with a #P oracle by Theorem 3.3.

3.4.2 Context-Free Grammars

Another useful class of specifications, more general than finite automata, are context-free
grammars. These are widely used to specify file formats, making CI with such grammars
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valuable for testing programs that read files:

Example (Software Fuzz Testing). Consider testing an audio player using the generative and
mutational approaches to fuzz testing [165]. A generative fuzz tester might produce random
files from the WAVE grammar (shown in part here):

S → ‘RIFF’ dword ‘WAVE’ 〈format〉
(
[〈cue〉] [〈sample〉] [〈playlist〉]

)∗ 〈wave-data〉
〈wave-data〉 → 〈data〉 | 〈wave-list〉

〈data〉 → ‘data’ cksize byte∗ ckend

A mutational fuzz tester would instead produce random variations on a given seed input:

(‘RIFF’, 32, ‘WAVE’, ‘fmt ’, 16, 12, 2, 4096, 1024, 7, 3, ‘data’, 3178, . . . )

Control improvisation enables a hybrid approach: generating random variations on a
given file that also satisfy the grammar. We simply use the grammar as the hard specification,
and use a soft specification encoding some appropriate notion of similarity to the seed input.

In general, CFGs are more concise than NFAs, which means that our hardness result for
the latter immediately rules out a polynomial-time improvisation scheme:

Theorem 3.6. CI(CFG,DFA) and CI(DFA,CFG) are #P-hard.

Proof. Follows from Theorem 3.5, since an NFA can be converted to an equivalent CFG in
polynomial time [87].

Recall that the reason CI with NFAs is hard is that a word in the language of an NFA
can have multiple corresponding accepting paths. The same difficulty occurs for CFGs: a
word may have multiple derivation trees, making the grammar ambiguous. However, since
ambiguity slows down parsing (and can lead to confusion about the correct semantics in
programming languages, for example), grammars used in practice are often designed to
be unambiguous. Like deterministic finite automata, such grammars (UCFGs) do admit
polynomial-time counting and uniform sampling algorithms [86, 118], which gives hope for
a polynomial-time improvisation scheme.

One complication is that UCFGs are not closed under intersection [87], and our generic
scheme requires intersecting the hard and soft specifications to construct the set A. In fact,
we will see below that when both hard and soft specifications are UCFGs, the CI problem
is still #P-hard, as for general grammars. But when only one specification is a UCFG and
the other is a DFA, we will obtain a polynomial-time improvisation scheme.

In order to use the construction of Theorem 3.2 in this case, we need to be able to intersect
a UCFG G and a DFA D. By a classical result of Bar-Hillel et al. [13], their intersection
is a context-free language, and we can compute a CFG H such that L(H) = L(G) ∩ L(D)
in polynomial time. However, in order to then sample from this intersection, we need H
to be unambiguous. Fortunately, as noted by Ginsburg and Ullian [71], the construction
of Bar-Hillel et al. [13] actually ensures this when G is itself unambiguous. However, their
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presentation does not explicitly demonstrate this fact, so for completeness we present a proof.
We also modify the algorithm in several ways to improve its complexity from Θ(|G|2|D|4) to
Θ(|G||D|3), which makes the algorithm actually feasible for relatively small DFAs.

Lemma 3.1. Given a UCFG G and a DFA D = (Q,Σ, δ, q0, F ) over a common alphabet
Σ, there is an algorithm which computes a UCFG H such that L(H) = L(G) ∩ L(D) in
O(|G||D|3) time.

Proof. First convert G to a CFG G′ = (V,Σ, P, S) such that

1. L(G′) = L(G) \ {λ} (where λ is the empty word), and

2. the RHS of every production in P has length at most 2 and does not contain λ.

This transformation can be done in a way that the time required and the size of G′ are both
O(|G|), and in the process we determine whether λ ∈ L(G) [87, Section 7.4.2]. Furthermore,
it is simple to check that since G is unambiguous, this procedure ensures that G′ is also. The
rest of our algorithm will build an unambiguous CFG H such that L(H) = L(G′) ∩ L(D),
and thus λ 6∈ L(H). If λ ∈ L(G) ∩ L(D) (which we can easily check, since we know
whether λ ∈ L(G) from above, and checking if λ ∈ L(D) is trivial), we can simply add the
production S → λ to H without introducing any ambiguity. Therefore ultimately we will
have L(H) = L(G) ∩ L(D) as desired.

The main construction of Bar-Hillel et al. [13] works on DFAs with a single accepting
state: there is an initial preprocessing step which writes D as a union of |F | DFAs of
that form, so that the construction can be carried out on each and the resulting grammars
combined. Doing this would contribute a factor of |F | to our algorithm’s runtime, so instead
we modify D to produce an NFA D′ = (Q′,Σ, δ′, q0, F

′) as follows. We add two new states
Accept and Reject, where δ(Accept, a) = δ(Reject, a) = Reject for every a ∈ Σ.
Also for any transition δ(x, a) = y where y ∈ F , we add a transition from x to Accept on
input a — note that this makes D′ nondeterministic. Finally, we make Accept the only
accepting state of D′. Clearly we can construct D′ in time linear in |D|.

Now consider any nonempty word w ∈ L(D), which we may write a0 . . . an for some n ≥ 0.
Let w′ be w without its last symbol an (so w′ = ε if w has length 1). Since w ∈ L(D) there
is some x ∈ Q and y ∈ F such that δ(q0, w

′) = x and δ(x, an) = y. Therefore w ∈ L(D′),
since D′ on input w′ can follow unmodified transitions from D to reach x, and then the new
transition from x to Accept on input an. Conversely, if w ∈ L(D′) then executing D′ on
input w we must end in state Accept, and all transitions except the last must be transitions
of D (since once we follow a new transition to Accept, any further transitions will end in
Reject). Note that this means there is only one accepting path in D′ corresponding to
w, so D′ is unambiguous — this will be important later. If the last transition in this path
is from state x on input a, then by construction δ(x, a) ∈ F and so w ∈ L(D). Therefore
L(D′) = L(D) \ {λ}, and since λ 6∈ L(G′) we have L(G′) ∩ L(D) = L(G′) ∩ L(D′).
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Now, following Bar-Hillel et al. [13], we build the CFG H = (V̂ ,Σ, P̂ , Ŝ) where V̂ =
(Q′ × V ×Q′) ∪ Σ and Ŝ = (q0, S,Accept). There are two3 kinds of productions in P̂ :

1. For every productionA→ BC in P , we add the productions (x,A, z)→ (x,B, y)(y, C, z)
for all x, y, z ∈ Q′ to P̂ .

2. For every production A→ b in P , we add the productions (x,A, y)→ b for all x, y ∈ Q′
such that (x, b, y) ∈ δ′ to P̂ .

For a proof that L(H) = L(G′)∩L(D′) (and thus that L(H) = L(G′)∩L(D), as desired), see
Bar-Hillel et al. [13] (note however that our type 2 productions are split into two separate
productions in their presentation). Clearly, we can construct H in O(|P |·|Q′|3) = O(|G||D|3)
time.

It remains to show that H is unambiguous. Take any word w ∈ L(H), and any two
derivation trees T1 and T2 for w. Observe that by the way we constructed the productions
of H above, if we drop the first and third components of the labels on the non-leaf nodes
of T1 or T2 we obtain a derivation tree for w from the grammar G′. Therefore since G′ is
unambiguous, T1 and T2 have the same tree structure.

Now we prove by induction on trees that every node in T1 has the property that its label
is identical to the corresponding node in T2. For the leaf nodes this is immediate, since
they spell out w in either tree. For nodes one level up, i.e. those to which a production of
type 2 is applied, it is proved by Bar-Hillel et al. [13] that if these are written from left to
right they form a sequence (q0, v0, q1), (q1, v1, q2), . . . , (qn−1, vn−1, qn) where q0q1 . . . qn is an
accepting path for w in D′. Since as shown above there is only one such path, these nodes
also have the property. Finally, observe that under productions of type 1, the state labels
of the parent node are uniquely determined by those of its children. So if all of a node’s
children satisfy the property, so does the node itself, and thus by induction all nodes have
the property. Therefore T1 and T2 are identical, and so H is unambiguous.

Using this algorithm, we can build a polynomial-time improvisation scheme for the case
where the hard specification is a UCFG:

Theorem 3.7. There is a polynomial-time improvisation scheme for CI(UCFG,DFA).

Proof. We follow the procedure of Theorem 3.2. To take the intersection of H and S we
apply Lemma 3.1, obtaining a UCFG A such that L(A) ∩ Σm:n = A. To take their differ-
ence, we apply Lemma 3.1 to H and the complement of S (computed with the usual DFA
construction), obtaining a UCFG B such that L(B) ∩ Σm:n = I \ A. Next, applying the

3In fact there are four additional kinds, where the RHS is of the form bc, bC, Bc, or B. But these are
easily handled along the same lines as types (1) and (2) above, so for simplicity we omit the details. The
reason for dealing with all of these different types of productions instead of converting G to Chomsky normal
form (which only has productions of types (1) and (2)) is that the conversion to CNF can square the size of
the grammar. The conversion we use only expands the grammar by a linear amount at most, while keeping
the construction of H efficient.



CHAPTER 3. CONTROL IMPROVISATION 40

algorithms of Hickey and Cohen [86] or McKenzie [118] to H and A, we compute |I| and
|A| (adding up the counts for all lengths between m and n as in Theorem 3.4). Then we
can proceed exactly as in Theorem 3.2, using the algorithms of Hickey and Cohen [86] or
McKenzie [118] to sample from L(A) ∩ Σm:n = A and L(B) ∩ Σm:n = I \ A.

The opposite case, where the hard specification is a DFA and the soft specification is
a UCFG, is significantly more involved. In the procedure above, we complemented the
soft specification in order to construct the set I \ A. We cannot do this here because the
complement of a context-free language is not necessarily context-free [87], and so we will not
be able to apply the sampling algorithm for UCFGs. Fortunately, there is a workaround:
note that we can easily count the complement of a UCFG G, since |L(G)∩Σm:n| = |Σm:n| −
|L(G) ∩ Σm:n| and so counting the complement reduces to counting the original grammar.
Then we can sample the complement by applying the general random-walk reduction of
uniform sampling to counting [184].

Theorem 3.8. There is a polynomial-time improvisation scheme for CI(DFA,UCFG).

Proof. We again follow the procedure of Theorem 3.2. Applying Lemma 3.1 to H and S,
we obtain a UCFG A such that L(A) ∩ Σm:n = A. Then we can apply the algorithm of
Hickey and Cohen [86] to H and A to compute |I| and |A|. If we can uniformly sample from
∆ = L(H) ∩ L(A) ∩Σm:n = L(H) ∩Σm:n \ L(A) = I \A, we can then proceed exactly as in
Theorem 3.2.

We will build up a word from ∆ incrementally, starting from the empty word. Suppose
we have generated the prefix σ so far. For each symbol a ∈ Σ, let ∆σa ⊆ ∆ contain all words
starting with the prefix σa, i.e. ∆σa = {w ∈ ∆ | ∃z ∈ Σ∗ : w = σaz}. Construct a DFA Pσa
accepting all words in Σm:n that start with the prefix σa (clearly we can take Pσa to have size
polynomial in |Σ| and n). Then ∆σa = ∆∩L(Pσa) = ∆ ∪ L(Pσa) = L(H) ∪ L(A) ∪ L(Pσa) =
Σm:n \ (L(H)∪L(A)∪L(Pσa)). Letting D be the complement of the product of H and Pσa,
we have L(D) = L(H) ∪ L(Pσa) and so ∆σa = Σm:n \ (L(A) ∪ L(D)). Applying Lemma 3.1
to A and Pσa, we can find a UCFG Aσa such that L(Aσa) = L(A) ∩ L(Pσa). Then we have

|∆σa| = |Σm:n \ (L(A) ∪ L(D))|
= |Σm:n| − |(L(A) ∪ L(D)) ∩ Σm:n|

= |Σm:n| −
∣∣∣[(L(A) ∩ L(D)) ∪ L(D)

]
∩ Σm:n

∣∣∣
= |Σm:n| − |L(A) ∩ L(D) ∩ Σm:n| − |L(D) ∩ Σm:n|
= |Σm:n| − |L(A) ∩ L(H) ∩ L(Pσa) ∩ Σm:n| − |L(D) ∩ Σm:n|
= |Σm:n| − |L(Aσa) ∩ Σm:n| − |L(D) ∩ Σm:n|.

L(Aσa) and D have polynomial size so using the algorithm of Hickey and Cohen [86] we
can compute the last two terms of the formula above in polynomial time. Therefore we can
compute |∆σa| in polynomial time.
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Now let ∆σ consist of all words in ∆ that start with the prefix σ. Observe that the sets
∆σa form a partition Πσ of ∆σ, unless σ ∈ ∆ in which case we need to also add the set {σ}
to Πσ. Select one of the sets in Πσ randomly, with probability proportional to its size. If we
pick {σ}, then we stop and return σ as our random sample. Otherwise we picked ∆σa for
some a ∈ Σ, so we append a to σ and continue.

Since the procedure of Theorem 3.2 only samples from I \ A = ∆ when it is nonempty,
in the first iteration ∆σ = ∆ is nonempty and so one of the sets in Πσ must be nonempty.
Since we assign a set in Πσ probability zero if it is empty, we will not select such a set,
and so by induction ∆σ is nonempty at every iteration. We must terminate after at most
n iterations, since σ gets longer in every iteration and all words in ∆ have length at most
n. We prove by induction on n− |σ| that if ∆σ is nonempty, our procedure starting from σ
generates a uniform random sample from ∆σ. In the base case |σ| = n, we have ∆σ = {σ},
since no word in ∆ has length greater than n but ∆σ is nonempty. Therefore ∆σa = ∅ for
all a ∈ Σ, so the procedure will return σ, and this is indeed a uniform random sample from
∆σ. For |σ| < n, if σ ∈ ∆σ then the probability of returning σ is the probability of picking
the set {σ} from Πσ, which is 1/

∑
S∈Πσ

|S| = 1/|∆σ|. Any other w ∈ ∆σ has length at least
|σ|+ 1 and so can be written w = σaw′ for some a ∈ Σ and w′ ∈ Σ∗. Now to return w, our
procedure must first pick the set ∆σa from Πσ, and then return w in a later iteration. By the
induction hypothesis, this happens with probability (|∆σa|/

∑
S∈Πσ

|S|) · (1/|∆σa|) = 1/|∆σ|.
So all words in ∆σ are returned with uniform probability, and by induction this holds for all
σ. In particular it holds in the first iteration when σ is the empty word, in which case we
sample uniformly from ∆σ = ∆ as desired.

This allows us to uniformly sample from I \ A and so finish the implementation of the
procedure in Theorem 3.2. All of the operations we perform are polynomial-time, and the
sampling procedure needs only polynomially-many iterations, so this yields a polynomial-
time improvisation scheme.

Together, Theorems 3.7 and 3.8 show that we can efficiently solve CI problems where
one specification is a UCFG and the other is a DFA. However, when both the hard and soft
specifications are unambiguous grammars, the complexity jumps all the way up to #P, the
complexity class for general grammars. In order to show this, we introduce an intermediate
problem that captures the essentially hard part of solving such CI problems:

Definition 3.7. #UCFG-Int is the problem of computing, given two UCFGs G1 and G2

over an alphabet Σ and n ∈ N in unary, the number of words in L(G1) ∩ L(G2) ∩ Σ≤n.

Without the length bound, checking emptiness of the intersection of two CFGs is un-
decidable, as shown by Bar-Hillel et al. [13] using a reduction to the Post correspondence
problem [138]. We use a similar proof (in its details closer to that of Floyd [58]) to establish
the complexity of the bounded version.

Lemma 3.2. #UCFG-Int is #P-complete.
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Proof. All the words in L(G1)∩L(G2)∩Σn have length polynomial in the size of the input,
and checking whether a word is in the set can be done in polynomial time. So #UCFG-Int ∈
#P.

To show hardness, we give a reduction to #UCFG-Int from #Bounded-PCP, the
counting version of the bounded Post correspondence problem. Recall that Bounded-PCP
instances are ordinary PCP instances together with a bound m ∈ N in unary on the total
number of tiles that may be used in a solution. In the usual construction simulating a Turing
machine M with PCP tiles (see for example Hopcroft et al. [87]), an accepting computation
history forM leads to a PCP solution using a number of tiles linear in the size of the history.
So the problem of checking whether M accepts a word in at most a number of steps given in
unary reduces to Bounded-PCP, and thus the latter is NP-complete (as noted in a slightly
different form by Constable et al. [39]). Furthermore, this reduction is almost parsimonious:
the computation history uniquely determines the PCP solution until the accepting state is
reached, when (at least in the reduction given in Hopcroft et al. [87]) the accepting state can
“consume” tape symbols on either side of it in any order. However, we can easily modify the
construction so that the symbols are consumed in a canonical order. In the terminology of
Hopcroft et al. [87], we replace the “type-4” tiles with tiles of the form (qX, q) and (Xq#, q#)
for all accepting states q and tape symbols X. This forces tape symbols to be consumed from
the right of q first, and only allows consumption from the left once there are no tape symbols
to the right (so that q is adjacent to the # marking the end of the element of the history).
Now there is a one-to-one correspondence between accepting computation histories of M
and solutions to the Bounded-PCP instance, so the counting problem #Bounded-PCP
is #P-complete.

Given an instance P of #Bounded-PCP with tiles (x1, y1), . . . , (xk, yk) over an alphabet
Σ′ and a bound m, we construct grammars X and Y along the lines of Bar-Hillel et al. [13]
and Floyd [58]. The grammars use an alphabet Σ consisting of Σ′ together with additional
symbols t1, . . . , tk, and have nonterminal symbols Xi and Yi respectively for 1 ≤ i ≤ m.
Their start symbols are Xm and Ym respectively, and they have the following productions:

Xi → x1Xi−1t1 | · · · | xkXi−1tk |X1 2 ≤ i ≤ m

X1 → x1t1 | · · · | xktk
Yi → y1Yi−1t1 | · · · | ykYi−1tk | Y1 2 ≤ i ≤ m

Y1 → y1t1 | · · · | yktk
An easy induction shows that the words derivable from Xi (respectively, Yi) correspond to
nonempty sequences of at most i tiles. Thus there is a one-to-one correspondence between
words in L(X) ∩ L(Y ) and solutions of P . Furthermore, both grammars are unambiguous,
since the sequence of ti symbols uniquely determines the derivation tree. Finally, all words in
L(X) have length at most n = m(1+max(|x1|, . . . , |xk|)), so |L(X)∩L(Y )| = |L(X)∩L(Y )∩
Σ≤n|. Therefore (X, Y, 1n) is a #UCFG-Int instance with the same number of solutions as
P . This reduction clearly can be done in polynomial time, so #UCFG-Int is #P-hard.

Now we may establish the hardness of CI(UCFG,UCFG).
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Theorem 3.9. CI(UCFG,UCFG) is #P-hard.

Proof. We reduce #UCFG-Int to checking feasibility of a CI(UCFG,UCFG) instance, along
the same lines as Theorem 3.5. Given a #UCFG-Int instance (H,S, 1n) and fixing some
N ∈ N, consider the CI instance CN = (H,S, 0, n, 0, 0, 1/N). For this instance we have
I = L(H) ∩ Σ≤n and A = L(H) ∩ L(S) ∩ Σ≤n. Since ε = λ = 0 and ρ = 1/N , by
Theorem 3.1 we have that CN is feasible if and only if |A| ≥ N , so we can determine if
|L(H)∩L(S)∩Σ≤n| ≥ N with a feasibility query. Since |L(H)∩L(S)∩Σ≤n| = O(|Σ|n), we
can compute |L(H) ∩ L(S) ∩ Σ≤n| with polynomially-many such queries by binary search.
This gives a polynomial-time (Cook) reduction from #UCFG-Int to CI(UCFG,UCFG), so
by Lemma 3.2 the latter is #P-hard.

3.4.3 Boolean Formulas

In this section we discuss an important class of specifications given by existentially-quantified
Boolean formulas. We begin by defining the class and outline how it includes a widely-used
succinct encoding of large finite-state automata. Then we show that although the CI problem
is #P-hard with these specifications, it can be solved approximately using only an NP oracle.
This means that some CI problems with very large automata can still be solved in practice
using SAT solvers.

The specifications we will consider are Boolean formulas with auxiliary variables, where
a word w (encoded in binary) is in the language if the formula is satisfiable after plugging
in w.

Definition 3.8. Fixing an alphabet Σ = {0, 1}k and a length n ∈ N, a symbolic specification
is a Boolean formula φ(w, a) where w is a vector of nk variables and a is a vector of zero or
more variables. The language of φ consists of all w ∈ Σn such that ∃a φ(w, a) is true. The
class of symbolic specifications is denoted Symb.

Remark. The restriction that all words in the language of any symbolic specification have
a fixed length n is for convenience: this allows us to intersect two specifications simply by
conjoining their formulas. We can always pad shorter words out to length n with a dummy
symbol added to the alphabet, altering the formula φ as appropriate.

Symbolic specifications arise in the analysis of transition systems, and in practice can be
useful even for DFAs in situations where there is insufficient memory to store full transition
tables. This is not uncommon in practice, because specifications are often built up as the
conjunction of many small pieces. To use our earlier improvisation scheme for DFAs (Theo-
rem 3.4), we would need to explicitly construct the product of these automata, which could
be exponentially large. An implicit representation of the product by Boolean formulas, in
contrast, will have linear size.

In bounded model checking [16], DFAs and NFAs can be represented by formulas as
follows:



CHAPTER 3. CONTROL IMPROVISATION 44

Definition 3.9. A symbolic automaton is a transition system over states S ⊆ {0, 1}m and
input alphabet Σ ⊆ {0, 1}k represented by:

• a formula init(x) which is true if and only if x ∈ {0, 1}m is an initial state,

• a formula acc(x) which is true if and only if x ∈ {0, 1}m is an accepting state, and

• a formula δ(x, c, y) which is true if and only if there is a transition from x ∈ {0, 1}m
to y ∈ {0, 1}m on input c ∈ {0, 1}k .

A symbolic automaton accepts input words according to the usual definition for NFAs: it
accepts w ∈ Σ∗ if and only if there is a path corresponding to w which leads from an initial
state to an accepting state.

Given a symbolic automaton D and a length bound n ∈ N, it is straightforward to
generate a symbolic specification φ such that L(φ) = L(D) ∩ Σn. The auxiliary variables of
φ encode accepting paths of length n for a given word (see Biere et al. [16] for details), and
existentially quantifying them yields a formula whose models correspond exactly to accepting
words of length n. So for the rest of the section we focus on symbolic specifications, but our
results apply to symbolic automata in particular4.

Since symbolic specifications can be arbitrary Boolean formulas, for which counting is
#P-complete, checking feasibility of CI problems involving them is obviously #P-hard. In the
other direction, deciding membership of a word in a symbolic specification can be done with
an NP oracle, so by Theorem 3.3 there is a polynomial-time improvisation scheme relative
to a #P oracle (indeed, this holds even if we extend the definition of symbolic specification
to allow a larger but bounded number of quantifiers). However, this scheme is not much use
in practice, since #P-complete problems are very difficult to solve exactly.

On the other hand, as we saw in Chapter 2, it is possible to approximately solve #P
problems using only an NP oracle, or in practice, a SAT solver. This does not let immediately
let us solve CI problems with symbolic specifications: since feasibility checking is #P-hard,
by Toda’s theorem [171] we cannot solve such problems using only an NP oracle unless
PH collapses. But algorithms for approximate model counting and sampling will allow us to
solve symbolic CI problems in an approximate sense, achieving values of ε, λ, and ρ which are
somewhat weaker than the optimal values. We will call an approximate improviser achieving
given values of these parameters an (ε, λ, ρ)-improviser.

Before we describe our approximate improvisation scheme, the next lemma makes precise
how we can use uniform generation algorithms for SAT to sample the languages of symbolic
specifications:

Lemma 3.3. There is a probabilistic algorithm using an NP oracle that given a symbolic
specification φ and any τ > 0, returns a random sample from L(φ) that is uniform up to a

4In fact, our results also apply to a more general notion of symbolic automaton where in Definition 3.9
we allow all three of the formulas to use existentially-quantified auxiliary variables. The BMC-style encoding
of accepting paths works without change, the resulting formula simply having additional auxiliary variables.
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multiplicative factor of 1+ τ . The algorithm runs in expected time polynomial in |φ| and 1/τ
relative to the oracle.

Proof. By our definition above, words in the language of φ are assignments to the w vari-
ables of φ(w, a) that can be extended to a complete satisfying assignment. For an arbitrary
formula φ, counting the number of such words is exactly the projected model counting prob-
lem described in Chapter 2. Sampling from L(φ) is therefore equivalent to (approximate)
uniform sampling of the models of φ(w, a) projected onto the variables w. This can be done
with the algorithm of Chakraborty et al. [29], which will run in the time required relative to
an NP oracle. Unfortunately for technical reasons the algorithm works only for τ > 6.84. For
general τ , we can instead modify the algorithm of Bellare et al. [15], which does sampling
without projection. To add projection, we modify the algorithm as described in Chakraborty
et al. [29]: apply the hash function only to the w variables, and when enumerating solutions
using the NP oracle block all solutions that agree on the w with the solutions already enu-
merated. One minor complication is that this algorithm has a constant probability of failing
by returning ⊥ instead of a sample. If that happens, we simply retry until the algorithm
succeeds: this only increases the expected runtime by a constant factor. We note that the
algorithm of Bellare et al. [15] actually samples exactly uniformly at random, and so would
allow us to get somewhat better performance in theory, but with current SAT solvers the
algorithm does not scale (unlike the algorithm of Chakraborty et al. [29]).

A natural approach to building an approximate improvisation scheme for symbolic CI
problems is to use the generic approach of Theorem 3.2, simply using approximate counting
and sampling in place of the exact operations. However, there are two problems. First,
symbolic specifications are not closed under the difference operation, since negating a formula
turns existential quantifiers into universal quantifiers. Second, with approximate counting
the distribution constructed by Theorem 3.2 can be arbitrarily far from an improvising
distribution. Consider a CI instance where |A| = M , |I| = M + 1, ε = ρ = 1/(M + 1),
and λ = 0. This is clearly feasible, with the uniform distribution on I being an improvising
distribution. Now suppose our estimated count for A is too small by a factor of 1 + τ for
some τ > 0, so that our algorithm thinks it has M/(1 + τ) elements. Then our scheme will
compute

εopt = 1− ρ|A| = 1− 1

M + 1
· M

1 + τ
=
M
(

τ
1+τ

)
+ 1

M + 1
.

Now since I \ A has only one element, we will generate that element with probability εopt,
and the ratio εopt/ρ = M(τ/(1 + τ)) + 1 is arbitrarily large as M →∞. So for any constant-
factor approximation of the size of A, our naïve algorithm could yield a distribution which
is arbitrarily far from the maximum allowed probability ρ.

To avoid these problems, our approximate improvisation scheme avoids complementing
S, and in fact does not require counting at all. In exchange, for a desired ε the algorithm may
return an improviser which does not achieve the best possible λ and ρ, but their suboptimality
is bounded.
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Theorem 3.10. There is a procedure that given any τ > 0 and a feasible CI problem C ∈
CI(Symb,Symb) with C = (H,S, n, n, ε, λ, ρ), returns an (ε, ελ/(1 + τ), ρ(1 + ε)(1 + τ))-
improviser. Furthermore, the procedure and the improvisers it generates run in expected
time given by some fixed polynomial in |C| and 1/τ relative to an NP oracle.

Proof. Conjoin H and S (renaming any shared auxiliary variables) to produce a symbolic
specification A such that L(A) = L(H) ∩ L(S) = A. We build a probabilistic algorithm
GNP that samples approximately uniformly from A with probability 1 − ε and from I with
probability ε. By Lemma 3.3, we can do this with tolerance τ in polynomial expected time
relative to the NP oracle.

By definition, G always returns an element of I, and returns an element of A with
probability at least 1 − ε, so the hard and soft constraints are satisfied. Since C is feasible,
by Theorem 3.1 we have 1/ρ ≤ |I| ≤ 1/λ and (1 − ε)/ρ ≤ |A|. Now for any w ∈ A,
we have Pr[w ← G] ≥ (1 − ε)(1/|A|)/(1 + τ) + ε(1/|I|)/(1 + τ) ≥ λ/(1 + τ), while for
any w ∈ I \ A we have Pr[w ← G] ≥ ε(1/|I|)/(1 + τ) ≥ ελ/(1 + τ). Similarly, for any
w ∈ A we have Pr[w ← G] ≤ (1 − ε)(1/|A|)(1 + τ) + ε(1/|I|)(1 + τ) ≤ ρ(1 + ε)(1 + τ),
while for any w ∈ I \ A we have Pr[w ← G] ≤ ε(1/|I|)(1 + τ) ≤ ερ(1 + τ). So G is an
(ε, ελ/(1 + τ), ρ(1 + ε)(1 + τ))-improviser.

Therefore, it is possible to approximately solve CI problems with specifications repre-
sented succinctly by Boolean formulas. This allows working with general NFAs, as well as
deterministic automata that are too large to be stored explicitly (e.g. those arising as a
product of many small automata), at the cost of using a SAT solver and having to relax the
randomness requirement somewhat.

3.5 CI with Multiple Constraints
In this section, we discuss a generalized problem, multi-constraint control improvisation
(MCI) where multiple soft constraints are allowed. We introduced an earlier form of this ex-
tension in Akkaya et al. [2] (for the lighting control application we will discuss in Chapter 7),
with a complete definition and partial analysis following in Fremont et al. [62]. Compared
to the basic CI problem, the conditions under which an instance of MCI is feasible are far
more complex, and we do not have a concise form for them. As a result, we do not have a
simple construction of an improviser, and are forced to fall back to the linear programming
formulation of CI mentioned earlier, which at least allows us to give an exponential-time
improvisation scheme. Finally, although we cannot pin down the complexity of MCI exactly,
we show that it is significantly harder than basic CI: even with DFA specifications, checking
MCI feasibility is #P-hard.
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3.5.1 Introduction

In various applications of control improvisation, the natural formulation of the problem
uses multiple constraints. We often have multiple requirements for a system to satisfy: for
example, in robotic planning we might want to ensure the robot avoids collisions, visits
several locations of interest, and returns to its home base. Hard constraints such as these
can be combined into a single specification: requiring that several specifications H1, . . . ,Hk

should all hold with probability 1 is equivalent to requiring that a single product specification
H hold with probability 1. As noted above, this can cause a performance blowup if the
product specification can be much larger than its components, but this is a problem of
complexity and not expressivity: the definition of control improvisation we have used so far
effectively permits multiple hard constraints.

However, this is not true for soft constraints. In general requiring that both Pr[w ∈
A1] ≥ 1/2 and Pr[w ∈ A2] ≥ 1/2 is not equivalent to Pr[w ∈ A] ≥ p for any single property
A and probability p. This is an issue, because there are natural problems requiring multiple
soft constraints, such as the human-like lighting control application of Akkaya et al. [2].
Example (Human-Like Lighting Control). Suppose we want to automatically turn the lights
in various rooms of a house on and off in a way that makes it look like the owner is at home.
This task is naturally modeled as a CI problem, since we want a random policy for the lights
(fixed timings repeated every day would be unnatural and suspicious), but could also want
to put constraints on power consumption. In particular, we might want to be as human-like
as possible, while still decreasing the power consumption during peak hours (i.e. the most
expensive hours) by some desired amount. If there are multiple time periods during the day
when we want to impose such limits, the most natural encoding would be to use one soft
constraint for each period. We will discuss this application more formally in Chapter 7.

To handle applications like the one above, we remove the asymmetry in the CI definition
by allowing multiple soft constraints. Specifically, the soft specification S and corresponding
error probability ε are replaced by several specifications S1, . . . ,Sk and error probabilities
ε1, . . . , εk.

Definition 3.10. Fix a hard specification H, soft specifications S1, . . . ,Sk, and length bounds
m,n ∈ N. An improvisation is any word w ∈ L(H) ∩ Σm:n, and we write I for the set of all
improvisations as before. An improvisation w ∈ I is i-admissible if w ∈ L(Si), and we write
Ai for the set of all i-admissible improvisations.

Definition 3.11. Given C = (H,S1, . . . ,Sk,m, n, ε1, . . . , εk, λ, ρ) with H, Si, m, and n as
above, εi ∈ [0, 1]∩Q error probabilities, and λ, ρ ∈ [0, 1]∩Q probability bounds, a distribution
D : Σ∗ → [0, 1] is an improvising distribution if it satisfies the following requirements:

Hard constraint: Pr[w ∈ I | w ← D] = 1

Soft constraints: ∀i ∈ [k], Pr[w ∈ Ai | w ← D] ≥ 1− εi

Randomness: ∀w ∈ I, λ ≤ D(w) ≤ ρ
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Feasibility, improvisers, and improvisation schemes are defined in terms of improvising dis-
tributions exactly as in Definitions 3.3 and 3.6.

Definition 3.12. Given C = (H,S1, . . . ,Sk,m, n, ε1, . . . , εk, λ, ρ), the multi-constraint con-
trol improvisation (MCI) problem is to decide whether C is feasible, and if so to generate an
improviser for C. The size |C| of an MCI instance is measured as for CI instances.

Definition 3.13. If A and B are classes of specifications, MCI(A,B) is the class of MCI
instances C = (H,S1, . . . ,Sk,m, n, ε1, . . . , εk, λ, ρ) where H ∈ A and Si ∈ B for all i ∈ [k].
We write MCIk(A,B) for the subset of MCI(A,B) with the given value of k. When discussing
decision problems, we use the same notation for the feasibility problem associated with the
class (i.e. given C ∈MCI(A,B), decide whether it is feasible).

Note that while the MCI definition treats the multiple soft constraints conjunctively (i.e.
every constraint must hold), if the type of specification used supports Boolean operations
then other types of soft constraint can be brought to this form. For example, the requirement

Pr[w ∈ A1] < 3/4 =⇒ Pr[w ∈ A2 ∧ w ∈ A3] ≥ 1/5

can be rewritten
Pr[w ∈ A1] ≥ 1/4 ∨ Pr[w ∈ (A2 ∩ A3)] ≥ 1/5,

and then each disjunct tested for feasibility separately. In general, we can reduce Boolean
combinations of specifications inside probabilities to single specifications and write the result-
ing constraint in disjunctive normal form. Each disjunct is then an MCI instance (ignoring
the very minor issue of strict vs. non-strict inequalities), and the original problem with a
complex soft constraint is feasible if and only if one of the disjuncts is. This transformation
could of course blow up the size of the problem exponentially — the point is that slightly
more complex soft constraints can be handled within the MCI framework.

3.5.2 Feasibility and the Linear Programming Formulation

Unlike the case of basic CI, the feasibility conditions for MCI do not fall out of a simple
intuition for how to build an improvising distribution. Whereas for CI we only need bounds
on the sizes of I and A (Theorem 3.1), for MCI feasibility requires bounds not just on the
sizes of the sets Ai individually but also on the sizes of their intersections, pairwise, 3-wise,
and so forth. For example, if S1 and S2 must each be satisfied with probability at least 3/4,
then A1 and A2 cannot be disjoint, since we only have a total probability of 1 to distribute
between them. Along these lines it is straightforward to derive various inequalities which
are necessary for an MCI instance to be feasible; however, we do not know any explicit set
of inequalities which is sufficient. Instead, we will derive an implicit feasibility condition by
viewing the MCI problem from the perspective of linear programming.

As we already noted for basic CI, the requirements on an improvising distribution in
Definition 3.11 form a linear program over variables representing the probability assigned to
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each word in I. Although this program is exponentially-large in general (with I having up to
|Σ|n elements), observe that with respect to the hard, soft, and randomness constraints, the
only differences between words in I are which soft specifications they satisfy. Exploiting this
symmetry, we can reduce the program to one variable for every possible combination of sat-
isfied/violated soft specifications. For example, basic CI with k = 1 would yield 2 variables,
representing the probabilities of admissible and inadmissible improvisations respectively. In
general the program will have 2k variables, which is still exponential but can be practical
for small numbers of soft constraints. To define the program formally, we introduce some
notation.

Definition 3.14. Fix an MCI instance C. For any M ⊆ [k], define

A′M = I ∩
⋂
i∈M

Ai \
⋃
i 6∈M

Ai,

the improvisations that are i-admissible for exactly those i which are elements of M .

For example, A′∅ consists of the improvisations satisfying no soft specifications, and A′{1,2}
consists of the improvisations satisfying S1 and S2 but no other soft specifications. Clearly,
the sets A′M are disjoint and partition I, and Ai = ∪M3iA′M for all i ∈ [k].

Definition 3.15. For any MCI instance C, the linear program Lin(C) is defined over the
variables pM for M ⊆ [k] by the following equations:

∀M ⊆ [k], pM ≥ 0 (3.1)∑
M⊆[k]

pM = 1 (3.2)

∀i ∈ [k],
∑
M⊆[k]
M3i

pM ≥ 1− εi (3.3)

∀M ⊆ [k], λ|A′M | ≤ pM ≤ ρ|A′M | (3.4)

Lemma 3.4. An MCI instance C is feasible if and only if Lin(C) is.

Proof. Suppose C is feasible, with an improvising distribution D. We claim that pM =∑
w∈A′M

D(w) is a solution to Lin(C). Since D is a probability distribution, equations (3.1)
are trivially satisfied. By the hard constraint,

∑
w∈I D(w) = 1, and since the sets A′M

partition I we have
∑

M⊆[k] pM =
∑

M⊆[k]

∑
w∈A′M

D(w) =
∑

w∈I D(w) = 1, so equation
(3.2) is also satisfied. Similarly, by the soft constraints we have

∑
w∈Ai D(w) ≥ 1 − εi for

each i ∈ [k], and since the sets A′M with M 3 i partition Ai, we have∑
M⊆[k]
M3i

pM =
∑
M⊆[k]
M3i

∑
w∈A′M

D(w) =
∑
w∈Ai

D(w) ≥ 1− εi,
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satisfying equations (3.3). Finally, by the randomness constraint we have λ ≤ D(w) ≤ ρ for
every w ∈ I, so |A′M |λ ≤ pM ≤ |A′M |ρ and equations (3.4) are also satisfied.

Conversely, if Lin(C) has a solution (pM)M⊆[k], for every w ∈ I define D(w) = pMw/|A′Mw
|

whereMw ⊆ [k] is the unique set such that w ∈ A′Mw
(notice this guarantees we do not divide

by zero). Since pMw ≥ 0 by equations (3.1), we have D(w) ≥ 0. Furthermore, since the sets
A′M partition I, ∑

w∈I

D(w) =
∑
w∈I

pMw

|A′Mw
|

=
∑
M⊆[k]

∑
w∈A′M

pM
|A′M |

=
∑
M⊆[k]

pM = 1

by equation (3.2). So D is a probability distribution, and since its domain is I it satisfies
the hard constraint. Similarly, since the sets A′M with M 3 i partition Ai for each i ∈ [k],
we have ∑

w∈Ai

D(w) =
∑
w∈Ai

pMw

|A′Mw
|

=
∑
M⊆[k]
M3i

∑
w∈A′M

pM
|A′M |

=
∑
M⊆[k]
M3i

pM ≥ 1− εi

by equations (3.3). So D satisfies the soft constraints. Finally, for any w ∈ I we have
λ ≤ pMw/|A′Mw

| ≤ ρ by equations (3.4), so D also satisfies the randomness constraint and is
thus an improvising distribution.

Thus, although we do not have closed-form conditions for the feasibility of an MCI
instance C, we can determine feasibility by constructing Lin(C) and applying linear pro-
gramming algorithms.

3.5.3 Complexity

Since the linear program Lin(C) is in general exponentially large, using linear programming
algorithms to solve MCI problems can take exponential time even for tractable specifications.
Therefore the best analogue we can give of our generic scheme for CI (Theorem 3.2) is an
exponential-time scheme:

Theorem 3.11. If Spec is a class of specifications for which membership can be decided in
exponential time, then there is an exponential-time improvisation scheme for MCI(Spec,Spec).

Proof. To compute the quantities needed to formulate Lin(C), we enumerate every w ∈ I =
L(H)∩Σm:n and check for each one which of the specifications Si it satisfies. In the process
we record the unique Mw ⊆ [k] such that w ∈ A′Mw

, and keep track of how many words are
in each A′M . This can be done in exponential time, since there are exponentially-many words
in Σm:n and checking each one against H and every Si takes exponential time. Then we can
construct Lin(C), and since linear programming is polynomial-time [97, 94], we can solve
the exponentially-large program in exponential time. If it is infeasible, by Lemma 3.4 so is
C and we return ⊥. Otherwise, we obtain a solution ~pM to Lin(C), and generating w ∈ I
with probability pMw/|A′Mw

| is an improvising distribution as in the Lemma.
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On the other hand, if we consider the number of soft constraints k to be fixed, then
we can solve MCI problems efficiently whenever the specifications support the intersection,
difference, counting, and uniform sampling operations we used in our generic scheme for CI
(Theorem 3.2):

Theorem 3.12. Suppose Spec is a class of specifications for which the operations in Sec-
tion 3.3 can be done in polynomial time. Then for any fixed k, there is a polynomial-time
improvisation scheme for MCIk(Spec,Spec).

Proof. Using the intersection and difference operations we can construct specifications AM
for the sets A′M for each M ⊆ [k]. Since k is fixed, there are only a constant number of these
specifications. Furthermore, we can construct them using a constant number of intersection
and difference operations, and since these operations take polynomial time, the specifications
have polynomial size. Next, applying the counting operation to each AM , we can find the
sizes |A′M | and then build the linear program Lin(C). The program has polynomial size,
since k is fixed and the sizes |A′M | have polynomial bitwidth (as A′M ⊆ I ⊆ Σn). So we can
solve Lin(C) using a polynomial-time linear programming algorithm.

Now by Lemma 3.4, if Lin(C) is infeasible neither is C and we return ⊥. Otherwise, we
obtain a solution (pM)M⊆[k] to Lin(C), and the Lemma shows that assigning each w ∈ A′M
probability pM/|A′M | yields an improvising distribution. We can sample from this distribu-
tion by picking M ⊆ [k] with probability pM , then applying the uniform sampling operation
to AM . Since the number of M ⊆ [k] is constant and each AM has polynomial size as noted
above, this improviser will run in polynomial time.

Remark. This result shows that, in a sense, MCI is fixed-parameter tractable in k: we have an
improvisation scheme running in time on the order of 2k · poly(|C|). For problems with very
few soft constraints, this algorithm could indeed be practical. However, for even moderate
k, the runtime explodes. The lighting control example we will discuss in Chapter 7 uses
k = 24, and even if solving a linear program with 224 (∼17 million) variables is reasonable,
constructing 224 automata (to compute the size of each set A′M) is not.

Towards a lower bound, recall that even though multiple hard constraints can be com-
bined into a single hard constraint by taking their product, this can cause a blowup in the
size of the specification. For example, while finding a word in the language of a DFA is easy,
finding one in the intersection of an arbitrary number of DFAs is PSPACE-hard [100]. In
our setting, we only want to find words of bounded length, but we also need to count them,
which makes the problem #P-hard.

Definition 3.16. #Bounded-DFA-Int is the problem of computing, given DFAsD1, . . . , Dk

over an alphabet Σ and n ∈ N in unary, the number of words in L(D1) ∩ · · · ∩ L(Dk) ∩ Σn.

Lemma 3.5. #Bounded-DFA-Int is #P-complete.

Proof. The problem is clearly in #P, since in polynomial time we can nondeterministically
pick a word in Σn and check if every Di accepts it. In the other direction, we give a
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reduction from #SAT similar to that used by Kannan et al. [93] to prove hardness of counting
the language of an NFA. Suppose we are given a formula F in conjunctive normal form,
i.e. F = c1 ∧ · · · ∧ ck where each ci is a disjunction of variables and their negations. If F
has n variables V , putting them in some order we can view assignments to V as words in
Σn where Σ = {0, 1}. Then for each ci we can build a DFA Di accepting assignments that
satisfy ci. We have one state for each v ∈ V , and start from the first variable under the
order. If in state v we read a 1 and v occurs positively in ci, or we read a 0 and v occurs
negatively, then the assignment satisfies ci and we transition to a chain of states that ensure
we accept if and only if the word has length exactly n. Otherwise ci is not yet satisfied, so
we move to the state for the next variable in the order. If we are already at the last variable,
then ci is not satisfied by the assignment and we reject. Clearly, each Di has size polynomial
in |F |, and the intersection ∩iL(Di) contains precisely the satisfying assignments of F .

We can use this to lower bound the complexity of MCI with DFA specifications:

Theorem 3.13. MCI(DFA,DFA) is #P-hard.

Proof. We reduce #Bounded-DFA-Int to MCI(DFA,DFA) along similar lines to Theo-
rem 3.5. For anyN ∈ N, consider the MCI instance CN = (T , D1, . . . , Dk, n, n, 0, . . . , 0, 0, 0, 1/N)
where T is the trivial DFA accepting all of Σ∗. For this instance we have I = Σn and
Ai = L(Di) for every i ∈ {1, . . . , k}. Since εi = 0 for every i, an improvising distribu-
tion for CN must assign probability zero to all words not in ∩iL(Di). Therefore since no
word can be assigned probability greater than ρ, if an improvising distribution exists then
|∩iL(Di)| ≥ 1/ρ = N . Conversely, if |∩iL(Di)| ≥ N then a uniform distribution on ∩iL(Di)
is clearly an improvising distribution for CN . So CN is feasible if and only if | ∩i L(Di)| ≥ N .
Finally, since | ∩i L(Di)| ≤ |Σ|n = 2n, by binary search we can determine | ∩i L(Di)| with
polynomially-many MCI(DFA,DFA) queries, and thereby count the satisfying assignments
of F .

Recall that by Theorem 3.4, there is a polynomial-time improvisation scheme for CI(DFA,DFA).
Thus, allowing multiple constraints increases the complexity from P to at least #P. On the
other hand, note that we only used hard constraints, i.e. soft constraints with ε = 0, in the
proof of Theorem 3.13. For MCI problems with only hard constraints, there is a polynomial-
time improvisation scheme relative to a #P oracle by Theorem 3.3, since we can check all
hard specifications at once with a single polynomial-time algorithm (which simply runs the
algorithms for each specification in sequence). Therefore, having multiple hard constraints
increases the complexity to #P, but no further. This raises the natural question of whether
multiple soft constraints can raise the complexity even higher: theoretically, it could reach
as high as EXP before being limited by Theorem 3.11. Closing this gap between #P and EXP
is a clear direction for future work: a multi-constraint version of Theorem 3.1 establishing
closed-form feasibility conditions for MCI would be helpful here.
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Table 3.1: Complexity of the control improvisation problem for various types of hard and
soft specifications H and S. Here #P indicates that feasibility checking is #P-hard, and
that there is a polynomial-time improvisation scheme relative to a #P oracle.

S DFA CFG NFA
H unamb. amb.

DFA poly-time poly-time

CFG
unambiguous poly-time #P

ambiguous #P
NFA #P

3.6 Summary and Future Work
In this chapter, we introduced control improvisation, the problem of synthesizing improvisers
which generate finite words subject to hard, soft, and randomness constraints. The CI
problem provides a firm theoretical footing for the concept of algorithmic improvisation
discussed in the Introduction, and is the basis for more sophisticated forms of algorithmic
improvisation we will study in later chapters. We thoroughly studied the theory of CI,
giving precise conditions for when improvisers exist and a general framework for solving
CI problems. We used this framework to give polynomial-time improvisation schemes for
CI problems with deterministic finite automata and unambiguous context-free grammar
specifications. We also showed that for nondeterministic automata and general context-free
grammars, CI is #P-hard and so polynomial-time improvisation schemes are unlikely to exist.
Our complexity results are summarized in Table 3.1. For specifications given symbolically
by Boolean formulas, we showed that it is possible to approximately solve CI problems using
SAT solvers. Finally, we explored a generalized form of CI allowing multiple soft constraints,
and gave evidence suggesting that it is substantially more difficult than the basic problem:
even for DFA specifications it is #P-hard, and our best improviser construction is only in
EXP.

As we saw in several examples above, control improvisation is useful in a number of appli-
cations including robotic planning and human modeling, which we will study in Chapters 6
and 7. There are also several interesting directions for additional theoretical work:

More Tractable Cases of CI. So far we have only studied broad classes of specifications
based on different formalisms, like finite automata or context-free grammars. There
might well be other practically-useful classes of CI problems which are tractable because
of finer structural properties of the automata involved, for example, rather than just
determinism.

Continuous Signals. Our definition of CI is discrete both in time and in space, with an
improviser choosing symbols from a finite set at each discrete step. Even the rela-
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tively simple extensions to continuous alphabets (e.g. real numbers), or to sequences
of time-stamped events over continuous time, would already be highly interesting (see
Chapter 8 for one potential application). The further extension to continuous signals
would enable test generation for a broad class of cyber-physical systems taking such
signals as input.

Quantitative Soft Constraints. We studied a particular type of soft constraint, namely
one requiring that a Boolean property hold with at least some given probability. Many
other types of soft constraints are possible, for example requiring that some objective
function be close to its optimal value in expectation. Such constraints could be useful
in robotic planning, where we might want a generated route to be as short as possible
on average while still allowing a certain amount of randomness.

Other Randomness Constraints. The randomness constraint we used above is essen-
tially the simplest possible one (other than just requiring a uniform distribution).
Various other types of randomness constraints would be useful in applications: for
example, when generating synthetic data to train or test a machine learning-based sys-
tem, we need much finer control over the distribution of the data than simply requiring
it to be close to uniform. We will discuss this application in depth in Chapters 5 and
8. Another useful type of randomness constraint would be to directly bound a mea-
sure of unpredictability like the entropy in the patrolling robot application. Finally,
for applications like robotic planning and music improvisation where there are nat-
ural metrics on the space of improvisations, we could more directly ensure diversity
by imposing requirements on the distance between successive improvisations or on the
overall coverage of the space.
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Chapter 4

Reactive Control Improvisation

The control improvisation problem we studied in Chapter 3 is an offline synthesis problem in
the sense that an improviser generates a word all at once. However, many interesting systems,
including protocol handlers, robotic task planners, and concurrent software generally, are
open systems that interact over time with an external environment. Synthesis of such reactive
systems requires finding an implementation that chooses actions online in response to the
environment, ensuring the desired specification is satisfied no matter what the environment
does. This problem, reactive synthesis, has a long history going back to Church [33] (see
Finkbeiner [56] for a survey). Reactive synthesis from temporal logic specifications [136] has
been particularly well-studied and is being increasingly used in applications such as hardware
synthesis [18] and robotic task planning [101].

In this chapter, we introduce a reactive version of control improvisation [67] which allows
synthesizing reactive systems with random behavior : in fact, systems where being random in
a prescribed way is part of their specification. This is in contrast to prior work on stochastic
games where randomness is used to model uncertain environments or randomized strategies
are merely allowed, not required. Solvers for stochastic games may incidentally produce
randomized strategies to satisfy a functional specification (and some types of specification,
e.g. multi-objective queries [31], may only be realizable by randomized strategies), but do
not provide a general way to enforce randomness. Unlike most specifications used in reactive
synthesis, our randomness requirement is a property of a system’s distribution of behaviors,
not of an individual behavior. While probabilistic specification languages like PCTL [85]
can capture some such properties, the simple and natural randomness requirement of control
improvisation cannot be concisely expressed by existing languages (even those as powerful as
Stochastic Game Logic [11], which can quantify over strategies). Thus, randomized reactive
synthesis in our sense requires significantly different methods than those previously studied.

However, we argue that this type of synthesis is quite useful: as we have argued above,
introducing randomness into the behavior of a system can often be beneficial, enhancing
variety, robustness, and unpredictability. Example applications include:

• Synthesizing a black-box fuzz tester for a network service, we want a client program
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that not only conforms to the protocol (perhaps only most of the time) but can generate
many different sequences of packets even if the server being tested responds in a fixed
way: randomness ensures this.

• Synthesizing a controller for a robot exploring an unknown environment, randomness
provides a low-memory way to increase coverage of the space. It can also help to reduce
systematic bias in the exploration procedure.

• Synthesizing a controller for a patrolling surveillance robot, introducing randomness
in planning makes the robot’s future location harder to predict.

We will discuss applications to robotic planning in more detail in Chapter 6.
Our reactive control improvisation (RCI) problem is defined similarly to the CI problem

of Chapter 3: we again have hard, soft, and randomness constraints. The primary difference
is that an improviser now generates a word incrementally, alternating adding symbols with
a potentially-adversarial environment. This allows us to perform reactive synthesis in a
finite window, encoding functional specifications and environment assumptions into the hard
constraint, while the soft and randomness constraints allow us to tune how randomness is
added to the system. The improviser obtained by solving the RCI problem is then a solution
to the original synthesis problem. We define the RCI problem formally in Section 4.1.

We begin our study of the theory of RCI in Section 4.2 by analyzing when RCI problems
are solvable, or realizable (in the terminology of reactive synthesis). To do this, we introduce
the notion of the width of a game, which generalizes the concept of a “winning” position by
counting how many ways a player can win from the position. Using width, we give precise
conditions for an RCI instance to be realizable. Although these conditions are quite similar
to those we gave in Chapter 3 for CI, the construction of an improviser is significantly more
complex in the reactive setting. Notably, our improviser requires memory, and we show
this is necessary even for simple reachability and safety games where memoryless strategies
suffice for ordinary reactive synthesis.

As was the case for CI, our constructive proof of the feasibility conditions allows us to
give a generic procedure for building RCI improvisers in Section 4.3. Whenever it is possible
to efficiently intersect specifications and compute their widths, we obtain an efficient impro-
visation scheme. We also give a general recursive algorithm for computing widths, which
yields a polynomial-space improvisation scheme for any specifications testable in polynomial
space.

Next, in Section 4.4 we study the complexity of RCI in more detail for several interesting
classes of specifications. We develop a polynomial-time improvisation scheme for determin-
istic finite automata, which also applies to reachability and safety games since these can be
encoded as DFAs. For nondeterministic automata, the complexity increases to PSPACE, as
we show that even finding a single winning strategy for a game whose winning set is given
by an NFA is PSPACE-hard. This hardness carries over to context-free grammars, Boolean
formulas, and temporal logic formulas.

Finally, we conclude in Section 4.5 with a summary and directions for future work.
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S X Z

Y

Figure 4.1: An example of a reachability game.

4.1 Problem Definition

4.1.1 Synthesis Games

Reactive control improvisation will be formalized in terms of a 2-player game which is essen-
tially the standard synthesis game used in reactive synthesis [56]. However, our formulation
is slightly different for compatibility with the definition of control improvisation, so we give
a self-contained presentation here.

Our definitions will be general enough to capture many types of games used in practice
for reactive synthesis (modulo the restriction to finite words, which we discuss further below).
In particular, as examples we will often use reachability games [117], where players’ actions
cause transitions in a state space and the goal is to reach a target state. We group these
games, safety games where the goal is to avoid a set of states, and reach-avoid games
combining reachability and safety goals [172] together as reachability/safety games (RSGs).
We draw reachability games in the usual way, shown in Figure 4.1: squares are adversary-
controlled states, and states with a double border are target states (mirroring the accepting
state notation we use for automata). In this game, if the adversary decides to move from
the initial position S to X, then we can move to Y and win, or to Z and lose.

Now we proceed to define our formalism for games. Fix a finite alphabet Σ. The players
of the game will alternate picking symbols from Σ, building up a word. We can then specify
the set of winning plays with a language over Σ. To simplify our presentation we assume
that players strictly alternate turns and that any symbol from Σ is a legal move. These
assumptions can be relaxed in the usual way by modifying the winning set appropriately.

Remark. To model a game where the allowed actions can change each turn (e.g. reachability
games, where the set of states we can move to depends on the current state), we can use the
standard method of modifying the winning set of that any player who makes an illegal move
automatically loses. In particular, to view a reachability game G with a set of states Σ as a
language over Σ, we let our language L of winning plays consist of all paths in G ending in
a target state (the original winning plays for the reachability game), together with all words
in Σ∗ which are not paths in G and such that it is the adversary’s turn during the first move
causing the word to fail to be a path (an example in Figure 4.1 would be the word SZX,
since the moves from S to Z and from Z to X are both illegal, but the adversary makes
an illegal move first). Then if we synthesize a strategy ensuring we get a play in L against
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any adversary, it is a winning strategy for the original game G: an adversary for G always
follows edges in G (unless they are at a state with no outgoing edges, but then the game
ends), so in order to yield a word in L our strategy must also. In fact, the same type of
procedure allows us to encode arbitrary assumptions on the adversary, which will be useful
in cases like our robotic planning example in Chapter 6: such planning problems typically
do not admit solutions without making assumptions on the environment.

Likewise, we can relax the assumption that players strictly alternate, since it is straight-
forward to modify our algorithms to work with a function specifying the current player as
a function of what has been played so far. Alternatively we can use games like reachability
games, which do not have strict alternation, as specifications for our algorithms below by
inserting extra states in the usual way to produce strict alternation. Note that there is a
one-to-one correspondence between plays before and after this transformation, so it will not
affect the randomness requirement of RCI.

Finite words: While reactive synthesis is usually considered over infinite words, here we
focus on synthesis in a finite window, as it is unclear how best to generalize our randomness
requirement to the infinite case. This assumption is not too restrictive, as solutions of
bounded length are adequate for many applications. In fuzz testing, for example, we do not
want to generate arbitrarily long files or sequences of packets. In robotic planning, we often
want a plan that accomplishes a task within a certain amount of time. Furthermore, planning
problems with liveness specifications can often be segmented into finite pieces: we do not
need an infinite route for a patrolling robot, but can plan within a finite horizon and replan
periodically. Replanning may even be necessary when environment assumptions become
invalid. At any rate, we will see that the bounded case of reactive control improvisation is
already highly nontrivial.

As a final simplification, we require that all plays have length exactly n ∈ N. To allow a
range [m,n] we can simply add a new padding symbol to Σ and extend all shorter words to
length n, modifying the winning set appropriately.

Definition 4.1. A history h is an element of Σ≤n, representing the moves of the game played
so far. At the start of the game, the history is the empty word, which we write λ. We say
the game has ended after h if |h| = n; otherwise it is our turn after h if |h| is even, and the
adversary’s turn if |h| is odd.

Definition 4.2. A strategy is a function σ : Σ≤n × Σ → [0, 1] such that for any history
h ∈ Σ≤n with |h| < n, σ(h, ·) is a probability distribution over Σ. We write x ← σ(h) to
indicate that x is a symbol randomly drawn from σ(h, ·).

Since strategies are randomized, fixing strategies for both players does not uniquely
determine a play of the game, but defines a distribution over plays:

Definition 4.3. Given a pair of strategies (σ, τ), we can generate a random play π ∈ Σn

as follows. Pick π0 ← σ(λ), then for i from 1 to n − 1 pick πi ← τ(π0 . . . πi−1) if i is odd
and πi ← σ(π0 . . . πi−1) otherwise. Finally, put π = π0 . . . πn−1. We write Pσ,τ (π) for the
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probability of obtaining the play π. This extends to a set of playsX ⊆ Σn in the natural way:
Pσ,τ (X) =

∑
π∈X Pσ,τ (π). Finally, the set of possible plays is Πσ,τ = {π ∈ Σn | Pσ,τ (π) > 0}.

The next definition is just the conditional probability of a play given a history, but works
for histories with probability zero, simplifying our presentation.

Definition 4.4. For any history h = h0 . . . hk−1 ∈ Σ≤n and word ρ ∈ Σn−k, we write
Pσ,τ (ρ|h) for the probability that if we assign πi = hi for i < k and sample πk, . . . , πn−1 by
the process above, then πk . . . πn−1 = ρ.

We use without comment several basic facts about Pσ,τ (ρ|h), all immediate from its
definition:

Lemma 4.1. For any history h ∈ Σ≤n, word ρ ∈ Σn−|h|, and strategies σ, τ :

(1) if |h| = 0, then Pσ,τ (ρ|h) = Pσ,τ (ρ);

(2) if |h| = n, then Pσ,τ (ρ|h) = 1;

(3) if |h| < n, then ρ = uρ′ for some u ∈ Σ, and:

a) if it is our turn after h, then Pσ,τ (ρ|h) = σ(h, u) · Pσ,τ (ρ′|hu);

b) if it is the adversary’s turn after h, then Pσ,τ (ρ|h) = τ(h, u) · Pσ,τ (ρ′|hu).

4.1.2 The Reactive Control Improvisation Problem

Reactive control improvisation is a direct generalization of the control improvisation problem
we studied in Chapter 3, being a randomized synthesis problem subject to hard, soft, and
randomness constraints. The main difference in RCI is that these constraints are interpreted
not over just the output of the improviser, but over a play of the synthesis game described
above; i.e., the combined trace π ∈ Σn including the actions of both the improviser and the
adversary. We will use the same terminology as Chapter 3 to describe the specifications and
languages defining the hard and soft constraints:

Definition 4.5. Given hard and soft specifications H and S of languages over Σ, an impro-
visation is a word w ∈ L(H)∩Σn. It is admissible if w ∈ L(S). The set of all improvisations
is denoted I, and admissible improvisations A.

The constraints of RCI are then defined analogously to CI: the hard constraint requires
that we only generate improvisations, the soft constraint requires that the generated impro-
visation be admissible with probability at least 1 − ε for some error probability ε, and the
randomness constraint requires that no improvisation be generated with probability greater
than a specified ρ.
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Figure 4.2: The hard specification DFA H in our running example. The soft specification S
is the same but with only the shaded states accepting.

Running Example. We will use the following simple example throughout the chapter: each
player may increment (+), decrement (−), or leave unchanged (=) a counter which is initially
zero. We require that the counter must always stay within [−2, 2], and furthermore that it
end at a nonnegative value at least 3/4 of the time. Finally, we want the improviser to
generate at least 16 different behaviors, all of length 4. We can formalize this as an RCI
problem as follows:

Alphabet. Σ = {+,−,=}, representing the 3 actions the players may take.

Length Bound. n = 4, so that the game lasts for 4 moves.

Hard Constraint. H is a DFA, shown in Figure 4.2, encoding the property that the counter
stay within [−2, 2].

Soft Constraint. S is a similar DFA, also shown in Figure 4.2, encoding the property that
the counter end at a nonnegative value (given H). Since we want this property to hold
3/4 of the time, we put the error probability ε = 1/4.

Randomness Constraint. ρ = 1/16, which implies the improviser can generate at least
16 words.

Then for example the word ++== is an admissible improvisation, satisfying both hard
and soft constraints, and so is in A. The word +−=− on the other hand satisfies H but not
S (the counter ends at −1), so it is in I but not A. Finally, +++− does not satisfy H (the
counter exceeds 2 at some point), so it is not an improvisation at all and is not in I.

A reactive control improvisation problem is defined by H, S, ε, and ρ, and a solution is
a strategy which ensures that the hard, soft, and randomness constraints hold against every
adversary. Formally, following our definition in Chapter 3:

Definition 4.6. Given an RCI instance C = (H,S, n, ε, ρ) with H, S, and n as above and
ε, ρ ∈ [0, 1]∩Q, a strategy σ is an improvising strategy if it satisfies the following requirements
for every adversary τ :

Hard constraint: Pσ,τ (I) = 1
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Soft constraint: Pσ,τ (A) ≥ 1− ε

Randomness: ∀π ∈ I, Pσ,τ (π) ≤ ρ.

If there is an improvising strategy σ, we say that C is realizable. An improviser for C is then
an expected-finite time probabilistic algorithm implementing such a strategy σ, i.e. whose
output distribution on input h ∈ Σ≤n is σ(h, ·).

Definition 4.7. Given an RCI instance C = (H,S, n, ε, ρ), the reactive control improvisation
(RCI) problem is to decide whether C is realizable, and if so to generate an improviser for C.

Running Example. Suppose we set ε = 1/2 and ρ = 1/2. Let σ be the strategy which picks
+ or − with equal probability in the first move, and thenceforth picks the action which
moves the counter closest to ±1 respectively. This satisfies the hard constraint, since if
the adversary ever moves the counter to ±2 we immediately move it back. The strategy
also satisfies the soft constraint, since with probability 1/2 we set the counter to +1 on the
first move, and if the adversary moves to 0 we move back to +1 and remain nonnegative.
Finally, σ also satisfies the randomness constraint, since each choice of first move happens
with probability 1/2 and so no play can be generated with higher probability. So σ is an
improvising strategy and this RCI instance is realizable.

Remark. Notice that the randomness constraint in RCI only imposes an upper bound ρ on
the probability of a trace, whereas in CI we also allowed a lower bound λ. This is because
in the reactive setting, lower bounds can only be satisfied trivially. Specifically, in any game
where the adversary can ever choose between multiple actions, they can ensure some traces
have probability zero by never taking one of the actions. So RCI problems with λ > 0 are
always unrealizable except in cases where the improviser need not be reactive at all.

As in Chapter 3, we will study classes of RCI problems with different types of specifica-
tions:

Definition 4.8. If HSpec and SSpec are classes of specifications, then the class of RCI in-
stances C = (H,S, n, ε, ρ) whereH ∈ HSpec and S ∈ SSpec is denoted RCI (HSpec,SSpec).
We use the same notation for the decision problem associated with the class, i.e., given
C ∈ RCI (HSpec,SSpec), decide whether C is realizable. The size |C| of an RCI instance is
the total size of the bit representations of its parameters, with n represented in unary and
ε, ρ in binary.

Finally, a synthesis algorithm in our context takes a specification in the form of an RCI
instance and produces an implementation in the form of an improviser. This corresponds
exactly to the notion of an improvisation scheme from Chapter 3, simply using the RCI
definitions of improvisers and realizability:

Definition 4.9. A polynomial-time improvisation scheme for a class P of RCI instances is
an algorithm S with the following properties:
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Correctness: For any C ∈ P , if C is realizable then S(C) is an improviser for C, and
otherwise S(C) = ⊥.

Scheme efficiency: There is a polynomial p : R → R such that the runtime of S on any
C ∈ P is at most p(|C|).

Improviser efficiency: There is a polynomial q : R → R such that for every C ∈ P , if
G = S(C) 6= ⊥ then G has expected runtime at most q(|C|).

As before, the first two requirements simply say that the scheme produces valid impro-
visers in polynomial time. The third is necessary to ensure that the improvisers themselves
are efficient: otherwise, the scheme might for example produce improvisers running in time
exponential in the size of the specification.

A main goal of our paper is to determine for which types of specifications there exist
polynomial-time improvisation schemes. While we do find such algorithms for important
classes of specifications, we will also see that determining the realizability of an RCI instance
is often PSPACE-hard. Therefore we also consider polynomial-space improvisation schemes,
defined as above but replacing time with space.

4.2 Existence of Improvisers
The most basic question in reactive synthesis is whether a specification is realizable. In
randomized reactive synthesis, the question is more delicate because the randomness re-
quirement means that it is no longer enough to ensure some property regardless of what
the adversary does: there must be many ways to do so. Specifically, the same argument
we used for CI in Chapter 3 applies: there must be at least 1/ρ improvisations if we are to
generate each of them with probability at most ρ. However, in the reactive setting there
is an additional complication: at least this many improvisations must be possible given an
unknown adversary: even if many exist, the adversary may be able to force us to use only a
single one.

To address this issue, we introduce a new notion of the size of a set of plays that takes
the adversary into account: width. Below, we define width, establish its main properties,
and use it to formulate the realizability conditions for RCI. As for CI, our proof of these
conditions will be constructive; however, building an improviser is much more involved in
the reactive case, so we present a general overview in Section 4.2.2 before giving the details
in Section 4.2.3.

4.2.1 Width and Realizability

The width of a set of plays simply measures how many of the plays are actually possible,
assuming the adversary tries to minimize this number:

Definition 4.10. The width of X ⊆ Σn is W (X) = maxσ minτ |X ∩ Πσ,τ |.
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Figure 4.3: Synthesis game for our running example. States are labeled with the widths of
I (at left) and A (right) given a history ending at that state.

Thus, the width counts how many distinct plays can be generated regardless of what the
adversary does. Intuitively, a “narrow” game — one whose set of winning plays has small
width — is one in which the adversary can force us to choose among only a few winning
plays, while in a “wide” one we always have many safe choices available. Note that which
particular plays can be generated depends on the adversary: the width only measures how
many can be generated. For example, W (X) = 1 means that a play in X can always be
generated, but it could be a different element of X for different adversaries.

Running Example. Figure 4.3 shows the synthesis game for our running example: paths
ending in circled or shaded states are plays in I or A respectively (ignore the state labels
for now). At left, the bold arrows show the 4 plays in I possible against the adversary that
moves away from 0, and down at 0. This shows W (I) ≤ 4, and in fact 4 plays are possible
against any adversary, so W (I) = 4. Similarly, at right we see that W (A) = 1.

It will be useful later to have a relative version of width that counts how many plays are
possible from a given position:

Definition 4.11. Given a set of plays X ⊆ Σn and a history h ∈ Σ≤n, the width of X given
h is W (X|h) = maxσ minτ |{π | hπ ∈ X ∧ Pσ,τ (π|h) > 0}|.

This is a direct generalization of the concept of “winning” positions: if X is the set of
winning plays, then W (X|h) counts the number of ways to win from h.

The next lemma establishes several fundamental properties of W (X|h) which we will
use frequently throughout the chapter without further comment. Note in particular that
properties (d)–(f) provide a recursive way to compute widths. These recursive relations,
illustrated by the state labels in Figure 4.3, will be critical in our improviser construction.
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Lemma 4.2. For any set of plays X ⊆ Σn and history h ∈ Σ≤n:

(a) (Bounds) 0 ≤ W (X|h) ≤ |Σ|n−|h|;

(b) (Monotonicity) if Y ⊆ X, then W (Y |h) ≤ W (X|h);

(c) (Game Start) W (X|λ) = W (X);

(d) (Game End) if |h| = n, then W (X|h) = 1h∈X ;

(e) (Our Turn) if it is our turn after h, then W (X|h) =
∑

u∈ΣW (X|hu);

(f) (Adversary Turn) if it is the adversary’s turn after h, thenW (X|h) = minu∈Σ W (X|hu).

Proof.

(a) By definition, W (X|h) = maxσ minτ |{π | hπ ∈ X ∧ Pσ,τ (π|h) > 0}|, so W (X|h) ≥ 0
trivially. Since X ⊆ Σn, if hπ ∈ X then π ∈ Σn−|h|. So W (X|h) ≤ |Σ|n−|h|.

(b) Let σ̂ be a strategy witnessing W (Y |h) (i.e., which achieves the maximum in the
definition ofW (Y |h)). By the definition ofW (X|h), there is some strategy τ̂ such that
|{π |hπ ∈ X ∧Pσ̂,τ̂ (π|h) > 0}| ≤ W (X|h). Then W (Y |h) ≤ |{π |hπ ∈ Y ∧Pσ̂,τ̂ (π|h) >
0}| ≤ |{π | hπ ∈ X ∧ Pσ̂,τ̂ (π|h) > 0}| ≤ W (X|h).

(c) W (X|λ) = maxσ minτ |{π | π ∈ X ∧ Pσ,τ (π) > 0}| = maxσ minτ |X ∩ Πσ,τ | = W (X).

(d) If h ∈ X, then the only word of the form hπ in X is h, with π = λ (and Pσ,τ (λ|h) =
1 > 0). Otherwise there is no word of the form hπ in X.

(e) Since it is our turn, and in particular the game has not ended, every play hπ that can
be generated given history h has the form huπ′ for some u ∈ Σ. So for any strategies
σ and τ we have |{π |hπ ∈ X ∧Pσ,τ (π|h) > 0}| =

∑
u∈Σ |{π′ |huπ′ ∈ X ∧Pσ,τ (uπ′|h) >

0}| =
∑

u∈Σ |{π′ | huπ′ ∈ X ∧ σ(h, u) · Pσ,τ (π′|hu) > 0}|.
For each u ∈ Σ, let σu be a strategy witnessing W (X|hu). Let σ̃ be a strategy which

on history h picks u ∈ Σ uniformly at random, and on histories prefixed by hu follows
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σu (otherwise picking arbitrarily). Then

W (X|h) ≥ min
τ
|{π | hπ ∈ X ∧ Pσ̃,τ (π|h) > 0}|

= min
τ

∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ σ̃(h, u) · Pσ̃,τ (π′|hu) > 0}|

= min
τ

∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ Pσ̃,τ (π′|hu) > 0}|

≥
∑
u∈Σ

min
τ
|{π′ | huπ′ ∈ X ∧ Pσ̃,τ (π′|hu) > 0}|

=
∑
u∈Σ

min
τ
|{π′ | huπ′ ∈ X ∧ Pσu,τ (π′|hu) > 0}|

=
∑
u∈Σ

W (X|hu).

For the other direction, let σ̃ be a strategy witnessing W (X|h), and for each u ∈ Σ
let τu = arg minτ |{π′ | huπ′ ∈ X ∧ Pσ̃,τ (π′|hu) > 0}|. Let τ̃ be a strategy which on
histories prefixed by hu follows τu (otherwise picking arbitrarily). Then

W (X|h) ≤ |{π | hπ ∈ X ∧ Pσ̃,τ̃ (π|h) > 0}|

=
∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ σ̃(h, u) · Pσ̃,τ̃ (π′|hu) > 0}|

≤
∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ Pσ̃,τ̃ (π′|hu) > 0}|

=
∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ Pσ̃,τu(π′|hu) > 0}|

≤
∑
u∈Σ

W (X|hu).

(f) Since it is the adversary’s turn (and in particular the game has not ended), for any
strategies σ and τ we have |{π | hπ ∈ X ∧ Pσ,τ (π|h) > 0}| =

∑
u∈Σ |{π′ | huπ′ ∈

X ∧ Pσ,τ (uπ′|h) > 0}| =
∑

u∈Σ |{π′ | huπ′ ∈ X ∧ τ(h, u) · Pσ,τ (π′|hu) > 0}|.
For each u ∈ Σ, let σu be a strategy witnessing W (X|hu). Let σ̃ be a strategy which
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on histories prefixed by hu follows σu (otherwise picking arbitrarily). Then

W (X|h) ≥ min
τ
|{π | hπ ∈ X ∧ Pσ̃,τ (π|h) > 0}|

= min
τ

∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ τ(h, u) · Pσ̃,τ (π′|hu) > 0}|

≥ min
τ

min
u∈Σ
|{π′ | huπ′ ∈ X ∧ Pσ̃,τ (π′|hu) > 0}|

= min
u∈Σ

min
τ
|{π′ | huπ′ ∈ X ∧ Pσu,τ (π′|hu) > 0}|

= min
u∈Σ

W (X|hu).

For the other direction, let σ̃ be a strategy witnessing W (X|h), and define ũ =
arg minu∈Σ W (X|hu), and τũ = arg minτ |{π′ | hũπ′ ∈ X ∧ Pσ̃,τ (π′|hũ) > 0}|. Let τ̃
be a strategy which on history h picks ũ and on histories prefixed with hũ follows τũ
(otherwise picking arbitrarily). Then

W (X|h) ≤ |{π | hπ ∈ X ∧ Pσ̃,τ̃ (π|h) > 0}|

=
∑
u∈Σ

|{π′ | huπ′ ∈ X ∧ τ(h, u) · Pσ̃,τ̃ (π′|hu) > 0}|

= |{π′ | hũπ′ ∈ X ∧ Pσ̃,τ̃ (π′|hũ) > 0}|
= |{π′ | hũπ′ ∈ X ∧ Pσ̃,τũ(π′|hũ) > 0}|
≤ W (X|hũ)

= min
u∈Σ

W (X|hu).

Now we can state the realizability conditions, which are simply that I and A have suf-
ficiently large width. In fact, the conditions turn out to be exactly the same as those for
non-reactive CI (Theorem 3.1) with λ = 0, except that width takes the place of size.

Theorem 4.1. The following are equivalent:

(1) C is realizable.

(2) W (I) ≥ 1/ρ and W (A) ≥ (1− ε)/ρ.

(3) There is an improviser for C.

Running Example. We saw above that our example was realizable with ε = ρ = 1/2, and
indeed 4 = W (I) ≥ 1/ρ = 2 and 1 = W (A) ≥ (1 − ε)/ρ = 1. However, if we put ρ = 1/3
we violate the second inequality and the instance is not realizable: essentially, we need to
distribute probability 1− ε = 1/2 among plays in A (to satisfy the soft constraint), but since
W (A) = 1, against some adversaries we can only generate one play in A and would have to
give it the whole 1/2 (violating the randomness requirement).
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The difficult part of the Theorem is constructing an improviser when the inequalities (2)
hold. Despite the similarity in these conditions to the non-reactive case, the construction is
much more involved. We begin with a general overview.

4.2.2 Constructing an Improviser: Overview

Recall that in Chapter 3 we built improvisers by uniformly sampling from the sets of admis-
sible and inadmissible improvisations. Uniform sampling is also at the core of our improviser
for RCI, which can be viewed as an extension of the classical random-walk reduction of uni-
form sampling to counting [184]. In this reduction (which also underlies the algorithms for
sampling from DFAs and UCFGs used earlier [86, 118]), a uniform distribution over paths in
a DAG is obtained by moving to the next vertex with probability proportional to the number
of paths originating at it. In our case, which plays are possible depends on the adversary,
but the width still tells us how many plays are possible. So we could try a random walk
using widths as weights: e.g., on the first turn in Figure 4.3, picking +, −, and = with
probabilities 1/4, 2/4, and 1/4 respectively. Against the adversary shown in Figure 4.3, this
would indeed yield a uniform distribution over the four possible plays in I.

However, the soft constraint may require a non-uniform distribution. In the running
example with ε = ρ = 1/2, we need to generate the single possible play in A with probability
1/2, not just the uniform probability 1/4 . This is easily fixed by doing the random walk
with a weighted average of the widths of I and A: specifically, move to position h with
probability proportional to αW (A|h) + β(W (I|h) −W (A|h)). In the example, this would
result in plays in A getting probability α and those in I \ A getting probability β. Taking
α sufficiently large, we can ensure the soft constraint is satisfied. This is again analogous
to our construction for CI, where we used a biased coin to pick between uniformly sampling
from A or I \ A.

Unfortunately, this strategy can fail if the adversary makes more plays available than the
width guarantees. Consider the game on the left of Figure 4.4, whereW (I) = 3 andW (A) =
2. This is realizable with ε = ρ = 1/3, but no values of α and β yield improvising strategies,
essentially because an adversary moving from X to Z breaks the worst-case assumption that
the adversary will minimize the number of possible plays by moving to Y . In fact, this
instance is realizable but not by any memoryless strategy. To see this, note that all such
strategies can be parametrized by the probabilities p and q in Figure 4.4. To satisfy the
randomness constraint against the adversary that moves from X to Y , both p and (1− p)q
must be at most 1/3. To satisfy the soft constraint against the adversary that moves from
X to Z we must have pq+ (1− p)q ≥ 2/3, so q ≥ 2/3. But then (1− p)q ≥ (1− 1/3)(2/3) =
4/9 > 1/3, a contradiction.

Note that this result is in strong contrast to the situation for ordinary 2-player games:
finite 2-player games with reachability and safety objectives always admit memoryless strate-
gies, even if the game is stochastic [117, 54]. The fact that RCI cannot always be solved by
memoryless strategies illustrates the fundamental difference between allowing the environ-
ment to be random, as in stochastic games, and requiring the strategy to be random, as in
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Figure 4.4: Reachability games where a naïve random walk, and all memoryless strategies,
fail (left) and where no strategy can optimize either ε or ρ against every adversary simulta-
neously (right).

control improvisation. In fact, both the soft and randomness constraints in RCI are neces-
sary for this phenomenon to occur: it is not hard to see that a simple random walk using
W (I|h) as weights as suggested above will satisfy the hard and randomness constraints, and
any strategy for winning set A will satisfy the hard and soft constraints.

To fix the problem of the adversary possibly making more plays available than expected,
our improvising strategy σ̂ (which we will fully specify in Algorithm 4.1 below) takes a
simplistic approach: it tracks how many plays in A and I are expected to be possible based
on their widths, and if more are available it ignores them. For example, entering state Z
from X in Figure 4.4, there are 2 ways to produce a play in I, but since W (I|X) = 1 we
ignore the play in I \A and always move to state W . Extra plays in A are similarly ignored
by being treated as members of I \A. Ignoring unneeded plays may seem wasteful, but the
proof of Theorem 4.1 will show that σ̂ nevertheless achieves the best possible ε:

Corollary 4.1. C is realizable if and only if W (I) ≥ 1/ρ and ε ≥ εopt ≡ max(1−ρW (A), 0).
Against any adversary, the error probability of Algorithm 4.1 is at most εopt.

Thus, if any improviser can achieve an error probability ε, ours does. We could ask for a
stronger property, namely that against each adversary the improviser achieves the smallest
possible error probability for that adversary. Unfortunately, this is impossible in general.
Consider the game on the right in Figure 4.4, with ρ = 1. Against the adversary which
moves to state S we can never generate an admissible improvisation, so we cannot do better
than ε = 1 (agreeing with the Corollary, since W (A) = 0 and so εopt = 1). However, we can
do better against other adversaries: against the adversary which always moves up, we can
achieve ε = 0 with the strategy that at P moves to Q. We can also achieve ε = 0 against
the adversary that always moves down, but only with a different strategy, namely the one
that at P moves to R. So there is no single strategy that achieves the optimal ε for every
adversary. A similar argument shows that if we fix ε = 1, there is also no strategy achieving
the smallest possible ρ for every adversary. In essence, optimizing ε or ρ in every case would
require the strategy to depend on the adversary.
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4.2.3 Constructing an Improviser: Details

Our improvising strategy, as outlined in the previous section, is shown in Algorithm 4.1.
We first compute α and β, the (maximum) probabilities for generating elements of A and
I \ A respectively. As in the CI improviser construction (Theorem 3.1), we take α as large
as possible given α ≤ ρ, and determine β from the probability left over (modulo a couple
corner cases).

Algorithm 4.1 The RCI improvising strategy σ̂.
1: α← min(ρ, 1/W (A)) (or 0 instead if W (A) = 0)
2: β ← (1− αW (A))/(W (I)−W (A)) (or 0 instead if W (I)−W (A) = 0)
3: mA ← W (A), mI ← W (I)
4: h← λ
5: while the game is not over after h do
6: if it is our turn after h then
7: mA

u ,m
I
u ← Partition(mA,mI , h) . returns values for each u ∈ Σ

8: for each u ∈ Σ, put tu ← αmA
u + β(mI

u −mA
u )

9: pick u ∈ Σ with probability proportional to tu and append it to h
10: mA ← mA

u , mI ← mI
u

11: else
12: the adversary picks u ∈ Σ given the history h; append it to h

return h

Next we initializemA andmI , our expectations for how many plays inA and I respectively
are still possible to generate. Initially these are given by W (A) and W (I), but as we saw
above it is possible for more plays to become available. The function Partition handles
this, deciding which mA (resp., mI) out of the available W (A|h) (W (I|h)) plays we will
use. The behavior of Partition is defined by the following lemma; its proof greedily takes
the first mA possible plays in A under some canonical order and the first mI − mA of the
remaining plays in I.

Lemma 4.3. If it is our turn after h ∈ Σ≤n, and mA,mI ∈ Z satisfy:

• 0 ≤ mA ≤ mI ≤ W (I|h) and

• mA ≤ W (A|h),

there are integer partitions
∑

u∈Σm
A
u and

∑
u∈Σ m

I
u of mA and mI respectively such that

• 0 ≤ mA
u ≤ mI

u ≤ W (I|hu) and

• mA
u ≤ W (A|hu)

for all u ∈ Σ. Canonical such partitions are computable in polynomial time given oracles for
W (I|·) and W (A|·).
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Proof. Index the elements of Σ via some canonical order as (uj)0≤j<` for some ` ≥ 1. We first
construct the partition

∑
j<`m

A
j ofmA. Find the greatest k ≤ ` such that

∑
j<kW (A|huj) ≤

mA. This is well-defined, since if k = 0 then the sum is zero and the condition is satisfied.
If
∑

j<kW (A|huj) = mA, we put

mA
j =

{
W (A|huj) j < k

0 j ≥ k.

If instead
∑

j<kW (A|huj) < mA we must have k < `, since
∑

j<`W (A|huj) =
∑

u∈Σ W (A|hu) =

W (A|h) ≥ mA. Then by the definition of k we have
∑

j≤kW (A|huj) > mA, so W (A|huk) >
mA −

∑
j<kW (A|huj). Therefore we put

mA
j =


W (A|huj) j < k

mA −
∑

i<kW (A|hui) j = k

0 j > k.

Now we construct the partition
∑

j<`m
I
j of mI . We do this by partitioning the difference

mI − mA along the same lines as above, then adding back mA
j to ensure mI

j ≥ mA
j . Let

dj = W (I|huj) − mA
j . Since mA

j ≤ W (A|huj) ≤ W (I|huj), we have dj ≥ 0. Find the
greatest k ≤ ` such that

∑
j<k dj ≤ mI −mA. This is well-defined since if k = 0 the sum is

zero, and mI −mA ≥ 0 by assumption. If
∑

j<k dj = mI −mA we put

mI
j =

{
mA
j + dj j < k

mA
j j ≥ k.

This clearly satisfies mA
j ≤ mI

j ≤ W (I|huj), and
∑

j<`m
I
j =

∑
j<k(m

A
j + dj) +

∑
j≥km

A
j =∑

j<`m
A
j +

∑
j<k dj = mA + (mI −mA) = mI as desired. If instead

∑
j<k dj < mI −mA we

must have k < `, since
∑

j<` dj =
∑

j<`(W (I|huj) − mA
j ) =

∑
u∈ΣW (I|hu) −

∑
j<`m

A
j =

W (I|h) − mA ≥ mI − mA. Then by the definition of k we have
∑

j≤k dj > mI − mA, so
dk > mI −mA −

∑
j<k dj. Therefore we put

mI
j =


mA
j + dj j < k

mA
k + (mI −mA −

∑
i<k di) j = k

mA
j j > k.

Again this satisfies mA
j ≤ mI

j ≤ W (I|huj), and
∑

j<`m
I
j =

∑
j<k(m

A
j + dj) + (mA

k + (mI −
mA −

∑
j<k dj)) +

∑
j>km

A
j =

∑
j<`m

A
j + (mI −mA) = mA + (mI −mA) = mI as desired.

These partitions are canonical since the values of k used in each construction are uniquely
determined (and the ordering of Σ is fixed). Also, k may be found by a linear search from 0
up to `, which has value at most |Σ|. The quantities W (I|huj) all have polynomial bitwidth
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Figure 4.5: A run of Algorithm 4.1, labeling states with the corresponding widths of I (left)
and A (right).

(they are bounded above by |Σ|n), so the arithmetic above can be done in polynomial time.
Therefore the total time needed to construct the partitions is polynomial relative to oracles
for W (I|·) and W (A|·).

Finally, we perform the random walk, moving from position h to hu with (unnormalized)
probability tu, the weighted average described above.

Running Example. With ε = ρ = 1/2, as before W (A) = 1 and W (I) = 4 so α = 1/2 and
β = 1/6. On the first move, mA and mI match W (A|h) and W (I|h), so all plays are used
and Partition returns (W (A|hu),W (I|hu)) for each u ∈ Σ. Looking up these values in
Figure 4.5, we see (mA

=,m
I
=) = (0, 2) and so t(=) = 2β = 1/3. Similarly t(+) = α = 1/2

and t(−) = β = 1/6. We choose an action according to these weights; suppose =, so that we
update mA ← 0 and mI ← 2, and suppose the adversary responds with =. From Figure 4.5,
W (A| ==) = 1 and W (I| ==) = 3, whereas mA = 0 and mI = 2. So Partition discards
a play, say returning (mA

u ,m
I
u) = (0, 1) for u ∈ {+,=} and (0, 0) for u ∈ {−}. Then

t(+) = t(=) = β = 1/6 and t(−) = 0. So we pick + or = with equal probability, say +. If
the adversary responds with +, we get the play ==++, shown in bold on Figure 4.5. As
desired, it satisfies the hard constraint.

The next few lemmas establish the properties of σ̂ we need to prove Theorem 4.1.
Throughout, we write mA(h) (respectively, mI(h)) for the value of mA (mI) at the start
of the iteration for history h. We also define t(h) = αmA(h) + β(mI(h)−mA(h)): note that
on line (9) of Algorithm 4.1, the probability of picking u is then tu/

∑
v tv = t(hu)/t(h).

We start by proving that σ̂ is actually well-defined and satisfies the hard constraint. For
the former, we show by induction on the history h that the conditions of Lemma 4.3 are
always satisfied and that t(h) > 0 so we do not divide by zero. This also establishes the hard
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constraint, since t(h) > 0 implies mI(h) > 0, and when the game ends this can only happen
if h ∈ I.

Lemma 4.4. If W (I) ≥ 1/ρ, then σ̂ is a well-defined strategy and Pσ̂,τ (I) = 1 for every
adversary τ .

Proof. First we show by induction on i that for all plays hπ ∈ Πσ̂,τ with |h| = i, we have:

• 0 ≤ mA(h) ≤ mI(h) ≤ W (I|h) and mA(h) ≤ W (A|h);

• t(h),mI(h) > 0.

In the base case i = 0, we must have h = λ. Then mA(λ) = W (A) ≥ 0 and mI(λ) =
W (I) ≥ 1/ρ > 0. To show t(λ) = 1, there are three cases. If W (A) = 0, then α = 0
and W (I) − W (A) = W (I) ≥ 1/ρ > 0, so β = 1/W (I) and t(λ) = βW (I) = 1. If
W (I) − W (A) = 0, then β = 0 and W (A) = W (I) ≥ 1/ρ, so α = 1/W (A) and t(λ) =
αW (A) = 1. Otherwise α = min(ρ, 1/W (A)) and β = (1 − αW (A))/(W (I) −W (A)), so
t(λ) = αW (A) + (1− αW (A)) = 1. Therefore we always have t(λ) = 1.

Now take any play hπ ∈ Πσ̂,τ with |h| = i < n and suppose the hypothesis holds. If
it is the adversary’s turn after h, then if the adversary outputs u ∈ Σ we have mA(h) =
mA(hu) and mI(h) = mI(hu). So since mA(h) ≤ W (A|h) = minv∈Σ W (A|hv) ≤ W (A|hu)
and mI(h) ≤ W (I|h) = minv∈ΣW (I|hv) ≤ W (I|hu), the hypothesis holds in the next
step. If instead it is our turn after h and we output u ∈ Σ, then mA(hu) and mI(hu) are
given by Lemma 4.3 and 0 ≤ mA(hu) ≤ mI(hu) ≤ W (I|hu) and mA(hu) ≤ W (A|hu) by
construction. Furthermore t(hu) > 0, since if t(hu) = 0 then σ̂ has probability zero to
output u, a contradiction. This implies mI(hu) > 0, since if mI(hu) = 0 then mA(hu) = 0
and so t(hu) = 0. Therefore by induction we always have 0 ≤ mA(h) ≤ mI(h) ≤ W (I|h),
mA(h) ≤ W (A|h), and t(h),mI(h) > 0.

Now for any history h ∈ Σ≤n after which it is our turn, by construction the quanti-
ties mA(hu) and mI(hu) for u ∈ Σ form partitions of mA(h) and mI(h) respectively. So∑

u∈Σ t(hu) =
∑

u∈Σ αm
A(hu) + β(mI(hu) − mA(hu)) = αmA(h) + β(mI(h) − mA(h)) =

t(h) > 0. So σ̂(h, ·) is a probability distribution over Σ, and σ̂ is a well-defined strategy.
Finally, take any play π ∈ Πσ̂,τ . As shown above we have W (I|π) ≥ mI(π) > 0, and

since |π| = n this implies π ∈ I. Therefore Pσ̂,τ (I) = 1.

Next, we show that because of the term αmA(h) term in the weights t(h), our strategy
generates a member of A with probability at least αW (A).

Lemma 4.5. If W (I) ≥ 1/ρ, then Pσ̂,τ (A) ≥ min(ρW (A), 1) for every adversary τ .

Proof. We prove by induction on i in decreasing order that for all plays hπ ∈ Πσ̂,τ with
|h| = i,

∑
ρ | hρ∈A Pσ̂,τ (ρ|h) ≥ αmA(h)/t(h). In the base case i = n, by Lemma 4.4 we

must have h ∈ I, so mA(h) ≤ mI(h) ≤ W (I|h) = 1. If mA(h) = 0 the hypothesis holds
trivially. Otherwise mA(h) = 1, so t(h) = α and since mA(h) ≤ W (A|h) we must have
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h ∈ A. Therefore, letting ρ = λ we have hρ ∈ A, so Pσ̂,τ (ρ|h) = 1 = αmA(h)/t(h) and the
hypothesis again holds.

Now take any play hπ ∈ Πσ̂,τ with |h| = i < n. If h ∈ I then the hypothesis holds
as above. Otherwise if it is the adversary’s turn after h, then mA(h) = mA(hu), mI(h) =
mI(hu), and t(h) = t(hu) for any u ∈ Σ. By hypothesis, for any play huπ′ ∈ Πσ̂,τ we have∑

ρ | huρ∈A Pσ̂,τ (ρ|hu) ≥ αmA(hu)/t(hu) = αmA(h)/t(h). So∑
ρ | hρ∈A

Pσ̂,τ (ρ|h) =
∑
u∈Σ

∑
ρ′ | huρ′∈A

τ(h, u) · Pσ̂,τ (ρ′|hu)

=
∑
u∈Σ

τ(h, u)
∑

ρ′ | huρ′∈A

Pσ̂,τ (ρ
′|hu)

≥
∑
u∈Σ

τ(h, u) · αm
A(h)

t(h)

=
αmA(h)

t(h)

∑
u∈Σ

τ(h, u)

=
αmA(h)

t(h)

as desired. If instead it is our turn after h, then if we output u ∈ Σ we update mA to mA
u , so

mA(hu) = mA
u (h). Then by hypothesis we have

∑
ρ | huρ∈A Pσ̂,τ (ρ|hu) ≥ αmA(hu)/t(hu) =

αmA
u (h)/t(hu). So ∑

ρ | hρ∈A

Pσ̂,τ (ρ|h) =
∑
u∈Σ

∑
ρ′ | huρ′∈A

σ̂(h, u) · Pσ̂,τ (ρ′|hu)

=
∑
u∈Σ

σ̂(h, u)
∑

ρ′ | huρ′∈A

Pσ̂,τ (ρ
′|hu)

≥
∑
u∈Σ

σ̂(h, u) · αm
A
u (h)

t(hu)

= α
∑
u∈Σ

t(hu)

t(h)
· m

A
u (h)

t(hu)

=
α

t(h)

∑
u∈Σ

mA
u (h)

=
αmA(h)

t(h)

again as desired. Therefore by induction this holds for every i, and in particular for i = 0.
Since every play π ∈ Πσ̂,τ is of the form λπ, noting that t(λ) = 1 as shown in Lemma 4.4

we have Pσ̂,τ (A) =
∑

π | λπ∈A Pσ̂,τ (π|λ) ≥ αmA(λ)/t(λ) = αW (A) = min(ρW (A), 1).
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Finally, we show that our strategy never generates an individual trace with probability
greater than ρ. This essentially follows from the fact that if the adversary is deterministic,
the weights of our random walk yield a distribution where each play π has probability either
α or β (depending on whether mA(π) = 1 or 0), and these are both at most ρ. If the
adversary instead assigns nonzero probability to multiple actions, this only decreases the
probability of individual plays.

Lemma 4.6. If W (I) ≥ 1/ρ, then Pσ̂,τ (π) ≤ ρ for every π ∈ Σn and adversary τ .

Proof. We prove by induction on i in decreasing order that for all plays hπ ∈ Πσ̂,τ with
|h| = i, Pσ̂,τ (π|h) ≤ max(α, β)/t(h). In the base case i = n, by Lemma 4.4 we must
have h ∈ I. Then mI(h) = 1, since mI(h) ≤ W (I|h) = 1 and mI(h) > 0 if h can be
generated by σ̂ (as shown in Lemma 4.4). So t(h) = αmA(h) + β(1 − mA(h)), and thus
either t(h) = α or t(h) = β (depending on whether mA(h) = 1 or mA(h) = 0). In either case
max(α, β)/t(h) ≥ 1, so Pσ̂,τ (π|h) ≤ max(α, β)/t(h) as desired.

Now take any play hπ ∈ Πσ̂,τ with |h| = i < n. Since |h| < n the play is of the form
huπ′ for some u ∈ Σ, and by hypothesis Pσ̂,τ (π′|hu) ≤ max(α, β)/t(hu). Now if it is the
adversary’s turn after h, then mA(hu) = mA(h) and mI(hu) = mI(h), so t(hu) = t(h) and
therefore Pσ̂,τ (π|h) = τ(h, u)·Pσ̂,τ (π′|hu) ≤ Pσ̂,τ (π

′|hu) ≤ max(α, β)/t(hu) = max(α, β)/t(h)
as desired. If instead it is our turn after h, then

Pσ̂,τ (π|h) = σ̂(h, u) · Pσ̂,τ (π′|hu) =
t(hu)

t(h)
· Pσ̂,τ (π′|hu) ≤ t(hu)

t(h)
· max(α, β)

t(hu)
=

max(α, β)

t(h)

again as desired. So by induction the hypothesis holds for every i ∈ {0, . . . , n}, and in
particular for i = 0.

Since every play π ∈ Πσ̂,τ is of the form λπ, we have Pσ̂,τ (π) = Pσ̂,τ (π|λ) ≤ max(α, β)/t(λ) =
max(α, β) (as t(λ) = 1). Recall that α = min(ρ, 1/W (A)) ≤ ρ and β = (1−αW (A))/(W (I)−
W (A)), with the convention that α = 0 if W (A) = 0 and β = 0 if W (I) −W (A) = 0. If
α = ρ, then β = (1 − ρW (A))/(W (I) −W (A)) ≤ (1 − ρW (A))/((1/ρ) −W (A)) = ρ. If
instead α = 1/W (A), then β = 0. Finally, if α = 0 then W (A) = 0 and β = 1/W (I) ≤ ρ.
So max(α, β) ≤ ρ, and therefore Pσ̂,τ (π) ≤ ρ for every π ∈ Πσ̂,τ . In fact this holds for all
plays π ∈ Σn, since if π 6∈ Πσ̂,τ then Pσ̂,τ (π) = 0.

Now we have all the pieces ready to prove the realizability conditions.

Proof of Theorem 4.1. We use a similar argument to that of Theorem 3.1.

(1)⇒(2) Suppose σ is an improvising strategy, and fix any adversary τ . Then ρ|Πσ,τ ∩ I| =∑
π∈Πσ,τ∩I ρ ≥

∑
π∈I Pσ,τ (π) = Pσ,τ (I) = 1, so |Πσ,τ ∩ I| ≥ 1/ρ. Since τ is arbitrary,

this implies W (I) ≥ 1/ρ. Since A ⊆ I, we also have ρ|Πσ,τ ∩ A| =
∑

π∈Πσ,τ∩A ρ ≥∑
π∈A Pσ,τ (π) = Pσ,τ (A) ≥ 1− ε, so |Πσ,τ ∩A| ≥ (1− ε)/ρ and thus W (A) ≥ (1− ε)/ρ.
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(2)⇒(3) By Lemmas 4.4 and 4.6, σ̂ is well-defined and satisfies the hard and randomness
constraints. By Lemma 4.5, Pσ̂,τ (A) ≥ min(ρW (A), 1) ≥ 1 − ε, so σ̂ also satisfies
the soft constraint and thus is an improvising strategy. Its transition probabilities are
rational, so it can be implemented by an expected finite-time probabilistic algorithm,
which is then an improviser for C.

(3)⇒(1) Immediate.

Proof of Corollary 4.1. The inequalities in the statement are equivalent to those of Theo-
rem 4.1(2). By Lemma 4.5, we have Pσ̂,τ (A) ≥ min(ρW (A), 1). So the error probability is
at most 1−min(ρW (A), 1) = εopt.

4.3 A Generic Improvisation Scheme
As we did for CI, we can now use our improviser construction to develop a generic im-
provisation scheme usable with any class of specifications Spec supporting a certain set of
operations:

Intersection: Given specs X and Y , find Z such that L(Z) = L(X ) ∩ L(Y).

Width Measurement: Given a specification X , a length n ∈ N in unary, and a history
h ∈ Σ≤n, compute W (X|h) where X = L(X ) ∩ Σn.

Recall that our CI scheme, Theorem 3.2, used intersection, difference, counting, and
uniform sampling. Here, because we need to generate a word in an online manner, we need
a more general version of counting: width measurement is essentially the adversarial version
of counting the strings in a specification which extend a given prefix. However, given this
operation we can dispense with uniform sampling, reducing it to counting partial solutions
and performing a random walk, as in Algorithm 4.1. This approach also eliminates the need
for the difference operation.

Theorem 4.2. If the operations on Spec above take polynomial time (respectively, space),
then RCI (Spec,Spec) has a polynomial-time (space) improvisation scheme.

Proof. Given an instance C = (H,S, n, ε, ρ) in RCI (Spec,Spec), we first apply intersection
to H and S to obtain A ∈ Spec such that L(A) ∩ Σn = A. Since intersection takes
polynomial time (space), A has size polynomial in |C|. Next we use width measurement
to compute W (I) = W (L(H) ∩ Σn|λ) and W (A) = W (L(A) ∩ Σn|λ). If these violate
the inequalities in Theorem 4.1, then C is not realizable and we return ⊥. Otherwise C is
realizable, and σ̂ in Algorithm 4.1 is an improvising strategy. Furthermore, we can construct
an expected finite-time probabilistic algorithm implementing σ̂, using width measurement
to instantiate the oracles needed by Lemma 4.3. Determining mA(h) and mI(h) takes O(n)
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invocations of Partition, each of which is poly-time relative to the width measurements1.
These take time (space) polynomial in |C|, since H and A have size polynomial in |C|. As
mA,mI ≤ |Σ|n, they have polynomial bitwidth and so the arithmetic required to compute tu
for each u ∈ Σ takes polynomial time. Therefore the total expected runtime (space) of the
improviser is polynomial.

Remark. Note that as a byproduct of testing the inequalities in Theorem 4.1, our algorithm
can compute the best possible error probability εopt given H, S, and ρ (see Corollary 4.1).
Alternatively, given ε, we can compute the best possible ρ.

Recall that the complexities of a very wide range of CI problems lie between P and #P,
due to the close connection between CI and counting problems (Theorem 3.3). A similar
phenomenon occurs for RCI, except that its nature as a bounded 2-player game makes its
natural complexity class PSPACE rather than #P. Specifically, there is a polynomial-space
improvisation scheme for any specifications which can be tested in polynomial space:

Theorem 4.3. RCI (PSA,PSA) has a polynomial-space improvisation scheme, where PSA
is the class of polynomial-space decision algorithms.

Proof. We implement the operations required by Theorem 4.2. Intersection is simple: we
run the algorithms X and Y and accept if and only if both do. The resulting algorithm runs
in polynomial space, since X and Y do, and can be constructed in polynomial time.

For width measurement, we compute W (X|h) using an arithmetization of the usual
PSPACE algorithm for QBF, replacing ∨ by + at ∃ nodes in the recursive tree and ∧ by
min at ∀ nodes. Specifically, if it is our turn after h (corresponding to an ∃ quantifier in
a QBF), we recursively compute W (X|hu) for each u ∈ Σ and return

∑
u∈Σ W (X|hu) =

W (X|h). If instead it is the adversary’s turn, we again recursively compute W (X|hu) for
each u ∈ Σ but now return minu∈Σ W (X|hu) = W (X|h). Finally, in the base case |h| = n
we have W (X|h) = 1h∈X and so simply invoke X to determine in polynomial space whether
h ∈ X = L(X ) ∩ Σn. As in the QBF algorithm, the recursive tree has polynomial depth,
and since W (X|h) ≤ |Σ|n we need only polynomial space to remember partial results along
the current path through the tree. So we can compute W (X|h) in polynomial space.

4.4 Complexity of Reactive Control Improvisation
Next, we study the complexity of RCI for different types of specifications. Since RCI is a
strict generalization of CI2, we first examine RCI for all the types of specifications we studied
in Chapter 3. We find that for DFAs, the complexity remains polynomial-time when adding

1In practice, we would not recompute mA(h) and mI(h) each iteration but update them with a single
call to Partition, as shown in Algorithm 4.1.

2We can encode a CI problem by having our specifications encode the assumption that the adversary
always outputs a constant symbol, so that there is a one-to-one correspondence between improviser behaviors
and plays of the 2-player game.
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Figure 4.6: The hard specification DFA H in our running example, showing how W (I|h) is
computed.

reactivity, while for NFAs, CFGs, and Boolean formulas the complexity increases from #P
to PSPACE. We also consider two additional types of specifications popular in reactive
synthesis, namely safety/reachability games and temporal logic formulas. The former admit
a polynomial-time improvisation scheme, being reducible to DFAs, while temporal logic is
at least as expressive as Boolean formulas and therefore we can only give a polynomial-space
scheme.

4.4.1 Finite Automata and Safety/Reachability Games

Now we develop a polynomial-time improvisation scheme for RCI instances with DFA specifi-
cations. This also provides a scheme for reachability/safety games, whose winning conditions
can be straightforwardly encoded as DFAs.

SupposeD is a DFA with states V , accepting states T , and transition function δ : V×Σ→
V . Our scheme is based on the fact that W (L(D)|h) depends only on the state of D reached
on input h, allowing these widths to be computed by dynamic programming (in a similar
way to the DFA counting algorithm [86]). Specifically, for all v ∈ V and i ∈ {0, . . . , n} we
define:

C(v, i) =


1v∈T i = n

minu∈Σ C(δ(v, u), i+ 1) i < n ∧ i odd∑
u∈Σ C(δ(v, u), i+ 1) otherwise.

Running Example. Figure 4.6 shows the values C(v, i) in rows from i = n downward. For
example, i = 2 is our turn, so C(1, 2) = C(0, 3) + C(1, 3) + C(2, 3) = 1 + 1 + 0 = 2, while
i = 3 is the adversary’s turn, so C(−3, 3) = min{C(−3, 4)} = min{0} = 0. Note that the
values in Figure 4.6 agree with the widths W (I|h) shown in Figure 4.5.
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Lemma 4.7. For any history h ∈ Σ≤n, writing X = L(D) ∩ Σn we have W (X|h) =
C(D(h), |h|), where D(h) is the state reached by running D on h.

Proof. We prove this by induction on i = |h| in decreasing order. In the base case i = n,
we have W (X|h) = 1h∈X = 1D(h)∈T = C(D(h), n). Now take any history h ∈ Σ≤n with
|h| = i < n. By hypothesis, for any u ∈ Σ we have W (X|hu) = C(D(hu), i + 1). If it is
our turn after h, then W (X|h) =

∑
u∈Σ W (X|hu) =

∑
u∈ΣC(D(hu), i + 1) = C(D(h), i) as

desired. If instead it is the adversary’s turn after h, then W (X|h) = minu∈ΣW (X|hu) =
minu∈Σ C(D(hu), i+ 1) = C(D(h), i) again as desired. So by induction the hypothesis holds
for any i.

Theorem 4.4. RCI (DFA,DFA) has a polynomial-time improvisation scheme.

Proof. We implement Theorem 4.2. Intersection can be done with the standard product
construction. For width measurement we compute the quantities C(v, i) by dynamic pro-
gramming (from i = n down to i = 0) and apply Lemma 4.7.

As in the case of CI, the RCI problem becomes much more difficult for nondeterministic
automata. The dynamic programming approach above fails for the same reason as before,
namely that accepting paths no longer correspond one-to-one with words in the language.
In fact, an argument quite similar to the one we used for the #P-hardness result for CI with
NFAs shows that even finding a single winning strategy is PSPACE-hard:

Theorem 4.5. Finite-window reactive synthesis for NFAs is PSPACE-hard.

Proof. We show hardness by reduction from QBF. Given a QBF φ with variables numbered
1, . . . , n, without loss of generality we may assume the quantifiers strictly alternate starting
with ∃ and that the matrix ψ is in disjunctive normal form (by negating the formula as
needed). We can view an assignment to the variables as a word in {0, 1}n, where each
element indicates the truth of the variable corresponding to its position. Now using the
method of Kannan et al. [93], we can construct in polynomial time an NFA N which accepts
exactly the satisfying assignments of ψ. Then we have a winning strategy to generate a play
in L(N) if and only if φ is true.

Corollary 4.2. RCI (NFA,Σ∗) and RCI (Σ∗, NFA) are PSPACE-hard.

4.4.2 Context-Free Grammars and Boolean Formulas

To compare the complexity of RCI to that of CI for all types of specifications we considered
in Chapter 3, we also consider specifications given by grammars or Boolean formulas. While
grammars are not usually used in reactive synthesis, they are potentially useful in randomized
reactive synthesis for applications like fuzz testing: the set of allowed messages exchanged
between a client and server following a protocol with recursive structure can conveniently be
expressed using a CFG [165].
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Since NFAs can be converted to CFGs in polynomial time, Theorem 4.5 immediately
shows that RCI with CFG specifications is PSPACE-hard. The same is true for Boolean
formula specifications (and the more general symbolic specifications Symb we defined in
Section 3.4.3), since the problem of finding a single winning strategy is just QBF, which
is PSPACE-hard. However, our generic polynomial-space scheme applies to both types of
specifications:

Theorem 4.6. RCI (CFG,CFG) and RCI (Symb,Symb) have polynomial-space improvisa-
tion schemes.

Proof. By Theorem 4.3, since CFG parsing can be done in polynomial time and quantified
Boolean formulas (including symbolic specifications) can be checked in polynomial space.

4.4.3 Temporal Logic Formulas

Finally, we consider reactive control improvisation with specifications given by formulas of
linear temporal logic (LTL) [135], a popular formalism for reactive synthesis, and the more
expressive linear dynamic logic (LDL) [41]. For either logic we use its natural semantics on
finite words (see De Giacomo and Vardi [41] for details).

For LTL specifications, RCI is PSPACE-hard because this is already true of ordinary
reactive synthesis in a finite window3.

Theorem 4.7. Finite-window reactive synthesis for LTL is PSPACE-hard.

Proof. We show hardness by reduction from QBF, along similar lines to Theorem 4.5. Given
a QBF φ with variables numbered 1, . . . , n, without loss of generality we may assume the
quantifiers strictly alternate starting with ∃ and that the matrix is in conjunctive normal
form, consisting of clauses c1, . . . , cm. We can view an assignment to the variables as a
length-n trace over a single proposition p indicating the truth of the variable corresponding
to the position. Then for each clause ci we can construct an LTL formula ψc whose models
of length n are exactly the assignments satisfying the clause. Specifically, if ci contains the
variables V + positively and V − negatively, we put

ψc =
∨
v∈V +

Xv−1p ∨
∨
v∈V −

Xv−1(¬p).

Then putting ψ =
∧
i ψci , the length-n models of ψ are exactly the assignments satisfying

the matrix of φ. So we have a winning strategy to generate a play satisfying ψ if and only
if φ is true. Finally, this construction clearly can be done in polynomial time.

Corollary 4.3. RCI (LTL,Σ∗) and RCI (Σ∗, LTL) are PSPACE-hard.
3We suspect this has been observed but could not find a proof in the literature. See Torfah and Zim-

mermann [173] for a related type of result.



CHAPTER 4. REACTIVE CONTROL IMPROVISATION 80

Table 4.1: Complexity of the reactive control improvisation problem for various types of
hard and soft specifications H and S. Here PSPACE indicates that checking realizability is
PSPACE-hard, and that there is a polynomial-space improvisation scheme.

H\S RSG DFA NFA CFG LTL LDL

RSG
poly-time

DFA
NFA
CFG

PSPACE
LTL
LDL

This is perhaps disappointing, but is an inevitable consequence of LTL subsuming Boolean
formulas. On the other hand, our general polynomial-space scheme applies to LTL and its
much more expressive generalization LDL:

Theorem 4.8. RCI (LDL, LDL) has a polynomial-space improvisation scheme.

Proof. This follows from Theorem 4.3, since satisfaction of an LDL formula by a finite word
can be checked in polynomial time (e.g. by combining dynamic programming on subformulas
with a regular expression parser).

Thus for temporal logics polynomial-time algorithms are unlikely, but adding random-
ization to reactive synthesis does not increase its complexity.

4.5 Summary and Future Work
In this chapter we introduced reactive control improvisation as a framework for modeling
reactive synthesis problems where random but controlled behavior is desired. RCI provides a
natural way to tune the amount of randomness while ensuring that safety or other constraints
remain satisfied. We showed that RCI problems can be efficiently solved in many cases
occurring in practice, giving a polynomial-time improvisation scheme for reachability/safety
or DFA specifications. We also showed that RCI problems with specifications in LTL or
LDL, popularly used in planning, have the PSPACE-hardness typical of bounded games,
and gave a matching polynomial-space improvisation scheme. This scheme generalizes to
any specification checkable in polynomial space, including NFAs, CFGs, and many more
expressive formalisms. Table 4.1 summarizes these results.

These results show that, at a high level, finding a maximally-randomized strategy using
RCI is no harder than finding any winning strategy at all: for specifications yielding games
solvable in polynomial time (respectively, space), we gave polynomial-time (space) impro-
visation schemes. We therefore hope that in applications where ordinary reactive synthesis
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has proved tractable, our notion of randomized reactive synthesis will also. In particular,
we expect our DFA scheme to be quite practical, and have experimented with applications
in robotic planning (see Chapter 6). In addition to pursuing such applications, there are a
number of interesting directions for further theoretical work:

Using Constraint Solvers. We saw in Chapter 3 that SAT solvers can be helpful in ap-
proximately solving difficult CI problems. In the reactive, 2-player game setting, the
natural analogs of such algorithms are QBF solvers. Thus, it would be very interesting
to see if QBF solvers can be extended to solve the kind of counting problems needed
for RCI with Boolean or temporal logic formula specifications. Although this would
not improve the theoretical complexity, since we already gave a polynomial-space im-
provisation scheme for such problems, it could provide schemes which are useful in
practice. In fact, such symbolic methods could be helpful even for DFA specifications,
since our automata-theoretic algorithm suffers from the problem (which we saw earlier
in Chapter 3) that conjoining many simple properties can lead to exponentially-large
automata.

Multiple Soft Constraints. We did not attempt to extend RCI with multiple soft con-
straints, as we did for CI in Chapter 3. Although the complexity of RCI is likely greater
than that of CI in some cases (modulo complexity theory hypotheses), our PSPACE
upper bounds are significantly lower than the EXP upper bound for multi-constraint
CI from Theorem 3.11. So it is possible that adding reactivity to multi-constraint CI
does not in fact change its complexity.

Infinite Words. A more interesting theoretical extension of RCI would be to allow un-
bounded or infinite words, as typically used in reactive synthesis. These extensions
would be useful in robotic planning, as we discuss further in Chapter 6, as well as in
other applications. However, it is unclear how best to adapt our randomness constraint
to settings where the improviser can generate infinitely many words. In such settings
the improviser could assign arbitrarily small or even zero probability to every word,
rendering the randomness constraint trivial.

Generalized Randomness Constraints. Even in the bounded case, RCI extensions with
more complex randomness constraints than a simple upper bound on individual word
probabilities would be worthy of study. One possibility would be to more directly con-
trol diversity and/or unpredictability by requiring the distribution of the improviser’s
output to be close to uniform after transformation by a given function. This would
allow, for example, requiring the order in which a set of designated locations is visited
by a patrolling robot to be close to uniform, even if there are many more feasible routes
for one order over another.

More General Games. Finally, we used the simplest type of 2-player game, where the un-
derlying dynamics are deterministic and fully-observable. Extending RCI to stochastic
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games and games of partial information would allow more accurate modeling of a va-
riety of robotic planning problems where the results of actions and the state of the
environment are uncertain but not necessarily adversarial.
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Chapter 5

Language-Based Improvisation

5.1 Introduction
In Chapters 3 and 4, we focused on specification formalisms from logic, like Boolean and tem-
poral logic formulas, or from formal language theory, like finite automata and context-free
grammars. In this chapter, we consider a very different type of formalism: a programming
language. At first it might seem that a program might be too low-level to be a convenient
specification, but in fact there are a number of applications where this is quite useful. For ex-
ample, in superoptimization [116, 154], one seeks to synthesize a program that is functionally
equivalent to a reference program, but faster.

An example closer to algorithmic improvisation is that of property-based testing, popular-
ized by the QuickCheck tool [34]. Here, one writes programs testing various desired properties
of a system, as well as generator programs producing random inputs on which to run the
system. For example, to test an API for manipulating heaps we could write a generator pro-
ducing random heaps, and a program checking that the heap property is maintained after
inserting a random value. These programs form a specification in that they define which
tests are allowed: we should only invoke the API on valid heaps, for instance, and we should
only check the heap property in between API calls.

This basic idea — using a program to encode a class of tests — has been used in a number
of different forms. Parametrized unit tests [169] as used in Pex [168] are quite similar to
property-based testing: one writes unit tests which should succeed for all possible values of
some unspecified parameters; each assignment to the parameters yields a test case. Another
example is Concurrit [52], a domain-specific language for describing thread schedules for
testing a concurrent program. In all of these cases, a nondeterministic program defines a
class of tests, which is then explored by some kind of search method: symbolic execution in
Pex, random sampling in QuickCheck, and configurable random/systematic exploration in
Concurrit.

Algorithmic improvisation with program specifications offers a potential way to generalize
these techniques, at least for those based on random testing. However, the theory we studied
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in Chapter 3 is too restrictive in that it does not give any detailed control over the distribution
of an improviser. While near-uniform distributions are sensible if we know nothing about
the input space (after restricting it with hard constraints), often we want highly non-uniform
distributions. An extreme example is that of training machine learning algorithms: if we are
generating synthetic training images, for example, its distribution must be close to that of
the images the algorithm will actually be used on. For such applications, we want to allow
complete control over the distribution of the generated data, while still being able to impose
hard and soft constraints declaratively. This suggests that we consider another foundation
for improvising from programs: probabilistic programming languages.

Probabilistic programming languages (PPLs) augment ordinary programming languages
with probabilistic constructs, so that a single program defines a distribution over its out-
puts [79]. A large variety of PPLs have been developed, including imperative languages like
Prob [79], functional languages like Church [77], and declarative languages like BLOG [123].
Although all PPLs define generative processes, where running a program yields a sample from
its distribution, many PPLs also allow conditioning this distribution. Such languages have
an observe statement which conditions the distribution on a given predicate, eliminating all
executions of the program where the predicate does not hold [134, 79]. This is exactly what
we need to implement the hard and soft constraints in algorithmic improvisation.

To our knowledge, probabilistic programming languages have not previously been used for
test generation, probably because the design goals for PPLs have typically been to maximize
expressivity and provide a general-purpose tool for Bayesian inference1. However, we argue
that a domain-specific PPL can be a highly flexible and practical way to specify tests for
a particular domain. Here, we focus on systems like autonomous cars and robots, whose
environment is a scene, a configuration of physical objects and agents. Scenes are a complex
and heterogeneous domain, with intricate geometric constraints: a typical traffic scene, like
that in Figure 5.1, for example, has significant randomness but also significant structure.
This makes scenes an ideal candidate for a domain where a DSL can dramatically decrease
the effort required to specify and generate useful tests.

In this chapter, we design a domain-specific PPL, Scenic, for defining distributions over
scenes, and study scene improvisation, the problem of generating scenes from a Scenic
program [64, 65]. Scene improvisation has a number of applications, including not only
testing but also training and debugging cyber-physical systems using synthetic data. We will
discuss these applications in depth in Chapter 8, where we use Scenic to analyze and improve
the performance of a practical deep neural network for autonomous driving beyond what is
achieved by state-of-the-art synthetic data generation methods. More generally, Scenic can
be used to give a formal specification of the distribution of environments under which a
system is expected to operate correctly with high probability. Such environment models are
essential for any formal analysis: in particular, any attempt to prove the correctness of a
system requires a precise definition of the assumptions it makes about its environment. For

1Although PPLs are more commonly used for inference, they have been used for generation in computer
graphics. See Chapter 8 for a discussion.
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Figure 5.1: A scene of bumper-to-bumper traffic, generated from a ∼20-line Scenic program
and rendered in the video game Grand Theft Auto V [68].

this reason, Scenic is a crucial component of VerifAI, a toolkit for the design and analysis
of AI-based systems [47], which uses Scenic as its environment modeling language.

We will begin in Section 5.2 with an overview of Scenic, highlighting its major features
and motivating various choices in its design. Section 5.3 describes the syntax of the language
in detail, illustrating the semantics of its constructs with examples, while Section 5.4 gives
a formal operational semantics. Section 5.5 discusses the scene improvisation problem, and
our specialized sampling algorithms for Scenic. Finally, we conclude in Section 5.6 with a
summary and directions for future work.

5.2 The Design of Scenic

In this section, we motivate and illustrate the main features of Scenic, focusing on aspects
of the language that make it particularly well-suited for describing geometric scenarios.
Throughout, we use examples from our case study using Scenic to generate traffic scenes
to test and train autonomous cars, which will be detailed in Chapter 8.
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5.2.1 High-Level Design Choices

We begin by discussing some high-level choices in the design of Scenic, before moving on
to specific language features. Scenic is:

Imperative: Scenic uses an imperative syntax familiar to users of languages like Python.
Constructs such as loops and functions give Scenic a great deal of flexibility compared
to purely declarative formalisms like XML and VRML, which are the basis of input
formats for various simulators (e.g. the Gazebo [99] and Webots [122] robotics simu-
lators). For example, we can use a loop to create a line of cars following each other,
then wrap this into a function for later use. However, Scenic also allows constraints
to be defined declaratively, as we will see later.

Object-oriented: Object-orientation provides a natural organizational principle for scenar-
ios involving different types of physical objects, which can be modeled as classes. For
example, we could define a class Car defining general characteristics of cars, e.g. their
typical color distribution, and the fact that they are normally found on roads. We
could then make subclasses for particular car models defining their sizes, etc., or (as
we will see below) override the superclass for a particular instance to place a car on
the sidewalk. This use of classes also improves compositionality, since we can define
generic models like Car in a library for a particular application and reuse it in many
different scenarios.

Probabilistic: As a probabilistic programming language, Scenic allows sampling from dis-
tributions: x = (-10, 10) assigns x to a random number in the interval (−10, 10).
The ability to sample random values is useful not simply for generating random tests:
it is necessary for modeling real-world stochasticity, for example encoding a distribu-
tion for the distance between successive cars in traffic, learned from data. This in
turn is essential for using Scenic to train systems based on machine learning: us-
ing randomness, we can generate training data matching the distribution the system
will be used under. More generally, being a PPL makes it possible to use Scenic as
an environment specification language for cyber-physical systems which operate in an
inherently noisy and unpredictable world.

Domain-specific: Scenic provides readable, concise syntax for common geometric rela-
tionships that would otherwise require complex non-linear expressions and constraints.
It has native support for geometric concepts like points, local coordinate systems, lines
of sight, regions of space, and vector fields, including a variety of operators for manip-
ulating these. For example, we can pick a uniformly random point in the region road
by simply writing Point on road. As we will see, much of Scenic’s domain-specific
syntax is not merely syntactic sugar; rather, it enables flexible, natural language-like
ways of describing positions and orientations that would be difficult to implement as a
library on top of an existing language. Furthermore, while Scenic could be translated
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into existing PPLs, using a new language allows us to impose restrictions enabling
specialized sampling techniques not possible with general-purpose PPLs.

Integrated with Python: Scenic is implemented by translation to Python and therefore
allows full use of Python syntax for writing classes, functions, and so forth (except of
course for the few Python constructs to which Scenic gives new semantics). More im-
portantly, Scenic programs can invoke external Python code, making the vast ecosys-
tem of Python packages available for use. This made it possible, for example, to create
Scenic libraries which generate workspaces by parsing Webots world files [122] using
ANTLR [132], or OpenStreetMap data [59] using Python XML parsing packages [112].

Generic: Although Scenic is a domain-specific language specialized for describing scenes,
it is also generic in the sense of not being restricted to any particular application
domain or simulator. While most of our examples will be based on the domain of visual
perception for autonomous driving, this being our main case study in Chapter 8, we
also give an example of a different domain (robotic motion planning) and simulator
(Webots [122]) at the end of this section. Furthermore, we have also used Scenic with
the CARLA driving simulator [45] and the X-Plane flight simulator [141]. This was
made possible by designing Scenic to have a generic interface and only building in
general geometric concepts.

In fact, Scenic is also not restricted to generating visual data, but can produce data
of any desired type — RGB+depth images, LIDAR point clouds, or trajectories from
dynamical simulations — by interfacing it to an appropriate simulator. This requires
only two steps:

1. writing a small Scenic library defining the types of objects supported by the
simulator, as well as the geometry of the workspace (e.g. any fixed obstacles).

2. writing an interface layer converting the scenes output by Scenic (as simple lists
of objects with XY coordinates, etc.) into the simulator’s input format.

While the current version of Scenic is primarily concerned with geometry, leaving
the details of rendering and physics up to the simulator, the language allows putting
distributions on any parameters the simulator exposes. For example, in GTA V the
meshes of the various car models are fixed, but we can control their overall color. When
performing simulations over time, we can also use Scenic to specify distributions over
parameters on the system dynamics.

5.2.2 Main Language Features

Classes, Objects, and Geometry

To start, suppose we want scenes of one car viewed from another on the road. We can write
this very concisely in Scenic:
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1 from gta import Car
2 ego = Car
3 Car

Line 1 imports gta, a Scenic library containing everything specific to our autonomous car
case study: in particular, the class Car (in future examples we suppress the import line).
Line 2 then creates a Car and assigns it to the special variable ego specifying the ego object.
This is the reference point for the scenario: rendered images from the scenario will be from its
perspective, and many of Scenic’s geometric operators use ego by default when a position
is left implicit. Finally, line 3 creates a second Car. Note that we have not specified the
position or any other properties of the two cars: this means they are inherited from the
default values defined in the class Car. Slightly simplified, that definition begins:

1 class Car:
2 position: Point on road
3 heading: roadDirection at self.position

Here road is a region, one of Scenic’s primitive types, defined in the gta module to specify
which points in the workspace are on a road. Similarly, roadDirection is a vector field
specifying the nominal traffic direction at such points. The operator F at X simply gets
the direction of the field F at point X, so line 3 sets a Car’s default heading to be the
road direction at its position. The default position, in turn, is a Point on road (we will
explain this syntax shortly), which means a uniformly random point on the road. Thus,
in our simple scenario above both cars will be placed on the road and facing a reasonable
direction, without our having to specify this explicitly.

We can of course override the class-provided defaults and define the position of a car
more specifically. For example,

1 Car offset by (-10, 10) @ (20, 40)

creates a car that is 20–40 meters ahead of the camera, and up to 10 meters to the left or
right, while still using the default heading (namely, being aligned with the road). Here the
interval notation (X, Y ) creates a uniform distribution on the interval, and X @ Y creates
a vector from xy coordinates (as in Smalltalk [73]).

Local Coordinate Systems

Scenic provides a number of constructs for working with local coordinate systems, which
are often helpful when building a scene incrementally out of component parts. Above, we
saw how offset by could be used to position an object in the coordinate system of the ego,
for instance placing a car a certain distance away from the camera. In fact, ego is a variable
and can be reassigned, so we can set ego to one object, build a part of the scene around it,
then reassign ego and build another part of the scene.
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It is equally easy in Scenic to use local coordinate systems around other objects or even
arbitrary points. For example, suppose we want to make the scenario above more realistic
by not requiring the car to be exactly aligned with the road, but to be within say 5◦. We
could write

1 Car offset by (-10, 10) @ (20, 40),
2 facing (-5, 5) deg

but this is not quite what we want, since this sets the orientation of the car in global coor-
dinates. Thus the car will end up facing within 5◦ of North, rather than within 5◦ of the
road direction. Instead, we can use Scenic’s general operator X relative to Y , which
can interpret vectors and headings as being in a variety of local coordinate systems:

1 Car offset by (-10, 10) @ (20, 40),
2 facing (-5, 5) deg relative to roadDirection

If instead we want the heading to be relative to that of the ego car, so that the two cars are
(roughly) aligned, we simply write (-5, 5) deg relative to ego.

Notice that since roadDirection is a vector field, it defines a local coordinate system at
each point in space: at different points on the map, roads point different directions! Thus an
expression like 15 deg relative to field does not define a unique heading. The exam-
ple above works because Scenic knows that (-5, 5) deg relative to roadDirection
depends on a reference position, and automatically uses the position of the Car being
defined. This is a feature of Scenic’s system of specifiers, which we explain next.

Readable, Flexible Specifiers

The syntax offset by X and facing Y for specifying positions and orientations may seem
unusual compared to typical constructors in object-oriented languages. There are two reasons
why Scenic uses this kind of syntax: first, readability. The second is more subtle and based
on the fact that in natural language there are many ways to specify positions and other
properties, some of which interact with each other. Consider the following ways one might
describe the location of an object:

1. “is at position X ” (absolute position);

2. “is just left of position X ” (position based on orientation);

3. “is 3 m West of the taxi” (relative position);

4. “is 3 m left of the taxi” (a local coordinate system);

5. “is one lane left of the taxi” (another local coordinate system);

6. “appears to be 10 m behind the taxi” (relative to the line of sight);
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7. “is 10 m along the road from the taxi” (following a potentially curving vector field).

These are all fundamentally different from each other: e.g., (4) and (5) differ if the taxi is
not parallel to the lane.

Furthermore, these specifications combine other properties of the object in different ways:
to place the object “just left of” a position, we must first know the object’s heading; whereas
if we wanted to face the object “towards” a location, we must instead know its position.
There can be chains of such dependencies : “the car is 0.5 m left of the curb” means that
the right edge of the car is 0.5 m away from the curb, not the car’s position, which is its
center. So the car’s position depends on its width, which in turn depends on its model. In
a typical object-oriented language, this might be handled by computing values for position
and other properties and passing them to a constructor. For “a car is 0.5 m left of the curb”
we might write:

1 model = Car.defaultModelDistribution.sample()
2 pos = curb.offsetLeft(0.5 + model.width / 2)
3 car = Car(pos, model=model)

Notice how model must be used twice, because model determines both the model of the car
and (indirectly) its position. This is inelegant, and breaks encapsulation because the default
model distribution is used outside of the Car constructor. The latter problem could be fixed
by having a specialized constructor or factory function,

1 car = CarLeftOfBy(curb, 0.5)

but these would proliferate since we would need to handle all possible combinations of ways
to specify different properties (e.g. do we want to require a specific model? Are we overriding
the width provided by the model for this specific car?). Instead of having a multitude of such
monolithic constructors, Scenic factors the definition of objects into potentially-interacting
but syntactically-independent parts:

1 Car left of spot by 0.5, with model BUS

Here left of X by D and with model M are specifiers which do not have an order, but
which together specify the properties of the car. Scenic works out the dependencies between
properties (here, position is provided by left of, which depends on width, whose default
value depends on model) and evaluates them in the correct order. To use the default model
distribution we would simply leave off with model BUS; keeping it affects the position
appropriately without having to specify BUS more than once.

Specifying Multiple Properties Together

Recall that we defined the default position for a Car to be a Point on road: this is an
example of another specifier, on region, which specifies position to be a uniformly random
point in the given region. This specifier illustrates another feature of Scenic, namely that
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specifiers can specify multiple properties simultaneously. Consider the following scenario,
which creates a parked car given a region curb defined in the gta library:

1 spot = OrientedPoint on visible curb
2 Car left of spot by 0.25

The function visible region returns the part of the region that is visible from the ego
object. The specifier on visible curb will then set position to be a uniformly random
visible point on the curb. We create spot as an OrientedPoint, which is a built-in class that
defines a local coordinate system by having both a position and a heading. The on region
specifier can also specify heading if the region has a preferred orientation (a vector field)
associated with it: in our example, curb is oriented by roadDirection. So spot is, in fact, a
uniformly random visible point on the curb, oriented along the road. That orientation then
causes the car to be placed 0.25 m left of spot in spot’s local coordinate system, i.e. away
from the curb, as desired.

In fact, Scenic makes it easy to elaborate the scenario without needing to alter the code
above. Most simply, we could specify a particular model or non-default distribution over
models by just adding with model M to the definition of the Car. More interestingly, we
could produce a scenario for badly-parked cars by adding two lines:

1 spot = OrientedPoint on visible curb
2 badAngle = Uniform(1.0, -1.0) * (10, 20) deg
3 Car left of spot by 0.5,
4 facing badAngle relative to roadDirection

This will yield cars parked 10–20◦ off from the direction of the curb, as seen in Figure 5.2.
This illustrates how specifiers greatly enhance Scenic’s flexibility and modularity.

Declarative Hard and Soft Constraints

Notice that in the scenarios above we never explicitly ensured that two cars will not intersect
each other. Despite this, Scenic will never generate such scenes. This is because Scenic
enforces several default requirements :

• All objects must be contained in the workspace, or a particular region if specified. For
example, we can define the Car class so that all of its instances must be contained in
the region road by default.

• Objects must not intersect each other (unless explicitly allowed).

• Objects must be visible from the ego object (so that they affect the rendered image;
this requirement can be also disabled, for example if generating non-visual data).

Scenic also allows the user to define custom requirements checking arbitrary conditions
built from various geometric predicates. For example, the following scenario produces a car
headed roughly towards the camera, while still facing the nominal road direction:
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Figure 5.2: A scene of a badly-parked car.

1 ego = Car on road
2 car2 = Car offset by (-10, 10) @ (20, 40), with viewAngle 30 deg
3 require car2 can see ego

Here we have used the X can see Y predicate, which in this case is checking that the ego
car is inside the 30◦ view cone of the second car.

Requirements, called observations in other probabilistic programming languages (see,
e.g., [79, 134]), are very convenient for defining scenarios because they make it easy to
restrict attention to particular cases of interest. Note how difficult it would be to write the
scenario above without the require statement: when defining the ego car, we would have
to somehow specify those positions where it is possible to put a roughly-oncoming car 20–40
meters ahead (for example, this is not possible on a one-way road). Instead, we can simply
place ego uniformly over all roads and let Scenic work out how to condition the distribution
so that the requirement is satisfied. As this example illustrates, the ability to declaratively
impose constraints gives Scenic much greater versatility than purely-generative formalisms
like shape grammars (see e.g. [125]). Requirements also improve encapsulation, since we can
restrict an existing scenario without altering it.

The constraint in our example above is a hard requirement which must always be satisfied.
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Scenic also allows imposing soft requirements that need only be true with some minimum
probability:

1 require[0.5] car2 can see ego

As we will see later, soft requirements can be implemented in general-purpose PPLs using
only observations and conditionals (and in fact some PPLs provide similar constructs, or
allow the likelihood of executions to be arbitrarily adjusted, e.g. Stan [23]). However, soft
requirements are not simply syntactic sugar in Scenic because the language does not allow
probabilistic control flow. They are useful, for example, in ensuring adequate representation
of a particular condition when generating a training set: for instance, we could require that
at least 90% of the images have a car driving on the right side of the road.

Mutations

Finally, a common testing paradigm is to randomly generate variations of existing tests.
For example, in mutational fuzz testing, one might test an audio player by applying random
mutations to a set of ordinary MP3 files, flipping bits and deleting fields [165]. The same
idea has been used for testing autonomous cars in simulation, generating many variations
on complex or problematic scenarios observed in real-world testing [114].

Scenic supports this paradigm by providing syntax for performing mutations in a com-
positional manner, adding variety to a scenario without changing its code. For example,
given a complex scenario involving a taxi, we can add one additional line:

1 taxi = Car at 120@300, facing 37 deg, ...
2 ...
3 mutate taxi

The mutate statement will add Gaussian noise to the position and heading of taxi, while
still enforcing all built-in and custom requirements. The standard deviation of the noise can
be scaled by writing, for example, mutate taxi by 2 (which adds twice as much noise), and
we will see later that it can be controlled separately for position and heading.

5.2.3 A Worked Example

We conclude this section with a larger example of a Scenic program which also illustrates
the language’s utility across domains and simulators. Specifically, we consider the problem
of testing a motion planning algorithm for a Mars rover able to climb over rocks. Such robots
can have very complex dynamics, with the feasibility of a motion plan depending on exact
details of the robot’s hardware and the geometry of the terrain. We can use Scenic to write
a scenario generating challenging cases for a planner to solve in simulation.

We will write a scenario representing a rubble field of rocks and pipes with a bottleneck
between the rover and its goal that forces the path planner to consider climbing over a rock.
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First, we import a small library mars defining the (empty) workspace and several types of
objects: the Rover itself, the Goal (represented by a flag), and debris classes Rock, BigRock,
and Pipe. Rock and BigRock have fixed sizes, and the rover can climb over them; Pipe
cannot be climbed over, and can represent a pipe of arbitrary length, controlled by the
height property (height corresponding to Scenic’s y axis).

1 import mars

Then we create the rover at a fixed position and the goal at a random position on the other
side of the workspace:

2 ego = Rover at 0 @ -2
3 goal = Goal at (-2, 2) @ (2, 2.5)

Next, we pick a position for the bottleneck, requiring it to lie roughly on the way from
the robot to its goal, and place a rock there.

4 bottleneck = OrientedPoint offset by (-1.5, 1.5) @ (0.5, 1.5),
5 facing (-30, 30) deg
6 require abs((angle to goal) - (angle to bottleneck)) <= 10 deg
7 BigRock at bottleneck

Note how we define bottleneck as an OrientedPoint, with a range of possible orientations:
this is to set up a local coordinate system for positioning the pipes making up the bottleneck.
Specifically, we position two pipes of varying lengths on either side of the bottleneck, with
their ends far enough apart for the robot to be able to pass between:

8 halfGapWidth = (1.2 * ego.width) / 2
9 leftEnd = OrientedPoint left of bottleneck by halfGapWidth,
10 facing (60, 120) deg relative to bottleneck
11 rightEnd = OrientedPoint right of bottleneck by halfGapWidth,
12 facing (-120, -60) deg relative to bottleneck
13 Pipe ahead of leftEnd, with height (1, 2)
14 Pipe ahead of rightEnd, with height (1, 2)

Finally, to make the scenario slightly more interesting we add several additional obstacles,
positioned either on the far side of the bottleneck or anywhere at random.

15 BigRock beyond bottleneck by (-0.5, 0.5) @ (0.5, 1)
16 BigRock beyond bottleneck by (-0.5, 0.5) @ (0.5, 1)
17 Pipe
18 Rock
19 Rock
20 Rock
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Figure 5.3: Debris fields generated with Scenic for testing a robotic motion planner.

This completes the scenario. Several scenes generated from it, visualized in the Webots
simulator [122], are shown in Figure 5.3. This example, the badly-parked car scenario of
Figure 5.2, and the bumper-to-bumper traffic scenario of Figure 5.1 illustrate the versatility
of Scenic in constructing a wide range of interesting scenarios. Many more examples can
be found in Chapter 8 and in the Scenic distribution [65].

5.3 Syntax of Scenic

Having now outlined the main design choices and constructs of Scenic, we proceed to
define the language’s syntax in detail. Scenic inherits without change the Python syntax
for conditionals, loops, functions, and methods, which we do not describe further (see the
Python documentation [60] for details), focusing on the new elements. The novel syntax,
as we saw above, is largely devoted to expressing geometric relationships in a concise and
flexible manner. Figure 5.4 gives a formal grammar for this syntax, which will be elaborated
below. For now we will describe the meaning of Scenic’s constructs informally, leaving
formal semantics to Section 5.4.
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scenario := (statement)∗
boolean := True | False | booleanOperator
scalar := number | distribution | scalarOperator

distribution := baseDistribution | resample(distribution)
vector := scalar @ scalar | Point | vectorOperator

heading := scalar | OrientedPoint | headingOperator
direction := heading | vectorField

value := boolean | scalar | vector | direction | region
| instance | instance.property

classDefinition := class class [(superclass)]:
(property: defaultValueExpression)∗

instance := class specifier, . . .
specifier := with property value | positionSpecifier | headingSpecifier

Figure 5.4: Simplified top-level Scenic grammar. Point and OrientedPoint are instances of
the corresponding classes. See Table 5.5 for statements, Figure 5.6 for operators, Table 5.1
for baseDistribution, and Tables 5.3 and 5.4 for positionSpecifier and headingSpecifier .

5.3.1 Primitive Data Types

Scenic provides several primitive data types:

Booleans expressing truth values.

Scalars representing distances, angles, etc. as floating-point numbers, which can be sampled
from various distributions (see Section 5.3.2).

Vectors representing positions and offsets in space, constructed from coordinates with the
syntax X @ Y (inspired by Smalltalk [73]). By convention, coordinates are in meters,
although the semantics of Scenic does not depend on this. More significantly, the
vector syntax is specialized for 2-dimensional space. The 2D assumption dramatically
simplifies much of Scenic’s syntax (particularly that dealing with orientations, as we
will see below), while still being adequate for a variety of applications. However, it is
important to note that the fundamental ideas of Scenic are not specific to 2D, and it
would be easy to extend our implementation of the language to support 3D space.

Headings representing orientations in space. Conveniently, in 2D these can be expressed
using a single angle (rather than Euler angles or a quaternion). Scenic represents
headings in radians, measured anticlockwise from North, so that a heading of 0 is due
North and a heading of π/2 is due West. We use the convention that the heading of
a local coordinate system is the heading of its y-axis, so that, for example, -2 @ 3
means 2 meters left and 3 ahead.
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Table 5.1: Distributions built into Scenic. All parameters are scalars except for value,
which can be any value.

Syntax Distribution

(low, high) uniform on an interval
Normal(mean, stdDev) normal with given mean and standard deviation
Uniform(value, . . . ) uniform over a finite set of values
Discrete({value: wt, . . . }) discrete with given values and weights

Vector Fields associating an orientation (i.e. a heading) to each point in space. For exam-
ple, a vector field could represent the shortest paths to a destination, or the nominal
traffic direction on a road.

Regions representing sets of points in space. Scenic provides a variety of ways to define
Regions: rectangles, circular sectors, line segments, polygons, occupancy grids, and
explicit lists of points. These particular types of Regions are all implemented using
Python classes, so we do not discuss them further here (see the Scenic implementation
for details [65]).

Regions can have an associated vector field giving points in the region preferred ori-
entations. For example, a Region representing a lane of traffic could have a preferred
orientation aligned with the lane, so that (as we will see later) we can easily talk about
distances along the lane, even if it curves. Another possible use of preferred orienta-
tions is to give the surface of an object normal vectors, so that other objects placed on
the surface face outward by default.

In addition to these basic types, Scenic provides a system of classes and objects, which
will be described shortly in Section 5.3.3. First, we discuss Scenic’s syntax for distributions.

5.3.2 Distributions

Scenic provides 4 basic types of distributions, shown in Table 5.1. There are two continuous
distributions, uniform and normal, with uniform distributions over an interval being written
simply as that interval: thus (-1, 1) represents a uniform distribution over (−1, 1).

Scenic also supports arbitrary discrete distributions, which can be over any type of
value. For example, if we have Regions leftLane and rightLane, we could write

1 lane = Discrete({
2 leftLane: 2,
3 rightLane: 1
4 })
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to pick the left lane twice as often as the right lane. Scenic allows the shorthand Uniform(...)
for a uniform discrete distribution over a given set of values.

There is in fact a 5th type of distribution built into Scenic: a uniform distribution over
points in a Region. It is not shown in Table 5.1, since it is only available using the specifier
syntax we will discuss in Section 5.3.4. As we will see there, we can for example write Point
on road to generate a uniformly-random point in the Region road, or Point visible from
taxi for a uniformly-random point visible from the object taxi.

As is typical in an imperative probabilistic programming language, syntax denoting a
distribution really refers to a sample from that distribution. For example, the program

1 x = (0, 1)
2 y = x @ x

should be read as assigning x a sample from the unit interval (0, 1). Thus, the distribution
of y is not uniform over the unit box, but rather over its diagonal. This choice makes
Scenic programs have the semantics one would expect from an ordinary, non-probabilistic
programming language, where reading twice from the same variable yields the same value
each time.

However, for cases where multiple samples from the same distribution are desired, Scenic
provides a resample(D) function defined on primitive distributions D (not general expres-
sions involving distributions, which would lead to confusion about the semantics). This
function returns an independent sample from D , conditioned on the values of its parameters,
if any. For example, in the program

1 x = Uniform(0, 5)
2 y = (x, x+1)
3 z = resample(y)

with probability 1/2 both y and z are independent uniform samples from (0, 1), and with
probability 1/2 they are independent uniform samples from (5, 6). It is never the case that
y ∈ (0, 1) and z ∈ (5, 6) or vice versa, which would require inconsistent assignments to x.

5.3.3 Objects

Scenic provides a simple system of objects, organized into single-inheritance classes. Class
definitions specify a set of properties their instances have, together with default values for
these properties (see Figure 5.4). Default values can be distributions, which allows defining
a prior distribution on a property of an entire class of object. For example, we can define
the prior distribution of the position of a Pedestrian to be uniformly at random on a
sidewalk, but override this in particular cases, e.g. to place a pedestrian in the middle of the
road. To support this usage, default value expressions are evaluated each time an object is
created; thus, if we define
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1 class Rock:
2 weight: (50, 300)

then each Rock will have a property weight with value drawn independently from (50,
300), as we would expect.

Default values may use the special syntax self.property to refer to one of the other
properties of the object, which is then a dependency of the default value. For example,
writing

1 class Pedestrian:
2 height: Normal(1.8, 0.1)
3 weight: self.height * 100

the default value of weight depends on height, and so the latter is automatically sampled
before the former. The procedure which Scenic uses to determine the sampling order,
including detecting cyclic dependencies, will be described in Section 5.4.3.

The ability to use an arbitrary expression as a default value, even one which depends on
other properties of the object, makes object creation in Scenic concise and modular. We
can see this using a simplified version of the class Car from our case study in Chapter 8:

1 class Car:
2 heading: roadDirection at self.position
3 width: self.model.width
4 height: self.model.height

Here, the dimensions of a Car are automatically inferred from its model, but can be easily
overridden if we want an extra-long truck, for example. More interestingly, the heading is
defined to be the nominal traffic direction (given by the vector field roadDirection) at the
car’s location, and this holds regardless of how we specify the latter.

There are 3 classes built into Scenic: Point, OrientedPoint, and Object. Point repre-
sents a location in space and provides the position property, while its subclass OrientedPoint
additionally provides an orientation via the heading property and so defines a local coor-
dinate system. Object represents a physical object, extending OrientedPoint by defining
a bounding box via the properties width and height (for the X and Y axes respectively).
Object is also the default superclass for user-defined classes when none is specified. The
properties provided by the built-in classes, along with their default values, are shown in
Table 5.2.

To simplify notation, Point and OrientedPoint are automatically interpreted as vectors
or headings in contexts expecting these, as shown in Figure 5.4. A Point is interpreted as a
vector by reading its position property, and an OrientedPoint is interpreted as a heading
by reading its heading property. For example, given an Object called taxi, we can simplify
the two expressions
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Table 5.2: Properties of Point, OrientedPoint, and Object.

Property Default Meaning

position 0 @ 0 position in global coordinates
viewDistance 50 distance for the ‘can see’ operator (Section 5.3.5)
mutationScale 0 overall scale of mutations (see Section 5.3.6)
positionStdDev 1 mutation standard deviation for position

heading 0 heading in global coordinates
viewAngle 360◦ angle for the ‘can see’ operator
headingStdDev 5◦ mutation standard deviation for heading

width 1 width of bounding box (X axis)
height 1 height of bounding box (Y axis)
regionContainedIn workspace Region the object must lie within
allowCollisions false whether collisions are allowed
requireVisible true whether object must be visible from ego

1 taxi.position offset by 1 @ 2
2 30 deg relative to taxi.heading

to the equivalent

1 taxi offset by 1 @ 2
2 30 deg relative to taxi

Cases where this would be ambiguous, e.g. taxi relative to limo where both objects
provide both position and heading, are illegal (being caught by a simple type system); the
more verbose syntax must be used instead.

Finally, creation of objects in Scenic has two unusual aspects. First, definitions of
instances of Object are the only expressions in Scenic with a side effect, namely creating
an object in the generated scene. Second, the properties of an object are defined using
system of specifiers outlined above, which we now discuss in detail.

5.3.4 Specifiers

As seen in Figure 5.4, instances of classes are created by writing the name of the class fol-
lowed by a (possibly empty) comma-separated list of specifiers. The specifiers are combined,
possibly adding default specifiers from the class definition, to form a complete specification of
all properties of the object. Arbitrary properties, including user-defined properties with no
meaning in Scenic, can be specified with the generic specifier with property value, while
Scenic provides many other specifiers for the built-in properties position and heading.
These are shown in Tables 5.3 and 5.4 respectively (we will describe their semantics shortly).
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Table 5.3: Specifiers for position. Those in the second group also optionally specify
heading.

Specifier Dependencies

at vector —
offset by vector —
offset along direction by vector —
(left | right) of vector [by scalar ] heading, width
(ahead of | behind) vector [by scalar ] heading, height
beyond vector by vector [from vector ] —
visible [from (Point | OrientedPoint)] —

(in | on) region —
(left | right) of (OrientedPoint | Object) [by scalar ] width
(ahead of | behind) (OrientedPoint | Object) [by scalar ] height
following vectorField [from vector ] for scalar —

Table 5.4: Specifiers for heading.

Specifier Dependencies

facing heading —
facing vectorField position
facing (toward | away from) vector position
apparently facing heading [from vector ] position

In general, a specifier is a function mapping one assignment of properties to another. As
input, it takes in values for zero or more properties, its dependencies. As output, it specifies
values for one or more other properties. Consider two specifiers from Table 5.3:

1 Car at 1 @ 2 # no dependencies; specifies ‘position’
2 Car left of taxi by 5 # depends on ‘width’; specifies ‘position’

The at 1 @ 2 specifier has no dependencies and specifies the constant value 1 @ 2 for
position. On the other hand, left of taxi by 5 depends on width, since in order to
place the Car 5 meters to the left of the taxi we need to know how wide the Car is.

The left of specifier also illustrates another feature of specifiers, namely that they
can specify properties optionally. This means that other specifiers which specify the same
property, but not optionally, will override them. In the example above, left of optionally
specifies heading to be the same as taxi, so that the Car ends up 5 meters to the left of
taxi and parallel with it. But since the specification is optional, we can override it:

1 Car left of taxi by 5, facing toward taxi
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The facing toward specifier, from Table 5.4, specifies heading non-optionally, so it takes
precedence.

Another interesting example of optional specification is the in/on region specifier. It
always specifies position to be a uniformly random point in the given Region. However, it
can also optionally specify heading, namely when the Region has a preferred orientation. If
road is such a region, then we can write for example

1 Car on road # use heading from orientation of road
2 Car on road, facing 30 deg # override with specific heading

If road did not have a preferred orientation, the behavior of line 2 would remain the same,
while line 1 would use the default heading defined in the Car class.

Specifiers are combined to determine the properties of an object by evaluating them in
an order which ensures that their dependencies are always already assigned. If there is no
such order or a single property is specified twice, the scenario is ill-formed. The procedure
by which the order is found, taking into account properties that are optionally specified and
default values, will be described in Section 5.4.3.

Finally, we informally describe the semantics of all of the specifiers. For formal definitions,
see Section 5.4.4. Several specifiers are illustrated in Figure 5.5.

Specifiers for position

at vector: Positions the object at the given global coordinates.

offset by vector: Positions the object at the given coordinates in the local coordinate
system of ego (which must already be defined). See Figure 5.5 for an example.

offset along direction by vector: Positions the object at the given coordinates, in a local
coordinate system centered at ego and oriented along the given direction (which, if a
vector field, is evaluated at ego to obtain a heading).

(left | right) of vector [by scalar ]: Depends on heading and width. Without the op-
tional by scalar , positions the object immediately to the left/right of the given posi-
tion; i.e., so that the midpoint of the object’s right/left edge is at that position. If by
scalar is used, the object is placed further to the left/right by the given distance.

(ahead of | behind) vector [by scalar ]: As above, except placing the object ahead of or
behind the given position (so that the midpoint of the object’s back/front edge is at
that position); thereby depending on heading and height.

beyond vector by vector [from vector ]: Positions the object at coordinates given by the
second vector, in a local coordinate system centered at the first vector and oriented
along the line of sight to there from the ego. For example, beyond taxi by 0 @ 3
means 3 meters directly behind the taxi as viewed by the camera. Another example
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ego

1

2 Point offset by 1 @ 2

P

2

2

1

Point beyond P by -2 @ 1

Object behind P by 2

Figure 5.5: Examples of several Scenic specifiers, using the ego object and an
OrientedPoint P. Instances of OrientedPoint are shown as bold arrows.

is shown in Figure 5.5. With the optional from vector , the line of sight is computed
from the given position rather than that of ego.

visible [from (Point | OrientedPoint)]: Positions the object uniformly at random in the
visible region of the ego (see Section 5.3.5 for a discussion of the visibility model and
the can see operator), or of the given Point/OrientedPoint if given.

Specifiers for position and optionally heading

(in | on) region: Positions the object uniformly at random in the given Region. If the
Region has a preferred orientation (a vector field), also optionally specifies heading to
be equal to that orientation at the object’s position.

(left | right) of (OrientedPoint | Object) [by scalar ]: Positions the object to the left/right
of the given OrientedPoint, depending on the object’s width. Also optionally speci-
fies heading to be the same as that of the OrientedPoint. If the OrientedPoint is
in fact an Object, the object being constructed is positioned to the left/right of its
left/right edge. So for example, in
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1 A = Object at 0 @ 0, with width 2
2 B = Object right of A, with width 4

the object B has center 3 @ 0, so that it is adjacent to A on the right. When the
optional by scalar is given, the object is placed further to the left/right by the given
distance.

(ahead of | behind) (OrientedPoint | Object) [by scalar ]: As above, except positioning
the object ahead of or behind the given OrientedPoint, thereby depending on height.

following vectorField [from vector ] for scalar: Positions the object at a point obtained
by following the given vector field for the given distance starting from ego (or the
position optionally provided with from vector). Optionally specifies heading to be the
heading of the vector field at the resulting point. Uses a forward Euler approximation
of the continuous vector field (see 5.4.4).

Specifiers for heading

facing heading: Orients the object along the given heading in global coordinates.

facing vectorField: Orients the object along the given vector field at the object’s position.

facing (toward | away from) vector: Orients the object toward/away from the given po-
sition (thereby depending on the object’s position).

apparently facing heading [from vector ]: Orients the object so that it has the given
heading with respect to the line of sight from ego (or from the position given by the
optional from vector). For example, apparently facing 90 deg orients the object
so that the camera views its left side head-on. See also the apparent heading of
operator, illustrated in Figure 5.7.

5.3.5 Operators

Scenic’s operators are shown in Figure 5.6, organized by the type of value they compute.
The standard arithmetic and Boolean operators have their usual meanings, so we will only
discuss the geometric operators. As for specifiers, we will only define the operators informally
here, giving formal semantics in Section 5.4.5. Examples of some of the more interesting
operators are shown in Figure 5.7. Note that some operators are polymorphic: for example,
region visible from X allows X to be either a Point or OrientedPoint , and has different
meanings in each case (even though instances of OrientedPoint are also instances of Point).

Scalar Operators

relative heading of heading [from heading ]: The relative heading of the given heading
with respect to ego (or the heading provided with the optional from heading).
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scalarOperator := max(scalar, . . . ) | min(scalar, . . . )
| -scalar | abs(scalar) | scalar ( + | - | * | / | ** ) scalar
| relative heading of heading [from heading ]
| apparent heading of OrientedPoint [from vector ]
| distance [from vector ] to vector
| angle [from vector ] to vector

booleanOperator := not boolean | boolean (and | or) boolean
| scalar (== | != | < | > | <= | >=) scalar
| (Point | OrientedPoint) can see (vector | Object)
| (vector | Object) in region

headingOperator := scalar deg | vectorField at vector
| direction relative to direction

vectorOperator := vector (relative to | offset by) vector
| vector offset along direction by vector

regionOperator := visible region
| region visible from (Point | OrientedPoint)

orientedPointOperator := vector relative to OrientedPoint
| OrientedPoint offset by vector
| (front | back | left | right) of Object
| (front | back) (left | right) of Object

Figure 5.6: Scenic operators by result type.

ego

left of ego

back right of ego

1

2 1 @ 2 relative to ego

P

P offset by 0 @ -2

2

apparent heading of P

Figure 5.7: Various Scenic operators applied to the ego object and an OrientedPoint P,
as in Figure 5.5. Instances of OrientedPoint are shown as bold arrows.



CHAPTER 5. LANGUAGE-BASED IMPROVISATION 106

apparent heading of OrientedPoint [from vector ]: The apparent heading of the OrientedPoint,
with respect to the line of sight from ego (or the position provided with the optional
from vector). See Figure 5.7 for an example.

distance [from vector ] to vector: The distance to the given position from ego (or the
position provided with the optional from vector).

angle [from vector ] to vector: The heading to the given position from ego (or the position
provided with the optional from vector). For example, if angle to taxi is zero, then
taxi is due North of ego.

Boolean Operators

(Point | OrientedPoint) can see (vector | Object): Whether or not a position or Object
is visible from a Point or OrientedPoint. Visible regions are defined as follows: a
Point can see out to a certain distance, and an OrientedPoint restricts this to the
circular sector along its heading with a certain angle. The distance and angle are
defined by the viewDistance and viewAngle properties in Table 5.2. A position is
then visible if it lies in the visible region, and an Object is visible if its bounding box
intersects the visible region. Note that Scenic’s visibility model does not take into
account occlusion, although this would be straightforward to add.

(vector | Object) in region: Whether a position or Object lies in the region; for the latter,
the Object’s bounding box must be contained in the region. This allows us to use the
predicate in two ways:

1 car.position in road # center of car is on the road
2 car in road # entire car is on the road

Heading Operators

scalar deg: The given heading, interpreted as being in degrees. For example 90 deg eval-
uates to π/2.

vectorField at vector: The heading specified by the vector field at the given position.

direction relative to direction: The first direction, interpreted as an offset relative to
the second direction. For example, -5 deg relative to 90 deg is simply 85 deg. If
either direction is a vector field, then this operator yields an expression depending on
the position property of the object being specified. So if roadDirection is a vector
field, we can write for example

1 direction = 30 deg relative to roadDirection # depends on ‘position’
2 Car at 0@0, facing direction # well-defined
3 require direction > 40 deg # error: used outside object context
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Vector Operators

vector (relative to | offset by) vector: The first vector, interpreted as an offset rela-
tive to the second vector (or vice versa). For example, 5@5 relative to 100@200 is
105@205. Note that this polymorphic operator has a specialized version for instances
of OrientedPoint, defined below (so for example -3@0 relative to taxi will not
use this vector version, even though the Object taxi can be coerced to a vector).

vector offset along direction by vector: The second vector, interpreted in a local coor-
dinate system centered at the first vector and oriented along the given direction (which,
if a vector field, is evaluated at the first vector to obtain a heading).

Region Operators

visible region: The part of the given region visible from ego.

region visible from (Point | OrientedPoint): The part of the given region visible from
the given Point/OrientedPoint. See the discussion of visible regions under the can
see operator above.

OrientedPoint Operators

vector relative to OrientedPoint: The given vector, interpreted in the local coordinate
system of the OrientedPoint. So for example 1 @ 2 relative to ego is 1 meter to
the right and 2 meters ahead of ego, as shown in Figure 5.7.

OrientedPoint offset by vector: Equivalent to vector relative to OrientedPoint above.

(front | back | left | right) of Object: The midpoint of the corresponding edge of the
bounding box of the Object, oriented along its heading. See Figure 5.7 for an example.

(front | back) (left | right) of Object: The corresponding corner of the Object’s bound-
ing box, also oriented along its heading. See e.g. back right of ego in Figure 5.7.

5.3.6 Statements

Finally, we describe the syntax of Scenic’s statements. As previously mentioned, a variety
of statements including conditionals, loops, function definitions, and so forth are inherited
directly from Python, so we do not describe them here. The other statements in Scenic are
listed in Table 5.5. We have already discussed class and object definitions above, and variable
assignment behaves in the standard way. Below, we summarize the remaining statements.

import module: Imports a Scenic or Python module. This statement behaves as in
Python, but when importing a Scenic module M it also imports any objects created
and requirements imposed inM . Scenic also supports the form from module import
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Table 5.5: Scenic statements (excluding loops, etc. inherited from Python).

Syntax Meaning

import module import Scenic/Python module
identifier = value variable assignment
param identifier = value, . . . global parameter assignment
classDefn class definition
instance object definition
require boolean hard requirement
require[number] boolean soft requirement
mutate identifier, . . . [by number ] enable mutation

identifier, . . . , which as in Python imports the module plus one or more identifiers
from its namespace.

param identifier = value, . . . : Defines global parameters of the scenario. These have no
semantics in Scenic, simply having their values included as part of the generated
scene, but provide a general-purpose way to encode arbitrary global information. For
example, if we write

1 param timeOfDay = (0, 24) * 3600

then the resulting scenes will have a parameter timeOfDay, which a simulator could
read to set the time of day appropriately.

require boolean: Defines a hard requirement, requiring that the given condition hold in
all instantiations of the scenario. As noted above, this is equivalent to an observe
statement in other probabilistic programming languages (see e.g. [134, 123, 79]).

require[number] boolean: Defines a soft requirement, requiring that the given condition
hold with at least the given probability (which must be a constant). There are several
ways the semantics of soft requirements could be defined: Scenic uses the natural
definition that require[p] B is equivalent to a hard requirement require B that is
only enforced with probability p.

mutate identifier, . . . [by number ]: Enables mutation of the given list of objects, adding
Gaussian noise with the given standard deviation (default 1) to their position and
heading properties. If no objects are specified, mutation applies to every Object
already created. Some examples:

1 mutate taxi # perturbs position/heading of taxi
2 mutate taxi by 2 # perturbs taxi by twice as much
3 mutate # perturbs all existing Objects
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The mutate statement works by assigning the mutationScale property of Point,
shown in Table 5.2. The amount of noise added to the position and heading proper-
ties can be controlled independently by setting the positionStdDev and headingStdDev
properties, which multiply mutationScale. So for example we can add with positionStdDev
0 when creating an object to prevent its position from being mutated.

Because mutation is designed to allow easily constructing variants of existing scenarios,
mutation noise is added at the end of running the Scenic program (but before checking
requirements). This means that noise added to one object does not affect the properties
of other objects defined in terms of it. For example, if we write

1 ego = Object at 0 @ 0, facing 0 # at origin, facing North
2 B = Object offset by 0 @ 10 # 10 meters ahead of ego
3 mutate ego

then mutation will cause ego to no longer face exactly North; however, B will still be
positioned exactly at 0 @ 10, because its position is computed before mutation takes
place. In this way, we can easily perturb one object without affecting others. On the
other hand, if maintaining the precise relationship between objects is important, we
can modify the scenario directly instead of using mutate:

1 ego = Object at 0 @ 0, facing Normal(0, 5 deg)
2 B = Object offset by 0 @ 10

5.4 Semantics of Scenic

We have now described the syntax of Scenic programs, and informally explained their
meaning. In this section, we give a precise semantics for Scenic expressions and statements,
building up to a semantics for a complete program as a distribution over scenes.

5.4.1 Overview and Notation

The output of a Scenic program is a scene consisting of the assignment to all the proper-
ties of each Object defined in the scenario, plus any global parameters defined with param.
Since Scenic is a probabilistic programming language, the semantics of a program is ac-
tually a distribution over possible outputs, here scenes. As for other imperative PPLs, the
semantics can be defined operationally as an interpreter, but with two differences from non-
probabilistic programming languages. First, the interpreter makes random choices when
evaluating distributions [152]. For example, the Scenic statement x = (0, 1) updates the
state of the interpreter by assigning a value to x drawn from the uniform distribution on the
interval (0, 1). In this way every possible run of the interpreter has a probability associated
with it. Second, every run where a require statement (the equivalent of an “observation” in
other PPLs) is violated gets discarded, and the run probabilities appropriately normalized
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(see, e.g., [35]). For example, adding the statement require x > 0.5 above would yield a
uniform distribution for x over the interval (0.5, 1).

Along these lines, we will give a small-step operational semantics for Scenic. As in
our discussion of syntax, we will focus on the aspects of Scenic that set it apart from
ordinary imperative languages, skipping standard inference rules for sequential composition,
arithmetic operations, etc. that we essentially use without change. In rules for statements,
we will denote a state of a Scenic program by 〈s, σ, π,O〉, consisting of 4 parts:

• s is the statement (i.e., remaining part of the program) to be executed;

• σ is the current variable assignment (a map from identifiers to values);

• π is the current global parameter assignment (for param statements);

• O is the set of all objects defined so far.

In rules for expressions, we use the same notation, although we sometimes suppress the state
on the right-hand side of rules for expressions without side effects: 〈e, σ, π,O〉 → v means
that in the state (σ, π,O), the expression e evaluates to the value v without side effects.
Since none of the specifiers and operators have side effects, to simplify notation further we
often write JXK for the value of the expression X in the current state, rather than giving
explicit rules. Following the notation of Saheb-Djahromi [152] and Claret et al. [35], we
write→p for a rewrite rule that fires with probability p (probability density p, in the case of
continuous distributions). We will discuss the meaning of such rules in more detail below.

Throughout this section, S indicates a scalar , V a vector , H a heading , F a vectorField ,
R a region, P a Point, and OP an OrientedPoint. Figure 5.8 defines notation used in the
rest of the semantics. Most is self-explanatory; offsetLocal (OP, v) offsets OP by v in its own
local coordinate system (maintaining its heading), visibleRegion (X) defines visible regions as
explained in Section 5.3.5, and fwdEuler (x, d, F ) computes the forward Euler approximation
of following the vector field F for distance d from x (with N being an implementation-defined
parameter specifying how many steps should be used; our implementation uses N = 4 by
default).

We begin by defining Scenic’s expressions — distributions, object definitions, specifiers,
and operators — before moving on to statements and entire Scenic programs.

5.4.2 Distributions

As in a typical imperative probabilistic programming language, a distribution evaluates to a
sample from the distribution, following the rule in Figure 5.9. For example, in the expression
(1, 4), the baseDistribution is a uniform interval distribution, which has two parameters,
low and high (see Tables 5.1 and 5.6). Here the parameters evaluate to 1 and 4 respectively,
and the corresponding density function is that of the uniform distribution on the interval
(1, 4). So by the rule in the Figure, the expression can evaluate to any v ∈ (1, 4) with
probability density 1/3, and to any v ∈ R \ (1, 4) with density 0.
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〈x, y〉 = point with the given XY coordinates
rotate (〈x, y〉 , θ) = 〈x cos θ − y sin θ, x sin θ + y cos θ〉

OrientedPt (v, h) = OrientedPoint with given position and heading
offsetLocal (OP, v) = OrientedPt (JOP.positionK + rotate (v, JOP.headingK), OP.heading)

Disc (c, r) = set of points in the disc centered at c and with radius r
Sector (c, r, h, a) = set of points in the sector of Disc (c, r) centered along h, with angle a
boundingBox (O) = set of points in the bounding box of object O

visibleRegion (X) =


Sector (JX.positionK, JX.viewDistanceK,

JX.headingK, JX.viewAngleK) X ∈ OrientedPoint
Disc (JX.positionK, JX.viewDistanceK) X ∈ Point

orientation (R) = preferred orientation of R if any; otherwise ⊥
uniformPoint (R) = a uniformly random point in R
fwdEuler (x, d, F ) = Nth iterate of the map x 7→ x+ rotate (〈0, d/N〉 , JF K(x)) on x

Figure 5.8: Notation used to define the semantics of Scenic.

Distributions
〈params , σ, π,O〉 → θ v ∈ domPθ

〈baseDistribution(params), σ, π,O〉 →Pθ(v) v

Figure 5.9: Semantics of distributions. Here Pθ is the density function corresponding to the
particular baseDistribution in the expression, with parameters θ (see Table 5.6).

Table 5.6: Probability density/mass functions for the built-in distributions.

Distribution Domain Parameters (θ) Pθ(v)

Uniform on interval R low , high 1low<v<high/(high − low)

Normal R µ, σ exp(−(v − µ)2/2σ2)/
√

2πσ

Discrete uniform {v1, . . . , vN} — 1/N
Discrete weighted {v1, . . . , vN} wv1 , . . . , wvN wv/

∑
iwvi
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5.4.3 Object Definitions

The main step in defining the semantics of object definitions is resolving which specifiers are
used to specify which properties, and what order they should be evaluated in. The basic
procedure, when constructing an instance of class C using a set of specifiers S, is as follows:

1. If a property is specified (non-optionally) by multiple specifiers in S, an ambiguity
error is raised.

2. The set of properties P for the new object is found by combining the properties specified
by all specifiers in S with the properties inherited from the class C.

3. Default value specifiers from C are added to S as needed so that each property in P is
paired with a unique specifier in S specifying it, with precedence order: non-optional
specifier, optional specifier, then default value.

4. The dependency graph of the specifiers S is constructed. If it is cyclic, an error is
raised.

5. The graph is topologically sorted and the specifiers are evaluated in this order to
determine the values of all properties P of the new object.

The complete procedure is shown in Algorithm 5.1, which produces a list of pairs (si, pi)
where si is the ith specifier to evaluate and pi are the properties it should be used to
define. Note that pi is a set, since specifiers can specify multiple properties: for example, if
s1 = following vectorField for scalar , then p1 will always contain position, but could
also contain heading since the following specifier optionally specifies heading.

Now we can state the rule for evaluating object definitions, shown in Figure 5.10. In
the premise, the first line uses Algorithm 5.1 to compute the specifier evaluation order. The
subsequent lines evaluate the specifiers, each in a context where self has been updated with
all properties assigned by earlier specifiers. Each specifier evaluates to a property assignment,
i.e. a map from properties to values, as explained in Section 5.3.4. Once all properties have
been computed, the new instance is created. For example, if we write

1 spot = OrientedPoint at 0@0, facing -90 deg # facing East
2 Object left of spot, with width 6

then the definition on line 2 is evaluated as follows, with σ the current variable assignment:

1. Specifier resolution yields the list

(with width 6, {width}), (left of 0@0, {position, heading})

since left of depends on width (in fact there are further specifiers for the other
properties of Object, like height, which we ignore here). Note that left of is assigned
to specify two properties, since it optionally specifies heading and no other specifier
takes precedence.
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Algorithm 5.1 resolveSpecifiers (class , specifiers)

. Gather all specified properties
1: specForProperty ← ∅
2: optionalSpecsForProperty ← ∅
3: for all specifiers S in specifiers do
4: for all properties P specified non-optionally by S do
5: if P ∈ dom specForProperty then
6: syntax error: property P specified twice
7: specForProperty (P )← S

8: for all properties P specified optionally by S do
9: optionalSpecsForProperty (P ).append(S)

. Filter optional specifications
10: for all properties P ∈ dom optionalSpecsForProperty do
11: if P ∈ dom specForProperty then
12: continue
13: if |optionalSpecsForProperty (P )| > 1 then
14: syntax error: property P specified twice
15: specForProperty (P )← optionalSpecsForProperty (P )[0]

. Add default specifiers as needed
16: defaults ← defaultValueExpressions (class)
17: for all properties P ∈ dom defaults do
18: if P 6∈ dom specForProperty then
19: specForProperty (P )← defaults (P )

. Build dependency graph
20: G← empty graph on dom specForProperty
21: for all specifiers S ∈ dom specForProperty do
22: for all dependencies D of S do
23: if D 6∈ dom specForProperty then
24: syntax error: missing property D required by S
25: add an edge in G from specForProperty (D) to S
26: if G is cyclic then
27: syntax error: specifiers have cyclic dependencies

. Construct specifier and property evaluation order
28: specsAndProps ← empty list
29: for all specifiers S in G in topological order do
30: specsAndProps .append((S, {P | specForProperty (P ) = S}))
31: return specsAndProps
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Object Definitions
resolveSpecifiers(class , specifiers) = ((s1, p1), . . . , (sn, pn))

〈s1, σ[self/⊥], π,O〉 →r1 〈v1, σ1, π,O1〉
〈s2, σ1[self.p1/v1(p1)], π,O1〉 →r2 〈v2, σ2, π,O2〉

...
〈sn, σn−1[self.pn−1/vn−1(pn−1)], π,On−1〉 →rn 〈vn, σn, π,On〉

inst = newInstance(class , σn[self.pn/vn(pn)](self))

〈class specifiers , σ, π,O〉 →r1...rn 〈inst , σ, π,On ∪ {inst}〉

Figure 5.10: Semantics of object definitions. Here newInstance(class , props) creates a new
instance of a class with the given property values.

2. Specifier s1, namely with width 6, is evaluated in the context σ1 = σ[self/⊥], i.e.,
with self undefined. It evaluates to the map v1 = {width 7→ 6}.

3. Specifier s2, namely left of spot, is evaluated in the context σ2 = σ1[self.p1/v1(p1)],
where self.width = 6, since p1 = {width}. It evaluates to the map v2 = {position 7→
0@3, heading 7→ -90 deg}.

4. self is evaluated in the final context σ2[self.p2/v2(p2)], where self.width = 6 as
before but now also self.position = 0@3 and self.heading = -90 deg, since p2 =
{position, heading}.

5. Finally, a new instance is created with the resulting property values, and is added to
the set of Objects. The object definition itself evaluates to the new instance.

In this example there were no probabilities, but the rule in Figure 5.10 handles the general
case: each specifier may evaluate with some probability density ri (conditioned on the eval-
uations of the preceding specifiers), and the corresponding object is created with the joint
density Πiri, as we would expect.

5.4.4 Specifiers

Now we give precise definitions for each of the specifiers. As stated above, since the specifiers
do not have side effects, for concision we write their meanings using the JSK notation rather
than rewrite rules.

The semantics of the position specifiers are shown in Figure 5.11. Since these only
specify a single property, we write the semantics as a vector value v: the semantics of each
specifier is actually the map {position 7→ v}. Thus for example Jat 1@2K = {position 7→
J1@2K} = {position 7→ 〈1, 2〉}.

Next, Figure 5.12 gives the semantics of the position specifiers that also optionally
specify heading. The figure writes the semantics as an OrientedPoint value; if it has
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Jat V K = JV K
Joffset by V K = JV relative to ego.positionK

Joffset along H by V K = Jego.position offset along H by V K
Jleft of V K = Jleft of V by 0K (likewise for right of, etc.)

Jleft of V by SK = JV K + rotate (〈−Jself.widthK/2− JSK, 0〉 , Jself.headingK)
Jright of V by SK = JV K + rotate (〈Jself.widthK/2 + JSK, 0〉 , Jself.headingK)
Jahead of V by SK = JV K + rotate (〈0, Jself.heightK/2 + JSK〉 , Jself.headingK)

Jbehind V by SK = JV K + rotate (〈0,−Jself.heightK/2− JSK〉 , Jself.headingK)
Jbeyond V1 by V2K = Jbeyond V1 by V2 from ego.positionK

Jbeyond V1 by V2 from V3K = JV1K + rotate (JV2K, arctan (JV1K− JV3K))
JvisibleK = Jvisible from egoK

Jvisible from P K = uniformPoint (visibleRegion (P ))

Figure 5.11: Semantics of the position specifiers, given as the value v such that the specifier
evaluates to the map {position 7→ v}.

position p and heading h, then the semantics of the specifier is the map {position 7→
p, heading 7→ h}.

Finally, Figure 5.13 gives the semantics of the heading specifiers. Again, we write the
semantics as a single value v, with the specifier evaluating to the map {heading 7→ v}.

5.4.5 Operators

To complete our discussion of Scenic’s expressions, we define the semantics of the operators
in Figures 5.14–5.19. As in Section 5.3.5, we omit the ordinary numerical and Boolean
operators (max, +, or, >=, etc.), which have their standard meanings. We again use the JOK
notation, since none of the operators have side effects.

5.4.6 Statements

Next, we define the semantics of Scenic’s statements. Class and object definitions have
been discussed above, while rules for the other statements are given in Figure 5.20. As
can be seen from the first rule, variable assignment behaves in the standard way, updating
the variable assignment σ with the new value. Parameter assignment is nearly identical,
updating the global parameter assignment π.

As noted above, the require statement is equivalent to an observation in other languages,
and following Claret et al. [35] we model it by allowing the “Hard Requirements” rule in
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J(in | on) RK =

{
OrientedPt (x, Jorientation (R)K(x)) orientation (R) 6= ⊥
OrientedPt (x,⊥) otherwise

,

where x = uniformPoint (JRK)
Jleft of OK = Jleft of (left of O)K

Jright of OK = Jright of (right of O)K
Jahead of OK = Jahead of (front of O)K

Jbehind OK = Jbehind (back of O)K
Jleft of OP K = Jleft of OP by 0K (likewise for right of, etc.)

Jleft of OP by SK = offsetLocal (OP, 〈−Jself.widthK/2− JSK, 0〉)
Jright of OP by SK = offsetLocal (OP, 〈Jself.widthK/2 + JSK, 0〉)
Jahead of OP by SK = offsetLocal (OP, 〈0, Jself.heightK/2 + JSK〉)

Jbehind OP by SK = offsetLocal (OP, 〈0,−Jself.heightK/2− JSK〉)

Jfollowing F for SK = Jfollowing F from ego.position for SK
Jfollowing F from V for SK = OrientedPt (y, JF K(y)) where y = fwdEuler (JV K, JSK, JF K)

Figure 5.12: Semantics of the position specifiers optionally specifying heading. A result
of o means the specifier evaluates to {position 7→ o.position, heading 7→ o.heading}.

Jfacing HK = JHK
Jfacing F K = JF K(Jself.positionK)

Jfacing toward V K = arctan (JV K− Jself.positionK)
Jfacing away from V K = arctan (Jself.positionK− JV K)

Japparently facing HK = Japparently facing H from ego.positionK
Japparently facing H from V K = JHK + arctan (Jself.positionK− JV K)

Figure 5.13: Semantics of the heading specifiers, given as the value v such that the specifier
evaluates to the map {heading 7→ v}.
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Jrelative heading of HK = Jrelative heading of H from ego.headingK
Jrelative heading of H1 from H2K = JH1K− JH2K

Japparent heading of OP K = Japparent heading of OP from ego.positionK
Japparent heading of OP from V K = JOP.headingK− arctan (JOP.positionK− JV K))

Jdistance to V K = Jdistance from ego.position to V K
Jdistance from V1 to V2K = |JV2K− JV1K|

Jangle to V K = Jangle from ego.position to V K
Jangle from V1 to V2K = arctan (JV2K− JV1K)

Figure 5.14: Semantics of scalar operators.

JP can see V K = JV K ∈ visibleRegion (JP K)
JP can see OK = boundingBox (JOK) ∩ visibleRegion (JP K) 6= ∅

JV in RK = JV K ∈ JRK
JO in RK = boundingBox (JOK) ⊆ JRK

Figure 5.15: Semantics of Boolean operators.

JS degK = JSK · π/180

JF at V K = JF K(JV K)
JF1 relative to F2K = JF1K(Jself.positionK) + JF2K(Jself.positionK)
JH relative to F K = JHK + JF K(Jself.positionK)
JF relative to HK = JHK + JF K(Jself.positionK)

JH1 relative to H2K = JH1K + JH2K

Figure 5.16: Semantics of heading operators.
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JV1 (relative to | offset by) V2K = JV1K + JV2K
JV1 offset along H by V2K = JV1K + rotate (JV2K, JHK)
JV1 offset along F by V2K = JV1K + rotate (JV2K, JF K(JV1K))

Figure 5.17: Semantics of vector operators.

Jvisible RK = JR visible from egoK
JR visible from P K = JRK ∩ visibleRegion (JP K)

Figure 5.18: Semantics of Region operators.

JV relative to OP K = offsetLocal (OP, JV K)
JOP offset by V K = JV relative to OP K

Jfront of OK = offsetLocal (O, 〈0, JO.heightK/2〉)
Jback of OK = offsetLocal (O, 〈0,−JO.heightK/2〉)
Jleft of OK = offsetLocal (O, 〈−JO.widthK/2, 0〉)

Jright of OK = offsetLocal (O, 〈JO.widthK/2, 0〉)
Jfront left of OK = offsetLocal (O, 〈−JO.widthK/2, JO.heightK/2〉)
Jback left of OK = offsetLocal (O, 〈−JO.widthK/2,−JO.heightK/2〉)

Jfront right of OK = offsetLocal (O, 〈JO.widthK/2, JO.heightK/2〉)
Jback right of OK = offsetLocal (O, 〈JO.widthK/2,−JO.heightK/2〉)

Figure 5.19: Semantics of OrientedPoint operators.
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Variable/Parameter Assignments
〈E, σ, π,O〉 → 〈v, σ, π,O′〉

〈x = E, σ, π,O〉 → 〈pass, σ[x/v], π,O′〉
〈param x = E, σ, π,O〉 → 〈pass, σ, π[x/v],O′〉

Hard Requirements
〈B, σ, π,O〉 → 〈True, σ, π,O′〉

〈require B, σ, π,O〉 → 〈pass, σ, π,O′〉

Soft Requirements
〈require[p] B, σ, π,O〉 →p 〈require B, σ, π,O〉
〈require[p] B, σ, π,O〉 →1−p 〈pass, σ, π,O〉

Mutations
〈mutate obj i by s, σ, π,O〉 → 〈pass, σ, π,O[σ(obj i).mutationScale/s]〉

Figure 5.20: Semantics of statements (excluding class definitions and standard rules for
sequential composition). pass is the no-op statement.

Figure 5.20 to only fire when the condition is satisfied (turning the requirement into a no-
op). If the condition is not satisfied, no rules apply and the program fails to terminate
normally. When defining the semantics of entire Scenic programs below we will discard
such non-terminating executions, yielding a distribution only over executions where all hard
requirements are satisfied.

The soft requirement require[p] B is equivalent to a hard requirement require B
which is only enforced with probability p, as explained in Section 5.3.6. This is reflected
in the two corresponding rules in Figure 5.20, which convert the soft requirement to a hard
requirement with probability p and otherwise convert it into a no-op.

Finally, mutations are handled by two rules. As we saw in Section 5.3.6, the mutate
statement itself simply sets the mutationScale property of an object, indicating that noise
should be added at the end of the program. This is accomplished by the “Mutations” rule
in Figure 5.20. The noise is actually added by the first of two special rules, shown in
Figure 5.21, that apply only once the program has been reduced to the no-op pass and so
computation has finished. The rule first looks up the values of the properties mutationScale,
positionStdDev, and headingStdDev for each object. Respectively, these specify the overall
scale of the noise to add (by default zero, so that no noise is added) and factors allowing the
standard deviation for position and heading to be adjusted individually. The rule then
independently samples Gaussian noise with the desired standard deviations for each object
and adds it to the object’s position and heading properties.

The second rule in Figure 5.21 checks Scenic’s three built-in hard requirements:
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Termination, Step 1: Apply Mutations
O = {o1, . . . , on} ∀i ∈ {1, . . . , n} :

Si = O(oi.mutationScale)
pi = O(oi.positionStdDev) hi = O(oi.headingStdDev)

〈Normal(0, Si · pi), σ, π,O〉 →ri,x 〈ni,x, σ, π,O〉
〈Normal(0, Si · pi), σ, π,O〉 →ri,y 〈ni,y, σ, π,O〉
〈Normal(0, Si · hi), σ, π,O〉 →ri,h 〈ni,h, σ, π,O〉

posi = O(oi.position) + 〈ni,x, ni,y〉 headi = O(oi.heading) + ni,h

〈pass, σ, π,O〉 →r0,xr0,yr0,h... 〈Done, σ, π,O[oi.position/posi][oi.heading/headi]〉

Termination, Step 2: Check Default Requirements
O = {o1, . . . , on} ∀i : boundingBox (oi) ⊆ oi.regionContainedIn

∀i 6= j :
(
oi.allowCollisions ∨ oj.allowCollisions

∨boundingBox (oi) ∩ boundingBox (oj) = ∅
)

∀i : ¬oi.requireVisible ∨ 〈ego can see oi, σ, π,O〉 → True

〈Done, σ, π,O〉 → (π,O)

Figure 5.21: Semantics of program termination. Done denotes a special state ready for the
final termination rule to run.

1. Each Object must lie inside its container Region (by default, the whole workspace).

2. No two Objects can intersect, unless their allowCollisions property is true.

3. Every Object must be visible from ego, unless its requireVisible property is false.

If these conditions are satisfied, the program terminates, with its output being a scene: the
set of objects O, together with the global parameters π.

5.4.7 Programs

We can finally define the semantics of an entire Scenic program. As we have seen above, the
rewrite rules in an execution trace of a Scenic program are annotated with probabilities,
since Scenic allows sampling from distributions. This induces a distribution over executions
of the program, where each execution trace has a probability (density) given by the product
of the probabilities of all its rewrite rules (see e.g. [35]). If the the program were purely
imperative, with no hard or soft requirements, this would induce a distribution over outputs
of the program, i.e. scenes.

However, we want a scene distribution which is conditioned on all hard requirements
being satisfied. Towards this end, we set up the rules above (Figures 5.20 and 5.21) so
that executions where a requirement is violated do not terminate, following Claret et al.
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[35]. Therefore, if we discard all non-terminating traces, normalizing the probabilities of the
remaining traces yields a distribution over scenes that satisfy all requirements2. This is the
distribution defined by the Scenic program.

5.5 Scene Improvisation
Now that we have defined the Scenic language, and the semantics of a Scenic program
as a distribution over scenes, the question remains of how to sample from this distribution.
This problem, which we call scene improvisation, does fall under the general umbrella of
algorithmic improvisation, being a synthesis problem with all three essential elements:

Hard constraints given explicitly as require statements, as well as arising from the im-
perative part of the program, which specifies required relationships between parts of
the scene (e.g. x = y offset by 5@0).

Soft constraints from soft requirements, like require[0.5] distance to taxi < 10.

Randomness constraints arising from the distributions imposed by the program; for ex-
ample x = (-3, 3) constrains x to have a certain distribution.

However, scene improvisation goes beyond the theory we studied in Chapter 3 in two ways:
first, the space of improvisations is (partly) continuous. Second, the randomness constraint
is far more sophisticated, allowing particular distributions to be specified rather than simply
requiring any distribution which is sufficiently close to uniform. Extending the theory of
control improvisation to handle such problems is an interesting direction for future work.

Instead, we consider scene improvisation from the perspective of probabilistic program-
ming languages. Since our semantics reduces soft requirements to hard requirements, scene
improvisation is essentially a special case of the sampling problem for imperative PPLs with
observations. A large variety of heuristic sampling techniques have been developed for this
general problem. The simplest approach is rejection sampling : repeatedly sample from the
program without regard to the requirements, until a sample satisfying the requirements is
found. This procedure yields exactly the desired distribution, but could take arbitrarily long
to produce a sample: indeed, if the requirements are inconsistent or have probability zero,
the procedure will run forever. However, rejection sampling does have the advantage of being
able to handle arbitrary requirements, and in practice it worked well for all of the scenarios in
our case study in Chapter 8. It should also be possible to adapt more sophisticated sampling
techniques used for PPLs, such as Markov chain Monte Carlo methods (see, e.g., [123, 130,
188, 40]).

2Putting this on a rigorous theoretical foundation requires measure theory, since we allow sampling from
both discrete and continuous distributions (although in practice all continuous distributions are approximated
by discrete distributions over floating-point numbers). For a detailed discussion see Borgström et al. [19] or
Staton et al. [163].
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A more interesting question is whether we can take advantage of the domain-specific na-
ture of Scenic to develop specialized sampling techniques not available in general-purpose
PPLs. Below, we present several such techniques which can significantly improve the effi-
ciency of sampling.

5.5.1 Domain-Specific Sampling Techniques

Our specialized sampling techniques take advantage of several domain-specific aspects of
Scenic:

• Direct syntax for geometric operations, which allows us, for example, to easily detect
when a point is being sampled uniformly within a polygon (as in Car on road; if the
position of the Car were an arbitrary arithmetic expression, it would be difficult to tell
whether it was equivalent to a uniform sample over a polygon).

• Built-in requirements of a known form, e.g. visibility and object containment require-
ments (again, detecting that arbitrary arithmetic predicates had one of these forms
would be difficult).

• Lack of probabilistic control flow, meaning that the structure of all distributions need-
ing to be sampled are known at compile time (whereas in a general-purpose PPL, the
position of a Car for example could be uniform over a polygon in one execution path
but Gaussian in another).

Our techniques are inspired by methods for low-dimensional robotic path planning: in
particular, the reduction of planning for a robot of nonzero size to planning for a point
robot by constructing the configuration space [186]. For example, given a 2D map of an
environment, dilating all obstacles by some r > 0 yields a new map in which all free space
is at least distance r from the original obstacles. So planning a route through the free space
of the new map yields a path that is collision-free for a circular robot of radius r. In a
similar way, we can use geometric information in Scenic to prune away parts of the sample
space where the objects in the scene do not fit into the workspace or otherwise violate a
requirement. We describe three different instantiations of this idea below.

Pruning Based on Containment

The simplest technique applies to any object X whose position is uniform in a region R and
which must be contained in a region C (e.g. the road in our case study). If minRadius is a
lower bound on the distance from the center of X to its bounding box, then we can restrict
R to R ∩ erode(C,minRadius). This is sound, since if X is centered anywhere not in the
restriction, then some point of its bounding box must lie outside of C.
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Pruning Based on Orientation

The next technique applies to scenarios placing constraints on the relative heading and the
maximum distance M between objects X and Y , which are oriented with respect to a vector
field that is constant within polygonal regions (e.g. roads, either straight or approximated
by polygonal segments). For each polygon P , we find all polygons Qi satisfying the relative
heading constraints with respect to P (up to a perturbation if X and Y need not be exactly
aligned to the field), and restrict P to P ∩ dilate(∪Qi,M). This is also sound: suppose X
can be positioned at x in polygon P . Then Y must lie at some y in a polygon Q satisfying
the constraints, and since the distance from x to y is at most M , we have x ∈ dilate(Q,M).

Algorithm 5.2 pruneByOrientation (map, A, M, δ)
1: map’ ← ∅
2: for all polygons P in map do
3: for all polygons Q in map do
4: Q′ ← dilate(Q,M)
5: if P ∩Q′ 6= ∅ ∧ relHead(P,Q)± 2δ ∈ A then
6: map’ ← map’ ∪ (Q′ ∩ P )

7: return map’

Pruning Based on Diameter

Finally, in the setting above of objects X and Y aligned to a polygonal vector field (with
maximum distanceM), we can also prune the space using a lower bound on the width of the
configuration. For example, in our bumper-to-bumper scenario we can infer such a bound
from the offset by specifiers in the program. We first find all polygons that are not wide
enough to fit the configuration according to the bound: call these “narrow”. Then we restrict
each narrow polygon P to P ∩ dilate(∪Qi,M) where Qi runs over all polygons except P .
To see that this is sound, suppose object X can lie at x in polygon P . If P is not narrow,
we do not restrict it; otherwise, object Y must lie at y in some other polygon Q. Since the
distance from x to y is at most M , as above we have x ∈ dilate(Q,M).

Algorithm 5.3 pruneByWidth (map, M, minWidth)

1: narrowPolys← narrow(map,minWidth)
2: map’ ← map \ narrowPolys
3: for all polygons P in narrowPolys do
4: U ←

⋃
Q∈map\{P} dilate(Q,M)

5: map’ ← map’ ∪ (P ∩ U)

6: return map’
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5.6 Summary and Future Work
In this chapter, we developed Scenic, a probabilistic programming language for specifying
distributions over scenes, configurations of physical objects and agents. We explained how
the language’s domain-specific design makes it possible to readably and concisely encode
complex scenarios like those arising in the environment of an autonomous car. In particular,
we saw how Scenic’s specifiers provide a convenient, modular way to define the positions
and orientations of objects with the flexibility of natural language. More broadly, Scenic’s
mixture of imperative syntax with declarative hard and soft requirements makes it easy
to build a scenario in a forward, incremental manner while being able to impose global
constraints on the final result.

We formally defined the semantics of a Scenic program as a distribution over scenes, and
studied the problem of sampling from this distribution, scene improvisation. We presented
several techniques which take advantage of the specialized structure of Scenic programs
to prune away infeasible parts of the scene space and thereby improve the efficiency of
sampling. As we will see in Chapter 8, our implementation [65] is able to generate complex,
realistic scenes that can be used to improve the performance of actual perception systems
for autonomous cars, as well as for various other applications.

Beyond exploring additional domains and applications of Scenic, there are a number of
other promising directions for future work:

Extending the Language. Most straightforwardly, there are several ways the syntax of
Scenic could be extended to make it more general and easier to use, including adding
support for 3D scenes, user-defined specifiers, and restricted types of probabilistic
control flow that would not compromise sampling efficiency.

Encoding Dynamics. A much more substantial generalization of the language would be
to allow encoding of dynamic scenarios, where agents move and take actions over time.
As we will see in Chapter 8, although Scenic describes static scenes, it is not limited
to testing perception systems operating on single images: we can test controllers, for
example, by generating initial states and controller parameters from which to launch
simulations. However, being able to express dynamic behaviors, e.g. one car passing
another on a freeway, would greatly increase the utility of Scenic for developing
complex controllers as used in autonomous driving. This will require extending the
language with constructs for time, events, and reactive agents.

Improving Sampling. As we mentioned above, rejection sampling gave acceptable perfor-
mance for all of our experiments in our case study in Chapter 8. However, it is easy
to write Scenic programs where rejection sampling fails, and it would be interesting
to explore whether more sophisticated PPL techniques like Markov chain Monte Carlo
methods [123, 130, 188, 40] can help in such cases. MCMC can only help to a certain
extent, though, since even finding a single solution to the constraints in a Scenic
program can be hard: for example, a scenario like
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1 for i in range(30):
2 Car in largeCongestedIntersection

essentially requires solving a packing problem, and even very simple geometric packing
problems are already NP-hard [61, 98]. It is possible that constraint solvers, and in
particular uniform sampling algorithms like those we discussed in Chapter 2, could help
here, although to our knowledge there has been no work on sampling from nonlinear
real arithmetic constraints like those arising from Scenic programs.

Learning Scenarios from Data. A related issue is that manually writing a set of Scenic
programs adequate for training or testing purposes could be a significant burden, given
the wide variety of possible scenarios a system like an autonomous car can encounter.
One way to reduce this burden would be to automatically learn Scenic programs from
data. There are many problems which would need to be solved to do this in practice,
e.g. clustering scenes into related groups, detecting outliers, identifying when a set of
scenarios is “adequate” in some sense, doing scene understanding to generate scenes
from raw data in the first place, and so forth; however, even inferring a single Scenic
program from a set of scenes is already theoretically interesting. For this, we could
build on a long line of work on parameter synthesis for probabilistic programs (going
back to IBAL [134]), as well as more recent work on learning entire programs (e.g. Saad
et al. [150], which also discusses many earlier approaches). There is also related work
on specification mining (see for example Ammons et al. [4] and Li et al. [107]), which
we have previously used for the application of CI to music improvisation [177].

Monitoring Scenarios. Finally, since Scenic programs can be used as specifications of
the nominal environments a system is designed to operate in, a natural question is
whether we can monitor a scenario to detect anomalous situations at runtime. For
example, we could formalize the so-called “operational design domain” (ODD) of an
autonomous vehicle [167] as a Scenic program, and if we detect that we have left
the ODD, we could take some emergency action to try to recover. A first step would
be to compute the likelihood of the current scene given a Scenic program, but a
more sophisticated approach will probably be required to prevent frequent false alarms
due to uncertainty about the environment, noisy sensor data, and more generally the
inevitable mismatch between the formal Scenic model and the actual world.
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Part II

Applications
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Chapter 6

Robotic Planning

6.1 Introduction
In this chapter, we explore applications of algorithmic improvisation to randomized robotic
planning problems. As we saw in the Introduction, it can be very useful to introduce ran-
domness into the behavior of a robot: for example, doing a random walk can help find a
target in an unknown space without needing to build a map [182]. Another interesting class
of examples are surveillance problems, where the goal is to visit several designated locations,
using randomness to make it more difficult for an adversary to predict where the robot will
be at any given time1. For example, consider a security robot which must periodically visit
every room in a museum, without running into any human staff members or visitors. The
planning task is to compute a policy for the robot which tells it how to move over time as a
function of its environment, in such a way that the goals of visiting every room and avoiding
collisions are guaranteed to be met.

As we discussed in Chapter 4, we could formulate this task as a reactive synthesis prob-
lem [101], but a reactive synthesis algorithm might well generate a completely deterministic
policy. In such a case, a thief could easily observe at what time the robot tends to be at
the opposite end of the museum, and plan accordingly. Alternatively, rather than a general
planning algorithm, we could use specialized techniques for surveillance problems: there is a
substantial literature on robotic patrolling [137]. In particular there are patrolling strategies
which use random walks to reduce predictability [81, 153].

However, patrolling strategies suffer from another problem, namely that because they are
specialized to an idealized patrolling problem, they do not support imposing constraints on
the robot’s behavior that are often necessary in practice. The collision-avoidance constraint
above is relatively easy to handle, e.g. doing a random walk globally and avoiding collisions
locally; however, other useful constraints can force major changes to the robot’s policy at
a global level. For example, suppose a surveillance drone has a limited battery life, and
must return to its home base to recharge after at most some time T . Patrolling algorithms

1Thanks to Stéphane Lafortune for suggesting this application.
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based on random walks, for example, cannot ensure such a requirement, since there will be
some probability of not returning in time. We could modify the algorithm to account for
the battery, for example switching into a “return to base” mode when the battery reaches a
certain threshold, but this could compromise unpredictability.

These types of planning problems need algorithms which can combine arbitrary functional
correctness requirements with a randomness guarantee: this is exactly what algorithmic
improvisation provides. When the robot operates in a known environment, and planning can
be done offline, we can formulate the planning problem as an instance of control improvisation
(Chapter 3): synthesize an improviser which generates random sequences of actions for the
robot, subject to constraints. If some aspects of the environment are uncertain or even
adversarial, so that planning must be done on-the-fly in response to the environment, we
can instead formulate the planning problem as an instance of reactive control improvisation
(Chapter 4): the improviser is now a strategy (policy) which guarantees the constraints under
all possible environment behaviors.

We will illustrate both of these cases with worked examples of robotic surveillance prob-
lems, generating routes for a surveillance drone subject to safety, efficiency, and randomness
constraints. Section 6.2 presents an offline planning example using control improvisation,
and Section 6.3 presents an online planning example using reactive control improvisation.
In both cases we show how to encode our desired requirements as DFAs, enabling the use
of the efficient improvisation schemes for DFAs we developed in Chapters 3 and 4. We then
perform experiments using the resulting improvisers to control simulated and real drones,
demonstrating the practicality of algorithmic improvisation for robotic planning tasks. Fi-
nally, we conclude in Section 6.4 with a summary and directions for future work.

6.2 Planning in a Known Environment
Our first example will be a patrolling problem for a surveillance drone with a limited battery
life. Specifically, supposing there are ` designated locations to be monitored, our require-
ments are as follows:

Mission:

1. The drone must visit all ` locations at least once.

2. The drone must not visit any location twice in a row (since this would be redun-
dant).

3. The drone must end at the home base (so we can start another patrol route).

Safety: The drone must not visit more than 3 locations before recharging at the home base.

Efficiency: At least 80% of the time, each location is visited exactly once.
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6.2.1 Encoding as a CI Problem

When formalizing the planning task as a CI problem, we can choose how precisely to encode
the geometry of the workspace the robot operates in. At one extreme, we can discretize the
workspace into a very fine grid or graph, and generate paths through this graph. This has the
advantage of allowing the improviser to control the robot in a detailed way, maximizing the
ability to introduce randomness into the system; however, the CI problem may be difficult
to solve since the space of possible paths and the encodings of the constraints are large. At
the other end of the spectrum, we can throw away all the details of the workspace, encoding
only the connectivity between different destinations in the CI problem. This will greatly
reduce the size of the CI problem, but the improviser will now only generate a high-level
plan, which will need to be refined into a detailed plan by some other algorithm. We will
take this second approach in this section, and illustrate a CI encoding with more precise
geometry in Section 6.3.

Thus, we will use the alphabet Σ = {0, . . . , `}, where 0 denotes the home base, i > 0
denotes the ith designated location, and a word in Σ∗ corresponds to a sequence of locations
visited by the drone. For example, the word 0120 means a route where starting from the
home base, the drone visits locations 1 and 2 in sequence, then returns. Note that we are not
saying anything about how the drone gets from location 1 to location 2: that will have to
be decided by a lower-level planner. Our improviser will only determine the order in which
to visit different locations.

Next, we encode the mission and safety requirements above as the hard constraint of our
CI instance. Our hard specification H will be a DFA which is the product of three automata
Hvisit, Hrepeat, and Hrecharge encoding different requirements:

1. The drone must visit every location. To encode this as a DFAHvisit, we use one state for
every possible combination of having visited or not visited a location (other than the
home base, which we start from). So the state space is {T,F}`, where for example with
` = 3 the state TFT means we have visited locations 1 and 3 but not 2. Transitions
update the state in the obvious way, recording which location has been newly visited,
if any: so from state TFT on input 2 we transition to TTT, whereas on input 1 we
stay at TFT. We begin in state F`, since no locations have been visited yet, and the
only accepting state is T`, since then all locations have been visited. The resulting
automaton for ` = 3 is shown in Figure 6.1.

2. The drone must not visit any location twice in a row, and must end at the home base.
This property is even easier to encode as a DFA Hrepeat: we have one state for each
location, representing where the drone currently is. On input x we transition to the
corresponding state, unless we are already at state x, in which case we transition to a
failure state. The only accepting state is that corresponding to the home base. This
automaton is shown for ` = 3 in Figure 6.2.
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Figure 6.1: DFA requiring that all locations must be visited, for ` = 3. With the dashed
transitions instead leading to a failure state, requires that all locations are visited exactly
once.
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Figure 6.2: DFA requiring that no location should be visited twice in a row, and that we
must end at the home base, for ` = 3.
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Figure 6.3: DFA requiring that we must recharge after at most 3 visits, for ` = 3.

3. The drone must not visit more than 3 locations before recharging at the home base.
To encode this as a DFA Hrecharge, we use a chain of states representing how long it
has been since the last time we visited the home base. The chain terminates at a
failure state corresponding to one time step beyond the required limit (here, 4). All
other states transition to the next state in the chain on any input other than 0, which
brings us back to the start of the chain since we have returned to the home base. The
automaton for ` = 3 is shown in Figure 6.3.

This leaves the efficiency requirement, namely that every location (except the home base)
is visited exactly once at least 80% of the time. We encode this using the soft constraint of
the CI instance, setting ε = 0.2 and letting our soft specification S be a DFA monitoring
the “visit exactly once” property. This DFA is a slight variant of Hvisit, simply changing
all transitions which represent a repeat visit to instead transition to a failure state: see the
dashed transitions in Figure 6.1.

The last component of the CI instance is the randomness requirement. Since we want
an unpredictable patrol route for the drone, we want a maximally-randomized policy, i.e. an
improviser with the probability bound ρ as small as possible (given the hard and soft
constraints above). Rearranging Corollary 3.1 (with λ = 0), the optimal value is ρopt =
max(1/|I|, (1 − ε)/|A|), which our algorithm can compute2. We can then apply the impro-
visation scheme of Theorem 3.4 to synthesize an improviser.

6.2.2 Experiments

With colleagues in the TerraSwarm project3, we tested our improviser on an actual drone,
shown in Figure 6.4. To do this, the sequence of locations to visit generated by the impro-
viser was given to the Drona motion planner [42], which refined the high-level plan into
a trajectory taking into account the obstacles in the workspace. We then used the SatEX
satisfiability modulo convex programming (SMC) solver [157] to reason about the dynamics
of the drone and find control actions guaranteeing that the drone would track this trajectory

2Although there is no need to: our generic improvisation scheme (Theorem 3.2) only uses ρ to check
feasibility and then compute the best possible ε. So if ε is fixed and we want the smallest feasible ρ, the
algorithm is equivalent to simply sampling uniformly from I \A with probability ε and otherwise from A.

3Ankush Desai, Brent Schlotfeldt, Yasser Shoukry, and Dinesh Thakur. https://terraswarm.org

https://terraswarm.org
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Figure 6.4: The environment and drone used to test our improviser. The white areas indicate
the locations to be visited, with the drone starting at its home base on the left.

within a desired tolerance (modulo assumptions on the possible disturbances in the environ-
ment). Executing these actions, the drone successfully carried out the surveillance task in a
randomized way, without colliding with obstacles4.

To give a sense of how practical our algorithm is, Table 6.1 shows its performance on
various instances of the patrolling problem as a function of the number of designated locations
` and the length bound n. To provide a measure of how large the automata involved are,
the “Explored DFA States” column gives the number of states explored5 of the DFA B
representing the inadmissible improvisations, which is the largest automaton constructed
by the algorithm of Theorem 3.4. We also show the synthesis time, i.e. the time needed
to construct the improviser, and the average time to run the improviser and generate an
improvisation. These runtimes were obtained on a MacBook Pro laptop, using a Python
implementation of our algorithms; the implementation could undoubtedly be optimized, but
these runtimes still give a general idea of the scalability of our algorithm.

The first part of Table 6.1 shows that the synthesis time grows exponentially with `, which
is as expected since the DFA Hvisit has 2` states. The instance we used in our experiments
above, (`, n) = (5, 12), is solved in under a second, while we can solve instances with up to
12 locations in a few minutes. In all cases, once the improviser is constructed the time to
run it and generate a plan is negligible, being on the order of tens of microseconds. The

4A video of this experiment is available at https://alum.mit.edu/www/dfremont/impro.html.
5More precisely, state-time pairs, since we need to compute the number of accepting paths from each

state at every time up to the length bound n. Equivalently, the table shows the number of entries in the
memoization table of the DFA path counting algorithm [86] which needed to be computed.

https://alum.mit.edu/www/dfremont/impro.html
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Locations Maximum Explored Synthesis Improvisation
(`) Length (n) DFA States Time (s) Time (µs)

3 8 136 0.031 14
5 12 1,490 0.38 26
7 16 11,254 3.7 42
9 20 72,018 27 65
11 24 419,800 220 95

7 18 14,154 3.9 44
7 22 19,954 5.2 47
7 26 25,754 6.1 51
7 30 31,554 7.2 56
7 34 37,354 8.3 64

7 100 133,054 28 150
7 200 278,054 63 290
7 300 423,054 110 440

Table 6.1: Performance of our DFA improvisation scheme on various patrolling problems.
The improvisation times were averaged over 10,000 improvisations.

second part of the table fixes ` = 7 and shows that synthesis and improvisation time grow
linearly with the length bound n. Finally, the last part of the table demonstrates that our
algorithm is able to handle quite large n, with the improvisation time being correspondingly
larger since we need to generate long words, but even for n = 300 still being less than a
millisecond.

6.3 Planning in an Uncertain Environment
When the environment is not known ahead of time, for example in the presence of other
agents, we can use reactive control improvisation (Chapter 4) to find a strategy for the
robot which accomplishes the desired task regardless of what environment is ultimately
encountered. As usual in reactive synthesis, such a strategy likely only exists if we make
some assumptions about the environment, and these assumptions have to be encoded into
the RCI problem. We will illustrate this using a similar patrolling problem to the one above,
adding a second drone in the same workspace which is not under our control and which we
must avoid colliding with [67]. Specifically, we will use the following requirements:

Mission: The patrolling drone must visit all ` locations at least once.

Safety: The patrolling drone must not collide with the adversary drone.
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Figure 6.5: Grid world used for our RCI robotic surveillance experiments, with k = 7. The
patrolling drone starts at bottom left, the adversary at top right (shown as triangles). The
locations to visit are circled, and the adversary may not enter these or the square.

Efficiency: At least 75% of the time, each location is visited exactly once.

6.3.1 Encoding as an RCI Problem

We will use the workspace in Figure 6.5, where we control the drone in the bottom left and
the potentially-adversarial drone is in the top right. There are ` = 4 locations to visit in the
Figure, shown as circles. In contrast to our example in Section 6.2, here we will model the
geometry of the workspace, discretizing the map into a k × k grid: the lines in the Figure
show the grid for k = 7. Our alphabet Σ will consist of the 4 possible movement directions
on this grid, so that the improviser will generate a sequence of actions for the drone.

Note that with the workspace in Figure 6.5, the planning problem above is not realizable
(as our algorithm will detect): the adversary can simply sit on one of the circled locations
and prevent us from visiting it. To make the problem solvable, we will assume that the
adversary cannot move onto the circled locations, or onto the square in the center of the
workspace (otherwise, the adversary can prevent us reaching the far circle)6.

Our hard specification H will be built from two DFAs encoding the safety and mission
requirements:

1. The patrolling drone must not collide with the adversary. To monitor this property, we
need to keep track of the current positions of both drones, as a function of the actions

6For our experiments with larger grid sizes k, we generalize the workspace as follows: if the bottom
left corner of the grid is (0, 0), then the 4 locations to visit are (L,L), (L,H), (H,L), and (H,H), where
L = bk/3c and H = b2k/3c. The adversary is assumed to not be able to move to these grid points, as well
as the interior of the square they define.
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they have taken so far. Letting G be the set of all points in the grid, our state space
is G×G× {1, 2}, where the three components respectively represent the positions of
both players and whose turn it is. Since there are k2 points in the grid, we have 2k4

states in total.

Transitions update the positions of the players in the natural way: given a movement
action m ∈ Σ, based on whose turn it is (stored in the third component) we add the
appropriate offset to either the first or second component of the state. For example, in
state ((1, 2), (4, 3), 1), indicating the patrolling drone is at position (1, 2), the adversary
is at (4, 3), and it is the patrolling drone’s turn, suppose the input symbol is North.
This causes the patrolling drone to move to position (1, 3), so we transition to the state
((1, 3), (4, 3), 2): note the last component is 2, since it is now the adversary’s turn.

To model the assumption on the adversary and the non-collision requirement, we mod-
ify these transitions slightly. If we would ever transition to a state where the adversary
is in a position it is not allowed to enter, we instead transition to an accepting state
with a self-loop. Otherwise, if we would transition to a state where both drones are at
the same position, we instead transition to a failure state. The resulting automaton
Hcollision accepts exactly those traces where either the adversary violates its assumption,
or the two drones do not collide.

2. The patrolling drone must visit each of the designated locations. Recall that the DFA
Hvisit of Figure 6.1 monitors exactly this property, when the input denotes which of
the designated locations we are currently visiting (and is 0 when we aren’t visiting
any of them). However, in our setup here, the input is a movement action, not a
global position. Fortunately, Hcollision above already maintains the drones’ positions as
a function of the trace. If we view Hcollision as a finite state transducer whose output is
i ∈ {1, . . . , `} when the patrolling drone visits the corresponding designated location,
and 0 otherwise, then composing this transducer with Hvisit yields our desired DFA
H: it accepts exactly those traces where either the adversary violates its assumption,
or the patrolling drone visits all the designated locations without colliding with the
adversary. Recalling that Hvisit has 2` states if there are ` locations to visit, H has
2k4 · 2` states (plus the two special success and failure states).

To encode the efficiency requirement, that at least 75% of the time each location is visited
exactly once, we put ε = 0.25 and use a soft specification S given by a DFA very similar toH.
We simply alter Hvisit in the same way as in Section 6.2, changing transitions corresponding
to repeat visits so that they lead to a failure state (as shown in Figure 6.1).

Finally, once again we want to generate a maximally-randomized strategy for the pa-
trolling drone, so we compute the smallest feasible ρ for our constraints above. Rearranging
Corollary 4.1, we find ρopt = max(1/W (I), (1 − ε)/W (A)). We can then apply the impro-
visation scheme of Theorem 4.4 to synthesize an improviser for any desired trace length
n.
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Figure 6.6: Simulations of our improviser (solid) avoiding a looping adversary (dashed).

6.3.2 Experiments

We tested our improviser for (k, n) = (7, 60) in the Gazebo simulator [99], using the PX4
autopilot [121] to refine the generated routes in the grid world into control actions for the
drones7. We did experiments with two types of adversaries: one that moves in a fixed
loop, and one that actively tries to pursue the patrolling drone, moving towards it whenever
possible (i.e. when this would not violate the assumption on the adversary). Simulations
with these adversaries are shown from a top-down perspective in Figures 6.6 and 6.7 re-
spectively (notice that the routes deviate from our idealized grid, because we simulate the
actual continuous dynamics of the drones in 3D space). In every simulation, the patrolling
drone successfully visits the 4 designated locations without colliding with the adversary8.
Furthermore, as we see in Figure 6.6, the improviser is highly randomized, giving different
routes even when the adversary behaves in the same way each time.

Finally, we do an experiment to study the performance of our RCI algorithm. We al-
ready saw in Section 6.2 that the sizes of the specification DFAs grow exponentially with
the number of locations needing to be visited, so we will keep this fixed at 4 and instead
study performance as a function of the grid world size k and the game length n. Our results
are shown in Table 6.2. Here the “DFA States” column shows the number of states of H

7Thanks to Ankush Desai and Tommaso Dreossi for assistance running the simulations.
8For videos of the simulations (which make it clearer that the two drones are never in the same place at

the same time), see https://alum.mit.edu/www/dfremont/impro.html.

https://alum.mit.edu/www/dfremont/impro.html
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Figure 6.7: Simulations of our improviser (solid) avoiding a pursuing adversary (dashed).

and S (which are equal). As in our CI experiments above, the last two columns give the
time to synthesize the improviser and the average time to run it and generate an impro-
visation (against the looping adversary described above). Again, these runtimes are from
an unoptimized Python implementation of our algorithm and only give a general idea of its
scalability.

The first part of Table 6.2 shows that the synthesis time grows superlinearly (but not
exponentially) in k, as expected since the DFAs H and S have Θ(k4 ·2`) states. The instance
used in our simulations above, (k, n) = (7, 60), takes around a minute to solve, and we can
solve up to 13 × 13 grids in ∼10 minutes. As with our CI algorithm, the execution time
of the improviser itself is negligible, being less than a millisecond. The second part of the
table fixes k = 5 and shows that the synthesis and improvisation times grow linearly with
the length of the game n. Finally, the last part of the table shows some instances with very
long games: even with n = 900, so that the improviser makes 450 moves, the improviser still
runs in less than 15 milliseconds.

6.4 Summary and Future Work
In this chapter, we showed how to use algorithmic improvisation to synthesize randomized
planners for robotic tasks requiring diverse or unpredictable behavior. We illustrated our
techniques with examples of offline and on-the-fly planning for a surveillance drone which
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Grid Size Trace DFA Synthesis Improvisation
(k) Length (n) States Time (s) Time (ms)

5 60 20,002 9.4 0.86
7 60 76,834 44 0.96
9 60 209,954 120 0.83
11 60 468,514 300 0.98
13 60 913,954 630 0.88

5 80 20,002 12 1.1
5 100 20,002 15 1.4
5 120 20,002 17 1.7
5 140 20,002 21 2.1
5 160 20,002 24 2.3

5 300 20,002 45 4.5
5 600 20,002 88 9.2
5 900 20,002 140 14

Table 6.2: Performance of our DFA reactive improvisation scheme on various patrolling
problems. The improvisation times were averaged over 10,000 improvisations.

must patrol an area in an unpredictable way while ensuring safety and other constraints. We
showed how to encode various natural requirements for such a system as DFAs, allowing us to
generate a randomized planner using our efficient improvisation schemes for such automata.
Finally, we conducted experiments testing the resulting improvisers on simulated and actual
drones. Our results demonstrate that our algorithms are practical, at least for relatively
small problems, and can be made to work on real robots.

For future work, there are multiple interesting directions for both applied and theoretical
research:

Other Tasks. In this chapter we focused on surveillance problems, but there are a number
of other robotic tasks where randomness can be helpful. Examples include exploration
and search and rescue tasks, especially for swarms of small robots with limited compu-
tation and communication ability [131]: here, randomness can be a partial substitute
for coordination and planning9.

Multi-Robot Planning. In swarm applications like those suggested above, planning would
be done independently on each robot. However, for applications where we want to
synthesize a joint planner for multiple robots, we quickly run into the state explosion
problem: recall in Section 6.3 how the collision-avoidance DFA had a quadratic factor
since it needed to track the positions of both drones. Naïvely constructing explicit

9Thanks to Marcell Vazquez-Chanlatte for suggesting this application.
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automata for problems involving many robots would be totally impractical. One way
to potentially circumvent this is to change the representation: recall that our impro-
visation scheme for Boolean formulas based on SAT solvers (Section 3.4.3) does not
suffer from state explosion.

Infinite-Horizon Planning. Because control improvisation is defined over finite words, we
can only plan for a finite horizon; this is in contrast to robotic planning by reactive
synthesis, where one can use specifications like “visit room 4 infinitely often” in temporal
logic [101]. While finite horizon planning is adequate for many applications, problems
like patrolling are most naturally expressed over infinite words. We illustrated one way
to get around this in Section 6.2, by requiring the route end up at the home base so
we could immediately start another route. However, in the reactive setting this is only
a heuristic: the adversary will now start from a different position, and the new RCI
problem could be unrealizable. A more principled solution would require extending
RCI to infinite words, which we mentioned as future work in Chapter 4.

Better Unpredictability. Finally, while the motivation for using control improvisation for
robotic surveillance was unpredictability, the type of unpredictability guaranteed by
the definition of CI is not necessarily what is desired. Specifically, the randomness
constraint in CI forces the distribution of traces to be close to uniform and therefore
unpredictable; however, particular statistics of the traces could be highly predictable.
For example, suppose we are generating length-100 binary strings, and ρ = 2−50. Then
every individual string has extremely low probability and cannot be predicted, but it
is entirely legal for an improviser to output only strings where the first half of the bits
are all zero! Returning to the reactive drone example in Section 6.3, the drone’s route
might be close to uniform, but the order in which the 4 locations are visited is not
guaranteed to be. To address this issue, we need extensions of CI and RCI with more
sophisticated randomness constraints, as suggested in Chapters 3 and 4.
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Chapter 7

Human Modeling

In this chapter, we explore the use of algorithmic improvisation to synthesize models of
human behavior. We have already seen how algorithmic improvisation can be useful in
creating models: in Chapter 5, we proposed language-based improvisation as a way to write
models of useful tests, and in Chapter 8 below we will see that such models are very helpful in
practice. When building human models, however, there is an additional complication, namely
that we generally do not have formal specifications of human behavior, only examples. To
solve this problem we introduce a variant of control improvisation which learns a distribution
from training data. We demonstrate our approach in a case study synthesizing a randomized
lighting controller that behaves in a human-like way while respecting constraints on power
consumption [2].

7.1 Introduction
Accurate human models are extremely useful, both for mimicking human behavior and for
designing and analyzing systems that interact with humans. Applications of the first type
include conversation systems (e.g. chatbots) which should engage in human-like dialog, or a
home security system which should turn lights in a house on and off in a human-like way to
obscure the fact that the owner is on vacation [2]. The second category includes applications
like environment modeling for autonomous cars, where realistic models of human drivers,
bicyclists, and pedestrians are needed to do meaningful testing and training in simulation.

For both types of applications, algorithmic improvisation provides a natural way to con-
struct models: we need randomized models since human behavior is inherently stochastic,
but we also need constraints, either to enforce desired properties on our synthesized system
or to generate human-like behaviors of a particular type. In the lighting control application,
we can for example use soft constraints to ensure that the power consumption of the house
is usually below a given limit. As another example, Ge and Murray [69] have used the tech-
niques we propose in this chapter to synthesize a human-like lane-change controller, using
constraints to require that lane changes occur at a desired rate.
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However, the versions of algorithmic improvisation we explored in earlier chapters have a
serious drawback when used for human modeling: they assume that the desired requirements
on the synthesized model are explicitly given as hard, soft, and randomness constraints (as
well as an explicit generative process for language-based improvisation in Chapter 5). This is
not a reasonable assumption for human modeling, where we do not have a formal definition
of “human-like” behavior. Instead, we should take the typical approach in modeling: learn
the model from data.

Therefore, we propose a heuristic improvisation procedure for a certain class of algorith-
mic improvisation problems useful for human modeling, and in particular for the randomized
lighting control problem described above. Our procedure first learns a probabilistic model
from training data, which captures the distribution of the data without necessarily respect-
ing the desired soft constraints. We then iteratively calibrate the model to increase the
probability that the soft constraints are satisfied, using probabilistic model checking [12] to
determine when the model is adequate and we can terminate. We propose two types of
calibration heuristics suited to soft constraints which impose upper bounds on costs, e.g. ac-
cumulated power consumptions, of the system.

We apply this procedure in a case study on the randomized lighting control problem,
learning a model from power consumption data from a real house. Using this model, we
construct improvisers subject to soft constraints limiting hourly power consumption. Our
experiments demonstrate that our improvisers generate synthetic lighting behaviors that are
qualitatively and quantitatively similar to human behaviors in our training set, while also
respecting our desired soft constraints. These results show that algorithmic improvisation
provides a useful framework for building constrained models of human behavior.

We begin in Section 7.2 with background on the types of systems and probabilistic mod-
els we consider, leading up to a definition of the modeling problem and a partial formulation
in terms of the multi-constraint control improvisation problem from Chapter 3. Next, Sec-
tion 7.3 describes our procedure for learning an improviser from data, including our model
calibration heuristics. Section 7.4 then presents our experiments from the lighting control
case study. Finally, we conclude in Section 7.5 with a summary and directions for future
work. Throughout the chapter, we focus on the general application of human modeling and
its connection to algorithmic improvisation; for a more detailed discussion of applications to
Internet-of-Things systems and related work in appliance use modeling, see Akkaya et al. [2]
and Akkaya [1].

7.2 Background and Problem Definition

7.2.1 Background

Discrete-Event Systems with Hidden States

We will focus on learning models of systems (possibly involving humans) whose behavior can
be described by a sequence of events, where an event is a pair (τ, v) consisting of a timestamp
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from a totally-ordered set T and a value from a finite set V . A sequence of events ordered
by their timestamps is called a signal [106].

We assume that the system’s dynamics can be represented by a transition system with a
finite number of states, with events corresponding to transitions between states. However, the
underlying transition system is not known a priori, and we can only observe some function
of the state, called the observation. The observation function can be time-dependent and
probabilistic, so that many different observations are possible in a single state. We assume
that the possible observations are finite, forming an alphabet Σ, and that observations are
made at discrete time steps. For continuous systems like the lighting control example we
will study below, we can satisfy these assumptions by appropriate quantization. Then, a
sequence of observations corresponding to a behavior of the system forms a word in Σ∗,
which we call a trace.

For example, consider a system consisting of the lights in three rooms of a house. We
can model this using a finite transition system whose hidden state represents which room’s
lights are currently turned on (so that there are 23 = 8 states). For each room, we have
“ON” and “OFF” events for turning its lights on and off. The observation function models
what we can actually measure about the system, namely the power consumptions for each
of the three rooms. An example trace, along with the corresponding events, is shown in
Figure 7.1. Initially, we start in the state where all lights are off. At 19:50, the kitchen
light is turned on, causing the corresponding event to be emitted and moving the system
to a new state representing that the kitchen light is the only one on. Note that while we
remain in this state for some time (until the next event), the observation is not constant:
the power consumption of the kitchen fluctuates, which we can model using a probabilistic
observation function. Note also that given only the trace of observations, we do not know
what the underlying sequence of events and states was: these have to be inferred from a set
of traces.

Explicit-Duration Hidden Markov Models

The simplest type of probabilistic model suited to learning the dynamics of the type of
system described above is the Hidden Markov Model (HMM) [140]. An HMM has a hidden
state which evolves according to Markovian dynamics (so that the states and transitions are
just a Markov chain), and a state-dependent probabilistic observation function. Although
HMMs are widely used, their Markovian dynamics implies that the amount of time spent in
a given state before moving to a different one follows a geometric distribution, which is not
a realistic assumption in many applications. In such cases, the quality of learned models can
be significantly improved by using a semi-Markov model allowing transition probabilities to
depend on the time elapsed in the current state.

Here, we will use the Explicit-Duration Hidden Markov Model (EDHMM) [140, 193, 32],
which extends the HMM by adding the duration of each state as a hidden variable. The
EDHMM, evolved for T time steps, is shown as a graphical model in Figure 7.2. As in an
HMM, we have a sequence of states x1, . . . , xT from the state space X , with corresponding
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Figure 7.1: Example power consumption trace, with the underlying hidden events.

d1
. . . dt−1 dt . . . dT
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y1 . . . yt−1 yt . . . yT

Figure 7.2: Graphical model representation of an EDHMM, consisting of the states xi,
observations yi, and durations di.

observations y1, . . . , yT from the alphabet Σ (recall that we assume X and Σ are both finite).
We also have a sequence of durations d1, . . . , dT , which represent the time remaining in
the current underlying state as an integer from 1 to some upper bound D. Informally, the
dynamics are as follows: when dt−1 = 1, then it is time for a transition, so we sample a
new state according to the HMM dynamics (some distribution p(xt|xt−1)) and a duration for
it (according to some distribution p(dt|xt)); otherwise, time continues to elapse, so we put
xt = xt−1 and dt = dt−1 − 1 (see Section 7.3.3 and Akkaya et al. [2] for details).

Note that an EDHMM is simply an HMM on a larger state space, namely pairs of states
and durations. Thus, its underlying dynamics (on the enlarged state space) are described
by a Markov chain, which will be useful later. We will actually use a slight extension of
the EDHMM where we allow a limited form of time-dependence, namely having different
transition and duration distributions for each of the 24 hours of the day. This can again be
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reduced to a Markov chain by expanding the state space with a variable representing the
current time step (we will describe this encoding in detail in Section 7.3.3).

Finally, to learn an EDHMM from data, we use the typical Bayesian inference approach of
finding the model parameters which maximize the likelihood of the given set of traces. As for
HMMs, this can be done using a variant of the Expectation-Maximization (EM) algorithm
(see Yu [193]). For our extended EDHMM with hourly dynamics, we use the same algorithm,
simply inferring the parameters for each hour independently from the corresponding parts
of the traces.

Probabilistic Model Checking

As mentioned above, our improvisation procedure will iteratively adjust our learned proba-
bilistic model until the soft constraints are satisfied. To determine whether our current model
satisfies these constraints, we use probabilistic model checking, which provides algorithms for
checking whether a variety of different probabilistic models satisfy a formal specification
expressed in a probabilistic temporal logic. The particular logic we use here is Probabilistic
Computation Tree Logic (PCTL). We will give only an informal overview of the logic; see
Baier and Katoen [12] for details.

Formulas φ of PCTL are defined by the following grammar:

φ := True | ω | ¬φ | φ1 ∧ φ2 | Ponp[ψ] (state formulas)
ψ := Xφ | φ1U

≤kφ2 | φ1Uφ2 (path formulas)

where ω is an atomic proposition, i.e. a predicate over states, on is one of the operators
{≤, <,≥, >}, p ∈ [0, 1], and k ∈ N. State formulas φ are interpreted at states of the
probabilistic model: an atomic proposition ω is true if and only if it holds in the current
state, the negation and conjunction Boolean operators have their obvious meanings, and
Ponp[ψ] is true if and only if the probability q that the path formula ψ holds starting from
the current state satisfies q on p. Path formulas are interpreted over runs of the probabilistic
model and are built up using the temporal operators :

Next. Xφ is true if and only if φ is true in the next state of the run.

Bounded Until. φ1U
≤kφ2 is true if and only if φ2 is true in one of the next k steps of the

run, and φ1 is true at every step until then.

Unbounded Until. φ1Uφ2 is true if and only if φ2 is true at some future step, and φ1 is
true at every step until then.

For convenience we can define other Boolean operators using ¬ and ∧ in the usual way,
as well as two additional temporal operators:

Finally. Fφ := True Uφ is true if and only if φ eventually becomes true.

Globally. Gφ := ¬F¬φ is true if and only if φ is always true.
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For example, if bad is a predicate designating a set of unsafe states for the system, then
the formula P≤0.1[F bad ] holds on the model if and only the probability of ever reaching an
unsafe state is at most 0.1.

Given a Markov chain and a PCTL formula, a probabilistic model checker such as
PRISM [103] can determine whether the model satisfies the formula. Moreover, PRISM
can also compute the probability with which a path formula holds in a model (rather than
simply deciding whether the probability exceeds a given threshold). Since as we mentioned
above an EDHMM can be reduced to a Markov chain, we can in particular use PRISM to
check whether an EDHMM satisfies a PCTL formula.

7.2.2 Problem Definition

We begin with a set of traces of a discrete-event system whose set of events is known, but
whose dynamics are not. Our goal is to learn an EDHMM randomly generating new traces
with similar characteristics to the training data, subject to two types of constraints:

• Hard constraints forbidding transitions between states that never occur in the input
traces. More precisely, if no part of the training data can be explained as a state
transition t, then we want to assume that t is impossible and not generate any trace
that is only possible using it. Recalling that our approach will be to first learn an
EDHMM M0 from the training data ignoring the constraints, and then iteratively
construct a sequence of modified EDHMMs Mi, the hard constraint simply ensures
that the adjusted models Mi do not introduce any new behaviors not possible in M0.

• Soft constraints that need only be satisfied with some given probabilities. In particular,
we focus on soft constraints upper bounding nonnegative costs which can be computed
from the observations, either at a particular time or accumulated over a time period.
For example, we could require that 90% of the time, the total power consumed over
the day does not exceed some bound.

We can partially formulate this problem in the framework of multi-constraint control
improvisation introduced in Chapter 3. To do this, we need to define the alphabet Σ,
hard specification H, soft specifications Si and corresponding error probabilities εi, and the
probability bounds λ and ρ:

Σ: Since we want to generate traces, which are sequences of observations, we let Σ be the
set of all possible observations (i.e. those occurring anywhere in the input traces, after
quantization).

H: To ensure the hard constraint above, we want the set of improvisations L(H) to consist
of all traces that are assigned nonzero probability by the initial EDHMM M0. It is
straightforward to build an NFA H accepting exactly these traces (although we do not
actually need to do this for the heuristic improvisation procedure we use below).
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Si, εi: We let Si be a PCTL formula encoding the i-th soft constraint. In our lighting
example, Si could encode that the total power consumption within hour i ∈ {1, . . . , 24}
of the day never exceeds a given bound. Correspondingly, εi is the greatest probability
we are willing to tolerate of the improviser generating a trace violating the bound.

λ, ρ: We put λ = 0 since it is not necessary to generate every possible trace (indeed, the
hard constraint likely forbids some traces). Picking a small value for ρ > 0, we can
ensure that at least 1/ρ different traces can be generated.

The major gap in this formulation is that it does not constrain the improviser’s behavior
to be “human-like” (more than superficially through the hard constraint). One could imagine
using additional soft constraints to try to do this; however, it is not clear that any small set of
soft constraints would be sufficient for this purpose. Furthermore, there is no single concept
of “human-like”, since any two people will likely behave differently: we want our controller
to mimic the behaviors seen in our particular training set. This issue leads us to propose a
specialized improvisation algorithm which learns a model directly from the training set.

7.3 An Iterative Improvisation Procedure

7.3.1 Overview

As described above, our desired improviser must satisfy two potentially-conflicting goals:
have a similar behavior distribution to the training set, and satisfy hard and soft constraints.
Our approach deals with these concerns separately, using Bayesian inference to learn an
initial model of the training data, then iteratively adjusting the model until the constraints
are satisfied. This procedure, outlined in Figure 7.3, has three main steps, which we will
detail in subsequent sections:

(1) Data-Driven Modeling: From the given traces, we learn an EDHMM which repre-
sents the (possibly time-dependent) dynamics of the underlying system. This yields a
candidate improviser, which satisfies our hard constraints by definition.

(2) Probabilistic Model Checking: Next, we check whether the candidate improviser sat-
isfies the soft constraints, expressed as PCTL formulas, using a probabilistic model
checker. If so, we have found a valid improviser and terminate. Note that in Figure 7.3
we allow the PCTL properties to depend on the training data: as we will see below, it
can be useful to set parameters of the soft constraints based on the training data.

(3) Model Calibration: Otherwise, if the soft constraints are violated, we modify the pa-
rameters of the candidate improviser to increase the probability that it satisfies the
soft constraints. How to do this depends on the form of the soft constraints: below,
we will give two heuristics suitable for constraints bounding costs, as in our lighting
control example. These heuristics do not introduce any new behaviors into the model,
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Figure 7.3: Iterative algorithm for learning an improviser from data.

thereby preserving the satisfaction of the hard constraints. We then return to step (2)
with the new candidate improviser.

As this procedure is heuristic, it is not guaranteed to produce an improviser for the
CI problem we defined earlier. If the procedure terminates, the hard and soft constraints
will be satisfied by construction; however, the randomness constraint may not be satisfied
(indeed, our procedure makes no attempt to enforce it). For example, even if the initial
EDHMM has a significant amount of randomness in its behavior, over many rounds the
model calibration heuristics could restrict the system so much that it ultimately becomes
deterministic. Short of this, as long as the EDHMM is ergodic (after conversion to a Markov
chain), the probability of generating any particular trace goes to zero as its length goes to
infinity. We can efficiently detect when the EDHMM is not ergodic using standard graph
algorithms, and otherwise satisfy the randomness requirement by generating sufficiently long
strings. However, this is unlikely to be necessary in practice for reasonable soft constraints,
and in fact was not used in our experiments below.

More interestingly, our procedure can also fail by never terminating. In general, this is
unavoidable, since if the soft constraints are themselves inconsistent then no modification of
the original EDHMM can satisfy them. When it is possible to satisfy the soft constraints
with some model, termination depends on the adequacy of the model calibration heuristics
to converge to such a model. As we will show below, our heuristics for soft constraints upper
bounding costs have this property: they decrease the expected cost of the system, so that
after sufficiently-many iterations the model will satisfy the soft constraints.

As a final note, our technique can be extended to enforce other types of hard constraints.
For example, we can easily disallow undesired transitions between hidden states by setting
their probabilities to zero in the initial candidate improviser (normalizing the other transition
probabilities appropriately). Such constraints can be useful, for example, when controlling
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an IoT system with unreliable components or networks: if a component becomes unusable,
we can disable all transitions to states in which the component is active.

Now we describe each of the steps of our procedure in more detail.

7.3.2 Data-Driven Modeling

Our procedure begins by learning a probabilistic model from the training set. Note that the
overall procedure is not specific to any particular kind of model, and could be used with any
model for which there are practical parameter estimation and probabilistic model checking
algorithms. As explained in Section 7.2.1, here we use an extended EDHMM with different
dynamics for each hour of the day h ∈ {1, . . . , 24}. Its parameters consist of matrices {Ah}
and {Ch} representing state transition and duration probabilities, a matrix B representing
state observation probabilities, and a prior π on the state space. Here {Ch} and B encode
the duration and observation distributions as categorical distributions, although it is also
possible to use parametric distributions.

We estimate these parameters from the training set using an EM algorithm, as described
in Section 7.2.1. Note that the EM algorithm is an iterative method, whose convergence to
a good set of parameters depends in practice on having a large enough training set. This
can be problematic in our setting since we learn the dynamics for each hour of the day
independently, and even in a large training set there may be few events during certain hours.
Naïvely, this would prevent us from estimating the state transition and duration probabilities
during such hours. However, there are many application-specific heuristics for dealing with
insufficient training data, outlined in Rabiner [140]. The particular heuristic used in our
experiments will be described in Section 7.4.1.

7.3.3 Probabilistic Model Checking

Next, we use probabilistic model checking to test whether the soft constraints are satisfied. In
particular we use an algorithm for PCTL model checking of Markov chains, as implemented
in PRISM [103]. This requires us to encode our soft constraints as PCTL formulas, and our
EDHMM as a Markov chain.

Encoding Soft Constraints in PCTL

As explained above, we consider soft constraints which put upper bounds on the cost observed
at a particular time or accumulated over a time period. We illustrate how to encode upper
bounds on the hourly cost — other time periods are handled analogously.

Recall that our traces have the form (y1,y2, . . . ,yT ) where each yi is an observation, itself
a tuple (yi,1, . . . , yi,K) of nonnegative costs (which, like durations, we assume to be integers
after quantization). For example, y3 could represent the power consumptions of all rooms in
a house at time step 3, with y3,2 being that of the kitchen. Let Yi =

∑K
k=1 yi,k be the total

cost at time step i. If there are Ns time steps in an hour, at time step t the current hour of
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the day is h(t) = [(dt/Nse−1) mod 24]+1, and it began at time Ns(dt/Nse−1)+1 (recalling
that we number time steps and hours starting from 1). Then the total cost accumulated in
the current hour is

∆ =
t∑

i=Ns(dt/Nse−1)+1

Yi.

As mentioned above, when encoding the EDHMM as a Markov chain, we need to add
the time step t to the state in order to model the different dynamics for each hour of the
day. Having done this, h(t) is a function defined over the state of the chain, and so we can
use atomic predicates testing it in PCTL (since PCTL atomic predicates are defined over
individual states of the system). However, since ∆ accumulates over multiple time steps, we
also need to maintain ∆ as part of the state. Below, we will show how to do this by adding
a simple monitor to the encoding of the EDHMM as a Markov chain. So we can assume we
have atomic predicates testing the values of h(t) and ∆ in the current state.

Now we can formalize our soft constraints. To require that the accumulated cost during
hour h is at most ∆h

max, we use the PCTL formula

Sh = P≥1−εh
(
G
[
(h(t) = h)→ (∆ ≤ ∆h

max)
])
.

As we might expect, Sh simply asserts that with probability at least 1−εh, at every time step
during hour h the accumulated hourly cost ∆ is at most ∆h

max. If we do not have a particular
error probability εh in mind, as mentioned above we can ask the probabilistic model checker
to compute the probability that the inner path formula of Sh holds.

Encoding the EDHMM as a Markov Chain

As outlined in Section 7.2.1, we can view an EDHMM as a Markov chain on an expanded
state space with a new variable d ∈ {1, . . . , D} which represents the remaining duration of
the current hidden state x ∈ X . Following the semantics of the EDHMM, when d > 1 we
stay in x for another time step, only decrementing d; when d = 1, we instead transition to
a new state, picking a new duration d from the corresponding duration distribution.

Since we use an extended EDHMM with time-dependent dynamics, we need to further
expand the state space to keep track of the current time. We introduce a state variable
t ∈ {0, . . . , T} representing the current time step, with t = 0 being a special initialization
step indicating that we need to sample the initial state x ∈ X from its prior π. For simplicity
we write t as representing absolute time, being incremented each time step. However, it is
not in fact necessary to have the domain of t grow unboundedly with the length of the run
T : in our example with different dynamics in every hour of the day, we need only track the
time modulo a day, i.e. 24Ns time steps.

Finally, to detect when the soft constraints are violated, we need to monitor the accumu-
lated hourly cost ∆ defined above. We add a state variable ∆ ∈ {0, . . . ,∆max + 1}, where
∆max is the largest of the hourly upper bounds ∆h

max imposed by the soft constraints. This
range of values is obviously sufficient to detect when the accumulated cost exceeds its bound
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for any particular hour. The dynamics of ∆ are straightforward: at each time step we add
the observed cost to it, except when starting a new hour, in which case we first reset it to
zero.

Putting this all together, we obtain a Markov chain whose states are tuples (x, d, t,∆)
with the variables described above. We fix the initial state to any state with t = 0, since we
will use time step 0 to initialize the other state variables. Given the current state, the next
state (x′, d′, t′,∆′) and observation y′ are determined as follows:

EDHMM:
(t = 0) → x′ ∼ πx ∧ (initialization)

t′ = t+ 1 ∧
d′ ∼ Ch(t′)(x

′) ∧
y′ ∼ B(x′)

(t > 0) ∧ (d > 1) → x′ = x ∧ (countdown)
t′ = t+ 1 ∧
d′ = d− 1
y′ ∼ B(x′)

(t > 0) ∧ (d = 1) → x′ ∼ Ah(t)(x) ∧ (state transition)
t′ = t+ 1 ∧
d′ ∼ Ch(t′)(x

′)
y′ ∼ B(x′)

Cost Monitor:

(t = 0) → ∆′ =
∑K

i=1 y
′
i (initialization)

(t > 0) ∧ (h(t′) = h(t)) → ∆′ = ∆ +
∑K

i=1 y
′
i (accumulation)

(t > 0) ∧ (h(t′) 6= h(t)) → ∆′ =
∑K

i=1 y
′
i (start of new hour)

recalling that h(t) = [(dt/Nse − 1) mod 24] + 1.

7.3.4 Model Calibration

When model checking determines that our candidate improviser does not satisfy a soft con-
straint, we calibrate the model to increase the probability with which the constraint is sat-
isfied. The calibration procedure should make a small change to the model parameters,
preserving as much as possible the original distribution of behaviors which was learned from
the training data. In particular, the procedure should not introduce any new behaviors, as
required by our hard constraints.

We present two types of calibration heuristics for soft constraints of the form described
above, namely upper bounds on instantaneous or accumulated costs. These heuristics, du-
ration and transition calibration, both seek to reduce the cost of one or more behaviors of
the improviser.
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Duration Calibration

One basic way to decrease costs is to alter the duration distribution of a state with high
expected cost so that less time is spent in the state. Recalling that we assumed when
learning the EDHMM that state durations can be at most some finite duration D, one way
to decrease the expected duration is simply to truncate the distribution at some threshold
below D. Of course, reducing the time spent in one or several states does not necessarily
decrease the overall cost: transitioning quickly out of one state may cause us to spend more
time in an expensive state. However, as we will see below, it can be effective to eliminate
outliers (unusually long durations) in the duration distributions of the states with the highest
expected costs.

Duration calibration has the advantage of being a relatively minor modification, as it
leaves the state transition probabilities of the model unchanged. On the other hand, it
cannot reduce the duration of a state below 1 time step. So although it may be able to
eliminate some high-cost behaviors from the model, it is not guaranteed to eventually yield
an improviser satisfying the soft constraints.

Transition Calibration

A different approach is to modify the state transition probabilities, making the model less
likely to enter states with high expected costs. Specifically, for any transition x→ y, we can
limit the probability of the transition during hour h to be at most some bound px→yh . The
removed probability mass must be shifted somewhere else, and a simple approach is to add
it to the transition x → xmin, where xmin is the state which has the lowest expected cost
(in our lighting example, the state where all lights are off). Given the original transition
probability vector Ah(x) of the EDHMM, we replace it with a new vector Ãh(x) defined by

Ãh(x)(j) =


min(px→yh , Ah(x)(y)) if j = y

Ah(x)(xmin) + max(Ah(x)(y)− px→yh , 0) if j = xmin

Ah(x)(j) otherwise.

Note that the second case ensures that the transition probabilities from the state x are
properly normalized.

Provided that the bounds px→yh are chosen so that the probability of entering some state
other than xmin decreases by at least some fixed amount, this heuristic will decrease the
expected cost of a run of the improviser. In the limit, applying the heuristic iteratively
for every choice of state y other than xmin and for every hour h ∈ {1, . . . , 24}, we will
eventually obtain an improviser which remains in the state xmin for all time (assuming it
starts there). Thus for any soft constraints which are true for behaviors that only stay at
xmin, our procedure will eventually terminate and yield a valid improviser. Of course, this
over-simplified improviser is unlikely to model the original data well, but it is only attained
as the limit of the heuristic: in practice, judicious choices of the transitions to modify and
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the limits px→yh can improve the probability of satisfying the soft constraints significantly in
a few iterations without drastically changing the model.

7.4 Experiments
To demonstrate our approach, we performed a case study on the randomized lighting control
problem described informally above. We trained our model on real power consumption data
from a house, applying our algorithm to obtain an improviser which generates human-like
lighting behaviors while respecting constraints on hourly power consumption. Below, we
describe the setup and results of our experiments.

7.4.1 Experimental Setup

Our lighting control scenario is based on data from the UK Domestic Appliance-Level Elec-
tricity (UK-DALE) dataset [96], which contains power consumption time series for residential
appliances from 5 homes over a period of 3 years. We consider the three most-used lighting
appliances from different rooms of the house, namely, the main kitchen light, a dimmable
living room light, and the bedroom light respectively. Accordingly, our observations yi are
triples of instantaneous power readings from these three appliances, measured in Watts and
sampled every minute (so that there are Ns = 60 time steps per hour). We now describe the
specific choices we made when implementing the procedure of Section 7.3.

Data-Driven Modeling

To define the EDHMM, we assume that for each appliance there are hidden events corre-
sponding to the appliance being turned on and off. The hidden state space X therefore has
23 = 8 states, one for each combination of active appliances. Based on inspecting the dataset,
we chose the maximum state duration D to be 720 time steps, i.e. 12 hours (sufficient to
allow long periods when all appliances are off). The power consumption traces in the dataset
are already quantized, so that the observations come from the alphabet Σ = Σ1 × Σ2 × Σ3

where Σ1 = {0, 1, . . . , 350}, Σ2 = {0, 1, . . . , 20}, and Σ3 = {0, 1, . . . , 30} (the bounds for
each appliance again being obtained by inspecting the dataset). For training, we selected
a 100-day subset of the dataset for one residence. The complete set of dataset and model
parameters used in our experiments is shown in Table 7.1. Several representative traces for
a single appliance are shown at the top of Figure 7.9 in the next section.

We trained the EDHMM as described in Section 7.3.2, with one minor change: since
the power consumptions of each appliance are independent, we factored the probability
matrix for observations into a product of matrices for each appliance. As we mentioned in
Section 7.3.2, due to some events never occurring during early morning hours of low activity
(typically hours h ∈ {1, . . . , 5}), the EM algorithm did not learn the corresponding state
transition probabilities: that is, the learned EDHMM had some states where all outgoing
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Parameter Value

Data Source UK-DALE Dataset [96]

House ID house_1

Appliance IDs
kitchen_lights
livingroom_s_lamp
bedroom_ds_lamp

Training Duration 100 days
Training Start Date 30 Jul 2013 19:07:56 GMT
Sampling Period 60 s
Training Sequence Length (T ) 144000

Maximum State Duration (D) 720
Appliance 1 Costs (Σ1) {0, 1, . . . , 350}
Appliance 2 Costs (Σ2) {0, 1, . . . , 20}
Appliance 3 Costs (Σ3) {0, 1, . . . , 30}

Hidden States (X )

OFF: All appliances off
K/L/B: Kitchen / living room / bedroom on
KL: Kitchen and living room on
KB: Kitchen and bedroom on
LB: Living room and bedroom on
KLB: All appliances on

Table 7.1: Parameters of the training dataset and EDHMM used in our experiments.

transitions had probability zero. To fix this, we used a completion strategy which specified
all such states must transition to the OFF state (see Table 7.1) with probability 1. This
yielded a fully-specified EDHMM.

Probabilistic Model Checking

We imposed soft constraints upper bounding the total power consumed during each hour
of the day. Figure 7.4 depicts the hourly consumptions of each appliance, as well as the
aggregated consumption, averaged across each day in the training data. We set our upper
bounds ∆h

max to be one standard deviation above these average consumptions (the upper
edge of the shaded region in the aggregate graph in the Figure). Out of all samples in the
training data, 89.2% lay within these bounds.

To compute the probability that the candidate improviser satisfied these constraints,
we used the PRISM model checker [103], implementing the Markov chain encoding of the
EDHMM we described in Section 7.3.3 in the PRISM modeling language. The soft con-
straints were put directly into PRISM using the PCTL formulation explained in that section.
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Figure 7.4: Average hourly usage patterns of the appliances in our training dataset. The solid
curves represent average consumption, and the shaded areas show one standard deviation
around the mean.
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Model Calibration

To evaluate the effect of model calibration, we tested three types of improvisers:

Uncalibrated Improviser. As a baseline, we created an “improviser” using the initial
EDHMM with no calibration. We would expect this model to be closest in behav-
ior to the training data, although it is not a true improviser since it may not satisfy
our soft constraints.

Duration-Calibrated Improviser. This improviser uses the duration calibration heuristic
described in Section 7.3.4. From the aggregate power profile shown in Figure 7.4, we
identified peak power consumption as occurring during hours 7, 8, 9, 17, 18, 19, 20,
and 21. For these hours, all state duration distributions (except for the OFF state)
were clamped at 60 minutes, setting the probabilities of longer durations to zero and
re-normalizing. The effect of calibration is illustrated in Figure 7.5, which shows the
duration distributions for two states before and after calibration.

Transition-Calibrated Improviser. This improviser extends the previous one by also
applying the transition calibration heuristic from Section 7.3.4. Transition probabilities
were calibrated for the peak hours used for the previous calibration, as well as hours 4
and 5, during which very few events were recorded in the training data. As shown in
Figure 7.4, the kitchen and living room appliances consume significantly more power
than the bedroom appliance. Therefore, we applied calibration to all transitions leading
to states K, L, KL, and KLB.

Figure 7.6 shows the transition probability matrices for several hours of the day before
and after calibration. Each circle indicates a nonzero transition probability from state
xt to xt+1, with its area being proportional to the probability. The blue circles show the
original learned probabilities, and the green circles show the probabilities decreased by
calibration. For clarity, we do not show the corresponding increases in the probabilities
of transitioning to the OFF state.

7.4.2 Experimental Results

Now we evaluate the performance of our synthesized improvisers, both with respect to their
satisfaction of the soft constraints and their similarity to the original training data. To start,
Figure 7.7 shows the probabilities of each improviser satisfying the hourly soft constraints,
as computed by PRISM. For comparison, the Figure also shows the empirical probabilities
with which the training data satisfies the soft constraints. We can see that the uncalibrated
improviser (blue) behaves similarly to the training data (purple) for much of the time, but
unsurprisingly has poor performance with respect to the soft constraints, with relatively
low satisfaction probabilities in hours 4–7. Applying duration calibration (red) generally
improves the model, increasing the satisfaction probabilities for all hours except 9, 21, and
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Figure 7.6: Example learned (blue) and calibrated (green) state transition distributions. The
corresponding increases in probability for transitions to the OFF state are not shown. See
Table 7.1 for state labels.
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Figure 7.7: Satisfaction probabilities of the hourly soft constraints by improvisers with no
calibration (blue), duration calibration (red), and transition calibration (green). For com-
parison, the empirical satisfaction probabilities of the training data are shown in purple.

22. However, for much of the day the improvement is quite small, and the probabilities are
still lower than those of the training data. Transition calibration (purple) gives a significant
further improvement, allowing us to finally achieve higher satisfaction probabilities than the
training data for most of the soft constraints.

Next, we compare the hourly power consumption profiles of the improvisers with that
of the training data in Figure 7.8. The improviser profiles are averaged over 100 20-day
improvisations for each type of improviser. Notice that for all three improvisers, the mean
power trend (blue curve) matches that of the training data (green curve) quite well, with
the last and most highly calibrated improviser having somewhat lower consumption as a
result of satisfying the soft constraints most strictly. However, notice that the uncalibrated
improviser (at top) has significantly higher variability than the training data, with the hours
9–14 for example having much larger standard deviation (shaded region). Duration calibra-
tion ameliorates this problem significantly, and transition calibration eliminates it almost
completely.

Finally, to qualitatively compare the similarity of improvised behaviors to the training
data, we show several day-long traces in Figure 7.9. Observe that the uncalibrated improvi-
sations are visually similar to the training data, illustrating the quality of the EDHMM as a
model. Furthermore, this similarity continues to hold for the calibrated improvisers, show-
ing how our model calibration techniques are effective at enforcing soft constraints without
drastically changing system behavior.

7.5 Summary and Future Work
In this chapter, we showed how algorithmic improvisation can be used to synthesize models
of human behavior subject to constraints. To make it possible to learn such models from
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Figure 7.8: Hourly aggregate energy profiles of our improvisers (green), compared to that of
the training data (blue). Solid curves indicate average consumption, and the shaded regions
show one standard deviation above the mean.

Midnight 4 am 8 am 12 pm 4 pm 8 pm Midnight

transition-calibrated

duration-calibrated

uncalibrated

training data

Figure 7.9: Example kitchen appliance traces from the training data (red) and improvisers
with no calibration (blue), duration calibration (green), and transition calibration (cyan).
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data, we proposed an improvisation procedure which infers an initial model from the training
data, then iteratively calibrates the model until the soft constraints are satisfied. Although
the procedure is heuristic, we demonstrated its utility in practice by learning a human-
like lighting controller subject to soft constraints on power consumption. Our experiments
showed that we are able to generate improvisers which satisfy our desired constraints, while
remaining both quantitatively and qualitatively faithful to the original training data.

There are several interesting directions for future work:

Other Application Domains. As we mentioned in the Introduction, there are many do-
mains besides home automation where human models are useful and our techniques
could be applied. The domain of autonomous driving is particularly interesting: in
Chapter 5, we introduced the language Scenic, suitable for modeling the static en-
vironments of autonomous cars, and mentioned extending the language to dynamic
scenarios as future work. Such an extension would require models of various types of
agents — humans in particular — and algorithmic improvisation could be used to build
these. A first step in this direction has already been taken by Ge and Murray [69],
who use our techniques to build a model of when human drivers make lane changes.

Better Model Calibration. The heuristics we proposed for model calibration were quite
simple, and moreover required domain knowledge to decide how to best apply them.
Two natural questions are whether we can develop heuristics which work for a wider
range of soft constraints, and whether we can develop algorithms which automatically
decide how to calibrate the model. One potential approach would be to use informa-
tion from the probabilistic model checker about why a soft constraint was violated
to decide how to change the model, as in counterexample-guided inductive synthesis
(CEGIS) [160, 159].

Stronger Guarantees. More ambitiously, we can ask whether it is possible to dispense
with heuristics entirely and develop algorithms which are guaranteed to find an impro-
viser if one exists, otherwise proving that there is none (as our algorithms in Chapters 3
and 4 do). More precisely, we could ask whether, given an initial probabilistic model
(possibly learned from data), there exists another model which is within a given sta-
tistical distance but also satisfies desired hard and soft constraints. This is closely
related to the problem of model repair [14], where we wish to make minimal changes
to a model so that it satisfies a given probabilistic specification.
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Chapter 8

Synthetic Data Generation

8.1 Introduction
In this chapter, we explore applications of algorithmic improvisation to the design and anal-
ysis of cyber-physical systems. Specifically, we show how language-based improvisation,
which we introduced in Chapter 5, can be used to generate synthetic data for systems like
autonomous cars and aircraft. We can specify what type of data we want by writing pro-
grams in our Scenic language [64], use our algorithm for scene improvisation to generate
scenes, and use the resulting data to evaluate the performance of a system under particular
conditions or, for systems based on machine learning, fill in a gap in an existing training set.
More generally, we can use Scenic to write formal environment models, which are a critical
part of any rigorous design process for dependable systems.

In the rest of this section, we give an overview of why designing reliable machine learning-
based systems is difficult, how language-based improvisation can help, and earlier approaches
to the problem. We also summarize the various applications and domains we have experi-
mented with so far. Next, in Section 8.2, we present our general methodology for training,
testing, and debugging cyber-physical systems using language-based improvisation. In Sec-
tion 8.3, we apply this framework to a practical deep neural network for autonomous driving,
improving its performance beyond what is achieved by state-of-the-art synthetic data gener-
ation methods. Finally, we conclude in Section 8.4 with a summary and prospects for future
work.

8.1.1 Challenges in the Design of Reliable ML-Based Systems

Cyber-physical systems like robots and self-driving cars are increasingly being deployed in
complex, uncontrolled environments, while being expected to operate safely without hu-
man supervision. To solve the very difficult perception problems arising from real-world
environments, such systems often make use of machine learning algorithms. However, this
compounds the hard problem of making cyber-physical systems reliable, adding black-box,
uninterpretable components to systems which are already highly complex. Thus, there is a
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Figure 8.1: Three more scenes of bumper-to-bumper traffic generated from the Scenic
program used in Figure 5.1.

great need for a rigorous design process which would ensure the dependability of ML-based
safety-critical systems [149, 155, 5]. In particular, we need techniques to more systematically:

• train the system so that it correctly handles events that occur only rarely,

• test the system under a variety of conditions, especially unusual ones, and

• debug the system to understand the root cause of a failure and eliminate it.

The traditional ML approach to these problems is to gather more data from the envi-
ronment, retraining the system (and possibly increasing the complexity of the model) until
its performance is adequate. The major difficulty here is that collecting real-world data can
be slow and expensive, since it must be preprocessed and correctly labeled before use: for
example, collecting thousands of traffic images is easy, but to train a car detector, humans
must first draw bounding boxes around every car in every image. Furthermore, it may be
difficult or impossible to collect data from corner cases that are rare but nonetheless nec-
essary to train and test against: for example, a car accident. As a result, recent work has
investigated training and testing systems with synthetically generated data, which has two
major advantages over real data: it can be produced in bulk without manual labeling, since
the ground truth is known during generation, and the designer has full control over the
distribution of the data [84, 170, 91].

The main obstruction to the use of synthetic data is that it can be extremely difficult to
generate meaningful data, since this usually requires detailed modeling of complex environ-
ments [155]. Suppose, for example, that we wanted to train a neural network to identify cars
in road images. If we simply sampled uniformly at random from all possible configurations
of, say, 12 cars, we would get data that was at best unrealistic, with cars facing sideways or
backward, and at worst physically impossible, with cars intersecting each other. Instead, we
need scenes like those in Figure 8.1, where the cars are laid out in a consistent and realistic
way. Furthermore, we may want scenes that are not only realistic but represent particular
scenarios of interest for training or testing, for example parked cars, cars passing across the
field of view, or bumper-to-bumper traffic as in Figure 8.1. In general, we need a way to
guide data generation toward scenes that makes sense for our application.
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8.1.2 Language-Based Improvisation for Data Generation

We argue that language-based improvisation provides a natural solution to this problem.
Using a probabilistic programming language, the designer of a system can construct distri-
butions representing different input regimes of interest, and sample from these distributions
to obtain concrete inputs for training and testing. Specifically, LBI can help with all three
design problems mentioned above:

• training a system to better handle rare events by generating many instances of such
events to include in the training set,

• testing a system under conditions of interest by writing programs describing those
conditions, and

• debugging a system by improvising variations on a known failure case to identify its
cause, then generating a broader set of failing inputs suitable for retraining.

More generally, as we noted in Chapter 5, a program in a PPL can be used as an environment
model, providing a formal specification of the distribution of environments under which a
system must safely operate with high probability.

In this chapter, we focus on systems whose environment is a scene, a configuration of
objects in space (including dynamic agents, such as vehicles). As we saw in Chapter 5, careful
design of a domain-specific PPL can make it possible to express complex distributions over
scenes in a concise and readable way. This is clearly demonstrated by the scenes in Figure 8.1,
which were generated from a 20-line Scenic program, and we will see further examples later
in this chapter.

Concrete example
(“a car at 1.2 m × 4 m”)

Example + noise
(“a car near 1.2 m × 4 m”)

Structured scenario
(“a badly parked car”)

Generic scenario
(“a car on the road”)

Figure 8.2: Spectrum of Scenic
scenarios, general to specific.

Our proposed approach for using language-based im-
provisation to train, test, and debug systems critically de-
pends on the PPL we use being capable of encoding a wide
range of general and specific environment scenarios. This
is the case for Scenic: the variety of constructs it pro-
vides makes it possible to write scenarios anywhere on a
spectrum from concrete scenes (i.e. individual test cases)
to extremely broad classes of abstract scenes, as shown in
Figure 8.2. A scenario can be reached by moving along
the spectrum from either end: top-down, by progressively
constraining a very general scenario, or bottom-up, by
generalizing from a concrete example (such as a known
failure case), for example by adding random noise. Prob-
ably most usefully, one can write a scenario in the middle
which is far more general than simply adding noise to a
single scene, but has much more structure than a com-
pletely random scene: for example, the traffic scenario
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depicted in Figure 8.1. Later in the chapter we will illustrate all three ways of developing a
scenario, which as we will see are useful for different training, testing, and debugging tasks.

8.1.3 Related Work

Data Generation and Testing for ML

There has been a large amount of work on generating synthetic data for specific applications,
including text recognition [88], text localization [84], robotic object grasping [170], and au-
tonomous driving [91, 55]. Closely related is work on domain adaptation, which attempts
to correct differences between synthetic and real-world input distributions. Domain adap-
tation has enabled synthetic data to successfully train models for several other applications
including 3D object detection [109, 162], pedestrian detection [179], and semantic image
segmentation [146]. All of this work provides important context for our setting, demon-
strating that models trained exclusively on synthetic data (possibly domain-adapted) can
achieve acceptable performance on real-world data. The major difference in our work is that
our methodology is not specific to any particular application, but, through Scenic, pro-
vides a general way to do language-based systematic data generation for any system whose
environment is a scene.

Another line of work has explored using adversarial (i.e. misclassified) examples to retrain
and improve ML models [192, 187, 76]. Some of these methods use optimization to find
minimal perturbations of given inputs which lead to a misclassification [166, 124, 129], or
to systematically trigger different behaviors of the network [133]. Another approach uses
Generative Adversarial Networks [75], a kind of neural network able to generate synthetic
data, to augment training sets [108, 115]. These techniques usually require pre-existing
training sets, whereas our approach requires only a simulator. Furthermore, they search
through the input space of the network, e.g. raw images, unlike our work, which uses a high-
level semantic space [49] like that of scenes. In this respect, we follow another line of work
which searches for misclassifications in a semantic space using various types of random and
systematic sampling techniques [46, 48]. However, none of these approaches provides any
detailed control over what type of synthetic data is generated. Scenic, on the other hand,
gives complete control over the distribution of the generated data, including being able to
impose declarative constraints, and does so in a flexible and explainable manner.

Model-Based Generation of Tests and Graphics

There is a long history of techniques which use a model to guide the generation of content,
both in testing [20] and computer graphics [51]. A wide variety of different types of mod-
els have been considered, ranging in complexity and expressivity. A simple and popular
approach is to use examples as a model, as in mutational fuzz testing [165] and example-
based scene synthesis [57] (many of the data augmentation techniques discussed above also
essentially use this kind of model). While examples are easy to use, they do not provide
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fine-grained control over the generated data. Another class of models uses rules or a gram-
mar to specify how the data can be generated, as in generative fuzz testing [165], procedural
generation from shape grammars [125], and grammar-based scene synthesis [90]. Grammars
allow much greater control than a set of examples, but they do not easily allow enforcing
global properties. The same is true of most models based on programming languages, for
example domain-specific nondeterministic languages for test generation [52] and procedural
modeling languages in computer graphics [180]. Conversely, models given by constraints, as
in constrained-random verification [127], allow global properties but can be difficult to write.
Using a probabilistic programming language model, Scenic improves on these techniques by
simultaneously providing fine-grained control, enforcement of global properties, specification
of probability distributions, and simple imperative syntax.

Probabilistic Programming Languages

The semantics (and to some extent, the syntax) of Scenic are similar to that of other
probabilistic programming languages such as Prob [79], Church [77], and BLOG [123]. In
probabilistic programming the focus is usually on inference rather than generation (the
main application in our case), and in particular to our knowledge probabilistic programming
languages have not previously been used for test generation. However, the most popular
inference techniques are based on sampling and so could be directly applied to generate
scenes from Scenic programs, as we discussed in Chapter 5.

Several PPLs have been used to define generative models of objects and scenes: both
general-purpose languages such as WebPPL [78] (see, e.g., Ritchie [143]) and languages
specifically motivated by such applications, namely Quicksand [144] and Picture [102]. The
latter are in some sense the most closely-related to Scenic, although neither provides spe-
cialized syntax or semantics for dealing with geometry (Picture also was used only for inverse
rendering, not data generation). The main advantage of Scenic over these languages is that
its domain-specific design permits concise representation of complex scenarios and enables
specialized sampling techniques.

8.1.4 Case Studies

We have successfully applied Scenic to help design and analyze a number of different sys-
tems. Our main case study is on SqueezeDet [189], a convolutional neural network which is
being used industrially for object detection in autonomous cars1. For this task, it has been
shown [91] that good performance on real images can be achieved with networks trained
purely on synthetic images from the video game Grand Theft Auto V (GTA V [68]). We
wrote an interface between Scenic and GTA V, allowing us to import generated scenes into
the game and render images. Our experiments demonstrate using Scenic to:

1For example by DeepScale (http://deepscale.ai/).

http://deepscale.ai/
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• evaluate the accuracy of the system under particular conditions: we find that the
network performs worse in dark, rainy weather than bright, clear weather;

• improve performance on corner cases: we use Scenic to both identify a deficiency in
the state-of-the-art car detection data set of Johnson-Roberson et al. [91], and generate
a new training set of equal size but yielding significantly better performance;

• debug a failure case: we use Scenic to find an image the network misclassifies, discover
the root cause, and fix the bug, in the process improving the network’s performance
on its original test set (again, without increasing training set size).

These experiments show that Scenic can be a very useful tool for understanding and im-
proving ML-based perception systems.

We stress that while our GTA V case study is performed in the domain of visual per-
ception for autonomous driving, and uses one particular simulator, our methodology is not
specific to either. As we explained in Chapter 5, Scenic can produce data of any desired
type (e.g. LIDAR point clouds) by interfacing it to an appropriate simulator. In fact, we
have already experimented with several different simulators and domains:

• We demonstrated the use of Scenic to test controllers as well as perception systems,
using the interface to the Webots simulator [122] mentioned in Chapter 5. We found
bugs in a simple neural network-based collision-avoidance system, and also simulated
variations on an actual crash involving an autonomous car (using map and lane data
from OpenStreetMap [59] and the Intelligent Intersections Toolkit [82]). For details on
these experiments, conducted using the VerifAI toolkit for formal design and analysis
of AI-based systems (which uses Scenic as an environment modeling language), see
Dreossi et al. [47].

• In collaboration with Boeing, we used Scenic to test an experimental neural network-
based automated taxiing system for aircraft in the X-Plane flight simulator [141]. We
found that the system is highly sensitive to differences in lighting and weather condi-
tions (see Figure 8.3 for an example), and are currently using Scenic to retrain the
system to be more robust2.

• Finally, we have also developed a prototype interface to the CARLA simulator [45] to
enable more sophisticated autonomous driving experiments.

8.2 Using Scene Improvisation to Design and Analyze
Cyber-Physical Systems

We propose a methodology for training, testing, and debugging cyber-physical systems using
language-based improvisation. The core idea is to use a probabilistic programming language

2Thanks to Johnathan Chiu for helping to implement the X-Plane interface and run experiments.
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Figure 8.3: Frames (4 seconds apart) from an X-Plane simulation where an automated
taxiing system gets confused by dark, rainy conditions and swerves off the runway.

to formalize general operation scenarios, then sample from these distributions to generate
concrete environment configurations. Putting these configurations into a simulator, we ob-
tain sensor data which can be used to test and train a perception system, or we run dynamic
simulations to test/train a controller or closed-loop system. In particular, for systems like
autonomous cars whose environment is a scene, we can write scenarios in Scenic, use scene
improvisation to generate concrete scenes, and render these into images using a simulator.
The general procedure is outlined in Figure 8.4.

Note that as shown in the Figure, the training and testing data sets need not be purely
synthetic: we can generate data to supplement existing real-world data, for example to
provide more instances of a situation which is not well-represented in the original training
set. Furthermore, even for models trained purely on real data, synthetic data can still be
useful for testing and debugging, as we will see below. Now we discuss how our methodology
addresses the three design problems from the Introduction in more detail.

Testing under Different Conditions

The most straightforward problem is that of assessing system performance under different
conditions. We can simply write scenarios capturing each condition, generate a test set from
each one, and evaluate the performance of the system on these. Note that conditions which
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Figure 8.4: Tool flow using scene improvisation to train, test, and debug a cyber-physical
system.

occur rarely in the real world present no additional problems: as long as the PPL we use
can encode the condition, we can generate as many instances as desired.

Training on Rare Events

Extending the previous application, we can use this procedure to help ensure the system
performs adequately even in unusual circumstances or particularly difficult cases. Writing a
scenario capturing these rare events, we can generate instances of them to augment or replace
part of the original training set. Emphasizing these instances in the training set can improve
the system’s performance in the hard case without impacting performance in the typical
case. In Section 8.3.3 we will demonstrate this for car detection, where an obvious hard case
is when one car partially overlaps another in the image. We wrote a Scenic program to
generate a set of these overlapping images. Training the car-detection network on a state-of-
the-art synthetic dataset obtained by randomly driving around inside the simulated world
of GTA V and capturing images periodically [91], we find its performance is significantly
worse on the overlapping images. However, if we keep the training set size fixed but increase
the proportion of overlapping images, performance on such images dramatically improves
without harming performance on the original generic dataset. This shows the benefit of
designing a training set in an intelligent, deliberate manner, which is made possible by the
detailed control over distributions provided by language-based improvisation.

Debugging Failures

Finally, we can use the same procedure to help understand and fix bugs in the system.
If we find an environment configuration where the system fails, we can write a scenario
which reproduces exactly that particular configuration. Having the configuration encoded
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as a program then makes it possible to explore the neighborhood around it in a variety of
different directions, leaving some aspects of the scene fixed while varying others. This can
give insight into which features of the scene are relevant to the failure: for example, we might
find that the failure happens regardless of the color of a car, but depends sensitively on the
car model. By performing several experiments of this type iteratively, we can eventually
converge on the root cause of the failure. The root cause can then itself be encoded into
a scenario which generalizes the original failure, allowing retraining without overfitting to
the particular counterexample we originally found. We will demonstrate this approach in
Section 8.3.4, starting from a single misclassification, identifying a general deficiency in the
training set, replacing part of the training data to fix the gap, and ultimately achieving
higher performance on the original test set.

8.3 Case Study: Neural Networks for Car Detection
We demonstrate the methodology described above in a case study on a practical neural
network for object detection, using synthetic data from GTA V. We begin by describing the
general setup for all of our experiments in Section 8.3.1, then discuss testing, training, and
debugging in Sections 8.3.2, 8.3.3, and 8.3.4 respectively.

8.3.1 Experimental Setup

Simulator Interface

We generated scenes in the virtual world of the video game Grand Theft Auto V [68],
which has previously been used in computer vision experiments because of its photorealistic
rendering and highly-detailed world [142, 55, 91]. Although it is possible to write Scenic
scenarios which randomly position roads, signs, buildings, and other kinds of objects, for
our experiments we only generated configurations of cars, laid out within the fixed GTA V
world. To interface Scenic to GTA V, we needed to carry out the two steps mentioned
in Chapter 5: writing a Scenic library defining the GTA V world, and an interface layer
importing the generated scenes into GTA V.

For the first step, we wrote a library gta defining:

• Regions road and curb representing the roads and curbs in (part of) the GTA V world.
Since GTA V does not provide an explicit representation of its map, we obtained an
approximate map by processing a bird’s-eye schematic view of the game world3. To
identify points on a road, we converted the image to black and white, effectively turning
roads white and everything else black. We then used edge detection to find curbs.
Since the resulting road information was imperfect, some generated scenes placed cars
in undesired places such as sidewalks or medians, and we had to manually filter the

3http://gta-5-map.com/

http://gta-5-map.com/
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generated images to remove these. With a real simulator, e.g. Webots, this is not
necessary.

• A vector field roadDirection representing the nominal traffic direction at each point
on a road. This was computed from the map above by finding for each curb point
X the nearest curb point Y on the other side of the road, and assuming traffic flows
perpendicular to the segment XY (this was more robust than using the directions of
the edges in the image).

• A type of object Car defined as follows (slightly simplified):

1 class Car:
2 position: Point on road
3 heading: (roadDirection at self.position) + self.roadDeviation
4 roadDeviation: 0
5 width: self.model.width
6 height: self.model.height
7 viewAngle: 80 deg # view angle of GTA V camera
8 visibleDistance: 30 # by default, put other cars within 30 m
9 model: CarModel.defaultModel()
10 color: CarColor.defaultColor()

The roadDeviation property is a convenience, allowing us to specify a car’s head-
ing relative to the local road direction: we can write Car with roadDeviation 10
deg instead of Car facing 10 deg relative to roadDirection, for example. The
model property, representing the type of car, has by default a uniform distribution over
13 diverse models provided by GTA V. The color property has a default distribution
based on real-world car color statistics [50].

• Global parameters time and weather representing the time of day and weather. The
default distribution for time is uniform over the entire day, while for weather it is
a non-uniform distribution over the 14 discrete weather types supported by GTA V,
e.g. “clear” and “snow”, with less weight on more extreme types.

Since GTA V is closed-source and does not expose any kind of scene description language.
Therefore, to import scenes generated by Scenic into GTA V, we wrote a plugin based on
DeepGTAV [148]. The plugin calls internal functions of GTA V to create cars with the
desired positions, colors, etc., as well as to set the camera position, time of day, and weather.

Perception System and Performance Metrics

We conducted our experiments on SqueezeDet [189], a convolutional neural network real-
time object detector for autonomous driving. The task of the network in our experiments
was to place 2D bounding boxes around every car in an image. The output of the network
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is a list of bounding boxes, with associated confidence scores. When training, we used a
batch size of 20, and trained all models for 10,000 iterations unless otherwise noted. Images
captured from GTA V at 1920 × 1200 resolution were resized to 1248 × 384, the resolution
used by SqueezeDet and the standard KITTI benchmark [70]. All models were trained and
evaluated on NVIDIA TITAN Xp GPUs.

We used the metrics precision and recall to measure the accuracy of the network on a
given set of images. Intuitively, precision measures how many predicted bounding boxes
are correct, while recall measures how many objects are actually detected. To define these
formally, we used a two-step process standard in object detection [53, Section 4.4]. First,
a predicted bounding box B is said to match a ground truth box B′ if their Intersection
over Union (IoU) score, area(B ∩ B′)/ area(B ∪ B′), is at least 1/2 (for example, disjoint
boxes have an IoU of zero, and identical boxes have an IoU of 1). Second, we go through
all predicted boxes for a given image in order of decreasing confidence: the box is a true
positive if it matches a ground truth box that has not already been matched (since each
object should only be detected once), and otherwise it is a false positive. If any ground truth
box remains unmatched, it is a false negative. If TP and FP are the numbers of true/false
positives over the entire image set, and FN likewise is the number of false negatives, then
the precision is TP/(TP + FP ) and the recall is TP/(TP + FN).

Note that some work on object detection uses a different metric, AP (which stands for
Average Precision, but is not simply the average of the precision over the test images).
For most of our experiments we use precision/recall rather than AP because the latter is
not sensitive to the main type of failure we discovered, where the network correctly detects
most objects but also outputs spurious boxes (false positives) with lower confidence than the
correct predictions. However, for the experiment in Section 8.3.3 we report results in both
metrics, since our baseline training set comes from Johnson-Roberson et al. [91], who use
AP in their experiments. We used the tool of Cartucho [24] to compute AP.

8.3.2 Testing under Different Conditions

When testing a model, one may be interested in a particular operation regime. For in-
stance, an autonomous car manufacturer may be more interested in certain road conditions
(e.g. desert vs. forest roads) depending on where its cars will be mainly used. A designer
may also wish to do extra testing in simulation of cases that are difficult or dangerous to
reproduce in reality, like construction sites and car accidents. Scenic provides a systematic
way to describe such scenarios of interest and construct corresponding test sets.

To demonstrate this, we first wrote very general scenarios describing scenes of 1–4 cars
(not counting the camera), specifying only that the cars face within 10◦ of the road direc-
tion. The 4-car scenario is shown in Figure 8.5 (note the use of the resample function to
conveniently give each car an independent heading sampled from the same distribution). We
generated 1,000 images from each scenario, yielding a training set Xgeneric of 4,000 images,
and used these to train a model Mgeneric as described in Section 8.3.1. We also generated an
additional 50 images from each scenario to obtain a generic test set Tgeneric of 200 images.
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1 wiggle = (-10 deg, 10 deg) # perturbation around road direction
2 ego = Car with roadDeviation wiggle
3 for i in range(4): # create 4 cars visible in camera
4 Car visible, with roadDeviation resample(wiggle)

Figure 8.5: A generic scenario of four cars roughly aligned with the road.

Table 8.1: Performance of Mgeneric under different road conditions.

Test Set Precision Recall

Generic (Tgeneric) 83.1% 92.6%
Bright, sunny (Tgood) 85.7% 94.3%
Dark, rainy (Tbad) 72.8% 92.8%

Next, we specialized the general scenarios in opposite directions, creating scenarios for
good and bad road conditions. Specifically, we added either the lines

1 param weather = ’EXTRASUNNY’ # bright, with no clouds
2 param time = 12 * 60 # time of day: noon

for good conditions, and

1 param weather = ’RAIN’ # rainy weather
2 param time = 0 * 60 # time of day: midnight

for bad. Using these scenarios, we generated specialized test sets Tgood and Tbad. Example
images are shown in Figure 8.6.

EvaluatingMgeneric on Tgeneric, Tgood, and Tbad, we obtained the results shown in Table 8.1.
As might be expected, the model performs better on bright days than on rainy nights. This
suggests there might not be enough examples of rainy nights in the training set, and indeed
under our default weather distribution rain is less likely than shine. This illustrates how
specialized test sets can highlight the weaknesses and strengths of a particular model. In
the next section, we go one step further and use Scenic to redesign the training set and
improve model performance.

8.3.3 Training on Rare Events

In the synthetic data setting, we are limited not by data availability but by the cost of
training. The natural question is then how to generate a synthetic data set that as effective
as possible given a fixed size. In this section we show that over-representing a type of input
that may occur rarely but is difficult for the model can improve performance on the hard



CHAPTER 8. SYNTHETIC DATA GENERATION 172

Figure 8.6: Scenes of four cars in good (above) and bad (below) driving conditions.

case without compromising performance in the typical case. Scenic makes this possible by
allowing the user to write a scenario capturing the hard case specifically.

For our car detection task, an obvious hard case is when one car substantially occludes
another. We wrote a simple scenario, shown in Figure 8.7, which generates such scenes by
placing one car behind the other as viewed from the camera, offset to left or right so that
it is at least partially visible. Generating images from this scenario, we obtained a training
set Xoverlap of 250 images and a test set Toverlap of 200 images. Example images are shown in
Figure 8.8.

For a baseline training set we used the “Driving in the Matrix” synthetic data set of
Johnson-Roberson et al. [91], which has been shown to yield good car detection performance
even on real-world images. Like our images, the “Matrix” images were rendered in GTA V;
however, rather than using a PPL to guide generation, they were produced by allowing the
game’s AI to drive around randomly while periodically taking screenshots. We randomly
selected 5,000 of these images to form a training set Xmatrix, and 200 for a test set Tmatrix.
We trained SqueezeDet for 5,000 iterations on Xmatrix, evaluating it on Tmatrix and Toverlap.
To reduce the effect of jitter during training we used a standard technique [7], saving the last
10 models in steps of 10 iterations and picking the one achieving the best total precision and
recall. This yielded the results in the first row of Table 8.2. Although Xmatrix contains many
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1 wiggle = (-10 deg, 10 deg)
2 ego = Car with roadDeviation wiggle
3 c = Car visible,
4 with roadDeviation resample(wiggle)
5 leftRight = Uniform(1.0, -1.0) * (1.25, 2.75)
6 Car beyond c by leftRight @ (4, 10),
7 with roadDeviation resample(wiggle)

Figure 8.7: A scenario where one car partially occludes another.

Figure 8.8: Scenes generated from the occlusion scenario in Figure 8.7.
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Table 8.2: Performance of models trained on 5,000 images from Xmatrix or a mixture with
Xoverlap, averaged over 8 training runs with random selections of images from Xmatrix.

Mixture Tmatrix Toverlap

% Precision Recall AP Precision Recall AP

100 / 0 72.9± 3.7 37.1± 2.1 36.1± 1.1 62.8± 6.1 65.7± 4.0 61.7± 2.2

95 / 5 73.1± 2.3 37.0± 1.6 36.0± 1.0 68.9± 3.2 67.3± 2.4 65.8± 1.2

images of overlapping cars, the precision on Toverlap is significantly lower than for Tmatrix,
indicating that the network is predicting spurious bounding boxes for such cars4.

Next we attempted to improve the effectiveness of the training set by mixing in the
difficult images produced with Scenic. Specifically, we replaced a random 5% of Xmatrix

(250 images) with images from Xoverlap, keeping the overall training set size constant. We
then retrained the network on the new training set and evaluated it as above. To reduce the
dependence on which images were replaced, we averaged over 8 training runs with different
random selections of the 250 images to replace. The results are shown in the second row of
Table 8.2. Even altering only 5% of the training set, performance on Toverlap significantly
improves. Critically, the improvement on Toverlap is not paid for by a corresponding decrease
on Tmatrix: performance on the original data set remains the same. Both results remain
true if we measure performance using the AP metric, as in Johnson-Roberson et al. [91].
Thus, by allowing us to specify and generate instances of a difficult case, Scenic enables the
generation of more effective training sets than can be obtained through simpler approaches
not based on PPLs.

8.3.4 Debugging Failures

In our final experiment, we show how Scenic can be used to generalize a single input on
which a model fails, exploring its neighborhood in a variety of different directions and giving
insight into which features of the scene are responsible for the failure. The original failure
can then be generalized to a broader scenario describing a class of inputs on which the model
misbehaves, which can in turn be used for retraining.

First, we selected one scene from our first experiment (Section 8.3.2), consisting of a single
car viewed from behind at a slight angle, whichMgeneric wrongly classified as three cars (thus
having 33.3% precision and 100% recall). The misclassified image is shown in Figure 8.9.
Extracting the positions and other properties of the cars from the original generated scene,
we wrote a Scenic scenario, shown in Figure 8.10, which exactly reproduces the scene.

4Recall and AP are much higher on Toverlap, meaning the false-negative rate is better; this is presumably
because all the Toverlap images have exactly 2 cars and are in that sense easier than the Tmatrix images, which
can have many cars.
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Figure 8.9: An image misclassified as having three cars, with the predicted bounding boxes.

1 param time = 12 * 60
2 param weather = ’EXTRASUNNY’
3
4 ego = Car at -628.78787878787944 @ -540.60676779463461,
5 facing -359.16913666080427 deg
6
7 c = Car at -625.4444493298472 @ -530.76549003839568,
8 facing 8.287256822061408 deg,
9 with model CarModel.models[’DOMINATOR’],
10 with color CarColor.withBytes([187, 162, 157])

Figure 8.10: Scenario reproducing the misclassified image in Figure 8.9.
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Table 8.3: Performance of Mgeneric on different variants of the scenario in Figure 8.10.

Scenario Precision Recall

(1) varying model and color 80.3 100
(2) varying background 50.5 99.3
(3) varying local position, orientation 62.8 100

(4) varying position but staying close 53.1 99.3
(5) any position, same apparent angle 58.9 98.6
(6) any position and angle 67.5 100
(7) varying background, model, color 61.3 100

(8) staying close, same apparent angle 52.4 100
(9) staying close, varying model 58.6 100

We then generalized this scenario in several ways, leaving most of the features of the
scene fixed but allowing others to vary. Specifically, scenario (1) varied the model and color
of the car, (2) left the position and orientation of the car relative to the camera fixed but
varied the absolute position, effectively changing the background of the scene, and (3) used
the mutation feature of Scenic to add a small amount of noise to the car’s position, heading,
and color. For each scenario we generated 150 images and evaluated Mgeneric on them. As
seen in the first three rows of Table 8.3, changing the model and color improved performance
the most, suggesting they were most relevant to the misclassification, while local position
and orientation were less important and global position (i.e. the roads and scenery in the
background of the image) was least important.

To investigate these possibilities further, we wrote a second round of variant scenarios,
obtaining the results shown in rows 4–7 of Table 8.3. These confirmed the importance of
model and color (compare (2) to (7)), as well as angle (compare (5) to (6)), but also suggested
that being close to the camera could be the relevant aspect of the car’s local position. We
confirmed this with a final round of scenarios (compare (5) and (8) in the Table), which
also showed that the effect of car model is small among scenes where the car is close to the
camera (compare (4) and (9)).

Having established that car model, closeness to the camera, and view angle all contribute
to poor performance of the network, we wrote broader scenarios capturing these features. To
avoid overfitting, and since our experiments indicated car model was not very relevant when
the car is close to the camera, we decided not to fix the car model. Instead, we specialized
the generic one-car scenario from our first experiment to produce only cars close to the
camera. We also created a second scenario specializing this further by requiring that the car
be viewed at a shallow angle. This scenario is shown in Figure 8.11.

Finally, we used these scenarios to retrain Mgeneric, hoping to improve performance on its
original test set Tgeneric (to better distinguish small differences in performance, we increased
the test set size to 400 images). To keep the size of the training set fixed as in the previous
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1 wiggle = (-10 deg, 10 deg)
2 ego = Car with roadDeviation wiggle
3 c = Car offset by (-5, 5) @ (7, 12),
4 with roadDeviation resample(wiggle)
5 require abs((apparent heading of c) - 27 deg) <= 10 deg

Figure 8.11: Scenario of a single car close to the camera, viewed at a shallow angle. The
“close car” scenario is almost identical, simply omitting the require statement.

Table 8.4: Performance of Mgeneric after retraining, replacing 10% of Xgeneric with new data.

Replacement Data Precision Recall

Original (no replacement) 82.9 92.7
Classical augmentation 78.7 92.1

Close car 87.4 91.6
Close car at shallow angle 84.0 92.1

experiment, we replaced 400 one-car images in Xgeneric (10% of the whole training set) with
images generated from our retraining scenarios. As a baseline, we used images produced with
classical image augmentation techniques implemented in imgaug [92]. Specifically, we mod-
ified the original misclassified image by randomly cropping 10%–20% on each side, flipping
horizontally with probability 50%, and applying Gaussian blur with σ ∈ [0.0, 3.0].

The results of retraining Mgeneric on the resulting data sets are shown in Table 8.4. Inter-
estingly, classical augmentation actually hurt performance, presumably due to overfitting to
relatively slight variants of a single image. On the other hand, replacing part of the data set
with specialized images of cars close to the camera significantly reduced the number of false
positives like the original misclassification (while the improvement for the “shallow angle”
scenario was less, perhaps due to overfitting to the restricted angle range). This demon-
strates how Scenic can be used to improve performance by generalizing individual failures
into scenarios that capture the essence of the problem but are broad enough to prevent
overfitting during retraining.

8.4 Summary and Future Work
In this chapter, we presented a methodology for using language-based improvisation to de-
sign and analyze cyber-physical systems. Using a probabilistic programming language to
express different environment distributions, we can generate specialized test sets, improve
the effectiveness of training sets by intelligently designing their composition, and generalize
from individual failure cases to broader scenarios suitable for retraining. We demonstrated
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all of these applications, applying Scenic to generate traffic images for a practical neural
network object detector for autonomous cars. In particular, we were able to boost the per-
formance of the network (given a fixed training set size) significantly beyond what could be
achieved by prior synthetic data generation techniques [91].

For future work, there are several promising directions. On the language side, many of
the generalizations of Scenic mentioned as future work in Chapter 5 would be useful for the
data generation application, for example extending the language with dynamics and learning
Scenic programs from data. There are also some interesting directions to explore on the
application side:

Other Systems and Domains. Our methodology is quite general and could be applied
to many types of systems. As we mentioned in Section 8.1.4, besides our GTA V case
study we have already applied Scenic to a simple collision-avoidance system for cars
and an automated taxiing system for aircraft. Going forward, we plan to apply our
techniques to more realistic closed-loop systems, like the driving agents participating
in the CARLA autonomous driving challenge [145].

Searching for Corner Cases. A major goal of Scenic is to give system developers the
ability to encode their domain knowledge about interesting and potentially-problematic
scenarios in a formal model, which can then be used for test generation or other kinds
of analysis. However, Scenic does not address the issue of which program to write: we
wrote all of the scenarios above by hand, and a developer could easily write Scenic pro-
grams which completely miss some important failure case. An urgent question is there-
fore how we can use automated analysis of the system to find previously-unsuspected
bugs, while still taking advantage of the domain knowledge expressed by a Scenic
program. One possible approach, which we are currently exploring in the VerifAI
toolkit [47], is to allow parameters of Scenic programs to be explored by active sam-
pling techniques like Bayesian optimization [156], rather than purely random sampling.
Optimization techniques used in temporal logic falsification [128] or adversarial analysis
of neural networks [166] could be used in a similar way.
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Chapter 9

Conclusion

Algorithmic improvisation is a new and fruitful subject, with a rich theory and a broad range
of applications in robotics, cybersecurity, software engineering, music, machine learning, and
many other areas. In this thesis we established the core theory of algorithmic improvisation
and explored several of its applications, namely synthesizing randomized planners for robots,
learning models of human behavior subject to constraints, and generating synthetic data to
help design, test, and debug cyber-physical systems. Despite this, so far we have only
scratched the surface of algorithmic improvisation: in both theory and practice, there are
numerous directions for future work.

On the theory side, among the open problems we mentioned in Chapters 3–5, several
theoretical questions arose multiple times in the applications we studied:

Generalized Soft and Randomness Constraints. In Chapters 3 and 4 we described
several ways the concept of control improvisation could be generalized to enable new
applications. Two extensions in particular are of particular interest: generalizing the
soft constraint to an arbitrary quantitative constraint, for example minimizing the ex-
pected value of a cost function, and generalizing the randomness constraint to bounding
a measure like entropy or more powerful distributional constraints. Another natural
type of randomness constraint would be to require that the distribution of the impro-
viser is as close as possible to a desired distribution, with respect to a metric like total
variation distance: so for example we could start with a generative process like the
factor oracle in the music improvisation application (see Section 3.4.1) or the EDHMM
in the lighting control application (Chapter 7), then try to minimally change its distri-
bution so as to satisfy the desired soft constraint. Such extensions would likely require
different techniques than those we have used so far.

Continuous Time and Alphabets. A more drastic extension would be to study control
improvisation with continuous time instead of discrete sequences, as well as continuous
alphabets, possibly even with a metric defined on improvisations. This would be the
natural setting for an extension of scene improvisation with dynamics, as we discussed
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in Chapter 5, as well as test generation problems for cyber-physical systems which take
signals as input.

Symbolic Algorithms. Finally, as we observed in Chapters 3 and 4, our efficient impro-
visation schemes for CI and RCI with DFA specifications both suffer from problem of
state explosion when multiple requirements are conjoined. While we described a sym-
bolic algorithm for CI based on SAT solvers, we have not yet evaluated whether it works
in practice on problems like multi-robot surveillance in Chapter 6: it is possible that
model counting algorithms are not yet powerful enough to solve the resulting queries.
Furthermore, we do not have an equivalent symbolic algorithm for RCI: although it is
plausible that a suitable generalization of QBF solvers could help to compute widths,
as needed for our RCI scheme, to our knowledge such counting/minimization general-
izations of QBF have never been studied. This is a clear area for further theoretical
and algorithmic work.

On the practical side, there are many further potential applications of algorithmic im-
provisation. In Chapters 6–8 we mentioned several: planning for search and rescue missions
by robot swarms, modeling the dynamic behaviors of human drivers, and testing entire
closed-loop autonomous driving agents. There are also good prospects for applications in
completely different fields, including education and cybersecurity:

Automated Exercise Generation. A natural application of algorithmic improvisation is
automatically generating individualized homework and exam problems for large courses
such as MOOCs to prevent the transfer of answers from one student to another [158,
151]. Given a reference problem written by the instructor, we can generate variations
on it with algorithmic improvisation, using the soft constraint to enforce similarity,
the hard constraint to preserve any important features which should remain invariant
(e.g. consistency between different parts of the problem), and the randomness con-
straint to ensure a diversity of problems.

Software Diversity. As we mentioned in Chapter 1, there is a body of work in cyberse-
curity on heuristics for introducing diversity into the implementation of a program to
make developing exploits more difficult [105]. Algorithmic improvisation could be used
to do this in a more principled way, where we use the hard constraint to enforce func-
tional equivalence to the original implementation and a quantitative soft constraint to
ensure, for example, that runtime or some other performance metric is not adversely
affected to an unacceptable degree. Turning this application around, we could also use
algorithmic improvisation to test or train an antivirus program by generating many
variants on existing malware samples subject to hard constraints enforcing that the
variants still perform a damaging or undesirable operation.

Crypto-Free Privacy Schemes. Finally, in settings like wireless sensor networks or RFID
tags, there is significant interest in security protocols for authentication, privacy, etc.
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which avoid using traditional cryptographic primitives, since the devices do not have
sufficient resources to execute such operations [95, 104]. Here, algorithmic improvi-
sation could be used to perform simple types of obfuscation, generating variations on
secret data which preserve some required structure (possibly along the lines of Wu
et al. [190]).

As these directions make abundantly clear, we are truly at the beginning of exploring the
theory and applications of algorithmic improvisation. Our hope is that, beginning from this
first step into the correct-by-construction synthesis of randomized systems, we will continue
to find a wealth of results and algorithms that will enable us to make safety-critical systems
ever more safe, secure, and dependable.
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