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Abstract

In Spring 2018, students in UC Berkeley’s introduction to computing for non-
majors course CS10: The Beauty and Joy of Computing tested a prototype Intelligent
Tutoring System known as AutoQuiz. It was customized to the assessment material in
CS10, and was designed to model user knowledge, then use that information to adapt to
individual students and serve multiple-choice questions that match in difficulty with the
student capabilities to help students prepare for high-stakes assessments.

In this paper, we present a complete overhaul of the artificial intelligence
algorithms that power AutoQuiz in order to increase its ability to serve students. We
compare the previous “adapted DKT model” approach against a new deep-reinforcement-
learning-based system, which we call Deep Knowledge Reinforcer (DKR). While the
previous adapted DKT model only attempts to track student knowledge, the Deep
Knowledge Reinforcer model attempts to both model a student’s current knowledge and
determine how to increase that knowledge most effectively.

In order to match students’ knowledge more accurately, we enhanced the
questions by adding different formats, which can give expanded insight into student
mental models and misconceptions. These improvements were tested during the Fall
2018 CS10 course offering with over 100 students creating anonymized accounts.

We show that student use of this iteration of AutoQuiz is correlated with a marked
improvement in exam performance, and thus provides tentative evidence for the claim
that a reinforcement-learning-based system can effectively work to teach students. A

future randomized controlled experiment could be used to demonstrate a causal link.
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1. Introduction

University of California, Berkeley offers CS10, also known as the Beauty and Joy
of Computing (BJC), to non-majors interested in learning computer science. BJC reaches
hundreds of students each semester. Its intense popularity makes office hours and one-on-

one teaching sparse resources.

To assist with individualizing students’ education, the Spring 2018 offering of
BIC pioneered a system known as AutoQuiz!. At the time, students had a lukewarm
response to it, with 41 accounts opened and approximately 8000 records created between
students with accounts and anonymous users. Spring 2018’s AutoQuiz edition selected
questions for its users from previous semesters’ exams by use of a recurrent neural
network built for Deep Knowledge Tracing (DKT), which showed effectiveness in

predicting how well students would perform [13].

Guiding students to become better at topics is the ideal goal of an automated tutor
system like AutoQuiz. However, the prediction of how well a student will perform on a
given question is not sufficient on its own for an effective education. As students become
more comfortable with topics and ideas, their capabilities increase. When AutoQuiz gives
an underprepared student a question beyond their capability, the student may learn from
the question but still not reach the question’s optimal learning potential value. In
addition, questions that are of incorrect difficulty will reduce student motivation and may
cause them to abandon use of the system early. For example, students who are just
beginning to learn about the topic “functions™ are likely going to learn less and become
more frustrated from a final-exam-level question on recursion than they would later in the

course, once they’ve built up a suitable knowledge base. Instead, simpler questions

! http://autoquiz.port0.org



should be presented at first to increase a student’s confidence in a topic before more
difficult questions are asked. In these cases, a focus on simply keeping track of where a

student is on a single-question-by-single-question basis may be considered short-sighted.

Therefore, we elected to revamp AutoQuiz and improve it in order to more
effectively prepare students for exams. First, we replaced the DKT with a reinforcement
learning-based network that would take in student history and available questions as an
environment and select questions in the order they should be shown to the student to
optimize for long-term student learning. Second, we improved student data logging so
that we can begin to track exactly what misconceptions students were having. Finally, we
added questions that allow students to respond with more finesse, and give them more

tools to succeed.

The new offering of AutoQuiz has a few advantages over the original version and

over prior research:

- This is, to our knowledge, the first example of an active Intelligent Tutoring
System that is powered by deep reinforcement learning. While Iglesias et al [5]
use Reinforcement Learning to act as a selection mechanism for topics and
formats, their reinforcement learning algorithm is neither deep, active, nor self-
sufficient; it was tested on a simulated environment, with very simplified
students, and required additional mechanisms for not only interpreting students’
current state but also modeling selecting individual questions and measuring
reward. AutoQuiz, on the other hand, selects questions for students without
having to interface with any other artificial intelligence algorithms.

- We provide an extensible system to model and distribute new forms of questions,
which facilitated the addition of other challenge types. This can allow for future
expansion with knowledge challenges that don’t easily fit a multiple-choice

context.



- The new version of AutoQuiz opens the door for future exploration of deep

methods for active but unsupervised guidance of student learning.



2. Related Work

2.1 Intelligent Tutor Systems

An Intelligent Tutor System, or ITS, is an automated system that attempts to
guide a student’s learning. An ideal ITS would be self-sufficient, able to teach the
student everything, avoiding being too easy and never being too challenging. This ideal
difficulty curve stays entirely within a construct in education theory known as the Zone
of Proximal Development, or the ZPD, which contains everything that a student cannot
achieve on their own but can easily achieve with minor help from a more adept peer

(such as a teacher or ITS) [18].

Intelligent tutoring systems have recently become more and more invested in
tracking student knowledge, since in order to locate the Zone of Proximal Development a
system must be able to trace what a student can achieve on their own — the next-most-
difficult concepts must be within the ZPD. Since a student is most adept at learning
things within the ZPD, tutor systems must locate the bounds of current student

knowledge as quickly as possible.

2.2 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing, or BKT, is an older machine learning method for
modeling student knowledge [3]. The model treats a student as a series of binary values,
which represent individual concepts in either “learned” or “unlearned” states. From those
two states, probabilities of correct answers can be determined by four variables: how
likely that the student knows a topic before interacting with any questions, how often a
guess from a student in the unlearned state will be right, how often a student will move
from the unlearned state to the learned state, and how often a student will “slip” and

answer incorrectly while in the learned state. A Hidden Markov Model is used to provide



an estimate of whether the student has learned a concept, and if the student hasn’t learned
a concept yet, the model attempts to determine when they do learn. Notably, Corbett and
Anderson [3] assume students never forget what they have learned in the context of using
the system, which is a difficulty that seems not to have been addressed either by the
original paper nor the numerous more modern extensions that have come since
[1,12,24,25]. Most recently, Zhang and Yao [25] recognize that student understanding is
not a binary concept and have defined a third transitionary state between “learned” and

“unlearned”, but still makes no allowances for forgetting learned concepts.

Piech et al. [13] considers BKT to have several issues, including that the binary
nature of the data used to model student responses limits the possible exercises that can
be accurately modeled and that representing the knowledge challenges that a student
learns from as relying on one concept is unrealistic. Additionally, BKT cannot be directly

used to find an optimal next challenge.

2.3 Deep Knowledge Tracing

Piech et al. propose the use of an LSTM-based recurrent neural network, the
algorithm they call Deep Knowledge Tracing (DKT), to attempt the same task [3]. In
particular, Piech describes representing inputs to the user by one-hot encoding or, if there
are too many possible knowledge challenges, by assigning random vectors in a lower-
dimensional space. Outputs would be represented on a question-by-question basis as a

probability that the student would answer the problem correctly.

There are also a few issues with Piech et al.’s approach. To begin with, in the
selection of random vectors, there is no correlation between the input for answering a
given question correctly and answering the question incorrectly. Additionally, as Xiong
et al. determined, DKT is weak at discovering links between exercises that are listed

under a joint skill instead of the individual subskills [22]. Finally, while DKT can



optimize greedily for student learning, it cannot accurately optimize student learning over

time for non-immediate rewards.

2.4 AutoQuiz

The version of AutoQuiz [21] developed for Spring 2018 was itself an ITS that
attempted to find students’ ZPD using a modification of Deep Knowledge Tracing, citing
work from Reddy [15], Lan [8], and Piech [13] to show that machine learning is effective
in modeling students. Students were allowed to use the system either anonymously or
with a personalized account, and were allowed to either self-select questions or let DKT
choose questions for them. When there was little to no information gathered about a

student, AutoQuiz fell back to a much simpler algorithm.

2.5 Reinforcement Learning

Deep Reinforcement Learning, or DRL, is a modern topic in machine learning
that seeks to train neural networks to find good policies based on expected future
rewards. It uses many of the same algorithms as shallow Reinforcement Learning, such
as Q-learning [20]. While Deep Reinforcement Learning has a deep history of use in live
environments, such as drone navigation [6] and video games [17], DRL is also useful in
slow-paced environments that emphasize slow decision-making, such as the famous
AlphaGo system that beat a professional Go player [16], as well as item recommendation

tools [4].



3. Design

3.1 Deep Knowledge Reinforcer

Piech et al. [13] introduced DKT as a tool for, among other things, determining
where to make improvements to curricula. However, Piech’s algorithm for determining
an optimal best sequence of learning items has two major flaws: 1) it requires a large
number of answered questions to build an expected knowledge state, and 2) it requires a
comprehensive examination of all possible exercises that could be posed to the student,
making for long response times. Yeung and Yeung [23] explain some other problems that
Deep Knowledge Tracing categorically seems to have, namely that DKT will predict
performance inconsistently over time, and that it will fail to reconstruct observed input —

a student may perform well and yet DKT will show a decrease in expected performance.

In response to these issues, we propose an algorithm loosely inspired by Mnih et
al’s exploration of using deep reinforcement learning for Atari games [10] that we call

the Deep Knowledge Reinforcer. It works as follows:

1) Consider the student as an environment E. Questions from ¢ = 5 skills are treated
as actions a € A, answers s, € R" packaged with their corresponding questions
Sq € R84+ are treated as observations s € €, and rewards r are measured as
the inverse of the squared difficulty of the question — e.g. a difficult and tricky

question with a 0.20 success rate, when answered correctly, will give a reward of

1

Toa = 25, and when answered incorrectly will give a reward of 0. At each

timestep, a fixed reward penalty r~ is applied to incentivise faster teaching; we
selected r~ = 0.4. We select answer dimensionality = 5 to allow for encoding

of multiple types of questions’ answers.



2) Define a neural network Q*(s, a; 8) with weights @ that attempts to approximate

the following function:
Q*(s,a) =Egy_¢ [r —r~+ymaxQ(s’,a’)|s, a]
a

As the state grows with the number of questions students have answered,

Q* (s, a; 0) is best modeled as a recurrent neural network; we selected LSTM cells
for the neural network, and we selected a reward discount y = 0.97 to further
encourage teaching the student quickly. In particular, Q* models two outputs; the
categorical knowledge skill that the student should be tested on, and the suggested
difficulty of the question as determined by other students. The closest question to
that suggested difficulty with that categorical knowledge skill is considered the

chosen action.

3) For each student, pre-select and cache actions a;_s € A using the output of Q* to
be distributed to the student as soon as they request that AutoQuiz select
knowledge challenges. Using an LSTM-based network for Q* means we can
achieve this by running Q* forward with no input to receive actions beyond the

first as s.

4) As students answer questions tracked by AutoQuiz, record the new observations
and determine new optimal challenges to present. This happens every time a
student answers a question, regardless of whether the question was presented by
the network directly or by a student explicitly looking up a question that they feel

they want to practice.

DKR is constantly training, not necessarily reacting to new data but retraining
over old data from replay memory, both from a simulated environment used primarily for

pre-training and from real students who are interacting with the system. The replay



memory’s capacity was set to be dynamic, so that it’d grow with new real-world
observations while maintaining a constant amount of simulated observations. Real-world
observations are weighted significantly higher, accounting for almost all training after
AutoQuiz’s launch. We use Polyak averaging [14] of the current and target Q-networks
in order to avoid large leaps in policy, and use the current Q-network to evaluate actions
as in double Q-learning. As the network has multiple active instances (one for each
student), each instance updates its current state asynchronously based on how active the
student is. A very active student’s instance will be prioritized for recalculation every time
the current Q-network is updated, while less active students are prioritized lower,
allowing for many students to actively use the system in its most current state with

minimal slowdown.

In order to encode input, we pass a one-hot representation of the question (i.e. a
string of |A| bits with all but the ath entry as 0) through a normally distributed random
layer L ~ N 4)x[10gl]](0,1). The answer is encoded in a similar manner, although the
exact method differs depending on the type of question. For multiple-choice single-

answer questions, the correctness or incorrectness is encoded as a binary value s, €

{1, —1}, and the exact selected answer is encoded by a question-specific normally

distributed random layer L, ~ Nq|x5-1)(0,1).
3.2 Training Environment

In the simulated environment, students acted in a manner inspired by Piech et al.’s
simulated data [13]. Piech et al. dictate a constant chance of guessing ((1 — c¢) = 0.25)
for their simulated students, but the simulated students in this environment have a
“confidence factor” in addition to their skill in a given subject. Some students have a high
confidence factor (¢ = 0.95), while others are quite unconfident (¢ = 0.5); this

corresponds to the chance that they will manually select an answer rather than guess.



Confidence increases logarithmically with correct answers, decreases slightly with
incorrect answers, and overall increases along with skill level as the simulated student
answers more questions. We model probability of correctness given concept skill a,
question difficulty £, and concept confidence ¢ as used in the testing environment as
follows:

tla, f,0) =1—c+—7—
p(correct|a, B, c) c T of<

Concept confidence is simulated using a random y normally distributed with

mean and variance i = 1; 6 = 0.1 and confidence penalty modifier { = 0.2 as

_ {c — Bc(1 — ¢™¢) when correct
| c*B%+ywhenincorrect

And concept skill is determined by

3-3(B-a)
a = { az 3 when correct
min(a * y,1) when incorrect

These formulae were chosen to increase confidence and skill in a non-linear

manner that still gives potential returns on incorrect values, giving AutoQuiz an example

of how a student might react to a question. To begin training, we use an e-greedy policy

with € = 0.1%/19000 4 the n-th step of training for simulated students training on 50

simulated questions. By the time real-world students access the system, € had a value of

approximately 10™>. Simulated questions had a uniformly distributed topic from the five

discrete topics and difficulty f drawn from a Kumaraswamy distribution [7] modeled by

the density function

f(x;a,b) = abx* (1 —x*)P"1|x€[0,1],a=0,b =0

10



and the cumulative distribution function
F(x;a,b) =1—(1—x*)Pb.

The difficulty is therefore drawn using a uniform distribution and the mapping function

F~1

1

F1(x; a,b) = (1 —a- x)%)“

We selected our shape parameters a and b to be a = E and b = g, to make easier

questions more likely and harder questions rarer.

As data is brought in from real students, it’s logged as coming from a real-world
environment, which is significantly more likely to show up in training compared to
simulated data. This means that as more data filters in from real-world students, the
model is more likely to learn accurate statements about real-world students that supersede
any bad assumptions it picks up from the simulations and help it utilize the questions in

the dataset in the best possible ways.

11



CS10 AutoQuiz (BETA) | FALL 2018 | UC BERKELEY

CS10 AutroQuiz (BETA) | FALL 2018 | UC BERKELEY

Question 60  boolean expression (2017 Fall, Midierm 2 Version A, Question 1)
Question 60 boolean expression (2017 Fall, Midterm 2 Version A, Question 1)
If the Tollowing expression reports false , what can you say about A and B ?
== — If the following expression reports false . what can you say about A and B ?
Select all that apply: Lnot & 2040
Select all that apply.
A must be equal to B
. Amustbe equal o B
A must be difierent from B
A must be different from B
A must be false
A must be false
A must be true
A must be true
B must be false
B must be false
B must be true
B must be true
None of these:
None of these
Check Answer | TryAgain | Next Question
Thatsrtorsctnkavou a0t oy agon
HINT: ((not A) or A) is always true, no matter what the value of A is.

Figure 1. Example multiple-response question, both unanswered and answered

incorrectly.

3.3 Multiple-response questions.

In order to accurately represent student knowledge and explore the flexibility of
DKR with regards to input format, AutoQuiz now supports multiple-response questions.
Students can select any non-empty subset of the answer choices as their answer, and only
one combination is correct — this means the number of possible answer choices increases

to 2lel — 1.

We implement the representation of these possible answer choices for DKR by

choosing unique answer choices by normally distributed random embeddings in s, o €

R"~1 space. Combinations of these choices are added linearly, and whether the
combination was correct is recorded as a binary variable s,, € {1, —1}. This means that

the network has the capacity to distill the student’s precise response within its first layer.

12



4. Implementation

Both the original and the current AutoQuiz are served to users as a web
application powered by Flask. That means it is available cross-platform, and it is
accessible on any modern browser. Both versions use Python for the back-end and
Javascript for the front-end. TensorFlow? powers the reinforcement learning algorithms

used in AutoQuiz’s current design. It was also used for the previous design’s DKT.

In order to keep track of all the data that DKR requires for its assessments, we had
to make modifications to the database schema. The previous and new questions and
records tables in AutoQuiz’s internal database schema are shown in Tables 1, 2, 3, and 4,
and a schemata for two new database tables are shown in Tables 5 and 6. The first table,
question_types, exists to simply catalogue the types of questions that exist, in the same
way that in both iterations of AutoQuiz there are database tables that document skill types
and topic types. The second table, question_skills, serves as a many-to-many link

between the types of skills and the questions that test those specific skills.

Attribute Name Type | Description Constraints

question_ id | Integer | Unique question identifiers are shown to | Primary key
users.

description | String | A short description of knowledge
concepts covered by the particular
challenge.

skill id Integer | A foreign key used to link questions to | Not null
specific skills they test. Each question

2 https://www.tensorflow.org/

13



was assumed to have only one skill
assigned to it.

topic id Integer | A foreign key used to link a question to | Not null
the primary topic it covers.

Table 1. Content of the questions table in the database in the previous edition of

AutoQuiz.

Attribute Name Type @ Description Constraints

question_id | Integer Unique question identifiers are shown to | Primary key

UuSers.

description | String | A short description of knowledge
concepts covered by the particular

challenge.
topic id Integer | A foreign key used to link questions to | Not null,
the topics they cover. foreign key
(topics.topic_id)
type Integer | The type of the question. Currently, 0 is | Not null,

a standard multiple-choice question and | foreign key

1 corresponds to multiple-answer (question_types. id)
questions. Used to determine what input

format DKR needs.

Table 2. The updated version of questions, used in the current edition of AutoQuiz.

14



Attribute Name Type @ Description Constraints
id Integer | Record identification Autoincrement,
primary key
user_id Integer | Foreign key for the user that created the
record, null for anonymous logins
log ip String | The IP address of the student who left Not null
this record. Logged primarily for
security purposes.
log time Time | The Unix time, to the nearest second, Not null
that the record was logged.
correct Integer = A binary variable; 0 corresponds to an | Not null
incorrect answer and 1 corresponds to a
correct answer.
question_id | Integer | Foreign key for the question that the Not null

record creator responded to.

Table 3. Content of the records table in the database in the previous edition of AutoQuiz.

Attribute Name Type @ Description Constraints
id Integer = Record identification Autoincrement,
primary key
user_id Integer | Foreign key for the user that created the | Foreign key
record, null for anonymous logins (users.id)
log_ip String | The IP address of the student who left Not null

this record. Logged primarily for
security purposes.

15




log time Time | The Unix time, to the nearest second, Not null

that the record was logged.

correct Integer = A binary variable; 0 corresponds to an Not null
incorrect answer and 1 corresponds to a
correct answer.

question_ id | Integer Foreign key for the question that the Not null,
record creator responded to. foreign key

(questions. question_id)

response String | The student’s response for the question
in a question-type-dependent-format.
For multiple-choice questions, this is
simply the ID of the selected choice; for
multiple-answer questions, this is a
semicolon-separated list of choice IDs.

Table 4. The updated version of records, used in the current version of AutoQuiz.

Attribute Name Type @ Description Constraints
id Integer | Unique type identification. Autoincrement,

primary key
type name String | A proper name for the question type. Not Null

Table 5. A new table, question_types.

16



Attribute Name Type @ Description Constraints

skill id Integer = The skill that the question has. Not Null,
foreign key
(skill2topic.skill_id)

question_id | Integer | The question that has the skill. Not Null,
foreign key

(question.question_id)

Table 6. A new table, question_skills.

The updated schema for questions has two benefits over the previous version.
Now that skills have been moved to a junction table, AutoQuiz can now accurately
represent questions that test multiple skills simultaneously. AutoQuiz now can also
determine what the type of a question is, which can affect how the user receives the
question, how the user can respond to the question, how the response is vetted for
correctness, how the record is built, and how DKR is trained by records on those
questions. Also of note is that the foreign key attributes in questions are now constrained

to actually be a foreign key. This ensures a clean and consistent database.

The update to records has only one major change from the previous version.
There is now a “response” attribute that stores the exact response the student had to the
question. This is crucial, since without knowing what the student got wrong it becomes
very difficult to accurately correct misconceptions about any course topics. We also
ensure that foreign key attributes in records are now constrained to be a foreign key to

guarantee database consistency.

17



4.1 Environment

Deep Reinforcement Learning is very computation-heavy. The previous host for
AutoQuiz, PythonAnywhere?, limits computation power by only allowing 30-45 seconds
of server-side computation per request before timing out. In order to run continuous

training, however, we needed to find a workaround for this computation throttle.

One of our first ideas was to set up a script that would send a request every thirty
seconds to PythonAnywhere, and have a response on AutoQuiz’s side that would train as
much as possible during those thirty seconds. We decided against it, because not only
would that abuse PythonAnywhere’s generous offering of a free hosting service for

Python code, but it would be difficult to code and may not work consistently.

The second idea is the one we implemented, which was moving away from free
hosting services entirely and running the server locally on our own machine. For public
access of the server, we used FreeDNS* to allow students to access AutoQuiz using an
easily memorizable URL?. This provides the additional benefit of having everything run
in-house, not relying on any external resources whatsoever. Thanks to this change, we
were able to run code (e.g., the training algorithm for DKR) continuously instead of

waiting for a student to send in a response to allow us to continue training.

4.2 Async

Asynchronous programming becomes necessary when working to train a

webserver during idle times. We decided to have three explicit threads:

3 https://www.pythonanywhere.com/
4 http://freedns.afraid.org/
5 http://autoquiz.port0.org
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e Thread 1 runs the webserver itself. It starts the other two threads and then
receives requests from users.

e Thread 2 runs the training for DKR itself. It determines when to draw a new
batch to train on, when to update the current policy, when to save, and runs
almost all of the TensorFlow code.

e Thread 3 maintains the user environments. It keeps track of which students have
made records most recently by logging them in a stack, popping students off the
stack to determine when to update their network state to the most recent version
of DKR. The pop isn’t completely deterministic in order to guarantee that all
students are reached; we pop the Xth element, where

X~Pr(X=k)=(1-p)'p

and we select our p = 0.9.

The combination of these three threads allows us to balance between taking care

of users and improving the performance of the artificial intelligence algorithm.

19



5. Results

We trained Deep Knowledge Reinforcer on approximately 52,200 simulated test
answers given by over 1,000 simulated students before AutoQuiz opened to the public.
At the end of that time, DKR’s strategy for a new student appears to be to give a variety
of questions at a variety of difficulties in multiple subjects to get a quick estimate of the
student’s prior knowledge. After DKR has finished this, it starts with questions that are
around the student’s estimated skill level and moves to progressively harder and harder
questions. This allows DKR to more quickly get to questions with high reward, especially

compared to the greedy policy that the previous DKT model applies.

The public test of AutoQuiz on the Fall 2018 offering of The Beauty and Joy of
Computing (BJC) was overall a success, based on the correlation between student use of
the system and student performance on exams. To see how performance with AutoQuiz
corresponded to performance in the course, the teaching staff of BJC assigned each
student a randomized, specific anonymous username to be used in the course. This way,
AutoQuiz records associated with a specific username can be linked with exam grades
anonymized to use the same username, and no personally identifying information was

sent into the system.

Figure 2 shows an example of what AutoQuiz does for a student who is a
complete unknown, having just created an account but not made any records. Notice that
there are only two topics of the five possible topics, and that those topics are the two
simplest: mathematics and algorithms. The student gets the first questions correct, so the
next questions are a bit tougher. For Programming and Algorithms, the student got the
tougher question wrong, and AutoQuiz is likely to dial back the difficulty in the future.
AutoQuiz is already providing a variety of difficulties for subjects, and is already

adjusting based on prior performance.
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Figure 2. Example difficulties for the first several questions selected by AutoQuiz for a

new student, showing a variety of question difficulties for two different subjects.
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Midterm Part 1 results, categorized by AutoQuiz use
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Figure 3. AutoQuiz users versus non-tracked students’ performance on an exam out of 30

points.

BJC’s midterms were split into two exams held on two separate days, each graded
separately. As shown in Figure 3, students who created and used their AutoQuiz accounts
had less variance in exam performance. Some students may have not created accounts,
meaning their performance cannot be linked to use of AutoQuiz. On average, students
with AutoQuiz accounts got a 20.1 out of a maximum of 30 points, which is a 14.8%

increase over students without AutoQuiz accounts.
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- Midterm Part 2 results, categorized by AutoQuiz use
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Figure 4. AutoQuiz users versus non-tracked students’ performance on an exam.

Figure 4 shows that the second exam has comparable results to the first exam. In
general, student performance was higher on the second exam, with the average rising by
more than a full point. Students with AutoQuiz accounts scored 13.1% higher than
students without, and many of the students with AutoQuiz who performed poorly on the
first midterm performed better on the second. Since the first exam’s scores were released
before the second exam’s, some students who knew what they struggled with on the first
exam used AutoQuiz to train on those same topics. Far more people were placed in the

25-30 bracket for this exam both from those who used AutoQuiz and those who didn’t,
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but no student got a perfect grade.

Midterm Part 1 results, categorized by AutoQuiz use
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Figure 5. AutoQuiz users’ performance on the first exam, grouped by how many unique

questions they answered.

Viewing performance based off how extensively students used AutoQuiz, as
demonstrated by the violin plots in figures 5 and 6, seems to show a large correlation
between extensive use of AutoQuiz and good exam performance. Notice that the few
students who got very high scores had a disproportionate number of AutoQuiz questions
examined, and many of the students with lower scores did not answer many questions.
High use is determined by viewing more questions than the average (33 or more), and
low use is defined by viewing fewer questions than the average (32 or less). Students

who did not make AutoQuiz accounts may have used the platform without logging in,
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and so are grouped as unknown use. Similarly, low-use students may have used the

platform anonymously and may actually be high-use students.

Midterm Part 2 results, categorized by AutoQuiz use
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Figure 6. AutoQuiz users’ performance on the second exam, grouped by how many

unique questions they answered.

Weighting exam scores based on how many unique questions were answered
increases the average score by over a full point. Figure 7 shows that the number of
students who answered very few questions and the number of students who answered
almost every question are fairly even. The students on the right side of Figure 7, who
answered more than the average number of AutoQuiz questions (i.e. 33 or more unique
questions answered), received an average of 21.8 points on the first exam and 22.88 on

the second exam, which is an increase in grade over the no-AutoQuiz-account baseline of
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24.7% and 22.2% respectively and an increase of 18.5% and 17.5% over students who
answered less than the average number of questions. DKR likely is not as effective for

students who answered all 64 questions, but may still have some effect.
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Figure 7. Histogram of the number of unique questions each student attempted, whether

they answered correctly or not.
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6. Future Work

Many other things remain to be explored within AutoQuiz. We list a few of them

here, with some consideration to how they could be implemented.

6.1 Dynamic Hints

In both the original and current versions of AutoQuiz, the students were offered
only one piece of advice per problem on how to solve a question. If they get the question
wrong, it’s offered as a hint to help students discover the error in their logic; if they guess
the correct answer, it’s offered to explain why the answer was actually correct. However,
whether the advice is a hint or an explanation, there is only one piece of text assigned to

the question.

The proposal would be that questions have multiple associated hints. Hints would
be provided to students by either a simple answer-response mapping or by another neural

network that would determine whether a hint is necessary and, if so, what that hint should

be.

A difficulty would arise when determining how to train that network.
Improvements to problem order and hint selection would both affect student learning,
meaning that when one is incorrect both are penalized and vice versa. In addition,
students may not be guaranteed to get hints that are relevant to them until the system has
trained with real students for a large time — correlating the use of hints with increase of

knowledge is beyond the scope of the current simulation environment.

With all of these considerations, a course administrator should be prepared to
create hints for every answer choice should they want hints to change based on the

student-selected answer.
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6.2 Course Grading

If AutoQuiz can actively teach students, then it stands to reason that it can also
detect when a student has been taught. If AutoQuiz can reason that a student has an
A-level understanding of a topic, then it’s not a large leap to say the student will perform
well during actual testing of that topic. A novel concept for a course could involve
students using AutoQuiz in a controlled environment until the program is satisfied with

the student’s proficiency in a topic.

Unfortunately, there is no guarantee that the student’s knowledge state can be
accurately extracted from DKR’s LSTM state. In order to allow this concept to come to

fruition, we must construct a secondary model that explicitly tracks student knowledge.

Fortunately, we have a secondary model in the form of DKT. Perhaps a
combination of DKT and DKR could successfully guide a student to proficiency in all of
a course’s topics. In that situation, it might be a good idea to have a separate set of
knowledge challenges to present to public users from the set used to test students who are
undergoing graded challenges. Graded challenges would be separate for the sake of
academic integrity — if students can attempt questions from their own home with no
oversight, then it becomes impossible to tell if the students themselves were answering
the questions, or if they had outside assistance. Zilles et al. [26] propose Computer Based
Testing Facilities as a controlled environment in which to do testing, and such an

environment should be the only place where a student can attempt a graded challenge.

6.3 Question Generation

Since questions given to students come from previous exams, the total quantity of
questions students attempt is relatively small. In order to make more options available to
DKR, a system must be created to generate many questions. While only a finite number

of questions can be asked about concepts to verify knowledge and comprehension of
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subject material, questions that apply that comprehension to practical questions (in the
famous Bloom taxonomy, these questions would fall under Apply, Analyze, or Evaluate)
can be readily created on the fly [2, 9]. AutoQuiz already treats the question-data format
as an interpreted object, so it takes only a little imagination to go beyond that to allow
entry of dynamic and randomized data, generating a new question each time a student
asked. Going beyond that to creating new questions using NLP may be viable in the

future, but current attempts are awkward at best [19].

Design of questions could be very complicated or could be very simple. Simple
cases could include giving an example of a function with input and requesting that the
student evaluate the function manually, determining what the function would return if
anything. A human instructor can determine in what situations the function would never

return, and the function itself can be executed to provide the actual answer.

The more difficult problem by far is coming up with incorrect answers, or
distractors [11], as options that are too far off-base can guide students closer to the right
answer without them actually understanding the question or its subject matter. Clearly,
then, incorrect answers must be similar enough to the correct answer that they are viable
as a choice, but in a variety of different ways so that they can be accurate tests of what a

student’s misconception could be.

The most viable proposal seems to be an expert-based policy. Those who write
the question templates also should provide distractor-generation functions that, given the
template parameters, can return incorrect but convincing answers of different types. In
many cases, more functions can be provided than there are choices; this can allow
different questions from the same template to have different types of distractors that are

uniformly selected.
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In terms of training, dynamic questions would not pose much of a challenge.
Assuming that the dynamic question’s template can be constructed to generate questions
of roughly the same difficulty, DKR would be able to select “Generate a new question
using template X as an action. The response to the network would come in the form of
Gaussian-random encoding of the specific distractor-generation function the student
selected, and use of the same binary value dimension that other question types used to

determine whether the student’s answer was correct or not.

6.4 Future Experiments

A few experiments could help show how effective DKR is at teaching students. It
would be useful to use a randomized controlled study to assign students DKR or DKT at
random, and determine whether there is a significant change in their performance. Also,
a qualitative assessment from a user study could ask students whether they find DKR to

give useful suggestions while they’re actively using the system for immediate feedback.

Expanding the question bank to cover more questions could help guarantee a
closer match for what DKR calculates that the student needs, increasing DKR’s

effectiveness significantly. In future offerings, more questions should continue to be
added.
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7. Conclusion

We presented a Deep-Reinforcement-Learning based approach to intelligent
tutoring. This extension of AutoQuiz serves as evidence that DRL can be used in live
scenarios for education purposes. We also added more generalization to the type of
questions that can be asked of a student, specifically adding multiple-choice-multiple-
select to the already-existing multiple-choice-single-select that had been in the system
previously. Student use of the system is significantly correlated with improved exam
scores. By using a modified Q-Learning algorithm to interact with students, AutoQuiz
now has the foresight to look ahead to future rewards as opposed to picking what it thinks
will be immediately the best. We do not model students directly, instead optimizing

directly for student learning as measured by exam performance.

AutoQuiz, in its current form, is the start of a truly Intelligent Tutoring System.
While it is currently only compatible with CS10: The Beauty and Joy of Computing, it
can still provide a great study tool to thousands of high-school students across the US
who are enrolled in BJC courses, and will certainly find use from the hundreds of UC
Berkeley students who enroll in BJC every year. Future work can provide a greater

foundation on which AutoQuiz can be extended to even more courses.
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