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Abstract

On Systems and Algorithms for Distributed Machine Learning

by

Robert K Nishihara

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

The advent of algorithms capable of leveraging vast quantities of data and computational
resources has led to the proliferation of systems and tools aimed to facilitate the development
and usage of these algorithms. Hardware trends, including the end of Moore’s Law and the
maturation of cloud computing, have placed a premium on the development of scalable
algorithms designed for parallel architectures. The combination of these factors has made
distributed computing an integral part of machine learning in practice.

This thesis examines the design of systems and algorithms to support machine learning
in the distributed setting. The distributed computing landscape today consists of many
domain-specific tools. We argue that these tools underestimate the generality of many mod-
ern machine learning applications and hence struggle to support them. We examine the
requirements of a system capable of supporting modern machine learning workloads and
present a general-purpose distributed system architecture for doing so. In addition, we ex-
amine several examples of specific distributed learning algorithms. We explore the theoretical
properties of these algorithms and see how they can leverage such a system.
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Chapter 1

Introduction

The recent empirical success of machine learning techniques in many problem domains has led
to a rapid expansion of the field and a flurry of work in both techniques for and applications
of machine learning. The large-scale requirements of these techniques, both in terms of data
and computational power, combined with the end of Moore’s law, have placed an increased
importance on parallel and distributed computing. As such, many tools have been developed
to facilitate the development and usage of distributed machine learning applications. These
include tools for performing core machine learning tasks like large-scale optimization, rapid
gradient computation, and hyperparameter search. These also include tools for plumbing
data in and out of machine learning algorithms and managing the surrounding ecosystem
such as systems for batch data processing, streaming data processing, and prediction serving.

However, these tools are highly specialized. They handle specific scenarios well, but have
been unable to e�ciently support the diversity of machine learning applications that we see
today. Many applications, including those in reinforcement learning and online learning, are
forcing practitioners to abandon existing systems and build new ones. The reason for this is
that applications in reinforcement learning, online learning, and many other domains exhibit
a variety of computational patterns that span the use cases of many di↵erent specialized
distributed systems. Neither a streaming system nor a model training system will be a perfect
fit for an application that needs to perform both stream processing and model training in a
tightly coupled manner. As a consequence, practitioners often find themselves doing one of
two things.

• Practitioners will stitch multiple distinct distributed systems together to support their
application.

• Practitioners will build new distributed systems from scratch to support their applica-
tion.

The first approach gives rise to a number of practical challenges. Stitching together
multiple distinct systems is not a straightforward exercise in composition. These systems
are typically not designed to interface with one another and therefore don’t expose clean
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boundaries. For example, the systems often have di↵erent fault tolerance strategies that
must be reconciled. If one system uses lineage-based fault tolerance and another uses a
checkpointing strategy, practitioners will have to build additional logic into their applications
to reconcile these di↵erences. Furthermore, it can be di�cult to move data e�ciently across
system boundaries, leading to performance challenges. Lastly, the overhead of learning how
to use and manage many di↵erent distributed systems poses a high barrier to entry and an
ongoing maintanence burden.

The second approach of building a new system can be even worse. By building a new
application-specific distributed system, the application developer at least has the option of
building a tool perfectly suited to his or her problem. However, this approach places sub-
stantial engineering burdens on the application developer. Instead of reasoning specifically
about the algorithm and application at hand, the developer must solve common problems
over and over. These problems include how to handle machine failures, what work to assign
to which machine, and how to communicate and send data e�ciently between machines.
These problems have been repeatedly solved in many di↵erent existing systems, and yet
their solutions have not been abstracted away and shared between systems.

In this thesis, we aim to design a distributed system capable of supporting modern ma-
chine learning applications. Our strategy is to design a system with a su�cient level of
generality such that existing special-purpose systems can be expressed as libraries or appli-
cations on top of it. Such a system would allow machine learning practitioners to develop
their distributed applications at a higher level of abstraction, by reasoning about their appli-
cation logic and not about low-level systems concerns like failure handling, scheduling, and
data movement.

Our approach for achieving generality is to use the same abstractions in the single-
threaded and in the parallel settings. This approach allows a natural translation of workloads
expressible in the single-threaded setting to workloads expressible in the distributed setting,
and makes possible a seamless transition from prototyping on a laptop, to parallelizing an
application across multiple cores on a single machine, to distributing the application across
a large cluster.

The specialized nature of most distributed systems comes from the concepts that they in-
troduce. For example, a data processing system may introduce a dataset as its core concept.
A stream processing system may introduce a stream as its core concept. A hyerparameter
search system may introduce a trial or experiment as its core concept. An automatic di↵er-
entiation framework may introduce a di↵erentiable computation graph as its core concept.
From the perspective of generality, these concepts are limiting as di↵erent computational
patterns must be coerced into unfamiliar abstractions.

Our proposed architecture aims to achieve generality be reusing familiar concepts from
single-threaded programming in the distributed setting. In particular, two of the building
blocks of single-threaded programs are functions and classes. We propose to provide simple
translations of these concepts into the distributed setting as tasks and actors. This means
that single-threaded applications that can be expressed using functions and classes can be
ported to the distributed setting. Our proposed architecture has the following properties.
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• A unified programming model that combines stateless tasks and stateful actors in a
single dataflow graph.

• A horizontally scalable architecture that allows each component to be replicated or
sharded to remove bottlenecks.

• A fault tolerant backend that can recover transparently from machine failures.

The prospect of a general-purpose system holds great promise, and it must strike a
careful balance between low-level and high-level abstractions. By providing su�ciently low-
level abstractions, such a system can allow a broad range of applications to be expressed, and
by providing su�ciently high-level abstractions, the system can prevent those applications
from needing to reason about standard distributed computing problems like scheduling, fault
tolerance, and data movement. Additionally, a single system incurs less pedagogical overhead
as users have fewer concepts and tools that they must learn to use.

In Chapter 2, we illustrate the properties and requirements that such a general system
must satisfy in order to enable modern machine learning applications. In Chapter 3, we
propose an architecture achieving these requirements. In Chapter 4, we present a case study
showing how a variety of distributed training techniques can be implemented on top of this
architecture. In Chapter 5, we examine a distributed algorithm for solving large-scale convex
optimization problems and examine its theoretical properties. In Chapter 6, we examine a
distributed optimization algorithm for solving submodular function optimization problems
and examine its theoretical properties. In Chapter 7, we conclude and discuss future work.
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Chapter 2

The Requirements of a System

Machine learning applications are increasingly deployed not only to serve predictions using
static models, but also as tightly-integrated components of feedback loops involving dynamic,
real-time decision making. These applications pose a new set of requirements, none of which
are di�cult to achieve in isolation, but the combination of which creates a challenge for
existing distributed execution frameworks: computation with millisecond latency at high
throughput, adaptive construction of arbitrary task graphs, and execution of heterogeneous
kernels over diverse sets of resources. In this chapter, we assert that a new distributed
execution framework is needed for such ML applications and propose a candidate approach
with a proof-of-concept architecture that achieves a 63x performance improvement over a
state-of-the-art execution framework for a representative application.1

2.1 Introduction

The landscape of machine learning (ML) applications is undergoing a significant change.
While ML has predominantly focused on training and serving predictions based on static
models (Figure 2.1 top), there is now a strong shift toward the tight integration of ML
models in feedback loops. Indeed, ML applications are expanding from the supervised learn-
ing paradigm, in which static models are trained on o✏ine data, to a broader paradigm,
exemplified by reinforcement learning (RL), in which applications may operate in real envi-
ronments, fuse and react to sensory data from numerous input streams, perform continuous
micro-simulations, and close the loop by taking actions that a↵ect the sensed environment
(Figure 2.1 bottom).

Since learning by interacting with the real world can be unsafe, impractical, or bandwidth-
limited, many reinforcement learning systems rely heavily on simulating physical or vir-
tual environments. Simulations may be used during training (e.g., to learn a neural
network policy), and during deployment. In the latter case, we may constantly update the
simulated environment as we interact with the real world and perform many simulations

1
Material in this chapter is based adapted from [114].
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Figure 2.1: Diagrams of machine learning and reinforcement learning pipelines. The top
figure shows a traditional ML pipeline (o↵-line training), and the bottom figure shows an ex-
ample reinforcement learning pipeline: the system continously interacts with an environment
to learn a policy, i.e., a mapping between observations and actions.

Time

Figure 2.2: Example components of a real-time ML application. The left figure shows
online processing of streaming sensory data to model the environment, the middle figure
shows dynamic graph construction for Monte Carlo tree search (here tasks are simulations
exploring sequences of actions), and the right figure shows heterogeneous tasks in recurrent
neural networks. Di↵erent shades represent di↵erent types of tasks, and the task lengths
represent their durations.

to figure out the next action (e.g., using online planning algorithms like Monte Carlo tree
search). This requires the ability to perform simulations faster than real time.

Such emerging applications require new levels of programming flexibility and perfor-
mance. Meeting these requirements without losing the benefits of modern distributed exe-
cution frameworks (e.g., application-level fault tolerance) poses a significant challenge. Our
own experience implementing ML and RL applications in Spark, MPI, and TensorFlow high-
lights some of these challenges and gives rise to three groups of requirements for supporting
these applications. Though these requirements are critical for ML and RL applications, we
believe they are broadly useful.
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Performance Requirements. Emerging ML applications have stringent latency and
throughput requirements.

• R1: Low latency. The real-time, reactive, and interactive nature of emerging ML ap-
plications calls for fine-granularity task execution with millisecond end-to-end latency
[36].

• R2: High throughput. The volume of micro-simulations required both for training
[109] as well as for inference during deployment [135] necessitates support for high-
throughput task execution on the order of millions of tasks per second.

Execution Model Requirements. Though many existing parallel execution systems [40,
155] have gotten great mileage out of identifying and optimizing for common computational
patterns, emerging ML applications require far greater flexibility [48].

• R3: Dynamic task creation. RL primitives such as Monte Carlo tree search may
generate new tasks during execution based on the results or the durations of other
tasks.

• R4: Heterogeneous tasks. Deep learning primitives and RL simulations produce tasks
with widely di↵erent execution times and resource requirements. Explicit system sup-
port for heterogeneity of tasks and resources is essential for RL applications.

• R5: Arbitrary dataflow dependencies. Similarly, deep learning primitives and RL
simulations produce arbitrary and often fine-grained task dependencies (not restricted
to bulk synchronous parallel).

Practical Requirements.

• R6: Transparent fault tolerance. Fault tolerance remains a key requirement for many
deployment scenarios, and supporting it alongside high-throughput and non-deterministic
tasks poses a challenge.

• R7: Debuggability and Profiling. Debugging and performance profiling are the most
time-consuming aspects of writing any distributed application. This is especially true
for ML and RL applications, which are often compute-intensive and stochastic.

Existing frameworks fall short of achieving one or more of these requirements (Sec-
tion 2.5). We propose a flexible distributed programming model (Section 3.3) to enable
R3-R5. In addition, we propose a system architecture to support this programming model
and meet our performance requirements (R1-R2) without giving up key practical require-
ments (R6-R7). The proposed system architecture (Section 3.4) builds on two principal
components: a logically-centralized control plane and a hybrid scheduler. The former en-
ables stateless distributed components and lineage replay. The latter allocates resources in
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a bottom-up fashion, splitting locally-born work between node-level and cluster-level sched-
ulers.

The result is millisecond-level performance on microbenchmarks and a 63x end-to-end
speedup on a representative RL application over a bulk synchronous parallel (BSP) imple-
mentation.

2.2 Motivating Example

To motivate requirements R1-R7, consider a hypothetical application in which a physical
robot attempts to achieve a goal in an unfamiliar real-world environment. Various sensors
may fuse video and LIDAR input to build multiple candidate models of the robot’s environ-
ment (Figure 2.2 left). The robot is then controlled in real time using actions informed by
a recurrent neural network (RNN) policy (Figure 2.2 right), as well as by Monte Carlo tree
search (MCTS) and other online planning algorithms (Figure 2.2 middle). Using a physics
simulator along with the most recent environment models, MCTS tries millions of action
sequences in parallel, adaptively exploring the most promising ones.

The Application Requirements. Enabling these kinds of applications involves simul-
taneously solving a number of challenges. In this example, the latency requirements (R1)
are stringent, as the robot must be controlled in real time. High task throughput (R2) is
needed to support the online simulations for MCTS as well as the streaming sensory input.

Task heterogeneity (R4) is present on many scales: some tasks run physics simulators,
others process diverse data streams, and some compute actions using RNN-based policies.
Even similar tasks may exhibit substantial variability in duration. For example, the RNN
consists of di↵erent functions for each “layer”, each of which may require di↵erent amounts
of computation. Or, in a task simulating the robot’s actions, the simulation length may
depend on whether the robot achieves its goal or not.

In addition to the heterogeneity of tasks, the dependencies between tasks can be com-
plex (R5, Figs. 2a and 2c) and di�cult to express as batched BSP stages.

Dynamic construction of tasks and their dependencies (R3) is critical. Simulations will
adaptively use the most recent environment models as they become available, and MCTS
may choose to launch more tasks exploring particular subtrees, depending on how promising
they are or how fast the computation is. Thus, the dataflow graph must be constructed
dynamically in order to allow the algorithm to adapt to real-time constraints and opportu-
nities.

2.3 Proposed Solution

In this section, we outline a proposal for a distributed execution framework and a program-
ming model satisfying requirements R1-R7 for real-time ML applications.
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API and Execution Model

In order to support the execution model requirements (R3-R5), we outline an API that
allows arbitrary functions to be specified as remotely executable tasks, with dataflow depen-
dencies between them.

1. Task creation is non-blocking. When a task is created, a future [13] representing the
eventual return value of the task is returned immediately, and the task is executed
asynchronously.

2. Arbitrary function invocation can be designated as a remote task, making it possible to
support arbitrary execution kernels (R4). Task arguments can be either regular values
or futures. When an argument is a future, the newly created task becomes dependent
on the task that produces that future, enabling arbitrary DAG dependencies (R5).

3. Any task execution can create new tasks without blocking on their completion. Task
throughput is therefore not limited by the bandwidth of any one worker (R2), and the
computation graph is dynamically built (R3).

4. The actual return value of a task can be obtained by calling the get method on the
corresponding future. This blocks until the task finishes executing.

5. The wait method takes a list of futures, a timeout, and a number of values. It returns
the subset of futures whose tasks have completed when the timeout occurs or the
requested number have completed.

The wait primitive allows developers to specify latency requirements (R1) with a time-
out, accounting for arbitrarily sized tasks (R4). This is important for ML applications, in
which a straggler task may produce negligible algorithmic improvement but block the entire
computation. This primitive enhances our ability to dynamically modify the computation
graph as a function of execution-time properties (R3).

To complement the fine-grained programming model, we propose using a dataflow exe-
cution model in which tasks become available for execution if and only if their dependencies
have finished executing.

Proposed Architecture

Our proposed architecture consists of multiple worker processes running on each node in the
cluster, one local scheduler per node, one or more global schedulers throughout the cluster,
and an in-memory object store for sharing data between workers (see Figure 3.5).

The two principal architectural features that enable R1-R7 are a hybrid scheduler and
a centralized control plane.
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Figure 2.3: Proposed Architecture, with hybrid scheduling (Section 2.3) and a centralized
control plane (Section 2.3).

Centralized Control State

As shown in Figure 3.5, our architecture relies on a logically-centralized control plane [90].
To realize this architecture, we use a database that provides both (1) storage for the system’s
control state, and (2) publish-subscribe functionality to enable various system components
to communicate with each other.2

This design enables virtually any component of the system, except for the database, to
be stateless. This means that as long as the database is fault-tolerant, we can recover from
component failures by simply restarting the failed components. Furthermore, the database
stores the computation lineage, which allows us to reconstruct lost data by replaying the
computation [155]. As a result, this design is fault tolerant (R6). The database also makes
it easy to write tools to profile and inspect the state of the system (R7).

To achieve the throughput requirement (R2), we shard the database. Since we require

2
In our implementation we employ Redis [130], although many other fault-tolerant key-value stores could

be used.
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only exact matching operations and since the keys are computed as hashes, sharding is rela-
tively straightforward. Our early experiments show that this design enables sub-millisecond
scheduling latencies (R1).

Hybrid Scheduling

Our requirements for latency (R1), throughput (R2), and dynamic graph construction (R3)
naturally motivate a hybrid scheduler in which local schedulers assign tasks to workers or
delegate responsibility to one or more global schedulers.

Workers submit tasks to their local schedulers which decide to either assign the tasks to
other workers on the same physical node or to “spill over” the tasks to a global scheduler.
Global schedulers can then assign tasks to local schedulers based on global information about
factors including object locality and resource availability.

Since tasks may create other tasks, schedulable work may come from any worker in the
cluster. Enabling any local scheduler to handle locally generated work without involving
a global scheduler improves low latency (R1), by avoiding communication overheads, and
throughput (R2), by significantly reducing the global scheduler load. This hybrid scheduling
scheme fits well with the recent trend toward large multicore servers [152].

2.4 Feasibility

To demonstrate that these API and architectural proposals could in principle support re-
quirements R1-R7, we provide some simple examples using the preliminary system design
outlined in Section 2.3.

Latency Microbenchmarks

Using our prototype system, a task can be created, meaning that the task is submitted
asynchronously for execution and a future is returned, in around 35µs. Once a task has
finished executing, its return value can be retrieved in around 110µs. The end-to-end time,
from submitting an empty task for execution to retrieving its return value, is around 290µs
when the task is scheduled locally and 1ms when the task is scheduled on a remote node.

Reinforcement Learning

We implement a simple workload in which an RL agent is trained to play an Atari game.
The workload alternates between stages in which actions are taken in parallel simulations
and actions are computed in parallel on GPUs. Despite the BSP nature of the example,
an implementation in Spark is 9x slower than the single-threaded implementation due to
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system overhead. An implementation in our prototype is 7x faster than the single-threaded
version and 63x faster than the Spark implementation.3

This example exhibits two key features. First, tasks are very small (around 7ms each),
making low task overhead critical. Second, the tasks are heterogeneous in duration and in
resource requirements (e.g., CPUs and GPUs).

This example is just one component of an RL workload, and would typically be used
as a subroutine of a more sophisticated (non-BSP) workload. For example, using the wait

primitive, we can adapt the example to process the simulation tasks in the order that they
finish so as to better pipeline the simulation execution with the action computations on the
GPU, or run the entire workload nested within a larger adaptive hyperparameter search.
These changes are all straightforward using the API described in Section 3.3 and involve a
few extra lines of code.

2.5 Related Work

Static dataflow systems [40, 155, 77, 108] are well-established in analytics and ML, but
they require the dataflow graph to be specified upfront, e.g., by a driver program. Some, like
MapReduce [40] and Spark [155], emphasize BSP execution, while others, like Dryad [77] and
Naiad [108], support complex dependency structures (R5). Others, such as TensorFlow [1]
and MXNet [32], are optimized for deep-learning workloads. However, none of these systems
fully support the ability to dynamically extend the dataflow graph in response to both input
data and task progress (R3).

Dynamic dataflow systems like CIEL [107] and Dask [127] support many of the same
features as static dataflow systems, with additional support for dynamic task creation (R3).
These systems meet our execution model requirements (R3-R5). However, their architec-
tural limitations, such as entirely centralized scheduling, are such that low latency (R1) must
often be traded o↵ with high throughput (R2) (e.g., via batching), whereas our applications
require both.

Other systems like Open MPI [58] and actor-model variants Orleans [28] and Erlang [8]
provide low-latency (R1) and high-throughput (R2) distributed computation. Though
these systems do in principle provide primitives for supporting our execution model re-
quirements (R3-R5) and have been used for ML [34, 5], much of the logic required for
systems-level features, such as fault tolerance (R6) and locality-aware task scheduling, must
be implemented at the application level.

3
In this comparison, the GPU model fitting could not be naturally parallelized on Spark, so the numbers

are reported as if it had been perfectly parallelized with no overhead in Spark.
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2.6 Conclusion

Machine learning applications are evolving to require dynamic dataflow parallelism with
millisecond latency and high throughput, posing a severe challenge for existing frameworks.
We outline the requirements for supporting this emerging class of real-time ML applications,
and we propose a programming model and architectural design to address the key require-
ments (R1-R5), without compromising existing requirements (R6-R7). Preliminary, proof-
of-concept results confirm millisecond-level system overheads and meaningful speedups for a
representative RL application.
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Chapter 3

Ray: A System for Machine Learning

The next generation of AI applications will continuously interact with the environment and
learn from these interactions. These applications impose new and demanding systems re-
quirements, both in terms of performance and flexibility. In this chapter, we consider these
requirements and present Ray—a distributed system to address them. Ray implements a
unified interface that can express both task-parallel and actor-based computations, sup-
ported by a single dynamic execution engine. To meet the performance requirements, Ray
employs a distributed scheduler and a distributed and fault-tolerant store to manage the
system’s control state. In our experiments, we demonstrate scaling beyond 1.8 million tasks
per second and better performance than existing specialized systems for several challenging
reinforcement learning applications.1

3.1 Introduction

Over the past two decades, many organizations have been collecting—and aiming to exploit—
ever-growing quantities of data. This has led to the development of a plethora of frameworks
for distributed data analysis, including batch [40, 156, 77], streaming [storm, 29, 108], and
graph [99, 100, 65] processing systems. The success of these frameworks has made it possible
for organizations to analyze large data sets as a core part of their business or scientific
strategy, and has ushered in the age of “Big Data.”

More recently, the scope of data-focused applications has expanded to encompass more
complex artificial intelligence (AI) or machine learning (ML) techniques [84]. The paradigm
case is that of supervised learning, where data points are accompanied by labels, and where
the workhorse technology for mapping data points to labels is provided by deep neural net-
works. The complexity of these deep networks has led to another flurry of frameworks that
focus on the training of deep neural networks and their use in prediction. These frame-
works often leverage specialized hardware (e.g., GPUs and TPUs), with the goal of reducing

1
Material in this chapter is based adapted from [105].
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training time in a batch setting. Examples include TensorFlow [1], MXNet [32], and Py-
Torch [120].

The promise of AI is, however, far broader than classical supervised learning. Emerging
AI applications must increasingly operate in dynamic environments, react to changes in the
environment, and take sequences of actions to accomplish long-term goals [2, 114]. They
must aim not only to exploit the data gathered, but also to explore the space of possible
actions. These broader requirements are naturally framed within the paradigm of reinforce-
ment learning (RL). RL deals with learning to operate continuously within an uncertain
environment based on delayed and limited feedback [138]. RL-based systems have already
yielded remarkable results, such as Google’s AlphaGo beating a human world champion
[135], and are beginning to find their way into dialogue systems, UAVs [111], and robotic
manipulation [69, 145].

The central goal of an RL application is to learn a policy—a mapping from the state of the
environment to a choice of action—that yields e↵ective performance over time, e.g., winning
a game or piloting a drone. Finding e↵ective policies in large-scale applications requires
three main capabilities. First, RL methods often rely on simulation to evaluate policies.
Simulations make it possible to explore many di↵erent choices of action sequences and to learn
about the long-term consequences of those choices. Second, like their supervised learning
counterparts, RL algorithms need to perform distributed training to improve the policy based
on data generated through simulations or interactions with the physical environment. Third,
policies are intended to provide solutions to control problems, and thus it is necessary to
serve the policy in interactive closed-loop and open-loop control scenarios.

These characteristics drive new systems requirements: a system for RL must support
fine-grained computations (e.g., rendering actions in milliseconds when interacting with the
real world, and performing vast numbers of simulations), must support heterogeneity both
in time (e.g., a simulation may take milliseconds or hours) and in resource usage (e.g., GPUs
for training and CPUs for simulations), and must support dynamic execution, as results of
simulations or interactions with the environment can change future computations. Thus, we
need a dynamic computation framework that handles millions of heterogeneous tasks per
second at millisecond-level latencies.

Existing frameworks that have been developed for Big Data workloads or for supervised
learning workloads fall short of satisfying these new requirements for RL. Bulk-synchronous
parallel systems such as MapReduce [40], Apache Spark [156], and Dryad [77] do not support
fine-grained simulation or policy serving. Task-parallel systems such as CIEL [107] and
Dask [127] provide little support for distributed training and serving. The same is true
for streaming systems such as Naiad [108] and Storm [storm]. Distributed deep-learning
frameworks such as TensorFlow [1] and MXNet [32] do not naturally support simulation and
serving. Finally, model-serving systems such as TensorFlow Serving [140] and Clipper [35]
support neither training nor simulation.

While in principle one could develop an end-to-end solution by stitching together several
existing systems (e.g., Horovod [134] for distributed training, Clipper [35] for serving, and
CIEL [107] for simulation), in practice this approach is untenable due to the tight coupling of
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these components within applications. As a result, researchers and practitioners today build
one-o↵ systems for specialized RL applications [142, 109, 135, 115, 129, 116]. This approach
imposes a massive systems engineering burden on the development of distributed applications
by essentially pushing standard systems challenges like scheduling, fault tolerance, and data
movement onto each application.

In this chapter, we propose Ray, a general-purpose cluster-computing framework that
enables simulation, training, and serving for RL applications. The requirements of these
workloads range from lightweight and stateless computations, such as for simulation, to
long-running and stateful computations, such as for training. To satisfy these requirements,
Ray implements a unified interface that can express both task-parallel and actor-based com-
putations. Tasks enable Ray to e�ciently and dynamically load balance simulations, process
large inputs and state spaces (e.g., images, video), and recover from failures. In contrast,
actors enable Ray to e�ciently support stateful computations, such as model training, and
expose shared mutable state to clients, (e.g., a parameter server). Ray implements the actor
and the task abstractions on top of a single dynamic execution engine that is highly scalable
and fault tolerant.

To meet the performance requirements, Ray distributes two components that are typically
centralized in existing frameworks [156, 77, 107]: (1) the task scheduler and (2) a metadata
store which maintains the computation lineage and a directory for data objects. This allows
Ray to schedule millions of tasks per second with millisecond-level latencies. Furthermore,
Ray provides lineage-based fault tolerance for tasks and actors, and replication-based fault
tolerance for the metadata store.

While Ray supports serving, training, and simulation in the context of RL applications,
this does not mean that it should be viewed as a replacement for systems that provide
solutions for these workloads in other contexts. In particular, Ray does not aim to substitute
for serving systems like Clipper [35] and TensorFlow Serving [140], as these systems address
a broader set of challenges in deploying models, including model management, testing, and
model composition. Similarly, despite its flexibility, Ray is not a substitute for generic data-
parallel frameworks, such as Spark [156], as it currently lacks the rich functionality and APIs
(e.g., straggler mitigation, query optimization) that these frameworks provide.

We make the following contributions:

• We design and build the first distributed framework that unifies training, simulation,
and serving—necessary components of emerging RL applications.

• To support these workloads, we unify the actor and task-parallel abstractions on top
of a dynamic task execution engine.

• To achieve scalability and fault tolerance, we propose a system design principle in which
control state is stored in a sharded metadata store and all other system components
are stateless.

• To achieve scalability, we propose a bottom-up distributed scheduling strategy.
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Figure 3.1: Example of an RL system.

3.2 Motivation and Requirements

We begin by considering the basic components of an RL system and fleshing out the key
requirements for Ray. As shown in Figure 3.1, in an RL setting, an agent interacts repeatedly
with the environment. The goal of the agent is to learn a policy that maximizes a reward.
A policy is a mapping from the state of the environment to a choice of action. The precise
definitions of environment, agent, state, action, and reward are application-specific.

To learn a policy, an agent typically employs a two-step process: (1) policy evaluation and
(2) policy improvement. To evaluate the policy, the agent interacts with the environment
(e.g., with a simulation of the environment) to generate trajectories, where a trajectory
consists of a sequence of (state, reward) tuples produced by the current policy. Then,
the agent uses these trajectories to improve the policy; i.e., to update the policy in the
direction of the gradient that maximizes the reward. Figure 3.2 shows an example of the
pseudocode used by an agent to learn a policy. This pseudocode evaluates the policy by
invoking rollout(environment, policy) to generate trajectories. train policy() then uses
these trajectories to improve the current policy via policy.update(trajectories). This process
repeats until the policy converges.

Thus, a framework for RL applications must provide e�cient support for training, serving,
and simulation (Figure 3.1). Next, we briefly describe these workloads.

Training typically involves running stochastic gradient descent (SGD), often in a dis-
tributed setting, to update the policy. Distributed SGD typically relies on an allreduce
aggregation step or a parameter server [93].

Serving uses the trained policy to render an action based on the current state of the
environment. A serving system aims to minimize latency, and maximize the number of
decisions per second. To scale, load is typically balanced across multiple nodes serving the
policy.

Finally, most existing RL applications use simulations to evaluate the policy—current RL
algorithms are not sample-e�cient enough to rely solely on data obtained from interactions
with the physical world. These simulations vary widely in complexity. They might take a few
ms (e.g., simulate a move in a chess game) to minutes (e.g., simulate a realistic environment
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// evaluate policy by interacting with env. (e.g., simulator)
rollout(policy, environment):

trajectory = []
state = environment.initial_state()
while (not environment.has_terminated()):

action = policy.compute(state) // Serving
state, reward = environment.step(action) // Simulation
trajectory.append(state, reward)

return trajectory

// improve policy iteratively until it converges
train_policy(environment):

policy = initial_policy()
while (policy has not converged):

trajectories = []
for i from 1 to k:

// evaluate policy by generating k rollouts
trajectories.append(rollout(policy, environment))
// improve policy
policy = policy.update(trajectories) // Training

return policy

Figure 3.2: Typical RL pseudocode for learning a policy.

for a self-driving car).
In contrast with supervised learning, in which training and serving can be handled sepa-

rately by di↵erent systems, in RL all three of these workloads are tightly coupled in a single
application, with stringent latency requirements between them. Currently, no framework
supports this coupling of workloads. In theory, multiple specialized frameworks could be
stitched together to provide the overall capabilities, but in practice, the resulting data move-
ment and latency between systems is prohibitive in the context of RL. As a result, researchers
and practitioners have been building their own one-o↵ systems.

This state of a↵airs calls for the development of new distributed frameworks for RL that
can e�ciently support training, serving, and simulation. In particular, such a framework
should satisfy the following requirements:

Fine-grained, heterogeneous computations. The duration of a computation can range from
milliseconds (e.g., taking an action) to hours (e.g., training a complex policy). Additionally,
training often requires heterogeneous hardware (e.g., CPUs, GPUs, or TPUs).

Flexible computation model. RL applications require both stateless and stateful compu-
tations. Stateless computations can be executed on any node in the system, which makes
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Name Description
futures = f .remote(args) Execute function f remotely. f .remote()

can take objects or futures as inputs and
returns one or more futures. This is
non-blocking.

objects = ray.get(futures) Return the values associated with
one or more futures. This is blocking.

ready futures = ray.wait(futures , k , timeout) Return the futures whose corresponding
tasks have completed as soon as either
k have completed or the timeout expires.

actor = Class.remote(args) Instantiate class Class as a remote actor,
and return a handle to it. Call a method

futures = actor .method.remote(args) on the remote actor and return one or
more futures. Both are non-blocking.

Table 3.1: Ray API

Tasks (stateless) Actors (stateful)
Fine-grained load balancing Coarse-grained load balancing
Support for object locality Poor locality support

High overhead for small updates Low overhead for small updates
E�cient failure handling Overhead from checkpointing

Table 3.2: Tasks vs. actors tradeo↵s.

it easy to achieve load balancing and movement of computation to data, if needed. Thus
stateless computations are a good fit for fine-grained simulation and data processing, such
as extracting features from images or videos. In contrast stateful computations are a good
fit for implementing parameter servers, performing repeated computation on GPU-backed
data, or running third-party simulators that do not expose their state.

Dynamic execution. Several components of RL applications require dynamic execution,
as the order in which computations finish is not always known in advance (e.g., the order
in which simulations finish), and the results of a computation can determine future compu-
tations (e.g., the results of a simulation will determine whether we need to perform more
simulations).

We make two final comments. First, to achieve high utilization in large clusters, such
a framework must handle millions of tasks per second.2 Second, such a framework is not
intended for implementing deep neural networks or complex simulators from scratch. Instead,

2
Assume 5ms single-core tasks and a cluster of 200 32-core nodes. This cluster can run (1s/5ms)⇥ 32⇥

200 = 1.28M tasks/sec.
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@ray.remote
def create_policy():
# Initialize the policy randomly.
return policy

@ray.remote(num_gpus=1)
class Simulator(object):
def __init__(self):
# Initialize the environment.
self.env = Environment()

def rollout(self, policy, num_steps):
observations = []
observation = self.env.current_state()
for _ in range(num_steps):
action = policy(observation)
observation = self.env.step(action)
observations.append(observation)

return observations

@ray.remote(num_gpus=2)
def update_policy(policy, *rollouts):
# Update the policy.
return policy

@ray.remote
def train_policy():
# Create a policy.
policy_id = create_policy.remote()
# Create 10 actors.
simulators = [Simulator.remote() for _ in range(10)]
# Do 100 steps of training.
for _ in range(100):
# Perform one rollout on each actor.
rollout_ids = [s.rollout.remote(policy_id)

for s in simulators]
# Update the policy with the rollouts.
policy_id =

update_policy.remote(policy_id, *rollout_ids)
return ray.get(policy_id)

Figure 3.3: Python code implementing the example in Figure 3.2 in Ray. Note that
@ray.remote indicates remote functions and actors. Invocations of remote functions and
actor methods return futures, which can be passed to subsequent remote functions or actor
methods to encode task dependencies. Each actor has an environment object self.env shared
between all of its methods.

it should enable seamless integration with existing simulators [25, 18, 143] and deep learning
frameworks [1, 32, 120, 83].

3.3 Programming and Computation Model

Ray implements a dynamic task graph computation model, i.e., it models an application as a
graph of dependent tasks that evolves during execution. On top of this model, Ray provides
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Figure 3.4: The task graph corresponding to an invocation of train policy.remote() in Fig-
ure 3.3. Remote function calls and the actor method calls correspond to tasks in the task
graph. The figure shows two actors. The method invocations for each actor (the tasks la-
beled A1i and A2i) have stateful edges between them indicating that they share the mutable
actor state. There are control edges from train policy to the tasks that it invokes. To train
multiple policies in parallel, we could call train policy.remote() multiple times.

both an actor and a task-parallel programming abstraction. This unification di↵erentiates
Ray from related systems like CIEL, which only provides a task-parallel abstraction, and
from Orleans [28] or Akka [3], which primarily provide an actor abstraction.
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Programming Model

Tasks. A task represents the execution of a remote function on a stateless worker. When a
remote function is invoked, a future representing the result of the task is returned immedi-
ately. Futures can be retrieved using ray.get() and passed as arguments into other remote
functions without waiting for their result. This allows the user to express parallelism while
capturing data dependencies. Table 3.1 shows Ray’s API.

Remote functions operate on immutable objects and are expected to be stateless and side-
e↵ect free: their outputs are determined solely by their inputs. This implies idempotence,
which simplifies fault tolerance through function re-execution on failure.
Actors. An actor represents a stateful computation. Each actor exposes methods that can
be invoked remotely and are executed serially. A method execution is similar to a task, in
that it executes remotely and returns a future, but di↵ers in that it executes on a stateful
worker. A handle to an actor can be passed to other actors or tasks, making it possible for
them to invoke methods on that actor.

Table 3.2 summarizes the properties of tasks and actors. Tasks enable fine-grained load
balancing through leveraging load-aware scheduling at task granularity, input data locality, as
each task can be scheduled on the node storing its inputs, and low recovery overhead, as there
is no need to checkpoint and recover intermediate state. In contrast, actors provide much
more e�cient fine-grained updates, as these updates are performed on internal rather than
external state, which typically requires serialization and deserialization. For example, actors
can be used to implement parameter servers [93] and GPU-based iterative computations
(e.g., training). In addition, actors can be used to wrap third-party simulators and other
opaque handles that are hard to serialize.

To satisfy the requirements for heterogeneity and flexibility (Section 3.2), we augment
the API in three ways. First, to handle concurrent tasks with heterogeneous durations,
we introduce ray.wait(), which waits for the first k available results, instead of waiting
for all results like ray.get(). Second, to handle resource-heterogeneous tasks, we enable
developers to specify resource requirements so that the Ray scheduler can e�ciently manage
resources. Third, to improve flexibility, we enable nested remote functions, meaning that
remote functions can invoke other remote functions. This is also critical for achieving high
scalability (Section 3.4), as it enables multiple processes to invoke remote functions in a
distributed fashion.

Computation Model

Ray employs a dynamic task graph computation model [42], in which the execution of both
remote functions and actor methods is automatically triggered by the system when their
inputs become available. In this section, we describe how the computation graph (Figure 3.4)
is constructed from a user program (Figure 3.3). This program uses the API in Table 3.1 to
implement the pseudocode from Figure 3.2.
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Ignoring actors first, there are two types of nodes in a computation graph: data objects
and remote function invocations, or tasks. There are also two types of edges: data edges
and control edges. Data edges capture the dependencies between data objects and tasks.
More precisely, if data object D is an output of task T , we add a data edge from T to D.
Similarly, if D is an input to T , we add a data edge from D to T . Control edges capture the
computation dependencies that result from nested remote functions (Section 3.3): if task T1

invokes task T2, then we add a control edge from T1 to T2.
Actor method invocations are also represented as nodes in the computation graph. They

are identical to tasks with one key di↵erence. To capture the state dependency across
subsequent method invocations on the same actor, we add a third type of edge: a stateful
edge. If method Mj is called right after method Mi on the same actor, then we add a stateful
edge from Mi to Mj. Thus, all methods invoked on the same actor object form a chain that
is connected by stateful edges (Figure 3.4). This chain captures the order in which these
methods were invoked.

Stateful edges help us embed actors in an otherwise stateless task graph, as they capture
the implicit data dependency between successive method invocations sharing the internal
state of an actor. Stateful edges also enable us to maintain lineage. As in other dataflow
systems [156], we track data lineage to enable reconstruction. By explicitly including stateful
edges in the lineage graph, we can easily reconstruct lost data, whether produced by remote
functions or actor methods (Section 3.4).

3.4 Architecture

Ray’s architecture comprises (1) an application layer implementing the API, and (2) a system
layer providing high scalability and fault tolerance.

Application Layer

The application layer consists of three types of processes:

• Driver: A process executing the user program.

• Worker: A stateless process that executes tasks (remote functions) invoked by a driver
or another worker. Workers are started automatically and assigned tasks by the system
layer. When a remote function is declared, the function is automatically published to
all workers. A worker executes tasks serially, with no local state maintained across
tasks.

• Actor: A stateful process that executes, when invoked, only the methods it exposes.
Unlike a worker, an actor is explicitly instantiated by a worker or a driver. Like workers,
actors execute methods serially, except that each method depends on the state resulting
from the previous method execution.
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Figure 3.5: Ray’s architecture consists of two parts: an application layer and a system
layer. The application layer implements the API and the computation model described in
Section 3.3, the system layer implements task scheduling and data management to satisfy
the performance and fault-tolerance requirements.

System Layer

The system layer consists of three major components: a global control store, a distributed
scheduler, and a distributed object store. All components are horizontally scalable and
fault-tolerant.

Global Control Store (GCS)

The global control store (GCS) maintains the entire control state of the system, and it is a
unique feature of our design. At its core, GCS is a key-value store with pub-sub functionality.
We use sharding to achieve scale, and per-shard chain replication [125] to provide fault
tolerance. The primary reason for the GCS and its design is to maintain fault tolerance and
low latency for a system that can dynamically spawn millions of tasks per second.

Fault tolerance in case of node failure requires a solution to maintain lineage information.
Existing lineage-based solutions [156, 153, 107, 77] focus on coarse-grained parallelism and
can therefore use a single node (e.g., master, driver) to store the lineage without impacting
performance. However, this design is not scalable for a fine-grained and dynamic workload
like simulation. Therefore, we decouple the durable lineage storage from the other system
components, allowing each to scale independently.

Maintaining low latency requires minimizing overheads in task scheduling, which involves
choosing where to execute, and subsequently task dispatch, which involves retrieving remote
inputs from other nodes. Many existing dataflow systems [156, 107, 127] couple these by
storing object locations and sizes in a centralized scheduler, a natural design when the sched-
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Figure 3.6: Bottom-up distributed scheduler. Tasks are submitted bottom-up, from drivers
and workers to a local scheduler and forwarded to the global scheduler only if needed (Sec-
tion 3.4). The thickness of each arrow is proportional to its request rate.

uler is not a bottleneck. However, the scale and granularity that Ray targets requires keeping
the centralized scheduler o↵ the critical path. Involving the scheduler in each object trans-
fer is prohibitively expensive for primitives important to distributed training like allreduce,
which is both communication-intensive and latency-sensitive. Therefore, we store the object
metadata in the GCS rather than in the scheduler, fully decoupling task dispatch from task
scheduling.

In summary, the GCS significantly simplifies Ray’s overall design, as it enables every
component in the system to be stateless. This not only simplifies support for fault tolerance
(i.e., on failure, components simply restart and read the lineage from the GCS), but also
makes it easy to scale the distributed object store and scheduler independently, as all com-
ponents share the needed state via the GCS. An added benefit is the easy development of
debugging, profiling, and visualization tools.

Bottom-Up Distributed Scheduler

As discussed in Section 3.2, Ray needs to dynamically schedule millions of tasks per second,
tasks which may take as little as a few milliseconds. None of the cluster schedulers we are
aware of meet these requirements. Most cluster computing frameworks, such as Spark [156],
CIEL [107], and Dryad [77] implement a centralized scheduler, which can provide locality but
at latencies in the tens of ms. Distributed schedulers such as work stealing [23], Sparrow [118]
and Canary [124] can achieve high scale, but they either don’t consider data locality [23],
or assume tasks belong to independent jobs [118], or assume the computation graph is
known [124].
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To satisfy the above requirements, we design a two-level hierarchical scheduler consisting
of a global scheduler and per-node local schedulers. To avoid overloading the global scheduler,
the tasks created at a node are submitted first to the node’s local scheduler. A local scheduler
schedules tasks locally unless the node is overloaded (i.e., its local task queue exceeds a
predefined threshold), or it cannot satisfy a task’s requirements (e.g., lacks a GPU). If a local
scheduler decides not to schedule a task locally, it forwards it to the global scheduler. Since
this scheduler attempts to schedule tasks locally first (i.e., at the leaves of the scheduling
hierarchy), we call it a bottom-up scheduler.

The global scheduler considers each node’s load and task’s constraints to make scheduling
decisions. More precisely, the global scheduler identifies the set of nodes that have enough
resources of the type requested by the task, and of these nodes selects the node which
provides the lowest estimated waiting time. At a given node, this time is the sum of (i) the
estimated time the task will be queued at that node (i.e., task queue size times average task
execution), and (ii) the estimated transfer time of task’s remote inputs (i.e., total size of
remote inputs divided by average bandwidth). The global scheduler gets the queue size at
each node and the node resource availability via heartbeats, and the location of the task’s
inputs and their sizes from GCS. Furthermore, the global scheduler computes the average
task execution and the average transfer bandwidth using simple exponential averaging. If
the global scheduler becomes a bottleneck, we can instantiate more replicas all sharing the
same information via GCS. This makes our scheduler architecture highly scalable.

In-Memory Distributed Object Store

To minimize task latency, we implement an in-memory distributed storage system to store the
inputs and outputs of every task, or stateless computation. On each node, we implement the
object store via shared memory. This allows zero-copy data sharing between tasks running
on the same node. As a data format, we use Apache Arrow [7].

If a task’s inputs are not local, the inputs are replicated to the local object store before
execution. Also, a task writes its outputs to the local object store. Replication eliminates the
potential bottleneck due to hot data objects and minimizes task execution time as a task only
reads/writes data from/to the local memory. This increases throughput for computation-
bound workloads, a profile shared by many AI applications. For low latency, we keep objects
entirely in memory and evict them as needed to disk using an LRU policy.

As with existing cluster computing frameworks, such as Spark [156], and Dryad [77], the
object store is limited to immutable data. This obviates the need for complex consistency
protocols (as objects are not updated), and simplifies support for fault tolerance. In the case
of node failure, Ray recovers any needed objects through lineage re-execution. The lineage
stored in the GCS tracks both stateless tasks and stateful actors during initial execution; we
use the former to reconstruct objects in the store.

For simplicity, our object store does not support distributed objects, i.e., each object fits
on a single node. Distributed objects like large matrices or trees can be implemented at the
application level as collections of futures.
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Implementation

Ray is an active open source project3 developed at the University of California, Berkeley.
Ray fully integrates with the Python environment and is easy to install by simply running
pip install ray. The implementation comprises ⇡ 40K lines of code (LoC), 72% in C++
for the system layer, 28% in Python for the application layer. The GCS uses one Redis [130]
key-value store per shard, with entirely single-key operations. GCS tables are sharded by
object and task IDs to scale, and every shard is chain-replicated [125] for fault tolerance. We
implement both the local and global schedulers as event-driven, single-threaded processes.
Internally, local schedulers maintain cached state for local object metadata, tasks waiting for
inputs, and tasks ready for dispatch to a worker. To transfer large objects between di↵erent
object stores, we stripe the object across multiple TCP connections.

Putting Everything Together

Figure 3.7 illustrates how Ray works end-to-end with a simple example that adds two objects
a and b, which could be scalars or matrices, and returns result c. The remote function add()
is automatically registered with the GCS upon initialization and distributed to every worker
in the system (step 0 in the top of Figure 3.7).

The top figure in Figure 3.7 shows the step-by-step operations triggered by a driver in-
voking add.remote(a, b), where a and b are stored on nodes N1 and N2, respectively. The
driver submits add(a, b) to the local scheduler (step 1), which forwards it to a global sched-
uler (step 2).4 Next, the global scheduler looks up the locations of add(a, b)’s arguments
in the GCS (step 3) and decides to schedule the task on node N2, which stores argument
b (step 4). The local scheduler at node N2 checks whether the local object store contains
add(a, b)’s arguments (step 5). Since the local store doesn’t have object a, it looks up a’s
location in the GCS (step 6). Learning that a is stored at N1, N2’s object store replicates
it locally (step 7). As all arguments of add() are now stored locally, the local scheduler
invokes add() at a local worker (step 8), which accesses the arguments via shared memory
(step 9).

The bottom figure in Figure 3.7 shows the step-by-step operations triggered by the execu-
tion of ray.get() at N1, and of add() at N2, respectively. Upon ray.get(idc)’s invocation,
the driver checks the local object store for the value c, using the future idc returned by add()
(step 1). Since the local object store doesn’t store c, it looks up its location in the GCS. At
this time, there is no entry for c, as c has not been created yet. As a result, N1’s object store
registers a callback with the Object Table to be triggered when c’s entry has been created
(step 2). Meanwhile, at N2, add() completes its execution, stores the result c in the local
object store (step 3), which in turn adds c’s entry to the GCS (step 4). As a result, the GCS
triggers a callback to N1’s object store with c’s entry (step 5). Next, N1 replicates c from
N2 (step 6), and returns c to ray.get() (step 7), which finally completes the task.

3https://github.com/ray-project/ray
4
Note that N1 could also decide to schedule the task locally.

https://github.com/ray-project/ray
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Figure 3.7: An end-to-end example that adds a and b and returns c. Solid lines are data
plane operations and dotted lines are control plane operations. In the top figure, the function
add() is registered with the GCS by node 1 (N1), invoked on N1, and executed on N2. In
the bottom figure, N1 gets add()’s result using ray.get(). The Object Table entry for c is
created in step 4 and updated in step 6 after c is copied to N1.

While this example involves a large number of RPCs, in many cases this number is much
smaller, as most tasks are scheduled locally, and the GCS replies are cached by the global
and local schedulers.

3.5 Evaluation

In our evaluation, we study the following questions:
1. How well does Ray meet the latency, scalability, and fault tolerance requirements listed

in Section 3.2? (Section 3.5)
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Figure 3.8: Tasks leverage locality-aware placement. 1000 tasks with a random object depen-
dency are scheduled onto one of two nodes. With locality-aware policy, task latency remains
independent of the size of task inputs instead of growing by 1-2 orders of magnitude.

2. What overheads are imposed on distributed primitives (e.g., allreduce) written using
Ray’s API? (Section 3.5)

3. In the context of RL workloads, how does Ray compare against specialized systems for
training, serving, and simulation? (Section 3.5)

4. What advantages does Ray provide for RL applications, compared to custom systems?
(Section 3.5)

All experiments were run on Amazon Web Services. Unless otherwise stated, we use
m4.16xlarge CPU instances and p3.16xlarge GPU instances.

Microbenchmarks

Locality-aware task placement. Fine-grain load balancing and locality-aware place-
ment are primary benefits of tasks in Ray. Actors, once placed, are unable to move their
computation to large remote objects, while tasks can. In Figure 3.8, tasks placed without
data locality awareness (as is the case for actor methods), su↵er 1-2 orders of magnitude
latency increase at 10-100MB input data sizes. Ray unifies tasks and actors through the
shared object store, allowing developers to use tasks for e.g., expensive postprocessing on
output produced by simulation actors.

End-to-end scalability. One of the key benefits of the Global Control Store (GCS)
and the bottom-up distributed scheduler is the ability to horizontally scale the system to
support a high throughput of fine-grained tasks, while maintaining fault tolerance and low-
latency task scheduling. In Figure 3.9, we evaluate this ability on an embarrassingly parallel
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Figure 3.9: Near-linear scalability leveraging the GCS and bottom-up distributed scheduler.
Ray reaches 1 million tasks per second throughput with 60 nodes. x 2 {70, 80, 90} omitted
due to cost.

workload of empty tasks, increasing the cluster size on the x-axis. We observe near-perfect
linearity in progressively increasing task throughput. Ray exceeds 1 million tasks per second
throughput at 60 nodes and continues to scale linearly beyond 1.8 million tasks per second
at 100 nodes. The rightmost datapoint shows that Ray can process 100 million tasks in
less than a minute (54s), with minimum variability. As expected, increasing task duration
reduces throughput proportionally to mean task duration, but the overall scalability remains
linear. While many realistic workloads may exhibit more limited scalability due to object
dependencies and inherent limits to application parallelism, this demonstrates the scalability
of our overall architecture under high load.

Object store performance. To evaluate the performance of the object store (Sec-
tion 3.4), we track two metrics: IOPS (for small objects) and write throughput (for large
objects). In Figure 3.10, the write throughput from a single client exceeds 15GB/s as ob-
ject size increases. For larger objects, memcpy dominates object creation time. For smaller
objects, the main overheads are in serialization and IPC between the client and object store.

GCS fault tolerance. To maintain low latency while providing strong consistency
and fault tolerance, we build a lightweight chain replication [125] layer on top of Redis.
Figure 3.11a simulates recording Ray tasks to and reading tasks from the GCS, where keys
are 25 bytes and values are 512 bytes. The client sends requests as fast as it can, having at
most one in-flight request at a time. Failures are reported to the chain master either from
the client (having received explicit errors, or timeouts despite retries) or from any server
in the chain (having received explicit errors). Overall, reconfigurations caused a maximum
client-observed delay of under 30ms (this includes both failure detection and recovery delays).

GCS flushing. Ray is equipped to periodically flush the contents of GCS to disk.
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Figure 3.10: Object store write throughput and IOPS. From a single client, throughput
exceeds 15GB/s (red) for large objects and 18K IOPS (cyan) for small objects on a 16 core
instance (m4.4xlarge). It uses 8 threads to copy objects larger than 0.5MB and 1 thread for
small objects. Bar plots report throughput with 1, 2, 4, 8, 16 threads. Results are averaged
over 5 runs.

In Figure 3.11b we submit 50 million empty tasks sequentially and monitor GCS memory
consumption. As expected, it grows linearly with the number of tasks tracked and eventually
reaches the memory capacity of the system. At that point, the system becomes stalled and
the workload fails to finish within a reasonable amount of time. With periodic GCS flushing,
we achieve two goals. First, the memory footprint is capped at a user-configurable level (in
the microbenchmark we employ an aggressive strategy where consumed memory is kept as
low as possible). Second, the flushing mechanism provides a natural way to snapshot lineage
to disk for long-running Ray applications.

Recovering from task failures. In Figure 3.12a, we demonstrate Ray’s ability to
transparently recover from worker node failures and elastically scale, using the durable GCS
lineage storage. The workload, run on m4.xlarge instances, consists of linear chains of 100ms
tasks submitted by the driver. As nodes are removed (at 25s, 50s, 100s), the local schedulers
reconstruct previous results in the chain in order to continue execution. Overall per-node
throughput remains stable throughout.

Recovering from actor failures. By encoding actor method calls as stateful edges
directly in the dependency graph, we can reuse the same object reconstruction mechanism
as in Figure 3.12a to provide transparent fault tolerance for stateful computation. Ray
additionally leverages user-defined checkpoint functions to bound the reconstruction time
for actors (Figure 3.12b). With minimal overhead, checkpointing enables only 500 methods
to be re-executed, versus 10k re-executions without checkpointing. In the future, we hope to
further reduce actor reconstruction time, e.g., by allowing users to annotate methods that
do not mutate state.
Allreduce. Allreduce is a distributed communication primitive important to many ma-
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Figure 3.11: Ray GCS fault tolerance and flushing.

chine learning workloads. Here, we evaluate whether Ray can natively support a ring
allreduce [141] implementation with low enough overhead to match existing implementa-
tions [134]. We find that Ray completes allreduce across 16 nodes on 100MB in ⇠200ms
and 1GB in ⇠1200ms, surprisingly outperforming OpenMPI (v1.10), a popular MPI imple-
mentation, by 1.5⇥ and 2⇥ respectively (Figure 3.13a). We attribute Ray’s performance
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Figure 3.12: Ray fault-tolerance. (a) Ray reconstructs lost task dependencies as nodes are
removed (dotted line), and recovers to original throughput when nodes are added back.
Each task is 100ms and depends on an object generated by a previously submitted task.
(b) Actors are reconstructed from their last checkpoint. At t = 200s, we kill 2 of the 10
nodes, causing 400 of the 2000 actors in the cluster to be recovered on the remaining nodes
(t = 200–270s).

to its use of multiple threads for network transfers, taking full advantage of the 25Gbps
connection between nodes on AWS, whereas OpenMPI sequentially sends and receives data
on a single thread [58]. For smaller objects, OpenMPI outperforms Ray by switching to a
lower overhead algorithm, an optimization we plan to implement in the future.

Ray’s scheduler performance is critical to implementing primitives such as allreduce. In
Figure 3.13b, we inject artificial task execution delays and show that performance drops
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Figure 3.13: (a) Mean execution time of allreduce on 16 m4.16xl nodes. Each worker runs
on a distinct node. Ray* restricts Ray to 1 thread for sending and 1 thread for receiving.
(b) Ray’s low-latency scheduling is critical for allreduce.

nearly 2⇥ with just a few ms of extra latency. Systems with centralized schedulers like
Spark and CIEL typically have scheduler overheads in the tens of milliseconds [146, 106],
making such workloads impractical. Scheduler throughput also becomes a bottleneck since
the number of tasks required by ring reduce scales quadratically with the number of partic-
ipants.

Building blocks

End-to-end applications (e.g., AlphaGo [135]) require a tight coupling of training, serving,
and simulation. In this section, we isolate each of these workloads to a setting that illustrates
a typical RL application’s requirements. Due to a flexible programming model targeted to
RL, and a system designed to support this programming model, Ray matches and sometimes
exceeds the performance of dedicated systems for these individual workloads.

Distributed Training

We implement data-parallel synchronous SGD leveraging the Ray actor abstraction to repre-
sent model replicas. Model weights are synchronized via allreduce (3.5) or parameter server,
both implemented on top of the Ray API.

In Figure 3.14, we evaluate the performance of the Ray (synchronous) parameter-server
SGD implementation against state-of-the-art implementations [134], using the same Tensor-
Flow model and synthetic data generator for each experiment. We compare only against
TensorFlow-based systems to accurately measure the overhead imposed by Ray, rather than
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Figure 3.14: Images per second reached when distributing the training of a ResNet-101
TensorFlow model (from the o�cial TF benchmark). All experiments were run on p3.16xl
instances connected by 25Gbps Ethernet, and workers allocated 4 GPUs per node as done
in Horovod [134]. We note some measurement deviations from previously reported, likely
due to hardware di↵erences and recent TensorFlow performance improvements. We used
OpenMPI 3.0, TF 1.8, and NCCL2 for all runs.

di↵erences between the deep learning frameworks themselves. In each iteration, model replica
actors compute gradients in parallel, send the gradients to a sharded parameter server, then
read the summed gradients from the parameter server for the next iteration.

Figure 3.14 shows that Ray matches the performance of Horovod and is within 10% of
distributed TensorFlow (in distributed replicated mode). This is due to the ability to
express the same application-level optimizations found in these specialized systems in Ray’s
general-purpose API. A key optimization is the pipelining of gradient computation, trans-
fer, and summation within a single iteration. To overlap GPU computation with network
transfer, we use a custom TensorFlow operator to write tensors directly to Ray’s object store.

Serving

Model serving is an important component of end-to-end applications. Ray focuses primarily
on the embedded serving of models to simulators running within the same dynamic task
graph (e.g., within an RL application on Ray). In contrast, systems like Clipper [35] focus
on serving predictions to external clients.

In this setting, low latency is critical for achieving high utilization. To show this, in
Table 3.3 we compare the server throughput achieved using a Ray actor to serve a policy
versus using the open source Clipper system over REST. Here, both client and server pro-
cesses are co-located on the same machine (a p3.8xlarge instance). This is often the case
for RL applications but not for the general web serving workloads addressed by systems like
Clipper. Due to its low-overhead serialization and shared memory abstractions, Ray achieves
an order of magnitude higher throughput for a small fully connected policy model that takes
in a large input and is also faster on a more expensive residual network policy model, similar
to one used in AlphaGo Zero, that takes smaller input.
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System Small Input Larger Input
Clipper 4400 ± 15 states/sec 290 ± 1.3 states/sec
Ray 6200 ± 21 states/sec 6900 ± 150 states/sec

Table 3.3: Throughput comparisons for Clipper [35], a dedicated serving system, and Ray
for two embedded serving workloads. We use a residual network and a small fully connected
network, taking 10ms and 5ms to evaluate, respectively. The server is queried by clients that
each send states of size 4KB and 100KB respectively in batches of 64.

System, programming model 1 CPU 16 CPUs 256 CPUs
MPI, bulk synchronous 22.6K 208K 2.16M
Ray, asynchronous tasks 22.3K 290K 4.03M

Table 3.4: Timesteps per second for the Pendulum-v0 simulator in OpenAI Gym [25]. Ray
allows for better utilization when running heterogeneous simulations at scale.

Simulation

Simulators used in RL produce results with variable lengths (“timesteps”) that, due to the
tight loop with training, must be used as soon as they are available. The task heterogene-
ity and timeliness requirements make simulations hard to support e�ciently in BSP-style
systems. To demonstrate, we compare (1) an MPI implementation that submits 3n parallel
simulation runs on n cores in 3 rounds, with a global barrier between rounds5, to (2) a Ray
program that issues the same 3n tasks while concurrently gathering simulation results back
to the driver. Table 3.4 shows that both systems scale well, yet Ray achieves up to 1.8⇥
throughput. This motivates a programming model that can dynamically spawn and collect
the results of fine-grained simulation tasks.

RL Applications

Without a system that can tightly couple the training, simulation, and serving steps, rein-
forcement learning algorithms today are implemented as one-o↵ solutions that make it di�-
cult to incorporate optimizations that, for example, require a di↵erent computation structure
or that utilize di↵erent architectures. Consequently, with implementations of two represen-
tative reinforcement learning applications in Ray, we are able to match and even outperform
custom systems built specifically for these algorithms. The primary reason is the flexibility
of Ray’s programming model, which can express application-level optimizations that would

5
Note that experts can use MPI’s asynchronous primitives to get around barriers—at the expense of

increased program complexity —we nonetheless chose such an implementation to simulate BSP.
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require substantial engineering e↵ort to port to custom-built systems, but are transparently
supported by Ray’s dynamic task graph execution engine.

Evolution Strategies

To evaluate Ray on large-scale RL workloads, we implement the evolution strategies (ES)
algorithm and compare to the reference implementation [129]—a system specially built for
this algorithm that relies on Redis for messaging and low-level multiprocessing libraries for
data-sharing. The algorithm periodically broadcasts a new policy to a pool of workers and
aggregates the results of roughly 10000 tasks (each performing 10 to 1000 simulation steps).

As shown in Figure 3.15a, an implementation on Ray scales to 8192 cores. Doubling the
cores available yields an average completion time speedup of 1.6⇥. Conversely, the special-
purpose system fails to complete at 2048 cores, where the work in the system exceeds the
processing capacity of the application driver. To avoid this issue, the Ray implementation
uses an aggregation tree of actors, reaching a median time of 3.7 minutes, more than twice
as fast as the best published result (10 minutes).

Initial parallelization of a serial implementation using Ray required modifying only 7
lines of code. Performance improvement through hierarchical aggregation was easy to realize
with Ray’s support for nested tasks and actors. In contrast, the reference implementation
had several hundred lines of code dedicated to a protocol for communicating tasks and
data between workers, and would require further engineering to support optimizations like
hierarchical aggregation.

Proximal Policy Optimization

We implement Proximal Policy Optimization (PPO) [131] in Ray and compare to a highly-
optimized reference implementation [116] that uses OpenMPI communication primitives.
The algorithm is an asynchronous scatter-gather, where new tasks are assigned to simulation
actors as they return rollouts to the driver. Tasks are submitted until 320000 simulation
steps are collected (each task produces between 10 and 1000 steps). The policy update
performs 20 steps of SGD with a batch size of 32768. The model parameters in this example
are roughly 350KB. These experiments were run using p2.16xlarge (GPU) and m4.16xlarge
(high CPU) instances.

As shown in Figure 3.15b, the Ray implementation outperforms the optimized MPI im-
plementation in all experiments, while using a fraction of the GPUs. The reason is that Ray
is heterogeneity-aware and allows the user to utilize asymmetric architectures by expressing
resource requirements at the granularity of a task or actor. The Ray implementation can
then leverage TensorFlow’s single-process multi-GPU support and can pin objects in GPU
memory when possible. This optimization cannot be easily ported to MPI due to the need to
asynchronously gather rollouts to a single GPU process. Indeed, [116] includes two custom
implementations of PPO, one using MPI for large clusters and one that is optimized for



CHAPTER 3. RAY: A SYSTEM FOR MACHINE LEARNING 37

256 1024 8192

1uPEeU Rf C38s

0

10

20

30

40

50

60

70

80

90

0
e
a
n

 t
iP

e
 t

R
 s

R
lv

e
 (

P
in

u
te

s)

x x x

5efeUence (6

5ay (6

(a) Evolution Strategies

8x1 64x8 512x64

C38s x G38s

0

100

200

300

400

500

0
e
a
n

 t
iP

e
 t

R
 s

R
Ov

e
 (

P
in

u
te

s)

03I 332

5ay 332

(b) PPO

Figure 3.15: Time to reach a score of 6000 in the Humanoid-v1 task [25]. (a) The Ray ES
implementation scales well to 8192 cores and achieves a median time of 3.7 minutes, over
twice as fast as the best published result. The special-purpose system failed to run beyond
1024 cores. ES is faster than PPO on this benchmark, but shows greater runtime variance.
(b) The Ray PPO implementation outperforms a specialized MPI implementation [116] with
fewer GPUs, at a fraction of the cost. The MPI implementation required 1 GPU for every 8
CPUs, whereas the Ray version required at most 8 GPUs (and never more than 1 GPU per
8 CPUs).

GPUs but that is restricted to a single node. Ray allows for an implementation suitable for
both scenarios.

Ray’s ability to handle resource heterogeneity also decreased PPO’s cost by a factor of
4.5 [49], since CPU-only tasks can be scheduled on cheaper high-CPU instances. In contrast,
MPI applications often exhibit symmetric architectures, in which all processes run the same
code and require identical resources, in this case preventing the use of CPU-only machines
for scale-out. Furthermore, the MPI implementation requires on-demand instances since
it does not transparently handle failure. Assuming 4⇥ cheaper spot instances, Ray’s fault
tolerance and resource-aware scheduling together cut costs by 18⇥.

3.6 Related Work

Dynamic task graphs. Ray is closely related to CIEL [107] and Dask [127]. All three
support dynamic task graphs with nested tasks and implement the futures abstraction.
CIEL also provides lineage-based fault tolerance, while Dask, like Ray, fully integrates with
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Python. However, Ray di↵ers in two aspects that have important performance consequences.
First, Ray extends the task model with an actor abstraction. This is necessary for e�cient
stateful computation in distributed training and serving, to keep the model data collocated
with the computation. Second, Ray employs a fully distributed and decoupled control plane
and scheduler, instead of relying on a single master storing all metadata. This is critical
for e�ciently supporting primitives like allreduce without system modification. At peak
performance for 100MB on 16 nodes, allreduce on Ray (Section 3.5) submits 32 rounds of
16 tasks in 200ms. Meanwhile, Dask reports a maximum scheduler throughput of 3k tasks/s
on 512 cores [126]. With a centralized scheduler, each round of allreduce would then incur
a minimum of ⇠5ms of scheduling delay, translating to up to 2⇥ worse completion time
(Figure 3.13b). Even with a decentralized scheduler, coupling the control plane information
with the scheduler leaves the latter on the critical path for data transfer, adding an extra
roundtrip to every round of allreduce.

Dataflow systems. Popular dataflow systems, such as MapReduce [40], Spark [155], and
Dryad [77] have widespread adoption for analytics and ML workloads, but their computation
model is too restrictive for a fine-grained and dynamic simulation workload. Spark and
MapReduce implement the BSP execution model, which assumes that tasks within the same
stage perform the same computation and take roughly the same amount of time. Dryad
relaxes this restriction but lacks support for dynamic task graphs. Furthermore, none of these
systems provide an actor abstraction, nor implement a distributed scalable control plane and
scheduler. Finally, Naiad [108] is a dataflow system that provides improved scalability for
some workloads, but only supports static task graphs.

Machine learning frameworks. TensorFlow [1] and MXNet [32] target deep learning
workloads and e�ciently leverage both CPUs and GPUs. While they achieve great perfor-
mance for training workloads consisting of static DAGs of linear algebra operations, they
have limited support for the more general computation required to tightly couple training
with simulation and embedded serving. TensorFlow Fold [98] provides some support for
dynamic task graphs, as well as MXNet through its internal C++ APIs, but neither fully
supports the ability to modify the DAG during execution in response to task progress, task
completion times, or faults. TensorFlow and MXNet in principle achieve generality by allow-
ing the programmer to simulate low-level message-passing and synchronization primitives,
but the pitfalls and user experience in this case are similar to those of MPI. OpenMPI [58]
can achieve high performance, but it is relatively hard to program as it requires explicit
coordination to handle heterogeneous and dynamic task graphs. Furthermore, it forces the
programmer to explicitly handle fault tolerance.

Actor systems. Orleans [28] and Akka [3] are two actor frameworks well suited to
developing highly available and concurrent distributed systems. However, compared to Ray,
they provide less support for recovery from data loss. To recover stateful actors, the Orleans
developer must explicitly checkpoint actor state and intermediate responses. Stateless actors
in Orleans can be replicated for scale-out, and could therefore act as tasks, but unlike in
Ray, they have no lineage. Similarly, while Akka explicitly supports persisting actor state
across failures, it does not provide e�cient fault tolerance for stateless computation (i.e.,
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tasks). For message delivery, Orleans provides at-least-once and Akka provides at-most-once
semantics. In contrast, Ray provides transparent fault tolerance and exactly-once semantics,
as each method call is logged in the GCS and both arguments and results are immutable.
We find that in practice these limitations do not a↵ect the performance of our applications.
Erlang [8] and C++ Actor Framework [31], two other actor-based systems, have similarly
limited support for fault tolerance.

Global control store and scheduling. The concept of logically centralizing the control
plane has been previously proposed in software defined networks (SDNs) [30], distributed
file systems (e.g., GFS [60]), resource management (e.g., Omega [132]), and distributed
frameworks (e.g., MapReduce [40], BOOM [4]), to name a few. Ray draws inspiration from
these pioneering e↵orts, but provides significant improvements. In contrast with SDNs,
BOOM, and GFS, Ray decouples the storage of the control plane information (e.g., GCS)
from the logic implementation (e.g., schedulers). This allows both storage and computation
layers to scale independently, which is key to achieving our scalability targets. Omega uses
a distributed architecture in which schedulers coordinate via globally shared state. To this
architecture, Ray adds global schedulers to balance load across local schedulers, and targets
ms-level, not second-level, task scheduling.

Ray implements a unique distributed bottom-up scheduler that is horizontally scalable,
and can handle dynamically constructed task graphs. Unlike Ray, most existing cluster com-
puting systems [40, 156, 107] use a centralized scheduler architecture. While Sparrow [118]
is decentralized, its schedulers make independent decisions, limiting the possible scheduling
policies, and all tasks of a job are handled by the same global scheduler. Mesos [72] im-
plements a two-level hierarchical scheduler, but its top-level scheduler manages frameworks,
not individual tasks. Canary [124] achieves impressive performance by having each sched-
uler instance handle a portion of the task graph, but does not handle dynamic computation
graphs.

Cilk [23] is a parallel programming language whose work-stealing scheduler achieves prov-
ably e�cient load-balancing for dynamic task graphs. However, with no central coordinator
like Ray’s global scheduler, this fully parallel design is also di�cult to extend to support
data locality and resource heterogeneity in a distributed setting.

3.7 Discussion and Experiences

Building Ray has been a long journey. It started two years ago with a Spark library to
perform distributed training and simulations. However, the relative inflexibility of the BSP
model, the high per-task overhead, and the lack of an actor abstraction led us to develop a
new system. Since we released Ray roughly one year ago, several hundreds of people have
used it and several companies are running it in production. Here we discuss our experience
developing and using Ray, and some early user feedback.

API. In designing the API, we have emphasized minimalism. Initially we started with a
basic task abstraction. Later, we added the wait() primitive to accommodate rollouts with
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heterogeneous durations and the actor abstraction to accommodate third-party simulators
and amortize the overhead of expensive initializations. While the resulting API is relatively
low-level, it has proven both powerful and simple to use. We have already used this API
to implement many state-of-the-art RL algorithms on top of Ray, including A3C [104],
PPO [131], DQN [103], ES [129], DDPG [136], and Ape-X [76]. In most cases it took us just
a few tens of lines of code to port these algorithms to Ray. Based on early user feedback,
we are considering enhancing the API to include higher level primitives and libraries, which
could also inform scheduling decisions.

Limitations. Given the workload generality, specialized optimizations are hard. For
example, we must make scheduling decisions without full knowledge of the computation
graph. Scheduling optimizations in Ray might require more complex runtime profiling. In
addition, storing lineage for each task requires the implementation of garbage collection
policies to bound storage costs in the GCS, a feature we are actively developing.

Fault tolerance. We are often asked if fault tolerance is really needed for AI applica-
tions. After all, due to the statistical nature of many AI algorithms, one could simply ignore
failed rollouts. Based on our experience, our answer is “yes”. First, the ability to ignore
failures makes applications much easier to write and reason about. Second, our particular
implementation of fault tolerance via deterministic replay dramatically simplifies debugging
as it allows us to easily reproduce most errors. This is particularly important since, due
to their stochasticity, AI algorithms are notoriously hard to debug. Third, fault tolerance
helps save money since it allows us to run on cheap resources like spot instances on AWS.
Of course, this comes at the price of some overhead. However, we found this overhead to be
minimal for our target workloads.

GCS and Horizontal Scalability. The GCS dramatically simplified Ray development
and debugging. It enabled us to query the entire system state while debugging Ray itself,
instead of having to manually expose internal component state. In addition, the GCS is also
the backend for our timeline visualization tool, used for application-level debugging.

The GCS was also instrumental to Ray’s horizontal scalability. In Section 4.4, we were
able to scale by adding more shards whenever the GCS became a bottleneck. The GCS
also enabled the global scheduler to scale by simply adding more replicas. Due to these
advantages, we believe that centralizing control state will be a key design component of
future distributed systems.

3.8 Conclusion

No general-purpose system today can e�ciently support the tight loop of training, serving,
and simulation. To express these core building blocks and meet the demands of emerging AI
applications, Ray unifies task-parallel and actor programming models in a single dynamic
task graph and employs a scalable architecture enabled by the global control store and a
bottom-up distributed scheduler. The programming flexibility, high throughput, and low
latencies simultaneously achieved by this architecture is particularly important for emerging
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artificial intelligence workloads, which produce tasks diverse in their resource requirements,
duration, and functionality. Our evaluation demonstrates linear scalability up to 1.8 million
tasks per second, transparent fault tolerance, and substantial performance improvements
on several contemporary RL workloads. Thus, Ray provides a powerful combination of
flexibility, performance, and ease of use for the development of future AI applications.
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Chapter 4

Case Study: Distributed Training

Distributed computation is increasingly important for deep learning, and many deep learning
frameworks provide built-in support for distributed training. This results in a tight coupling
between the neural network computation and the underlying distributed execution, which
poses a challenge for the implementation of new communication and aggregation strategies.
We argue that decoupling the deep learning framework from the distributed execution frame-
work enables the flexible development of new communication and aggregation strategies.
Furthermore, we argue that the Ray architecture described in Chapter 3 provides a flexible
set of distributed computing primitives that, when used in conjunction with modern deep
learning libraries, enable the implementation of a wide range of gradient aggregation strate-
gies appropriate for di↵erent computing environments. We show how these primitives can be
used to address common problems, and demonstrate the performance benefits empirically.1

4.1 Introduction

Given the importance of distributed computation in scaling up deep learning training, many
of today’s deep learning frameworks provide built-in support for distributed training [1, 32].
However, as a result, the training algorithms are often tightly coupled to the underlying dis-
tributed infrastructure. The resulting communication primitives are often di�cult to modify
and customize at the application level (without modifying the deep learning framework it-
self).

As practitioners seek to make distributed training practical in increasingly varied envi-
ronments such as public clouds where individual machines may be preempted or may fail
or where networks exhibit variable performance between machines, we will need training
algorithms capable of adapting to sporadic failures and slow machines. At the same time,
our algorithms should be able to take advantage of highly reliable computing environments
such as supercomputers when such environments are available.

1
Material in this chapter is based adapted from [26].
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One of the most important components of data-parallel training, is the ability to rapidly
aggregate gradients that have been computed on di↵erent machines and devices (e.g., GPUs).
Aggregation is often performed by summation, and the aggregation techniques include allre-
duce algorithms [61] or parameter server approaches [93]. Within these approaches, there
are many variants designed to address di↵erent bottlenecks in practice. In an idealized set-
ting (e.g., a supercomputer), straightforward synchronous stochastic gradient descent (SGD)
works well and has been used very e↵ectively [66]. In a setting with slow machines, stragglers
may become a problem, and techniques like backup workers [119], asynchronous SGD [39]
or the stale synchronous parameter server [73] can be used to address this bottleneck.

A more limited set of techniques have been proposed to address the problem of slow
parameter servers [154].

We will show that the primitives provided by Ray, though not specifically designed for
gradient aggregation, can be used to implement all of these di↵erent schemes.

In addition, separating the distributed execution layer from the deep learning framework
allows Ray-based implementations to swap in di↵erent deep learning frameworks within the
same application and leaves open the option of implementing di↵erent workers using di↵erent
deep learning libraries.

4.2 Ray Primitives

Ray (described in Chapter 3) is a high-performance distributed execution framework targeted
at supporting AI applications and machine learning in dynamic environments [114]. The
underlying system is capable of executing tasks with millisecond latencies at throughputs
of millions of tasks per second. Ray also uses a shared-memory object store in addition to
zero-copy serialization through Apache Arrow [7] to provide e�cient handling of numerical
data. Ray’s API is designed for general purpose distributed computing, which is precisely
why it provides the flexibility needed to implement diverse training strategies.

Several components of Ray’s API make it well-suited for implementing the communication
strategies underlying distributed training. First, Ray achieves parallelism through fine-
grained dynamic tasks. A task may consist of a single gradient computation or a full training
run. As a result, one task (e.g., a training task) may spawn many more tasks as it executes
(e.g., gradient computation tasks). Parallelism is achieved by executing multiple tasks at
the same time on di↵erent workers or actors. Second, Ray encapsulates stateful computation
with actors. An actor is a stateful service whose method invocations are executed as tasks
on the actor. These tasks may trigger the submission of additional tasks or may depend on
other tasks in complex ways.

A parameter server is a natural example of a Ray actor. It may expose a method for
getting its parameters and a method for updating its parameters. These methods could be
invoked by any number of parameter server clients, which themselves could be implemented
as actors or as long-running non-actor tasks.
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At a programming level, Ray tasks (including actor method invocations) return object IDs
(similar to futures). An application can choose to fetch the values corresponding to a given
set of object IDs by blocking until the corresponding tasks have completed. Crucially, Ray
includes a primitive wait which allows applications to wait for a subset of tasks to complete
or for a timeout to expire. This primitive gives applications great flexibility in determining
their execution and control flow as a function of runtime performance characteristics, and
it is critical for the implementation of strategies like backup workers for synchronous SGD
[119] or partial pulling [154].

By separating the neural network graph from the communication strategy, Ray makes it
easy to experiment with a wide range of gradient aggregation strategies without changing
the underlying neural network computation or modifying the deep learning framework.

4.3 Examples

To illustrate the diversity of training strategies that can be implemented using Ray’s primi-
tives, we implement the following examples. Each of these is around one to ten extra lines of
code on top of the basic synchronous and asynchronous sharded parameter server training
applications, which themselves are around a hundred lines of code.2

Vanilla Synchronous Parameter Server: In this basic scheme [93], the neural net-
work weights are divided evenly between a number of parameter servers. Each parameter
server occupies a di↵erent machine. A number of workers processes occupy a di↵erent set of
machines and do the following in lockstep: retrieve the latest parameters from all of the pa-
rameter servers, compute a gradient update using some training data, and push the di↵erent
portions of the gradient update to the relevant parameter servers. Synchronous schemes are
often preferred to asynchronous ones because they o↵er more predictable training behavior
and are less dependent on hardware or runtime characteristics.

Synchronous Parameter Server with Backup Workers: This scheme [119] is sim-
ilar to the regular synchronous scheme except that a few extra workers are kept around. If
a worker is slow and falls behind, it’s gradient update is not used and results from a backup
worker are used instead.

Asynchronous Parameter Server: The asynchronous scheme [39] is the same as the
synchronous scheme except that the workers no longer operate in lockstep. If a worker is
slow, that worker may fall behind and updates from that worker may be received even after
the parameter server has performed a large number of updates, but other workers are not
blocked from making progress by a slow worker.

Bounded Staleness: The bounded staleness scheme [73, 12], similar to the stale-
synchronous parallel scheme, deals with slow workers by allowing workers to proceed asyn-
chronously within a certain bound. If a worker falls too far behind, then either the faster
workers will wait for it, or its updates will simply not be used.

2
Several code examples are available at https://github.com/ray-project/ray/tree/master/

examples/parameter_server.

https://github.com/ray-project/ray/tree/master/examples/parameter_server
https://github.com/ray-project/ray/tree/master/examples/parameter_server
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Partial Pulling: The partial pulling scheme [154] is an approach for dealing with slow
parameter servers as opposed to slow workers. It allows workers to proceed with a given
gradient computation without waiting to receive parameters from every parameter server. If
too much time has passed and parameters have not arrived from a given parameter server,
the worker will simply reuse the previous parameter values from that parameter server.

Implementing these communication strategies within a deep learning framework such
as TensorFlow would require deep integration within the framework itself. By providing
distributed computing primitives outside of a deep learning framework, Ray enables these
custom communication strategies to be implemented easily at the application level.

4.4 Experiments

As a proof of concept, we implemented the five aggregation strategies from Section 4.3 and
integrated them with the TensorFlow CIFAR-10 Resnet implementation provided as part of
the o�cial distributed TensorFlow example [139].

In Figure 4.1, we compare the synchronous parameter server throughput of our Ray
plus TensorFlow implementation to the throughput of the pure TensorFlow version. The
performance results are largely similar despite the lack of tuning of our implementation. The
results are slightly worse in the case of 8 workers, for reasons which we are still investigating.
In terms of complexity, implementing this approach and the four other aggregation strategies
from Section 4.3 took a couple days, which included the time required to integrate with
TensorFlow. In contrast, the synchronous parameter server implementation in TensorFlow
took months of engineering time.

Our distributed training experiments used between two and twelve g3.4xlarge worker
instances on Amazon Web Services. Each worker and parameter server ran on a dedicated
instance and a separate instance was used to host a TensorBoard visualization job. We used
the nexus-scheduler framework for orchestrating training runs and tracking results, which
we plan to open-source soon.

In Section 4.5, we implement a partial-pull aggregation scheme and demonstrate that
the Ray implementation is robust to slowdowns in individual parameter server shards. This
experiment is of interest because none of the existing deep learning frameworks are robust
to slowdowns of individual parameter server shards.

4.5 Parameter Server Slowdowns

In the experiment below we evaluate the sensitivity of distributed training to periodic pa-
rameter server slowdowns. This example was of interest because none of the existing deep
learning frameworks are robust to slowdowns of individual parameter server shards.

For the baseline experiment, we launched two gradient workers and 2 parameter servers
using TensorFlow’s asynchronous parameter server from the o�cial CIFAR-10 Estimator
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Figure 4.1: Left: Synchronous parameter server throughput for the pure TensorFlow imple-
mentation. Right: throughput of the Ray plus TensorFlow implementation. In both cases,
the number of parameter servers is half the number of workers (rounded up).

Figure 4.2: Training throughput of the pure TensorFlow asynchronous parameter server
implementation in the presence of periodic slowdowns of a single parameter server shard.
Throughput consistently decreases when one of the parameter servers slows down.

implementation and inserted a 10 second pauses in one of the parameter server shards roughly
every 60 seconds.

TensorFlow training predictably paused whenever any of the parameter server shards
paused. The Ray implementation used a partial-pull aggregation strategy [154] which al-
lowed training to continue during pauses at the cost of increased staleness for some of the
parameters. The results can be seen in Figure 4.2 and Figure 4.3.
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Figure 4.3: Training throughput of a Ray-based implementation of partial pulling in the pres-
ence of periodic slowdowns of a single parameter server shard. This particular aggregation
strategy allows workers to avoid waiting for slow parameter servers and hence throughput
su↵ers very little compared with the pure TensorFlow implementation.

4.6 Conclusion

Model training in the form of stochastic gradient descent is at the heart of many machine
learning applications, and algorithm speed is a primary concern for many practitioners and
researchers. Some important computational patterns have been established, such as the need
for data parallelism in which a single neural network architecture is replicated on multiple
devices and machines to compute gradients with large batches quickly. Well-established
patterns also include the need to shard the parameters of a single large matrix such as an
embedding matrix across multiple machines due to the sheer size of the matrix. Supporting
these use cases well is critical. In addition, there are patterns of distributed training that
are very much in flux. For example, the general form of model parallelism in which di↵erent
layers of a single model are split across multiple devices or in which the di↵erent models in
an ensemble exist on di↵erent machines. In these cases, the flexibility needed by di↵erent
applications and di↵erent approaches requires the underlying distributed computing frame-
work to allow a great deal of generality in the patterns that it supports. We showed that
the architecture proposed in Chapter 3 allows for the flexible expression of many di↵erent
patterns of distributed training in a performant manner.
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Chapter 5

Case Study: Distributed Optimization
with ADMM

In this chapter, we consider the alternating direction method of multipliers (ADMM) algo-
rithm for solving an important class of convex optimization problems. One of the primary
advantages of ADMM over comparable algorithms is that, in many settings, the algorithm
updates can be made massively parallel. Therefore, ADMM is particularly well suited for
machine learning problems with large numbers of features or large datasets and can leverage
a distributed architecture like the one proposed in Chapter 3.

We provide a new proof of the linear convergence of ADMM when one of the objective
terms is strongly convex. Our proof is based on a framework for analyzing optimization
algorithms introduced in [91], reducing algorithm convergence to verifying the stability of a
dynamical system. This approach generalizes a number of existing results and obviates any
assumptions about specific choices of algorithm parameters. On a numerical example, we
demonstrate that minimizing the derived bound on the convergence rate provides a practical
approach to selecting algorithm parameters for particular ADMM instances. We complement
our upper bound by constructing a nearly-matching lower bound on the worst-case rate of
convergence.1

5.1 Introduction

The alternating direction method of multipliers (ADMM) seeks to solve the problem

minimize f(x) + g(z)

subject to Ax+Bz = c,
(5.1)

with variables x 2 Rp and z 2 Rq and constants A 2 Rr⇥p, B 2 Rr⇥q, and c 2 Rr. ADMM
was introduced in [63] and [57]. More recently, it has found applications in a variety of

1
Material in this chapter is based adapted from [113].
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distributed settings such as model fitting, resource allocation, and classification. A partial
list of examples includes [21, 149, 22, 55, 133, 92, 150, 157, 102, 151, 9, 56, 128, 20, 158].
See [24] for an overview.

Part of the appeal of ADMM is the fact that, in many settings, the algorithm updates
are massively parallel and lend themselves to distributed settings. The algorithm itself is
given in Algorithm 1. We refer to ⇢ > 0 as the step-size parameter.

Algorithm 1 Alternating Direction Method of Multipliers

1: Input: functions f and g, matrices A and B, vector c, parameter ⇢
2: Initialize x0, z0, u0

3: repeat
4: xk+1 = argminx f(x) +

⇢
2kAx+Bzk � c+ ukk2

5: zk+1 = argminz g(z) +
⇢
2kAxk+1 +Bz � c+ ukk2

6: uk+1 = uk + Axk+1 +Bzk+1 � c.
7: until meet stopping criterion

A popular variant of Algorithm 1 is over-relaxed ADMM, which introduces an additional
parameter ↵ and replaces each instance of Axk+1 in the z and u updates in Algorithm 1 with

↵Axk+1 � (1� ↵)(Bzk � c).

The parameter ↵ is typically chosen to lie in the interval (0, 2], but we demonstrate in
Section 5.8 that a larger set of choices can lead to convergence. Over-relaxed ADMM is
described in Algorithm 2. Note that when ↵ = 1, Algorithm 2 and Algorithm 1 coincide.
We will analyze Algorithm 2.

Algorithm 2 Over-Relaxed Alternating Direction Method of Multipliers

1: Input: functions f and g, matrices A and B, vector c, parameters ⇢ and ↵
2: Initialize x0, z0, u0

3: repeat
4: xk+1 = argminx f(x) +

⇢
2kAx+Bzk � c+ ukk2

5: zk+1 = argminz g(z) +
⇢
2k↵Axk+1 � (1� ↵)Bzk +Bz � ↵c+ ukk2

6: uk+1 = uk + ↵Axk+1 � (1� ↵)Bzk +Bzk+1 � ↵c
7: until meet stopping criterion

The conventional wisdom that ADMM works well without any tuning [24], for instance
by setting ⇢ = 1, is often not borne out in practice. Algorithm 1 can be challenging to tune,
and Algorithm 2 is even harder. We use the machinery developed in this chapter to make
reasonable recommendations for setting ⇢ and ↵ when some information about f is available
(Section 5.8).

In this chapter, we give an upper bound on the linear rate of convergence of Algorithm 2
for all ⇢ and ↵ (Theorem 7), and we give a nearly-matching lower bound (Theorem 8).
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Importantly, we show that we can prove convergence rates for Algorithm 2 by numerically
solving a 4 ⇥ 4 semidefinite program (Theorem 6). When we change the parameters of
Algorithm 2, the semidefinite program changes. Whereas prior work requires a new proof of
convergence for every change to the algorithm, our work automates that process.

Our work builds on the integral quadratic constraint framework introduced in [91], which
uses ideas from robust control to analyze optimization algorithms that can be cast as discrete-
time linear dynamical systems. Our work provides a flexible framework for analyzing variants
of Algorithm 1, including those like Algorithm 2 created by the introduction of additional
parameters. In Section 5.7, we compare our results to prior work.

We note that aside from assuming basic facts about matrices and convex functions, our
presentation is completely self-contained.

5.2 Preliminaries and Notation

Let R denote the extended real numbers R[{+1}. Suppose that f : Rd ! R is convex and
di↵erentiable, and let rf denote the gradient of f . We say that f is strongly convex with
parameter m > 0 if for all x, y 2 Rd, we have

f(x) � f(y) +rf(y)>(x� y) + m
2 kx� yk2.

When rf is Lipschitz continuous with parameter L, it follows that

f(x)  f(y) +rf(y)>(x� y) + L
2 kx� yk2.

For 0 < m  L < 1, let Sd(m,L) denote the set of di↵erentiable convex functions f : Rd ! R
that are strongly convex with parameter m and whose gradients are Lipschitz continuous
with parameter L. We let Sd(0,1) denote the set of convex functions Rd ! R. In general,
we let @f denote the subdi↵erential of f . We denote the d-dimensional identity matrix by Id
and the d-dimensional zero matrix by 0d. We will make use of the following results.

Lemma 1. Suppose that f 2 Sd(m,L), where 0 < m  L < 1. Suppose that b1 = rf(a1)
and b2 = rf(a2). Then


a1 � a2
b1 � b2

�>  �2mLId (m+ L)Id
(m+ L)Id �2Id

� 
a1 � a2
b1 � b2

�
� 0.

Proof. The Lipschitz continuity of rf implies the co-coercivity of rf , that is

(a1 � a2)
>(b1 � b2) � 1

Lkb1 � b2k2.

Note that f(x)�m
2 kxk

2 is convex and its gradient is Lipschitz continuous with parameter L�
m. Applying the co-coercivity condition to this function and rearranging gives

(m+ L)(a1 � a2)
>(b1 � b2) � mLka1 � a2k2 + kb1 � b2k2,

which can be rearranged in matrix form to complete the proof.
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Lemma 2. Suppose that f 2 Sd(0,1), and suppose that b1 2 @f(a1) and b2 2 @f(a2). Then


a1 � a2
b1 � b2

�> 
0d Id
Id 0d

� 
a1 � a2
b1 � b2

�
� 0.

Lemma 2 is simply the statement that the subdi↵erential of a convex function is a mono-
tone operator.

WhenM is a matrix, we use M to denote the condition number ofM . For example, A =
�1(A)/�p(A), where �1(A) and �p(A) denote the largest and smallest singular values of the
matrix A. When f 2 Sd(m,L), we let f = L

m denote the condition number of the function f .
We let M ⌦N denote the Kronecker product of matrices M and N .

5.3 ADMM as a Dynamical System

We group our assumptions together in Assumption 3.

Assumption 3. We assume that f and g are convex, closed, and proper. We assume that
for some 0 < m  L < 1, we have f 2 Sp(m,L) and g 2 Sq(0,1). We assume that A is
invertible and that B has full column rank.

The assumption that f and g are closed (their sublevel sets are closed) and proper (they
neither take on the value �1 nor are they uniformly equal to +1) is standard. Similar
rank assumptions on A and B are standard as well [41, 75, 62].

We begin by casting over-relaxed ADMM as a discrete-time dynamical system with state
sequence (⇠k), input sequence (⌫k), and output sequences (w1

k) and (w2
k) satisfying the recur-

sions

⇠k+1 = (Â⌦ Ir)⇠k + (B̂ ⌦ Ir)⌫k (5.2a)

w1
k = (Ĉ1 ⌦ Ir)⇠k + (D̂1 ⌦ Ir)⌫k (5.2b)

w2
k = (Ĉ2 ⌦ Ir)⇠k + (D̂2 ⌦ Ir)⌫k (5.2c)

for particular matrices Â, B̂, Ĉ1, D̂1, Ĉ2, and D̂2 (whose dimensions do not depend on any
problem parameters).

First define the functions f̂ , ĝ : Rr ! R via

f̂ = (⇢�1f) � A�1

ĝ = (⇢�1g) �B† + IimB,
(5.3)

where B† is any left inverse of B and where IimB is the indicator function of the image of B.
For future reference, we define  = f2

A and to normalize, we define

m̂ =
m

�2
1(A)

L̂ =
L

�2
p(A)

⇢ = (m̂L̂)
1
2⇢0. (5.4)
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Note that under Assumption 3,

f̂ 2 Sp(⇢
�1
0 � 1

2 , ⇢�1
0 

1
2 ) (5.5a)

ĝ 2 Sq(0,1). (5.5b)

To define the relevant sequences, let the sequences (xk), (zk), and (uk) be generated by
Algorithm 2 with parameters ↵ and ⇢. Define the sequences (rk) and (sk) by rk = Axk

and sk = Bzk, and define the sequence (⇠k) by

⇠k =


sk
uk

�
.

We define the sequence (⌫k) as in Proposition 4.

Proposition 4. There exist sequences (�k) and (�k) with �k = rf̂(rk) and �k 2 @ĝ(sk) such
that when we define the sequence (⌫k) by

⌫k =


�k+1

�k+1

�
,

then the sequences (⇠k) and (⌫k) satisfy Equation 5.2a with the matrices

Â =


1 ↵� 1
0 0

�
B̂ =


↵ �1
0 �1

�
. (5.6)

Proof. Using the fact that A has full rank, we rewrite the update rule for x from Algorithm 2
as

xk+1 = A�1 argmin
r

f(A�1r) + ⇢
2kr + sk � c+ ukk2.

Multiplying through by A, we can write

rk+1 = argmin
r

f̂(r) + 1
2kr + sk � c+ ukk2.

This implies that
0 = rf̂(rk+1) + rk+1 + sk � c+ uk,

and so
rk+1 = �sk � uk + c� �k+1, (5.7)

where �k+1 = rf̂(rk+1). In the same spirit, we rewrite the update rule for z as

sk+1 = argmin
s

ĝ(s) + 1
2k↵rk+1 � (1� ↵)sk + s� ↵c+ ukk2.

It follows that there exists some �k+1 2 @ĝ(sk+1) such that

0 = �k+1 + ↵rk+1 � (1� ↵)sk + sk+1 � ↵c+ uk.
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It follows then that

sk+1 = �↵rk+1 + (1� ↵)sk + ↵c� uk � �k+1

= sk � (1� ↵)uk + ↵�k+1 � �k+1,
(5.8)

where the second equality follows by substituting in Equation 5.7. Combining Equation 5.7
and Equation 5.8 to simplify the u update, we have

uk+1 = uk + ↵rk+1 � (1� ↵)sk + sk+1 � ↵c

= ��k+1.
(5.9)

Together, Equation 5.8 and Equation 5.9 confirm the relation in Equation 5.2a.

Corollary 5. Define the sequences (�k) and (�k) as in Proposition 4. Define the se-
quences (w1

k) and (w2
k) via

w1
k =


rk+1 � c
�k+1

�
w2

k =


sk+1

�k+1

�
.

Then the sequences (⇠k), (⌫k), (w1
k), and (w2

k) satisfy Equation 5.2b and Equation 5.2c with
the matrices

Ĉ1 =


�1 �1
0 0

�
D̂1 =


�1 0
1 0

�
Ĉ2 =


1 ↵� 1
0 0

�
D̂2 =


↵ �1
0 1

�
. (5.10)

5.4 Convergence Rates from Semidefinite
Programming

Now, in Theorem 6, we make use of the perspective developed in Section 5.3 to obtain
convergence rates for Algorithm 2. This is essentially the same as the main result of [91],
and we include it because it is simple and self-contained.

Theorem 6. Suppose that Assumption 3 holds. Let the sequences (xk), (zk), and (uk) be
generated by running Algorithm 2 with step size ⇢ = (m̂L̂)

1
2⇢0 and with over-relaxation

parameter ↵. Suppose that (x⇤, z⇤, u⇤) is a fixed point of Algorithm 2, and define

'k =


zk
uk

�
'⇤ =


z⇤
u⇤

�
.

Fix 0 < ⌧ < 1, and suppose that there exist a 2 ⇥ 2 positive definite matrix P � 0 and
nonnegative constants �1,�2 � 0 such that the 4⇥ 4 linear matrix inequality

0 ⌫

Â>PÂ� ⌧ 2P Â>PB̂

B̂>PÂ B̂>PB̂

�
+


Ĉ1 D̂1

Ĉ2 D̂2

�> 
�1M1 0
0 �2M2

� 
Ĉ1 D̂1

Ĉ2 D̂2

�
(5.11)
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is satisfied, where Â and B̂ are defined in Equation 5.6, where Ĉ1, D̂1, Ĉ2, and D̂2 are
defined in Equation 5.10, and where M1 and M2 are given by

M1 =


�2⇢�2

0 ⇢�1
0 (� 1

2 + 
1
2 )

⇢�1
0 (� 1

2 + 
1
2 ) �2

�
M2 =


0 1
1 0

�
.

Then for all k � 0, we have

k'k � '⇤k  B
p
Pk'0 � '⇤k⌧ k.

Proof. Define rk, sk, �k, �k, ⇠k, ⌫k, w1
k, and w2

k as before. Choose r⇤ = Ax⇤, s⇤ = Bz⇤, and

w1
⇤ =


r⇤ � c
�⇤

�
w2

⇤ =


s⇤
�⇤

�
⇠⇤ =


s⇤
u⇤

�
⌫⇤ =


�⇤
�⇤

�

such that (⇠⇤, ⌫⇤, w1
⇤, w

2
⇤) is a fixed point of the dynamics of Equation 5.2 and satisfy-

ing �⇤ = rf̂(r⇤), �⇤ 2 @ĝ(s⇤). Now, consider the Kronecker product of the right hand side of
Equation 5.11 and Ir. Multiplying this on the left and on the right by

⇥
(⇠j � ⇠⇤)> (⌫j � ⌫⇤)>

⇤

and its transpose, respectively, we find

0 � (⇠j+1 � ⇠⇤)
>P (⇠j+1 � ⇠⇤)

� ⌧ 2(⇠j � ⇠⇤)
>P (⇠j � ⇠⇤)

+ �1(w1
j � w1

⇤)
>M1(w1

j � w1
⇤)

+ �2(w2
j � w2

⇤)
>M2(w2

j � w2
⇤).

(5.12)

Lemma 1 and Equation 5.5a show that the third term on the right hand side of Equation 5.12
is nonnegative. Lemma 2 and Equation 5.5b show that the fourth term on the right hand
side of Equation 5.12 is nonnegative. It follows that

(⇠j+1 � ⇠⇤)
>P (⇠j+1 � ⇠⇤)  ⌧ 2(⇠j � ⇠⇤)

>P (⇠j � ⇠⇤).

Inducting from j = 0 to k � 1, we see that

(⇠k � ⇠⇤)
>P (⇠k � ⇠⇤)  ⌧ 2k(⇠0 � ⇠⇤)

>P (⇠0 � ⇠⇤),

for all k. It follows that
k⇠k � ⇠⇤k 

p
Pk⇠0 � ⇠⇤k⌧ k.

From this, we may conclude that

k'k � '⇤k  B
p
Pk'0 � '⇤k⌧ k

as desired.



CHAPTER 5. CASE STUDY: DISTRIBUTED OPTIMIZATION WITH ADMM 55

condition number κ
100 101 102 103 104 105

co
n
ve

rg
e
n
ce

 r
a
te

 τ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ϵ=0.5
ϵ=0.25
ϵ=0

Figure 5.1: For ↵ = 1.5 and for several choices of ✏ in ⇢0 = ✏, we plot the minimal rate ⌧
for which the linear matrix inequality in Equation 5.11 is satisfied as a function of .

For fixed values of ↵, ⇢0, m̂, L̂, and ⌧ , the feasibility of Equation 5.11 is a semidefinite
program with variables P , �1, and �2. We perform a binary search over ⌧ to find the minimal
rate ⌧ such that the linear matrix inequality in Equation 5.11 is satisfied. The results are
shown in Figure 5.1 for a wide range of condition numbers , for ↵ = 1.5, and for several
choices of step size ⇢0. In Figure 5.2, we plot the values �1/ log ⌧ to show the number of
iterations required to achieve a desired accuracy.

Note that when we choose ⇢0 = ✏, then the matrix M1 is given by

M1 =


�2�2✏ � 1

2�✏ + 
1
2�✏

� 1
2�✏ + 

1
2�✏ �2

�
,

and so the linear matrix inequality in Equation 5.11 depends only on  and not on m̂
and L̂. Therefore, we will consider step sizes of this form (recall from Equation 5.4 that ⇢ =
(m̂L̂)

1
2⇢0). The choice ✏ = 0 is common in the literature [62], but requires the user to know

the strong-convexity parameter m̂. We also consider the choice ✏ = 0.5, which produces
worse guarantees, but does not require knowledge of m̂.

One weakness of Theorem 6 is the fact that the rate we produce is not given as a
function of . To use Theorem 6 as stated, we first specify the condition number (for
example,  = 1000). Then we search for the minimal ⌧ such that Equation 5.11 is feasible.
This produces an upper bound on the convergence rate of Algorithm 2 (for example, ⌧ = 0.9).
To remedy this problem, in Section 5.5, we demonstrate how Theorem 6 can be used to
obtain the convergence rate of Algorithm 2 as a symbolic function of the step size ⇢ and the
over-relaxation parameter ↵.



CHAPTER 5. CASE STUDY: DISTRIBUTED OPTIMIZATION WITH ADMM 56

condition number κ
10

0
10

1
10

2
10

3
10

4
10

5

n
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n

s

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

ϵ=0.5
ϵ=0.25
ϵ=0

Figure 5.2: For ↵ = 1.5 and for several choices of ✏ in ⇢0 = ✏, we compute the minimal rate ⌧
such that the linear matrix inequality in Equation 5.11 is satisfied, and we plot �1/ log ⌧ as
a function of .

5.5 Symbolic Rates for Various ⇢ and ↵

In Section 5.4, we demonstrated how to use semidefinite programming to produce numerical
convergence rates. That is, given a choice of algorithm parameters and the condition num-
ber , we could determine the convergence rate of Algorithm 2. In this section, we show how
Theorem 6 can be used to prove symbolic convergence rates. That is, we describe the con-
vergence rate of Algorithm 2 as a function of ⇢, ↵, and . In Theorem 7, we prove the linear
convergence of Algorithm 2 for all choices ↵ 2 (0, 2) and ⇢ = (m̂L̂)

1
2✏, with ✏ 2 (�1,1).

This result generalizes a number of results in the literature. As two examples, [62] consider
the case ✏ = 0 and [41] consider the case ↵ = 1 and ✏ = 0.5.

The rate given in Theorem 7 is loose by a factor of four relative to the lower bound given
in Theorem 8. However, weakening the rate by a constant factor eases the proof by making
it easier to find a certificate for use in Equation 5.11.

Theorem 7. Suppose that Assumption 3 holds. Let the sequences (xk), (zk), and (uk) be
generated by running Algorithm 2 with parameter ↵ 2 (0, 2) and with step size ⇢ = (m̂L̂)

1
2✏,

where ✏ 2 (�1,1). Define x⇤, z⇤, u⇤, 'k, and '⇤ as in Theorem 6. Then for all su�ciently
large , we have

k'k � '⇤k  Ck'0 � '⇤k
⇣
1� ↵

20.5+|✏|

⌘k
,

where

C = B

q
max

�
↵

2�↵ ,
2�↵
↵

 
.
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Proof. We claim that for all su�ciently large , the linear matrix inequality in Equation 5.11
is satisfied with the rate ⌧ = 1� ↵

20.5+|✏| and with certificate

�1 = ↵✏�0.5 �2 = ↵ P =


1 ↵� 1

↵� 1 1

�
.

The matrix on the right hand side of Equation 5.11 can be expressed as �1
4↵

�2M , where M
is a symmetric 4 ⇥ 4 matrix whose last row and column consist of zeros. We wish to prove
thatM is positive semidefinite for all su�ciently large . To do so, we consider the cases ✏ � 0
and ✏ < 0 separately, though the two cases will be nearly identical. First suppose that ✏ � 0.
In this case, the nonzero entries of M are specified by

M11 = ↵1�2✏ + 4
3
2�✏

M12 = ↵21�2✏ � ↵1�2✏ + 12
3
2�✏ � 4↵

3
2�✏

M13 = 4+ 8
3
2�✏

M22 = 82 � 4↵2 + ↵1�2✏ + 4
3
2�✏

M23 = 4+ 82 � 4↵2 + 8
3
2�✏

M33 = 8+ 82 � 4↵2 + 8
3
2�✏ + 8

3
2+✏.

We show that each of the first three leading principal minors of M is positive for su�ciently
large . To understand the behavior of the leading principal minors, it su�ces to look at
their leading terms. For large , the first leading principal minor (which is simple M11) is
dominated by the term 4

3
2�✏, which is positive. Similarly, the second leading principal minor

is dominated by the term 16(2 � ↵)
7
2�✏, which is positive. When ✏ > 0, the third leading

principal minor is dominated by the term 128(2� ↵)5, which is positive. When ✏ = 0, the
third leading principal minor is dominated by the term 64↵(2 � ↵)25, which is positive.
Since these leading coe�cients are all positive, it follows that for all su�ciently large , the
matrix M is positive semidefinite.

Now suppose that ✏ < 0. In this case, the nonzero entries of M are specified by

M11 = 8
3
2�✏ � 4

3
2+✏ + ↵1+2✏

M12 = 8
3
2�✏ + 4

3
2+✏ � 4↵

3
2+✏ � ↵1+2✏ + ↵21+2✏

M13 = 4+ 8
3
2�✏

M22 = 82 � 4↵2 + 8
3
2�✏ � 4

3
2+✏ + ↵1+2✏

M23 = 4+ 82 � 4↵2 + 8
3
2�✏

M33 = 8+ 82 � 4↵2 + 8
3
2�✏ + 8

3
2+✏.

As before, we show that each of the first three leading principal minors of M is positive.
For large , the first leading principal minor (which is simple M11) is dominated by the
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term 8
3
2�✏, which is positive. Similarly, the second leading principal minor is dominated by

the term 32(2 � ↵)
7
2�✏, which is positive. The third leading principal minor is dominated

by the term 128(2� ↵)5, which is positive. Since these leading coe�cients are all positive,
it follows that for all su�ciently large , the matrix M is positive semidefinite.

The result now follows from Theorem 6 by noting that P has eigenvalues ↵ and 2�↵.

Note that since the matrix P doesn’t depend on ⇢, the proof holds even when the step
size changes at each iteration.

5.6 Lower Bounds

In this section, we probe the tightness of the upper bounds on the convergence rate of
Algorithm 2 given by Theorem 6. The construction of the lower bound in this section is
similar to a construction given in [59].

Let Q be a d-dimensional symmetric positive-definite matrix whose largest and smallest
eigenvalues are L andm respectively. Let f(x) = 1

2x
>Qx be a quadratic and let g(z) = �

2kzk
2

for some � � 0. Let A = Id, B = �Id, and c = 0. With these definitions, the optimization
problem in Equation 5.1 is solved by x = z = 0. The updates for Algorithm 2 are given by

xk+1 = ⇢(Q+ ⇢I)�1(zk � uk) (5.13a)

zk+1 =
⇢

� + ⇢
(↵xk+1 + (1� ↵)zk + uk) (5.13b)

uk+1 = uk + ↵xk+1 + (1� ↵)zk � zk+1. (5.13c)

Solving for zk in Equation 5.13b and substituting the result into Equation 5.13c gives uk+1 =
�
⇢zk+1. Then eliminating xk+1 and uk from Equation 5.13b using Equation 5.13a and the fact

that uk =
�
⇢zk allows us to express the update rule purely in terms of z as

zk+1 =

✓
↵⇢(⇢� �)

⇢+ �
(Q+ ⇢I)�1 +

⇢� ↵⇢+ �

⇢+ �
I

◆

| {z }
T

zk.

Note that the eigenvalues of T are given by

1� ↵⇢(�+ �)

(⇢+ �)(�+ ⇢)
, (5.14)

where � is an eigenvalue of Q. We will use this setup to construct a lower bound on the
worst-case convergence rate of Algorithm 2 in Theorem 8.

Theorem 8. Suppose that Assumption 3 holds. The worst-case convergence rate of Algo-
rithm 2, when run with step size ⇢ = (m̂L̂)

1
2✏ and over-relaxation parameter ↵, is lower-

bounded by

1� 2↵

1 + 0.5+|✏| . (5.15)
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Proof. First consider the case ✏ � 0. Choosing � = 0 and � = m, from Equation 5.14, we
see that T has eigenvalue

1� ↵

1 + 0.5+✏
. (5.16)

When initialized with z as the eigenvector corresponding to this eigenvalue, Algorithm 2 will
converge linearly with rate given exactly by Equation 5.16, which is lower bounded by the
expression in Equation 5.15 when ✏ � 0.

Now suppose that ✏ < 0. Choosing � = L and � = L, after multiplying the numerator
and denominator of Equation 5.14 by 0.5�✏, we see that T has eigenvalue

1� 2↵

(1 + 0.5�✏)(�0.5+✏ + 1)
� 1� 2↵

1 + 0.5�✏
. (5.17)

When initialized with z as the eigenvector corresponding to this eigenvalue, Algorithm 2 will
converge linearly with rate given exactly by the left hand side of Equation 5.17, which is
lower bounded by the expression in Equation 5.15 when ✏ < 0.

Figure 5.3 compares the lower bounds given by Equation 5.16 with the upper bounds
given by Theorem 6 for ↵ = 1.5 and for several choices of ⇢ = (m̂L̂)

1
2✏ satisfying ✏ � 0. The

upper and lower bounds agree visually on the range of choices ✏ depicted, demonstrating the
practical tightness of the upper bounds given by Theorem 6 for a large range of choices of
parameter values.

5.7 Related Work

Several recent papers have studied the linear convergence of Algorithm 1 but do not extend
to Algorithm 2. [41] prove a linear rate of convergence for ADMM in the strongly convex
case. [78] prove the linear convergence of a specialization of ADMM to a class of distributed
optimization problems under a local strong-convexity condition. [75] prove the linear conver-
gence of a generalization of ADMM to a multiterm objective in the setting where each term
can be decomposed as a strictly convex function and a polyhedral function. In particular,
this result does not require the terms to be strongly convex.

More generally, there are a number of results for operator splitting methods in the liter-
ature. [97] and [52] analyze the convergence of several operator splitting schemes. More re-
cently, [121, 122] prove the equivalence of forward-backward splitting and Douglas–Rachford
splitting with a scaled version of the gradient method applied to unconstrained nonconvex
surrogate functions (called the forward-backward envelope and the Douglas–Rachford enve-
lope respectively). [64] propose an accelerated version of ADMM in the spirit of Nesterov,
and prove a O(1/k2) convergence rate in the case where f and g are both strongly convex
and g is quadratic.

The theory of over-relaxed ADMM is more limited. [51] prove the convergence of over-
relaxed ADMM but do not give a rate. More recently, [37, 38] analyze the convergence
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Figure 5.3: For ↵ = 1.5 and for several choices ✏ in ⇢0 = ✏, we plot �1/ log ⌧ as a function
of , both for the lower bound on ⌧ given by Equation 5.16 and the upper bound on ⌧
given by Theorem 6. For each choice of ✏ in {0.5, 0.25, 0}, the lower and upper bounds agree
visually. This agreement demonstrates the practical tightness of the upper bounds given by
Theorem 6 for a large range of choices of parameter values.

rates of ADMM in a variety of settings. [62] prove the linear convergence of Douglas–
Rachford splitting in the strongly-convex setting. They use the fact that ADMM is Douglas–
Rachford splitting applied to the dual problem [51] to derive a linear convergence rate for
over-relaxed ADMM with a specific choice of step size ⇢. [50] gives convergence results for
several specializations of ADMM, and found that over-relaxation with ↵ = 1.5 empirically
sped up convergence. [59] give some guidance on tuning over-relaxed ADMM in the quadratic
case.

Unlike prior work, our framework requires no assumptions on the parameter choices in
Algorithm 2. For example, Theorem 6 certifies the linear convergence of Algorithm 2 even
for values ↵ > 2. In our framework, certifying a convergence rate for an arbitrary choice
of parameters amounts to checking the feasibility of a 4 ⇥ 4 semidefinite program, which is
essentially instantaneous, as opposed to formulating a proof.

5.8 Selecting Algorithm Parameters

In this section, we show how to use the results of Section 5.4 to select the parameters ↵
and ⇢ in Algorithm 2 and we show the e↵ect on a numerical example.

Recall that given a choice of parameters ↵ and ⇢ and given the condition number ,
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Theorem 6 gives an upper bound on the convergence rate of Algorithm 2. Therefore, one
approach to parameter selection is to do a grid search over the space of parameters for
the choice that minimizes the upper bound provided by Theorem 6. We demonstrate this
approach numerically for a distributed Lasso problem, but first we demonstrate that the
usual range of (0, 2) for the over-relaxation parameter ↵ is too limited, that more choices
of ↵ lead to linear convergence. In Figure 5.4, we plot the largest value of ↵ found through
binary search such that Equation 5.11 is satisfied for some ⌧ < 1 as a function of . Proof
techniques in prior work do not extend as easily to values of ↵ > 2. In our framework, we
simply change some constants in a small semidefinite program.

condition number κ
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Figure 5.4: As a function of , we plot the largest value of ↵ such that Equation 5.11 is
satisfied for some ⌧ < 1. In this figure, we set ✏ = 0 in ⇢0 = ✏.

Distributed Lasso

Following [41], we give a numerical demonstration with a distributed Lasso problem of the
form

minimize
NX

i=1

1

2µ
kAixi � bik2 + kzk1

subject to xi � z = 0 for all i = 1, . . . , N.

Each Ai is a tall matrix with full column rank, and so the first term in the objective will be
strongly convex and its gradient will be Lipschitz continuous. As in [41], we choose N = 5
and µ = 0.1. Each Ai is generated by populating a 600 ⇥ 500 matrix with independent
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step-size parameter ρ
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Figure 5.5: We compute the upper bounds on the convergence rate given by Theorem 6
for a grid of eighty-five values of ↵ evenly spaced between 0.1 and 2.2 and a grid of fifty
values of ⇢ geometrically spaced between 0.1 and 10. Each line corresponds to a fixed choice
of ↵, and we plot only a subset of the values of ↵ to keep the plot manageable. We omit
points corresponding to parameter values for which Equation 5.11 is not feasible for any
value of ⌧ < 1. This analysis suggests choosing ↵ = 2.0 and ⇢ = 1.7.

standard normal entries and normalizing the columns. We generate each bi via bi = Aix0+✏i,
where x0 is a sparse 500-dimensional vector with 250 independent standard normal entries,
and ✏i ⇠ N (0, 10�3I).

In Figure 5.5, we compute the upper bounds on the convergence rate given by Theorem 6
for a grid of values of ↵ and ⇢. Each line corresponds to a fixed choice of ↵, and we plot
only a subset of the values of ↵ to keep the plot manageable. We omit points corresponding
to parameter values for which the linear matrix inequality in Equation 5.11 was not feasible
for any value of ⌧ < 1.

In Figure 5.6, we run Algorithm 2 for the same values of ↵ and ⇢. We then plot the
number of iterations needed for zk to reach within 10�6 of a precomputed reference solution.
We plot lines corresponding to only a subset of the values of ↵ to keep the plot manageable,
and we omit points corresponding to parameter values for which Algorithm 2 exceeded 1000
iterations. For the most part, the performance of Algorithm 2 as a function of ⇢ closely
tracked the performance predicted by the upper bounds in Figure 5.5. Notably, smaller
values of ↵ seem more robust to poor choices of ⇢. The parameters suggested by our analysis
perform close to the best of any parameter choices.
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step-size parameter ρ
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Figure 5.6: We run Algorithm 2 for up to 1000 iterations for a grid of eighty-five values
of ↵ evenly spaced between 0.1 and 2.2 and a grid of fifty value of ⇢ geometrically spaced
between 0.1 and 10. We plot the number of iterations required for zk to reach within 10�6 of
a precomputed reference solution. We plot lines corresponding to only a subset of the values
of ↵ to keep the plot manageable. We omit points corresponding to parameter values for
which Algorithm 2 exceeded 1000 iterations.

5.9 Conclusion

We showed that a framework based on semidefinite programming can be used to prove
convergence rates for the alternating direction method of multipliers and allows a unified
treatment of the algorithm’s many variants, which arise through the introduction of addi-
tional parameters. We showed how to use this framework for establishing convergence rates,
as in Theorem 6 and Theorem 7, and how to use this framework for parameter selection
in practice, as in Section 5.8. The potential uses are numerous. This framework makes
it straightforward to propose new algorithmic variants, for example, by introducing new
parameters into Algorithm 2 and using Theorem 6 to see if various settings of these new
parameters give rise to improved guarantees. In the case that Assumption 3 does not hold,
the most likely cause is that we lack the strong convexity of f . One approach to handling
this is to run Algorithm 2 on the modified function f(x)+ �

2kxk
2. By completing the square

in the x update, we see that this amounts to an extremely minor algorithmic modification
(it only a↵ects the x update).

It should be clear that other operator splitting methods such as Douglas–Rachford split-
ting and forward-backward splitting can be cast in this framework and analyzed using the
tools presented here.
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Chapter 6

Case Study: Distributed Submodular
Function Optimization

Submodular functions describe a variety of discrete problems in machine learning, signal pro-
cessing, and computer vision. However, minimizing submodular functions poses a number
of algorithmic challenges. Recent work introduced an easy-to-use, parallelizable algorithm
for minimizing submodular functions that decompose as the sum of “simple” submodular
functions. Because this algorithm decomposes the solution to each step of the larger opti-
mization problem into the solutions to many independent smaller optimization problems, this
algorithm is particularly amenable to parallel execution and can leverage distributed archi-
tectures like the one described in Chapter 3. Empirically, this algorithm performs extremely
well, but no theoretical analysis was given. In this chapter, we show that the algorithm
converges linearly, and we provide upper and lower bounds on the rate of convergence. Our
proof relies on the geometry of submodular polyhedra and draws on results from spectral
graph theory.1

6.1 Introduction

A large body of recent work demonstrates that many discrete problems in machine learning
can be phrased as the optimization of a submodular set function [11, 89]. A set function
F : 2V ! R over a ground set V of N elements is submodular if the inequality F (A)+F (B) �
F (A[B)+F (A\B) holds for all subsets A,B ✓ V . Problems like clustering [110], structured
sparse variable selection [10], MAP inference with higher-order potentials [86], and corpus
extraction problems [96] can be reduced to the problem of submodular function minimization
(SFM), that is

min
A✓V

F (A). (P1)

1
Material in this chapter is based adapted from [112].
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Although SFM is solvable in polynomial time, existing algorithms are often ine�cient on
large-scale problems. For this reason, the development of scalable, parallelizable algorithms
has been an active area of research [80, 81, 87, 137]. Approaches to solving Problem Equa-
tion P1 are either based on combinatorial optimization or on convex optimization via the
Lovász extension.

Functions that occur in practice are usually not arbitrary and frequently possess addi-
tional exploitable structure. For example, a number of submodular functions admit spe-
cialized algorithms that solve Problem Equation P1 very quickly. Examples include cut
functions on certain kinds of graphs, concave functions of the cardinality |A|, and functions
counting joint ancestors in trees. We will use the term simple to refer to functions F for
which we have a fast subroutine for minimizing F+s, where s 2 RN is any modular function.
We treat these subroutines as black boxes. Many commonly occuring submodular functions
(for example, graph cuts, hypergraph cuts, MAP inference with higher-order potentials [54,
86, 147], co-segmentation [74], certain structured-sparsity inducing functions [82], covering
functions [137], and combinations thereof) can be expressed as a sum

F (A) =
RX

r=1

Fr(A) (6.1)

of simple submodular functions. Recent work demonstrates that this structure o↵ers impor-
tant practical benefits [81, 87, 137]. For instance, it admits iterative algorithms that minimize
each Fr separately and combine the results in a straightforward manner (for example, dual
decomposition).

In particular, it has been shown that the minimization of decomposable functions can be
rephrased as a best-approximation problem, the problem of finding the closest points in two
convex sets [81]. This formulation brings together SFM and classical projection methods
and yields empirically fast, parallel, and easy-to-implement algorithms. In these cases, the
performance of projection methods depends heavily on the specific geometry of the problem
at hand and is not well understood in general. Indeed, while [81] show good empirical results,
the analysis of this alternative approach to SFM was left as an open problem.

Contributions. In this work, we study the geometry of the submodular best-approximation
problem and ground the prior empirical results in theoretical guarantees. We show that SFM
via alternating projections, or block coordinate descent, converges at a linear rate. We show
that this rate holds for the best-approximation problem, relaxations of SFM, and the original
discrete problem. More importantly, we prove upper and lower bounds on the worst-case
rate of convergence. Our proof relies on analyzing angles between the polyhedra associated
with submodular functions and draws on results from spectral graph theory. It o↵ers insight
into the geometry of submodular polyhedra that may be beneficial beyond the analysis of
projection algorithms.

Submodular minimization. The first polynomial-time algorithm for minimizing ar-
bitrary submodular functions was a consequence of the ellipsoid method [68]. Strongly
and weakly polynomial-time combinatorial algorithms followed [101]. The current fastest
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running times are O(N5⌧1 + N6) [117] in general and O((N4⌧1 + N5) logFmax) for integer-
valued functions [79], where Fmax = maxA |F (A)| and ⌧1 is the time required to evaluate
F . Some work has addressed decomposable functions [81, 87, 137]. The running times
in [87] apply to integer-valued functions and range from O((N + R)2 logFmax) for cuts to
O((N +Q2R)(N +Q2R +QR⌧2) logFmax), where Q  N is the maximal cardinality of the
support of any Fr, and ⌧2 is the time required to minimize a simple function. [137] use a
convex optimization approach based on Nesterov’s smoothing technique. They achieve a
(sublinear) convergence rate of O(1/k) for the discrete SFM problem. Their results and our
results do not rely on the function being integral.

Projection methods. Algorithms based on alternating projections between convex sets
(and related methods such as the Douglas-Rachford algorithm) have been studied extensively
for solving convex-feasibility and best-approximation problems [15, 16, 19, 43, 46, 70, 71, 144,
148]. See [44] for a survey of applications. In the simple case of subspaces, the convergence
of alternating projections has been characterized in terms of the Friedrichs angle cF between
the subspaces [16, 14]. There are often good ways to compute cF (see Lemma 14), which
allow us to obtain concrete linear rates of convergence for subspaces. The general case
of alternating projections between arbitrary convex sets is less well understood. [17] give a
general condition for the linear convergence of alternating projections in terms of the value ⇤
(defined in Section 6.3). However, except in very limited cases, it is unclear how to compute
or even bound ⇤. While it is known that ⇤ < 1 for polyhedra [16, Corollary 5.26], the
rate may be arbitrarily slow, and the challenge is to bound the linear rate away from one.
We are able to give a specific uniform linear rate for the submodular polyhedra that arise in
SFM.

Although both ⇤ and cF are useful quantities for understanding the convergence of
projection methods, they largely have been studied independently of one another. In this
work, we relate these two quantities for polyhedra, thereby obtaining some of the generality
of ⇤ along with the computability of cF . To our knowledge, we are the first to relate ⇤
and cF outside the case of subspaces. We feel that this connection may be useful beyond the
context of submodular polyhedra.

Background

Throughout this chapter, we assume that F is a sum of simple submodular functions
F1, . . . , FR and that F (;) = 0. Points s 2 RN can be identified with (modular) set functions
via s(A) =

P
n2A sn. The base polytope of F is defined as the set of all modular functions

that are dominated by F and that sum to F (V ),

B(F ) = {s 2 RN | s(A)  F (A) for all A ✓ V and s(V ) = F (V )}.

The Lovász extension f : RN ! R of F can be written as the support function of the base
polytope, that is f(x) = maxs2B(F ) s>x. Even though B(F ) may have exponentially many
faces, the extension f can be evaluated in O(N logN) time [53]. The discrete SFM problem
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in Problem Equation P1 can be relaxed to the non-smooth convex optimization problem

min
x2[0,1]N

f(x) ⌘ min
x2[0,1]N

RX

r=1

fr(x), (P2)

where fr is the Lovász extension of Fr. This relaxation is exact – rounding an optimal con-
tinuous solution yields the indicator vector of an optimal discrete solution. The formulation
in Problem Equation P2 is amenable to dual decomposition [88] and smoothing techniques
[137], but su↵ers from the non-smoothness of f [81]. Alternatively, we can formulate a
proximal version of the problem

min
x2RN

f(x) + 1
2kxk

2 ⌘ min
x2RN

RX

r=1

(fr(x) +
1
2Rkxk

2). (P3)

By thresholding the optimal solution of Problem Equation P3 at zero, we also recover the
indicator vector of an optimal discrete solution [11, Proposition 8.4].

Lemma 9. The dual of the right-hand version of Problem Equation P3 is the best-approximation
problem

min ka� bk2 a 2 A, b 2 B, (P4)

where A = {(a1, . . . , aR) 2 RNR |
PR

r=1 ar = 0} and B = B(F1)⇥ · · ·⇥B(FR).

Lemma 9 is shown in [81]. It implies that we can minimize a decomposable submodular
function by solving Problem Equation P4, which means finding the closest points between
the subspace A and the product B of base polytopes. Projecting onto A is straightforward
because A is a subspace. Projecting onto B amounts to projecting onto each B(Fr) sepa-
rately. The projection ⇧B(Fr)z of a point z onto B(Fr) may be solved by minimizing Fr � z
[81]. We can compute these projections easily because each Fr is simple.

Throughout this chapter, we use A and B to refer to the specific polyhedra defined
in Lemma 9 (which live in RNR) and P and Q to refer to general polyhedra (sometimes
arbitrary convex sets) in RD. Note that the polyhedron B depends on the submodular
functions F1, . . . , FR, but we omit the dependence to simplify our notation. Our bound will
be uniform over all submodular functions.

6.2 Algorithm and Idea of Analysis

A popular class of algorithms for solving best-approximation problems are projection meth-
ods [16]. The most straightforward approach uses alternating projections (AP) or block
coordinate descent. Start with any point a0 2 A, and inductively generate two sequences
via bk = ⇧Bak and ak+1 = ⇧Abk. Given the nature of A and B, this algorithm is easy to
implement and use in our setting. [81] propose to solve Problem P4 with AP between A and
B. This is the algorithm that we will analyze.
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The sequence (ak, bk) will eventually converge to an optimal pair (a⇤, b⇤). We say that
AP converges linearly with rate ↵ < 1 if kak � a⇤k  C1↵k and kbk � b⇤k  C2↵k for all k
and for some constants C1 and C2. Smaller values of ↵ are better.

Analysis: Intuition. We will provide a detailed analysis of the convergence of AP for
the polyhedra A and B. To motivate our approach, we first provide some intuition with
the following much-simplified setup. Let U and V be one-dimensional subspaces spanned by
the unit vectors u and v respectively. In this case, it is known that AP converges linearly
with rate cos2 ✓, where ✓ 2 [0, ⇡2 ] is the angle such that cos ✓ = u>v. The smaller the
angle, the slower the rate of convergence. For subspaces U and V of higher dimension,
the relevant generalization of the “angle” between the subspaces is the Friedrichs angle [43,
Definition 9.4], whose cosine is given by

cF (U, V ) = sup
�
u>v | u 2 U \ (U \ V )?, v 2 V \ (U \ V )?, kuk  1, kvk  1

 
. (6.2)

In finite dimensions, cF (U, V ) < 1. In general, when U and V are subspaces of arbitrary
dimension, AP will converge linearly with rate cF (U, V )2 [43, Theorem 9.8]. If U and V are
a�ne spaces, AP still converges linearly with rate cF (U�u, V �v)2, where u 2 U and v 2 V .

We are interested in rates for polyhedra P and Q, which we define as the intersection of
finitely many halfspaces. We generalize the preceding results by considering all pairs (Px, Qy)
of faces of P and Q and showing that the convergence rate of AP between P and Q is at worst
maxx,y cF (a↵0(Px), a↵0(Qy))2, where a↵(C) is the a�ne hull of C and a↵0(C) = a↵(C) � c
for some c 2 C. The faces {Px}x2RD of P are defined as the maximizers of linear functions
over P , that is

Px = argmax
p2P

x>p. (6.3)

While we look at angles between pairs of faces, we remark that [45] consider a di↵erent
generalization of the “angle” between arbitrary convex sets.

Roadmap of the Analysis. Our analysis has two main parts. First, we relate the
convergence rate of AP between polyhedra P and Q to the angles between the faces of P and
Q. To do so, we give a general condition under which AP converges linearly (Theorem 10),
which we show depends on the angles between the faces of P and Q (Corollary 13) in the
polyhedral case. Second, we specialize to the polyhedra A and B, and we equate the angles
with eigenvalues of certain matrices and use tools from spectral graph theory to bound the
relevant eigenvalues in terms of the conductance of a specific graph. This yields a worst-case
bound of 1� 1

N2R2 on the rate, stated in Theorem 20.

In Theorem 22, we show a lower bound of 1� 2⇡2

N2R on the worst-case convergence rate.

6.3 The Upper Bound

We first derive an upper bound on the rate of convergence of AP between the polyhedra A
and B.
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Figure 6.1: The optimal sets E, H in Equation Equation 6.4, the vector v, and the shifted
polyhedron Q0.

A Condition for Linear Convergence

We begin with a condition under which AP between two closed convex sets P andQ converges
linearly. This result is similar to that of [17, Corollary 3.14], but the rate we achieve is twice
as fast and relies on slightly weaker assumptions.

We will need a few definitions from [17]. Let d(K1, K2) = inf{kk1 � k2k : k1 2 K1, k2 2
K2} be the distance between sets K1 and K2. Define the sets of “closest points” as

E = {p 2 P | d(p,Q) = d(P,Q)} H = {q 2 Q | d(q, P ) = d(Q,P )}, (6.4)

and let v = ⇧Q�P0 (see Figure 6.1). Note that H = E + v, and when P \ Q 6= ; we have
v = 0 and E = H = P \ Q. Therefore, we can think of the pair (E,H) as a generalization
of the intersection P \ Q to the setting where P and Q do not intersect. Pairs of points
(e, e + v) 2 E ⇥ H are solutions to the best-approximation problem between P and Q. In
our analysis, we will mostly study the translated version Q0 = Q� v of Q that intersects P
at E.

For x 2 RD\E, the function  relates the distance to E with the distances to P and Q0,

(x) =
d(x,E)

max{d(x, P ), d(x,Q0)} .

If  is bounded, then whenever x is close to both P and Q0, it must also be close to their
intersection. If, for example, D � 2 and P andQ are balls of radius one whose centers are sep-
arated by distance exactly two, then  is unbounded. The maximum ⇤ = supx2(P[Q0)\E (x)
is intimately related to the convergence rate.

Theorem 10. Let P and Q be convex sets, and suppose that ⇤ < 1. Then AP between P
and Q converges linearly with rate 1� 1

2
⇤
. Specifically,

kpk � p⇤k  2kp0 � p⇤k(1� 1
2
⇤
)k and kqk � q⇤k  2kq0 � q⇤k(1� 1

2
⇤
)k.

We prove Theorem 10 in Section 6.6.
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Relating ⇤ to the Angles Between Faces of the Polyhedra

In this section, we consider the case of polyhedra P and Q, and we bound ⇤ in terms of the
angles between pairs of their faces. In Lemma 11, we show that  is nondecreasing along the
sequence of points generated by AP between P and Q0. We treat points p for which (p) = 1
separately because those are the points from which AP between P and Q0 converges in one
step. This lemma enables us to bound (p) by initializing AP at p and bounding  at some
later point in the resulting sequence.

Lemma 11. For any p 2 P\E, either (p) = 1 or 1 < (p)  (⇧Q0p). Similarly, for any
q 2 Q0\E, either (q) = 1 or 1 < (q)  (⇧P q).

We prove Lemma 11 in Section 6.6. We can now bound  by the angles between the
faces of P and Q.

Proposition 12. If P and Q are polyhedra and p 2 P\E, then there exist faces Px and Qy

such that

1� 1

(p)2
 cF (a↵0(Px), a↵0(Qy))

2.

The analogous statement holds when we replace p 2 P\E with q 2 Q0\E.

Note that a↵0(Qy) = a↵0(Q0
y). We prove Proposition 12 in Section 6.6. Proposition 12

immediately gives us the following corollary.

Corollary 13. If P and Q are polyhedra, then

1� 1

2
⇤
 max

x,y2RD
cF (a↵0(Px), a↵0(Qy))

2.

Angles Between Subspaces and Singular Values

Corollary 13 leaves us with the task of bounding the Friedrichs angle. To do so, we first
relate the Friedrichs angle to the singular values of certain matrices in Lemma 14. We
then specialize this to base polyhedra of submodular functions. For convenience, we prove
Lemma 14 in Section 6.6, though this result is implicit in the characterization of principal
angles between subspaces given in [85, Section 1]. Ideas connecting angles between subspaces
and eigenvalues are also used by [47].

Lemma 14. Let S and T be matrices with orthonormal rows and with equal numbers of
columns. If all of the singular values of ST> equal one, then cF (null(S), null(T )) = 0.
Otherwise, cF (null(S), null(T )) is equal to the largest singular value of ST> that is less than
one.
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Faces of relevant polyhedra. Let Ax and By be faces of the polyhedra A and B from
Lemma 9. Since A is a vector space, its only nonempty face is Ax = A. Hence, Ax = null(S),
where S is the N ⇥NR matrix

S =
1p
R

0

B@ IN · · · IN| {z }
repeated R times

1

CA . (6.5)

Here, IN denotes the N ⇥ N identity matrix. The matrix for a↵0(By) requires a bit more
elaboration. Since B is a Cartesian product, we have By = B(F1)y1⇥· · ·⇥B(FR)yR , where y =
(y1, . . . , yR) and B(Fr)yr is a face of B(Fr). To proceed, we use the following characterization
of faces of base polytopes [11, Proposition 4.7].

Proposition 15. Let F be a submodular function, and let B(F )x be a face of B(F ). Then
there exists a partition of V into disjoint sets A1, . . . , AM such that

a↵(B(F )x) =
M\

m=1

{s 2 RN | s(A1 [ · · · [ Am) = F (A1 [ · · · [ Am)}.

The following corollary is immediate.

Corollary 16. Define F , B(F )x, and A1, . . . , AM as in Proposition 15. Then

a↵0(B(F )x) =
M\

m=1

{s 2 RN | s(A1 [ · · · [ Am) = 0}.

Corollary 16 implies that, for each Fr, there exists a partition of V into disjoint sets
Ar1, . . . , ArMr such that

a↵0(By) =
R\

r=1

Mr\

m=1

{(s1, . . . , sR) 2 RNR | sr(Ar1 [ · · · [ Arm) = 0}. (6.6)

In other words, we can write a↵0(By) as the nullspace of either of the matrices

T 0 =

0

BBBBBBBBBBB@

1>A11
...

1>A11[···[A1M1

. . .
1>AR1
...

1>AR1[···[ARMR

1

CCCCCCCCCCCA

or T =

0

BBBBBBBBBBBBBBBBB@

1>A11p
|A11|
...

1>A1M1p
|A1M1 |

. . .
1>AR1p
|AR1|
...

1>ARMRp
|ARMR

|

1

CCCCCCCCCCCCCCCCCA

,
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where 1A is the indicator vector of A ✓ V . For T 0, this follows directly from Equation Equa-
tion 6.6. T can be obtained from T 0 via left multiplication by an invertible matrix, so T and
T 0 have the same nullspace. Lemma 14 then implies that cF (a↵(Ax), a↵0(By)) equals the
largest singular value of

ST> =
1p
R

✓
1A11p
|A11|

· · ·
1A1M1p
|A1M1 |

· · · 1AR1p
|AR1|

· · ·
1ARMRp
|ARMR

|

◆

that is less than one. We rephrase this conclusion in the following remark

Remark 17. The largest eigenvalue of (ST>)>(ST>) less than one equals cF (a↵(Ax), a↵0(By))2.

Let Mall = M1 + · · · +MR. Then (ST>)>(ST>) is the Mall ⇥Mall square matrix whose
rows and columns are indexed by (r,m) with 1  r  R and 1  m  Mr and whose entry
corresponding to row (r1,m1) and column (r2,m2) equals

1

R

1>Ar1m1
1Ar2m2p

|Ar1m1 ||Ar2m2 |
=

1

R

|Ar1m1 \ Ar2m2 |p
|Ar1m1 ||Ar2m2 |

.

Bounding the Relevant Eigenvalues

It remains to bound the largest eigenvalue of (ST>)>(ST>) that is less than one. To do so,
we view the matrix as the symmetric normalized Laplacian of a particular weighted graph.

Let G be the graph whose vertices are indexed by (r,m) with 1  r  R and 1  m  Mr.
Let the edge between vertices (r1,m1) and (r2,m2) have weight |Ar1m1 \ Ar2m2 |. We may
assume that G is connected (the analysis in this case subsumes the analysis in the general
case). The symmetric normalized Laplacian L of this graph is closely related to our matrix
of interest,

(ST>)>(ST>) = I � R�1
R L. (6.7)

Hence, the largest eigenvalue of (ST>)>(ST>) that is less than one can be determined from
the smallest nonzero eigenvalue �2(L) of L. We bound �2(L) via Cheeger’s inequality (stated
in Section 6.6) by bounding the Cheeger constant hG of G.

Lemma 18. For R � 2, we have hG � 2
NR and hence �2

2(L) � 2
N2R2 .

We prove Lemma 18 in Section 6.6. Combining Remark 17, Equation Equation 6.7, and
Lemma 18, we obtain the following bound on the Friedrichs angle.

Proposition 19. Assuming that R � 2, we have

cF (a↵(Ax), a↵0(By))
2  1� R�1

R
2

N2R2  1� 1
N2R2 .

Together with Theorem 10 and Corollary 13, Proposition 19 implies the final bound on
the rate.

Theorem 20. The AP algorithm for Problem Equation P4 converges linearly with rate
1� 1

N2R2 .
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6.4 A Lower Bound

To probe the tightness of Theorem 20, we construct a submodular function and a decompo-
sition that leads to a slow rate. We make use of Lemma 27, which describes the exact rate in
the subspace case, and Corollary 28, which allows us to reduce our example to the subspace
case. Both results are shown in Section 6.7. For our worst-case example below, the empirical
convergence rate matches the theoretical lower bound of Theorem 22 (Section 6.7).

For each x, y 2 V , define the submodular function Gxy on V to be the cut function on
the graph with the single edge (x, y)

Gxy =

(
1 if |A \ {x, y}| = 1

0 otherwise .

Now, let N be even and R � 2 and define the submodular function F lb = F lb
1 + · · · + F lb

R ,
where

F lb
1 = G12 +G34 + · · ·+G(N�1)N F lb

2 = G23 +G45 + · · ·+GN1

and F lb
r = 0 for all r � 3. If we restrict the support of Gxy to {x, y}, then B(Gxy) =

{(s,�s) | s 2 [�1, 1]}. Therefore, the product B of base polytopes for this problem, which
we refer to as Blb, is

Blb = {(s1,�s1, . . . , sN
2
,�sN

2| {z }
B(F lb

1 )

,�tN
2
, t1,�t1, . . . , tN

2| {z }
B(F lb

2 )

, 0, . . . , 0
| {z }
B(F lb

3 )

, . . . , 0, . . . , 0
| {z }
B(F lb

R )

) | si, tj 2 [�1, 1]}.

In Figure 6.3, we illustrate several runs of AP between A and Blb.

Lemma 21. The Friedrichs angle between A and a↵(Blb) satisfies

cF (A, a↵(Blb))2 = 1� 1
R

�
1� cos

�
2⇡
N

��
.

Lemma 21, proved in Section 6.7, leads to the following lower bound on the worst-case
rate.

Theorem 22. The worst-case convergence rate of AP between the polyhedra A and B from
Lemma 9 is at least 1� 2⇡2

N2R .

Proof. From Corollary 28 and Lemma 21, we see that there is some nonzero a0 2 A such
that the sequences {ak}k�0 and {bk}k�0 generated by AP between A and Blb satisfy

kakk = (1� 1
R(1� cos(2⇡N )))kka0k and kbkk = (1� 1

R(1� cos(2⇡N )))kkb0k.

Lastly, the inequality 1� cos(x)  1
2x

2 gives the lower bound.
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6.5 Convergence of the Primal Objective

We have shown that AP produces a sequence of points {ak}k�0 and {bk}k�0 in RNR such that
(ak, bk) ! (a⇤, b⇤) linearly, where (a⇤, b⇤) minimizes the objective in Problem Equation P4.
In this section, we show that this result also implies the linear convergence of the objective
in Problem Equation P3 and of the original discrete objective in Problem Equation P1.

Define the matrix � = �R1/2S, where S is the matrix defined in Equation Equation 6.5.
Multiplication by � maps a vector (w1, . . . , wR) to �

P
r wr, where wr 2 RN for each r. Set

xk = �bk and x⇤ = �b⇤. As shown in [81], Problem Equation P3 is minimized by x⇤.

Proposition 23. We have f(xk) +
1
2kxkk2 ! f(x⇤) +

1
2kx⇤k2 linearly with rate 1� 1

N2R2 .

We prove Proposition 23 in Section 6.8. This linear rate of convergence translates into the
following linear rate for the original discrete problem. We prove Theorem 24 in Section 6.8.

Theorem 24. Choose A⇤ 2 argminA✓V F (A). Let Ak be the suplevel set of xk with smallest
value of F . Then F (Ak) ! F (A⇤) linearly with rate 1� 1

2N2R2 .

6.6 Upper Bound Results

Proof of Theorem 10

For the proof of this theorem, we will need the fact that projection maps are firmly nonex-
pansive, that is, for a closed convex nonempty subset C ✓ RD, we have

k⇧Cx� ⇧Cyk2 + k(x� ⇧Cx)� (y � ⇧Cy)k2  kx� yk2

for all x, y 2 RD. Now, suppose that ⇤ < 1. Let e = ⇧Epk and note that v = ⇧Qe� e and
that ⇧Qe 2 H. We have

�2
⇤ d(pk, E)2  d(pk, Q

0)2

 kpk � ⇧Qpk + vk2

 k(pk � ⇧Qpk)� (e� ⇧Qe)k2

 kpk � ek2 � k⇧Qpk � ⇧Qek2

 d(pk, E)2 � d(qk, H)2.

It follows that d(qk, H)  (1 � �2
⇤ )1/2d(pk, E). Similarly, we have d(pk+1, E)  (1 �

�2
⇤ )1/2d(qk, H). Combining these and inducting, we see that

d(pk, E)  (1� �2
⇤ )kd(p0, E)

d(qk, H)  (1� �2
⇤ )kd(q0, H).
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Figure 6.2: Illustration of the proof of Lemma 11.

As shown in [17, Theorem 3.3], the above implies that pk ! p⇤ 2 E and qk ! q⇤ 2 H and
that

kpk � p⇤k  2kp0 � p⇤k(1� �2
⇤ )k

kqk � q⇤k  2kq0 � q⇤k(1� �2
⇤ )k.

Connection Between  and cF in the Subspace Case

In this section, we introduce a simple lemma connecting  and cF in the case of subspaces
U and V . We will use this lemma in several subsequent proofs.

Lemma 25. Let U and V be subspaces and suppose u 2 U \ (U \V )? and that u 6= 0. Then

(a) k⇧V uk  cF (U, V )kuk
(b) (u)  (1� cF (U, V )2)�1/2

(c) (u) = (1� cF (U, V )2)�1/2 if and only if k⇧V uk = cF (U, V )kuk.

Proof. Part (a) follows from the definition of cF . Indeed,

cF (U, V ) � u>(⇧V u)

kukk⇧V uk
=

k⇧V uk2

kukk⇧V uk
=

k⇧V uk
kuk .

Part (b) follows from Part (a) and the observation that (u) = (1 � k⇧V uk2/kuk2)�1/2.
Part (c) follows from the same observation.
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Proof of Lemma 11

It su�ces to prove the statement for p 2 P\E. For p 2 P\E, define q = ⇧Q0p, e = ⇧Eq, and
p00 = ⇧[p,e]q, where [p, e] denotes the line segment between p and e (which is contained in P
by convexity). See Figure 6.2 for a graphical depiction. If q 2 E, then (p) = 1. So we may
assume that q /2 E which also implies that d(p00, E) > 0 and d(⇧P q, E) > 0. We have

(p) =
d(p, E)

d(p,Q0)
 kp� ek

kp� qk  kq � ek
kq � p00k  d(q, E)

d(q, P )
= (q). (6.8)

The first inequality holds because d(p, E)  kp � ek and d(p,Q0) = kp � qk. The middle
inequality holds because the area of the triangle with vertices p, q, and e can be expressed
as both 1

2kp � ekkq � p00k and 1
2kp � qkkq � ek sin ✓, where ✓ is the angle between vectors

p� q and e� q, so

kp� ekkq � p00k = kp� qkkq � ek sin ✓  kp� qkkq � ek.

The third inequality holds because kq � ek = d(q, E) and kq � p00k � d(q, P ). The chain of
inequalities in Equation Equation 6.8 prove the lemma.

Proof of Proposition 12

Suppose that p 2 P\E (the case q 2 Q0\E is the same), and let e = ⇧Ep. If (p) = 1,
the statement is evident, so we may assume that (p) > 1. We will construct sequences of
polyhedra

P ◆ P1 ◆ · · · ◆ PJ

Q0 ◆ Q0
1 ◆ · · · ◆ Q0

J
.

where Pj+1 is a face of Pj and Q0
j+1 is a face of Q0

j for 1  j  J�1. Either dim(a↵(Pj+1)) <
dim(a↵(Pj)) or dim(a↵(Q0

j+1)) < dim(a↵(Q0
j)) will hold. We will further define Ej = Pj\Q0

j,
which will contain e, so that we can define

j(x) =
d(x,Ej)

max{d(x, Pj), d(x,Q0
j)}

for x 2 RD\Ej (this is just the function  defined for the polyhedra Pj and Q0
j). Our

construction will yield points pj 2 Pj, and qj 2 Q0
j such that pj 2 relint(Pj)\Ej, qj 2

relint(Q0
j)\Ej, and qj = ⇧Q0

j
pj for each j. Furthermore, we will have

(p)  1(p1)  · · ·  J(pJ). (6.9)

Now we describe the construction. For any t 2 [0, 1], define pt = (1� t)p + te to be the
point obtained by moving p by the appropriate amount toward e. Note that t 7! (pt) is a
nondecreasing function on the interval [0, 1). Choose ✏ > 0 su�ciently small so that every
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face of either P or Q0 that intersects B✏(e), the ball of radius ✏ centered on e, necessarily
contains e. Now choose 0  t0 < 1 su�ciently close to 1 so that kpt0 � ek < ✏. It follows
that e is contained in the face of P whose relative interior contains pt0 . It further follows
that e is contained in the face of Q0 whose relative interior contains ⇧Q0pt0 because

k⇧Q0pt0 � ek = k⇧Q0pt0 � ⇧Q0ek  kpt0 � ek < ✏.

To initialize the construction, set

p1 = pt0

q1 = ⇧Q0pt0 ,

and let P1 and Q0
1 be the unique faces of P and Q0 respectively such that p1 2 relint(P1) and

q1 2 relint(Q0
1) (the relative interiors of the faces of a polyhedron partition that polyhedron

[27, Theorem 2.2]). Note that q1 /2 E because (p1) � (p) > 1. Note that e 2 E1 = P1\Q0
1

so that

(p)  (p1) =
d(p1, E)

d(p1, Q0)
=

kp1 � ek
kp1 � q1k

=
d(p1, E1)

d(p1, Q0
1)

= 1(p1).

Now, inductively assume that we have defined Pj, Q0
j, pj, and qj satisfying the stated prop-

erties. Generate the sequences {xk}k�0 and {yk}k�0 with xk 2 Pj and yk 2 Q0
j by running

AP between the polyhedra Pj and Q0
j initialized with x0 = pj. There are two possibilities,

either xk 2 relint(Pj) and yk 2 relint(Q0
j) for every k, or there is some k for which either

xk /2 relint(Pj) or yk /2 relint(Q0
j). Note that AP will not terminate after a finite number of

steps.
Suppose that xk 2 relint(Pj) and yk 2 relint(Q0

j) for every k. Then set J = j and
terminate the procedure. Otherwise, choose k0 such that either xk0 /2 relint(Pj) or yk0 /2
relint(Q0

j). Now set pj+1 = xk0 and qj+1 = yk0 . Let Pj+1 and Q0
j+1 be the unique faces of

Pj and Q0
j respectively such that pj+1 2 relint(Pj+1) and qj+1 2 relint(Q0

j+1). Note that
pj+1, qj+1 /2 Ej+1 = Pj+1 \Q0

j+1 and e 2 Ej+1. We have

j(pj) < j(pj+1) =
d(pj+1, Ej)

d(pj+1, Q0
j)

=
d(pj+1, Ej)

kpj+1 � qj+1k
 d(pj+1, Ej+1)

d(pj+1, Q0
j+1)

= j+1(pj+1).

The preceding work shows the inductive step. Note that if Pj+1 6= Pj then dim(a↵(Pj+1)) <
dim(a↵(Pj)) and if Q0

j+1 6= Q0
j then dim(a↵(Q0

j+1)) < dim(a↵(Q0
j)). One of these will hold,

so the induction will terminate after a finite number of steps.
We have produced the sequence in Equation Equation 6.9 and we have created pJ , PJ ,

and Q0
J such that AP between PJ and Q0

J , when initialized at pJ , generates the same sequence
of points as AP between a↵(PJ) and a↵(Q0

J). Using this fact, along with [46, Theorem 9.3],
we see that ⇧a↵(PJ )\a↵(Q0

J )
pJ 2 EJ . Using this, along with Lemma 25(b), we see that

J(pJ)  (1� cF (a↵0(PJ), a↵0(Q
0
J))

2)�1/2. (6.10)

Equations Equation 6.10 and Equation 6.9 prove the result. Note that PJ and Q0
J are faces

of P and Q0 respectively. We can switch between faces of Q0 and faces of Q because doing
so amounts to translating by v which does not a↵ect the angles.
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Proof of Lemma 14

We have

cF (null(S), null(T )) = cF (range(S
>)?, range(T>)?)

= cF (range(S
>), range(T>)),

where the first equality uses the fact that null(W ) = range(W>)? for matrices W , and
the second equality uses the fact that cF (U?, V ?) = cF (U, V ) for subspaces U and V [14,
Fact 2.3].

Let S> and T> have dimensions D⇥ J and D⇥K respectively, and let X and Y be the
subspaces spanned by the columns of S> and T> respectively. Without loss of generality,
assume that J  K. Let �1 � · · · � �J be the singular values of ST> with corresponding
left singular vectors u1, . . . , uJ and right singular vectors v1, . . . , vJ . Let xj = S>uj and let
yj = T>vj for 1  j  J . By definition, we can write

�j = max
u,v

{u>ST>v | u ? span(u1, . . . , uj�1), v ? span(v1, . . . , vj�1), kuk = 1, kvk = 1}.

Since the {uj}j are orthonormal, so are the {xj}j. Similarly, since the {vj}j are orthonormal,
so are the {yj}j. Suppose that all of the singular values of ST> equal one. Then we must
have xj = yj for each j, which implies that X ✓ Y , and so cF (X, Y ) = 0.

Now suppose that �1 = · · · = �` = 1, and �`+1 6= 1. It follows that

X \ Y = span(x1, . . . , x`) = span(y1, . . . , y`),

and so

�`+1 = sup
u,v

{u>ST>v | u 2 span(u1, . . . , u`)
?, v 2 span(v1, . . . , v`)

?, kuk = 1, kvk = 1}

= sup
x,y

{x>y | x 2 X \ (X \ Y )?, y 2 Y \ (X \ Y )?, kxk = 1, kyk = 1}

= cF (X, Y ).

Cheeger’s Inequality

For an overview of spectral graph theory, see [33]. We state Cheeger’s inequality below.
Let G be a weighted, connected graph with vertex set VG and edge weights (wij)i,j2VG .

Define the weighted degree of a vertex i to be �i =
P

j 6=i wij, define the volume of a subset
of vertices to be the sum of their weighted degrees, vol(U) =

P
i2U �i, and define the size of

the cut between U and its complement U c to be the sum of the weights of the edges between
U and U c,

|E(U,U c)| =
X

i2U,j2Uc

wij.
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The Cheeger constant is defined as

hG = min
;6=U(VG

|E(U,U c)|
min(vol(U), vol(U c))

.

Let L be the unnormalized Laplacian of G, i.e. the |VG| ⇥ |VG| matrix whose entries are
defined by

Lij =

⇢
�wij i 6= j
�i otherwise

.

Let D be the |VG| ⇥ |VG| diagonal matrix defined by Dii = �i. Then L = D�1/2LD�1/2 is
the normalized Laplacian. Let �2(L) denote the second smallest eigenvalue of L (since G is
connected, there will be exactly one eigenvalue equal to zero).

Theorem 26 (Cheeger’s inequality). We have �2(L) � h2
G
2 .

Proof of Lemma 18

Proof. We have

min(vol(U), vol(U c))  1

2
vol(VG)

=
1

2

X

(r,m)

0

@
X

(r0,m0) 6=(r,m)

|Arm \ Ar0m0 |

1

A

=
1

2

X

(r,m)

(R� 1)|Arm|

=
1

2
NR(R� 1).

Since G is connected, for any nonempty set U ( VG, there must be some element v 2 V
(here V is the ground set of our submodular function F , not the set of vertices VG) such
that v 2 Ar1m1 \ Ar2m2 for some (r1,m1) 2 U and (r2,m2) 2 U c. Suppose that v appears in
k of the subsets of V indexed by elements of U and in R� k of the subsets of V indexed by
elements of U c. Then

|E(U,U c)| � k(R� k) � R� 1.

It follows that

hG � R� 1
1
2NR(R� 1)

=
2

NR
.

It follows from Theorem 26 that �2(L) � 2
N2R2 .
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6.7 Results for the Lower Bound

Some Helpful Results

In Lemma 27, we show how AP between subspaces U and V can be initialized to exactly
achieve the worst-case rate of convergence. Then in Corollary 28, we show that if subsets
U 0 and V 0 look like subspaces U and V near the origin, we can initialize AP between U 0 and
V 0 to achieve the same worst-case rate of convergence.

Lemma 27. Let U and V be subspaces with U 6✓ V and V 6✓ U . Then there exists some
nonzero point u0 2 U\(U\V )? such that when we initialize AP at u0, the resulting sequences
{uk}k�0 and {vk}k�0 satisfy

kukk = cF (U, V )2kku0k
kvkk = cF (U, V )2kkv0k.

Proof. Find u⇤ 2 U \ (U \ V )? and v⇤ 2 V \ (U \ V )? with ku⇤k = 1 and kv⇤k = 1 such
that u>

⇤ v⇤ = cF (U, V ), which we can do by compactness. By Lemma 25(a),

cF (U, V ) = v>⇤ u⇤ = v>⇤ ⇧V u⇤  k⇧V u⇤k  cF (U, V ).

Set u0 = u⇤ and generate the sequences {uk}k�0 and {vk}k�0 via AP. Since k⇧V u0k =
cF (U, V ), Lemma 25(c) implies that (u0) = (1�cF (U, V )2)�1/2. Since  attains its maximum
at u0, Lemma 11 implies that  attains the same value at every element of the sequences
{uk}k�0 and {vk}k�0. Therefore, Lemma 25(c) implies that k⇧V ukk = cF (U, V )kukk and
k⇧Uvkk = cF (U, V )kvkk for all k. This proves the lemma.

Corollary 28. let U and V be subspaces with U 6✓ V and V 6✓ U . Let U 0 ✓ U and V 0 ✓ V
be subsets such that U 0 \ B✏(0) = U \ B✏(0) and V 0 \ B✏(0) = V \ B✏(0) for some ✏ > 0.
Then there is a point u0

0 2 U 0 such that the sequences {u0
k}k�0 and {v0k}k�0 generated by AP

between U 0 and V 0 initialized at u0
0 satisfy

ku0
kk = cF (U, V )2kku0

0k
kv0kk = cF (U, V )2kkv00k.

Proof. Use Lemma 27 to choose some nonzero u0 2 U \ (U \ V )? satisfying this property.
Then set u0

0 =
✏

ku0ku0.

Proof of Lemma 21

Observe that we can write

a↵(Blb) = {(s1,�s1, . . . , sN
2
,�sN

2
,�tN

2
, t1,�t1, . . . , tN

2
, 0, . . . , 0, . . . , 0, . . . , 0) | si, tj 2 R}.
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We can write a↵(Blb) as the nullspace of the matrix

Tlb =

0

BBBBB@

Tlb,1

Tlb,2

IN
. . .

IN

1

CCCCCA
,

where the N ⇥ N identity matrix IN is repeated R � 2 times and where Tlb,1 and Tlb,2 are
the N

2 ⇥N matrices

Tlb,1 =
1p
2

0

BBB@

1 1
1 1

. . .
1 1

1

CCCA
Tlb,2 =

1p
2

0

BBB@

1 1
1 1

. . .
1 1

1

CCCA
.

Recall that we can write A as the nullspace of the matrix S defined in Equation Equation 6.5.
It follows from Lemma 14 that cF (A, a↵(Blb)) equals the largest singular value of ST>

lb that
is less than one. We have

ST>
lb = 1p

R

�
T>
lb,1 T>

lb,2 IN · · · IN
�
.

We can permute the columns of ST>
lb without changing the singular values, so cF (A, a↵(Blb))

equals the largest singular value of

1p
R

�
T>
lb,0 IN · · · IN

�
,

that is less than one, where Tlb,0 is the N ⇥N circulant matrix

Tlb,0 =
1p
2

0

BBBBB@

1 1
1 1

. . .
1 1

1 1

1

CCCCCA
.

Therefore, cF (A, a↵(Blb))2 equals the largest eigenvalue of

1
R

�
T>
lb,0 IN · · · IN

� �
T>
lb,0 IN · · · IN

�>
= 1

R

�
T>
lb,0Tlb,0 + (R� 2)IN

�

that is less than one. Therefore, it su�ces to examine the N ⇥N circulant matrix

T>
lb,0Tlb,0 =

1

2

0

BBBBB@

2 1 1
1 2

. . .
2 1

1 1 2

1

CCCCCA
.
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Figure 6.3: We run five trials of AP between A and Blb with random initializations, where
N = 10 and R = 10. For each trial, we plot the ratios d(ak+1, E)/d(ak, E), where E = A\Blb

is the optimal set. The red line shows the theoretical lower bound of 1 � 1
R(1 � cos(2⇡N ) on

the worst-case rate of convergence.

The eigenvalues of T>
lb,0Tlb,0 are given by �j = 1 + cos

�
2⇡j
N

�
for 0  j  N � 1 (see [67,

Section 3.1] for a derivation). Therefore,

cF (A, a↵(Blb))2 = 1� 1
R(1� cos(2⇡N )).

Lower Bound Illustration

The proof of Theorem 22 shows that there is some a0 2 A such that when we initialize AP
between A and Blb at a0, we generate a sequence {ak}k�0 satisfying

d(ak, E) = (1� 1
R(1� cos(2⇡N ))kd(a0, E),

where E = A\Blb is the optimal set. In Figure 6.3, we plot the theoretical bound in red, and
in blue the successive ratios d(ak+1, E)/d(ak, E) for five runs of AP between A and Blb with
random initializations. Had we initialized AP at a0, the successive ratios would exactly equal
1� 1

R(1� cos(2⇡N )). The plot of these ratios would coincide with the red line in Figure 6.3.
Figure 6.3 illustrates that the empirical behavior of AP between A and Blb is often similar

to the worst-case behavior, even when the initialization is random. When we initialize AP
randomly, the successive ratios appear to increase to the lower bound and then remain
constant. Figure 6.3 shows the case N = 10 and R = 10, but the plot looks similar for other
N and R.

We also note that the graph corresponding to our lower bound example actually achieves
a Cheeger constant similar to the one used in Lemma 18.
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6.8 Results for Convergence of the Primal and
Discrete Problems

Proof of Proposition 23

First, suppose that s 2 B(F ). Let A = {n 2 V | sn � 0} be the set of indices on which s is
nonnegative. Then we have

ksk  ksk1 = 2s(A)� s(V )  3Fmax. (6.11)

Now, we show that f(xk)+
1
2kxkk2 converges to f(x⇤)+

1
2kx⇤k2 linearly with rate 1� 1

N2R2 .
We will use Equation Equation 6.11 to bound the norms of xk and x⇤, both of which lie in
�B(F ). We will also use the fact that kxk �x⇤k  k�kkbk � b⇤k 

p
Rkbk � b⇤k. Finally, we

will use the proof of Theorem 20 to bound kbk � b⇤k. First, we bound the di↵erence between
the squared norms using convexity. We have

1
2kxkk2 � 1

2kx⇤k2  x>
k (xk � x⇤)

 kxkkkxk � x⇤k
 3Fmax

p
Rkbk � b⇤k

 6Fmax

p
Rkb0 � b⇤k(1� 1

N2R2 )
k. (6.12)

Next, we bound the di↵erence in Lovász extensions. Choose s 2 argmaxs2B(F ) s
>xk. Then

f(xk)� f(x⇤)  s>(xk � x⇤)

 kskkxk � x⇤k
 3Fmax

p
Rkbk � b⇤k

 6Fmax

p
Rkb0 � b⇤k(1� 1

N2R2 )
k. (6.13)

Combining the bounds Equation 6.12 and Equation 6.13, we find that

(f(xk) +
1
2kxkk2)� (f(x⇤) +

1
2kx⇤k2)  12Fmax

p
Rkb0 � b⇤k(1� 1

N2R2 )
k. (6.14)

Proof of Theorem 24

By definition, Ak is the set of the form {n 2 V | (xk)n � c} for some constant c with smallest
value of F ({n 2 V | (xk)n � c}).

Let (w⇤, s⇤) 2 RN ⇥ B(F ) be a primal-dual optimal pair for the left-hand version of
Problem Equation P3. The dual of this minimization problem is the projection problem
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mins2B(F )
1
2ksk

2. From [11, Proposition 10.5], we see that

F (Ak)� F (A⇤)  F (Ak)� (s⇤)�(V )


q

N
2 ((f(xk) +

1
2kxkk2)� (f(x⇤) +

1
2kx⇤k2))


q

6FmaxNR1/2kb0 � b⇤k (1� 1
N2R2 )

k/2


q

6FmaxNR1/2kb0 � b⇤k(1� 1
2N2R2 )

k,

where the third inequality uses the proof of Proposition 23. The second inequality relies
on [11, Proposition 10.5], which states that a duality gap of ✏ for the left-hand version of
Problem Equation P3 turns into a duality gap of

p
N✏/2 for the original discrete problem.

If our algorithm converged with rate 1
k , this would translate to a rate of 1p

k
for the dis-

crete problem. But fortunately, our algorithm converges linearly, and taking a square root
preserves linear convergence.

Running times. Theorem 24 implies that the number of iterations required for an accu-
racy of ✏ is at most

2N2R2 log

 p
6FmaxNR1/2kb0 � b⇤k

✏

!
.

Each iteration involves minimizing each of the Fr separately.

6.9 Conclusion

In this work, we analyze projection methods for SFM and give upper and lower bounds
on the linear rate of convergence. This means that the number of iterations required for
an accuracy of ✏ is logarithmic in 1/✏, not linear as in previous work [137]. Our rate is
uniform over all submodular functions. Moreover, our proof highlights how the number R
of components and the facial structure of B a↵ect the convergence rate. These insights may
serve as guidelines when working with projection algorithms and aid in the analysis of special
cases. For example, reducing R is often possible. Any collection of Fr that have disjoint
support, such as the cut functions corresponding to the rows or columns of a grid graph, can
be grouped together as one component without making the projection harder.

Our analysis also shows the e↵ects of additional properties of F . For example, suppose
that F is separable, that is, F (V ) = F (S) + F (V \S) for some nonempty S ( V . Then
the subsets Arm ✓ V defining the relevant faces of B satisfy either Arm ✓ S or Arm ✓ Sc

[11]. This makes G in Section 6.3 disconnected, and as a result, the N in Theorem 20 gets
replaced by max{|S|, |Sc|} for an improved rate. This applies without the user needing to
know S when running the algorithm.

A number of future directions suggest themselves. We addressed AP, but [81] also con-
sidered the related Douglas-Rachford (DR) algorithm. DR between subspaces converges
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linearly with rate cF [14], as opposed to c2F for AP. We suspect that our approach may
be modified to analyze DR between polyhedra. Further questions include the extension to
multiple polyhedra.
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Chapter 7

Conclusion

In this thesis, we have described the challenges presented by modern machine learning appli-
cations and presented a distributed system capable of supporting these applications. Because
machine learning applications themselves are so broad in scope, extending far beyond a single
computational pattern such as distributed training or prediction serving, a system capable of
supporting machine learning applications must be capable of supporting a variety of work-
loads including stream processing, data analytics, parallel simulations, distributed training,
reinforcement learning, and hyperparameter search.

Many systems introduce new high-level abstractions that can be used to develop dis-
tributed applications. For example, many bulk synchronous parallel systems introduce a
dataset concept as the core abstraction. Many streaming systems introduce a stream con-
cept as the core abstraction. Hyperparameter search systems may use a trial concept as the
core abstraction. The generality of our proposed architecture arises from the choice to not
introduce new abstractions. Instead, we find a way to take the abstractions from single-
threaded programming, namely functions and classes, and provide analogs in the distributed
setting. By keeping the concepts the same, our proposal aims to preserve the generality of
single-threaded programming in the distributed setting. In addition, this strategy provides
a natural bridge for running the same code in the two settings.

The idea of a single general-purpose distributed system holds great promise. Today’s
distributed systems typically operate in isolation from one another, except perhaps sharing
resources through a cluster manager. Each system separately handles task scheduling, data
transfer, and fault tolerance. As a consequence, distributed systems can be challenging
to compose together because, as self-contained entities, they are typically not designed to
expose clean interfaces. However, our proposal allows new distributed systems to be built
not as standalone distributed systems but rather as libraries on top of a general-purpose
system. These libraries, because they operate on top of the same underlying distributed
system, can easily be used together. This ability to compose libraries can enable substantially
greater performance and ease-of-development for applications that integrate many di↵erent
distributed computational patterns together. These applications include many reinforcement
learning applications, which combine training, simulation, and serving patterns together as
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well as many online learning applications, which combine streaming, training, and serving
patterns together.

Toward this end, an ecosystem has begun to form around our proposal. Sophisticated
libraries for reinforcement learning [94], hyperparameter tuning [95], data analytics [123], and
other modern AI applications [6] have been developed, and nascent libraries for distributed
training, stream processing, and model serving are in progress. Early experience suggests
that our proposal has the abstractions needed to support the broader machine learning
ecosystem.

Future Work

Much remains to be done in order to realize this vision of a single general-purpose distributed
system.

Stringent Heterogeneous Requirements

One challenge with a general system is that it must support the most stringent requirements
of each application that runs on top of it. If a streaming application requires transparent
fault tolerance but a model training application does not, then the system must provide
transparent fault tolerance. Similarly, if a simulation-based workload requires a system
throughput of millions of tasks per second, but a hyperparameter tuning application does
not, then the system must support millions of tasks per second. Further challenges arise
from the fact that individual applications may have heterogeneous requirements. For ex-
ample, a streaming graph processing application may require transparent fault tolerance for
the portion of the application that processes incoming data and builds up the underlying
graph, but it may allow tasks that interactively query the graph to fail in the presence of
machine failures. Providing a su�ciently rich API that allows applications to specify their
heterogeneous requirements is an important and challenging goal.

Guiding Users Toward Best Practices

The more flexible a system is, the more ways applications will be able to implement the same
computations. For example a communication primitive such as a ring allreduce between a set
of actors can be implemented by having the actors directly invoke methods on one another,
or it can be implemented by having an external driver process invoke all of the methods
and orchestrate the computation. These choices have implications for the e�ciency of the
strategy as well as the e�ciency of recovery in the event of a failure. Much work remains to
be done in order to shepherd users toward best practices and performant implementations.

Composable Libraries for Distributed Applications

Building single-machine applications by composing and using many di↵erent single-machine
libraries is commonplace. For example, a normal Python script may use libraries for numer-
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ical linear algebra, standard data structures, data manipulation, string parsing, and more.
Though it is still common to use many single-machine libraries when building distributed ap-
plications, it is uncommon to build distributed applications by composing many distributed
libraries together. Part of the reason for this is that most distributed applications are built as
standalone systems and not as libraries. However, we believe that by providing libraries for
common distributed patterns, such as standard distributed data structures, parallel stream
and data processing, machine learning training, prediction serving, scalable microservices,
and web crawling, that are all easily usable within the same framework, we can enable
developers to build distributed applications much more rapidly and with much less code.

Generalizing Serverless Computing

Today, building distributed applications involves reasoning about application logic and man-
aging clusters of machines. Serverless computing is changing that. By automatically man-
aging the details of launching clusters and scaling them up and down, serverless comput-
ing allows application developers to reason only about application logic. As the appeal of
distributed computing broadens beyond experts, abstracting away the underlying cluster
configurations will become more and more important. However, serverless computing today
provides a limited programming model and limited performance capabilities. The architec-
ture proposed in this thesis may be well suited to provide the programming model for the
next generation of serverless computing frameworks. Coupled together, this architecture
and the insights of serverless computing could create a powerful paradigm for building cloud
applications.
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