
Path-Based Neural Constituency Parsing

Katia Patkin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-21
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-21.html

May 1, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

UNIVERSITY of CALIFORNIA, BERKELEY

Path-Based Neural Constituency Parsing

by

Katia Patkin

A thesis submitted in partial fulfillment for the
degree of Masters of Science

in the
Department of Computer Science

December 2018

Path-Based Neural Constituency Parsing

by Katia Patkin

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John DeNero
Research Advisor

(Date)

* * * * * * *

Professor Dan Klein
Second Reader

(Date)

Abstract

Path-Based Neural Constituency Parsing

by

Katia Patkin

Master of Science in Computer Science

University of California, Berkeley

Professor John DeNero, Chair

We describe an approach to constituency parsing that first predicts tree paths for each

word in a sentence using a neural sequence model, then deterministically combines those

paths into a parse using A* search. Our approach contrasts state-of-the-art neural parsers

that combine independent predictions for each span and have no auto-regressive com-

ponent. We show that using sequence prediction for paths, rather than independent

classification for spans, leads to higher exact-match parse accuracy under a fixed sen-

tence encoder.

Contents

Abstract ii

List of Figures iv

List of Tables v

Abbreviations vi

1 Introduction 1

2 Representing Trees as Paths 3
2.1 Augmented Paths . 3
2.2 Computing Augmented Paths . 5
2.3 From Augmented Paths to Trees . 6

3 Predicting Augmented Paths 9
3.1 Encoder . 9
3.2 Decoder . 11

4 Searching for Parse Trees 13
4.1 Path Generation with Beam Search . 13
4.2 Tree Construction with A* Search . 14

4.2.0.1 State Space . 14
4.2.0.2 Successor Function . 15

4.2.1 Search Time Limit . 15

5 Related Work 16

6 Experiments 17
6.1 Hyper-parameters and Training . 17
6.2 Results . 18

7 Conclusion 22

iii

List of Figures

2.1 Constituency parse tree annotated by the syntactic heads for “Buyers
stepped in to the futures pit .” . 4

2.2 Examples of converting augmented paths into a partial-tree representa-
tions. The empty dashed nodes indicate the “gap nodes”. The dashed
arrows indicate the next state of constructing the partial trees. 5

2.3 A legal combination of partial trees. Before combining: T6, partial tree
that spans over (5, 6), and T7, partial tree that spans over (6, 7). After
combining: T5,7, partial tree that spans over (5, 7). 6

2.4 Partial trees that cannot combine. 7

3.1 The encoder architecture used in experiments. 10
3.2 Graphical depiction of the decoder . 12

6.1 F1 score for subsets of the test set binned by sentence length. 19
6.2 Oracle exact-match for subsets of the test set binned by sentence length

for top-1 parses. 19
6.3 Percentage of test set sentences exceeding F1 score. 20
6.4 Oracle exact-match score for k-best lists. 21

iv

List of Tables

2.1 Augmented paths for the sentence “Buyers stepped in to the futures pit .” 4

6.1 Test set scores on Penn Treebank section 23 for different beam sizes of our
parser using a two-minute-per-sentence time-out. 18

v

Abbreviations

POS Part Of Speech

CCG Combinatory Categorical Grammar

LSTM Long Short Term Memory

vi

Chapter 1

Introduction

Syntactic analysis has long served as a canonical example of a structured prediction task

in natural language processing. However, modeling syntactic analysis as a collection of

independent classifications was shown to be sufficient for part-of-speech tagging even be-

fore the rise in popularity of neural models [1, 2]. Recently, state-of-the-art constituency

parsing performance has been achieved by a collection of independent span classification

predictions that are combined into a tree with a structured search procedure [3–5]. These

results call into question whether structured or auto-regressive modeling—for example

with a neural sequence model—is necessary or appropriate for the syntactic analysis of

natural language.

This work describes a novel sequence-based model for constituency parsing that provides

a substantially higher exact-match parse accuracy than a span-based parser, when using

the same sentence encoder. For section 23 of the Penn Treebank, F1 score decreases

from 91.77% to 90.36% using our sequence model, but exact match accuracy increases

from 37.46% to 40.11%. While 40.11% of sentences have a perfect F1 score, 32.82% of

sentences have a F1 score of 90% or less. By contrast, the span-based parser has only

37.46% of sentences with a perfect F1 score, yet only 29.26% of the sentences have a

F1 score of 90% or less, which contributes to its higher overall F1 score. Therefore, this

model offers a way to trade off span accuracy for tree accuracy. Sequence prediction

may be preferred over span classification in applications where correctly analyzing whole

sentences is important for downstream performance.

1

Introduction 2

Our approach is inspired by Combinatory Categorical Grammar (CCG), which employs

a rich set of supertags to describe the role that each word plays in the structure of a

sentence [6]. We introduce a method for decomposing a phrase-structure tree into a

sequence of paths, one path per word, which describe all constituents for which a word

is the syntactic head. These paths share many characteristics with CCG supertags. We

train a model to predict a path for each word. This model can be viewed as a seq2seq

model with attention [7]. Inspired by neural CCG parsing [8], we use A* search to find

a sentence parse that combines the predicted paths for each word.

Our path-based model contrasts with other auto-regressive approaches to constituency

parsing that sequentially generate the entire parse tree [9] or the entire parsed sen-

tence [10]. Instead, our model makes independent sequential predictions for each word

in the sentence, then combines these predictions via structured search. This degree

of auto-regressive modeling offers an intermediate option between fully auto-regressive

sequence-based or stack-based models and fully independent span models. Experiments

show that our path-based parser not only yields higher exact-match parse accuracy, but

also provides k-best lists that have dramatically higher oracle accuracy; 20-best oracle

exact match improves from 51.78% for a span-based parser to 67.05% for our path-based

parser.

Chapter 2

Representing Trees as Paths

Rather than predicting a parse tree directly, we propose to partition the tree into non-

overlapping paths, one path per word, such that the path for each word describes all

constituents for which that word is the syntactic head. We construct these paths so that

each piece of information about the tree appears only once, but all information about

the tree is captured in the paths.

We introduce a sequential representation called an augmented path that describes a path

of nodes starting at a word, as well as gaps along the path indicating where paths from

other words combine as siblings.

2.1 Augmented Paths

An augmented path consists of a sequence of augmented labels that include syntactic

categories of constituents (e.g., NP), directional gap markers ‘/‘ and ‘\‘, and directional

combination markers ‘<’, ‘>’. The sequence of syntactic categories within an augmented

path describes a partial path through the tree, starting at the corresponding word.

Gap markers are interleaved with the syntactic categories and describe the valence of

each constituent along the path. The backward slash ‘\’ and forward slash ‘/’ indicate

left and right gaps, respectively. A gap marker in an augmented path is similar to a

functor in a CCG supertag, but does not encode the syntactic category of its arguments.

Each gap corresponds to a sibling of the current node in the augmented path.

3

Representing Trees as Paths 4

S (stepped)

NP (Buyers)

NNS
Buyers

VP (stepped)

VBD
stepped ADVP (in)

RB
in PP (to)

TO
to NP (pit)

DT
the

NNS
futures

NN
pit

.

.

0 1 2

2 3

3 4

4 5 6 7

7 8

Figure 2.1: Constituency parse tree annotated by the syntactic heads for “Buyers stepped
in to the futures pit .”

word augmented path (syntactic head)
Buyers NNS␣NP␣>
stepped VBD␣/␣VP␣\␣/␣S
in RB␣/␣ADVP␣<
to TO␣/␣PP␣<
the DT␣>
futures NNS␣>
pit NN␣\␣\␣NP␣<
. .␣<

Table 2.1: Augmented paths for the sentence “Buyers stepped in to the futures pit .”

Combination markers only appear at the end of an augmented path. The angle brackets

‘<’, ‘>’ indicate the combination direction of the partial tree that is represented by the

augmented path. The left angle bracket indicates combination into a sub-tree on the

left and the right angle bracket indicates combination into a sub-tree on the right of the

current augmented path. Only one combination marker can appear in an augmented

path, and always at the end. When an augmented path terminates at the root of the

whole tree, no combination marker is added because this augmented path is a partial

representation of the entire tree and cannot combine into another sub-tree.

We chose head-based branching instead of other options, such as right-branching, because

Representing Trees as Paths 5

NN
pit

NP

NN
pit

<

NP

NN
pit

\␣\␣NP <

6 7 6 7 6 7

(a) Construction of a partial tree for (NN pit) of the augmented path \␣\␣NP ␣< .

VBD
stepped

VP

VBD
stepped

S

VP

VBD
stepped

/ ␣VP \␣/ ␣S

1 2 1 2 1 2

(b) Construction of a partial tree for (VBD stepped) of the augmented path: / ␣VP␣\␣/ ␣S .

Figure 2.2: Examples of converting augmented paths into a partial-tree representations.
The empty dashed nodes indicate the “gap nodes”. The dashed arrows indicate the next
state of constructing the partial trees.

this led to more balanced path lengths. A right-branching partition would include only

left gaps, and the path for each word would continue as long as it was the right-most

word in its constituent. Instead, we propose to include in each augmented path only the

constituents for which the source word is the syntactic head.

Figure 2.1 shows the syntactic head for each constituent in an example parse tree. The

augmented paths for all the words in the sentence are summarized in Table 2.1.

2.2 Computing Augmented Paths

A tree can be partitioned into augmented paths by identifying the maximal sub-tree for

each word, which is the sub-tree that contains all constituents that are headed by that

word. The augmented path is a partial traversal of the maximal sub-tree of the word,

starting from the leaf, i.e. the word, and traversing to the root of the maximal sub-tree

without following branches. All the syntactic categories along the path from the word to

the root are recorded into a sequence that also includes gap markers for the siblings that

are not traversed. A combination marker is added at the end if the maximal sub-tree

Representing Trees as Paths 6

>

NNS
futures

<

NP

NN
pit

<

NP

NNS
futures

NN
pit

combining

5 6 6 7 5 6 7

Figure 2.3: A legal combination of partial trees. Before combining: T6, partial tree
that spans over (5, 6), and T7, partial tree that spans over (6, 7). After combining: T5,7,
partial tree that spans over (5, 7).

for a word is not the whole tree, but instead combines into another word’s maximal sub-

tree. Procedurally, we use the LTH Constituent-to-Dependency Conversion Tool [11] to

identify the syntactic head of each constituent.

For example, we construct the augmented path for the word “in” in the sentence “Buyers

stepped in to the futures pit .” as follows. Starting from the leaf and going to the root of

the maximal sub-tree rooted at the ADVP, recording all the constituency types along the

path as well as all the sibling gaps, we find RB, then a right gap ‘/’, then ADVP. Finally

‘<’ is added to the sequence to indicate that this sub-tree will combine into a partial tree

on the left. Thus, the augmented path of “in” is RB␣/␣ADVP␣<. In this example, the PP

constituent fills the gap on the right of RB, and ADVP is its parent, as well as the root

of the sub-tree.

We construct augmented paths to include part-of-speech (POS) tags. However, when

training the model to predict augmented paths, we treat POS tags as part of the input.

2.3 From Augmented Paths to Trees

A tree is reconstructed from a sequence of augmented paths by first converting all the

augmented paths into partial trees. A partial tree is initialized as a single node for the

pair of a word and its POS tag. Sibling and parent nodes are added to the partial tree

by processing the augmented path from left to right: Gap markers are treated as sibling

nodes of the current node, with the appropriate directionality. Once a constituency label

is encountered, it is added as a parent node and becomes the new current node. This

Representing Trees as Paths 7

S

VP

VBD
stepped

<

ADVP

RB
in

1 2 2 3

(a) Partial trees T2 and T3 cannot combine
because both have gaps.

<

PP

TO
to

>

DT
the

3 4

4 5

(b) Partial trees T4 and T5 cannot combine
because T5 points to the right and T4 is to the
left of T5.

Figure 2.4: Partial trees that cannot combine.

process is repeated until the entire augmented path is exhausted. If the last augmented

label is a combination marker, it will become the root of the partial tree (cf. Figure 2.2).

Once all the augmented paths are converted into partial trees, the partial trees can be

combined into a single complete tree. Partial trees are always combined in pairs. The

tree that merges into another tree is called the source partial tree and the tree that is

being merged into is called the destination partial tree.

A partial tree that spans all the words from i to j is denoted by Ti,j , and a partial tree

that spans the i-th word in the sentence is denoted by Ti. The combined tree of any two

partial trees, Ti,j and Tj,k, is Ti,k with i < j < k. From the construction of a partial

tree, we observe that all of its leaves are either gap nodes or word-tag pairs.

Combining partial trees is possible only if the following conditions hold: (1) The partial

trees are adjacent, i.e. the partial trees Ti,j and Tj,k. (2) The source partial tree does

not have gap nodes. (3) The root of the source partial tree is ‘>’ (‘<’) if it combines to

the right (left), and the destination partial tree has a gap node to the left (right) of the

first (last) word in its span.

Once all the above conditions hold, the combination is done by removing the root com-

bination marker and filling the appropriate gap in the destination tree with the source

partial tree. For any destination tree, there is only one gap that can be filled first: the

lowest and inner-most gap. Figure 2.3 illustrates the combination process. Figure 2.4

shows partial trees that cannot combine.

Representing Trees as Paths 8

Given that all partial trees for the sentence are able to combine, the combination process

generates a unique tree. Therefore, predicting the correct augmented path for each word

is sufficient to reconstruct the entire correct parse tree.

Chapter 3

Predicting Augmented Paths

The neural model for independently predicting the augmented path for each word in

a sentence is conditioned on the contents of the whole sentence. The architecture fol-

lows the encoder-decoder schema. The encoder is used to build context-sensitive vector

encodings of the sentence, one focused on each word-tag pair. The decoder uses those

encodings to generate conditional probability distributions over the augmented labels of

the augmented path for each word.

The input to our model is a sequence of word-tag pairs. For a sentence of length n,

the output is n different augmented paths, which are each predicted as variable length

sequences of augmented labels. Each augmented path is predicted independently of the

rest, conditioned on the input sentence. Thus, for each word we have a sequence-to-

sequence problem; the input sequence is the whole sentence, and the output sequence

is the whole augmented path. Our encoder-decoder architecture follows Sutskever et al.

[12], who introduced a neural network model for solving sequence-to-sequence problems,

and by Bahdanau et al. [7], who proposed a related model with an attention mechanism

that improves generation of long sequences.

3.1 Encoder

The encoder is a bi-directional Long Short-Term Memory (LSTM) [13, 14]. The inputs

to the bi-directional LSTM are the concatenation of: (1) character-level word represen-

tations, (2) word-embeddings, and (3) POS tag embeddings. The character-level word

9

Predicting Augmented Paths 10

<go> ci,1 . . . ci,|wi| <end>

. . .

. . .

wi

eword
i

ti

eposi

hchar
i

concat

ei

(a) Embedding for the i-th word-tag pair.

<go>

−→
h 0;
←−
h 0

concat

linear

h0

e1

−→
h 1;
←−
h 1

concat

linear

h1

. . .

. . .

. . .

. . .

. . .

. . .

en

−→
h n;
←−
h n

concat

linear

hn

<end>

−→
h n+1;

←−
h n+1

concat

linear

hn+1

(b) Representation of the words in a sentence with n words.

Figure 3.1: The encoder architecture used in experiments.

representation is the final state of a separate LSTM over the character embeddings for

a word. Figure 3.1a diagrams the input vector for the i-th word, ~ei. The sequence of

all input vectors, [~ei]ni=1, is passed through a two-layer bi-directional LSTM to obtain

context-sensitive forward and backward encodings,
−→
~h i and

←−
~h i.

Our representation of each word in the sentence is the concatenation of the forward and

backward encodings. On top of this, per-position encodings are concatenated with the

input vector and then passed through a fully-connected layer to reach a final sentence-

level representation, ~h = [~hi]
n
i=1 (see Figure 3.1b):

~hi = ~W · [
−→
~h i;
←−
~h i;~ei] +~b (3.1)

Recent work has used similar encoders. For example, Stern et al. [3] used a two-layer

bi-directional LSTM over the inputs of words and POS tag embeddings for constituency

parsing. Later, Gaddy et al. [4] showed that a bi-directional character LSTM of words is

Predicting Augmented Paths 11

sufficient for constituency parsing. Kitaev and Klein [5] used a self-attentive architecture

for the encoder, instead of an RNN, to achieve state of the art results. These different

encoder architectures are all compatible with our approach.

3.2 Decoder

The decoder consist of a unidirectional LSTM with attention [7], followed by a feed-

forward layer and softmax, as illustrated in Figure 3.2a. For each word in the sentence,

the initial state of the LSTM is the word encoding ~hi. The decoder is trained to predict

the augmented-path Li for each word. At each time-step the input to the decoder is

an augmented label `i,j , the output from the decoder is the conditional probabilities of

each possible next augmented label `, given the word representation and the previous

augmented-labels:

~p`i,j+1 = Pr(`|{`i,1, . . . , `i,j},~hi) (3.2)

Notice that,

~pi,j+1 = softmax(~V · ~ri,j)

~ri,j = g(~Wr · [~ci,j ; ~di,j] +~br)
(3.3)

is a function of the output from the LSTM, ~di,j and the context output of the attention,

~ci,j . The context is a linear combination over the encoded sentence: ~ci,j =
∑n

t=1 α
t
i,j ·~ht.

The attention weights are computed by a dot-product between the projection of ~di,j and

each column of the projection of ~h:

~αi,j = softmax(~̃di,j · ~̃h)

~̃di,j = g(Wd · ~di,j +~bd)

~̃h = g(We · ~h+~be)

(3.4)

and g(·) is the ReLU non-linearity function.

Predicting Augmented Paths 12

<go>

di,<go>

attention

h

concat

feed
forward

softmax

pi,1

`i,1

di,1

attention

h

concat

feed
forward

softmax

pi,2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

`i,m

di,m

attention

h

concat

feed
forward

softmax

pi,<end>

<end>

di,<end>

attention

h

concat

feed
forward

softmax

hi

(a) The decoder for word-tag pair i.

h1

dense

·

dense

di,j

e1i,j

Softmax

α1
i,j

h1·

∑
ci,j

h2

dense

·

dense

di,j

e2i,j

α2
i,j

h2·

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

hn

dense

·

dense

di,j

eni,j

αn
i,j

hn·

(b) The attention mechanism used in the decoder, for augmented label j for a word-tag pair i.
The dashed box shows the sub-network that computes attention weights.

Figure 3.2: Graphical depiction of the decoder

Chapter 4

Searching for Parse Trees

Given a trained model applied to a sentence, parse trees are generated by a combination

of the beam-search and A*-search algorithms. Beam search is used to generate a list of

candidate augmented paths for each word. A* search is used to find complete parse trees

constructed from these augmented paths.

4.1 Path Generation with Beam Search

The goal of beam-search is to find augmented paths that approximately maximize the

joint conditional probability of the augmented labels for a word under the model.

For a beam search algorithm with a beam size of k, the algorithm maintains k partial

hypotheses for each length, where a partial hypothesis is a prefix of some augmented

path. For each word, the augmented paths are built starting with the ‘<go>’ token, from

left-to-right. At each step, the partial hypothesis in the beam is expanded with every

possible next augmented label in the vocabulary and scored by the joint conditional

probability of all augmented labels of the hypothesis. The top-k sequences with the

highest probabilities according to the model (c.f. section 3.2) are selected, pruning

all other candidates. Each time an ‘<end>’ token is appended to a hypothesis, that

hypothesis is removed from the beam, and the augmented path it describes is added to

the set of complete hypotheses. The process is repeated until all surviving hypotheses

are complete sequences and so the set of active partial hypotheses is empty. The top-k

augmented paths for the i-th word are denoted by L̂(1)
i , . . . , L̂

(k)
i . Each is a sequence of

13

Searching for Parse Trees 14

augmented labels and has the following total score:

s
(r)
i =

m∑
j=1

log
(
Pr(ˆ̀

(rj)
i |{ˆ̀(r1)i , . . . , ˆ̀

(rj−1)
i },~hi)

)
L̂
(r)
i = [ˆ̀

(r1)
i , . . . , ˆ̀

(rm)
i], r ∈ {1, k} (4.1)

For each word i in the sentence, all the augmented paths are converted into partial trees

as described in section 2.3, resulting in scored partial trees: [(T
(r)
i , s

(r)
i)]kr=1, where i is

the span and r is the rank, in descending order, with the highest scoring partial tree at

rank one. We call these basic partial trees because they span only one word and have a

score that is assigned by the neural model.

4.2 Tree Construction with A* Search

A* search is used to find a set of basic partial trees that combine into the highest scoring

complete parse tree. The score of a tree is the sum of the scores of the basic partial trees

used to construct it. Details on combining partial trees are found in section 2.3. A*

maintains two main data structures: (1) A closed set, which records all the partial trees

that have already been processed, and (2) an open set, a priority queue of partial trees

waiting to be processed. Initially, the open set contains only basic partial trees and the

closed set is empty. The main loop in A* involves removing a partial tree from the open

set and combining it with all partial trees in the closed set, then adding it to the closed

set. Successfully created partial trees are added to the open set.

4.2.0.1 State Space

Search states are partial trees. Each covers a span of the sentence and is built from basic

partial trees for the words in that span. The score of the state is the sum of the scores

for these basic partial trees. A* also requires a heuristic upper bound on the score of

the completion for each state. In a sentence with n words, for a partial tree that spans

(i, j), with basic partial trees that construct it, T (ri)
i , . . . , T

(rj)
j , the total score including

Searching for Parse Trees 15

the heuristic is:

C(r′) =

j∑
t=i

s
(rt)
t︸ ︷︷ ︸

score

+
i−1∑
t=1

s
(1)
t +

n∑
t=j+1

s
(1)
t︸ ︷︷ ︸

heuristic

(4.2)

This heuristic optimistically assumes that a partial tree will successfully combine with

all the highest-scoring basic partial trees outside of its span.

The open set is initialized with the highest scoring basic partial tree for each word from

beam search. That is, for a sentence with n words, the start states are
[
T
(1)
i

]n
i=1

.

The search concludes when a complete tree is found: a tree that spans the entire sentence

and does not have any gaps. To find the k-best complete trees, we simply continue the

search until k complete trees are found.

4.2.0.2 Successor Function

Partial trees that are removed from the open set are combined with trees from the closed

set if the combination is legal (c.f. section 2.3). These new partial trees are added to the

priority queue.

If the tree removed from the open set is a basic partial tree, then a basic partial tree

with a higher rank is also a successor. That is, if T (r)
i was moved from the open set, then

T
(r+1)
i is added to the open set.

4.2.1 Search Time Limit

A* can take a long time to complete if there are high-scoring partial trees that cannot

combine. We allow for a user-defined time-out to avoid a long run-time. If the time-

out is reached or the open set is exhausted without finding a complete tree, then we

choose the most complete tree discovered during search, breaking ties by model score,

and generate a full parse by removing gaps and adding missing words as children of the

root if necessary.

Chapter 5

Related Work

Lewis et al. [8] describe a similar approach to CCG parsing that combines conditionally

independent predictions using A* PCFG parsing [15]. Lee et al. [16] showed that global

features, a form of structure modeling, improved performance.

Vinyals et al. [9], and later Choe and Charniak [17], Liu et al. [18], showed that an

encoder-decoder framework employing LSTM RNNs and an attention mechanism could

be used to train a neural constituency parser that approached state-of-the-art perfor-

mance while making few assumptions about the nature of the task. Several other auto-

regressive neural models improved on this initial work, including shift-reduce parsers that

conditioned on various parts of the output structure [10, 19, 20].

Later work questioned whether auto-regressive models were necessary. For example, [21]

instead casts constituency parsing as a sequence labeling problem.

However, Stern et al. [3] showed that an auto-regressive neural model was not neces-

sary to achieve state-of-the-art parser F1. Instead, this work proposed a model in which

the predicted distribution over span labels were conditionally independent of each other,

given the input sentence. Gaddy et al. [4] showed that representational changes could

improve performance further, and Kitaev and Klein [5] demonstrated further improve-

ments using a Transformer encoder and pre-trained embeddings. Hong [22] describes an

alternative search procedure. This line of work has established span-based decoders that

combine conditionally independent predictions using structured search as the current

state-of-the-art approach to constituency parsing.

16

Chapter 6

Experiments

We perform a controlled comparison of our path-based decoder to the span-based decoder

described in [4], which is a subtle improvement to the decoder in Stern et al. [3] and also

used in [5]. This approach to decoding represents the state of the art in constituency

parsing. We do not compare different encoders, but instead focus on comparing decoder

performance using the fixed encoder described in section 3.1. We expect recent encoder

and pre-training improvements to be orthogonal to this work.

We use the Penn Treebank [23] for our experiments with the standard splits of sections

2-21 for training, section 22 for development, and section 23 for testing.

6.1 Hyper-parameters and Training

We use the ADAM optimizer [24] with its default settings for optimization and a mini-

batch size of 10 to train each model. We train each model for at least 20 epochs. We

evaluate each model on the development set 4 times per epoch and choose the param-

eters with the best dev performance. The inputs to both parsers are concatenations of

100-dimensional word embeddings, 150-dimensional part-of-speech tag embeddings and

100-dimensional character-level LSTM states. The encoder is a two-layer bi-directional

LSTM. The hidden dimension of the LSTM over words is 350. The hidden dimension

of our decoder LSTM is 600. Dropout with ratio 0.4 was applied to all non-recurrent

connections and inputs for the LSTMs. All parameters are randomly initialized. Hyper-

parameters are chosen using the development set. During training, words are replaced

17

Experiments 18

Parser LR LP F1 Exact
Path-based @5 89.88 90.69 90.28 40.03
Path-based @10 89.93 90.72 90.33 40.11
Path-based @20 89.95 90.76 90.35 40.11
Path-based @32 89.96 90.76 90.36 40.11
Span-based 91.47 92.08 91.77 37.46

Table 6.1: Test set scores on Penn Treebank section 23 for different beam sizes of our
parser using a two-minute-per-sentence time-out.

by <UNK> token with probability 1/(1 + freq(w)), where freq(w) is the frequency of w

in the training data. At test time, we used the <UNK> token only for unknown words.

Gold POS tag are used as input during training and test for both parsers. Both parsers

are implemented with the DyNet library [25].

6.2 Results

We ran our path-based parser with different beam sizes from 5 to 32, the number of

augmented label types. Table 6.1 shows that F1 score and exact match accuracy im-

prove by only 0.08% as beam size increases. We conclude that performance is largely

independent of beam size and use a beam size of 10 for further experiments. Compared

to our retrained version of the span-based parser in [3, 4], performance is lower by 1.44%

F1, but exact-match accuracy is higher by 2.65%.

The gap in F1 performance appears to materialize mostly for long sentences, as shown

in Figure 6.1. The span-based decoder is better for all lengths, but the parsers are quite

similar for shorter sentences. Figure 6.2 compares exact-match scores for different length

bins. The path-based parser outperforms the span-based parser for lengths below 50.

Interestingly, the greatest advantage appears for mid-length sentences between 20 and

40 words. In Figure 6.3, we plot the percentage of the sentences in the test set that exceed

a certain F1 score. Our path-based parser produces more parses with F1 scores higher

than 95%, compared to the span-based parser. However, for lower F1 score thresholds,

the span-based parser is better, which explains the better overall F1 score.

We extended the chart parsing algorithm over spans to generate the k-best trees for each

sentence: For each span, the chart parser finds the label with the maximal score, and

finds the split with the maximal score. Our k-best extension finds the top-k labels for

Experiments 19

Figure 6.1: F1 score for subsets of the test set binned by sentence length.

Figure 6.2: Oracle exact-match for subsets of the test set binned by sentence length for
top-1 parses.

Experiments 20

Figure 6.3: Percentage of test set sentences exceeding F1 score.

each span and uses A* search to find the top-k sub-trees for each span. For each parser,

we generated the top 20 parses for each sentence and evaluated these top-k lists by oracle

accuracy: a k-best list is correct if it contains the gold tree exactly as one of its entries.

In Figure 6.4, we can see that our parser improves by 26.94% absolute to 67.05% when

evaluating the top 20 parses instead of the top 1, while the span-based parser improves

by only 14.32% to 51.78%.

Typical improvements apply to our path-based parser. For example, the length nor-

malization technique in [26] gives a slightly better F1 score (90.43%) and helps with

sentences longer than 50 (which increase by ∼2% F1). Exact match also improves to

40.19% for 1-best and 67.09% for 20-best lists. Using pre-trained word embeddings [27],

improves F1 to 93.01%.

Experiments 21

Figure 6.4: Oracle exact-match score for k-best lists.

Chapter 7

Conclusion

In this work, we proposed a novel way to generate phrase-structure trees by modeling

paths from each word. Given a constant encoder, this approach improves exact match

accuracy over a state-of-the-art span-based approach. Thus, auto-regressive models may

have advantages over those that make conditionally independent predictions given the

input. However, while more parses are exactly right, more parses have high error, es-

pecially for long sentences. We look forward to improving long sentence performance in

future work.

22

Bibliography

[1] Percy Liang, Hal Daumé III, and Dan Klein. Structure Compilation: Trading

Structure for Features. In Proceedings of the 25th international conference on Ma-

chine learning, pages 592–599, 2008. URL http://nlp.cs.berkeley.edu/pubs/

Liang-Daume-Klein_2008_Structure_paper.pdf.

[2] Robert Moore. Fast High-Accuracy Part-of-Speech Tagging by Independent Clas-

sifiers. In Proceedings of COLING 2014, the 25th International Conference on

Computational Linguistics: Technical Papers, pages 1165–1176, 2014. URL http:

//www.aclweb.org/anthology/C14-1110.

[3] Mitchell Stern, Jacob Andreas, and Dan Klein. A Minimal Span-Based Neural

Constituency Parser. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics, pages 818–827, 2017. URL http://aclweb.org/

anthology/P17-1076.

[4] David Gaddy, Mitchell Stern, and Dan Klein. What’s Going On in Neural Con-

stituency Parsers? An Analysis. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 999–1010, 2018. URL http://aclweb.org/anthology/

N18-1091.

[5] Nikita Kitaev and Dan Klein. Constituency Parsing with a Self-Attentive Encoder.

In Proceedings of the 56th Annual Meeting of the Association for Computational Lin-

guistics, pages 2676–2686, 2018. URL http://aclweb.org/anthology/P18-1249.

[6] Mark Steedman. The syntactic process, volume 24. MIT press Cambridge, MA,

2000.

23

http://nlp.cs.berkeley.edu/pubs/Liang-Daume-Klein_2008_Structure_paper.pdf
http://nlp.cs.berkeley.edu/pubs/Liang-Daume-Klein_2008_Structure_paper.pdf
http://www.aclweb.org/anthology/C14-1110
http://www.aclweb.org/anthology/C14-1110
http://aclweb.org/anthology/P17-1076
http://aclweb.org/anthology/P17-1076
http://aclweb.org/anthology/N18-1091
http://aclweb.org/anthology/N18-1091
http://aclweb.org/anthology/P18-1249

Bibliography 24

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-

lation by Jointly Learning to Align and Translate. In International Conference on

Learning Representations (ICLR), 2015. URL http://arxiv.org/abs/1409.0473.

[8] Mike Lewis, Kenton Lee, and Luke Zettlemoyer. LSTM CCG Parsing. In Proceed-

ings of the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 221–231, 2016.

URL http://www.aclweb.org/anthology/N16-1026.

[9] Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey

Hinton. Grammar as a Foreign Language. In Advances in Neural Information

Processing Systems, pages 2773–2781, 2015. URL http://papers.nips.cc/paper/

5635-grammar-as-a-foreign-language.pdf.

[10] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recur-

rent Neural Network Grammars. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, pages 199–209, 2016. URL http://www.aclweb.org/

anthology/N16-1024.

[11] Richard Johansson and Pierre Nugues. Extended Constituent-to-dependency Con-

version for English. In Proceedings of the 16th Nordic Conference of Computational

Linguistics (NODALIDA 2007), pages 105–112, 2007. URL http://aclweb.org/

anthology/W07-2416.

[12] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learn-

ing with Neural Networks. In Advances in Neural Information Process-

ing Systems, pages 3104–3112, 2014. URL http://papers.nips.cc/paper/

5346-sequence-to-sequence-learning-with-neural-networks.pdf.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[14] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to Forget: Con-

tinual Prediction with LSTM. Neural Computation, 12:2451–2471, 1999.

[15] Dan Klein and Christopher D Manning. A parsing: fast exact viterbi parse selec-

tion. In Proceedings of the 2003 Conference of the North American Chapter of the

http://arxiv.org/abs/1409.0473
http://www.aclweb.org/anthology/N16-1026
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://www.aclweb.org/anthology/N16-1024
http://www.aclweb.org/anthology/N16-1024
http://aclweb.org/anthology/W07-2416
http://aclweb.org/anthology/W07-2416
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Bibliography 25

Association for Computational Linguistics on Human Language Technology-Volume

1, pages 40–47, 2003. URL http://www.aclweb.org/anthology/N03-1016.

[16] Kenton Lee, Mike Lewis, and Luke Zettlemoyer. Global Neural CCG Parsing with

Optimality Guarantees. In Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, pages 2366–2376, 2016. URL http://aclweb.org/

anthology/D16-1262.

[17] Do Kook Choe and Eugene Charniak. Parsing as Language Modeling. In Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing, pages

2331–2336, 2016. URL http://aclweb.org/anthology/D16-1257.

[18] Lemao Liu, Muhua Zhu, and Shuming Shi. Improving Sequence-to-Sequence Con-

stituency Parsing. In AAAI Conference on Artificial Intelligence, 2018. URL

https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16347.

[19] James Cross and Liang Huang. Span-Based Constituency Parsing with a Structure-

Label System and Provably Optimal Dynamic Oracles. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 1–11, 2016.

URL http://aclweb.org/anthology/D16-1001.

[20] Jiangming Liu and Yue Zhang. Shift-Reduce Constituent Parsing with Neural

Lookahead Features. Transactions of the Association for Computational Linguis-

tics, 5:45–58, 2017. URL http://aclweb.org/anthology/Q17-1004.

[21] Carlos Gómez-Rodríguez and David Vilares. Constituent Parsing as Sequence Label-

ing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1314–1324, 2018. URL http://aclweb.org/anthology/

D18-1162.

[22] Liang Hong, Junekiand Huang. Linear-time Constituency Parsing with RNNs

and Dynamic Programming. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, pages 477–483, 2018. URL http:

//aclweb.org/anthology/P18-2076.

[23] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a

Large Annotated Corpus of English: The Penn Treebank. Computational linguistics,

19(2):313–330, 1993. URL http://anthology.aclweb.org/J/J93/J93-2004.pdf.

http://www.aclweb.org/anthology/N03-1016
http://aclweb.org/anthology/D16-1262
http://aclweb.org/anthology/D16-1262
http://aclweb.org/anthology/D16-1257
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16347
http://aclweb.org/anthology/D16-1001
http://aclweb.org/anthology/Q17-1004
http://aclweb.org/anthology/D18-1162
http://aclweb.org/anthology/D18-1162
http://aclweb.org/anthology/P18-2076
http://aclweb.org/anthology/P18-2076
http://anthology.aclweb.org/J/J93/J93-2004.pdf

Bibliography 26

[24] D Kingma and J Ba Adam. Adam: A Method for Stochastic Optimization. In In-

ternational Conference on Learning Representations (ICLR), volume 5, 2015. URL

https://arxiv.org/abs/1412.6980.

[25] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,

Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,

Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng

Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul

Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta,

and Pengcheng Yin. Dynet: The dynamic neural network toolkit. arXiv preprint

arXiv:1701.03980, 2017. URL https://arxiv.org/abs/1701.03980.

[26] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging the gap between human

and machine translation. arXiv preprint arXiv:1609.08144, 2016. URL https:

//arxiv.org/pdf/1609.08144.pdf.

[27] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In

Proceedings of the 2018 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies, pages 2227–

2237, 2018. URL http://aclweb.org/anthology/N18-1202.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1701.03980
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
http://aclweb.org/anthology/N18-1202

	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 Representing Trees as Paths
	2.1 Augmented Paths
	2.2 Computing Augmented Paths
	2.3 From Augmented Paths to Trees

	3 Predicting Augmented Paths
	3.1 Encoder
	3.2 Decoder

	4 Searching for Parse Trees
	4.1 Path Generation with Beam Search
	4.2 Tree Construction with A* Search
	4.2.0.1 State Space
	4.2.0.2 Successor Function

	4.2.1 Search Time Limit

	5 Related Work
	6 Experiments
	6.1 Hyper-parameters and Training
	6.2 Results

	7 Conclusion

