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1 Abstract

A speed advisory system (SAS) for connected vehicles (CVs) on urban streets
is based on the estimation of green (or red) light duration at signalized inter-
sections. A particular challenge is to predict the signal phases of semi- and
fully-actuated signals.

In this paper, we introduce an algorithm predicting whether a given CV will
be able to make it through the next intersection with an actuated signal on green
or not, based on available traffic measurement data. Our mechanism processes
traffic data collected from advanced detectors on incoming links and assigns
“PASS”/“WAIT” labels to vehicles according to their estimated ability to go
through the intersection within the current phase. Additional computations
provide an estimate for the duration of the current green phase that can be
used by SAS to minimize fuel consumption.

Simulation results show 95% prediction accuracy, which yields up to 30%
reduction in fuel consumption when used in SAS. Traffic progression quality
also benefits from our mechanism demonstrating an improvement of 20% at
peak for medium traffic demand, reducing delays and idling at intersections.

2 Introduction

Vehicles equipped with the Speed Advisory System [1] use traffic light in-
formation and environment data to obtain the optimal speed trajectories to
minimize idling at traffic lights. Such trajectories, in turn, serve to minimize
fuel consumption. One of the main parameters that is required by the SAS
is the estimated remaining time until the end of phase, more specifically, how
much time left in a “green phase”/when the nearest “green phase” starts. In
the case of static traffic light (constant phase length) this information is eas-
ily obtained directly from the traffic light (TL) via Signal Phase and Timing
(SPaT) messages or any other signal system. However, if the intersection is
equipped with an actuated TL, it becomes impossible to find that parameter
due to dependency on the demand and traffic condition in general. Thus, it
may vary from “minimal duration” to “maximal duration” - specific variables
characterizing the TL. In the latter case, it is essential to obtain some other
information, which will be helpful in building optimal speed trajectories.

The software presented in [2] encourages drivers to use their smartphone
cameras to detect the traffic light color at an upcoming intersection and estimate
the remaining time within the current phase. Identifying the color itself turned
out to be quite imprecise, showing error rates from 7.8% to 12.4%. The phase
length estimation, based on the five previous green-red/red-green transitions is
also inefficient. According to the algorithm, the best prediction is just slightly
better than estimating the current phase length to be the same as the previous
phase length.

A follow-on study [3] addresses the problem of finding optimal speed trajec-
tories in order to minimize fuel consumption. Although the paper states that
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the problem of dynamic traffic light is resolved via “1) a set of logical rules that
calculates a reference velocity for timely arrival at green lights combined with
2) a model predictive controller that tracks this target velocity”, only pre-timed
signals were considered in the algorithm, leaving behind issues with adaptive
phase durations.

The studies [4] and [5] also focus on pre-timed traffic lights. The duration of
cycles and phases are estimated based on the speed measurements of “floating
cars”.

References [2] and [6] use noisy measurements of signal phase to process
SPaT estimation. The study processes many samples of GPS position and
speed from 4300 buses within a period of one month in order to estimate phase
duration, cycle length and cycle start time. Due to the small percentage of
usable data, the accuracy is limited (6s error for 36s phase duration).

The later study [7] estimates the wait time spent by the bus in queue. The
research presents significantly better results in the SPaT estimate.

All of the noisy measurement-based algorithms are implemented only for
pre-timed traffic lights. In addition to that, collecting and processing noisy
measurements take a lot of time and computational resources, which seems to
be inefficient, since most of the signal data is available from Transportation
Authority.

The study [8] makes probabilistic SPaT predictions based on the traffic in-
tersection data. For every second within the cycle, the algorithm tries to predict
whether the phase k is G(green), R(red) or M(uncertain) with some level of
confidence. Unfortunately, the predictions may be uninformative. Moreover,
since the algorithm uses some “level of confidence”, it does not provide firm
guarantees.

A statistical approach is pursued in [9], where the algorithm relies on the
historical data from several intersections in Munich. The algorithm presented
in the study uses a Kalman Filter to predict future probability distributions.
Although a high level of accuracy was achieved (95 percent), the practical ap-
plicability is limited by the fact that availability level is only 71 percent in
average.

Another study [10] suggests using the previous phase measurements and the
real time information that locates the current time within the current phase in
order to predict the times for all future phase transitions. One of the approaches
is to compute the “conditional expectation based prediction”, which estimates
d̄ = E[d|d > t] - expected phase duration and r̄ = 1 − d̄ - residual phase du-
ration (d - length of the phase). Another algorithm, presented in the paper, is
”confidence based prediction”. It uses the empirical probability density function
(PDF) to give a prediction with a given confidence bound. By solving the simple
conditional equation 1−F (t | d > t̄) = α (where F (t) = P (d ≤ t)) with respect
to t, the estimated phase duration is obtained with confidence level α. Those
methods greatly improve the prediction of the residual time for that phase as
well as for a subsequent phase; however, as stated in the paper, such condi-
tional algorithms “pose a challenge to the design of speed profiles that reduce
fuel consumption”. Since both of the methods return predictions as functions
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of time, SAS-equipped vehicles, computing the optimal trajectories, might use
conflicting estimations of residual time at every time-step. For example, assum-
ing the current time within the phase is t1, the prediction is t1est; the next time
step t2 = t1 + tstep the prediction might be t2est 6= t1est, which gives a different
estimated remaining time and, thus, causes jerky motion. Now assume only
one such prediction is considered (the later ones do not influence the decision).
Assume also, that according to this prediction, a vehicle is required to stop.
However, if we considered the following estimate, we would be guided through
the intersection without stopping. Such mistakes would be common and would
bring the efficiency of the algorithm to a very low level.

Several papers study predicting vehicle flow at arterial roads and using the
prediction for adaptive signal control [11] [12][13].

Another approach in finding a speed trajectory that minimizes fuel consump-
tion is solving an optimization problem, where phase duration estimation is ad-
dressed as a constraint. In [15] this constraint has the form of cip ≥ cir +F−1(η),

where cip is the vehicle passing time in the signal-cycling clock of intersection i,

cir is minimal red-phase duration of the ith intersection, F−1() is the inverse of
the CDF function F () of random variable α representing stochastic time of de-
lay, caused by signal uncertainties or vehicle waiting queue, and η is the required
reliability level. This algorithm relies on the assumption that CDF is contin-
uous and bijective. Moreover, the distribution function of α is non-parametric
in general and may vary depending on arbitrary conditions (time of the day,
day of the month, weather, etc.). Thus, determining the true distribution of
α might be a challenging problem. Although the paper presents impressive re-
sults in terms of fuel consumption (50% - 57%), the algorithm can be used only
on the secondary road with no actuation capability (Effective Red implies that
green phase on the perpendicular direction is the actuated one). We believe
that this approach will not be efficient on the primary actuated road and may
be improved, allowing even better results.

Most of the algorithms discussed above try to estimate or predict the phase
length/residual time of the phase using historical data and statistical methods.
In contrast, our approach relies on the real-time data and assigns “PASS”/“WAIT”
labels to vehicles depending on their capability of crossing the intersection within
the nearest green phase.

3 Technical Part

3.1 Overview

Our primary objective is to determine whether or not a certain car is going
to pass the upcoming intersection during the current “green phase” rather than
to estimate the phase duration (which, in fact, can be done as a secondary
objective). Using the data from advanced detectors and the upcoming actuated
TL itself, the algorithm determines for each car individually whether the TL
state and upstream traffic create a sufficient condition to let the vehicle through.
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Only after obtaining the labeling (“PASS”/ “WAIT”), we move on to computing
the residual phase time if necessary.

It is important to mention that only traffic lights with fixed cycle length
and one actuated axis (from this point on any “green phase” / “red phase” is
referred to the actuated axis TL color) are considered. In that case, knowing
the time within the cycle allows us to compute the precise remaining time until
the next cycle (i.e. next green phase, assuming that every cycle starts with the
green phase). Thus, the predictions are unnecessary while the current phase is
not green, since the residual time is known. In other words, we are making a
prediction only when the current phase is green.

All the computations and simulations were conducted in an open source
simulator SUMO (Simulation of Urban MObility).

3.2 Simple and Complex Network Architecture

The work consists of two parts. In the first part, we analyze a simple sym-
metric one-TL-intersection (Fig. 1) with East ↔ West actuated axis in order
to test an idealistic set-up and obtain the best possible result as a benchmark
for further explorations. The second part is a simulation of a complex system
(Montgomery County network) (Fig. 2) consisting of 9 actuated traffic lights
with different schedules. Each intersection corresponding to one of those TLs
has its own geometry and surroundings. That set-up allows us to test the al-
gorithm in more realistic conditions and show that even with a lot of unknown
information it performs better than many known procedures.

Every incoming link on the actuated axis is equipped with three types
of detectors: stop-bar detector and two advanced detectors (“actuator” and
“counter”). An actuator is responsible for prolonging the green phase when a
vehicle is detected. It is placed 40-100 meters (100m in simple case simulation
and 40-60m for complex network) before the intersection. A counter collects
speeds and crossing times of all vehicles passing it. Based on that data, the al-
gorithm makes a prediction and transmits it to a vehicle. Counters are located
far enough (50+ m) from actuators.

Figure 1: Simple Network.
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Figure 2: Complex Network. Actuated traffic lights are highlighted RED, the
only static traffic light - GREEN

3.3 Traffic Light Properties

Here we introduce the TL parameters used by the algorithm. As stated
earlier, the cycle length is fixed and equals to cycLenj (90 and 90-120 seconds
for simple and complex cases respectively). The cycle consists of 4 phases in
the simple case (Table 1) and up to 8 phases in the complex set-up. As it will
be seen later, the number of phases is not important for the algorithm, since it
distinguishes “green” and “NOT green” phases only.

Moreover, we assume that the TL is time-gap actuated, i.e., a vehicle can
activate it only if the previous actuation was at most minGap seconds ago (3
seconds for our simulations).

Furthermore, the algorithm requires the knowledge of the travel time from

the actuator to the corresponding intersection j at speed limit: T j
a−i = dD

j
k

slk
e,

where Dj
k - distance from the actuator on the incoming link k to the intersection

j and slk - speed limit at that link. Since the duration of the phase must be at
least minDurationj , the actuation must be enabled only after the time passes
some specific threshold T j

th = minDurationj − T j
a−i. In other words, only after

the time within the phase exceeds T j
th seconds, the actuation gets enabled and

the first vehicle must arrive withinminGap in order to prolong the phase. If such
vehicle exists, the next car has minGap seconds to trigger the TL again, etc.
The process stops when either no such vehicle is found or the maxDurationj is
reached.

Phase TL States Minimal Duration(s) Maximal Duration(s)

0 rrrGGGrrrGGG 39 48
1 rrryyyrrryyy 6 6
2 GGGrrrGGGrrr 30 39
3 yyyrrryyyrrr 6 6

Table 1: Traffic light states: groups of three from left to right - North→ South,
West → East, South → North, East → West; r - red, G - green, y - yellow
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3.3.1 Performance of a counter

A counter is an advanced detector serving to obtain the necessary informa-
tion about the downstream traffic. When a vehicle passes a counter, it stores
the vehicle’s speed and time of crossing (real time of the day) (Table 2).

Speed Time

v1 t1
v2 t2
... ...
vk tk

Table 2: Data storage

At the end of every cycle, the data is erased. It
is necessary because the vehicles from the previous
cycle no longer have an impact on the traffic light
actuation and their information is irrelevant. This
happens because Tth seconds from the beginning of
the cycle is sufficient to travel from the counter to
the intersection in moderate traffic. Failure to do so
implies congestion, which initiates the switch from
the SAS to the car-following model. Also, such data
storage system does not require a lot of memory and
significantly reduces further computational time.

3.4 Speed Advisory System summary

In order to create an efficient predictive algorithm, it is essential to under-
stand what variables and parameters are required by the Speed Advisory System
(SAS). Here we are going to use a slightly simplified version of SAS proposed
in [1], so we believe it is worth summarizing the main points of the system.
According to the research [1], the optimal (in terms of fuel consumption) speed
trajectory consists of bang-singular-bang segments: accelerate with maximal
acceleration/decelerate with engine off - keep constant speed - decelerate with
engine off/ accelerate with maximal acceleration (Fig. 1 (a)). The singular
segment is present only at very low speeds, so most of the time the optimal
trajectory is bang-bang shaped. This is both hard to implement in real life and
very uncomfortable for the drivers, so the paper suggests using a suboptimal
speed trajectory: bang-singular (accelerate with maximal acceleration/ deceler-
ate with engine off or with minimal deceleration - keep a constant speed) (Fig.
3 (b)-(c) ).

As it can be seen from the graphs, acceleration and deceleration are not
considered to be constant. However, in our work, we assume piece-wise constant
acceleration/deceleration due to two reasons:

1. Simulation of such complicated dynamics would be unnecessarily difficult,
time and resource consuming to perform in SUMO.

2. According to the original dynamics, for speed under 30m/s the engine-off
deceleration slightly varies from 0.1460m/s2 to 0.1480m/s2. Rounding it
up to 0.15m/s2 would make negligible difference compared to other un-
certainties and assumptions. Regarding the acceleration, it is also almost
constant and, taking into account the fact that model embedded in SUMO
has constant acceleration, we decided to set it to some constant value amax

(2.5m/s2 in our model).
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(a) A schematic of bang-singular-bang strategy.

(b) A schematic of accelerate-then-cruise
case.

(c) A schematic of glide-then-cruise case.

Figure 3: Schematics of optimal (a) and suboptimal (b)-(c) speed trajectories.

Thus, the suboptimal trajectory used in our simulation is one of the follow-
ing:

1. accelerate with a constant maximal acceptable acceleration to a certain
desired speed (not acceding the speed limit) and cruise,

2. decelerate with an engine off (≈ 0.15m/s2) to a certain desired speed and
cruise,

3. apply a necessary constant breaking to meet boundary conditions.

3.5 Algorithm

3.5.1 Estimating possible actuation time

The moment a vehicle crosses a counter the algorithm takes action to esti-
mate the time from the beginning of the current phase to the time when that
particular vehicle reaches an actuator. The system requires several parameters
to perform:

� Data, obtained via counters - speeds and times of downstream vehicles -
stored at the intersection environment.

� Current phase - number from 0 to n− 1 (if n phases) - TL parameter.
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� Time when the current phase j started - T j
start - can be received directly

from the TL environment or computed based on the statistical data.

� Traffic light properties - actuation gap, minDurationj and maxDurationj

of the current phase, actuation threshold time T j
th, etc. - can be obtained

directly from the TL environment.

First step is to compute the required time to travel from a counter to an
actuator - applying maximal comfortable acceleration until a vehicle reaches the
speed limit and travel the rest of the distance at the speed limit.

T i
travel =

slk − v
a

+
dk − sl2k−v2

2a

slk

Where:

slk: speed limit on the link k

v : vehicle’s speed

d : distance between the counter and the actuator on the link k

a: desired acceleration

Second step is to compute the time within the current phase, when the
vehicle crossed the counter: T j

phase = Tcurrent − T j
start

Last step is to compute the the estimated arrival time within the cycle:

T i
est = T j

phase + T i
travel. Once computed, T i

est gets stored for one cycle for

further computation (same as counter data).
NOTE: The discussed computations are expected to be done by the infras-

tructure, more specifically, by the computer installed at the intersection.

3.5.2 “PASS” or “WAIT” procedure

The algorithm assigns labels “PASS” or “WAIT” according to the passing
capability of a vehicle. “PASS” label implies that a vehicle is expected to be
able to cross the intersection within the current green phase. “WAIT” label, in
turn, suggests that the remaining time is insufficient for a vehicle to cross the
intersection and advises it to wait for the next green phase. After obtaining the
estimated time Test, the algorithm tries to determine whether or not the vehicle
is going to make it through the intersection within the current phase. Fig. 4
shows the logic behind that procedure: go through the Test values until finding
the one within the interval [T j

th;T j
th + minGap]. Then continue going through

the remaining Test values checking if the minGap is broken or maxDurationj

is exceeded. If either of those occur, the vehicle receives a “WAIT” label. Oth-
erwise, after reaching the T i

est that belongs to that particular vehicle, it receives
a “PASS” label.
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Figure 4: Algorithm Diagram.

If no vehicle with Test within [T j
th;T j

th + minGap] is found and all of the

Tests are less than T j
th, the car receives a “PASS” label. If all Test values are

greater than T j
th +minGap, then the vehicle receives a “WAIT” label.

In this approach, T j
end = max(T ∗

est +T j
a−i,minDuration

j), where T ∗
est is the

estimated arrival time for the last vehicle with “PASS” label if any.
NOTE: Tend is not necessary for computing suboptimal speed trajectories,

but might be important for further development of the algorithm, giving vehicles
on the “secondary road” (not actuated direction) an opportunity to construct
their desired trajectories. Furthermore, Tend will be used to compare accuracy
with another algorithm.

NOTE: Those computations can be executed by either the infrastructure
or vehicles. Choosing the first option, we face a challenge of transmitting the
information to vehicles, because with heavy traffic it is difficult to distinguish
cars and find a right recipient for a particular message. On the other hand,
by forcing vehicles to conduct those calculations, we risk to make a mistake
in matching received data with the current vehicle’s state due to delays and
differences in timing. Further research is needed to address these issues.
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3.5.3 Combining predictions and SAS

At this stage, the optimal speed trajectory can be computed. Fig. 5 shows
the logic behind decision making inside the algorithm. The basic idea is that
vehicles labeled “PASS” should go as fast as possible, since besides fuel consump-
tion we also want to minimize the travel time. On the other hand, being labeled
“WAIT” is fundamentally the same as being not labeled at all (crossing a counter
during a non-green phase). In both cases an estimate of the residual time until
the beginning of the next green phase: Trem = cycLenj−Tincycle = Te−c−Tcurr,
(where Tincycle - time within the current cycle; Te−c - estimated real time when
the current cycle ends; Tcurr - current real time) is known.

Figure 5: Speed Advisory System Diagram.

NOTE: The discussed part of the algorithm is expected to be performed by
each vehicle itself.

4 Results

The essential purpose of the algorithm is to provide required information for
optimal speed trajectory computation and, thus, fuel consumption reduction.
Correct prediction of vehicle’s passing capability and accurate phase residual
time estimation for Speed Advisory System are the two main objectives of our
algorithm. In order to test the efficiency in addressing those concerns, we simu-
late every vehicle with and without active SAS and compare their intersection-
passing-cycle-numbers. Moreover, by computing fuel consumption in those two
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cases and calculating gas savings we can evaluate the effectiveness of the intro-
duced algorithm. Vehicles without any driver’s assistance system and following
the Krauss car-following model will be referred as “ordinary” vehicles.

4.1 Simple case

4.1.1 Simulations

To cover a wider range of possible scenarios we ran simulations with three
different traffic demands: low demand - 1

40 ( veh
sec ); medium demand - 1

10 ( veh
sec ) and

high demand - 1
3 ( veh

sec ). Moreover, for every demand, different penetration rates
of SAS-equipped vehicles were tested: 0%, 20%, 30%, 60%, 90% and 100%.
Based on the received data, fuel savings for both ordinary and SAS-equipped
vehicles were calculated. Such approach allows us to not only see the changes in
fuel consumption, but also evaluate the impact vehicles with driver assistance
and other traffic participants have on each other.

In addition, we check phase utilization and progression quality of the actu-
ated traffic light. That step is necessary to estimate the influence of vehicles with
driver’s assistance on traffic state and throughput at the intersection. We want
to make sure that introduction of SAS-equipped vehicles does not significantly
slow down the traffic flow.

4.1.2 Accuracy of “PASS”-“WAIT” algorithm

Speed Advisory System provides a set of possible suboptimal speed trajec-
tories and our task is to choose the one corresponding to minimal travel time.
Thus, the algorithm should not prevent a vehicle from passing the intersection
if it has a chance to do so by following some comfortable trajectory. Failure
to guide the vehicle through the intersection within the same cycle it would go
through without using SAS is considered to be a “mismatch”, i.e. error. The
results of the conducted simulations are compiled in table 3.

The algorithm showed 100% accuracy in free traffic, telling vehicles to pass
the intersection within the earliest possible cycle.

For medium demand, we observed some mismatches, however they are re-
lated to ordinary vehicles passing the intersection on yellow, which is forbidden
in Speed Advisory System. By softening this constraint, we could achieve a
higher accuracy via letting those cars through.

Moreover, the congested traffic brings more uncertainty into simulation, in-
creasing the number of errors. However, 65% of them are related to road segment
before the SAS activates, which means that those mismatches are not represen-
tative. On the other hand, even if we consider them as “real” mismatches caused
by inefficiency of the algorithm, the accuracy is still very high - more than 98%.
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````````````̀Demand ( veh
sec )

SAS %
20% 60% 100%

Low demand(1/40)
58 176 285 # Simulated Cars
0 0 0 # Mismatch

Medium demand(1/10)
176 565 960 # Simulated Cars
1 1 3 # Mismatch

High demand(1/3)
400 1251 2054 # Simulated Cars
3 20 27 # Mismatch

Table 3: Cycle mismatches for various traffic demands.

4.1.3 Fuel Consumption

Introduction of prediction-based-SAS-equipped vehicles shows a significant
reduction in fuel consumption for low and medium traffic demands: 35% - 40%
(Fig. 6(a)-(b)). According to Fig. 6(a), the improvement is uniform for all
penetration rates of SAS-vehicles in free traffic. That result correlates with a
simple logic - the number of cars on the road is insufficient to prevent driver’s
assistance from following the suboptimal trajectory. However, a slightly smaller
reduction for the 20% penetration scenario in medium demand occurs. That
outcome can be explained by the fact, that the amount of ordinary vehicles (80%
of the entire traffic) in 1

10 demand is significant enough to influence controlled
vehicles, but still not enough to drastically deviate them from their desired
speed patterns.

On the other hand, according to Fig. 6(c), congested traffic neutralizes most
of the impact of the Speed Advisory System. Since after reaching the end of
the queue, vehicles switch from driver’s assistance to the car-following model,
no fuel is preserved and the resulting savings are much lower than in previous
scenarios. The reason of that small reduction is related to the road segment
prior to the congestion, where vehicles manage to save up some fuel.

(a) Low demand. (b) Medium demand. (c) High demand.

Figure 6: Fuel consumption reduction for SAS-equipped vehicles in mixed traffic.

Moreover, analyzing ordinary vehicles’ fuel consumption in such mixed traf-
fic, we came to the conclusion that having SAS-equipped vehicles on the road
causes traffic participants with no driver’s assistance system to save up fuel as
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well. That happens because following a certain suboptimal pace, controlled ve-
hicles make others slow down to the similar speed profile, which unintentionally
reduces their fuel consumption. In free traffic, the change is negligibly small
- less than 1% (Fig. 7(a)). However, in mildly and highly congested traffic,
the reduction is quite significant - ranging from 8.3% to 12.5% and from 8% to
13.2% respectively (Fig. 7(a)-(b)).

(a) Low demand. (b) Medium demand. (c) High demand.

Figure 7: Fuel consumption reduction for ordinary vehicles in mixed traffic.

4.1.4 Phase Utilization

In addition to main objectives, we are also interested in some specific per-
formance measures. First of them is phase utilization, which can be effectively
characterized by phase termination metric [14]. There are four possible reasons
for phase termination, however we focus on three of them (force − off is not
considered). An actuated phase can be omitted when there is no actuation
during the cycle; it can gap − out, when the TL was actuated at least once
and then the actuation gap was broken and it can max − out when the phase
duration reaches it’s maximal allowed length. Max-outs indicate that a phase
is exceeding capacity, while gap-outs and omits indicate that there is capacity
to spare. Our goal is to understand how the introduction of Speed Advisory
System influences the capacity utilization, more specifically whether it forces
the traffic to exceed the capacity or not.

According to the simulation results (Fig. 6), driver’s assistance system leaves
the phase utilization unchanged for all levels of traffic demands. Thus, we
can conclude that even if the Speed Advisory System does not help utilize the
capacity more effectively, it at least does not bring more imbalance into the
traffic states.

4.1.5 Progression Quality

Another important performance measure is progression quality. It is relevant
to understanding the delay performance of a coordinated movement. In other
words, progression quality corresponds to the waiting time in a queue at the
intersection due to the arrival-departure patterns. In order to characterize that
measure, the proportion of vehicles arriving on green (or simply “percent on

13



(a) Low demand. (b) Medium demand. (c) High demand.

Figure 8: Phase termination reasons for various demands and SAS percentages.

green”, POG) P can be computed.

P =
Ng

Nr +Ng
=
Ng

N
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where Ng - number of vehicle arriving at the intersection during green, Nr -
number of vehicles arriving at the intersection during red/yellow and N - total
number of arriving vehicles for the entire cycle. The higher the number P is,
the less delay vehicles would experience passing the intersection. Thus, the
progression quality measure is potentially able to clearly indicate the impact of
the prediction-based-SAS introduction on the traffic states.

(a) Low demand. (b) Medium demand. (c) High demand.

Figure 9: Percent on green (POG) for progression quality measure.

According to the results (Fig. 7(a)), in free traffic it is possible to obtain
a better progression quality by simply equipping just 20% of vehicles with the
driver’s assistance system. In that case, we were able to reach a peak of 100%
POG, which corresponds to zero delay. Furthermore, making all vehicles use
prediction-based-SAS, three peaks of 100% POG were obtained in addition to
growth of average and minimal (compare 0 with 0% SAS and 0.3 with 100%
SAS) POG. That demonstrates the significant improvement in the progression
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quality.
In case of medium traffic demand (Fig. 7(b)), the algorithm shows noticeably

better results only when all the vehicles on the road are equipped with Speed
Advisory System - three peaks of 100% POG compared to zero peaks with
no SAS introduced. Moreover, with 60% penetration of SAS-equipped vehicles,
even though the outcome is not significantly more efficient, we still can comment
on the growth of average POG percentage. For any other portion of controlled
vehicles, the progression quality is at least the same as with no SAS-equipped
cars at all, which is a valid result.

Finally, congested traffic (Fig. 7(c)), as expected, has a relatively low pro-
gression quality and can hardly be improved due to constant indissoluble or
slowly dissoluble queues. In these conditions Speed Advisory System is active
for a short period of time before the vehicle reaches the end of the queue and
switches to car-following model. Thus, the impact is negligible.

4.2 Complex Case

4.2.1 Simulations

Due to the complex structure of the network, we managed to obtain different
traffic demands on different intersections within a single setting. Thus, unlike
the simple case, the testing has no need to be split into separate simulations
with changing congestion levels. However, the variance of SAS-equipped vehi-
cle penetration is preserved, though reduced to 0%, 50%, 100%. Moreover, in
order to analyze robustness of the algorithm, some assumptions about traffic
participants were reconsidered. Now, three possible options for vehicles’ accel-
erations are available: predetermined and fixed acceleration (2.5m

s2 ), random
but known acceleration (uniform(2, 3.5)) and random unknown acceleration
(uniform(2, 3.5)). In the latter case the algorithm assumes that all vehicles
have an average acceleration (2.75m

s2 ) and makes computations based on that
assumption.

In addition, we compare phase residual time prediction procedure with the
one used in [15] - denoted “algorithm B” further in the paper. Thus, we simulate
the discussed scenarios with our algorithm and then with algorithm B to see
the improvement in prediction accuracy.

4.2.2 Accuracy

Similar to the simple case, first we want to analyze the accuracy of “PASS”
algorithm. Table 4 shows the precision percentages for 9 intersections. Green
rows indicate a free traffic, yellow - moderate demand and red - congestion.
According to the data, the algorithm performs with a precision of at least 99%
in low demand for all possible acceleration scenarios. Having a little number of
vehicles on the road implies minimized interference rate, which, in turn, insures
precise calculations.

Medium and high demands cause more issues in correct prediction of passing
capability, but still show impressive results: at least 89% accuracy in worst
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case and ≈ 95% in average. Vehicles interacting with each other are forced
to slow down, accelerate, stop, etc. causing rare miscalculations. Moreover,
intersection’s geometry can have an impact on accuracy. Intersection 6 has
relatively short incoming links, i.e. vehicles travel from counters to actuators
within a very short amount of time. Since the algorithm is a discrete time
mechanism, that travel time is rounded up or down, which results in mistakes.

````````````Intersection #
SAS %

50% 100%

100% 99.4% Fixed known acc
100% 99.4% Random known accIntersection 1
100% 99.4% Random unknown acc
99.6% 99.8% Fixed known acc
99.6% 99.5% Random known accIntersection 2
99.3% 99.6% Random unknown acc
98.7% 99.1% Fixed known acc
99% 99.2% Random known accIntersection 3
99% 99.2% Random unknown acc

96.4% 98.7% Fixed known acc
98.3% 97.5% Random known accIntersection 4
98.1% 97.8% Random unknown acc
98.5% 98.6% Fixed known acc
97.5% 97.5% Random known accIntersection 5
97.7% 97.8% Random unknown acc
89.3% 91.3% Fixed known acc
91.1% 91.3% Random known accIntersection 6
91.2% 91.3% Random unknown acc
93.4% 92.5% Fixed known acc
93.2% 94.9% Random known accIntersection 7
94.6% 94.2% Random unknown acc
97.9% 99.7% Fixed known acc
99.4% 99.7% Random known accIntersection 8
99.5% 99.7% Random unknown acc
98% 98.1% Fixed known acc

99.3% 99.2% Random known accIntersection 9
98.5% 99.3% Random unknown acc

Table 4: “PASS” algorithm prediction accuracy

The second important outcome is obtained after the comparison with the Al-
gorithm B. Since the essential goals of both procedures are different (predicting
passing capability in our case and estimating remaining time in case of algo-
rithm B) and mechanism presented in this paper does not explicitly compute
the remaining time, we have to artificially extract the estimation from compiled
vehicle data.
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Note: every vehicle j also receives an estimated phase termination time
T j
end. For “PASS” labeled vehicles such time does not necessarily equal to the

actual termination time, because upstream traffic can potentially extend the
green phase, however, for “WAIT” labeled vehicles T j

end serves as a good final
estimate for the phase duration.

Thus, using the T j
end from the last “PASS” labeled (or any “WAIT” labeled)

vehicle gives us a valid comparison material for accuracy check. Figures 10-12
represent the absolute values of estimation deviations (errors) (in seconds) of
Algorithm B and our Algorithm A from the actual registered data. Positive
and negative values of errors correspond to overestimation and underestimation
of the phase duration respectively, i.e. the algorithm’s prediction is greater or
smaller than the actual phase length.

Note: absolute errors of less than 3 seconds can be considered to be in-
significant, due to several assumptions and time discretization.

(a) Known fixed acc. (b) Known random acc. (c) Unknown random acc.

Figure 10: Absolute prediction error on intersection 1 for Algorithm A and
Algorithm B with η=0.8 and η = 0.1

Figure 10 corresponds to the intersection 1 with low traffic demand. Ac-
cording to the outcome, all three methods show high accuracy levels for any
simulated scenario. Having a few vehicles on the road implies low probability of
triggering the traffic light actuation, which means that historical phase duration
is almost always at minimal duration. Thus, CDF is almost constant and Al-
gorithm B’s prediction is relatively accurate. Although, most of the errors can
be view as insignificant, our algorithm managed to predict the phase duration
precisely more often than the Algorithm B.

Medium traffic demand is represented by intersection 5 (fig. 11). According
to the histogram, our algorithm performs much more precisely than Algorithm
B. Most of the errors do not exceed 2 seconds and occur less frequently. In
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(a) Known fixed acc. (b) Known random acc. (c) Unknown random acc.

Figure 11: Absolute prediction error on intersection 5 for Algorithm A and
Algorithm B with η=0.8 and η = 0.1

the cases with random accelerations, appearance of greater errors is observed.
That is due to the fact that the algorithm relies on additional assumptions and
guesses, which make it less accurate. However, as it can be seen, those errors are
rare and do not have a significant influence on traffic flow. Regarding algorithm
B, setting the reliability level η to 0.8 results in heavy overestimation for many
cycles (up to 8 seconds errors). On the other hand, with η = 0.1 we obtain a
serious underestimation of the phase length. The reason is that in moderate
traffic, phase duration varies from cycle to cycle with possibly high deviation.
One additional data point does not make a big difference for the CDF function,
thus, estimation for cycle k will most likely be very similar to the one for cycle
k − 1 even if their actual durations differ dramatically.

Congested traffic data is compiled into the figure 12. Intersection 7 has a
very high demand and, as it will be shown later, its green phase is usually ter-
minated due to max-out, i.e. reaching maximal allowed phase length. Initial
historical data for algorithm B corresponded to medium demand. Thus, the
setting with η = 0.1 took some time to receive enough new data points to shift
CDF and output accurate estimation. During that time we observe extremely
poor performance with drastic underestimations for more than 10 seconds. Al-
gorithm A and Algorithm B with reliability level at 0.8, on the other hand,
show impressive results with 100% accuracy for most cycles. Our algorithm
allowed several significant miscalculations, however they are rare and related
to the randomness of vehicles’ accelerations. The last several cycles correspond
to congestion dissolution and thus to phase duration reduction. Algorithm B
for both reliability levels cannot accommodate to sudden change of pattern and
continues to predict maximal duration, which is not correct anymore. Algo-
rithm A, in comparison, manages to give a correct prediction independent of
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(a) Known fixed acc. (b) Known random acc. (c) Unknown random acc.

Figure 12: Absolute prediction error on intersection 8 for Algorithm A and
Algorithm B with η=0.8 and η = 0.1

change in traffic state. That is an important outcome: statistical approach
with “reliability level” concept shows insufficient results in the case of chang-
ing traffic demands, while real-time algorithm processes only the current data,
independent of previous cycles and deals with the changes well.

4.2.3 Fuel Consumption

One of the main purposes of Speed Advisory System is fuel consumption re-
duction. By following suboptimal trajectories, vehicles manage to reduce idling
at intersections and increase energy efficiency. Derivation of such trajectories
depend on the phase length prediction. We already compared the accuracy of
those estimations, and now it is important to calculate the resulting fuel con-
sumption. Figure 13 presents a comparison between the two algorithms - A and
B (with η = 0.8 and η = 0.1). According to the histograms, in average our
algorithm performs better than Algorithm B for both tested reliability levels.
Setting η to 0.1 results in much smaller fuel consumption reduction for all in-
tersections and traffic demands. Moreover, choosing the reliability level to be
0.8 for Algorithm B gives a similar pattern as applying Algorithm A. Switching
between scenarios with different acceleration settings and SAS-vehicle penetra-
tions does not give a significantly distinct picture. Some intersections benefit
more from Algorithm B in rare cases in terms of fuel consumption, however the
difference is small.

Next step is to analyze our algorithm’s performance independent of any other
procedure. As it can be seen, we managed to achieve good result for low demand
traffic situation - up to 29% energy savings. Moreover, medium demand and
congested scenarios also benefit from the introduction of prediction-based-SAS
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- up to 18% and 7% fuel savings respectively. Those results correlate with the
simple case simulations. Speed Advisory System is most effective in terms of
fuel consumption in free and moderate traffic, because, as stated earlier, vehicles
actually follow the given advice due to low interaction rates. Congestion, on
the other hand, forces traffic participants to switch from SAS to car-following
model and loose most of the impact driver’s assistance could have on energy
savings.

(a) Known fixed acc. (b) Known random acc. (c) Unknown random acc.

Figure 13: Fuel consumption reduction for Algorithm A and Algorithm B with
η=0.8 and η = 0.1

4.2.4 Phase utilization

The picture is similar for all three acceleration scenarios (known fixed, known
random and unknown random), so we present the results for only known fixed
acceleration setup. The data from intersections 1, 5 and 7 is compiled into
figure 14. The first row corresponds to no cars with driver’s assistance system
on the road, the second and third ones - 50% and 100% of SAS-equipped vehicle
penetration levels respectively.

Similarly to the simple case, phase utilization is barely affected by the in-
troduction of speed advisory system. Although the difference is insignificant, it
is important to highlight that driver’s assistance system keeps the utilization at
at least same level as using no SAS at all.

4.2.5 Progression Quality

Progression quality comparison is presented in figure 15. Each graph con-
tains outcomes for 0%, 50% and 100% SAS-vehicle penetration. All three tested
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(a) Intersection 1 - Low de-
mand

(b) Intersection 5 - Medium
demand

(c) Intersection 7 - High de-
mand

Figure 14: Phase utilization comparison for different SAS-vehicles penetration
levels.

acceleration options are compiled by rows in the following order (starting from
the top): known fixed, known random and unknown random accelerations.

According to the results (fig. 15(a)), progression quality for low traffic de-
mand slightly benefits from the introduction of SAS-equipped vehicles. Being
able to achieve 100% POG more often implies that during some cycles we got rid
of delays and slightly improved the traffic state. The important detail worth of
mentioning is that reaching 50% controlled cars penetration on the road makes
almost the same impact as equipping all vehicles with Speed Advisory System.

In case of moderate traffic (fig. 15(b)), the algorithm managed to achieve
more impressive results. Both 50% and 100% SAS penetration rates resulted
in noticeable improvements in progression quality by at least 10% and 8% in
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average respectively. Moreover, in the case of known fixed accelerations the
maximal metric’s growth for 1 cycle reached 20% for 100% penetration rate
and in the case of unknown random acceleration - 33% for 50% penetration
rate. Those results indicate that real-time prediction algorithm was able to
provide accurate enough information to significantly improve traffic conditions
at intersections in medium demand scenario.

Similarly to low demand, congested traffic (fig. 15(c)) is not affected much
by the Speed Advisory System in terms of progression quality. On average,
the impact on the metric does not exceed 2%, which correlates with the simple
case results. The only meaningful conclusion we come to is that the system
performance does not suffer from implementation of prediction-based algorithm
and driver’s assistance system.

(a) Intersection 1 - Low de-
mand

(b) Intersection 5 - Medium
demand

(c) Intersection 7 - High de-
mand

Figure 15: Phase utilization comparison for different SAS-vehicle penetration
levels.

5 Conclusion

The thesis describes a real-time prediction algorithm that ties together two
systems: Speed Advisory and actuated traffic light. The primary objective of
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the algorithm is to determine a passing capability of all “green vehicles”1 within
the current cycle. The obtained information can be used in driver’s assistance
system for building suboptimal speed trajectories to minimize fuel consumption.
In addition, the mechanism is able to estimate the current green phase duration
for any further computations.

Conducted simulations showed impressive results: at least 89% prediction
accuracy in worst case and over 95% correct estimations in average. The algo-
rithm outperformed a statistic-based approach for both reliability levels of 0.8
and 0.1 for all traffic demands, SAS-vehicles penetrations and acceleration sce-
narios. Substitution of the CDF-approach with the one presented in this thesis
can potentially allow to implement the algorithm [15] on primary actuated road.

Significant fuel consumption reduction for both SAS-equipped (up to 30%,
20% and 7% for low, medium and high demands respectively) and ordinary
(up to 14%) vehicles is another important outcome. Introduction of real-time
prediction algorithm forced disconnected vehicles to save up fuel by indirectly
changing their speed profiles. In addition, progression quality and phase utiliza-
tion managed to stay untouched or even be improved by the implementation of
the mechanism for most of the scenarios.

Several issues need to be addressed in further studies. The accuracy of algo-
rithm might suffer from the fact, that we do not consider queues and congestions.
In that case, vehicles are forced to slow down and switch to car-following model
even if they are following a suboptimal speed trajectory. That causes idling and
increase of fuel consumption compared to suboptimal scenario. Moreover, the
algorithm has been tested only in SUMO, which does not fully reflect real world
conditions. Thus, we are not able to predict the behavior and effectiveness of
the algorithm once implemented in reality.

The algorithm might be viewed as a step towards a potentially high-impact
system: a comprehensive intersection infrastructure that incorporates various
road sensors, driver’s assistance compatible software, hazardous behavior pre-
vention and safety regulation.
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