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Abstract

Walking Silicon: Actuators and Legs for Small-Scale Terrestrial Robots

by

Daniel Savino Contreras

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kristofer S. J. Pister, Chair

This dissertation presents work on components and actuators for silicon-based walking
centimeter-scale robots. The focus on this work was on the actuators used to drive these
robots and the linkages that make the basic structure of the robot leg.

Pin-joints are used as the basic unit of the leg linkages. The pin-joints were tested in terms
of robustness and demonstrated high maximum tensile loads of over 5mN and compressive
loads in excess of 100mN.

Electrostatic inchworm motors were the actuator of choice for these robots. These motors
demonstrated over 1mN of output force and shuttle speeds up to 0.4m/s. Newer high force
motors have demonstrated 5mN output force at 100V, the highest from an electrostatic
inchworm motor to date.

These components were combined for a single-legged walker which demonstrated walking
under power and support from external wires. After the single legged walker a hexapod robot
using multichip assembly was designed, fabricated, assembled, and tested. The robot used
three separate chips to route signals from planar legs to a central hub chip that is tethered
to an external control circuit by 9 wires. The robot demonstrated taking steps.

This work also presents a future vision for robots based on this same silicon technology.
Using these components a new generation of walking robots can be developed, pushing the
path forward toward autonomous operation.
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Chapter 1

Introduction

When most people think of robots they imagine a wide variety of machines. Robotic toy
dogs for entertainment, large industrial factory machines, and service robots that perform
functions like vacuuming and cleaning are first and foremost in the public imagination. There
are also autonomous drones, which are prevalent in the commercial and military space. Self
driving cars are also shaping the public perception of robots and machine learning. Even
households are being outfitted with some degree of automation with smart speakers and a
constant barrage of household sensors on the market.

Most of these robots range from tens of centimeters to meters in size. The incredible
advances in mechanical and electrical design at the human-scale have made all this possible.
Yet trying to make robots smaller leads to a handful of critical issues that are much easier to
overcome at these larger scales. Power at smaller size scales is costly in terms of mass, since
every milligram is a critical loss of force output from an actuator. Also, integrating the nec-
essary high force actuators with these power sources is by no means a trivial task. Assembly
becomes difficult when the precision necessary enters the limits of human capability.

The focus of this work is to demonstrate a mobility platform for millimeter to centimeter
scale terrestrial robotics, targeting autonomous operation with on-board power and compu-
tation. This platform relies on a combination of silicon processing and hand assembly.

1.1 The World of Tiny Robots

The field of millimeter to centimeter-scale robotics has made significant strides in the last
few decades. Numerous small-scale robots that are able to walk, fly, and swim have been
demonstrated on a variety of platforms with a myriad of clever actuation schemes.

There are a number of centimeter scale robots that have achieved autonomous operation.
HAMR, a biologically-inspired robot that uses piezoelectric actuators and measures 4.5cm
in length and weighs 2.8g has recently demonstrated walking with its own on-board power
supply [1, 2]. Kilobot, another centimeter-scale robot, is fully autonomous and is externally
programmable on a large scale by light [3].
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Moving on to smaller scales, on-board power and computation quickly become an issue.
Robot control falls into three main categories; external field control, tethered control, and
untethered autonomous operation.

Going over external field control, levitating diamagnetically controlled robots from SRI
have demonstrated large scale control of numerous robots and can assemble macroscale
structures using specialized tools [4, 5]. There are also electric field actuated microrobots
that can perform complex tasks with multiple robots [6], as well as magnetic field actuated
legged robots that can move at many body lengths per second [7, 8].

Tethered robots rely on external wires being connected to the body of the robot, providing
power and control from an external source. A robot using flexible polyimide joints and
thermal actuators demonstrated that it was capable of lifting a load of 2.5g [9]. Another
robot used shape-memory-alloy actuators to drive hand assembled silicon linkages [10, 11].

Fully autonomous operation by a robot is still a difficult problem. A robot using an
electrostatically actuated resonator demonstrated motion without external wires for approx-
imately 10 seconds [12]. Another robot used a stack of multiple chips, which included a
chip of microelectromechanical systems (MEMS) actuators and mechanisms, a custom digi-
tal CMOS brain, and an array of high voltage solar cells for a power source [13]. This robot
was ultimately unable to walk forward due to issues with the locomotion mechanism.

1.2 Little Robots, Big Problems

The breadth of microrobotics literature shows the many innovations in actuation and
locomotion schemes but points to the central issue of autonomy. Power sources that are
light enough for robots to lift and provide enough power are hard to come by and even with
these power sources the robots are not long lived, moving slowly and with great effort.

The tethered robots described earlier suffer from high power draw. The robot based
on shape-memory-alloy actuators consumes approximately 0.4W to operate [14] and can
move at speeds of 1-2mm/s. The polyimide joint based robot consumes up to 1.1W at its
maximum speed of 6mm/s with 4 times its body weight as a load. Recent battery technology
has demonstrated energy densities of 0.36J/mg [15]. At the load capacity of this robot, it
could operate for 100 seconds and move 60cm, not counting the weight and power of on
board computation.

The electrostatic resonant actuator robot can operate by itself and move relatively quickly
at 33mm/s while tethered, but when untethered it moves at 2mm/s, for 10s with 2.5kV stored
on a 10nF capacitor [12].

The previous 10mg MEMS Hollar microrobot came close to moving autonomously. The
robot was able to actuate by itself while under light for extended periods of time. It has even
demonstrated functioning nearly 15 years later. However, it failed to take a step forward
with its locomotion scheme. The robot was meant to crawl forward while dragging its rear
half. The arms could not overcome the friction in the rear half to move forward.
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This robot used high force, low power electrostatic motors to drive a silicon linkage
fabricated alongside the motors. The motors were approximately 4% of the total power
draw, with high voltage buffers consuming a majority of the power. This was the key to its
autonomous operation and what is improved upon in this work.

1.3 This Work

The work presented in this dissertation is as follows. First work on each of the unit cells
of the leg is presented in Chapter 2 and Chapter 3. These include the silicon pin-joint, which
makes up the basic mechanical structure of the leg, and the electrostatic inchworm motor,
used to drive the linkages and actuate the leg. These chapters focus on characterization of
these components in terms of durability for the joints, and force output of the motors.

Chapter 4 goes into detail on the dynamics of the motors. The details on the MATLAB
dynamics model are shown. It also presents an optimization scheme for finding an ideal
motor device layer thickness.

Chapter 5 discusses the design, assembly, and testing of the single legged robot. This
robot was a test for the concept of planar robots. The robot was made from a combination
of electrostatic inchworm motors and pin-joints from the previous chapters.

Chapter 6 goes over the next stage for the robotics platform, the hexapod silicon robot.
After successful demonstration of the single legged walker, the next step was to implement
more legs for a more statically stable and faster design.

Chapter 7 concludes this work, presenting a vision for the future of the platform and
laying a series of next steps to achieve a truly autonomous walking robot system.
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Chapter 2

Silicon Pin-Joints

The basic mechanism of the robot leg is the silicon pin-joint. Ideally these structures
have a single rotational degree of freedom in the plane of the patterned silicon layer. By
joining these unit cells together we are able to form complex linkages with rotational and
translational degrees of freedom in the plane of the wafer, all using a single mask.

2.1 Basic Design

Fig. 2.1 shows a cartoon diagram of a silicon pin-joint. A rotating element sits inside of
a joint holder and the two pieces are held together by a weak rotary spring. The mechanism
allows for motion in six axes with constraints. Since the pin-joint is fabricated in a single
layer of silicon and does not have a capping structure to hold the rotating element in plane,

Weak Rotary 
Spring

Joint Holder

Rotating Element

Figure 2.1: A diagram showing the basic pin-joint unit cell



CHAPTER 2. SILICON PIN-JOINTS 5

Probe TipRotating 
Element

Joint 
HolderRotary 

Spring

Force 
Gauge

Figure 2.2: A fabricated pin-joint. The pin-joint is fabricated with etch holes to ensure its
release during fabrication. The static pin-joint with parts labeled is shown on the left. The
frame on the right shows the pin-joint manually rotated using a probe tip

a weak rotary spring is used to hold the joint together after the structure is released. The
spring is stiff enough to hold the structure together but weak enough to allow the joint to
fully rotate without breaking. A fabricated pin-joint test structure is shown in Fig. 2.2.
In the image sequence, the structure is manually rotated using a tungsten probe tip on
a micromanipulator. The force gauge partially seen in the figure is used to measure the
durability of the joints during tensile strength experiments.

2.1.1 Limits on Angular Travel

This simple pin-joint design is fundamentally limited in its angular travel by the radius
of the rotating element, the size of the opening, and the size of the link extending out of the
rotating element. As the opening approaches the size of the rotating element, the rotating
element can slip out of the holder with no resistance, and would only be held together by
the rotary spring. This is shown in Fig. 2.3. On the other hand, if we confine the rotating
element too much within the joint holder we reduce its angular travel.

The limitation in travel is influenced by a few key geometries in the joint. The radius of
the inner joint holder is rjh=d/2 + g. Looking at the chord length of the circle, wo, we can
implement some degree of tolerance, t, such that wo = d − t to keep the rotating element
from slipping out. This gives the angle of the opening as

θo = 2 arcsin
d−t

2

d/2 + g
= 2 arcsin

d− t

d+ 2g
(2.1)
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Figure 2.3: A diagram of the dimensions of the pin-joint. There are three critical dimensions
when designing the pin-joint, the diameter of the central portion of the rotating element, d,
the gap between the rotating element and the joint holder, g, and the width of the opening,
wo. wo determines the angular size of the opening, θ

Another fundamental limit is the width of the beam that the rotating element is connected
to, WL. This further limits the range of angular travel by the angular size of the beam from
the center of the rotating element. Subtracting this from the angular opening we can find
the actual angular travel of the joint

θtravel = θ1 + θ2 = 2 arcsin
d− t

d+ 2g
− 2 arcsin

WL

d
(2.2)

It should be noted that θ1 and θ2 are usually not equal, since the distribution of the
angular travel around the joint depends on the desired initial position after fabrication and
final position at end of travel of the joint.

2.1.2 Chosen Leg Joint Geometries

Eq. 2.1 and Eq. 2.2 are plotted for various radii and gap sizes in Fig. 2.4 with t = 1µm.
With this tolerance the joint slowly approaches an opening of 160◦. This does not factor in
the size of the link extending out of the rotating element

Fig. 2.4 also shows the curves corresponding to the parameters of the joints of the robot
legs. The minimum feature size in the silicon fabrication process used to create these joints
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Figure 2.4: A plot of the angular opening of the joint as a function of the diameter of
the rotating element with a tolerance of 1µm and varying gap sizes. The angular travel
approaches over 160◦ for a 1µm gap. The angular limit is lower for larger gap sizes (left) A
plot of the design space used for the robot legs of the single-legged walker and the hexapod
(right)

will determine g. For our process this is 2µm line and space. Additionally, a higher tolerance
than 1µm is also preferred for the sake of durability of the joint as it undergoes tensile loading.

The single-legged walker was designed with joints having a tolerance of 20µm and link
width of 34µm, while the hexapod joints had a tolerance of 40µm and a link width of 62µm.
These dimensions were overdesigned for the sake of leg durability and safety while handling
the robots. Additionally, for each robot an angular travel of 60◦ was desired. This was the
maximum joint travel for each linkage’s designed sweep patterns. This is marked by the
black dashed line, also marking the radii of the joint’s rotating elements.

2.1.3 Rotary Spring Design

Rotational Stiffness

The pin-joints are fragile structures since they are only held together by weak silicon
beams. Initial spring designs used a basic rectangular spring that allowed for motion in
the plane of the joint. We can approximate the rotational stiffness of the rotary spring by
assuming the spring acts as a linear spring, ks, for a small rotational displacement, θ. The
moment the spring imparts on the links is given by

M = Fr = κθ (2.3)

where F is the force at a moment arm r, the distance from the center of the joint to the
spring’s attachment point. F can be approximated for a displacement, x, as

F = ksx = ksrθ (2.4)
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where we have translated linear displacement x into an angular displacement rθ. Substituting
this F into Eq. 2.3 we get a rotational stiffness of

κ = ksr
2 =

ETw3
s

NL3
s

r2 (2.5)

where, as a first order assumption, we can express ks as the linear serpentine spring constant
with fixed-guided boundary conditions at the ends of the beam. This is expressed as

ks =
ETw3

s

NL3
s

(2.6)

where E is the Young’s Modulus, T is the device thickness, ws is the spring width, N is the
number of beams along the length of the spring, Ls is the beam length.

For the dimensions of the spring used, T = 40µm, ws = 2µm, N = 2, Ls = 290µm and
r = 75µm, we get an analytical rotational stiffness of 6 × 10−9Nm.

Fig. 2.5 shows a screenshot of the simulation of the rotary spring. The spring was rotated
from −45◦ to −45◦. Fig. 2.6 shows a plot of the simulation data. There are nonlinearities for
large angular deflections. For angles in the range of travel (-0.5 to 0.5 radians) the simulated
rotational stiffness is approximately 5.6 × 10−9Nm indicating good agreement between the
analytical expression and our simulation.

The maximum stress was 800MPa in the simulation. This corresponds to 0.47% maximum
strain, below the safety limit of 0.5%. It should be noted that the fabricated device will be
subject to an approximate 1µm undercut during the DRIE step and will be approximately
8 times less stiff due to losing half its drawn width.

Out-of-Plane Stiffness

Out-of-plane stiffness was also important to characterize to see how weak these springs
are to out-of-plane forces. Fig. 2.7 shows a simulation of the out-of-plane motion of a
joint. The long sections of the beam are deformed torsionally. The stiffness will come from a
combination of this torsional deflection and the linear deflection of these torsionally deformed
beams. The torsional spring constant of these beams is given by

κbeam =
JG

Ls
=
Tw3

sG

3Ls
(2.7)

where J is the torsional constant dependent on the cross-section (Tw
3
s

3
for a rectangular cross-

section) and G is the shear modulus of the material (80GPa for silicon). The displacement,
z, is applied to the two long section beams across the shorter middle beam, Lm. We are also
applying the moment at a distance Lm. The out-of-plane stiffness is given by

kz =
Tw3

sG

3LsL2
m

(2.8)
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Figure 2.5: A screenshot of the CoventorWare FEA environment used to simulate the rotary
springs

For the dimension of our beam we get a stiffness of 2.9N/m. Simulation results, shown
in Fig. 2.8, give a stiffness of 0.55N/m. Our analytical result does not factor in the linear
bending of the beam which could reduce the spring constant further, matching simulation.
According to simulation, the rotary spring would fail under a 20µN out-of-plane load, since
the joint would leave its device layer plane at this point.

Improving the Spring Design

A different spring design was used for the hexapod robot. This design used curved springs
with multiple meanders to improve the survivability during fabrication. These curved springs
were also designed to survive higher stress during operation. The design for these springs is
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Figure 2.6: Plotted result of the rotational moment caused by the rotary spring on the joint
from the CoventorWare simulation. The solid line corresponds to a rotational stiffness of
5.6 × 10−9Nm

Figure 2.7: Simulation of the out-of-plane motion of the rotary spring to measure the out-
of-plane stiffness

detailed in Section 6.2.1.

2.2 Pull-Out Force Characterization

2.2.1 Pin-Joints Under Tension

The impact of the pin-joint opening on the angle of travel was discussed earlier. Some
degree of tolerance will ensure that the rotating element is enclosed by the joint holder so
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Figure 2.8: Simulation results from the CoventorWare simulation of the rotary spring being
linearly displaced out-of-plane

that a tensile load on the joint in the plane of the wafer will not immediately dislocate the
joint.

However, even with some degree of tolerance, as designed, the joint holder will bend if
enough force is applied. This further limits the tensile loading on the joint. In order to
ensure a reliable design for the joints to deal with the forces they will experience in a leg, it
was important to analyze bending and friction model for the joints and verify this analysis
experimentally.

2.2.2 Curved Beam Bending

The work in this section is adapted from Roark’s Formulas for Stress and Strain, specif-
ically the chapter on curved beams [16].

Fig. 2.9 shows a free body diagram of the pin-joint while under tension. The rotating
element is pulled while the joint holder is held static. Once the rotating element makes
contact with the holder, exerting a force P ′ on the joint holder. A force P = P ′

2
is applied to

the bending of one side of the joint holder, assuming the rotating element does not deform.
The joint holder has a width W . The radius from the center of the joint to the centroidal

axis of the joint holder is given by R. The positional angle, starting from the point of
application of the force, is given by x. Force P is broken down into two components, the
transverse force with respect to the beam V and the axial force with respect to the beam
H. From these component forces we can use Castigliano’s Theorem of beam bending.

Castigliano’s theorem, or the theorem of least work, states that in a static system under
stress the system will achieve the minimum energy possible given its boundary conditions.
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(a)

(b) (c)

′

Figure 2.9: The free body diagram of a pin-joint under a tensile load (a) A force P is applied
to the rotating element and it makes contact with the joint holder according to the degree of
tolerance in the holder (b) This load condition is broken down into a symmetric half model
of the joint holder under load P = P ′/2 (c) The components of the force are broken down
further

Thus the total strain energy must equal the energy of the deformation of the beam due to
a displacement. In this way, if we find an expression for the strain energy, Ui in terms of
the loading, Fi, the resulting displacement xi can be expressed as a partial derivative of the
energy with respect to the load

xi =
∂Ui
∂Fi

(2.9)

This will give the force/displacement relationship for a statically indeterminate system. In
order to make use of this relationship, we must find the total strain energy in the deflected
beam as a function of the loads.

First we find the moment, shear, and axial forces on the beam as a function of the angular
position x. These expressions will be

Mx = V R sinx+HR(1 − cosx) +Mo (2.10)

Vx = V cosx+H sinx (2.11)

Nx = −H cosx+ V sinx (2.12)
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Here Mo is a pure bending moment The total complementary strain energy of the beam will
be given by the integral of the moment over the length of the beam

U =

∫
M2

x

2AEe
dx+

∫
FV 2

xR

2AG
dx+

∫
N2
xR

2AE
dx−

∫
MxNx

AE
(2.13)

Here, A is the cross-sectional area of the beam and E is the Young’s modulus of the
material. e is the distance from the centroidal axis to the neutral bending axis. This
separation occurs in curved beams since the curvature requires that strain on the outside
curve of the beam be different from the strain on the inside curve for a unit segment of
the beam because of the difference in lengths. F is the shape factor of the cross-section,
required for short thick beams which is what we are dealing with. This is 1.2 for rectangular
cross-sections. G is the material’s shear modulus.

For single crystal silicon, E and G can vary greatly depending on the orientation of the
wafer[17]. For the purposes of this model, since the bending of the of the curved beam is not
in a purely cartesian direction, an average Young’s Modulus of 160GPa and a shear modulus
of 65GPa were used.

A simplifying assumption we will make is that the deflection of the beam in the direction
of V dominates in terms of the pull-out force and the axial deflection is negligible. Obeying
the principle of minimum energy, we can equate this strain energy to the energy stored in
the deflection of the beam in the direction of V , the relationship between the deflection and
the load will be given by

δv =
∂U

∂V
(2.14)

We can measure the expected deflection at the pull-out limit from the tolerance in the layout
drawings. We can then express this in the form of Hooke’s law to find the force by multiplying
this deflection by the constant of proportionality, k, we find in solving Equation 2.14. Thus
we get the relationship

V = kδv (2.15)

Fig. 2.9 (c) shows the components of this reaction force. The component acting in parallel
to the pull-out force does not have an influence at the moment of pull-out, because this force
does not have a surface to act on at the point of max deflection. The component that acts
normal to the surface of the joint is taken and multiplied by a friction constant, µ

P = µV sin θ = µkδv sin θ (2.16)

This is the value used for P . P ′ is double this value. For the experimental array, the width
of the joint holder and the size of the opening were varied.

2.2.3 Pull-Out Force Test Structure Design and Measurements

Fig. 2.10 shows the layout of the pull-out force test structure. The joint is attached to
a force gauge and handle for a probe tip to pull on. The force gauge uses a set of silicon
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Joint

Vernier Scale
Weak Rotary Spring

Spring 
GaugeProbe Tip 

Handle

Figure 2.10: Simplified layout of the pull-out force test structure. A spring-based force gauge
is attached the the joint along with a handle for a probe tip. The spring gauge has a vernier
scale to optically measure the displacement

Figure 2.11: Diagram of the force gauge used to measure the pull-out force (left) A close up
of the vernier scale used to measure displacement (right)
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100µm

Figure 2.12: A fabricated device under test. The probe tip is shown in the probe handle.
The series shows the joint being pulled out of its joint holder

beams that act as springs. The dimensions of the spring are shown in Fig 2.11 as well as the
dimensions of the vernier scale used to read displacement. The gauge used has a resolution
of 1µm.

As the device is pulled, the springs will deflect and the force will be given by the spring
constant and the measured displacement. The spring is a set of series of beams with the
fixed-guided boundary condition. This spring constant is given by

k =
Ea3b

L3
(2.17)

where a is the width of the beam, b is the thickness of the silicon layer, and L is the length
of the beams. The beam width will be reduced by approximately 1µm due to the DRIE
undercut. Gauges with widths of 6.5µm, 10.5µm and 15.5µm were used on the gauges. For
each gauge L = 100µm and b = 40µm. According to. [17], since the orientation of the gauge
is aligned to the cartesian grid of the wafer, E = 169GPa.

Measurements were made using recorded videos. For each test structure, video was
recorded showing the pull-out sequence. Each captured video was processed using feature
tracking software that outputs feature displacement with respect to another feature. software
tracked the displacement of the vernier scale to measure the ultimate pull-out force. In every
video, this maximum value occurred right at tensile failure of the joint.

2.2.4 Spring Gauge Calibration

The spring constants of the force gauges were calibrated using a Dage 4000 in-plane shear
force sensor. This tool is used to measure the shear strength of wirebonds and it was capable
of measuring the spring constant of the force gauges with slight layout modifications.

Fig. 2.13 shows the test structure used to measure the force vs. displacement of the
gauge. The test structure is made of a push mass that the probe head of the Dage pushes
against as indicated. The anchor is attached to a set of trusses through springs, the same
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Figure 2.13: Test structure for measuring the spring constant of the gauges used on the
pull-out force test structures

springs used on the pull-out test structures. The trusses are large and bulky to prevent them
from bending and influencing the experiment. The trusses are tied to an anchor through
another set of springs, exactly matching the suspension on the pull-out structures on the
push mass. The space between the push mass and trusses is wide to allow the Dage probe
head to land with enough tolerance, which can be over 500µm in size. Fig. 2.14 shows the

Figure 2.14: Data from the test structures using the Dage force tester. The average slope of
the data used as the spring constant for each gauge is shown in each plot

data from the Dage for the three gauges used in the experiment. In addition to the analytical
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expression, simulations in CoventorWare were also performed by displacing the spring and
finding the force. The CoventorWare simulations factor in the reduction in the beam width
after fabrication. All three values for each gauge are compared in Table 2.1. It should be

Table 2.1: Analytical, simulated, and measured spring constants for the pull-out force gauges
with respect to beam width

Drawn Beam
Width (µm)

Analytical Spring
Constant (N/m)

Simulated Spring
Constant (N/m)

Measured Spring
Constant (N/m)

6.5 1120 1080 1100
10.5 6000 4960 4600
15.5 20600 14580 13300

noted that the analytical expression factors in the device undercut during DRIE that reduces
beam width while the CoventorWare simulation does not and used layout at the full beam
width.

There is good agreement between the analytical model, simulation, and the measurement
for the 6.5µm beam width gauge. The simulated and measured values for the thicker beams
show noticeable deviation from the analytical model. For the thickest beam the measured
value is lower than the analytical value by over 35%. Simulation results showed large stress
concentrations around the attachment points of the beams to the trusses/anchors. Bending
at the anchors could indicate a combination of a rigid and pinned boundary condition rather
than perfectly rigid.

2.2.5 Results

The pull-out force is plotted against the analytical normal force on the rotating element
in Fig. 2.15 as a function of the width of the joint holder for the various angular openings.
The ratio between these values is taken as the friction coefficient between the two surfaces.
The angular travel of these joints depends on the width of the link extending out of the
joint. For a link of width 38µm, the angular travel is given by the angular opening minus
approximately 40◦.

Measured pull-out force vs the width of the joint opening is shown in Fig. 2.16. The
analytical lines are plotted using Eq. 2.16 and the friction coefficients from Fig 2.15.

An important thing to note in Fig. 2.16 is the weakest joint parameters. The black line
for the 110◦ opening defines the widest angular opening and a limit in our design space. In
order to design a joint that will survive tensile loads in the force range for the motors, which
is approximately 1mN, we should use joints that are above this line. From this plot, we can
stipulate a safe design space for our joints. The joints demonstrated surviving compressive
loads outside of the range of the designed gauges, about 100mN.
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Figure 2.15: Measured pull-out force plotted against the analytically derived normal force.
The slope of this line is taken as the friction coefficient
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Figure 2.16: Measured pull-out force vs the width of the joint holder. The frictional for each
curve is shown in the legend. Analytical predictions from Eq. 2.16 with friction coefficients
from Fig. 2.15 are also shown
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Chapter 3

Electrostatic Inchworm Actuators

Inchworm motors based on electrostatic gap closing actuator (GCA) arrays were chosen
in this robot design for their high force densities and low power draw. This chapter focuses on
the adaptation of angled-arm inchworm actuators for use in the microrobot leg. This chapter
focuses on characterization of GCA arrays in terms of force and dynamics, application of
angled-arm electrostatic inchworm motors on robot legs, and other applications of these
motors.

3.1 Gap Closing Actuators

3.1.1 GCA Unit Cell

Fig 3.1 shows a diagram of a gap close unit cell in a GCA array. An array of N capacitive
gaps in air, where one set of plates is held stationary and the other set of plates is movable

𝑥"

𝑤$%&𝑤"𝑥'

𝐿')𝑥*

𝐿 𝐿$%&

Figure 3.1: A unit cell of a set of capacitively actuated gap closing fingers. N of these fingers
are arrayed to increase the force output
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has a capacitance defined by

C(x) = εoNLolT

(
1

xo − x
+

1

xb + x

)
(3.1)

where εo is the vacuum permittivity of 8.85×10−12F/m, Lol is the overlap length of the gap,
T is the thickness of the gap closer into the page, xo is the initial forward gap size (in the
direction of actuation), xb is the rear gap size, and x is the position of the movable finger.
To keep the gap from fully closing and shorting the array, a gap stop of size xf is used to
stop the moving fingers at a gap size of xo − xf . We are neglecting fringing field effects.
Assuming the fringing field is proportional to the size of the plate gap, the fringing field
would be approximately 10% of the total capacitance for an open gap and 2% for a closed
gap.

The movable fingers are supported by a set of springs, tied to the substrate. The springs
have width wspr and length Lspr. Treating these beams as a set of two fixed-guided beams
in parallel, the spring constant is given by

k =
2ETw3

spr

L3
spr

(3.2)

where E is the modulus of elasticity of silicon. GCA arrays are usually designed and fabri-
cated in the cartesian grid of the (100) wafer. Thus for these design cases E = 169GPa is
used [17].

3.1.2 Voltage Application, Energy, and Force Output

Typical operation involves applying a voltage to the anchored set of fingers and keeping
the movable fingers grounded. This prevents the fingers from snapping down to the substrate,
since the substrate is typically held at ground. With an applied voltage, the energy required
from the source to charge the capacitor is given by

Utot = C(x)V 2 (3.3)

This is the energy required per cycle to charge up the GCA. The final energy stored on the
capacitor is given by

Us =
1

2
C(x)V 2 (3.4)

where half of the energy from the source dissipates due to resistive loss.
The full system energy is given by the energy from the source and the energy stored in

the capacitor. As the capacitor is charged to its final value, the system energy can be defined
as the initial source energy minus this stored capacitor energy

Usys = Usource,0 − Us (3.5)
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Since the grounded fingers are movable, the electric field between the plates is able to
move the fingers. Taking the negative derivative of the system energy in equation 3.5, we
can find the force on the finger

Fes = −dUsys
dx

=
dUs
dx

=
1

2
V 2dC

dx
=

1

2
εoV

2NLolT

(
1

(xo − x)2
− 1

(xb + x)2

)
(3.6)

3.2 Electrostatic GCA Array Inchworm Motors

Inchworm motor is a generic term for a motor system that uses actuators that take a
series of small steps to generate large displacements, over hundreds of times the actuator
step size, on a shuttle through some form of mechanical advantage. The shuttle provides
mechanical advantage to the smaller actuators, that usually have high force output in the
milliNewtons, but small travel of a handful of micrometers. In addition to the electrostatic
actuators described in this chapter and focused on in this work, inchworm motors relying on
thermoelectric and piezoelectric actuators have also been designed and tested [18, 19, 20].

Electrostatic GCA array-based inchworm motors for microrobotic applications were first
introduced in [21]. This first motor design could output 6.5µN of force with a travel of 40µm.
This original design, fabricated in a 2-poly process, was improved on in [22]. For these thick
SOI-based motors, the force output reached 260µN with 80µm of displacement. The 10mg
silicon robot [13] used these actuators for its leg.

These designs used a clutch-drive based system of mechanical advantage. A small GCA
array, called the clutch, was used to engage onto the inchworm shuttle. This GCA array
required only enough force to keep the shuttle from slipping with a combination of friction
and gear teeth. After this engagement another, higher-force, GCA array called the drive
pulled on the entire clutch/shuttle assembly providing force output and the displacement on
the shuttle.

Following this work, a different inchworm design was introduced in [23]. Rather than
using a separate clutch and drive to engage onto and move the shuttle, these motors used
an angled arm to provide the mechanical advantage directly from a single GCA array onto
the shuttle. Due to removal of the clutch actuator, the electrical signals for these motors
have simpler signal routing and the motors are able to operate faster than the clutch-drive
inchworm motors. The following sections will focus on the adaptation and design of the
angled-arm inchworm motors for the purpose of walking microrobots. Hereafter, references
to inchworm motors will refer specifically to angled-arm inchworm motors.

3.2.1 Basic Design

The inchworm motors in this work are based on the design methodology shown in [23].
Fig. 3.2 shows a cartoon diagram of an inchworm motor. An array of four separate GCA

arrays sit around the central shuttle. The stator fingers are anchored to the substrate while
the linear rotor fingers are held by a spring. An angled arm is attached to the ends of the
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Figure 3.2: Diagram of an electrostatic GCA array-based angled-arm inchworm motor

GCA array rotors. The end of the angled arm has a pawl that is meant to impact and move
the shuttle. An anchored gapstop, not shown, keeps the fingers from pulling in completely
and shorting the device. The GCA arrays on opposite sides of the shuttle are tied to the
same high voltage signal.

Fig. 3.3 shows how the inchworm motor functions. The motor follows the sequence:

1. The motor begins deenergized

2. One set of GCA arrays are energized to voltage VD. The GCA arrays come in and
impact the central shuttle and cause horizontal movement of the shuttle, indicated by
the yellow mark

3. The rear set of GCA arrays is energized, the rear pawl come into contact with the
shuttle

4. The front set of GCA arrays is deenergized allowing the rear set to fully come in
and move the shuttle. The front and rear sets work in tandem, taking incremental
displacements to produce hundreds of micrometers of displacement
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Figure 3.3: Sequence of the angled arm inchworm motor actuating

The motor is unidirectional in the direction of the pawls. When all the GCA arrays let
go, the shuttle is retracted passively by the spring support it is attached to.

3.2.2 Pawl-Shuttle Interface Design

The design of the interface between the pawl and the shuttle is critical to the force output
of the motor. This interface determines the mechanical advantage between the GCA array
and the shuttle.

Fig. 3.4 shows the dimensions of the pawl-shuttle interface. The pawl is at an angle α
with respect to the shuttle. The pawl is separated from engagement with the shuttle by a
distance YI , determined by the gear dimensions of the teeth.

The pawl and the shuttle are lined with teeth of lateral size dt and protruding from the
base a distance ht. Square teeth were found to cause the motor to jam due to the corners
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Figure 3.4: Diagram for the dimensions of the pawl-shuttle interface

catching on the tooth edges. The teeth are rounded to prevent them from interlocking during
shuttle retraction. The diagram shows a dimension lod known as the overdraw length. This
distance is added onto layout and mask generation to account for the undercut during the
DRIE.

The two GCA arrays are offset from each other by a set number of teeth. One set of
teeth must be lined up to correctly engage with the shuttle after fabrication and the other
set of teeth must be offset such that once the motor takes a step, the teeth line up for the
next engagement. The step size of the motor will be a distance 1

2
(dt + st).

The pawl teeth that are lined up after fabrication are separated from the shuttle by
the minimum feature size of the lithography system, λ. This is desirable for increasing
the areal force density of the motor due to electrostatic force scaling inversely with the
square of the gap between the fingers, shown in Eq. 3.5. The engagement length is given by
YI = λ+ ht + 2lod. This value is critical for determining the force output of the motor.

3.2.3 Analytical Expressions for Displacement and Force

Fig. 3.5 shows the static state of the motor when the pawl comes into contact with the
shuttle and at the end of the GCA arrays travel. A final gapstop that keeps the fingers from
pulling in completely is not shown.

The mechanical advantage of the arm can be related from the slope of the arm to the
tangent of the angle as

∆x

∆y
= tanα (3.7)
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Figure 3.5: Statics diagram of the pawl and shuttle at the point of engagement and at the
end of travel

Due to the dependence of the GCA array on the gap size, the maximum force on the
shuttle load will be at the point of engagement. As the gap decreases the force output
increases quadratically, which is not useful when pushing on a static load over this limit.
However this force increase goes into the acceleration of the shuttle which has a strong effect
on motor speed, discussed later.

Looking at the statics of the system, the force out of the GCA array at the point of en-
gagement will be the electrostatic force minus the spring force of the GCA at the engagement
distance YI

Fy =
1

2
εoV

2NLolT

(
1

(xo − YI)2
− 1

(xb + YI)2

)
− kYI (3.8)

Balancing the moments from Fy and Fx around the arm we get that

FxLarm sinα = FyLarm cosα (3.9)

Fx =
Fy

tanα
(3.10)

As the arm continues pushing into the shuttle, the arm will flex as the shuttle moves.
This deflection is shown in Fig. 3.6. We assume that the final angle of the beam is still
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Figure 3.6: Geometry of the angled arm deflection. The final angle of the arm is approxi-
mately α (left) Exaggerated deflection of the end of the angled arm (right)

approximately α. Looking at the arm as a cantilever being deflected on its free end, the end
that contacts the shuttle, the force lost to this spring is given by

Farm = karm
∆x

sinα
=

3EIarm
L3
arm

∆x

sinα
(3.11)

where Iarm is the area moment of inertia of the angled arm. Balancing moments while
accounting for the arm, we can find an analytical expression for mechanical advantage of the
arm throughout its deflection

FxLarm sinα = FyLarm cosα− FarmLarm (3.12)

This gives us an expression for the balancing load force as a function of the shuttle
displacement

Fx(∆x) =
Fy

tanα
− 3EIarm

L3
arm

∆x

sin2 α
(3.13)

This derivation assumed that the pawl end of the angled-arm has rotational freedom.
Another model assumes that the pawl end of the arm is fixed to the shuttle rotationally as
well as positionally, leading to a fixed-guided boundary condition on the beam. Looking at a
simplified half model for the beam as done with folded flexures, the stiffness loss term could
be as much as 4 times larger.
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Figure 3.7: SUGAR simulation of the angled arms

3.2.4 Motor Optimization Scheme

The method for motor generation used in [23] uses the equations derived in the previous
section. The force output in Eq. 3.10 is taken and divided by the area for a variety of
geometries, including the additional area needed for the angled arm. This value is maximized
for the parameters given, including but not limited to minimum feature size, device layer
thickness, and maximum finger length before catastrophic pull-in.

3.2.5 SUGAR Displacement and Mechanical Advantage

SUGAR is a nodal simulation tool designed for MEMS. A simulation environment for
the angled-arms was created to verify the analytical expressions used in the designs. The
simulation environment does not factor in contact due to the lack of an adequate contact
model.

Fig. 3.7 shows the simulation environment. Angled arms are attached to weak linear
suspensions. The suspensions are designed to be weak enough to not impact simulation
results. The ends of the angled arms attached to the shuttle are defined as rotary joints,
free to rotate but locked positionally to the shuttle flexure. The simulation is only for the
exact moment after and following impact. This simplification is done due to the lack of
an adequate fast performing contact model for the MEMS devices. The files used in this
simulation are given in Appendix. A.

Fig. 3.8 shows the comparison between the sugar simulation and the analytical expres-
sions. Fig. 3.8(a) compares the displacement of the GCA array to the shuttle displacement
given in Eq. 3.7. Fig. 3.8(b) plots the engagement force found in Eq. 3.10. Fig. 3.8(c) plots
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Figure 3.8: Plot comparing analytical and simulation results for the statics of the angled-arm
system

the force as a function of the shuttle displacement found in Eq. 3.13. Fig. 3.8(d) shows the
comparison between SUGAR and the analytical expression assuming fixed-guided boundary
conditions. The analytical expressions includes a 4 times increase in the stiffness loss term
from Eq. 3.13. The analytical expression assuming fixed-pinned boundary conditions is also
shown. In all four cases we see good agreement between the simulation and the analytical
model, indicating that our linear approximations in the analytical expressions are correct
according to SUGAR.
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3.2.6 Angled Arm FEM Simulation

In order to form a better model for the angled arm boundary conditions during engage-
ment, a simulation was performed in CoventorWare’s FEM simulation environment. Fig. 3.9

Figure 3.9: Stills from the CoventorWare simulation of the pawl-shuttle interaction

shows stills from the simulation environment for the angled arms. The arms are displaced
in the +y direction into the shuttle. The shuttle is anchored such that it can only move in
the x-axis. The shuttle section is connected to an anchor through a beam. This is done to
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measure the reaction force on the shuttle section on the anchored face. The three different
arms have various degrees of undercut at the pawl/shuttle teeth, from no undercut to 0.4µm
of undercut.

The toothed surfaces of the pawl and the shuttle have contact boundary conditions
applied. As the pawl moves into the shuttle, the contact boundary condition keeps the
surfaces from moving past each other and the mechanics of the contact can be analyzed.
A friction coefficient of 0.3 is applied between the surfaces. Rather than being rounded
surfaces, the teeth are simplified to hexagons in order to speed up simulation time. This is
due to having fewer surfaces for the contact analysis to deal with. The simulation can take
between 5 and 10 hours for the number of elements shown depending on the fineness of the
meshing.

Figure 3.10: Results from the CoventorWare simulation looking at the displacement of the
shuttle with respect to the angled arm (left) Results for the CoventorWare simulation of
force loss for the angled arm plotted alongside the fixed-pinned and fixed-guided analytical
model expressions (right)

Fig. 3.10 shows the results from CoventorWare alongside Eq. 3.7 and Eq. 3.13 and the
fixed-guided beam boundary condition.

The displacement follows the expected trend from Eq. 3.7 and SUGAR. The different
y-offsets are because of the different undercut on each arm increasing the initial distance
between the teeth before contact.

The force loss plots the second term in Eq. 3.13 alongside the data from the force on the
anchored face in the simulation after contact. For small deflections and smaller undercut
the simulation tends to agree more with the pinned condition. The simulation diverges from
this line as the displacement increases, being bounded between the guided and the pinned
conditions, implying some sort of combined boundary condition model is more correct. With
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our degree of undercut, the fixed-guided boundary condition would be more appropriate
according to simulation. It should be noted some points in the loss term are positive. This
is because upon contact simulation indicated that there is a slight deflection in the negative
x-axis on the shuttle section leading to a positive force vector on the anchor.

Eq. 3.10 was not simulated. Precisely positioning the arm at the exact engagement
point is difficult in simulation and the simulation would have to be run multiple times while
changing the spring constant of the beam anchoring the shuttle section. Results from this
experiment indicate a tanα relationship between Fx and Fy near the engagement point.

3.2.7 Force Output Measurement

Spring Calibration

To verify the force output experimentally, inchworm motors with stiff springs attached
to the shuttle were fabricated. The inchworm motors were driven until the springs stopped
the shuttle. This displacement is read on a vernier scale and taken as the maximum motor
output force. The max force is taken for varying applied voltages.

Springs were calibrated using an array of folded flexure comb drive resonators to deter-
mine the fabricated beam width. Beams in a DRIE process are subject to undercut during
the DRIE step. The actual beam width will be the drawn beam width a and some δa. The
square of the resonant frequency can be related to the spring constant of the suspension by

ω2 =
k

m
=

k

ρTA
(3.14)

where ρ is the density of silicon, b is the device thickness, and AS is the area of the shuttle
mass. For a folded flexure with beam thickness b, fabricated beam width a − δa, length L,
the spring constant is given by

k =
2ET (a− δa)3

L3
(3.15)

Plugging this into Eq. 3.14 we can solve for a

a = βω2/3 + δa (3.16)

where β = 3

√
L3ρA

2E
. For an array of comb drives with different beam widths, we can plot the

measured resonant frequency, ωn, to the two-thirds power against the drawn beam width, a.
The y-intercept of this line will give us the negative of the beam undercut, δa. We can use
this δa to modify our analytical spring constant.

The comb drive parameters for these experiments are given in Table. 3.1. Fig. 3.11 shows
the measured data from three different arrays of comb drives from separate wafer runs with
the drawn beam width shown. The average device undercut was 0.93µm with a variation of
±0.12µm.
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Figure 3.11: Data for an array of comb drives used to determine the process undercut during
the DRIE step

Table 3.1: Dimension of the comb drives used to measure device undercut. T is device
thickness, L is spring length, Ng is the number of gaps, wf is the finger width, wg is the
gap size between fingers, Lf is the finger length, AS is the shuttle area, AT is the truss area.
Dimensions are all as drawn, and do not factor device undercut

T (µm) L(µm) Ng wf (µm) wg(µm) Lf (µm) AS(µm)2 AT (µm)2

40 300 50 2 2 50 36000 2000

The slope of the line, β, is related to the ratio of the Young’s Modulus to the density.
For a Young’s Modulus of 169GPa and a density of 2.3g/cm3, we get a a literature value of
7.35×107m2/s2. The average value of the slope from Fig. 3.11 gives a value of 6.74×107m2/s2

with a variation of ±0.76×107m2/s2. Assuming a density of ρ = 2300kg/m3, this would give
a Young’s Modulus of E = 155 ± 18GPa. The value of 169GPa falls within the uncertainty
of the measured values, but the mean value is low and the variation is large according to the
results from [17].
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Figure 3.12: Spring gauge used to measure the motor force output (left) The raw motor
force output of an inchworm motor (right)

Measurements

The force output of the inchworm motor is shown in Fig. 3.12. The motor exerts over
1mN of force at 80V. This is about 5x the amount of force necessary to lift the single-legged
robots measured mass of approximately 20mg. Uncertainty values are taken from the average
of three devices as well as propagation from the variation in spring constants from device
undercut variation.

The analytical model was corrected to better match the data. The typical undercut of
about 0.45µm measured from Fig. 3.11 lead to overestimates of the force output. The total
gap size of YI = λ + ht + 2lod is smaller in the fabricated devices than predicted by the
model. To better match the data, a gap fudge factor between the pawl and shuttle teeth
was introduced into the model such that YI = λ + ht + 2lod − gfudge. This accounts for
the variations in the patterning of the interlocking teeth and the fact that narrower spaces
(<4µm gap sizes) tend to have smaller undercuts during the etch. The correction factor,
gfudge was approximately 0.2µm less undercut between the pawl and the shuttle.

Another interesting note, because the motor takes fixed approximately 2µm steps, points
for different voltages often have the same force output according to the gauge. This can be
seen at 35V and 40V as well as 45V and 50V. A weaker gauge would have better granularity
in measurement values.



35

Chapter 4

Motor Dynamics and Thickness
Optimization

The force output of GCA array-based inchworm motors has been well characterized in
previous literature with excellent experimental verification [22, 23]. The dynamics of similar
GCA actuators has been modeled and analyzed in the realm of MEMS relays [24, 25]. The
speed of the GCAs relates directly to the motor shuttle speed. By achieving faster shuttle
speeds, these motors could drive microrobot legs to rival the speeds of insects.

In order to fully formulate a dynamic model for these actuators, viscous damping has to be
taken into consideration. Damping models have been investigated for various configurations
of GCA. Bao et al. shows work on modeling squeeze-film damping in various geometries
of MEMS structures [26]. Li et al. further improved on this model to account for laterally
resonating structures with a small substrate gap [27]. Squeeze-film damping has also been
investigated for vertically actuated RF MEMS switches [24].

With a model for the gap closer and motor dynamics a more robust model for inchworm
optimization can be developed.

4.1 GCA Dynamics

Work on the dynamics of GCA arrays used in inchworm motor configurations has been
presented previously and forms the basis for the work presented here [28]. This section will
focus on further formalizing this model and will show a wider breadth of data to verify this
model according to device geometry.

4.1.1 Basic Dynamics of an Electrically Actuated Gap Closer
Array

Fig. 4.1 shows a unit cell of the GCA array during pull-in and release, highlighting the
components of the dynamics equation. The forcing function for an electrostatically actuated
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Figure 4.1: A unit cell of the GCA array, highlighting the components of the dynamics
equation for the pull-in time (left) and the release time (right)

GCA is given by
mẍ+ bẋ+ kx = Fes (4.1)

where x is the displacement of the movable finger array from its nominal position, m is the
mass of the movable finger array, b1 and b2 are the damping coefficients, k is the spring
constant of the support spring, and Fes,f and Fes,b are the electrostatic actuation forces to
each corresponding finger.

Once the fingers are pulled in they make contact with the gap stop. Release of the fingers
is passive and relies on the spring to reset the position of the fingers. This forcing function
is given by

mẍ+ bẋ+ kx = 0 (4.2)

where the initial conditions are nonzero.

4.1.2 Gap Closer Dynamics in Air

Fig. 4.1(a) shows the initial state of the system during the active pull-in phase. The
damping terms b1 and b2 make up the squeeze film damping term, bsf . The Couette flow
(shear film) damping term, bcf , beneath the fingers, not shown, is also accounted for in our
dynamics model. Fig. 4.1(b) shows the initial state of the system during the release phase.

The mass in Eqs. 4.1 and 4.2 will be the mass of the full GCA array including the central
shuttle. This mass can be found from

mGCA = ρSiTAeff (4.3)

where ρSi is the density of silicon, T is the device silicon thickness, and Aeff is the effective
layout area of the movable finger array. The effective layout area is taken from the layout
area of the device but accounting for the lateral etch of the silicon during the DRIE step.
This undercut results in a significant reduction of the mass.

For damping, we take into account two forms of damping; squeeze-film between the fingers
themselves and shear-film between the movable fingers and the substrate.
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Between approximately rectangular plates, the damping coefficient is given by [26]

bsf = µairNS1S
3
2β(η)

(
1

(xo − x)3
+

1

(xb + x)3

)
(4.4)

where µair is the viscosity of air (1.85 × 10−5Ns/m), N is the number of fingers in the array,
S1 = max(Lol, T ) and S2 = min(Lol, T ), η = S2

S1
is the aspect ratio of the finger, and β(η) is

a correction factor that depends on η.
For shear-film damping, we use the expression for Couette flow which assumes a linear

velocity profile and no slip boundary condition between the gas boundary at the surface of
the movable fingers and the gas boundary at the surface of the substrate. This expression is
given by

bcf =
µairAeff

d
(4.5)

where d is the separation between the movable finger array and the substrate.
The movable fingers are supported by two parallel fixed-guided beams. The spring con-

stant for this suspension was given in Eq. 3.2. The electrostatic force is found from the
changing capacitance between the plates and is given by Eq 3.6

We can find the time for the gap to close by solving Eq. 4.1 with the initial conditions
of x(tpull−in = 0) = 0 and ẋ(tpull−in = 0) = 0. We also have to factor that the gap does not
close completely, since there is a gapstop in our structures that keeps the gap from moving
below xf .

In the case of Eq. 4.2, the spring will restore the structure to its nominal position and
will be acting counter to the damping and the inertial terms. We can solve this differential
equation with the same coefficients given above and the initial conditions of x(trelease = 0) =
xo − xf and ẋ(trelease = 0) = −vinit. The initial velocity will be described in detail in a
following section.

4.1.3 Gap Closer Dynamics including Finger and Shuttle
Deflection

In preliminary experiments it was observed that during release of the GCA arrays, there
was a noticeable dependence on the voltage used to close the gap, even though the voltage
is set to zero during release. Here we formulate a model on a dynamics model that includes
an initial velocity imparted from the electrostatic deflection of the individual fingers in the
array.

The diagram for this finger deflection model is shown in Fig 4.2. For a simple cantilever
we can solve the governing equation of elasticity for the beam’s deformation and come to
the radial resonant frequency of [29]

ωn = Kn

√
EI

ρSiAL4
(4.6)
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Figure 4.2: Model of the finger deflection for a pair of fingers in the array. It is assumed
that each finger deflects by half of the total deflection of a single finger under the same load

where Kn is a constant dependent on the nth mode shape, I is the moment of inertia of the
cross-sectional area of the beam, A is the cross-sectional area of the beam, and L is the full
beam length. For the case of the first modes shape K1 = 3.52.

When the finger is fully pulled in, it is under a distributed load from the electrostatic
force. Assuming a uniform distributed load, the spring constant of the beam is given by

kfing =
8EI

L3
(4.7)

This is a major simplification. The actual load would not be uniform since the electrostatic
force has an inverse square relationship with the gap size. Any variation in the gap of as
little as 100nm, 10% of the closed gap, can have a change of 100 times on the force at a given
position. To develop a more accurate model a finite element method tool can be used to
analyze the electrostatic force and displacement relationship of the fingers. The simplification
presented here is done as a first hand approximation. An FEM model to compare with our
analytical expression is shown in the following section.

The approximate deflection of the free end of the finger at pull-in is then given by the
electrostatic force at the final position divided by Eq. 4.7. This force is given by

Fes,xf =
1

2

εoNLolTV
2

(xo − xf )2
(4.8)

Again, this is assumed to be a uniformly distributed load, which is not the case in actuality
but is useful in an initial highly simplified model. It should also be noted that both fingers are
free to deflect but this model assumes one set of fingers is perfectly rigid. The displacement
will then be

xfing =
Fes,xf
kfing

(4.9)

For a the nominal finger dimensions, with finger width 5µm, device thickness 40µm, and
length 76.5µm, Eq. 4.6 gives a resonant frequency of 1.2MHz. For comparison, the nominal
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Figure 4.3: Comparing the response of the finger model and the base GCA model for a
prescribed initial deflection

GCA with a suspension of spring constant 10.3N/m and mass of 3.7µg has a resonant fre-
quency of 8.4kHz. Thus the response time of the fingers can be over two orders of magnitude
shorter than for the suspension.

Fig. 4.3 shows the response of our simplified finger model and the GCA model to an initial
displacement. The finger passes through its zero point at approximately 0.3µs. Here we make
the assumption that once the beam is released from the electrostatic force, it quickly returns
to its nominal position with when compared to the GCA array suspension. The maximum
velocity of the effective mass of the cantilever is given by

vfing = ω1x (4.10)

In the case of the shuttle, the force from the GCA array is placing axial strain on the
shuttle. Fig 4.4 shows the diagram for this model. This causes a deflection that also stores
energy, imparted onto the array once the fingers are released.

For the shuttle, the axial spring constant is given by

kshut =
EAshut
Lshut

(4.11)

where Ashut is the cross-sectional area of the shuttle, and Lshut is the length of the shuttle.
The axial deflection of the shuttle is given by N times the electrostatic force at the final

position, divided by Eq. 4.11

xshut =
NFes,xf
kshut

(4.12)
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Figure 4.4: Diagram of the model for the axial deflection of the shuttle The shuttle has a
cross-sectional area Ashut. The dotted line represents the exaggerated axial deflection of the
shuttle

The velocity at the time of release will then be

vshut =

√
kshut
mshut

xshut = ωshutxshut (4.13)

where ωshut is the natural frequency of the shuttle.
We assume that the fingers and the shuttle relax to their zero position immediately after

the voltage is removed from the array. In order to evaluate some sort of initial velocity on
the GCA array assembly, we will assume lossless momentum transfer between the effective
mass of the fingers and shuttle and the mass of the entire GCA array assembly.

vo =
Nmfingvfing +mshutvshut

mGCA

(4.14)

4.1.4 Finger Deflection in FEA

An FEA simulation of the electrostatic force on the fingers at their final position was
performed in CoventorWare.

Fig. 4.5 shows the simulation environment. The fingers are suspended from anchors. A
range of voltages is applied to the rightmost finger and the leftmost finger is held at ground.
The simulation is run to detect pull-in. As the voltage range approaches the pull-in voltage,
the analyzer detects convergence of the electromechanical simulation. If the simulation
converges the system has reached a static mechanical state. If the simulation diverges the
fingers have pulled in to each other indicating catastrophic pull-in failure. The voltage is
changed in decreasing increments around this unstable point until the desired tolerance for
calculating the pull-in voltage is met.

For these fingers, pull-in was detected in simulation at approximately 75V. Devices typ-
ically showed shorting between the movable finger array and the drive fingers above 70V.
The finger lengths were chosen based on an expression for catastrophic failure given in [30].
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Figure 4.5: Stills from the CoventorWare simulation of the fingers before deflection (left)
and at 90V (right)

The derivation assumed a maximum voltage of 100V. The actual maximum voltage is ap-
proximately 70-75% of this value.

Fig. 4.6 shows the deflection of the finger as the voltage is increased plotted against
the electrostatic force on the conductor. The simulation indicates a softer spring than the
analytical model. This was expected due to the electrostatic force’s dependence on the gap
size. The linear fit indicates a spring constant that is 14% less stiff than the one given in
Eq. 4.7. This simulated spring constant is used in the dynamics model.

4.1.5 MATLAB Model

A dynamics model was developed in MATLAB. The model takes the equations and initial
conditions in the previous section and uses an ordinary differential equation (ODE) solver
(ode45) to solve the displacement over time for the GCA array. In order to solve a second
order differential equation, the equation must be presented as a set of first order differential
equations. Defining a state vector X = [x, ẋ], the ODE solver will solve the derivative of
this vector

dX

dt
=

[
ẋ
ẍ

]
=

[
ẋ

Fes−Fb−Fk
m

]
(4.15)

for the initial conditions X(tpull−in = 0) = [0, 0] in the case of the actuated array. For the
release phase, Fes = 0 and X(trelease = 0) = [xo−xf , vo]. The ODE solver is set to complete
and measure the time when x = xo − xf for the pull-in time and when x = 0 for the release
time. This time is what is used for the pull-in and release time.
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Figure 4.6: A plot of the deflection of the finger tip vs electrostatic force on the finger from
the CoventorWare simulation

Before looking at experimental data, we looked at the behavior of our MATLAB model
to understand how the model was influenced across a range of variables for each of the
components of the forcing function. The full MATLAB model is included in Appendix B.

4.1.6 Size of Gap Over Time

Fig. 4.7 shows the size of the gap over time during actuation and release. The initial
size of the gap is 5.8µm and the gap closes to 1µm, defined by the gap stop. The pull-in
and release times for the nominal dimensions of the structure are shown in blue. This curve
is compared to a 50% increase and a 50% reduction in either the mass, spring constant, or
damping coefficient.

While the mass of the structure has a noticeable effect on the pull-in time, a 48% time
increase for a 50% mass increase, the spring and damping forces are negligible, causing up to
a 1% change for a 50% increase in the spring constant and a 2% change for a 50% increase
in the damping coefficient.

In the case of the release times, the three parameters have effects on roughly the same
order of magnitude on the time. Fig. 4.8 shows an extended time plot of the release phase
for the nominal case. The figure shows oscillation of the GCA array at about 9kHz that die
out on the order of hundreds of microseconds. The return phase brings the fingers about
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Figure 4.7: The size of the gap is shown during actuation and release. These curves were
found using the MATLAB model

1µm from the initial gap stop position.

4.1.7 Pull-in and Release Times

The behavior of the pull-in and release time across ranges of variation for mass, damp-
ing coefficient, spring constant, and actuation force are shown in Fig. 4.9. Each of these
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Figure 4.8: Release time simulation extended to 500µs

parameters was varied by an absolute factor ranging from 0.1 to 2. The nominal value of
each parameter is shown in the graphs. As anticipated from Fig. 4.7, the damping coefficient
and spring constant have a large impact on the release time but a negligible impact on the
pull-in time, while mass and actuation force have large effects on the pull-in time.

We can also see the influence of finger deflection and axial deflection of the shuttle in
the release time. What is expected to be a flat line for the release time as force is varied is
actually a significant linear trend towards faster release times for larger actuation forces.

4.1.8 Detecting Gap Closing in Air

Fig. 4.10 shows a simplified layout model of the device used for experimental verification
and a photo of a fabricated device.

For these experiments, the sense pads were tied to a low voltage signal through resistors.
Then the grounded fingers make contact with these pads, the low voltage signal drops,
signaling the time of gap closure. For pull-in time, the gapstop is used as the sense node.
For release time, a movable sense structure must be used since detection must occur at the
nominal position of the device. The movable sense structure is positioned with a probe tip
to rest against the movable fingers at their nominal position.

Fig. 4.11 and Fig. 4.12 show samples of the pull-in and release signals used for detection
respectively. In the pull-in signal, the time is measured from the pull-in voltage on the
actuation signal to the beginning of the signal drop on the sense signal. On these signals,
switch bounce was noticeable upon contact. Capacitive coupling also caused a slight rise in
the sense signal at the time of actuation signal rise.
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Figure 4.9: Pull-in and release are plotted while varying the mass, damping coefficient, spring
constant, and force by a factor between 0.1 to 2. The nominal value of each value is shown
above the dotted line, marking where this nominal value occurs

A similar method is used for the release signal measurement. The time from the release
voltage of the actuation signal to the signal drop on the sense signal is measured for the
release time. On the release signal trace, ringing was noticeable at the time of actuation
signal drop. This is attributed to coupling in the measurement setup. Switch bounce was
also present, shown in the zoomed out figure.

The structures are metalized so that sidewall contacts are low resistivity. The silicon
used for these devices was typically around 10Ωcm. The resisitivity between sidewalls was
high, typically over 10MΩ. Sputtered AuPd and TiN were used to provide high sidewall
conductivity for these experiments.

The experimental array varied the overlap length of the fingers and the spring constant of
the GCA array, as well as voltage for each GCA array. The parameters of the nominal GCA
array are shown in Table. 4.1. The variable array is given in Table. 4.2. Lol was varied from
0.2Lol to the nominal dimension of Lol, 76.5µm. kspr was varied by changing the nominal
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Figure 4.10: Layout for the device, labeling each of the components of the structure (left) A
photo of the fabricated device (right)

Figure 4.11: A sample scope trace of the signals used to measure the pull-in time

Table 4.1: Nominal dimensions of the GCA array used in these experiments and for the
motor. The star (∗) indicates the nominal dimension of the parameter in the array that was
varied for the experiments

Lol∗(µm) xo(µm) wf (µm) xb(µm) L(µm) wspr∗(µm) Lspr(µm) N
76.5 4.8 5 7.75 86.5 3 240.8 70
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Figure 4.12: A sample scope trace of the signals used to measure the pull-in time (top) A
zoomed out image of the same sense signal trace, showing obvious switch bounce (bottom)

Table 4.2: Variable array used for GCA speed experiments

Lol(µm) 15.3 23 30.6 38.3 45.9 53.6 61.2 68.9 76.5
kspr(µm) 1.7 4.7 10.3 19 31.7 49 71.7 100.4 -

dimension of wspr by increments of 0.5µm around the nominal value of 3µm. Additionally,
the patterned dimension of wspr will be subject to the approximate 0.5µm undercut during
the DRIE.

4.1.9 Experimental Results

Pull-in and Release Voltages

For a GCA array, the pull-in voltage will be found by finding the position at which the
spring force equals the electrostatic force. Because the fingers in the array are bounded on
both sides, the traditional expression for pull-in voltage is not accurate.

To find our pull-in voltage the electrostatic and spring forces are added to find the full
system force. This is set to zero since the electrostatic and spring forces cancel out at pull-in
and the expression is solved for the voltage

1

2
εoV

2NLolT

(
1

(xo − x)2
− 1

(xb + x)2

)
= kx (4.16)

Vpi =

√
2kxpi

εoNLolT

(
1

(xo − xpi)2
− 1

(xb + xpi)2

)−1

(4.17)
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Figure 4.13: Pull-in voltage (top) and release voltage (bottom) for each array. The voltages
are plotted as functions of overlap length (left) and spring constant (right). Analytical results
from Eq. 4.17 and 4.19 are shown in red

This expression is solved for each value of x within the gap and the maximum voltage, Vpi
(the point when the spring force becomes smaller than the electrostatic force for increasing
gap or when dF

dx
= 0) is taken as the pull-in voltage and the position at that point, xpi, as the

pull-in displacement. For the GCA arrays with xb = 1.5xo the pull-in displacement is 0.28xo
as opposed to 1

3
xo for a single parallel plate. As gb is made larger, the pull-in displacement

approaches 1
3
xo as expected.

The release voltage is found by equating the electrostatic force to the spring force at
x = xo − xf and solving for the voltage

1

2
εoV

2NLolT

(
1

(xf )2
− 1

(xb + xo − xf )2

)
= k(xo − xf ) (4.18)

Vr =

√
2k(xo − xf )

εoNLolT

(
1

(xf )2
− 1

(xb + xo − xf )2

)−1

(4.19)

Fig. 4.13 shows the measured pull-in and release voltages for each GCA array. Multiple
measurements were performed for each data point. Measurements were repeatable to within
0.1V for the same device.
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There is an overestimate in the model for the pull-in voltage. One reason for this could
be fringing field capacitance. The error in the force term from neglecting fringing fields is
largest when the gap is open, as much as 10%. Measured values at higher voltages are off
by less than 10%.

From this data the spring constant in the MATLAB model was calibrated to better match
experimental results. An increase in the expected spring constant of 20% for the release
voltage data was implemented in the pull-in/release voltage model. This was attributed to
finger deflection and deformation of the GCA shuttle, as well as deformation of the contact
contributing to the spring constant during pull-in.

Additionally, these voltages are important for measuring the exact moment of pull-in and
release. A more accurate measurement of the full pull-in and release times can be made this
way by finding the exact time that the pull-in or release process is beginning.

Pull-in Time

Fig. 4.14 shows the pull-in time as a function of voltage for varying overlap length. We
see good agreement between the measured data and theoretical line. Most measured values
fall within uncertainty of the measured values. Measured points for Lol = 15.3upmum and
Lol = 15.3µm fall below the theoretical line. An underestimation of the force from neglecting
fringing field capacitance could explain this discrepancy.

The uncertainty of the measured values was also very low, often around 1µs. Values were
highly repeatable between different devices and different wafers.

Fig. 4.15 shows the pull-in time as a function of voltage for varying spring constant.
Again we see good agreement between data and theory and good repeatability on the same
device and across devices. Values were limited to 65V due to catastrophic finger pull-in on
the metalized devices at and above 70V. The lowest voltage for each plot is above the pull-in
voltage of the device.

Fig. 4.16 shows the same data as Fig. 4.14 and Fig. 4.15 but plotted against the varied
overlap length and spring constant for different voltages.

Release Time

Fig. 4.17 shows measured data for release time plotted alongside the theoretical model.
We see agreement with the data in a few plots. The dependence of the release time on the
voltage is obvious in the data, and the model follows that trend to a certain degree. The
uncertainty values for the release time are larger than for the pull-in time. The positioning
of the sense node for the release time measurement contributed to these larger values since
repeatably placing the movable sense block at the exact same position was difficult.

Fig. 4.18 shows the release time data for varying spring constants across a range of
voltages. Once again the maximum voltage was limited by catastrophic pull-in. There is a
discrepancy for the data for k=1.7N/m. The measured time is smaller than the expected
theoretical time by as much as 40%. An underestimation of the spring constant by 10%
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Figure 4.14: Pull-in time measured while varying voltage for varying overlap lengths. The
MATLAB model is plotted in red. For this measurement array the spring constant is the
nominal value of 10.3N/m

or overestimation of the damping by 20% could explain this result. For the other spring
constants the theory underestimates the release. The discrepancy trends smaller for larger
spring constants.

Fig. 4.17 shows the same data plotted against the overlap length and spring constant
for four different voltages. We see good agreement for varying overlap length and spring
constant.
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Figure 4.15: Pull-in time measured while varying voltage for varying spring constants. Re-
sults from the MATLAB simulation are also plotted in red. For this measurement array the
overlap length is the nominal value of 76.5µm

4.2 Inchworm Motor Speed

Gap closer speed is important for modeling the speed of the inchworm motor as a system.
A variety of measurements were made to find the speed of the inchworm motor.

4.2.1 Endstop Detection Measurements

Fig. 4.20 shows the end stop detection implemented on the inchworm motors. This system
uses a contact at the end of travel of the motor. A low voltage signal is placed on the sense
node and when the grounded shuttle makes contact with the sense node, the signal is fed
back to the microcontroller controlling the motor. This triggers the feedback response and
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Figure 4.16: Pull-in time measured across the array of varying overlap lengths for different
voltages. The spring constant is 10.3N/m (left) Pull-in time measured across the array of
varying spring constants for different voltages. The overlap length is 76.5µm (right). The
MATLAB model is shown in red

the motor stops.
This is also used to measure the time between the beginning of actuation and the end

of actuation. Once the signal drop is sensed, the time between the start of actuation and
end of actuation is measured. Then the distance traveled is divided by this time to find the
velocity. In order to detect the signal drop, devices were sputtered with AuPd to increase
conductivity. TiN was used instead of AuPd in later iterations due to poor adhesion between
the silicon and AuPd.

Fig. 4.21 shows the measured velocity using this method. The solid line indicates the
expected result according to the step size (2µm per step) and frequency. Most of the points
trend superlinear with respect to the expected 4µm/s/Hz velocity line. This could be because
of variations in the motor’s stepsize as a function of frequency.

4.2.2 Distance Traveled Measurements

Another method used for measuring the speed was to program the motor to take a
certain number of steps at a certain frequency. The measured distance traveled was divided
by the time the driving waveform takes to complete for the velocity. It should be noted
that these devices were sputtered with TiN to test the durability for motor longevity. The
highest lifetime of a motor observed was 28 hours without TiN. TiN did not offer a noticeable
improvement to device lifetime.

Fig. 4.22 shows the data from these devices. Again, the expected velocity curve was a
slope of 4µm/s/Hz. The linear fits trend at least twice as much of a slope. For low velocities
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Figure 4.17: Release time measured while varying voltage across the array of varying overlap
lengths. The MATLAB model is shown in red. Spring constant is the nominal value of
10.3N/m

it was observed that pawls will often push past the currently engaged pawls due to inertia,
leading to larger step sizes.

4.2.3 Work Output

Looking at the work output for these devices we can take data from Fig. 4.23. This plot
shows data for 65V for a motor driven to take 10 steps and another motor driven to take
50 steps. We can see for the 50 step case, the motor does not achieve as high a maximum
velocity. The spring constant of the suspension for the motors used to take this data was
0.3N/m. The total displacement of the spring for these measurements was 350µm in a time
of 1.2ms. Analyzing the work the motor outputs onto this spring, we get 15.3µW. For a
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Figure 4.18: Release time measured while varying voltage across the array of varying spring
constants. The MATLAB model is shown in red. Overlap length is the nominal value of
76.5µm
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Figure 4.19: Release time measured across the array of varying overlap lengths for different
voltages. Spring constant is the nominal value of 10.3N/m (left) Release time measured
across the array of varying spring constants for different voltages. This data is plotted on a
log-log scale. Overlap length is the nominal value of 76.5µm (right) The MATLAB model is
shown in red

reduced motor weight of 0.3mg this corresponds to a work-to-weight ratio of 50W/kg. The
substrate would have to be ground down to 100µm thick and 30% of the area etched away,
abiding fill requirements for etching. Additionally, the force-to-weight ratio for a reduced
weight motor at this voltage is approximately 200.

4.3 Motor Optimization

This optimization scheme seeks out the best thickness to use for an electrostatic inchworm
motor in terms of maximum actuation frequency and velocity compared with electrical-to-
mechanical efficiency. The scheme presented here borrows from the geometric optimization
presented in [23] and expands on it.

4.3.1 Minimum Feature Size and Base Dimensions

For this motor optimization scheme we will assume some starting parameters from fabri-
cation constraints. This assumes that because of electrostatic force density scaling relation-
ships, if we have a desired minimum force density we can always achieve this below some
minimum feature size. If our process has a width-to-height ratio α and our device layer has
a thickness T we have a minimum feature size defined by

λ = αT (4.20)
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Figure 4.20: The endstop detection structures implemented around the inchworm motor
(left) The acutation signal and sense signal from a motor operating with feedback (right)

It should be noted that because of process undercut all drawn features will be smaller by
luc on all sides and gaps will be larger by luc on all sides once fabricated. Thus a beam of 2µm
width will be 2µm−2luc after fabrication. This scheme will not factor in the undercut. Here
we assume the factors have been incorporated into the dimensions already and calibrated
out after iteration of experimental designs.

We can define a set of base dimensions from the minimum feature size, shown in Table 4.3.
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Figure 4.21: Measured inchworm velocity plotted against the expected result (solid line)

Table 4.3: Base Dimensions used in the Motor Optimization Scheme

Finger Width, wf Final Gap, xf Shuttle Stepsize, ∆x Anchor Size, LA Angled Arm Width, warm
2λ λ λ 25λ 2λ

These dimensions are labeled in Fig. 4.24. For the angled arm, we will assume a fixed angle
φ to the shuttle. This variable is separately optimized in the scheme shown in [23] for a fixed
set of constraints.

4.3.2 Gap Sizes

The shuttle-pawl distance, highlighted in Fig. 3.4, is given by

YI = λ+ ht + 2lod − gfudge (4.21)

Since we are neglecting the undercut, lod and gfudge will be neglected assuming they have
been calibrated after experimental design. If the tooth height, ht, is set too the minimum
feature size, then YI = 2λ.

We recall from Eq. 3.7 that ∆x = ∆xshuttle
tanφ

. The initial gap is given by

xo = ∆x+ YI + xf (4.22)

The back gap, xb, can be set to a constant times the front gap, xb = Bxf . Maximizing areal
force, where the area is taken solely from active finger geometry, it can be analytically shown
that B ≈ 2.4. However this number is largely influenced by the amount of peripheral area
and depends on the specific design and mechanical advantage of the array.
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Figure 4.22: Velocity data for various voltages. The red line indicates the slope from the
lower frequency data points

4.3.3 Finger Length

The finger length is chosen to prevent catastrophic pull-in at the maximum applied
voltage. Osterberg derived an expression for pull-in of a cantilever under electrostatic force
in [30]. This value was used to choose the length of the fingers in the current inchworm
motors. However, from measurements and simulation shown in Section 4.1.4 it was seen
that actual pull-in failure occurred at 70% of the analytical maximum voltage. Assuming
a safety factor, Cl, to adjust the model based on various geometries, the maximum finger
length will be given by

Lmax = Cl
4

√
0.28Ew3

fx
3
f

εoV 2
max

(
1 + 0.42

xf
T

) (4.23)

This sets an upper bound on the finger length. We will define the support length, Ls, as
1
10
Lmax and we will say that Lmax = Lol + Ls. The force, the area of the array, and the

capacitance will be proportional to the finger length so there will not be an optimum value
for the overlap length for force density or efficiency. In terms of pure force output, we want
Lol to be as large as possible, so we can use Lmax as our finger length in the optimization
scheme.
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Figure 4.23: Velocity data for 65V actuation for a set number of steps of 10 (left) and 50
(right)

Figure 4.24: Dimensions for features in the optimization scheme of the angled arm (left) and
the GCA fingers (right)

4.3.4 Capacitance and Force Output

We can find an expression for the capacitance of the array as The capacitance of the
array will be

Ctot(x) = CP + Cf (x) = CP + εoNLolT

(
1

xo − x
+

1

xb + x

)
(4.24)
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where CP is the parasitic capacitance of the array, dependent on device geometry and external
routing, and the second term is the capacitance between the fingers. We are ignoring fringing
fields assuming that with the aspect ratio above 20:1 the open gap fringing fields will add
approximately 10% to the capacitance, and proportionally smaller as the gap closes.

The electrostatic force from the GCA array as a function of x will be

Fes(x) =
1

2
εoV

2NLolT

(
1

(xo − x)2
− 1

(xb + x)2

)
(4.25)

The GCA array will be held by some sort of suspension with spring constant k. Once
the angled arm makes contact with the shuttle, the stiffness of the angled arm karm, found
in Section 3.2.3, also comes into play.

We express the combination of these forces as a function of x. There are three regimes
of interest for the force function given by

FGCA(x) =


Fes(x) − kx x < YI

Fes(YI) − kYI x = YI

Fes(x) − kx− karm(x− YI) YI < x < xo − xf

(4.26)

The point at x = YI is the engagement force. At any point after contact, the force on the
shuttle is transmitted through the angled arm. This is given by

Fload(x) =
FGCA(YI ≤ x)

tanφ
(4.27)

4.3.5 Array Area

With these dimensions, we can now define the dimensions and layout area, Aarray, of the
array

Larray,1 = N(xo + xb + 2wf ) (4.28)

Larray,2 = LA + Lol + 2Ls + Lbase (4.29)

Aarm = L2
arm cosφ sinφ (4.30)

Aarray = Larray,1Larray,2 + Aarm (4.31)

Peripheral area including, routing, shuttle extension, and pads, will affect the total area.
This is difficult to factor in beforehand and for this scheme we will focus on this as the
active motor area. Lbase and Larm are found in following sections.

4.3.6 Base GCA Shuttle Length

It is important for the accuracy of the dynamics simulation to determine the mass of
the movable finger array. According to our model, inertia has a significant impact at the



CHAPTER 4. MOTOR DYNAMICS AND THICKNESS OPTIMIZATION 61

size scales we are working in. The shuttle base dimension, Lbase, can be determined from
maximum load considerations. The shuttle base that all the movable fingers connect to will
be under the full load of the GCA array when the gap is fully closed. It is desirable to
keep this central base as small as possible for the sake of mass reduction in the dynamics
equations. However, it must be able to withstand the full force of the GCA array at the
closed gap at the maximum voltage

Fmax =
1

2
εoV

2
maxNLolT

(
1

(xf )2
− 1

(xb + xo − xf )2

)
(4.32)

Finding an appropriate vmax is difficult before settling on the device geometry. Setting a
fixed maximum voltage is not efficient since the smaller scale designs will produce the same
force per unit area at lower voltages so setting too high a voltage constraint can produce
needlessly large and robust geometries. As an iterative approach we can first define the same
maximum voltage for every design, take the calculated Vmin value of each design, and set a
new array of Vmax values that are proportional to the Vmin of each design.

Many variations in the mechanical design of the suspension can be implemented. We
consider a simple case here. There are two conditions that can set a limit on the width of
the central base. The axial load cannot cause a strain above the strain limit of the material.
For silicon we will use εmax = 0.005, a value safely under the typically reported 1-2% yield
strain. The stress limit is given by

Lbase,1 =
Fmax
Tσmax

(4.33)

where σmax is the maximum stress limit, εmaxE.
Additionally, if the gap-stop is positioned at the end of the base making near the angled

arm contact, the base must not buckle under the combined load from the fingers. In the case
of buckling, the base dimension will be

Lbase,2 =
3

√
12L2

array,1Fmax

π2ET
(4.34)

This assumes a pinned boundary condition on a beam with a point load applied at one end.
This is not the loading case for the actual GCA array, since the load is distributed across the
fingers. However it has been shown that the case of a distributed load has a lower critical
force than for a point load [31]. Therefore this sets a safe upper bound. The actual base
length will be the maximum of these two values

Lbase = max(Lbase,1, Lbase,2) (4.35)

4.3.7 Angled Arm Length

In simulation from Section 3.2.6 the angled arm stiffness was bounded between the fixed-
pinned and fixed-guided boundary conditions. We will assume fixed-guided boundary con-
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ditions as an upper bound case in the model. This is given by

karm =
12EIarm
L3
arm

x

cosα
(4.36)

where Iarm = Tw3
arm/12. The length of the angled arm should be chosen to prevent buckling

under the load from the GCA [23]. The maximum force applied to the angled arm will be
when the GCA array fully closes. Assuming the deflection of the arm is small enough to not
impact buckling, the ultimate buckling force is given by the Euler equation

Fbuckle =
π2EIarm
(KL)2

(4.37)

where K is an effective beam length depending on the boundary conditions. K = 0.5 for
the fixed-fixed beam condition. This force should be greater than the component of the
maximum GCA force axially through the arm

π2EIarm
(KL)2

> Fmax sinφ (4.38)

where Fmax is given by Eq. 4.26 at x = xo − xF . Solving for the length we get

Larm =

√
π2EIarm

nK2Fmax sinφ
(4.39)

where we are using n as a safety factor to make sure that the buckling force is some factor
above the load force.

4.3.8 Spring Constant, Minimum Force, and Pull-In Voltage

There are a variety of schemes to find a value for the spring constant k. k will have direct
influence on the pull-in voltage of the GCA array and the minimum force output. We can
define a minimum voltage, the pull-in voltage, in order to define the dynamic range of the
actuator.

For our purposes, we will define a minimum output force density, Fdmin, on the shuttle.
This is often more useful than defining a minimum operating voltage since motor designers
focus on force output rather than drive voltage. From this Fdmin we must choose a pull-in
voltage, Vpi, minimum applied voltage Vmin and a corresponding maximum spring constant
kmax. Fdmin is given by the force output at engagement multiplied by the mechanical
advantage of the angled arm and divided by the array area

Fdmin =
1

Aarray tanφ

(
1

2
εoV

2
minNLolT

(
1

(xo − YI)2
− 1

(xb + YI)2

)
− kmaxYI

)
(4.40)
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We have another equation in the form of the pull-in voltage given by the iterative approach
from Equation 4.17 where we begin with an arbitrary spring constant to solve the pull-in
gap distance, xpi. This will present two equations with three unknowns, Vmin, Vpi, and kmax.

For a full system of equations, we can place a constraint between the minimum voltage
and the pull-in voltage to ensure the motor has a desired dynamic range below the voltage
Vmin. A higher dynamic range of lower forces below Fmin at lower voltages may be desirable
to allow for lower force step sizes when desired (actuating a leg that has not touched the
ground or has no load). We can define the range between Vpi and Vmin by the ratio of the
gap sizes where each voltage is found. This is given by

Vpi
Vmin

=
xo − YI
xo − xpi

(4.41)

This will ensure a margin between the pull-in voltage and the minimum voltage such that
the arm can impart Fmin on the shuttle after pull-in.

From these equations, we now have an upper bound on the spring constant, dependent
on force output and pull-in of the GCA array. Setting the spring constant below kmax we
can be assured that the GCA array will reach the pull-in voltage, Vpi, below Vmin and output
the desired Fdmin at or slightly below Vmin.

4.3.9 Actuator Output

The useful force from the array occurs at x = YI . This is the point of minimum force on
the shuttle arm. However the GCA array is capable of larger work output.

Fig. 4.25 shows the force output of a GCA array. The blue curve shows the raw force
output of the GCA array alone. The red curve shows the GCA array force output with the
angled arm spring at contact. The engagement force transmitted to the shuttle, Fload(YI ≤
x), is shown in yellow. The purple line shows the useful force output of the motor. This is
the lowest point of force input onto the shuttle and the motor would be incapable of pushing
against a load above this force. The motors useful work output is given by the area under
the purple line.

4.3.10 Efficiency

The mechanical energy output of the array will be the engagement force times the shuttle
displacement

Umech = Fload(YI)∆xshut (4.42)

The input energy can be taken from the electrical energy to charge the capacitor. The
output energy will be the theoretical of full recovery of the stored spring energy

Uin = Ctot(x = xo − xf )V
2Uout =

1

2
k(xo − xf )

2 − 1

2
karm(xo − xf − YI)

2 (4.43)
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Figure 4.25: Force output of the GCA array/angled arm at various stages

The efficiency is thus

η =
Umech

Uin − Uout
(4.44)

4.3.11 Maximum Frequency

We are interested in the maximum achievable actuation frequency for our GCA arrays.
For this model, we are using the dynamics model presented in 4.1. However we are modifying
the stiffness term to include the stiffness of the angled arm upon contact with the shuttle.
This is given by

k(x) =

{
kx x < YI

kx+ karm(x− YI) YI ≤ x < xo − xf
(4.45)

The dynamics model will output the pull-in time, tpi, and the release time, tr. A GCA
array can be driven as fast as the time it takes for one GCA array to fully engage, plus the
time it takes for the other GCA array to engage and hold on, plus the time for the first GCA



CHAPTER 4. MOTOR DYNAMICS AND THICKNESS OPTIMIZATION 65

to release. This will give a frequency of

fmax =
1

2tpi + tr
(4.46)

4.3.12 Thickness and Aspect Ratio Optimization

We will use a desired minimum force density of 1mN/mm2. The MATLAB script for this
optimization is given in Appendix C.

Fig. 4.26 shows results from the optimization scheme. The thickness and aspect ratio are
varied and the maximum drive frequency, maximum power output, efficiency, and minimum
voltage for the desired force output are plotted.

We see a trend for higher GCA drive frequencies with smaller aspect ratios in Fig. 4.26(a).
Fig. 4.26(b) shows mechanical power output density. The mechanical power density is taken
as the mechanical energy output multiplied by the maximum frequency and divided by the
mass of the array. This is given by

Pdmech =
Umechfmax

2
3
(T + Tsub)ρsiAarray

(4.47)

where Tsub is the substrate thickness holding the motor together and rhosi is the density of
silicon. We are assuming that Tsub = 2T for structural rigidity of the skeleton and that two
thirds of the mass has been removed, abiding by fill rules.

We can see that mechanical power density follows the trend of the maximum frequency.
The highest peak in mechanical power density of 570W/kg occurs at approximately 5µm
thickness with 20:1 aspect ratio. This corresponds to a 250nm minimum feature size. 250nm
lines and spaces are achievable in current Marvell Nanolab technology (ASML DUV Stepper
5500). Achieving this in actuality would require eliminating the approximate 0.4µm undercut
in the current DRIE step.

The voltage to achieve the desired minimum force density of 1mN/mm2 at 20:1 aspect
ratio and 5µm thickness is approximately 11V. This is highly appealing for the sake of
generating voltage with either solar cells or batteries.

With the current photolithography used on the robot, we can achieve 1µ gaps (assuming
reduction of the undercut) in 20µm silicon with a 40V drive voltage. This still produces a
respectable 430W/kg power output density.

Smaller thicknesses and higher aspect ratios see significant drops in power output. This
is due to the scaling of the gap in the damping term. Since the rear and front gap of the array
factor into play damping becomes a significant problem at reduced feature sizes. This can
be alleviated by manipulating the size of the rear gap by the scaling term B since xb = Bxo.
The simulation uses B = 1.5 in all results. Manipulating B in the optimization can be
investigated further.

At larger aspect ratios there are gains in the efficiency term, but very small at less than
0.001. There is also no significant impact on the efficiency with respect to thickness.
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Figure 4.26: Results of the optimization scheme (a) The maximum operation frequency of
the GCA arrays for various aspect ratios plotted against thickness (b) Mechanical power
density (c) The minimum voltage for the desired force density output (d) The efficiency of
the arrays
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Chapter 5

The Single-Legged Robot

Silicon pin-joints and inchworm motors described in the previous chapter form the basis
of the planar silicon robot leg. The robot leg was designed to achieve two degree of freedom
actuation, actuate along the ground when the fabricated chip is flipped upright, and exert
enough force to move itself forward. To verify operation of the leg unit cell, a single legged
robot was developed.

5.1 Robot Design

The single-legged robot, shown in Fig. 5.1, measures 5mm long, by 6mm tall, by 0.5mm
wide and weighs 18mg. Fabricated in a silicon-on-insulator (SOI) process, the robot is
based on the previously mentioned electrostatic inchworm motors driving a 2 degree-of-
freedom (DOF) planar silicon linkage that acts as the leg. The leg sweeps out an area of
approximately 500µm x 500µm off the edge of the chip. To demonstrate walking, the chip is
connected to power and control by long flexible copper wires which also act to support the
robot upright. The robot exerts over 1.5x its weight in the vertical axis, enough to lift its
body and push itself forward.

5.1.1 Linkage Design

The base leg design for our robot is a 5-bar linkage that is operated as a selective 4-bar
linkage shown in Fig. 5.2. Two linear motors attach to the linkage as indicated. The linkage
has 2 DOF and each DOF is actuated by a single motor at any given time while the other
motor holds its attachment point and DOF anchored. In this way the linkage performs full
circuit sweeps.

Additional links were included in the final design to isolate the inchworm motor shuttle
from the effects of any lateral forces and moments that might be transmitted from the leg,
shown in Fig. 5.3, as well as to orient the motors for compactness. The full leg is a 13-bar
linkage with 15 rotary joints (pin-joints) and 2 prismatic joints (motor shuttles). At any
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Figure 5.1: A photo of the robot standing upright on a US penny. The robot is held upright
by microassembled support feet slotted into the foot and body of the robot

given time, when one motor is fixed the leg operates as an 8-bar linkage with 10 joints. The
full linkage assembly can be seen in Fig. 5.4.

Fig. 5.5 shows a full fabricated robot with the motors and linkage highlighted. The
actuation cycle of the robot is also shown with (1) the starting neutral leg position (2) the
full vertical actuation sweep (3) the full horizontal actuation sweep and (4) the horizontal
axis motor releases the leg and resets the vertical position. The horizontal axis motor releases
at this point and the leg starts at position (1) once more.

Linkage Loss

Force output of the motors through the linkage was measured using spring-based vernier
gauges fabricated alongside the structures. The vernier gauge is designed on a flexible support
assembly such that it can be moved with probe tips so that the linkage is able to push on
the gauge at various positions.

A diagram of the setup is shown in Fig. 5.6. The force output was measured at 50µm
increments from the legs rest position. The linkage has a sweep of approximately 500µm in
either direction and force measurements were taken to within 50µm of the max deflection.
The leg pushes on the gauge until it stalls. This maximum displacement is read off the gauge
and related to the output force by the spring constant of the gauge. All spring gauges are
calibrated using comb drive resonators, as described in section 3.2.7.
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Figure 5.2: An illustration of a simplified leg’s sweep and showing the actuation phases of
each of the motors

Figure 5.3: Diagram showing additional link included in the linkage to counteract external
moments on the tip of the leg

Force output from the linkage in the vertical and horizontal axes is shown in Fig. 5.7
along with the modeled loss as the solid blue line. We see a drop off in force output as
the leg extends in either axis. The loss is attributed to extension of the serpentine support
springs, rotation of the pin-joint support springs, friction within the joints, and inherent
mechanical disadvantage in the linkage.

The modeled loss is taken from a MATLAB Simulink simulation of the linkage. The sim-
ulation takes into account the extension of the serpentine springs attached to the inchworm
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Figure 5.4: SEM micrograph of the linkage, highlighting the pin-joints used in the design
and the motor attachment points

motor shuttle, approximately 0.3N/m, and the rotational stiffness of each joint, approx-
imately 10−9Nm. The rotational stiffness is taken from analysis and simulation given in
Sec. 2.1.3. The combined effect of each stiffness is measured at each input of the simulated
linkage during motion of the linkage and is subtracted from the raw motor force data. A
majority of the modeled loss is the serpentine springs, indicated by the fact that the slope
of the modeled line is close to the spring constant.

From the measured data of the vertical axis at the end of travel we see approximately 70%
loss of force from the raw motor force when transmitted through the linkage. This is much
larger than the 20% loss predicted from the model. This 40% additional loss is potentially
from friction in the joints and friction between the linkage and the substrate. The stiffness
of the joints could also be higher than the analytical model predicted. It is important to
note that above 65V the leg is able to pick up the predicted mass of the robot.

From the measured data of the horizontal axis at the end of travel we see 75% loss.
The model predicts about 63% loss. A majority of loss from the linkage’s the mechanical
advantage of half along the horizontal axis. There is better agreement with the model
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Figure 5.5: A diagram of the single-legged robot wirebonded to a chip package (left) The
packaged robot sweeping it’s leg through the actuation cycle. The end of each phase is shown
in numerical order

compared with the vertical axis travel. Again, additional losses could come from friction of
the linkage to the substrate and internal friction in the joints.

5.1.2 Microassembled Support

After fabrication, the robot leg is very fragile during handling and during actuation. Also,
since it is single-legged, the robot is not statically stable. Several steps had to be taken to
show the robot walking and support it upright.

Planar Stability

The silicon pin-joints are sensitive to out-of-plane forces above 100µN (See Section 2.1.3).
Higher forces are enough to pop the pin-joints out of plane, disassembling them. In order to
mitigate this issue, a protective screen is glued on top of the linkage using silver epoxy. This
screen is bonded well enough to hold the linkage in plane. Layout for the protective screen
as well as an assembled robot with a screen glued onto the linkage is shown in Fig. 5.8.
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Figure 5.6: A photo of the robot standing upright on a US penny. The robot is held upright
by microassembled support feet slotted into the foot and body of the robot

Figure 5.7: Force output of the linkage measured in the vertical axis. The dashed line
indicates the mass of the robot (left) and in the horizontal axis (right) for varying voltages
across the range of travel of the linkage. The solid blue line indicates the expected value at
80V (left) and 70V (right), factoring in the raw motor force output and mechanical advantage
and linkage losses



CHAPTER 5. THE SINGLE-LEGGED ROBOT 73

Figure 5.8: The robot with the protective screen glued over the linkage using silver epoxy
(left) Layout of the linkage and the screen, showing how the two are oriented together (right)

Figure 5.9:
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Figure 5.10: (a) A cartoon diagram of the insertion, with a tapered foot entering a hole (b)
The insertion hole on the body of the robot with guiding cantilevers and the foot snap fit,
meant to interface with the hole. A micromanipulator grip cantilever is used to hold on to
the piece and manipulate it with a probe tip

Figure 5.11: A diagram of the gripping cantilever, showing how the piece is lifted off of the
chuck. The rightmost image shows a probe tip deflecting the gripping cantilever to lift the
piece

Support Feet

To hold the robot upright during its walk cycle, microassembled support feet were de-
signed. A diagram is shown in Fig 5.9. The assembled feet are made from device layer
silicon. The size of the feet is meant to maintain the center of mass of the robot over the feet
during each phase of its walk cycle. One foot is inserted into the end of the foot and another
foot is inserted into the body of the robot. The assembly methodology, which involves snap
fit springs and suspension was inspired by work shown in [32].

A detail of the assembly pieces is shown in Fig. 5.10. The insertion hole is fabricated
on the foot and body of the robot. Vertical alignment guides are meant to guide the foot
into place and deflect to hold the foot in place with the cantilever spring force. The springs
are designed to exert 2mN of force at their full deflection after assembly. With a very low
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Figure 5.12: The robot is mounted onto a glass slide using kapton tape. This orients the
hole for proper assembly. A robot with inserted feet is shown on the right. Once the piece
is attached to the probe tip, the foot is aligned under the probe station microscope to insert
it into the hole

friction coefficient of 0.1, this would hold the legs in place with over 200g’s of acceleration
on the foot.

The insertion end of the foot has horizontal alignment guides that deflect during insertion.
Once the insertion is complete, these springs are released and lock the foot into place within
the insertion hole. This end is also tapered to allow for easy alignment and insertion. The
end of the foot begins at 80µm and ends at 300µm. The foot also has a cantilever grip that
is meant to interface with a probe tip on a micromanipulator stage. This is how the foot
is manipulated. Fig. 5.11 shows how the piece is lifted using a probe tip and manipulated.
The cantilever grip also exerts 2mN of force at full deflection, holding onto the probe tip for
over 200g’s of acceleration on the foot.

Fig. 5.12 shows the mounting of the robot to orient the insertion hole during assembly.
The foot is manipulated to align the parts using the probe station microscope. For the
vertical axis, alignment is achieved using a 45◦ mirror.

Once the parts are aligned the foot is inserted into the hole. Fig. 5.13 shows the foot
during insertion. The view is through a microscope, top down onto the robot, so the foot
insertion hole is oriented 90◦ with respect to the image. The foot is inserted until the springs
are fully deflected. Once the part is fully in place, the foot snaps into place. The probe tip
is lifted and slips out of the gripping cantilever.

Fig. 5.14 shows the side view of the robot, seen through a 45◦ mirror. The deflection of
the vertical guide springs can be seen, holding the piece together, along with the horizontal
guide springs which have relaxed and locked the piece in place. The robot is seen standing
upright on a US penny with it’s support feet.

Although the feet could support the robot, attempting actuation with the feet proved
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Figure 5.13: The process of insertion, seen from top down. The springs of the foot piece are
seen deflecting during insertion

Figure 5.14: The hole with a foot inserted, showing the guide springs deflecting (left) The
robot standing upright with its support feet (right)
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Figure 5.15: The robot suspended by its external wires (left) A closeup of the pad array
and wires on each pad, attached with cured silver epoxy (center) The robot standing upright
supported by the wire array (right)

difficult. In order to actuate the robot it was maintained upright by wires, described in the
following section. The stiffness of the wires and light weight of the robot made accurate
positioning without breaking the feet, and by extension the leg, difficult.

Wiring

The robot was tethered to external power and control using flexible insulated 60µm
copper wires. Fig. 5.15 shows the wiring of the robot. An array of the wires is assembled
by hand, spacing the wires appropriately with respect to the pads of the robot. A piece of
paper with lines drawn at 600µm spacing are used to align the wires during assembly. The
wires at the other end of the array are silver epoxied to header pins to interface into the
breadboard circuit.

Cutting the wire exposes the copper end and conductivity is tested between the ends. The
wire’s exposed ends are dipped in silver epoxy and the array is placed on a micromanipulator
stage using double-sided kapton tape. The array is then lowered onto the robot’s pads using
the micromanipulator. This is done on a hot plate under a dissection microscope. The silver
epoxy is cured on the hot plate once the wires are in the proper position.

The robot is suspended by its wires from a vertical positioning stage. The stage is lowered
onto a scale until the scale reads the robots mass of 18mg. The wire suspension is able to
hold the robot upright without need for support during its walk cycle.
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Figure 5.16: The robot walking, suspended by wires and shuffling forward on a piece of paper
in (a)-(d). (e) and (f) show the robot extending its leg and lifting the robot’s body
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5.2 Walking

Fig. 5.16 shows the robot actuating on the ground while tethered. The robot was able
to pick itself up with its foot actuating at 80V.

Fig. 5.16(a)-(d) show a sequence of the robot walking. The robot only had the vertical
axis motor functioning. The horizontal axis was free to move as the vertical axis motor
pushed the leg into the ground. Because of this, rather than lifting its body and taking a
stride during its walk cycle, the leg would slip on the ground behind the robot. The robot
was able to push itself forward in this manner, against its tethers and mass.

Actuating the motor GCA arrays at 500Hz, the walking speed was 0.7mm/s, about 0.15
body lengths per second. This frequency corresponds to an unloaded inchworm shuttle speed
of about 2mm/s. At this speed, a full step would take about 0.5s giving a theoretical walking
speed of 1mm/s. The lower measured walking speed could be attributed to the robot not
being able to complete its full stride due to force loss. As shown in the previous chapter,
a maximum inchworm motor velocity of 0.4m/s has been demonstrated, so the robot can
potentially move much faster.

Fig.7 (e)-(f) shows the robot lifting its body. The robot is positioned such that the foot
of the suspended robot is in contact with the ground. The leg extends and the robot is able
to pick itself up. Occasionally the voltage would have to be raised to 90V for the robot to
actuate. This was assumed to be caused by extra friction from the linkage on the protective
screen. This robot weighed approximately 18mg.

5.2.1 Power Draw

Capacitance between the actuating fingers and between the drive fingers and the substrate
was measured using an AD7746 evaluation board. When closed, the fingers measured 2.1pF.
The capacitance to the substrate was about 10.3pF. At a given capacitance C, voltage V
and frequency f , the power the motor consumes is given by

P = CV 2f (5.1)

Being driven at 500Hz, the total power draw for the robot is about 40µW. The solar cells
presented in [13] were able to generate 100µW of power and weighed 2.3mg. Using these
solar cells our robot would be able to carry this power source.

5.3 Next Steps

This robot served as the initial test case for a new design platform for silicon micro-
robots using low power electrostatic inchworm motors fabricated alongside silicon linkages,
combined with lightweight energy sources and computation. The goal for this platform is
two-fold; to develop robots with a tenable path towards autonomy as well as to create mod-
ular components fabricated in a reproducible process that can be widely disseminated. The
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next improvement to this robot involves adding legs to grant the robot better static stability
and make it a better experimental platform with more interesting gaits.
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Chapter 6

The Hexapod

Building off of the work on the single-legged robot, a multi-legged robot was designed as
a logical next step for this microrobotics platform. The robot shown in this chapter is based
on legs that use higher force electrostatic inchworm motors than previously demonstrated.
These motors manipulate planar silicon linkages with a longer stride than was demonstrated
with the single-legged robot. The robot has a total of 12 motors, 6 linkages, and 12 degrees-
of-freedom.

6.1 Robot Description

Fig. 6.1 shows the robot standing upright. The robot is composed of three separate chips;
two leg chips and a top hub chip. Using hand assembly, the robot is constructed from these
discrete pieces. It is externally wired to a control and power source through pads on the hub
chip, which route the actuator signals from the leg chips. The 3D MEMS assembly process
successfully routes 24 separate signals to wires for external control. The robot weighs 200mg
and measures 9.6mm wide, 7mm tall, and 13mm long and has walked forward under tethered
operation.

6.1.1 Walk Cycle Design

A dual-tripod gait was chosen for the robot. This gait was chosen because it is has a
large stability margin. At any given time, three points around the robots center of mass are
always in contact with the ground.

The designed gait and cyclical leg motion of the legs are shown in Fig 6.2. The colors
indicate the phase of each tripod. This gait is hardwired into the robot’s routing. Three legs
are actuated in tandem while the remaining set of three legs are actuated out of phase.
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Figure 6.1: A photo of the robot next to a US quarter. The robot is wired to external control

6.2 Robot Chips

The robot is composed of three separate chips. These pieces are fabricated in the same
process. This section gives an overview of the chips and the structures used to aid in their
assembly.

6.2.1 Leg Chip

The leg chip is shown in Fig. 6.3. The leg chips have two main components, the legs and
the assembly/routing pillars.

The assembly pillars are shown at the top of the leg chip. The motor signals are routed
through wirebonds and silicon to terminate at the pillars. Each motor requires two high
voltage signals and ground, meaning a single leg requires four signals and a ground. Each
leg chip routes 12 signals and ground to the pillars. The ground for each motor is routed to
a separate pillar, leaving 18 pillars in total.

Leg Design

The leg linkage design is similar to the design shown in [33]. Again, the design is a
selective four-bar linkage. The stride length was modified to allow for a longer horizontal
sweep when the leg is on the ground. The stride length is 1mm, twice what was demonstrated
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1 2 3 4Standing

(a)

1 2 3 4Standing Repeat Walking Cycle(b)

Figure 6.2: Cartoons detailing the intended walk cycle of the robot (a) The movement of all
six legs around the robot body (b) The stride sequence of the legs. Orange vs. red indicates
separate tripods

before. The linkage also uses newly designed rotary springs. These springs were designed to
maintain a constant rotational stiffness through the angular travel of the joint.

Fig. 6.4 shows a diagram of the hexapod’s leg. Two motors are attached to the leg linkage;
one for vertical axis actuation and the other for horizontal axis actuation. The placement of
the vertical axis motor, at Lv,input, was designed to be in-line with the end of the leg linkage
for a 1:1 mechanical advantage. This is done in order to maximize the force output as the
robot lifts itself. The horizontal axis motor was placed at Lh,input with a 4:1 mechanical
advantage, dropping the motors force output in favor of speed during the robots horizontal
stride. Each leg has 2 degrees-of-freedom, granting the robot 12 degrees-of-freedom when
fully assembled.

Rotary Joints

Fig. 6.5 shows a layout view of the rotary joint spring designed for the hexapod leg. The
spring is made of meandering springs that attach to the linkage at a distance r from the
center of the joint. The goal for this spring is to maintain a constant rotational stiffness, κ,
as the linkage travels through its travel θ. The rotational stiffness, derived in Chapter 2, is
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Figure 6.3: Photos of the chips that make up the robot. The leg chip with three separate
legs, each with two motors (left) The hub chip used to hold the leg chips together and upright
and provide access to external routing (right)

Figure 6.4: Diagram of the hexapod leg indicating mechanical advantage lengths and force
inputs
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Figure 6.5: Diagram of the hexapod rotary joint spring on a leg joint (left) A plot comparing
the analytical stiffness result to simulation in CoventorWare (right)

Table 6.1: Dimensions of the rotary joints used in the hexapod leg

T (µm) ws(µm) N Ls(µm) r(µm)
40 3 6 150 140

given by

κ = ksr
2 =

ETw3
s

NL3
s

r2 (6.1)

where we have expressed ks by the linear serpentine spring constant for N beams in series.
E is the Young’s Modulus, T is the device thickness, ws is the spring width, N is the number
of beams along the length, Ls is the beam length, and r is the springs attachment radius
to the joint. Rotary joint springs on the fabricated leg have the parameters in Table. 6.1.
The analytical rotary stiffness was 1.6 × 10−7Nm. This analytical expression is compared
to simulation in Fig. 6.5. We see good agreement for positive extension, corresponding to
spring stretching, but nonlinearity for negative extension, or spring compression. The actual
fabricated springs have a stiffness of 5× 10−8Nm when using the analytical expression. This
is due to the undercut during the etch reducing the width of the springs.

Linkage Loss

In order to measure the stiffness of the full linkage, a test structure was designed where
the linkage was fabricated with spring-based force gauges attached to the point of vertical
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Figure 6.6: Diagram of the structure used to measure loss in the linkage suspension

input and horizontal input of the motor. A diagram of the structure is shown in Fig. 6.6.
Spring gauges, similar to those used in Chapter 1 for the pull-out joint tests, are attached to
the inputs of the linkage. These spring gauges were moved manually with a probe and the
displacement of the spring was recorded and measured with displacement tracking software.

Fig. 6.7 shows the data from these test structures. The linkage was modeled in MATLAB
Simulink. The geometry of the linkage was modeled and rotary stiffness was input as a
parameter to each joint. The linear stiffness of the serpentine springs on the motors was also
modeled on the input point in the simulation.

The simulation was modified to match the worst case slope of the data from the vertical
travel. This involved changing the rotational stiffness to 3 × 10−8Nm in the simulation. For
this case 250nJ of energy are lost in the deformation of the linkage suspension for each full
leg stride. For comparison, the full motor extension exerts 2.5µJ of energy at 100V.

Most points for the vertical travel data have a lower rotational stiffness than expected.
The horizontal travel data suffered from the gauge sticking to sidewalls of the guides that
the shuttle was sliding against. This lead to higher measured deformation of the gauge. It
should be noted that a negative input force is expected for small values. This is because
at the beginning of the horizontal travel phase the vertical travel has already displaced the
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Figure 6.7: Experimental data on the loss and modeled loss of the linkage measured through
suspensions around the linkage

linkage and deformed these springs, storing energy. This presents an interesting mechanism
for storing energy during one part of a leg cycle, to be used in another.

High Force Inchworm Motors

The raw force output of the motor is shown in Fig. 6.8. In order to increase the force
density of the motor to lift the mass of the robot, the motors were designed using a drawn
1µm feature size between the pawls and the shuttle of the motor. The force was measured
using a spring gauge attached to the shuttle. The spring gauge was calibrated using an array
of comb drive resonators. The total layout area of the motor measures 2.7mm2. This leads to
a higher force density of approximately 1.85mN/mm2 while actuating at 100V. Normalizing
to V 2, this is a 62% improvement over the previous maximum force density of 1.38mN/mm2

at 110V [23].

6.2.2 Motor Lifetime

The motor shown in Chapter 3 had a lifetime over 28 hours, over 100 million steps for the
GCA arrays. The high force motors used on the hexapod showed a much shorter lifetime.

Fig. 6.9 shows the motor displacement for approximately 50 cycles. The motor was
programmed to extend the shuttle for the required number of steps to fully extend the shuttle
500 steps for 500µm. The drive voltage and frequency were 60V and 1kHz respectively.
From the figure, the degradation in motor performance is obvious. The maximum extension
drops significantly a short time into the motors operation. The motor velocity also drops
significantly.
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Figure 6.8: Plot of the force output data for the motor used on the hexapod (blue) compared
with the motor used on the single-legged robot (magenta)

Figure 6.9: Plot showing the lifetime of the high force inchworm motors. Maximum dis-
placement over time is shown (left) as well as velocity as a function of the cycle number
(right)
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Figure 6.10: Figure indicating wear of the silicon on the pawls (left) and on the shuttle
(right)
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Figure 6.11: Plot showing the lifetime of the high force inchworm motors coated in a sput-
tered TiN layer

Fig. 6.10 shows the wear on the pawls and the shuttle from operation. The wear on the
pawls is attributed to the high force impact. The impact force is on the order of 5mN for
these motors. Wear on the shuttle from the surrounding silicon is also obvious.

Titanium nitride (TiN) was proposed as a protective coating for the motors due to the
durability of the material. The motors were coated in a 20nm TiN sputtered layer. As seen
in Fig. 6.11, there was no improvement over the previously uncoated motors. Operation
significantly decreased after 20 cycles.

Wear was still obvious on the TiN coated motors, shown in Fig. 6.12. Degradation and
chipping on the pawls and shuttle was still observed. It is likely that a sputtered TiN layer
has imperfections that impede successful abrasion and impact resistance. An atomic layer
deposition of TiN may be preferable for a more uniform coating.
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Figure 6.12: Wear is still present on motors sputtered with a 20nm TiN layer

6.2.3 Motor Tooth Measurements

In order to analyze wear on the shuttle and pawls, tooth arrays were analyzed using an
Olympus LEXT OLS4000 3D Confocal Laser Microscope. Tooth arrays were fabricated held
to the substrate by springs. The arrays were broken and flipped on their sides using a probe
tip. The pieces would often stick onto the probe tip due to residue on the tip. This made
them easy to manipulate. Fig. 6.13 shows the interface used to analyze the arrays. The array
flipped on its side abutted against a sheet of device layer silicon on the same wafer is shown
on the left. The array has teeth drawn at 0.25µm, 0.5µm, 0.75µm, and 1µm extrusion from
the base of the array beam. True flat is measured against the device layer in the screen.
Assuming the other side of the array is laying flat on the surface, the angle of the sidewall
facing the camera should be halved.

Projecting the measured dimensions of the teeth, we can see what the engagement of
the teeth would actually look like. This is shown in Fig. 6.14. We can see for the shallow
0.25µm used on the motor there is a very small amount of overlap between the pawl and
the shuttle when the teeth are engaged. The engagement between the pawl and shuttle for
1.5µm extruded teeth is shown for comparison. This low engagement area could explain the
drop in motor performance. As the small area is chipped away, the motor can begin to slip
more and more.

Additionally undercut of the tooth arrays was measured, shown in Fig. 6.15. Undercut
of the tooth arrays is smaller than in other locations on the mask. This is due to the small
feature sizes of the gap between the teeth and surrounding silicon tending to have smaller
undercuts throughout the etch. The gap between the arrays and the surrounding silicon was
drawn at 1µm.
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Figure 6.13: The confocal microscope’s view of the array (left) and the heat map it produces
(right)

Figure 6.14: Projection of the engagement of the teeth for teeth with 0.25µm drawn extrusion
(left) and 1.5µm drawn extrusion (right). The blue area signifies the area of overlap between
the gear teeth on the pawl and on the adjacent shuttle



CHAPTER 6. THE HEXAPOD 93

Figure 6.15: Plot of the height of the trough of the tooth arrays compared to the height of
the base. The actual tooth undercut inside of the trough can be determined from this

6.2.4 Hub Chip

The hub chip is also show in Fig. 6.3. The hub chip is meant to fit on top of two adjacent
leg chips using a pillar/through-hole assembly technique adapted from work shown in [34].

The purpose of the hub chip is two-fold. First, the hub chip is meant to hold the leg chips
upright, such that they can actuate on the ground. Second, the hub chip routes electrical
signals from the legs on the leg chip to pads that interface externally with long wire tethers.
The robot routes the signals from the legs to demonstrate a dual tripod gait on the robot.

There are a total of 24 signals and 12 separate ground signals from the motors on the
robot body. These signals are reduced to 8 signals and 4 ground signals by hardwiring
the dual tripod gait in the silicon routing on the hub chip. An array of 12 wirebonds are
necessary to route the signals to the exposed pads and tie the ground signals together onto
one final pad. Thus only 9 wires are required to drive the robot.

6.2.5 Pillar Design and Tolerance

Fig. 6.16 details the design and dimensions of the pillars and the holes. There are three
types of pillars used in this design; routing pillars for routing the high voltage signals made
up of only device layer silicon, square block pillars made of device layer silicon and substrate
silicon for mechanical rigidity and to protect the routing pillars, and triangular alignment
pillars to align the holes and to gently guide the hub chip into place on the leg chips.

The alignment and block pillars share the same hole size. The hole on the hub chip
is designed to have 10µm of tolerance on a given side around the pillars, factoring in the
uncertainty in the thickness of the substrate. For the routing pillars, the tolerance is set
to 15µm on a given side and 25µm in the dimension of the wafer thickness to account for
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Figure 6.16: Detail on the leg chip pillars and the hub chip holes

uncertainty in the substrate thickness. With this larger tolerance, the alignment and block
pillars protect the routing pillars as the hub chip falls into place.

6.3 Assembly

6.3.1 Preparing Assembly

Before assembling the pieces, signals on the leg chips had to be routed using wirebonds on
bare silicon. 25µm Al-Si wire on a Westbond 747677E Wirebonder was used. The ultrasonic
power was set above 325 (a unitless number internal to the tool) and the time was set to
30ms. Usually the power had to be increased depending on the cleanliness of the silicon
surface. Bonds were easiest on bare silicon by using a vacuum chuck to hold the silicon piece
down. To keep the piece from rotating, two vacuum holes were covered. Signals were also
routed with wirebonds on the hub chip.

Additionally, a silicon bracket to maintain the legs in plane was assembled. The bracket
is composed of two large substrate blocks and a thin device layer strip between them. The
blocks are glued to the body of the robot using silver epoxy. This is meant to improve upon
the protective screen on the single-legged robot’s linkage. A small bracket is used to reduce
friction that was present on the screen.

6.3.2 Multichip Assembly

The assembly process is shown in Fig. 6.17. In addition to the robot chips, additional
structures for the purpose of assembly were also fabricated. This includes an assembly base,
used to hold the leg chips upright during assembly and a bracket piece to place over the



CHAPTER 6. THE HEXAPOD 95

Figure 6.17: Photos detailing the robot’s assembly

legs to keep ensure they do not come out of plane during actuation. The base is shown in
Fig. 6.17(a) and the leg bracket is shown in Figure 9.

In Fig. 6.17(a) The leg chips are manually placed into the assembly base such that they
stand upright. This structure is placed at a probe station where a microscope can be used
for alignment of the hubchip for the next step.

In Fig. 6.17(b) a lift made from folded aluminum foil is glued onto a probe tip which
is inserted into a micromanipulator for precision in alignment. The hub chip is manually
placed on the lift and positioned above the leg chips. Alignment is performed through the
microscope. The holes in the hub chip are positioned such that they line up with the pillars
on the leg chips.

In Fig. 6.17(c), once the positioning is correct the hub chip is dropped with the micro-
manipulator to sit on the leg chips. Fig. 6.17(d) shows a zoom-in of the pillars through the
holes on the hub chip, detailing the assembly, guide, and signal pillars.

The final assembled structure is brought to a hotplate and is permanently affixed using
silver epoxy to join the pillars to the base of the holes. The epoxy also electrically routes
the motor signals between legs that make up each of the tripods and to the hub chip pads.
The silver epoxy joints on the pillars are shown in Fig. 6.18. The epoxy is dispensed from
a Zephyrtronics ZT-5100 Air Mill handheld pneumatic liquid dispensing system. In order
to dispense appropriately sized 200-300µm dots of silver epoxy, a pressure of 60psi and a
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Figure 6.18: Photo showing the silver epoxy joints used to mechanically and electrically
connect the pillars to the holes

dispense time of 0.01s were used.

6.3.3 Wiring

The hub chip has an array of pads extending off the rear of the chip. External wires are
connected to these pads. Fig. 6.19 shows the process of wiring-up a robot. An array of 9
30cm long 60µm thick copper wires are aligned in an array to the pitch of the pads. The
wire array is assembled on a piece of paper with lines printed at the spacing of the pads.
Kapton tape is used to hold the array together at the correct spacing. The other end of the
wire array is soldered onto a header pin that interfaces to a breadboard with the control
circuit for the robot.

As with the single-legged robot, the wire array is trimmed to expose the ends. These
ends are dipped in silver epoxy and the array is positioned with a micromanipulator onto
the hub chip pads. Visual confirmation of wire contact to the substrate was observed by
watching the silver epoxy on the wire adhere to the silicon surface. The whole assembly is
assembled and cured on a hotplate at 150◦C for half an hour.

6.4 Demonstrating Motion

6.4.1 Experimental Setup

Once the robot is assembled and wired it is placed on a flat surface to walk. Fig. 6.20
shows the experimental setup for the robot. The robot is positioned next to a ruler for scale
and to track motion. The legs are acutated at 100V.
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Figure 6.19: Figure showing the wiring process for the robot

6.4.2 Initial Attempts

During initial attempts, the robot demonstrated repeatable unintentional locomotion
schemes. When the leg bracket was not put in place the legs of the robot would splay out
of plane upon contact with the ground, and would move the robot to the side, like a crab.
The legs would return to their initial position without breaking.

6.4.3 First Steps

Fig. 6.21 shows an assembled robot taking steps. The robot takes two full steps in the
sequence shown. This robot had three functioning legs and was able to walk forward using
two of the legs which were joined in the dual-tripod actuation scheme. The functioning legs
are shown in the diagram in the same figure. The actuation voltage was 100V

The velocity of the horizontal stride of each step was measured. The first step was
7.5mm/s and the second step was 1mm/s. The motors were actuated at 100Hz, which
translates to a horizontal speed of approximately 1mm/s. The first step was faster than
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Figure 6.20: Setup used to show the robot taking steps

expected. This could be attributed to the weight of the body carrying the robot forward
under the influence of gravity. The robot is designed to drop its mass as it takes its step.

The total capacitive load of a single actuator is estimated to be 26pF when the gaps
are fully closed. Operating at 100Hz at 100V this leads to a power draw of 78µW for a
single tripod. With top motor speeds of 34mm/s demonstrated in [28] and a 4:1 mechanical
advantage, the robot could potentially demonstrate top speeds of over 13.6cm/s.

6.5 System Level Design

6.5.1 Improvements on Hub Chip

The hub chip is meant to support the robot’s leg chips. It can also serve as a central base
on which computational, power, and peripheral devices may be attached. The current state
of the hub chip is free form and the silicon may be patterned to provide more mechanical
contacts for MEMS ZIF sockets, flip-chip pads for bonding, or other connection methods.
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Figure 6.21: Sequence of the robot taking steps forward (left) Diagram showing the func-
tioning legs of the robot (right)

6.5.2 Flexboard Backpack

In addition to the robot design made entirely of silicon, we have also done work on
creating a robot controller and motor driver on a lightweight flexible circuit board substrate,
hereby referred to as the robot backpack. The purpose of the robot backpack is to use the
most lightweight commercial-off-the-shelf (COTS) and create an on-board controller that is
within the robots payload.

The circuit board is shown in Fig. 6.22. The circuits mass is approximately 170mg. The
backpack operates entirely on a 3.7V source. It uses an LT3482 boost DC/DC converter
to generate a 90V signal from the 3.7V source. The high voltage signal is used as the
high voltage rail for a network of high voltage transistors through pull-up resistors. These
transistors are switched by a PIC16(L)F183XX microcontroller, which was chosen due to
mass considerations. The board is meant to generate the high voltage signals for a dual
tripod gait. With this board, the number of external connections drops from nine to two
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Figure 6.22: The flex backpack. Top and bottom of the board (left) The board with the leg
chips inserted into the board. The inserted board only has the large ground signal pillars
inserted. Issues with warping keep the device layer pillars from being safely inserted

Figure 6.23: Output of the flexboard circuit. The board is able to generate 88V from a
3.7V source (left) The microcontroller uses resistively-loaded common source amplifiers to
generate inchworm motor drive signals at 80V (right)
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after the microcontroller has been programmed. The board has successfully generated an
88V signal that can drive the inchworm motors, as shown in Fig. 6.23.

The robot flex backpack has the same array of holes that are on the hub chip. The
backpack is meant to interface to the leg chips in the exact same way that the hub chip
interfaces to the leg chips. The flexible circuit board was patterned with a 2µm feature size
in order to reduce the total size of the board. During assembly, the board breaks the device
layer pillars because of warping in the board. More careful mechanical assembly is necessary
to properly interface the pieces.

6.5.3 Future Work

We have demonstrated successful actuation of and steps taken by a six-legged silicon
robot made of multiple chips, actuated through long tethers. The robot is able to move
forward using only three of its six legs. The multichip assembly process provides reliable
routing for the 3D MEMS structure, from the top hub chip to the side leg chips.

Current issues to address with the robot focus on yield and reliability of operation after
assembly. Stiction frequently occurs during assembly and while the devices are in operation.
This has been attributed to how sensitive the legs are to electrostatic forces and charging
causing the legs to snap down and stick to the substrate. Preliminary experiments with
self-assembled monolayers, such as FOTS, have shown promising results for preventing in
operation stiction. Reduction of the substrate area can also be beneficial for stiction as well
as reducing the robots total mass.
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Chapter 7

Conclusion and Future Work

This chapter covers other topics such as other applications for the components discussed
so far. We also discuss system level considerations for the robot.

7.1 Other Work

This work presented the individual components of the silicon pin-joint and the inch-
worm motors specifically with applications in the silicon robots in mind. However, these
components can be useful in a variety of applications.

7.1.1 Inchworm Motor Chips

A standalone inchworm motor chip was designed, fabricated, and used in a variety of
applications. The chip, pictured in Fig. 7.1, uses the same inchworm motor used on the
hexapod. Signals are routed to pads toward the left end of the figure. The smaller pads
are designed to interface with a zero-insertion-force (ZIF) socket. The larger pads are for
probing with probe tips. There is a ring at the end of the shuttle. This end has also been
designed as a U-shaped slot. The ring is 110µm in size. It was designed to interface with a
100µm rod with 10µm of tolerance.

Motors for Other Robots

The motor chip was initially designed to interface with the leg of another type of silicon
robot, shown in Fig. 7.2. This work was presented in [35].

The inchworm motor ring interfaced with a bar on the leg, as shown in Fig. 7.3. A resistive
switch network was used to drive the legs. Solar cells generating 60V at approximately 15µA
were able to drive the leg through three quarters of its sweep cycle. The legs were not able to
reset the leg during the passive retraction phase of the motor due to the serpentine springs
on the motor shuttle being too weak to fully retract the leg.
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Figure 7.1: The standalone inchworm motor chip

Figure 7.2: Silicon quadruped, designed with shape-memory alloy actuators (left) The sweep
cycle of the leg used on the quadruped (right)
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Figure 7.3: Experimental setup used to drive the quadruped leg with an electrostatic inch-
worm motor (left) The leg being driven by the inchworm motor (right)
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Figure 7.4: The simulated microrobot (left) Diagram of the legs sweep sequence, based on
the hexapod leg (right)

7.1.2 Machine Learning for Microrobots

A machine learning model of the microrobot hexapod was developed in the robotics
simulation package V-REP [36]. The model, shown in Fig. 7.4, is scaled up by a factor of
100 due to limitations in V-REP’s simulation scales.

The algorithm uses central pattern generators (CPGs), which produce periodic outputs
in vertebrates without any sensory input. In order to optimize the output of the simulation,
Bayesian optimization is used to tune the parameters of the CPG. The target for the robot
was to walk at a speed of 1cm/s using a variety of gaits.
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Figure 7.5: The simulated microrobot’s performance on a variety of inclines (left) and
through a small maze (right)

Using a variety of gaits (dual-tripod, ripple, wave, four-two) the simulated robot demon-
strated learning to walk from nothing within 50 iterations. Fig. 7.5 shows results for the
robot learning to walk in two environments. Using its learned dual-tripod gait, the robot
showed moderate success on gradually increasing inclines. The robot simulation was also
tested for path planning and was also able to successfully navigate a small maze. This also
demonstrated that the planar legs of the robot allow it to make curved paths.

7.2 A 10cm/s Sub-mW Millimeter-Scale Autonomous

Robot

The components presented in this work are capable of implementing on a robot that is
capable of walking at many body lengths per second with low power draw. This section will
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develop a plan for this next generation robot.

7.2.1 Processing and Assembly Improvements

There are certain key issues with the current robot design that can be further improved
by additions to the current process. These issues include the robot’s mass, planar stability
of the device layer components, the lack of a second routing layer, and robot assembly.

Mass Reduction and Backside Processing

The hexapod has a current mass of 200mg. Because of this mass, higher force motors
with shorter lifetimes are necessary to lift the mass of the robot. 90% of this mass is from the
550µm thick substrate layer. This thickness is only useful during processing when handling
the full wafer since thinner wafers are fragile and more prone to breaking. The exposure tool
for the device layer, the GCA8500 Wafer Stepper (GCAWS6), also has a minimum thickness
requirement for its focusing capabilities.

Multiple avenues of wafer thinning can be implemented. Vendors that supply SOI wafers
are able to thin wafers although most do not thin below 400µm to 300µm due to handling
difficulty. Commercial grinding options are also available. Thinning before handling has
issues with handling during the initial steps of processing and using the tools for the device
layer exposure. GCAWS6 has a 525µm thickness requirement.

The ASML DUV Stepper has a 200µm thickness requirement and it allows for smaller
feature sizes than GCAWS6 (0.25µm resolution in a production environment). However,
the tool requires deep UV photoresist rather than the i-line photoresist we traditionally use.
Also the current undercut of the DRIE step of 0.45µm fundamentally prevents feature size
improvements of structures unless the DRIE process is recharacterized. This photoresist
would require process characterization for the DRIE and silicon selectivity. Current oxide
etch selectivity of about 5:1 has been reported, comparable to selectivity of the i-line pho-
toresist of about 3:1. Thinning the substrate further than these requirements is also possible
if a specially machined chuck was made that could fit in the tools to meet the height require-
ments. Another wafer of the appropriate thickness temporarily bonded with a water drop
could also be used.

The substrate can also be reduced during processing. Once the frontside process is com-
plete, the wafer can be sent out for commercial grinding. A protective layer such as thick
photoresist can be placed over the frontside for shipping and handling on the grinder. Appli-
cation and removal of this protective layer would have to be characterized and incorporated
in the process. Shipping wafers for grinding and waiting for there return would also add
days to the process.

A faster alternative would be a backside KOH etch after frontside processing. The
frontside layer can be protected with a special encasing that uses O-ring clamps to keep
liquid from attacking the frontside. Reducing the substrate to 100µm would take 5.4 hours
for a standard KOH etch rate (1.36µm/min at 80◦C for 24% KOH concentration). This
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method is attractive due to its simplicity and quick turnaround time with respect to the
other methods presented. Issues with this method include the presence of topography at the
edge of the backside of the wafer due to the protection from the O-ring clamp at the edge.
Photoresist spinning behavior due to this edge would have to be characterized.

Determining an ideal thickness. Assuming the substrate would serve solely as the robot’s
skeleton for structural purposes, it would have to handle loads typically associated with the
robot’s body. If the maximum forces the robot is expected to deal with come from the robot’s
own motors, than a typical load of 2mN should not cause a large deflection on the robot’s
skeleton. A cantilever beam that would be typical of the robot’s body would be 1mm in
length, 100µm wide (twice the device layer anchor width). Under a 2mN load with a 0.5µm
maximum deflection, the beam would have to be 100µm thick.

If the backside is reduced by a factor of 1/5, the robot’s mass would potentially be 60mg
or less. A thinner substrate allows for a finer feature size allowing for finer mass reduction.
For a 20:1 DRIE aspect ratio, 5µm feature size could be patterned. The contact lithography
used for backside patterning allows for 2µm feature sizes, making gaps of this size in the
backside conceivable. 5µm can be used for electrostatic actuation and sensing, allowing the
use of the backside for active structures in addition to passive structures for support.

Planar Stability and Routing

Planar structures are kept in plane using assembled pieces of silicon after processing such
as the screen used on the single legged walker and the brackets used on the leg of the hexapod.
These protective structures can also be applied during processing using wafer bonding. The
nanolab currently has a wafer bonding tool that can bond 6-inch wafers using metal, silicon,
or silicon dioxide interfaces. This way, a second layer can be implemented that can serve to
keep planar structures in-plane.

This second layer can also be used for routing, rather than the wire bonds that are
currently applied after processing. Metal and silicon-dioxide pads can be defined on the
frontside of the wafer. Opposing pads for interfaces would be defined on a second wafer for
bonding. Once the wafers are bonded, processing can continue to reduce and pattern the
backsides of the bonded wafers while the bonded device layers at the center are protected.

Mechanical Assembly

Another issue with the current assembly is reliance on silver epoxy for mechanical and
electrical connectivity of the robot pieces. The silver epoxy is difficult to apply in repeatable
fixed quantities even with pneumatic dispensing. The consistency of the silver epoxy also
changes over time and achieving an optimal viscosity is difficult to target. When the epoxy
is not viscous enough, it can short the routing around the robot through capillary action. If
the epoxy is too viscous, it is difficult to apply and will not make good electrical connection
when cured. Solder paste can be more reliable for repeatability and providing electrical
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conductivity but liquid flux in the solder can also run over the routing of the robot and ruin
mechanical components.

There was also a concern with outgassing from the silver epoxy’s resin. This could
have been a reason for the tendency for legs stick down to the substrate after silver epoxy
application and curing due to stiction caused by redeposition of outgassed chemicals. The
self assembled monolayer FOTS was applied to try and prevent this post-assembly stiction.
However the insulation from the FOTS coating made electrical contacts difficult to achieve.
Ion milling was attempted to remove the FOTS from open areas where it was deemed
unnecessary but stiction problems reoccurred after ion milling.

Another issue with the silver epoxy was making explicit contact between each substrate
layer in the robot assembly. Electrostatic forces between the legs and the substrate were a
suspected reason for leg stiction failure after assembly. Rather than relying on silver epoxy
to connect the substrate layers and motor ground signals to a shared ground, this can be
implemented in routing through mechanical assembly.

Rather than using silver epoxy or other paste-based methods for electro-mechanical con-
nection, assembly can rely on purely mechanical spring-based support designs. The robot
can use a zero-insertion force assembly method using probes on the hub chip to interface with
pillars on the leg chips and hold everything in place with spring-based latches. Preliminary
work in this area has shown success in using MEMS probes to interface with a CMOS chip.

Robot Process Description

Table 7.1 presents a process flow for further robot development, incorporating waferbond-
ing and backside reduction. The full process involves 6 masks and 2 separate SOI wafers.
The device wafer (labeled DEV) is used to define motors and legs and the bond wafer (la-
beled BOND) is used to define protective screens and routing to be bonded to the device
wafer. Steps that can be performed in parallel are listed alongside each other. The process
would involve 3 frontside alignment steps, and 1 backside alignment step.

The following lists assumptions to calculate the mass of a robot developed in this process.

• The robot is made from three separate chips, like the hexapod

• The device wafer backside is thinned to 100µm

• The robot is approximately 1cm long, 5mm wide, and 5mm tall

• 30% of the frontside/backside area is etched away abiding fill rules

• Frontside silicon on device wafer is 40µm thick

• Frontside silicon on bond wafer is 5µm thick

Under these assumptions, the robot would have a mass of approximately 35mg. Fill rules
state that exposed area during an etch should be under 30%. This is to prevent undesirable
etch effects such as grassing and pillaring.
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Table 7.1: Process flow for next generation of robot production

Step (Device Wafer) MASK Step (Bond Wafer) MASK
Notes

Photolithography
(Liftoff)

METAL DEV
Photolithography
(Liftoff)

METAL BOND Metal routing/waferbond bond-
pad definition

Cr/Au Deposition
20nm/500nm

Cr/Au Deposition
20nm/500nm

Thickness typical of forming eu-
tectic Si/Au bond [37]

Liftoff Liftoff
Photolithography SOI RECESS BOND Define recessed areas of bond

wafer silicon to reduce risk of
mechanical parts on device wafer
contacting bond wafer

DRIE
1µm

Photolithography SOI DEV Photolithography SOI BOND Define features in the device
wafer (motors/linkages) and fea-
tures in the bond wafer (grids for
protective screens, routing lines)

DRIE
tdev

DRIE
tbond

tdev and tbond are the desired
thickness of each of the SOI layers

Wafer bonding Wafer bonding Bond wafers together, all follow-
ing steps apply to bonded wafer

Step (Bonded Wafer) MASK
Notes

KOH Etch Step for reduction of the sub-
strates to ∼100µm. Bonded
wafer is sealed with an outside
ring of gold during metal deposi-
tion to prevent KOH from coming
in and attacking SOI layer struc-
tures

Photolithography TRENCH DEV Patterning features in the thinned
device wafer substrate layer for
mass reduction, skeleton defini-
tion, and device singulation

DRIE
100µm
Vapor HF
Release

Release structures from the ox-
ide layer of the device wafer and
the oxide layer of the bond wafer.
Bond wafer substrate is com-
pletely removed during oxide etch
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7.2.2 Robot Characteristics

In this section we repeat a similar series of calculations as in Chapter 1 for the assumed
microrobot. Here we detail the characteristics of a robot with experimentally verified char-
acteristics and some assumptions.

Characteristics and Assumptions

The following are experimentally verified characteristics of the robot motors in this work

• An inchworm motor generates Fm =1mN at 80V

• An inchworm motor has a velocity-frequency relationship of of 10µm/s/Hz

• An inchworm motor has a mechanical power density of 50W/kg

• A set of GCAs has finger capacitance of 0.33pF open, 2pF closed

The following are a list of assumptions about a proposed robot based on the hexapod
design from this work

• An inchworm motor weigh 0.3mg

• The full robot weighs 35mg

• Robot legs have a mechanical advantage of 1:1 for the vertical stride

• Robot legs have a mechanical advantage of 5:1 for the horizontal stride

• Robot stride length is 3mm

• Each leg of the robot is independently controlled

The following are a list of assumptions about the power generation and circuitry for the
proposed robot

• Charge recovery and layout make parasitic capacitance negligible

• Thin film battery energy density is Edb =0.36J/mg [15]

• Full sunlight solar power density is Pds =1000W/m2

• Solar cells have ηsolar = 10% efficiency

• Solar cells have an areal density of Adsolar = 0.092kg/m2 (40µm thick silicon)
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Force Requirements

Weighing 35mg, the robot would require 350µN of force to lift itself. With a 1:1 me-
chanical advantage in the vertical axis and 1mN force output from a motor the robot is able
exert a force of 2.5 times its weight with a single leg. This is desirable because it allows the
use of a single leg for maneuverability and gait experimentation.

With three legs working in tandem as in a dual tripod gait, the robot can exert 8.5 times
its weight. This allows 2.65mN of force for its payload. If it carried half of its payload
capacity as a thin film battery, the robot would have over 50J of energy to use. If its entire
surface was covered in solar cells the cells would provide 5mW of power and weigh 4.6mg.

The force limitation in the horizontal axis can come from a variety of factors. If we assume
friction in the joints, the moment applied to the pin joint from gravity for a pin joint of radius
50µm and frictional coefficient of 0.3 would be (0.3)(35mg)(9.8m/s2)(50µm)=5.25×10−9Nm.
The motor attached to the leg at 1mm from the joint can exert (1mN)(1mm)=1 × 106Nm,
well in excess of the frictional moment.

There is also the concern of drag on the robot body. The drag equation is given by

FD =
1

2
ρv2ACD (7.1)

where ρ is the density of the fluid medium the object is moving through, v is the velocity
of the fluid moving around the object, A is the cross-sectional area of the object moving
through the fluid, and CD is the unitless drag coefficient. We can solve for the maximum
velocity as

vmax =

√
2FD,max
ρACD

(7.2)

Assuming a cuboid, CD = 1. Assuming FD = 600µN for three legs exerting 1mN each with
5:1 mechanical advantage, ρ = 1.2kg/m3, A = 1cm2, we get a max velocity of about 3m/s,
well in excess of the target velocity of 10cm/s.

Power and Energy Requirements

To run at 10cm/s, the robot will have to actuate its GCAs at 2kHz. The electrical power
the motors would draw for a dual tripod gait would be 154µW. The robot could run on solar
cells with 4.8mW of excess power for control.

At 10µm for each step, the robot motor would need to take 60 steps to complete a stride
for 5:1 mechanical advantage with a 1mm attachment point. This is a total of 1.5µJ of
energy for each stride. With a battery pack providing 50J of energy the robot could take
over 33 million steps totalling about 100km.
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Appendix A

SUGAR Angled Arm Simulation

The SUGAR code for the angled arm simulations is presented here.

% MF_pinjoint.m

% Mechanical anchor

% model function defining a pin joint, anchored only in the z-axis

function [output] = MF_pinjoint(flag, R, param, q, t, nodes, varargin);

switch(flag)

case ’vars’

output.ground = {1 {’z’}};

case ’check’

if (~isfield(param, ’l’) | ...

~isfield(param, ’w’) | ...

~isfield(param, ’h’))

output = ’Missing length, width, or height parameters’;

else

output = [];

end

case ’pos’

output = [0; 0; 0];

case ’abspos’
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if (isfield(param, ’x’) & isfield(param, ’y’) & isfield(param, ’z’))

output = [param.x; param.y; param.z];

else

output = [];

end

case ’display’

q1 = zeros(12,1);

displaybeam(q1, nodes(1).pos, R, param.l, param.w, param.h);

otherwise

output = [];

end

The following is the angled arm netlist that used the pinjoint model function.

% angled arm netlist for simulation of statics of angled arm/shuttle

% interaction

% use berkeley SOI process file

uses SOI_berk.net

% parameters

% Fy - force on angled arms, oriented in the y-axis

% Fx - force on shuttle, oriented in the x-axis

% anchorS - default anchor size

% Wb - default beam width for suspensions

% Lb - default beam length for suspensions

% Ws - default shuttle width for suspensions

% Ls - default shuttle length for suspensions

% alpha - rotation of angled arms from the horizontal

% Larm - length of angled arm

% warm - width of angled arm

param Fy=0

param Fx=0

param anchorS=10u

param Wb=0.1u

param Lb=50u

param Ws=10u
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param Ls=50u

param alpha=65*pi/180

param Larm=100u

param warm=3u

% define angled-arm subnet

subnet angledarm [nj pj] [ang=* rot=*]

[

% define suspension

beam3d dev [a1 nj] [l=Lb w=Wb oz=rot]

beam3d dev [nj a2] [l=Lb w=Wb oz=rot]

anchor dev [a1] [l=anchorS w=anchorS oz=-pi+rot]

anchor dev [a2] [l=anchorS w=anchorS oz=rot]

beam3d dev [n2 a7] [l=Lb w=Wb oz=rot]

beam3d dev [n2 a8] [l=Lb w=Wb oz=-pi+rot]

anchor dev [a7] [l=anchorS w=anchorS oz=rot]

anchor dev [a8] [l=anchorS w=anchorS oz=-pi+rot]

% define central shuttle angled arm is attached to

beam3d dev [nj n2] [l=Ls w=Ws oz=pi/2+rot]

% angled arm

beam3d dev [nj pj] [l=Larm w=warm oz=ang]

% force on angled arm from the y-direction towards the angled arm

f3d * [nj] [F=Fy oz=-pi/2+rot]

]

% call angled arm subnet with parameters

angledarm dev [n1 p1] [ang=-alpha rot=0]

angledarm dev [n2 p2] [ang=alpha rot=pi]

% pinjoint that interfaces the angled arm to the shuttle

pinjoint dev [p1] [l=1n w=1n oz=-pi/2]

pinjoint dev [p2] [l=1n w=1n oz=-pi/2]

% small beams solely meant to connect the pinjoint to the central shuttle

beam3d dev [p1 nmid] [l=1n w=1n oz=-pi/2]

beam3d dev [p2 nmid] [l=1n w=1n oz=pi/2]



APPENDIX A. SUGAR ANGLED ARM SIMULATION 115

% central shuttle 1

beam3d dev [nmid n3] [l=Ls w=Ws oz=-pi]

% central shuttle suspension 1

beam3d dev [n3 a3] [l=Lb w=Wb oz=pi/2]

beam3d dev [n3 a4] [l=Lb w=Wb oz=-pi/2]

anchor dev [a3] [l=anchorS w=anchorS oz=pi/2]

anchor dev [a4] [l=anchorS w=anchorS oz=-pi/2]

% central shuttle 2

beam3d dev [nmid n4] [l=Ls w=Ws]

% central shuttle suspension 2

beam3d dev [n4 a5] [l=Lb w=Wb oz=pi/2]

beam3d dev [n4 a6] [l=Lb w=Wb oz=-pi/2]

anchor dev [a5] [l=anchorS w=anchorS oz=pi/2]

anchor dev [a6] [l=anchorS w=anchorS oz=-pi/2]

% force on the shuttle in the x-direction

f3d * [nmid] [F=Fx oz=pi]

The following is the actual script that runs the angled arm netlist across a variety of
variables to generate the plots in Section 3.2.5.

%force output over 2um displacement

clear;clc;

% define constants and variables

E=169e9;

alpha=65;

Larm=100e-6;

warm=3e-6;

t=40e-6;

Iarm=warm^3*t/12;

Kphi=E*Iarm/Larm;

Wb=0.1e-6;

Fy=(100:300:2000)*1e-6;

Fx=0;

% define parameter structure for netlist

param.Fx=Fx;
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param.Fy=Fy(end);

param.Wb=Wb;

param.Larm=Larm;

param.warm=warm;

param.alpha=alpha*pi/180;

% take first step with netlist

net = cho_load(’angled_arm.net’,param);

dq1 = cho_dc(net);

figure(1); cho_display(net);

figure(2); cho_display(net,dq1);

dy1 = dqval(net,dq1,’n2’,’y’);

dy2 = dqval(net,dq1,’n1’,’y’);

dx1 = dqval(net,dq1,’p1’,’x’);

dx2 = dqval(net,dq1,’nmid’,’x’);

dstop=0e-6;

for i=1:length(Fy)

Fx=0;

param.Fx=Fx;

param.Fy=Fy(i);

while dx2>dstop

net = cho_load(’angled_arm.net’,param);

dq = cho_dc(net);

dy1 = dqval(net,dq,’n1’,’y’);

dy2 = dqval(net,dq,’n2’,’y’);

dx1 = dqval(net,dq,’p1’,’x’);

dx2 = dqval(net,dq,’nmid’,’x’);

Fx=Fx+10e-6;

param.Fx=Fx;

end

Fout(i)=Fx;

dx1=1;

dx2=1;

dy1=-1;

dy2=1;

end

Foutcalc=2*(Fy/tand(alpha));

figure(3);plot(Fout*1e6,Fy*1e6,Foutcalc*1e6,Fy*1e6)

xlabel(’F_x (N)’,’FontSize’,30)
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ylabel(’F_y (N)’,’FontSize’,30)

set(gca,’fontsize’,30)

Fy=1000e-6;

Fx=0;

param.Fy=Fy;

param.Fx=Fx;

net = cho_load(’angled_arm.net’,param);

dq = cho_dc(net);

dx = dqval(net,dq,’p1’,’x’);

i=1;

while dx>5e-6

param.Fx=param.Fx+1e-6;

net = cho_load(’angled_arm.net’,param);

dq = cho_dc(net);

dx = dqval(net,dq,’p1’,’x’);

dy = dqval(net,dq,’n2’,’y’);

end

dx1(1)=dx;

dy1(1)=dy;

while dx1>0

dx1(i) = dqval(net,dq,’p1’,’x’);

Fxout(i)=param.Fx;

param.Fx=param.Fx+1e-6;

net = cho_load(’angled_arm.net’,param);

dq = cho_dc(net);

dy1(i) = dqval(net,dq,’n2’,’y’);

i=i+1;

end

Fxcalc=2*(Fy/tand(alpha)-3*Kphi*dx1/(Larm^2*sind(alpha)^2));

dxcalc=dy1*tand(alpha);

figure(4);plot(dx1*1e6,dy1*1e6,dxcalc*1e6,dy1*1e6)

xlabel(’\Deltax (N)’,’FontSize’,30)

ylabel(’\Deltay (N)’,’FontSize’,30)

set(gca,’fontsize’,30)

figure(5);plot(dx1*1e6,Fxout*1e6,dx1*1e6,Fxcalc*1e6)

xlabel(’\Deltax (N)’,’FontSize’,30)

ylabel(’F_x (N)’,’FontSize’,30)
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set(gca,’fontsize’,30)
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Appendix B

MATLAB Dynamics Model

The following is the GCA dynamics master script for the MATLAB model.

% clear workspace and console

clear;clc;

% plotting parameters

% FS - fontsize

% LW - line width

% MS - marker size

% MW - marker width

FS=25;

LW=3;

MS=10;

MW=2;

% define global variables to pass between functions

global V e0 mu m S1 S2 T k x0 xf beta N xb Ts h0 wf er bcon kcon mcon...

fcon kconb A rho_si Ls alpha E

%%

% forcing equation variable constants

% multiplicative factors to manipulate the results of the forcing function

% kconb adjusts spring constant during release phase. this constant

% provides a better fit to pull-out voltage data

bcon=1;

kcon=1;

kconb=1.2;

mcon=1;

fcon=1;



APPENDIX B. MATLAB DYNAMICS MODEL 120

%%

% Undercut value around structure and area calculation of the central

% shuttle. measured from layout

% xuc_m, undercut around the central shuttle for the sake of mass reduction

% xuc_spr, undercut of springs, for spring width reduction

% xuc_fing, undercut around the GCA fingers

% AshutArr, calculating the layout area of the central shuttle using the

% undercut xuc_m

xuc_m=0.4e-6;

xuc_spr=0.4e-6;

xuc_fing=0.4e-6;

AshutArr=(-4.249e-6*xuc_m+1.52475e-8);

%%

% define physical constants

% e0, vacuum permittivity

% er, relative permittivity

% E, young’s modulus of silicon

% mu, viscosity of air

% rho_si, density of silicon

% rho_air, density of air

% rho_h2o, density of water

% alpha, constant for finger resonant frequency

e0=8.85e-12;

er=1;

E=169e9;

mu=1.8e-5;

rho_si=2300;

rho_air=1;

rho_h2o=1000;

alpha=1.875;

%%

% constant GCA geometry dimensions

% L0 - finger overlap length

% N - number of fingers

% T - device thickness

% wf - finger width

% x0 - initial forward gap

% xb - initial rear gap
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% h0 - substrate gap

% mfp - mean free path of air

% Ks - knudsen number

% Ts - effective thickness for damping due to substrate proximity

% Ls - base support finger length

% xf - final gap, defined by gapstop

% Lspr - length of spring

L0=76.5e-6;

N=70;

T=40e-6;

wf=5e-6-2*xuc_fing;

x0=4.83e-6+2*xuc_fing;

xb=7.75e-6+2*xuc_fing;

h0=2e-6;

mfp=68e-9;

Ks=mfp/h0;

Ts=T+0.81*(1+0.94*Ks)*h0;

Ls=10e-6;

xf=1e-6;

LSpr=240.85e-6;

%%

% measurement arrays, for data

LArrMeas=[0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]*L0;

wSprMeas=(2:0.5:5.5)*1e-6-2*xuc_spr;

kArrMeas=2*E*T*wSprMeas.^3/LSpr^3;

%%

% simulation arrays

% LArrSim1 - array of overlap lengths, less granular, for voltage theory

% comparison

% LArrSim2 - array of overlap lengths, granular, for length theory

% comparison

% wSprSim1 - spring width array

% kArrSim1 - spring constant array, less granular for voltage theory

% comparison

% wSprSim2 - spring width array, granular

% kArrSim2 - spring constant array, granular for spring theory comparison
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LArrSim1=[0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]*L0;

LArrSim2=linspace(0.2,1,100)*L0;

wSprSim1=[2 2.5 3 3.5 4 4.5 5 5.5]*1e-6-2*xuc_spr;

kArrSim1=2*E*T*wSprSim1.^3/LSpr^3;

wSprSim2=(2:0.1:5)*1e-6-2*xuc_spr;

kArrSim2=2*E*T*wSprSim2.^3/LSpr^3;

% betaArrSim - array of beta correction factors according to overlap

% length/thickness aspect ratio

for i=1:length(LArrSim1)

if(LArrSim1(i)/T<=1)

betaArrSim(i)=-0.6*LArrSim1(i)/T+1;

else

betaArrSim(i)=-0.6*T/LArrSim1(i)+1;

end

end

%%

% set up voltage simulation arrays

% calculate pull-in voltages

x=linspace(0,1,10000)*x0;

for i=1:length(LArrSim1)

% Constant for solving Vpi and xpi

const1=(fcon*1/2*N*e0*LArrSim1(i)*T)*(1./(x0-x).^2-1./(xb+x).^2);

% Solve pull-in parameters

Vtemp=sqrt(kArrSim1(3)*x./const1);

% Pull-in voltage will be the maximum of the solved equation, dF/dx=0

% xpi is a fraction w.r.t g0

[M,I]=max(Vtemp);

xpi(i)=x(I)/x0;

VpiArrL(i)=max(Vtemp);

end

x=linspace(0,1,10000)*x0;

for i=1:length(kArrSim1)

% Constant for solving Vpi and xpi

const1=(fcon*1/2*N*e0*LArrSim1(end)*T)*(1./(x0-x).^2-1./(xb+x).^2);

% Solve pull-in parameters

Vtemp=sqrt(kArrSim1(i)*x./const1);
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% Pull-in voltage will be the maximum of the solved equation, dF/dx=0

% xpi is a fraction w.r.t g0

[M,I]=max(Vtemp);

xpi(i)=x(I)/x0;

VpiArrk(i)=max(Vtemp);

end

% calculate release voltages

po_const1=(1/2*N*e0*LArrMeas*T)*(1/(xf)^2-1/(xb+x0-xf)^2);

VpoArrL=sqrt(kconb*kArrSim1(3)*(x0-xf)./po_const1);

po_const2=(1/2*N*e0*LArrMeas(end)*T)*(1/(xf)^2-1/(xb+x0-xf)^2);

VpoArrk=sqrt(kconb*kArrSim1*(x0-xf)/po_const2);

% load and plot measured data

data_20180208

%% define analysis arrays

VArrL1(1,:)=linspace(V1_Arr1(1),V1_Arr1(end));

VArrL1(2,:)=linspace(V2_Arr1(1),V2_Arr1(end));

VArrL1(3,:)=linspace(V3_Arr1(1),V3_Arr1(end));

VArrL1(4,:)=linspace(V4_Arr1(1),V4_Arr1(end));

VArrL1(5,:)=linspace(V5_Arr1(1),V5_Arr1(end));

VArrL1(6,:)=linspace(V6_Arr1(1),V6_Arr1(end));

VArrL1(7,:)=linspace(V7_Arr1(1),V7_Arr1(end));

VArrL1(8,:)=linspace(V8_Arr1(1),V8_Arr1(end));

VArrL1(9,:)=linspace(V9_Arr1(1),V9_Arr1(end));

VArrL1_r(1,:)=linspace(V1_Arr1_r(1),V1_Arr1_r(end));

VArrL1_r(2,:)=linspace(V2_Arr1_r(1),V2_Arr1_r(end));

VArrL1_r(3,:)=linspace(V3_Arr1_r(1),V3_Arr1_r(end));

VArrL1_r(4,:)=linspace(V4_Arr1_r(1),V4_Arr1_r(end));

VArrL1_r(5,:)=linspace(V5_Arr1_r(1),V5_Arr1_r(end));

VArrL1_r(6,:)=linspace(V6_Arr1_r(1),V6_Arr1_r(end));

VArrL1_r(7,:)=linspace(V7_Arr1_r(1),V7_Arr1_r(end));

VArrL1_r(8,:)=linspace(V8_Arr1_r(1),V8_Arr1_r(end));

VArrL1_r(9,:)=linspace(V9_Arr1_r(1),V9_Arr1_r(end));

VArrk1(1,:)=linspace(V1_Arr2(1),V1_Arr2(end));

VArrk1(2,:)=linspace(V2_Arr2(1),V2_Arr2(end));

VArrk1(3,:)=linspace(V3_Arr2(1),V3_Arr2(end));
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VArrk1(4,:)=linspace(V4_Arr2(1),V4_Arr2(end));

VArrk1(5,:)=linspace(V5_Arr2(1),V5_Arr2(end));

VArrk1(6,:)=linspace(V6_Arr2(1),V6_Arr2(end));

VArrk1(7,:)=linspace(V7_Arr2(1),V7_Arr2(end));

VArrk1(8,:)=linspace(V8_Arr2(1),V8_Arr2(end));

VArrk1_r(1,:)=linspace(V1_Arr2_r(1),V1_Arr2_r(end));

VArrk1_r(2,:)=linspace(V2_Arr2_r(1),V2_Arr2_r(end));

VArrk1_r(3,:)=linspace(V3_Arr2_r(1),V3_Arr2_r(end));

VArrk1_r(4,:)=linspace(V4_Arr2_r(1),V4_Arr2_r(end));

VArrk1_r(5,:)=linspace(V5_Arr2_r(1),V5_Arr2_r(end));

VArrk1_r(6,:)=linspace(V6_Arr2_r(1),V6_Arr2_r(end));

VArrk1_r(7,:)=linspace(V7_Arr2_r(1),V7_Arr2_r(end));

VArrk1_r(8,:)=linspace(V8_Arr2_r(1),V8_Arr2_r(end));

VArrL2=[45 50 55 60];

VArrk2=[45 50 55 60];

%%

% pull-in data measurements and plots

Vpi_meas_Arr1=mean(Vpi_Arr1);

Vpi_meas_Arr2=Vpi_Arr2;

figure(1)

subplot(2,2,1)

hold on

errorbar(LArrMeas*1e6,Vpi_meas_Arr1,VErr1,’.’,’MarkerSize’,MS,...

’LineWidth’,MW)

stack=plot(LArrMeas*1e6,VpiArrL,’LineWidth’,LW);

uistack(stack,’bottom’)

axis tight

subplot(2,2,2)

hold on

errorbar(kArrMeas,Vpi_Arr2,VErr2,’.’,’MarkerSize’,MS,’LineWidth’,MW)

plot(kArrMeas,VpiArrk,’LineWidth’,LW)

stack=uistack(stack,’bottom’);

axis tight

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

% release data measurements and plots



APPENDIX B. MATLAB DYNAMICS MODEL 125

Vpo_meas_Arr1=Vpo_Arr1;

Vpo_meas_Arr2=Vpo_Arr2;

subplot(2,2,3)

hold on

errorbar(LArrMeas*1e6,Vpo_Arr1,VErr1,’.’,’MarkerSize’,MS,’LineWidth’,MW)

stack=plot(LArrMeas*1e6,VpoArrL,’LineWidth’,LW);

uistack(stack,’bottom’)

axis tight

subplot(2,2,4)

hold on

errorbar(kArrMeas,Vpo_Arr2,VErr2,’.’,’MarkerSize’,MS,’LineWidth’,MW)

stack=plot(kArrMeas,VpoArrk,’LineWidth’,LW);

uistack(stack,’bottom’)

axis tight

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

%%

% area and mass arrays

AmSim = AshutArr+N*(Ls+LArrSim1)*wf;

mArrSim = mcon*rho_si*AmSim*T;

meff=mArrSim+N*rho_air*LArrSim1.^2*T^2./(2*(LArrSim1+T));

%%

% define initial conditions and time range for numerical solution

xinit=[0,0];

tspan=0:1e-6:1e-2;

% options for ODE solver

refine=4;

options1 = odeset(’Events’,@eventsPI,’OutputSel’,1,’Refine’,refine);

tpiSimArrL1=zeros(length(LArrSim1),length(VArrL1(1,:)));

tpiSimArrk1=zeros(length(kArrSim1),length(VArrk1(1,:)));

tpiSimArrL2=zeros(length(LArrSim2),length(VArrL2(1,:)));

tpiSimArrk2=zeros(length(kArrSim2),length(VArrk2(1,:)));

%% find pull-in data wrt voltage for varying overlap lengths

for i=1:length(LArrSim1)
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for j=1:length(VArrL1(i,:))

S1=max(LArrSim1(i),T);

S2=min(LArrSim1(i),T);

beta=betaArrSim(i);

m=meff(i);

V=VArrL1(i,j);

k=kArrSim1(3);

A=AmSim(i);

[t1,x1,tpiSimArrL1(i,j),ye,ie]=ode45(@pull_in,tspan,xinit...

,options1);

% plot(t1,x1(:,1));

% hold on

end

end

%%

% recalculate beta array with LArrSim2

for i=1:length(LArrSim2)

if(LArrSim2(i)/T<=1)

betaArrSim(i)=-0.6*LArrSim2(i)/T+1;

else

betaArrSim(i)=-0.6*T/LArrSim2(i)+1;

end

end

% recalculate area and mass arrays with LArrSim2

AmSim = AshutArr+N*(Ls+LArrSim2)*wf;

mArrSim = mcon*rho_si*AmSim*T;

meff=mArrSim+N*rho_air*LArrSim2.^2*T^2./(2*(LArrSim2+T));

%% find pull-in data wrt overlap length for varying voltages

for i=1:length(LArrSim2)

for j=1:length(VArrL2)

S1=max(LArrSim2(i),T);

S2=min(LArrSim2(i),T);

beta=betaArrSim(i);

m=meff(i);

V=VArrL2(j);

k=kArrSim1(3);

A=AmSim(i);

[t1,x1,tpiSimArrL2(i,j),ye,ie]=ode45(@pull_in,tspan,xinit,...

options1);
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% plot(t1,x1(:,1));

% hold on

end

end

%% find pull-in data wrt voltage for varying spring constant

for i=1:length(kArrSim1)

for j=1:length(VArrk1(i,:))

S1=max(LArrSim1(end),T);

S2=min(LArrSim1(end),T);

beta=betaArrSim(end);

m=meff(end);

V=VArrk1(i,j)+2;

k=kArrSim1(i);

A=AmSim(end);

[t1,x1,tpiSimArrk1(i,j),ye,ie]=ode45(@pull_in,tspan,xinit,...

options1);

% plot(t1,x1(:,1));

% hold on

end

end

%% find pull-in data wrt spring constant for varying voltage

for i=1:length(kArrSim2)

for j=1:length(VArrk2)

S1=max(LArrSim1(end),T);

S2=min(LArrSim1(end),T);

beta=betaArrSim(end);

m=meff(end);

V=VArrk2(j)+2;

k=kArrSim2(i);

A=AmSim(end);

[t1,x1,tpiSimArrk2(i,j),ye,ie]=ode45(@pull_in,tspan,xinit,...

options1);

% plot(t1,x1(:,1));

% hold on

end

end
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%% release simulation ODE setup

% define initial conditions and time range for numerical solution

tspan=0:1e-6:1e-3;

% options for ODE solver

refine=4;

options1 = odeset(’Events’,@eventsPO,’OutputSel’,1,’Refine’,refine);

tpoSimArrL1=zeros(length(LArrSim1),length(VArrL1(1,:)));

tpoSimArrk1=zeros(length(kArrSim1),length(VArrk1(1,:)));

tpoSimArrL2=zeros(length(LArrSim2),length(VArrL2(1,:)));

tpoSimArrk2=zeros(length(kArrSim2),length(VArrk2(1,:)));

%% recalculate beta array and area and mass arrays for LArrSim1

for i=1:length(LArrSim1)

if(LArrSim1(i)/T<=1)

betaArrSim(i)=-0.6*LArrSim1(i)/T+1;

else

betaArrSim(i)=-0.6*T/LArrSim1(i)+1;

end

end

AmSim = AshutArr+N*(Ls+LArrSim1)*wf;

mArrSim = mcon*rho_si*AmSim*T;

meff=mArrSim+N*rho_air*LArrSim1.^2*T^2./(2*(LArrSim1+T));

%% find release time wrt voltage for varying overlap length

for i=1:length(LArrSim1)

for j=1:length(VArrL1_r(i,:))

S1=max(LArrSim1(i),T);

S2=min(LArrSim1(i),T);

beta=betaArrSim(i);

m=meff(i);

k=kArrSim1(3);

V=VArrL1_r(i,j);

A=AmSim(i);

vinit=calc_vinit(LArrSim1(i),m);

xinit=[x0-xf,vinit];

[t1,x1,tpoSimArrL1(i,j),ye,ie]=ode45(@release,tspan,xinit,...

options1);

% plot(t1,x1(:,1));

% hold on

end

end
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%% recalculate beta and area and mass arrays for LArrSim2

for i=1:length(LArrSim2)

if(LArrSim2(i)/T<=1)

betaArrSim(i)=-0.6*LArrSim2(i)/T+1;

else

betaArrSim(i)=-0.6*T/LArrSim2(i)+1;

end

end

AmSim = AshutArr+N*(Ls+LArrSim2)*wf;

mArrSim = mcon*rho_si*AmSim*T;

meff=mArrSim+N*rho_air*LArrSim2.^2*T^2./(2*(LArrSim2+T));

% define LArr for vinit

LArr=LArrSim2;

%% find release time wrt varying overlap length for varying voltage

for i=1:length(LArrSim2)

for j=1:length(VArrL2)

S1=max(LArrSim2(i),T);

S2=min(LArrSim2(i),T);

beta=betaArrSim(i);

m=meff(i);

k=kArrSim1(3);

V=VArrL2(j);

A=AmSim(i);

vinit=calc_vinit(LArrSim2(i),m);

xinit=[x0-xf,vinit];

[t1,x1,tpoSimArrL2(i,j),ye,ie]=ode45(@release,tspan,xinit,...

options1);

% plot(t1,x1(:,1));

% hold on

end

end

%% find release time wrt varying voltage for varying spring constant

for i=1:length(kArrSim1)

for j=1:length(VArrk1_r(i,:))

S1=max(LArrSim2(end),T);

S2=min(LArrSim2(end),T);

beta=betaArrSim(end);

m=meff(end);

k=kArrSim1(i);
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V=VArrk1_r(i,j);

A=AmSim(end);

vinit=calc_vinit(LArrSim2(end),m);

xinit=[x0-xf,vinit];

[t1,x1,tpoSimArrk1(i,j),ye,ie]=ode45(@release,tspan,xinit,...

options1);

% plot(t1,x1(:,1));

% hold on

end

end

%% find release time wrt varying spring constant for varying voltage

for i=1:length(kArrSim2)

for j=1:length(VArrk2)

S1=max(LArrSim2(end),T);

S2=min(LArrSim2(end),T);

beta=betaArrSim(end);

m=meff(end);

k=kArrSim2(i);

V=VArrk2(j);

A=AmSim(end);

vinit=calc_vinit(LArrSim2(end),m);

xinit=[x0-xf,vinit];

[t1,x1,tpoSimArrk2(i,j),ye,ie]=ode45(@release,tspan,xinit,...

options1);

% plot(t1,x1(:,1));

% hold on

end

end

%% Plotting

color=’k’;

% pull-in plots of arrays with varying overlap length

figure(2)

for i=1:length(VArrL1(:,1))

subplot(3,3,i)

hold on

stack=plot(VArrL1(i,:),tpiSimArrL1(i,:)*1e6,’LineWidth’,LW);

uistack(stack,’bottom’);

axis tight
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end

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

% release plot of arrays with varying overlap length

figure(3)

for i=1:length(VArrL1_r(:,1))

subplot(3,3,i)

hold on

stack=plot(VArrL1_r(i,:),tpoSimArrL1(i,:)*1e6,’LineWidth’,LW);

uistack(stack,’bottom’);

axis tight

end

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

% pull-in plots of arrays with varying spring constant

figure(4)

for i=1:length(VArrk1(:,1))

subplot(4,2,i)

hold on

stack=plot(VArrk1(i,:),tpiSimArrk1(i,:)*1e6,’LineWidth’,LW);

uistack(stack,’bottom’);

axis tight

end

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

% release plots of arrays with varying spring constants

figure(5)

for i=1:length(VArrk1_r(:,1))

subplot(4,2,i)

hold on

stack=plot(VArrk1_r(i,:),tpoSimArrk1(i,:)*1e6,’LineWidth’,LW);

uistack(stack,’bottom’);

axis tight

end

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

% pull-in plots against overlap lengths

figure(6)

for i=1:length(VArrL2)

subplot(2,2,i)

hold on

stack=plot(LArrSim2*1e6,tpiSimArrL2(:,i)*1e6,’LineWidth’,LW);
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uistack(stack,’bottom’);

axis tight

end

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

% release plots against overlap length

figure(7)

for i=1:length(VArrL2)

subplot(2,2,i)

hold on

stack=plot(LArrSim2*1e6,tpoSimArrL2(:,i)*1e6,’LineWidth’,LW);

uistack(stack,’bottom’);

axis tight

end

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

% pull-in plots against spring constant

figure(8)

for i=1:length(VArrk2)

subplot(2,2,i)

hold on

stack=plot(kArrSim2,tpiSimArrk2(:,i)*1e6,’LineWidth’,LW);

uistack(stack,’bottom’);

axis tight

end

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)

% release plots against spring constant

figure(9)

for i=1:length(VArrk2)

subplot(2,2,i)

hold on

stack=plot(kArrSim2,tpoSimArrk2(:,i)*1e6,’LineWidth’,LW);

uistack(stack,’bottom’);

set(gca,’XScale’,’log’,’YScale’,’log’)

grid on

axis tight

end

set(findall(gcf,’-property’,’FontSize’),’FontSize’,FS)
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%% Functions

function dxdt = pull_in(t,x)

global V e0 mu m S1 S2 k x0 beta N xb Ts h0 wf er bcon kcon mcon fcon A

% define differential equation for pull-in analysis

% electrostatic force

Fes = fcon*(1/(x0-x(1))^2-1/(xb+x(1))^2)*1/2*N*e0*er*V^2*(S1)*(S2);

% damping

b2=mu*A/h0;

Fd = bcon*((1/(x0-x(1))^3+1/(xb+x(1))^3)*N*beta*mu*S1*S2^3+b2)*x(2);

% spring

Fk = kcon*k*x(1);

% setup ODE to solve

dxdt = [x(2); (Fes - Fd - Fk)/(m*mcon)];

end

function dxdt = release(t,x)

global mu m S1 S2 k x0 beta N xb Ts h0 wf bcon kconb mcon A

% define differential equation for release analysis

% damping

b2=mu*A/h0;

Fd = bcon*((1/(x0-x(1))^3+1/(xb+x(1))^3)*N*beta*mu*S1*S2^3+b2)*x(2);

% spring

Fk = k*x(1);

% setup ODE to solve

dxdt = [x(2); (-Fd - Fk)/(m*mcon)];

end

function [value,isterminal,direction] = eventsPI(t,x)

% define end state for pull-in analysis (gap equals the final gap)

global x0 xf

value = x0-x(1)-xf;

isterminal = 1;

direction = -1;
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end

function [value,isterminal,direction] = eventsPO(t,x)

% define end state for pull-in analysis (gap equals the initial gap)

value = x(1);

isterminal = 1;

direction = -1;

end

% calculate initial velocity

function vinit = calc_vinit(LArr,mArr)

global V e0 T xf N wf fcon rho_si E Ls alpha

% find max velocity of finger upon release, from strain energy in

% the finger’s deflection

If=wf^3*T/12;

mf0=T*wf*rho_si;

omega=alpha^2*sqrt(E*If/(mf0*(LArr+Ls)^4));

kf=6.9*E*If/(LArr+Ls)^3;

mfeff=kf/omega.^2;

Fxf=fcon*1/2*e0*V^2*LArr*T*(1/(xf)^2);

xfing=Fxf/kf;

varr=0;%-omega*xfing/2;

% find max velocity of the GCA shuttle upon release, from strain

% energy stored in the shuttle’s deflection

wshut=20e-6;

Lshut=860e-6;

Ashut=T*wshut;

kshut=E*Ashut/Lshut;

xshut=N*Fxf/kshut;

mshut=T*Ashut*rho_si;

omegashut=sqrt(kshut/mshut);

vshut=0;%-omegashut*xshut;

% find initial velocity of entire GCA assembly using momentum

% transfer

vinit=(N*mfeff*varr+mshut*vshut)/mArr;

end
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Appendix C

Thickness Optimization

The following is the code used to generate the thickness optimization plots.

clear;clc;

global V e0 mu m S1 S2 xo beta N xb rho_si wf xf Arot h0 T Ls E k YI...

karm L1tot Lbase

% physical constants

E=169e9;

e0=8.85e-12;

mu=1.8e-5;

rho_si=2300;

emax=0.0005;

sigmaMax=emax*E;

eox=3.9;

% alpha - aspect ratio Tarr - dev layer thickness array luc - process

% undercut Cl - safety factor on max length VmaxArr - maximum voltage

% array. found through iteration. run script with

% single Vmax of 100, then input an array following the trend of VminArr

% with some desired proportionality (VmaxArr(i) will always be

% 1.5xVminArr(i)). Using a line proportional to T here for simplicity.

% Fmin - minimum output force B - back gap multiplicative factor N - number

% of gaps n - angled arm buckling safety factor K - angled arm buckling

% effective arm length phi - angled arm angle to shuttle h0 - substrate gap

alpha=1/10;

Tarr=(1:1:40)*1e-6;

luc=0.4e-6;

Cl=0.8;

VmaxArr=1e6*Tarr;
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Fmin=1000;

B=1.5;

N=50;

n1=10;

n2=1;

K1=0.5;

K2=1;

phi=65;

for i=1:length(Tarr)

T=Tarr(i);

Vmax=VmaxArr(i);

% lambda - minimum feature size

lambda=alpha*T;

% derived dimensions h0 - gap to substrate, assume some proportionality

% with thickness wf - finger width xf - gapstop size dxshut - shuttle

% stepsize Ls - finger support length LA - anchor dimension warm -

% angled arm width Iarm - angled arm moment of inertia dx - GCA step

% translated from shuttle step size YI - shuttle-pawl gap xo - initial

% gap size xb - initial back gap size xpi - pull-in position, found

% from value for B. a new B value needs a new

% xpi. Run pull_in_voltage.m to find a pull-in voltage for a new B

% Lmax - maximum finger length Lol - overlap finger length

h0=T/10;

wf=2*lambda;

xf=lambda/2;

dxshut=lambda;

LA=25*lambda;

warm=4*lambda;

Iarm=warm^3*T/12;

dx=dxshut/tand(phi);

YI=2*lambda;

xo=dx+YI+xf;

xb=B*xo;

xpi=0.28*xo;

Lmax=Cl*(0.28*E*wf^3*xf^3/(e0*Vmax^2*(1+0.42*xf/T)))^(1/4);

Ls=Lmax/10;

Lol=Lmax-Ls;

% Fxf - electrostatic force at gapstop
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Fxf=1/2*N*e0*Vmax^2*T*Lol*(1/(xf)^2-1/(xb+xo-xf)^2);

% Larm - length of angled arm karm - stiffness of angled arm along GCA

% axis

Larm=sqrt(pi^2*E*Iarm/(n1*K1^2*Fxf*sind(phi)));

karm=12*E*Iarm/(Larm^3*cosd(phi));

% array layout area calculation L1tot - length of the array along

% finger array Lbase - base GCA shuttle width meeting maximum strain

% requirement or buckling load requirement, whichever comes first L2tot

% - length of the array along finger length

L1tot=N*(2*wf+xo+xb);

Lbase1=Fxf/(T*sigmaMax);

Lbase2=(12*n2*K2^2*L1tot^2*Fxf/(pi^2*T*E))^(1/3);

Lbase=max(Lbase1,Lbase2);

L2tot=(LA+2*Ls+Lbase+Lol);

A=(L1tot)*(L2tot)+Larm^2*cosd(phi)*sind(phi);

% Find spring constant based on minimum output force and pull-in

% voltage

syms Vpisym Vminsym ksym

[Vpi, Vmin, kmax] = solve(...

Fmin == 1/tand(phi)*(1/2*N*e0*Vminsym^2*Lol*T*(1/(xo-YI)^2-...

1/(xb+YI)^2)-ksym*YI)/A,...

Vpisym == sqrt(2*ksym*xpi/(e0*N*Lol*T)*(1/(xo-xpi)^2-...

1/(xb+xpi)^2)^(-1)),...

Vminsym == (xo-xpi)/(xo-YI)*Vpisym,...

Vpisym,Vminsym,ksym);

% Vpi - pull-in voltage Vmin - voltage for minimum output force kmax -

% max spring constant V - voltage value to pass onto dynamics equations

Vpi = double(vpa(Vpi));

VminArr(i) = double(vpa(Vmin));

kmax = double(vpa(kmax));

V=VminArr(i);

% Fxo - force at engagement

Fxo=1/2*N*e0*VminArr(i)^2*T*Lol*(1/(xo-YI)^2-1/(xb+YI)^2);

% dynamics factors damping factors S1 - max between Lol and T S2 - min

% between Lol and T beta - damping constant dependent on aspect ratio

S1=max(Lol,T);
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S2=min(Lol,T);

if(Lol/T<=1)

beta=-0.6*Lol/T+1;

else

beta=-0.6*T/Lol+1;

end

% mass factors Arot - layout area of GCA array rotor for couette flow

% damping m - mass of GCA array rotor

Arot=N*Lmax*wf+L1tot*Lbase;

Ap=N*Lmax*wf+LA*L1tot;

m=Arot*T*rho_si;

% spring factors

k=kmax;

% kArr=linspace(0,k); for j=1:length(kArr)

% uMech=(Fxo-kArr(i)*YI)*dx; uElec=e0*VminArr(i)^2*N*Lol*T/xf;

% eta(j)=uMech/uElec;

% end figure(1) plot(kArr,eta) count=1; x=linspace(0,xo-xf); for

% j=1:length(x)

% if x(j)<=YI

% Farray1(j)=1/2*N*e0*VminArr(i)^2*Lol*...

% T*(1/(xo-x(j))^2-1/(xb+x(j))^2)-k*x(j);

% Farray2(j)=1/2*N*e0*VminArr(i)^2*Lol*...

% T*(1/(xo-x(j))^2-1/(xb+x(j))^2)-k*x(j);

% else

% xen(count)=x(j);

% Farray1(j)=1/2*N*e0*VminArr(i)^2*Lol*...

% T*(1/(xo-x(j))^2-1/(xb+x(j))^2)-k*x(j);

% Farray2(j)=1/2*N*e0*VminArr(i)^2*Lol*...

% T*(1/(xo-x(j))^2-1/(xb+x(j))^2)-k*x(j)-karm*(x(j)-YI);

% Fx(count)=1/tand(phi)*(1/2*N*e0*...VminArr(i)^2*Lol*T*

% (1/(xo-x(j))^2-1/(xb+x(j))^2)-k*x(j)-karm*(x(j)-YI));

% count=count+1;

% end

% end figure(2) Fxolin=1/tand(phi)*(Fxo-k*YI)*ones(1,length(xen));

% plot(x*1e6,Farray1*1e6,x*1e6,Farray2*1e6,xen*1e6,Fx*1e6,xen*1e6,Fxolin*1e6)

%end

% define initial conditions and time range for numerical solution

refine=4;
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xinit1=[0,0];

tspan=0:1e-9:1e-3;

options1 = odeset(’Events’,@eventsPI,’OutputSel’,1,’Refine’,refine);

options2 = odeset(’Events’,@eventsPO,’OutputSel’,1,’Refine’,refine);

[t1,x1,tpiArr,yepi,iepi]=ode45(@pull_in,tspan,xinit1,options1);

vinit=calc_vinit(Lmax,m);

xinit2=[xo-xf,vinit];

[t2,x2,tpoArr,yepo,iepo]=ode45(@release,tspan,xinit2,options2);

fmax(i) = 1/(2*tpiArr+tpoArr);

FshutYI(i) = 1/(tand(phi))*(Fxo-k*YI);

Fd(i)=FshutYI(i)/(A*T*rho_si);

uMech=FshutYI(i)*dxshut;

Pdmax(i)=fmax(i)*uMech./((3*T*2/3)*rho_si*A);

Cfing=e0*N*Lol*T/xf;

uIn=Cfing*VminArr(i)^2;

uOut=1/2*k*(xo-xf)^2+1/2*karm*dx^2;

eta(i)=uMech/(uIn-uOut);

% Fxolin=FshutYI*ones(1,length(x)); plot(x,Fx,x,Fshut,x,Fxolin)

end

figure(1)

hold on

plot(Tarr*1e6,fmax*1e-3)

figure(2)

hold on

plot(Tarr*1e6,Pdmax)

figure(3)

hold on

plot(Tarr*1e6,eta)

figure(4)

hold on

plot(Tarr*1e6,VminArr)

function dxdt = pull_in(t,x)

global V e0 mu m S1 S2 k xo beta N xb h0 Arot YI karm

% define differential equation for pull-in analysis

% electrostatic force

Fes = (1/(xo-x(1))^2-1/(xb+x(1))^2)*1/2*N*e0*V^2*(S1)*(S2);
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% damping

b2=mu*Arot/h0;

Fd = ((1/(xo-x(1))^3+1/(xb+x(1))^3)*N*beta*mu*S1*S2^3+b2)*x(2);

if x(1)<YI

% spring

Fk = k*x(1);

else

Fk = k*x(1)+karm*(x(1)-YI);

end

% setup ODE to solve

dxdt = [x(2); (Fes - Fd - Fk)/(m)];

end

function dxdt = release(t,x)

global mu m S1 S2 k xo beta N xb h0 Arot karm YI

% define differential equation for release analysis

% damping

b2 = mu*Arot/h0;

Fd = ((1/(xo-x(1))^3+1/(xb+x(1))^3)*N*beta*mu*S1*S2^3+b2)*x(2);

% spring

if x(1)<YI

% spring

Fk = k*x(1);

else

Fk = k*x(1)+karm*(x(1)-YI);

end

% setup ODE to solve

dxdt = [x(2); (-Fd - Fk)/(m)];

end

function [value,isterminal,direction] = eventsPI(t,x)

% define end state for pull-in analysis (gap equals the final gap)

global xo xf

value = xo-x(1)-xf;

isterminal = 1;

direction = -1;

end
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function [value,isterminal,direction] = eventsPO(t,x)

% define end state for pull-in analysis (gap equals the initial gap)

% end defined as within 100th of the gap size

global xo xf

value = x(1)-(xo-xf)/100;

isterminal = 1;

direction = -1;

end

% calculate initial velocity

function vinit = calc_vinit(LArr,mArr)

global V e0 T xf N wf rho_si E Ls L1tot Lbase

alpha1=1.875;

% find max velocity of finger upon release, from strain energy in the

% finger’s deflection

If=wf^3*T/12;

mf0=T*wf*rho_si;

omega=alpha1^2*sqrt(E*If/(mf0*(LArr+Ls)^4));

kf=6.9*E*If/(LArr+Ls)^3;

mfeff=kf/omega.^2;

Fxf=1/2*e0*V^2*LArr*T*(1/(xf)^2);

xfing=Fxf/kf;

varr=-omega*xfing;

% find max velocity of the GCA shuttle upon release, from strain energy

% stored in the shuttle’s deflection

Lshut=L1tot;

wshut=Lbase;

Ashut=T*wshut;

kshut=E*Ashut/Lshut;

xshut=N*Fxf/kshut;

mshut=T*wshut*Lshut*rho_si;

omegashut=sqrt(kshut/mshut);

vshut=-omegashut*xshut;

% find initial velocity of entire GCA assembly using momentum transfer

vinit=(N*mfeff*varr+mshut*vshut)/mArr;

end
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