
Advances in Machine Learning: Nearest Neighbour Search,
Learning to Optimize and Generative Modelling

Ke Li

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-135
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-135.html

September 5, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

(This is a condensed version. See dissertation for the full version.)

I am very fortunate to have an AI pioneer and visionary in Prof. Jitendra Malik
as my advisor, and am very grateful for all his advice, support, help and
wisdom. I would also like to thank my other committee members, Profs.
Peter Bartlett, Trevor Darrell, Anant Sahai and Bin Yu, for their helpful
feedback and support.

In addition, I would like to thank all those who have helped me reach where I
am. In particular, I would like to thank my parents for challenging me to
upend conventional wisdom early in my career, Prof. Geoff Hinton for
inspiring me to study AI, Prof. Rich Zemel and Kevin Swersky for mentoring
me and Profs. Malik, Hinton and Goldwasser for inspiring me to press on in
the face of hardship.

Advances in Machine Learning: Nearest Neighbour Search, Learning to Optimize and
Generative Modelling

by

Ke Li

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jitendra Malik, Chair
Professor Peter Bartlett
Professor Trevor Darrell
Professor Anant Sahai

Professor Bin Yu

Summer 2019

Advances in Machine Learning: Nearest Neighbour Search, Learning to Optimize and
Generative Modelling

Copyright 2019
by

Ke Li

1

Abstract

Advances in Machine Learning: Nearest Neighbour Search, Learning to Optimize and
Generative Modelling

by

Ke Li

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

Machine learning is the embodiment of an unapologetically data-driven philosophy that has
increasingly become one of the most important drivers of progress in artificial intelligence
and beyond. Existing machine learning methods, however, entail making trade-offs in terms
of computational efficiency, modelling flexibility and/or formulation faithfulness. In this
dissertation, we will cover three different ways in which limitations along each axis can be
overcome, without compromising on other axes.

Computational Efficiency

We start with limitations on computational efficiency. Many modern machine learning meth-
ods require performing large-scale similarity search under the hood. For example, classifying
an input into one of a large number of classes requires comparing the weight vector asso-
ciated with each class to the activations of the penultimate layer, attending to particular
memory cells of a neural net requires comparing the keys associated with each memory cell
to the query, and sparse recovery requires comparing each dictionary element to the residual.
Similarity search in many cases can be reduced to nearest neighbour search, which is both a
blessing and a curse. On the plus side, the nearest neighbour search problem has been exten-
sively studied for more than four decades. On the minus side, no exact algorithm developed
over the past four decades can run faster than näıve exhaustive search when the intrinsic
dimensionality is high, which is almost certainly the case in machine learning. Given this
state of affairs, should we give up any hope of doing any better than the näıve approach of
exhaustive comparing each element one-by-one?

It turns out this pessimism, while tempting, is unwarranted. We introduce a new family
of exact randomized algorithms, known as Dynamic Continuous Indexing, which overcomes
both the curse of ambient dimensionality and the curse of intrinsic dimensionality: more

2

specifically, DCI simultaneously achieves a query time complexity with a linear dependence
on ambient dimensionality, a sublinear dependence on intrinsic dimensionality and a sublinear
dependence on dataset size. The key insight is that the curse of intrinsic dimensionality in
many cases arises from space partitioning, which is a divide-and-conquer strategy used by
most nearest neighbour search algorithms. While space partitioning makes intuitive sense
and works well in low dimensions, we argue that it fundamentally fails in high dimensions,
because it requires distances between each point and every possible query to be approximately
preserved in the data structure. We develop a new indexing scheme that only requires the
ordering of nearby points relative to distant points to be approximately preserved, and show
that the number of out-of-place points after projecting to just a single dimension is sublinear
in the intrinsic dimensionality. In practice, our algorithm achieves a 14− 116× speedup and
a 21× reduction in memory consumption compared to locality-sensitive hashing (LSH).

Modelling Flexibility

Next we move onto probabilistic modelling, which is critical to realizing one of the cen-
tral objectives of machine learning, which is to model the uncertainty that is inherent in
prediction. The community has wrestled with the problem of how to strike the right bal-
ance between modelling flexibility and computational efficiency. Simple models can often be
learned straightforwardly and efficiently but are not expressive; complex models are expres-
sive, but in general cannot be learned both exactly and efficiently, often because learning
requires evaluating some intractable integral. The success of deep learning has motivated
the development of probabilistic models that can leverage the inductive bias and modelling
power of deep neural nets, such as variational autoencoders (VAEs) and generative adver-
sarial nets (GANs), which belong to a subclass of probabilistic models known as implicit
probabilistic models. Implicit probabilistic models are defined by a procedure from draw-
ing samples from them, rather than an explicit of the probability density function. On the
positive side, sampling is always easy by definition; on the negative side, learning is difficult
because not even the unnormalized complete likelihood can be expressed analytically. So
these models must be learned using likelihood-free methods, but none have been shown to
be able to learn the underlying distribution with a finite number of samples.

Perhaps the most popular likelihood-free method is the GAN. Unfortunately, GANs suffer
from the well-documented issue of mode collapse, where the learned model (generator in
the GAN parlance) cannot generate some modes of the true data distribution. We argue
this arises from the direction in which generated samples are matched to the real data.
Under the GAN objective, each generated sample is made indistinguishable from some data
example. Some data examples may not be chosen by any generated sample, resulting in
mode collapse. We introduce a new likelihood-free method, known as Implicit Maximum
Likelihood Estimation (IMLE) that overcomes mode collapse by inverting the direction -
instead of ensuring each generated sample has a similar data example, our method ensures
that each data example has a similar generated sample. This can be shown to be equivalent to

3

maximizing a lower bound on the log-likelihood when the model class is richly parameterized
and the density is smooth in parameters and data, hence the name.

Compared to VAEs, which are not likelihood-free, IMLE eliminates the need for an approx-
imate posterior and avoids the bias towards parameters where the true posteriors are less
informative, a phenomenon known as “posterior collapse”.

Formulation Faithfulness

Finally we introduce a novel formulation that can enable the automatic discovery of new it-
erative gradient-based optimization algorithms, which have become the workhorse of modern
machine learning. This effectively allows us to apply machine learning to improve machine
learning, which has been a dream of machine learning researchers since the early days of the
field. The key challenge, however, is that it is unclear how to represent a complex object
like an algorithm in a way that is amenable to machine learning. Prior approaches [58]
represent algorithms as imperative programs, i.e.: sequences of elementary operations, and
therefore induces a search space whose size is exponential in the length of the optimal pro-
gram. Searching in this space is unfortunately not tractable for anything but the simplest
and shortest algorithms. Other approaches [31] enumerate a small set of manually designed
algorithms and search for the best algorithm within this set. Searching in this space is
tractable, but the optimal algorithm may lie outside this space. It remains an open question
as to how to parameterize the space of possible algorithms in a way that is both complete
and efficiently searchable.

We get around this issue by observing that an optimization algorithm can be uniquely
characterized by its update formula – different iterative optimization algorithms only differ
in their choice of the update formula. In gradient descent, for example, it is taken to be a
scaled negative gradient, whereas in gradient descent with momentum, it is taken to be a
scaled exponentially-weighted average of the history of gradients. Therefore, if we can learn
the update formula, we can then automatically discover new optimization algorithms. The
update formula can be formulated as a mapping from the history of gradients, iterates and
objective values to the update step, which can be approximated with a neural net. We can
then learn the optimization algorithm by learning the parameters of the neural net.

i

To my parents, and all other trailblazers of the world.

ii

Contents

Contents ii

List of Figures v

List of Tables xiii

1 Nearest Neighbour Search 1
1.1 Notions of Dimensionality . 2
1.2 Exact vs. Approximate Nearest Neighbour Search 2
1.3 Space Partitioning . 3

1.3.1 k-d Trees . 3
1.3.2 Locality-Sensitive Hashing . 5

1.4 Landscape of Prior Methods . 6
1.5 Curse of Intrinsic Dimensionality . 8
1.6 Key Insight . 9
1.7 Generalized Union Bound . 11
1.8 Dynamic Continuous Indexing (DCI) . 11

1.8.1 Analysis . 13
1.8.2 Data-Independent Version . 16
1.8.3 Data-Dependent Version . 17

1.9 Prioritized DCI . 18
1.9.1 Analysis . 19

1.10 Experiments . 23

2 Learning to Optimize 26
2.1 Formulation . 27
2.2 Learning How to Learn . 28

2.2.1 Learning on One Objective Function 29
2.2.2 Learning on Finitely Many Objective Functions 29
2.2.3 Learning on All Possible Objective Functions 30
2.2.4 When Does Meta-Learning Make Sense? 30
2.2.5 Difference with Classical Meta-Learning 31

iii

2.3 Taxonomy of Meta-Learning . 32
2.3.1 Learning What to Learn . 32
2.3.2 Learning Which Model to Learn . 32
2.3.3 Learning How to Learn . 33

2.4 How to Learn the Optimizer . 34
2.5 Reinforcement Learning . 35

2.5.1 Markov Decision Process . 35
2.5.2 Policy Search . 35
2.5.3 Guided Policy Search . 36

2.6 Formulation . 37
2.7 Implementation Details . 37
2.8 Experiments . 38

2.8.1 Logistic Regression . 38
2.8.2 Robust Linear Regression . 40
2.8.3 Neural Net Classifier . 41
2.8.4 Visualization of Optimization Trajectories 42

2.9 Learning Optimizers for High-Dimensional Problems 43
2.9.1 Features . 46
2.9.2 Experiments . 46

3 Implicit Maximum Likelihood Estimation 50
3.1 Challenges in Parameter Estimation . 51
3.2 Contribution . 52
3.3 Method . 52

3.3.1 Intuition . 52
3.3.2 Definition . 53
3.3.3 Algorithm . 54

3.4 Analysis . 55
3.5 Experiments . 56
3.6 Conditional Generative Modelling . 59
3.7 Application to Multimodal Conditional Image Synthesis 60

3.7.1 Tasks . 61
3.7.2 Single Image Super-Resolution . 62
3.7.3 Image Synthesis from Scene Layout 62
3.7.4 Comparison to Conditional GAN . 62
3.7.5 Data . 63
3.7.6 Implementation Details . 64
3.7.7 Results . 68

A Nearest Neighbour Search 73
A.1 Generalized Union Bound . 73
A.2 Standard DCI . 74

iv

A.3 Prioritized DCI . 81

B Implicit Maximum Likelihood Estimation 87

Bibliography 96

v

List of Figures

1.1 An illustration of two datasets with the same intrinsic dimensionality, 2, but
different ambient dimensionalities. Figure (a) shows a dataset with an ambient
dimensionality of 2, and Figure (b) shows a dataset with an ambient dimension-
ality of 3. 3

(a) . 3
(b) . 3

1.2 An illustration of how a k-d tree partitions the space in the two-dimensional case.
Figure (a) shows the partitioning performed by a k-d tree, where blue circles
denote data points and yellow lines denote cell boundaries. Each line is located
at the threshold used at a particular internal node to divide the dataset and each
cell corresponds to a leaf node, Figure (b) shows the data points (highlighted in
red) in the cell containing the given query (shown as the red square) and Figure
(c) shows the data points in neighbouring cells, which all need to be searched. . 4

(a) . 4
(b) . 4
(c) . 4

1.3 An illustration of how Euclidean LSH partitions the space in the two-dimensional
case. Blue circles denote data points, yellow lines denote cell boundaries. Fig-
ure (a) shows the partitioning imposed by one hash table, Figure (b) shows the
partitioning imposed by two hash tables, and Figure (c) shows the data points
to search over exhaustively (which are highlighted in red) for the given query
(shown as the red square). 5

(a) . 5
(b) . 5
(c) . 5

1.4 Visualization of the query time complexities of various exact algorithms as a
function of the intrinsic dimensionality d′. Each curve represents an example
from a class of similar query time complexities. Algorithms that fall into each
particular class are shown next to the corresponding curve. 6

vi

1.5 The number of data points that lie inside a cell in a data-independent partition-
ing, which is shown as the yellow cube, as the intrinsic dimensionality increases.
Figures (a), (b) and (c) show three canonical examples of datasets with intrinsic
dimensionalities d′ of 1, 2 and 3 respectively. As shown, as the intrinsic di-
mensionality increases, the number of data points that lie inside the cell grows
exponentially. 9

(a) d′ = 1 . 9
(b) d′ = 2 . 9
(c) d′ = 3 . 9

1.6 Näıve approach of avoiding space partitioning, which projects all data points onto
a random direction and looks at a neighbourhood of a certain radius around the
query along the projection direction. Figures (a), (b) and (c) three canonical
examples of datasets with intrinsic dimensionalities d′ of 1, 2 and 3 respectively.
The green line denotes the projection direction, the yellow bracket denotes the
neighbourhood around the query along the projection direction, the green points
on the line denote projections of data points onto the direction and the green
points that are highlighted in red denote points in the neighbourhood. As shown,
as the intrinsic dimensionality increases, the number of points within the neigh-
bourhood grows exponentially. 10

(a) d′ = 1 . 10
(b) d′ = 2 . 10
(c) d′ = 3 . 10

1.7 Retrieval of data points in the order of increasing distance from the query along
the projection direction. Figures (a), (b), (c) and (d) show the data points that
are retrieved after the zeroth through the fourth iteration. The brown square
denotes the projection of the query, the the green line denotes the projection
direction, the green points on the line denote projections of data points onto the
direction, the green point that is highlighted in purple denotes the projection of
the true nearest neighbour to the query, and the green points that are highlighted
in red denote points that are retrieved. In this case, we are able to retrieve the
correct nearest neighbour within three points. In general, the nearest neighbour
must be encountered within the first O(n1−1/d′) points with constant probability. 11

(a) . 11
(b) . 11
(c) . 11
(d) . 11

vii

1.8 (a) Examples of order-preserving (shown in green) and order-inverting (shown
in red) projection directions. Any projection direction within the shaded region
inverts the relative order of the vectors by length under projection, while any
projection directions outside the region preserves it. The size of the shaded
region depends on the ratio of the lengths of the vectors. (b) Projection vectors
whose endpoints lie in the shaded region would be order-inverting. (c) Projection
vectors whose endpoints lie in the shaded region would invert the order of both
long vectors relative to the short vector. Best viewed in colour. 14

(a) . 14
(b) . 14
(c) . 14

1.9 Comparison of the number of distance evaluations needed by different algorithms
to achieve varying levels of approximation quality on (a) CIFAR-100 and (b,c)
MNIST. Each curve represents the mean over ten folds and the shaded area
represents ±1 standard deviation. Lower values are better. (c) Close-up view of
the figure in (b). 23

(a) . 23
(b) . 23
(c) . 23

1.10 Memory usage of different algorithms on (a) CIFAR-100 and (b) MNIST. Lower
values are better. 24

(a) . 24
(b) . 24

2.1 If we train the optimization on a single objective function, we can easily learn the
location of the optimum of the objective function rather than a useful rule for
optimizing it. In other words, the learned optimizer can simply memorize what
the location of the optimum is. 29

2.2 For any given optimizer, we can always construct an objective function on which
it performs poorly. This implies that we cannot hope to learn an optimization
algorithm that performs well on all possible objective functions. 31

2.3 (a) Mean margin of victory of each algorithm for optimizing the logistic regression
loss. Higher margin of victory indicates better performance. (b-c) Objective
values achieved by each algorithm on two objective functions from the test set.
Lower objective values indicate better performance. Best viewed in colour. . . . 39

(a) . 39
(b) . 39
(c) . 39

2.4 (a) Mean margin of victory of each algorithm for optimizing the robust linear
regression loss. Higher margin of victory indicates better performance. (b-c)
Objective values achieved by each algorithm on two objective functions from the
test set. Lower objective values indicate better performance. Best viewed in colour. 41

viii

(a) . 41
(b) . 41
(c) . 41

2.5 (a) Mean margin of victory of each algorithm for training neural net classifiers.
Higher margin of victory indicates better performance. (b-c) Objective values
achieved by each algorithm on two objective functions from the test set. Lower
objective values indicate better performance. Best viewed in colour. 42

(a) . 42
(b) . 42
(c) . 42

2.6 Objective values and trajectories produced by different algorithms on unseen ran-
dom two-dimensional logistic regression problems. Each pair of plots corresponds
to a different logistic regression problem. Objective values are shown on the ver-
tical axis in the left plot and as contour levels in the right plot, where darker
shading represents higher objective values. In the right plot, the axes represent
the values of the iterates in each dimension and are of the same scale. Each
arrow represents one iteration of an algorithm, whose tail and tip correspond to
the preceding and subsequent iterates respectively. Best viewed in colour. 43

(a) . 43
(b) . 43
(c) . 43
(d) . 43

2.7 Comparison of the various hand-engineered and learned algorithms on training
neural nets with 48 input and hidden units on (a) TFD, (b) CIFAR-10 and (c)
CIFAR-100 with mini-batches of size 64. The vertical axis is the true objective
value and the horizontal axis represents the iteration. Best viewed in colour. . . 44

(a) . 44
(b) . 44
(c) . 44

2.8 Comparison of the various hand-engineered and learned algorithms on training
neural nets with 100 input units and 200 hidden units on (a) TFD, (b) CIFAR-10
and (c) CIFAR-100 with mini-batches of size 64. The vertical axis is the true
objective value and the horizontal axis represents the iteration. Best viewed in
colour. 45

(a) . 45
(b) . 45
(c) . 45

2.9 Comparison of the various hand-engineered and learned algorithms on training
neural nets with 48 input and hidden units on (a) TFD, (b) CIFAR-10 and (c)
CIFAR-100 with mini-batches of size 10. The vertical axis is the true objective
value and the horizontal axis represents the iteration. Best viewed in colour. . . 45

(a) . 45

ix

(b) . 45
(c) . 45

2.10 Comparison of the various hand-engineered and learned algorithms on training
neural nets with 100 input units and 200 hidden units on (a) TFD, (b) CIFAR-10
and (c) CIFAR-100 with mini-batches of size 10. The vertical axis is the true
objective value and the horizontal axis represents the iteration. Best viewed in
colour. 47

(a) . 47
(b) . 47
(c) . 47

2.11 Comparison of the various hand-engineered and learned algorithms on training
neural nets with 100 input units and 200 hidden units on (a) TFD, (b) CIFAR-10
and (c) CIFAR-100 for 800 iterations with mini-batches of size 64. The vertical
axis is the true objective value and the horizontal axis represents the iteration.
Best viewed in colour. 48

(a) . 48
(b) . 48
(c) . 48

3.1 (a) An illustration of how the proposed method works, and (b-c) a comparison
to a GAN with a 1-nearest neighbour discriminator. The blue circles represent
generated samples and the red squares represent real data examples. In (b-c), the
yellow regions represent those classified as real by the discriminator, whereas the
white regions represent those classified as fake. In the case of (a) the proposed
method (IMLE), each data example pulls the nearest sample towards it, whereas
in the case of (b-c) the GAN, each sample is essentially pushed towards the
nearest data example. In the latter case, some data examples may not be selected
by any sample and therefore will not have samples nearby – this is a manifestation
of mode dropping, since the modes that generated these data examples are not
modelled. The proposed method avoids this phenomenon because it conducts
nearest neighbour search in the opposite direction, which ensures that every data
example will have a nearby sample. 53

(a) IMLE (Proposed Method) . 53
(b) Nearest Neighbours GAN

(Step 1) . 53
(c) Nearest Neighbours GAN

(Step 2) . 53
3.2 Representative random samples from the model trained on (a) MNIST, (b) Toronto

Faces Dataset and (c) CIFAR-10. 57
(a) MNIST . 57
(b) TFD . 57
(c) CIFAR-10 . 57

x

3.3 Samples corresponding to the same latent variable values at different points in
time while training the model on CIFAR-10. Each row corresponds to a sample,
and each column corresponds to a particular point in time. 58

3.4 Linear interpolation between samples in latent code space. The first image in
every row is an independent sample; all other images are interpolated between
the previous and the subsequent sample. Images along the path of interpolation
are shown in the figure arranged from left to right, top to bottom. They also
wrap around, so that images in the last row are interpolations between the last
and first samples. 59

(a) MNIST . 59
(b) TFD . 59
(c) CIFAR-10 . 59

3.5 Comparison of samples and their nearest neighbours in the training set. Images
in odd-numbered columns are samples; to the right of each sample is its nearest
neighbour in the training set. 60

(a) MNIST . 60
(b) TFD . 60
(c) CIFAR-10 . 60

3.6 Samples generated by the proposed method (known as super-resolution implicit
model, or SRIM for short) for the task of single image super-resolution (by a
factor of 8). The top row shows different samples generated by our method, and
the bottom row shows the difference between adjacent samples. As shown by the
difference between the samples, the proposed method is able to generate diverse
samples. 62

(a) Input . 62
(b) Samples . 62

3.7 Samples generated by the proposed method for the task of image synthesis from
scene layout. The group of images on the right are the different samples generated
by our method. 63

(a) Input . 63
(b) Samples . 63

3.8 Samples generated by the proposed method (SRIM) and the baseline (Bicycle-
GAN). The top row in each group of images shows different samples generated
by each method, and the bottom row shows the difference between adjacent sam-
ples. As shown in the bottom row, the difference between the samples of SRIM is
greater than that of BicycleGAN, which indicates that SRIM is able to generate
more diverse samples. 64

(a) Input . 64
(b) SRIM . 64
(c) BicycleGAN . 64
(d) Input . 64
(e) SRIM . 64

xi

(f) BicycleGAN . 64
3.9 Samples generated by the proposed method (SRIM) and the baseline (Bicycle-

GAN). The top row in each group of images shows different samples generated
by each method, and the bottom row shows the difference between adjacent sam-
ples. As shown in the bottom row, the difference between the samples of SRIM is
greater than that of BicycleGAN, which indicates that SRIM is able to generate
more diverse samples. 65

(a) Input . 65
(b) SRIM . 65
(c) BicycleGAN . 65
(d) Input . 65
(e) SRIM . 65
(f) BicycleGAN . 65
(g) Input . 65
(h) SRIM . 65
(i) BicycleGAN . 65

3.10 Comparison of histogram of hues between two datasets. Red is Cityscapes and
blue is GTA-5. 66

3.11 Network architecture for our super-resolution model. 66
3.12 Comparison of different image samples generated from the same input scene lay-

out. The bottom-left image in (a) is the input scene layout and we generate 9
samples for each model. 69

(a) Pix2pix-HD+noise . 69
(b) BicycleGAN . 69
(c) CRN . 69
(d) Our model . 69

3.13 Ablation study using the same input scene layout as in Fig. 3.12. 70
(a) Our model w/o the noise encoder and rebalancing scheme 70
(b) Our model w/o the noise encoder . 70
(c) Our model w/o the rebalancing scheme 70
(d) Our model . 70

3.14 Images generated by interpolating between latent noise vectors. 71
(a) Change from daytime to night time . 71
(b) Change of car colors . 71

3.15 Style consistency with the same latent noise vector. (a) is the original input-
output pair. We use the same latent noise vector used in (a) and apply it to
(b),(c),(d) and (e) . 71

(a) . 71
(b) . 71
(c) . 71
(d) . 71
(e) . 71

xii

3.16 Generated images on four input scene layouts (which were obtained by manual
editing). For each generated image, the same latent noise vector was used. (a) is
the original input semantic map and the generated output, (b) adds a car on the
road, (c) changes the grass on the left to road and change the side walk on the
right to grass and (d) changes the building on the right to tree and changes all
road to grass. 72

(a) Original . 72
(b) Add Car . 72
(c) Change Road to Grass . 72
(d) Change Building to Trees . 72

xiii

List of Tables

1.1 Query time complexities of various algorithms for 1-NN search. Ambient di-
mensionality, intrinsic dimensionality, dataset size and approximation ratio are
denoted as d, d′, n and 1 + ε. A visualization of the growth of various time
complexities as a function of the intrinsic dimensionality is shown in Figure 1.4. 7

1.2 Time and space complexities of DCI. 14
1.3 Time and space complexities of Prioritized DCI. 19

2.1 Choices of the update formula π made by hand-engineered optimization algo-
rithms. We propose learning π automatically in the hope of learning an optimiza-
tion algorithm that converges faster and to better optima on objective functions
of interest. 27

3.1 Log-likelihood of the test data under the Gaussian Parzen window density esti-
mated from samples generated by different methods. 57

3.2 Comparison of faithfulness-weighted variance achieved by the proposed method
(SRIM) and the leading multimodal image synthesis method, BicycleGAN. Higher
value means richer variation among the generated samples. 68

3.3 LPIPS score. We show the average perceptual distance of different models (in-
cluding ablation study) and our proposed model exhibited the greatest diversity. 71

3.4 Average percentage of images that are judged by humans to exhibit more obvious
synthetic patterns. Lower is better. 72

xiv

Acknowledgments

I cannot believe how quickly time flies and that my PhD journey has come to an end. I
know I will look back on this period of my life with fondness and nostalgia, and I would like
to take this opportunity to thank all those who have kindly helped me and supported me on
this journey.

I am very fortunate to have an AI pioneer and visionary in Prof. Jitendra Malik as my
advisor, and am very grateful for all his advice, support, help and wisdom. I am deeply
inspired by Jitendra’s commitment to objective, thoughtful and rigorous scientific inquiry. I
cannot imagine a better advisor than Jitendra.

Throughout my PhD, Jitendra gave me enormous freedom to pursue my interests inde-
pendently, even when they did not necessarily align with his existing research directions.
He trusted me to pick problems to work on and often reassured me that it is fine to try
something interesting and fail. This allowed me to take big risks and let my creativity flow,
and ultimately led to the three research contributions detailed in this dissertation. Jitendra
recognized the significance and potential of each early on, and encouraged me to devote
the bulk of my time and energy to them. These projects could not have happened without
Jitendra’s encouragement and support, for which I would like to thank him immensely.

I would also like to thank my other committee members, Profs. Peter Bartlett, Trevor
Darrell, Anant Sahai and Bin Yu, for their helpful feedback and support. I enjoyed the
insightful discussions with Prof. Anant Sahai and Prof. Peter Bartlett and was able to gain
new perspectives on the fundamentals of machine learning. Moreover, I found their research
philosophy and commitment to fundamental research inspiring, and am grateful for their
kind help and sage advice both at the tactical and strategic levels.

In addition, I would like to thank all those who have helped me reach where I am now. I
remember an inspiring conversation my parents had with me over dinner as I was about to
start my PhD. “Einstein made his most important contributions when he was just 26 years
old,” my father, a theoretical physicist, remarked, “it is never too early to start thinking
about how to upend conventional wisdom”. My mother, a biochemist, concurred, “it is
important to work on something of consequence that you will be proud of decades into the
future.” I only had four years before I would turn 26, and so from that moment onward, I
knew I had to no time to spare and must seize this window of opportunity. I would like to
thank my parents, for both challenging and supporting me. Their passion for and devotion
to science were a great source of inspiration.

My interest in artificial intelligence (AI) was sparked almost by chance. In the summer of
2008, I was participating in a high school outreach program, known as Computing Insights,
run by my local university, the University of Toronto. I was especially intrigued by the title
of one lecture, which was on “neural networks” – I had just learned about network flow at the
time and wondered what it had to do with the brain. The instructor drew a simple directed
graph on the blackboard and explained that it is an abstraction of neurons and synapses. He
then switched on his laptop and my attention shifted to the projector screen. Before my eyes,
a collection of random pixels gradually transformed into natural-looking handwritten digits.

xv

I was mesmerized. “This is what happens when a neural network dreams,” the instructor
explained excitedly, “and the digits you see are just figments of the imagination of a deep
belief net”. I was hooked – I never thought a computer could generate something that looked
as if it were produced by a human. “AI doesn’t just exist in the realm of science fiction,” I
thought, “it is real.” The instructor was none other than Prof. Geoff Hinton, and I would
like to thank him for this eye-opening lecture, which ultimately inspired me to study AI.

My foray into research started in the summer of 2013, when Prof. Rich Zemel and Kevin
Swersky, kindly agreed to take me under their wings and mentor me on a research project, as
part of the NSERC USRA program. Through this experience, I learned about probabilistic
models and Perturb-and-MAP at a fundamental level. More importantly, I saw first-hand
how existing ideas and techniques can be taken apart and put together in novel ways. I
learned a lot from discussions with Rich and Kevin and would like to thank them for their
help, guidance and patience. To this day, I recall Kevin’s advice that proved valuable: “try
to keep an open mind,” Kevin told me as I was about to leave Toronto for Berkeley, “and
maintain as broad a research interest as possible”. I took this advice to heart.

In addition, I am grateful for the intellectually stimulating environment at Berkeley and
Toronto that have helped me come up with new ideas. Berkeley and Toronto have a lot
in common: a broad array of courses, vigorous debates and long commutes. I benefited
tremendously from all of these. The breadth and depth of the course offerings provided me
with the background and tools to perform research, the debates at reading groups highlighted
the shortcomings of the latest papers, and the long daily commutes and waits at bus stops
gave me time and space to ponder deeply. Various elements of these have influenced my
research: the ideas for Learning to Optimize and Implicit Maximum Likelihood Estimation
(IMLE) were born during a bus ride and a flight home respectively, the idea for Dynamic
Continuous Indexing (DCI) was born out of a project for a course on multi-armed bandits
taught by Prof. Peter Bartlett, the analytical techniques used for DCI were inspired by a
course on randomized algorithms taught by Prof. Lap Chi Lau, the switch in the underlying
technique of Learning to Optimize to reinforcement learning was inspired by two courses,
one on deep reinforcement learning taught by John Schulman and one on robotics taught
by Prof. Pieter Abbeel, the motivation for working on DCI originated with a (perhaps
facetious) comment by Prof. Alyosha Efros that all of machine learning can be reduced to
nearest neighbours, and the motivation for working on IMLE originated with Prof. Christos
Papadimitriou’s computational hardness results of finding Nash equilibria.

In the later years of my PhD, I discovered the flip side of overturning conventional wisdom
– it is hard, sometimes dauntingly so. Coming up with a radically new idea and demonstrat-
ing its practical utility is not the end of the journey, but rather the start. Moreover, the more
unconventional the idea, the more tortuous the journey becomes. Completing this journey
successfully takes more than just the soundness of the idea or the abundance of evidence;
it takes courage, determination and perseverance. This journey is the process of turning a
manuscript into a peer-reviewed publication. There were times when I felt hopeless and was
on the verge of giving up. But I never felt alone. I looked to the scientists I admire. I recalled
the article Jitendra shared on how eight groundbreaking papers in physics, chemistry and

xvi

biology were initially rejected but later won the Nobel Prize. I recalled Prof. Geoff Hinton’s
story on how his paper on semantic hashing was rejected because two other deep learning
papers have already been accepted for publication. I recalled Prof. Shafi Goldwasser’s story
on how her paper on zero-knowledge proofs was rejected because of concerns on whether
the use of the term “proof” was warranted. I recalled my mother’s story on how her paper
on DNA cleavage through hydrolysis rather than oxidation was rejected because of a widely
held belief that it was not possible. I would like to thank these scientists for sharing their
very inspiring stories and for giving me the strength and confidence to press on in the face
of hardship.

Finally, I would like to thank my friends, labmates, colleagues, instructors, mentees,
TAs and readers. I thoroughly enjoyed my time at Berkeley and the privilege of working
with and alongside so many talented individuals. Special shoutouts go to Weicheng Kuo,
Deepak Pathak, Christian Häne, Shubham Tulsiani, Saurabh Gupta, Pulkit Agrawal, David
Fouhey, Tianhao Zhang, Shichong Peng and Kailas Vodrahalli. Last but not least, I would
like to thank you, my dear reader, for reading this dissertation. Perhaps you are just getting
started in your scientific career or are new to the field, and I hope you will derive value from
reading it. While you are reading this, I would like to present you with a challenge: find
something wrong with the scientific consensus of your time, and work to fix it. Nothing in
science should be accepted at face value simply because it is popular and nothing should be
dismissed because it goes against the mainstream; in fact, the greatest breakthroughs come
from questioning things that are broadly accepted by the scientific community. As scientists,
we owe our present understanding to the trailblazers of the past, and the only way to give
back is to strive to be trailblazers ourselves. While this is not the easiest path to take, it
is the most fulfilling. To all who choose this path, I salute you – you can count me in as a
supporter and I hope you will succeed.

1

Chapter 1

Nearest Neighbour Search

The method of k-nearest neighbours is a fundamental building block of many machine learn-
ing algorithms and also has broad applications beyond artificial intelligence, including in
statistics, bioinformatics and database systems, e.g. [28, 15, 50]. The problem statement is
simple: Given a set of n points, S = {p1, . . . , pn} ⊆ Rd and a query point q ∈ Rd, the goal
is to find k vectors in S that are the closest to q in Euclidean distance.

Since the method of nearest neighbour search was introduced by Fix & Hodges [55] in
1951, it has for decades intrigued the artificial intelligence and theoretical computer science
communities alike. In low dimensions (think < 10 dimensions), devising efficient sublinear
algorithms, i.e.: algorithms that permit querying in time sublinear in the dataset size, seems
easy – many early algorithms, like k-d trees [21], achieve a query time complexity that is log-
arithmic in the dataset size. This propelled the success of many methods for computational
geometry.

In machine learning, however, the dimensionality of data is typically much higher, i.e.:
on the order of hundreds or more. Unfortunately, repeated attempts at devising exact
sublinear algorithms over the past four decades have encountered a recurring obstacle: the
curse of dimensionality. That is, the query time complexity or space complexity always has
an exponential dependence on dimensionality. As a result, practitioners often have resort to
näıve exhaustive search, which entails iterating over all the points in the dataset, computing
the distance from the query to each and then returning the top-k elements.

Is it possible to overcome the curse of dimensionality? Minsky and Papert [99] con-
jectured that doing so is impossible, and the best we can hope for in high dimensions is
exhaustive search. Later work [80] showed that if we were to differentiate between ambient
dimensionality, which characterizes properties of the ambient space, and intrinsic dimension-
ality, which characterizes properties of the data, then it is possible to overcome the curse of
ambient dimensionality. But it remains an open question whether the curse of intrinsic di-
mensionality can be overcome – all exact algorithms that can overcome the curse of ambient
dimensionality suffer from the curse of intrinsic dimensionality.

In this dissertation, we answer this question in the affirmative and show that it is in
fact possible to overcome both the curse of ambient dimensionality and the curse of intrin-

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 2

sic dimensionality. We introduce a new family of exact randomized algorithms, known as
Dynamic Continuous Indexing (DCI), that can achieve this – its query time complexity is
simultaneously sublinear in the dataset size, linear in the ambient dimensionality and sub-
linear in the intrinsic dimensionality. Additionally, we show empirically that the proposed
algorithm reduces the number of distance evaluations by a factor of 14 to 116 and the memory
consumption by a factor of 21 relative to Locality-Sensitive Hashing (LSH).

1.1 Notions of Dimensionality

Two notions of dimensionality are commonly considered. The more familiar notion, ambient
dimensionality, refers to the dimensionality of the space data points are embedded in. In
other words, it is simply the ordinary notion of dimensionality, and is so named so that we
can differentiate it with the next notion of dimensionality we are about to cover.

On the other hand, intrinsic dimensionality characterizes the intrinsic properties of the
data and measures the rate at which the number of points inside a ball grows as a function of
its radius. Note that there are several different measures of intrinsic dimensionality – the one
we use here is arguably the simplest and most commonly used in the literature, namely the
expansion dimension or KR-dimension introduced by Karger & Ruhl [80]. More precisely:

Definition 1 (Expansion Dimension [80]). Given a dataset D ⊆ Rd, let Bp(r) be the set
of points in D that are within a ball of radius r around a point p. A dataset D has (τ, d′)-
expansion if for all r and p ∈ Rd such that |Bp(r)| ≥ τ , |Bp(2r)| ≤ 2d

′ |Bp(r)|. The quantity
of interest we are interested is the smallest possible value of d′ when τ = k, where k is
the number of nearest neighbours we would like to retrieve. This quantity is known as the
expansion dimension, or simply the intrinsic dimensionality in our context.

So, for a dataset with intrinsic dimensionality d′, any ball of radius r contains at most
O(rd

′
) points. If the data points are arranged on a uniform grid in a d′-dimensional subspace,

then the intrinsic dimensionality is exactly d′. So, roughly speaking, for data points that are
uniformly distributed, then the intrinsic dimensionality is usually close to the dimensionality
of the manifold, as long as the manifold is sufficiently smooth. Two datasets with same
intrinsic dimensionality and different dimensionalities are shown in Figure 1.1.

1.2 Exact vs. Approximate Nearest Neighbour Search

In the exact version of the k-nearest neighbour search problem, the goal is to return the k
closest data points to the query.

Due to difficulties of devising efficient algorithms for exact version of the problem in high
dimensions, various methods consider the approximate version, which relaxes the require-
ments for the returned results to be declared correct. Under the approximate setting, it is
permissible to return data points whose distances to the query are within a factor of (1 + ε)
of the distance between the query and the kth nearest neighbour.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 3

(a) (b)

Figure 1.1: An illustration of two datasets with the same intrinsic dimensionality, 2, but dif-
ferent ambient dimensionalities. Figure (a) shows a dataset with an ambient dimensionality
of 2, and Figure (b) shows a dataset with an ambient dimensionality of 3.

1.3 Space Partitioning

Space partitioning is a popular divide-and-conquer strategy that forms the basis of most
existing methods for nearest neighbour search. It works by partitioning the vector space
into a finite number of cells and keeps track of the data points that each cell contains. At
query time, these methods simply look up of the contents of the cell containing the query
and possibly adjacent cells and perform exhaustive search over points lying in these cells.
Methods that are based on space partitioning include k-d trees [21] and locality-sensitive
hashing (LSH) [76]. We discuss below how k-d trees and LSH work concretely and why they
can be viewed as space partitioning-based methods.

1.3.1 k-d Trees

The k-d tree was proposed by Jon Bentley in 1975 and is a deterministic tree-based data
structure that is commonly used for exact nearest neighbour search. It works by recursively
dividing the dataset into halves along different axes, until the number of points in each cell
falls below a threshold. More concretely, at each node in the tree, we select an axis and pick
a threshold along that axis such that half of the data points associated with the node falls
on the left, and the other half falls on the right. The left child of the node is associated
with the data points to the left of the threshold, and the right child is associated with the
remaining data points. A visualization of what the resulting partitioning looks like in 2D is
shown in Figure 1.2a.

At query time, we traverse the tree to find the cell that contains the query and search
over the data points in that cell, as shown in Figure 1.2b. If the neighbouring cells could

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 4

(a) (b) (c)

Figure 1.2: An illustration of how a k-d tree partitions the space in the two-dimensional
case. Figure (a) shows the partitioning performed by a k-d tree, where blue circles denote
data points and yellow lines denote cell boundaries. Each line is located at the threshold
used at a particular internal node to divide the dataset and each cell corresponds to a leaf
node, Figure (b) shows the data points (highlighted in red) in the cell containing the given
query (shown as the red square) and Figure (c) shows the data points in neighbouring cells,
which all need to be searched.

contain data points that are closer to those found so far, we go back up the tree to find the
neighbouring cells, and then search over data points lying in those cells as well, as shown in
Figure 1.2c.

Why is it necessary to look in neighbouring cells? If the query lies near a cell boundary,
there could be data points on the other side of the cell boundary that are closer to the query
than any of the data points in the cell containing the query.

Now consider what happens in the worst case. There is a configuration of data points
and query such that the query is very close to a cell boundary in all dimensions, forcing the
algorithm to search all neighbouring cells. When the ambient dimensionality increases, the
number of neighbouring cells could grow exponentially. This is how the curse of ambient
dimensionality arises – the number of neighbouring cells grows exponentially in the ambient
dimensionality, thereby leading to a query time complexity that is exponential in ambient
dimensionality.

It seems like this worst case is somewhat contrived, and so we can try to avoid it using
randomization. This is the idea behind RP trees [40]. Unlike k-d trees, the directions of the
dividing hyperplanes are not necessarily aligned to axes; instead, they are randomly chosen
from a unit sphere. This improves the dependence of query time complexity from exponential
in the ambient dimensionality to exponential in the intrinsic dimensionality, which could be
much lower than ambient dimensionality. Intuitively, if we pick a random partitioning, there
are usually many cells that are away from the manifold and do not contain data points.
Hence it is safe to avoid searching these cells. While this eliminates the curse of ambient
dimensionality, it does not get around the curse of intrinsic dimensionality.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 5

1.3.2 Locality-Sensitive Hashing

(a) (b) (c)

Figure 1.3: An illustration of how Euclidean LSH partitions the space in the two-dimensional
case. Blue circles denote data points, yellow lines denote cell boundaries. Figure (a) shows
the partitioning imposed by one hash table, Figure (b) shows the partitioning imposed by
two hash tables, and Figure (c) shows the data points to search over exhaustively (which are
highlighted in red) for the given query (shown as the red square).

Locality-sensitive hashing (LSH) was proposed by Piotr Indyk and Rajeev Motwani in
1998 that is commonly used for approximate nearest neighbour search. Euclidean LSH [42]
uses a hash function that can be applied to vectors in Euclidean space, and can be used to
perform approximate nearest neighbour search in Euclidean space. At construction time,
we project all data points along a direction randomly chosen from the unit sphere and then
place them into equal-sized discrete bins based on the values of data points after projection,
which will be referred to as projection values. We repeat this multiple times, each with a
different random projection direction. The hash associated with a data point is the vector
of bin indices, each of which corresponds to a projection direction. Then, for each distinct
hash value, we store all the data points that hash to this value in a hash table. We construct
multiple different hash tables, each generated using different collections of random projection
directions.

At query time, for each hash table, we compute the hash of the query and look up the
data points associated with the hash. We then search over the union of the retrieved data
points, over all hash tables and return the k data points that are closest to the query.

Geometrically, projecting data points along a random direction and then discretizing the
projection values into equal-sized bins is equivalent to dividing the vector space into equal-
sized randomly-oriented parallel slabs and keeping track of the data points that lie in each
slab. Treating the concatenation of bin indices as the hash effectively further subdivides
the slabs according to the values of bin indices along other projection directions, and so all
the points that have the same hash must be in the intersection of the slabs corresponding
to different projection directions. Therefore, each hash table effectively performs space
partitioning using a regular grid, as shown in Figure 1.3a. Different hash tables correspond

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 6

to different overlapping grids, as shown in Figure 1.3b. The data points that we search
over are all the data points that lie in any of the cells that contain the query, as shown in
Figure 1.3c.

1.4 Landscape of Prior Methods

Karger & Ruhl
Navigating Net
Cover Tree
Rank Cover Tree

Spill Tree
RP Tree

DCI

Prioritized DCI
(Proposed Method)

Figure 1.4: Visualization of the query time
complexities of various exact algorithms as
a function of the intrinsic dimensionality d′.
Each curve represents an example from a class
of similar query time complexities. Algorithms
that fall into each particular class are shown
next to the corresponding curve.

Many other algorithms for nearest neighbour
search have been proposed, and below we
survey the landscape of nearest neighbour
search methods. It is by no means exhaus-
tive; interested readers may refer to [36] for
a more comprehensive survey.

Nearest neighbour search algorithms can
be divided into two categories: algorithms
that solve the exact version of the prob-
lem, known as exact algorithms, and algo-
rithms that solve the approximate version,
known as approximate algorithms. See Sec-
tion 1.2 for the distinction between exact
and approximate versions of the problem.
Approximate algorithms are not to be con-
fused with randomized algorithms: random-
ized algorithms must return the correct re-
sult with high probability, and whereas ap-
proximate algorithms broadens the criterion
for correctness by permitting solutions that
are nearly as good, but not necessarily as good, as the exact solution. Both exact random-
ized algorithms and approximate randomized algorithms are possible – the former refers to
an algorithm that returns the exact solution with high probability, whereas the latter refers
to an algorithm that returns a solution that is suboptimal by at most a factor of (1 + ε) with
high probability.

Early exact algorithms are deterministic and store points in tree-based data structures.
Examples include k-d trees, R-trees [64] and X-trees [22, 23], which divide the vector space
into a hierarchy of half-spaces, hyper-rectangles or Voronoi polygons and keep track of the
points that lie in each cell. While their query times are logarithmic in the size of the dataset,
they exhibit exponential dependence on the ambient dimensionality. A different method [98]
partitions the space by intersecting multiple hyperplanes. It effectively trades off space for
time and achieves polynomial query time in ambient dimensionality at the cost of exponential
space complexity in ambient dimensionality.

To avoid poor performance on worst-case configurations of the data, exact randomized al-
gorithms have been proposed. Spill trees [95], RP trees [40] and virtual spill trees [41] extend

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 7

Method Query Time Complexity

Exact Algorithms:

RP Tree O((d′ log d′)d
′
+ log n)

Spill Tree O(d′d
′
+ log n)

[80] O(23d
′
log n)

Navigating Net 2O(d′) log n

Cover Tree O(212d
′
log n)

Rank Cover Tree O(2O(d′ log h)n2/h) for h ≥ 3

DCI (Ours) O(d(m+ max(log n, n1−1/d
′
)))

Prioritized DCI (Ours) O(d(m+ max(log n, n1−m/d
′
) + (m logm) max(log n, n1−1/d

′
)))

for some m ≥ 1 chosen by the user

Approximate Algorithms:
k-d Tree O((1/ε)d log n)
BBD Tree O((6/ε)d log n)

LSH ≈ O(dn1/(1+ε)
2

)

Table 1.1: Query time complexities of various algorithms for 1-NN search. Ambient dimen-
sionality, intrinsic dimensionality, dataset size and approximation ratio are denoted as d, d′,
n and 1 + ε. A visualization of the growth of various time complexities as a function of the
intrinsic dimensionality is shown in Figure 1.4.

the ideas behind k-d trees by randomizing the orientations of hyperplanes that partition the
space into half-spaces at each node of the tree. While randomization enables them to avoid
exponential dependence on the ambient dimensionality, their query times still scale expo-
nentially in the intrinsic dimensionality. Whereas these methods rely on space partitioning,
other algorithms [105, 35, 80] have been proposed that utilize local search strategies. These
methods start with a random point and look in the neighbourhood of the current point to
find a new point that is closer to the query than the original in each iteration. Like space
partitioning-based approaches, the query time of [80] scales exponentially in the intrinsic di-
mensionality. While the query times of [105, 35] do not exhibit such undesirable dependence,
their space complexities are quadratic in the size of the dataset, making them impractical
for large datasets. A different class of algorithms performs search in a coarse-to-fine manner.
Examples include navigating nets [82], cover trees [27] and rank cover trees [73], which main-
tain sets of subsampled data points at different levels of granularity and descend through
the hierarchy of neighbourhoods of decreasing radii around the query. Unfortunately, the
query times of these methods again scale exponentially in the intrinsic dimensionality.

Many of the same strategies are employed by approximate algorithms. Methods based
on tree-based space partitioning [11] and local search [10] have been developed; like many
exact algorithms, their query times also scale exponentially in the ambient dimensionality.
Locality-Sensitive Hashing (LSH) [76, 42, 2] partitions the space into regular cells, whose
shapes are implicitly defined by the choice of the hash function. It achieves a query time
of O(dnρ) using O(dn1+ρ) space, where d is the ambient dimensionality, n is the dataset

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 8

size and ρ ≈ 1/(1 + ε)2 for large n in Euclidean space, though the dependence on intrin-
sic dimensionality is not made explicit. In practice, the performance of LSH degrades on
datasets with large variations in density, due to the uneven distribution of points across
cells. Consequently, various data-dependent hashing schemes have been proposed [106, 125,
3]; unlike data-independent hashing schemes, however, they do not allow dynamic updates
to the dataset. A related approach [78] decomposes the space into mutually orthogonal axis-
aligned subspaces and independently partitions each subspace. It has a query time linear in
the dataset size and no known guarantee on the probability of correctness under the exact
or approximate setting. A different approach [1] projects the data to a lower dimensional
space that approximately preserves approximate nearest neighbour relationships and applies
other approximate algorithms like BBD trees [11] to the projected data. Its query time is
also linear in ambient dimensionality and sublinear in the dataset size. Unlike LSH, it uses
space linear in the dataset size, at the cost of longer query time than LSH. Unfortunately,
its query time is exponential in intrinsic dimensionality.

A summary of the query times of various prior algorithms and the proposed algorithm is
presented in Table 1.1 and their growth as a function of intrinsic dimensionality is illustrated
in Figure 1.4.

1.5 Curse of Intrinsic Dimensionality

All exact sublinear algorithms suffer from the curse of ambient dimensionality or the curse
of intrinsic dimensionality, that is, their query time complexity or space complexity have ex-
ponential dependence on ambient or intrinsic dimensionality. As explained in Section 1.3.1,
while the curse of ambient dimensionality can be overcome, it is still unclear how to over-
come the curse of intrinsic dimensionality. We discuss below why the curse of intrinsic
dimensionality arises.

Consider any data-independent partitioning scheme and focus on a cell in the partitioning.
We ask the following question: how many data points could there be inside the cell as the
intrinsic dimensionality increases?

We consider canonical examples of datasets with integer dimensionalities, namely data
points arranged on a uniform grid in a subspace. Take an example of a partitioning where
each cell is a cube. Then as shown in Figure 1.5, as the intrinsic dimensionality increases,
the number of points inside the cell increases exponentially. This shows that the number of
points inside a cell of the shape of a cube could grow exponentially in the worst case (over
the choice of dataset). Because we can fit a cube inside a non-empty cell of any shape and
rescale the dataset arbitrarily without changing the intrinsic dimensionality, the number of
points inside a cell of any shape could grow exponentially as the intrinsic dimensionality
increase.

This implies that regardless of the data-independent partitioning we choose, the number
of data points inside a cell could grow exponentially in intrinsic dimensionality. Because
we need to exhaustively search over all data points within a cell in a space partitioning-

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 9

(a) d′ = 1 (b) d′ = 2 (c) d′ = 3

Figure 1.5: The number of data points that lie inside a cell in a data-independent parti-
tioning, which is shown as the yellow cube, as the intrinsic dimensionality increases. Figures
(a), (b) and (c) show three canonical examples of datasets with intrinsic dimensionalities d′

of 1, 2 and 3 respectively. As shown, as the intrinsic dimensionality increases, the number
of data points that lie inside the cell grows exponentially.

based method, we will always have an exponential dependence on intrinsic dimensionality
in the query time complexity. So, to have any hope of overcoming the curse of intrinsic
dimensionality, we must avoid data-independent space partitioning.

1.6 Key Insight

We will first discuss the key insight behind the proposed family of algorithms, known as
Dynamic Continuous Indexing (DCI), before describing the details in later sections.

As shown in Section 1.5, data-independent space partitioning causes the curse of intrinsic
dimensionality, and so we would like to eliminate it.

The first step we take is to eliminate discretization after projecting data points along a
random direction. Without discretization, it is no longer clear which data points should be
retrieved given a query, since there is no bin from which we can look up data points. Instead,
let’s consider a natural alternative: we can project the query along the projection direction,
and then retrieve the data points that project to a neighbourhood of a certain radius around
the query projection. As shown in Figure 1.6, for any neighbourhood of a fixed size, as
the intrinsic dimensionality increases, the number of data points whose projections are in
the neighbourhood could grow exponentially. So, eliminating space partitioning is itself not
enough to overcome the curse of intrinsic dimensionality. We must also avoid choosing a
fixed-size neighbourhood.

To this end, instead of retrieving all data points within a fixed distance, we retrieve a
fixed number of data points. (This can be equivalently viewed as choosing a neighbourhood
whose radius is dependent on the query and the data rather than fixed.) More concretely,
starting from the query projection, we will march along the projection direction and retrieve

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 10

(a) d′ = 1 (b) d′ = 2 (c) d′ = 3

Figure 1.6: Näıve approach of avoiding space partitioning, which projects all data points
onto a random direction and looks at a neighbourhood of a certain radius around the query
along the projection direction. Figures (a), (b) and (c) three canonical examples of datasets
with intrinsic dimensionalities d′ of 1, 2 and 3 respectively. The green line denotes the
projection direction, the yellow bracket denotes the neighbourhood around the query along
the projection direction, the green points on the line denote projections of data points
onto the direction and the green points that are highlighted in red denote points in the
neighbourhood. As shown, as the intrinsic dimensionality increases, the number of points
within the neighbourhood grows exponentially.

data points in the order of increasing distance to the query along the projection direction.
Figure 1.7 illustrates each step of this process; in the example shown, the true nearest neigh-
bour is contained within the first three data points. In general, it turns out that the nearest
neighbour must be contained within the first O(n1−1/d′) points with constant probability,
where n denotes the number of data points and d′ denotes the intrinsic dimensionality. (The
proof of this result is shown in the appendix.) The advantage of this approach comes from
the dependence of this function on the intrinsic dimensionality – it is sublinear and no longer
exponential.

There is a significant difference in the goal of the data structure compared to methods
based on space partitioning. In methods based on space partitioning, the goal is to approx-
imately preserve the absolute locations of data points, so that data points that are nearby
would be close in the data structure. On the other hand, the goal of the proposed indexing
scheme is to approximately preserve the relative order between the true nearest neighbours
and the other data points when ranked by their distances to the query. In other words,
we care about distortions in ranks, rather than distortions in absolute locations. In other
words, we would be happy if a few distant points seem close to the true nearest neighbours,
because while distortions in absolute locations are high, distortions in ranks are low, because
the true nearest neighbours’ positions in the ranking only moved down by a few places. On
the other hand, if our goal were to preserve the absolute locations, we would not be happy.
Similarly, we can also contrast our goal with that of dimensionality reduction methods like
the Johnson-Lindenstrauss transform. In Johnson-Lindenstrauss, the goal is to approxi-

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 11

(a)

1 points

(b)

2 points

(c)

3 points

(d)

Figure 1.7: Retrieval of data points in the order of increasing distance from the query along
the projection direction. Figures (a), (b), (c) and (d) show the data points that are retrieved
after the zeroth through the fourth iteration. The brown square denotes the projection of the
query, the the green line denotes the projection direction, the green points on the line denote
projections of data points onto the direction, the green point that is highlighted in purple
denotes the projection of the true nearest neighbour to the query, and the green points that
are highlighted in red denote points that are retrieved. In this case, we are able to retrieve
the correct nearest neighbour within three points. In general, the nearest neighbour must
be encountered within the first O(n1−1/d′) points with constant probability.

mately preserve all pairwise distances, which is why we need to project to at least Ω(log(n))
dimensions. Because our goal is weaker, we can get away with projecting to one dimension.

1.7 Generalized Union Bound

The following result is used in the analysis of the proposed algorithms, which may be of
independent interest. It is a generalization of the union bound, and upper bounds the
probability that k out of a set of possibly dependent events happen. When k = 1, it reduces
to the union bound. The proof is in the appendix.

Lemma 1. For any set of events {Ei}Ni=1, the probability that at least k′ of them happen is

at most 1
k′

∑N
i=1 Pr (Ei).

1.8 Dynamic Continuous Indexing (DCI)

DCI constructs a data structure consisting of multiple composite indices of data points, each
of which in turn consists of a number of simple indices. Each simple index orders data points
according to their projections along a particular random direction. Given a query, for every
composite index, the algorithm finds points that are near the query in every constituent
simple index, which are known as candidate points, and adds them to a set known as the
candidate set. The true distances from the query to every candidate point are evaluated and
the ones that are among the k closest to the query are returned.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 12

More concretely, each simple index is associated with a random direction and stores
the projections of every data point along the direction. They are implemented using stan-
dard data structures that maintain one-dimensional ordered sequences of elements, like self-
balancing binary search trees [14, 61] or skip lists [107]. At query time, the algorithm projects
the query along the projection directions associated with each simple index and finds the
position where the query would have been inserted in each simple index, which takes loga-
rithmic time. It then iterates over, or visits, data points in each simple index in the order of
their distances to the query under projection, which takes constant time for each iteration.
As it iterates, it keeps track of how many times each data point has been visited across all
simple indices of each composite index. If a data point has been visited in every constituent
simple index, it is added to the candidate set and is said to have been retrieved from the
composite index. A precise statement of the construction and querying procedures are shown
in Algorithms 3 and 4.

Algorithm 1 Data structure construction procedure

Require: A dataset D of n points p1, . . . , pn, the number of simple indices m that constitute a composite
index and the number of composite indices L
function Construct(D,m,L)
{ujl}j∈[m],l∈[L] ← mL random unit vectors in Rd
{Tjl}j∈[m],l∈[L] ← mL empty binary search trees or skip lists
for j = 1 to m do

for l = 1 to L do
for i = 1 to n do

pijl ← 〈pi, ujl〉
Insert (pijl, i) into Tjl with pijl being the key and i being the value

end for
end for

end for
return {(Tjl, ujl)}j∈[m],l∈[L]

end function

DCI has a number of appealing properties compared to methods based on space par-
titioning. Because points are visited by rank rather than absolute location in space, DCI
performs well on datasets with large variations in data density. It naturally skips over sparse
regions of the space and concentrates more on dense regions of the space. Since construc-
tion of the data structure does not depend on the dataset, the algorithm supports dynamic
updates to the dataset, while being able to automatically adapt to changes in data density.
Furthermore, because data points are represented in the indices as continuous values without
being discretized, the granularity of discretization does not need to be chosen at construction
time. Consequently, the same data structure can support queries at varying desired levels of
accuracy, which allows a different speed-vs-accuracy trade-off to be made for each individual
query.

We develop two versions of the algorithm, a data-independent and a data-dependent
version, which differ in the stopping condition that is used. In the former, the number of

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 13

Algorithm 2 k-nearest neighbour retrieval procedure

Require: Query point q in Rd, binary search trees/skip lists and their associated projection vectors
{(Tjl, ujl)}j∈[m],l∈[L], and maximum tolerable failure probability ε
function Query(q, {(Tjl, ujl)}j,l, ε)

Cl ← array of size n with entries initialized to 0 ∀l ∈ [L]
qjl ← 〈q, ujl〉 ∀j ∈ [m], l ∈ [L]
Sl ← ∅ ∀l ∈ [L]
for i = 1 to n do

for l = 1 to L do
for j = 1 to m do

(p
(i)
jl , h

(i)
jl)← the node in Tjl whose key is the ith closest to qjl

Cl[h
(i)
jl]← Cl[h

(i)
jl] + 1

end for
for j = 1 to m do

if Cl[h
(i)
jl] = m then

Sl ← Sl ∪ {h(i)jl }
end if

end for
end for
if IsStoppingConditionSatisfied(i, Sl, ε) then

break
end if

end for
return k points in

⋃
l∈[L] Sl that are the closest in Euclidean distance in Rd to q

end function

candidate points is indirectly preset according to the global data density and the maximum
tolerable failure probability; in the latter, the number of candidate points is chosen adaptively
at query time based on the local data density in the neighbourhood of the query. We
analyze the algorithm below and show that its query time complexity is linear in ambient
dimensionality, sublinear in intrinsic dimensionality and sublinear in the size of the dataset.
In addition, we show that its space complexity is independent of ambient dimensionality and
linear in the size of the dataset.

1.8.1 Analysis

We now analyze the time and space complexities of the algorithm. For proofs of the following
results, see the appendix.

First, we examine the effect of projecting d-dimensional vectors to one dimension, which
motivates its use in the proposed algorithm. We are interested in the probability that a
distant point appears closer than a nearby point under projection; if this probability is low,
then each simple index approximately preserves the order of points by distance to the query
point. If we consider displacement vectors between the query point and data points, this
probability is then is equivalent to the probability of the lengths of these vectors inverting

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 14

vs

Pr
���hvl, ui

�� 
��hvs, ui

���

hvs, ui

hvl, ui

vl

(a)

vl

vs

U(vs, vl)

(b)

vs

vl
1 vl

2

U(vs, vl
1)

\U(vs, vl
2)

(c)

Figure 1.8: (a) Examples of order-preserving (shown in green) and order-inverting (shown
in red) projection directions. Any projection direction within the shaded region inverts
the relative order of the vectors by length under projection, while any projection directions
outside the region preserves it. The size of the shaded region depends on the ratio of the
lengths of the vectors. (b) Projection vectors whose endpoints lie in the shaded region would
be order-inverting. (c) Projection vectors whose endpoints lie in the shaded region would
invert the order of both long vectors relative to the short vector. Best viewed in colour.

Property Complexity

Construction O(m(dn+ n log n))

Query O(max(d(m+ k log(n/k), dk(n/k)1−1/d
′
)))

Insertion O(m(d+ log n))
Deletion O(m log n)
Space O(mn)

Table 1.2: Time and space complexities of DCI.

under projection.

Lemma 2. Let vl, vs ∈ Rd such that
∥∥vl
∥∥

2
>
∥∥vs
∥∥

2
, and u ∈ Rd be a unit vector drawn

uniformly at random. Then the probability of vs being at least as long as vl under projection
u is at most 1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vl
∥∥

2

)
.

Observe that if
∣∣〈vl, u〉

∣∣ ≤
∣∣〈vs, u〉

∣∣, the relative order of vl and vs by their lengths would

be inverted when projected along u. This occurs when u‖ is close to orthogonal to vl, which
is illustrated in Figure 1.8a. Also note that the probability of inverting the relative order of
vl and vs is small when vl is much longer than vs. On the other hand, this probability is high
when vl and vs are similar in length, which corresponds to the case when two data points are
almost equidistant to the query point. So, if we consider a sequence of vectors ordered by
length, applying random one-dimensional projection will likely perturb the ordering locally,
but will preserve the ordering globally.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 15

Next, we build on this result to analyze the order-inversion probability when there are
more than two vectors. Consider the sample space B =

{
u ∈ Rd

∣∣ ‖u‖2 = 1
}

and the set
U(vs, vl) =

{
u ∈ B

∣∣ |cos θ| ≤
∥∥vs
∥∥

2
/
∥∥vl
∥∥

2

}
, which is illustrated in Figure 1.8b, where θ is

the angle between u‖ and vl. If we use area(U) to denote the area of the region formed
by the endpoints of all vectors in the set U , then we can rewrite the above bound on the
order-inversion probability as:

Pr
(∣∣〈vl, u〉

∣∣ ≤
∣∣〈vs, u〉

∣∣) ≤ Pr
(
u ∈ U(vs, vl)

)

=
area(V sl)

area(B)

= 1− 2

π
cos−1

(‖vs‖2
‖vl‖2

)

Lemma 3. Let
{
vli
}N
i=1

be a set of vectors such that
∥∥vli
∥∥

2
>
∥∥vs
∥∥

2
∀i ∈ [N]. Then the

probability that there is a subset of k′ vectors from
{
vli
}N
i=1

that are all not longer than vs

under projection is at most 1
k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vli
∥∥

2

))
. Furthermore, if k′ = N ,

this probability is at most mini∈[N]

{
1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vli
∥∥

2

)}
.

Intuitively, if this event occurs, then there are at least k′ vectors that rank above vs when
sorted in nondecreasing order by their lengths under projection. This can only occur when the
endpoint of u falls in a region on the unit sphere corresponding to

⋃
I⊆[N]:|I|=k′

⋂
i∈I U(vs, vli).

We illustrate this region in Figure 1.8c for the case of d = 3.

Theorem 1. Let
{
vli
}N
i=1

and
{
vsi′
}N ′
i′=1

be sets of vectors such that
∥∥vli
∥∥

2
> ‖vsi′‖2 ∀i ∈

[N], i′ ∈ [N ′]. Then the probability that there is a subset of k′ vectors from
{
vli
}N
i=1

that are all

not longer than some vsi′ under projection is at most 1
k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))
,

where
∥∥vsmax

∥∥
2
≥ ‖vsi′‖2 ∀i′ ∈ [N ′].

We define the following derivative quantities of the intrinsic dimensionality, which are
easier to work with in our context:

Definition 2. Given a dataset D ⊆ Rd, let Bp(r) be the set of points in D that are within
a ball of radius r around a point p. We say D has local relative sparsity of (τ, γ) at a point
p ∈ Rd if for all r such that |Bp(r)| ≥ τ , |Bp(γr)| ≤ 2 |Bp(r)|, where γ ≥ 1.

Intuitively, γ represents a lower bound on the increase in radius when the number of points
within the ball is doubled. When γ is close to 1, the dataset is dense in the neighbourhood
of p, since there could be many points in D that are almost equidistant from p. Retrieving
the nearest neighbours of such a p is considered “hard”, since it would be difficult to tell
which of these points are the true nearest neighbours without computing the distances to all
these points exactly.

We also define a related notion of global relative sparsity, which we will use to derive
the number of iterations the outer loop of the querying function should be executed and a
bound on the running time that is independent of the query:

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 16

Definition 3. A dataset D has global relative sparsity of (τ, γ) if for all r and p ∈ Rd such
that |Bp(r)| ≥ τ , |Bp(γr)| ≤ 2 |Bp(r)|, where γ ≥ 1.

Note that a dataset with global relative sparsity of (τ, γ) has local relative sparsity of
(τ, γ) at every point. Global relative sparsity is closely related to the notion of expansion
rate introduced by [80]. More specifically, a dataset with global relative sparsity of (τ, γ) has
(τ, 1/ log2 γ)-expansion, where the latter quantity is the expansion dimension, also known as
the intrinsic dimensionality. So, the intrinsic dimensionality of a dataset with global relative
sparsity of (τ, γ) is 1/ log2 γ.

1.8.2 Data-Independent Version

In the data-independent version of the algorithm, the outer loop in the querying function
executes for a preset number of iterations k̃. The values of L, m and k̃ are fixed for all
queries and will be chosen later.

We apply the results obtained above to analyze the algorithm. Consider the event that
the algorithm fails to return the correct set of k-nearest neighbours – this can only occur if
a true k-nearest neighbour is not contained in any of the Sl’s, which entails that for each
l ∈ [L], there is a set of k̃ − k + 1 points that are not the true k-nearest neighbours but
are closer to the query than the true k-nearest neighbours under some of the projections
u1l, . . . , uml. We analyze the probability that this occurs below and derive the parameter
settings that ensure the algorithm succeeds with high probability.

Lemma 4. For a dataset with global relative sparsity (k, γ), there is some
k̃ ∈ Ω(max(k log(n/k), k(n/k)1−log2 γ)) such that the probability that the candidate points
retrieved from a given composite index do not include some of the true k-nearest neighbours
is at most some constant α < 1.

Theorem 2. For a dataset with global relative sparsity (k, γ), for any ε > 0, there is some
L and k̃ ∈ Ω(max(k log(n/k), k(n/k)1−log2 γ)) such that the algorithm returns the correct set
of k-nearest neighbours with probability of at least 1− ε.

The above result suggests that we should choose k̃ ∈ Ω(max(k log(n/k), k(n/k)1−log2 γ))
to ensure the algorithm succeeds with high probability. Next, we analyze the time and space
complexity of the algorithm.

Theorem 3. The algorithm takes O(max(d(m+k log(n/k), dk(n/k)1−1/d′))) time to retrieve
the k-nearest neighbours at query time, where d′ denotes the intrinsic dimensionality of the
dataset.

Theorem 4. The algorithm takes O(dn + n log n) time to preprocess the data points in D
at construction time.

Theorem 5. The algorithm requires O(d+log n) time to insert a new data point and O(log n)
time to delete a data point.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 17

Theorem 6. The algorithm requires O(n) space in addition to the space used to store the
data.

1.8.3 Data-Dependent Version

Conceptually, performance of the proposed algorithm depends on two factors: how likely the
index returns the true nearest neighbours before other points and when the algorithm stops
retrieving points from the index. The preceding sections primarily focused on the former; in
this section, we take a closer look at the latter.

One strategy, which is used by the data-independent version of the algorithm, is to stop
after a preset number of iterations of the outer loop. Although simple, such a strategy leaves
much to be desired. First of all, in order to set the number of iterations, it requires knowledge
of the global relative sparsity of the dataset, which is rarely known a priori. Computing this
is either very expensive in the case of datasets or infeasible in the case of streaming data,
as global relative sparsity may change as new data points arrive. More importantly, it is
unable to take advantage of the local relative sparsity in the neighbourhood of the query.
A method that is capable of adapting to local relative sparsity could potentially be much
faster because query points tend to be close to the manifold on which points in the dataset
lie, resulting in the dataset being sparse in the neighbourhood of the query point.

Ideally, the algorithm should stop as soon as it has retrieved the true nearest neighbours.
Determining if this is the case amounts to asking if there exists a point that we have not
seen lying closer to the query than the points we have seen. At first sight, because nothing
is known about unseen points, it seems not possible to do better than exhaustive search, as
we can only rule out the existence of such a point after computing distances to all unseen
points. Somewhat surprisingly, by exploiting the fact that the projections associated with
the index are random, it is possible to make inferences about points that we have never seen.
We do so by leveraging ideas from statistical hypothesis testing.

After each iteration of the outer loop, we perform a hypothesis test, with the null hy-
pothesis being that the complete set of the k-nearest neighbours has not yet been retrieved.
Rejecting the null hypothesis implies accepting the alternative hypothesis that all the true
k-nearest neighbours have been retrieved. At this point, the algorithm can safely terminate
while guaranteeing that the probability that the algorithm fails to return the correct results
is bounded above by the significance level. The test statistic is an upper bound on the
probability of missing a true k-nearest neighbour. The resulting algorithm does not require
any prior knowledge about the dataset and terminates earlier when the dataset is sparse in
the neighbourhood of the query; for this reason, we will refer to this version of the algorithm
as the data-dependent version.

More concretely, as the algorithm retrieves candidate points, it computes their true dis-
tances to the query and maintains a list of k points that are the closest to the query among the
points retrieved from all composite indices so far. Let p̃(i) and p̃max

l denote the ith closest can-
didate point to q retrieved from all composite indices and the farthest candidate point from
q retrieved from the lth composite index respectively. When the number of candidate points

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 18

exceeds k, the algorithm checks if
∏L

l=1

(
1−

(
2
π

cos−1
(∥∥p̃(k) − q

∥∥
2
/
∥∥p̃max

l − q
∥∥

2

))m) ≤ ε,
where ε is the maximum tolerable failure probability, after each iteration of the outer loop.

If the condition is satisfied, the algorithm terminates and returns
{
p̃(i)
}k
i=1

.
We show the correctness and running time of this algorithm below.

Theorem 7. For any ε > 0, m and L, the data-dependent algorithm returns the correct set
of k-nearest neighbours of the query q with probability of at least 1− ε.

Theorem 8. On a dataset with global relative sparsity (k, γ), given fixed parameters m and L,

the data-dependent algorithm takes O

(
max

(
dk log

(
n
k

)
, dk

(
n
k

)1−1/d′
, d(

1− m
√

1− L√ε
)d′
))

time

with high probability to retrieve the k-nearest neighbours at query time, where d′ denotes the
intrinsic dimensionality of the dataset.

Note that we can make the denominator of the last argument arbitrarily close to 1 by
choosing a large L.

1.9 Prioritized DCI

Prioritized DCI differs from standard DCI in the order in which points from different simple
indices are visited. In standard DCI, the algorithm cycles through all constituent simple
indices of a composite index at regular intervals and visits exactly one point from each simple
index in each pass. In Prioritized DCI, the algorithm assigns a priority to each constituent
simple index; in each iteration, it visits the upcoming point from the simple index with the
highest priority and updates the priority at the end of the iteration. The priority of a simple
index is set to the negative absolute difference between the query projection and the next
data point projection in the index.

Intuitively, this ensures data points are visited in the order of their distances to the query
under projection. Because data points are only retrieved from a composite index when they
have been visited in all constituent simple indices, data points are retrieved in the order of the
maximum of their distances to the query along multiple projection directions. Since distance
under projection forms a lower bound on the true distance, the maximum projected distance
approaches the true distance as the number of projection directions increases. Hence, in the
limit as the number of simple indices approaches infinity, data points are retrieved in the
ideal order, that is, the order of their true distances to the query.

The construction and querying procedures of Prioritized DCI are presented formally
in Algorithms 3 and 4. To ensure the algorithm retrieves the exact k-nearest neighbours
with high probability, the analysis in the next section shows that one should choose k0 ∈
Ω(kmax(log(n/k), (n/k)1−m/d′)) and k1 ∈ Ω(mkmax(log(n/k), (n/k)1−1/d′)), where d′ de-
notes the intrinsic dimensionality. Though because this assumes worst-case configuration of
data points, it may be overly conservative in practice; so, these parameters may be chosen
by cross-validation.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 19

Algorithm 3 Data structure construction procedure

Require: A dataset D of n points p1, . . . , pn, the number of simple indices m that constitute a composite
index and the number of composite indices L
function Construct(D,m,L)
{ujl}j∈[m],l∈[L] ← mL random unit vectors in Rd
{Tjl}j∈[m],l∈[L] ← mL empty binary search trees or skip

lists
for j = 1 to m do

for l = 1 to L do
for i = 1 to n do

pijl ← 〈pi, ujl〉
Insert (pijl, i) into Tjl with pijl being the key and
i being the value

end for
end for

end for
return {(Tjl, ujl)}j∈[m],l∈[L]

end function

Property Complexity

Construction O(m(dn+ n log n))

Query O
(
d(m+ kmax(log(n/k), (n/k)1−m/d

′
) +mk logm(max(log(n/k), (n/k)1−1/d

′
)))
)

Insertion O(m(d+ log n))
Deletion O(m log n)
Space O(mn)

Table 1.3: Time and space complexities of Prioritized DCI.

We summarize the time and space complexities of Prioritized DCI in Table 1.3. Notably,
the first term of the query complexity, which dominates when the ambient dimensionality d
is large, has a more favourable dependence on the intrinsic dimensionality d′ than the query
complexity of standard DCI. In particular, a linear increase in the intrinsic dimensionality,
which corresponds to an exponential increase in the expansion rate, can be mitigated by
just a linear increase in the number of simple indices m. This suggests that Prioritized DCI
can better handle datasets with high intrinsic dimensionality than standard DCI, which is
confirmed by empirical evidence later in this paper.

1.9.1 Analysis

We analyze the time and space complexities of Prioritized DCI below and derive the stopping
condition of the algorithm. Because the algorithm uses standard data structures, analysis of
the construction time, insertion time, deletion time and space complexity is straightforward.
Hence, this section focuses mostly on analyzing the query time. For proofs, see the appendix.

In high-dimensional space, query time is dominated by the time spent on evaluating

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 20

Algorithm 4 k-nearest neighbour querying procedure

Require: Query point q in Rd, binary search trees/skip lists and their associated projection vectors
{(Tjl, ujl)}j∈[m],l∈[L], the number of points to retrieve k0 and the number of points to visit k1 in each
composite index
function Query(q, {(Tjl, ujl)}j,l, k0, k1)

Cl ← array of size n with entries initialized to 0 ∀l ∈ [L]
qjl ← 〈q, ujl〉 ∀j ∈ [m], l ∈ [L]
Sl ← ∅ ∀l ∈ [L]
Pl ← empty priority queue ∀l ∈ [L]
for l = 1 to L do

for j = 1 to m do

(p
(1)
jl , h

(1)
jl)← the node in Tjl whose key is the

closest to qjl

Insert (p
(1)
jl , h

(1)
jl) with priority −|p(1)jl − qjl|

into Pl
end for

end for
for i′ = 1 to k1 − 1 do

for l = 1 to L do
if |Sl| < k0 then

(p
(i)
jl , h

(i)
jl)← the node with the highest priority

in Pl
Remove (p

(i)
jl , h

(i)
jl) from Pl and insert the node

in Tjl whose key is the next closest to qjl,

which is denoted as (p
(i+1)
jl , h

(i+1)
jl), with

priority −|p(i+1)
jl − qjl| into Pl

Cl[h
(i)
jl]← Cl[h

(i)
jl] + 1

if Cl[h
(i)
jl] = m then

Sl ← Sl ∪ {h(i)jl }
end if

end if
end for

end for
return k points in

⋃
l∈[L] Sl that are the closest in Euclidean distance in Rd to q

end function

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 21

true distances between candidate points and the query. Therefore, we need to find the
number of candidate points that must be retrieved to ensure the algorithm succeeds with
high probability. To this end, we derive an upper bound on the failure probability for any
given number of candidate points. The algorithm fails if sufficiently many distant points
are retrieved from each composite index before some of the true k-nearest neighbours. We
decompose this event into multiple (dependent) events, each of which is the event that a
particular distant point is retrieved before some true k-nearest neighbours. Since points
are retrieved in the order of their maximum projected distance, this event happens when
the maximum projected distance of the distant point is less than that of a true k-nearest
neighbour. We start by finding an upper bound on the probability of this event. To simplify
notation, we initially consider displacement vectors from the query to each data point, and so
relationships between projected distances of triplets of points translate relationships between
projected lengths of pairs of displacement vectors.

We start by examining the event that a vector under random one-dimensional projection
satisfies some geometric constraint. We then find an upper bound on the probability that
some combinations of these events occur, which is related to the failure probability of the
algorithm.

Lemma 5. Let vl, vs ∈ Rd be such that
∥∥vl
∥∥

2
>
∥∥vs
∥∥

2
,
{
u′j
}M
j=1

be i.i.d. unit vectors in Rd

drawn uniformly at random. Then Pr
(
maxj

{∣∣〈vl, u′j〉
∣∣} ≤

∥∥vs
∥∥

2

)
=
(
1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vl
∥∥

2

))M
.

Combining the above yields the following theorem.

Theorem 9. Let
{
vli
}N
i=1

and
{
vsi′
}N ′
i′=1

be sets of vectors such that
∥∥vli
∥∥

2
>
∥∥vsi′
∥∥

2
∀i ∈

[N], i′ ∈ [N ′]. Furthermore, let
{
u′ij
}
i∈[N],j∈[M]

be random uniformly distributed unit vectors

such that u′i1, . . . , u
′
iM are independent for any given i. Consider the events{

∃vsi′ s.t. maxj
{∣∣〈vli, u′ij〉

∣∣} ≤
∥∥vsi′
∥∥

2

}N
i=1

. The probability that at least k′ of these events

occur is at most 1
k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))M
, where

∥∥vsmax

∥∥
2

= maxi′
{∥∥vsi′

∥∥
2

}
.

Furthermore, if k′ = N , it is at most mini∈[N]

{(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))M}
.

We now apply the results above to analyze specific properties of the algorithm. For
convenience, instead of working directly with intrinsic dimensionality, we will analyze the
query time in terms of a related quantity, global relative sparsity, as defined in [89]. We
reproduce its definition below for completeness.

Definition 4. Given a dataset D ⊆ Rd, let Bp(r) be the set of points in D that are within a
ball of radius r around a point p. A dataset D has global relative sparsity of (τ, γ) if for all
r and p ∈ Rd such that |Bp(r)| ≥ τ , |Bp(γr)| ≤ 2 |Bp(r)|, where γ ≥ 1.

Global relative sparsity is related to the expansion rate [80] and intrinsic dimensionality in
the following way: a dataset with global relative sparsity of (τ, γ) has (τ, 2(1/ log2 γ))-expansion
and intrinsic dimensionality of 1/ log2 γ.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 22

Below we derive two upper bounds on the probability that some of the true k-nearest
neighbours are missing from the set of candidate points retrieved from a given composite
index, which are in expressed in terms of k0 and k1 respectively. These results inform us
how k0 and k1 should be chosen to ensure the querying procedure returns the correct results
with high probability. In the results that follow, we use {p(i)}ni=1 to denote a re-ordering of
the points {pi}ni=1 so that p(i) is the ith closest point to the query q.

Lemma 6. Consider points in the order they are retrieved from a composite index that
consists of m simple indices. The probability that there are at least n0 points that are not the
true k-nearest neighbours but are retrieved before some of them is at most

1
n0−k

∑n
i=2k+1

(
1− 2

π
cos−1

(∥∥p(k) − q
∥∥

2
/
∥∥p(i) − q

∥∥
2

))m
.

Lemma 7. Consider point projections in a composite index that consists of m simple indices
in the order they are visited. The probability that there are n0 point projections that are not
the true k-nearest neighbours but are visited before all true k-nearest neighbours have been
retrieved is at most m

n0−mk
∑n

i=2k+1

(
1− 2

π
cos−1

(∥∥p(k) − q
∥∥

2
/
∥∥p(i) − q

∥∥
2

))
.

Lemma 8. On a dataset with global relative sparsity (k, γ), the quantity∑n
i=2k+1

(
1− 2

π
cos−1

(∥∥p(k) − q
∥∥

2
/
∥∥p(i) − q

∥∥
2

))m
is at most O

(
kmax(log(n/k), (n/k)1−m log2 γ)

)
.

Lemma 9. For a dataset with global relative sparsity (k, γ) and a given composite index
consisting of m simple indices, there is some k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) such
that the probability that the candidate points retrieved from the composite index do not include
some of the true k-nearest neighbours is at most some constant α0 < 1.

Lemma 10. For a dataset with global relative sparsity (k, γ) and a given composite index
consisting of m simple indices, there is some k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ)) such
that the probability that the candidate points retrieved from the composite index do not include
some of the true k-nearest neighbours is at most some constant α1 < 1.

Theorem 10. For a dataset with global relative sparsity (k, γ), for any ε > 0, there is some
L, k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) and k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ))
such that the algorithm returns the correct set of k-nearest neighbours with probability of
at least 1− ε.

Now that we have found a choice of k0 and k1 that suffices to ensure correctness with
high probability, we can derive a bound on the query time that guarantees correctness. We
then analyze the time complexity for construction, insertion and deletion and the space
complexity.

Theorem 11. For a given number of simple indices m, the algorithm takes
O
(
d(m+ kmax(log(n/k), (n/k)1−m/d′)) +mk logm

(
max(log(n/k), (n/k)1−1/d′)

))
time to re-

trieve the k-nearest neighbours at query time, where d′ denotes the intrinsic dimensionality.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 23

1.15 1.20 1.25 1.30 1.35 1.40
Approximation Ratio

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

D
is

ta
n
ce

 E
v
a
lu

a
ti

o
n
s

LSH
PQ
DCI (m=25, L=2)
Prioritized DCI (m=25, L=2)
Prioritized DCI (m=10, L=2)

(a)

1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30
Approximation Ratio

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

o
f

D
is

ta
n
ce

 E
v
a
lu

a
ti

o
n
s

LSH
PQ
DCI (m=15, L=3)
Prioritized DCI (m=15, L=3)
Prioritized DCI (m=10, L=2)

(b)

1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30
Approximation Ratio

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

o
f

D
is

ta
n
ce

 E
v
a
lu

a
ti

o
n
s

LSH
PQ
DCI (m=15, L=3)
Prioritized DCI (m=15, L=3)
Prioritized DCI (m=10, L=2)

(c)

Figure 1.9: Comparison of the number of distance evaluations needed by different algorithms
to achieve varying levels of approximation quality on (a) CIFAR-100 and (b,c) MNIST.
Each curve represents the mean over ten folds and the shaded area represents ±1 standard
deviation. Lower values are better. (c) Close-up view of the figure in (b).

Theorem 12. For a given number of simple indices m, the algorithm takes O(m(dn +
n log n)) time to preprocess the data points in D at construction time.

Theorem 13. The algorithm requires O(m(d+ log n)) time to insert a new data point and
O(m log n) time to delete a data point.

Theorem 14. The algorithm requires O(mn) space in addition to the space used to store
the data.

1.10 Experiments

We compare the performance of Prioritized DCI to that of standard DCI [89], product
quantization [78] and LSH [42], which is perhaps the algorithm that is most widely used in
high-dimensional settings. Because LSH operates under the approximate setting, in which
the performance metric of interest is how close the returned points are to the query rather
than whether they are the true k-nearest neighbours. All algorithms are evaluated in terms
of the time they would need to achieve varying levels of approximation quality.

Evaluation is performed on two datasets, CIFAR-100 [83] and MNIST [85]. CIFAR-100
consists of 60, 000 colour images of 100 types of objects in natural scenes and MNIST consists
of 70, 000 grayscale images of handwritten digits. The images in CIFAR-100 have a size of
32 × 32 and three colour channels, and the images in MNIST have a size of 28 × 28 and
a single colour channel. We reshape each image into a vector whose entries represent pixel
intensities at different locations and colour channels in the image. So, each vector has a
dimensionality of 32 × 32 × 3 = 3072 for CIFAR-100 and 28 × 28 = 784 for MNIST. Note
that the dimensionalities under consideration are much higher than those typically used to
evaluate prior methods.

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 24

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
e
m

o
ry

 U
sa

g
e

1e8

LSH
PQ
DCI (m=25, L=2)
Prioritized DCI (m=25, L=2)
Prioritized DCI (m=10, L=2)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
e
m

o
ry

 U
sa

g
e

1e8

LSH
PQ
DCI (m=15, L=3)
Prioritized DCI (m=15, L=3)
Prioritized DCI (m=10, L=2)

(b)

Figure 1.10: Memory usage of different algorithms on (a) CIFAR-100 and (b) MNIST. Lower
values are better.

For the purposes of nearest neighbour search, MNIST is a more challenging dataset
than CIFAR-100. This is because images in MNIST are concentrated around a few modes;
consequently, data points form dense clusters, leading to higher intrinsic dimensionality.
On the other hand, images in CIFAR-100 are more diverse, and so data points are more
dispersed in space. Intuitively, it is much harder to find the closest digit to a query among
6999 other digits of the same category that are all plausible near neighbours than to find
the most similar natural image among a few other natural images with similar appearance.
Later results show that all algorithms need fewer distance evaluations to achieve the same
level of approximation quality on CIFAR-100 than on MNIST.

We evaluate performance of all algorithms using cross-validation, where we randomly
choose ten different splits of query vs. data points. Each split consists of 100 points from
the dataset that serve as queries, with the remainder designated as data points. We use each
algorithm to retrieve the 25 nearest neighbours at varying levels of approximation quality
and report mean performance and standard deviation over all splits.

Approximation quality is measured using the approximation ratio, which is defined to
be the ratio of the radius of the ball containing the set of true k-nearest neighbours to the
radius of the ball containing the set of approximate k-nearest neighbours returned by the
algorithm. The closer the approximation ratio is to 1, the higher the approximation quality.
In high dimensions, the time taken to compute true distances between the query and the
candidate points dominates query time, so the number of distance evaluations can be used
as an implementation-independent proxy for the query time.

For LSH, we used 24 hashes per table and 100 tables, which we found to achieve the
best approximation quality given the memory constraints. For product quantization, we
used a data-independent codebook with 256 entries so that the algorithm supports dynamic

CHAPTER 1. NEAREST NEIGHBOUR SEARCH 25

updates. For standard DCI, we used the same hyperparameter settings used in [89] (m = 25
and L = 2 on CIFAR-100 and m = 15 and L = 3 on MNIST). For Prioritized DCI, we used
two different settings: one that matches the hyperparameter settings of standard DCI, and
another that uses less space (m = 10 and L = 2 on both CIFAR-100 and MNIST).

We plot the number of distance evaluations that each algorithm requires to achieve each
desired level of approximation ratio in Figure 1.9. As shown, on CIFAR-100, under the same
hyperparameter setting used by standard DCI, Prioritized DCI requires 87.2% to 92.5% fewer
distance evaluations than standard DCI, 91.7% to 92.8% fewer distance evaluations than
product quantization, and 90.9% to 93.8% fewer distance evaluations than LSH to achieve
same levels approximation quality, which represents a 14-fold reduction in the number of dis-
tance evaluations relative to LSH on average. Under the more space-efficient hyperparameter
setting, Prioritized DCI achieves a 6-fold reduction compared to LSH. On MNIST, under the
same hyperparameter setting used by standard DCI, Prioritized DCI requires 96.4% to 97.0%
fewer distance evaluations than standard DCI, 87.1% to 89.8% fewer distance evaluations
than product quantization, and 98.8% to 99.3% fewer distance evaluations than LSH, which
represents a 116-fold reduction relative to LSH on average. Under the more space-efficient
hyperparameter setting, Prioritized DCI achieves a 32-fold reduction compared to LSH.

We compare the space efficiency of Prioritized DCI to that of standard DCI and LSH. As
shown in Figure 1.10, compared to LSH, Prioritized DCI uses 95.5% less space on CIFAR-100
and 95.3% less space on MNIST under the same hyperparameter settings used by standard
DCI. This represents a 22-fold reduction in memory consumption on CIFAR-100 and a 21-
fold reduction on MNIST. Under the more space-efficient hyperparameter setting, Prioritized
DCI uses 98.2% less space on CIFAR-100 and 97.9% less space on MNIST relative to LSH,
which represents a 55-fold reduction on CIFAR-100 and a 48-fold reduction on MNIST.

In terms of wall-clock time, our implementation of Prioritized DCI takes 1.18 seconds to
construct the data structure and execute 100 queries on MNIST, compared to 104.71 seconds
taken by LSH.

26

Chapter 2

Learning to Optimize

Machine learning has enjoyed tremendous success and is being applied to a wide variety of
areas, both in AI and beyond. This success can be attributed to the data-driven philosophy
that underpins machine learning, which favours automatic discovery of patterns from data
over manual design of systems using expert knowledge.

Yet, there is a paradox in the current paradigm: the algorithms that power machine
learning are still designed manually. This raises a natural question: can we learn these
algorithms instead? This could open up exciting possibilities: we could find new algorithms
that perform better than manually designed algorithms, which could in turn improve learning
capability.

Doing so, however, requires overcoming a fundamental obstacle: how do we parameterize
the space of algorithms so that it is both (1) expressive, and (2) efficiently searchable?
Various ways of representing algorithms trade off these two goals. For example, if the space
of algorithms is represented by a small set of known algorithms, it most likely does not contain
the best possible algorithm, but does allow for efficient searching via simple enumeration of
algorithms in the set. On the other hand, if the space of algorithms is represented by the
set of all possible programs, it contains the best possible algorithm, but does not allow for
efficient searching, as enumeration would take exponential time.

One of the workhorses of machine learning is continuous optimization algorithms; more
broadly, they are some of the most ubiquitous tools used in virtually all areas of science
and engineering. Several popular algorithms exist, including gradient descent, momentum,
AdaGrad and ADAM. We consider the problem of automatically designing such algorithms.
Why do we want to do this? There are two reasons: first, many optimization algorithms are
devised under the assumption of convexity and applied to non-convex objective functions;
by learning the optimization algorithm under the same setting as it will actually be used
in practice, the learned optimization algorithm could hopefully achieve better performance.
Second, devising new optimization algorithms manually is usually laborious and can take
months or years; learning the optimization algorithm could reduce the amount of manual
labour.

CHAPTER 2. LEARNING TO OPTIMIZE 27

Algorithm Update Formula π

Gradient De-
scent

π(·) = −γ∇f(x(i−1))

Momentum π(·) = −γ
(∑i−1

j=0 α
i−1−j∇f(x(j))

)

Conjugate Gra-
dient

π(·) = −γ
(
∇f(x(i−1)) +

∑i−2
j=0

(
‖∇f(x(j+1))‖2
‖∇f(x(j))‖2

)i−1−j

∇f(x(j))

)

Table 2.1: Choices of the update formula π made by hand-engineered optimization algo-
rithms. We propose learning π automatically in the hope of learning an optimization algo-
rithm that converges faster and to better optima on objective functions of interest.

2.1 Formulation

Consider how existing continuous optimization algorithms generally work. As outlined in
Algorithm 5, they operate in an iterative fashion and maintain some iterate x(i), which is a
point in the domain of the objective function. Initially, the iterate is some random point in
the domain; in each iteration, a step vector ∆x is computed using some fixed update formula,
which is then used to modify the iterate. The update formula π is some functional of the
objective function, the current iterate and past iterates. Typically, it is some function of
the history of gradients of the objective function evaluated at the current and past iterates.
For example, in gradient descent, the update formula is some scaled negative gradient; in
momentum, the update formula is some scaled exponential moving average of the gradients.

Algorithm 5 General structure of unconstrained optimization algorithms

Require: Objective function f
x(0) ← random point in the domain of f
for i = 1, 2, . . . do

∆x← π(f, {x(0), . . . , x(i−1)})
if stopping condition is met then

return x(i−1)

end if
x(i) ← x(i−1) + ∆x

end for

What changes from algorithm to algorithm is this update formula π. Examples of existing
optimization algorithms and their corresponding update formulas are shown in Table 2.1.

So, if we can learn the update formula π, we will be able to learn an optimization
algorithm. Since it is difficult to model general functionals, in practice, we restrict the
dependence of π on the objective function f to objective values and gradients evaluated at
current and past iterates. Hence, π can be simply modelled as a function from the objective

CHAPTER 2. LEARNING TO OPTIMIZE 28

values and gradients along the trajectory taken by the optimizer so far to the next step
vector. If we model π with a universal function approximator like a neural net, it is then
possible to search over the space of optimization algorithms by learning the parameters of
the neural net.

Parameterizing the update formula as a neural net has two appealing properties men-
tioned earlier: first, it is expressive, as neural nets are universal function approximators and
can in principle model any update formula with sufficient capacity; second, it allows for
efficient search, as neural nets can be trained easily with backpropagation.

In order to learn the optimization algorithm, we need to define a performance metric,
which we will refer to as the “meta-loss”, that rewards good optimizers and penalizes bad
optimizers. Since a good optimizer converges quickly, a natural meta-loss would be the
sum of objective values over all iterations (assuming the goal is to minimize the objective
function), or equivalently, the cumulative regret. Intuitively, this corresponds to the area
under the curve, which is larger when the optimizer converges slowly and smaller otherwise.

2.2 Learning How to Learn

When the objective functions under consideration correspond to loss functions for training
a model, the proposed framework effectively learns how to learn. The loss function for
training a model on a particular task/dataset is a particular objective function, and so the
loss on many tasks corresponds to a set of objective functions. For clarity, we will refer to
the algorithm that learns the optimization algorithm as the meta-learner, and the learned
optimization algorithm as the base-learner.

First, let us consider what generalization means in this meta-learning setting. Akin to
ordinary learning, the learned model should be evaluated on its ability to generalize to un-
seen data. Therefore, the learned optimization algorithm should be evaluated on its ability
to generalize to unseen objective functions. Akin to the supervised learning paradigm, we
divide the dataset of objective functions into training and test sets. At test time, the learned
optimizer can be used stand-alone and functions exactly like a hand-engineered optimizer,
except that the update formula is replaced with a neural net and no hyperparameters like
step size or momentum need to be specified by the user. In particular, it should not perform
multiple trials on the same objective function at test time, unlike hyperparameter optimiza-
tion.

Just as in ordinary learning, it is important to identify what kinds of regularities or
knowledge we can hope to learn and what we cannot under the setting of interest, in order
to determine whether learning can be expected to yield anything useful. Then the natural
question is: under this proposed setting of learning how to learn, what kinds of regularities
can we expect to learn, and why are they useful? Let us consider a few different settings
below.

CHAPTER 2. LEARNING TO OPTIMIZE 29

2.2.1 Learning on One Objective Function

Suppose we only have a single objective function in the training set, and we aim to learn an
optimization algorithm that converges quickly on this single objective function. What would
the meta-learner learn in this case?

Consider an optimization algorithm that simply memorizes the optimum of the single
objective function. This is the best possible optimization algorithm, since it always converges
to the optimum in one step, regardless of initialization (as shown in Figure). So, at meta-
training time, the meta-learner could simply find the optimum of the objective function
using any off-the-shelf optimization algorithm and then simply store the optimum in the
parameters of the base-learner.

While the meta-learner would be satisfied with such a solution, this is not very useful
from a practical standpoint. Such a learned optimization algorithm does not generalize at
all and cannot be used on any other objective function.

Figure 2.1: If we train the optimization on a single objective function, we can easily learn the
location of the optimum of the objective function rather than a useful rule for optimizing it.
In other words, the learned optimizer can simply memorize what the location of the optimum
is.

2.2.2 Learning on Finitely Many Objective Functions

Now suppose we have a finitely many objective functions in the training set, and we aim
to learn an optimization algorithm that converges quickly on this single objective function.
What would the meta-learner learn in this case?

If the learned optimization algorithm could identify which objective function in the train-
ing set that it is optimizing, then it could immediately jump to the memorized optimum of
that objective function. So, in other words, this setting would simply reduce to the previous

CHAPTER 2. LEARNING TO OPTIMIZE 30

setting. Whether the meta-learner learns such an optimization algorithm depends on how
hard it is to identify the objective function. So, in order the learned optimization algorithm
to generalize, it must be hard to uniquely identify the objective function.

For a fixed set of n locations where the optimization algorithm evaluates an objective
function, there must be at least 2n objective functions to guarantee that the optimization
algorithm cannot uniquely identify any objective function with less than n iterations.

So, if the learning formulation is not carefully designed, the meta-learner can easily learn
a base-learner that fails to generalize to unseen objective functions.

To avoid this, there are two possibilities: (1) we can regularize the base-learner so that
it can only remember information from a relatively small number of time steps, and/or
(2) we can make the effective number of objective functions the meta-learner is trained on
exponential in the number of time steps that can be remembered.

It turns out that both can be achieved with reinforcement learning: the former is achieved
by having a relatively low-dimensional state space, and the latter is achieved by the Marko-
vian structure of the dynamics/state transition probability.

2.2.3 Learning on All Possible Objective Functions

Now consider the other extreme of an infinitely large training set with all possible objective
functions. Can the meta-learner learning anything useful in this case?

Consider an arbitrary optimization algorithm, which might perform quite well on most
objective functions. Because it only relies on information at the previous iterates, we can
modify the objective function at the last iterate to make it arbitrarily bad while maintaining
the geometry of the objective function at all previous iterates. Then, on this modified
objective function, by construction, the optimizer would follow the exact same trajectory
as before and end up at a point with a bad objective value. Therefore, any optimizer has
objective functions that it performs poorly on and no optimizer can perform well on all
possible objective functions.

Hence, learning an optimization algorithm on all possible objective functions will not
result in a useful optimizer, because there are no regularities that can be exploited by the
learned optimization algorithm. As a result, meta-learning in this setting would not make
sense.

2.2.4 When Does Meta-Learning Make Sense?

For meta-learning to be useful, there must be some underlying regularities across the subset
of objective functions we might be interested in. These regularities can then be learned by
the meta-learner and then exploited at meta-test time by the base-learner. These must be
regularities that cannot be discovered by focusing on any particular objective function – if
they were, then meta-learning would not offer any advantage over ordinary base-learning.

What could be an example of such regularities? One example is the shared geometry of
a subset of objective functions we may encounter frequently in practice. More specifically,

CHAPTER 2. LEARNING TO OPTIMIZE 31

Figure 2.2: For any given optimizer, we can always construct an objective function on which
it performs poorly. This implies that we cannot hope to learn an optimization algorithm
that performs well on all possible objective functions.

consider the class of objective functions that represent a loss function composed with a
neural net classifier of varying architectures with ReLU activations. There is regularity in
this class objective functions, since the neural net associated with each objective function is
guaranteed to be piecewise linear. In principle, the meta-learner could learn an optimization
algorithm that can take advantage of this regularity.

2.2.5 Difference with Classical Meta-Learning

Most classical methods [120] for meta-learning perform what is now known as multi-task
learning. In this setting, the goal is to learn commonalities across different tasks – for
example, consider the setting with two tasks, one to localize, or find the location, of an
object in an image, and one to classify the object into one of several different categories, a
common preprocessing step that would be useful for both tasks is edge detection. A common
example of a classical meta-learning approach is to divide the parameter space into two, one
that is shared across the different tasks, and one that is specific to each task. For example,
we can share the weights in the lower layers of a neural net across different tasks and have
task-specific weights in the upper layers.

Our setting is different: our goal is learn not the commonalities that are shared across
different tasks, but rather the commonalities shared by the experience of training on different
tasks. The tasks themselves may be completely unrelated – for example, some could be tasks
related to images, others could be tasks related to language. The only source of regularity
could come from the geometry of the model class, or meta-properties of the dataset, like
sparsity or degree of class imbalance.

CHAPTER 2. LEARNING TO OPTIMIZE 32

2.3 Taxonomy of Meta-Learning

The terms “learning to learn” and “meta-learning” have appeared from time to time in the
literature [13, 122, 32, 120] and refer to the general theme of learning meta-level knowledge
that are useful across tasks. Despite the long history, the term “meta-learning” has been
used by different authors to refer to disparate methods with different purposes; there is
no consensus on what precisely meta-learning means and what differentiates meta-learning
from ordinary (base-)learning. These methods all share the objective of learning some form
of meta-knowledge about learning, but differ in the type of meta-knowledge they aim to
learn. To improve the conceptual clarity of various meta-learning methods, we divide the
various methods into the three categories: learning what to learn, learning which model to
learn, and learning how to learn. The first two correspond to the classical work on meta-
learning mentioned above; the last originated with the line of work on online hyperparameter
adaptation and learning optimization algorithms.

2.3.1 Learning What to Learn

Methods in this category [120] aim to learn what parameter values of the base-level learner
are useful across a family of related tasks. The meta-knowledge captures commonalities
shared by tasks in the family, which enables learning on a new task from the family to be
done more quickly. Most early methods fall into this category; this line of work has blossomed
into an area that has later become known as transfer learning and multi-task learning.

2.3.2 Learning Which Model to Learn

Methods in this category [32] aim to learn which base-level learner achieves the best per-
formance on a task. The meta-knowledge captures correlations between different tasks and
the performance of different base-level learners on those tasks. One challenge under this
setting is to decide on a parameterization of the space of base-level learners that is both
rich enough to be capable of representing disparate base-level learners and compact enough
to permit tractable search over this space. [31] proposes a nonparametric representation
and stores examples of different base-level learners in a database, whereas [114] proposes
representing base-level learners as general-purpose programs. The former has limited rep-
resentation power, while the latter makes search and learning in the space of base-level
learners intractable. [72] views the (online) training procedure of any base-learner as a black
box function that maps a sequence of training examples to a sequence of predictions and
models it as a recurrent neural net. Under this formulation, meta-training reduces to train-
ing the recurrent net, and the parameters of the base-level learner are entirely contained in
the memory state of the recurrent net.

Hyperparameter optimization can be seen as another example of methods in this cate-
gory. The space of base-level learners to search over is parameterized by a predefined set of
hyperparameters. Unlike the methods above, multiple trials with different hyperparameter

CHAPTER 2. LEARNING TO OPTIMIZE 33

settings on the same task are permitted, and so generalization across tasks is not required.
The discovered hyperparameters are generally specific to the task at hand and hyperparame-
ter optimization must be rerun for new tasks. Various kinds of methods have been proposed,
such those based on Bayesian optimization [74, 24, 117, 119, 52], random search [25] and
gradient-based optimization [17, 44, 97].

2.3.3 Learning How to Learn

Methods in this category aim to learn a good algorithm for training a base-level learner.
Unlike methods in the previous categories, the goal is not to learn about the outcome of
learning, but rather the process of learning. The meta-knowledge captures commonalities in
the behaviours of learning algorithms that achieve good performance. The base-level learner
and the task are given by the user, so the learned algorithm must generalize across base-level
learners and tasks. Since learning in most cases is equivalent to optimizing some objective
function, learning a learning algorithm often reduces to learning an optimization algorithm.

The method presented in this dissertation was the first to learn a general-purpose op-
timization algorithm; by general-purpose, we mean two attributes: the meta-learner learns
both the step size and step direction with which to update the parameters of the base-learner,
and the same learned optimization algorithm can be on different objective functions. Con-
currently, [4] explores a similar theme under a different setting, where the goal is learn a
task-dependent optimization algorithm. The optimizer is trained from the experience of
training on a particular task or family of tasks and is evaluated on its ability to train on the
same task or family of tasks. Under this setting, the optimizer learns regularities about the
task itself rather than regularities of the model in general. As a result, it is unable to gen-
eralize to unseen tasks/objective functions. Closely related is [16], which learns a Hebb-like
synaptic learning rule that does not depend on the objective function, which does not allow
for generalization to different objective functions.

Various work has explored learning how to adjust the hyperparameters of hand-engineered
optimization algorithms, like the step size [66, 39, 56] or the damping factor in the Levenberg-
Marquardt algorithm [111]. Related to this line of work is stochastic meta-descent [30],
which derives a rule for adjusting the step size analytically. A different line of work [59, 118]
parameterizes intermediate operands of special-purpose solvers for a class of optimization
problems that arise in sparse coding and learns them using supervised learning.

Because methods in this category learn an algorithm, it is related to program induction,
which considers the problem of learning programs from examples of input and output. Several
different approaches have been proposed: genetic programming [38] represents programs as
abstract syntax trees and evolves them using genetic algorithms, [94] represents programs
explicitly using a formal language, constructs a hierarchical Bayesian prior over programs
and performs inference using an MCMC sampling procedure and [58] represents programs
implicitly as sequences of memory access operations and trains a recurrent neural net to
learn the underlying patterns in the memory access operations. [72] considers the special
case of online learning algorithms, each of which is represented as a recurrent neural net

CHAPTER 2. LEARNING TO OPTIMIZE 34

with a particular setting of weights, and learns the online learning algorithm by learning
the neural net weights. While the program/algorithm improves as training progresses, the
algorithms learned using these methods have not been able to match the performance of
simple hand-engineered algorithms. In contrast, our aim is learn an algorithm that is better
than known hand-engineered algorithms.

2.4 How to Learn the Optimizer

The first approach we tried was to treat the problem of learning optimizers as a standard
supervised learning problem: we simply differentiate the meta-loss with respect to the pa-
rameters of the update formula and learn these parameters using standard gradient-based
optimization.

This seemed like a natural approach, but it did not work: despite our best efforts, we could
not get any optimizer trained in this manner to generalize to unseen objective functions, even
though they were drawn from the same distribution that generated the objective functions
used to train the optimizer. On almost all unseen objective functions, the learned optimizer
started off reasonably, but quickly diverged after a while. On the other hand, on the training
objective functions, it exhibited no such issues and did quite well. Why is this?

It turns out that optimizer learning is not as simple a learning problem as it appears.
Standard supervised learning assumes all training examples are independent and identically
distributed (i.i.d.); in our setting, the step vector the optimizer takes at any iteration affects
the gradients it sees at all subsequent iterations. Furthermore, how the step vector affects the
gradient at the subsequent iteration is not known, since this depends on the local geometry
of the objective function, which is unknown at meta-test time. Supervised learning cannot
operate in this setting, and must assume that the local geometry of an unseen objective
function is the same as the local geometry of training objective functions at all iterations.

Consider what happens when an optimizer trained using supervised learning is used on
an unseen objective function. It takes a step, and discovers at the next iteration that the
gradient is different from what it expected. It then recalls what it did on the training
objective functions when it encountered such a gradient, which could have happened in a
completely different region of the space, and takes a step accordingly. To its dismay, it finds
out that the gradient at the next iteration is even more different from what it expected.
This cycle repeats and the error the optimizer makes becomes bigger and bigger over time,
leading to rapid divergence.

This phenomenon is known in the literature as the problem of compounding errors. It
is known that the total error of a supervised learner scales quadratically in the number of
iterations, rather than linearly as would be the case in the i.i.d. setting ??. In essence,
an optimizer trained using supervised learning necessarily overfits to the geometry of the
training objective functions. One way to solve this problem is to use reinforcement learning.

More specifically, through the lens of reinforcement learning, a particular optimization
algorithm simply corresponds to a policy. Learning an optimization algorithm then reduces

CHAPTER 2. LEARNING TO OPTIMIZE 35

to finding an optimal policy. For this purpose, we use an off-the-shelf reinforcement learning
algorithm known as guided policy search [86], which has demonstrated success in a variety
of robotic control settings [88, 53, 87, 65].

2.5 Reinforcement Learning

2.5.1 Markov Decision Process

In the reinforcement learning setting, the learner is given a choice of actions to take in each
time step, which changes the state of the environment in an unknown fashion, and receives
feedback based on the consequence of the action. The feedback is typically given in the form
of a reward or cost, and the objective of the learner is to choose a sequence of actions based
on observations of the current environment that maximizes cumulative reward or minimizes
cumulative cost over all time steps.

More formally, a reinforcement learning problem can be characterized by a Markov deci-
sion process (MDP). We consider an undiscounted finite-horizon MDP with continuous state
and action spaces defined by the tuple (S,A, p0, p, c, T), where S ⊆ RD is the set of states,
A ⊆ Rd is the set of actions, p0 : S → R+ is the probability density over initial states,
p : S ×A×S → R+ is the transition probability density, that is, the conditional probability
density over successor states given the current state and action, c : S → R is a function that
maps state to cost and T is the time horizon. A policy π : S × A × {0, . . . , T − 1} → R+

is a conditional probability density over actions given the state at each time step. When a
policy is independent of the time step, it is referred to as stationary.

2.5.2 Policy Search

This problem of finding the cost-minimizing policy is known as the policy search problem.
More precisely, the objective is to find a policy π∗ such that

π∗ = arg min
π

Es0,a0,s1,...,sT

[
T∑

t=0

c(st)

]
,

where the expectation is taken with respect to the joint distribution over the sequence of
states and actions, often referred to as a trajectory, which has the density

q (s0, a0, s1, . . . , sT) = p0 (s0)
T−1∏

t=0

π (at| st, t) p (st+1| st, at) .

To enable generalization to unseen states, the policy is typically parameterized and mini-
mization is performed over representable policies. Solving this problem exactly is intractable
in all but selected special cases. Therefore, policy search methods generally tackle this prob-
lem by solving it approximately. In addition, the transition probability density p is typically
not known, but may be accessed via sampling.

CHAPTER 2. LEARNING TO OPTIMIZE 36

2.5.3 Guided Policy Search

Guided policy search (GPS) [86] is a method for searching over expressive non-linear policy
classes in continuous state and action spaces. It works by alternating between computing
a mixture of target trajectories and training the policy to replicate them. Successive iter-
ations locally improve target trajectories while ensuring proximity to behaviours that are
reproducible by the policy. Target trajectories are computed by fitting local approximations
to the cost and transition probability density and optimizing over a restricted class of time-
varying linear target policies subject to a trust region constraint. The stationary non-linear
policy is trained to minimize the squared Mahalanobis distance between the predicted and
target actions at each time step.

More precisely, GPS works by solving the following constrained optimization problem:

min
θ,η

Eψ

[
T∑

t=0

c(st)

]
s.t. ψ (at| st, t; η) = π (at| st; θ) ∀at, st, t,

where ψ denotes the time-varying target policy, π denotes the stationary non-linear policy,
and Eψ [·] denotes the expectation taken with respect to the trajectory induced by the target
policy ψ. ψ is assumed to be conditionally Gaussian whose mean is linear in st and π is
assumed to be conditionally Gaussian whose mean could be an arbitrary function of st. To
solve this problem, the equality constraint is relaxed and replaced with a penalty on the
KL-divergence between ψ and π. Different flavours of GPS [86, 88] use different constrained
optimization methods, which all involve alternating between optimizing the parameters of ψ
and π.

For updating ψ, GPS first builds a model p̃ of the transition probability density p of the
form p̃ (st+1| st, at, t) := N (Atst+Btat+ct, Ft)

1, where At, Bt and ct are parameters estimated
from samples drawn from the trajectory induced by the existing ψ. It also computes local
quadratic approximations to the cost, so that c(st) ≈ 1

2
sTt Ctst + dTt st + ht for st’s that are

near the samples. It then solves the following:

min
Kt,kt,Gt

Eψ̃

[
T∑

t=0

1

2
sTt Ctst + dTt st

]

s.t.
T∑

t=0

DKL (p (st)ψ (·| st, t; η)‖ p (st)ψ (·| st, t; η′)) ≤ ε,

where Eψ̃ [·] denotes the expectation taken with respect to the trajectory induced by the
target policy ψ if states transition according to the model p̃. Kt, kt, Gt are the parameters
of ψ (at| st, t; η) := N (Ktst + kt, Gt) and η′ denotes the parameters of the previous target
policy. It turns out that this optimization problem can be solved in closed form using a
dynamic programming algorithm known as linear-quadratic-Gaussian regulator (LQG).

1In a slight abuse of notation, we use N (µ,Σ) to denote the density of a Gaussian distribution with
mean µ and covariance Σ.

CHAPTER 2. LEARNING TO OPTIMIZE 37

For updating π, GPS minimizes DKL (p (st) π (·| st)‖ p (st)ψ (·| st, t)). Assuming fixed
covariance and omitting dual variables, this corresponds to minimizing the following:

Eψ

[
T∑

t=0

(Eπ [at| st]− Eψ [at| st, t])T G−1
t (Eπ [at| st]− Eψ [at| st, t])

]
,

where Eπ [·] denotes the expectation taken with respect to the trajectory induced by the
non-linear policy π. We refer interested readers to [86] and [88] for details.

2.6 Formulation

We observe that the execution of an optimization algorithm can be viewed as the execution
of a particular policy in an MDP: the state consists of the current iterate and the objective
values and gradients evaluated at the current and past iterates, the action is the step vector
that is used to update the current iterate, and the transition probability is partially charac-
terized by the update formula, x(i) ← x(i−1) + ∆x. The policy that is executed corresponds
precisely to the choice of π used by the optimization algorithm. For this reason, we will
also use π to denote the policy at hand. Under this formulation, searching over policies
corresponds to searching over possible optimization algorithms.

To learn π, we need to define the cost function, which should penalize policies that exhibit
undesirable behaviours during their execution. Since the performance metric of interest for
optimization algorithms is the speed of convergence, the cost function should penalize policies
that converge slowly. To this end, assuming the goal is to minimize the objective function,
we define cost at a state to be the objective value at the current iterate. This encourages the
policy to reach the minimum of the objective function as quickly as possible. We choose to
parameterize the mean of π using a neural net, due to its appealing properties as a universal
function approximator and strong empirical performance in a variety of applications. We
use GPS to learn π.

2.7 Implementation Details

We store the current iterate, previous gradients and improvements in the objective value
from previous iterations in the state. We keep track of only the information pertaining
to the previous H time steps and use H = 25 in our experiments. More specifically, the
dimensions of the state space encode the following information:

• Current iterate

• Change in the objective value at the current iterate relative to the objective value at
the ith most recent iterate for all i ∈ {2, . . . , H + 1}

CHAPTER 2. LEARNING TO OPTIMIZE 38

• Gradient of the objective function evaluated at the ith most recent iterate for all i ∈
{2, . . . , H + 1}

Initially, we set the dimensions corresponding to historical information to zero. The
current iterate is only used to compute the cost; because the policy should not depend on
the absolute coordinates of the current iterate, we exclude it from the input that is fed into
the neural net.

We use a small neural net with a single hidden layer of 50 hidden units to model the
mean of π. Softplus activation units are used at the hidden layer and linear activation units
are used at the output layer. We initialize the weights of the neural net randomly and do
not regularize the magnitude of weights.

Initially, we set the target trajectory distribution so that the mean action given state
at each time step matches the step vector used by the gradient descent method with mo-
mentum. We choose the best settings of the step size and momentum decay factor for each
objective function in the training set by performing a grid search over hyperparameters and
running noiseless gradient descent with momentum for each hyperparameter setting. We use
a mixture of 10 Gaussians as a prior for fitting the parameters of the transition probability
density.

For training, we sample 20 trajectories with a length of 40 time steps for each objec-
tive function in the training set. After each iteration of guided policy search, we sample
new trajectories from the new distribution and discard the trajectories from the preceding
iteration.

2.8 Experiments

We learn optimization algorithms for various convex and non-convex classes of objective
functions that correspond to loss functions for different machine learning models. We learn
an optimizer for logistic regression, robust linear regression using the Geman-McClure M-
estimator and a two-layer neural net classifier with ReLU activation units. The geometry
of the error surface becomes progressively more complex: the loss for logistic regression is
convex, the loss for robust linear regression is non-convex, and the loss for the neural net
has many local minima.

2.8.1 Logistic Regression

We consider a logistic regression model with an `2 regularizer on the weight vector. Training
the model requires optimizing the following objective:

min
w,b
− 1

n

n∑

i=1

yi log σ
(
wTxi + b

)
+ (1− yi) log

(
1− σ

(
wTxi + b

))
+
λ

2
‖w‖2

2 ,

where w ∈ Rd and b ∈ R denote the weight vector and bias respectively, xi ∈ Rd and
yi ∈ {0, 1} denote the feature vector and label of the ith instance, λ denotes the coefficient

CHAPTER 2. LEARNING TO OPTIMIZE 39

0 20 40 60 80 100
Iteration

0.15

0.10

0.05

0.00

0.05

M
e
a
n
 M

a
rg

in
 o

f
V

ic
to

ry

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(a)

0 20 40 60 80 100
Iteration

0.52

0.53

0.54

0.55

0.56

0.57

0.58

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(b)

0 20 40 60 80 100
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(c)

Figure 2.3: (a) Mean margin of victory of each algorithm for optimizing the logistic regression
loss. Higher margin of victory indicates better performance. (b-c) Objective values achieved
by each algorithm on two objective functions from the test set. Lower objective values
indicate better performance. Best viewed in colour.

on the regularizer and σ(z) := 1
1+e−z

. For our experiments, we choose λ = 0.0005 and d = 3.
This objective is convex in w and b.

We train an algorithm for optimizing objectives of this form. Different examples in the
training set correspond to such objective functions with different instantiations of the free
variables, which in this case are xi and yi. Hence, each objective function in the training set
corresponds to a logistic regression problem on a different dataset.

To construct the training set, we randomly generate a dataset of 100 instances for each
function in the training set. The instances are drawn randomly from two multivariate Gaus-
sians with random means and covariances, with half drawn from each. Instances from the
same Gaussian are assigned the same label and instances from different Gaussians are as-
signed different labels.

We train the optimizer on a set of 90 objective functions. We evaluate it on a test set of
100 random objective functions generated using the same procedure and compare to popular
hand-engineered algorithms, such as gradient descent, momentum, conjugate gradient and
L-BFGS. All baselines are run with the best hyperparameter settings tuned on the training
set.

For each algorithm and objective function in the test set, we compute the difference
between the objective value achieved by a given algorithm and that achieved by the best
of the competing algorithms at every iteration, a quantity we will refer to as “the margin
of victory”. This quantity is positive when the current algorithm is better than all other
algorithms and negative otherwise. In Figure 2.3a, we plot the mean margin of victory of
each algorithm at each iteration averaged over all objective functions in the test set.

As shown, the learned optimizer, which we will henceforth refer to as “predicted step
descent”, outperforms gradient descent, momentum and conjugate gradient at almost every
iteration. The margin of victory for predicted step descent is high in early iterations, indicat-
ing that it converges much faster than other algorithms. It is interesting to note that despite

CHAPTER 2. LEARNING TO OPTIMIZE 40

having seen only trajectories of length 40 at training time, the learned optimizer is able to
generalize to much longer time horizons at test time. L-BFGS converges to slightly better
optima than predicted step descent and the momentum method. This is not surprising, as
the objective functions are convex and L-BFGS is known to be a very good optimizer for
convex problems.

We show the performance of each algorithm on two objective functions from the test set
in Figures 2.3b and 2.3c. In Figure 2.3b, predicted step descent converges faster than all
other algorithms. In Figure 2.3c, predicted step descent initially converges faster than all
other algorithms but is later overtaken by L-BFGS, while remaining faster than all other
optimizers. However, it eventually achieves the same objective value as L-BFGS, while the
objective values achieved by gradient descent and momentum remain much higher.

2.8.2 Robust Linear Regression

Next, we consider the problem of linear regression using a robust loss function. One way to
ensure robustness is to use an M-estimator for parameter estimation. A popular choice is
the Geman-McClure estimator, which induces the following objective:

min
w,b

1

n

n∑

i=1

(
yi −wTxi − b

)2

c2 + (yi −wTxi − b)2 ,

where w ∈ Rd and b ∈ R denote the weight vector and bias respectively, xi ∈ Rd and
yi ∈ R denote the feature vector and label of the ith instance and c ∈ R is a constant that
modulates the shape of the loss function. For our experiments, we use c = 1 and d = 3. This
loss function is not convex in either w or b.

As with the preceding section, each objective function in the training set is a function of
the above form with a particular instantiation of xi and yi. The dataset for each objective
function is generated by drawing 25 random samples from each one of four multivariate
Gaussians, each of which has a random mean and the identity covariance matrix. For all
points drawn from the same Gaussian, their labels are generated by projecting them along
the same random vector, adding the same randomly generated bias and perturbing them
with i.i.d. Gaussian noise.

The optimizer is trained on a set of 120 objective functions. We evaluate it on 100
randomly generated objective functions using the same metric as above. As shown in Figure
2.4a, predicted step descent outperforms all hand-engineered algorithms except at early
iterations. While it dominates gradient descent, conjugate gradient and L-BFGS at all times,
it does not make progress as quickly as the momentum method initially. However, after
around 30 iterations, it is able to close the gap and surpass the momentum method. On this
optimization problem, both conjugate gradient and L-BFGS diverge quickly. Interestingly,
unlike in the previous experiment, L-BFGS no longer performs well, which could be caused
by non-convexity of the objective functions.

CHAPTER 2. LEARNING TO OPTIMIZE 41

0 20 40 60 80 100
Iteration

0.15

0.10

0.05

0.00

0.05

M
e
a
n
 M

a
rg

in
 o

f
V

ic
to

ry

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(a)

0 20 40 60 80 100
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(b)

0 20 40 60 80 100
Iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(c)

Figure 2.4: (a) Mean margin of victory of each algorithm for optimizing the robust linear
regression loss. Higher margin of victory indicates better performance. (b-c) Objective values
achieved by each algorithm on two objective functions from the test set. Lower objective
values indicate better performance. Best viewed in colour.

Figures 2.4b and 2.4c show performance on objective functions from the test set. In Figure
2.4b, predicted step descent not only converges the fastest, but also reaches a better optimum
than all other algorithms. In Figure 2.4c, predicted step descent converges the fastest and
is able to avoid most of the oscillations that hamper gradient descent and momentum after
reaching the optimum.

2.8.3 Neural Net Classifier

Finally, we train an optimizer to train a small neural net classifier. We consider a two-layer
neural net with ReLU activation on the hidden units and softmax activation on the output
units. We use the cross-entropy loss combined with `2 regularization on the weights. To
train the model, we need to optimize the following objective:

min
W,U,b,c

− 1

n

n∑

i=1

log




exp
(

(U max (Wxi + b, 0) + c)yi

)

∑
j exp

(
(U max (Wxi + b, 0) + c)j

)


+

λ

2
‖W‖2

F +
λ

2
‖U‖2

F ,

where W ∈ Rh×d, b ∈ Rh, U ∈ Rp×h, c ∈ Rp denote the first-layer and second-layer weights
and biases, xi ∈ Rd and yi ∈ {1, . . . , p} denote the input and target class label of the ith

instance, λ denotes the coefficient on regularizers and (v)j denotes the jth component of v.
For our experiments, we use λ = 0.0005 and d = h = p = 2. The error surface is known to
have complex geometry and multiple local optima, making this a challenging optimization
problem.

The training set consists of 80 objective functions, each of which corresponds to the
objective for training a neural net on a different dataset. Each dataset is generated by
generating four multivariate Gaussians with random means and covariances and sampling

CHAPTER 2. LEARNING TO OPTIMIZE 42

0 20 40 60 80 100
Iteration

0.15

0.10

0.05

0.00

0.05

M
e
a
n
 M

a
rg

in
 o

f
V

ic
to

ry

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(a)

0 20 40 60 80 100
Iteration

0.4

0.6

0.8

1.0

1.2

1.4

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(b)

0 20 40 60 80 100
Iteration

0.4

0.6

0.8

1.0

1.2

1.4

1.6

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

(c)

Figure 2.5: (a) Mean margin of victory of each algorithm for training neural net classifiers.
Higher margin of victory indicates better performance. (b-c) Objective values achieved by
each algorithm on two objective functions from the test set. Lower objective values indicate
better performance. Best viewed in colour.

25 points from each. The points from the same Gaussian are assigned the same random label
of either 0 or 1. We make sure not all of the points in the dataset are assigned the same
label.

We evaluate the learned optimizer in the same manner as above. As shown in Figure
2.5a, predicted step descent significantly outperforms all other algorithms. In particular, as
evidenced by the sizeable and sustained gap between margin of victory for predicted step
descent and the momentum method, predicted step descent is able to reach much better
optima and is less prone to getting trapped in local optima compared to other methods.
This gap is also larger compared to that exhibited in previous sections, suggesting that
hand-engineered algorithms are more sub-optimal on challenging optimization problems and
so the potential for improvement from learning the algorithm is greater in such settings. Due
to non-convexity, conjugate gradient and L-BFGS often diverge.

Performance on examples of objective functions from the test set is shown in Figures
2.5b and 2.5c. As shown, predicted step descent is able to reach better optima than all other
methods and largely avoids oscillations that other methods suffer from.

2.8.4 Visualization of Optimization Trajectories

We visualize optimization trajectories followed by the learned algorithm and various hand-
engineered algorithms to gain further insights into the behaviour of the learned algorithm.
We generated random two-dimensional logistic regression problems and plot trajectories
followed by different algorithms on each problem in Figure 2.6.

As shown, the learned algorithm exhibits some interesting behaviours. In Figure 2.6a,
the learned algorithm does not take as large a step as L-BFGS initially, but takes larger
steps than L-BFGS later on as it approaches the optimum. In other words, the learned
algorithm appears to be not as greedy as L-BFGS. In Figures 2.6b and 2.6d, the learned

CHAPTER 2. LEARNING TO OPTIMIZE 43

0 20 40 60 80
Iteration

0.6

0.8

1.0

1.2

1.4

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

2 1 0 1 2
Dimension 1

1

0

1

2

D
im

e
n
si

o
n
 2

Gradient Descent (7 Steps)
Momentum (16 Steps)
Conjugate Gradient (8 Steps)
L-BFGS (10 Steps)
Predicted Step Descent (5 Steps)

0.45

0.75

1.05

1.35

1.65

1.95

2.25

2.55

2.85

(a)

0 20 40 60 80
Iteration

0.6

0.8

1.0

1.2

1.4

1.6

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

3 2 1 0 1
Dimension 1

1

0

1

2

3

D
im

e
n
si

o
n
 2

Gradient Descent (4 Steps)
Momentum (21 Steps)
Conjugate Gradient (8 Steps)
L-BFGS (9 Steps)
Predicted Step Descent (5 Steps)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

(b)

0 20 40 60 80
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

2 1 0 1 2 3
Dimension 1

4

3

2

1

0

1

2

D
im

e
n
si

o
n
 2

Gradient Descent (32 Steps)
Momentum (61 Steps)
Conjugate Gradient (26 Steps)
L-BFGS (26 Steps)
Predicted Step Descent (5 Steps)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

(c)

0 20 40 60 80
Iteration

0.8

1.0

1.2

1.4

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Predicted Step Descent

0.0 0.5 1.0 1.5 2.0 2.5
Dimension 1

1.5

1.0

0.5

0.0

0.5

1.0

D
im

e
n
si

o
n
 2

Gradient Descent (4 Steps)
Momentum (20 Steps)
Conjugate Gradient (8 Steps)
L-BFGS (2 Steps)
Predicted Step Descent (5 Steps)

0.66

0.84

1.02

1.20

1.38

1.56

1.74

(d)

Figure 2.6: Objective values and trajectories produced by different algorithms on unseen
random two-dimensional logistic regression problems. Each pair of plots corresponds to a
different logistic regression problem. Objective values are shown on the vertical axis in the
left plot and as contour levels in the right plot, where darker shading represents higher
objective values. In the right plot, the axes represent the values of the iterates in each
dimension and are of the same scale. Each arrow represents one iteration of an algorithm,
whose tail and tip correspond to the preceding and subsequent iterates respectively. Best
viewed in colour.

algorithm initially overshoots, but appears to have learned how to recover while avoiding
oscillations. In Figure 2.6c, the learned algorithm is able to make rapid progress despite
vanishing gradients.

2.9 Learning Optimizers for High-Dimensional

Problems

The problem of learning high-dimensional optimization algorithms presents challenges for
reinforcement learning algorithms due to high dimensionality of the state and action spaces.
For example, in the case of GPS, because the running time of LQG is cubic in dimensionality
of the state space, performing policy search even in the simple class of linear-Gaussian policies
would be prohibitively expensive when the dimensionality of the optimization problem is
high.

CHAPTER 2. LEARNING TO OPTIMIZE 44

0 50 100 150 200 250 300 350
Iteration

10

20

30

40

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(a)

0 50 100 150 200 250 300 350
Iteration

10

20

30

40

50

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(b)

0 50 100 150 200 250 300 350
Iteration

20

40

60

80

100

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(c)

Figure 2.7: Comparison of the various hand-engineered and learned algorithms on training
neural nets with 48 input and hidden units on (a) TFD, (b) CIFAR-10 and (c) CIFAR-100
with mini-batches of size 64. The vertical axis is the true objective value and the horizontal
axis represents the iteration. Best viewed in colour.

Fortunately, many high-dimensional optimization problems have underlying structure
that can be exploited. For example, the parameters of neural nets are equivalent up to
permutation among certain coordinates. More concretely, for fully connected neural nets,
the dimensions of a hidden layer and the corresponding weights can be permuted arbitrarily
without changing the function they compute. Because permuting the dimensions of two
adjacent layers can permute the weight matrix arbitrarily, an optimization algorithm should
be invariant to permutations of the rows and columns of a weight matrix. A reasonable
prior to impose is that the algorithm should behave in the same manner on all coordinates
that correspond to entries in the same matrix. That is, if the values of two coordinates in
all current and past gradients and iterates are identical, then the step vector produced by
the algorithm should have identical values in these two coordinates. We will refer to the set
of coordinates on which permutation invariance is enforced as a coordinate group. For the
purposes of learning an optimization algorithm for neural nets, a natural choice would be to
make each coordinate group correspond to a weight matrix or a bias vector. Hence, the total
number of coordinate groups is twice the number of layers, which is usually fairly small.

In the case of GPS, we impose this prior on both ψ and π. For the purposes of updat-
ing η, we first impose a block-diagonal structure on the parameters At, Bt and Ft of the
fitted transition probability density p̃ (st+1| st, at, t; ζ) = N (Atst + Btat + ct, Ft), so that
for each coordinate in the optimization problem, the dimensions of st+1 that correspond to
the coordinate only depend on the dimensions of st and at that correspond to the same
coordinate. As a result, p̃ (st+1| st, at, t; ζ) decomposes into multiple independent probability
densities p̃j

(
sjt+1

∣∣ sjt , ajt , t; ζj
)
, one for each coordinate j. Similarly, we also impose a block-

diagonal structure on Ct for fitting c̃(st) and on the parameter matrix of the fitted model
for π (at| st; θ). Under these assumptions, Kt and Gt are guaranteed to be block-diagonal
as well. Hence, the Bregman divergence penalty term, D (η, θ) decomposes into a sum of
Bregman divergence terms, one for each coordinate.

We then further constrain dual variables λt, sub-vectors of parameter vectors and sub-

CHAPTER 2. LEARNING TO OPTIMIZE 45

0 50 100 150 200 250 300 350
Iteration

50

100

150

200

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(a)

0 50 100 150 200 250 300 350
Iteration

50

100

150

200

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(b)

0 50 100 150 200 250 300 350
Iteration

50

100

150

200

250

300

350

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(c)

Figure 2.8: Comparison of the various hand-engineered and learned algorithms on training
neural nets with 100 input units and 200 hidden units on (a) TFD, (b) CIFAR-10 and (c)
CIFAR-100 with mini-batches of size 64. The vertical axis is the true objective value and
the horizontal axis represents the iteration. Best viewed in colour.

0 50 100 150 200 250 300 350
Iteration

10

20

30

40

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(a)

0 50 100 150 200 250 300 350
Iteration

10

20

30

40

50

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(b)

0 50 100 150 200 250 300 350
Iteration

20

40

60

80

100

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(c)

Figure 2.9: Comparison of the various hand-engineered and learned algorithms on training
neural nets with 48 input and hidden units on (a) TFD, (b) CIFAR-10 and (c) CIFAR-100
with mini-batches of size 10. The vertical axis is the true objective value and the horizontal
axis represents the iteration. Best viewed in colour.

matrices of parameter matrices corresponding to each coordinate group to be identical across
the group. Additionally, we replace the weight νt on D (η, θ) with an individual weight on
each Bregman divergence term for each coordinate group. The problem then decomposes
into multiple independent subproblems, one for each coordinate group. Because the dimen-
sionality of the state subspace corresponding to each coordinate is constant, LQG can be
executed on each subproblem much more efficiently.

Similarly, for π, we choose a µπω(·) that shares parameters across different coordinates
in the same group. We also impose a block-diagonal structure on Σπ and constrain the
appropriate sub-matrices to share their entries.

CHAPTER 2. LEARNING TO OPTIMIZE 46

2.9.1 Features

We describe the features Φ(·) and Ψ(·) at time step t, which define the state st and observation
ot respectively.

Because of the stochasticity of gradients and objective values, the state features Φ(·)
are defined in terms of summary statistics of the history of iterates

{
x(i)
}t
i=0

, gradients{
∇f̂(x(i))

}t
i=0

and objective values
{
f̂(x(i))

}t
i=0

. We define the following statistics, which

we will refer to as the average recent iterate, gradient and objective value respectively:

• x(i) := 1
min(i+1,3)

∑i
j=max(i−2,0) x

(j)

• ∇f̂(x(i)) := 1
min(i+1,3)

∑i
j=max(i−2,0)∇f̂(x(j))

• f̂(x(i)) := 1
min(i+1,3)

∑i
j=max(i−2,0) f̂(x(j))

The state features Φ(·) consist of the relative change in the average recent objective value,
the average recent gradient normalized by the magnitude of the a previous average recent
gradient and a previous change in average recent iterate relative to the current change in
average recent iterate:

•
{(
f̂(x(t−5i))− f̂(x(t−5(i+1)))

)
/f̂(x(t−5(i+1)))

}24

i=0

•
{
∇f̂(x(t−5i))/

(∣∣∣∇f̂(x(max(t−5(i+1),tmod5)))
∣∣∣+ 1

)}25

i=0

•
{ ∣∣∣x(max(t−5(i+1),tmod5+5))−x(max(t−5(i+2),tmod5))

∣∣∣∣∣∣x(t−5i)−x(t−5(i+1))
∣∣∣+0.1

}24

i=0

Note that all operations are applied element-wise. Also, whenever a feature becomes un-
defined (i.e.: when the time step index becomes negative), it is replaced with the all-zeros
vector.

Unlike state features, which are only used when training the optimization algorithm,
observation features Ψ(·) are used both during training and at test time. Consequently,
we use noisier observation features that can be computed more efficiently and require less
memory overhead. The observation features consist of the following:

•
(
f̂(x(t))− f̂(x(t−1))

)
/f̂(x(t−1))

• ∇f̂(x(t))/
(∣∣∣∇f̂(x(max(t−1,0)))

∣∣∣+ 1
)

• |x
(max(t−1,1))−x(max(t−2,0))|
|x(t)−x(t−1)|+0.1

2.9.2 Experiments

For clarity, we will refer to training of the optimization algorithm as “meta-training” to
differentiate it from base-level training, which will simply be referred to as “training”.

CHAPTER 2. LEARNING TO OPTIMIZE 47

0 50 100 150 200 250 300 350
Iteration

50

100

150

200

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(a)

0 50 100 150 200 250 300 350
Iteration

50

100

150

200

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(b)

0 50 100 150 200 250 300 350
Iteration

50

100

150

200

250

300

350

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(c)

Figure 2.10: Comparison of the various hand-engineered and learned algorithms on training
neural nets with 100 input units and 200 hidden units on (a) TFD, (b) CIFAR-10 and (c)
CIFAR-100 with mini-batches of size 10. The vertical axis is the true objective value and
the horizontal axis represents the iteration. Best viewed in colour.

We meta-trained an optimization algorithm on a single objective function, which corre-
sponds to the problem of training a two-layer neural net with 48 input units, 48 hidden units
and 10 output units on a randomly projected and normalized version of the MNIST training
set with dimensionality 48 and unit variance in each dimension. We modelled the optimiza-
tion algorithm using an recurrent neural net with a single layer of 128 LSTM [71] cells. We
used a time horizon of 400 iterations and a mini-batch size of 64 for computing stochastic
gradients and objective values. We evaluate the optimization algorithm on its ability to gen-
eralize to unseen objective functions, which correspond to the problems of training neural
nets on different tasks/datasets. We evaluate the learned optimization algorithm on three
datasets, the Toronto Faces Dataset (TFD), CIFAR-10 and CIFAR-100. These datasets are
chosen for their very different characteristics from MNIST and each other: TFD contains
3300 grayscale images that have relatively little variation and has seven different categories,
whereas CIFAR-100 contains 50,000 colour images that have varied appearance and has 100
different categories.

All algorithms are tuned on the training objective function. For hand-engineered algo-
rithms, this entails choosing the best hyperparameters; for learned algorithms, this entails
meta-training on the objective function. We compare to the seven hand-engineered algo-
rithms: stochastic gradient descent, momentum, conjugate gradient, L-BFGS, ADAM, Ada-
Grad and RMSprop. In addition, we compare to an optimization algorithm meta-trained
using the method described in [4] on the same training objective function (training two-layer
neural net on randomly projected and normalized MNIST) under the same setting (a time
horizon of 400 iterations and a mini-batch size of 64).

First, we examine the performance of various optimization algorithms on similar objective
functions. The optimization problems under consideration are those for training neural nets
that have the same number of input and hidden units (48 and 48) as those used during
meta-training. The number of output units varies with the number of categories in each
dataset. We use the same mini-batch size as that used during meta-training. As shown

CHAPTER 2. LEARNING TO OPTIMIZE 48

0 100 200 300 400 500 600 700
Iteration

50

100

150

200

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(a)

0 100 200 300 400 500 600 700
Iteration

50

100

150

200

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(b)

0 100 200 300 400 500 600 700
Iteration

50

100

150

200

250

300

350

O
b
je

ct
iv

e
 V

a
lu

e

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
AdaGrad
ADAM
RMSprop
L2LBGDBGD
Predicted Step Descent

(c)

Figure 2.11: Comparison of the various hand-engineered and learned algorithms on training
neural nets with 100 input units and 200 hidden units on (a) TFD, (b) CIFAR-10 and (c)
CIFAR-100 for 800 iterations with mini-batches of size 64. The vertical axis is the true
objective value and the horizontal axis represents the iteration. Best viewed in colour.

in Figure 2.7, the optimization algorithm meta-trained using our method (which we will
refer to as Predicted Step Descent) consistently descends to the optimum the fastest across
all datasets. On the other hand, other algorithms are not as consistent and the relative
ranking of other algorithms varies by dataset. This suggests that Predicted Step Descent
has learned to be robust to variations in the data distributions, despite being trained on
only one objective function, which is associated with a very specific data distribution that
characterizes MNIST. It is also interesting to note that while the algorithm meta-trained
using [4] (which we will refer to as L2LBGDBGD) performs well on CIFAR, it is unable to
reach the optimum on TFD.

Next, we change the architecture of the neural nets and see if Predicted Step Descent
generalizes to the new architecture. We increase the number of input units to 100 and the
number of hidden units to 200, so that the number of parameters is roughly increased by
a factor of 8. As shown in Figure 2.8, Predicted Step Descent consistently outperforms
other algorithms on each dataset, despite having not been trained to optimize neural nets
of this architecture. Interestingly, while it exhibited a bit of oscillation initially on TFD
and CIFAR-10, it quickly recovered and overtook other algorithms, which is reminiscent
of the phenomenon for low-dimensional optimization problems. This suggests that it has
learned to detect when it is performing poorly and knows how to change tack accordingly.
L2LBGDBGD experienced difficulties on TFD and CIFAR-10 as well, but slowly diverged.

We now investigate how robust Predicted Step Descent is to stochasticity of the gradients.
To this end, we take a look at its performance when we reduce the mini-batch size from 64
to 10 on both the original architecture with 48 input and hidden units and the enlarged
architecture with 100 input units and 200 hidden units. As shown in Figure 2.9, on the
original architecture, Predicted Step Descent still outperforms all other algorithms and is
able to handle the increased stochasticity fairly well. In contrast, conjugate gradient and
L2LBGDBGD had some difficulty handling the increased stochasticity on TFD and to a
lesser extent, on CIFAR-10. In the former case, both diverged; in the latter case, both were

CHAPTER 2. LEARNING TO OPTIMIZE 49

progressing slowly towards the optimum.
On the enlarged architecture, Predicted Step Descent experienced some significant os-

cillations on TFD and CIFAR-10, but still managed to achieve a much better objective
value than all the other algorithms. Many hand-engineered algorithms also experienced
much greater oscillations than previously, suggesting that the optimization problems are
inherently harder. L2LBGDBGD diverged fairly quickly on these two datasets.

Finally, we try doubling the number of iterations. As shown in Figure 2.11, despite being
trained over a time horizon of 400 iterations, Predicted Step Descent behaves reasonably
beyond the number of iterations it is trained for.

50

Chapter 3

Implicit Maximum Likelihood
Estimation

Generative modelling is a cornerstone of machine learning and has received increasing atten-
tion. Recent models like variational autoencoders (VAEs) [81, 109] and generative adversarial
nets (GANs) [57, 62], have delivered impressive advances in performance and generated a
lot of excitement.

Generative models can be classified into two categories: prescribed models and implicit
models [43, 100]. Prescribed models are defined by an explicit specification of the density, and
so their unnormalized complete likelihood can be usually expressed in closed form. Examples
include models whose complete likelihoods lie in the exponential family, such as mixture of
Gaussians [51], hidden Markov models [12], Boltzmann machines [69]. Because computing
the normalization constant, also known as the partition function, is generally intractable,
sampling from these models is challenging.

On the other hand, implicit models are defined most naturally in terms of a (simple)
sampling procedure. Most models take the form of a deterministic parameterized transfor-
mation Tθ(·) of an analytic distribution, like an isotropic Gaussian. This can be naturally
viewed as the distribution induced by the following sampling procedure:

1. Sample z ∼ N (0, I)

2. Return x := Tθ(z)

The transformation Tθ(·) often takes the form of a highly expressive function approximator,
like a neural net. Examples include generative adversarial nets (GANs) [57, 62] and genera-
tive moment matching nets (GMMNs) [92, 48]. The marginal likelihood of such models can
be characterized as follows:

pθ(x) =
∂

∂x1

· · · ∂
∂xd

∫

{z|∀i (Tθ(z))i≤xi}
φ(z)dz

where φ(·) denotes the probability density function (PDF) of N (0, I).

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 51

In general, attempting to reduce this to a closed-form expression is hopeless. Evaluating it
numerically is also challenging, since the domain of integration could consist of an exponential
number of disjoint regions and numerical differentiation is ill-conditioned.

These two categories of generative models are not mutually exclusive. Some models admit
both an explicit specification of the density and a simple sampling procedure and so can be
considered as both prescribed and implicit. Examples include variational autoencoders [81,
109], their predecessors [96, 29] and extensions [33], and directed/autoregressive models, e.g.,
[102, 18, 84, 104].

3.1 Challenges in Parameter Estimation

Maximum likelihood [54, 49] is perhaps the standard method for estimating the parameters
of a probabilistic model from observations. The maximum likelihood estimator (MLE) has
a number of appealing properties: under mild regularity conditions, it is asymptotically
consistent, efficient and normal. A long-standing challenge of training probabilistic models
is the computational roadblocks of maximizing the log-likelihood function directly.

For prescribed models, maximizing likelihood directly requires computing the partition
function, which is intractable for all but the simplest models. Many powerful techniques
have been developed to attack this problem, including variational methods [79], contrastive
divergence [68, 126], score matching [75] and pseudolikelihood maximization [26], among
others.

For implicit models, the situation is even worse, as there is no term in the log-likelihood
function that is in closed form; evaluating any term requires computing an intractable inte-
gral. As a result, maximizing likelihood in this setting seems hopelessly difficult. A variety
of likelihood-free solutions have been proposed that in effect minimize a divergence mea-
sure between the data distribution and the model distribution. They come in two forms:
those that minimize an f -divergence, and those that minimize an integral probability met-
ric [101]. In the former category are GANs, which are based on the idea of minimizing
the distinguishability between data and samples [121, 63]. It has been shown that when
given access to an infinitely powerful discriminator, the original GAN objective minimizes
the Jensen-Shannon divergence, the − logD variant of the objective minimizes the reverse
KL-divergence minus a bounded quantity [5], and later extensions [103] minimize arbitrary
f -divergences. In the latter category are GMMNs which use maximum mean discrepancy
(MMD) [60] as the witness function.

In the case of GANs, despite the theoretical results, there are a number of challenges
that arise in practice, such as mode dropping/collapse [57, 7], vanishing gradients [5, 116]
and training instability [57, 8]. A number of explanations have been proposed to explain
these phenomena and point out that many theoretical results rely on three assumptions: the
discriminator must have infinite modelling capacity [57, 8], the number of samples from the
true data distribution must be infinite [8, 116] and the gradient ascent-descent procedure [9,
113] can converge to a global pure-strategy Nash equilibrium [57, 8]. When some of these

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 52

assumptions do not hold, the theoretical guarantees do not necessarily apply. A number of
ways have been proposed that alleviate some of these issues, e.g., [129, 112, 45, 47, 6, 70, 93,
132], but a way of solving all three issues simultaneously remains elusive.

3.2 Contribution

We present an alternative method for estimating parameters in implicit models. Like the
methods above, our method is likelihood-free, but can be shown to be equivalent to maxi-
mizing likelihood under some conditions. Our result holds in the parametric finite sample
setting, i.e.: when the capacity of the model is finite and the number of data examples is
finite. The idea behind the method is simple: it finds the nearest generated sample to each
data example and optimizes the model parameters to pull the sample towards it. The direc-
tion in which nearest neighbour search is performed is of critical importance – we contrast
this with a GAN with a 1-nearest neighbour discriminator in Figure 3.1, and show that
such a model essentially performs nearest neighbour search in the other direction, i.e.: push
each generated sample to the nearest data example. The latter ensures that each sample is
close to a data example, but each data example does not necessarily have a nearby sample.
Intuitively, the data examples that do not have nearby samples are not assigned high density
by the model – in other words, the modes that generated the data examples are dropped.

The proposed method could sidestep the three issues mentioned above: mode collapse,
vanishing gradients and training instability. Modes are not dropped because the loss ensures
each data example has a sample nearby at optimality; gradients do not vanish because the
gradient of the distance between a data example and its nearest sample does not become
zero unless they coincide; training is stable because the estimator is the solution to a sim-
ple minimization problem. By leveraging recent advances in fast nearest neighbour search
algorithms [90, 91], this approach is able to scale to large, high-dimensional datasets.

3.3 Method

3.3.1 Intuition

Consider a model distribution that maximizes the likelihood of the data. Since likelihood
is the product of densities evaluated at all data examples, the model density at each data
example should be high. Suppose we don’t observe the model distribution directly, and
instead only observe independent and identically distributed (i.i.d.) samples drawn from
the model. Because the density at data examples is high, more samples are expected to lie
near data examples than elsewhere. Can we construct an objective function that encourages
the model to have this behaviour? A lot of samples near a data example typically means
that radius of the neighbourhood around the data example that only contains one sample is
small. Therefore, a natural objective is to minimize the distance from each data example to
the nearest sample.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 53

Generated
Sample

Real Data
Example

(a) IMLE (Proposed Method)

Fake

Real

(b) Nearest Neighbours GAN
(Step 1)

Dropped
Modes

(c) Nearest Neighbours GAN
(Step 2)

Figure 3.1: (a) An illustration of how the proposed method works, and (b-c) a comparison
to a GAN with a 1-nearest neighbour discriminator. The blue circles represent generated
samples and the red squares represent real data examples. In (b-c), the yellow regions
represent those classified as real by the discriminator, whereas the white regions represent
those classified as fake. In the case of (a) the proposed method (IMLE), each data example
pulls the nearest sample towards it, whereas in the case of (b-c) the GAN, each sample is
essentially pushed towards the nearest data example. In the latter case, some data examples
may not be selected by any sample and therefore will not have samples nearby – this is a
manifestation of mode dropping, since the modes that generated these data examples are
not modelled. The proposed method avoids this phenomenon because it conducts nearest
neighbour search in the opposite direction, which ensures that every data example will have
a nearby sample.

3.3.2 Definition

We are given a set of n data examples x1, . . . ,xn and some unknown parameterized prob-
ability distribution Pθ with density pθ. We also have access to an oracle that allows us to
draw independent and identically distributed (i.i.d.) samples from Pθ.

Let x̃θ1, . . . , x̃
θ
m be i.i.d. samples from Pθ, where m ≥ n. For each data example xi, we

define a random variable Rθ
i to be the distance between xi and the nearest sample. More

precisely,

Rθ
i := min

j∈[m]

∥∥x̃θj − xi
∥∥2

2

where [m] denotes {1, . . . ,m}.
The implicit maximum likelihood estimator θ̂IMLE is defined as:

θ̂IMLE := arg min
θ

ERθ1,...,Rθn

[
n∑

i=1

Rθ
i

]

= arg min
θ

Ex̃θ1,...,x̃
θ
m

[
n∑

i=1

min
j∈[m]

∥∥x̃θj − xi
∥∥2

2

]

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 54

An illustration of how the proposed method works is shown in Figure 3.1, along with a
comparison to a GAN with a 1-nearest neighbour discriminator.

3.3.3 Algorithm

We outline the proposed parameter estimation procedure in Algorithm 6. In each outer
iteration, we draw m i.i.d. samples from the current model Pθ. We then randomly select
a batch of examples from the dataset and find the nearest sample from each data example.
We then run a standard iterative optimization algorithm, like stochastic gradient descent
(SGD), to minimize a sample-based version of the Implicit Maximum Likelihood Estimator
(IMLE) objective.

Because our algorithm needs to solve a nearest neighbour search problem in each outer
iteration, the scalability of our method depends on our ability to find the nearest neighbours
quickly. This was traditionally considered to be a hard problem, especially in high dimen-
sions. However, this is no longer the case, due to recent advances in nearest neighbour search
algorithms [90, 91].

Algorithm 6 Implicit maximum likelihood estimation (IMLE) procedure

Require: The dataset D = {xi}ni=1 and a sampling mechanism for the implicit model Pθ
Initialize θ to a random vector
for k = 1 to K do

Draw i.i.d. samples x̃θ1, . . . , x̃
θ
m from Pθ

Pick a random batch S ⊆ {1, . . . , n}
σ(i)← arg minj

∥∥xi − x̃θj
∥∥2

2
∀i ∈ S

for l = 1 to L do
Pick a random mini-batch S̃ ⊆ S

θ ← θ − η∇θ

(
n
|S̃|

∑
i∈S̃

∥∥∥xi − x̃θσ(i)

∥∥∥
2

2

)

end for
end for
return θ

Note that the use of Euclidean distance is not a major limitation of the proposed ap-
proach. A variety of distance metrics are either exactly or approximately equivalent to
Euclidean distance in some non-linear embedding space, in which case the theoretical guar-
antees are inherited from the Euclidean case. This encompasses popular distance metrics
used in the literature, like the Euclidean distance between the activations of a neural net,
which is often referred to as a perceptual similarity metric [112, 46]. For distance metrics
that cannot be embedded in Euclidean space, the analysis can be easily adapted to other
metrics with minor modifications.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 55

3.4 Analysis

Before formally stating the theoretical results, we first illustrate the intuition behind why the
proposed estimator is equivalent to maximum likelihood estimator under some conditions.
For simplicity, we will consider the special case where we only have a single data example
x1 and a single sample x̃θ1. Consider the total density of Pθ inside a ball of radius of t
centred at x1 as a function of t, a function that will be denoted as F̃ θ(t). If the density in
the neighbourhood of x1 is high, then F̃ θ(t) would grow rapidly as t increases. If, on the
other hand, the density in the neighbourhood of x1 is low, then F̃ θ(t) would grow slowly.
So, maximizing likelihood is equivalent to making F̃ θ(t) grow as fast as possible. To this
end, we can maximize the area under the function F̃ θ(t), or equivalently, minimize the
area under the function 1− F̃ θ(t). Observe that F̃ θ(t) can be interpreted as the cumulative
distribution function (CDF) of the Euclidean distance between x1 and x̃θ1, which is a random
variable because x̃θ1 is random and will be denoted as R̃θ. Because R̃θ is non-negative, recall

that E
[
R̃θ
]

=
∫∞

0
Pr
(
R̃θ > t

)
dt =

∫∞
0

(
1− F̃ θ(t)

)
dt, which is exactly the area under

the function 1 − F̃ θ(t). Therefore, we can maximize likelihood of a data example x1 by

minimizing E
[
R̃θ
]
, or in other words, minimizing the expected distance between the data

example and a random sample. To extend this analysis to the case with multiple data
examples, we show in the appendix that if the objective function is a summation, applying
a monotonic transformation to each term and then reweighting appropriately preserves the
optimizer under some conditions.

We now state the key theoretical result formally. Please refer to the appendix for the
proof.

Theorem 15. Consider a set of observations x1, . . . ,xn, a parameterized family of distri-
butions Pθ with probability density function (PDF) pθ(·) and a unique maximum likelihood
solution θ∗. For any m ≥ 1, let x̃θ1, . . . , x̃

θ
m ∼ Pθ be i.i.d. random variables and define

r̃θ :=
∥∥x̃θ1
∥∥2

2
, Rθ := minj∈[m]

∥∥x̃θj
∥∥2

2
and Rθ

i := minj∈[m]

∥∥x̃θj − xi
∥∥2

2
. Let F θ(·) be the cumula-

tive distribution function (CDF) of r̃θ and Ψ(z) := minθ
{
E
[
Rθ
]
|pθ(0) = z

}
.

If Pθ satisfies the following:

• pθ(x) is differentiable w.r.t. θ and continuous w.r.t. x everywhere.

• ∀θ,v, there exists θ′ such that pθ(x) = pθ′(x + v) ∀x.

• For any θ1, θ2, there exists θ0 such that F θ0(t) ≥ max
{
F θ1(t), F θ2(t)

}
∀t ≥ 0 and

pθ0(0) = max {pθ1(0), pθ2(0)}.

• ∃τ > 0 such that ∀i ∈ [n] ∀θ /∈ Bθ∗(τ), pθ(xi) < pθ∗(xi), where Bθ∗(τ) denotes the ball
centred at θ∗ of radius τ .

• Ψ(z) is differentiable everywhere.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 56

• For all θ, if θ 6= θ∗, there exists j ∈ [d] such that

〈



Ψ′(pθ(x1))pθ(x1)
Ψ′(pθ∗ (x1))pθ∗ (x1)

...
Ψ′(pθ(xn))pθ(xn)

Ψ′(pθ∗ (xn))pθ∗ (xn)


 ,



∇θ (log pθ(x1))j

...
∇θ (log pθ(xn))j



〉
6= 0.

Then,

arg min
θ

n∑

i=1

E
[
Rθ
i

]

Ψ′(pθ∗(xi))pθ∗(xi)
= arg max

θ

n∑

i=1

log pθ(xi)

Furthermore, if pθ∗(x1) = · · · = pθ∗(xn), then,

arg min
θ

n∑

i=1

E
[
Rθ
i

]
= arg max

θ

n∑

i=1

log pθ(xi)

Now, we examine the restrictiveness of each condition. The first condition is satisfied
by nearly all analytic distributions. The second condition is satisfied by nearly all distribu-
tions that have an unrestricted location parameter, since one can simply shift the location
parameter by v. The third condition is satisfied by most distributions that have location
and scale parameters, like a Gaussian distribution, since the scale can be made arbitrarily
low and the location can be shifted so that the constraint on pθ(·) is satisfied. The fourth
condition is satisfied by nearly all distributions, whose density eventually tends to zero as the
distance from the optimal parameter setting tends to infinity. The fifth condition requires
minθ

{
E
[
Rθ
]
|pθ(0) = z

}
to change smoothly as z changes. The final condition requires the

two n-dimensional vectors, one of which can be chosen from a set of d vectors, to be not
exactly orthogonal. As a result, this condition is usually satisfied when d is large, i.e. when
the model is richly parameterized.

There is one remaining difficulty in applying this theorem, which is that the quantity
1/Ψ′(pθ∗(xi))pθ∗(xi), which appears as an coefficient on each term in the proposed objective,
is typically not known. If we consider a new objective that ignores the coefficients, i.e.∑n

i=1 E
[
Rθ
i

]
, then minimizing this objective is equivalent to minimizing an upper bound on

the ideal objective,
∑n

i=1 E
[
Rθ
i

]
/Ψ′(pθ∗(xi))pθ∗(xi). The tightness of this bound depends on

the difference between the highest and lowest likelihood assigned to individual data points
at the optimum, i.e. the maximum likelihood estimate of the parameters. Such a model
should not assign high likelihoods to some points and low likelihoods to others as long as
it has reasonable capacity, since doing so would make the overall likelihood, which is the
product of the likelihoods of individual data points, low. Therefore, the upper bound is
usually reasonably tight.

3.5 Experiments

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 57

(a) MNIST (b) TFD (c) CIFAR-10

Figure 3.2: Representative random samples from the model trained on (a) MNIST, (b)
Toronto Faces Dataset and (c) CIFAR-10.

Method MNIST TFD

DBN [19] 138± 2 1909± 66
SCAE [19] 121± 1.6 2110± 50
DGSN [20] 214± 1.1 1890± 29
GAN [57] 225± 2 2057± 26
GMMN [92] 147± 2 2085± 25
IMLE (Proposed) 257± 6 2139± 27

Table 3.1: Log-likelihood of the test data un-
der the Gaussian Parzen window density es-
timated from samples generated by different
methods.

We trained generative models using the pro-
posed method on three standard benchmark
datasets, MNIST, the Toronto Faces Dataset
(TFD) and CIFAR-10. All models take
the form of feedforward neural nets with
isotropic Gaussian noise as input.

For MNIST, the architecture consists of
two fully connected hidden layers with 1200
units each followed by a fully connected out-
put layer with 784 units. ReLU activations
were used for hidden layers and sigmoids
were used for the output layer. For TFD,
the architecture is wider and consists of two
fully connected hidden layers with 8000 units
each followed by a fully connected output layer with 2304 units. For both MNIST and TFD,
the dimensionality of the noise vector is 100.

For CIFAR-10, we used a simple convolutional architecture with 1000-dimensional Gaus-
sian noise as input. The architecture consists of five convolutional layers with 512 output
channels and a kernel size of 5 that all produce 4 × 4 feature maps, followed by a bilinear
upsampling layer that doubles the width and height of the feature maps. There is a batch
normalization layer followed by leaky ReLU activations with slope −0.2 after each convo-
lutional layer. This design is then repeated for each subsequent level of resolution, namely
8 × 8, 16 × 16 and 32 × 32, so that we have 20 convolutional layers, each with output 512
channels. We then add a final output layer with three output channels on top, followed by
sigmoid activations. We note that this architecture has more capacity than typical archi-

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 58

tectures used in other methods, like [108]. This is because our method aims to capture all
modes of the data distribution and therefore needs more modelling capacity than methods
that are permitted to drop modes.

Figure 3.3: Samples corresponding to the
same latent variable values at different points
in time while training the model on CIFAR-
10. Each row corresponds to a sample, and
each column corresponds to a particular point
in time.

Evaluation for implicit generative mod-
els in general remains an open problem.
Extrinsic evaluation metrics measure per-
formance indirectly via a downstream task,
e.g.: Inception score or Fréchet Inception
distance [112, 67]. Unfortunately, depen-
dence on the downstream task could intro-
duce bias.

Intrinsic evaluation metrics measure per-
formance without relying on external mod-
els or data. Popular examples like estimated
log-likelihood [20, 127] and visual assessment
of sample quality evaluate different prop-
erties – sample quality reflects precision,
whereas estimated log-likelihood focuses on
recall. Consequently, one is not a replace-
ment for the other. Two models that achieve
different levels of precision may simply be at
different points on the same precision-recall
curve, and therefore may not be directly
comparable. We visualize randomly chosen
samples in Figure 3.2 and report the esti-
mated log-likelihood in Table 3.1. As men-
tioned above, both evaluation criteria have
biases/deficiencies, so performing well on either of these metrics does not necessarily indicate
good density estimation performance. However, not performing badly on either metric can
provide some comfort that the model is simultaneously able to achieve reasonable precision
and recall.

As shown in Figure 3.2, despite its simplicity, the proposed method is able to generate
reasonably good samples for MNIST, TFD and CIFAR-10. Samples also seem fairly diverse.
This is supported by the estimated log-likelihood results in Table 3.1. Because the model
achieved a high score on that metric on both MNIST and TFD, this suggests that the model
did not suffer from significant mode dropping.

In Figure 3.5, we show samples and their nearest neighbours in the training set. Each
sample is quite different from its nearest neighbour in the training set, suggesting that the
model has not overfitted to examples in the training set.

Next, we visualize the learned manifold by walking along a geodesic on the manifold
between pairs of samples. More concretely, we generate five samples, arrange them in ar-
bitrary order, perform linear interpolation in latent variable space between adjacent pairs

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 59

(a) MNIST (b) TFD (c) CIFAR-10

Figure 3.4: Linear interpolation between samples in latent code space. The first image in
every row is an independent sample; all other images are interpolated between the previous
and the subsequent sample. Images along the path of interpolation are shown in the figure
arranged from left to right, top to bottom. They also wrap around, so that images in the
last row are interpolations between the last and first samples.

of samples, and generate an image from the interpolated latent variable. As shown in Fig-
ure 3.14, the images along the path of interpolation appear visually plausible and do not
have noisy artifacts. In addition, the transition from one image to the next appears smooth
on all datasets. This indicates that the support of the model distribution has not collapsed
to a set of isolated points and that the proposed method is able to learn the geometry of the
data manifold.

Finally, we illustrate the evolution of samples as training progresses in Figure 3.3. As
shown, the samples are initially blurry and become sharper over time. Importantly, sample
quality consistently improves over time, which demonstrates the stability of training.

3.6 Conditional Generative Modelling

In conditional generative modelling, the goal is to model the conditional distribution p(y|x),
rather than the marginal distribution p(y).

We consider an implicit model that is defined by the following sampling procedure:

1. Sample z ∼ N (0, I)

2. Return y := Tθ(x, z)

Here, Tθ is a neural net that takes in two inputs, the input x and the latent noise vector
z. We can contrast this with the unconditional setting, where Tθ only takes in a single input,
the latent noise vector z.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 60

(a) MNIST (b) TFD (c) CIFAR-10

Figure 3.5: Comparison of samples and their nearest neighbours in the training set. Images
in odd-numbered columns are samples; to the right of each sample is its nearest neighbour
in the training set.

In the conditional setting, we are effectively trying to model a family of distributions,
each of which is associated with a different value of x. As a result, two changes need to be
made to the IMLE algorithm. First, the value of x must be provided to the transformation
function Tθ in order to sample from the correct distribution. Second, the samples for different
values of x must be kept separate since they are from different distributions. Consequently,
for each input data example xi, we must look for the nearest sample in among the samples
generated from p(ỹ|xi). The IMLE algorithm modified for the conditional setting, which
will be known as conditional IMLE, is presented in Algorithm 7.

We also generalize the distance metric that is used, and modify the loss so that it admits
an arbitrary metric L(·, ·) between ground truth data and generated samples.

3.7 Application to Multimodal Conditional Image

Synthesis

In conditional image synthesis, the goal is to generate an image from some input, which
can influence the image that is generated. It encompasses a broad range of tasks; examples
include super-resolution, which aims to generate high-resolution images from low-resolution
inputs, and image synthesis from scene layout, which aims to generate images from semantic
segmentation maps.

Predominant approaches focus on the setting of generating a single image for each input
image, which we will refer to as the unimodal prediction problem. Relatively less attention
has been devoted to the more general and challenging problem of multimodal prediction,
which aims to generate multiple equally plausible images for the same input image.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 61

Algorithm 7 Conditional Implicit Maximum Likelihood Estimation (IMLE) Procedure

Require: The set of input X = {xi}ni=1, the set of corresponding targets Y = {yi}ni=1 and
a distance metric L(·, ·)
Initialize the parameters θ of the model/transformation function Tθ
for p = 1 to N do

Pick a random batch S ⊆ {1, . . . , n}
for i ∈ S do

Randomly generate i.i.d. m noise vectors z1, . . . , zm
ỹi,j ← Tθ(xi, zj) ∀j ∈ [m]
σ(i)← arg minj L(yi, ỹi,j) ∀j ∈ [m]

end for
for q = 1 to M do

Pick a random mini-batch S̃ ⊆ S
θ ← θ − η∇θ

(∑
i∈S̃ L(yi, ỹi,σ(i))

)
/|S̃|

end for
end for
return θ

Why is the latter important? Conditional image synthesis is, by its very nature, ill-posed.
That is, the information in the input is not enough to fully constrain the degrees of freedom
in the output, and there are many plausible outputs that could all be consistent with the
input. Therefore, we would like our system to be capable of generating all plausible outputs,
rather than just selecting some plausible output arbitrarily. This could be important for
downstream applications; for example, we may need to know the uncertainty of our system
to estimate the informativeness of the input, or filter out a subset of the generated images
to conform to some user-specified constraint.

This can be naturally formulated as a conditional generative modelling problem, where x
corresponds to the input image and y corresponds to the output image. The distribution we
would like to model is therefore p(y|x). Each plausible output image that is consistent with
the input image would be a mode of the distribution; because there could be many plausible
images that are consistent with the same input image, p(y|x) is usually multimodal. Different
output images could be then generated by sampling from our model for this distribution.

We demonstrate that our method is able to generate arbitrarily many different images for
the same input image that are both diverse and faithful to the input image, which compares
favourably conditional GAN-based methods, which can only generate a single output image
for the same input image because of mode collapse.

3.7.1 Tasks

We consider two different conditional image synthesis tasks, single image super-resolution
and image synthesis from scene layout. We describe them below.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 62

(a) Input (b) Samples

Figure 3.6: Samples generated by the proposed method (known as super-resolution implicit
model, or SRIM for short) for the task of single image super-resolution (by a factor of 8).
The top row shows different samples generated by our method, and the bottom row shows
the difference between adjacent samples. As shown by the difference between the samples,
the proposed method is able to generate diverse samples.

3.7.2 Single Image Super-Resolution

Given a low-resolution image, the problem of super-resolution requires the prediction of
multiple plausible versions of the image at a higher resolution. More formally, given a low-
resolution image x ∈ [0, 255]h×w×3, the goal is to predict plausible high-resolution images
ỹ ∈ [0, 255]H×W×3 that when downsampled, are consistent with x, where H > h and W > w.
We consider the challenging setting of upscaling by a factor of 8, i.e.: H = 8h and W = 8w.
In comparison, most prior super-resolution methods can only produce reasonable results
when the upscaling factor is 4 or less.

3.7.3 Image Synthesis from Scene Layout

Given a semantic segmentation map, the goal is to generate multiple plausible images that
are all consistent with the segmentation. More formally, given a segmentation map L ∈
{0, 1}h×w×c where h×w is the size of the image and c is the number of semantic classes, the

goal is to generate plausible images Ĩ ∈ Rh×w×3 that are consistent with L.
Some examples of the results are shown in Figures 3.6 and 3.7.

3.7.4 Comparison to Conditional GAN

Extending GAN-based approaches to perform multimodal prediction has proven to be chal-
lenging, due to the problem of mode collapse. More specifically, there is only one ground
truth output for every input and the GAN objective encourages every generated sample
based on an input to be similar to the corresponding ground truth output. As a result, the

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 63

(a) Input (b) Samples

Figure 3.7: Samples generated by the proposed method for the task of image synthesis from
scene layout. The group of images on the right are the different samples generated by our
method.

generator tends to produce almost identical samples for the same input, regardless of the
noise vector that is fed in [77].

Intuitively, this problem occurs because every sample is made similar to the ground
truth. This is undesirable, because there could be other images different from the ground
truth that are also perfectly valid, due to the ill-posed nature of conditional image synthesis.
Yet, generating any of such images would be penalized by the GAN objective; as a result,
diversity is discouraged and mode collapse happens as a consequence. On the other hand,
in conditional IMLE, only one of the samples is made similar to the ground truth.

3.7.5 Data

Single Image Super-Resolution For the problem of super-resolution, we can generate
the training data by taking high-resolution images and downsampling them. The downsam-
pled images will serve as input, and the original images will serve as the ground truth. The
data is a subset of the ImageNet ILSVRC-2012 dataset. The ground truth images have a
resolution of 256×256, which are obtained by anisotropic scaling of the original images. The
input images have a resolution of 32×32, which are obtained by downsampling the 256×256
images. The images used for training and testing are disjoint.

Image Synthesis from Scene Layout The choice of dataset is important for multimodal
image synthesis. For this task, the most common dataset in the unimodal setting is the
Cityscapes dataset [37]. However, it is not suitable for the multimodal setting because most
images in the dataset are taken under similar weather conditions and time of day and the
amount of variation in object colours is limited. This lack of diversity limits what any
multimodal method can do. On the other hand, the GTA-5 dataset [110], has much greater
variation in terms of weather conditions and object appearance. To demonstrate this, we
compare the colour distribution of both datasets and present the distribution of hues of both

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 64

(a) Input (b) SRIM (c) BicycleGAN

(d) Input (e) SRIM (f) BicycleGAN

Figure 3.8: Samples generated by the proposed method (SRIM) and the baseline (Bicy-
cleGAN). The top row in each group of images shows different samples generated by each
method, and the bottom row shows the difference between adjacent samples. As shown in the
bottom row, the difference between the samples of SRIM is greater than that of BicycleGAN,
which indicates that SRIM is able to generate more diverse samples.

datasets in Figure 3.10. As shown, Cityscapes is concentrated around a single mode in terms
of hue, whereas GTA-5 has much greater variation in hue. Additionally, the GTA-5 dataset
includes more 20000 images and so is much larger than Cityscapes.

3.7.6 Implementation Details

Common Across Both Tasks For both tasks of super-resolution and image synthesis
from semantic layout, we use a distance metric of the following form, where y and ỹ denote
the ground truth example and the generated sample respectively:

L(y, ỹ) =
l∑

i=1

λi||Φi(y)− Φi(ỹ)||p (3.1)

Here, Φ1(·), · · · ,Φl(·) compute features of the function inputs. Hyperparameters {λi}li=1 are
set such that each term makes the same contribution to the total sum on average.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 65

(a) Input (b) SRIM (c) BicycleGAN

(d) Input (e) SRIM (f) BicycleGAN

(g) Input (h) SRIM (i) BicycleGAN

Figure 3.9: Samples generated by the proposed method (SRIM) and the baseline (Bicy-
cleGAN). The top row in each group of images shows different samples generated by each
method, and the bottom row shows the difference between adjacent samples. As shown in the
bottom row, the difference between the samples of SRIM is greater than that of BicycleGAN,
which indicates that SRIM is able to generate more diverse samples.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 66

0 50 100 150 200 250

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 3.10: Comparison of histogram of hues between two datasets. Red is Cityscapes and
blue is GTA-5.

Figure 3.11: Network architecture for our super-resolution model.

Single Image Super-Resolution The network architecture is based on residual-in-residual
dense network proposed by [124]. We add an additional input for the latent vector z, which
is concatenated with the low-resolution input image before being fed into the first layer. In
addition, we add a tanh activation and an offset after the last layer to ensure the output
lies in the range [0, 1]. The network architecture is shown in Figure 3.11. For the distance
metric used in the loss function, we use the `2 norm (i.e. p = 2) and the raw pixel values
and the relu5 4 activations in VGG-19 [115] as the features Φi(·)’s.

We first pretrain the network with the latent code input being set to zero, and subse-
quently train it on random latent code input. We use nearest neighbour interpolation for
the upsampling layer initially and switch to bilinear upsampling later on.

Image Synthesis from Scene Layout The network architecture is based on the cascaded
refinement network (CRN) architecture proposed in [34]. Instead of having multiple groups
of three output channels, each of which is supposed to capture a different mode, we only
use a single group of three output channels. To endow the network with the capability to
generate an arbitrary number of modes, we add additional input channels for the latent code
z. This new model can be then interpreted as an implicit probabilistic model, which we can

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 67

train using conditional IMLE.
Because the input segmentation maps are provided at a high resolution, a noise input

z of size h × w × d could be very high-dimensional. To improve sample efficiency, we force
the noise to lie on a low-dimensional manifold. To this end, we add a noise encoder module,
which is a 3-layer convolutional network that takes L̂ and noise sampled from a Gaussian as
input and outputs an encoded noise vector ẑ of size h × w × d. We replace the original z
with the encoded ẑ and leave the rest of the architecture unchanged. For the distance metric
used in the loss function, we use the `1 norm (i.e. p = 1) and the conv1 2, conv2 2, conv3 2,
conv4 2, and conv5 2 activations in VGG-19 [115] as the features Φi(·)’s.

Even for diverse datasets like GTA-5, there can be a strong bias towards objects with
relatively common appearance. For example, black cars can be much more common than red
cars, and so if we were to train a model näıvely, we would need to generate a lot of samples
before seeing a red car. To address this, we propose two rebalancing strategies.

We first rebalance the dataset to increase the chance of rare images being sampled when
populating S (as shown in Algorithm 7). To this end, for each image in the training set, we
calculate the average pixel vector of each semantic class in that image. More concretely, we
compute the following for each image k:

Ck(p) =

∑h
i=1

∑w
j=1 L

k
i,j,pI

k
i,j∑h

i=1

∑w
j=1 L

k
i,j,p

For each category p, we consider the set of average pixel vectors for that category in all
training images, i.e.: {Ck(p)|k ∈ {1, . . . , N} such that class p appears in Lk}. We then fit
a Gaussian kernel density estimate to this set and obtain an estimate of the distribution of
average pixels of category p. Let Dp(·) denote the estimated probability density function
(PDF) for category p. Given the k-th training example, we define the rarity score of category
p:

Rp(k) =

{
1

Dp(Ck(p))
class p appears in Lk

0 otherwise

We allocate a portion of the batch S in Algorithm 7 to each of the top five categories
that have the largest overall area across the dataset. For each category, we sample training
images based on the rarity score and effectively upweight images containing objects with
rare appearance. The rationale for selecting the categories with the largest areas is because
they tend to appear more frequently and be more visually prominent. If we were to allocate
a fixed portion of the batch to rare categories, we would risk overfitting to images containing
those categories.

We then rebalance the pixels within the same training image, because it can contain both
common and rare objects. Therefore, we modify the loss function so that the objects with
rare appearance are upweighted. For each training example (Li, I i), we define a rarity score
mask Mi ∈ Rh×w×1:

Mi
j,k = Rp(i) if pixel (j, k) belongs to class p

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 68

σ BicycleGAN SRIM

0.3 4.31×10−2 5.91× 10−2

0.2 5.19×10−3 9.23× 10−3

0.15 4.67×10−4 1.02× 10−3

Table 3.2: Comparison of faithfulness-weighted variance achieved by the proposed method
(SRIM) and the leading multimodal image synthesis method, BicycleGAN. Higher value
means richer variation among the generated samples.

We then normalize Mi so that every entry lies in (0, 1]:

M̂i =Mi/max
j,k
Mi

j,k

The mask is then applied to the loss function (3.1) and the new loss L̂ becomes:

L̂ =
l∑

i=1

λl||M̂l ◦
[
Φl(I)− Φl(Ĩ)

]
||1

Here M̂l is the rarity score mask downsampled to match the size of Φl(·)

3.7.7 Results

Single Image Super-Resolution We would like a multimodal method to produce sam-
ples that are both diverse and consistent with the low-resolution input image. We propose a
evaluation metric, which we call faithfulness-weighted variance, that captures both of these
properties. It is defined as follows:

M =
∑

i

∑

j

wid(ỹi,j, ȳj),where wi = exp

(−d(ỹi,j,yj)

2σ2

)

where ỹi,j is the ith generated sample with respect to the jth input. ȳj is the mean sample
generated for jth input image. The wi is the faithfulness coefficient which takes the value of
a Gaussian kernel evaluated on the perceptual distance between a generated sample and the
true image, as measured by the LPIPS metric [128], which is denoted by d(·, ·). We report
results on a range of different σ’s for the Gaussian kernel. Intuitively, the faithfulness coef-
ficient ensures that a sample only contributes significantly to the metric if it is perceptually
consistent with the true image.

We evaluated the proposed method (SRIM) and BicycleGAN on a test set of 80 un-
seen images. On each image, 50 samples are generated using each method. The average
faithfulness-weighted variance for both methods are reported in Table 3.2. It can be seen
that SRIM achieved a higher weighted variance than BicycleGAN for all values of σ, which

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 69

(a) Pix2pix-HD+noise (b) BicycleGAN

(c) CRN (d) Our model

Figure 3.12: Comparison of different image samples generated from the same input scene
layout. The bottom-left image in (a) is the input scene layout and we generate 9 samples
for each model.

indicates it is capable of generating more diverse results that are also perceptually consistent
with the true image. This is also reflected in the qualitative results, as shown in Figure 3.9.

Because there has been no prior work on multimodal super-resolution, we compare to
the leading generic multimodal image synthesis method, BicycleGAN [130]. To cast super-
resolution into the image-to-image translation framework, which requires the input and out-
put resolutions to be the same, we first use bicubic upsampling to scale the 32 × 32 input
image to 256×256, and then use the upscaled image as the input to BicyleGAN. We used the
official implementation and trained for 800 epochs according to the recommended settings.

Image Synthesis from Scene Layout We train our model on 12403 training images and
evaluate on the validation set of 6383 images. Each image has a resolution of 256× 512. We
add 10 noise channels and set the hyperparameters shown in Algorithm 7 to the following
values: |S| = 400, m = 10, M = 10000, |Ŝ| = 1 and η = 1e− 5.

We measure the diversity of each method by generating 40 pairs of output images for
each of 100 input scene layouts from the test set. We then compute the average distance
between each pair of output images for each given input scene layout, which is then averaged
over all input scene layouts. The distance metric we use is LPIPS [128], which is designed

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 70

(a) Our model w/o the noise encoder and rebalancing
scheme

(b) Our model w/o the noise encoder

(c) Our model w/o the rebalancing scheme (d) Our model

Figure 3.13: Ablation study using the same input scene layout as in Fig. 3.12.

to measure perceptual dissimilarity. The results are shown in Table 3.3. As shown, the
proposed method outperforms the baselines by a large margin. We also perform an ablation
study and find that the proposed method performs better than variants that remove the
noise encoder or the rebalancing scheme, which demonstrates the value of each component
of our method.

We also evaluate the generated image quality by human evaluation. Since it is difficult
for humans to compare images with different styles, we selected the images that are closest to
the ground truth image in `1 distance among the images generated by CRN and our method.
We then asked 62 human subjects to evaluate the images generated for 20 scene layouts. For
each scene layout, they were asked to compare the image generated by CRN to the image
generated by our method and judge which image exhibited more obvious synthetic patterns.
The result is shown in Table 3.4.

A qualitative comparison is shown in Fig. 3.12. We compare to three baselines, Bicy-
cleGAN [131], Pix2pix-HD with latent noise input [123] and CRN. As shown, Pix2pix-HD
generates almost identical images, BicycleGAN generates images with heavy distortions and
CRN generates images with little diversity. In comparison, the images generated by our
method are diverse and do not suffer from distortions. We also perform an ablation study
in Fig. 3.13, which shows that each component of our method is important.

In addition, we perform linear interpolation of noise vectors to evaluate the quality of

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 71

(a) Change from daytime to night time

(b) Change of car colors

Figure 3.14: Images generated by interpolating between latent noise vectors.

(a) (b) (c) (d) (e)

Figure 3.15: Style consistency with the same latent noise vector. (a) is the original input-
output pair. We use the same latent noise vector used in (a) and apply it to (b),(c),(d) and
(e)

Model LPIPS score

CRN 0.11
CRN+noise 0.12

Ours w/o noise encoder 0.10
Ours w/o rebalancing scheme 0.17

Ours 0.19

Table 3.3: LPIPS score. We show the average perceptual distance of different models (in-
cluding ablation study) and our proposed model exhibited the greatest diversity.

CHAPTER 3. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 72

% of Images Containing More Artifacts

CRN 0.636± 0.242
Our method 0.364± 0.242

Table 3.4: Average percentage of images that are judged by humans to exhibit more obvious
synthetic patterns. Lower is better.

(a) Original (b) Add Car (c) Change Road to
Grass

(d) Change Building to
Trees

Figure 3.16: Generated images on four input scene layouts (which were obtained by manual
editing). For each generated image, the same latent noise vector was used. (a) is the original
input semantic map and the generated output, (b) adds a car on the road, (c) changes the
grass on the left to road and change the side walk on the right to grass and (d) changes the
building on the right to tree and changes all road to grass.

the learned latent space of noise vectors. As shown in 3.14(a), by interpolating between the
noise vectors corresponding to generated images during daytime and nighttime respectively,
we obtain a smooth transition from daytime to nighttime. We also show the transition in
car colour in 3.14(b). This suggests that the learned latent space is sensible and captures
the variation along both the daytime-nightime axis and the colour axis.

Finally, a successful method for image synthesis from scene layouts enables users to
manually edit the semantic map to synthesize desired imagery. One can do this simply by
adding/deleting objects or changing the class label of a certain object. In Figure 3.16 we show
several such changes. Note that all four inputs use the same latent noise vector; as shown,
the images are highly consistent in terms of style, which is quite useful because the style
should remain the same after editing the layout. We further demonstrate this in Figure 3.15
where we apply the latent noise vector used in (a) to vastly different segmentation maps in
(b),(c),(d),(e) and the sunset style is preserved across the different segmentation maps.

73

Appendix A

Nearest Neighbour Search

Below, we present proofs of the results shown in the main part of the dissertation. Through-
out our proofs, we use {p(i)}ni=1 to denote a re-ordering of the points {pi}ni=1 so that p(i) is
the ith closest point to the query q. For any given projection direction ujl associated with a
simple index, we also consider a ranking of the points {pi}ni=1 by their distance to q under
projection ujl in nondecreasing order. We say points are ranked before others if they appear
earlier in this ranking.

A.1 Generalized Union Bound

Lemma 1. For any set of events {Ei}Ni=1, the probability that at least k′ of them happen is

at most 1
k′

∑N
i=1 Pr (Ei).

Proof. For any set T ⊆ [N], define ẼT to be the intersection of events indexed by T and
complements of events not indexed by T , i.e. ẼT =

(⋂
i∈T Ei

)
∩
(⋂

i/∈T Ei

)
. Observe that{

ẼT

}
T⊆[N]

are disjoint and that for any I ⊆ [N],
⋂
i∈I Ei =

⋃
T⊇I ẼT . The event that at

least k′ of Ei’s happen is
⋃
I⊆[N]:|I|=k′

⋂
i∈I Ei, which is equivalent to

⋃
I⊆[N]:|I|=k′

⋃
T⊇I ẼT =⋃

T⊆[N]:|T |≥k′ ẼT . We will henceforth use T to denote {T ⊆ [N] : |T | ≥ k′}. Since T is a finite

set, we can impose an ordering on its elements and denote the lth element as Tl. The event
can therefore be rewritten as

⋃|T |
l=1 ẼTl .

Define E ′i,j to be Ei \
(⋃|T |

l=j+1 ẼTl

)
. We claim that

∑N
i=1 Pr

(
E ′i,j
)
≥ k′

∑j
l=1 Pr

(
ẼTl

)
for

all j ∈ {0, . . . , |T |}. We will show this by induction on j.
For j = 0, the claim is vacuously true because probabilities are non-negative. For j > 0,

we observe that E ′i,j =
(
E ′i,j \ ẼTj

)
∪
(
E ′i,j ∩ ẼTj

)
= E ′i,j−1 ∪

(
E ′i,j ∩ ẼTj

)
for all i. Since

E ′i,j \ ẼTj and E ′i,j ∩ ẼTj are disjoint, Pr
(
E ′i,j
)

= Pr
(
E ′i,j−1

)
+ Pr

(
E ′i,j ∩ ẼTj

)
.

APPENDIX A. NEAREST NEIGHBOUR SEARCH 74

Consider the quantity
∑

i∈Tj Pr
(
E ′i,j
)
, which is

∑
i∈Tj

(
Pr
(
E ′i,j−1

)
+ Pr

(
E ′i,j ∩ ẼTj

))
by

the above observation. For each i ∈ Tj, ẼTj ⊆ Ei, and so ẼTj \
(⋃|T |

l=j+1 ẼTl

)
⊆ Ei \

(⋃|T |
l=j+1 ẼTl

)
= E ′i,j. Because

{
ẼTl

}|T |
l=j

are disjoint, ẼTj \
(⋃|T |

l=j+1 ẼTl

)
= ẼTj . Hence,

ẼTj ⊆ E ′i,j and so E ′i,j∩ẼTj = ẼTj . Thus,
∑

i∈Tj Pr
(
E ′i,j
)

= |Tj|Pr
(
ẼTj

)
+
∑

i∈Tj Pr
(
E ′i,j−1

)
.

It follows that
∑N

i=1 Pr
(
E ′i,j
)

= |Tj|Pr
(
ẼTj

)
+
∑

i∈Tj Pr
(
E ′i,j−1

)
+
∑

i/∈Tj Pr
(
E ′i,j
)
. Be-

cause Pr
(
E ′i,j
)

= Pr
(
E ′i,j−1

)
+ Pr

(
E ′i,j ∩ ẼTj

)
≥ Pr

(
E ′i,j−1

)
and |Tj| ≥ k′,

∑N
i=1 Pr

(
E ′i,j
)
≥

k′Pr
(
ẼTj

)
+
∑N

i=1 Pr
(
E ′i,j−1

)
. By the inductive hypothesis,

∑N
i=1 Pr

(
E ′i,j−1

)
≥ k′

∑j−1
l=1 Pr

(
ẼTl

)
.

Therefore,
∑N

i=1 Pr
(
E ′i,j
)
≥ k′

∑j
l=1 Pr

(
ẼTl

)
, which concludes the induction argument.

The lemma is a special case of this claim when j = |T |, since E ′i,|T | = Ei and
∑|T |

l=1 Pr
(
ẼTl

)
=

Pr
(⋃|T |

l=1 ẼTl

)
.

A.2 Standard DCI

Below are the proofs of the results used to show the complexities of standard DCI.

Lemma 2. Let vl, vs ∈ Rd such that
∥∥vl
∥∥

2
>
∥∥vs
∥∥

2
, and u ∈ Rd be a unit vector drawn

uniformly at random. Then the probability of vs being at least as long as vl under projection
u is at most 1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vl
∥∥

2

)
.

Proof. Assuming that vl and vs are not collinear, consider the two-dimensional subspace
spanned by vl and vs, which we will denote as P . (If vl and vs are collinear, we define P
to be the subspace spanned by vl and an arbitrary vector that’s linearly independent of vl.)
For any vector w, we use w‖ and w⊥ to denote the components of w in P and P⊥ such
that w = w‖ + w⊥. For w ∈ {vs, vl}, because w⊥ = 0, 〈w, u〉 = 〈w, u‖〉. So, we can limit
our attention to P for this analysis. We parameterize u‖ in terms of its angle relative to vl,
which we denote as θ. Also, we denote the angle of u‖ relative to vs as ψ. Then,

APPENDIX A. NEAREST NEIGHBOUR SEARCH 75

Pr
(∣∣〈vl, u〉

∣∣ ≤
∣∣〈vs, u〉

∣∣)

= Pr
(∣∣∣〈vl, u‖〉

∣∣∣ ≤
∣∣∣〈vs, u‖〉

∣∣∣
)

= Pr
(∥∥vl

∥∥
2

∥∥∥u‖
∥∥∥
2
|cos θ| ≤

∥∥vs
∥∥
2

∥∥∥u‖
∥∥∥
2
|cosψ|

)

≤ Pr

(
|cos θ| ≤ ‖v

s‖2
‖vl‖2

)

= 2Pr

(
θ ∈

[
cos−1

(‖vs‖2
‖vl‖2

)
, π − cos−1

(‖vs‖2
‖vl‖2

)])

= 1− 2

π
cos−1

(‖vs‖2
‖vl‖2

)

Lemma 3. Let
{
vli
}N
i=1

be a set of vectors such that
∥∥vli
∥∥

2
>
∥∥vs
∥∥

2
∀i ∈ [N]. Then the

probability that there is a subset of k′ vectors from
{
vli
}N
i=1

that are all not longer than vs

under projection is at most 1
k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vli
∥∥

2

))
. Furthermore, if k′ = N ,

this probability is at most mini∈[N]

{
1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vli
∥∥

2

)}
.

Proof. For a given subset I ⊆ [N] of size k′, the probability that all vectors indexed by
elements in I are not longer than vs under projection u is at most Pr

(
u ∈ ⋂i∈I U(vs, vli)

)
=

area
(⋂

i∈I U(vs, vli)
)
/area (B). So, the probability that this occurs on some subset I is at

most Pr
(
u ∈ ⋃I⊆[N]:|I|=k′

⋂
i∈I U(vs, vli)

)
= area

(⋃
I⊆[N]:|I|=k′

⋂
i∈I U(vs, vli)

)
/area (B).

Observe that each point in
⋃
I⊆[N]:|I|=k′

⋂
i∈I U(vs, vli) must be covered by at least k′

U(vs, vli)’s. So,

k′ · area


 ⋃

I⊆[N]:|I|=k′

⋂

i∈I
U(vs, vli)


 ≤

N∑

i=1

area
(
U(vs, vli)

)

It follows that the probability this event occurs on some subset I is bounded above by
1
k′

∑N
i=1

area(U(vs,vli))
area(B)

= 1
k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vli
∥∥

2

))
.

If k′ = N , we use the fact that area
(⋂

i∈[N] U(vs, vli)
)
≤ mini∈[N]

{
area

(
U(vs, vli)

)}
to

obtain the desired result.

Theorem 1. Let
{
vli
}N
i=1

and
{
vsi′
}N ′
i′=1

be sets of vectors such that
∥∥vli
∥∥

2
> ‖vsi′‖2 ∀i ∈

[N], i′ ∈ [N ′]. Then the probability that there is a subset of k′ vectors from
{
vli
}N
i=1

that are all

not longer than some vsi′ under projection is at most 1
k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))
,

where
∥∥vsmax

∥∥
2
≥ ‖vsi′‖2 ∀i′ ∈ [N ′].

Proof. The probability that this event occurs is at most

Pr
(
u ∈ ⋃i′∈[N ′]

⋃
I⊆[N]:|I|=k′

⋂
i∈I U(vsi′ , v

l
i)
)

. We observe that for all i, i′,

APPENDIX A. NEAREST NEIGHBOUR SEARCH 76

{
θ
∣∣|cos θ| ≤ ‖vsi′‖2 /

∥∥vli
∥∥

2

}
⊆
{
θ
∣∣|cos θ| ≤

∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

}
, which implies that U(vsi′ , v

l
i) ⊆

U(vsmax, v
l
i).

If we take the intersection followed by union on both sides, we obtain⋃
I⊆[N]:|I|=k′

⋂
i∈I U(vsi′ , v

l
i) ⊆

⋃
I⊆[N]:|I|=k′

⋂
i∈I U(vsmax, v

l
i). Because this is true for all i′,⋃

i′∈[N ′]

⋃
I⊆[N]:|I|=k′

⋂
i∈I U(vsi′ , v

l
i) ⊆

⋃
I⊆[N]:|I|=k′

⋂
i∈I U(vsmax, v

l
i).

Therefore, this probability is bounded above by Pr
(
u ∈ ⋃I⊆[N]:|I|=k′

⋂
i∈I U(vsmax, v

l
i)
)

.

By Lemma 3, this is at most 1
k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))
.

Next we prove two intermediate results.

Lemma 11. The probability that for all constituent simple indices of a composite index,
fewer than n0 points exist that are not the true k-nearest neighbours but are ranked before

some of them, is at least

[
1− 1

n0−k
∑n

i=2k+1

‖p(k)−q‖
2

‖p(i)−q‖
2

]m
.

Proof. For any given simple index, we will refer to the points that are not the true k-nearest
neighbours but are ranked before some of them as extraneous points. We furthermore cate-
gorize the extraneous points as either reasonable or silly. An extraneous point is reasonable
if it is one of the 2k-nearest neighbours, and is silly otherwise. Since there can be at most k
reasonable extraneous points, there must be at least n0 − k silly extraneous points. There-
fore, the event that n0 extraneous points exist must be contained in the event that n0 − k
silly extraneous points exist.

We find the probability that such a set of silly extraneous points exists for any given
simple index. By Theorem 1, where we take {vsi′}N

′

i′=1 to be {p(i) − q}ki=1, {vli}Ni=1 to be
{p(i) − q}ni=2k+1 and k′ to be n0 − k, the probability that there are at least n0 − k silly

extraneous points is at most 1
n0−k

∑n
i=2k+1

(
1− 2

π
cos−1

(
‖p(k)−q‖

2

‖p(i)−q‖
2

))
. This implies that

the probability that at least n0 extraneous points exist is bounded above by the same
quantity, and so the probability that fewer than n0 extraneous points exist is at least

1 − 1
n0−k

∑n
i=2k+1

(
1− 2

π
cos−1

(
‖p(k)−q‖

2

‖p(i)−q‖
2

))
. Hence, the probability that fewer than n0

extraneous points exist for all constituent simples indices of a composite index is at least[
1− 1

n0−k
∑n

i=2k+1

(
1− 2

π
cos−1

(
‖p(k)−q‖

2

‖p(i)−q‖
2

))]m
. Using the fact that 1 − (2/π) cos−1 (x) ≤

x ∀x ∈ [0, 1], this quantity is at least

[
1− 1

n0−k
∑n

i=2k+1

‖p(k)−q‖
2

‖p(i)−q‖
2

]m
.

Lemma 12. On a dataset with global relative sparsity (k, γ), the probability that for all
constituent simple indices of a composite index, fewer than n0 points exist that are not the
true k-nearest neighbours but are ranked before some of them, is at least[
1− 1

n0−kO
(
max(k log(n/k), k(n/k)1−log2 γ)

)]m
.

APPENDIX A. NEAREST NEIGHBOUR SEARCH 77

Proof. By definition of global relative sparsity, for all i ≥ 2k+ 1,
∥∥p(i) − q

∥∥
2
> γ

∥∥p(k) − q
∥∥

2
.

By applying this recursively, we see that for all i ≥ 2i
′
k + 1,

∥∥p(i) − q
∥∥

2
> γi

′ ∥∥p(k) − q
∥∥

2
. It

follows that
∑n

i=2k+1

‖p(k)−q‖
2

‖p(i)−q‖
2

is less than
∑dlog2(n/k)e−1

i′=1 2i
′
kγ−i

′
. If γ ≥ 2, this quantity is at

most k log2

(
n
k

)
. If 1 ≤ γ < 2, this quantity is:

k

(
2

γ

)((
2

γ

)dlog2(n/k)e−1

− 1

)
/

(
2

γ
− 1

)

= O

(
k

(
2

γ

)dlog2(n/k)e−1
)

= O

(
k
(n
k

)1−log2 γ
)

Combining this bound with Lemma 11 yields the desired result.

Lemma 4. For a dataset with global relative sparsity (k, γ), there is some
k̃ ∈ Ω(max(k log(n/k), k(n/k)1−log2 γ)) such that the probability that the candidate points
retrieved from a given composite index do not include some of the true k-nearest neighbours
is at most some constant α < 1.

Proof. We will refer to points ranked in the top k̃ positions that are the true k-nearest
neighbours as true positives and those that are not as false positives. Additionally, we will
refer to points not ranked in the top k̃ positions that are the true k-nearest neighbours as
false negatives.

When not all the true k-nearest neighbours are in the top k̃ positions, then there must
be at least one false negative. Since there are at most k− 1 true positives, there must be at
least k̃ − (k − 1) false positives.

Since false positives are not the true k-nearest neighbours but are ranked before the
false negative, which is a true k-nearest neighbour, we can apply Lemma 12. By taking
n0 to be k̃ − (k − 1), we obtain a lower bound on the probability of the existence of fewer
than k̃ − (k − 1) false positives for all constituent simple indices of the composite index,

which is
[
1− 1

k̃−2k+1
O
(
max(k log(n/k), k(n/k)1−log2 γ)

)]m
. If each simple index has fewer

than k̃ − (k − 1) false positives, then the top k̃ positions must contain all the true k-
nearest neighbours. Since this is true for all constituent simple indices, all the true k-nearest
neighbours must be among the candidate points after k̃ iterations of the outer loop. The

failure probability is therefore at most 1−
[
1− 1

k̃−2k+1
O
(
max(k log(n/k), k(n/k)1−log2 γ)

)]m
.

So, there is some k̃ ∈ Ω(max(k log(n/k), k(n/k)1−log2 γ)) that makes this quantity strictly
less than 1.

APPENDIX A. NEAREST NEIGHBOUR SEARCH 78

Theorem 2. For a dataset with global relative sparsity (k, γ), for any ε > 0, there is some
L and k̃ ∈ Ω(max(k log(n/k), k(n/k)1−log2 γ)) such that the algorithm returns the correct set
of k-nearest neighbours with probability of at least 1− ε.
Proof. By Lemma 4, the first k̃ points retrieved from a given composite index do not include
some of the true k-nearest neighbours with probability of at most α. For the algorithm to
fail, this must occur for all composite indices. Since each composite index is constructed
independently, the algorithm fails with probability of at most αL, and so must succeed with
probability of at least 1− αL. Since α < 1, there is some L that makes 1− αL ≥ 1− ε.
Theorem 3. The algorithm takes O(max(d(m+k log(n/k), dk(n/k)1−1/d′))) time to retrieve
the k-nearest neighbours at query time, where d′ denotes the intrinsic dimensionality of the
dataset.

Proof. Computing projections of the query point along all ujl’s takes O(dm) time, since L
is a constant. Searching in the binary search trees/skip lists Tjl’s takes O(log n) time. The
total number of candidate points retrieved is at most Θ(max(k log(n/k), k(n/k)1−log2 γ)).
Computing the distance between each candidate point and the query point takes at most
O(max(dk log(n/k), dk(n/k)1−log2 γ)) time. We can find the k closest points to q in the set
of candidate points using a selection algorithm like quickselect, which takes
O(max(k log(n/k), k(n/k)1−log2 γ)) time on average. So, the entire algorithm takes
O(max(d(m+ k log(n/k), dk(n/k)1−log2 γ))) time. Since d′ = 1/ log2 γ, this can be rewritten
as O(max(d(m+ k log(n/k), dk(n/k)1−1/d′))).

Theorem 4. The algorithm takes O(dn + n log n) time to preprocess the data points in D
at construction time.

Proof. Computing projections of all n points along all ujl’s takes O(dn) time, since m and
L are constants. Inserting all n points into mL self-balancing binary search trees/skip lists
takes O(n log n) time.

Theorem 5. The algorithm requires O(d+log n) time to insert a new data point and O(log n)
time to delete a data point.

Proof. In order to insert a data point, we need to compute its projection along all ujl’s and
insert it into each binary search tree or skip list. Computing the projection takes O(d) time
and inserting an entry into a self-balancing binary search tree or skip list takes O(log n)
time. In order to delete a data point, we simply remove it from each of the binary search
trees or skip lists, which takes O(log n) time.

Theorem 6. The algorithm requires O(n) space in addition to the space used to store the
data.

Proof. The only additional information that needs to be stored are the mL binary search
trees or skip lists. Since n entries are stored in each binary search tree/skip list, the additional
space required is O(n).

APPENDIX A. NEAREST NEIGHBOUR SEARCH 79

Theorem 7. For any ε > 0, m and L, the data-dependent algorithm returns the correct set
of k-nearest neighbours of the query q with probability of at least 1− ε.

Proof. We analyze the probability that the algorithm fails to return the correct set of k-
nearest neighbours. Let p∗ denote a true k-nearest neighbour that was missed. If the algo-
rithm fails, then for any given composite index, p∗ is not among the candidate points retrieved
from the said index. In other words, the composite index must have returned all these points
before p∗, implying that at least one constituent simple index returns all these points before
p∗. This means that all these points must appear closer to q than p∗ under the projection

associated with the simple index. By Lemma 3, if we take
{
vli
}N
i=1

to be displacement vectors
from q to the candidate points that are farther from q than p∗ and vs to be the displacement
vector from q to p∗, the probability of this occurring for a given constituent simple index of the
lth composite index is at most 1− 2

π
cos−1 (‖p∗ − q‖2 / ‖p̃max

l − q‖2). The probability that this

occurs for some constituent simple index is at most 1−
(

2
π

cos−1 (‖p∗ − q‖2 / ‖p̃max
l − q‖2)

)m
.

For the algorithm to fail, this must occur for all composite indices; so the failure probability
is at most

∏L
l=1

(
1−

(
2
π

cos−1 (‖p∗ − q‖2 / ‖p̃max
l − q‖2)

)m)
.

We observe that
∥∥p∗ − q

∥∥
2
≤
∥∥p(k) − q

∥∥
2
≤
∥∥p̃(k) − q

∥∥
2

since there can be at most k −
1 points in the dataset that are closer to q than p∗. So, the failure probability can be
bounded above by

∏L
l=1

(
1−

(
2
π

cos−1
(∥∥p̃(k) − q

∥∥
2
/
∥∥p̃max

l − q
∥∥

2

))m)
. When the algorithm

terminates, we know this quantity is at most ε. Therefore, the algorithm returns the correct
set of k-nearest neighbours with probability of at least 1− ε.

Theorem 8. On a dataset with global relative sparsity (k, γ), given fixed parameters m and L,

the data-dependent algorithm takes O

(
max

(
dk log

(
n
k

)
, dk

(
n
k

)1−1/d′
, d(

1− m
√

1− L√ε
)d′
))

time

with high probability to retrieve the k-nearest neighbours at query time, where d′ denotes the
intrinsic dimensionality of the dataset.

Proof. In order to bound the running time, we bound the total number of candidate points
retrieved until the stopping condition is satisfied. We divide the execution of the algo-
rithm into two stages and analyze the algorithm’s behaviour before and after it finishes
retrieving all the true k-nearest neighbours. We first bound the number of candidate
points the algorithm retrieves before finding the complete set of k-nearest neighbours. By
Lemma 12, the probability that there exist fewer than n0 points that are not the k-nearest
neighbours but are ranked before some of them in all constituent simple indices of any

given composite index is at least
[
1− 1

n0−kO
(
max(k log(n/k), k(n/k)1−log2 γ)

)]m
. We can

choose some n0 ∈ Θ
(
max(k log(n/k), k(n/k)1−log2 γ)

)
that makes this probability arbitrar-

ily close to 1. So, there are Θ
(
max(k log(n/k), k(n/k)1−log2 γ)

)
such points in each con-

stituent simple index with high probability, implying that the algorithm retrieves at most
Θ
(
max(k log(n/k), k(n/k)1−log2 γ)

)
extraneous points from any given composite index before

finishing fetching all the true k-nearest neighbours. Since the number of composite indices
is constant, the total number of candidate points retrieved from all composite indices during

APPENDIX A. NEAREST NEIGHBOUR SEARCH 80

this stage is k + Θ
(
max(k log(n/k), k(n/k)1−log2 γ)

)
= Θ

(
max(k log(n/k), k(n/k)1−log2 γ)

)

with high probability.
After retrieving all the k-nearest neighbours, if the stopping condition has not yet been

satisfied, the algorithm would continue retrieving points. We analyze the number of ad-
ditional points the algorithm retrieves before it terminates. To this end, we bound the
ratio

∥∥p̃(k) − q
∥∥

2
/
∥∥p̃max

l − q
∥∥

2
in terms of the number of candidate points retrieved so far.

Since all the true k-nearest neighbours have been retrieved,
∥∥p̃(k) − q

∥∥
2

=
∥∥p(k) − q

∥∥
2
. Sup-

pose the algorithm has already retrieved n′ − 1 candidate points and is about to retrieve
a new candidate point. Since this new candidate point must be different from any of the
existing candidate points,

∥∥p̃max
l − q

∥∥
2
≥
∥∥p(n′) − q

∥∥
2
. Hence,

∥∥p̃(k) − q
∥∥

2
/
∥∥p̃max

l − q
∥∥

2
≤∥∥p(k) − q

∥∥
2
/
∥∥p(n′) − q

∥∥
2
.

By definition of global relative sparsity, for all n′ ≥ 2i
′
k+1,

∥∥p(n′) − q
∥∥

2
> γi

′ ∥∥p(k) − q
∥∥

2
.

It follows that
∥∥p(k) − q

∥∥
2
/
∥∥p(n′) − q

∥∥
2
< γ−blog2((n′−1)/k)c for all n′. By combining the above

inequalities, we find an upper bound on the test statistic:

L∏

l=1

(
1−

(
2

π
cos−1

(∥∥p̃(k) − q
∥∥
2∥∥p̃max

l − q
∥∥
2

))m)

≤
L∏

l=1

(
1−

(
1−

∥∥p̃(k) − q
∥∥
2∥∥p̃max

l − q
∥∥
2

)m)

<
[
1−

(
1− γ−blog2((n

′−1)/k)c
)m]L

<
[
1−

(
1− γ− log2((n

′−1)/k)+1
)m]L

Hence, if
[
1−

(
1− γ− log2((n′−1)/k)+1

)m]L ≤ ε, then∏L
l=1

(
1−

(
2
π

cos−1
(∥∥p̃(k) − q

∥∥
2
/
∥∥p̃max

l − q
∥∥

2

))m)
< ε. So, for some n′ that makes the former

inequality true, the stopping condition would be satisfied and so the algorithm must have
terminated by this point, if not earlier. By rearranging the former inequality, we find that in

order for it to hold, n′ must be at least 2/
(

1− m
√

1− L
√
ε
)1/ log2 γ

. Therefore, the number of

points the algorithm retrieves before terminating cannot exceed 2/
(

1− m
√

1− L
√
ε
)1/ log2 γ

.

Combining the analysis for both stages, the number of points retrieved is at most

O


max


k log

(n
k

)
, k
(n
k

)1−log2 γ

,
1

(
1− m

√
1− L
√
ε
) 1

log2 γ







with high probability.
Since the time taken to compute distances between the query point and candidate points

dominates, the running time is

O


max


dk log

(n
k

)
, dk

(n
k

)1−log2 γ

,
d

(
1− m

√
1− L
√
ε
) 1

log2 γ







APPENDIX A. NEAREST NEIGHBOUR SEARCH 81

with high probability.
Applying the definition of intrinsic dimensionality yields the desired result.

A.3 Prioritized DCI

Below are the proofs of the results used to show the complexities of Prioritized DCI.

Lemma 5. Let vl, vs ∈ Rd be such that
∥∥vl
∥∥

2
>
∥∥vs
∥∥

2
,
{
u′j
}M
j=1

be i.i.d. unit vectors in Rd

drawn uniformly at random. Then Pr
(
maxj

{∣∣〈vl, u′j〉
∣∣} ≤

∥∥vs
∥∥

2

)
=
(
1− 2

π
cos−1

(∥∥vs
∥∥

2
/
∥∥vl
∥∥

2

))M
.

Proof. The event
{

maxj
{∣∣〈vl, u′j〉

∣∣} ≤ ‖vs‖2

}
is equivalent to the event that{∣∣〈vl, u′j〉

∣∣ ≤ ‖vs‖2 ∀j
}

, which is the intersection of the events
{∣∣〈vl, u′j〉

∣∣ ≤ ‖vs‖2

}
. Because

u′j’s are drawn independently, these events are independent.

Let θj be the angle between vl and u′j, so that 〈vl, u′j〉 =
∥∥vl
∥∥

2
cos θj. Since u′j is drawn

uniformly, θj is uniformly distributed on [0, 2π]. Hence,

Pr

(
max
j

{∣∣〈vl, u′j〉
∣∣} ≤ ‖vs‖2

)

=

M∏

j=1

Pr
(∣∣〈vl, u′j〉

∣∣ ≤ ‖vs‖2
)

=

M∏

j=1

Pr

(
|cos θj | ≤

‖vs‖2
‖vl‖2

)

=

M∏

j=1

(
2Pr

(
θj ∈

[
cos−1

(‖vs‖2
‖vl‖2

)
, π − cos−1

(‖vs‖2
‖vl‖2

)]))

=

(
1− 2

π
cos−1

(‖vs‖2
‖vl‖2

))M

Theorem 9. Let
{
vli
}N
i=1

and
{
vsi′
}N ′
i′=1

be sets of vectors such that
∥∥vli
∥∥

2
>
∥∥vsi′
∥∥

2
∀i ∈

[N], i′ ∈ [N ′]. Furthermore, let
{
u′ij
}
i∈[N],j∈[M]

be random uniformly distributed unit vectors

such that u′i1, . . . , u
′
iM are independent for any given i. Consider the events{

∃vsi′ s.t. maxj
{∣∣〈vli, u′ij〉

∣∣} ≤
∥∥vsi′
∥∥

2

}N
i=1

. The probability that at least k′ of these events

occur is at most 1
k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))M
, where

∥∥vsmax

∥∥
2

= maxi′
{∥∥vsi′

∥∥
2

}
.

Furthermore, if k′ = N , it is at most mini∈[N]

{(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))M}
.

Proof. The event that ∃vsi′ s.t. maxj
{∣∣〈vli, u′ij〉

∣∣} ≤
∥∥vsi′
∥∥

2
is equivalent to the event that

maxj
{∣∣〈vli, u′ij〉

∣∣} ≤ maxi′
{∥∥vsi′

∥∥
2

}
=
∥∥vsmax

∥∥
2
. Take Ei to be the event that maxj

{∣∣〈vli, u′ij〉
∣∣} ≤∥∥vsmax

∥∥
2
. By Lemma 5, Pr(Ei) ≤

(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))M
. It follows from Lemma 1

APPENDIX A. NEAREST NEIGHBOUR SEARCH 82

that the probability that k′ of Ei’s occur is at most
1
k′

∑N
i=1 Pr (Ei) ≤ 1

k′

∑N
i=1

(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))M
. If k′ = N , we use the fact that⋂N

i′=1 Ei′ ⊆ Ei ∀i, which implies that

Pr
(⋂N

i′=1 Ei′
)
≤ mini∈[N] Pr (Ei) ≤ mini∈[N]

{(
1− 2

π
cos−1

(∥∥vsmax

∥∥
2
/
∥∥vli
∥∥

2

))M}
.

Lemma 6. Consider points in the order they are retrieved from a composite index that
consists of m simple indices. The probability that there are at least n0 points that are not the
true k-nearest neighbours but are retrieved before some of them is at most

1
n0−k

∑n
i=2k+1

(
1− 2

π
cos−1

(∥∥p(k) − q
∥∥

2
/
∥∥p(i) − q

∥∥
2

))m
.

Proof. Points that are not the true k-nearest neighbours but are retrieved before some of
them will be referred to as extraneous points and are divided into two categories: reasonable
and silly. An extraneous point is reasonable if it is one of the 2k-nearest neighbours, and is
silly otherwise. For there to be n0 extraneous points, there must be n0 − k silly extraneous
points. Therefore, the probability that there are n0 extraneous points is upper bounded by
the probability that there are n0 − k silly extraneous points.

Since points are retrieved from the composite index in the order of increasing maximum
projected distance to the query, for any pair of points p and p′, if p is retrieved before p′, then
maxj {|〈p− q, ujl〉|} ≤ maxj {|〈p′ − q, ujl〉|}, where {ujl}mj=1 are the projection directions
associated with the constituent simple indices of the composite index.

By Theorem 9, if we take
{
vli
}N
i=1

to be
{
p(i) − q

}n
i=2k+1

,
{
vsi′
}N ′
i′=1

to be
{
p(i) − q

}k
i=1

, M to

be m,
{
u′ij
}
j∈[M]

to be {ujl}j∈[m] for all i ∈ [N] and k′ to be n0−k, we obtain an upper bound

for the probability of there being a subset of
{
p(i)
}n
i=2k+1

of size n0−k such that for all points

p in the subset, maxj {|〈p− q, ujl〉|} ≤ ‖p′ − q‖2 for some p′ ∈
{
p(i) − q

}k
i=1

. In other words,
this is the probability of there being n0 − k points that are not the 2k-nearest neighbours
whose maximum projected distances are no greater than the distance from some k-nearest
neighbours to the query, which is at most 1

n0−k
∑n

i=2k+1

(
1− 2

π
cos−1

(∥∥p(k) − q
∥∥

2
/
∥∥p(i) − q

∥∥
2

))m
.

Since the event that maxj {|〈p− q, ujl〉|} ≤ maxj {|〈p′ − q, ujl〉|} is contained in the event
that maxj {|〈p− q, ujl〉|} ≤ ‖p′ − q‖2 for any p, p′, this is also an upper bound for the prob-
ability of there being n0 − k points that are not the 2k-nearest neighbours whose maximum
projected distances do not exceed those of some of the k-nearest neighbours, which by defi-
nition is the probability that there are n0 − k silly extraneous points. Since this probability
is no less than the probability that there are n0 extraneous points, the upper bound also
applies to this probability.

Lemma 7. Consider point projections in a composite index that consists of m simple indices
in the order they are visited. The probability that there are n0 point projections that are not
the true k-nearest neighbours but are visited before all true k-nearest neighbours have been
retrieved is at most m

n0−mk
∑n

i=2k+1

(
1− 2

π
cos−1

(∥∥p(k) − q
∥∥

2
/
∥∥p(i) − q

∥∥
2

))
.

Proof. Projections of points that are not the true k-nearest neighbours but are visited before
the k-nearest neighbours have all been retrieved will be referred to as extraneous projections

APPENDIX A. NEAREST NEIGHBOUR SEARCH 83

and are divided into two categories: reasonable and silly. An extraneous projection is rea-
sonable if it is of one of the 2k-nearest neighbours, and is silly otherwise. For there to be n0

extraneous projections, there must be n0−mk silly extraneous projections, since there could
be at most mk reasonable extraneous projections. Therefore, the probability that there are
n0 extraneous projections is upper bounded by the probability that there are n0 −mk silly
extraneous projections.

Since point projections are visited in the order of increasing projected distance to the
query, each extraneous silly projection must be closer to the query projection than the
maximum projection of some k-nearest neighbour.

By Theorem 9, if we take
{
vli
}N
i=1

to be
{
p(2k+b(i−1)/mc+1) − q

}m(n−2k)

i=1
,
{
vsi′
}N ′
i′=1

to be{
p(b(i−1)/mc+1) − q

}mk
i=1

, M to be 1, {u′i1}Ni=1 to be
{
u(i mod m),l

}m(n−2k)

i=1
and k′ to be n0−mk,

we obtain an upper bound for the probability of there being n0−mk point projections that
are not of the 2k-nearest neighbours whose distances to their respective query projections are
no greater than the true distance between the query and some k-nearest neighbour, which

is 1
n0−mk

∑n
i=2k+1 m

(
1− 2

π
cos−1

(
‖p(k)−q‖

2

‖p(i)−q‖
2

))
.

Because maximum projected distances are no more than true distances, this is also an
upper bound for the probability of there being n0 −mk silly extraneous projections. Since
this probability is no less than the probability that there are n0 extraneous projections, the
upper bound also applies to this probability.

Lemma 8. On a dataset with global relative sparsity (k, γ), the quantity∑n
i=2k+1

(
1− 2

π
cos−1

(∥∥p(k) − q
∥∥

2
/
∥∥p(i) − q

∥∥
2

))m
is at most O

(
kmax(log(n/k), (n/k)1−m log2 γ)

)
.

Proof. By definition of global relative sparsity, for all i ≥ 2k+ 1,
∥∥p(i) − q

∥∥
2
> γ

∥∥p(k) − q
∥∥

2
.

A recursive application shows that for all i ≥ 2i
′
k + 1,

∥∥p(i) − q
∥∥

2
> γi

′ ∥∥p(k) − q
∥∥

2
.

Applying the fact that 1 − (2/π) cos−1 (x) ≤ x ∀x ∈ [0, 1] and the above observation
yields:

n∑

i=2k+1

(
1− 2

π
cos−1

(∥∥p(k) − q
∥∥
2∥∥p(i) − q
∥∥
2

))m

≤
n∑

i=2k+1

(∥∥p(k) − q
∥∥
2∥∥p(i) − q
∥∥
2

)m

<

dlog2(n/k)e−1∑

i′=1

2i
′
kγ−i

′m

If γ ≥ m
√

2, this quantity is at most k log2 (n/k). On the other hand, if 1 ≤ γ < m
√

2, this
quantity can be simplified to:

APPENDIX A. NEAREST NEIGHBOUR SEARCH 84

k

(
2

γm

)((
2

γm

)dlog2(n/k)e−1

− 1

)
/

(
2

γm
− 1

)

= O

(
k

(
2

γm

)dlog2(n/k)e−1
)

= O

(
k
(n
k

)1−m log2 γ
)

Therefore,
∑n

i=2k+1

(∥∥p(k) − q
∥∥

2
/
∥∥p(i) − q

∥∥
2

)m ≤ O
(
kmax(log(n/k), (n/k)1−m log2 γ)

)
.

Lemma 9. For a dataset with global relative sparsity (k, γ) and a given composite index
consisting of m simple indices, there is some k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) such
that the probability that the candidate points retrieved from the composite index do not include
some of the true k-nearest neighbours is at most some constant α0 < 1.

Proof. We will refer to the true k-nearest neighbours that are among first k0 points retrieved
from the composite index as true positives and those that are not as false negatives. Addi-
tionally, we will refer to points that are not true k-nearest neighbours but are among the
first k0 points retrieved as false positives.

When not all the true k-nearest neighbours are among the first k0 candidate points,
there must be at least one false negative and so there can be at most k − 1 true positives.
Consequently, there must be at least k0− (k− 1) false positives. To find an upper bound on
the probability of the existence of k0−(k−1) false positives in terms of global relative sparsity,
we apply Lemma 6 with n0 set to k0− (k− 1), followed by Lemma 8. We conclude that this
probability is at most 1

k0−2k+1
O
(
kmax(log(n/k), (n/k)1−m log2 γ)

)
. Because the event that

not all the true k-nearest neighbours are among the first k0 candidate points is contained
in the event that there are k0 − (k − 1) false positives, the former is upper bounded by the
same quantity. So, we can choose some k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) to make it
strictly less than 1.

Lemma 10. For a dataset with global relative sparsity (k, γ) and a given composite index
consisting of m simple indices, there is some k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ)) such
that the probability that the candidate points retrieved from the composite index do not include
some of the true k-nearest neighbours is at most some constant α1 < 1.

Proof. We will refer to the projections of true k-nearest neighbours that are among first k1

visited point projections as true positives and those that are not as false negatives. Addi-
tionally, we will refer to projections of points that are not of the true k-nearest neighbours
but are among the first k1 visited point projections as false positives.

When a k-nearest neighbour is not among the candidate points that have been retrieved,
some of its projections must not be among the first k1 visited point projections. So, there
must be at least one false negative, implying that there can be at most mk−1 true positives.
Consequently, there must be at least k1 − (mk − 1) false positives. To find an upper bound
on the probability of the existence of k1− (mk− 1) false positives in terms of global relative

APPENDIX A. NEAREST NEIGHBOUR SEARCH 85

sparsity, we apply Lemma 7 with n0 set to k1−(mk−1), followed by Lemma 8. We conclude
that this probability is at most m

k1−2mk+1
O
(
kmax(log(n/k), (n/k)1−log2 γ)

)
. Because the

event that some true k-nearest neighbour is missing from the candidate points is contained
in the event that there are k1− (mk− 1) false positives, the former is upper bounded by the
same quantity. So, we can choose some k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ)) to make it
strictly less than 1.

Theorem 10. For a dataset with global relative sparsity (k, γ), for any ε > 0, there is some
L, k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) and k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ))
such that the algorithm returns the correct set of k-nearest neighbours with probability of
at least 1− ε.

Proof. For a given composite index, by Lemma 9, there is some
k0 ∈ Ω(kmax(log(n/k), (n/k)1−m log2 γ)) such that the probability that some of the true k-
nearest neighbours are missed is at most some constant α0 < 1. Likewise, by Lemma 10,
there is some
k1 ∈ Ω(mkmax(log(n/k), (n/k)1−log2 γ)) such that this probability is at most some constant
α1 < 1. By choosing such k0 and k1, this probability is therefore at most min{α0, α1} < 1.
For the algorithm to fail, all composite indices must miss some k-nearest neighbours. Since
each composite index is constructed independently, the algorithm fails with probability of at
most (min{α0, α1})L, and so must succeed with probability of at least 1 − (min{α0, α1})L.
Since min{α0, α1} < 1, there is some L that makes 1− (min{α0, α1})L ≥ 1− ε.

Theorem 11. For a given number of simple indices m, the algorithm takes
O
(
d(m+ kmax(log(n/k), (n/k)1−m/d′)) +mk logm

(
max(log(n/k), (n/k)1−1/d′)

))
time to re-

trieve the k-nearest neighbours at query time, where d′ denotes the intrinsic dimensionality.

Proof. Computing projections of the query point along all ujl’s takes O(dm) time, since L is a
constant. Searching in the binary search trees/skip lists Tjl’s takesO(m log n) time. The total
number of point projections that are visited is at most Θ(mkmax(log(n/k), (n/k)1−log2 γ)).
Because determining the next point to visit requires popping and pushing a priority queue,
which takes O(logm) time, the total time spent on visiting points is
O(mk logmmax(log(n/k), (n/k)1−log2 γ)). The total number of candidate points retrieved is
at most Θ(kmax(log(n/k), (n/k)1−m log2 γ)). Because true distances are computed for every
candidate point, the total time spent on distance computation is
O(dkmax(log(n/k), (n/k)1−m log2 γ)). We can find the k closest points to the query among
the candidate points using a selection algorithm like quickselect, which takes
O(kmax(log(n/k), (n/k)1−m log2 γ)) time on average. So, the entire algorithm takes
O(d(m+kmax(log(n/k), (n/k)1−m log2 γ))+mk logmmax(log(n/k), (n/k)1−log2 γ)) time. Sub-
stituting 1/d′ for log2 γ yields the desired expression.

Theorem 12. For a given number of simple indices m, the algorithm takes O(m(dn +
n log n)) time to preprocess the data points in D at construction time.

APPENDIX A. NEAREST NEIGHBOUR SEARCH 86

Proof. Computing projections of all n points along all ujl’s takes O(dmn) time, since L is
a constant. Inserting all n points into mL self-balancing binary search trees/skip lists takes
O(mn log n) time.

Theorem 13. The algorithm requires O(m(d+ log n)) time to insert a new data point and
O(m log n) time to delete a data point.

Proof. In order to insert a data point, we need to compute its projection along all ujl’s and
insert it into each binary search tree or skip list. Computing the projections takes O(md)
time and inserting them into the corresponding self-balancing binary search trees or skip
lists takes O(m log n) time. In order to delete a data point, we simply remove its projections
from each of the binary search trees or skip lists, which takes O(m log n) time.

Theorem 14. The algorithm requires O(mn) space in addition to the space used to store
the data.

Proof. The only additional information that needs to be stored are the mL binary search
trees or skip lists. Since n entries are stored in each binary search tree/skip list, the total
additional space required is O(mn).

87

Appendix B

Implicit Maximum Likelihood
Estimation

This section contains the proof of the result presented in the Implicit Maximum Likelihood
Estimation section of the dissertation. Before proving the main result, we first prove the
following intermediate results:

Lemma 13. Let Ω ⊆ Rd and V ⊆ R. For i ∈ [N], let fi : Ω → V be differentiable on Ω
and Φ : V → R be differentiable on V and strictly increasing. Assume arg minθ∈Ω

∑N
i=1 fi(θ)

exists and is unique. Let θ∗ := arg minθ∈Ω

∑N
i=1 fi(θ) and wi := 1/Φ′(fi(θ

∗)). If the following
conditions hold:

• There is a bounded set S ⊆ Ω such that bd(S) ⊆ Ω, θ∗ ∈ S and ∀fi, ∀θ ∈ Ω\S, fi(θ) >
fi(θ

∗), where bd(S) denotes the boundary of S.

• For all θ ∈ Ω, if θ 6= θ∗, there exists j ∈ [d] such that
〈


w1Φ′(f1(θ))
...

wnΦ′(fn(θ))


 ,




∂f1/∂θj(θ)
...

∂fn/∂θj(θ)



〉
6= 0.

Then arg minx∈Ω

∑N
i=1 wiΦ(fi(θ)) exists and is unique. Furthermore,

arg minθ∈Ω

∑N
i=1wiΦ(fi(θ)) = arg minθ∈Ω

∑N
i=1 fi(θ).

Proof. Let S ⊆ Ω be the bounded set such that bd(S) ⊆ Ω, θ∗ ∈ S and ∀fi, ∀θ ∈ Ω \
S, fi(θ) > fi(θ

∗). Consider the closure of S := S ∪bd(S), denoted as S̄. Because S ⊆ Ω and
bd(S) ⊆ Ω, S̄ ⊆ Ω. Since S is bounded, S̄ is bounded. Because S̄ ⊆ Ω ⊆ Rd and is closed
and bounded, it is compact.

Consider the function
∑N

i=1 wiΦ(fi(·)). By the differentiability of fi’s and Φ,
∑N

i=1wiΦ(fi(·))
is differentiable on Ω and hence continuous on Ω. By the compactness of S̄ and the con-
tinuity of

∑N
i=1 wiΦ(fi(·)) on S̄ ⊆ Ω, Extreme Value Theorem applies, which implies that

APPENDIX B. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 88

minθ∈S̄
∑N

i=1wiΦ(fi(θ)) exists. Let θ̃ ∈ S̄ be such that∑N
i=1wiΦ(fi(θ̃)) = minθ∈S̄

∑N
i=1wiΦ(fi(θ)).

By definition of S, ∀fi, ∀θ ∈ Ω \ S, fi(θ) > fi(θ
∗), implying that Φ(fi(θ)) > Φ(fi(θ

∗))
since Φ is strictly increasing. Because Φ′(·) > 0, wi > 0 and so

∑N
i=1wiΦ(fi(θ)) >∑N

i=1 wiΦ(fi(θ
∗)) ∀θ ∈ Ω \ S. At the same time, since θ∗ ∈ S ⊂ S̄, by definition of θ̃,∑N

i=1 wiΦ(fi(θ̃)) ≤
∑N

i=1 wiΦ(fi(θ
∗)). Combining these two facts yields

∑N
i=1wiΦ(fi(θ̃)) ≤∑N

i=1wiΦ(fi(θ
∗)) <

∑N
i=1wiΦ(fi(θ)) ∀θ ∈ Ω \ S. Since the inequality is strict, this implies

that θ̃ /∈ Ω \ S, and so θ̃ ∈ S̄ \ (Ω \ S) ⊆ Ω \ (Ω \ S) = S.
In addition, because θ̃ is the minimizer of

∑N
i=1wiΦ(fi(·)) on S̄,

∑N
i=1wiΦ(fi(θ̃)) ≤∑N

i=1wiΦ(fi(θ)) ∀θ ∈ S̄. So,
∑N

i=1wiΦ(fi(θ̃)) ≤
∑N

i=1wiΦ(fi(θ)) ∀θ ∈ S̄ ∪ (Ω \ S) ⊇ S ∪
(Ω \ S) = Ω. Hence, θ̃ is a minimizer of

∑N
i=1 wiΦ(fi(·)) on Ω, and so minθ∈Ω

∑N
i=1 wiΦ(fi(θ))

exists. Because
∑N

i=1wiΦ(fi(·)) is differentiable on Ω, θ̃ must be a critical point of∑N
i=1wiΦ(fi(·)) on Ω.
On the other hand, since Φ is differentiable on V and fi(θ) ∈ V for all θ ∈ Ω, Φ′(fi(θ))

exists for all θ ∈ Ω. So,

∇
(

N∑

i=1

wiΦ(fi(θ))

)
=

N∑

i=1

wi∇ (Φ(fi(θ)))

=
N∑

i=1

wiΦ
′(fi(θ))∇fi(θ)

=
N∑

i=1

Φ′(fi(θ))

Φ′(fi(θ∗))
∇fi(θ)

At θ = θ∗,

∇
(

N∑

i=1

wiΦ(fi(θ
∗))

)
=

N∑

i=1

Φ′(fi(θ
∗))

Φ′(fi(θ∗))
∇fi(θ∗)

=
N∑

i=1

∇fi(θ∗)

Since each fi is differentiable on Ω,
∑N

i=1 fi is differentiable on Ω. Combining this

with the fact that θ∗ is the minimizer of
∑N

i=1 fi on Ω, it follows that ∇
(∑N

i=1 fi(θ
∗)
)

=
∑N

i=1∇fi(θ∗) = 0. Hence, ∇
(∑N

i=1wiΦ(fi(θ
∗))
)

= 0 and so θ∗ is a critical point of
∑N

i=1wiΦ(fi(·)).

Because ∀θ ∈ Ω, if θ 6= θ∗, ∃j ∈ [d] such that

〈


w1Φ′(f1(θ))
...

wnΦ′(fn(θ))


 ,




∂f1/∂θj(θ)
...

∂fn/∂θj(θ)



〉
6=

0,
∑N

i=1wiΦ
′(fi(θ))∇fi(θ) = ∇

(∑N
i=1 wiΦ(fi(θ))

)
6= 0 for any θ 6= θ∗ ∈ Ω. Therefore, θ∗

APPENDIX B. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 89

is the only critical point of
∑N

i=1 wiΦ(fi(·)) on Ω. Since θ̃ is a critical point on Ω, we can

conclude that θ∗ = θ̃, and so θ∗ is a minimizer of
∑N

i=1wiΦ(fi(·)) on Ω. Since any other
minimizer must be a critical point and θ∗ is the only critical point, θ∗ is the unique minimizer.
So, arg minθ∈Ω

∑N
i=1 fi(θ) = θ∗ = arg minθ∈Ω

∑N
i=1wiΦ(fi(θ)).

Lemma 14. Let P be a distribution on Rd whose density p(·) is continuous at a point
x0 ∈ Rd and x ∼ P be a random variable. Let r̃ := ‖x− x0‖2, κ := πd/2/Γ

(
d
2

+ 1
)
, where

Γ(·) denotes the gamma function 1, and r := κr̃d. Let G(·) denote the cumulative distribution
function (CDF) of r and ∂+G(·) denote the one-sided derivative of G from the right. Then,
∂+G(0) = p(x0).

Proof. By definition of ∂+G(·),

∂+G(0) = lim
h→0+

G(h)−G(0)

h
= lim

h→0+

G(h)

h

= lim
h→0+

Pr (r ≤ h)

h
= lim

h→0+

Pr
(
r̃ ≤ d

√
h/κ

)

h

If we define h̃ := d
√
h/κ, the above can be re-written as:

∂+G(0) = lim
h̃→0+

Pr
(
r̃ ≤ h̃

)

κh̃d
= lim

h̃→0+

∫
Bx0 (h̃)

p(u)du

κh̃d

We want to show that limh̃→0+

(∫
Bx0 (h̃)

p(u)du
)
/κh̃d = p(x0). In other words, we want

to show ∀ε > 0 ∃δ > 0 such that ∀h̃ ∈ (0, δ),

∣∣∣∣
∫
Bx0 (h̃) p(u)du

κh̃d
− p(x0)

∣∣∣∣ < ε.

Let ε > 0 be arbitrary.
Since p(·) is continuous at x0, by definition, ∀ε̃ > 0 ∃δ̃ > 0 such that ∀u ∈ Bx0(δ̃),

|p(u)− p(x0)| < ε̃. Let δ̃ > 0 be such that ∀u ∈ Bx0(δ̃), p(x0) − ε < p(u) < p(x0) + ε. We
choose δ = δ̃.

Let 0 < h̃ < δ be arbitrary. Since p(x0)− ε < p(u) < p(x0) + ε ∀u ∈ Bx0(δ̃) = Bx0(δ) ⊃
Bx0(h̃),

∫

Bx0 (h̃)

p(u)du <

∫

Bx0 (h̃)

(p(x0) + ε) du

= (p(x0) + ε)

∫

Bx0 (h̃)

du

1The constant κ is the the ratio of the volume of a d-dimensional ball of radius r̃ to a d-dimensional cube
of side length r̃.

APPENDIX B. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 90

Observe that
∫
Bx0 (h̃)

du is the volume of a d-dimensional ball of radius h̃, so
∫
Bx0 (h̃)

du = κh̃d.

Thus,
∫
Bx0 (h̃)

p(u)du < κh̃d (p(x0) + ε), implying that
(∫

Bx0 (h̃)
p(u)du

)
/κh̃d < p(x0)+ ε. By

similar reasoning, we conclude that
(∫

Bx0 (h̃)
p(u)du

)
/κh̃d > p(x0)− ε.

Hence,
∣∣∣∣∣

∫
Bx0 (h̃)

p(u)du

κh̃d
− p(x0)

∣∣∣∣∣ < ε ∀h̃ ∈ (0, δ)

Therefore,

∂+G(0) = lim
h̃→0+

∫
Bx0 (h̃)

p(u)du

κh̃d
= p(x0)

Lemma 15. Let Pθ be a parameterized family of distributions on Rd with parameter θ and
probability density function (PDF) pθ(·) that is continuous at a point xi. Consider a random

variable x̃θ1 ∼ Pθ and define r̃θi :=
∥∥x̃θ1 − xi

∥∥2

2
, whose cumulative distribution function (CDF)

is denoted by F θ
i (·). Assume Pθ has the following property: for any θ1, θ2, there exists θ0 such

that F θ0
i (t) ≥ max

{
F θ1
i (t), F θ2

i (t)
}
∀t ≥ 0 and pθ0(xi) = max {pθ1(xi), pθ2(xi)}. For any

m ≥ 1, let x̃θ1, . . . , x̃
θ
m ∼ Pθ be i.i.d. random variables and define Rθ

i := minj∈[m]

∥∥x̃θj − xi
∥∥2

2
.

Then the function Ψi : z 7→ minθ
{
E
[
Rθ
i

]
|pθ(xi) = z

}
is strictly decreasing.

Proof. Let rθi := κ
(
r̃θi
)d/2

= κ
∥∥x̃θ1 − xi

∥∥d
2

be a random variable and let Gθ
i (·) be the CDF of

rθi . Since Rθ
i is nonnegative,

E
[
Rθ
i

]
=

∫ ∞

0

Pr
(
Rθ
i > t

)
dt

=

∫ ∞

0

(
Pr
(∥∥x̃θ1 − xi

∥∥2

2
> t
))m

dt

=

∫ ∞

0

(
Pr
(
κ
∥∥x̃θ1 − xi

∥∥d
2
> κtd/2

))m
dt

=

∫ ∞

0

(
Pr
(
rθi > κtd/2

))m
dt

=

∫ ∞

0

(
1−Gθ

i

(
κtd/2

))m
dt

Also, by Lemma 14, pθ(xi) = ∂+G
θ
i (0). Using these facts, we can rewrite minθ

{
E
[
Rθ
i

]
|pθ(xi) = z

}

as minθ
{∫∞

0

(
1−Gθ

i

(
κtd/2

))m
dt
∣∣∂+G

θ
i (0) = z

}
. By definition of Ψi,

minθ
{∫∞

0

(
1−Gθ

i

(
κtd/2

))m
dt
∣∣∂+G

θ
i (0) = z

}
exists for all z. Let φi(z) be a value of θ that

attains the minimum. Define G∗i (y, z) := G
φi(z)
i (y). By definition, ∂+

∂y
G∗i (0, z) = z, where

APPENDIX B. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 91

∂+
∂y
G∗i (y, z) denotes the one-sided partial derivative from the right w.r.t. y. Also, since

G∗i (·, z) is the CDF of a distribution of a non-negative random variable, G∗i (0, z) = 0.

By definition of ∂+
∂y
G∗i (0, z), ∀ε > 0 ∃δ > 0 such that ∀h ∈ (0, δ),

∣∣∣G
∗
i (h,z)−G∗i (0,z)

h
− z
∣∣∣ < ε.

Let z′ > z. Let δ > 0 be such that ∀h ∈ (0, δ),
∣∣∣G
∗
i (h,z)−G∗i (0,z)

h
− z
∣∣∣ < z′−z

2
and δ′ > 0 be

such that ∀h ∈ (0, δ′),
∣∣∣G
∗
i (h,z′)−G∗i (0,z′)

h
− z′

∣∣∣ < z′−z
2

.

Consider h ∈ (0,min(δ, δ′)). Then,
G∗i (h,z)−G∗i (0,z)

h
=

G∗i (h,z)

h
< z + z′−z

2
= z+z′

2
and

G∗i (h,z′)−G∗i (0,z′)

h
=

G∗i (h,z′)

h
> z′ − z′−z

2
= z+z′

2
. So,

G∗i (h, z)

h
<
z + z′

2
<
G∗i (h, z

′)

h

Multiplying by h on both sides, we conclude that G∗i (h, z) < G∗i (h, z
′) ∀h ∈ (0,min(δ, δ′)).

Let α := d
√

min(δ, δ′)/κ. We can break
∫∞

0

(
1−G∗i

(
κtd/2, z

))m
dt into two terms:

∫ ∞

0

(
1−G∗i

(
κtd/2, z

))m
dt

=

∫ α

0

(
1−G∗i

(
κtd/2, z

))m
dt+

∫ ∞

α

(
1−G∗i

(
κtd/2, z

))m
dt

We can also do the same for
∫∞

0

(
1−G∗i

(
κtd/2, z′

))m
dt.

Because G∗i (h, z) < G∗i (h, z
′) ∀h ∈ (0,min(δ, δ′)), G∗i (κt

d/2, z) < G∗i (κt
d/2, z′) ∀t ∈

(0, α). It follows that 1 − G∗i (κt
d/2, z) > 1 − G∗i (κt

d/2, z′) and
(
1−G∗i

(
κtd/2, z

))m
>(

1−G∗i (κtd/2, z′)
)m ∀t ∈ (0, α). So,

∫ α
0

(
1−G∗i

(
κtd/2, z

))m
dt >

∫ α
0

(
1−G∗i

(
κtd/2, z′

))m
dt.

We now consider the second term. First, observe that F θ
i (t) = Pr

(∥∥x̃θ1 − xi
∥∥2

2
≤ t
)

=

Pr
(
κ
∥∥x̃θ1 − xi

∥∥d
2
≤ κtd/2

)
= Gθ

i

(
κtd/2

)
for all t ≥ 0. So, by the property of Pθ, for any

θ1, θ2, there exists θ0 such that Gθ0
i (κtd/2) = F θ0

i (t) ≥ max
{
F θ1
i (t), F θ2

i (t)
}

= max
{
Gθ1
i (κtd/2), Gθ2

i (κtd/2)
}
∀t ≥ 0 and ∂+G

θ0
i (0) = pθ0(xi) = max {pθ1(xi), pθ2(xi)} =

max
{
∂+G

θ1
i (0), ∂+G

θ2
i (0)

}
.

Take θ1 = φi(z) and θ2 = φi(z
′). Let θ0 be such that Gθ0

i (κtd/2) ≥
max

{
Gθ1
i (κtd/2), Gθ2

i (κtd/2)
}
∀t ≥ 0 and ∂+G

θ0
i (0) = max

{
∂+G

θ1
i (0), ∂+G

θ2
i (0)

}
. By def-

inition of φi(·), ∂+G
θ1
i (0) = z and ∂+G

θ2
i (0) = z′. So, ∂+G

θ0
i (0) = max {z, z′} = z′.

Since Gθ0
i (κtd/2) ≥ Gθ2

i (κtd/2) ∀t ≥ 0, 1 − Gθ0
i

(
κtd/2

)
≤ 1 − Gθ2

i

(
κtd/2

)
∀t ≥ 0 and so∫∞

0

(
1−Gθ0

i

(
κtd/2

))m
dt ≤

∫∞
0

(
1−Gθ2

i

(
κtd/2

))m
dt. On the other hand, because θ2 =

φi(z
′) minimizes

∫∞
0

(
1−Gθ

i

(
κtd/2

))m
dt among all θ’s such that ∂+G

θ
i (0) = z′ and ∂+G

θ0
i (0) =

z′,
∫∞

0

(
1−Gθ2

i

(
κtd/2

))m
dt ≤

∫∞
0

(
1−Gθ0

i

(
κtd/2

))m
dt. We can therefore conclude that∫∞

0

(
1−Gθ0

i

(
κtd/2

))m
dt =

∫∞
0

(
1−Gθ2

i

(
κtd/2

))m
dt. Since 1−Gθ0

i

(
κtd/2

)
≤ 1−Gθ2

i

(
κtd/2

)

∀t ≥ 0, the only situation where this can happen is when Gθ0
i

(
κtd/2

)
= Gθ2

i

(
κtd/2

)
∀t ≥ 0.

By definition of G∗i , G
∗
i

(
κtd/2, z

)
= G

φi(z)
i (κtd/2) = Gθ1

i (κtd/2) and G∗i
(
κtd/2, z′

)
=

G
φi(z

′)
i (κtd/2) = Gθ2

i (κtd/2) = Gθ0
i

(
κtd/2

)
. By definition of θ0, Gθ0

i

(
κtd/2

)
≥ Gθ1

i (κtd/2) ∀t ≥

APPENDIX B. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 92

0. So, G∗i
(
κtd/2, z′

)
= Gθ2

i (κtd/2) ≥ Gθ1
i (κtd/2) = G∗i

(
κtd/2, z

)
∀t ≥ 0. Hence,∫∞

α

(
1−G∗i

(
κtd/2, z′

))m
dt ≤

∫∞
α

(
1−G∗i

(
κtd/2, z

))m
dt.

Combining with the previous result that
∫ α

0

(
1−G∗i

(
κtd/2, z′

))m
dt

<
∫ α

0

(
1−G∗i

(
κtd/2, z

))m
dt, it follows that:

∫ ∞

0

(
1−G∗i

(
κtd/2, z′

))m
dt

=

∫ α

0

(
1−G∗i

(
κtd/2, z′

))m
dt+

∫ ∞

α

(
1−G∗i

(
κtd/2, z′

))m
dt

<

∫ α

0

(
1−G∗i

(
κtd/2, z

))m
dt+

∫ ∞

α

(
1−G∗i

(
κtd/2, z′

))m
dt

≤
∫ α

0

(
1−G∗i

(
κtd/2, z

))m
dt+

∫ ∞

α

(
1−G∗i

(
κtd/2, z

))m
dt

=

∫ ∞

0

(
1−G∗i

(
κtd/2, z

))m
dt

By definition,
∫ ∞

0

(
1−G∗i

(
κtd/2, z

))m
dt

=

∫ ∞

0

(
1−Gφi(z)

i (κtd/2)
)m

dt

= min
θ

{∫ ∞

0

(
1−Gθ

i

(
κtd/2

))m
dt
∣∣∂+G

θ
i (0) = z

}

= min
θ

{
E
[
Rθ
i

]
|pθ(xi) = z

}

= Ψi(z)

Similarly,
∫∞

0

(
1−G∗i

(
κtd/2, z′

))m
dt = Ψi(z

′). We can therefore conclude that
Ψi(z

′) < Ψi(z) whenever z′ > z.

We now prove the main result.

Theorem 1. Consider a set of observations x1, . . . ,xn, a parameterized family of distri-
butions Pθ with probability density function (PDF) pθ(·) and a unique maximum likelihood
solution θ∗. For any m ≥ 1, let x̃θ1, . . . , x̃

θ
m ∼ Pθ be i.i.d. random variables and define

r̃θ :=
∥∥x̃θ1
∥∥2

2
, Rθ := minj∈[m]

∥∥x̃θj
∥∥2

2
and Rθ

i := minj∈[m]

∥∥x̃θj − xi
∥∥2

2
. Let F θ(·) be the cumula-

tive distribution function (CDF) of r̃θ and Ψ(z) := minθ
{
E
[
Rθ
]
|pθ(0) = z

}
.

If Pθ satisfies the following:

• pθ(x) is differentiable w.r.t. θ and continuous w.r.t. x everywhere.

• ∀θ,v, there exists θ′ such that pθ(x) = pθ′(x + v) ∀x.

• For any θ1, θ2, there exists θ0 such that F θ0(t) ≥ max
{
F θ1(t), F θ2(t)

}
∀t ≥ 0 and

pθ0(0) = max {pθ1(0), pθ2(0)}.

APPENDIX B. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 93

• ∃τ > 0 such that ∀i ∈ [n] ∀θ /∈ Bθ∗(τ), pθ(xi) < pθ∗(xi), where Bθ∗(τ) denotes the ball
centred at θ∗ of radius τ .

• Ψ(z) is differentiable everywhere.

• For all θ, if θ 6= θ∗, there exists j ∈ [d] such that

〈



Ψ′(pθ(x1))pθ(x1)
Ψ′(pθ∗ (x1))pθ∗ (x1)

...
Ψ′(pθ(xn))pθ(xn)

Ψ′(pθ∗ (xn))pθ∗ (xn)


 ,



∇θ (log pθ(x1))j

...
∇θ (log pθ(xn))j



〉
6= 0.

Then,

arg min
θ

n∑

i=1

E
[
Rθ
i

]

Ψ′(pθ∗(xi))pθ∗(xi)
= arg max

θ

n∑

i=1

log pθ(xi)

Furthermore, if pθ∗(x1) = · · · = pθ∗(xn), then,

arg min
θ

n∑

i=1

E
[
Rθ
i

]
= arg max

θ

n∑

i=1

log pθ(xi)

Proof. Pick an arbitrary i ∈ [n]. We first prove a few basic facts.
By the second property of Pθ, ∀θ ∃θ′ such that pθ(u) = pθ′(u − xi) ∀u. In particular,

pθ(xi) = pθ′(xi − xi) = pθ′(0). Let F θ
i be as defined in Lemma 15.

F θ
i (t) = Pr

(
r̃θi ≤ t

)
= Pr

(∥∥x̃θ1 − xi
∥∥

2
≤
√
t
)

=

∫

Bxi (
√
t)

pθ(u)du =

∫

Bxi (
√
t)

pθ′(u− xi)du

=

∫

B0(
√
t)

pθ′(u)du = Pr
(
r̃θ
′ ≤ t

)
= F θ′(t)

Similarly, ∀θ′ ∃θ such that pθ′(u) = pθ(u+xi) ∀u. In particular, pθ′(0) = pθ(0+xi) = pθ(xi).

F θ′(t) = Pr
(
r̃θ
′ ≤ t

)
=

∫

B0(
√
t)

pθ′(u)du

=

∫

B0(
√
t)

pθ(u + xi)du =

∫

Bxi (
√
t)

pθ(u)du

=Pr
(∥∥x̃θ1 − xi

∥∥
2
≤
√
t
)

= Pr
(
r̃θi ≤ t

)
= F θ

i (t)

Let θ1, θ2 be arbitrary. The facts above imply that there exist θ′1 and θ′2 such that F θ1
i (t) =

F θ′1(t), F θ2
i (t) = F θ′2(t), pθ1(xi) = pθ′1(0) and pθ2(xi) = pθ′2(0).

By the third property of Pθ, let θ′0 be such that F θ′0(t) ≥ max
{
F θ′1(t), F θ′2(t)

}
∀t ≥ 0

and pθ′0(0) = max
{
pθ′1(0), pθ′2(0)

}
. By the facts above, it follows that there exists θ0 such

that F θ′0(t) = F θ0
i (t) and pθ′0(0) = pθ0(xi).

APPENDIX B. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 94

So, we can conclude that for any θ1, θ2, there exists θ0 such that
F θ0
i (t) ≥ max

{
F θ1
i (t), F θ2

i (t)
}
∀t ≥ 0 and pθ0(xi) = max {pθ1(xi), pθ2(xi)}.

By Lemma 15, Ψi(z) = minθ
{
E
[
Rθ
i

]
|pθ(xi) = z

}
is strictly decreasing.

Consider any θ. By the facts above, there exists θ′ such that pθ(xi) = pθ′(0) and
F θ
i (t) = F θ′(t) ∀t. Therefore,

E
[
Rθ
i

]
=

∫ ∞

0

Pr
(
Rθ
i > t

)
dt

=

∫ ∞

0

(
Pr
(∥∥x̃θ1 − xi

∥∥2

2
> t
))m

dt

=

∫ ∞

0

(
1− F θ

i (t)
)m

dt

=

∫ ∞

0

(
1− F θ′(t)

)m
dt

=

∫ ∞

0

Pr
(
Rθ′ > t

)
dt

=E
[
Rθ′
]

So, ∀z

Ψi(z) = min
θ

{
E
[
Rθ
i

]
|pθ(xi) = z

}

= min
θ′

{
E
[
Rθ′
]
|pθ′(0) = z

}

=Ψ(z)

Because Ψi(·) is strictly decreasing, Ψ(·) is also strictly decreasing.
We would like to apply Lemma 13, with fi(θ) = − log pθ(xi) ∀i ∈ [n] and Φ(y) =

Ψ(exp(−y)). By the first property of Pθ, pθ(·) is differentiable w.r.t. θ and so fi(θ) is
differentiable for all i. By the fifth property of Pθ, Ψ(·) is differentiable and so Φ(·) is
differentiable. Since y 7→ exp(−y) is strictly decreasing and Ψ(·) is strictly decreasing, Φ(·) is
strictly increasing. Since there is a unique maximum likelihood solution θ∗, minθ

∑n
i=1 fi(θ) =

maxθ
∑n

i=1 log pθ(xi) exists and has a unique minimizer. By the fourth property of Pθ, the
first condition of Lemma 13 is satisfied. By the sixth property of Pθ, the second condition of
Lemma 13 is satisfied. Since all conditions are satisfied, we apply Lemma 13 and conclude

APPENDIX B. IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION 95

that

min
θ

n∑

i=1

wiΦ(fi(θ)) = min
θ

n∑

i=1

wiΨ(pθ(xi))

= min
θ

n∑

i=1

wiΨi(pθ(xi))

= min
θ

n∑

i=1

E
[
Rθ
i

]

Ψ′(pθ∗(xi))pθ∗(xi)

exists and has a unique minimizer. Furthermore,

arg min
θ

n∑

i=1

E
[
Rθ
i

]

Ψ′(pθ∗(xi))pθ∗(xi)
= arg min

θ

n∑

i=1

− log pθ(xi)

= arg max
θ

n∑

i=1

log pθ(xi)

If pθ(x1) = · · · pθ(xn), then w1 = · · · = wn, and so
arg minθ

∑n
i=1 wiE

[
Rθ
i

]
= arg minθ

∑n
i=1 E

[
Rθ
i

]
= arg maxθ

∑n
i=1 log pθ(xi).

96

Bibliography

[1] Evangelos Anagnostopoulos, Ioannis Z Emiris, and Ioannis Psarros. “Low-quality di-
mension reduction and high-dimensional approximate nearest neighbor”. In: 31st In-
ternational Symposium on Computational Geometry (SoCG 2015). 2015, pp. 436–
450.

[2] Alexandr Andoni and Piotr Indyk. “Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions”. In: Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on. IEEE. 2006, pp. 459–468.

[3] Alexandr Andoni and Ilya Razenshteyn. “Optimal data-dependent hashing for ap-
proximate near neighbors”. In: Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing. ACM. 2015, pp. 793–801.

[4] Marcin Andrychowicz et al. “Learning to learn by gradient descent by gradient de-
scent”. In: arXiv preprint arXiv:1606.04474 (2016).

[5] Martin Arjovsky and Léon Bottou. “Towards principled methods for training gener-
ative adversarial networks”. In: arXiv preprint arXiv:1701.04862 (2017).

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein generative adver-
sarial networks”. In: International Conference on Machine Learning. 2017, pp. 214–
223.

[7] Sanjeev Arora and Yi Zhang. “Do GANs actually learn the distribution? an empirical
study”. In: arXiv preprint arXiv:1706.08224 (2017).

[8] Sanjeev Arora et al. “Generalization and equilibrium in generative adversarial nets
(GANs)”. In: arXiv preprint arXiv:1703.00573 (2017).

[9] Kenneth Joseph Arrow et al. “Studies in linear and non-linear programming”. In:
(1958).

[10] Sunil Arya and David M Mount. “Approximate Nearest Neighbor Queries in Fixed
Dimensions.” In: SODA. Vol. 93. 1993, pp. 271–280.

[11] Sunil Arya et al. “An optimal algorithm for approximate nearest neighbor searching
fixed dimensions”. In: Journal of the ACM (JACM) 45.6 (1998), pp. 891–923.

BIBLIOGRAPHY 97

[12] Leonard E Baum and Ted Petrie. “Statistical inference for probabilistic functions of
finite state Markov chains”. In: The annals of mathematical statistics 37.6 (1966),
pp. 1554–1563.

[13] Jonathan Baxter et al. NIPS 1995 Workshop on Learning to Learn: Knowledge Con-
solidation and Transfer in Inductive Systems. https://web.archive.org/web/

20000618135816/http://www.cs.cmu.edu/afs/cs.cmu.edu/user/caruana/pub/

transfer.html. Accessed: 2015-12-05. 1995.

[14] Rudolf Bayer. “Symmetric binary B-trees: Data structure and maintenance algo-
rithms”. In: Acta informatica 1.4 (1972), pp. 290–306.

[15] Ehsan Behnam, Michael S Waterman, and Andrew D Smith. “A geometric interpre-
tation for local alignment-free sequence comparison”. In: Journal of Computational
Biology 20.7 (2013), pp. 471–485.

[16] Y Bengio, S Bengio, and J Cloutier. “Learning a synaptic learning rule”. In: Neural
Networks, 1991., IJCNN-91-Seattle International Joint Conference on. Vol. 2. IEEE.
1991, 969–vol.

[17] Yoshua Bengio. “Gradient-based optimization of hyperparameters”. In: Neural com-
putation 12.8 (2000), pp. 1889–1900.

[18] Yoshua Bengio and Samy Bengio. “Modeling high-dimensional discrete data with
multi-layer neural networks”. In: Advances in Neural Information Processing Systems.
2000, pp. 400–406.

[19] Yoshua Bengio et al. “Better Mixing via Deep Representations.” In: ICML (1). 2013,
pp. 552–560.

[20] Yoshua Bengio et al. “Deep generative stochastic networks trainable by backprop”.
In: International Conference on Machine Learning. 2014, pp. 226–234.

[21] Jon Louis Bentley. “Multidimensional binary search trees used for associative search-
ing”. In: Communications of the ACM 18.9 (1975), pp. 509–517.

[22] Stefan Berchtold, Daniel A. Keim, and Hans-peter Kriegel. “The X-tree: An Index
Structure for High-Dimensional Data”. In: Very Large Data Bases. 1996, pp. 28–39.

[23] Stefan Berchtold et al. “Fast nearest neighbor search in high-dimensional space”. In:
Data Engineering, 1998. Proceedings., 14th International Conference on. IEEE. 1998,
pp. 209–218.

[24] James S Bergstra et al. “Algorithms for hyper-parameter optimization”. In: Advances
in Neural Information Processing Systems. 2011, pp. 2546–2554.

[25] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimiza-
tion”. In: The Journal of Machine Learning Research 13.1 (2012), pp. 281–305.

[26] Julian Besag. “Statistical analysis of non-lattice data”. In: The statistician (1975),
pp. 179–195.

https://web.archive.org/web/20000618135816/http://www.cs.cmu.edu/afs/cs.cmu.edu/user/caruana/pub/transfer.html
https://web.archive.org/web/20000618135816/http://www.cs.cmu.edu/afs/cs.cmu.edu/user/caruana/pub/transfer.html
https://web.archive.org/web/20000618135816/http://www.cs.cmu.edu/afs/cs.cmu.edu/user/caruana/pub/transfer.html

BIBLIOGRAPHY 98

[27] Alina Beygelzimer, Sham Kakade, and John Langford. “Cover trees for nearest neigh-
bor”. In: Proceedings of the 23rd International Conference on Machine Learning.
ACM. 2006, pp. 97–104.

[28] Gérard Biau et al. “A weighted k-nearest neighbor density estimate for geometric
inference”. In: Electronic Journal of Statistics 5 (2011), pp. 204–237.

[29] Christopher M Bishop, Markus Svensén, and Christopher KI Williams. “GTM: The
generative topographic mapping”. In: Neural computation 10.1 (1998), pp. 215–234.

[30] Matthieu Bray et al. “3D Hand Tracking by Rapid Stochastic Gradient Descent us-
ing a Skinning Model”. In: 1st European Conference on Visual Media Production
(CVMP). Citeseer. 2004.

[31] Pavel B Brazdil, Carlos Soares, and Joaquim Pinto Da Costa. “Ranking learning
algorithms: Using IBL and meta-learning on accuracy and time results”. In: Machine
Learning 50.3 (2003), pp. 251–277.

[32] Pavel Brazdil et al. Metalearning: applications to data mining. Springer Science &
Business Media, 2008.

[33] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. “Importance weighted autoen-
coders”. In: arXiv preprint arXiv:1509.00519 (2015).

[34] Qifeng Chen and Vladlen Koltun. “Photographic image synthesis with cascaded re-
finement networks”. In: IEEE International Conference on Computer Vision (ICCV).
Vol. 1. 2. 2017, p. 3.

[35] Kenneth L Clarkson. “Nearest neighbor queries in metric spaces”. In: Discrete &
Computational Geometry 22.1 (1999), pp. 63–93.

[36] Kenneth L Clarkson. “Nearest-neighbor searching and metric space dimensions”. In:
Nearest-neighbor methods for learning and vision: theory and practice (2006), pp. 15–
59.

[37] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Understand-
ing”. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016.

[38] Nichael Lynn Cramer. “A representation for the adaptive generation of simple se-
quential programs”. In: Proceedings of the First International Conference on Genetic
Algorithms. 1985, pp. 183–187.

[39] Christian Daniel, Jonathan Taylor, and Sebastian Nowozin. “Learning Step Size Con-
trollers for Robust Neural Network Training”. In: Thirtieth AAAI Conference on
Artificial Intelligence. 2016.

[40] Sanjoy Dasgupta and Yoav Freund. “Random projection trees and low dimensional
manifolds”. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing. ACM. 2008, pp. 537–546.

BIBLIOGRAPHY 99

[41] Sanjoy Dasgupta and Kaushik Sinha. “Randomized partition trees for nearest neigh-
bor search”. In: Algorithmica 72.1 (2015), pp. 237–263.

[42] Mayur Datar et al. “Locality-sensitive hashing scheme based on p-stable distribu-
tions”. In: Proceedings of the twentieth annual symposium on Computational geome-
try. ACM. 2004, pp. 253–262.

[43] Peter J Diggle and Richard J Gratton. “Monte Carlo methods of inference for implicit
statistical models”. In: Journal of the Royal Statistical Society. Series B (Methodolog-
ical) (1984), pp. 193–227.

[44] Justin Domke. “Generic Methods for Optimization-Based Modeling.” In: AISTATS.
Vol. 22. 2012, pp. 318–326.

[45] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial feature learning”.
In: arXiv preprint arXiv:1605.09782 (2016).

[46] Alexey Dosovitskiy and Thomas Brox. “Generating images with perceptual similarity
metrics based on deep networks”. In: Advances in Neural Information Processing
Systems. 2016, pp. 658–666.

[47] Vincent Dumoulin et al. “Adversarially learned inference”. In: arXiv preprint arXiv:1606.00704
(2016).

[48] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. “Training gen-
erative neural networks via maximum mean discrepancy optimization”. In: arXiv
preprint arXiv:1505.03906 (2015).

[49] Francis Ysidro Edgeworth. “On the probable errors of frequency-constants”. In: Jour-
nal of the Royal Statistical Society 71.2 (1908), pp. 381–397.

[50] Ahmed Eldawy and Mohamed F Mokbel. “SpatialHadoop: A MapReduce framework
for spatial data”. In: Data Engineering (ICDE), 2015 IEEE 31st International Con-
ference on. IEEE. 2015, pp. 1352–1363.

[51] Brian S Everitt. Mixture Distributions - I. Wiley Online Library, 1985.

[52] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. “Initializing Bayesian
Hyperparameter Optimization via Meta-Learning.” In: AAAI. 2015, pp. 1128–1135.

[53] Chelsea Finn et al. “Learning Visual Feature Spaces for Robotic Manipulation with
Deep Spatial Autoencoders”. In: arXiv preprint arXiv:1509.06113 (2015).

[54] Ronald A Fisher. “On an absolute criterion for fitting frequency curves”. In: Messen-
ger of Mathematics 41 (1912), pp. 155–160.

[55] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric discrim-
ination: consistency properties. Tech. rep. California Univ Berkeley, 1951.

[56] Jie Fu et al. “Deep Q-Networks for Accelerating the Training of Deep Neural Net-
works”. In: arXiv preprint arXiv:1606.01467 (2016).

BIBLIOGRAPHY 100

[57] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural informa-
tion processing systems. 2014, pp. 2672–2680.

[58] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In: arXiv
preprint arXiv:1410.5401 (2014).

[59] Karol Gregor and Yann LeCun. “Learning fast approximations of sparse coding”. In:
Proceedings of the 27th International Conference on Machine Learning (ICML-10).
2010, pp. 399–406.

[60] Arthur Gretton et al. “A kernel method for the two-sample-problem”. In: Advances
in neural information processing systems. 2007, pp. 513–520.

[61] Leo J Guibas and Robert Sedgewick. “A dichromatic framework for balanced trees”.
In: Foundations of Computer Science, 1978., 19th Annual Symposium on. IEEE. 1978,
pp. 8–21.

[62] Michael U Gutmann et al. “Likelihood-free inference via classification”. In: arXiv
preprint arXiv:1407.4981 (2014).

[63] Michael Gutmann and Aapo Hyvärinen. “Noise-contrastive estimation: A new esti-
mation principle for unnormalized statistical models.” In: AISTATS. Vol. 1. 2. 2010,
p. 6.

[64] Antonin Guttman. “R-trees: a dynamic index structure for spatial searching”. In:
Proceedings of the 1984 ACM SIGMOD International Conference on Management of
Data. 1984, pp. 47–57.

[65] Weiqiao Han, Sergey Levine, and Pieter Abbeel. “Learning Compound Multi-Step
Controllers under Unknown Dynamics”. In: International Conference on Intelligent
Robots and Systems. 2015.

[66] Samantha Hansen. “Using Deep Q-Learning to Control Optimization Hyperparame-
ters”. In: arXiv preprint arXiv:1602.04062 (2016).

[67] Martin Heusel et al. “Gans trained by a two time-scale update rule converge to a local
nash equilibrium”. In: Advances in Neural Information Processing Systems. 2017,
pp. 6626–6637.

[68] Geoffrey E Hinton. “Training products of experts by minimizing contrastive diver-
gence”. In: Neural computation 14.8 (2002), pp. 1771–1800.

[69] Geoffrey E Hinton and Terrence J Sejnowski. “Learning and releaming in boltzmann
machines”. In: Parallel distributed processing: Explorations in the microstructure of
cognition 1.282-317 (1986), p. 2.

[70] R Devon Hjelm et al. “Boundary-seeking generative adversarial networks”. In: arXiv
preprint arXiv:1702.08431 (2017).

[71] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

BIBLIOGRAPHY 101

[72] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. “Learning to learn us-
ing gradient descent”. In: International Conference on Artificial Neural Networks.
Springer. 2001, pp. 87–94.

[73] Michael E Houle and Michael Nett. “Rank-based similarity search: Reducing the di-
mensional dependence”. In: Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 37.1 (2015), pp. 136–150.

[74] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Sequential model-based
optimization for general algorithm configuration”. In: Learning and Intelligent Opti-
mization. Springer, 2011, pp. 507–523.

[75] Aapo Hyvärinen. “Estimation of non-normalized statistical models by score match-
ing”. In: Journal of Machine Learning Research 6.Apr (2005), pp. 695–709.

[76] Piotr Indyk and Rajeev Motwani. “Approximate nearest neighbors: towards removing
the curse of dimensionality”. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing. ACM. 1998, pp. 604–613.

[77] Phillip Isola et al. “Image-To-Image Translation With Conditional Adversarial Net-
works”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 1125–1134.

[78] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. “Product quantization for nearest
neighbor search”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions
on 33.1 (2011), pp. 117–128.

[79] Michael I Jordan et al. “An introduction to variational methods for graphical models”.
In: Machine learning 37.2 (1999), pp. 183–233.

[80] David R Karger and Matthias Ruhl. “Finding nearest neighbors in growth-restricted
metrics”. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of
Computing. ACM. 2002, pp. 741–750.

[81] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).

[82] Robert Krauthgamer and James R Lee. “Navigating nets: simple algorithms for prox-
imity search”. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. Society for Industrial and Applied Mathematics. 2004, pp. 798–
807.

[83] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features from tiny
images”. In: Technical report, University of Toronto (2009).

[84] Hugo Larochelle and Iain Murray. “The neural autoregressive distribution estimator”.
In: Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics. 2011, pp. 29–37.

[85] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

BIBLIOGRAPHY 102

[86] Sergey Levine and Pieter Abbeel. “Learning neural network policies with guided pol-
icy search under unknown dynamics”. In: Advances in Neural Information Processing
Systems. 2014, pp. 1071–1079.

[87] Sergey Levine, Nolan Wagener, and Pieter Abbeel. “Learning Contact-Rich Manipu-
lation Skills with Guided Policy Search”. In: arXiv preprint arXiv:1501.05611 (2015).

[88] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In: arXiv
preprint arXiv:1504.00702 (2015).

[89] Ke Li and Jitendra Malik. “Fast k-nearest neighbour search via Dynamic Continuous
Indexing”. In: International Conference on Machine Learning. 2016, pp. 671–679.

[90] Ke Li and Jitendra Malik. “Fast k-nearest neighbour search via Dynamic Continuous
Indexing”. In: International Conference on Machine Learning. 2016, pp. 671–679.

[91] Ke Li and Jitendra Malik. “Fast k-Nearest Neighbour Search via Prioritized DCI”.
In: International Conference on Machine Learning. 2017, pp. 2081–2090.

[92] Yujia Li, Kevin Swersky, and Rich Zemel. “Generative moment matching networks”.
In: Proceedings of the 32nd International Conference on Machine Learning (ICML-
15). 2015, pp. 1718–1727.

[93] Yujia Li et al. “Dualing GANs”. In: Advances in Neural Information Processing Sys-
tems. 2017, pp. 5611–5621.

[94] Percy Liang, Michael I Jordan, and Dan Klein. “Learning programs: A hierarchical
Bayesian approach”. In: Proceedings of the 27th International Conference on Machine
Learning (ICML-10). 2010, pp. 639–646.

[95] Ting Liu et al. “An investigation of practical approximate nearest neighbor algo-
rithms”. In: Advances in Neural Information Processing Systems. 2004, pp. 825–832.

[96] David JC MacKay. “Bayesian neural networks and density networks”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 354.1 (1995), pp. 73–80.

[97] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. “Gradient-based hyperpa-
rameter optimization through reversible learning”. In: arXiv preprint arXiv:1502.03492
(2015).

[98] Stefan Meiser. “Point location in arrangements of hyperplanes”. In: Information and
Computation 106.2 (1993), pp. 286–303.

[99] Marvin Minsky and Seymour Papert. “Perceptrons: an introduction to computational
geometry”. In: (1969), p. 222.

[100] Shakir Mohamed and Balaji Lakshminarayanan. “Learning in implicit generative
models”. In: arXiv preprint arXiv:1610.03483 (2016).

[101] Alfred Müller. “Integral probability metrics and their generating classes of functions”.
In: Advances in Applied Probability 29.2 (1997), pp. 429–443.

BIBLIOGRAPHY 103

[102] Radford M Neal. “Connectionist learning of belief networks”. In: Artificial intelligence
56.1 (1992), pp. 71–113.

[103] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. “f-GAN: Training generative
neural samplers using variational divergence minimization”. In: Advances in Neural
Information Processing Systems. 2016, pp. 271–279.

[104] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent
neural networks”. In: arXiv preprint arXiv:1601.06759 (2016).

[105] Michael T Orchard. “A fast nearest-neighbor search algorithm”. In: Acoustics, Speech,
and Signal Processing, 1991. ICASSP-91., 1991 International Conference on. IEEE.
1991, pp. 2297–2300.

[106] Löıc Paulevé, Hervé Jégou, and Laurent Amsaleg. “Locality sensitive hashing: A
comparison of hash function types and querying mechanisms”. In: Pattern Recognition
Letters 31.11 (2010), pp. 1348–1358.

[107] William Pugh. “Skip lists: a probabilistic alternative to balanced trees”. In: Commu-
nications of the ACM 33.6 (1990), pp. 668–676.

[108] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434
(2015).

[109] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic back-
propagation and variational inference in deep latent Gaussian models”. In: Interna-
tional Conference on Machine Learning. 2014.

[110] Stephan R. Richter et al. “Playing for Data: Ground Truth from Computer Games”.
In: European Conference on Computer Vision (ECCV). Ed. by Bastian Leibe et al.
Vol. 9906. LNCS. Springer International Publishing, 2016, pp. 102–118.

[111] Paul L Ruvolo, Ian Fasel, and Javier R Movellan. “Optimization on a budget: A
reinforcement learning approach”. In: Advances in Neural Information Processing
Systems. 2009, pp. 1385–1392.

[112] Tim Salimans et al. “Improved techniques for training GANs”. In: Advances in Neural
Information Processing Systems. 2016, pp. 2234–2242.

[113] Jürgen Schmidhuber. “Learning factorial codes by predictability minimization”. In:
Neural Computation 4.6 (1992), pp. 863–879.

[114] Jürgen Schmidhuber. “Optimal ordered problem solver”. In: Machine Learning 54.3
(2004), pp. 211–254.

[115] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[116] Mathieu Sinn and Ambrish Rawat. “Non-parametric estimation of Jensen-Shannon
Divergence in Generative Adversarial Network training”. In: arXiv preprint arXiv:1705.09199
(2017).

BIBLIOGRAPHY 104

[117] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian optimiza-
tion of machine learning algorithms”. In: Advances in neural information processing
systems. 2012, pp. 2951–2959.

[118] Pablo Sprechmann et al. “Supervised sparse analysis and synthesis operators”. In:
Advances in Neural Information Processing Systems. 2013, pp. 908–916.

[119] Kevin Swersky, Jasper Snoek, and Ryan P Adams. “Multi-task bayesian optimiza-
tion”. In: Advances in neural information processing systems. 2013, pp. 2004–2012.

[120] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business
Media, 2012.

[121] Zhuowen Tu. “Learning generative models via discriminative approaches”. In: Com-
puter Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE.
2007, pp. 1–8.

[122] Ricardo Vilalta and Youssef Drissi. “A perspective view and survey of meta-learning”.
In: Artificial Intelligence Review 18.2 (2002), pp. 77–95.

[123] Ting-Chun Wang et al. “High-resolution image synthesis and semantic manipulation
with conditional gans”. In: arXiv preprint arXiv:1711.11585 (2017).

[124] Xintao Wang et al. “ESRGAN: Enhanced Super-Resolution Generative Adversarial
Networks”. In: CoRR abs/1809.00219 (2018).

[125] Yair Weiss, Antonio Torralba, and Rob Fergus. “Spectral hashing”. In: Advances in
Neural Information Processing Systems. 2009, pp. 1753–1760.

[126] Max Welling and Geoffrey Hinton. “A new learning algorithm for mean field Boltz-
mann machines”. In: Artificial Neural Networks - ICANN 2002 (2002), pp. 82–82.

[127] Yuhuai Wu et al. “On the quantitative analysis of decoder-based generative models”.
In: arXiv preprint arXiv:1611.04273 (2016).

[128] Richard Zhang et al. “The unreasonable effectiveness of deep features as a perceptual
metric”. In: arXiv preprint (2018).

[129] Junbo Zhao, Michael Mathieu, and Yann LeCun. “Energy-based generative adversar-
ial network”. In: arXiv preprint arXiv:1609.03126 (2016).

[130] Jun-Yan Zhu et al. “Toward Multimodal Image-to-Image Translation”. In: CoRR
abs/1711.11586 (2017). arXiv: 1711.11586. url: http://arxiv.org/abs/1711.
11586.

[131] Jun-Yan Zhu et al. “Toward multimodal image-to-image translation”. In: Advances
in Neural Information Processing Systems. 2017, pp. 465–476.

[132] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-consistent ad-
versarial networks”. In: arXiv preprint arXiv:1703.10593 (2017).

http://arxiv.org/abs/1711.11586
http://arxiv.org/abs/1711.11586
http://arxiv.org/abs/1711.11586

	Contents
	List of Figures
	List of Tables
	Nearest Neighbour Search
	Notions of Dimensionality
	Exact vs. Approximate Nearest Neighbour Search
	Space Partitioning
	k-d Trees
	Locality-Sensitive Hashing

	Landscape of Prior Methods
	Curse of Intrinsic Dimensionality
	Key Insight
	Generalized Union Bound
	Dynamic Continuous Indexing (DCI)
	Analysis
	Data-Independent Version
	Data-Dependent Version

	Prioritized DCI
	Analysis

	Experiments

	Learning to Optimize
	Formulation
	Learning How to Learn
	Learning on One Objective Function
	Learning on Finitely Many Objective Functions
	Learning on All Possible Objective Functions
	When Does Meta-Learning Make Sense?
	Difference with Classical Meta-Learning

	Taxonomy of Meta-Learning
	Learning What to Learn
	Learning Which Model to Learn
	Learning How to Learn

	How to Learn the Optimizer
	Reinforcement Learning
	Markov Decision Process
	Policy Search
	Guided Policy Search

	Formulation
	Implementation Details
	Experiments
	Logistic Regression
	Robust Linear Regression
	Neural Net Classifier
	Visualization of Optimization Trajectories

	Learning Optimizers for High-Dimensional Problems
	Features
	Experiments

	Implicit Maximum Likelihood Estimation
	Challenges in Parameter Estimation
	Contribution
	Method
	Intuition
	Definition
	Algorithm

	Analysis
	Experiments
	Conditional Generative Modelling
	Application to Multimodal Conditional Image Synthesis
	Tasks
	Single Image Super-Resolution
	Image Synthesis from Scene Layout
	Comparison to Conditional GAN
	Data
	Implementation Details
	Results

	Nearest Neighbour Search
	Generalized Union Bound
	Standard DCI
	Prioritized DCI

	Implicit Maximum Likelihood Estimation
	Bibliography

