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Abstract
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by

Ronghang Hu

Master of Science in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Most methods for object instance segmentation require all training examples to be labeled with
segmentation masks. This requirement makes it expensive to annotate new categories and has
restricted instance segmentation models to approximately 100 well-annotated classes. The goal of
this report is to propose a new partially supervised training paradigm, together with a novel weight
transfer function, that enables training instance segmentation models on a large set of categories all
of which have box annotations, but only a small fraction of which have mask annotations. These
contributions allow us to train Mask R-CNN to detect and segment 3000 visual concepts using
box annotations from the Visual Genome dataset and mask annotations from the 80 classes in the
COCO dataset. We evaluate our approach in a controlled study on the COCO dataset. This work
is a first step towards instance segmentation models that have broad comprehension of the visual
world.
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Chapter 1

Introduction

Object detectors have become significantly more accurate (e.g., [Girshick2014, Ren2015a]) and
gained important new capabilities. One of the most exciting is the ability to predict a foreground
segmentation mask for each detected object (e.g., [He2017]), a task called instance segmentation.
In practice, typical instance segmentation systems are restricted to a narrow slice of the vast visual
world that includes only around 100 object categories.

A principle reason for this limitation is that state-of-the-art instance segmentation algorithms
require strong supervision and such supervision may be limited and expensive to collect for new
categories [Lin2014]. By comparison, bounding box annotations are more abundant and less ex-
pensive [Dai2015]. This fact raises a question: is it possible to train high-quality instance seg-
mentation models without complete instance segmentation annotations for all categories? With
this motivation, this report introduces a new partially supervised instance segmentation task and
proposes a novel transfer learning method to address it.

We formulate the partially supervised instance segmentation task as follows: (1) given a set
of categories of interest, a small subset has instance mask annotations, while the other categories
have only bounding box annotations; (2) the instance segmentation algorithm should utilize this
data to fit a model that can segment instances of all object categories in the set of interest. Since the
training data is a mixture of strongly annotated examples (those with masks) and weakly annotated
examples (those with only boxes), we refer to the task as partially supervised.

The main benefit of partially supervised vs. weakly-supervised training (c.f., [Khoreva2017]) is
it allows us to build a large-scale instance segmentation model by exploiting both types of existing
datasets: those with bounding box annotations over a large number of classes, such as Visual
Genome [Krishna2017], and those with instance mask annotations over a small number of classes,
such as COCO [Lin2014]. As we will show, this enables us to scale state-of-the-art instance
segmentation methods to thousands of categories, a capability that is critical for their deployment
in real world uses.

To address partially supervised instance segmentation, we propose a novel transfer learning
approach built on Mask R-CNN [He2017]. Mask R-CNN is well-suited to our task because it
decomposes the instance segmentation problem into the subtasks of bounding box object detection
and mask prediction. These subtasks are handled by dedicated network ‘heads’ that are trained
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Figure 1.1: We explore training instance segmentation models with partial supervision: a
subset of classes (green boxes) have instance mask annotations during training; the remaining
classes (red boxes) have only bounding box annotations. This image shows output from our model
trained for 3000 classes from Visual Genome, using mask annotations from only 80 classes in
COCO.

jointly. The intuition behind our approach is that once trained, the parameters of the bounding box
head encode an embedding of each object category that enables the transfer of visual information
for that category to the partially supervised mask head.

We materialize this intuition by designing a parameterized weight transfer function that is
trained to predict a category’s instance segmentation parameters as a function of its bounding
box detection parameters. The weight transfer function can be trained end-to-end in Mask R-CNN
using classes with mask annotations as supervision. At inference time, the weight transfer function
is used to predict the instance segmentation parameters for every category, thus enabling the model
to segment all object categories, including those without mask annotations at training time.

We explore our approach in two settings. First, we use the COCO dataset [Lin2014] to simulate
the partially supervised instance segmentation task as a means of establishing quantitative results
on a dataset with high-quality annotations and evaluation metrics. Specifically, we split the full set
of COCO categories into a subset with mask annotations and a complementary subset for which
the system has access to only bounding box annotations. Because the COCO dataset involves only
a small number (80) of semantically well-separated classes, quantitative evaluation is precise and
reliable. Experimental results show that our method improves results over a strong baseline with
up to a 40% relative increase in mask AP on categories without training masks.
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In our second setting, we train a large-scale instance segmentation model on 3000 categories
using the Visual Genome (VG) dataset [Krishna2017]. VG contains bounding box annotations for
a large number of object categories, however quantitative evaluation is challenging as many cate-
gories are semantically overlapping (e.g., near synonyms) and the annotations are not exhaustive,
making precision and recall difficult to measure. Moreover, VG is not annotated with instance
masks. Instead, we use VG to provide qualitative output of a large-scale instance segmentation
model. Output of our model is illustrated in Figure 1.1.

1.1 Related Work
Instance segmentation. Instance segmentation is a highly active research area [Hariharan2014,
Hariharan2015, Dai2015, Pinheiro2015, Pinheiro2016, Dai2016, Hayder2017, Li2017, Bai2017,
Kirillov2017], with Mask R-CNN [He2017] representing the current state-of-the-art. These meth-
ods assume a fully supervised training scenario in which all categories of interest have instance
mask annotations during training. Fully supervised training, however, makes it difficult to scale
these systems to thousands of categories. The focus of our work is to relax this assumption and
enable training models even when masks are available for only a small subset of categories. To do
this, we develop a novel transfer learning approach built on Mask R-CNN.

Weight prediction and task transfer learning. Instead of directly learning model parameters,
prior work has explored predicting them from other sources (e.g., [Ha2016]). In [Elhoseiny2013],
image classifiers are predicted from the natural language description of a zero-shot category. In
[Wang2016], a model regression network is used to construct the classifier weights from few-shot
examples, and similarly in [Misra2017], a small neural network is used to predict the classifier
weights of the composition of two concepts from the classifier weights of each individual concept.
Here, we design a model that predicts the class-specific instance segmentation weights used in
Mask R-CNN, instead of training them directly, which is not possible in our partially supervised
training scenario.

Our approach is also a type of transfer learning [Pan2010] where knowledge gained from one
task helps with another task. Most related to our work, LSDA [Hoffman2014] transforms whole-
image classification parameters into object detection parameters through a domain adaptation pro-
cedure. LSDA can be seen as transferring knowledge learned on an image classification task to
an object detection task, whereas we consider transferring knowledge learned from bounding box
detection to instance segmentation.

Weakly supervised semantic segmentation. Prior work trains semantic segmentation models
from weak supervision. Image-level labels and object size constraints are used in [Pathak2015],
while other methods use boxes as supervision for expectation-maximization [Papandreou2015]
or iterating between proposals generation and training [Dai2015]. Point supervision and object-
ness potentials are used in [Bearman2016]. Most work in this area addresses only semantic seg-
mentation (not instance segmentation), treats each class independently, and relies on hand-crafted
bottom-up proposals that generalize poorly.
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Weakly supervised instance segmentation is addressed in [Khoreva2017] by training an in-
stance segmentation model over the bottom-up GrabCut [Rother2004] foreground segmentation
results from the bounding boxes. Unlike [Khoreva2017], we aim to exploit all existing labeled
data rather than artificially limiting it. Our work is also complementary in the sense that bottom-up
segmentation methods may be used to infer training masks for our weakly-labeled examples. We
leave this extension to future work.

Visual embeddings. Object categories may be modeled by continuous ‘embedding’ vectors in
a visual-semantic space, where nearby vectors are often close in appearance or semantic ontol-
ogy. Class embedding vectors may be obtained via natural language processing techniques (e.g.
word2vec [Mikolov2013] and GloVe [Pennington2014]), from visual appearance information (e.g.
[Dumoulin2016]), or both (e.g. [Tsai2017]). In our work, the parameters of Mask R-CNN’s box
head contain class-specific appearance information and can be seen as embedding vectors learned
by training for the bounding box object detection task. The class embedding vectors enable trans-
fer learning in our model by sharing appearance information between visually related classes. We
also compare with the NLP-based GloVe embeddings [Pennington2014] in our experiments.
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Chapter 2

Learning to Segment Every Thing

Let C be the set of object categories (i.e., ‘things’ [Adelson2001]) for which we would like to
train an instance segmentation model. Most existing approaches assume that all training examples
in C are annotated with instance masks. We relax this requirement and instead assume that C =
A∪B where examples from the categories in A have masks, while those in B have only bounding
boxes. Since the examples of the B categories are weakly labeled w.r.t. the target task (instance
segmentation), we refer to training on the combination of strong and weak labels as a partially
supervised learning problem. Noting that one can easily convert instance masks to bounding boxes,
we assume that bounding box annotations are also available for classes in A.

Given an instance segmentation model like Mask R-CNN that has a bounding box detection
component and a mask prediction component, we propose the MaskX R-CNN method that trans-
fers category-specific information from the model’s bounding box detectors to its instance mask
predictors.

2.1 Mask Prediction Using Weight Transfer
Our method is built on Mask R-CNN [He2017], because it is a simple instance segmentation
model that also achieves state-of-the-art results. In brief, Mask R-CNN can be seen as augmenting
a Faster R-CNN [Ren2015a] bounding box detection model with an additional mask branch that
is a small fully convolutional network (FCN) [Long2015]. At inference time, the mask branch is
applied to each detected object in order to predict an instance-level foreground segmentation mask.
During training, the mask branch is trained jointly and in parallel with the standard bounding box
head found in Faster R-CNN.

In Mask R-CNN, the last layer in the bounding box branch and the last layer in the mask branch
both contain category-specific parameters that are used to perform bounding box classification
and instance mask prediction, respectively, for each category. Instead of learning the category-
specific bounding box parameters and mask parameters independently, we propose to predict a
category’s mask parameters from its bounding box parameters using a generic, category-agnostic
weight transfer function that can be jointly trained as part of the whole model.
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Figure 2.1: Detailed illustration of our MaskX R-CNN method. Instead of directly learning the
mask prediction parameters wseg, MaskX R-CNN predicts a category’s segmentation parameters
wseg from its corresponding box detection parameters wdet, using a learned weight transfer function
T . For training, T only needs mask data for the classes in set A, yet it can be applied to all classes
in set A ∪ B at test time. We also augment the mask head with a complementary fully connected
multi-layer perceptron (MLP).

For a given category c, let wc
det be the class-specific object detection weights in the last layer of

the bounding box head, and wc
seg be the class-specific mask weights in the mask branch. Instead of

treating wc
seg as model parameters, wc

seg is parameterized using a generic weight prediction function
T (·):

wc
seg = T (wc

det; θ), (2.1)

where θ are class-agnostic, learned parameters.
The same transfer function T (·) may be applied to any category c and, thus, θ should be set

such that T generalizes to classes whose masks are not observed during training. We expect
that generalization is possible because the class-specific detection weights wc

det can be seen as an
appearance-based visual embedding of the class.
T (·) can be implemented as a small fully connected neural network. Figure 2.1 illustrates how

the weight transfer function fits into Mask R-CNN to form MaskX R-CNN. As a detail, note that
the bounding box head contains two types of detection weights: the RoI classification weights wc

cls
and the bounding box regression weights wc

box. We experiment with using either only a single type
of detection weights (i.e. wc

det = wc
cls or wc

det = wc
box) or using the concatenation of the two types

of weights (i.e. wc
det = [wc

cls, w
c
box]).
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2.2 Training
During training, we assume that for the two sets of classes A and B, instance mask annotations are
available only for classes in A but not for classes in B, while all classes in A and B have bounding
box annotations available. As shown in Figure 2.1, we train the bounding box head using the
standard box detection losses on all classes in A ∪ B, but only train the mask head and the weight
transfer function T (·) using a mask loss on the classes in A. Given these losses, we explore two
different training procedures: stage-wise training and end-to-end training.

Stage-wise training. As Mask R-CNN can be seen as augmenting Faster R-CNN with a mask
head, a possible training strategy is to separate the training procedure into detection training (first
stage) and segmentation training (second stage). In the first stage, we train a Faster R-CNN using
only the bounding box annotations of the classes in A ∪ B, and then in the second stage the
additional mask head is trained while keeping the convolutional features and the bounding box
head fixed. In this way, the class-specific detection weights wc

det of each class c can be treated as
fixed class embedding vectors that do not need to be updated when training the second stage. This
approach has the practical benefit of allowing us to train the box detection model once and then
rapidly evaluate design choices for the weight transfer function. It also has disadvantages, which
we discuss next.

End-to-end joint training. It was shown that for Mask R-CNN, multi-task training can lead to
better performance than training on each task separately. The aforementioned stage-wise training
mechanism separates detection training and segmentation training, and may result in inferior per-
formance. Therefore, we would also like to jointly train the bounding box head and the mask head
in an end-to-end manner. In principle, one can directly train with back-propagation using the box
losses on classes in A ∪ B and the mask loss on classes in A. However, this may cause a discrep-
ancy in the class-specific detection weights wc

det between set A and B, since only wc
det for c ∈ A

will receive gradients from the mask loss through the weight transfer function T (·). We would like
wc

det to be homogeneous between A and B so that the predicted wc
seg = T (wc

det; θ) trained on A can
better generalize to B.

To address this discrepancy, we take a simple approach: when back-propagating the mask loss,
we stop the gradient with respect to wc

det, that is, we only compute the gradient of the predicted
mask weights T (wc

det; θ) with respect to transfer function parameter θ but not bounding box weight
wc

det. This can be implemented as wc
seg = T (stop grad(wc

det); θ) in most neural network toolkits.

2.3 Baseline: Class-Agnostic Mask Prediction
DeepMask [Pinheiro2015] established that it is possible to train a deep model to perform class-
agnostic mask prediction where an object mask is predicted regardless of the category. A sim-
ilar result was also shown for Mask R-CNN with only a small loss in mask quality [He2017].
In additional experiments, [Pinheiro2015] demonstrated if the class-agnostic model is trained
to predict masks on a subset of the COCO categories (specifically the 20 from PASCAL VOC
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[Everingham2010]) it can generalize to the other 60 COCO categories at inference time. Based
on these results, we use Mask R-CNN with a class-agnostic FCN mask prediction head as a base-
line. Evidence from [Pinheiro2015] and [He2017] suggest that this is a strong baseline. Next,
we introduce an extension that can improve both the baseline and our proposed weight transfer
function.

We also compare with a few other baselines for unsupervised or weakly supervised instance
segmentation in §3.3.

2.4 Extension: Fused FCN+MLP Mask Heads
Two types of mask heads are considered for Mask R-CNN in [He2017]: (1) an FCN head, where
the M ×M mask is predicted with a fully convolutional network, and (2) an MLP head, where
the mask is predicted with a multi-layer perceptron consisting of fully connected layers, more
similar to DeepMask. In Mask R-CNN, the FCN head yields higher mask AP. However, the two
designs may be complementary. Intuitively, the MLP mask predictor may better capture the ‘gist’
of an object while the FCN mask predictor may better capture the details (such as the object
boundary). Based on this observation, we propose to improve both the baseline class-agnostic FCN
and our weight transfer function (which uses an FCN) by fusing them with predictions from a class-
agnostic MLP mask predictor. Our experiments will show that this extension brings improvements
to both the baseline and our transfer approach.

When fusing class-agnostic and class-specific mask predictions for K classes, the two scores
are added into a final K × M × M output, where the class-agnostic mask scores (with shape
1×M ×M ) are tiled K times and added to every class. Then, the K ×M ×M mask scores are
turned into per-class mask probabilities through a sigmoid unit, and resized to the actual bounding
box size as final instance mask for that bounding box. During training, binary cross-entropy loss
is applied on the K ×M ×M mask probabilities.
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Chapter 3

Experimental Analyses on COCO

We evaluate our method on the COCO dataset [Lin2014], which is small scale w.r.t. the number
of categories but contains exhaustive mask annotations for 80 categories. This property enables
rigorous quantitative evaluation using standard detection metrics, like average precision (AP).

3.1 Evaluation Protocol and Baselines
We simulate the partially supervised training scenario on COCO by partitioning the 80 classes
into sets A and B, as described in §2. We consider two split types: (1) The 20/60 split used
by DeepMask [Pinheiro2015] that divides the COCO categories based on the 20 contained in
PASCAL VOC [Everingham2010] and the 60 that are not. We refer to these as the ‘voc’ and ‘non-
voc’ category sets from here on. (2) We also conduct experiments using multiple trials with random
splits of different sizes. These experiments allow us to characterize any bias in the voc/non-voc
split and also understand what factors in the training data lead to better mask generalization.

In these experiments, we use ResNet-50-FPN as our backbone network, and ‘cls+box’ and
‘2-layer, LeakyReLU’ as the default input and structure of T . Results in Table 3.1, Table 3.2
and Table 3.3 are based on stage-wise training, and we study the impact of end-to-end training in
Table 3.4. Mask AP is evaluated on the COCO dataset val2017 split between the 20 PASCAL
VOC categories (‘voc’) and the 60 remaining categories (‘non-voc’), as in [Pinheiro2015].

Implementation details. We train our model on the COCO train2017 split and test on the
val2017 split.1 Each class has a 1024-d RoI classification parameter vector wc

cls and a 4096-d
bounding box regression parameter vector wc

box in the detection head, and a 256-d segmentation
parameter vectorwc

seg in the mask head. The output mask resolution isM×M = 28×28. In all our
experimental analysis below, we use either ResNet-50-FPN or ResNet-101-FPN [Lin2017] as the
backbone architecture for Mask R-CNN, initialized from a ResNet-50 or a ResNet-101 [He2016]
model pretrained on the ImageNet-1k image classification dataset [Russakovsky2015].

1The COCO train2017 and val2017 splits are the same as the trainval35k and minival splits used in
prior work, such as [He2017].
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We follow the training hyper-parameters suggested for Mask R-CNN in [He2017]. Each mini-
batch has 16 images × 512 RoIs-per-images, and the network is trained for 90k iterations on 8
GPUs. We use 1e-4 weight decay and 0.9 momentum, and an initial learning rate of 0.02, which
is multiplied by 0.1 after 60k and 80k iterations. We evaluate instance segmentation performance
using average precision (AP), which is the standard COCO metric and equal to the mean of average
precision from 0.5 to 0.95 IoU threshold of all classes.

Baseline and oracle. We compare our method to class-agnostic mask prediction using either an
FCN or fused FCN+MLP structure. In these approaches, instead of predicting each class c’s seg-
mentation parameters wc

seg from its bounding box classification parameters wc
det, all the categories

share the same learned segmentation parameters wc
seg (no weight transfer function is involved).

Evidence from DeepMask and Mask R-CNN, as discussed in §2.3, suggests that this approach is
a strong baseline. In addition, we compare our approach with unsupervised or weakly supervised
instance segmentation approaches in §3.3.

We also evaluate an ‘oracle’ model: Mask R-CNN trained on all classes inA∪B with access to
instance mask annotations for all classes in A and B at training time. This fully supervised model
is a performance upper bound for our partially supervised task (unless the weight transfer function
can improve over directly learning wc

seg).

3.2 Ablation Experiments
Input to T . In Table 3.1 we study the impact of the input to the weight transfer function T . For
transfer learning to work, we expect that the input should capture information about how the visual
appearance of classes relate to each other. To see if this is the case, we designed several inputs to T :
a random Gaussian vector (‘randn’) assigned to each class, an NLP-based word embedding using
pre-trained GloVe vectors [Pennington2014] for each class, the weights from the Mask R-CNN box
head classifier (‘cls’), the weights from the box regression (‘box’), and the concatenation of both
weights (‘cls+box’). We compare the performance of our transfer approach with these different
embeddings to the strong baseline: class-agnostic Mask R-CNN.

First, Table 3.1 shows that the random control (‘randn’) yields results on par with the baseline;
they are slightly better on voc→non-voc and worse in the other direction, which may be attributed
to noise. Next, the GloVe embedding shows a consistent improvement over the baseline, which
indicates that these embeddings may capture some visual information as suggested in prior work
[Xian2016]. However, inputs ‘cls’, ‘box’ and ‘cls+box’ all strongly outperform the NLP-based
embedding (with ‘cls+box’ giving the best results), which matches our expectation since they
encode visual information by design.

We note that all methods compare well to the fully supervised Mask R-CNN oracle on the
classes in set A. In particular, our transfer approach slightly outperforms the oracle for all input
types. This results indicates that our approach does not sacrifice anything on classes with strong
supervision, which is an important property.
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voc→ non-voc non-voc→ voc
method AP on B AP on A AP on B AP on A
transfer w/ randn 15.4 35.2 19.9 31.1
transfer w/ GloVe [Pennington2014] 17.3 35.2 21.9 31.1
transfer w/ cls 18.1 35.1 25.2 31.1
transfer w/ box 19.8 35.2 25.7 31.1
transfer w/ cls+box 20.2 35.2 26.0 31.2
class-agnostic (baseline) 14.2 34.4 21.5 30.7
fully supervised (oracle) 30.7 35.0 35.0 30.7

Table 3.1: Ablation on input to T . ‘cls’ is RoI classification weights, ‘box’ is box regression
weights, and ‘cls+box’ is both weights. We also compare with the NLP-based GloVe vectors
[Pennington2014]. Performance on the strongly supervised set A is shown in gray. Our transfer
function T improves the AP on B while remaining on par with the oracle on A.

voc→ non-voc non-voc→ voc
method AP on B AP on A AP on B AP on A
transfer w/ 1-layer, none 19.2 35.2 25.3 31.2
transfer w/ 2-layer, ReLU 19.7 35.3 25.1 31.1
transfer w/ 2-layer, LeakyReLU 20.2 35.2 26.0 31.2
transfer w/ 3-layer, ReLU 19.3 35.2 26.0 31.1
transfer w/ 3-layer, LeakyReLU 18.9 35.2 25.5 31.1

Table 3.2: Ablation on the structure of T . We vary the number of fully connected layers in the
weight transfer function T , and try both ReLU and LeakyReLU as activation function in the hidden
layers. Performance on the strongly supervised set A is shown in gray. The results show that ‘2-
layer, LeakyReLU’ works best, but in general T is robust to specific implementation choices.

Structure of T . In Table 3.2 we compare different implementations of T : as a simple affine
transformation, or as a neural network with 2 or 3 layers. Since LeakyReLU [Maas2013] is used
for weight prediction in [Misra2017], we try both ReLU and LeakyReLU as activation function in
the hidden layers. The results show that a 2-layer MLP with LeakyReLU gives the best mask AP
on set B. Given this, we select the ‘cls+box, 2-layer, LeakyReLU’ implementation of T for all
subsequent experiments.

Comparison of random A/B splits. Besides splitting datasets into voc and non-voc, we also
experiment with random splits of the 80 classes in COCO, and vary the number of training classes.
We randomly select 20, 30, 40, 50 or 60 classes to include in set A (the complement forms set B),
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Figure 3.1: Each point corresponds to our method on a random A/B split of COCO classes. We
vary |A| from 20 to 60 classes and plot the relative change in mask AP on the classes in set B
(those classes without mask annotations) vs. the average number of mask annotations per class in
set A.

perform 5 trials for each split size, and compare the performance of our weight transfer function
T on classes in B to the class-agnostic baseline. The results are shown in Figure 3.1, where it can
be seen that our method yields to up to over 40% relative increase in mask AP. This plot reveals
a correlation between relative AP increase and the average number of training samples per class
in set A. This indicates that to maximize transfer performance to classes in set B it may be more
effective to collect a larger number of instance mask samples for each object category in set A.

Impact of the MLP mask branch. As discussed in §2.4, a class-agnostic MLP mask branch
can be fused with either the baseline or our transfer approach. In Table 3.3 we see that either
mask head fused with the MLP mask branch consistently outperforms the corresponding unfused
version. This confirms our intuition that FCN-based mask heads and MLP-based mask heads are
complementary in nature.

Effect of end-to-end training. Up to now, all ablation experiments use stage-wise training, be-
cause it is significantly faster (the same Faster R-CNN detection model can be reused for all ex-
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voc→ non-voc non-voc→ voc
method AP on B AP on A AP on B AP on A
class-agnostic 14.2 34.4 21.5 30.7
class-agnostic+MLP 17.1 35.1 22.8 31.3
transfer 20.2 35.2 26.0 31.2
transfer+MLP 21.3 35.4 26.6 31.4

Table 3.3: Impact of the MLP mask branch. Adding the class-agnostic MLP mask branch (see
§2.4) improves the performance of classes in set B for both the class-agnostic baseline and our
weight transfer approach. Performance on the strongly supervised set A is shown in gray.

stop grad voc→ non-voc non-voc→ voc
method training on wdet AP on B AP on A AP on B AP on A
class-agnostic sw n/a 14.2 34.4 21.5 30.7
transfer sw n/a 20.2 35.2 26.0 31.2
class-agnostic e2e n/a 19.2 36.8 23.9 32.5
transfer e2e 20.2 37.7 24.8 33.2
transfer e2e X 22.2 37.6 27.6 33.1

Table 3.4: Ablation on the training strategy. We try both stage-wise (‘sw’) and end-to-end (‘e2e’)
training (see §2.2), and whether to stop gradient from T to wdet. Performance on the strongly
supervised set A is shown in gray. End-to-end training improves the results and it is crucial to stop
gradient on wdet.

periments). However, as noted in §2.2, stage-wise training may be suboptimal. Thus, Table 3.4
compares stage-wise training to end-to-end training. In the case of end-to-end training, we in-
vestigate if it is necessary to stop gradients from T to wdet, as discussed. Indeed, results match
our expectation that end-to-end training can bring improved results, however only when back-
propagation from T to wdet is disabled. We believe this modification is necessary in order to make
the embedding of classes in A homogeneous with those in B; a property that is destroyed when
only the embeddings for classes in A are modified by back-propagation from T .

3.3 Results and Comparison of Our Full Method
Table 3.5 compares our full MaskX R-CNN method (i.e., Mask R-CNN with ‘transfer+MLP’ and
T implemented as ‘cls+box, 2-layer, LeakyReLU’) and the class-agnostic baseline using end-to-
end training. In addition, we also compare with the following baseline approaches: 1) unsupervised
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backbone method AP AP50 AP75 APS APM APL

class-agnostic 19.2 36.4 18.4 11.5 23.3 24.4
Faster R-CNN tested w/ GrabCut 12.6 24.0 11.9 4.3 12.0 23.5

R-50-FPN Mask R-CNN trained w/ GrabCut 19.5 39.2 17.0 6.5 20.9 34.3
MaskX R-CNN (ours) 23.7 43.1 23.5 12.4 27.6 32.9
fully supervised (oracle) 33.0 53.7 35.0 15.1 37.0 49.9
class-agnostic 18.5 34.8 18.1 11.3 23.4 21.7
Faster R-CNN tested w/ GrabCut 13.0 24.6 12.1 4.5 12.3 24.4

R-101-FPN Mask R-CNN trained w/ GrabCut 19.7 39.7 17.0 6.4 21.2 35.8
MaskX R-CNN (ours) 23.8 42.9 23.5 12.7 28.1 33.5
fully supervised (oracle) 34.4 55.2 36.3 15.5 39.0 52.6

(a) voc→ non-voc: test on B = {non-voc}

backbone method AP AP50 AP75 APS APM APL

class-agnostic 23.9 42.9 23.5 11.6 24.3 33.7
Faster R-CNN tested w/ GrabCut 12.1 27.7 8.9 4.3 12.0 23.5

R-50-FPN Mask R-CNN trained w/ GrabCut 19.5 46.2 14.2 4.7 15.9 32.0
MaskX R-CNN (ours) 28.9 52.2 28.6 12.1 29.0 40.6
fully supervised (oracle) 37.5 63.1 38.9 15.1 36.0 53.1
class-agnostic 24.7 43.5 24.9 11.4 25.7 35.1
Faster R-CNN tested w/ GrabCut 12.3 27.6 9.5 4.5 12.3 24.4

R-101-FPN Mask R-CNN trained w/ GrabCut 19.6 46.1 14.3 5.1 16.0 32.4
MaskX R-CNN (ours) 29.5 52.4 29.7 13.4 30.2 41.0
fully supervised (oracle) 39.1 64.5 41.4 16.3 38.1 55.1

(b) non-voc→ voc: test on B = {voc}

Table 3.5: End-to-end training of MaskX R-CNN. As in Table 3.1, 3.2 and 3.3, we use ‘cls+box,
2-layer, LeakyReLU’ implementation of T and add the MLP mask branch (‘transfer+MLP’), and
follow the same evaluation protocol. We also report AP50 and AP75 (average precision evaluated
at 0.5 and 0.75 IoU threshold respectively), and AP over small (APS), medium (APM ), and large
(APL) objects. Performance on the strongly supervised set A is shown in gray. Our method
significantly outperforms the baseline approaches in §3.3 on set B without mask training data for
both ResNet-50-FPN and ResNet-101-FPN backbones.

mask prediction using GrabCut [Rother2004] foreground segmentation over the Faster R-CNN
detected object boxes (Faster R-CNN tested w/ GrabCut) and 2) weakly supervised instance
segmentation similar to [Khoreva2017], which trains an instance segmentation method (here we
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Figure 3.2: Mask predictions from the class-agnostic baseline (top row) vs. our MaskX R-
CNN approach (bottom row). Green boxes are classes in set A while the red boxes are classes in
set B. The left 2 columns are A = {voc} and the right 2 columns are A = {non-voc}.

use Mask R-CNN) on the GrabCut segmentation of the ground-truth boxes (Mask R-CNN trained
w/ GrabCut).

MaskX R-CNN outperforms these approaches by a large margin (over 20% relative increase in
mask AP). We also experiment with ResNet-101-FPN as the backbone network in the bottom half
of Table 3.5. The trends observed with ResNet-50-FPN generalize to ResNet-101-FPN, demon-
strating independence of the particular backbone used thus far. Figure 3.2 shows example mask
predictions from the class-agnostic baseline and our approach.
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Chapter 4

Large-Scale Instance Segmentation on
Visual Genome

Thus far, we have experimented with a simulated version of our true objective: training large-scale
instance segmentation models with broad visual comprehension. We believe this goal represents
an exciting new direction for visual recognition research and that to accomplish it some form of
learning from partial supervision may be required.

To take a step towards this goal, we train a large-scale MaskX R-CNN model following the par-
tially supervised task, using bounding boxes from the Visual Genome (VG) dataset [Krishna2017]
and instance masks from the COCO dataset [Lin2014]. The VG dataset contains 108077 images,
and over 7000 category synsets annotated with object bounding boxes (but not masks). To train
our model, we select the 3000 most frequent synsets as our set of classes A ∪ B for instance seg-
mentation, which covers all the 80 classes in COCO. Since the VG dataset images have a large
overlap with COCO, when training on VG we take all the images that are not in COCO val2017
split as our training set, and validate our model on the rest of VG images. We treat all the 80 VG
classes that overlap with COCO as our set A with mask data, and the remaining 2920 classes in
VG as our set B with only bounding boxes.

Training. We train our large-scale MaskX R-CNN model using the stage-wise training strategy.
Specifically, we train a Faster R-CNN model to detect the 3000 classes in VG using ResNet-101-
FPN as our backbone network following the hyper-parameters in §3.1. Then, in the second stage,
we add the mask head using our weight transfer function T and the class-agnostic MLP mask
prediction (i.e., ‘transfer+MLP’), with the ‘cls+box, 2-layer, LeakyReLU’ implementation of T .
The mask head is trained on subset of 80 COCO classes (set A) using the mask annotations in the
train2017 split of the COCO dataset.

4.1 Qualitative results
Mask AP is difficult to compute on VG because it contains only box annotations. Therefore we
visualize results to understand the performance of our model trained on all the 3000 classes in
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Figure 4.1: Example mask predictions from our MaskX R-CNN on 3000 classes in Visual
Genome. The green boxes are the 80 classes that overlap with COCO (set A with mask training
data) while the red boxes are the remaining 2920 classes not in COCO (setB without mask training
data). It can be seen that our model generates reasonable mask predictions on many classes in set
B. See §4 for details.

A∪B using our weight transfer function. Figure 4.1 shows mask prediction examples on validation
images, where it can be seen that our model predicts reasonable masks on those VG classes not
overlapping with COCO (set B, shown in red boxes).
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This visualization shows several interesting properties of our large-scale instance segmentation
model. First, it has learned to detect abstract concepts, such as shadows and paths. These are
often difficult to segment. Second, by simply taking the first 3000 synsets from VG, some of the
concepts are more ‘stuff’ like than ‘thing’ like. For example, the model does a reasonable job
segmenting isolated trees, but tends to fail at segmentation when the detected ‘tree’ is more like a
forest. Finally, the detector does a reasonable job at segmenting whole objects and parts of those
objects, such as windows of a trolley car or handles of a refrigerator. Compared to a detector
trained on 80 COCO categories, these results illustrate the exciting potential of systems that can
recognize and segment thousands of concepts.
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Chapter 5

Conclusion

This report addresses the problem of large-scale instance segmentation by formulating a partially
supervised learning paradigm in which only a subset of classes have instance masks during train-
ing while the rest have box annotations. We propose a novel transfer learning approach, where a
learned weight transfer function predicts how each class should be segmented based on parame-
ters learned for detecting bounding boxes. Experimental results on the COCO dataset demonstrate
that our method greatly improves the generalization of mask prediction to categories without mask
training data. Using our approach, we build a large-scale instance segmentation model over 3000
classes in the Visual Genome dataset. The qualitative results are encouraging and illustrate an
exciting new research direction into large-scale instance segmentation. They also reveal that scal-
ing instance segmentation to thousands of categories, without full supervision, is an extremely
challenging problem with ample opportunity for improved methods.
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