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Abstract

Markov Chain Monte Carlo algorithms, with step proposals based on Hamiltonian
or Langevin dynamics, are commonly used in Bayesian machine learning and infer-
ence methods to sample from the posterior distribution of over model parameters. In
addition to providing accurate predictions, these methods quantify parameter uncer-
tainty and are robust to overfitting. Until recently, these methods were limited to small
datasets since they require a full pass over the data per update step. New developments
have enabled mini-batch updates through the use of a new mini-batch acceptance test
and by combining stochastic gradient descent with additional noise to correct the noise
distribution.

We propose a novel method that redistributes the stochastic gradient noise across
all degrees of freedom via collisions between particles instead of inserting additional
noise into the system. Since no additional noise is added to the system, the proposed
method has a higher rate of diffusion. This should result in faster convergence as well as
improved exploration of the posterior distribution. We observe this behavior in initial
experiments on a multivariate Gaussian model with a highly skewed, and correlated
distribution.

1 Introduction

The availability of large datasets and more powerful computational tools for machine learning
have led to advances in diverse fields, including vision, speech recognition, and reinforcement
learning. A crucial algorithmic tool that enabled machine learning on these large datasets
is stochastic gradient descent (SGD) [Robbins and Monro, 1951]. In traditional gradient
descent algorithms for machine learning, a step is taken in parameter space in the direction
opposite to the gradient of the loss function. The loss function is commonly the sum or
average of the loss of each observation in the dataset. In stochastic gradient descent, the
gradient with respect to the full dataset is replaced with the gradient with regards to a
small random subset of the data, known as a (mini-)batch. This reduces the computational
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complexity of computing the gradient in each step from O(n) to O(1), where n is the number
of observations in the dataset.

However, not all gradient-based machine learning methods benefit from the use of stochas-
tic gradient descent. In particular, Bayesian machine learning algorithms that rely on Markov
Chain Monte Carlo (MCMC) methods [Hastings, 1970; Metropolis et al., 1953] to estimate
the posterior distribution of the parameters did not. Bayesian machine learning methods
generate a posterior distribution over the model parameters instead of point estimates as
done by more traditional approaches. The posterior distribution measures the uncertainty
for parameters, thus providing a method to prevent overfitting for models with many pa-
rameters.

MCMC algorithm are methods for sampling from a distribution of interest. They con-
struct a Markov chain whose stationary distribution is the distribution of interest. Sampling
from the distribution of interest is then done by sampling from the Markov chain after it has
converged to its stationary distribution. Commonly, these algorithm apply a Metropolis-
Hastings framework [Hastings, 1970; Metropolis et al., 1953]. In this framework, steps in the
Markov chain are generated from a proposal density and are then accepted or rejected based
on a test that ensures that the stationary distribution matches the distribution of interest.
Traditionally, both the proposal generation and the acceptance test require a full pass over
the data, resulting in low sample-efficiency. Both for the proposal step and the acceptance
test, mini-batch methods have been proposed.

For the proposal step, Welling and Teh [2011] propose the Stochastic Gradient Langevin
Dynamics (SGLD) algorithm. It is a variant of first-order Langevin dynamics that injects
additional noise to ensure that noise distribution is correct. They also anneal the stepsize
to zero to avoid the use of an acceptance test. Ahn et al. [2012] step away from Langevin
Dynamics and propose a method based on Fisher scoring. The method generates samples
from a Gaussian approximation of the posterior distribution. Chen et al. [2014] propose
instead the Stochastic Gradient Hamiltonian Monte Carle (SGHMC) algorithm. The algo-
rithm builds on a variant of second-order Langevin Dynamics, with momentum, to update
the state. Similar to SGLD, they inject additional noise into the system, but they also reduce
the effect of the gradient noise.

For the acceptance test, Seita et al. [2018] proposed an efficient mini-batch acceptance
test. The test replaces the Metropolis-Hasting’s test [Hastings, 1970; Metropolis et al., 1953]
with a mini-batch version of the Barker test. They correct for the noise from the mini-batch
sampling with a correction random variable.

For the SGLD and SGHMC algorithms to approximate or converge to the posterior
distribution, the scale of the injected noise needs to dominate the gradient noise in each
direction [Chen et al., 2014; Welling and Teh, 2011]. The scale of the injected noise is thus
lower bounded by the largest eigenvalue of the covariance matrix of the gradient noise (after
correcting for any pre-conditioning). The injection of additional noise reduces the rate of
the diffusion of the samplers, since the increased noise increases the random walk behavior.
While the gradients may be conditioned with a pre-conditioning matrix, it is not practical
to apply a dense pre-conditioning matrix for models with a large number of parameters.
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Commonly-used, diagonal pre-conditioning matrices are helpful for scaling the variance in
each dimension, but do not help with correlated features.

We propose a novel SGD method based on second-order Langevin dynamics that does
not require the injection of additional noise into the system. Going back to the origin of
Langevin dynamics, we rely on a form of collisions between simultaneously trained particles
to redistribute the noise across all degrees of freedom. We show experimentally that this
whitens the noise inserted at each step and results in faster convergence to the posterior
distribution.

The remainder of this manuscript is structured as follows: In section 2, we introduce
notation. In section 3, we review stochastic gradient descent, Langevin Dynamics, and their
relation. In section 4, we present our proposed approach for stochastic gradient descent
with collisions. In section 5, we present an experimental study between three versions of
stochastic gradient descent with injected noise and/or collisions. Finally, we conclude the
manuscript in section 6.

2 Preliminaries

We are given a dataset X consisting of n observations, {xi}
n
i=1, drawn independently from

a distribution. For a vector of model parameters θ, let p(θ) denote its prior distribution,
and let p(x|θ) denote the probability of observing data x given model parameters θ. By
Bayes rule, the posterior distribution of θ given a dataset X of independent observations is
p(θ|X) ∝

∏n

i=1 p(xi|θ)p(θ).

3 Stochastic Gradient Descent & Langevin Dynamics

3.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) [Robbins and Monro, 1951] is an optimization method
for finding a local minimum of a function of a function of the form:

∑n

i=1 f(θ|xi). At each
iteration t, we observe a mini-batch Xt = {xt

1, x
t
2, . . . , x

t
b}, a randomly drawn subsample

of observations drawn from X. b is known as the batch-size. The model parameters are
updated as follows:

θ(t) = θ(t− 1)− λ
n

b

b
∑

i=1

∇f(θ|xt
i), (1)

where λ > 0 is the learning rate. A common extension for stochastic gradient descent
is to add a momentum or velocity term v(θ). The update rule for the model parameters is
then:

v(t) = µv(t− 1)− λ
n

b

b
∑

i=1

∇f(θ|xt
i), (2)

θ(t) = θ(t− 1) + v(t). (3)
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Here µ ∈ [0, 1) can be interpreted as the coefficient of a friction force acting on the particle.
An alternative way to interpret the SGD update is to consider∇f̂Xt

(θ) = n
b

∑b

i=1 ∇f(θ|xt
i)

as a sample estimator of ∇fX(θ) =
∑n

i=1 ∇f(θ|xi). We note that EXt

[

∇f̂Xt
(θ)

]

= ∇fX(θ).

The estimator’s covariance matrix is:

Q(θ) = EXt,Xt′

[

(

∇f̂Xt
(θ)−∇fX(θ)

)(

∇f̂X
t′
(θ)−∇fX(θ)

)T
]

. (4)

By the central limit theorem, we may assume for a sufficiently large batch size b that:

∇f̂Xt
(θ) = ∇fX(θ) +N (0, Q(θ)) . (5)

A generalization of stochastic gradient descent includes the injection additional Gaussian
noise into the system. The generalized update rules are then:

v(t) = µv(t− 1)− λ(∇fX(θ) + ǫN(0, V (θ)), (6)

θ(t) = θ(t− 1) + v(t). (7)

Here, the covariance matrix V (θ) captures both the SGD noise and any noise injected into
the system, and the parameter ǫ is a scaling parameter for the noise added to the system.

3.2 Langevin Dynamics

Langevin dynamics [Langevin, 1908] describes the motion of a heavy particle emerged in a
fluid that is subject to micro-collisions with molecules in the fluid (Brownian motion). The
model accounts for a potential, random motion due to collisions, and viscous damping due
to the fluid [Pavliotis, 2014]:

Mẍ = −∇U(x)− γẋ+
√

2γkBTW (t). (8)

x represents the position of the particle, ẋ is its velocity, and ẍ is its acceleration. The
single and double dotted x refer to the first and second time derivative respectively. M is
the mass of the particle, U(x) is the potential function, γ ≥ 0 is the damping coefficient, kB
is the Boltzmann constant, and T is the temperature. W (t) is a delta-correlated, stationary
Gaussian process with zero mean. A delta-correlated stochastic process Z(t) has an auto-
covariance function of cov(Z(t), Z(t′)) = Iδ(t − t′), where δ(x) is the Dirac delta function
and I is the identity matrix.

The stationary distribution π(x) for a particle observing Langevin dynamics is the well-
known Boltzmann distribution:

π(x) ∝ exp

(

−
U(x)

kBT

)

. (9)

By choosing

U(θ) = −

n
∑

i=1

log p(xi|θ)− log p(θ) (10)
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and setting a temperature of T = 1
kB
, the stationary distribution of a Langevin particle is

equal to the posterior distribution p(θ|X). By simulating a Langevin particle, we can sample
from the posterior distribution of the parameters. How fast the particle moves through the
stationary distribution is determined by its diffusion coefficient:

D =
T

γ
(11)

Within the machine learning literature, this stochastic process is commonly known as
second-order Langevin dynamics. A special case is first-order Langevin dynamics, or over-
damped Langevin dynamics, where the term Mẍ disappears:

0 = −∇U(x)− γẋ+
√

2γkBTW (t). (12)

3.3 The Connection between Langevin Dynamics and Stochastic

Gradient Descent

Stochastic gradient descent is closely related to a discretized version of Langevin dynamics.
To make this connection apparent, we discretize the second-order Langevin process with unit
stepsize:

ẍ(t) = v(t)− v(t− 1), ẋ(t) = v(t− 1), x(t) = x(t− 1) + v(t). (13)

Here, x(t) denotes the position at time t, and v(t) denotes the velocity a time t. Furthermore,
we discretized our Gaussian noise process and replace W (t) with N(0, I). After rearranging
and dividing the update rule for v(t) by M , we obtain the following update rules:

v(t) =
M − γ

M
v(t− 1)−

1

M
∇U(x) +

1

M

√

2γkBTN(0, I), (14)

x(t) = x(t− 1) + v(t). (15)

These update rules are similar to those of stochastic gradient descent with momentum given
in (6) and (7) after changing from physical parameters (M , γ, T ) to SGD parameters (µ, λ,
ǫ):

M =
1

λ
, γ =

(1− µ)

λ
, T =

λǫ2

2kB(1− µ)
(16)

For the update rules to be the same, we require that V (θ) is the identity matrix. If this were
the case, then we could use an appropriately tuned stochastic gradient descent for posterior
inference. However, typically V (θ) is highly-skewed with low rank [Chaudhari and Soatto,
2018].

4 SGD with Collisions

To converge to the posterior distribution and explore it more efficiently, a higher diffusion
coefficient D for a given temperature is preferable. This requires a decrease in ǫ2 proportional
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to a decrease in γ to maintain the same temperature. One approach to decrease ǫ is to
increase the batch size, reducing the sample efficiency and increasing the work per iteration.

Our proposal is to avoid or reduce the addition of noise by randomly perturbing the
momentum or velocity through collisions between pairs of particles. Given m particles, we
train each particle on an independent copy of the dataset. Every tcol iterations, we divide the
m particles into m

2
random pairs. We simulate a randomized collision between each pair of

particle, resulting in an impulse vector and a corresponding velocity change for each particle.
Note that we collide pairs of particles regardless of their position and energy.

The collisions should satisfy certain properties to ensure that they only perturb the
momentum direction, and do not change the equilibrium of the system. The first condition
is that the collisions should satisfy the law of momentum conservation. This guarantees that
no energy is added or removed from the system. We also require that the energy per particle
is conserved. This ensures that we can collide particles with different energy levels at a
distance. Without the requirement that the energy per particle is conserved, the collisions
would distort the energy distribution of the system.

Next, we describe the method for colliding the particles. Suppose we have two particles
with momentum vectors p and q. Recall from physics that the momentum of an object is
defined as its velocity times its mass. The momentum conversation law requires that the
total momentum of the system remains constant. The collision impulse for the two particles
must thus be c and −c for some impulse vector c. Our second condition requires that the
kinetic energy per particle is preserved. Our momentum vectors after collision p+c and q−c

must thus satisfy:
‖p+ c‖22 = ‖p‖22 and ‖q − c‖22 = ‖q‖22. (17)

One impulse vector in span(p, q) that satisfies these constraints is the vector s in Figure 1.
Note however that this solution does not achieve our goal of distributing the momentum
across the degrees of freedom. We therefore combine the vector s with a random vector
r not in span(p, q). r is initially drawn from a standard multivariate normal distribution.
Subsequently, we compute r̄ as the part of r that is orthogonal to both p and q. This requires
solving a linear system in two variables. r̄ is then rescaled such that ‖r̄‖2 = ‖s‖2. Finally, we
define c = 1

2
(s+ r̄). This choice of c ensures that half of the energy in the collision impulse

is distributed into a random degree of freedom. Note that this definition of c still satisfies
the energy conservation requirement.

5 Experimental Results

We compare three variants of SGD for the problem of estimating the posterior distribution
of the mean parameter of a multivariate Gaussian model with a known, highly-skewed, and
correlated covariance matrix.
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Figure 1: Collision impulse vector in span(p, q).

5.1 Experimental Setup

We consider three different samplers: SGD with momentum (SGD), SGD with momentum
and added noise (SGD + Noise), and SGD with momentum and collisions (SGD + Colli-
sions). The SGD + Noise method is inspired by the SGLD and SGHMC algorithms [Chen
et al., 2015; Welling and Teh, 2011], but it does not match the methods as described in their
respective papers exactly.

We evaluate the samplers on a 10-dimensional, multivariate normal distribution with a
highly-skewed, and correlated covariance matrix. The dataset consists of 4800 observations
from a 10-dimensional, multivariate normal distribution with zero mean and covariance ma-
trix Σ = RDRT . R is an orthonormal rotation matrix drawn from the Haar distribution.
D is a diagonal matrix whose ith entry is 2−(i−1) for i = 1, . . . , 10. The covariance matrix is
thus highly skewed with exponentially decaying eigenvalues. The rotation matrix R ensures
that the features are correlated.

The goal is to obtain the posterior distribution for the mean parameter θ. We assume
that the covariance matrix is known, but it cannot be incorporated in the algorithm. As
prior, we use an improper prior with density function p(θ) = 1. It can be shown analytically
that the posterior distribution for θ is a multivariate normal distribution with mean equal
to the sample mean of the data and covariance matrix equal to Σ

4800
.

For each sampler, we train 1000 particles for 1250 epochs with a batch size of 32. The
parameters for each of the algorithms are listed in Table 1. The learning rates for each
algorithm are selected such that the temperature T is 1

kB
, and the stationary distribution of

the particle matches the posterior distribution. For SGD + Noise, the variance of the added
noise was selected to be the same order of magnitude as the largest eigenvalue of Q(θ).

5.2 Experimental Results

Figure 2 provides the covariance matrix of the particles for the last iteration of each of
the sampling methods. We observe that both SGD + Collisions and SGD + Noise have
converged close to the posterior distribution (see Figure 2d). The velocity and momentum of
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Table 1: List of algorithm-specific hyperparameters.

Hyperparameter SGD SGD + Collisions SGD + Noise

Learning rate (λ) 1.39× 10−9 1.39× 10−9 9.09× 10−9

Momentum (µ) 0.95 0.95 0.95
Variance added noise (σ2

A) 0 0 109

Collisions No Yes No
Collision interval (# steps) N/A 1 N/A

these particles for these sampling methods is distributed almost uniformly across all degrees
of freedom as seen in Figure 3. This is expected since the equipartition theorem states that
the average energy in each degree of freedom of a system in equilibrium is the same. We
do not observe the equipartition of momentum for SGD. Both SGD + Collisions and SGD
+ Noise final distributions have converged close to the posterior distribution, since both
algorithms, despite their different methods, successfully whiten the noise ingested into the
system (see Figure 4).

To evaluate how quickly the distribution for each of the sampler converges to the posterior
distribution, we provide a variational analysis of the KL divergence between the posterior
distribution and the particle distributions for each of the samplers. In this analysis, we
assume that the particle distribution for each of the samplers are multivariate Gaussian
distributions parametrized by their sample mean vector and their sample covariance matrix.
From Figure 5, we observe that SGD + Collisions converges faster than SGD + Noise. In
less than 200 epochs, SGD + Collisions stabilizes at the same KL divergence that SGD +
Noise reaches after 1250 epochs.The improved convergence for SGD + Collisions is expected
based on the higher levels of noise injected into the systems for SGD + Noise, resulting in a
lower diffusion coefficient.

We also observe faster convergence for SGD + Collisions when evaluating the error be-
tween the average position of the particles at each epoch and the true mean of the posterior
distribution (see Figure 6). After approximately 350 epochs, SGD + Collisions has converged
to its equilibrium. After all 1250 epochs, the error for SGD + Noise is at least one order of
magnitude larger. The error, after convergence, for SGD itself is about an order magnitude
lower than that of SGD + Collisions. Although the average particle position is a better
estimate of the mean of the posterior distribution, the distribution is not shaped correctly.
The distribution is a ball instead o a highly-skewed ellipsoid.

That SGD +Noise explores the distribution more slowly is also evident along the direction
with highest posterior variance, the first dimension of eigenspace. For this dimension in
particular, we observe in Figure 7 that the SGD + Noise has higher autocorrelation. This
indicates that the sampler traverses this dimension more slowly than SGD + Collisions.
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Figure 2: Covariance matrix of particle positions after 1250 epochs. The covariance matrix
is projected onto the eigenspace of Σ.
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Figure 3: Covariance matrix of particle velocities after 1250 epochs. The covariance matrix
is projected onto the eigenspace of Σ.
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Figure 4: Covariance matrix of perturbations due to noise and collisions after 1250 epochs.
The covariance matrix is projected onto the eigenspace of Σ.
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Figure 5: Variational KL divergence.
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Figure 6: L2 norm of the difference of the average particle position at the end of each epoch
and the true mean of the posterior distribution.
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(b) Fifth dimension (median variance).
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Figure 7: Autocorrelation by samplers for up to 1000 lags. Autocorrelations are measured
with respect to the basis of the true covariance matrix Σ.
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6 Conclusion

We propose to combine stochastic gradient descent with collisions for sampling from pos-
terior distributions. We describe why this method should result in faster diffusion and
thus improved exploration of the posterior distribution as compared to SGD-based sampling
methods that inject additional noise into the system. We also present initial experimental
evidence that the proposed method converges to the posterior distribution faster, but further
experimental analysis is required to verify this.
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