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Abstract

Despite increasing advancements in today’s information exchange infrastructure, the preservation

of user data and privacy still remains a problem. Both insecure baselines and secure solutions leak

user data. For example, Certi�cate Transparency (CT) promises signi�cant security improvements

to existing Public Key Infrastructure solutions that up-to-now have solely relied on the Certi�cate

Authority hierarchy. CT provides a robust auditing layer and transparency solution to quickly

detect such compromises, but introduces the requirement that client browsers interact with

third-party servers when validating a site certi�cate.

In the existing CT system, these requests leak information about each user’s browsing habits

to the hosting server. It is not a stretch to think that this valuable data could be collected and

exploited, as corporations and governments have plenty of �nancial and political incentive to do

so. In this project, we seek to address this problem by using an oblivious �le sharing system with

strong anonymity properties, to provide a more scalable, performant solution to privacy-preserving

queries.
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1 Introduction

Modern secure communication between users and websites requires on the exchange of public

keys. The Public Key Infrastructure (PKI) is a core underpinning technology of the modern internet,

enabling secure tra�c (e.g. via TLS) between clients and servers.

Traditionally, users depended on central certi�cate authorities (CAs) for issuing, moderating,

and verifying certi�cates. This model of putting all trust into a single point of failure has proven to

be far from perfect. There are documented cases of CAs incorrectly issuing certi�cates [1, 11], being

attacked by malicious third parties [5], and even engaging in malicious behavior themselves [20].

Even worse, failure in the CA system is an "or" condition, not an "and" condition. There are dozens

of CAs in existence, and it only takes one of them to be compromised in order for all the sites

dependent on it to be compromised, even if said websites had their public keys stored with other

CAs. These incidents can expose large numbers of users to active man-in-the-middle (MITM)

attacks.

In response to these growing concerns, Certi�cate Transparency (CT) is a new protocol that

addresses these issues by enabling users, CAs, and domain owners to audit certi�cate changes

and identify and monitor potential modi�cations directly relevant to them [4]. Recently, CT has

seen uptake by both web browsers and CAs, with Google Chrome requiring all trusted CAs to

partake in the protocol since 2017 [2]. All changes are logged via hashed chains of Merkle tree

roots, preventing editing of prior history and allowing easy auditing of future changes.

However, CT is not without its �aws. In particular, it represents an additional communication

channel — as part of normal operation, users query servers hosting CT log for certi�cates matching

domains with which they wish to communicate as shown in Figure 1.1. This querying is a central

part of the CT protocol, but has the side e�ect that a malicious log server can glean private

information about the user from their queries, namely, correlating the IP address of the request

with the domains visited over time.

Such tracking could easily be performed without consent. Particularly worrisome is that these

log servers have �nancial incentive to do exactly that: transparently collect user browsing data

and sell it to industry players in advertisement and tracking. This example is just one of many

instances that illustrate the privacy concerns that arise from requiring users to contact a third
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Figure 1.1: A simpli�ed architecture diagram for Certi�cate Transparency. Assuming an honest-

but-curious log server, request C is problematic as it reveals to the log server what sites

the client is visiting.

party (CT logs) to communicate with any desired domain. In general, users should be able to

bene�t from CT without sacri�cing their privacy.

Previous e�orts to maintain privacy in Certi�cate Transparency and other data retrieval systems

are discussed in Section 7. In this project, we seek to extend the CT protocol to preserve users’

privacy from the log servers that they query.

We outline our de�nition of privacy with subsequent design goals in this setting in Section 3.

Our solution should be usable and scalable, in order to e�ciently service hundreds of millions of

users, without sacri�cing user privacy by revealing their queries to the server.
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In Section 4 we describe our solution. We use an ORAM �le sharing system [oram-�lesharing]

to achieve the base security properties, and add system-level performance improvements to make

it more usable. We do this by precomputing encryption exponentiations and garbled circuits,

pipelining phases of the transfer protocol, and batching requests.

Despite implementing all of our improvements, we discovered that we did not meet our scalability

goals. Even so, we saw better performance that points to a possibility of meeting those goals in

the future. This will be further discussed in Section 5.
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2 Related Work

2.1 Privacy in Certificate Transparency

Since Certi�cate Transparency’s inception, there have been signi�cant extensions to increase its

functionality and security. For example, CT has been extended to support certi�cate revocation

and subsequent applications including end-to-end encrypted mail [6].

Additionally, the security guarantees of CT have been demonstrated via cryptographic proper-

ties [7] and measurement studies have been conducted to evaluate how it is used in practice and

the di�erences between public CT logs [10].

However, evaluation and extension of the privacy properties of CT have not been as thoroughly

scrutinized. Eskandarian et al. identi�ed and proposed a solution to privacy issues related to

browsers auditing a CT log and extended CT to support non-public subdomains [8]. To the best of

our knowledge, however, there does not exist an extension to CT that preserves users’ privacy

when interacting with CT logs.

2.2 Oblivious RAM

An adversary with access to a machine’s data access patterns can gain nontrivial information

about a particular process, even if the data itself is encrypted. Oblivious RAM (ORAM) [9] schemes

prevent this by randomizing data access patterns in such a way that observing them reveals no

information about the data being accessed. This is especially useful in the case where a client or

user wishes to access data on a server or machine without revealing what that data is.

Primitive approaches to ORAM are not very e�cient. Path ORAM [17] is an improvement on

traditional ORAM by storing data blocks in a tree structure. It only requires that the client store a

location mapping of data blocks. As such, its bandwidth e�ciency can be reduced to logarithmic or

poly-logarithmic if the client wishes to recursively store the location mappings as another oblivious

tree. This construction has the best bandwidth e�ciency among the known ORAM protocols and

requires little storage on the client’s part. While it is very good in the secure processor setting,
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however, it still su�ers from a complex memory block eviction strategy (O(D log
2 N )) that, while

more optimal for certain problems, does not work well in the multi-party computation setting.

Circuit ORAM [19] is a related ORAM variant which achieves a near-optimal circuit size for

realistic memory block sizes. Also tree-based, it takes advantage of preemptive metadata scans to

complete the eviction algorithm in one pass, substantially improving the eviction e�ciency. This

makes it more useful for multi-party computation between servers than Path ORAM.

2.3 Two-Party Computation

Two-Party Computation (2PC) protocols provide a way for two parties A band B to compute a

mutual result f (a,b) without revealing their respective secret inputs a and b to each other [12].

Both parties start by agreeing on the evaluating function f and obfuscating their secret inputs,

most commonly by XOR-ing with a random value. A generates garbled circuits [21] that compute

f (as well as the required commitments for consistency checks), while B evaluates and decodes

the result based on the information sent by A.

Privacy is preserved because each party is involved in a di�erent share of the computation.

A knows the random values used in generating the garbled circuit but never comes in contact

with input b. B receives A’s inputs, but does not know what it is because A is in charge of the

scrambling and encryption.

2.4 Oblix

Oblix [14], or OBLivious IndeX, is a space- and time- e�cient search index that neither leaks

access patterns nor result size. It works by maintaining an obliviously sorted multimap, which

essentially links keys to values while ensuring that any given client requests are computationally

indistinguishable from random requests. To do so it requires many of the same cryptographic

techniques that we will use in our proposed solution, including garbling, ORAM, Merkle hash

trees, and oblivious data structures (including the obliviously sorted multimap).

Oblix has been demonstrated to be useful in private retrieval of public keys in the case of

certi�cate transparency, and in fact solves the basic problem statement presented at the beginning

of this paper. However, it does rely on trusting secure hardware enclaves, which our solution will

avoid.
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3 Design

3.1 Security

3.1.1 Threat Model

We assume that we have access to two non-colluding servers. These servers can be passive

eavesdroppers (honest-but-curious) — they can observe any local state not secret-shared between

the servers and have full access to client communications with itself.

While requiring two non-colluding servers is perhaps unrealistic in many domains, it �ts the

certi�cate transparency system well, where many di�erent companies are providing CT services.

These di�erent entities could very well be �nancial competitors (e.g. Google versus Symantec), and

sharing collected datasets would eliminate their commercial advantages. Under our threat model,

a CT provider running in this way does not have to be trusted by any clients making requests for

certi�cate proofs.

We assume that CT security properties are still valid, namely, that unauthorized and/or malicious

modi�cations to certi�cates will be detected with extremely high probability by a su�cient number

of auditing nodes. Thus, we focus speci�cally on the privacy implications of CT queries.

3.1.2 Security Definition

We de�ne security as preserving the user’s privacy. When a user queries the CT server, they

should be able to receive the correct proof for the desired domain without revealing to the server

what they asked for.

Even if given two potential domains a and b, and observing many client requests for one of the

domains, a malicious CT log provider should not be able to infer the identity of the queried site

any better than a random guesser. Similarly, patterns of requests for the same domain should not

reveal any information to the server (a new movie trailer drives a sudden tra�c spike to streaming

website a.com so any new repeated requests to a given domain is more likely to be a request for

that website).
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Our security de�nition only concerns itself with user privacy, and not that of the server. Since

certi�cate information is meant to be public anyway, it is not a major security threat for a client to

know the public keys of domains that they did not ask for. However, we still wish to avoid this

scenario to minimize overhead and unnecessary transfers.

3.2 Design Proposal

3.2.1 Goals

We focus on two primary design goals:

• Client queries for a domain’s certi�cate do not leak the requested domain to the CT server,

as discussed above, without relying on a trusted third party or hardware enclave.

• Preserving client privacy imposes reasonable overheads on CT log administration and user

requests.

3.2.2 Oblivious Merkle Trees

Merkle trees are a special type of binary tree in which a node’s value is equal to a hash of its

children. Thus, if the value of a node changes even a tiny bit, that change will propagate up to the

value of the Merkle tree root [13].

In the context of certi�cate transparency, Merkle trees provide a mechanism for users to check

the validity of a certi�cate from a log server with logarithmic e�ciency [4]. An attacker trying

to falsify a certi�cate cannot realistically �nd hash collisions well enough to give a valid proof.

Merkle trees make it infeasible for an attacker to edit or append certi�cates without being quickly

caught.

However, traditional CT allows the server storing the Merkle tree can easily determine which

node a client is requesting the validity proof for (and thus which website a client is trying to visit).

This is because the proof consists of the siblings of the nodes on the path from the root to the node

the client wishes to validate.

To make certi�cate transparency work privately, we need to store Merkle trees obliviously.

While Oblix [14] is successful at this, our goal is to do the same without relying on secure hardware

enclaves. Speci�cally, we wish to access speci�c nodes of the Merkle tree, just as in the non-

oblivious certi�cate transparency public key lookup and proof, without revealing which node we

accessed.
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We do this by using two non-colluding servers that are capable of 2PC. Similar to the Oblix

Merkle tree implementation, nodes are identi�ed using an oblivious index [14]. Instead of relying

on secure enclave, however, we take advantage of the "separation of powers" provided by two-party

computation.

We store the Merkle tree nodes and certi�cate data using ORAM [19] on one server, and the

position mappings on the other. One server knows the values of the nodes, and the other server

knows the positions of the nodes, but neither knows both. Only the user gets both the position and

value shares, and can assemble this information privately to generate the Merkle tree proof. This

setup still uses the original tree structure of the data nodes and operates at O(logn) per request.

3.2.3 Scalability

The crux of our solution to providing private queries on public CT data relies on a scalable

private storage mechanism. Many existing private storage solutions (as discussed in Section 7 are

ine�cient, do not scale to many users, rely on a trusted proxy or specialized hardware, or some

combination of these.

Using ORAM and 2PC alone would ful�ll the �rst requirement. However, while oblivious �le

sharing performs signi�cantly better than existing private �le storage systems, its initial version

is does not scale to serve the entire world’s CT requests. The basic system can only process a

single request at a time in serial due to the ORAM construction, so multiple users making many

simultaneous requests results in fast-growing latencies. Currently, reading a 4KB �le from this

basic system takes about 2.5s when there are many �les in the system under our testing setup,

which we will discuss further in Section 5.

One key design consideration for CT is that because certi�cate validation is performed online

and in batches, providing latencies that are good enough for real-time browsing is unnecessary

in this context. However, to realistically serve many clients, our system must be able to more

gracefully handle multiple requests in parallel.

A primary focus of our project is to modify this existing system to make it more e�ciently serve

multiple concurrent requests. We do so by precomputing encryption exponentiations and garbled

circuits, pipelining relevant stages, and batching similar requests.
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Figure 3.1: The two servers use two-party computation to create the client’s request, without

knowing the other’s share.
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4 Implementation

4.1 Implementing Oblivious Merkle Trees

We make the same assumptions as was mentioned in the threat model in Section 3: the client has

access to two mutually distrustful servers. These servers can both independently be passively

malicious, but they do not collude. In implementing the oblivious Merkle tree, we use C and its

associated libraries like Obliv-C [22] for the baseline system implementation.

One server is responsible for storing the actual data, that is, the certi�cate transparency Merkle

tree nodes. The other server knows the random position mapping for the nodes (analogous to

the oblivious index of Oblix). By using oblivious transfer, the two servers can secret share the

position mapping and use two-party computation to generate the two shares of the �nal value. As

the client is the only one that possesses both shares simultaneously, they are they only one who

receives the �nal result. A basic version of this protocol is shown in Algorithm 1.

Once a node has been accessed, it must be evicted and and randomly placed back in the server as

in Circuit ORAM to prevent the server from linking a previous request to a later request. Otherwise,

a server will be able to tell that the user has accessed the same node multiple times. The eviction

protocol is shown in Algorithm 2.
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Algorithm 1: The basic strategy for requesting the Merkle tree proof in our oblivious CT

scheme, as seen in 2PC [12] and oblivious transfer [3]. For simplicity we exclude the standard

permissions and correctness checks.

Input: server1 (Merkle nodes), server2 (position mappings)

circuit = server1 and server 2 agree on a circuit to compute the Merkle proof

garbledCircuit, labels = server2.garble(circuit)

encryptedPosmap = server2.encrypt(positionMap, labels)

encryptedMerkle = server1.obliviousRequest(ctMerkle, labels)

server2.send(server1, garbledCircuit)

server2.send(server1, encryptedPosmap)

encryptedProof = server1.eval(garbledCircuit, encryptedMerkle, encryptedPosmap)

outputLabel = server1.decrypt(garbledCircuit, encryptedProof)

share1 = server1.format2PC(outputLabel)

server1.send(client, share1)

share2 = server2.format2PC(garbledCircuit)

server2.send(client, share2)

merkleProof = client.recompute(share1, share2)

Result: Obliviously fetches and returns the required blocks for a Merkle tree proof.
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Algorithm 2: evict(): The basic eviction strategy when obliviously requesting the Merkle

tree proof in our private CT scheme, as seen in 2PC [12] and Circuit ORAM [19].

Input: Certi�cateNode

merkTree = Server1.initMerkleTree();

posMap = Server2.initPositionMapping();

List proofNodes = [required nodes for Merkle proof of Certi�cateNode]

for node in proofNodes do
nodePosition = posMap.getPosition(node)

path = path to nodePosition

deepest = Prepare deepest legal node for eviction

target = Prepare target block for writing

holdBlock = ⊥

destination = ⊥

for i in [0 ... length of path] do
writeBlock = ⊥

if holdBlock != ⊥ and i == destination then
writeBlock = holdBlock

holdBlock = ⊥

destination = ⊥

end
if target != ⊥ then

holdBlock = read and remove deepest legal block in path[i]

destination = target[i]

end
if writeBlock != ⊥ then

path[i].write(writeBlock)

end

end

end

Result: After fetching the required blocks for the Merkle tree proof, reshu�es the blocks in

ORAM.
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4.2 Implementing Scaling

In this section, we describe our changes to the baseline oblivious �le sharing system implementation

that allow it to scale more e�ciently when servicing multiple requests concurrently.

4.2.1 Precomputation

Oblivious transfer protocols use asymmetric encryption and garbled circuits. Both of these

processes are computationally expensive and used many times in the sharing protocol, but are

also independent of the inputs and CT itself. Thus, they can be precomputed o�ine, separate

from the actual requests. This should improve both individual request latency as well as the total

throughput of the system.

Modern asymmetric encryption schemes involve computing exponents of very large numbers.

This can be done in a separate thread from the one that services requests. Afterwards, the values

can be retrieved as needed. We only need to be careful to protect the precomputed exponentiations

from cache timing attacks.

Garbled circuits [21] are also very time-consuming because they cannot be reused, and a new one

must be computed for each transfer. Having one server generate a garbled circuit and then transfer

it to the other only when needed introduces signi�cant latency and could be o�oaded to another

set of servers that computes them o�ine or in the background. Again, this can be computed

simultaneously with and separately from the rest of the transfer protocol. While the garbled circuit

itself is important for the transfer, the composition of the circuit itself is independent of the request

so long as it takes the proper number of inputs, is properly randomized, and changed for every

request. We generate the garbled circuits in a separate thread on demand.

4.2.2 Pipelining

The system’s server-side protocol to access �les can be seen as a series of sequential stages. Some

of these stages must be performed sequentially for a single request, while others can happen in

parallel.

The nine main stages of a single request are listed below:

1. Receiving client requests and validating commitments.

2. Performing permissions checks on the user and �les.

3. Obliviously fetching the CT Merkle tree node positions.

4. Obliviously fetching the CT Merkle tree proof nodes.
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5. Generating a permutation to shu�e the paths in ORAM.

6. Applying the generated permutation to ORAM.

7. Computing the 2PC result shares for each server.

8. Secret sharing the result to the client.

9. Recomputing the result based on the given secret shares.

The system cannot concurrently fetch a new path from ORAM while the previous permutation

has not been applied to ORAM. This results either in a loss of obliviousness if the permutation is

not performed at all, or an incorrect lookup if the two operations happen concurrently.

On the other hand, stages 1-2 are completely independent of the following stages, as long as we

are careful not to �nish the revealing process before the validations and permissions checks are

�nished. This suggests that the system could bene�t from pipelining these stages, or overlapping

the execution stages across requests to provide partial parallelism and improve performance when

servicing multiple requests.

Our design is limited by the fact that Obliv-C [22] currently only supports a single thread running

two-party computations. This means, for example, that while stages 2 and 3 could be pipelined,

we are not able to do so as we must perform all 2PC in a single thread. Adding parallelism would

require major modi�cations to Obliv-C that are outside the scope of this project.

Our implementation consists of three logical groups of stages that run in separate threads:

stage 1, stages 2-6, and stages 7-9. While performing all 2PC in a single stage is not ideal, in fact

the group consisting of stages 2-6 is the bottleneck, so splitting stages 2-6 would not result in a

signi�cant speedup.

4.2.3 Batching

In scenarios such as Certi�cate Transparency, client latency is a small concern compared to the

impact of raw throughput on scalability. We explore how to widen bottlenecks in the pipeline

discussed above by batching and processing multiple independent requests in parallel. While this

approach results in longer per-request processing times, we can increase the ability of server pairs

to handle higher load.

We �rst enable the system to successfully process interleaved requests – two or more simul-

taneously transmitted query shares may arrive at a server in any order and still be processed

correctly. We synchronize and update the pending, incomplete queries by their commitment values

and expose a queue-based interface to the main �le access handler, similar to the queues used to
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implement pipelining. The handler withdraws requests from the queue, synchronizes with the

second server, and processes the query as normal. This capability allows for processing sets of

batched requests, simply by withdrawing more than 1 query at a time from the incoming queue.

Interacting with the ORAM requires a set of individual path queries, so it is di�cult to fully

merge a batch of queries. However, we observe that the Circuit ORAM’s tree-based structure

results in notable overlap between di�erent operations. In addition, while computing over the

small �le-index ORAM is quite quick in a 2-party computation setting, operations on the larger

�lesystem tree is more costly. Rather than synchronizing the data ORAM serially for every request,

we compose the changes caused by the batch as a whole to require at most one update per block

in the tree.

As a simple example, imagine a query that results in a block eviction into the root, followed by a

second query whose result moves the same block from the tree root to a bucket at a leaf. Operating

sequentially, we would follow these exact steps and relocate the same data block twice. On the

other hand, applying multiple operations to the index ORAM tree at once, while performing the

appropriate �ushes, can yield more e�cient updates, in this case directly from the stash into a leaf

bucket.

Implementing this requires a fundamental change to the type of permutation generated by the

2PC before it is applied by each server to the data ORAM. Whereas previous permutations consist

solely of two paths intersecting only at the stash and root, composing the result of many individual

evictions requires combining a subtree of varying shape, depending on the particular slice of the

eviction schedule. Maintaining a full-tree permutation representation is not memory e�cient or

necessary; instead, we continue to track changes to the ORAM tree in a global context (rather

than relative to the current eviction path), but in a lightweight C macro-based map [18] that scales

the batch size.

We found that removing path-relative tracking reduces the complexity of index management

required to track ORAM changes, as we can reset the index values at any point and derive any

changes made to the entire tree after some amount of processing. This structure can be collapsed

into an array with explicit index labels in order to create permutation shares for the individual

machines and apply the tracked changes to the �lesystem itself.
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5 Evaluation

Our primary evaluation mechanism was observing the behavior of the modi�ed oblivious �le

sharing system under load from multiple concurrent clients, requesting as many randomly-selected

�les as possible over a 60 second window, extracting latency and throughput behavior as the

number of competing clients (e.g. potential CT-enabled browsers) increases.

For our testing we used an Ubuntu m5d.xlarge NVMe SSD type AWS instance running on one

core with 150GB memory. Without any improvements at all, a single serial request may take 2.5s

or more on our experimental setup depending on the request size and database size.

While we did observe positive trends associated with our systems-level optimizations, they

did not signi�cantly change the overall complexity of processing each request. Due to general

resource constraints and the aforementioned request complexity, we had to limit our evaluation to

small numbers of parallel clients instead of the larger scale that would be more realistically seen

in a potential real-world datacenter.

5.1 Precomputation

As discussed previously, encryption caching by itself provides a little bit of speedup but does not

change the overall complexity. Similarly, precomputing the garbled circuits technically does not

change the big-O complexity, but in practice shaves o� more time than caching of exponentiation

results. Together, they make the latency more bearable.

5.2 Pipelining

Figure 5.1 evaluates the impact of encryption and garbled circuit precomputation/caching and

the pipelining mentioned in Section 4 on client latency. The �lled in measurements represent

clients running a two-stage pipeline, and indicate that such a technique can slightly increase the

e�ectiveness of other optimization. Speci�cally, as the number of concurrent clients increases,

simply pre-computing exponentiations does not bene�t client latency, but pipelining lowers

average latency by a constant factor and bene�ts exponentiation. This is likely due to the fact
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Figure 5.1: Average client latency under contention, with pipelining enabled and disabled.
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that the caching in the baseline serial implementation only occurs when there are no requests

to be handled, whereas the inclusion of multiple pipeline stage threads allows exponentiation to

persist in the background. Thus, we believe the ability to concurrently schedule di�erent tasks

can directly impact overall system e�ectiveness.

Figure 5.2 tracks server-side throughput with multiple outstanding requests (in these experi-

ments, the clients only send one query at a time). As expected, pipelining performs at the same

level as the baseline when only one request is processed at a time since each of the other stages

are empty. Throughput rises drastically with two parallel requests (�lling up both current pipeline

stages) and �attens out with increased load as the pipeline is completely full. As mentioned earlier,

a more �exible MPC implementation with multithreading capabilities would enable much �ner

granularity (more pipeline stages) and therefore more signi�cant performance gains. The best-

performing combination in terms of throughput was again both precomputation and pipelining

with an approximate 22% performance gain, although a pure pipelining-based approach was even-

tually able to exceed the initial raw performance boost o�ered by pre-computation. Again, as with

latency, which these improvements do make the system faster, they do not perform signi�cantly

better as more and more requests are provided.

5.3 Batching

We successfully modi�ed the oblivious Circuit ORAM implementation used by our �le sharing

system to track and collapse subtree-based modi�cations for arbitrary batch sizes as described in

Section 4. However, we encountered an late implementation issue using Obliv-C to expose the

per-server permutations to each party in the 2PC. Thus, while we can demonstrate that such a

method will work in practice, we were not able to perform the same evaluation as above while

batching was enabled.
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Figure 5.2: Server throughput as the number of parallel requests grows, with pipelining enabled

and disabled.
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6 Conclusion and Open �estions

We have shown that while conducting private queries on public databases is possible without the

use of hardware enclaves, the opportunity for systems-based approaches to make scalability gains

is signi�cant. Neither our upgraded oblivious �le sharing system nor similar privacy-preserving

systems are ready to serve hundreds of millions of users, but they provide an important �rst step.

This demonstrates that improvement of performance while preserving privacy is possible, and

more work will make our goal a reality.

Currently, it is possible that speci�c individuals with the right personal incentives, such as

human rights workers or asylum seekers, would be willing to deal with the extra latency for the

sake of privacy and security.

To serve users at scale, our system needs to be able to scale to multiple machines. There has

been work on distributed ORAM in the past such as such as ObliviStore [16] and TaoStore [15],

but designing a similar construction that works with 2PC and in the larger oblivious �le sharing

system presents a signi�cant challenge.

One possible area for even future improvement is making the requests for the Merkle tree proof

more e�cient. Currently, we individually request each node in the Merkle tree proof. However,

being able to do the requests and evictions in one pass would reduce the overall request time. We

must be careful, however, to ensure that none of the requests reveal anything about the others, and

thus hide from the server the path of the Merkle tree proof and the ultimate value of the originally

requested certi�cate at the leaf.

As a side note, it would be helpful to see how our implementation holds up against a real-world

CT server. The publicly available source code on Github by Google has two versions, a deprecated

C version and a newer Golang version. Because the existing oblivious �le sharing system and most

of our codebase has already been implemented in C, we have been working with the deprecated C

version of CT as well for simplicity’s sake.

While the protocols often used in such projects are highly studied and constructed for e�ciency,

real-world cryptosystems are only broadly adopted if they are practical to deploy and operate

at reasonable cost. We hope to continue our work on both privacy-sensitive, secure internet

infrastructure, including Certi�cate Transparency, and scalable private systems in general.
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