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Abstract

Towards More Scalable and Robust Machine Learning

by

Dong Yin

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

For many data-intensive real-world applications, such as recognizing objects from images,
detecting spam emails, and recommending items on retail websites, the most successful
current approaches involve learning rich prediction rules from large datasets. There are many
challenges in these machine learning tasks. For example, as the size of the datasets and the
complexity of these prediction rules increase, there is a significant challenge in designing
scalable methods that can effectively exploit the availability of distributed computing units.
As another example, in many machine learning applications, there can be data corruptions,
communication errors, and even adversarial attacks during training and test. Therefore, to
build reliable machine learning models, we also have to tackle the challenge of robustness in
machine learning.

In this dissertation, we study several topics on the scalability and robustness in large-scale
learning, with a focus of establishing solid theoretical foundations for these problems, and
demonstrate recent progress towards the ambitious goal of building more scalable and ro-
bust machine learning models. We start with the speedup saturation problem in distributed
stochastic gradient descent (SGD) algorithms with large mini-batches. We introduce the no-
tion of gradient diversity, a metric of the dissimilarity between concurrent gradient updates,
and show its key role in the convergence and generalization performance of mini-batch SGD.
We then move forward to Byzantine distributed learning, a topic that involves both scala-
bility and robustness in distributed learning. In the Byzantine setting that we consider, a
fraction of distributed worker machines can have arbitrary or even adversarial behavior. We
design statistically and computationally efficient algorithms to defend against Byzantine fail-
ures in distributed optimization with convex and non-convex objectives. Lastly, we discuss
the adversarial example phenomenon. We provide theoretical analysis of the adversarially
robust generalization properties of machine learning models through the lens of Radamacher
complexity.
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Chapter 1

Introduction

For many data-intensive real-world applications, such as recognizing objects from images,
detecting spam emails, and recommending items on retail websites, the most successful
current approaches involve learning rich prediction rules from large datasets. There are many
challenges in these machine learning tasks. For example, as the size of the datasets and the
complexity of these prediction rules increase, there is a significant challenge in designing
scalable methods that can effectively exploit the availability of distributed computing units.
As another example, in many machine learning applications, there can be data corruptions,
communication errors, and even adversarial attacks during training and test. Therefore,
to build reliable machine learning models, we have to tackle the challenge of robustness in
machine learning.

1.1 Challenges in Scalable Machine Learning

As the scale of training datasets and model parameters increases, it becomes more and more
important to efficiently utilize the availability of distributed computing devices in training
machine learning models. In fact, distributed optimization has become the cornerstone
of many real-world machine learning applications. Many of the state-of-the-art publicly
available (distributed) machine learning frameworks, such as Tensorflow [1] and MXNet [40],
offer distributed implementations of popular learning algorithms. In many applications, a
batch of data are distributed over multiple machines for parallel processing in order to speed
up computation. In other settings, the data sources are naturally distributed, and for privacy
and efficiency considerations, the data are not transmitted to a central machine. An example
is the recently proposed Federated Learning paradigm [135, 108, 107], in which the data are
stored and processed locally in end users’ cellphones and personal computers. We illustrate
Federated Learning in Figure 1.1.

Let us consider the problem of gaining speedup using distributed computing. Ideally, the
speedup gain by using parallel computing nodes should be linear, i.e., when we double the
number of parallel devices, the time that we need to train a good model should be halved.
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Figure 1.1: Federated Learning. The parameter server stores the model and the end users’ devices
store the data. In a Federated Learning algorithm, the parameter server sends the model to the
personal devices, and the devices send the local updates back to the parameter server.

However, for many machine learning algorithms, this is not true. In fact, although with
more distributed computing nodes, the training algorithms are usually faster, it is often
observed that, in many distributed implementation of learning algorithms, linear speedup is
only possible for up to tens of computing nodes, and several studies have shown that there
is a significant gap between ideal and realizable speedups when scaling out to hundreds of
compute nodes [52, 153]. This commonly observed phenomenon is referred to as speedup
saturation.

This phenomenon is not hard to understand when we take the communication overhead in
distributed systems into account. For example, when we implement the stochastic gradient
descent (SGD) algorithm in a standard system with one master machine (parameter server)
and several worker machines (computing nodes), in each iteration, the master machine needs
to send the model parameters to every worker machine, wait until all the worker machine
finish their computation jobs and send back the results, and then update the model param-
eters. In this process, the delay in communication channels and stragglers among worker
machines can both be the communication overhead, and when the communication cost is
comparable with the speedup gain by using more worker machines, the speedup saturation
phenomenon happens.

Therefore, the key to designing communication-efficient distributed learning algorithms
is reducing the communication cost. There are many approaches in the literature; how-
ever, most of them can be classified into two categories: 1) reducing the total number of
iterations, and 2) reducing the communication cost in each iteration. Examples of the first
category are one-round algorithm [209, 206], approximate Newton method [165], large-batch
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training [80], etc; and examples of the second category are asynchronous training (reducing
the cost of synchronization in each iteration) [156], coded computing (reducing the effect
of stragglers) [120], gradient compression (reducing the size of the messages transmitted in
each iteration) [5, 189], etc.

However, we usually cannot reduce the communication cost for free, and when we apply
these communication-efficient learning algorithms, there are often trade-offs between the
speedup gain due to smaller communication cost and the degradation in the performance
of the algorithm. For example, if we apply the one-round algorithm, in which each worker
machine computes a local solution and the master machine averages them, to solve a learning
problem, the final solution will suffer from an unavoidable bias since each worker machine
only uses a relatively small amount of data [165]. Another example is that, in asynchronous
training and gradient compression schemes, although we can gain speedup by using less
accurate information about the gradients, the final solution that we get might become worse.
Thus, understanding and mitigating these trade-offs are crucial to the field of distributed
learning.

In this dissertation, we will focus on large-batch training—one common way to reduce the
number of iterations in SGD algorithms, and study the fundamental trade-offs when using
large batch sizes. We will also discuss potential approaches to mitigating these trade-offs.

1.2 Challenges in Robust Machine Learning

Robustness is another significant challenge in machine learning. In recent years, machine
learning models, in particular, deep neural networks, have achieved remarkable success in
many tasks on standard benchmarks. However, when we implement these models in real-
world security-critical applications such as medical diagnosis and autonomous driving, it is
crucial to guarantee that these models can work reliably in the presence of data corruption,
distributional shift and even adversarial attacks. In practice, the robustness challenge can
happen during every stage of the learning algorithm: training, test, and even both. In the
following, we elaborate some training-time and test-time robustness problems.

During training, there can be noise in the features and labels [141], adversarially injected
poisoning data [171], adversarial manipulation to the training algorithms and systems [23],
etc. In particular, training-time robustness problem is highly related to the long-standing
topic of robust statistics [89], which considers statistical estimation and inference problems
under adversarially corrupted data.

In this dissertation, we discuss a training-time robustness problem in distributed learning,
known as the Byzantine setting [114]. In a large-scale distributed systems, robustness and
security issues have become a major concern. In particular, individual worker machines
may exhibit abnormal behavior due to crashes, faulty hardware, stalled computation or
unreliable communication channels. Security issues are only exacerbated in the Federated
Learning setting, in which the data owners’ devices (such as mobile phones and personal
computers) are used as worker machines. Such machines are often more unpredictable, and
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in particular may be susceptible to malicious and coordinated attacks. Here, we note that
in the Byzantine distributed learning problem, we consider a stronger attack model than in
the traditional robust statistics problems, since the adversary can not only corrupt the data
on some of the worker machines, they may also send malicious messages in each iteration. In
this dissertation, we will design distributed optimization algorithms that are provably robust
to Byzantine failures.

Robustness can also become a crucial concern during test. It has been observed that
even for the models that can achieve the state-of-the-art performance in many standard
benchmarks or competitions, by adversarially adding some perturbation to the input of
the model (images, audio signals), these models can make wrong predictions with high
confidence. These adversarial inputs are often called the adversarial examples. Typical
methods of generating adversarial examples include adding small perturbations that are
imperceptible to humans [177], changing surrounding areas of the main objects in images [76],
and even simple rotation and translation [63]. Moreover, it has also been observed that even if
the perturbations are not adversarial, some distributional shift between the training data and
test data, such as common corruptions to images, can also lead to significant performance
degradation [85, 157]. Both adversarial examples and distributional shift raise significant
concerns about the reliablity of machine learning models in real-world applications.

Test-time robustness problems, especially the adversarial example phenomenon, are still
widely open. The performance of the defense algorithms against adversarial attacks is overall
not satisfactory enough [11]. In addition, currently we do not have enough theoretically
principled analysis of this phenomenon. In this dissertation, we focus on the adversarially
robust generalization problem, and present some rigorous analysis in this field.

1.3 Organization

In this dissertation, we study several topics on the scalability and robustness in large-scale
learning, with a focus of establishing solid theoretical foundations for these problems. This
dissertation is organized as follows.

In Chapter 2, we study the speedup saturation problem in distributed stochastic gradient
descent (SGD) algorithms with large mini-batches. We introduce the notion of gradient
diversity, a metric of the dissimilarity between concurrent gradient updates, and show its key
role in the convergence and generalization performance of mini-batch SGD. We also introduce
several diversity-inducing mechanisms, and provide experimental evidence indicating that
these mechanisms can enable the use of larger batches without sacrificing the final accuracy,
and lead to faster training in distributed learning. This chapter is based on joint work with
Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter
Bartlett, and this work was published in Proceedings of the 21st International Conference
on Artificial Intelligence and Statistics (AISTATS) in 2018 [199].

In Chapter 3, we move forward to robust distributed learning, a topic that involves both
scalability and robustness in machine learning. We consider the Byzantine setting, where a
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fraction of distributed worker machines can have arbitrary or even adversarial behavior. We
design statistically and computationally efficient algorithms for Byzantine-robust distributed
learning by combining distributed gradient descent with robust estimation subroutines such
as median and trimmed mean. We establish the statistical rates of the proposed algorithm
with these subroutines and prove their optimality in various regimes. This chapter is based
on joint work with Yudong Chen, Kannan Ramchandran, and Peter Bartlett. This work was
published in Proceedings of the 35th International Conference on Machine Learning (ICML)
in 2018 [197].

In Chapter 4, we continue to study Byzantine-robust distributed learning with focus
on the non-convex setting. We design ByzantinePGD, an efficient and robust distributed
learning algorithm that can provably escape saddle points and converge to second-order
stationary points in Byzantine distributed learning. This chapter is based on joint work
with Yudong Chen, Kannan Ramchandran, and Peter Bartlett. This work was published in
Proceedings of the 36th International Conference on Machine Learning (ICML) in 2019 [198].

In Chapter 5, we move to the test-time adversarial robustness problem. We focus on `∞
adversarial perturbations and study the adversarially robust generalization problem through
the lens of Rademacher complexity. For binary linear classifiers, we establish tight bounds for
the adversarial Rademacher complexity, and show that it is never smaller than its natural
counterpart, and has an unavoidable dimension dependence, unless the weight vector has
bounded `1 norm. We also present extensions to multi-class linear classifiers and (non-linear)
neural networks. This chapter is based on joint work with Kannan Ramchandran, and Peter
Bartlett. This work was published in Proceedings of the 36th International Conference on
Machine Learning (ICML) in 2019 [200].

In Chapter 6, we make conclusions and discuss future directions.
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Chapter 2

Gradient Diversity in Scalable
Distributed Learning

It has been experimentally observed that distributed implementations of mini-batch stochas-
tic gradient descent (SGD) algorithms exhibit speedup saturation and decaying generaliza-
tion ability beyond a particular batch-size. In this work, we present an analysis hinting
that high similarity between concurrently processed gradients may be a cause of this per-
formance degradation. We introduce the notion of gradient diversity that measures the
dissimilarity between concurrent gradient updates, and show its key role in the convergence
and generalization performance of mini-batch SGD. We also establish that heuristics simi-
lar to DropConnect, Langevin dynamics, and quantization, are provably diversity-inducing
mechanisms, and provide experimental evidence indicating that these mechanisms can in-
deed enable the use of larger batches without sacrificing accuracy and lead to faster training
in distributed learning. For example, in one of our experiments, for a convolutional neural
network to reach 95% training accuracy on MNIST, using the diversity-inducing mechanism
can reduce the training time by 30% in the distributed setting.

2.1 Introduction

In recent years, deploying algorithms on distributed computing units has become the de
facto architectural choice for large-scale machine learning. Distributed optimization has
gained significant traction with a large body of recent work establishing near-optimal speedup
gains on both convex and nonconvex objectives [148, 74, 52, 201, 126, 91, 62, 37], and
several state-of-the-art publicly available (distributed) machine learning frameworks, such
as Tensorflow [1], MXNet [40], and Caffe2 [44], offer distributed implementations of popular
learning algorithms.

Mini-batch stochastic gradient descent (SGD) is the algorithmic cornerstone for several
of these distributed frameworks. During a distributed iteration of mini-batch SGD, a master
node stores a global model, and P worker nodes compute gradients forB data points, sampled
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from a total of n training data (i.e., B/P samples per worker per iteration), with respect
to the same global model; the parameter B is commonly referred to as the batch-size. The
master, after receiving these B gradients, applies them to the model and sends the updated
model back to the workers; this is the equivalent of one round of communication.

Unfortunately, near-optimal scaling for distributed variants of mini-batch SGD is only
possible for up to tens of compute nodes. Several studies [52, 153] indicate that there is
a significant gap between ideal and realizable speedups when scaling out to hundreds of
compute nodes. This commonly observed phenomenon is referred to as speedup saturation.
A key cause of speedup saturation is the communication overhead of mini-batch SGD.

Ultimately, the batch-size B controls a crucial performance trade-off between communi-
cation cost and convergence speed, as observed and analyzed in several studies [178, 184,
80]. When using large batch-sizes, we observe large speedup gains per pass (i.e., per n gradi-
ent computations), as shown in Figure 2.1a, due to fewer communication rounds. However,
as shown in Figure 2.1b, to achieve a desired level of accuracy for larger batches, we may
need a larger number of passes over the dataset, resulting in overall slower computation that
leads to speedup saturation. Furthermore, recent work shows that large batch sizes lead to
models that generalize worse [100], and efforts have been made to improve the generalization
ability [86].

(a) (b)

Figure 2.1: (a) Speedup gains for a single data pass and various batch-sizes, for a cuda-convnet
model on CIFAR-10. (b) Number of data passes to reach 95% accuracy for a cuda-convnet model
on CIFAR-10, vs batch-size. Step-sizes are tuned to maximize convergence speed. Experiments are
conducted on Amazon EC2 instances g2.2xlarge.

The key question that motivates our work is: How does the batch-size control the scala-
bility and generalization performance of mini-batch SGD?
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Our Contributions

We employ the notion of gradient diversity that measures the dissimilarity between concur-
rent gradient updates. We show that the convergence of mini-batch SGD, on both convex and
nonconvex loss functions, including the Polyak- Lojasiewicz functions [151, 128], is identical—
up to constant factors—to that of serial SGD (e.g., B = 1), if the batch-size is proportional
to a bound implied by gradient diversity. We also establish the worst case optimality and
tightness of the bound in strongly convex functions.

Although it has been empirically observed that more diversity in the data leads to more
parallelism [44], and there has been significant work on the theory of mini-batch algorithms,
our results have two major novelties: 1) our batch-size bound is data-dependent, tight,
and essentially identical across convex and nonconvex functions, and in some cases leads to
guaranteed uniformly larger batch-sizes compared to prior work, and 2) the bound has an
operational meaning, and inspired by our theory, we establish that algorithmic heuristics
similar to DropConnect [183], Langevin dynamics [188], and quantization [5] are diversity-
inducing mechanisms. In our experiments, we find that the proposed mechanisms can indeed
enable the use of larger batch-size in distributed learning, and thus reduce training time.

Following our convergence analysis, we study the effect of batch-size on the generalization
behavior of mini-batch SGD using the notion of algorithmic stability [25]. Through a similar
measure of gradient diversity, we show that as long as the batch-size is below a certain
threshold, then mini-batch SGD is as stable as one sample SGD that is analyzed by Hardt,
Recht, and Singer [83].

2.2 Related Work

Mini-batch SGD Dekel et al. [54] analyze mini-batch SGD on non-strongly convex func-
tions and propose B = O(

√
T ) as an optimal choice for batch-size. In contrast, our work

provides a data-dependent principle for the choice of batch-size, and it holds without the
requirement of convexity. Even in the regime where the result in Dekel et al. [54] is valid,
depending on the problem, our result may still provide better bounds on the batch-size than
O(
√
T ) (e.g., in the sparse conflict setting shown in Section 2.4). Friedlander and Schmidt

[69] propose an adaptive batch-size scheme and show that this scheme provides weak lin-
ear convergence rate for strongly convex functions. De et al. [51] propose an optimization
algorithm for choosing the batch-size, and weighted sampling techniques have also been
developed [210, 142, 202].

Diversity and data-dependent bounds In empirical studies, it has been observed that
more diversity in the data allows more parallelism [44]. As for the theoretical analysis, data-
dependent thresholds for batch-size have been developed for some specific problems such
as least squares [92] and SVM [178]. In particular, for least square problems, Jain et al.
[92] propose a bound on batch-size similar to our measure of gradient diversity; however, as
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mentioned in Section 2.1, our result holds for a wider range of problems including nonconvex
setups, and can be used to motivate heuristics that result in speedup gains in distributed
systems.

Other mini-batching and distributed optimization algorithms Beyond mini-batch
SGD, several other mini-batching algorithms have been proposed; we survey a non-exhaustive
list. Mini-batch proximal algorithms are studied by Li et al. [125], Wang, Wang, and Sre-
bro [184], and Wang and Srebro [186], and these algorithms require solving a regularized
optimization algorithm on a sampled batch as a subroutine. Other algorithms include ac-
celerated methods [46], mini-batch SDCA [164, 179], and the combination of mini-batching
and variance reduction such as Acc-Prox-SVRG [147] and mS2GD [106]. Here, we emphasize
that although different mini-batching algorithms can be designed for particular problems and
may work better in particular regimes, especially in the convex setting, these algorithms are
usually more difficult to implement in distributed learning frameworks like Tensorflow or
MXNet, and can introduce additional communication costs. A few other algorithms have
been recently proposed to reduce the communication cost by inducing sparsity in the gra-
dients, for instance, QSGD [5] and TernGrad [189]. Other algorithms have been proposed
under different distributed computation frameworks, examples include one-shot model aver-
aging [212, 209], and the local storage framework [117, 165, 91].

Generalization and stability An important performance measure of a learning algorithm
is its generalization ability. In their foundational work, Bousquet and Elisseeff [25] prove the
equivalence between algorithmic stability and generalization. This approach is then used
to establish generalization bounds for SGD by Hardt, Recht, and Singer [83]. Another
approach to prove generalization bounds is to use the operator view of averaged SGD [53].
This method is extended by Jain et al. [92] to the random least-squares regression problems.
Variance reduction methods are also used to develop algorithms with good generalization
performance [70, 50]. In this chapter, we extend the stability approach to the mini-batch
setting, and show that the generalization ability is governed by a quantity that is also function
of gradient diversity.

2.3 Problem Setup

We consider the following general supervised learning setup. Suppose that D is an unknown
distribution over a sample space Z, and we have access to a sample S = {z1, . . . , zn} of n
data points, that are drawn i.i.d. from D. Our goal is to find a model w from a model
space W ⊆ Rd with small population risk with respect to a loss function f , i.e., we want
to minimize R(w) = Ez∼D[f(w; z)]. Since we do not have access to the population risk, we
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instead train a model whose aim is to minimize the empirical risk

RS(w) :=
1

n

n∑
i=1

f(w; zi). (2.1)

For any training algorithm that operates on the empirical risk, there are two important
aspects to analyze: the convergence speed to a good model with small empirical risk, and
the generalization gap |RS(w) − R(w)| that quantifies the performance discrepancy of the
model between the empirical and population risks. For simplicity, we use the notation
fi(w) := f(w; zi), F (w) := RS(w), and define w∗ ∈ arg minw∈W F (w). In this work, we
focus on families of differentiable losses that satisfy a subset of the following for all parameters
w,w′ ∈ W :

Definition 2.1 (β-smooth).

F (w) ≤ F (w′) + 〈∇F (w′),w −w′〉+
β

2
‖w −w′‖2

2.

Definition 2.2 (λ-strongly convex).

F (w) ≥ F (w′) + 〈∇F (w′),w −w′〉+
λ

2
‖w −w′‖2

2.

Definition 2.3 (µ-Polyak- Lojasiewicz (PL) [151, 128]).

1

2
‖∇F (w)‖2

2 ≥ µ(F (w)− F (w∗)).

Mini-batch SGD At each iteration, mini-batch SGD computes B gradients on randomly
sampled data at the most current global model. At the (k + 1)-th distributed iteration, the
model is given by

w(k+1)B = wkB − γ
(k+1)B−1∑
`=kB

∇fs`(wkB), (2.2)

where each index si is drawn uniformly at random from [n], with replacement. Here, we use
w with subscript kB to denote the model we obtain after k distributed iterations, i.e., a
total of kB gradient updates. Note that we recover serial SGD when B = 1. Our results
also apply to varying step-size, but for simplicity we only state our bounds with constant
step-size. In related work, there is a normalization of 1/B included in the gradient step,
here, without loss of generality we subsume that in the step-size γ.

We note that some of our analyses requireW to be a bounded convex subset of Rd, where
the projected version of SGD can be used, by making Euclidean projections back toW , i.e.,

w(k+1)B = ΠW(wkB − γ
(k+1)B−1∑
`=kB

∇fs`(wkB)).

For simplicity, in our main text, we refer to both with/without projection algorithms as
“mini-batch SGD”, but in Section 2.8 we make the distinction clear when needed.
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2.4 Gradient Diversity and Convergence

In this section, we introduce our definition of gradient diversity, and state our convergence
results.

Gradient Diversity

Gradient Diversity quantifies the degree to which individual gradients of the loss functions
are different from each other. We note that a similar notion was introduced by Jain et al.
[92] for least squares problems.

Definition 2.4 (gradient diversity). We refer to the following ratio as gradient diversity:

∆D(w) :=

∑n
i=1 ‖∇fi(w)‖2

2

‖
∑n

i=1∇fi(w)‖2
2

=

∑n
i=1 ‖∇fi(w)‖2

2∑n
i=1 ‖∇fi(w)‖2

2 +
∑

i 6=j〈∇fi(w),∇fj(w)〉
.

Clearly, ∆D(w) is large when the inner products between the gradients taken with respect
to different data points are small, and so measures diverse these gradients are. We further
define a batch-size bound BD(w) for each data set S and each w ∈ W :

Definition 2.5 (batch-size bound).

BD(w) := n∆D(w).

As we see in later parts, the batch-size bound BD(w) implied by gradient diversity plays
a fundamental role in the batch-size selection for mini-batch SGD.

Examples of gradient diversity We provide two examples in which we can compute a
uniform lower bound for all BD(w), w ∈ W . Notice that these bounds solely depend on the
data set S, and are thus data dependent.
Example 1 (generalized linear function) Suppose that any data point z consists of feature
vector x ∈ Rd and some label y ∈ R, and for sample S = {z1, . . . , zn}, the loss function
f(w; zi) can be written as a generalized linear function f(w; zi) = `i(x

T
i w), where `i : R→ R

is a differentiable one-dimensional function, and we do not require the convexity of `i(·). Let
X = [x1 x2 · · · xn]T ∈ Rn×d be the feature matrix. We have the following results for BD(w)
for generalized linear functions.

Remark 2.1. For generalized linear functions, ∀ w ∈ W,

BD(w) ≥ n min
i=1,...,n

‖xi‖2
2/σ

2
max(X).

We note that it has been shown by Takác et al. [178] that the spectral norm of the data
matrix is important for the batch-size choice for SVM problems, and our results have similar
implication. In addition, suppose that n ≥ d, and xi has i.i.d. σ-sub-Gaussian entries with
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zero mean. Then there exist universal constants c1, c2, c3 > 0 such that with probability
1 − c2ne

−c3d, BD(w) ≥ c1d, ∀ w ∈ W . Therefore, as long as we are in the relatively high
dimensional regime d = Ω(log(n)), we have BD(w) ≥ Ω(d), ∀ w ∈ W with high probability.
Example 2 (sparse conflicts) In some applications [97], the gradient of an individual loss
function ∇fi(w) depends only on a small subset of all the coordinates of w (called the
support), and the supports of the gradients have sparse conflict. More specifically, define a
graph G = (V,E) with the vertices V representing the n data points, and (i, j) ∈ E when
the supports of ∇fi(w) and ∇fj(w) have non-empty overlap. Let ρ be the maximum degree
of all the vertices in G.

Remark 2.2. For sparse conflicts, we have BD(w) ≥ n/(ρ+ 1) for all w ∈ W. This bound
can be large when G is sparse, i.e., when ρ is small.

Convergence Rates

Our convergence results are consequences of the following lemma, which does not require
convexity of the losses, and captures the effect of mini-batching on an iterate-by-iterate basis.
Here, we define M2(w) := 1

n

∑n
i=1 ‖∇fi(w)‖2

2 for any w ∈ W .

Lemma 2.1. Let wkB be a fixed model, and let w(k+1)B denote the model after a mini-batch
iteration with batch-size B = δBD(wkB) + 1. Then

E[‖w(k+1)B −w∗‖2
2 | wkB] ≤‖wkB −w∗‖2

2 − 2Bγ 〈∇F (wkB),wkB −w∗〉
+ (1 + δ)Bγ2M2(wkB),

where equality holds when there are no projections.

As one can see, for a single iteration, in expectation, the model trained by serial SGD
(B = 1), closes the distance to the optimal by exactly

2γ 〈∇F (wkB),wkB −w∗〉 − γ2M2(wkB).

Our bound says that using the same step-size1 as SGD (without normalizing with a factor
of B), mini-batch will close that distance to the optimal (or any critical point w∗) by ap-
proximately B times more, if B = O(BD(wkB)). This matches the best that we could have
hoped for: mini-batch SGD with batch-size B should be B times faster per iteration than a
single iteration of serial SGD.

We now provide convergence results using gradient diversity. For a mini-batch SGD
algorithm, define the set WT ⊂ W as the collection of all possible model parameters that
the algorithm can reach during T/B parallel iterations, i.e.,

WT := {w ∈ W : w = wkB for some instance of mini-batch SGD, k = 0, 1, . . . , T/B}.
1In fact, our choice of step-size is consistent with many state-of-the-art distributed learning frame-

works [80], and we would like to point out that this chapter provides theoretical explanation of this choice
of step-size.
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Our main message can be summarized as follows:

Theorem 2.1 (informal convergence result). Let B ≤ δBD(w)+1, ∀ w ∈ WT . If serial SGD
achieves an ε-suboptimal2 solution after T gradient updates, then using the same step-size
as serial SGD, mini-batch SGD with batch-size B can achieve a (1 + δ

2
)ε-suboptimal solution

after the same number of gradient updates ( i.e., T/B iterations).

Therefore, our result implies that, as long as the batch-size does not exceed the funda-
mental bound implied by gradient diversity, using the same step-size as the serial algorithm,
mini-batch SGD does not suffer from convergence speed saturation.

We provide the precise statements of the results as follows. Define F ∗ = minw∈W F (w),
D0 = ‖w0−w∗‖2

2. In all the following results, we assume that B ≤ δBD(w) + 1, ∀ w ∈ WT ,
and M2(w) ≤ M2, ∀ w ∈ WT . The step-sizes in the following results are known to be the
order-optimal choices for serial SGD with constant step-size [24, 75, 98]. We start with more
general function classes, i.e., nonconvex smooth functions and PL functions.

Theorem 2.2 (smooth functions). Suppose that F (w) is β-smooth, W = Rd, and use step-
size γ = ε

βM2 . Then, after T ≥ 2
ε2
M2β(F (w0)− F ∗) gradient updates,

min
k=0,...,T/B−1

E[‖∇F (wkB)‖2
2] ≤ (1 +

δ

2
)ε.

Theorem 2.3 (PL functions). Suppose that F (w) is β-smooth, µ-PL, W = Rd, and use

step-size γ = 2εµ
M2β

, and batch-size B ≤ 1
2γµ

. Then, after T ≥ M2β
4µ2ε

log(2(F (w0)−F ∗)
ε

) gradient

updates, we have E[F (wT )− F ∗] ≤ (1 + δ
2
)ε.

For convex loss functions, we emphasize that, there have been a lot of studies that
establish similar rates, without explicitly using our notion of gradient diversity [69, 92, 178].
We present the results for completeness, and also note that via gradient diversity, we provide
a general form of convergence rates that is essentially identical across convex and nonconvex
objectives.

Theorem 2.4 (convex functions). Suppose that F (w) is convex, and use step-size γ = ε
M2 .

Then, after T ≥ M2D0

ε2
gradient updates, we have E[F (B

T

∑ T
B
−1

k=0 wkB)− F ∗] ≤ (1 + δ
2
)ε.

Theorem 2.5 (strongly convex functions). Suppose that F (w) is λ-strongly convex, and use
step-size γ = ελ

M2 and batch-size B ≤ 1
2λγ

. Then, after T ≥ M2

2λ2ε
log(2D0

ε
) gradient updates,

we have E[‖wT −w∗‖2
2] ≤ (1 + δ

2
)ε.

2Suboptimality is defined differently for different classes of functions.
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Worst-case Optimality

Here, we establish that the above bound on the batch-size is worst-case optimal. The fol-
lowing theorem demonstrates this for a convex problem with varying agnostic batch-sizes3

Bk. Essentially, if we violate the batch bound prescribed above by a factor of δ, then the
quality of our model will be penalized by a factor of δ, in terms of accuracy.

Theorem 2.6. Consider a mini-batch SGD algorithm with K iterations and varying batch-
sizes B1, B2, . . . , BK, and let Nk =

∑k
i=1 Bi. Then, there exists a λ-strongly convex function

F (w) = 1
n

∑n
i=1 fi(w) with bounded parameter space W, such that, if Bk ≤ 1

2λγ
and Bk ≥

δE[BD(wNk−1
)] + 1 ∀ k = 1, . . . , K (where the expectation is taken over the randomness of

the mini-batch SGD algorithm), and the total number of gradient updates T = NK ≥ c
λγ

for

some universal constant c > 0, we have: E[‖wT − w∗‖2
2] ≥ c′(1 + δ)γM

2

λ
, where c′ > 0 is

another universal constant. More concretely, when running mini-batch SGD with step-size
γ = ελ

M2 and at least O(M
2

λ2ε
) gradient updates, we have E[‖wT −w∗‖2

2] ≥ c′(1 + δ)ε.

Although the above bound is only for strongly convex functions, it reveals that there
exist regimes beyond which scaling the batch-size beyond our fundamental bound can lead
to only worse performance in terms of the accuracy for a given iteration, or the number of
iterations needed for a specific accuracy.

Diversity-inducing Mechanisms

In recent years, several algorithmic heuristics, such as DropConnect [183], stochastic gradi-
ent Langevin dynamics (SGLD) [188], and quantization [5], have been shown to be useful
for improving large scale optimization in various aspects. For example, they may help im-
prove generalization or escape saddle points [71]. In this section, we demonstrate a different
aspect of these heuristics. We show that gradient diversity can increase when applying these
techniques independently to the data points in a batch, rendering mini-batch SGD more
amenable to distributed speedup gains.

We note that these mechanisms have two opposing effects: on one hand, as we show in
the sequel they allow the use of larger batch-sizes, and thus can reduce communication cost
by reducing the number of iterations; on the other hand, these methods usually introduce
additional variance to the stochastic gradients, and may require more iteration to achieve a
particular accuracy. Consequently, there is a communication-computation trade-off inherent
to these mechanisms. By carefully exploiting this trade-off, our goal would be to see a gain
in the overall run time. In Section 2.6, we provide experimental evidence to show that this
run time gain can indeed be observed in real distributed systems.

We use abbreviation DIM for any diversity-inducing mechanism. When data point i is
sampled, instead of making gradient update ∇fi(w), the algorithm updates with a random

3Here, by saying that the batch-sizes are agnostic, we emphasize the fact that the batch-sizes are constants
that are picked up without looking at the progress of the algorithm.
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surrogate vector gDIM
i (w) by introducing some additional randomness, which is acquired i.i.d.

across data points and iterations.
We can thus define the corresponding gradient diversity and batch-size bounds

∆DIM
D (w) :=

∑n
i=1 E‖gDIM

i (w)‖2
2

E‖
∑n

i=1 gDIM
i (w)‖2

2

,

BDIM
D (w) := n∆DIM

D (w),

where the expectation is taken over the randomness of the mechanism. In the following parts,
we first demonstrate various diversity-inducing mechanisms, and then compare BDIM

D (w) with
BD(w).

DropConnect We interpret DropConnect as updating a randomly chosen subset of all the
coordinates of the model parameter vector4. Let D1, . . . ,Dn be i.i.d. diagonal matrices with
diagonal entries being i.i.d. Bernoulli random variables, and each diagonal entry is 0 with
drop probability p ∈ (0, 1). When data point zi is chosen, we make DropConnect update
gdrop
i (w) = Di∇fi(w).

Stochastic gradient Langevin dynamics (SGLD) SGLD takes the gradient updates:
gsgld
i (w) = ∇fi(w) + ξi where ξi, i = 1, . . . , n, are independent isotropic Gaussian noise
N (0, σ2I).

Quantized gradients Define Q(v) as the quantized version of a vector v. More precisely,
[Q(v)]` = ‖v‖2 sgn(v`)η`(v), where η`(v)’s are independent Bernoulli random variables with
P{η` = 1} = |v`|/‖v‖2. We let gquant

i (w) = Q(∇fi(w)).
We can show that these mechanisms increases gradient diversity, as long as BD(w) is not

already large. Formally, we have the following result.

Theorem 2.7. For any w ∈ W such that BD(w) ≤ n, we have BDIM
D (w) ≥ BD(w), where

DIM ∈ {drop, sgld, quant}.

2.5 Differential Gradient Diversity and Stability

In this section, we turn to another important property of mini-batch SGD algorithm, i.e.,
the generalization ability.

4We note that our notion of DropConnect is slightly different from the original paper [183], but is of
similar spirit.
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Stability and Generalization

Recall that in supervised learning, our goal is to learn a parametric model with small popula-
tion risk R(w) := Ez∼D[f(w; z)]. In order to do so, we use empirical risk minimization, and
hope to obtain a model that has both small empirical risk and small population risk to avoid
overfitting. Formally, let A be a possibly randomized algorithm which maps the training data
to the parameter space as w = A(S). In this chapter, we use the model parameter obtained in
the final iteration as the output of the mini-batch SGD algorithm, i.e., A(S) = wT . We define
the expected generalization error of the algorithm as εgen(A) := ES,A[RS(A(S))−R(A(S))].

Bousquet and Elisseeff [25] show the equivalence between the generalization error and
algorithmic stability. The basic idea of proving generalization bounds using stability is to
bound the distance between the model parameters obtained by running an algorithm on two
datasets that only differ on one data point. This framework is used by Hardt, Recht, and
Singer [83] to show stability guarantees for serial SGD algorithm for Lipschitz and smooth
loss functions. Roughly speaking, they show upper bounds γ on the step-size below which
serial SGD is stable. This yields, as a corollary, that mini-batch SGD is stable provided the
step-size is upper bounded by γ/B. We remind the reader that since we absorb the 1/B
factor in the step-size, the only step-size for which the analysis by Hardt, Recht, and Singer
[83] would imply stability for SGD is 1/B less than what we suggest in the convergence
results. In the following parts of this section, we show that the mini-batch algorithm with a
similar step-size to SGD is indeed stable, provided the differential gradient diversity is large
enough.

Differential Gradient Diversity

The stability of mini-batch SGD is governed by the differential gradient diversity, defined as
follows.

Definition 2.6 (differential gradient diversity and batch-size bound). For any w,w′ ∈ W,
w 6= w′, the differential gradient diversity and batch-size bound is given by

∆D(w,w′) :=

∑n
i=1 ‖∇fi(w)−∇fi(w′)‖2

2

‖
∑n

i=1∇fi(w)−∇fi(w′)‖2
2

,

BD(w,w′) := n∆D(w,w′).

Although it is a distinct measure, differential gradient diversity shares similar properties
with gradient diversity. For example, the lower bounds for BD(w) in examples 1 and 2 in
Section 2.4 also hold for BD(w,w′), and two mechanisms, DropConnect and SGLD also
induce differential gradient diversity, as we note Section 2.8.
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Stability of Mini-batch SGD

We analyze the stability (generalization) of mini-batch SGD via differential gradient diversity.
We assume that, for each z ∈ Z, the loss function f(w; z) is convex, L-Lipschitz and β-
smooth in W . We choose not to discuss the generalization error for nonconvex functions,
since this may require a significantly small step-size [83].

Our result is stated informally in Theorem 2.8, and holds for both convex and strongly
convex functions. Here, γ is the step-size upper bound required to guarantee stability of
serial SGD, and differently from the convergence results, we treat BD(w,w′) as a random
variable defined by the sample S.

Theorem 2.8 (informal stability result). Suppose that, with high probability, the batch-size
B . BD(w,w′) for all w,w′ ∈ W, w 6= w′. Then, after the same number of gradient
updates, the generalization errors of mini-batch SGD and serial SGD satisfy

εgen(minibatch SGD) . εgen(serial SGD),

and such a guarantee holds for any step-size γ . γ.

Therefore, our main message is that, if with high probability, batch-size B is smaller than
BD(w,w′) for all w,w′, mini-batch SGD and serial SGD can be both stable in roughly the
same range of step-sizes, and the generalization error of mini-batch SGD and serial SGD are
roughly the same. We now provide the precise statements. In the following, we denote by 1

the indicator function.

Theorem 2.9 (generalization error of convex functions). Suppose that for any z ∈ Z,
f(w; z) is convex, L-Lipschitz and β-smooth in W. For a fixed step size γ > 0, let

η = P
{

inf
w 6=w′

BD(w,w′) <
B − 1

2
γβ
− 1− 1

n−1
1B>1

}
,

where the probability is over the randomness of S. Then the generalization error of mini-
batch SGD satisfies εgen ≤ 2γL2 T

n
(1− η) + 2γL2Tη.

It is shown by Hardt, Recht, and Singer [83] that εgen(serial SGD) ≤ 2γL2 T
n

, for convex
functions, when γ ≤ 2

β
. Notice that in our result, when B = 1, we get η = 0, and thus

recover the generalization bound for serial SGD. Further, suppose one can find B such that
infw 6=w′ BD(w,w′) ≥ B with high probability. Then by choosing B ≤ 1 + δB, and γ ≤

2
β(1+δ+ 1

n−1
)
, we obtain similar generalization error as the serial algorithm without significant

change in the step-size range. For strongly convex functions, we have:

Theorem 2.10 (generalization error of strongly convex functions). Suppose that for any
z ∈ Z, f(w; z) is L-Lipschitz, β-smooth, and λ-strongly convex in W, and B ≤ 1

2γλ
. For a

fixed step size γ > 0, let

η = P
{

inf
w 6=w′

BD(w,w′) <
B − 1

2
γ(β+λ)

− 1− 1
n−1

1B>1

}
,
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where the probability is over the randomness of S. Then the generalization error of mini-
batch SGD satisfies εgen ≤ 4L2

λn
(1− η) + 2γL2Tη.

Again, as shown by Hardt, Recht, and Singer [83], we have εgen(serial SGD) ≤ 4L2

λn
for

strongly convex functions, when γ ≤ 2
β+λ

. Thus, our remarks for the convex case above also
carry over here. We also mention that while in general, the probability parameter η may
appear to weaken the bound, there are practical functions for which η has rate decaying in
n. For example, for generalized linear functions, we can show that when the feature vectors
have i.i.d. sub-Gaussian entries, choosing B . d yields η . ne−d, which has polynomial
decay in n when d = Ω(log(n)). For details, see Section 2.8.

2.6 Experiments

(a) (b) (c)

Figure 2.2: Data replication. Here, 2-R, 4-R, etc represent 2-replication, 4-replication, etc, and DC
stand for DropConnect. (a) Logistic regression with two classes of CIFAR-10 (b) Cuda convolutional
neural network (c) Residual network. For (a), we plot the average loss ratio during all the iterations
of the algorithm, and average over 10 experiments; for (b), (c), we plot the loss ratio as a function
of the number of passes over the entire dataset, and average over 3 experiments. We observe that
with the larger replication factor, the gap of convergence increases.

We conduct experiments to justify our theoretical results. Our neural network experi-
ments are all implemented in Tensorflow and run on Amazon EC2 instances g2.2xlarge.

Convergence We conduct the experiments on a logistic regression model and two deep
neural networks (a cuda convolutional neural network [111] and a deep residual network [84])
with cross-entropy loss running on CIFAR-10 dataset. These results are presented in Fig-
ure 2.2. We use data replication to implicitly construct datasets with different gradient
diversity. By replication with a factor r (or r-replication), we mean picking a random 1/r
fraction of the data and replicating it r times. Across all configurations of batch-sizes, we
tune our (constant) step-size to maximize convergence, e.g., to minimize training time. The
sample size does not change by data replication, but gradient diversity conceivably gets
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(a) (b) (c)

Figure 2.3: Stability. (a) Normalized Euclidean distance vs number of data passes. (b) Gener-
alization behavior of batch-size 512. (c) Generalization behavior of batch-size 1024. Results are
averaged over 3 experiments.

smaller while we increase r. We use the ratio of the loss function for large batch-size SGD
(e.g., B = 512) to the loss for small batch-size SGD (e.g., B = 16) to measure the neg-
ative effect of large batch sizes on the convergence rate. When this ratio gets larger, the
algorithm with the large batch-size is converging slower. We can see from the figures that
while we increase r, the large batch-size instances indeed perform worse, and the large batch
instance performs the best when we have DropConnect, due to its diversity-inducing effect,
as discussed in the previous sections. This experiment thus validates our theoretical findings.

Stability We also conduct experiments to study the effect of large batch-size on the stabil-
ity of mini-batch SGD. Our experiments essentially use the same technique as in the study for
serial SGD by Hardt, Recht, and Singer [83]. Based on the CIFAR-10 dataset, we construct
two training datasets which only differ in one data point, and train a cuda convolutional
neural network using the same mini-batch SGD algorithm on these two datasets. For dif-
ferent batch-sizes, we test the normalized Euclidean distance

√
‖w −w′‖2

2/(‖w‖2
2 + ‖w′‖2

2)
between the obtained model on the two datasets. As shown in Figure 2.3a, the normalized
distance between the two models becomes larger when we increase the batch-size, which im-
plies that we lose stability by having a larger batch-size. We also compare the generalization
behavior of mini-batch SGD with B = 512 and B = 1024, as shown in Figures 2.3b and 2.3c.
As we can see, for large batch sizes, the models exhibit higher variance in their generalization
behavior, and our observation is in agreement with [100].

Diversity-inducing Mechanisms We finally implement diversity-inducing mechanisms
in a distributed setting with 2 workers and test the speedup gains. We use a convolutional
neural network on MNIST and implement the DropConnect mechanism with drop probability
pdrop = 0.4, 0.5. We tune the step-size γ and batch-size B for vanilla mini-batch SGD and
the diversity-induced setting, and find the (γ,B) pair that gives the fastest convergence for
each setting. Then, we compare the overall run time to reach 90%, 95%, and 99% training
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accuracy. The results are shown in Table 2.1, where each time measurement is averaged over
5 runs. Comparing wall-clock times, we see DropConnect provides significant improvements.
Indeed, the the batch-size gain afforded by DropConnect—the best batch-size for vanilla
mini-batch SGD is 256, while with the diversity-inducing mechanism, it becomes 512—is
able to dwarf the noise in gradient computation. Reducing communication cost thus has the
biggest effect on runtime, more so than introducing additional variance in stochastic gradient
computations.

Table 2.1: Speedup Gains via DropConnect

train accuracy (%) 90 95 99
mini-batch time (sec) 46.97 57.39 361.52

pdrop = 0.4
time (sec) 24.88 39.12 313.60
gain (%) 46.98 31.83 13.25

pdrop = 0.5
time (sec) 29.68 43.24 317.79
gain (%) 36.76 24.66 12.09

2.7 Conclusions

We propose the notion of gradient diversity to measure the dissimilarity between concurrent
gradient updates in mini-batch SGD. We show that, for both convex and nonconvex loss
functions, the convergence rate of mini-batch SGD is identical—up to constant factors—to
that of serial SGD, provided that the batch-size is at most proportional to a bound implied by
gradient diversity. We also develop a corresponding lower bound for the convergence rate of
strongly convex objectives. Our results show that on problems with high gradient diversity,
the distributed implementation of mini-batch SGD is amenable to better speedups. We also
establish similar results for generalization using the notion of differential gradient diversity.
Some open problems include finding more mechanisms that improve gradient diversity, and
in neural network learning, studying how the network structure, such as width, depth, and
activation functions, impacts gradient diversity.

2.8 Proofs

Examples of Gradient Diversity

Proof of Remark 2.1: Generalized linear models

Let `′(·) be the derivative of `(·). Since we have

∇fi(w) = `′i(x
T
i w)xi,
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by letting ai := `′i(x
T
i w) and a = [a1 · · · an]T, we obtain

BD(w) =
n
∑n

i=1 a
2
i ‖xi‖2

2

‖
∑n

i=1 aixi‖2
2

=
n
∑n

i=1 a
2
i ‖xi‖2

2

‖XTa‖2
2

≥ nmini=1,...,n ‖xi‖2
2

∑n
i=1 a

2
i

σ2
max(X)‖a‖2

2

≥ nmini=1,...,n ‖xi‖2
2

σ2
max(X)

,

which completes the proof.
We made a claim after the remark about instantiating it for random design matrices. We

provide the proof of that claim below.

Generalized Linear Function with Random Features

We have the following two results.

Proposition 2.1. Suppose that n ≥ d, and xi has i.i.d. σ-sub-Gaussian entries with zero
mean. Then, there exist universal constants c1, c2, c3 > 0, such that, with probability at least
1− c2ne

−c3d, we have BD(w) ≥ c1d ∀ w ∈ W.

Proposition 2.2. Suppose that n ≥ d, and the entries of xi are i.i.d. uniformly distributed
in {−1, 1}. Then, there exist universal constants c4, c5, c6 > 0, such that, with probability at
least 1− c5e

−c6n, we have BD(w) ≥ c4d ∀ w ∈ W.

Proof. By the concentration results of the maximum singular value of random matrices, we
know that when n ≥ d, there exist universal constants C1, C2, C3 > 0, such that

P{σ2
max(X) ≤ C1σ

2n} ≥ 1− C2e
−C3n. (2.3)

By the concentration results of sub-Gaussian random variables, we know that there exist
universal constants C4, C5 > 0 such that

P{‖xi‖2
2 ≥ C4σ

2d} ≥ 1− e−C5d,

and then by union bound, we have

P
{

min
i=1,...,n

‖xi‖2
2 ≥ C4σ

2d

}
≥ 1− ne−C5d. (2.4)

Then, by combining (2.3) and (2.4) and using union bound, we obtain

P
{
nmini=1,...,n ‖xi‖2

2

σ2
max(X)

≥ C4

C1

d

}
≥ 1− C2e

−C3n − ne−C5d,

which yields the desired result.
Proposition 2.2 can be proved using the fact that for Rademacher entries, we have ‖xi‖2

2 =
d with probability one.
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Proof of Remark 2.2: Sparse Conflict

We prove the following result for Example 2 in Section 2.4.

Proposition 2.3. Let ρ be the maximum degree of all the vertices in G. Then, we have
∀ w ∈ W, BD(w) ≥ n/(ρ+ 1).

Proof. We adopt the convention that when (i, j) ∈ E, we also have (j, i) ∈ E. By definition,
we have

BD(w) =
n
∑n

i=1 ‖∇fi(w)‖2
2∑n

i=1 ‖∇fi(w)‖2
2 +

∑
i 6=j〈∇fi(w),∇fj(w)〉

=
n
∑n

i=1 ‖∇fi(w)‖2
2∑n

i=1 ‖∇fi(w)‖2
2 +

∑
(i,j)∈E〈∇fi(w),∇fj(w)〉

≥ n
∑n

i=1 ‖∇fi(w)‖2
2∑n

i=1 ‖∇fi(w)‖2
2 +

∑
(i,j)∈E

1
2
‖∇fi(w)‖2

2 + 1
2
‖∇fj(w)‖2

2

.

Since ρ is the maximum degree of the vertexes inG, we know that for each i ∈ [n], the term
1
2
‖∇fi(w)‖2

2 appears at most 2ρ times in the summation
∑

(i,j)∈E
1
2
‖∇fi(w)‖2

2 + 1
2
‖∇fj(w)‖2

2.
Therefore, we obtain

∑
(i,j)∈E

1

2
‖∇fi(w)‖2

2 +
1

2
‖∇fj(w)‖2

2 ≤ ρ
n∑
i=1

‖∇fi(w)‖2
2,

which completes the proof.

Convergence Rates

In this section, we prove our convergence results for different types of functions. To assist
the demonstration of the proofs of convergence rates, for any w ∈ W , we define the following
two quantities:

M2(w) :=
1

n

n∑
i=1

‖∇fi(w)‖2
2 and G(w) := ‖∇F (w)‖2

2 = ‖ 1

n

n∑
i=1

∇fi(w)‖2
2

One can check that the batch-size bound obeys BD(w) = M2(w)
G(w)

.
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Proof of Lemma 2.1

We have

E[‖w(k+1)B −w∗‖2
2 | wkB] =E

‖wkB −w∗ − γ
(k+1)B−1∑
`=kB

∇fs`(wkB)‖2
2 | wkB


=‖wkB −w∗‖2

2 − 2γ

(k+1)B−1∑
`=kB

E[〈wkB −w∗,∇fs`(wkB)〉 | wkB]

+ γ2E

‖ (k+1)B−1∑
`=kB

∇fs`(wkB)‖2
2 | wkB

 .
Since s`’s are sampled i.i.d. uniformly from [n], we know that

E[‖w(k+1)B −w∗‖2
2 | wkB] =‖wkB −w∗‖2

2 − 2γB〈wkB −w∗,∇F (wkB)〉
+ γ2(BM2(wkB) +B(B − 1)G(wkB))

=‖wkB −w∗‖2
2 − 2γB〈wkB −w∗,∇F (wkB)〉

+ γ2B

(
1 +

B − 1

BD(wkB)

)
M2(wkB)

=‖wkB −w∗‖2
2 − 2γB〈wkB −w∗,∇F (wkB)〉

+ γ2B(1 + δ)M2(wkB).

(2.5)

We also mention here that this result becomes inequality for the projected mini-batch SGD
algorithm, since Euclidean projection onto a convex set is non-expansive.

Proof of Theorem 2.2

Recall that we have the iteration w(k+1)B = wkB − γ
∑(k+1)B−1

t=kB ∇fst(wkB). Since F (w) has
β-Lipschitz gradients, we have

F (w(k+1)B) ≤ F (wkB) + 〈∇F (wkB),w(k+1)B −wkB〉+
β

2
‖w(k+1)B −wkB‖2

2.

Then, we obtain〈
∇F (wkB), γ

(k+1)B−1∑
t=kB

∇fst(wkB)

〉
≤ F (wkB)− F (w(k+1)B) +

β

2

∥∥∥∥∥∥γ
(k+1)B−1∑
t=kB

∇fst(wkB)

∥∥∥∥∥∥
2

2

.

Now we take expectation on both sides. By iterative expectation, we know that for any
t ≥ kB,

E[〈∇F (wkB),∇fst(wkB)〉] = E[‖∇F (wkB)‖2
2].
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We also have

E

∥∥∥∥∥∥
(k+1)B−1∑
t=kB

∇fst(wkB)

∥∥∥∥∥∥
2

2

 = E[BM2(wkB) +B(B − 1)G(wkB)] ≤ B(1 + δ)M2.

Consequently,

γBE[‖∇F (wkB)‖2
2] ≤ E[F (wkB)]− E[F (w(k+1)B)] +

β

2
γ2B(1 + δ)M2. (2.6)

Summing up equation (2.6) for k = 0, . . . , T/B − 1 yields

γB

T/B−1∑
k=0

E[‖∇F (wkB)‖2
2] ≤ F (w0)− F ∗ +

β

2
γ2T (1 + δ)M2,

which simplifies to

min
k=0,...,T/B−1

E[‖∇F (wkB)‖2
2] ≤ F (w0)− F ∗

γT
+
β

2
γ(1 + δ)M2.

We can then derive the results by replacing γ and T with the particular choices.

Proof of Theorem 2.3

Substituting w = w(k+1)B and w′ = wkB in the condition for β-smoothness in Definition 2.1,
we obtain

F (w(k+1)B) ≤F (wkB)− γ

〈
∇F (wkB),

(k+1)B−1∑
t=kB

∇fst(wkB)

〉

+
βγ2

2

∥∥∥∥∥∥
(k+1)B−1∑
t=kB

∇fst(wkB)

∥∥∥∥∥∥
2

2

.

Condition on wkB and take expectations over the choice of st, t = kB, . . . , (k+ 1)B− 1. We
obtain

E[F (w(k+1)B) | wkB] ≤F (wkB)− γB‖∇F (wkB)‖2
2

+
βγ2

2

(
BM2(wkB) +B(B − 1)G(wkB)

)
.

(2.7)

Then, we take expectation over all the randomness of the algorithm. Using the PL condition
in Definition 2.3 and the fact that B ≤ 1 + δBD(w) for all w ∈ WT , we write

E
[
F (w(k+1)B)− F ∗

]
≤ (1− 2γµB)E [F (wkB)− F ∗] + (1 + δ)

βBγ2M2

2
. (2.8)
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Then, if B ≤ 1
2γµ

, we have

E [F (wT )− F ∗] ≤ (1− 2γµB)T/B(F (w0)− F ∗) + (1 + δ)
βγM2

4µ
.

Using the fact that 1− x ≤ e−x for any x ≥ 0, and choosing γ = 2εµ
M2β

, we obtain the desired
result.

Proof of Theorem 2.4

According to Lemma 2.1, for every k = 0, 1, . . . , T
B
− 1, we have

E[‖w(k+1)B −w∗‖2
2 | wkB] ≤ ‖wkB −w∗‖2

2 − 2γB 〈∇F (wkB),wkB −w∗〉+ (1 + δ)γ2BM2.

Then, we take expectation over all the randomness of the algorithm. Let DkB = E[‖wkB −
w∗‖2

2]. We have

E[〈∇F (wkB),wkB −w∗〉] ≤ 1

2γB
(DkB −D(k+1)B) + (1 + δ)

γ

2
M2. (2.9)

We use equation (2.9) to prove the convergence rate. We have by convexity

E

F
B
T

T
B
−1∑

k=0

wkB

− F (w∗)

 ≤ E

B
T

T
B
−1∑

k=0

F (wkB)− F (w∗)


=
B

T

T
B
−1∑

t=0

E[F (wkB)− F (w∗)]

≤ B

T

T
B
−1∑

t=0

E[〈∇F (wkB),wkB −w∗〉]

≤ D0

2γT
+ (1 + δ)

γM2

2
,

where the last inequality is obtained by summing inequality (2.9) over k = 0, 1, . . . , T
B
− 1.

Then, we can derive the results by replacing γ and T with the particular choices.

Proof of Theorem 2.5

According to Lemma 2.1, we have

E[‖w(k+1)B−w∗‖2
2 | wkB] ≤ ‖wkB−w∗‖2

2−2γB 〈∇F (wkB),wkB −w∗〉+(1+δ)γ2BM2(wkB).

By strong convexity of F (w), we have

〈∇F (wkB),wkB −w∗〉 ≥ λ‖wkB −w∗‖2
2,
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which yields

E[‖w(k+1)B −w∗‖2
2 | wkB] ≤ (1− 2γλB)‖wkB −w∗‖2

2 + (1 + δ)γ2BM2(wkB). (2.10)

Then, by taking expectations over the randomness of the whole algorithm on both sizes
of (2.10), we obtain

E[‖w(k+1)B −w∗‖2
2] ≤ (1− 2γλB)E[‖wkB −w∗‖2

2] + (1 + δ)γ2BM2.

Then if B ≤ 1
2γλ

, we obtain

E[‖wT −w∗‖2
2] ≤ (1− 2γλB)T/B‖w0 −w∗‖2

2 + (1 + δ)
γM2

2λ
.

Using the fact that 1− x ≤ e−x for any x ≥ 0, we obtain

E[‖wT −w∗‖2
2] ≤ e−2γλTD0 + (1 + δ)

γM2

2λ
.

We complete the proof by taking γ = ελ
M2 .

Lower Bound

In this section, we prove the lower bound on convergence for strongly convex functions.

Proof of Theorem 2.6

We set fi(w) = λ
2
‖w − xi‖2

2, and thus F (w) = 1
n

∑n
i=1

λ
2
‖w − xi‖2

2. We choose W = {w :
‖w‖2 ≤ 1}, and xi’s such that ‖xi‖2 = 1 for all i = 1, . . . , n, and

∑n
i=1 xi = 0.

One can check that ∇fi(w) = λ(w − xi), ∇F (w) = λw, and

M2(w) =
1

n

n∑
i=1

‖∇fi(w)‖2
2 =

1

n

n∑
i=1

λ2‖w − xi‖2
2 =

1

n

n∑
i=1

λ2(‖w‖2
2 + ‖xi‖2

2).

Since M2(w) = 1
n

∑n
i=1 λ

2(‖w‖2
2 + ‖xi‖2

2) ∈ [λ2, 2λ2] for all w ∈ W , we know that we have
M2(w) ≥ 1

2
M2 for all w ∈ W .

Since W is a bounded set, the projection step has to be taken in order to guarantee
that wNk ∈ W . However, one can show that, if the initial guess w0 is in the convex hull
of x1, . . . ,xn (denoted by C ⊂ W), then, without using projection, the obtained model
parameter wNk always stays inside C. More specifically, we have the following result.

Proposition 2.4. Suppose that Bk ≤ 1
λγ

for all k = 1, . . . , K, and w0 ∈ C. Then, without
using projection, wNk ∈ C for all k.
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Proof. We prove this result using induction. Suppose that wNk−1
∈ C. Then, we have

wNk =wNk−1
− γ

Nk−1∑
`=Nk−1

∇fs`(wNk−1
) = wNk−1

− γ
Nk−1∑
`=Nk−1

λ(wNk−1
− xs`)

=(1− γλBk)wNk−1
+ γλBk

 1

Bk

Nk−1∑
`=Nk−1

xs`

 .

Since wNk−1
, 1
Bk

∑Nk−1
`=Nk−1

xs` ∈ C, we prove Lemma 2.4.

From now on we assume w0 ∈ C and do not consider projection. According to equa-
tion (2.5) in the proof of Lemma 2.1, we have5

E[‖wNk −w∗‖2
2 | wNk−1

] =‖wNk−1
−w∗‖2

2 − 2γBk〈wNk−1
−w∗,∇F (wNk−1

)〉

+ γ2Bk

(
1 +

Bk − 1

BD(wNk−1
)

)
M2(wNk−1

)

≥(1− 2γλBk)‖wNk−1
−w∗‖2

2 +
1

2
γ2M2Bk

(
1 +

Bk − 1

BD(wNk−1
)

)
.

Then, we take expectation over the randomness of the whole algorithm and obtain

E[‖wNk −w∗‖2
2]

≥(1− 2γλBk)E[‖wNk−1
−w∗‖2

2] +
1

2
γ2M2Bk

(
1 + (Bk − 1)E

[
1

BD(wNk−1
)

])
≥(1− 2γλBk)E[‖wNk−1

−w∗‖2
2] +

1

2
γ2M2Bk

(
1 + (Bk − 1)

1

E[BD(wNk−1
)]

)
≥(1− 2γλBk)E[‖wNk−1

−w∗‖2
2] +

1

2
(1 + δ)γ2M2Bk,

where the second inequality is due to Jensen’s inequality, and the third inequality is due to
the fact that Bk ≥ 1 + δE[BD(wNk−1

)].
Rolling out the above recursion, and denoting αk = 2γλBk ∈ [0, 1], we have

E
[
‖wNK −w∗‖2

2

]
≥‖w0 −w∗‖2

2

(
K∏
k=1

(1− αk)

)
+

1

2
(1 + δ)γ2M2

[
BK +

K−1∑
k=1

K∏
i=k+1

(1− αi)Bk

]

=‖w0 −w∗‖2
2

(
K∏
i=1

(1− αi)

)
+

1

4
(1 + δ)

γM2

λ

[
αK +

K−1∑
k=1

K∏
i=k+1

(1− αi)αk

]
.

5We still keep w∗ although w∗ = 0.
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Now the number of gradient updates is given by
∑K

k=1Bk = T , and consequently,
∑K

k=1 αk =
2γλT . Since we consider the case when T ≥ c

γλ
for some universal constant c > 0 (and SGD

only converges in this regime), so we have
∑K

k=1 αk ≥ 2c.
Substituting the value of step-size γ, we see that in order to complete the proof, it suffices

to show that the quantity

J(α) = αK +
K−1∑
k=1

K∏
i=k+1

(1− αi)αk

is lower bounded as Ω(1). In order to show this, note that J(α) can be equivalently expressed
as the CDF of a geometric distribution with non-uniform probabilities of success αk. We
could further see that

J(α) = 1−
K∏
k=1

(1− αk) ≥ 1−

[
1

K

K∑
k=1

(1− αk)

]K
≥ 1− (1− 2c/K)K ,

and the last term is lower bounded by a constant for all K ≥ 1.
A second bound that was implicit in our convergence rates is also sharp, as shown in the

following section.

Necessity of B ≤ O( 1
λγ

)

In this section, we show that, up to a constant factor, the condition B ≤ 1
2γλ

in Theo-

rem 2.5 and 2.6, is actually necessary for mini-batch SGD to converge when F (w) is strongly
convex. More precisely, we can show that, when B > 2

γλ
, mini-batch SGD diverges.

Proposition 2.5. Suppose that F (w) is λ-strongly convex. Condition on the model param-
eter wkB obtained after k iterations. Suppose that wkB − γ

∑
i∈I ∇fi(wkB) ∈ W for all

I ∈ [n]B. Then, if B > 2
γλ

, we have

E
[
‖w(k+1)B −w∗‖2 | wkB

]
> ‖wkB −w∗‖2.

Proof. We have

E
[
‖w(k+1)B −wkB‖2 | wkB

]
≥
∥∥E[w(k+1)B −wkB | wkB]

∥∥
2

= γ

∥∥∥∥∥∥
(k+1)B−1∑
t=kB

E[∇fst(wkB) | wkB]

∥∥∥∥∥∥
2

= γB‖∇F (wkB)‖2

≥ γBλ‖wkB −w∗‖2,

where the first step follows by Jensen’s inequality, and the last by strong convexity.
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This allows us to conclude that if B > 2
γλ

, E
[
‖w(k+1)B −wkB‖2 | wkB

]
> 2‖wkB−w∗‖2.

Then, by triangle inequality,

E
[
‖w(k+1)B −w∗‖2 | wkB

]
≥ E

[
‖w(k+1)B −wkB‖2 | wkB

]
− ‖wkB −w∗‖2 > ‖wkB −w∗‖2,

and thus mini-batch SGD diverges.

We now turn to showing that various heuristics for SGD are also diversity-inducing.

Proof of Theorem 2.7

For DropConnect, we have

Bdrop
D (w) = n

∑n
i=1 E[‖Di∇fi(w)‖2

2]

E[‖
∑n

i=1 Di∇fi(w)‖2
2]

=
n
∑n

i=1(1− p)‖∇fi(w)‖2
2∑n

i=1(1− p)‖∇fi(w)‖2
2 + (1− p)2

∑
j 6=k〈∇fj(w),∇fk(w)〉

.

(2.11)

Recall that

BD(w) =
n
∑n

i=1 ‖∇fi(w)‖2
2∑n

i=1 ‖∇fi(w)‖2
2 +

∑
j 6=k〈∇fj(w),∇fk(w)〉

,

and we can see that for any w such that
∑

j 6=k〈∇fj(w),∇fk(w)〉 ≥ 0, we must have BD(w) ≤
n. In this case, we have

Bdrop
D (w) ≥ n

∑n
i=1(1− p)‖∇fi(w)‖2

2∑n
i=1(1− p)‖∇fi(w)‖2

2 + (1− p)
∑

j 6=k〈∇fj(w),∇fk(w)〉
= BD(w).

On the other hand, if
∑

j 6=k〈∇fj(w),∇fk(w)〉 < 0, we must have BD(w) > n, and one can

simply check that we also have Btextsfdrop
D (w) > n.

For stochastic gradient Langevin dynamics, we have

Bsgld
D (w) =

n
∑n

i=1 E[‖∇fi(w) + ξi‖2
2]

E[‖
∑n

i=1(∇fi(w) + ξi)‖2
2]

=
n
∑n

i=1 ‖∇fi(w)‖2
2 + n2dσ2

‖
∑n

i=1∇fi(w)‖2
2 + ndσ2

. (2.12)

Therefore, as long as BD(w) =
n
∑n
i=1 ‖∇fi(w)‖22

‖
∑n
i=1∇fi(w)‖22

≤ n, we have Bsgld
D (w) ≥ BD(w). In

addition, if BD(w) > n, then Bsgld
D (w) > n.

For quantization, one can simply check that for any i ∈ [n], we have

E[‖Q(∇fi(w))‖2
2] = ‖∇fi(w)‖2‖∇fi(w)‖1,

and for any j 6= k, we have

E[〈Q(∇fj(w)), Q(∇fk(w))〉] = 〈∇fj(w),∇fk(w)〉.
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Consequently,

Bquant
D (w) =

n
∑n

i=1 E[‖Q(∇fi(w))‖2
2]

E[‖
∑n

i=1Q(∇fi(w))‖2
2]

=
n
∑n

i=1 ‖∇fi(w)‖2‖∇fi(w)‖1∑n
i=1 ‖∇fi(w)‖2‖∇fi(w)‖1 +

∑
j 6=k〈∇fj(w),∇fk(w)〉

.

(2.13)

We define

∆quant
D (w) :=

∑n
i=1 ‖∇fi(w)‖2‖∇fi(w)‖1∑n

i=1 ‖∇fi(w)‖2‖∇fi(w)‖1 +
∑

j 6=k〈∇fj(w),∇fk(w)〉
,

and

∆D(w) :=

∑n
i=1 ‖∇fi(w)‖2

2∑n
i=1 ‖∇fi(w)‖2

2 +
∑

j 6=k〈∇fj(w),∇fk(w)〉
,

and we have Bquant
D (w) = n∆quant

D (w) and BD = n∆D(w). One can now check that due to
the fact that ‖v‖2‖v‖1 ≥ ‖v‖2

2 for any vector v, when ∆D(w) ∈ (0, 1), we have ∆quant
D (w) >

∆D(w), and when ∆D(w) > 1, we have ∆quant
D (w) > 1.

Stability

Let us begin by defining some useful notation. We let

M
2
(w,w′) :=

1

n

n∑
i=1

‖∇fi(w)−∇fi(w′)‖2
2 and G(w,w′) := ‖∇F (w)−∇F (w′)‖2

2.

One can see that BD(w,w′) = M
2
(w,w′)

G(w,w′)
. We also define

BD = inf
w 6=w′

BD(w,w′).

Before turning to the proofs, we first provide some background.

Background on Stability and Generalization

Recall that in supervised learning problems, our goal is to learn a parametric model with
small population risk R(w) := Ez∼D[f(w; z)]. In order to do so, we use empirical risk
minimization, and hope to obtain a model that has both small empirical risk and small
population risk to avoid overfitting. Formally, let A be a possibly randomized algorithm
which maps the training data to the parameter space as w = A(S). We define the expected
generalization error of the algorithm as

εgen(A) := |ES,A[RS(A(S))−R(A(S))]| .

Bousquet and Ellisseef show that there is a fundamental connection between the generaliza-
tion error and algorithmic stability. An algorithm is said to be stable if it produces similar
models given similar training data. We summarize their result as follows.
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Proposition 2.6. Let S = (z1, . . . , zn) and S ′ = (z′1, . . . , z
′
n) be two independent random

samples from D, and let S(i) = (z1, . . . , zi−1, z
′
i, zi+1, . . . , zn) be the sample that is identical

to S except in the i-th data point where we replace zi with z′i. Then, we have

ES,A[RS(A(S))−R(A(S))] = ES,S′,A

[
1

n

n∑
i=1

f(A(S(i)); z′i)−
1

n

n∑
i=1

f(A(S); z′i)

]
.

With the notation in Proposition 2.6, we define the following quantity that characterizes
the algorithmic stability of the learning algorithm given the data points:

εstab(S,S ′) = EA

[
1

n

n∑
i=1

f(A(S(i)); z′i)−
1

n

n∑
i=1

f(A(S); z′i)

]
, (2.14)

where we condition on the data sets S and S ′ and take expectation over the randomness of
the learning algorithm (mini-batch SGD). Recall from Theorem 2.6 that

εgen(A) = |ES,S′ [εstab(S,S ′)]| ≤ ES,S′ [|εstab(S,S ′)|] . (2.15)

We bound εgen(A) by first showing a bound on εstab(S,S ′) that depends on the sample (S,S ′),
then using equation (2.15) to obtain, as a corollary, results for generalization error.

For convex and strongly convex functions, we have the following two results on stability.

Proposition 2.7 (stability of convex functions). Fix sample (S,S ′). Suppose that for any
z ∈ Z, f(w; z) is convex, L-Lipschitz and β-smooth in W. Provided the step-size and batch-
size satisfy

γ ≤ 2

β
(

1 + 1
n−1

1B>1 + B−1
BD(w,w′)

) , (2.16)

for all w 6= w′, we have |εstab(S,S ′)| ≤ 2γL2 T
n

.

Proposition 2.8 (stability of strongly convex functions). Fix the sample (S,S ′). Suppose
that for any z ∈ Z, f(w; z) is L-Lipschitz, β-smooth, and λ-strongly convex in W, and that
B ≤ 1

2γλ
. Provided the step-size and batch-size satisfy

γ ≤ 2

(β + λ)
(

1 + 1
n−1

1B>1 + B−1
BD(w,w′)

) , (2.17)

for all w 6= w′, we have |εstab(S,S ′)| ≤ 4L2

λn
.

We also note that Theorem 2.9 and Theorem 2.10 in this chapter can be derived as
Corollaries of Proposition 2.7 and 2.8, respectively. In following sections, we provide the
details.
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Proofs of Proposition 2.7 and Theorem 2.9

We first recall the problem setting. Suppose that there are two sample sets S and S(I) which
differ at one data point located at a random position I, which is uniformly distributed in [n].
We run the same (projected) parallel mini-batch SGD on both data sets, and after the k-th
parallel iteration, we obtain wkB and w̃kB, respectively. After a total number of T gradient
updates, i.e., T/B parallel iterations, we obtain wT and w̃T . Let st, t = 0, 1, . . . , T−1 be the
sequence of indices of samples used by the algorithm. In our setting, st are i.i.d. uniformly
distributed in {1, 2, . . . , n}. Let zst ∈ S and z̃st ∈ S(I), t = 0, . . . , T − 1 be the data point
used in the algorithms running on the two data sets, respectively. Then, we know that with
probability 1− 1

n
, zst = z̃st , and with probability 1

n
, zst 6= z̃st . We simplify the notations of

the risk function associated with zst and z̃st by fst(w) := f(w; zst), and f̃st(w) := f(w; z̃st),
respectively.

We now prove Proposition 2.7. Throughout this proof, we only consider the case where
B > 1 and omit the indicator function 1B>1. We condition on the data sets and the event
that the choice of γ is “good”, as shown in (2.16). Specifically, we condition on the samples
S and S ′, and the event Γ:

Γ =

{
γ ≤ 2

β(1 + 1
n−1

+ B−1
BD

)

}
=

{
BD ≥

B − 1
2
γβ
− 1− 1

n−1

}
. (2.18)

Recall the definition of η:

η = P

{
inf

w 6=w′
BD(w,w′) <

B − 1
2
γβ
− 1− 1

n−1
1B>1

}
. (2.19)

We know that η = P{Γ̄}, and so our goal is to bound |εstab(S,S ′)| conditioned on the event
Γ. Since we assume that f(w; z) is L-Lipschitz on W , we have

|εstab(S,S ′)| ≤ LEI,A|Γ
[
‖A(S(I))− A(S)‖2

]
= LEI,A|Γ [‖wT − w̃T‖2] , (2.20)

and thus it suffices to bound EI,A|Γ [‖wT − w̃T‖2].
Consider the samples used in the (k + 1)-th parallel iteration in the two algorithm in-

stances, i.e., {zst}
(k+1)B−1
t=kB , and {z̃st}

(k+1)B−1
t=kB . Let Hk+1 be the the number of samples that

differ between the two minibatches in iteration k + 1. According to our sampling scheme,
Hk+1 ∼ bin(B, 1

n
). We condition on the event that Hk+1 = h. Without loss of general-

ity, we assume that zst = z̃st for all t = kB, . . . , (k + 1)B − h − 1, and zst 6= z̃st for all
t = (k + 1)B − h, . . . , (k + 1)B − 1. Consider the first B − h terms. For the unconstrained
optimization, we have

‖w(k+1)B−h − w̃(k+1)B−h‖2
2

=‖(wkB − γ
(k+1)B−h−1∑

t=kB

∇fst(wkB))− (w̃kB − γ
(k+1)B−h−1∑

t=kB

∇f̃st(w̃kB))‖2
2.

(2.21)
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For the algorithm with projection, the B gradient update steps are the same as the un-
constrained algorithm, and projection step is conducted once all the gradient updates are
finished. Therefore, equation (2.21) also holds for projected algorithm.

Since fst(w) = f̃st(w) for all t = kB, . . . , (k + 1)B − h− 1, we further have

‖w(k+1)B−h − w̃(k+1)B−h‖2
2

=‖wkB − w̃kB‖2
2 − 2〈wkB − w̃kB, γ

(k+1)B−h−1∑
t=kB

∇fst(wkB)−∇fst(w̃kB)〉

+ γ2‖
(k+1)B−h−1∑

t=kB

∇fst(wkB)−∇fst(w̃kB)‖2
2

=‖wkB − w̃kB‖2
2 − 2〈wkB − w̃kB, γ

(k+1)B−h−1∑
t=kB

∇fst(wkB)−∇fst(w̃kB)〉

+ γ2

(k+1)B−h−1∑
t=kB

‖∇fst(wkB)−∇fst(w̃kB)‖2
2

+ 2γ2

(k+1)B−h−1∑
i=kB

(k+1)B−h−1∑
j=i+1

〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj(wkB)−∇fsj(w̃kB)〉.

(2.22)

We denote the sequence of indices selected by the mini-batch SGD algorithm up to the t-th
sampled data point by At, i.e., At = {s0, . . . , st−1}. In the following steps, we condition on
AkB and the event that Hk+1 = h, and take expectation over the randomness of the SGD
algorithm in the (k + 1)-th parallel iteration and the random choice of I.

We consider each term in equation (2.22). For the term ‖∇fst(wkB) − ∇fst(w̃kB)‖2
2,

conditioned on the event that zst = z̃st , we know that st is uniformly distributed in [n]\{I}.
Since I is uniformly distributed in [n], we know that the marginal distribution of st is uniform
on the set [n]. We have

EI,A|Hk+1,AkB ,Γ[‖∇fst(wkB)−∇fst(w̃kB)‖2
2] = M

2
(wkB, w̃kB).

Then, we find the conditional expectation of 〈∇fsi(wkB) − ∇fsi(w̃kB),∇fsj(wkB) −
∇fsj(w̃kB)〉. The following lemma does precisely this.

Proposition 2.9. For any i, j such that kB ≤ i, j ≤ (k + 1)B − h− 1 and i 6= j, we have

EI,A|Hk+1,AkB ,Γ[〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj(wkB)−∇fsj(w̃kB)〉]

=
1

(n− 1)2
M

2
(wkB, w̃kB) +

n(n− 2)

(n− 1)2
G(wkB, w̃kB).

(2.23)
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We prove Proposition 2.9 in Section 2.8. Combining this lemma with the result of equa-
tion (2.22), we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2
2]

=‖wkB − w̃kB‖2
2 − 2EI,A|Hk+1,AkB ,Γ[〈wkB − w̃kB, γ

(k+1)B−h−1∑
t=kB

∇fst(wkB)−∇fst(w̃kB)〉]

+ γ2(B − h)M
2
(wkB, w̃kB)

+ γ2(B − h)(B − h− 1)

[
1

(n− 1)2
M

2
(wkB, w̃kB) +

n(n− 2)

(n− 1)2
G(wkB, w̃kB)

]
≤‖wkB − w̃kB‖2

2 − 2EI,A|Hk+1,AkB ,Γ[〈wkB − w̃kB, γ

(k+1)B−h−1∑
t=kB

∇fst(wkB)−∇fst(w̃kB)〉]

+ γ2(B − h)M
2
(wkB, w̃kB)

+ γ2(B − h)

[
1

n− 1
M

2
(wkB, w̃kB) + (B − 1)

M
2
(wkB, w̃kB)

BD(wkB, w̃kB)

]

≤‖wkB − w̃kB‖2
2 − 2γ

(k+1)B−h−1∑
t=kB

EI,A|Hk+1,AkB ,Γ[〈wkB − w̃kB,∇fst(wkB)−∇fst(w̃kB)〉]

+ γ2(B − h)(1 +
1

n− 1
+
B − 1

BD

)M
2
(wkB, w̃kB).

(2.24)
By the co-coercive property of convex and smooth functions, we know that

〈wkB − w̃kB,∇fst(wkB)−∇fst(w̃kB)〉 ≥ 1

β
‖∇fst(wkB)−∇fst(w̃kB)‖2

2.

We thus obtain

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2
2]

≤‖wkB − w̃kB‖2
2 − (2

γ

β
− γ2(1 +

1

n− 1
+
B − 1

BD

))(B − h)M
2
(wkB, w̃kB).

(2.25)

Since we condition on the event Γ, we have that γ obeys the relation in equation (2.18).
Consequently,

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2
2] ≤ ‖wkB − w̃kB‖2

2.

Then by Jensen’s inequality, we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2] ≤ ‖wkB − w̃kB‖2. (2.26)
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For the last h terms, since the loss functions are all L-Lipschitz, we obtain

‖w(k+1)B − w̃(k+1)B‖2 ≤ ‖w(k+1)B−h − w̃(k+1)B−h‖2 + 2γLh. (2.27)

Then, combining with equation (2.26), we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤ ‖wkB − w̃kB‖2 + 2γLh. (2.28)

Recall that Hk+1 is a binomial random variable. Taking expectation over Hk+1 yields

EI,A|AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤ ‖wkB − w̃kB‖2 + 2γL
B

n
.

Then we take expectation over the randomness of the first k parallel iterations and obtain

EI,A|Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤ EI,A|Γ[‖wkB − w̃kB‖2] + 2γL
B

n
. (2.29)

Summing up (2.29) for k = 0, 1, . . . , T
B
− 1 and taking expectation over the data sets, we

have

EI,A|Γ[‖wT − w̃T‖2] ≤ 2γL
T

n
. (2.30)

Combining equations (2.20) and (2.30), we complete the proof of Proposition 2.7, i.e., when
the event Γ occurs, we have

|εstab(S,S ′)| ≤ LEI,A|Γ [‖wT − w̃T‖2] ≤ 2γL2T

n
. (2.31)

To prove Theorem 2.9, we notice that when Γ does not occur, we simply have

|εstab(S,S ′)| ≤ LEI,A|Γ̄[‖wT − w̃T‖2] ≤ 2γL2T. (2.32)

Using equations (2.31) and (2.32) along with the definition of η, we obtain

εgen ≤ ES,S′|Γ [|εstab(S,S ′)|]P{Γ}+ ES,S′|Γ̄ [|εstab(S,S ′)|]P{Γ̄}

≤ 2γL2T

n
(1− η) + 2γL2Tη,

which completes the proof.

Proof of Proposition 2.8 and Theorem 2.10

The proof of Proposition 2.8 follows an argument similar to the proof of Proposition 2.7.
We define the analogous event Γ to signal that the step size is “good”, according to equa-
tion (2.17); note that this is slightly different from convex risk functions:

Γ =

{
γ ≤ 2

(β + λ)(1 + 1
n−1

+ B−1
BD

)

}
=

{
BD ≥

B − 1
2

γ(β+λ)
− 1− 1

n−1

}
. (2.33)
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Recall the definition of η:

η = P

{
inf

w 6=w′
BD(w,w′) <

B − 1
2

γ(β+λ)
− 1− 1

n−1
1B>1

}
, (2.34)

we know that η = P{Γ̄}. To prove Proposition 2.8, our goal is still to bound

EI,A|Γ [‖wT − w̃T‖2] .

Since the result in (2.24) still holds for strongly convex functions, we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2
2]

≤‖wkB − w̃kB‖2
2 − 2γ

(k+1)B−h−1∑
t=kB

EI,A|Hk+1,AkB ,Γ[〈wkB − w̃kB,∇fst(wkB)−∇fst(w̃kB)〉]

+ γ2(B − h)(1 +
1

n− 1
+
B − 1

BD

)M
2
(wkB, w̃kB),

(2.35)
where Hk+1 is defined in the same way as in the proof of Proposition 2.7. For strongly convex
functions, we have the following co-coercive property:

〈wkB − w̃kB,∇fst(wkB)−∇fst(w̃kB)〉

≥ βλ

β + λ
‖wkB − w̃kB‖2

2 +
1

β + λ
‖∇fst(wkB)−∇fst(w̃kB)‖2

2,

which gives us

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2
2]

≤
(

1− 2γ(B − h)
βλ

β + λ

)
‖wkB − w̃kB‖2

2

− γ(B − h)

[
2

β + λ
− γ(1 +

1

n− 1
+
B − 1

BD

)

]
M

2
(wkB, w̃kB).

(2.36)

Since we only consider the regime where B ≤ 1
2γλ

, one can check that 1− 2γ(B− h) βλ
β+λ

> 0
for any h = 0, . . . , B. Conditioned on the data sets and the event Γ, we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2
2] ≤

(
1− 2γB

βλ

β + λ

)
‖wkB − w̃kB‖2

2. (2.37)

With Jensen’s inequality and the fact that
√

1− x ≤ 1− x
2

for any x ∈ [0, 1], we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2] ≤
(

1− γB βλ

β + λ

)
‖wkB − w̃kB‖2. (2.38)
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For the last h terms, we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤ ‖w(k+1)B−h − w̃(k+1)B−h‖2 + 2γLh. (2.39)

Combined with equation (2.38), we obtain

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤
(

1− γB βλ

β + λ

)
‖wkB − w̃kB‖2 + 2γLh,

and by taking expectation over h we have

EI,A|AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤
(

1− γB βλ

β + λ

)
‖wkB − w̃kB‖2 + 2γL

B

n
.

Taking expectation over AkB yields

EI,A|Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤
(

1− γB βλ

β + λ

)
EI,A|Γ[‖wkB − w̃kB‖2] + 2γL

B

n
. (2.40)

Iterating equation (2.40) yields

EI,A|Γ[‖wT − w̃T‖2] ≤ 4L

λn
. (2.41)

Combining equations (2.20) and (2.41), we prove Proposition 2.8, i.e., when Γ occurs,

|εstab(S,S ′)| ≤ LEI,A|Γ [‖wT − w̃T‖2] ≤ 4L2

λn
. (2.42)

To prove Theorem 2.10, we notice the fact that, when Γ does not occur, we simply have

|εstab(S,S ′)| ≤ LEI,A|Γ̄[‖wT − w̃T‖2] ≤ 2γL2T. (2.43)

Combining equations (2.42) and (2.43) with the definition of η then yields

εgen ≤ ES,S′|Γ [|εstab(S,S ′)|]P{Γ}+ ES,S′|Γ̄ [|εstab(S,S ′)|]P{Γ̄}

≤ 4L2

λn
(1− η) + 2γL2Tη,

which completes the proof.

Proof of Proposition 2.9

One can interpret M
2
(w,w′) and G(w,w′) as follows. Let P1 be a distribution on [n]× [n]

with PMF

p1(u, v) =
1

n
1u=v, (2.44)
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and P2 be the uniform distribution on [n]× [n], i.e.,

p2(u, v) =
1

n2
(2.45)

for all (u, v) ∈ [n]× [n]. Then, we know that

M
2
(w,w′) = E(i,j)∼P1 [〈∇fi(w)−∇fi(w′),∇fj(w)−∇fj(w′)〉],

and
G(w,w′) = E(i,j)∼P2 [〈∇fi(w)−∇fi(w′),∇fj(w)−∇fj(w′)〉].

Then we find the joint distribution P3 of (si, sj) where kB ≤ i, j ≤ (k + 1)B − h − 1 and
i 6= j. Since zst = z̃st , we know that st 6= I for all t = kB, . . . , (k + 1)B − h − 1. Then
conditioned on I, (si, sj) is uniformly distributed in ([n] \ {I})× ([n] \ {I}). For any u ∈ [n],
we have

p3(u, u) = P{si = u, sj = u} =
1

n

n∑
`=1

P{si = u, sj = u | I = `}

=
1

n

∑
`=u

P{si = u, sj = u | I = `} =
1

n(n− 1)
.

For any (u, v) ∈ [n]× [n] such that u 6= v, we have

p3(u, v) = P{si = u, sj = v} =
1

n

n∑
`=1

P{si = u, sj = v | I = `}

=
1

n

∑
6̀=u,v

P{si = u, sj = v | I = `}

=
n− 2

n(n− 1)2
.

Then, we know that

p3(u, v) =
1

(n− 1)2
p1(u, v) +

n(n− 2)

(n− 1)2
p2(u, v).

Therefore, for any i, j such that kB ≤ i, j ≤ (k + 1)B − h− 1 and i 6= j, we have

EI,A|Hk+1,AkB ,Γ[〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj(wkB)−∇fsj(w̃kB)〉]
=E(si,sj)∼P3 [〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj(wkB)−∇fsj(w̃kB)〉]

=
1

(n− 1)2
M

2
(wkB, w̃kB) +

n(n− 2)

(n− 1)2
G(wkB, w̃kB).



CHAPTER 2. GRADIENT DIVERSITY IN SCALABLE DISTRIBUTED LEARNING39

Examples of Differential Gradient Diversity and Diversity-inducing Mechanisms

We now prove auxiliary results for differential gradient diversity that are stated in this
chapter.

Generalized Linear Functions We can show that for generalized linear functions, the
lower bound in Theorem 2.1 still holds, i.e., , for any w,w′ ∈ W , w 6= w′, we have

BD(w,w′) ≥ mini=1,...,n ‖xi‖2
2

σ2
max(X)

.

To see this, one can simply replace ∇fi(w) with ∇fi(w) − ∇fi(w′) in the proof of Theo-
rem 2.7, and define ai = `′i(x

T
i w)−`′i(xT

i w′). The same arguments in the proof of Theorem 2.7
still go through. Consequently, for i.i.d. σ-sub-Gaussian features, we have BD(w,w′) ≥ c1d
∀ w,w′ ∈ W with probability at least 1 − c2ne

−c3d; and for Rademacher entries, we have
BD(w,w′) ≥ c4d ∀ w,w′ ∈ W with probability greater than 1− c5e

−c6n.

Sparse Conflicts The result for gradient diversity still holds for BD(w,w′), i.e., for all
w,w′ ∈ W , BD(w,w′) ≥ n/(ρ + 1), where ρ is the maximum degree of all the vertices
in the conflict graph G. To see this, one should notice that the support of ∇fi(w) only
depends on the data point, instead of the model parameter, and thus, in general, ∇fi(w)
and ∇fi(w) −∇fi(w′) have the same support. Then, one can simply replace ∇fi(w) with
∇fi(w)−∇fi(w′) in the proof of Theorem 2.7 and the same arguments still go through.

DropConnect When we analyze the stability of mini-batch SGD, we apply the same
algorithm to two different samples S and S(I) that only differ at one data point. Since the
algorithm is the same, the random matrices D1, . . . ,Dn are also the same in the two instances.
Therefore, one can replace ∇fi(w) with ∇fi(w) − ∇fi(w′), and the same arguments still

work. Then, we know that when BD(w,w′) ≤ n, we have B
drop

D (w,w′) ≥ BD(w,w′), and

when BD(w,w′) > n, we have B
drop

D (w,w′) > n.

Stochastic Gradient Langevin Dynamics For SGLD, we can make similar arguments
as in dropout, since the additive noise vectors ξ1, . . . , ξn are the same for the two instances.

One can then show that when BD(w,w′) ≤ n, we have B
sgld

D (w,w′) ≥ BD(w,w′), and when

BD(w,w′) > n, we have B
sgld

D (w,w′) > n.
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Chapter 3

Statistical Rates in Byzantine-Robust
Distributed Learning

In large-scale distributed learning, security issues have become increasingly important. Par-
ticularly in a decentralized environment, some computing units may behave abnormally,
or even exhibit Byzantine failures—arbitrary and potentially adversarial behavior. In this
chapter, we develop distributed learning algorithms that are provably robust against such
failures, with a focus on achieving optimal statistical performance. A main result of this work
is a sharp analysis of two robust distributed gradient descent algorithms based on median
and trimmed mean operations, respectively. We prove statistical error rates for three kinds
of population loss functions: strongly convex, non-strongly convex, and smooth non-convex.
In particular, these algorithms are shown to achieve order-optimal statistical error rates for
strongly convex losses. To achieve better communication efficiency, we further propose a
median-based distributed algorithm that is provably robust, and uses only one communica-
tion round. For strongly convex quadratic loss, we show that this algorithm achieves the
same optimal error rate as the robust distributed gradient descent algorithms.

3.1 Introduction

Many tasks in computer vision, natural language processing and recommendation systems
require learning complex prediction rules from large datasets. As the scale of the datasets
in these learning tasks continues to grow, it is crucial to utilize the power of distributed
computing and storage. In such large-scale distributed systems, robustness and security
issues have become a major concern. In particular, individual computing units—known as
worker machines—may exhibit abnormal behavior due to crashes, faulty hardware, stalled
computation or unreliable communication channels. Security issues are only exacerbated in
the so-called Federated Learning setting, a modern distributed learning paradigm that is more
decentralized, and that uses the data owners’ devices (such as mobile phones and personal
computers) as worker machines [135, 109]. Such machines are often more unpredictable, and
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in particular may be susceptible to malicious and coordinated attacks.
Due to the inherent unpredictability of this abnormal (sometimes adversarial) behavior,

it is typically modeled as Byzantine failure [114], meaning that some worker machines may
behave completely arbitrarily and can send any message to the master machine that main-
tains and updates an estimate of the parameter vector to be learned. Byzantine failures can
incur major degradation in learning performance. It is well-known that standard learning
algorithms based on naive aggregation of the workers’ messages can be arbitrarily skewed
by a single Byzantine-faulty machine. Even when the messages from Byzantine machines
take only moderate values—and hence are difficult to detect—and when the number of such
machines is small, the performance loss can still be significant. We demonstrate such an
example in our experiments in Section 3.7.

In this chapter, we aim to develop distributed statistical learning algorithms that are
provably robust against Byzantine failures. While this objective is considered in a few re-
cent works [68, 23, 41], a fundamental problem remains poorly understood, namely the
optimal statistical performance of a robust learning algorithm. A learning scheme in which
the master machine always outputs zero regardless of the workers’ messages is certainly
not affected by Byzantine failures, but it will not return anything statistically useful ei-
ther. On the other hand, many standard distributed algorithms that achieve good statistical
performance in the absence of Byzantine failures, become completely unreliable otherwise.
Therefore, a main goal of this work is to understand the following questions: what is the
best achievable statistical performance while being Byzantine-robust, and what algorithms
achieve this performance?

To formalize this question, we consider a standard statistical setting of empirical risk
minimization (ERM). Here nm data points are sampled independently from some distri-
bution and distributed evenly among m machines, αm of which are Byzantine. The goal
is to learn a parametric model by minimizing some loss function defined by the data. In
this statistical setting, one expects that the error in learning the parameter, measured in an
appropriate metric, should decrease when the amount of data nm becomes larger and the
fraction of Byzantine machines α becomes smaller. In fact, we can show that, at least for
strongly convex problems, no algorithm can achieve an error lower than

Ω̃

(
α√
n

+
1√
nm

)
= Ω̃

(
1√
n

(
α +

1√
m

))
,

regardless of communication costs;1 see Observation 3.1 in Section 3.6. Intuitively, the above
error rate is the optimal rate that one should target, as 1√

n
is the effective standard deviation

for each machine with n data points, α is the bias effect of Byzantine machines, and 1√
m

is
the averaging effect of m normal machines. When there are no or few Byzantine machines,
we see the usual scaling 1√

mn
with the total number of data points; when some machines

are Byzantine, their influence remains bounded, and moreover is proportional to α. If an

1Throughout the chapter, unless otherwise stated, Ω(·) and O(·) hide universal multiplicative constants;

Ω̃(·) and Õ(·) further hide terms that are independent of α, n,m or logarithmic in n,m.
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algorithm is guaranteed to attain this bound, we are assured that we do not sacrifice the
quality of learning when trying to guard against Byzantine failures—we pay a price that is
unavoidable, but otherwise we achieve the best possible statistical accuracy in the presence
of Byzantine failures.

Another important consideration for us is communication efficiency. As communication
between machines is costly, one cannot simply send all data to the master machine. This
constraint precludes direct application of standard robust learning algorithms (such as M-
estimators [90]), which assume access to all data. Instead, a desirable algorithm should
involve a small number of communication rounds as well as a small amount of data commu-
nicated per round. We consider a setting where in each round a worker or master machine
can only communicate a vector of size O(d), where d is the dimension of the parameter to
be learned. In this case, the total communication cost is proportional to the number of
communication rounds.

To summarize, we aim to develop distributed learning algorithms that simultaneously
achieve two objectives:

• Statistical optimality: attain an Õ( α√
n

+ 1√
nm

) rate.

• Communication efficiency: O(d) communication per round, with as few rounds as
possible.

To the best of our knowledge, no existing algorithm achieves these two goals simultaneously.
In particular, previous robust algorithms either have unclear or sub-optimal statistical guar-
antees, or incur a high communication cost and hence are not applicable in a distributed
setting—we discuss related work in more detail in Section 3.2.

Our Contributions

We propose two robust distributed gradient descent (GD) algorithms. The first one is based
on coordinate-wise median, and the other is based on coordinate-wise trimmed mean. We
establish their statistical error rates for strongly convex, non-strongly convex, and non-
convex population loss functions. For strongly convex losses, we show that these algorithms
achieve order-optimal statistical rates under mild conditions. We further propose a median-
based robust algorithm that only requires one communication round, and show that it also
achieves the optimal rate for strongly convex quadratic losses. The statistical error rates of
these three algorithms are summarized as follows.

• Median-based GD: Õ( α√
n

+ 1√
nm

+ 1
n
), order-optimal for strongly convex loss if n & m.

• Trimmed-mean-based GD: Õ( α√
n

+ 1√
nm

), order-optimal for strongly convex loss.

• Median-based one-round algorithm: Õ( α√
n

+ 1√
nm

+ 1
n
), order-optimal for strongly

convex quadratic loss if n & m.
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A major technical challenge in our statistical setting here is as follows: the nm data points are
sampled once and fixed, and each worker machine has access to a fixed set of data throughout
the learning process. This creates complicated probabilistic dependency across the iterations
of the algorithms. Worse yet, the Byzantine machines, which have complete knowledge
of the data and the learning algorithm used, may create further unspecified probabilistic
dependency. We overcome this difficulty by proving certain uniform bounds via careful
covering arguments. Furthermore, for the analysis of median-based algorithms, we cannot
simply adapt standard techniques (such as those in Minsker et al. [138]), which can only
show that the output of the master machine is as accurate as that of one normal machine,
leading to a sub-optimal O( 1√

n
) rate even without Byzantine failures (α = 0). Instead, we

make use of a more delicate argument based on normal approximation and Berry-Esseen-
type inequalities, which allows us to achieve the better O( 1

mn
) rates when α is small while

being robust for a nonzero α.
Above we have omitted the dependence on the parameter dimension d.; see our main

theorems for the precise results. In some settings the rates in these results may not have the
optimal dependence on d. Understanding the fundamental limits of robust distributed learn-
ing in high dimensions, as well as developing algorithms with optimal dimension dependence,
is an interesting and important future direction.

Notation

We denote vectors by boldface lowercase letters such as w, and the elements in the vector
are denoted by italics letters with subscripts, such as wk. Matrices are denoted by boldface
uppercase letters such as H. For any positive integer N , we denote the set {1, 2, . . . , N}
by [N ]. For vectors, we denote the `2 norm and `∞ norm by ‖ · ‖2 and ‖ · ‖∞, respectively.
For matrices, we denote the operator norm and the Frobenius norm by ‖ · ‖2 and ‖ · ‖F ,
respectively. We denote by Φ(·) the cumulative distribution function (CDF) of the standard
Gaussian distribution. For any differentiable function f : Rd → R, we denote its partial
derivative with respect to the k-th argument by ∂kf .

3.2 Related Work

Outlier-robust estimation in non-distributed settings is a classical topic in statistics [90].
Particularly relevant to us is the so-called median-of-means method, in which one partitions
the data into m subsets, computes an estimate from each subset, and finally takes the
median of these m estimates. This idea is studied in Nemirovskii, Yudin, and Dawson [143],
Jerrum, Valiant, and Vazirani [93], Alon, Matias, and Szegedy [8], Lerasle and Oliveira
[122], and Minsker et al. [138], and has been applied to bandit and least square regression
problems [27, 129, 103] as well as problems involving heavy-tailed distributions [87, 130]. In a
very recent work, Minsker and Strawn [139] provide a new analysis of median-of-means using
a normal approximation. We borrow some techniques from this paper, but need to address a
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significant harder problem: 1) we deal with the Byzantine setting with arbitrary/adversarial
outliers, which is not considered in their paper; 2) we study iterative algorithms for general
multi-dimensional problems with convex and non-convex losses, while they mainly focus on
one-shot algorithms for mean-estimation-type problems.

The median-of-means method is used in the context of Byzantine-robust distributed
learning in two recent papers. In particular, the work of Feng, Xu, and Mannor [68] considers

a simple one-shot application of median-of-means, and only proves a sub-optimal Õ( 1√
n
) error

rate as mentioned. The work of Chen, Su, and Xu [41] considers only strongly convex losses,
and seeks to circumvent the above issue by grouping the worker machines into mini-batches;
however, their rate Õ(

√
α√
n

+ 1√
nm

) still falls short of being optimal, and in particular their
algorithm fails even when there is only one Byzantine machine in each mini-batch.

Other methods have been proposed for Byzantine-robust distributed learning and opti-
mization; e.g., Su and Vaidya [172, 173]. These works consider optimizing fixed functions
and do not provide guarantees on statistical error rates. Most relevant is the work by Blan-
chard et al. [23], who propose to aggregate the gradients from worker machines using a
robust procedure. Their optimization setting—which is at the level of stochastic gradient
descent and assumes unlimited, independent access to a strong stochastic gradient oracle—is
fundamentally different from ours; in particular, they do not provide a characterization of
the statistical errors given a fixed number of data points.

Communication efficiency has been studied extensively in non-Byzantine distributed set-
tings [136]. An important class of algorithms are based on one-round aggregation meth-
ods [209, 206, 159]. More sophisticated algorithms have been proposed in order to achieve
better accuracy than the one-round approach while maintaining lower communication costs;
examples include DANE [165], Disco [208], distributed SVRG [117] and their variants [158,
185]. Developing Byzantine-robust versions of these algorithms is an interesting future di-
rection.

For outlier-robust estimation in non-distributed settings, much progress has been made
recently in terms of improved performance in high-dimensional problems [58, 113, 22] as
well as developing list-decodable and semi-verified learning schemes when a majority of the
data points are adversarial [35]. These results are not directly applicable to our distributed
setting with general loss functions, but it is nevertheless an interesting future problem to
investigate their potential extension for our problem.

3.3 Problem Setup

In this section, we formally set up our problem and introduce a few concepts key to our the
algorithm design and analysis. Suppose that training data points are sampled from some
unknown distribution D on the sample space Z. Let f(w; z) be a loss function of a parameter
vector w ∈ W ⊆ Rd associated with the data point z, where W is the parameter space, and
F (w) := Ez∼D[f(w; z)] is the corresponding population loss function. Our goal is to learn a
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model defined by the parameter that minimizes the population loss:

w∗ = arg min
w∈W

F (w). (3.1)

The parameter space W is assumed to be convex and compact with diameter D, i.e., ‖w −
w′‖2 ≤ D, ∀w,w′ ∈ W . We consider a distributed computation model with one master
machine and m worker machines. Each worker machine stores n data points, each of which
is sampled independently from D. Denote by zi,j the j-th data on the i-th worker machine,
and Fi(w) := 1

n

∑n
j=1 f(w; zi,j) the empirical risk function for the i-th worker. We assume

that an α fraction of the m worker machines are Byzantine, and the remaining 1−α fraction
are normal. With the notation [N ] := {1, 2, . . . , N}, we index the set of worker machines
by [m], and denote the set of Byzantine machines by B ⊂ [m] (thus |B| = αm). The
master machine communicates with the worker machines using some predefined protocol.
The Byzantine machines need not obey this protocol and can send arbitrary messages to
the master; in particular, they may have complete knowledge of the system and learning
algorithms, and can collude with each other.

We introduce the coordinate-wise median and trimmed mean operations, which serve as
building blocks for our algorithm.

Definition 3.1 (Coordinate-wise median). For vectors xi ∈ Rd, i ∈ [m], the coordinate-wise
median ĝ := med{xi : i ∈ [m]} is a vector with its k-th coordinate being gk = med{xik : i ∈
[m]} for each k ∈ [d], where med is the usual (one-dimensional) median.

Definition 3.2 (Coordinate-wise trimmed mean). For β ∈ [0, 1
2
) and vectors xi ∈ Rd,

i ∈ [m], the coordinate-wise β-trimmed mean ĝ := trmeanβ{xi : i ∈ [m]} is a vector with
its k-th coordinate being gk = 1

(1−2β)m

∑
x∈Uk x for each k ∈ [d]. Here Uk is a subset of

{x1
k, . . . , x

m
k } obtained by removing the largest and smallest β fraction of its elements.

For the analysis, we need several standard definitions concerning random variables and
vectors.

Definition 3.3 (Variance of random vectors). For a random vector x, define its variance
as Var(x) := E[‖x− E[x]‖2

2].

Definition 3.4 (Absolute skewness). For a one-dimensional random variable X, define its

absolute skewness2 as γ(X) := E[|X−E[X]|3]

Var(X)3/2
. For a d-dimensional random vector x, we define

its absolute skewness as the vector of the absolute skewness of each coordinate of x, i.e.,
γ(x) := [γ(x1) γ(x2) · · · γ(xd)]

>.

Definition 3.5 (Sub-exponential random variables). A random variable X with E[X] = µ

is called v-sub-exponential if E[eλ(X−µ)] ≤ e
1
2
v2λ2 , ∀ |λ| < 1

v
.

2Note the difference with the usual skewness E[(X−E[X])3]
Var(X)3/2

.
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Finally, we need several standard concepts from convex analysis regarding a differentiable
function h(·) : Rd → R.

Definition 3.6 (Lipschitz). h is L-Lipschitz if |h(w)− h(w′)| ≤ L‖w −w′‖2,∀ w,w′.

Definition 3.7 (Smoothness). h is L′-smooth if ‖∇h(w)−∇h(w′)‖2 ≤ L′‖w−w′‖2, ∀ w,w′.

Definition 3.8 (Strong convexity). h is λ-strongly convex if h(w′) ≥ h(w) + 〈∇h(w),w′ −
w〉+ λ

2
‖w′ −w‖2

2,∀ w,w′.

3.4 Robust Distributed Gradient Descent

We describe two robust distributed gradient descent algorithms, one based on coordinate-
wise median and the other on trimmed mean. These two algorithms are formally given
in Algorithm 1 as Option I and Option II, respectively, where the symbol ∗ represents an
arbitrary vector. This algorithm is also illustrated in Figure 3.1.

Figure 3.1: Byzantine-robust distributed learning algorithm. (i) The master machine sends the
model parameters to all the worker machines. (ii) The worker machines send either the gradient
(normal machines) or an adversarial vector (Byzantine machines) to the master machine. (iii) The
master machine conducts a robust aggregation.

In each parallel iteration of the algorithms, the master machine broadcasts the current
model parameter to all worker machines. The normal worker machines compute the gradients
of their local loss functions and then send the gradients back to the master machine. The
Byzantine machines may send any messages of their choices. The master machine then
performs a gradient descent update on the model parameter with step-size η, using either
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the coordinate-wise median or trimmed mean of the received gradients. The Euclidean
projection ΠW(·) ensures that the model parameter stays in the parameter space W .

Algorithm 1 Robust Distributed Gradient Descent

Require: Initialize parameter vector w0 ∈ W , algorithm parameters β (for Option II), η
and T .
for t = 0, 1, 2, . . . , T − 1 do

Master machine: send wt to all the worker machines.
for all i ∈ [m] do in parallel

Worker machine i: compute local gradient

ĝi(wt)←

{
∇Fi(wt) normal worker machines,

∗ Byzantine machines,

send ĝi(wt) to master machine.
end for
Master machine: compute aggregate gradient

ĝ(wt)←

{
med{ĝi(wt) : i ∈ [m]} Option I

trmeanβ{ĝi(wt) : i ∈ [m]} Option II

update model parameter wt+1 ← ΠW(wt − ηĝ(wt)).
end for

Below we provide statistical guarantees on the error rates of these algorithms, and com-
pare their performance. Throughout we assume that each loss function f(w; z) and the
population loss function F (w) are smooth:

Assumption 3.1 (Smoothness of f and F ). For any z ∈ Z, the partial derivative of f(·; z)
with respect to the k-th coordinate of its first argument, denoted by ∂kf(·; z), is Lk-Lipschitz

for each k ∈ [d], and the function f(·; z) is L-smooth. Let L̂ :=
√∑d

k=1 L
2
k. Also assume

that the population loss function F (·) is LF -smooth.

It is easy to see hat LF ≤ L ≤ L̂. When the dimension of w is high, the quantity L̂ may
be large. However, we will soon see that L̂ only appears in the logarithmic factors in our
bounds and thus does not have a significant impact.

Guarantees for Median-based Gradient Descent

We first consider our median-based algorithm, namely Algorithm 1 with Option I. We impose
the assumptions that the gradient of the loss function f has bounded variance, and each
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coordinate of the gradient has coordinate-wise bounded absolute skewness:

Assumption 3.2 (Bounded variance of gradient). For any w ∈ W, Var(∇f(w; z)) ≤ V 2.

Assumption 3.3 (Bounded skewness of gradient). For any w ∈ W, ‖γ(∇f(w; z))‖∞ ≤ S.

These assumptions are satisfied in many learning problems with small values of V 2 and
S. Below we provide a concrete example in terms of a linear regression problem.

Proposition 3.1. Suppose that each data point z = (x, y) ∈ Rd × R is generated by y =
x>w∗+ ξ with some w∗ ∈ W. Assume that the elements of x are independent and uniformly
distributed in {−1, 1}, and that the noise ξ ∼ N (0, σ2) is independent of x. With the
quadratic loss function f(w; x, y) = 1

2
(y − xTw)2, we have Var(∇f(w; x, y)) = (d− 1)‖w −

w∗‖2
2 + dσ2, and ‖γ(∇f(w; x, y))‖∞ ≤ 480.

In this example, the upper bound V 2 on Var(∇f(w; x, y)) depends on dimension d and
the diameter of the parameter space. If the diameter is a constant, we have V = O(

√
d).

Moreover, the gradient skewness is bounded by a universal constant S regardless of the size
of the parameter space. In Section 3.9, we provide another example showing that when the
features in x are i.i.d. Gaussian distributed, the coordinate-wise skewness can be upper
bounded by 429.

We now state our main technical results on the median-based algorithm, namely sta-
tistical error guarantees for strongly convex, non-strongly convex, and smooth non-convex
population loss functions F . In the first two cases with a convex F , we assume that w∗, the
minimizer of F (·) in W , is also the minimizer of F (·) in Rd, i.e., ∇F (w∗) = 0.

Strongly Convex Losses: We first consider the case where the population loss function
F (·) is strongly convex. Note that we do not require strong convexity of the individual loss
functions f(·; z).

Theorem 3.1. Consider Option I in Algorithm 1. Suppose that Assumptions 3.1, 3.2,
and 3.3 hold, F (·) is λF -strongly convex, and the fraction α of Byzantine machines satisfies

α +

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n
≤ 1

2
− ε (3.2)

for some ε > 0. Choose step-size η = 1/LF . Then, with probability at least 1 − 4d

(1+nmL̂D)d
,

after T parallel iterations, we have

‖wT −w∗‖2 ≤ (1− λF
LF + λF

)T‖w0 −w∗‖2 +
2

λF
∆,

where

∆ := O

(
CεV

( α√
n

+

√
d log(nmL̂D)

nm
+
S

n

))
, (3.3)
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and Cε is defined as

Cε :=
√

2π exp
(1

2
(Φ−1(1− ε))2

)
, (3.4)

with Φ−1(·) being the inverse of the cumulative distribution function of the standard Gaussian
distribution Φ(·).

In (3.3), we hide universal constants and a higher order term that scales as 1
nm

, and the
factor Cε is a function of ε; as a concrete example, Cε ≈ 4 when ε = 1

6
. Theorem 3.1 together

with the inequality log(1− x) ≤ −x, guarantees that after running T ≥ LF+λF
λF

log(λF
2∆
‖w0−

w∗‖2) parallel iterations, with high probability we can obtain a solution ŵ = wT with error
‖ŵ −w∗‖2 ≤ 4

λF
∆.

Here we achieve an error rate (defined as the distance between ŵ and the optimal solution

w∗) of the form Õ( α√
n

+ 1√
nm

+ 1
n
). In Section 3.6, we provide a lower bound showing that

the error rate of any algorithm is Ω̃( α√
n

+ 1√
nm

). Therefore the first two terms in the upper

bound cannot be improved. The third term 1
n

is due to the dependence of the median on
the skewness of the gradients. When each worker machine has a sufficient amount of data,
more specifically n & m, we achieve an order-optimal error rate up to logarithmic factors.

Non-strongly Convex Losses: We next consider the case where the population risk
function F (·) is convex, but not necessarily strongly convex. In this case, we need a mild
technical assumption on the size of the parameter space W .

Assumption 3.4 (Size ofW). The parameter spaceW contains the following `2 ball centered
at w∗: {w ∈ Rd : ‖w −w∗‖2 ≤ 2‖w0 −w∗‖2}.

We then have the following result on the convergence rate in terms of the value of the
population risk function.

Theorem 3.2. Consider Option I in Algorithm 1. Suppose that Assumptions 3.1, 3.2, 3.3
and 3.4 hold, and that the population loss F (·) is convex, and α satisfies (3.2) for some
ε > 0. Define ∆ as in (3.3), and choose step-size η = 1/LF . Then, with probability at least
1− 4d

(1+nmL̂D)d
, after T = LF

∆
‖w0 −w∗‖2 parallel iterations, we have

F (wT )− F (w∗) ≤ 16‖w0 −w∗‖2∆
(

1 +
1

2LF
∆
)
.

We observe that the error rate, defined as the excess risk F (wT )− F (w∗), again has the

form Õ
(
α√
n

+ 1√
nm

+ 1
n

)
.

Non-convex Losses: When F (·) is non-convex but smooth, we need a somewhat different
technical assumption on the size of W .
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Assumption 3.5 (Size of W). Suppose that ∀ w ∈ W, ‖∇F (w)‖2 ≤ M . We assume that
W contains the `2 ball {w ∈ Rd : ‖w −w0‖2 ≤ 2

∆2 (M + ∆)(F (w0) − F (w∗))}, where ∆ is
defined as in (3.3).

We have the following guarantees on the rate of convergence to a critical point of the
population loss F (·).

Theorem 3.3. Consider Option I in Algorithm 1. Suppose that Assumptions 3.1 3.2, 3.3
and 3.5 hold, and α satisfies (3.2) for some ε > 0. Define ∆ as in (3.3), and choose step-size
η = 1/LF . With probability at least 1 − 4d

(1+nmL̂D)d
, after T = 2LF

∆2 (F (w0) − F (w∗)) parallel

iterations, we have
min

t=0,1,...,T
‖∇F (wt)‖2 ≤

√
2∆.

We again obtain an Õ( α√
n

+ 1√
nm

+ 1
n
) error rate in terms of the gap to a critical point of

F (w).

Guarantees for Trimmed-mean-based Gradient Descent

We next analyze the robust distributed gradient descent algorithm based on coordinate-wise
trimmed mean, namely Option II in Algorithm 1. Here we need stronger assumptions on the
tail behavior of the partial derivatives of the loss functions—in particular, sub-exponentiality.

Assumption 3.6 (Sub-exponential gradients). We assume that for all k ∈ [d] and w ∈ W,
the partial derivative of f(w; z) with respect to the k-th coordinate of w, ∂kf(w; z), is v-sub-
exponential.

The sub-exponential property implies that all the moments of the derivatives are bounded.
This is a stronger assumption than the bounded absolute skewness (hence bounded third
moments) required by the median-based GD algorithm.

We use the same example as in Proposition 3.1 and show that the derivatives of the loss
are indeed sub-exponential.

Proposition 3.2. Consider the regression problem in Proposition 3.1. For all k ∈ [d] and
w ∈ W, the partial derivative ∂kf(w; z) is

√
σ2 + ‖w −w∗‖2

2-sub-exponential.

We now proceed to establish the statistical guarantees of the trimmed-mean-based algo-
rithm, for different loss function classes. When the population loss F (·) is convex, we again
assume that the minimizer of F (·) inW is also its minimizer in Rd. The next three theorems
are analogues of Theorems 3.1–3.3 for the median-based GD algorithm.
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Strongly Convex Losses: We have the following result.

Theorem 3.4. Consider Option II in Algorithm 1. Suppose that Assumptions 3.1 and 3.6
hold, F (·) is λF -strongly convex, and α ≤ β ≤ 1

2
− ε for some ε > 0. Choose step-size

η = 1/LF . Then, with probability at least 1− 4d

(1+nmL̂D)d
, after T parallel iterations, we have

‖wT −w∗‖2 ≤
(

1− λF
LF + λF

)T
‖w0 −w∗‖2 +

2

λF
∆′,

where

∆′ := O
(vd
ε

( β√
n

+
1√
nm

)√
log(nmL̂D)

)
. (3.5)

In (3.5), we hide universal constants and higher order terms that scale as β
n

or 1
nm

. By

running T ≥ LF+λF
λF

log( λF
2∆′
‖w0−w∗‖2) parallel iterations, we can obtain a solution ŵ = wT

satisfying ‖ŵ − w∗‖2 ≤ Õ( β√
n

+ 1√
nm

). Note that one needs to choose the parameter for
trimmed mean to satisfy β ≥ α. If we set β = cα for some universal constant c ≥ 1, we can
achieve an order-optimal error rate Õ( α√

n
+ 1√

nm
).

Non-strongly Convex Losses: Again imposing Assumption 3.4 on the size of W , we
have the following guarantee.

Theorem 3.5. Consider Option II in Algorithm 1. Suppose that Assumptions 3.1, 3.4
and 3.6 hold, F (·) is convex, and α ≤ β ≤ 1

2
− ε for some ε > 0. Choose step-size η = 1/LF ,

and define ∆′ as in (3.5). Then, with probability at least 1− 4d

(1+nmL̂D)d
, after T = LF

∆′
‖w0 −

w∗‖2 parallel iterations, we have

F (wT )− F (w∗) ≤ 16‖w0 −w∗‖2∆′
(

1 +
1

2LF
∆′
)
.

The proof of Theorem 3.5 is similar to that of Theorem 3.2, and we refer readers to
Remark 3.1 in Section 3.9. Again, by choosing β = cα (c ≥ 1), we obtain the Õ( α√

n
+ 1√

nm
)

error rate in the function value of F (w).

Non-convex Losses: In this case, imposing a version of Assumption 3.5 on the size ofW ,
we have the following.

Theorem 3.6. Consider Option II in Algorithm 1, and define ∆′ as in (3.5). Suppose that
Assumptions 3.1 and 3.6 hold, Assumption 3.5 holds with ∆ replaced by ∆′, and α ≤ β ≤ 1

2
−ε

for some ε > 0. Choose step-size η = 1/LF . Then, with probability at least 1 − 4d

(1+nmL̂D)d
,

after T = 2LF
∆′2

(F (w0)− F (w∗)) parallel iterations, we have

min
t=0,1,...,T

‖∇F (wt)‖2 ≤
√

2∆′.

The proof of Theorem 3.6 is similar to that of Theorem 3.3; see Remark 3.1 in Section 3.9.
By choosing β = cα with c ≥ 1, we again achieve the statistical rate Õ( α√

n
+ 1√

nm
).
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Comparisons

We compare the performance guarantees of the above two robust distribute GD algorithms.
The trimmed-mean-based algorithm achieves the statistical error rate Õ( α√

n
+ 1√

nm
), which

is order-optimal for strongly convex loss. In comparison, the rate of the median-based
algorithm is Õ( α√

n
+ 1√

nm
+ 1

n
), which has an additional 1

n
term and is only optimal when

n & m. In particular, the trimmed-mean-based algorithm has better rates when each worker
machine has small local sample size—the rates are meaningful even in the extreme case
n = O(1). On the other hand, the median-based algorithm requires milder tail/moment
assumptions on the loss derivatives (bounded skewness) than its trimmed-mean counterpart
(sub-exponentiality). Finally, the trimmed-mean operation requires an additional parameter
β, which can be any upper bound on the fraction α of Byzantine machines in order to
guarantee robustness. Using an overly large β may lead to a looser bound and sub-optimal
performance. In contrast, median-based GD does not require knowledge of α. We summarize
these observations in Table 3.1. We see that the two algorithms are complementary to each
other, and our experiment results corroborate this point.

median GD trimmed mean GD

Statistical error rate Õ( α√
n

+ 1√
nm

+ 1
n
) Õ( α√

n
+ 1√

nm
)

Distribution of ∂kf(w; z) Bounded skewness Sub-exponential
α known? No Yes

Table 3.1: Comparison between the two robust distributed gradient descent algorithms.

3.5 Robust One-round Algorithm

As mentioned, in our distributed computing framework, the communication cost is propor-
tional to the number of parallel iterations. The above two GD algorithms both require a
number iterations depending on the desired accuracy. Can we further reduce the communi-
cation cost while keeping the algorithm Byzantine-robust and statistically optimal?

A natural candidate is the so-called one-round algorithm. Previous work has considered a
standard one-round scheme where each local machine computes the empirical risk minimizer
(ERM) using its local data and the master machine receives all workers’ ERMs and computes
their average [209]. Clearly, a single Byzantine machine can arbitrary skew the output of
this algorithm. We instead consider a Byzantine-robust one-round algorithm. As detailed in
Algorithm 2, we employ the coordinate-wise median operation to aggregate all the ERMs.

Our main result is a characterization of the error rate of Algorithm 2 in the presence of
Byzantine failures. We are only able to establish such a guarantee when the loss functions
are quadratic and W = Rd. However, one can implement this algorithm in problems with
other loss functions.
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Algorithm 2 Robust One-round Algorithm

for all i ∈ [m] do in parallel
Worker machine i: compute:

ŵi ←

{
arg minw∈W Fi(w) normal worker machines

∗ Byzantine machines

send ŵi to master machine.
end for
Master machine: compute ŵ← med{ŵi : i ∈ [m]}.

Definition 3.9 (Quadratic loss function). The loss function f(w; z) is quadratic if it can be
written as

f(w; z) =
1

2
wTHw + pTw + c,

where z = (H,p, c), H, and p, and c are drawn from the distributions DH , Dp, and Dc,
respectively.

Denote by HF , pF , and cF the expectations of H, p, and c, respectively. Thus the
population risk function takes the form F (w) = 1

2
wTHFw + pT

Fw + cF .
We need a technical assumption which guarantees that each normal worker machine has

unique ERM.

Assumption 3.7 (Strong convexity of Fi). With probability 1, the empirical risk minimiza-
tion function Fi(·) on each normal machine is strongly convex.

Note that this assumption is imposed on Fi(w), rather than on the individual loss f(w; z)
associated with a single data point. This assumption is satisfied, for example, when all
f(·; z)’s are strongly convex, or in the linear regression problems with the features x drawn
from some continuous distribution (e.g. isotropic Gaussian) and n ≥ d. We have the
following guarantee for the robust one-round algorithm.

Theorem 3.7. Suppose that ∀ z ∈ Z, the loss function f(·; z) is convex and quadratic, F (·)
is λF -strongly convex, and Assumption 3.7 holds. Assume that α satisfies

α +

√
log(nmd)

2m(1− α)
+

C̃√
n
≤ 1

2
− ε

for some ε > 0, where C̃ is a quantity that depends on DH , Dp, λF and is monotonically
decreasing in n. Then, with probability at least 1− 4

nm
, the output ŵ of the robust one-round

algorithm satisfies

‖ŵ −w∗‖2 ≤
Cε√
n
σ̃
(
α +

√
log(nmd)

2m(1− α)
+

C̃√
n

)
,
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where Cε is defined as in (3.4) and

σ̃2 := E
[
‖H−1

F

(
(H−HF )H−1

F pF − (p− pF )
)
‖2

2

]
,

with H and p drawn from DH and Dp, respectively.

We prove Theorem 3.7 and provide an explicit expression of C̃ in Section 3.9. In terms
of the dependence on α, n, and m, the robust one-round algorithm achieves the same error
rate as the robust gradient descent algorithm based on coordinate-wise median, i.e., Õ( α√

n
+

1√
nm

+ 1
n
), for quadratic problems. Again, this rate is optimal when n & m. Therefore,

at least for quadratic loss functions, the robust one-round algorithm has similar theoretical
performance as the robust gradient descent algorithm with significantly less communication
cost. Our experiments show that the one-round algorithm has good empirical performance
for other losses as well.

3.6 Lower Bound

In this section, we provide a lower bound on the error rate for strongly convex losses, which
implies that the α√

n
+ 1√

nm
term is unimprovable. This lower bound is derived using a mean

estimation problem, and is an extension of the lower bounds in the robust mean estimation
literature such as Chen, Gao, and Ren [39] and Lai, Rao, and Vempala [113].

We consider the problem of estimating the mean µ of some random variable z ∼ Z,
which is equivalent to solving the following minimization problem:

µ = arg min
w∈W

Ez∼Z [‖w − z‖2
2], (3.6)

Note that this is a special case of the general learning problem (3.1). We consider the same
distributed setting as in Section 3.4, with a minor technical difference regarding the Byzantine
machines. We assume that each of the m worker machines is Byzantine with probability α,
independently of each other. The parameter α is therefore the expected fraction of Byzantine
machines. This setting makes the analysis slightly easier, and we believe the result can be
extended to the original setting.

In this setting we have the following lower bound.

Observation 3.1. Consider the distributed mean estimation problem in (3.6) with Byzantine
failure probability α, and suppose that Z is Gaussian distribution with mean µ and covariance
matrix σ2I (σ = O(1)). Then, any algorithm that computes an estimation µ̂ of the mean

from the data has a constant probability of error ‖µ̂− µ‖2 = Ω( α√
n

+
√

d
nm

).

According to this observation, we see that the α√
n

+ 1√
nm

dependence cannot be avoided,

which in turn implies the order-optimality of the results in Theorem 3.1 (when n & m) and
Theorem 3.4.
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3.7 Experiments

We conduct experiments to show the effectiveness of the median and trimmed mean oper-
ations. Our experiments are implemented with Tensorflow [1] on Microsoft Azure system.
We use the MNIST [115] dataset and randomly partition the 60,000 training data into m
subsamples with equal sizes. We use these subsamples to represent the data on m machines.

In the first experiment, we compare the performance of distributed gradient descent
algorithms in the following four settings: 1) α = 0 (no Byzantine machines), using vanilla
distributed gradient descent (aggregating the gradients by taking the mean), 2) α > 0, using
vanilla distributed gradient descent, 3) α > 0, using median-based algorithm, and 4) α > 0,
using trimmed-mean-based algorithm. We generate the Byzantine machines in the following
way: we replace every training label y on these machines with 9 − y, e.g., 0 is replaced
with 9, 1 is replaced with 8, etc, and the Byzantine machines simply compute gradients
based on these data. We also note that when generating the Byzantine machines, we do
not simply add extreme values in the features or gradients; instead, the Byzantine machines
send messages to the master machine with moderate values.

We train a multi-class logistic regression model and a convolutional neural network model
using distributed gradient descent, and for each model, we compare the test accuracies in
the aforementioned four settings. For the convolutional neural network model, we use the
stochastic version of the distributed gradient descent algorithm; more specifically, in every
iteration, each worker machine computes the gradient using 10% of its local data. We
periodically check the test errors, and the convergence performances are shown in Figure 3.2.
The final test accuracies are presented in Tables 3.2 and 3.3.

α 0 0.05
Algorithm mean mean median trimmed mean

Test accuracy (%) 88.0 76.8 87.2 86.9

Table 3.2: Test accuracy on the logistic regression model using gradient descent. We set m = 40,
and for trimmed mean, we choose β = 0.05.

α 0 0.1
Algorithm mean mean median trimmed mean

Test accuracy (%) 94.3 77.3 87.4 90.7

Table 3.3: Test accuracy on the convolutional neural network model using gradient descent. We
set m = 10, and for trimmed mean, we choose β = 0.1.

As we can see, in the adversarial settings, the vanilla distributed gradient descent algo-
rithm suffers from severe performance loss, and using the median and trimmed mean opera-
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Figure 3.2: Test error vs the number of parallel iterations.

tions, we observe significant improvement in test accuracy. This shows these two operations
can indeed defend against Byzantine failures.

In the second experiment, we compare the performance of distributed one-round algo-
rithms in the following three settings: 1) α = 0, mean aggregation, 2) α > 0, mean aggre-
gation, and 3) α > 0, median aggregation. In this experiment, the training labels on the
Byzantine machines are i.i.d. uniformly sampled from {0, . . . , 9}, and these machines train
models using the faulty data. We choose the multi-class logistic regression model, and the
test accuracies are presented in Table 3.4.

α 0 0.1
Algorithm mean mean median

Test accuracy (%) 91.8 83.7 89.0

Table 3.4: Test accuracy on the logistic regression model using one-round algorithm. We set
m = 10.

As we can see, for the one-round algorithm, although the theoretical guarantee is only
proved for quadratic loss, in practice, the median-based one-round algorithm still improves
the test accuracy in problems with other loss functions, such as the logistic loss here.

3.8 Conclusions

In this chapter, we study Byzantine-robust distributed statistical learning algorithms with
a focus on statistical optimality. We analyze two robust distributed gradient descent algo-
rithms — one is based on coordinate-wise median and the other is based on coordinate-wise
trimmed mean. We show that the trimmed-mean-based algorithm can achieve order-optimal
Õ( α√

n
+ 1√

nm
) error rate, whereas the median-based algorithm can achieve Õ( α√

n
+ 1√

nm
+ 1

n
)
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under weaker assumptions. We further study learning algorithms that have better commu-
nication efficiency. We propose a simple one-round algorithm that aggregates local solutions
using coordinate-wise median. We show that for strongly convex quadratic problems, this
algorithm can achieve Õ( α√

n
+ 1√

nm
+ 1

n
) error rate, similar to the median-based gradient

descent algorithm. Our experiments validates the effectiveness of the median and trimmed
mean operations in the adversarial setting.

3.9 Proofs

Variance, Skewness, and Sub-exponential Property

Proof of Proposition 3.1

We use the simplified notation f(w) := f(w; x, y). One can directly compute the gradients:

∇f(w) = x(xTw − y) = xxT(w −w∗)− ξx,

and thus
∇F (w) = E[∇f(w)] = w −w∗.

Define ∆(w) := ∇f(w)−∇F (w) with its k-th element being ∆k(w). We now compute the
variance and absolute skewness of ∆k(w).

We can see that

∆k(w) =
∑

1≤i≤d
i 6=k

xkxi(wi − w∗i ) + (x2
k − 1)(wk − w∗k)− ξxk. (3.7)

Thus,

E[∆2
k(w)] = E[

∑
1≤i≤d
i 6=k

x2
kx

2
i (wi − w∗i )2 + ξ2x2

k] = ‖w −w∗‖2
2 − (wk − w∗k)2 + σ2, (3.8)

which yields

Var(∇f(w)) = E[‖∇f(w)−∇F (w)‖2
2] = (d− 1)‖w −w∗‖2

2 + dσ2.

Then we proceed to bound γ(∆k(w)). By Jensen’s inequality, we know that

γ(∆k(w)) =
E[|∆k(w)|3]

Var(∆k(w))3/2
≤

√
E[∆6

k(w)]

Var(∆k(w))3
(3.9)

We first find a lower bound for Var(∆k(w))3. According to (3.8), we know that

Var(∆k(w))3 =
( ∑

1≤i≤d
i 6=k

(wi − w∗i )2 + σ2
)3 ≥

( ∑
1≤i≤d
i 6=k

(wi − w∗i )2
)3

+ σ6.
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Define the following three quantities.

W1 =
∑

1≤i≤d
i 6=k

(wi − w∗i )6 (3.10)

W2 =
∑

1≤i,j≤d
i,j 6=k
i 6=j

(wi − w∗i )4(wj − w∗j )2 (3.11)

W3 =
∑

1≤i,j,`≤d
i,j, 6̀=k

i 6=j,i6=`,j 6=`

(wi − w∗i )2(wj − w∗j )2(w` − w∗` )2 (3.12)

By simple algebra, one can check that( ∑
1≤i≤d
i 6=k

(wi − w∗i )2
)3

= W1 + 3W2 +W3, (3.13)

and thus
Var(∆k(w))3 ≥ W1 + 3W2 +W3 + σ6. (3.14)

Then, we find an upper bound on E[∆6
k(w)]. According to (3.7), and Hölder’s inequality, we

know that

E[∆6
k(w)] = E[(

∑
1≤i≤d
i 6=k

xkxi(wi − w∗i )− ξxk)6] ≤ 32
(
E[(

∑
1≤i≤d
i 6=k

xkxi(wi − w∗i ))6] + E[ξ6x6
k]
)

= 32
(
E[(

∑
1≤i≤d
i 6=k

xi(wi − w∗i ))6] + 15σ6
)
, (3.15)

where in the last inequality we use the moments of Gaussian random variables. Then, we
compute the first term in (3.15). By algebra, one can obtain

E[(
∑

1≤i≤d
i 6=k

xi(wi − w∗i ))6] =E[
∑

1≤i≤d
i 6=k

x6
i (wi − w∗i )6] + 15E[

∑
1≤i,j≤d
i,j 6=k
i 6=j

x4
ix

2
j(wi − w∗i )4(wj − w∗j )2]

+ 15E[
∑

1≤i,j,`≤d
i,j, 6̀=k

i 6=j,i6=`,j 6=`

x2
ix

2
jx

2
`(wi − w∗i )2(wj − w∗j )2(w` − w∗` )2]

=W1 + 15W2 + 15W3. (3.16)

Combining (3.15) and (3.16), we get

E[∆6
k(w)] ≤ 32(W1 + 15W2 + 15W3 + 15σ6). (3.17)
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Combining (3.14) and (3.17), we get

γ(∆k(w)) ≤

√
E[∆6

k(w)]

Var(∆k(w))3
≤

√
32(W1 + 15W2 + 15W3 + 15σ6)

W1 + 3W2 +W3 + σ6
≤ 480.

Example of Regression with Gaussian Features

Proposition 3.3. Suppose that each data point consists of a feature x ∈ Rd and a label
y ∈ R, and the label is generated by

y = xTw∗ + ξ

with some w∗ ∈ W. Assume that the elements of x are i.i.d. samples of standard Gaussian
distribution, and that the noise ξ is independent of x and drawn from Gaussian distribution
N (0, σ2). Define the quadratic loss function f(w; x, y) = 1

2
(y − xTw)2. Then, we have

Var(∇f(w; x, y)) = (d+ 1)‖w −w∗‖2
2 + dσ2,

and
‖γ(∇f(w; x, y))‖∞ ≤ 429.

Proof. We use the same simplified notation as in Section 3.9. One can also see that (3.7)
still holds for in the Gaussian setting. Thus,

E[∆2
k(w)] = E[

∑
1≤i≤d
i 6=k

x2
kx

2
i (wi − w∗i )2 + (x2

k − 1)2(wk − w∗k)2 + ξ2x2
k]

=
∑

1≤i≤d
i 6=k

(wi − w∗i )2 + 2(wk − w∗k)2 + σ2 (3.18)

= ‖w −w∗‖2
2 + (wk − w∗k)2 + σ2, (3.19)

which yields

Var(∇f(w)) = E[‖∇f(w)−∇F (w)‖2
2] = (d+ 1)‖w −w∗‖2

2 + dσ2.

Then we proceed to bound γ(∆k(w)). By Jensen’s inequality, we know that

γ(∆k(w)) =
E[|∆k(w)|3]

Var(∆k(w))3/2
≤

√
E[∆6

k(w)]

Var(∆k(w))3
(3.20)

We first find a lower bound for Var(∆k(w))3. According to (3.18), we know that

Var(∆k(w))3 =
( ∑

1≤i≤d
i 6=k

(wi − w∗i )2 + 2(wk − w∗k)2 + σ2
)3

≥
( ∑

1≤i≤d
i 6=k

(wi − w∗i )2
)3

+ 8(wk − w∗k)6 + σ6.
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Define the W1, W2, and W3 as in (3.10), (3.11), and (3.12). We can also see that (3.13) still
holds, and thus

Var(∆k(w))3 ≥ W1 + 3W2 +W3 + 8(wk − w∗k)6 + σ6. (3.21)

Then, we find an upper bound on E[∆6
k(w)]. According to (3.7), and Hölder’s inequality, we

know that

E[∆6
k(w)] = E[(

∑
1≤i≤d
i 6=k

xkxi(wi − w∗i ) + (x2
k − 1)(wk − w∗k)− ξxk)6]

≤ 243
(
E[(

∑
1≤i≤d
i 6=k

xkxi(wi − w∗i ))6] + E[(x2
k − 1)6(wk − w∗k)6] + E[ξ6x6

k]
)

= 243
(
15E[(

∑
1≤i≤d
i 6=k

xi(wi − w∗i ))6] + 6040(wk − w∗k)6 + 225σ6
)
, (3.22)

where in the last inequality we use the moments of Gaussian random variables. Then, we
compute the first term in (3.22). By algebra, one can obtain

E[(
∑

1≤i≤d
i 6=k

xi(wi − w∗i ))6] =E[
∑

1≤i≤d
i 6=k

x6
i (wi − w∗i )6] + 15E[

∑
1≤i,j≤d
i,j 6=k
i 6=j

x4
ix

2
j(wi − w∗i )4(wj − w∗j )2]

+ 15E[
∑

1≤i,j,`≤d
i,j, 6̀=k

i 6=j,i6=`,j 6=`

x2
ix

2
jx

2
`(wi − w∗i )2(wj − w∗j )2(w` − w∗` )2]

=15W1 + 45W2 + 15W3. (3.23)

Combining (3.22) and (3.23), we get

E[∆6
k(w)] ≤ 243(225W1 + 675W2 + 225W3 + 6040(wk − w∗k)6 + 225σ6). (3.24)

Combining (3.21) and (3.24), we get

γ(∆k(w)) ≤

√
E[∆6

k(w)]

Var(∆k(w))3

≤

√
243(225W1 + 675W2 + 225W3 + 6040(wk − w∗k)6 + 225σ6)

W1 + 3W2 +W3 + 8(wk − w∗k)6 + σ6
≤ 429.
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Proof of Proposition 3.2

We have

∂kf(w; z)− F (w) = ∆k(w) =
∑

1≤i≤d
i 6=k

xkxi(wi − w∗i ) + (x2
k − 1)(wk − w∗k)− ξxk

= xk(−ξ +
∑

1≤i≤d
i 6=k

xi(wi − w∗i )) := xk∆
′
k(w)

Since ∆′k(w) has symmetric distribution and xk is uniformly distributed in {−1, 1}, we know
that the distributions of ∆k(w) and ∆′k(w). We then prove a stronger result on ∆′k(w). We
first recall the definition of v-sub-Gaussian random variables. A random variable X with
mean µ = E[X] is v-sub-Gaussian if for all λ ∈ R, E[eλ(X−µ)] ≤ ev

2λ2/2. We can see that
v-sub-Gaussian random variables are also v-sub-exponential. One can also check that xi’s
are i.i.d. 1-sub-Gaussian random variables, and then ∆′k(w) is v-sub-exponential with

v =
(
σ2 +

∑
1≤i≤d
i 6=k

(wi − w∗i )2
)1/2 ≤

√
σ2 + ‖w −w∗‖2

2.

Proof of Theorem 3.1

The proof of Theorem 3.1 consists of two parts: 1) the analysis of coordinate-wise median
estimator of the population gradients, and 2) the convergence analysis of the robustified
gradient descent algorithm.

Recall that at iteration t, the master machine sends wt to all the worker machines. For
any normal worker machine, say machine i ∈ [m] \ B, the gradient of the local empirical
loss function ĝi(wt) = ∇Fi(wt) is computed and returned to the center machine, while the
Byzantine machines, say machine i ∈ B, the returned message ĝi(wt) can be arbitrary or
even adversarial. The master machine then compute the coordinate-wise median, i.e.,

ĝ(wt) = med{ĝi(wt) : i ∈ [m]}.

The following theorem provides a uniform bound on the distance between ĝ(wt) and∇F (wt).

Theorem 3.8. Define

ĝi(w) =

{
∇Fi(w) i ∈ [m] \ B,
∗ i ∈ B.

(3.25)

and the coordinate-wise median of ĝi(w):

ĝ(w) = med{ĝi(w) : i ∈ [m]}. (3.26)
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Suppose that Assumptions 3.1, 3.2, and 3.3 hold, and inequality (3.2) is satisfied with some
ε > 0. Then, we have with probability at least 1− 4d

(1+nmL̂D)d
,

‖ĝ(w)−∇F (w)‖2 ≤ 2
√

2
1

nm
+
√

2
Cε√
n
V

α +

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n

 , (3.27)

for all w ∈ W, where Cε is defined as in (3.4).

Then, we proceed to analyze the convergence of the robust distributed gradient descent
algorithm. We condition on the event that the bound in (3.27) is satisfied for all w ∈ W .
Then, in the t-th iteration, we define

ŵt+1 = wt − ηĝ(wt).

Thus, we have wt+1 = ΠW(ŵt+1). By the property of Euclidean projection, we know that

‖wt+1 −w∗‖2 ≤ ‖ŵt+1 −w∗‖2.

We further have

‖wt+1 −w∗‖2 ≤ ‖wt − ηĝ(wt)−w∗‖2

≤ ‖wt − η∇F (wt)−w∗‖2 + η‖ĝ(wt)−∇F (wt)‖2.
(3.28)

Meanwhile, we have

‖wt − η∇F (wt)−w∗‖2
2 = ‖wt −w∗‖2

2 − 2η〈wt −w∗,∇F (wt)〉+ η2‖∇F (wt)‖2
2. (3.29)

Since F (w) is λF -strongly convex, by the co-coercivity of strongly convex functions (see
Lemma 3.11 in [26] for more details), we obtain

〈wt −w∗,∇F (wt)〉 ≥ LFλF
LF + λF

‖wt −w∗‖2
2 +

1

LF + λF
‖∇F (wt)‖2

2.

Let η = 1
LF

. Then we get

‖wt − η∇F (wt)−w∗‖2
2 ≤(1− 2λF

LF + λF
)‖wt −w∗‖2

2 −
2

LF (LF + λF )
‖∇F (wt)‖2

2

+
1

L2
F

‖∇F (wt)‖2
2

≤(1− 2λF
LF + λF

)‖wt −w∗‖2
2,

where in the second inequality we use the fact that λF ≤ LF . Using the fact
√

1− x ≤ 1− x
2
,

we get

‖wt − η∇F (wt)−w∗‖2 ≤ (1− λF
LF + λF

)‖wt −w∗‖2. (3.30)
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Combining (3.28) and (3.30), we get

‖wt+1 −w∗‖2 ≤ (1− λF
LF + λF

)‖wt −w∗‖2 +
1

LF
∆, (3.31)

where

∆ = 2
√

2
1

nm
+
√

2
Cε√
n
V (α +

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n

).

Then we can complete the proof by iterating (3.31).

Proof of Theorem 3.8

The proof of Theorem 3.8 relies on careful analysis of the median of means estimator in the
presence of adversarial data and a covering net argument.

We first consider a general problem of robust estimation of a one dimensional random
variable. Suppose that there are m worker machines, and q of them are Byzantine machines,
which store n adversarial data (recall that α := q/m). Each of the other m(1 − α) normal
worker machines stores n i.i.d. samples of some one dimensional random variable x ∼ D.
Denote the j-th sample in the i-th worker machine by xi,j. Let µ := E[x], σ2 := Var(x), and
γ(x) be the absolute skewness of x. In addition, define x̄i as the average of samples in the
i-th machine, i.e., x̄i = 1

n

∑n
j=1 x

i,j. For any z ∈ R, define p̃(z) := 1
m(1−α)

∑
i∈[m]\B 1(x̄i ≤ z)

as the empirical distribution function of the sample averages on the normal worker machines.
We have the following result on p̃(z).

Lemma 3.1. Suppose that for a fixed t > 0, we have

α +

√
t

m(1− α)
+ 0.4748

γ(x)√
n
≤ 1

2
− ε, (3.32)

for some ε > 0. Then, with probability at least 1− 4e−2t, we have

p̃

(
µ+ Cε

σ√
n

(α +

√
t

m(1− α)
+ 0.4748

γ(x)√
n

)

)
≥ 1

2
+ α, (3.33)

and

p̃

(
µ− Cε

σ√
n

(α +

√
t

m(1− α)
+ 0.4748

γ(x)√
n

)

)
≤ 1

2
− α, (3.34)

where Cε is defined as in (3.4).

We further define the distribution function of all the m machines as

p̂(z) :=
1

m

∑
i∈[m]

1(x̄i ≤ z).
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We have the following direct corollary on p̂(z) and the median of means estimator med{x̄i :
i ∈ [m]}.

Corollary 3.1. Suppose that condition (3.32) is satisfied. Then, with probability at least
1− 4e−2t, we have,

p̂

(
µ+ Cε

σ√
n

(α +

√
t

m(1− α)
+ 0.4748

γ(x)√
n

)

)
≥ 1

2
, (3.35)

and

p̂

(
µ− Cε

σ√
n

(α +

√
t

m(1− α)
+ 0.4748

γ(x)√
n

)

)
≤ 1

2
. (3.36)

Thus, we have with probability at least 1− 4e−2t,

|med{x̄i : i ∈ [m]} − µ| ≤ Cε
σ√
n

(α +

√
t

m(1− α)
+ 0.4748

γ(x)√
n

). (3.37)

Proof. One can easily check that for any z ∈ R, we have |p̂(z)− p̃(z)| ≤ α, which yields the
results (3.35) and (3.36). The result (3.37) can be derived using the fact that p̂(med{x̄i : i ∈
[m]}) = 1/2.

Lemma 3.1 and Corollary 3.1 can be translated to the estimators of the gradients. Define
ĝi(w) and ĝ(w) as in (3.25) and (3.26), and let gik(w) and gk(w) be the k-th coordinate of
ĝi(w) and ĝ(w), respectively. In addition, for any w ∈ W , k ∈ [d], and z ∈ R, we define
the empirical distribution function of the k-th coordinate of the gradients on the normal
machines:

p̃(z; w, k) =
1

m(1− α)

∑
i∈[m]\B

1(gik(w) ≤ z), (3.38)

and on all the m machines

p̂(z; w, k) =
1

m

m∑
i=1

1(gik(w) ≤ z). (3.39)

We use the symbol ∂k to denote the partial derivative of any function with respect to its
k-th argument. We also use the simplified notation σ2

k(w) := Var(∂kf(w; z)), and γk(w) :=
γ(∂kf(w; z)). Then, according to Lemma 3.1, when (3.32) is satisfied, for any fixed w ∈ W
and k ∈ [d], we have with probability at least 1− 4e−2t,

p̃

(
∂kF (w) + Cε

σk(w)√
n

(α +

√
t

m(1− α)
+ 0.4748

γk(w)√
n

); w, k

)
≥ 1

2
+ α, (3.40)
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and

p̃

(
∂kF (w)− Cε

σk(w)√
n

(α +

√
t

m(1− α)
+ 0.4748

γk(w)√
n

); w, k

)
≤ 1

2
− α. (3.41)

Further, according to Corollary 3.1, we know that with probability 1− 4e−2t,

|gk(w)− ∂kF (w)| ≤ Cε
σk(w)√

n
(α +

√
t

m(1− α)
+ 0.4748

γk(w)√
n

). (3.42)

Here, the inequality (3.42) gives a bound on the accuracy of the median of means estimator
for the gradient at any fixed w and any coordinate k ∈ [d]. To extend this result to all
w ∈ W and all the d coordinates, we need to use union bound and a covering net argument.

LetWδ = {w1,w2, . . . ,wNδ} be a finite subset ofW such that for any w ∈ W , there exists
w` ∈ Wδ such that ‖w` − w‖2 ≤ δ. According to the standard covering net results [182],
we know that Nδ ≤ (1 + D

δ
)d. By union bound, we know that with probability at least

1 − 4dNδe
−2t, the bounds in (3.40) and (3.41) hold for all w = w` ∈ Wδ, and k ∈ [d]. By

gathering all the k coordinates and using Assumption 3.3, we know that this implies for all
w` ∈ Wδ,

‖ĝ(w`)−∇F (w`)‖2 ≤
Cε√
n
V

(
α +

√
t

m(1− α)
+ 0.4748

S√
n

)
. (3.43)

Then, consider an arbitrary w ∈ W . Suppose that ‖w` − w‖2 ≤ δ. Since by Assump-
tion 3.1, we assume that for each k ∈ [d], the partial derivative ∂kf(w; z) is Lk-Lipschitz for
all z, we know that for every normal machine i ∈ [m] \ B,∣∣gik(w)− gik(w`)

∣∣ ≤ Lkδ.

Then, according to the definition of p̃(z; w, k) in (3.38), we know that for any z ∈ R,
p̃(z +Lkδ; w, k) ≥ p̃(z; w`, k) and p̃(z−Lkδ; w, k) ≤ p̃(z; w`, k). Then, the bounds in (3.40)
and (3.41) yield

p̃

(
∂kF (w`) + Lkδ + Cε

σk(w
`)√
n

(α +

√
t

m(1− α)
+ 0.4748

γk(w
`)√
n

); w, k

)
≥ 1

2
+ α, (3.44)

and

p̃

(
∂kF (w`)− Lkδ − Cε

σk(w
`)√
n

(α +

√
t

m(1− α)
+ 0.4748

γk(w
`)√
n

); w, k

)
≤ 1

2
− α. (3.45)

Using the fact that |∂kF (w`)− ∂kF (w)| ≤ Lkδ, and Corollary 3.1, we have

|gk(w)− ∂kF (w)| ≤ 2Lkδ + Cε
σk(w

`)√
n

(α +

√
t

m(1− α)
+ 0.4748

γk(w
`)√
n

).
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Again, by gathering all the k coordinates we get

‖ĝ(w)−∇F (w)‖2
2 ≤ 8δ2

d∑
k=1

L2
k + 2

C2
ε

n

d∑
k=1

σ2
k(w

`)(α +

√
t

m(1− α)
+ 0.4748

γk(w
`)√
n

)2,

where we use the fact that (a + b)2 ≤ 2(a2 + b2). Then, by Assumption 3.2 and 3.3, we
further obtain

‖ĝ(w)−∇F (w)‖2 ≤ 2
√

2δL̂+
√

2
Cε√
n
V

(
α +

√
t

m(1− α)
+ 0.4748

S√
n

)
, (3.46)

where we use the fact that
√
a+ b ≤

√
a +
√
b. Combining (3.43) and (3.46), we conclude

that for any δ > 0, with probability at least 1 − 4dNδe
−2t, (3.46) holds for all w ∈ W . We

simply choose δ = 1

nmL̂
, and t = d log(1 + nmL̂D). Then, we know that with probability at

least 1− 4d

(1+nmL̂D)d
, we have

‖ĝ(w)−∇F (w)‖2 ≤ 2
√

2
1

nm
+
√

2
Cε√
n
V

α +

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n


for all w ∈ W .

Proof of Lemma 3.1

We recall the Berry-Esseen Theorem [19, 64, 166] and the bounded difference inequality,
which are useful in this proof.

Theorem 3.9 (Berry-Esseen Theorem). Assume that Y1, . . . , Yn are i.i.d. copies of a random
variable Y with mean µ, variance σ2, and such that E[|Y − µ|3] <∞. Then,

sup
s∈R

∣∣∣∣P{√nȲ − µσ
≤ s

}
− Φ(s)

∣∣∣∣ ≤ 0.4748
E[|Y − µ|3]

σ3
√
n

,

where Ȳ = 1
n

∑n
i=1 Yi and Φ(s) is the cumulative distribution function of the standard normal

random variable.

Theorem 3.10 (Bounded Difference Inequality). Let X1, . . . , Xn be i.i.d. random vari-
ables, and assume that Z = g(X1, . . . , Xn), where g satisfies that for all j ∈ [n] and all
x1, x2, . . . , xj, x

′
j, . . . , xn,

|g(x1, . . . , xj−1, xj, xj+1, . . . , xn)− g(x1, . . . , xj−1, x
′
j, xj+1, . . . , xn)| ≤ cj.

Then for any t ≥ 0,

P {Z − E[Z] ≥ t} ≤ exp

(
− 2t2∑n

j=1 c
2
j

)
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and

P {Z − E[Z] ≤ −t} ≤ exp

(
− 2t2∑n

j=1 c
2
j

)
.

Let σn := σ√
n

and cn := 0.4748E[|x−µ|3]
σ3
√
n

= 0.4748γ(x)√
n

. Define Wi := x̄i−µ
σn

for all i ∈ [m],

and Φn(·) be the distribution function of Wi for any i ∈ [m]\B. We also define the empirical

distribution function of {Wi : i ∈ [m] \ B} as Φ̃n(·), i.e., Φ̃n(z) = 1
m(1−α)

∑
i∈[m]\B 1(Wi ≤ z).

Thus, we have
Φ̃n(z) = p̃(σnz + µ). (3.47)

We then focus on Φ̃n(z). We know that for any z ∈ R, E[Φ̃n(z)] = Φn(z). Then, since the
bounded difference inequality is satisfied with cj = 1

m(1−α)
, we have for any t > 0,

∣∣∣Φ̃n(z)− Φn(z)
∣∣∣ ≤√ t

m(1− α)
, (3.48)

on the draw of Wi, i ∈ [m] \ B with probability at least 1− 2e−2t. Let z1 ≥ z2 be such that

Φn(z1) ≥ 1
2

+α+
√

t
m(1−α)

, and Φn(z2) ≤ 1
2
−α−

√
t

m(1−α)
. Then, by union bound, we know

that with probability at least 1− 4e−2t, Φ̃n(z1) ≥ 1/2 + α and Φ̃n(z2) ≤ 1/2− α. The next
step is to choose z1 and z2. According to Theorem 3.9, we know that

Φn(z1) ≥ Φ(z1)− cn,

and thus, it suffices to find z1 such that

Φ(z1) =
1

2
+ α +

√
t

m(1− α)
+ cn.

By mean value theorem, we know that there exists ξ ∈ [0, z1] such that

α +

√
t

m(1− α)
+ cn = z1Φ′(ξ) =

z1√
2π
e−

ξ2

2 ≥ z1√
2π
e−

z21
2

Suppose that for some fix constant ε ∈ (0, 1/2), we have

α +

√
t

m(1− α)
+ cn ≤

1

2
− ε.

Then, we know that z1 ≤ Φ−1(1− ε), and thus we have

α +

√
t

m(1− α)
+ cn ≥

z1√
2π

exp(−1

2
(Φ−1(1− ε))2),
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which yields

z1 ≤
√

2π exp(
1

2
(Φ−1(1− ε))2)

(
α +

√
t

m(1− α)
+ cn

)
.

Similarly

z2 ≥ −
√

2π exp(
1

2
(Φ−1(1− ε))2)

(
α +

√
t

m(1− α)
+ cn

)
.

For simplicity, let Cε :=
√

2π exp(1
2
(Φ−1(1−ε))2). We conclude that with probability 1−4e−2t,

we have

p̃(µ+ Cεσn(α +

√
t

m(1− α)
+ cn)) ≥ 1

2
+ α,

and

p̃(µ− Cεσn(α +

√
t

m(1− α)
+ cn)) ≤ 1

2
− α.

Proof of Theorem 3.2

Since Theorem 3.8 holds without assuming the convexity of F (w), when F (w) is non-strongly
convex, the event that (3.27) holds for all w ∈ W still happens with probability at least
1 − 4d

(1+nmL̂D)d
. We condition on this event. We first show that when Assumption 3.4 is

satisfied and we choose η = 1
LF

, the iterates wt stays inW without using projection. Namely,
define

wt+1 = wt − ηĝ(wt),

for T = 0, 1, . . . , T − 1, then wt ∈ W for all t = 0, 1, . . . , T . To see this, we have

‖wt+1 −w∗‖2 ≤ ‖wt − η∇F (wt)−w∗‖2 + η‖ĝ(wt)−∇F (wt)‖2,

and

‖wt − η∇F (wt)−w∗‖2
2 = ‖wt −w∗‖2

2 − 2η〈∇F (wt),wt −w∗〉+ η2‖∇F (wt)‖2
2

≤ ‖wt −w∗‖2
2 − 2η

1

LF
‖∇F (wt)‖2

2 + η2‖∇F (wt)‖2
2

= ‖wt −w∗‖2
2 −

1

L2
F

‖∇F (wt)‖2
2

≤ ‖wt −w∗‖2
2

where the inequality is due to the co-coercivity of convex functions. Thus, we get

‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 +
∆

LF
,
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and since T = LFD0

∆
, according to Assumption 3.4 we know that wt ∈ W for all t =

0, 1, . . . , T . Then, we proceed to study the algorithm without projection. Here, we define
Dt := ‖w0 −w∗‖2 + t∆

LF
for t = 0, 1, . . . , T .

Using the smoothness of F (w), we have

F (wt+1) ≤ F (wt) + 〈∇F (wt),wt+1 −wt〉+
LF
2
‖wt+1 −wt‖2

2

=F (wt) + η〈∇F (wt),−ĝ(wt) +∇F (wt)−∇F (wt)〉

+ η2LF
2
‖ĝ(wt)−∇F (wt) +∇F (wt)‖2

2.

Since η = 1
LF

and ‖ĝ(wt)−∇F (wt)‖2 ≤ ∆, by simple algebra, we obtain

F (wt+1) ≤ F (wt)− 1

2LF
‖∇F (wt)‖2

2 +
1

2LF
∆2. (3.49)

We now prove the following lemma.

Lemma 3.2. Condition on the event that (3.27) holds for all w ∈ W. When F (w) is
convex, by running T = LFD0

∆
parallel iterations, there exists t ∈ {0, 1, 2, . . . , T} such that

F (wt)− F (w∗) ≤ 16D0∆.

Proof. We first notice that since T = LFD0

∆
, we have Dt ≤ 2D0 for all t = 0, 1, . . . , T .

According to the first order optimality of convex functions, for any w,

F (w)− F (w∗) ≤ 〈∇F (w),w −w∗〉 ≤ ‖∇F (w)‖2‖w −w∗‖2,

and thus

‖∇F (w)‖2 ≥
F (w)− F (w∗)

‖w −w∗‖2

. (3.50)

Suppose that there exists t ∈ {0, 1, . . . , T − 1} such that ‖∇F (wt)‖2 <
√

2∆. Then we have

F (wt)− F (w∗) ≤ ‖∇F (wt)‖2‖wt −w∗‖2 ≤ 2
√

2D0∆.

Otherwise, for all t ∈ {0, 1, . . . , T − 1}, ‖∇F (wt)‖2 ≥
√

2∆. Then, according to (3.49)
and (3.50), we have for all t < T ,

F (wt+1)− F (w∗) ≤ F (wt)− F (w∗)− 1

4LF
‖∇F (wt)‖2

2

≤ F (wt)− F (w∗)− 1

4LFD2
t

(F (wt)− F (w∗))2.
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Multiplying both sides by [(F (wt+1)−F (w∗))(F (wt)−F (w∗)]−1 and rearranging the terms,
we obtain

1

F (wt+1)− F (w∗)
≥ 1

F (wt)− F (w∗)

+
1

4LFD2
t

F (wt)− F (w∗)

F (wt+1)− F (w∗)
≥ 1

F (wt)− F (w∗)
+

1

16LFD2
0

,

which implies

1

F (wT )− F (w∗)
≥ 1

F (w0)− F (w∗)
+

T

16LFD2
0

≥ T

16LFD2
0

.

Then, we obtain F (wT )− F (w∗) ≤ 16D0∆ using the fact that T = LFD0

∆
.

Next, we show that F (wT )−F (w∗) ≤ 16D0∆+ 1
2LF

∆2. More specifically, let t = t0 be the

first time that F (wt)−F (w∗) ≤ 16D0∆, and we show that for any t > t0, F (wt)−F (w∗) ≤
16D0∆ + 1

2LF
∆2. If this statement is not true, then we let t1 > t0 be the first time that

F (wt) − F (w∗) > 16D0∆ + 1
2LF

∆2. Then there must be F (wt1−1) < F (wt1). According
to (3.49), there should also be

F (wt1−1)− F (w∗) ≥ F (wt1)− F (w∗)− 1

2LF
∆2 > 16D0∆.

Then, according to (3.50), we have

‖∇F (wt1−1)‖2 ≥
F (wt1−1)− F (w∗)

‖wt1−1 −w∗‖2

> 8∆.

Then according to (3.49), this implies F (wt1) ≤ F (wt1−1), which contradicts with the fact
that F (wt1−1) < F (wt1).

Proof of Theorem 3.3

Since Theorem 3.8 holds without assuming the convexity of F (w), when F (w) is non-convex,
the event that (3.27) holds for all w ∈ W still happens with probability at least 1− 4d

(1+nmL̂D)d
.

We condition on this event. We first show that when Assumption 3.5 is satisfied and we
choose η = 1

LF
, the iterates wt stays in W without using projection. Since we have

‖wt+1−w∗‖2 ≤ ‖wt−w∗‖2+η(‖∇F (wt)‖2+‖ĝ(wt)−∇F (wt)‖2) ≤ ‖wt−w∗‖2+
1

LF
(M+∆).

Then, we know that by running T = 2LF
∆2 (F (w0)−F (w∗)) parallel iterations, using Assump-

tion 3.5, we know that wt ∈ W for t = 0, 1, . . . , T without projection.



CHAPTER 3. STATISTICAL RATES IN BYZANTINE-ROBUST DISTRIBUTED
LEARNING 71

We proceed to study the convergence rate of the algorithm. By the smoothness of F (w),
we know that when choosing η = 1

LF
, the inequality (3.49) still holds. More specifically, for

all t = 0, 1, . . . , T − 1,

F (wt+1)− F (w∗) ≤ F (wt)− F (w∗)− 1

2LF
‖∇F (wt)‖2

2 +
1

2LF
∆2. (3.51)

Sum up (3.51) for t = 0, 1, . . . , T − 1. Then, we get

0 ≤ F (wT )− F (w∗) ≤ F (w0)− F (w∗)− 1

2LF

T−1∑
t=0

‖∇F (wt)‖2
2 +

T

2LF
∆2.

This implies that

min
t=0,1,...,T

‖∇F (wt)‖2
2 ≤ 2

LF
T

(F (w0)− F (w∗)) + ∆2,

which completes the proof.

Proof of Theorem 3.4

The proof of Theorem 3.4 consists of two parts: 1) the analysis of coordinate-wise trimmed
mean of means estimator of the population gradients, and 2) the convergence analysis of the
robustified gradient descent algorithm. Since the second part is essentially the same as the
proof of Theorem 3.1, we mainly focus on the first part here.

Theorem 3.11. Define

ĝi(w) =

{
∇Fi(w) i ∈ [m] \ B,
∗ i ∈ B.

(3.52)

and the coordinate-wise trimmed mean of ĝi(w):

ĝ(w) = trmeanβ{ĝi(w) : i ∈ [m]}. (3.53)

Suppose that Assumptions 3.1 and 3.6 are satisfied, and that α ≤ β ≤ 1
2
− ε. Then, with

probability at least 1− 2d(m+1)

(1+nmL̂D)d
,

‖ĝ(w)−∇F (w)‖2 ≤
v

ε

(
3
√

2βd√
n

+
2d√
nm

)√
log(1 + nmL̂D) +

1

d
logm+ Õ(

β

n
+

1

nm
)

for all w ∈ W.
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The rest of the proof is essentially the same as the proof of Theorem 3.1. In fact, we
essentially analyze a gradient descent algorithm with bounded noise in the gradients. In the
proof of Theorem 3.1 in Section 3.9. The bound on the noise in the gradients is

∆ =
√

2
Cε√
n
V (α +

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n

) + 2
√

2
1

nm
,

while here we replace ∆ with ∆′:

∆′ :=
v

ε

(
3
√

2βd√
n

+
2d√
nm

)√
log(1 + nmL̂D) +

1

d
logm+ Õ(

β

n
+

1

nm
),

and the same analysis can still go through. Therefore, we omit the details of the analysis
here.

Remark 3.1. The same arguments still go through when the population risk function F (w)
is non-strongly convex or non-convex. One can simply replace the bound on the noise in the
gradients ∆ in Theorems 3.2 and 3.3 with ∆′ here. Thus we omit the details here.

Proof of Theorem 3.11

The proof of Theorem 3.11 relies on the analysis of the trimmed mean of means estimator
in the presence of adversarial data and a covering net argument. We first consider a general
problem of robust estimation of a one dimensional random variable. Suppose that there
are m worker machines, and q of them are Byzantine machines, which store n adversarial
data (recall that α := q/m). Each of the other m(1 − α) normal worker machines stores n
i.i.d. samples of some one dimensional random variable x ∼ D. Suppose that x is v-sub-
exponential and let µ := E[x]. Denote the j-th sample in the i-th worker machine by xi,j.
In addition, define x̄i as the average of samples in the i-th machine, i.e., x̄i = 1

n

∑n
j=1 x

i,j.

We have the following result on the trimmed mean of x̄i, i ∈ [m].

Lemma 3.3. Suppose that the one dimensional samples on all the normal machines are
i.i.d. v-sub-exponential with mean µ. Then, we have for any t ≥ 0,

P{| 1

(1− α)m

∑
i∈[m]\B

x̄i − µ| ≥ t} ≤ 2 exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}},

and for any s ≥ 0,

P{ max
i∈[m]\B

{|x̄i − µ|} ≥ s} ≤ 2(1− α)m exp{−nmin{ s
2v
,
s2

2v2
}},

and when β ≥ α, | 1
(1−α)m

∑
i∈[m]\B x̄

i − µ| ≤ t, and maxi∈[m]\B{|x̄i − µ|} ≤ s, we have

|trmeanβ{x̄i : i ∈ [m]} − µ| ≤ t+ 3βs

1− 2β
.
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Lemma 3.3 can be directly applied to the k-th partial derivative of the loss functions.
Since we assume that for any k ∈ [d] and w ∈ W , ∂kf(w; z) is v-sub-exponential, we have
for any t ≥ 0, s ≥ 0,

P{| 1

(1− α)m

∑
i∈[m]\B

gik(w)− ∂kF (w)| ≥ t} ≤ 2 exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}}, (3.54)

P{ max
i∈[m]\B

{|gik(w)− ∂kF (w)|} ≥ s} ≤ 2(1− α)m exp{−nmin{ s
2v
,
s2

2v2
}}, (3.55)

and consequently with probability at least

1− 2 exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}} − 2(1− α)m exp{−nmin{ s

2v
,
s2

2v2
}},

we have

|gk(w)− ∂kF (w)| = |trmeanβ{gik(w) : i ∈ [m]} − ∂kF (w)| ≤ t+ 3βs

1− 2β
. (3.56)

To extend this result to all w ∈ W and all the d coordinates, we need to use union bound
and a covering net argument. LetWδ = {w1,w2, . . . ,wNδ} be a finite subset ofW such that
for any w ∈ W , there exists w` ∈ Wδ such that ‖w` −w‖2 ≤ δ. According to the standard
covering net results [182], we know that Nδ ≤ (1 + D

δ
)d. By union bound, we know that with

probability at least

1− 2dNδ exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}},

the bound | 1
(1−α)m

∑
i∈[m]\B g

i
k(w) − ∂kF (w)| ≤ t holds for all w = w` ∈ Wδ, and k ∈ [d],

and with probability at least

1− 2(1− α)dmNδ exp{−nmin{ s
2v
,
s2

2v2
}}

the bound maxi∈[m]\B{|gik(w) − ∂kF (w)|} ≤ s holds for all w = w` ∈ Wδ, and k ∈ [d]. By
gathering all the k coordinates, we know that this implies for all w` ∈ Wδ,

‖ĝ(w`)−∇F (w`)‖2 ≤
√
d
t+ 3βs

1− 2β
. (3.57)

Then, consider an arbitrary w ∈ W . Suppose that ‖w`−w‖2 ≤ δ. Since by Assumption 3.1,
we assume that for each k ∈ [d], the partial derivative ∂kf(w; z) is Lk-Lipschitz for all z, we
know that for every normal machine i ∈ [m] \ B,∣∣gik(w)− gik(w`)

∣∣ ≤ Lkδ,
∣∣∂kF (w)− ∂kF (w`)

∣∣ ≤ Lkδ.
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This means that if

| 1

(1− α)m

∑
i∈[m]\B

gik(w
`)− ∂kF (w`)| ≤ t

and
max
i∈[m]\B

{|gik(w`)− ∂kF (w`)|} ≤

hold for all w` ∈ Wδ, and k ∈ [d], then

| 1

(1− α)m

∑
i∈[m]\B

gik(w)− ∂kF (w)| ≤ t+ 2Lkδ,

and
max
i∈[m]\B

{|gik(w)− ∂kF (w)|} ≤ s+ 2Lkδ

hold for all w ∈ W . This implies that for all w ∈ W and k ∈ [d],

|gk(w)− ∂kF (w)| = |trmeanβ{gik(w) : i ∈ [m]} − ∂kF (w)| ≤ t+ 3βs

1− 2β
+

2(1 + 3β)

1− 2β
δLk,

which yields

‖ĝ(w)−∇F (w)‖2 ≤
√

2d
t+ 3βs

1− 2β
+
√

2
2(1 + 3β)

1− 2β
δL̂.

The proof is completed by choosing δ = 1

nmL̂
,

t = vmax{ 8d

nm
log(1 + nmL̂D),

√
8d

nm
log(1 + nmL̂D)},

s = vmax{ 4

n
(d log(1 + nmL̂D) + logm),

√
4

n
(d log(1 + nmL̂D) + logm)},

and using the fact that β ≤ 1
2
− ε.

Proof of Lemma 3.3

We first recall Bernstein’s inequality for sub-exponential random variables.

Theorem 3.12 (Bernstein’s inequality). Suppose that X1, X2, . . . , Xn are i.i.d. random
variables with mean µ and are v-sub-exponential. Then for any t ≥ 0,

P{| 1
n

n∑
i=1

Xi − µ| ≥ t} ≤ 2 exp{−nmin{ t
2v
,
t2

2v2
}}.
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Thus, for any t ≥ 0

P{| 1

(1− α)m

∑
i∈[m]\B

x̄i − µ| ≥ t} ≤ 2 exp{−(1− α)mnmin{ t
2v
,
t2

2v2
}}. (3.58)

Similarly, for any i ∈ [m] \ B, and any s ≥ 0

P{|x̄i − µ| ≥ s} ≤ 2 exp{−nmin{ s
2v
,
s2

2v2
}}.

Then, by union bound we know that

P{ max
i∈[m]\B

{|x̄i − µ|} ≥ s} ≤ 2(1− α)m exp{−nmin{ s
2v
,
s2

2v2
}}. (3.59)

We proceed to analyze the trimmed mean of means estimator. To simplify notation, we
define M = [m] \ B as the set of all normal worker machines, U ⊆ [m] as the set of all
untrimmed machines, and T ⊆ [m] as the set of all trimmed machines. The trimmed mean
of means estimator simply computes

trmeanβ{x̄i : i ∈ [m]} =
1

(1− 2β)m

∑
i∈U

x̄i.

We further have

|trmeanβ{x̄i : i ∈ [m]} − µ|

=

∣∣∣∣∣ 1

(1− 2β)m

∑
i∈U

x̄i − µ

∣∣∣∣∣
=

1

(1− 2β)m

∣∣∣∣∣∑
i∈M

(x̄i − µ)−
∑

i∈M∩T

(x̄i − µ) +
∑
i∈B∩U

(x̄i − µ)

∣∣∣∣∣
=

1

(1− 2β)m

(
|
∑
i∈M

(x̄i − µ)|+ |
∑

i∈M∩T

(x̄i − µ)|+ |
∑
i∈B∩U

(x̄i − µ)|
)

(3.60)

We also know that |
∑

i∈M∩T (x̄i − µ)| ≤ 2βmmaxi∈M{|x̄i − µ|}. In addition, since β ≥ α,
without loss of generality, we assume that M ∩ T 6= ∅, and then |

∑
i∈B∩U(x̄i − µ)| ≤

αmmaxi∈M{|x̄i − µ|}. Then we directly obtain the desired result.

Proof of Theorem 3.7

Since the loss functions are quadratic, we denote the loss function f(w; zi,j) by

f(w; zi,j) =
1

2
wTHi,jw + pT

i,jw + ci,j.
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We further define Hi := 1
n

∑n
j=1 Hi,j, pi := 1

n

∑n
j=1 pi,j, and ci := 1

n

∑n
j=1 ci,j. Thus the

empirical risk function on the i-th machine is

Fi(w) =
1

2
wTHiw + pT

i w + ci.

Then, for any worker machine i ∈ [m] \ B, ŵi = −H−1
i pi. In addition, the population

risk minimizer is w∗ = −H−1
F pF . We further define Ui,j := Hi,j − HF , Ui = Hi − HF ,

vi,j = pi,j − pF , and vi = pi − pF . Then

ŵi = −(Ui + HF )−1(vi + pF ).

Let ek be the k-th vector in the standard basis, i.e., the k-th column of the d × d identity
matrix. We proceed to study the distribution of the k-th coordinate of ŵi−w∗, i ∈ [m] \B,
i.e.,

ŵik − w∗k = eT
kH−1

F pF − eT
k (Ui + HF )−1(vi + pF ).

Similar to the proof of Theorem 3.1, we need to obtain a Berry-Esseen type bound for
ŵik − w∗k. However, here, ŵik is not a sample mean of n i.i.d. random variables, and thus
we cannot directly apply the vanilla Berry-Esseen bound. Instead, we apply the following
bound in [150] on functions of sample means.

Theorem 3.13 (Theorem 2.11 in [150], simplified). Let X be a Hilbert space equipped with
norm ‖ · ‖. Let f : X → R be a function on X . Suppose that there exists linear functions
` : X → R, θ > 0, Mθ > 0 such that

|f(X)− `(X)| ≤ Mθ

2
‖X‖2, ∀ ‖X‖ ≤ θ. (3.61)

Suppose that there is a probability distribution DX over X , and let X,X1, X2, . . . , Xn be i.i.d.
random variables drawn from DX . Assume that E[X] = 0, and define

σ̃ := (E[`(X)2])1/2, νp := (E[‖X‖p])1/p, p = 2, 3, ς :=
(E[|`(X)|3])1/3

σ̃
.

Let X̄ = 1
n

∑n
i=1 Xi. Then for any z ∈ R, we have∣∣∣∣P{ f(X̄)

σ̃/
√
n
≤ z

}
− Φ(z)

∣∣∣∣ ≤ C√
n
, (3.62)

where C = C0 + C1ς
3 + (C20 + C21ς)ν

2
2 + (C30 + C31ς)ν

2
3 + C4, with

C0 = 0.1393, C1 = 2.3356

(C20, C21, C30, C31) =
Mθ

2σ̃

(
2(

2

π
)1/6, 2 +

22/3

n1/6
,
(8/π)1/6

n1/3
,

2

n1/2

)
C4 = min{ ν2

2

θ2n1/2
,
2ν3

2 + ν3
3/n

1/2

θ3n
}.

(3.63)
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Define the function ψk(U,v) : Rd×d × R→ R:

ψk(U,v) := eT
kH−1

F pF − eT
k (U + HF )−1(v + pF ),

and thus

ŵik − w∗k = ψk(Ui,vi) = ψk(
1

n

n∑
j=1

Ui,j,
1

n

n∑
j=1

vi,j).

On the product space Rd×d × R, define the element-wise inner product:

〈(U,v), (X,y)〉 =
d∑

i,j=1

Ui,jXi,j +
d∑
i=1

viyi,

and thus Rd×d × R is associated with the norm

‖(U,v)‖ =
√
‖U‖2

F + ‖v‖2
2,

where ‖ · ‖F denotes the Frobenius norm of matrices. We then provide the following lemma
on ψk(U,v).

Lemma 3.4. There exits a linear function `k(U,v) = eT
kH−1

F UH−1
F pF − eT

kH−1
F v such that

for any U, v with

‖U‖2
F + ‖v‖2

2 ≤
λ2
F

4
,

we have

|ψk(U,v)− `k(U,v)| ≤ λF + 2‖pF‖2

λ3
F

(‖U‖2
F + ‖v‖2

2).

Lemma 3.4 tells us that the condition (3.61) is satisfied with θ = λF
2

and Mθ = 2λF+4‖pF ‖2
λ3F

.

For all normal worker machine i ∈ [m] \ B, denote the distribution of Ui,j and vi,j by DU
and Dv, respectively. Since ŵik − w∗k = ψk(

1
n

∑n
j=1 Ui,j,

1
n

∑n
j=1 vi,j), Theorem 3.13 directly

gives us the following lemma.

Lemma 3.5. Let U ∼ DU , v ∼ Dv, and `k(U,v) = eT
kH−1

F UH−1
F pF − eT

kH−1
F v. Define

σ̃k := (E[`k(U,v)2])1/2,

νp := (E[(‖U‖2
F + ‖v‖2

2)p/2])1/p, p = 2, 3,

ςk :=
(E[|`k(U,v)|3])1/3

σ̃k
.

Then for any z ∈ R, i ∈ [m] \ B, we have∣∣∣∣P{ŵik − w∗kσ̃k/
√
n
≤ z

}
− Φ(z)

∣∣∣∣ ≤ Ck√
n
, (3.64)



CHAPTER 3. STATISTICAL RATES IN BYZANTINE-ROBUST DISTRIBUTED
LEARNING 78

where

Ck = Ĉ0 + Ĉ1ς
3
k +

1

σ̃k

[
(Ĉ20 + Ĉ21ςk)ν

2
2 + (Ĉ30 + Ĉ31ςk)ν

2
3

]
+ Ĉ4,

with

Ĉ0 = 0.1393, Ĉ1 = 2.3356

(Ĉ20, Ĉ21, Ĉ30, Ĉ31) =
λF + 2‖pF‖2

λ3
F

(
2(

2

π
)1/6, 2 +

22/3

n1/6
,
(8/π)1/6

n1/3
,

2

n1/2

)
Ĉ4 = min{ 4ν2

2

λ2
Fn

1/2
,
16ν3

2 + 8ν3
3/n

1/2

λ3
Fn

}.

(3.65)

Then, we proceed to bound med{ŵik : i ∈ [m]} − w∗k, the technique is similar to what we
use in the proof of Theorem 3.8. For every z ∈ R, k ∈ [d], define

p̃(z; k) =
1

m(1− α)

∑
i∈[m]\B

1(ŵik − w∗k ≤ z).

We have the following lemma on p̃(z; k).

Lemma 3.6. Suppose that for a fixed t > 0, we have

α +

√
t

m(1− α)
+
Ck√
n
≤ 1

2
− ε, (3.66)

for some ε > 0. Then, with probability at least 1− 4e−2t, we have

p̃

(
Cε

σ̃k√
n

(α +

√
t

m(1− α)
+
Ck√
n

); k

)
≥ 1

2
+ α, (3.67)

and

p̃

(
−Cε

σ̃k√
n

(α +

√
t

m(1− α)
+
Ck√
n

); k

)
≤ 1

2
− α, (3.68)

where Cε is defined as in (3.4).

Proof. The proof is essentially the same as the proof of Lemma 3.1. One can simply replace
σ in Lemma 3.1 with σ̃k and 0.4748γ(x) in Lemma 3.1 with Ck. Then the same arguments
still apply. Thus, we skip the details of this proof.

Then, define p̂(z; k) = 1
m

∑
i∈[m] 1(ŵik − w∗k ≤ z). Using the same arguments as in

Corollary 3.1, we know that

p̂

(
Cε

σ̃k√
n

(α +

√
t

m(1− α)
+
Ck√
n

); k

)
≥ 1

2
,
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and

p̂

(
−Cε

σ̃k√
n

(α +

√
t

m(1− α)
+
Ck√
n

); k

)
≤ 1

2
,

which implies that |med{ŵik : i ∈ [m]} − w∗k| ≤ Cε
σ̃k√
n
(α +

√
t

m(1−α)
+ Ck√

n
). Then, let

σ̃ :=

√√√√ d∑
k=1

σ̃2
k =

√
E[‖H−1

F (UH−1
F pF − v)‖2

2],

and C̃ = maxk∈[d]Ck, we have with probability at least 1− 4de−2t,

‖med{ŵi : i ∈ [m]} −w∗‖2 ≤
Cε√
n
σ̃
(
α +

√
t

m(1− α)
+

C̃√
n

)
.

We complete the proof by choosing t = 1
2

log(nmd).

Explicit expression of C̃. To summarize, we provide an explicit expression of C̃. Let ek
be the k-th vector in the standard basis, i.e., the k-th column of the d× d identity matrix,
and define `k(U,v) : Rd×d × R→ R as

`k(U,v) = eT
kH−1

F UH−1
F pF − eT

kH−1
F v.

Let H ∼ DH and p ∼ Dp and define

σ̃k := (E[`k(H−HF ,p− pF )2])1/2, ςk :=
(E[|`k(H−HF ,p− pF )|3])1/3

σ̃k
.

νp := (E[(‖H−HF‖2
F + ‖p− pF‖2

2)p/2])1/p, p = 2, 3

Then, C̃ = maxk∈[d] Ck, with where

Ck = Ĉ0 + Ĉ1ς
3
k +

1

σ̃k

[
(Ĉ20 + Ĉ21ςk)ν

2
2 + (Ĉ30 + Ĉ31ςk)ν

2
3

]
+ Ĉ4,

with

Ĉ0 = 0.1393, Ĉ1 = 2.3356

(Ĉ20, Ĉ21, Ĉ30, Ĉ31) =
λF + 2‖pF‖2

λ3
F

(
2(

2

π
)1/6, 2 +

22/3

n1/6
,
(8/π)1/6

n1/3
,

2

n1/2

)
Ĉ4 = min{ 4ν2

2

λ2
Fn

1/2
,
16ν3

2 + 8ν3
3/n

1/2

λ3
Fn

}.
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Proof of Lemma 3.4

We use ‖ · ‖2 and ‖ · ‖F to denote the operator norm and the Frobenius norm of matrices,
respectively. We have the identity

(I + A)−1 =
∞∑
r=0

(−1)rAr, ∀‖A‖2 < 1.

Then, we have for all U ∈ Rd×d such that ‖H−1
F U‖2 < 1,

(U + HF )−1 = (I + H−1
F U)−1H−1

F = H−1
F −H−1

F UH−1
F +

∞∑
r=2

(−1)r(H−1
F U)rH−1

F . (3.69)

Let us consider the set of matrices such that ‖U‖F ≤ λF
2

. One can check that for any such
matrix, we have ‖H−1

F U‖2 ≤ 1
2
. Let

`k(U,v) = eT
kH−1

F UH−1
F pF − eT

kH−1
F v.

Then, we know that

|ψk(U,v)− `k(U,v)| =

∣∣∣∣∣eT
kH−1

F UH−1
F v −

∞∑
r=2

(−1)reT
k (H−1

F U)rH−1
F (v + pF )

∣∣∣∣∣ . (3.70)

Denote the operator norm of matrices by ‖ · ‖2. We further have for any r ≥ 1,

|eT
k (H−1

F U)rH−1
F v| ≤ 1

2
‖H−1

F U‖r−1
2 (‖H−1

F U‖2
2 + ‖H−1

F v‖2
2) ≤ 1

2rλ2
F

(‖U‖2
F + ‖v‖2

2), (3.71)

where we use the fact ‖U‖2 ≤ ‖U‖F . In addition, for any r ≥ 2,

|eT
k (H−1

F U)rH−1
F pF | ≤ ‖H−1

F U‖r−2
2 ‖H−1

F ‖
3
2‖U‖2

2‖pF‖2 ≤
‖pF‖2

2r−2λ3
F

‖U‖2
F . (3.72)

Then, we plug (3.71) and (3.72) into (3.70), and obtain

|ψk(U,v)− `k(U,v)| ≤ 1

λ2
F

(‖U‖2
F + ‖v‖2

2) +
2‖pF‖2

λ3
F

‖U‖2
F ,

which completes the proof.

Proof of Observation 3.1

This proof is essentially the same as the lower bound in the robust mean estimation litera-
ture [39, 113]. We reproduce this result for the purpose of completeness. For a d dimensional
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Gaussian distribution P = N (µ, σ2I), we denote by P n the joint distribution of n i.i.d. sam-
ples of P . Obviously P n is equivalent to a dn dimensional Gaussian distribution N (µ+, σ2I),
where µ+ ∈ Rdn is a vector generated by repeating µ n times, i.e., µ+ = [µT µT · · · µT]T.

We show that for two d dimensional distributions P1 = N (µ1, σ
2I) and P2 = N (µ2, σ

2I),
there exist two dn dimensional distributions Q1 and Q2 such that

(1− α)P n
1 + αQ1 = (1− α)P n

2 + αQ2. (3.73)

If this happens, then no algorithm can distinguish between P1 and P2. Let φ1 and φ2 be the
PDF of P n

1 and P n
2 , respectively. Let µ1 and µ2 be such that the total variation distance

between P n
1 and P n

2 is
1

2

∫
‖φ1 − φ2‖1 =

α

1− α
.

By the results of the total variation distance between Gaussian distributions, we know that

‖µ+
1 − µ+

2 ‖2 ≥
2ασ

1− α
. (3.74)

Let Q1 be the distribution with PDF 1−α
α

(φ2 − φ1)1φ2≥φ1 and Q2 be the distribution with
PDF 1−α

α
(φ1 − φ2)1φ1≥φ2 . One can verify that (3.73) is satisfied. In this case, by the lower

bound in (3.74), we get

‖µ1 − µ2‖2 ≥
2ασ√
n(1− α)

≥ 2ασ√
n
.

This implies that for two Gaussian distributions such that ‖µ1−µ2‖2 = Ω( α√
n
), in the worst

case it can be impossible to distinguish these two distributions due to the existence of the
adversary. Thus, to estimate the mean µ of a Gaussian distribution in the distributed setting
with α fraction of Byzantine machines, any algorithm that computes an estimation µ̂ of the
mean has a constant probability of error ‖µ̂− µ‖2 = Ω( α√

n
).

Further, according to the standard results from minimax theory [191], we know that

using O(nm) data, there is a constant probability that ‖µ̂ − µ‖2 = Ω(
√

d
nm

). Combining

these two results, we know that ‖µ̂− µ‖2 = Ω( α√
n

+
√

d
nm

).
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Chapter 4

Saddle Point Attack in
Byzantine-Robust Distributed
Learning

We study robust distributed learning that involves minimizing a non-convex loss function
with saddle points. We continue to consider the Byzantine setting where some worker ma-
chines have abnormal or even arbitrary and adversarial behavior. In this setting, the Byzan-
tine machines may create fake local minima near a saddle point that is far away from any true
local minimum, even when robust gradient estimators are used. We develop ByzantinePGD,
a robust first-order algorithm that can provably escape saddle points and fake local minima,
and converge to an approximate true local minimizer with low iteration complexity. As a
by-product, we give a simpler algorithm and analysis for escaping saddle points in the usual
non-Byzantine setting. We further discuss three robust gradient estimators that can be used
in ByzantinePGD, including median, trimmed mean, and iterative filtering. We characterize
their performance in concrete statistical settings, and argue for their near-optimality in low
and high dimensional regimes.

4.1 Introduction

In this chapter, we still focus on robust distributed optimization for statistical learning
problems, and consider a standard worker-server distributed computing framework, where a
single master machine is in charge of maintaining and updating the parameter of interest, and
a set of worker machines store the data, perform local computation and communicate with
the master. In addition, we still consider the Byzantine setting, where a subset of machines
behave completely arbitrarily—even in a way that depends on the algorithm used and the
data on the other machines—thereby capturing the unpredictable nature of the errors. Here,
we assume that the data points are generated from some unknown distribution D and stored
locally in m worker machines, each storing n data points; the goal is to minimize a population
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loss function F :W → R defined as an expectation over D, where W ⊆ Rd is the parameter
space. We assume that α ∈ (0, 1/2) fraction of the worker machines are Byzantine; that is,
their behavior is arbitrary. As mentioned in Chapter 3, this Byzantine-robust distributed
learning problem has attracted attention in a recent line of work [4, 23, 41, 68, 172, 173].
This body of work develops robust algorithms that are guaranteed to output an approximate
minimizer of F when it is convex, or an approximate stationary point in the non-convex case.

However, fitting complicated machine learning models often requires finding a local min-
imum of non-convex functions, as exemplified by training deep neural networks and other
high-capacity learning architectures [169, 73, 72]. It is well-known that many of the sta-
tionary points of these problems are in fact saddle points and far away from any local
minimum [99, 72]. These tasks hence require algorithms capable of efficiently escaping sad-
dle points and converging approximately to a local minimizer. In the centralized setting
without Byzantine adversaries, this problem has been studied actively and recently [71, 94,
33, 96].

A main observation of this work is that the interplay between non-convexity and Byzan-
tine errors makes escaping saddle points much more challenging. In particular, by orches-
trating their messages sent to the master machine, the Byzantine machines can create fake
local minima near a saddle point of F that is far away from any true local minimizer. Such
a strategy, which may be referred to as saddle point attack, foils existing algorithms as
we elaborate below:

• Challenges due to non-convexity: When F is convex, gradient descent (GD)
equipped with a robust gradient estimator is guaranteed to find an approximate global
minimizer (with accuracy depending on the fraction of Byzantine machines) [41, 4].
However, when F is non-convex, such algorithms may be trapped in the neighborhood
of a saddle point; see Example 1 in Section 4.7.

• Challenges due to Byzantine machines: Without Byzantine machines, vanilla
GD [119], as well as its more efficient variants such as perturbed gradient descent
(PGD) [94], are known to converge to a local minimizer with high probability. However,
Byzantine machines can manipulate PGD and GD (even robustified) into fake local
minimum near a saddle point; see Example 2 in Section 4.7.

We illustrate these challenges in Figure 4.1. We discuss and compare with existing work
in more details in Section 4.2. The observations above show that existing robust and saddle-
escaping algorithms, as well as their naive combination, are insufficient against saddle point
attack. Addressing these challenges requires the development of new robust distributed
optimization algorithms.

Our Contributions

In this chapter, we develop ByzantinePGD , a computation- and communication-efficient
first-order algorithm that is able to escape saddle points and the fake local minima created
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Figure 4.1: Escaping saddle point is more difficult in the Byzantine setting. Consider a saddle
point with e1 and e2 being the “good” and “bad” directions, respectively. Without Byzantine
machines, as long as the gradient direction has a small component on e1, the optimization algorithm
can escape the saddle point. However, in the Byzantine setting, the adversary can eliminate the
component on the e1 direction and make the learner stuck at the saddle point.

by Byzantine machines, and converge to an approximate local minimizer of a non-convex
loss. To the best of our knowledge, our algorithm is the first to achieve such guarantees
under adversarial noise.

Specifically, ByzantinePGD aggregates the empirical gradients received from the normal
and Byzantine machines, and computes a robust estimate ĝ(w) of the true gradient ∇F (w)
of the population loss F . Crucial to our algorithm is the injection of random perturbation
to the iterates w, which serves the dual purpose of escaping saddling point and fake local
minima. Our use of perturbation thus plays a more signified role than in existing algorithms
such as PGD [94], as it also serves to combat the effect of Byzantine errors. To achieve
this goal, we incorporate two crucial innovations: (i) we use multiple rounds of larger, yet
carefully calibrated, amount of perturbation that is necessary to survive saddle point attack,
(ii) we use the moving distance in the parameter space as the criterion for successful escape,
eliminating the need of (robustly) evaluating function values. Consequently, our analysis is
significantly different, and arguably simpler, than that of PGD.

We develop our algorithmic and theoretical results in a flexible, two-part framework,
decomposing the optimization and statistical components of the problem.

The optimization part: We consider a general problem of optimizing a population loss
function F given an inexact gradient oracle. For each query point w, the ∆-inexact gradient
oracle returns a vector ĝ(w) (possibly chosen adversarially) that satisfies ‖ĝ(w)−∇F (w)‖2 ≤
∆, where ∆ is non-zero but bounded. Given access to such an inexact oracle, we show that
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ByzantinePGD outputs an approximate local minimizer; moreover, no other algorithm can
achieve significantly better performance in this setting in terms of the dependence on ∆:

Theorem 4.1 (Informal; see Sec. 4.4). Within Õ( 1
∆2 ) iterations, ByzantinePGD outputs

an approximate local minimizer w̃ that satisfies ‖∇F (w̃)‖2 . ∆ and λmin

(
∇2F (w̃)

)
&

−∆2/5, where λmin is the minimum eigenvalue. In addition, given only access to ∆-inexact
gradient oracle, no algorithm is guaranteed to find a point w̃ with ‖∇F (w̃)‖2 < ∆/2 or
λmin

(
∇2F (w̃)

)
> −∆1/2/2.

Our algorithm is communication-efficient: it only sends gradients, and the number of
parallel iterations in our algorithm matches the well-known iteration complexity of GD
for non-convex problems in non-Byzantine setting [144] (up to log factors). In the exact
gradient setting, a variant of the above result in fact matches the guarantees for PGD [94]—
as mentioned, our proof is simpler.

Additionally, beyond Byzantine distributed learning, our results apply to any non-convex
optimization problems (distributed or not) with inexact information for the gradients, in-
cluding those with noisy but non-adversarial gradients. Thus, we believe our results are of
independent interest in broader settings.

The statistical part: The optimization guarantee above can be applied whenever one
has a robust aggregation procedure that serves as an inexact gradient oracle with a bounded
error ∆. We consider three concrete examples of such robust procedures: median, trimmed
mean, and iterative filtering [58, 57]. Under statistical settings for the data, we provide
explicit bounds on their errors ∆ as a function of the number of worker machines m, the
number of data points on each worker machine n, the fraction of Byzantine machines α, and
the dimension of the parameter space d. Combining these bounds with the optimization
result above, we obtain concrete statistical guarantees on the output w̃. Furthermore, we
argue that our first-order guarantees on ‖∇F (w̃)‖2 are often nearly optimal when compared
against a universal statistical lower bound. This is summarized below:

Theorem 4.2 (Informal; see Sec. 4.5). When combined with each of following three robust
aggregation procedures, ByzantinePGD achieves the statistical guarantees:

(i) median/; ‖∇F (w̃)‖2 . α
√
d√
n

+ d√
nm

+
√
d
n

;

(ii) trimmed mean: ‖∇F (w̃)‖2 . αd√
n

+ d√
nm

;

(iii) iterative filtering: ‖∇F (w̃)‖2 .
√
α√
n

+
√
d√
nm

.

Moreover, no algorithm can achieve ‖∇F (w̃)‖2 = o
(
α√
n

+
√
d√
nm

)
.

We emphasize that the above results are established under a very strong adversary model:
the Byzantine machines are allowed to send messages that depend arbitrarily on each other
and on the data on the normal machines; they may even behave adaptively during the it-
erations of our algorithm. Consequently, this setting requires robust functional estimation
(of the gradient function), which is a much more challenging problem than the robust mean
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estimation setting considered by existing work on median, trimmed mean and iterative filter-
ing. To overcome this difficulty, we make use of careful covering net arguments to establish
certain error bounds that hold uniformly over the parameter space, regardless of the be-
havior of the Byzantine machines. Importantly, our inexact oracle framework allows such
arguments to be implemented in a transparent and modular manner.

Notation

For an integer N > 0, define the set [N ] := {1, 2, . . . , N}. For matrices, denote the operator
norm by ‖·‖2; for symmetric matrices, denote the largest and smallest eigenvalues by λmax(·)
and λmin(·), respectively. The d-dimensional `2 ball centered at w with radius r is denoted

by B(d)
w (r), or Bw(r) when it is clear from the context.

4.2 Related Work

Algorithm PGD Neon+GD Neon2+GD ByzantinePGD

Byzantine-robust? no no no yes

Purpose of perturbation escape SP escape SP escape SP
escape SP

& robustness

Escaping method GD NC search NC search inexact GD

Termination criterion decrease in F decrease in F distance in W distance in W
Multiple rounds? no no no yes

Table 4.1: Comparison with PGD, Neon+GD, and Neon2+GD. SP = saddle point.

Robust Aggregation Method Non-convex Guarantee

Feng, Xu, and Mannor [68] geometric median no

Chen, Su, and Xu [41] geometric median no

Blanchard et al. [23] Krum first-order

Yin et al. [197] median, trimmed mean first-order

Xie, Koyejo, and Gupta [192]
mean-around-median

marginal median first-order

Alistarh, Allen-Zhu, and Li [4] martingale-based no

Su and Xu [174] iterative filtering no

This work
median, trimmed mean

iterative filtering second-order

Table 4.2: Comparison with other Byzantine-robust distributed learning algorithms.
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Efficient first-order algorithms for escaping saddle points Our algorithm is related
to a recent line of work which develops efficient first-order algorithms for escaping saddle
points. Although vanilla GD converges to local minimizers almost surely [119, 118], achieving
convergence in polynomial time requires more a careful algorithmic design [61]. Such conver-
gence guarantees are enjoyed by several GD-based algorithms; examples include PGD [94],
Neon+GD [196], and Neon2+GD [7]. The general idea of these algorithms is to run GD and
add perturbation to the iterate when the gradient is small. While our algorithm also uses
this idea, the design and analysis techniques of our algorithm are significantly different from
the work above in the following aspects (also summarized in Table 4.1).

• In our algorithm, besides helping with escaping saddle points, the random perturbation
has the additional role of defending against adversarial errors.

• The perturbation used in our algorithm needs to be larger, yet carefully calibrated, in
order to account for the influence of the inexactness of gradients across the iterations,
especially iterations for escaping saddle points.

• We run inexact GD after the random perturbation, while Neon+GD and Neon2+GD
use negative curvature (NC) search. It is not immediately clear whether NC search can
be robustified against Byzantine failures. Compared to PGD, our analysis is arguably
simpler and more straightforward.

• Our algorithm does not use the value of the loss function (hence no need for robust
function value estimation); PGD and Neon+GD assume access to the (exact) function
values.

• We employed multiple rounds of perturbation to boost the probability of escaping
saddle points; this technique is not used in PGD, Neon+GD, or Neon2+GD.

Inexact oracles Optimization with an inexact oracle (e.g. noisy gradients) has been stud-
ied in various settings such as general convex optimization [20, 56], robust estimation [152],
and structured non-convex problems [14, 42, 29, 205]. Particularly relevant to us is the recent
work by Jin et al. [95], who consider the problem of minimizing F when only given access to

the gradients of another smooth function F̂ satisfying ‖∇F̂ (w)−∇F (w)‖∞ ≤ ∆/
√
d, ∀w.

Their algorithm uses Gaussian smoothing on F̂ . We emphasize that the inexact gradient
setting considered by them is much more benign than our Byzantine setting, since (i) their
inexactness is defined in terms of `∞ norm whereas the inexactness in our problem is in
`2 norm, and (ii) we assume that the inexact gradient can be any vector within ∆ error,
and thus the smoothing technique is not applicable in our problem. Moreover, the itera-
tion complexity obtained by Jin et al. [95] may be a high-degree polynomial of the problem
parameters and thus not suitable for distributed implementation.
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Byzantine-robust distributed learning Solving large scale learning problems in dis-
tributed systems has received much attention in recent years, where communication effi-
ciency and Byzantine robustness are two important topics [165, 117, 23, 38, 49]. Here, we
compare with existing Byzantine-robust distributed learning algorithms that are most rele-
vant to our work, and summarize the comparison in Table 4.2. A general idea of designing
Byzantine-robust algorithms is to combine optimization algorithms with a robust aggrega-
tion (or outlier removal) subroutine. For convex losses, the aggregation subroutines analyzed
in the literature include geometric median [68, 41], iterative filtering for the high dimensional
setting [174], and martingale-based methods for the SGD setting [4]. For non-convex losses,
to the best of our knowledge, existing works only provide first-order convergence guarantee
(i.e., small gradients), by using aggregation subroutines such as the Krum function [23], me-
dian and trimmed mean as we discussed in Chapter 3, mean-around-median and marginal
median [192]. In this chapter, we make use of subroutines based on median, trimmed mean,
and iterative filtering. Our results based on the iterative filtering subroutine, on the other
hand, are new:

• The problem that we tackle is harder than what is considered in the original iterative
filtering papers [58, 57]. There they only consider robust estimation of a single mean
parameter, where as we guarantee robust gradient estimation over the parameter space.

• Recent work by Su and Xu [174] also makes use of the iterative filtering subroutine
for the Byzantine setting. They only study strongly convex loss functions, and assume
that the gradients are sub-exponential and d ≤ O(

√
mn). Our results apply to the

non-convex case and do not require the aforementioned condition on d (which may
therefore scale, for example, linearly with the sample size mn), but we impose the
stronger assumption of sub-Gaussian gradients.

Other non-convex optimization algorithms Besides first-order GD-based algorithms,
many other non-convex optimization methods that can provably converge to approximate
local minimum have received much attention in recent years. For specific problems such as
phase retrieval [29], low-rank estimation [42, 211], and dictionary learning [2, 176], many
algorithms are developed by leveraging the particular structure of the problems, and the
either use a smart initialization [29, 181] or initialize randomly [43, 36]. Other algorithms
are developed for general non-convex optimization, and they can be classified into gradient-
based [71, 123, 196, 6, 7, 96], Hessian-vector-product-based [33, 3, 161, 160], and Hessian-
based [145, 48] methods. While algorithms using Hessian information can usually achieve
better convergence rates—for example, O( 1

ε3/2
) by Curtis, Robinson, and Samadi [48], and

O( 1
ε7/4

) by Carmon et al. [33]— gradient-based methods are easier to implement in practice,
especially in the distributed setting we are interested in.

Robust statistics Outlier-robust estimation is a classical topic in statistics [90]. The
coordinate-wise median aggregation subroutine that we consider is related to the median-of-
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means estimator [143, 93], which has been applied to various robust inference problems [138,
129, 139].

A recent line of work develops efficient robust estimation algorithms in high-dimensional
settings [22, 58, 113, 35, 170, 124, 21, 102, 127]. In the centralized setting, the recent
work [59] proposes a scheme, similar to the iterative filtering procedure, that iteratively
removes outliers for gradient-based optimization.

4.3 Problem Setup

We consider empirical risk minimization for a statistical learning problem where each data
point z is sampled from an unknown distribution D over the sample space Z. Let f(w; z)
be the loss function of a parameter vector w ∈ W ⊆ Rd, where W is the parameter space.
The population loss function is therefore given by F (w) := Ez∼D[f(w; z)].

We consider a distributed computing system with one master machine and m worker
machines, αm of which are Byzantine machines and the other (1 − α)m are normal. Each
worker machine has n data points sampled i.i.d. from D. Denote by zi,j the j-th data
point on the i-th worker machine, and let Fi(w) := 1

n

∑n
j=1 f(w; zi,j) be the empirical loss

function on the i-th machine. The master machine and worker machines can send and receive
messages via the following communication protocol: In each parallel iteration, the master
machine sends a parameter vector w to all the worker machines, and then each normal
worker machine computes the gradient of its empirical loss Fi(·) at w and sends the gradient
to the master machine. The Byzantine machines may be jointly controlled by an adversary
and send arbitrary or even malicious messages. We denote the unknown set of Byzantine
machines by B, where |B| = αm. With this notation, the gradient sent by the i-th worker
machine is

ĝi(w) =

{
∇Fi(w) i ∈ [m] \ B,
∗ i ∈ B,

(4.1)

where the symbol ∗ denotes an arbitrary vector. As mentioned, the adversary is assumed to
have complete knowledge of the algorithm used and the data stored on all machines, and the
Byzantine machines may collude [131] and adapt to the output of the master and normal
worker machines. We only make the mild assumption that the adversary cannot predict the
random numbers generated by the master machine.

We consider the scenario where F (w) is non-convex, and our goal to find an approximate
local minimizer of F (w). Note that a first-order stationary point (i.e., one with a small
gradient) is not necessarily close to a local minimizer, since the point may be a saddle
point whose Hessian matrix has a large negative eigenvalue. Accordingly, we seek to find
a second-order stationary point w̃, namely, one with a small gradient and a nearly positive
semidefinite Hessian:
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Definition 4.1 (Second-order stationarity). We say that w̃ is an (εg, εH)-second-order sta-
tionary point of a twice differentiable function F (·) if ‖∇F (w̃)‖2 ≤ εg and λmin

(
∇2F (w̃)

)
≥

−εH .

In the sequel, we make use of several standard concepts from continuous optimization.

Definition 4.2 (Smooth and Hessian-Lipschitz functions). A function h is called L-smooth

if supw 6=w′
‖∇h(w)−∇h(w′)‖2

‖w−w′‖2 ≤ L, and ρ-Hessian Lipschitz if supw 6=w′
‖∇2h(w)−∇2h(w′)‖2

‖w−w′‖2 ≤ ρ.

Throughout this chapter, the above properties are imposed on the population loss function
F (·).

Assumption 4.1. F is LF -smooth, and ρF -Hessian Lipschitz on W.

4.4 Byzantine Perturbed Gradient Descent

In this section, we describe our algorithm, Byzantine Perturbed Gradient Descent (Byzan-
tinePGD), which provably finds a second-order stationary point of the population loss F (·)
in the distributed setting with Byzantine machines. As mentioned, ByzantinePGD robustly
aggregates gradients from the worker machines, and performs multiple rounds of carefully
calibrated perturbation to combat the effect of Byzantine machines. We now elaborate.

It is well-known that naively aggregating the workers’ messages using standard averaging
can be arbitrarily skewed in the presence of just a single Byzantine machine. In view of this,
we introduce the subroutine GradAGG{ĝi(w)}mi=1, which robustly aggregates the gradients
{ĝi(w)}mi=1 collected from the m workers. We stipulate that GradAGG provides an estimate
of the true population gradient ∇F (·) with accuracy ∆, uniformly across W . This property
is formalized using the terminology of inexact gradient oracle.

Definition 4.3 (Inexact gradient oracle). We say that GradAGG provides a ∆-inexact gradi-
ent oracle for the population loss F (·) if, for every w ∈ W, we have ‖GradAGG{ĝi(w)}mi=1−
∇F (w)‖2 ≤ ∆.

Without loss of generality, we assume that ∆ ≤ 1 throughout the chapter. In this
section, we treat GradAGG as a given black box; in Section 4.5, we discuss several robust
aggregation algorithms and characterize their inexactness ∆. We emphasize that in the
Byzantine setting, the output of GradAGG can take values adversarially within the error
bounds; that is, GradAGG{ĝi(w)}mi=1 may output an arbitrary vector in the ball B∇F (w)(∆),
and this vector can depend on the data in all the machines and all previous iterations of the
algorithm.

The use of robust aggregation with bounded inexactness, however, is not yet sufficient
to guarantee convergence to an approximate local minimizer. As mentioned, the Byzantine
machines may create fake local minima that traps a vanilla gradient descent iteration. Our
ByzantinePGD algorithm is designed to escape such fake minima as well as any existing
saddle points of F .
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Algorithm

We now describe the details of our algorithm, given in the left panel of Algorithm 3. We
focus on unconstrained optimization, i.e., W = Rd. In Section 4.5, we show that the iterates
w during the algorithm actually stay in a bounded `2 ball centered at the initial iterate w0,
and we will discuss the statistical error rates within the bounded space.

In each parallel iteration, the master machine sends the current iterate w to all the worker
machines, and the worker machines send back {ĝi(w)}. The master machine aggregates the
workers’ gradients using GradAGG and computes a robust estimate ĝ(w) of the population
gradient ∇F (w). The master machine then performs a gradient descent step using ĝ(w).
This procedure is repeated until it reaches a point w̃ with ‖ĝ(w)‖2 ≤ ε for a pre-specified
threshold ε.

At this point, w̃ may lie near a saddle point whose Hessian has a large negative eigenvalue.
To escape this potential saddle point, the algorithm invokes the Escape routine (right panel
of Algorithm 3), which performs Q rounds of perturbation-and-descent operations. In each
round, the master machine perturbs w̃ randomly and independently within the ball Bw̃(r).
Let w′0 be the perturbed vector. Starting from the w′0, the algorithm conducts at most Tth

parallel iterations of ∆-inexact gradient descent (using GradAGG as before):

w′t = w′t−1 − ηĝ(w′t−1), t ≤ Tth. (4.2)

During this process, once we observe that ‖w′t −w′0‖2 ≥ R for some pre-specified threshold
R (this means the iterate moves by a sufficiently large distance in the parameter space), we
claim that w̃ is a saddle point and the algorithm has escaped it; we then resume ∆-inexact
gradient descent starting from w′t. If after Q rounds no sufficient move in the parameter
space is ever observed, we claim that w̃ is a second-order stationary point of F (w) and
output w̃.

Convergence Guarantees

In this section, we provide the theoretical result guaranteeing that Algorithm 3 converges
to a second-order stationary point. In Theorem 4.3, we let F ∗ := minw∈Rd F (w), w0 be the
initial iterate, and F0 := F (w0).

Theorem 4.3 (ByzantinePGD). Suppose that Assumptions 4.1 holds, and assume that
GradAGG provides a ∆-inexact gradient oracle for F (·) with ∆ ≤ 1. Given any δ ∈
(0, 1), choose the parameters for Algorithm 3 as follows: step-size η = 1

LF
, ε = 3∆,

r = 4∆3/5d3/10ρ
−1/2
F , R = ∆2/5d1/5ρ

−1/2
F ,

Q = 2 log

(
ρF (F0 − F ∗)

48LF δ(∆6/5d3/5 + ∆7/5d7/10)

)
, and

Tth =
LF

384(ρ
1/2
F + LF )(∆2/5d1/5 + ∆3/5d3/10)

.
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ByzantinePGD(w0, η, ε, r, Q,R, Tth)

w← w0

while true do
Master: send w to worker machines.
for all i ∈ [m] do in parallel

Worker i: compute ĝi(w)
send to master machine.

end for
Master:
ĝ(w)← GradAGG{ĝi(w)}mi=1.
if ‖ĝ(w)‖2 ≤ ε then

Master:
w̃← w,
(esc,w, ĝ(w))← Escape (w̃, η, r, Q,

R, Tth).
if esc = false then

return w̃.
end if

end if
Master: w← w − ηĝ(w).

end while

Escape(w̃, η, r, Q,R, Tth)

for k = 1, 2, . . . , Q do
Master: sample pk ∼ Unif(B0(r)),
w′ ← w̃ + pk, w′0 ← w′.
for t = 0, 1, . . . , Tth do

Master: send w′ to worker machines.
for all i ∈ [m] do in parallel

Worker i: compute ĝi(w
′)

send to master machine.
end for
Master:
ĝ(w′)← GradAGG{ĝi(w′)}mi=1.
if ‖w′ −w′0‖2 ≥ R then

return (true,w′, ĝ(w′)).
else

w′ ← w′ − ηĝ(w′)
end if

end for
end for
return (false,w′, ĝ(w′)).

Algorithm 3: Byzantine Perturbed Gradient Descent (ByzantinePGD)

Then, with probability at least 1 − δ, the output of Algorithm 3, denoted by w̃, satisfies the
bounds

‖∇F (w̃)‖2 ≤ 4∆,

λmin

(
∇2F (w̃)

)
≥ −1900

(
ρ

1/2
F + LF

)
∆2/5d1/5 log

(10

∆

)
,

(4.3)

and the algorithm terminates within 2(F0−F ∗)LF
3∆2 Q parallel iterations.

Below let us parse the above theorem and discuss its implications.
Focusing on the scaling with ∆, we may read off from Theorem 4.3 the following result:

Observation 4.1. Under the above setting, within Õ( 1
∆2 ) parallel iterations, ByzantinePGD

outputs an (O(∆), Õ(∆2/5))-second-order stationary point w̃ of F (·);1 that is,

‖∇F (w̃)‖2 ≤ 4∆ and λmin(∇2F (w̃)) ≥ −Õ(∆2/5).

1Here, by using the symbol Õ, we ignore logarithmic factors and only consider the dependence on ∆.
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In terms of the iteration complexity, it is well-known that for a smooth non-convex F (·),
gradient descent requires at least 1

∆2 iterations to achieve ‖∇F (w̃)‖2 ≤ O(∆) [144]; up
to logarithmic factors, our result matches this complexity bound. In addition, our O(∆)
first-order guarantee is clearly order-wise optimal, as the gradient oracle is ∆-inexact. It is
currently unclear to us whether our Õ(∆2/5) second-order guarantee is optimal. We provide
a converse result showing that one cannot hope to achieve a second-order guarantee better
than O(∆1/2).

Proposition 4.1. There exists a class of real-valued 1-smooth and 1-Hessian Lipschitz differ-
entiable functions F such that, for any algorithm that only uses a ∆-inexact gradient oracle,
there exists f ∈ F such that the output of the algorithm w̃ must satisfy ‖∇F (w̃)‖2 > ∆/2
and λmin(∇2F (w̃)) < −∆1/2/2.

Again, we emphasize that our results above are in fact not restricted to the Byzantine
distributed learning setting. They apply to any non-convex optimization problems (dis-
tributed or not) with inexact information for the gradients, including those with noisy but
non-adversarial gradients; see Section 4.2 for comparison with related work in such settings.

As a byproduct, we can show that with a different choice of parameters, ByzantinePGD
can be used in the standard (non-distribued) setting with access to the exact gradient

∇F (w), and the algorithm converges to an (ε, Õ(
√
ε))-second-order stationary point within

O( 1
ε2

) iterations:

Theorem 4.4 (Exact gradient oracle). Suppose that Assumptions 4.1 holds, and assume
that for any query point w we can obtain exact gradient, i.e., ĝ(w) ≡ ∇F (w). For any
ε ∈ (0,min{ 1

ρF
, 4
L2
F ρF
}) and δ ∈ (0, 1), we choose the parameters in Algorithm 3 as follows:

step-size η = 1/LF , Q = 1, r = ε, and R =
√
ε/ρF , Tth = L

12ρF (R+r)
. Then, with probability

at least 1− δ, Algorithm 3 outputs a w̃ satisfying the bounds

‖∇F (w̃)‖2 ≤ε,

λmin(∇2F (w̃)) ≥− 60
√
ρF ε log

(8ρF
√
d(F0 − F ∗)
δε2

)
,

and the algorithm terminates within 2LF (F0−F ∗)
ε2

iterations.

The convergence guarantee above matches that of the original PGD algorithm [94] up
to logarithmic factors. Moreover, our proof is considerably simpler, and our algorithm only
requires gradient information, whereas the original PGD algorithm also needs function values.

4.5 Robust Estimation of Gradients

The results in the previous section can be applied as long as one has a robust aggregation
subroutine GradAGG that provides a ∆-inexact gradient oracle of the population loss F . In



CHAPTER 4. SADDLE POINT ATTACK IN BYZANTINE-ROBUST DISTRIBUTED
LEARNING 94

this section, we discuss three concrete examples of GradAGG: median, trimmed mean, and a
high-dimension robust estimator based on the iterative filtering algorithm [58, 57, 170]. We
characterize their inexactness ∆ under the statistical setting in Section 4.3, where the data
points are sampled independently according to an unknown distribution D.

To describe our statistical results, we need the standard notions of sub-Gaussian and
sub-exponential random vectors.

Definition 4.4 (sub-Gaussianity and sub-exponentiality). A random vector x with mean

µ is said to be ζ-sub-Gaussian if E[exp(λ〈x − µ,u〉)] ≤ e
1
2
ζ2λ2‖u‖22 ,∀ λ,u. It is said to be

ξ-sub-exponential if E[exp(λ〈x− µ,u〉)] ≤ e
1
2
ξ2λ2‖u‖22 , ∀ |λ| < 1

ξ
,u.

We also need the following result, which shows that the iterates of ByzantinePGD in fact
stay in a bounded set around the initial iterate w0.

Proposition 4.2. Under the choice of algorithm parameters in Theorem 4.3, all the iterates
w in ByzantinePGD stay in the `2 ball Bw0(D/2) with D := C F0−F ∗

∆
, where C > 0 is a

number that only depends on LF and ρF .

Consequently, for the convergence guarantees of ByzantinePGD to hold, we only need
GradAGG to satisfy the inexact oracle property (Definition 4.3) within the bounded set
W = Bw0(D/2), with D given in Proposition 4.2. As shown below, the three aggregation
procedures indeed satisfy this property, with their inexactness ∆ depends mildly (logarith-
mically) on the radius D.

Iterative Filtering Algorithm

We start with a recently developed high-dimension robust estimation technique called the
iterative filtering algorithm [58, 57, 170] and use it to build the subroutine GradAGG. As
can be seen below, iterative filtering can tolerate a constant fraction of Byzantine machines
even when the dimension grows—an advantage over simpler algorithms such as median and
trimmed mean.

We relegate the details of the iterative filtering algorithm to Section 4.7. Again, we
emphasize that the original iterative filtering algorithm is proposed to robustly estimate a
single parameter vector, whereas in our setting, since the Byzantine machines may produce
unspecified probabilistic dependency across the iterations, we need to prove an error bound
for robust gradient estimation uniformly across the parameter space W . We prove such a
bound for iterative filtering under the following two assumptions on the gradients and the
smoothness of each loss function f(·; z).

Assumption 4.2. For each w ∈ W, ∇f(w; z) is ζ-sub-Gaussian.

Assumption 4.3. For each z ∈ Z, f(·; z) is L-smooth.

Let Σ(w) be the covariance matrix of ∇f(w; z), and define σ := supw∈W ‖Σ(w)‖1/2
2 . We

have the following bounds on the inexactness parameter of iterative filtering.
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Theorem 4.5 (Iterative Filtering). Suppose that Assumptions 4.2 and 4.3 hold. Use the
iterative filtering algorithm described in Section 4.7 for GradAGG, and assume that α ≤ 1

4
.

With probability 1− o(1), GradAGG provides a ∆ftr-inexact gradient oracle with

∆ftr ≤ c

(
(σ + ζ)

√
α

n
+ ζ

√
d

nm

)√
log(nmDL),

where c is an absolute constant.

The proof of Theorem 4.5 is given in Section 4.7. Assuming bounded σ and ζ, we see

that iterative filtering provides an Õ
(√

α
n

+
√

d
nm

)
-inexact gradient oracle.

Median and Trimmed Mean

The median and trimmed mean operations are two widely used robust estimation methods.
While the dependence of their performance on d is not optimal, they are conceptually simple
and computationally fast, and still have good performance in low dimensional settings. We
apply these operations in a coordinate-wise fashion to build GradAGG.

Formally, for a set of vectors xi ∈ Rd, i ∈ [m], their coordinate-wise median u :=
med{xi}mi=1 is a vector with its k-th coordinate being uk = med{xik}mi=1 for each k ∈ [d],
where med is the usual (one-dimensional) median. The coordinate-wise β-trimmed mean
u := trmeanβ{xi}mi=1 is a vector with uk = 1

(1−2β)m

∑
x∈Uk x for each k ∈ [d], where Uk is

a subset of {x1
k, . . . , x

m
k } obtained by removing the largest and smallest β fraction of its

elements.
For robust estimation of the gradient in the Byzantine setting, the error bounds of median

and trimmed mean have been studied in Chapter 3. For completeness, we record their results
below as an informal theorem.

Theorem 4.6 (Informal). Under appropriate smoothness and probabilistic assumptions,2

with high probability, the median operation provides a ∆med-inexact gradient oracle with

∆med . α
√
d√
n

+ d√
nm

+
√
d
n

, and the trimmed mean operation provides a ∆tm-inexact gradient

oracle with ∆tm . αd√
n

+ d√
nm

.

Comparison and Optimality

In Table 4.3, we compare the above three algorithms in terms of the dependence of their
gradient inexactness ∆ on the problem parameters α, n, m, and d . We see that when
d = O(1), the median and trimmed mean algorithms have better inexactness due to a better
scaling with α. When d is large, iterative filtering becomes preferable.

2Specifically, for median we assume that gradients have bounded skewness, and for trimmed mean we
assume that the gradients are sub-exponentially distributed.
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Gradient inexactness ∆

median Õ
(
α
√
d√
n

+ d√
nm

+
√
d
n

)
trimmed mean Õ

(
αd√
n

+ d√
nm

)
iterative filtering Õ

(√
α√
n

+
√
d√
nm

)
Table 4.3: Statistical bounds on gradient inexactness ∆.

Recall that according to Observation 4.1, with ∆-inexact gradients the ByzantinePGD
algorithm converges to an (O(∆), Õ(∆2/5))-second-order stationary point. Combining this
general result with the bounds in Table 4.3, we obtain explicit statistical guarantees on the
output of ByzantinePGD. To understand the statistical optimality of these guarantees, we
provide a converse result below.

Observation 4.2. There exists a statistical learning problem in the Byzantine setting such

that the output w̃ of any algorithm must satisfy ‖∇F (w̃)‖2 = Ω
(
α√
n

+
√
d√
nm

)
with a constant

probability.

In view of this observation, we see that in terms of the first-order guarantee (i.e., on
‖∇F (w̃)‖2) and up to logarithmic factors, trimmed mean is optimal if d = O(1), the median
is optimal if d = O(1) and n & m, and iterative filtering is optimal if α = Θ(1). The
statistical optimality of their second-order guarantees (i.e., on λmin(∇2F (w̃))) is currently
unclear to us, and we believe this is an interesting problem for future investigation.

4.6 Conclusions

In this chapter, we study security issues that arise in large-scale distributed learning because
of the presence of saddle points in non-convex loss functions. We observe that in the pres-
ence of non-convexity and Byzantine machines, escaping saddle points becomes much more
challenging. We develop ByzantinePGD, a computation- and communication-efficient algo-
rithm that is able to provably escape saddle points and converge to a second-order stationary
point, even in the presence of Byzantine machines. We also discuss three different choices of
the robust gradient and function value aggregation subroutines in ByzantinePGD—median,
trimmed mean, and the iterative filtering algorithm. We characterize their performance in
statistical settings, and argue for their near-optimality in different regimes including the high
dimensional setting.
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4.7 Proofs

Challenges of Escaping Saddle Points in the Adversarial Setting

We provide two examples showing that in non-convex setting with saddle points, inexact
oracle can lead to much worse sub-optimal solutions than in the convex setting, and that in
the adversarial setting, escaping saddle points can be inherently harder than the adversary-
free case.

Consider standard gradient descent using exact or ∆-inexact gradients. Our first example
shows that Byzantine machines have a more severe impact in the non-convex case than in
the convex case.

Example 1. Let d = 1 and consider the functions F (1)(w) = (w − 1)2 and F (2)(w) =
(w2 − 1)2/4. Here F (1) is strongly convex with a unique local minimizer w∗ = 1, whereas
F (2) has two local (in fact, global) minimizers w∗ = ±1 and a saddle point (in fact, a local
maximum) w = 0. Proposition 4.3 below shows the following: for the convex F (1), gradient
descent (GD) finds a near-optimal solution with sub-optimality proportional to ∆, regardless
of initialization; for the nonconvex F (2), GD initialized near the saddle point w = 0 suffers
from an Ω(1) sub-optimality gap.

Proposition 4.3. Suppose that ∆ ≤ 1/2. Under the setting above, the following holds.
(i) For F (1), starting from any w0, GD using a ∆-inexact gradient oracle finds w with
F (1)(w)− F (1)(w∗) ≤ O(∆).
(ii) For F (2), there exists an adversarial strategy such that starting from a w0 sampled uni-
formly from [−r, r], GD with a ∆-inexact gradient oracle outputs w with F (2)(w)−F (2)(w∗) ≥
9
64
, ∀w∗ = ±1, with probability min{1, ∆

r
}.

Proof. Since F (2)(w) = 1
4
(w2 − 1)2, we have ∇F (2)(w) = w3 − w. For any w ∈ [−∆,∆],

|∇F (2)(w)| ≤ ∆ (since ∆ ≤ 1/2). Thus, the adversarial oracle can always output ĝ(w) = 0
when w ∈ [−∆,∆], and we have |ĝ(w)−∇F (2)(w)| ≤ ∆. Thus, if w ∈ [−∆,∆], the iterate
can no longer move with this adversarial strategy. Then, we have F (2)(w) − F (2)(w∗) ≥
F (2)(∆) − 0 ≥ 9

64
(since ∆ ≤ 1/2). The result for the convex function F (1) is a direct

corollary of Theorem 1 in Chapter 3.

Our second example shows that escaping saddle points is much harder in the Byzantine
setting than in the non-Byzantine setting.

Example 2. Let d = 2, and assume that in the neighborhood B0(b) of the origin, F takes
the quadratic form F (w) ≡ 1

2
w2

1 − λ
2
w2

2, with λ > εH .3 The origin w0 = 0 is not an (εg, εH)-
second-order stationary point, but rather a saddle point. Proposition 4.4 below shows that
exact GD escapes the saddle point almost surely, while GD with an inexact oracle fails to
do so.

3F (w) ≡ 1
2w

2
1 − λ

2w
2
2 holds locally around the origin, not globally; otherwise F (w) has no minimum.
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Proposition 4.4. Under the setting above, if one chooses r < b and sample w from B0(r)
uniformly at random, then:
(i) Using exact gradient descent, with probability 1, the iterate w eventually leaves B0(r).
(ii) There exists an adversarial strategy such that, when we update w using ∆-inexact gra-
dient oracle, if ∆ ≥ λr, with probability 1, the iterate w cannot leave B0(r); otherwise with

probability 2
π

(
arcsin

(
∆
λr

)
+ ∆

λr

√
1− ( ∆

λr
)2
)

the iterate w cannot leave B0(r).

Proof. Since F (w) = 1
2
w2

1− 1
2
λw2

2, ∀ w ∈ B0(r), we have ∇F (w) = [w1, −λw2]>. Sample w0

uniformly at random from B0(r), and we know that with probability 1, w0,2 6= 0. Then, by
running exact gradient descent wt+1 = wt−η∇F (wt), we can see that the second coordinate
of wt is wt,2 = (1 + ηλ)tw0,2. When w0,2, we know that as t gets large, we eventually have
wt,2 > r, which implies that the iterate leaves B0(r).

On the other hand, suppose that we run ∆-inexact gradient descent, i.e., wt+1 = wt −
ηĝ(wt) with ‖ĝ(wt) − ∇F (wt)‖2 ≤ ∆. In the first step, if |w0,2| ≤ ∆

λ
, the adversary

can simply replace ∇F (w0) with ĝ(w0) = [w0,1, 0]> (one can check that here we have
‖ĝ(w0) − ∇F (w0)‖2 ≤ ∆), and then the second coordinate of w1 does not change, i.e.,
w1,2 = w0,2. In the following iterations, the adversary can keep using the same strategy and
the second coordinate of w never changes, and then the iterates cannot escape B0(r), since
F (w) is a strongly convex function in its first coordinate. To compute the probability of
getting stuck at the saddle point, we only need to compute the area of the region {w ∈
B0(r) : |w2| ≤ ∆

λ
}, which can be done via simple geometry.

Remark. Even if we choose the largest possible perturbation in B0(r), i.e., sample w from
the circle {w ∈ R2 : ‖w‖2 = r}, the stuck region still exists. We can compute the length of
the arc {‖w‖2 = r : |w2| ≤ ∆

λ
} and find the probability of stuck. One can find that when

∆ ≥ λr, the probability of being stuck in B0(r) is still 1, otherwise, the probability of being
stuck is 2

π
(arcsin( ∆

λr
)).

The above examples show that the adversary can significantly alter the landscape of the
function near a saddle point. We counter this by exerting a large perturbation on the iterate
so that it escapes this bad region. The amount of perturbation is carefully calibrated to
ensure that the algorithm finds a descent direction “steep” enough to be preserved under
∆-corruption, while not compromising the accuracy. Multiple rounds of perturbation are
performed, boosting the escape probability exponentially.

Proof of Theorem 4.3

We first analyze the gradient descent step with ∆-inexact gradient oracle.

Lemma 4.1. Suppose that η = 1/LF . For any w ∈ W, if we run the following inexact
gradient descent step:

w′ = w − ηĝ(w), (4.4)
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with ‖ĝ(w)−∇F (w)‖2 ≤ ∆. Then, we have

F (w′) ≤ F (w)− 1

2LF
‖∇F (w)‖2

2 +
1

2LF
∆2.

Proof. Since F (w) is LF smooth, we know that

F (w′) ≤F (w) + 〈∇F (w),w′ −w〉+
LF
2
‖w′ −w‖2

2

=F (w)− 〈∇F (w),
1

LF
(ĝ(w)−∇F (w))〉 − 〈∇F (w),

1

LF
∇F (w)〉

+
1

2LF
‖ĝ(w)−∇F (w) +∇F (w)‖2

2

≤F (w)− 1

2LF
‖∇F (w)‖2

2 +
1

2LF
∆2.

Let ε be the threshold on ‖ĝ(w̃)‖2 that the algorithm uses to determine whether or not
to add perturbation. Choose ε = 3∆. Suppose that at a particular iterate w̃, we observe
‖ĝ(w̃)‖2 > ε. Then, we know that

‖∇F (w̃)‖2 ≥ ‖ĝ(w̃)‖2 −∆ ≥ 2∆.

According to Lemma 4.1, by running one iteration of the inexact gradient descent step, the
decrease in function value is at least

1

2LF
‖∇F (w̃)‖2

2 −
1

2LF
∆2 ≥ 3∆2

2LF
. (4.5)

We proceed to analyze the perturbation step, which happens when the algorithm arrives
at an iterate w̃ with ‖ĝ(w̃)‖2 ≤ ε. In this proof, we slightly abuse the notation. Recall
that in equation (4.2) in Section 4.4 , we use w′t (0 ≤ t ≤ Tth) to denote the iterates of
the algorithm in the saddle point escaping process. Here, we simply use wt to denote these
iterates. We start with the definition of stuck region at w̃ ∈ W .

Definition 4.5. Given w̃ ∈ W, and parameters r, R, and Tth, the stuck region

WS(w̃, r, R, Tth) ⊆ Bw̃(r)

is a set of w0 ∈ Bw̃(r) which satisfies the following property: there exists an adversarial
strategy such that when we start with w0 and run Tth gradient descent steps with ∆-inexact
gradient oracle ĝ(w):

wt = wt−1 − ηĝ(wt−1), t = 1, 2, . . . , Tth, (4.6)

we observe ‖wt −w0‖2 < R, ∀ t ≤ Tth.
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When it is clear from the context, we may simply use the terminology stuck region WS

at w̃. The following lemma shows that if ∇2F (w̃) has a large negative eigenvalue, then the
stuck region has a small width along the direction of the eigenvector associated with this
negative eigenvalue.

Lemma 4.2. Assume that the smallest eigenvalue of H := ∇2F (w̃) satisfies λmin(H) ≤
−γ < 0, and let the unit vector e be the eigenvector associated with λmin(H). Let u0,y0 ∈
Bw̃(r) be two points such that y0 = u0 + µ0e with some µ0 ≥ µ ∈ (0, r). Choose step size
η = 1

LF
, and consider the stuck region WS(w̃, r, R, Tth). Suppose that r, R, Tth, and µ satisfy

4

Tth =
2

ηγ
log9/4(

2(R + r)

µ
), (4.7)

R ≥ µ, (4.8)

ρF (R + r)µ ≥ ∆, (4.9)

γ ≥ 24ρF (R + r) log9/4(
2(R + r)

µ
). (4.10)

Then, there must be either u0 /∈WS or y0 /∈WS.

With this lemma, we proceed to analyze the probability that the algorithm escapes the
saddle points. In particular, we bound the probability that w0 ∈ WS(w̃, r, R, Tth) when
λmin(∇2F (w̃)) ≤ −γ and w0 is drawn from Bw̃(r) uniform at random.

Lemma 4.3. Assume that λmin(∇2F (w̃)) ≤ −γ < 0, and let the unit vector e be the
eigenvector associated with λmin(∇2F (w̃)). Consider the stuck region WS(w̃, r, R, Tth) at w̃,
and suppose that r, R, Tth, and µ satisfy the conditions in (4.7)-(4.10). Then, when we
sample w0 from Bw̃(r) uniformly at random, the probability that w0 ∈WS(w̃, r, R, Tth) is at

most 2µ
√
d

r
.

Proof. Since the starting point w0 is uniformly distributed in Bw̃(r), to bound the probability
of getting stuck, it suffices to bound the volume of WS. Let 1WS

(w) be the indicator function
of the set WS. For any w ∈ Rd, let w(1) be the projection of w onto the e direction, and
w(−1) ∈ Rd−1 be the remaining component of w. Then, we have

Vol(WS) =

∫
B(d)
w̃

(r)

1WS
(w)dw

=

∫
B(d−1)
w̃

(r)

dw(−1)

∫ w̃(1)+
√
r2−‖w̃(−1)−w(−1)‖22

w̃(1)−
√
r2−‖w̃(−1)−w(−1)‖22

1WS
(w)dw̃(1)

≤2µ

∫
B(d−1)
w̃

(r)

dw(−1)

=2µVol(B(d−1)
0 (r)),

4Without loss of generality, here we assume that 2
ηγ log9/4( 2(R+r)

µ ) is an integer, so that Tth is an integer.
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where the inequality is due to Lemma 4.2. Then, we know that the probability of getting
stuck is

Vol(WS)

Vol(B(d)
0 (r))

≤2µ
Vol(B(d−1)

0 (r))

Vol(B(d)
0 (r))

=
2µ√
πr

Γ(d
2

+ 1)

Γ(d
2

+ 1
2
)
≤ 2µ√

πr

√
d

2
+

1

2
≤ 2µ

√
d

r
,

where we use the fact that Γ(x+1)

Γ(x+ 1
2

)
<
√
x+ 1

2
for any x ≥ 0.

We then analyze the decrease of value of the population loss function F (·) when we
conduct the perturbation step. Assume that we successfully escape the saddle point, i.e.,
there exists t ≤ Tth such that ‖wt −w0‖2 ≥ R. The following lemma provides the decrease
of F (·).

Lemma 4.4. Suppose that λmin(∇2F (w̃)) ≤ −γ < 0, and at w̃, we observe ‖ĝ(w̃)‖2 ≤ ε =
3∆. Assume that w0 ∈ Bw̃(r) and that w0 /∈ WS(w̃, r, R, Tth). Let t ≤ Tth be the step such
that ‖wt −w0‖2 ≥ R. Then, we have

F (w̃)− F (wt) ≥
LF
4Tth

R2 − ∆2Tth

LF
− 4∆r − LF

2
r2. (4.11)

Next, we choose the quantities µ, r, R, and γ such that (i) the conditions (4.7)-(4.10)
in Lemma 4.2 are satisfied, (ii) the probability of escaping saddle point in Lemma 4.3 is at
least a constant, and (iii) the decrease in function value in (4.11) is large enough. We first
choose

µ = ∆3/5d−1/5ρ
−1/2
F , (4.12)

r = 4∆3/5d3/10ρ
−1/2
F , (4.13)

R = ∆2/5d1/5ρ
−1/2
F . (4.14)

One can simply check that, according to Lemma 4.3, when we drawn w0 from Bw̃(r) uni-
formly at random, the probability that w0 ∈ WS(w̃, r, R, Tth) is at most 1/2. Since we
assume that ∆ ≤ 1, one can also check that the condition (4.8) is satisfied. In addition,
since ρFRµ = ∆, the condition (4.9) is also satisfied. According to (4.7), we have

Tth =
2LF
γ

log9/4(
2d2/5

∆1/5
+ 8d1/2). (4.15)

In the following, we choose

γ = 768(ρ
1/2
F + LF )(∆2/5d1/5 + ∆3/5d3/10) log9/4(

2d2/5

∆1/5
+ 8d1/2), (4.16)

which implies

Tth =
LF

384(ρ
1/2
F + LF )(∆2/5d1/5 + ∆3/5d3/10)

(4.17)
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Then we check condition (4.10) holds. We have

24ρF (R + r) log9/4(
2(R + r)

µ
) = 24ρ

1/2
F (∆2/5d1/5 + 4∆3/5d3/10) log9/4(

2d2/5

∆1/5
+ 8d1/2) ≤ γ.

Next, we consider the decrease in function value in (4.11). Using the equations (4.15)
and (4.16), we can show the following three inequalities by direct algebra manipulation.

LF
4Tth

R2 ≥ 6
∆2Tth

LF
, (4.18)

LF
4Tth

R2 ≥ 24∆r, (4.19)

LF
4Tth

R2 ≥ 3LF r
2. (4.20)

By adding up (4.18), (4.19), and (4.20), we obtain

LF
4Tth

R2 ≥ 2
∆2Tth

LF
+ 8∆r + LF r

2,

which implies that when we successfully escape the saddle point, we have

F (w̃)− F (wt) ≥
LF
8Tth

R2 = 48(ρ
−1/2
F + LFρ

−1
F )(∆6/5d3/5 + ∆7/5d7/10). (4.21)

Then, one can simply check that, the average decrease in function value during the successful
round of the Escape process is

F (w̃)− F (wt)

t
≥ F (w̃)− F (wt)

Tth

≥ 2(∆8/5d4/5 + ∆2d)

LF
>

3∆2

2LF
. (4.22)

Recall that according to (4.5), when the algorithm is not in the Escape process, the function
value is decreased by at least 3∆2

2LF
in each iteration. Therefore, if the algorithm successfully

escapes the saddle point, during the Escape process, the average decrease in function value
is larger than the iterations which are not in this process.

So far, we have chosen the algorithm parameters r, R, Tth, as well as the final second-
order convergence guarantee γ. Now we proceed to analyze the total number of iterations
and the failure probability of the algorithm. According to Lemma 4.3 and the choice of µ
and r, we know that at each point with ‖ĝ(w̃)‖2 ≤ ε, the algorithm can successfully escape
this saddle point with probability at least 1/2. To boost the probability of escaping saddle
points, we need to repeat the process Q rounds in Escape, independently. Since for each
successful round, the function value decrease is at least

48(ρ
−1/2
F + LFρ

−1
F )(∆6/5d3/5 + ∆7/5d7/10) ≥ 48LFρ

−1
F (∆6/5d3/5 + ∆7/5d7/10),
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and the function value can decrease at most F0−F ∗. Therefore, the total number of saddle
points that we need to escape is at most

ρF (F0 − F ∗)
48LF (∆6/5d3/5 + ∆7/5d7/10)

. (4.23)

Therefore, by union bound, the failure probability of the algorithm is at most

ρF (F0 − F ∗)
48LF (∆6/5d3/5 + ∆7/5d7/10)

(
1

2
)Q,

and to make the failure probability at most δ, one can choose

Q ≥ 2 log

(
ρF (F0 − F ∗)

48LF δ(∆6/5d3/5 + ∆7/5d7/10)

)
. (4.24)

Again, due to the fact that the function value decrease is at most F0−F ∗, and in each effective
iteration, the function value is decreased by at least 3∆2

2LF
. (Here, the effective iterations are

the iterations when the algorithm is not in the Escape process and the iterations when the
algorithm successfully escapes the saddle points.) The total number of effective iterations is
at most

2(F0 − F ∗)LF
3∆2

. (4.25)

Combing with (4.24), we know that the total number of parallel iterations is at most

4(F0 − F ∗)LF
3∆2

log

(
ρF (F0 − F ∗)

48LF δ(∆6/5d3/5 + ∆7/5d7/10)

)
.

When all the algorithm terminates, and the saddle point escaping process is successful, the
output of the algorithm w̃ satisfies ‖ĝ(w̃)‖2 ≤ ε, which implies that ‖∇F (w̃)‖2 ≤ 4∆, and

λmin(∇2F (w̃)) ≥ −γ = −768(ρ
1/2
F + LF )(∆2/5d1/5 + ∆3/5d3/10) log9/4(

2d2/5

∆1/5
+ 8d1/2)

≥ −950(ρ
1/2
F + LF )(∆2/5d1/5 + ∆3/5d3/10) log(

2d2/5

∆1/5
+ 8d1/2).

(4.26)

We next show that we can simplify the guarantee as

λmin(∇2F (w̃)) ≥ −1900(ρ
1/2
F + LF )∆2/5d1/5 log(

10

∆
). (4.27)

We can see that if ∆ ≤ 1√
d
, then ∆3/5d3/10 ≤ ∆2/5d1/5 and 2d2/5

∆1/5 + 8d1/2 ≤ 10
∆

. Thus, the

bound (4.27) holds. On the other hand, when ∆ > 1√
d
, we have ∆2/5d1/5 > 1 and thus

1900(ρ
1/2
F + LF )∆2/5d1/5 log(

10

∆
) > LF .

By the smoothness of F (·), we know that λmin(∇2F (w̃)) ≥ −LF . Therefore, the bound (4.27)
still holds, and this completes the proof.
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Proof of Lemma 4.2

We prove by contradiction. Suppose that u0,y0 ∈WS. Let {ut} and {yt} be two sequences
generated by the following two iterations:

ut = ut−1 − ηĝ(ut−1), (4.28)

yt = yt−1 − ηĝ(yt−1), (4.29)

respectively, where ‖ĝ(w) −∇F (w)‖2 ≤ ∆ for any w ∈ W . According to our assumption,
we have ∀ t ≤ Tth, ‖ut − u0‖2 < R and ‖yt − y0‖2 < R.

Define vt := yt − ut, δt := ĝ(ut)−∇F (ut), and δ′t := ĝ(yt)−∇F (yt). Then we have

yt+1 = yt − η(∇F (yt) + δ′t)

= ut + vt − η(∇F (ut + vt) + δ′t)

= ut + vt − η∇F (ut)− η
[∫ 1

0

∇2F (ut + θvt)

]
vt − ηδ′t

= ut+1 + ηδt + vt − η
[∫ 1

0

∇2F (ut + θvt)dθ

]
vt − ηδ′t,

which yields
vt+1 = (I− ηH)vt − ηQtvt + η(δt − δ′t), (4.30)

where

Qt :=

∫ 1

0

∇2F (ut + θvt)dθ −H. (4.31)

By the Hessian Lipschitz property, we know that

‖Qt‖2 ≤ρF (‖ut − w̃‖2 + ‖yt − w̃‖2)

≤ρF (‖ut − u0‖2 + ‖u0 − w̃‖2 + ‖yt − y0‖2 + ‖y0 − w̃‖2)

≤2ρF (R + r).

(4.32)

We let ψt be the norm of the projection of vt onto the e direction, and φt be the norm of
the projection of vt onto the remaining subspace. By definition, we have ψ0 = µ0 ≥ µ > 0
and φ0 = 0. According to (4.30) and (4.32), we have

ψt+1 ≥ (1 + ηγ)ψt − 2ηρF (R + r)
√
ψ2
t + φ2

t − 2η∆, (4.33)

φt+1 ≤ (1 + ηγ)φt + 2ηρF (R + r)
√
ψ2
t + φ2

t + 2η∆. (4.34)

In the following, we use induction to prove that ∀ t ≤ Tth,

ψt ≥ (1 +
1

2
ηγ)ψt−1 and φt ≤

t

Tth

ψt (4.35)
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We know that (4.35) holds when t = 0 since we have φ0 = 0. Then, assume that for some
t < Tth, we have ∀ τ ≤ t, ψτ ≥ (1 + 1

2
ηγ)ψτ−1 and φτ ≤ τ

Tth
ψτ . We show that (4.35) holds

for t+ 1.
First, we show that ψt+1 ≥ (1 + 1

2
ηγ)ψt. Since ∀ τ ≤ t, ψτ ≥ ψτ−1, we know that

ψt ≥ ψ0 ≥ µ. Therefore, according to (4.9), we have

∆ ≤ ρF (R + r)µ ≤ ρF (R + r)ψt. (4.36)

In addition, since t < Tth, we have
φt ≤ ψt. (4.37)

Combining (4.36), (4.37) and (4.33), (4.34), we get

ψt+1 ≥ (1 + ηγ)ψt − 2ηρF (R + r)
√

2ψ2
t − 2ηρF (R + r)ψt > (1 + ηγ)ψt − 6ηρF (R + r)ψt,

(4.38)

φt+1 ≤ (1 + ηγ)φt + 2ηρF (R + r)
√

2ψ2
t + 2ηρF (R + r)ψt < (1 + ηγ)φt + 6ηρF (R + r)ψt.

(4.39)

According to (4.10), we have γ ≥ 24ρF (R + r) log9/4(2(R+r)
µ

) > 12ρF (R + r). Combining

with (4.38), we know that ψt+1 ≥ (1 + 1
2
ηγ)ψt.

Next, we show that φt+1 ≤ t+1
Tth
ψt+1. Combining with (4.38) and (4.39), we know that to

show φt+1 ≤ t+1
Tth
ψt+1, it suffices to show

(1 + ηγ)φt + 6ηρF (R + r)ψt ≤
t+ 1

Tth

[1 + ηγ − 6ηρF (R + r)]ψt. (4.40)

According to the induction assumption, we have φt ≤ t
Tth
ψt. Then, to show (4.40), it suffices

to show that

(1 + ηγ)t+ 6ηρF (R + r)Tth ≤ (t+ 1)[1 + ηγ − 6ηρF (R + r)] (4.41)

Since t+ 1 ≤ Tth, we know that to show (4.41), it suffices to show

12ηρF (R + r)Tth ≤ 1. (4.42)

Then, according to (4.7) and (4.10), we know that (4.42) holds, which completes the induc-
tion.

Next, according to (4.35), we know that

‖uTth − yTth‖2 ≥ φTth ≥ (1 +
1

2
ηγ)Tthµ0

≥ (1 +
1

2
ηγ)

2
ηγ

log9/4(
2(R+r)

µ
)µ0

≥ 2(R + r)

µ
· µ0 = 2(R + r),
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where the last inequality is due to the fact that η = 1
LF

and thus ηγ ≤ 1. On the other hand,
since we assume that u0,y0 ∈WS, we know that

‖uTth − yTth‖2 ≤ ‖uTth − u0‖2 + ‖yTth − y0‖2 + ‖u0 − y0‖2 < 2(R + r),

which leads to contradiction and thus completes the proof.

Proof of Lemma 4.4

Recall that we have the iterations wτ+1 = wτ − ηĝ(wτ ) for all τ < t. Let δτ = ∇F (wτ ) −
ĝ(wτ ), and then ‖δτ‖2 ≤ ∆. By the smoothness of F (·) and the fact that η = 1

LF
, we have

F (wτ )− F (wτ+1) ≥〈∇F (wτ ),wτ −wτ+1〉 −
LF
2
‖wτ −wτ+1‖2

2

=

〈
wτ −wτ+1

η
+ δτ ,wτ −wτ+1

〉
− LF

2
‖wτ −wτ+1‖2

2

=
LF
2
‖wτ −wτ+1‖2

2 + 〈δτ ,wτ −wτ+1〉

≥LF
4
‖wτ −wτ+1‖2

2 −
‖δτ‖2

2

LF

≥LF
4
‖wτ −wτ+1‖2

2 −
∆2

LF
.

(4.43)

By summing up (4.43) for τ = 0, 1, . . . , t− 1, we get

F (w0)− F (wt) ≥
LF
4

t−1∑
τ=0

‖wτ −wτ+1‖2
2 −

∆2t

LF
. (4.44)

Consider the k-th coordinate of wτ and wτ+1, by Cauchy-Schwarz inequality, we have

t−1∑
τ=0

(wτ,k − wτ+1,k)
2 ≥ 1

t
(w0,k − wt,k)2,

which implies
t−1∑
τ=0

‖wτ −wτ+1‖2
2 ≥

1

t
‖w0 −wt‖2

2. (4.45)

Combining (4.44) and (4.45), we obtain

F (w0)− F (wt) ≥
LF
4t
‖w0 −wt‖2

2 −
∆2t

LF
≥ LF

4Tth

R2 − ∆2Tth

LF
. (4.46)

On the other hand, by the smoothness of F (·), we have

F (w̃)− F (w0) ≥ 〈∇F (w̃), w̃ −w0〉 −
LF
2
‖w0 − w̃‖2

2 ≥ −(ε+ ∆)r − LF
2
r2. (4.47)
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Adding up (4.46) and (4.47), we obtain

F (w̃)− F (wt) ≥
LF
4Tth

R2 − ∆2Tth

LF
− (ε+ ∆)r − LF

2
r2, (4.48)

which completes the proof.

Proof of Theorem 4.4

First, when we run gradient descent iterations w′ = w− η∇F (w), according to Lemma 4.1,
we have

F (w′) ≤ F (w)− 1

2LF
‖∇F (w)‖2

2. (4.49)

Suppose at w̃, we observe that ‖∇F (w̃)‖2 ≤ ε, and then we start the Escape process. When
we have exact gradient oracle, we can still define the stuck region WS at w̃ as in the definition
of stuck region in Section 4.7, by simply replacing the inexact gradient oracle with the exact
oracle. Then, we can analyze the size of the stuck region according to Lemma 4.2. Assume
that the smallest eigenvalue of H := ∇2F (w̃) satisfies λmin(H) ≤ −γ < 0, and let the unit
vector e be the eigenvector associated with λmin(H). Let u0,y0 ∈ Bw̃(r) be two points such
that y0 = u0 + µ0e with some µ0 ≥ µ ∈ (0, r). Consider the stuck region WS(w̃, r, R, Tth).
Suppose that r, R, Tth, and µ satisfy

Tth =
2

ηγ
log9/4(

2(R + r)

µ
), (4.50)

R ≥ µ, (4.51)

γ ≥ 24ρF (R + r) log9/4(
2(R + r)

µ
). (4.52)

Then, there must be either u0 /∈ WS or y0 /∈ WS. In addition, according to Lemma 4.3,
if conditions (4.50)-(4.52) are satisfied, then, when we sample w0 from Bw̃(r) uniformly at

random, the probability that w0 ∈WS(w̃, r, R, Tth) is at most 2µ
√
d

r
. In addition, according

to (4.48) in the proof of Lemma 4.4, assume that w0 ∈ Bw̃(r) and that w0 /∈WS(w̃, r, R, Tth).
Let t ≤ Tth be the step such that ‖wt −w0‖2 ≥ R. Then, we have

F (w̃)− F (wt) ≥
LF
4Tth

R2 − εr − LF
2
r2. (4.53)

Combining (4.50) and (4.52), we know that the first term on the right hand side of (4.53)
satisfies

LF
4Tth

R2 ≥ 3ρFR
3. (4.54)

Choose R =
√
ε/ρF and r = ε. Then, we know that when ε ≤ min{ 1

ρF
, 4
L2
F ρF
}, we have

εr ≤ ρFR
3 and 1

2
LF r

2 ≤ ρFR
3. Combining these facts with (4.53) and (4.54), we know that,
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when the algorithm successfully escapes the saddle point, the decrease in function value
satisfies

F (w̃)− F (wt) ≥ ρFR
3. (4.55)

Therefore, the average function value decrease during the Escape process is at least

F (w̃)− F (wt)

Tth

≥ 12

LF
ε2. (4.56)

When we have exact gradient oracle, we choose Q = 1. According to (4.49) and (4.56), for the
iterations that are not in the Escape process, the function value decrease in each iteration
is at least 1

2LF
ε2; for the iterations in the Escape process, the function value decrease on

average is 12
LF
ε2. Since the function value can decrease at most F0 − F ∗, the algorithm must

terminate within 2LF (F0−F ∗)
ε2

iterations.
The we proceed to analyze the failure probability. We can see that the number of saddle

points that the algorithm may need to escape is at most F0−F ∗
ρFR3 . Then, by union bound the

probability that the algorithm fails to escape one of the saddle points is at most

2µ
√
d

r
· F0 − F ∗

ρFR3

By letting the above probability to be δ, we obtain

µ =
δε5/2

2
√
ρFd(F0 − F ∗)

,

which completes the proof.

Proof of Proposition 4.1

We consider the following class of one-dimensional functions indexed by s ∈ R:

F = {fs(·) : fs(w) = ∆3/2 sin(∆−1/2w + s), s ∈ R}.

Then, for each function fs(·) ∈ F , we have

∇fs(w) = ∆ cos(∆−1/2w + s),

and
∇2fs(w) = −∆1/2 sin(∆−1/2w + s).

Thus, we always have |∇fs(w)| ≤ ∆,∀w. Therefore, the ∆-inexact gradient oracle can simply
output 0 all the time. In addition, we verify that for all s and w, |∇2fs(w)| ≤ ∆1/2 ≤ 1 and
|∇3fs(w)| = | − cos(∆−1/2w+ s)| ≤ 1 under the assumption that ∆ ≤ 1, so all the functions
in F are 1-smooth and 1-Hessian Lipschitz as claimed.

In this case, the output of the algorithm does not depend on s, that is, the actual function
that we aim to minimize. Consequently, for any output w̃ of the algorithm, there exists s ∈ R
such that ∆−1/2w̃ + s = π/4, and thus |∇fs(w̃)| = ∆/

√
2 and λmin(∇2fs(w̃)) = −∆1/2/

√
2.
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Proof of Proposition 4.2

Suppose that during all the iterations, the Escape process is called E+1 times. In the first E
times, the algorithm escapes the saddle points, and in the last Escape process, the algorithm
does not escape and outputs w̃. For the first E processes, there might be up to Q rounds of
perturb-and-descent operations, and we only consider the successful descent round. We can
then partition the algorithm into E+1 segments. We denote the starting and ending iterates
of the t-th segment by wt and w̃t, respectively, and denote the length (number of inexact
gradient descent iterations) by Tt. When the algorithm reaches w̃t, we randomly perturb
w̃t to wt+1, and thus we have ‖w̃t − wt+1‖2 ≤ r for every t = 0, 1, . . . , E − 1. According
to (4.25), we know that

E∑
t=0

Tt ≤
2(F0 − F ∗)LF

3∆2
:= T̃ ,

and according to (4.23), we have

E ≤ ρF (F0 − F ∗)
48LF (∆6/5d3/5 + ∆7/5d7/10)

.

According to (4.46), we know that

F (wt)− F (w̃t) ≥
LF
4Tt
‖wt − w̃t‖2

2 −
∆2Tt
LF

,

which implies

‖wt − w̃t‖2 ≤
2√
LF

√
Tt(F (wt)− F (w̃t)) +

2∆Tt
LF

.

Then, by Cauchy-Schwarz inequality, we have

E∑
t=0

‖wt − w̃t‖2 ≤ 2

√√√√ T̃

LF

E∑
t=0

(F (wt)− F (w̃t)) +
2∆T̃

LF
. (4.57)

On the other hand, we have

E∑
t=0

(F (wt)− F (w̃t)) +
E−1∑
t=0

(F (w̃t)− F (wt+1)) = F (w0)− F (w̃E) ≤ F (w0)− F ∗.

According to (4.47), we have

F (w̃t)− F (wt+1) ≥ −4∆r − LF
2
r2,

and thus
E∑
t=0

(F (wt)− F (w̃t)) ≤ F (w0)− F ∗ + E(4∆r +
LF
2
r2) (4.58)
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Combining (4.57) and (4.58), and using the bounds for T̃ and E, we obtain that

E∑
t=0

‖wt − w̃t‖2 ≤ C1
F (w0)− F ∗

∆
, (4.59)

where C1 > 0 is a quantity that only depends on LF and ρF . In addition, we have

E−1∑
t=0

‖w̃t −wt+1‖2 ≤ Er ≤ C2
F (w0)− F ∗

∆3/5d3/10 + ∆4/5d2/5
, (4.60)

where C2 > 0 is a quantity that only depends on LF and ρF . Combining (4.59) and (4.60),
and using triangle inequality, we know that

‖w̃E −w0‖2 ≤ C1
F (w0)− F ∗

∆
+ C2

F (w0)− F ∗

∆3/5d3/10 + ∆4/5d2/5
≤ C

F (w0)− F ∗

∆
.

Here, the last inequality is due to the fact that we consider the regime where ∆ → 0, and
C is a quantity that only depends on LF and ρF . As a final note, the analysis above also
applies to any iterate prior to the final output, and thus, all the iterates during the algorithm
stays in the `2 ball centered at w0 with radius C F (w0)−F ∗

∆
.

Robust Estimation of Gradients

Iterative Filtering Algorithm

We describe an iterative filtering algorithm for robust mean estimation. The algorithm
is originally proposed for robust mean estimation for Gaussian distribution in [58], and
extended to sub-Gaussian distribution in [57]; then algorithm is reinterpreted in [170]. Here,
we present the algorithm using the interpretation in [170]. Suppose that m random vectors
x1,x2, . . . ,xm ∈ Rd are drawn i.i.d. from some distribution with mean µ. An adversary
observes all these vectors and changes an α fraction of them in an arbitrary fashion, and
we only have access to the corrupted data points x̂1, x̂2, . . . , x̂m. The goal of the iterative
filtering algorithm is to output an accurate estimate of the true mean µ even when the
dimension d is large. We provide the detailed procedure in Algorithm 4. Here, we note that
the algorithm parameter σ needs to be chosen properly in order to achieve the best possible
statistical error rate.

Proof of Theorem 4.5

To prove Theorem 4.5, we first state a result that bounds the error of the iterative filtering
algorithm when the original data points {xi} are deterministic. The following lemma is
proved in [57, 170]; also see [174] for additional discussion.
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Algorithm 4 Iterative Filtering [58, 57, 170]

Require: corrupted data x̂1, x̂2, . . . , x̂m ∈ Rd, α ∈ [0, 1
4
), and algorithm parameter σ > 0.

A ← [m], ci ← 1, and τi ← 0, ∀ i ∈ A.
while true do

Let W ∈ R|A|×|A| be a minimizer of the convex optimization problem:

min
0≤Wji≤ 3+α

(1−α)(3−α)m∑
j∈AWji=1

max
U�0

tr(U)≤1

∑
i∈A

ci(x̂i −
∑
j∈A

x̂jWji)
>U(x̂i −

∑
j∈A

x̂jWji),

and U ∈ Rd×d be a maximizer of the convex optimization problem:

max
U�0

tr(U)≤1

min
0≤Wji≤ 3+α

(1−α)(3−α)m∑
j∈AWji=1

∑
i∈A

ci(x̂i −
∑
j∈A

x̂jWji)
>U(x̂i −

∑
j∈A

x̂jWji).

∀ i ∈ A, τi ← (x̂i −
∑

j∈A x̂jWji)
>U(x̂i −

∑
j∈A x̂jWji).

if
∑

i∈A ciτi > 8mσ2 then
∀ i ∈ A, ci ← (1− τi

τmax
)ci, where τmax = maxi∈A τi.

A ← A \ {i : ci ≤ 1
2
}.

else
return µ̂ = 1

|A|
∑

i∈A x̂i
end if

end while

Lemma 4.5. [57, 170] Let S := {x1,x2, . . . ,xm} be the set of original data points and
µS := 1

m

∑m
i=1 xi be their sample mean. Let x̂1, x̂2, . . . , x̂m be the corrupted data. If α ≤ 1

4
,

and the algorithm parameter σ is chosen such that∥∥∥∥∥ 1

m

m∑
i=1

(xi − µS)(x− µS)>

∥∥∥∥∥
2

≤ σ2, (4.61)

then the output of the iterative filtering algorithm satisfies ‖µ̂− µS‖2 ≤ O(σ
√
α).

By triangle inequality, we have

‖µ̂− µ‖2 ≤ ‖µ̂− µS‖2 + ‖µS − µ‖2, (4.62)
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and∥∥∥∥∥ 1

m

m∑
i=1

(xi − µS)(x− µS)>

∥∥∥∥∥
2

=
1

m

∥∥([x1, · · · ,xm]− µS1
>)([x1, · · · ,xm]− µS1

>)>
∥∥

2

=
1

m

∥∥[x1, · · · ,xm]− µS1
>∥∥2

2

≤ 1

m

(
‖[x1, · · · ,xm]− µ1>‖2 +

√
m‖µ− µS‖2

)2

, (4.63)

where 1 denotes the all-one vector.5 By choosing

σ = Θ(
1√
m
‖[x1, · · · ,xm]− µ1>‖2 + ‖µ− µS‖2)

in Lemma 4.5 and combining with the bounds (4.62) and (4.63), we obtain that

‖µ̂− µ‖2 .

√
α√
m
‖[x1, · · · ,xm]− µ1>‖2 + ‖µ− µS‖2. (4.64)

With the above bound in hand, we now turn to the robust gradient estimation problem,
where the data points are drawn i.i.d. from some unknown distribution. Let ĝ(w) :=
filter{ĝi(w)}mi=1, where filter represents the iterative filtering algorithm. In light of (4.64),
we know that in order to bound the gradient estimation error supw∈W ‖ĝ(w)−∇F (w)‖2, it
suffices to bound the quantities

sup
w∈W
‖[∇F1(w), · · · ,∇Fm(w)]−∇F (w)1>‖2

and

sup
w∈W
‖ 1

m

m∑
i=1

∇Fi(w)−∇F (w)‖2.

Here, we recall that ∇Fi(w) is the true gradient of the empirical loss function on the i-th
machine, and ĝi(w) is the (possibly) corrupted gradient.

We first bound supw∈W ‖ 1
m

∑m
i=1∇Fi(w)−∇F (w)‖2. Note that we have

1

m

m∑
i=1

∇Fi(w) =
1

nm

m∑
i=1

n∑
j=1

∇f(w; zi,j).

Using the same method as in the proof of Lemma 6 in [41], we can show that for each fixed
w, with probability at least 1− δ,

‖ 1

m

m∑
i=1

∇Fi(w)−∇F (w)‖2 ≤
2
√

2ζ√
nm

√
d log 6 + log

(1

δ

)
.

5We note that similar derivation also appears in [174].
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For some δ0 > 0 to be chosen later, let Wδ0 = {w1,w2, . . . ,wNδ0} be a finite subset of W
such that for any w ∈ W , there exists some w` ∈ Wδ0 such that ‖w` −w‖2 ≤ δ0. Standard
ε-net results from [182] ensure that Nδ0 ≤ (1 + D

δ0
)d. Then, by the union bound, we have

with probability 1− δ, for all w` ∈ Wδ0 ,

‖ 1

m

m∑
i=1

∇Fi(w`)−∇F (w`)‖2 ≤
2
√

2ζ√
nm

√
d log 6 + log

(Nδ0

δ

)
. (4.65)

When (4.65) holds, by the smoothness of f(·; z) we know that for all w ∈ W ,

‖ 1

m

m∑
i=1

∇Fi(w)−∇F (w)‖2 ≤
2
√

2ζ√
nm

√
d log 6 + log

(Nδ0

δ

)
+ 2Lδ0.

By choosing δ0 = 1
nmL

and δ = 1
(1+mnDL)d

, we obtain that with probability at least 1 −
1

(1+mnDL)d
, for all w ∈ W ,

‖ 1

m

m∑
i=1

∇Fi(w)−∇F (w)‖2 .
ζ√
nm

√
d log(1 + nmDL). (4.66)

We next bound supw∈W ‖[∇F1(w), · · · ,∇Fm(w)]−∇F (w)1>‖2. We note that when the
gradients are sub-Gaussian distributed, similar results for the centralized setting have been
established in [35]. One can check that for every i, ∇Fi(w) − ∇F (w) is ζ√

n
-sub-Gaussian.

Define G(w) := [∇F1(w), · · · ,∇Fm(w)] − ∇F (w)1>. Using a standard concentration in-
equality for the norm of a matrix with independent sub-Gaussian columns [182], we obtain
that for each fixed w, with probability at least 1− δ,

‖ 1

m
G(w)G(w)> − 1

n
Σ(w)‖2 .

ζ2

n

(√
d

m
+
d

m
+

1

m
log
(1

δ

)
+

√
1

m
log
(1

δ

))
,

which implies that

1√
m
‖G(w)‖2 .

σ√
n

+
ζ√
n

(√
d

m
+
d

m
+

1

m
log
(1

δ

)
+

√
1

m
log
(1

δ

))1/2

.

Recall the δ0-netWδ0 = {w1,w2, . . . ,wNδ0} as defined above. Then, we have with probability
at least 1− δ, for all w` ∈ Wδ0

1√
m
‖G(w`)‖2 .

σ√
n

+
ζ√
n

(√
d

m
+
d

m
+

1

m
log
(Nδ0

δ

)
+

√
1

m
log
(Nδ0

δ

))1/2

. (4.67)



CHAPTER 4. SADDLE POINT ATTACK IN BYZANTINE-ROBUST DISTRIBUTED
LEARNING 114

For each w with ‖w` −w‖2 ≤ δ0, we have

‖G(w`)−G(w)‖2 ≤‖G(w`)−G(w)‖F

≤

(
m∑
i=1

‖(∇Fi(w`)−∇F (w`))− (∇Fi(w)−∇F (w))‖2
2

)1/2

≤2Lδ0

√
m.

This implies that when the bound (4.67) holds, we have for all w ∈ W ,

1√
m
‖G(w)‖2 .

σ√
n

+
ζ√
n

(√
d

m
+
d

m
+

1

m
log
(Nδ0

δ

)
+

√
1

m
log
(Nδ0

δ

))1/2

+ 2Lδ0.

(4.68)
Choose δ0 = 1

nmL
, in which case the last term above is a high order term. In this case,

choosing δ = 1
(1+mnDL)d

, we have with probability at least 1− 1
(1+mnDL)d

, for all w ∈ W ,

1√
m
‖G(w)‖2 .

σ√
n

+
ζ√
n

(( d
m

+

√
d

m

)
log(1 + nmDL)

)1/2

.
σ√
n

+
ζ√
n

(
1 +

√
d

m

)√
log(1 + nmDL). (4.69)

Combining the bounds (4.64), (4.66), and (4.69), we obtain that with probability at least
1− 2

(1+mnDL)d
,

sup
w∈W
‖ĝ(w)−∇F (w)‖2 .

(
(σ + ζ)

√
α

n
+ ζ

√
d

nm

)√
log(1 + nmDL),

which completes the proof.

Median and Trimmed Mean

In this section, we present the error bounds of median and trimmed mean operations in the
Byzantine setting in Chapter 3 for completeness.

Assumption 4.4. For any z ∈ Z, the k-th partial derivative ∂kf(·; z) is Lk-Lipschitz for

each k ∈ [d]. Let L̂ := (
∑d

k=1 L
2
k)

1/2.

For the median-based algorithm, one needs to use the notion of the absolute skewness
of a one-dimensional random variable X, defined as S(X) := E[|X − E[X]|3]/Var(X)3/2.
Define the following upper bounds on the standard deviation and absolute skewness of the
gradients:

v := sup
w∈W

(
E[‖∇f(w; z)−∇F (w)‖2

2]
)1/2

, s := sup
w∈W

max
k∈[d]

S
(
∂fk(w; z)

)
.
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Then one has the following guarantee for the median-based algorithm.

Theorem 4.7 (median). Suppose that Assumption 4.4 holds. Assume that

α +

(
d log(1 + nmDL̂)

m(1− α)

)1/2

+ c1
s√
n
≤ 1

2
− c2

for some constant c1, c2 > 0. Then, with probability 1 − o(1), GradAGG ≡ med provides a
∆med-inexact gradient oracle with

∆med ≤
c3√
n
v
(
α + (

d log(nmDL̂)

m
)1/2 +

s√
n

)
+O(

1

nm
),

where c3 is an absolute constant.

Therefore, the median operation provides a Õ(v( α√
n

+
√

d
nm

+ s
n
))-inexact gradient oracle.

If each partial derivative is of size O(1), the quantity v is of the order O(
√
d) and thus one

has ∆med . α
√
d√
n

+ d√
nm

+
√
d
n

.
For the trimmed mean algorithm, one needs to assume that the gradients of the loss

functions are sub-exponential.

Assumption 4.5. For any w ∈ W, ∇f(w; z) is ξ-sub-exponential.

In this setting, there is the following guarantee.

Theorem 4.8 (trimmed mean). Suppose that Assumptions 4.4 and 4.5 hold. Choose β =
c4α ≤ 1

2
− c5 with some constant c4 ≥ 1, c5 > 0. Then, with probability 1− o(1), GradAGG ≡

trmeanβ provides a ∆tm-inexact gradient oracle with

∆tm ≤ c6ξd
( α√

n
+

1√
nm

)√
log(nmDL̂),

where c6 is an absolute constant.

Therefore, the trimmed mean operation provides a Õ(ξd( α√
n

+ 1√
nm

))-inexact gradient
oracle.

Lower Bound for First-Order Guarantee

In this section we prove Observation 4.2. We consider the simple mean estimation problem
with random vector z drawn from a distribution D with mean µ. The loss function associated
with z is f(w; z) = 1

2
‖w − z‖2

2. The population loss is F (w) = 1
2
(‖w‖2

2 − 2µ>w + E[‖z‖2
2]),

and ∇F (w) = w − µ. We first provide a lower bound for distributed mean estimation in
the Byzantine setting, which is proved in Chapter 3.
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Lemma 4.6. Suppose that z is Gaussian distributed with mean µ and covariance σ2I. Then,
any algorithm that outputs an estimate w̃ of µ has a constant probability such that

‖w̃ − µ‖2 = Ω(
α√
n

+

√
d

nm
).

Since ∇F (w̃) = w̃−µ, the above bound directly implies the lower bound on ‖∇F (w̃)‖2

in Observation 4.2.
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Chapter 5

Rademacher Complexity for
Adversarially Robust Generalization

Many machine learning models are vulnerable to adversarial attacks; for example, adding
adversarial perturbations that are imperceptible to humans can often make machine learning
models produce wrong predictions with high confidence. Moreover, although we may obtain
robust models on the training dataset via adversarial training, in some problems the learned
models cannot generalize well to the test data. In this chapter, we focus on `∞ attacks, and
study the adversarially robust generalization problem through the lens of Rademacher com-
plexity. For binary linear classifiers, we prove tight bounds for the adversarial Rademacher
complexity, and show that the adversarial Rademacher complexity is never smaller than its
natural counterpart, and it has an unavoidable dimension dependence, unless the weight
vector has bounded `1 norm. The results also extend to multi-class linear classifiers. For
(nonlinear) neural networks, we show that the dimension dependence in the adversarial
Rademacher complexity also exists. We further consider a surrogate adversarial loss for one-
hidden layer ReLU network and prove margin bounds for this setting. Our results indicate
that having `1 norm constraints on the weight matrices might be a potential way to improve
generalization in the adversarial setting. We demonstrate experimental results that validate
our theoretical findings.

5.1 Introduction

In recent years, many modern machine learning models, in particular, deep neural networks,
have achieved success in tasks such as image classification [84], speech recognition [81], ma-
chine translation [13], game playing [167], etc. However, although these models achieve the
state-of-the-art performance in many standard benchmarks or competitions, it has been ob-
served that by adversarially adding some perturbation to the input of the model (images,
audio signals), the machine learning models can make wrong predictions with high confi-
dence. These adversarial inputs are often called the adversarial examples. Typical methods
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of generating adversarial examples include adding small perturbations that are impercep-
tible to humans [177], changing surrounding areas of the main objects in images [76], and
even simple rotation and translation [63]. This phenomenon was first discovered by Szegedy
et al. [177] in image classification problems, and similar phenomena have been observed in
other areas [31, 110]. Adversarial examples bring serious challenges in many security-critical
applications, such as medical diagnosis and autonomous driving—the existence of these ex-
amples shows that many state-of-the-art machine learning models are actually unreliable in
the presence of adversarial attacks.

Since the discovery of adversarial examples, there has been a race between designing
robust models that can defend against adversarial attacks and designing attack algorithms
that can generate adversarial examples and fool the machine learning models [79, 82, 32, 30].
As of now, it seems that the attackers are winning this game. For example, a recent work
shows that many of the defense algorithms fail when the attacker uses a carefully designed
gradient-based method [11]. Meanwhile, adversarial training [88, 163, 132] seems to be
the most effective defense method. Adversarial training takes a robust optimization [18]
perspective to the problem, and the basic idea is to minimize some adversarial loss over the
training data. We elaborate below.

Suppose that data points (x, y) are drawn according to some unknown distribution D
over the feature-label space X × Y , and X ⊆ Rd. Let F be a hypothesis class (e.g., a
class of neural networks with a particular architecture), and `(f(x), y) be the loss associated
with f ∈ F . Consider the `∞ white-box adversarial attack where an adversary is allowed
to observe the trained model and choose some x′ such that ‖x′ − x‖∞ ≤ ε and `(f(x′), y)
is maximized. Therefore, to better defend against adversarial attacks, during training, the
learner should aim to solve the empirical adversarial risk minimization problem

min
f∈F

1

n

n∑
i=1

max
‖x′i−xi‖∞≤ε

`(f(x′i), yi), (5.1)

where {(xi, yi)}ni=1 are n i.i.d. training examples drawn according to D. This minimax
formulation raises many interesting theoretical and practical questions. For example, we
need to understand how to efficiently solve the optimization problem in (5.1), and in addi-
tion, we need to characterize the generalization property of the adversarial risk, i.e., the
gap between the empirical adversarial risk in (5.1) and the population adversarial risk
E(x,y)∼D[max‖x′−x‖∞≤ε `(f(x′), y)]. In fact, for deep neural networks, both questions are still
wide open. In particular, for the generalization problem, it has been observed that even if
we can minimize the adversarial training error, the adversarial test error can still be large.
For example, for a Resnet [84] model on CIFAR10, using the PGD adversarial training algo-
rithm by Madry et al. [132], one can achieve about 96% adversarial training accuracy, but
the adversarial test accuracy is only 47%. This generalization gap is significantly larger than
that in the natural setting (without adversarial attacks), and thus it has become increasingly
important to better understand the generalization behavior of machine learning models in
the adversarial setting.
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In this chapter, we focus on the adversarially robust generalization property and make
a first step towards deeper understanding of this problem. We focus on `∞ adversarial
attacks and analyze generalization through the lens of Rademacher complexity. We study
both linear classifiers and nonlinear feedforward neural networks, and both binary and multi-
class classification problems. Intuitively, our results provide rigorous evidence showing that
adversarially robust learning is more difficult than natural learning, illustrated in Figure 5.1. 1

Figure 5.1: Adversarially robust learning is more difficult than natural learning.

We summarize our contributions as follows.

Our Contributions

• For binary linear classifiers, we prove tight upper and lower bounds for the adversarial
Rademacher complexity. We show that the adversarial Rademacher complexity is
never smaller than its counterpart in the natural setting, which provides theoretical
evidence for the empirical observation that adversarially robust generalization can be
hard. We also show that under an `∞ adversarial attack, when the weight vector of the
linear classifier has bounded `p norm (p ≥ 1), a polynomial dimension dependence in
the adversarial Rademacher complexity is unavoidable, unless p = 1. For multi-class
linear classifiers, we prove margin bounds in the adversarial setting. Similar to binary
classifiers, the margin bound also exhibits polynomial dimension dependence when the
weight vector for each class has bounded `p norm (p > 1).

• For neural networks, we show that in contrast to the margin bounds derived by Bartlett,
Foster, and Telgarsky [16] and Golowich, Rakhlin, and Shamir [78] which depend only
on the norms of the weight matrices and the data points, the adversarial Rademacher
complexity has a lower bound with an explicit dimension dependence, which is also
an effect of the `∞ attack. We further consider a surrogate adversarial loss for one
hidden layer ReLU networks, based on the SDP relaxation proposed by Raghunathan,

1Similar figure appears in [132].



CHAPTER 5. RADEMACHER COMPLEXITY FOR ADVERSARIALLY ROBUST
GENERALIZATION 120

Steinhardt, and Liang [154]. We prove margin bounds using the surrogate loss and show
that if the weight matrix of the first layer has bounded `1 norm, the margin bound does
not have explicit dimension dependence. This suggests that in the adversarial setting,
controlling the `1 norms of the weight matrices may be a way to improve generalization.

• We conduct experiments on linear classifiers and neural networks to validate our the-
oretical findings; more specifically, our experiments show that `1 regularization could
reduce the adversarial generalization error, and the adversarial generalization gap in-
creases as the dimension of the feature spaces increases.

Notation

We define the set [N ] := {1, 2, . . . , N}. For two sets A and B, we denote by BA the set
of all functions from A to B. We denote the indicator function of a event A as 1(A).
Unless otherwise stated, we denote vectors by boldface lowercase letters such as w, and
the elements in the vector are denoted by italics letters with subscripts, such as wk. All-
one vectors are denoted by 1. Matrices are denoted by boldface uppercase letters such as
W. For a matrix W ∈ Rd×m with columns wi, i ∈ [m], the (p, q) matrix norm of W is
defined as ‖W‖p,q = ‖[‖w1‖p, ‖w2‖p, · · · , ‖wm‖p]‖q, and we may use the shorthand notation
‖ · ‖p ≡ ‖ · ‖p,p. We denote the spectral norm of matrices by ‖ · ‖σ and the Frobenius norm
of matrices by ‖ · ‖F (i.e., ‖ · ‖F ≡ ‖ · ‖2). We use B∞x (ε) to denote the `∞ ball centered at
x ∈ Rd with radius ε, i.e., B∞x (ε) = {x′ ∈ Rd : ‖x′ − x‖∞ ≤ ε}.

Organization

The rest of this chapter is organized as follows: in Section 5.2, we discuss related work; in
Section 5.3, we describe the formal problem setup; we present our main results for linear
classifiers and neural networks in Sections 5.4 and 5.5, respectively. We demonstrate our
experimental results in Section 5.6, make conclusions in Section 5.7, and provide the proofs
in Section 5.8.

5.2 Related Work

During the preparation of the initial draft of this chapter, we become aware of another
independent and concurrent work by Khim and Loh [101], which studies a similar problem.
In this section, we first compare our work with Khim and Loh [101] and then discuss other
related work. We make the comparison in the following aspects.

• For binary classification problems, the adversarial Rademacher complexity upper bound
by Khim and Loh [101] is similar to ours. However, we show an adversarial Rademacher
complexity lower bound that matches the upper bound. Our lower bound shows that
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the adversarial Rademacher complexity is never smaller than that in the natural set-
ting, indicating the hardness of adversarially robust generalization. As mentioned,
although our lower bound is for Rademacher complexity rather than generalization,
Rademacher complexity is a tight bound for the rate of uniform convergence of a loss
function class [104] and thus in many settings can be a tight bound for generalization.
In addition, we provide a lower bound for the adversarial Rademacher complexity for
neural networks. These lower bounds do not appear in the work by Khim and Loh
[101].

• We discuss the generalization bounds for the multi-class setting, whereas Khim and
Loh [101] focus only on binary classification.

• Both our work and Khim and Loh [101] prove adversarial generalization bound using
surrogate adversarial loss (upper bound for the actual adversarial loss). Khim and Loh
[101] use a method called tree transform whereas we use the SDP relaxation proposed
by [154]. These two approaches are based on different ideas and thus we believe that
they are not directly comparable.

We proceed to discuss other related work.

Adversarially robust generalization As discussed in Section 5.1, it has been observed
by Madry et al. [132] that there might be a significant generalization gap when training deep
neural networks in the adversarial setting. This generalization problem has been further stud-
ied by Schmidt et al. [162], who show that to correctly classify two separated d-dimensional
spherical Gaussian distributions, in the natural setting one only needs O(1) training data,
but in the adversarial setting one needs Θ(

√
d) data. Getting distribution agnostic gener-

alization bounds (also known as the PAC-learning framework) for the adversarial setting
is proposed as an open problem by Schmidt et al. [162]. In a subsequent work, Cullina,
Bhagoji, and Mittal [47] study PAC-learning guarantees for binary linear classifiers in the
adversarial setting via VC-dimension, and show that the VC-dimension does not increase in
the adversarial setting. This result does not provide explanation to the empirical observa-
tion that adversarially robust generalization may be hard. In fact, although VC-dimension
and Rademacher complexity can both provide valid generalization bounds, VC-dimension
usually depends on the number of parameters in the model while Rademacher complex-
ity usually depends on the norms of the weight matrices and data points, and can often
provide tighter generalization bounds [15]. Suggala et al. [175] discuss a similar notion of
adversarial risk but do not prove explicit generalization bounds. Attias, Kontorovich, and
Mansour [12] prove adversarial generalization bounds in a setting where the number of po-
tential adversarial perturbations is finite, which is a weaker notion than the `∞ attack that
we consider. Sinha, Namkoong, and Duchi [168] analyze the convergence and generalization
of an adversarial training algorithm under the notion of distributional robustness. Farnia,
Zhang, and Tse [65] study the generalization problem when the attack algorithm of the ad-
versary is provided to the learner, which is also a weaker notion than our problem. In earlier



CHAPTER 5. RADEMACHER COMPLEXITY FOR ADVERSARIALLY ROBUST
GENERALIZATION 122

work, robust optimization has been studied in Lasso [193] and SVM [194] problems. Xu
and Mannor [195] make the connection between algorithmic robustness and generalization
property in the natural setting, whereas our work focus on generalization in the adversarial
setting.

Provable defense against adversarial attacks Besides generalization property, another
recent line of work aim to design provable defense against adversarial attacks. Two examples
of provable defense are SDP relaxation [154, 155] and LP relaxation [105, 190]. The idea
of these methods is to construct upper bounds of the adversarial risk that can be efficiently
evaluated and optimized. The analyses of these algorithms usually focus on minimizing train-
ing error and do not have generalization guarantee; in contrast, we focus on generalization
property in this chapter.

Other theoretical analysis of adversarial examples A few other lines of work have
conducted theoretical analysis of adversarial examples. Wang, Jha, and Chaudhuri [187] an-
alyze the adversarial robustness of nearest neighbors estimator. Papernot et al. [149] try
to demonstrate the unavoidable trade-offs between accuracy in the natural setting and the
resilience to adversarial attacks, and this trade-off is further studied by Tsipras et al. [180]
through some constructive examples of distributions. Fawzi, Moosavi-Dezfooli, and Frossard
[67] analyze adversarial robustness of fixed classifiers, in contrast to our generalization analy-
sis. Fawzi, Fawzi, and Fawzi [66] construct examples of distributions with large latent variable
space such that adversarially robust classifiers do not exist; here we argue that these exam-
ples may not explain the fact that adversarially perturbed images can usually be recognized
by humans. Bubeck, Price, and Razenshteyn [28] try to explain the hardness of learning an
adversarially robust model from the computational constraints under the statistical query
model. Another recent line of work explains the existence of adversarial examples via high
dimensional geometry and concentration of measure [77, 60, 133]. These works provide ex-
amples where adversarial examples provably exist as long as the test error of a classifier is
non-zero.

Generalization of neural networks Generalization of neural networks has been an im-
portant topic, even in the natural setting where there is no adversary. The key challenge
is to understand why deep neural networks can generalize to unseen data despite the high
capacity of the model class. The problem has received attention since the early stage of neu-
ral network study [15, 9]. Recently, understanding generalization of deep nets is raised as
an open problem since traditional techniques such as VC-dimension, Rademacher complex-
ity, and algorithmic stability are observed to produce vacuous generalization bounds [203].
Progress has been made more recently. In particular, it has been shown that when properly
normalized by the margin, using Rademacher complexity or PAC-Bayesian analysis, one can
obtain generalization bounds that tend to match the experimental results [16, 146, 10, 78].
In addition, in this chapter, we show that when the weight vectors or matrices have bounded
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`1 norm, there is no dimension dependence in the adversarial generalization bound. This
result is consistent and related to several previous works [121, 15, 137, 207].

5.3 Problem Setup

We start with the general statistical learning framework. Let X and Y be the feature and
label spaces, respectively, and suppose that there is an unknown distribution D over X ×Y .
In this chapter, we assume that the feature space is a subset of the d dimensional Euclidean
space, i.e., X ⊆ Rd. Let F ⊆ VX be the hypothesis class that we use to make predictions,
where V is another space that might be different from Y . Let ` : V × Y → [0, B] be the loss
function. Throughout this chapter we assume that ` is bounded, i.e., B is a positive constant.
In addition, we introduce the function class `F ⊆ [0, B]X×Y by composing the functions in
F with `(·, y), i.e., `F := {(x, y) 7→ `(f(x), y) : f ∈ F}. The goal of the learning problem is
to find f ∈ F such that the population risk R(f) := E(x,y)∈D[`(f(x), y)] is minimized.

We consider the supervised learning setting where one has access to n i.i.d. training
examples drawn according to D, denoted by (x1, y1), (x2, y2), . . . , (xn, yn). A learning algo-
rithm maps the n training examples to a hypothesis f ∈ F . In this chapter, we are interested
in the gap between the empirical risk Rn(f) := 1

n

∑n
i=1 `(f(xi), yi) and the population risk

R(f), known as the generalization error.
Rademacher complexity [17] is one of the classic measures of generalization error. Here,

we present its formal definition. For any function class H ⊆ RZ , given a sample S =
{z1, z2, . . . , zn} of size n, and empirical Rademacher complexity is defined as

RS(H) :=
1

n
Eσ

[
sup
h∈H

n∑
i=1

σih(zi)

]
,

where σ1, . . . , σn are i.i.d. Rademacher random variables with P{σi = 1} = P{σi = −1} = 1
2
.

In our learning problem, denote the training sample by S, i.e.,

S := {(x1, y1), (x2, y2), . . . , (xn, yn)}.

We then have the following theorem which connects the population and empirical risks via
Rademacher complexity.

Theorem 5.1. [17, 140] Suppose that the range of `(f(x), y) is [0, B]. Then, for any δ ∈
(0, 1), with probability at least 1− δ, the following holds for all f ∈ F ,

R(f) ≤ Rn(f) + 2BRS(`F) + 3B

√
log 2

δ

2n
.

As we can see, Rademacher complexity measures the rate that the empirical risk converges
to the population risk uniformly across F . In fact, according to the anti-symmetrization
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lower bound by Koltchinskii et al. [104], one can show that RS(`F) . supf∈F R(f)−Rn(f) .
RS(`F). Therefore, Rademacher complexity is a tight bound for the rate of uniform conver-
gence of a loss function class, and in many settings can be a tight bound for generalization
error.

The above discussions can be extended to the adversarial setting. In this chapter, we
focus on the `∞ adversarial attack. In this setting, the learning algorithm still has access to
n i.i.d. uncorrupted training examples drawn according to D. Once the learning procedure
finishes, the output hypothesis f is revealed to an adversary. For any data point (x, y) drawn
according to D, the adversary is allowed to perturb x within some `∞ ball to maximize the
loss. Our goal is to minimize the adversarial population risk, i.e.,

R̃(f) := E(x,y)∼D

[
max

x′∈B∞x (ε)
`(f(x′), y)

]
,

and to this end, a natural way is to conduct adversarial training—minimizing the adversarial
empirical risk

R̃n(f) :=
1

n

n∑
i=1

max
x′i∈B∞xi (ε)

`(f(x′i), yi).

Let us define the adversarial loss ˜̀(f(x), y) := maxB∞x (ε) `(f(x′), y) and the function class˜̀F ⊆ [0, B]X×Y as ˜̀F := {˜̀(f(x), y) : f ∈ F}. Since the range of ˜̀(f(x), y) is still [0, B], we
have the following direct corollary of Theorem 5.1.

Corollary 5.1. For any δ ∈ (0, 1), with probability at least 1− δ, the following holds for all
f ∈ F ,

R̃(f) ≤ R̃n(f) + 2BRS(˜̀F) + 3B

√
log 2

δ

2n
.

As we can see, the Rademacher complexity of the adversarial loss function class ˜̀F , i.e.,
RS(˜̀F) is again the key quantity for the generalization ability of the learning problem. A
natural problem of interest is to compare the Rademacher complexities in the natural and
the adversarial settings, and obtain generalization bounds for the adversarial loss.

5.4 Linear Classifiers

Binary Classification

We start with binary linear classifiers. In this setting, we define Y = {−1,+1}, and let the
hypothesis class F ⊆ RX be a set of linear functions of x ∈ X . More specifically, we define
fw(x) := 〈w,x〉, and consider prediction vector w with `p norm constraint (p ≥ 1), i.e.,

F = {fw(x) : ‖w‖p ≤ W}. (5.2)
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We predict the label with the sign of fw(x); more specifically, we assume that the loss
function `(fw(x), y) can be written as `(fw(x), y) ≡ φ(y〈w,x〉), where φ : R → [0, B] is
monotonically nonincreasing and Lφ-Lipschitz. In fact, if φ(0) ≥ 1, we can obtain a bound
on the classification error according to Theorem 5.1. That is, with probability at least 1− δ,
for all fw ∈ F ,

P(x,y)∼D{sgn(fw(x)) 6= y} ≤ 1

n

n∑
i=1

`(fw(xi), yi) + 2BRS(`F) + 3B

√
log 2

δ

2n
.

In addition, recall that according to the Ledoux-Talagrand contraction inequality [116], we
have RS(`F) ≤ LφRS(F).

For the adversarial setting, we have˜̀(fw(x), y) = max
x′∈B∞x (ε)

`(fw(x′), y)=φ( min
x′∈B∞x (ε)

y〈w,x′〉).

Let us define the following function class F̃ ⊆ RX×{±1}:

F̃ =

{
min

x′∈B∞x (ε)
y〈w,x′〉 : ‖w‖p ≤ W

}
. (5.3)

Again, we have RS(˜̀F) ≤ LφRS(F̃). The first major contribution of our work is the following

theorem, which provides a comparison between RS(F) and RS(F̃).

Theorem 5.2 (Main Result 1). Let

F :={fw(x) : ‖w‖p ≤ W},
F̃ :={ min

x′∈B∞x (ε)
y〈w,x′〉 : ‖w‖p ≤ W}.

Suppose that 1
p

+ 1
q

= 1. Then, there exists a universal constant c ∈ (0, 1) such that

max{RS(F), cεW
d

1
q

√
n
} ≤ RS(F̃) ≤ RS(F) + εW

d
1
q

√
n
.

We can see that the adversarial Rademacher complexity, i.e., RS(F̃) is always at least
as large as the Rademacher complexity in the natural setting. This implies that uniform
convergence in the adversarial setting is at least as hard as that in the natural setting. In
addition, since max{a, b} ≥ 1

2
(a+ b), we have

c

2

(
RS(F) + εW

d
1
q

√
n

)
≤ RS(F̃) ≤ RS(F) + εW

d
1
q

√
n
.

Therefore, we have a tight bound for RS(F̃) up to a constant factor. Further, if p > 1 the
adversarial Rademacher complexity has an unavoidable polynomial dimension dependence,
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i.e., RS(F̃) is always at least as large as O(εW d1/q√
n

). On the other hand, one can easily

show that in the natural setting, RS(F) = W
n
Eσ[‖

∑n
i=1 σixi‖q], which implies that RS(F)

depends on the distribution of xi and the norm constraint W , but does not have an explicit
dimension dependence. This means that RS(F̃) could be order-wise larger than RS(F),
depending on the distribution of the data. An interesting fact is that, if we have an `1 norm
constraint on the prediction vector w, we can avoid the dimension dependence in RS(F̃).

Multi-class Classification

Margin Bounds for Multi-class Classification

We proceed to study multi-class linear classifiers. We start with the standard margin bound
framework for multi-class classification. In K-class classification problems, we choose Y =
[K], and the functions in the hypothesis class F map X to RK , i.e., F ⊆ (RK)X . Intuitively,
the k-th coordinate of f(x) is the score that f gives to the k-th class, and we make prediction
by choosing the class with the highest score. We define the margin operator M(z, y) :
RK × [K] → R as M(z, y) = zy − maxy′ 6=y zy′ . For a training example (x, y), a hypothesis
f makes a correct prediction if and only if M(f(x), y) > 0. We also define function class
MF := {(x, y) 7→M(f(x), y) : f ∈ F} ⊆ RX×[K]. For multi-class classification problems, we
consider a particular loss function `(f(x), y) = φγ(M(f(x), y)), where γ > 0 and φγ : R →
[0, 1] is the ramp loss:

φγ(t) =


1 t ≤ 0

1− t
γ

0 < t < γ

0 t ≥ γ.

(5.4)

One can check that `(f(x), y) satisfies:

1(y 6= arg max
y′∈[K]

[f(x)]y′) ≤ `(f(x), y) ≤ 1([f(x)]y ≤ γ + max
y′ 6=y

[f(x)]y′). (5.5)

Let S = {(xi, yi)}ni=1 ∈ (X × [K])n be the i.i.d. training examples, and define the function
class `F := {(x, y) 7→ φγ(M(f(x), y)) : f ∈ F} ⊆ RX×[K]. Since φγ(t) ∈ [0, 1] and φγ(·)
is 1/γ-Lipschitz, by combining (5.5) with Theorem 5.1, we can obtain the following direct
corollary as the generalization bound in the multi-class setting [140].

Corollary 5.2. Consider the above multi-class classification setting. For any fixed γ > 0,
we have with probability at least 1− δ, for all f ∈ F ,

P(x,y)∼D
{
y 6= arg max

y′∈[K]
[f(x)]y′

}
≤ 1

n

n∑
i=1

1([f(xi)]yi ≤ γ+max
y′ 6=y

[f(xi)]y′)+2RS(`F)+3

√
log 2

δ

2n
.

In the adversarial setting, the adversary tries to maximize the loss

`(f(x), y) = φγ(M(f(x), y))



CHAPTER 5. RADEMACHER COMPLEXITY FOR ADVERSARIALLY ROBUST
GENERALIZATION 127

around an `∞ ball centered at x. We have the adversarial loss

˜̀(f(x), y) := max
x′∈B∞x (ε)

`(f(x′), y),

and the function class ˜̀F := {(x, y) 7→ ˜̀(f(x), y) : f ∈ F} ⊆ RX×[K]. Thus, we have the
following generalization bound in the adversarial setting.

Corollary 5.3. Consider the above adversarial multi-class classification setting. For any
fixed γ > 0, we have with probability at least 1− δ, for all f ∈ F ,

P(x,y)∼D

{
∃ x′ ∈ B∞x (ε) s.t. y 6= arg max

y′∈[K]
[f(x′)]y′

}

≤ 1

n

n∑
i=1

1(∃ x′i ∈ B∞xi(ε) s.t. [f(x′i)]yi ≤ γ + max
y′ 6=y

[f(x′i)]y′) + 2RS(˜̀F) + 3

√
log 2

δ

2n
.

Multi-class Linear Classifiers

We now focus on multi-class linear classifiers. For linear classifiers, each function in the
hypothesis class is linearly parametrized by a matrix W ∈ RK×d, i.e., f(x) ≡ fW(x) = Wx.
Let wk ∈ Rd be the k-th column of W>, then we have [fW(x)]k = 〈wk,x〉. We assume
that each wk has `p norm (p ≥ 1) upper bounded by W , which implies that F = {fW(x) :
‖W>‖p,∞ ≤ W}. In the natural setting, we have the following margin bound for linear
classifiers as a corollary of the multi-class margin bounds by Kuznetsov, Mohri, and Syed
[112] and Maximov and Reshetova [134].

Theorem 5.3. Consider the multi-class linear classifiers in the above setting, and suppose
that 1

p
+ 1

q
= 1, p, q ≥ 1. For any fixed γ > 0 and W > 0, we have with probability at least

1− δ, for all W such that ‖W>‖p,∞ ≤ W ,

P(x,y)∼D

{
y 6= arg max

y′∈[K]
〈wy′ ,x〉

}
≤ 1

n

n∑
i=1

1(〈wyi ,xi〉 ≤ γ + max
y′ 6=yi
〈wy′ ,xi〉)

+
4KW

γn
Eσ

[
‖

n∑
i=1

σixi‖q

]
+ 3

√
log 2

δ

2n
.

In the adversarial setting, we have the following margin bound.

Theorem 5.4 (Main Result 2). Consider the multi-class linear classifiers in the adver-
sarial setting, and suppose that 1

p
+ 1

q
= 1, p, q ≥ 1. For any fixed γ > 0 and W > 0, we
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have with probability at least 1− δ, for all W such that ‖W>‖p,∞ ≤ W ,

P(x,y)∼D

{
∃ x′ ∈ B∞x (ε) s.t. y 6= arg max

y′∈[K]
〈wy′ ,x

′〉
}

≤ 1

n

n∑
i=1

1(〈wyi ,xi〉 ≤ γ + max
y′ 6=yi

(〈wy′ ,xi〉+ ε‖wy′ −wyi‖1))

+
2WK

γ

[
ε
√
Kd

1
q

√
n

+
1

n

K∑
y=1

Eσ

[
‖

n∑
i=1

σixi1(yi = y)‖q
]]

+ 3

√
log 2

δ

2n
.

As we can see, similar to the binary classification problems, if p > 1, the margin bound
in the adversarial setting has an explicit polynomial dependence on d, whereas in the natural
setting, the margin bound does not have dimension dependence. This shows that, at least for
the generalization upper bound that we obtain, the dimension dependence in the adversarial
setting also exists in the multi-class classification problems.

5.5 Neural Networks

We proceed to consider feedforward neural networks with ReLU activation. Here, each
function f in the hypothesis class F is parametrized by a sequence of matrices W =
(W1,W2, . . . ,WL), i.e., f ≡ fW. Assume that Wh ∈ Rdh×dh−1 , and ρ(·) be the ReLU
function, i.e., ρ(t) = max{t, 0} for t ∈ R. For vectors, ρ(x) is vector generated by applying
ρ(·) on each coordinate of x, i.e., [ρ(x)]i = ρ(xi). We have2

fW(x) = WLρ(WL−1ρ(· · · ρ(W1x) · · · )).

For K-class classification, we have dL = K, fW(x) : Rd → RK , and [fW(x)]k is the score for
the k-th class. In the special case of binary classification, as discussed in Section 5.4, we can
have Y = {+1,−1}, dL = 1, and the loss function can be written as

`(fW(x), y) = φ(yfW(x)),

where φ : R→ [0, B] is monotonically nonincreasing and Lφ-Lipschitz.

Comparison of Rademacher Complexity Bounds

We start with a comparison of Rademacher complexities of neural networks in the natural
and adversarial settings. Although naively applying the definition of Rademacher complexity
may provide a loose generalization bound [203], when properly normalized by the margin, one
can still derive generalization bound that matches experimental observations via Rademacher

2This implies that d0 ≡ d.
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complexity [16]. Our comparison shows that, when the weight matrices of the neural networks
have bounded norms, in the natural setting, the Rademacher complexity is upper bounded
by a quantity which only has logarithmic dependence on the dimension; however, in the
adversarial setting, the Rademacher complexity is lower bounded by a quantity with explicit√
d dependence.

We focus on the binary classification. For the natural setting, we review the results
by Bartlett, Foster, and Telgarsky [16]. Let S = {(xi, yi)}ni=1 ∈ (X ×{−1,+1})n be the i.i.d.
training examples, and define

X := [x1,x2, · · · ,xn] ∈ Rd×n, and dmax = max{d, d1, d2, . . . , dL}.

Theorem 5.5. [16] Consider the neural network hypothesis class

F = {fW(x) : W = (W1,W2, . . . ,WL), ‖Wh‖σ ≤ sh, ‖W>
h ‖2,1 ≤ bh, h ∈ [L]} ⊆ RX .

Then, we have

RS(F) ≤ 4

n3/2
+

26 log(n) log(2dmax)

n
‖X‖F

(
L∏
h=1

sh

)(
L∑
j=1

(
bj
sj

)2/3

)3/2

.

On the other hand, in this work, we prove the following result which shows that when
the product of the spectral norms of all the weight matrices is bounded, the Rademacher
complexity of the adversarial loss function class is lower bounded by a quantity with an
explicit

√
d factor. More specifically, for binary classification problems, since

˜̀(fW(x), y) = max
x′∈B∞x (ε)

`(fW(x′), y) = φ( min
x′∈B∞x (ε)

yfW(x′)),

and φ(·) is Lipschitz, we consider the function class

F̃ = {(x, y) 7→ min
x′∈B∞x (ε)

yfW(x′) : W = (W1,W2, . . . ,WL),
L∏
h=1

‖Wh‖σ ≤ r} ⊆ RX×{−1,+1}.

(5.6)
Then we have the following result.

Theorem 5.6 (Main Result 3). Let F̃ be defined as in (5.6). Then, there exists a universal
constant c > 0 such that

RS(F̃) ≥ cr

(
1

n
‖X‖F + ε

√
d

n

)
.

This result shows that if we aim to study the Rademacher complexity of the function
class defined as in (5.6), a

√
d dimension dependence may be unavoidable, in contrast to the

natural setting where the dimension dependence is only logarithmic.
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Generalization Bound for Surrogate Adversarial Loss

For neural networks, even if there is only one hidden layer, for a particular data point
(x, y), evaluating the adversarial loss ˜̀(fW(x), y) = maxx′∈B∞x (ε) `(fW(x′), y) can be hard,
since it requires maximizing a non-concave function in a bounded set. A recent line of
work tries to find upper bounds for ˜̀(fW(x), y) that can be computed in polynomial time.

More specifically, we would like to find surrogate adversarial loss ̂̀(fW(x), y) such that̂̀(fW(x), y) ≥ ˜̀(fW(x), y), ∀ x, y,W. These surrogate adversarial loss can thus provide
certified defense against adversarial examples, and can be computed efficiently. In addition,
the surrogate adversarial loss ̂̀(fW(x), y) should be as tight as possible—it should be close

enough to the original adversarial loss ˜̀(fW(x), y), so that the surrogate adversarial loss
can indeed represent the robustness of the model against adversarial attacks. Recently,
a few approaches to designing surrogate adversarial loss have been developed, and SDP
relaxation [154, 155] and LP relaxation [105, 190] are two major examples.

In this section, we focus on the SDP relaxation for one hidden layer neural network with
ReLU activation proposed by Raghunathan, Steinhardt, and Liang [154]. We prove a gener-
alization bound regarding the surrogate adversarial loss, and show that this generalization
bound does not have explicit dimension dependence if the weight matrix of the first layer has
bounded `1 norm. We consider K-class classification problems in this section (i.e., Y = [K]),
and start with the definition and property of the SDP surrogate loss. Since we only have
one hidden layer, fW(x) = W2ρ(W1x). Let w2,k be the k-th column of W>

2 . Then, we have
the following results according to Raghunathan, Steinhardt, and Liang [154].

Theorem 5.7. [154] For any (x, y), W1, W2, and y′ 6= y,

max
x′∈B∞x (ε)

([fW(x′)]y′ − [fW(x′)]y) ≤[fW(x)]y′ − [fW(x)]y

+
ε

4
max

P�0,diag(P)≤1
〈Q(w2,y′ −w2,y,W1),P〉,

where Q(v,W) is defined as

Q(v,W) :=

 0 0 1>W> diag(v)
0 0 W> diag(v)

diag(v)>W1 diag(v)>W 0

 . (5.7)

Since we consider multi-class classification problems in this section, we use the ramp loss
φγ defined in (5.4) composed with the margin operator as our loss function. Thus, we have

`(fW(x), y) = φγ(M(fW(x), y)) and ˜̀(fW(x), y) = maxx′∈B∞x (ε) φγ(M(fW(x′), y)). Here, we

design a surrogate loss ̂̀(fW(x), y) based on Theorem 5.7.

Lemma 5.1. Define

̂̀(fW(x), y) := φγ

(
M(fW(x), y)− ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉

)
.
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Then, we have

max
x′∈B∞x (ε)

1(y 6= arg max
y′∈[K]

[fW(x′)]y′) ≤ ̂̀(fW(x), y)

≤ 1
(
M(fW(x), y)− ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉 ≤ γ

)
.

With this surrogate adversarial loss in hand, we can develop the following margin bound
for adversarial generalization. In this theorem, we use X = [x1,x2, · · · ,xn] ∈ Rd×n, and
dmax = max{d, d1, K}.

Theorem 5.8. Consider the neural network hypothesis class

F = {fW(x) : W = (W1,W2), ‖Wh‖σ ≤ sh, h = 1, 2, ‖W1‖1 ≤ b1, ‖W>
2 ‖2,1 ≤ b2}.

Then, for any fixed γ > 0, with probability at least 1− δ, we have for all fW(·) ∈ F ,

P(x,y)∼D

{
∃ x′ ∈ B∞x (ε) s.t. y 6= arg max

y′∈[K]
[fW(x′)]y′

}
≤ 1

n

n∑
i=1

1
(

[fW(xi)]yi ≤ γ + max
y′ 6=yi

[fW(xi)]y′ +
ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉

)

+
1

γ

(
4

n3/2
+

60 log(n) log(2dmax)

n
s1s2

(
(
b1

s1

)2/3 + (
b2

s2

)2/3
)3/2

‖X‖F +
2εb1b2√

n

)
+ 3

√
log 2

δ

2n
.

Similar to linear classifiers, in the adversarial setting, if we have an `1 norm constraint
on the matrix matrix W1, then the generalization bound of the surrogate adversarial loss
does not have an explicit dimension dependence.

5.6 Experiments

In this section, we validate our theoretical findings for linear classifiers and neural networks
via experiments. Our experiments are implemented with Tensorflow [1] on the MNIST
dataset [115].

Linear Classifiers

We validate two theoretical findings for linear classifiers: (i) controlling the `1 norm of
the model parameters can reduce the adversarial generalization error, and (ii) there is a
dimension dependence in adversarial generalization, i.e., adversarially robust generalization
is harder when the dimension of the feature space is higher. We train the multi-class linear
classifier using the following objective function:
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min
W

1

n

n∑
i=1

max
x′i∈B∞xi (ε)

`(fW(x′i), yi) + λ‖W‖1, (5.8)

where `(·) is cross entropy loss and fW(x) ≡ Wx. Since we focus on the generalization
property, we use a small number of training data so that the generalization gap is more
significant. More specifically, in each run of the training algorithm, we randomly sample
n = 1000 data points from the training set of MNIST as the training data, and run adversarial
training to minimize the objective (5.8). Our training algorithm alternates between mini-
batch stochastic gradient descent with respect to W and computing adversarial examples
on the chosen batch in each iteration. Here, we note that since we consider linear classifiers,
the adversarial examples can be analytically computed.

In our first experiment, we vary the values of ε and λ, and for each (ε, λ) pair, we
conduct 10 runs of the training algorithm, and in each run we sample the 1000 training data
independently. In Figure 5.2, we plot the adversarial generalization error as a function of ε
and λ, and the error bars show the standard deviation of the 10 runs. As we can see, when
λ increases, the generalization gap decreases, and thus we conclude that `1 regularization is
helpful for reducing adversarial generalization error.
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Figure 5.2: Linear classifiers. Adversarial generalization error vs `∞ perturbation ε and regular-
ization coefficient λ.

In our second experiment, we choose λ = 0 and study the dependence of adversarial
generalization error on the dimension of the feature space. Recall that each data point in the
original MNIST dataset is a 28×28 image, i.e., d = 784. We construct two additional image
datasets with d = 196 (downsampled) and d = 3136 (expanded), respectively. To construct
the downsampled image, we replace each 2×2 patch—say, with pixel values a, b, c, d—on the
original image with a single pixel with value

√
a2 + b2 + c2 + d2. To construct the expanded

image, we replace each pixel—say, with value a—on the original image with a 2 × 2 patch,
with the value of each pixel in the patch being a/2. Such construction keeps the `2 norm of
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the every single image the same across the three datasets, and thus leads a fair comparison.
The adversarial generalization error is plotted in Figure 5.3, and as we can see, when the
dimension d increases, the generalization gap also increases.
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Figure 5.3: Linear classifiers. Adversarial generalization error vs `∞ perturbation ε and dimension
of feature space d.

Neural Networks

In this experiment, we validate our theoretical result that `1 regularization can reduce the
adversarial generalization error on a four-layer ReLU neural network, where the first two
layers are convolutional and the last two layers are fully connected. We use PGD attack [132]
adversarial training to minimize the `1 regularized objective (5.8). We use the whole training
set of MNIST, and once the model is obtained, we use PGD attack to check the adversarial
training and test error. We present the adversarial generalization errors under the PGD
attack in Figure 5.4. As we can see, the adversarial generalization error decreases as we
increase the regularization coefficient λ; thus `1 regularization indeed reduces the adversarial
generalization error under the PGD attack.

5.7 Conclusions

We study the adversarially robust generalization properties of linear classifiers and neural
networks through the lens of Rademacher complexity. For binary linear classifiers, we prove
tight bounds for the adversarial Rademacher complexity, and show that in the adversarial
setting, Rademacher complexity is never smaller than that in the natural setting, and it has
an unavoidable dimension dependence, unless the weight vector has bounded `1 norm. The
results also extends to multi-class linear classifiers. For neural networks, we prove a lower
bound of the Rademacher complexity of the adversarial loss function class and show that
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Figure 5.4: Neural networks. Adversarial generalization error vs regularization coefficient λ.

there is also an unavoidable dimension dependence due to `∞ adversarial attack. We further
consider a surrogate adversarial loss and prove margin bound for this setting. Our results
indicate that having `1 norm constraints on the weight matrices might be a potential way
to improve generalization in the adversarial setting. Our experimental results validate our
theoretical findings.

5.8 Proofs

Proof of Theorem 5.2

First, we have

RS(F) :=
1

n
Eσ

[
sup

‖w‖p≤W

n∑
i=1

σi〈w,xi〉

]
=
W

n
Eσ

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
q

 . (5.9)

We then analyze RS(F̃). Define f̃w(x, y) := minx′∈B∞x (ε) y〈w,x′〉. Then, we have

f̃w(x, y) =

{
minx′∈B∞x (ε)〈w,x′〉 y = 1,

−maxx′∈B∞x (ε)〈w,x′〉 y = −1.

When y = 1, we have

f̃w(x, y) = f̃w(x, 1) = min
x′∈B∞x (ε)

〈w,x′〉 = min
x′∈B∞x (ε)

d∑
i=1

wix
′
i

=
d∑
i=1

wi [1(wi ≥ 0)(xi − ε) + 1(wi < 0)(xi + ε)] =
d∑
i=1

wi(xi − sgn(wi)ε)

= 〈w,x〉 − ε‖w‖1.
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Similarly, when y = −1, we have

f̃w(x, y) = f̃w(x,−1) = − max
x′∈B∞x (ε)

〈w,x′〉 = − max
x′∈B∞x (ε)

d∑
i=1

wix
′
i

= −
d∑
i=1

wi [1(wi ≥ 0)(xi + ε) + 1(wi < 0)(xi − ε)] = −
d∑
i=1

wi(xi + sgn(wi)ε)

= −〈w,x〉 − ε‖w‖1.

Thus, we conclude that f̃w(x, y) = y〈w,x〉 − ε‖w‖1, and therefore

RS(F̃) =
1

n
Eσ

[
sup

‖w‖2≤W

n∑
i=1

σi(yi〈w,xi〉 − ε‖w‖1)

]
.

Define u :=
∑n

i=1 σiyixi and v := ε
∑n

i=1 σi. Then we have

RS(F̃) =
1

n
Eσ

[
sup

‖w‖p≤W
〈w,u〉 − v‖w‖1

]

Since the supremum of 〈w,u〉−v‖w‖1 over w can only be achieved when sgn(wi) = sgn(ui),
we know that

RS(F̃) =
1

n
Eσ

[
sup

‖w‖p≤W
〈w,u〉 − v〈w, sgn(w)〉

]

=
1

n
Eσ

[
sup

‖w‖p≤W
〈w,u〉 − v〈w, sgn(u)〉

]

=
1

n
Eσ

[
sup

‖w‖p≤W
〈w,u− v sgn(u)〉

]
=
W

n
Eσ [‖u− v sgn(u)‖q]

=
W

n
Eσ

∥∥∥∥∥
n∑
i=1

σiyixi −
(
ε

n∑
i=1

σi
)

sgn(
n∑
i=1

σiyixi)

∥∥∥∥∥
q

 . (5.10)
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Now we prove an upper bound for RS(F̃). By triangle inequality, we have

RS(F̃) ≤W
n
Eσ

∥∥∥∥∥
n∑
i=1

σiyixi

∥∥∥∥∥
q

+
εW

n
Eσ

∥∥∥∥∥(
n∑
i=1

σi) sgn(
n∑
i=1

σiyixi)

∥∥∥∥∥
q


=RS(F) + εW

d
1
q

n
Eσ

[∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
]

≤RS(F) + εW
d

1
q

√
n
,

where the last step is due to Khintchine’s inequality.
We then proceed to prove a lower bound for RS(F̃). According to (5.10) and by symme-

try, we know that

RS(F̃) =
W

n
Eσ

∥∥∥∥∥
n∑
i=1

(−σi)yixi −
(
ε

n∑
i=1

(−σi)
)

sgn(
n∑
i=1

(−σi)yixi)

∥∥∥∥∥
q


=
W

n
Eσ

∥∥∥∥∥
n∑
i=1

σiyixi +
(
ε

n∑
i=1

σi
)

sgn(
n∑
i=1

σiyixi)

∥∥∥∥∥
q

 . (5.11)

Then, combining (5.10) and (5.11) and using triangle inequality, we have

RS(F̃) =
W

2n
Eσ

[∥∥∥∥∥
n∑
i=1

σiyixi −
(
ε

n∑
i=1

σi
)

sgn(
n∑
i=1

σiyixi)

∥∥∥∥∥
q

+

∥∥∥∥∥
n∑
i=1

σiyixi +
(
ε

n∑
i=1

σi
)

sgn(
n∑
i=1

σiyixi)

∥∥∥∥∥
q

]

≥W
n
Eσ

∥∥∥∥∥
n∑
i=1

σiyixi

∥∥∥∥∥
q

 = RS(F). (5.12)

Similarly, we have

RS(F̃) ≥W
n
Eσ

∥∥∥∥∥(ε
n∑
i=1

σi
)

sgn(
n∑
i=1

σiyixi)

∥∥∥∥∥
q


=
W

n
Eσ

ε ∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
∥∥∥∥∥sgn(

n∑
i=1

σiyixi)

∥∥∥∥∥
q


=εW

d
1
q

n
Eσ

[∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
]
.
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By Khintchine’s inequality, we know that there exists a universal constant c > 0 such that

Eσ[|
∑n

i=1 σi|] ≥ c
√
n. Therefore, we have RS(F̃) ≥ cεW d

1
q√
n
. Combining with (5.12), we

complete the proof.

Proof of Theorem 5.3

According to the multi-class margin bound in [112], for any fixed γ, with probability at least
1− δ, we have

P(x,y)∼D

{
y 6= arg max

y′∈[K]
[f(x)]y′

}
≤ 1

n

n∑
i=1

1([f(xi)]yi ≤ γ + max
y′ 6=y

[f(xi)]y′)

+
4K

γ
RS(Π1(F)) + 3

√
log 2

δ

2n
,

where Π1(F) ⊆ RX is defined as

Π1(F) := {x 7→ [f(x)]k : f ∈ F , k ∈ [K]}.

In the special case of linear classifiers F = {fW(x) : ‖W>‖p,∞ ≤ W}, we can see that

Π1(F) = {x 7→ 〈w,x〉 : ‖w‖p ≤ W}.

Thus, we have

RS(Π1(F)) =
1

n
Eσ

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
q

 ,
which completes the proof.

Proof of Theorem 5.4

Since the loss function in the adversarial setting is

˜̀(fW(x), y) = max
x′∈B∞x (ε)

φγ(M(fW(x), y)) = φγ( min
x′∈B∞x (ε)

M(fW(x), y)).

Since we consider linear classifiers, we have

min
x′∈B∞x (ε)

M(fW(x), y) = min
x′∈B∞x (ε)

min
y′ 6=y

(wy −wy′)
>x′

= min
y′ 6=y

min
x′∈B∞x (ε)

(wy −wy′)
>x′

= min
y′ 6=y

(wy −wy′)
>x− ε‖wy −wy′‖1 (5.13)
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Define
h

(k)
W (x, y) := (wy −wk)

>x− ε‖wy −wk‖1 + γ1(y = k).

We now show that ˜̀(fW(x), y) = max
k∈[K]

φγ(h
(k)
W (x, y)). (5.14)

To see this, we can see that according to (5.13),

min
x′∈B∞x (ε)

M(fW(x), y) = min
k 6=y

h
(k)
W (x, y).

If mink 6=y h
(k)
W (x, y) ≤ γ, we have mink 6=y h

(k)
W (x, y) = mink∈[K] h

(k)
W (x, y), since h

(y)
W (x, y) = γ.

On the other hand, if mink 6=y h
(k)
W (x, y) > γ, then mink∈[K] h

(k)
W (x, y) = γ. In this case, we

have φγ(mink 6=y h
(k)
W (x, y)) = φγ(mink∈[K] h

(k)
W (x, y)) = 0. Therefore, we can see that (5.14)

holds.
Define the K function classes Fk := {h(k)

W (x, y) : ‖W>‖p,∞ ≤ W} ⊆ RX×Y . Since
φγ(·) is 1/γ-Lipschitz, according to the Ledoux-Talagrand contraction inequality [116] and
Lemma 8.1 in [140], we have

RS(˜̀F) ≤ 1

γ

K∑
k=1

RS(Fk). (5.15)

We proceed to analyze RS(Fk). The basic idea is similar to the proof of Theorem 5.2. We
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define uy =
∑n

i=1 σixi1(yi = y) and vy =
∑n

i=1 σi1(yi = y). Then, we have

RS(Fk)

=
1

n
Eσ

[
sup

‖W>‖p,∞≤W

n∑
i=1

σi((wyi −wk)
>xi − ε‖wyi −wk‖1 + γ1(yi = k))

]
=

1

n
Eσ

[
sup

‖W>‖p,∞≤W

n∑
i=1

K∑
y=1

σi((wyi −wk)
>xi − ε‖wyi −wk‖1 + γ1(yi = k))1(yi = y)

]
=

1

n
Eσ

[
sup

‖W>‖p,∞≤W

K∑
y=1

n∑
i=1

σi((wy −wk)
>xi1(yi = y)− ε‖wy −wk‖11(yi = y)

+ γ1(yi = k)1(yi = y))
]

=
1

n
Eσ

[
γ

n∑
i=1

σi1(yi = k) + sup
‖W>‖p,∞≤W

∑
y 6=k

(〈wy −wk,uy〉 − εvy‖wy −wk‖1)
]

≤ 1

n
Eσ

[∑
y 6=k

sup
‖wk‖p,‖wy‖p≤W

(〈wy −wk,uy〉 − εvy‖wy −wk‖1)
]

=
1

n
Eσ

[∑
y 6=k

sup
‖w‖p≤2W

(〈w,uy〉 − εvy‖w‖1)
]

=
2W

n
Eσ

[∑
y 6=k

‖uy − εvy sgn(uy)‖q
]
,

where the last equality is due to the same derivation as in the proof of Theorem 5.2. Let
ny =

∑n
i=1 1(yi = y). Then, we apply triangle inequality and Khintchine’s inequality and

obtain

RS(Fk) ≤
2W

n

∑
y 6=k

Eσ[‖uy‖2] + εd
1
q
√
ny.

Combining with (5.15), we obtain

RS(˜̀F) ≤ 2WK

γn
(
K∑
y=1

Eσ[‖uy‖2] + εd
1
q
√
ny) ≤

2WK

γ

[
ε
√
Kd

1
q

√
n

+
1

n

K∑
y=1

Eσ[‖uy‖2]

]
,

where the last step is due to Cauchy-Schwarz inequality.

Proof of Theorem 5.6

We first review a Rademacher complexity lower bound in [16].
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Lemma 5.2. [16] Define the function class

F̂ = {x 7→ fW(x) : W = (W1,W2, . . . ,WL),
L∏
h=1

‖Wh‖σ ≤ r},

and F̂ ′ = {x 7→ 〈w,x〉 : ‖w‖2 ≤ r
2
}. Then we have F̂ ′ ⊆ F̂ , and thus there exists a universal

constant c > 0 such that
RS(F̂) ≥ cr

n
‖X‖F .

According to Lemma 5.2, in the adversarial setting, by defining

F̃ ′ = {x 7→ min
x′∈B∞x (ε)

y〈w,x′〉 : ‖w‖2 ≤
r

2
} ⊆ RX×{−1,+1},

we have F̃ ′ ⊆ F̃ . Therefore, there exists a universal constant c > 0 such that

RS(F̃) ≥ RS(F̃ ′) ≥ cr

(
1

n
‖X‖F + ε

√
d

n

)
,

where the last inequality is due to Theorem 5.2.

Proof of Lemma 5.1

Since Q(·, ·) is a linear function in its first argument, we have for any y, y′ ∈ [K],

max
P�0,diag(P)≤1

〈Q(w2,y′ −w2,y,W1),P〉

≤ max
P�0,diag(P)≤1

〈Q(w2,y′ ,W1),P〉+ max
P�0,diag(P)≤1

〈−Q(w2,y,W1),P〉

≤2 max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉. (5.16)

Then, for any (x, y), we have

max
x′∈B∞x (ε)

1(y 6= arg max
y′∈[K]

[fW(x′)]y′)

≤φγ( min
x′∈B∞x (ε)

M(fW(x′), y))

≤φγ(min
y′ 6=y

min
x′∈B∞x (ε)

[fW(x′)]y − [fW(x′)]y′)

≤φγ
(

min
y′ 6=y

[fW(x)]y − [fW(x)]y′ −
ε

4
max
y′ 6=y

max
P�0,diag(P)≤1

〈Q(w2,y′ −w2,y,W1),P〉
)

≤φγ
(

min
y′ 6=y

[fW(x)]y − [fW(x)]y′ −
ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉

)
≤φγ

(
M(fW(x), y)− ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉

)
:= ̂̀(fW(x), y)

≤1
(
M(fW(x), y)− ε

2
max

k∈[K],z=±1
max

P�0,diag(P)≤1
〈zQ(w2,k,W1),P〉 ≤ γ

)
,
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where the first inequality is due to the property of ramp loss, the second inequality is by the
definition of the margin, the third inequality is due to Theorem 5.7, the fourth inequality is
due to (5.16), the fifth inequality is by the definition of the margin and the last inequality
is due to the property of ramp loss.

Proof of Theorem 5.8

We study the Rademacher complexity of the function class

̂̀F := {(x, y) 7→ ̂̀(fW(x), y) : fW ∈ F}.

Define MF := {(x, y) 7→M(fW(x), y) : fW ∈ F}. Then we have

RS(̂̀F) ≤ 1

γ

(
RS(MF) +

ε

2n
Eσ

[
sup
fW∈F

n∑
i=1

σi max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉
])
,

(5.17)
where we use the Ledoux-Talagrand contraction inequality and the convexity of the supreme
operation. For the first term, since we have ‖W1‖1 ≤ b1, we have ‖W>

1 ‖2,1 ≤ b1. Then, we
can apply the Rademacher complexity bound in [16] and obtain

RS(MF) ≤ 4

n3/2
+

60 log(n) log(2dmax)

n
s1s2

(
(
b1

s1

)2/3 + (
b2

s2

)2/3

)3/2

‖X‖F . (5.18)

Now consider the second term in (5.17). According to [154], we always have

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉 ≥ 0. (5.19)

In addition, we know that when P � 0 and diag(P) ≤ 1, we have

‖P‖∞ ≤ 1. (5.20)

Moreover, we have
‖W2‖∞ ≤ ‖W>

2 ‖2,1 ≤ b2. (5.21)
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Then, we obtain

ε

2n
Eσ

[
sup
fW∈F

n∑
i=1

σi max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉
]

≤ ε

2n

(
sup
fW∈F

max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉
)
Eσ

[
|

n∑
i=1

σi|
]

≤ ε

2
√
n

sup
fW∈F

max
k∈[K],z=±1

max
P�0,diag(P)≤1

〈zQ(w2,k,W1),P〉

≤ ε

2
√
n

sup
fW∈F

max
k∈[K],z=±1

max
P�0,diag(P)≤1

‖zQ(w2,k,W1)‖1‖P‖∞

≤ 2ε√
n

sup
fW∈F

max
k∈[K]

‖ diag(w2,k)
>W1‖1

≤ 2ε√
n

sup
fW∈F

‖W1‖1‖W2‖∞

≤2εb1b2√
n
, (5.22)

where the first inequality is due to (5.19), the second inequality is due to Khintchine’s
inequality, the third inequality is due to Hölder’s inequality, and the fourth inequality is due
to the definition of Q(·, ·) and (5.20), the fifth inequality is a direct upper bound, and the
last inequality is due to (5.21).

Now we can combine (5.18) and (5.22) and get an upper bound for RS(̂̀F) in (5.17).
Then, Theorem 5.8 is a direct consequence of Theorem 5.1 and Lemma 5.1.
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Chapter 6

Conclusions

In this dissertation, we consider several topics on the scalability and robustness of modern
machine learning algorithms. We focus on the following specific problems: how to effi-
ciently leverage distributed computing systems to speedup training algorithms, how to make
distributed learning algorithms robust to Byzantine failures, and how to understand and
overcome the adversarial examples in machine learning.

For the first problem, we study the speedup saturation problem in large batch SGD algo-
rithms. We introduce gradient diversity, a quantity that measures the dissimilarity between
concurrent gradient updates, and show its key role in the convergence and generalization
performance of mini-batch SGD. We also introduce several diversity-inducing mechanisms,
and provide experimental evidence indicating that these mechanisms can enable the use of
larger batches without sacrificing the final accuracy, and lead to faster training in distributed
learning.

For the second problem, we design statistically and computationally efficient algorithms
for Byzantine-robust distributed learning. We show that, combining the distributed gradi-
ent descent algorithm with robust estimation subroutines such as median, trimmed mean,
and iterative filtering leads to an efficient Byzantine-robust distributed learning algorithm.
We establish the statistical rates and iteration complexities of the algorithm with these
subroutines and prove their optimality in various regimes, including the high dimensional
setting. We also design ByzantinePGD, an efficient robust distributed learning algorithm
that can provably escape saddle points and converge to second-order stationary points in the
Byzantine setting.

For the third problem, we focus on the adversarially robust generalization properties of
linear classifiers and neural networks through the lens of Rademacher complexity. For binary
linear classifiers, we establish tight bounds for the adversarial Rademacher complexity, and
show that in the adversarial setting, Rademacher complexity is never smaller than that in
the natural setting, and it has an unavoidable dimension dependence, unless the weight
vector has bounded `1 norm. The result also extends to multi-class linear classifiers. For
neural networks, we prove a lower bound of the Rademacher complexity of the adversarial
loss function class and show that there is also an unavoidable dimension dependence due to
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`∞ adversarial attack. We further consider a surrogate adversarial loss and prove margin
bound for this setting.

Building scalable and robust machine learning algorithms and systems is a long-standing
goal. We demonstrate some progress in this dissertation, and there are many other future
directions. Here, we discuss three of them.

First, in this dissertation, the results that we establish for distributed learning are mainly
for the data parallelism setting. However, for many modern machine learning applications,
especially natural language processing [55], the size of the model is also significantly larger
than many traditional models, and the most efficient way to store these models is using
distributed devices. However, in the distributed learning research community, model par-
allelism has not received enough attention compared to data parallelism. We believe that
designing scalable, robust and provably efficient algorithms for model parallelism setting is
a very important future direction in this area.

Second, we believe that training models that are robust to adversarial perturbations is still
a widely open problem. In this dissertation, we discuss the difficulty of adversarially robust
generalization. In the literature, there are many other discussions on this topic, including
the fundamental trade-offs between robustness and generalization [204] and potential ways
to improve adversarial robustness of machine learning [34, 45, 154]. We believe that getting
a deeper understanding of black-box adversarial attacks and the relationship between over-
parameterization in deep learning models and the robustness to adversarial perturbations
are two important problems to study.

Third, studying robustness problems that are more likely to appear in real-world ap-
plications, such as common corruptions to images [85] is also a crucial research topic. For
these problems, the test examples are not adversarially perturbed, but there exists distribu-
tion shift between training and test data. We believe that understanding the generalization
properties of machine learning models and algorithms under distributional shift is fundamen-
tally important research direction, and deep theoretical understanding of these problems can
provide us with more principled approaches to training robust models in practice.
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[28] Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. “Adversarial examples from
computational constraints”. In: arXiv preprint arXiv:1805.10204 (2018).

[29] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. “Phase retrieval via
Wirtinger flow: Theory and algorithms”. In: IEEE Transactions on Information The-
ory 61.4 (2015), pp. 1985–2007.

[30] Nicholas Carlini and David Wagner. “Adversarial examples are not easily detected:
Bypassing ten detection methods”. In: Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security. ACM. 2017, pp. 3–14.

[31] Nicholas Carlini and David Wagner. “Audio adversarial examples: Targeted attacks
on speech-to-text”. In: arXiv preprint arXiv:1801.01944 (2018).

[32] Nicholas Carlini and David Wagner. “Defensive distillation is not robust to adversarial
examples”. In: arXiv preprint arXiv:1607.04311 (2016).

[33] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “Accelerated methods
for non-convex optimization”. In: arXiv preprint arXiv:1611.00756 (2016).

[34] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C Duchi.
“Unlabeled data improves adversarial robustness”. In: arXiv preprint arXiv:1905.13736
(2019).

[35] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. “Learning from untrusted
data”. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing. ACM. 2017, pp. 47–60.

[36] Niladri Chatterji and Peter L Bartlett. “Alternating minimization for dictionary learn-
ing with random initialization”. In: Advances in Neural Information Processing Sys-
tems. 2017, pp. 1994–2003.

[37] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. “Revisiting dis-
tributed synchronous SGD”. In: arXiv preprint arXiv:1604.00981 (2016).

[38] Lingjiao Chen, Zachary Charles, Dimitris Papailiopoulos, et al. “DRACO: Robust
distributed training via redundant gradients”. In: arXiv preprint arXiv:1803.09877
(2018).

[39] Mengjie Chen, Chao Gao, and Zhao Ren. “Robust covariance matrix estimation via
matrix depth”. In: arXiv preprint arXiv:1506.00691 (2015).

[40] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. “Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems”. In: arXiv preprint
arXiv:1512.01274 (2015).



BIBLIOGRAPHY 148

[41] Yudong Chen, Lili Su, and Jiaming Xu. “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent”. In: arXiv preprint arXiv:1705.05491
(2017).

[42] Yudong Chen and Martin J Wainwright. “Fast low-rank estimation by projected
gradient descent: General statistical and algorithmic guarantees”. In: arXiv preprint
arXiv:1509.03025 (2015).

[43] Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. “Gradient descent with ran-
dom initialization: Fast global convergence for nonconvex phase retrieval”. In: arXiv
preprint arXiv:1803.07726 (2018).

[44] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. “Pro-
ject adam: Building an efficient and scalable deep learning training system”. In:
11th USENIX Symposium on Operating Systems Design and Implementation. 2014,
pp. 571–582.

[45] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. “Certified adversarial robustness
via randomized smoothing”. In: arXiv preprint arXiv:1902.02918 (2019).

[46] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. “Better mini-
batch algorithms via accelerated gradient methods”. In: Advances in Neural Informa-
tion Processing Systems. 2011, pp. 1647–1655.

[47] Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. “PAC-learning in the pres-
ence of evasion adversaries”. In: arXiv preprint arXiv:1806.01471 (2018).

[48] Frank E Curtis, Daniel P Robinson, and Mohammadreza Samadi. “A trust region
algorithm with a worst-case iteration complexity of ε−3/2 for nonconvex optimization”.
In: Mathematical Programming 162.1-2 (2017), pp. 1–32.

[49] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Rhicheek Patra,
and Mahsa Taziki. “Asynchronous Byzantine machine learning”. In: arXiv preprint
arXiv:1802.07928 (2018).

[50] Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann. “Starting small-learning
with adaptive sample sizes”. In: International conference on machine learning. 2016,
pp. 1463–1471.

[51] Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. “Big batch SGD: Au-
tomated inference using adaptive batch sizes”. In: arXiv preprint arXiv:1610.05792
(2016).

[52] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. “Large scale distributed deep
networks”. In: Advances in Neural Information Processing Systems. 2012, pp. 1223–
1231.



BIBLIOGRAPHY 149
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