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Abstract

Performance Guarantees in Learning and Robust Control

by

Ross J Boczar

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Benjamin Recht, Chair

As the systems we control become more complex, first-principle modeling becomes either
impossible or intractable, motivating the use of machine learning techniques for the control
of systems with continuous action spaces. As impressive as the empirical success of these
methods have been, strong theoretical guarantees of performance, safety, or robustness are
few and far between. This manuscript takes a step towards such providing such guarantees
by establishing finite-data performance guarantees for identifying and controlling fully- or
partially-unknown dynamical systems.

In this manuscript, we explore three different viewpoints that each provide different quan-
titative guarantees of performance. First, we present a generalization of the classical theory
of integral quadratic constraints. This generalization leads to a tractable computational pro-
cedure for finding exponential stability certificates for partially-unknown feedback systems.
Second, we present non-asymptotic lower and upper bounds for core problems in the field of
system identification. Finally, using the recently developed system-level synthesis framework
and tools from high-dimensional statistics, we establish finite-sample performance guarantees
for robust output-feedback control of an unknown dynamical system.



i

To Maggie (we did it!)



ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Generating Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Notation 5

3 Exponential Stability Analysis using Integral Quadratic Constraints 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 A Frequency-Domain Condition . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Exponential Rates from Gain Bounds . . . . . . . . . . . . . . . . . . . . . . 16
3.6 IQC Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 An Aside: Application to Optimization Systems . . . . . . . . . . . . . . . . 30
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 H∞ Bounds for System Estimation 34
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 System Identification of Finite Impulse Responses . . . . . . . . . . . . . . . 40
4.4 Finite Truncation Error Analysis for Stable Systems . . . . . . . . . . . . . . 46
4.5 Robust Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



iii

5 H∞ Bounds for Gain Estimation 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Problem Setup and Main Results . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Proof of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Finite-Data Performance Guarantees for the Output-Feedback Control
of an Unknown System 66
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 System-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Sample Complexity Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 85

Appendix A Supplementary Material for Chapter 3 93
A.1 Proof of Proposition 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Proof of Theorem 3.6.1 and Related Extensions . . . . . . . . . . . . . . . . 94
A.3 Proof of Theorem 3.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.4 Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.5 Proof of Theorem 3.8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix B Supplementary Material for Chapter 4 106
B.1 Details for Monte–Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . 106
B.2 Inverting the Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix C Supplementary Material for Chapter 5 109

Appendix D Supplementary Material for Chapter 6 111
D.1 Proof of Lemma 6.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



iv

List of Figures

3.1 Linear time-invariant system G in feedback with a nonlinearity ∆. . . . . . . . 9
3.2 Illustration of Remark 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Modified feedback diagram with additional multipliers and inputs. . . . . . . . . 11
3.4 Illustration of Proposition 3.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Augmented LTI system G in feedback with a nonlinearity ∆. . . . . . . . . . . . 16
3.6 Example stiction nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Monotone and odd bounds for unknown nonlinearities. . . . . . . . . . . . . . . 23
3.8 LTI system G in feedback with the static sigmoidal nonlinearity ∆(x). . . . . . 25
3.9 Upper bounds on the exponential convergence rate ρ for the system G1(z) in

feedback as in Figure 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 State decay over time of the system G1(z) in feedback as in Figure 3.8 with b = 1

for various initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Upper bounds on the exponential convergence rate ρ for the system G2(z) in

feedback as in Figure 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.12 Plot of the monotone and quasi-odd asymmetric nonlinearity φ(x) with its asso-

ciated bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.13 Comparison of monotone and quasi-odd Zames–Falb IQC rate certificates. . . . 29
3.14 Feedback interconnection between a system G and a nonlinearity φ. . . . . . . . 31
3.15 The perturbed system, including additive input noise w. . . . . . . . . . . . . . 32

4.1 Closed-loop experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Loop-shaping curves from the experimental setup of Figure 4.1. . . . . . . . . . 50
4.3 The pointwise frequency µ value for both reference tracking Tr 7→e and noise in-

sensitivity Tn 7→e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Reference tracking behavior of the closed loop with the model Gfir and the actual

plant G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Reference tracking behavior as the FIR truncation length is varied. . . . . . . . 52

5.1 Performance profiles for the plugin, power method A, power method B, and
weighted Thompson Sampling estimators (with coefficient decay). . . . . . . . . 64

5.2 Performance profiles for the plugin, power method A, power method B, and
weighted Thompson Sampling estimators (without coefficient decay). . . . . . . 65



v

6.1 The standard optimal control problem (6.3) for the plant P. . . . . . . . . . . . 69
6.2 The disturbance rejection problem for a SISO plant G. . . . . . . . . . . . . . . 70
6.3 The reference tracking problem for a SISO plant G. . . . . . . . . . . . . . . . . 71
6.4 FIR approximation length T required to achieve small relative error in the robust

performance objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 “Swarm” plot of relative improvement δJ from using the approximate SLS pro-

cedure across multiple random instances of plants and output noise, for number
of experiments m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 Comparison on upper bound ∆J and actual suboptimality gap ∆̂J . . . . . . . . 84



vi

List of Tables

5.1 Experiment Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 Variable Choices for Specific Zames–Falb Proofs . . . . . . . . . . . . . . . . . . 98



vii

Acknowledgments

I am deeply indebted to many people for the completion of this dissertation; almost all of
them I will forget to mention, but the ones I managed to remember to thank are listed here:

• Eric Jonas, Evan Sparks, Stephen Tu, and the whole Modest Yachts group, as well
as Ahmed El Alaoui and Henry Milner—for being amazing labmates, collaborators,
drinking buddies, and friends, and for being the nicest, smartest group of people I
have ever met;

• Ali Rahimi, Anders Rantzer, Andy Packard, Ani Adhikari, James Hing, John Platt,
Kevin Jamieson, Larry Venetsky, Laurent Lessard, Mahdi Soltanolkotabi, Michael Jor-
dan, Nikolai Matni, Sam Burden, and Shivaram Venkataraman—for generously extend-
ing their mentorship and advice, all of which was needed to navigate the past five years
(and beyond);

• Dad, Dale, Christian, Jay, Lane, Mom, Nancy, Steve, Timber, and the rest of my
family—for their unconditional love and support throughout this process;

• Deremy, Gabe, James T., Prince, RLO, and Weaz—for being there since Day 1;

• Francesco Borrelli, Ken Goldberg, Moritz Hardt, and Murat Arcak—for graciously
serving on my Qualifying Exam and Dissertation Committees;

• Boban Zarkovich, Kattt Atchley, Ria Briggs, and Shirley Salanio—for being wonderful
staff who made my job easy;

• Eric, Jon Kuroda, and Vaishaal Shankar—for helping me with computers;

• Alex, Story, and the fine folks at coffeebar—for giving me energy when I needed it;

• and my advisor Ben Recht—for his continued support (emotional and/or financial)
over the last five years, for teaching me a thing or two, and for allowing me to have a
fun job.

Finally, I’d like to thank my loving partner—the brains of this outfit—without whom this
would not have been possible.



1

Chapter 1

Introduction

1.1 Overview

This manuscript is about dealing with uncertainty. Specifically, it is about analyzing uncer-
tainty in the context of two fields: control theory, and what we deem “learning theory”—a
catch-all for machine learning, statistics, and related areas. These fields have both been
established for decades (if not centuries), and while they share many techniques, they often
prefer to use different tools to describe and deal with uncertainty.

However, these tools are somewhat at odds with each other. There are two points on
which they differ; these are not absolute distinctions, but they are commonly seen in the
literature. The first point is one of modeling. On the robust control side, we are often
controlling a system based on a model derived from first-principles physics or dynamics.
This model will naturally be imperfect, but many times it will be sufficient to drive control
synthesis. On the other hand, it is much more common—in the learning theory paradigm—to
estimate a parametric or black-box model from a large amount of data.

The second point is how model imperfection is dealt with. In control theory, we are
frequently concerned about worst-case performance. This concern is usually motivated by
safety-critical applications, such as robotics or autonomous vehicles, where we have to be
absolutely sure that we can mitigate the worst-case scenarios. Now, contrast this with
the learning theory view. In terms of guarantees, while there is a large body of work on
adversarial learning, many results are concerned with performance in expectation, or making
probabilistic statements rather than absolute ones (such as results holding with exponentially
high probability).

Nonetheless, for complex systems we want to control, we naturally want to use viewpoints
and tools from both of these communities. In the age of “big data,” physical systems are
equipped with a multitude of sensors with the ability to capture copious amounts of data;
it would benefit us to run many trials (if we can afford it) to estimate the properties of the
system in question. Furthermore, concerning the uncertainty in our estimation, one would
hope that we can deal with our modeling errors and noise processes in a graceful way—one
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that is quantitative and can give us a guarantee of safety or performance that is not overly
conservative. At the very least, we would expect to be able to discern how sensitive our
estimation problem is to different system and environment parameters.

Thus, our general model is as follows. We acquire a dataset of trajectories S := {u(i), y(i)},
where the i-th input and output signals (which are, in general, time histories of vectors) are
denoted u(i), y(i) respectively. Now, based on this dataset, we want a quantitative guarantee
about what the system looks like and/or how the system performs when controlled. However,
this general model immediately raises issues. When we only collect a finite amount of data,
there are multiple sources of uncertainty that arise. Noise processes (also present in the
infinite-data regime) and truncation effects lead to modeling errors which then can propagate
through to error for a control task, if one is not too careful. Therefore, what we truly want
to accomplish is to calmly take these sources of uncertainty into account during modeling
and control design—while also minimizing the uncertainty as much as possible. However,
many statistical results for estimation and control design are asymptotic and only say that
(say) an estimator is consistent in the regime of infinite data. Since that is quite a long time
to wait, we also want to quantify what we lose going from the infinite to the finite—which
is generally difficult!

In any case, our finite-data model naturally leads to a two-stage setup, if we want to
estimate a model and then robustly control it. First, we “coarsely” identify a model from
data, where our model estimate comes with a tractable description of the model uncertainty.
Second, we perform robust control synthesis using this nominal model and uncertainty de-
scription. As an added bonus, when we want to robustly control these systems in feedback,
whether to regulate the state to zero or have an output track a trajectory, we know from both
theory and practice that feedback is somewhat robustifying against many different types of
uncertainty.

The central questions addressed by this manuscript are therefore as follows:

• Can we get quantitative performance guarantees for control analysis and synthesis
based on uncertain models?

• Can we establish any of these guarantees in the environment where we are estimating
a model from data?

1.2 Generating Work

As the systems we control become more complex, first-principle modeling becomes either
difficult or intractable, motivating the use of machine learning techniques for the control
of systems with continuous state and action spaces. As impressive as the empirical suc-
cess of these methods have been, strong theoretical guarantees of performance, safety, or
robustness are often elusive. This manuscript takes steps towards providing such guarantees
by establishing finite-data performance guarantees for identifying and controlling fully- or
partially-unknown dynamical systems. In this section, we summarize the works that make
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up the majority of this manuscript.

1.2.1 Robust Control

Since the 1960s, the field of robust control—broadly, the field of making actions under
uncertainty—has been concerned with obtaining quantitative performance guarantees in the
presence of bounded uncertainty; this has included breakthroughs such as the small-gain
theorem, passivity theory, dissipativity theory, the structured singular value, and Integral
Quadratic Constraints (IQCs) [Megretski and Rantzer, 1997]. The most general of these,
IQCs, gives a computational procedure to produce a certificate of stability for a linear,
time-invariant (LTI) dynamical system placed in feedback with an unknown nonlinearity—a
general and useful paradigm often seen in control theory. In Boczar et al. [2015, 2017], we
give a computational procedure to now derive a certificate of exponential stability for such
a feedback system. This tractable procedure—a small semidefinite program (SDP)—allows
one to make guarantees about the size of the internal state of the system when only coarse
information (say, a norm bound) about the nonlinearity is known. We take advantage of the
existing literature by providing an updated library of “exponential IQCs” satisfied by classes
of nonlinearities commonly seen in engineering and computer science. This improvement
of now being able to compute a certificate for a specific exponential rate is critical: it is
analogous to being able to guarantee a rate of convergence for an optimization algorithm.
Indeed, these papers were inspired by a recent line of work, starting with Lessard et al.
[2016], which uses the theory of IQCs to prove such rates for the most popular optimization
methods.

1.2.2 System Identification and Learning Theory

Though the feedback paradigm described in the previous section is often useful, there are
often times when we do not even have a model of the system to start with, yet we still
ask how to control it—we usually seek an end-to-end identification and control algorithm.
How to design such an algorithm has been the question at the heart of the system identi-
fication literature. Partially motivated by advances in deep learning, there has also been a
deluge of recent work in deriving end-to-end algorithms for various tasks in reinforcement
learning. However, sample complexity bounds for these problems are difficult to derive, and
it is not clear which quantities accurately measure the “hardness” of a learning problem.
In Boczar et al. [2018], we show finite-sample performance guarantees for a specific, sim-
plified end-to-end problem: robust output feedback control of an LTI system. This case is
interesting as it captures many common motifs found in practice: a partially-observed state,
a rough description of system uncertainty, and a desire for performance guarantees under
these constraints.

Achieving these guarantees requires two components. First, it requires tools from non-
asymptotic statistics to analyze a “coarse identification” step based on least-squares fitting of
input-output data. This step, which we previously developed in Tu et al. [2017] and showed
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was optimal (in a sense) in Tu et al. [2018a], returns a simple description of the system under
test and a probabilistic quantification of the uncertainty around it. Our second component
is a modification of the recently-developed system-level synthesis (SLS) framework [Wang
et al., 2019]. This framework lifts a nonconvex feedback design problem into a convex
one by optimizing over the end-to-end system response. In our analysis, we modify the
SLS framework to take into account our uncertainty description from the first step, which
allows us to derive non-asymptotic learning rates for an end-to-end identification and control
procedure. Specifically, we show how many input/output sequences of a certain length
need to be recorded in order to build a descriptive enough model such that the robust SLS
procedure can handle the remaining uncertainty in standard feedback controller design tasks.

1.3 Organization

This thesis is organized as follows. Preliminaries and notation are covered in Chapter 2.
Chapter 3 (based on Boczar et al. [2017], a superset of Boczar et al. [2015]) establishes
the framework of exponential IQCs, including an application for analyzing stochastic opti-
mization algorithms. Chapters 4 and 5 provide upper and lower bounds in the H∞-norm
for coarse system identification and gain estimation; these chapters are based on condensed
versions of Tu et al. [2017] and Tu et al. [2018a], respectively. Finally, Chapter 6 uses ideas
developed in Chapter 4 and the SLS framework to provide end-to-end control guarantees,
as seen in Boczar et al. [2018]. Proofs and other supplementary material for these chapters
are given in Appendices A, B, C, and D, respectively. Experimental code can be found
at https://laurentlessard.com/public/code and https://github.com/rjboczar.



5

Chapter 2

Notation

Here we give some of the more common notation in this manuscript.

Linear Algebra and Analysis

Cd canonical complex d-dimensional space

Rd canonical real d-dimensional space

v∗, A∗ complex conjugate

v>, A> transpose

(g ◦ f)(x) function composition g(f(x))

κ(A) condition number, i.e. σ1(A)/σn(A)

v[i] i-th coordinate of the vector v (to occasionally avoid confusion with vi)

D closed unit disk in complex plane {z ∈ C | |z| ≤ 1}

ei i-th standard basis vector in Rd

1A indicator function on event A

〈A,B〉 inner product tr(A∗B) (a∗b for vectors)

‖A‖, ‖v‖ spectral norm (resp. Euclidean norm for vectors, occasionally made explicit
as ‖ · ‖2)

‖f(z)‖∞ supremum norm taken over T, i.e. supz∈T |f(z)|

�, � positive (resp. semi-)definite matrix inequality

ρ(A) spectral radius, i.e. maxi |λi(A)|
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Toep(u) the lower-triangular Toeplitz matrix where the first column is equal to u

T unit circle in complex plane {z ∈ C | |z| = 1} (also parameterized by z = ejω

with ω ∈ [0, 2π))

tr(A) trace, i.e.
∑

iAii =
∑

i λi(A)

Signals and Systems

∗ discrete-time convolution operator

‖G‖H∞ H∞-norm, the induced `2 → `2 norm (equal to supz∈T ‖G(z)‖2)

`p space of p-norm-bounded signals (
∑∞

k=0 |xk|p <∞, ‖x‖`∞ := maxk |xk|)

`2 space of square-summable signals (
∑∞

k=0 |xk|2 <∞)

`ρ2 space of ρ-square-summable signals (
∑∞

k=0 ρ
−2k|uk|2 <∞, ρ ∈ (0, 1))

‖x‖`2 `2-norm, i.e.
∑∞

k=0 |xk|2 (
∑∞

k=0 ‖xk‖2 in the vector case)

RHm×n
∞ set of m× n matrices whose elements are proper rational functions with real

coefficients analytic outside the closed unit disk (superscript usually sup-
pressed for brevity)

(A,B,C,D) discrete-time linear time-invariant system (D = 0 occasionally omitted in the
former)

[
A B

C D

]

G discrete-time linear time-invariant system, frequency-domain representation

x `2 signal, frequency-domain representation

xt time domain signal (x0, x1, . . .), indexed at time t

x̂(z) z-transform of the time-domain signal x, x̂(z) :=
∑∞

k=0 xkz
−k

Probability

E[ · ] expectation

N (µ,Σ) normally distributed random variable with mean µ and covariance matrix Σ

P(E) probability of event E
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Chapter 3

Exponential Stability Analysis using
Integral Quadratic Constraints

3.1 Introduction

Analysis in the context of robust control is generally concerned with obtaining absolute
performance guarantees about a system in the presence of bounded uncertainty. Examples of
such results include the small gain theorem and passivity theory [Zames, 1966], dissipativity
theory [Willems, 1972], the structured singular value µ [Doyle, 1982], and integral quadratic
constraints (IQCs) [Megretski and Rantzer, 1997].

In this chapter, we present a modification of IQC theory, the most general of the aforemen-
tioned tools, that allows one to certify exponential stability rather than just bounded-input
bounded-output (BIBO) stability. Moreover, we can compute numerical bounds on the ex-
ponential decay rate of the state. Even when BIBO stable systems are exponentially stable,
estimates of the exponential decay rates provided by standard IQC theory are typically very
conservative. We will show that this conservatism can be greatly reduced if we directly
certify exponential stability and use the method presented herein to compute the associated
decay rate.

Our modified IQC analysis was successfully applied in Lessard et al. [2016] to analyze con-
vergence properties of commonly-used optimization algorithms such as the gradient descent
method. These algorithms converge at an exponential rate when applied to strongly convex
functions, and the modified IQC analysis automatically produces very tight bounds on the
convergence rates. Another potential application is in time-critical systems. In embedded
model predictive control, for example, it is vital to have robust guarantees that desired error
bounds will be met in the allotted time without overflow errors and in spite of fixed-point
arithmetic (see Jerez et al. [2014] and references therein).
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3.1.1 A Special Case

While a general treatment of exponential bounds is provided in the sequel, it is worth noting
that exponential stability can be proven directly for some special cases. To illustrate this
fact, consider a linear time-invariant (LTI) discrete-time plant G with state-space realization
(A,B,C,D). Suppose G is connected in feedback with a strictly-input passive nonlinearity
∆. A sufficient condition for BIBO stability is that there exists a positive definite matrix
P � 0 and a scalar λ ≥ 0 satisfying the linear matrix inequality (LMI)

[
A B
I 0

]> [
P 0
0 −P

] [
A B
I 0

]
+ λ

[
0 C>

C D+D>

]
≺ 0 . (3.1)

This result is also related to the Positive Real Lemma (see Kottenstette and Antsaklis [2010]
and references therein). If we define V (x) := x>Px, then (3.1) implies that V decreases
along trajectories: V (xk+1) ≤ V (xk) for all k. BIBO stability then follows from positivity
and boundedness of V . Observe that when (3.1) holds, we may replace the right-hand side
by −εP for some sufficiently small ε > 0. We then conclude that V (xk+1) ≤ (1 − ε)V (xk)
for all k and exponential stability follows. We may then maximize ε subject to feasibility
of (3.1) to further improve the rate bound.

Unfortunately, the approach outlined above of including −εP fails in the general IQC
setting due to the different role played by P in the associated LMI. In IQC theory, the LMI
comes from the Kalman–Yakubovich–Popov (KYP) lemma, and although it is structurally
similar to (3.1), P is not positive definite in general, and V may not decrease along trajec-
tories. However, our key insight is that by suitably modifying both the LMI and the IQC
definition, we obtain a more broadly applicable condition for certifying exponential stability.

This chapter is organized as follows. We cover some related work in the remainder of
the introduction, we explain our notation and some basic results in Section 3.2, we develop
and present our main result in Section 3.3, and we discuss computational considerations
in Section 3.4. An explicit construction of the (conservative) rate guarantees implied by
finite L2 gain is given in Section 3.5. In Section 3.6 we provide a library of applicable
IQCs. Finally, we present illustrative examples demonstrating the usefulness of our result
in Section 3.7 and give an application to stochastic optimization algorithms in Section 3.8.
We make some concluding remarks in Section 3.9.

3.1.2 Related Work

It is noted in Megretski and Rantzer [1997] and Rantzer and Megretski [1997] that BIBO
stability often implies exponential stability. In particular, exponential stability follows if the
nonlinearity satisfies an additional fading memory property. So, under mild assumptions,
the robust stability guarantee from IQC theory automatically implies exponential stability
as well. The proof of this result uses the L2 gain from the stability analysis to construct an
exponential rate bound. However, we will see in Section 3.7 that bounds computed in this
way can be very conservative.
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G

∆

e

f

w

v

Figure 3.1: Linear time-invariant system G in feedback with a nonlinearity ∆.

Other proofs of exponential stability have appeared in the literature for specific classes of
nonlinearities. Some examples include sector-bounded nonlinearities [Corless and Leitmann,
1993; Konishi and Kokame, 1999] and nonlinearities satisfying a Popov IQC [Jönsson, 1997].
These works exploit LMI modifications akin to the one shown in (3.1) earlier in this section.

The analysis in this chapter mirrors the analysis given in Lessard et al. [2016], which
presents an approach for proving the robust exponential stability of optimization algorithms.
The approach of Lessard et al. [2016] uses a time-domain formulation of IQCs modified to
handle exponential stability. In contrast, the present work develops the aforementioned
exponential stability analysis entirely in the frequency domain and its applicability is not
restricted to the analysis of iterative optimization algorithms. Moreover, we clarify the con-
nection to the seminal IQC results in Megretski and Rantzer [1997]. Parts of this work first
appeared in the conference paper Boczar et al. [2015]; since then, an analogous continuous-
time formulation with alternative techniques and motivations also appeared in Hu and Seiler
[2016].

3.2 Preliminaries

We adopt a setup analogous to the one used in Megretski and Rantzer [1997], with the
exception that we will work in discrete time rather than continuous time. Along with the
standard notation given in Chapter 2, recall that a sequence u = (u0, u1, . . . ) is said to be
in `2 if

∑∞
k=0 |uk|2 <∞. A sequence uk is said to be in `ρ2 for some ρ ∈ (0, 1) if the sequence

(ρ−kuk) is in `2, i.e.
∑∞

k=0 ρ
−2k|uk|2 < ∞. Note that `ρ2 ⊂ `2. Furthermore, X -bounded is

shorthand for a bounded operator from X to X .
Consider the standard setup of Figure 3.1 (known as the Lur’e system). The block G

contains the known LTI part of the system while ∆ contains the part that is uncertain,
unknown, nonlinear, or otherwise troublesome. The interconnection is said to be well-posed
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if the map (v, w) 7→ (e, f) has a causal inverse. The interconnection is said to be bounded-
input bounded-output (BIBO) stable if, in addition, there exists some γ > 0 such that when
G is initialized with zero state,

‖v‖2
`2

+ ‖w‖2
`2
≤ γ

(
‖e‖2

`2
+ ‖f‖2

`2

)

for all square-summable inputs f and e. Finally, the interconnection is (internally) exponen-
tially stable if there exists some ρ ∈ (0, 1) and c > 0 such that if f = 0 and e = 0, the state
xk of G will decay exponentially with rate ρ. That is,

‖xk‖ ≤ c ρk ‖x0‖ for all k.

We now present the classical IQC definition and stability result, which will be modified in
the sequel to guarantee exponential convergence. These results are discrete-time analogs of
the main IQC results of Megretski and Rantzer Megretski and Rantzer [1997].

Definition 3.2.1 (IQC). Signals y ∈ `2 and u ∈ `2 with associated z-transforms ŷ(z) and
û(z) satisfy the IQC defined by a Hermitian complex-valued function Π if

∫

T

[
ŷ(z)
û(z)

]∗
Π(z)

[
ŷ(z)
û(z)

]
dz ≥ 0 . (3.2)

An `2-bounded causal operator ∆ satisfies the IQC defined by Π if (3.2) holds for all y ∈ `2

with u = ∆(y). We also define IQC(Π(z)) to be the set of all ∆ that satisfy the IQC defined
by Π.

Theorem 3.2.1 (Stability result). Let G(z) ∈ RHm×n
∞ and let ∆ be a bounded causal oper-

ator. Suppose that:

i) for every τ ∈ [0, 1], the interconnection of G and τ∆ is well-posed.

ii) for every τ ∈ [0, 1], we have τ∆ ∈ IQC(Π(z)).

iii) there exists ε > 0 such that

[
G(z)
I

]∗
Π(z)

[
G(z)
I

]
� −εI, ∀z ∈ T . (3.3)

Then, the feedback interconnection of G and ∆ is BIBO stable.

3.3 A Frequency-Domain Condition

In this section, we augment Definition 3.2.1 and the classical result of Theorem 3.2.1 to
derive a frequency-domain condition that certifies exponential stability.
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Definition 3.3.1. The operators ρ+, ρ− are defined as the time-domain, time-dependent
multipliers ρk, ρ−k, respectively, where ρ ∈ (0, 1) is a defined constant.

Remark 1. The operator ρ− ◦ (G(z) ◦ ρ+) is equivalent to the operator G(ρz). This follows
from the fact that, for any constant a > 0 and signal uk, the z-transform of a−kuk is given
by û(az). See Figure 3.2 for an illustration.

G(z)ρ+ ρ−

û(z) û(ρ−1z) G(z)û(ρ−1z) G(ρz)û(z)

Figure 3.2: Illustration of Remark 1.

In order to show exponential stability of the system in Figure 3.1, we will relate it to
BIBO stability of the modified system shown in Figure 3.3. This equivalence is closely related
to the theory of stability multipliers [Safonov and Kulkarni, 2000].

Gρ+ ρ−

∆ρ− ρ+

u y

v

we

f

G′

∆′

Figure 3.3: Modified feedback diagram with additional multipliers and inputs. For appropri-
ately chosen e and f and with zero initial condition, we show how this diagram is equivalent
to that of Figure 3.1.

Proposition 3.3.1. Suppose G(z) has a minimal realization (A,B,C,D). If the intercon-
nection in Figure 3.3 is BIBO stable, then the interconnection in Figure 3.1 with initial
state x0 is exponentially stable.

Proof. Intuitively, if v and w are small in the BIBO sense compared to e and f , then y
must be even smaller. See Appendix A.1 for a detailed proof.

In an effort to define IQCs for the transformed system shown in Figure 3.3, we introduce
the concept of the ρ-IQC.
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Definition 3.3.2 (ρ-IQC). Signals y ∈ `ρ2 and u ∈ `ρ2 with associated z-transforms ŷ(z) and
û(z) satisfy the ρ-IQC defined by a Hermitian complex-valued function Π if

∫

T

[
ŷ(ρz)
û(ρz)

]∗
Π(ρz)

[
ŷ(ρz)
û(ρz)

]
dz ≥ 0 . (3.4)

An `ρ2-bounded causal operator ∆ satisfies the ρ-IQC defined by Π if (3.4) holds for all y ∈ `ρ2
with u = ∆(y). We also define IQC(Π(z), ρ) to be the set of all ∆ that satisfy the ρ-IQC
defined by Π.

Note that the concept of a ρ-IQC generalizes that of a regular IQC. Indeed, we have
IQC(Π(z), 1) = IQC(Π(z)). The restriction of u ∈ `ρ2 and y ∈ `ρ2 corresponds to the restric-
tion of u ∈ `2 and y ∈ `2 in the classical definition of IQC [Megretski and Rantzer, 1997].
Now equipped with ρ-IQCs, we can relate ∆′ in Figure 3.3 to ∆ in Figure 3.1.

Proposition 3.3.2. Let ∆ be an `ρ2-bounded causal operator, and let Π be a Hermitian
complex-valued function. As in Figure 3.3, define ∆′ := ρ− ◦ (∆ ◦ ρ+), which is equivalently
`2-bounded. Then, the following statements are equivalent.

(i) ∆ ∈ IQC(Π(z), ρ)

(ii) ∆′ ∈ IQC(Π(ρz))

Proof. We define the discrete Fourier transform of the input and output of ∆ as ŷ(z) and
û(z), respectively. Then, from the definition of ρ+ and ρ−, we have that ŵ(z) = û(ρz) and
v̂(z) = ŷ(ρz). Substituting into the IQC definition (3.2), we obtain (3.4) as required.

Proposition 3.3.2 is illustrated in Figure 3.4.

∆ ρ+ρ−
ŷ(ρz)ŷ(z)û(z)û(ρz)

∆′

Figure 3.4: Illustration of Proposition 3.3.2.

We now state our main result, an exponential stability theorem analogous to the classical
result in Theorem 3.2.1.

Theorem 3.3.1 (Exponential stability). Fix ρ ∈ (0, 1). Let G(ρz) ∈ RHm×n
∞ and ∆ be an

`ρ2-bounded causal operator. Furthermore, suppose that:

i) for every τ ∈ [0, 1], the interconnection of G and τ∆ is well-posed.
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ii) for every τ ∈ [0, 1], we have τ∆ ∈ IQC(Π(z), ρ).

iii) there exists ε > 0 such that

[
G(ρz)
I

]∗
Π(ρz)

[
G(ρz)
I

]
� −εI, ∀z ∈ T . (3.5)

Then, the interconnection of G and ∆ shown in Figure 3.1 is exponentially stable with rate
ρ.

Proof. We apply Theorem 3.2.1 to the interconnection in Figure 3.3 with operators G(ρz)
and ∆′ and the IQC Π(ρz).

(a) Since Figure 3.1 and Figure 3.3 have the same interconnection structure, well-posedness
is equivalent.

(b) Due to the equivalence of IQCs in Proposition 3.3.2,

τ∆ ∈ IQC(Π(z), ρ) ⇐⇒ ρ− ◦ ((τ∆) ◦ ρ+) ∈ IQC(Π(ρz))

⇐⇒ τ(ρ− ◦ (∆ ◦ ρ+)) ∈ IQC(Π(ρz))

⇐⇒ τ∆′ ∈ IQC(Π(ρz)) .

(c) This is condition iii) of Theorem 3.2.1 using G(ρz) and ∆′.

Thus, these three conditions ensure BIBO stability of the system in Figure 3.3. We then
apply Proposition 3.3.1 to arrive at exponential stability of Figure 3.1.

Note that the assumption G(ρz) ∈ RHm×n
∞ restricts us to verifying rates that are no

faster than the rate of convergence of the plant G operating in open-loop, which corresponds
to the largest (in magnitude) pole of G(z). Assuming WLOG that ∆(0) = 0, this is clear as
∆ ≡ 0 (corresponding to open-loop G) satisfies any ρ-IQC.

3.4 Computation

As in the classical IQC setting, to guarantee stability, the frequency-domain inequality (FDI)
(3.5) must be verified for every ω ∈ [0, 2π). However, if the IQC in question exhibits a
particular factorization, then the discrete-time KYP Lemma can be applied to convert the
infinite-dimensional FDI to a finite-dimensional LMI. We now review these results.

Definition 3.4.1. We say Π has a factorization (Ψ,M) if

Π(z) = Ψ(z)∗MΨ(z) ,

where Ψ is a stable linear time-invariant system, M is a constant Hermitian matrix, and
Ψ(z)∗ denotes the conjugate transpose of Ψ(z).
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Remark 2. Definition 3.4.1 is similar to J-spectral factorization (see Zhang et al. [2001] and
references therein), except we require them to hold for arbitrary z ∈ C. Spectral factorizations
are commonly evaluated on the unit circle for discrete systems (c.f. the imaginary axis for
continuous-time systems). In such cases, we have z∗ = z−1 for all z ∈ T and s∗ = −s
for all s ∈ jR. For this reason, factorizations are conventionally written using the para-
Hermitian conjugate defined as Ψ∼(z) := Ψ>(z−1) (c.f. Ψ∼(s) := Ψ>(−s) for continuous
time). Although these definitions are equivalent to Ψ(z)∗ (c.f. Ψ(s)∗) in general, we cannot
use the para-Hermitian conjugate for our factorization because we require it to hold for all
z ∈ C.

Remark 3. If Π(z) has a factorization (Ψ,M) and Ψ(ρz) is stable, then by Parseval’s
Theorem, (3.4) is equivalent to

∞∑

k=0

ρ−2kz>kMzk ≥ 0 , where z := Ψ

(
y
u

)
.

The KYP lemma, stated below, is attributed to Kalman, Yakubovich, and Popov. A
short proof and further references can be found in Rantzer [1996].

Lemma 3.4.1 (Discrete-time KYP Lemma). Suppose A, B, M are given matrices where
M is Hermitian and A has no eigenvalues on the unit circle. Then the following FDI:

[
(zI − A)−1B

I

]∗
M

[
(zI − A)−1B

I

]
≺ 0

holds for all z ∈ T if and only if there exists a P = P> and λ ≥ 0 satisfying the LMI

[
A B
I 0

]> [
P 0
0 −P

] [
A B
I 0

]
+ λM ≺ 0 .

An algebraic transformation of the discrete-time KYP lemma then gives a computational
certificate for verifying exponential stability rates.

Corollary 3.4.1. Suppose the realization of G is given by (A,B,C,D) and assume Π has a
factorization (Ψ,M), where the realization of Ψ is given by

Ψ =

[
AΨ BΨ1 BΨ2

CΨ DΨ1 DΨ2

]
.

Then (3.5) is equivalent to the existence of P = P> and λ ≥ 0 such that

[
Â>PÂ− ρ2P Â>PB̂

B̂>PÂ B̂>PB̂

]
+ λ

[
Ĉ>

D̂>

]
M
[
Ĉ D̂

]
≺ 0 (3.6)
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where (Â, B̂, Ĉ, D̂) are defined as

[
Â B̂

Ĉ D̂

]
:=




A 0 B
BΨ1C AΨ BΨ2 +BΨ1D

DΨ1C CΨ DΨ2 +DΨ1D


 .

Proof. Related to a derivation in Seiler [2015], one can show that

[
G(z)
I

]∗
Π(z)

[
G(z)
I

]
=
[
?
]∗
M
[
Ĉ D̂

] [(zI − Â)−1B̂
I

]

where ? denotes the repeated part of the quadratic form surrounding M . Similarly, we have

ρ−2

[
G(ρz)
I

]∗
Π(ρz)

[
G(ρz)
I

]
=
[
?
]∗
ρ−2M

[
Ĉ D̂

] [(ρzI − Â)−1B̂
I

]

=
[
?
]∗
ρ−2M

[
Ĉ D̂

] [(zI − ρ−1Â)−1ρ−1B̂
I

]
.

If ρ−1Â has no eigenvalues on the unit circle, we may then invoke Lemma 3.4.1 (applied to
ρ−1Â, ρ−1B̂, and the appropriate M term) and multiply through by ρ2 to show that (3.5) is
equivalent to the existence of P = P> and λ ≥ 0 such that (3.6) holds, as required.

With the advent of fast interior-point methods to solve LMIs, the feasibility of the LMI
(3.6) can often be quickly ascertained for any fixed ρ2. Since the size of the LMI is often on
the order of the size of the system G and the IQC Π, many practical linear systems lead to
LMIs of relatively moderate size.

Finding the best upper bound amounts to minimizing ρ2 subject to (3.6) being feasible.
This type of problem occurs frequently in robust control and is known as a generalized
eigenvalue optimization problem (GEVP) [Boyd et al., 1994]. The GEVP is not an LMI
because (3.6) is not jointly linear in ρ2 and P . One simple approach to solving the GEVP is
to perform a bisection search on ρ2, but there are more sophisticated methods available; see
for example Boyd and El Ghaoui [1993]. However, to be precise, applying a bisection search
on ρ2 requires the ρ-IQC to obey a certain monotonicity property, which we now define.

Definition 3.4.2 (Monotonicity). We say an IQC Π(z) satisfies the monotonicity property
if for all 0 < ρ ≤ ρ′ < 1, we have:

∆ ∈ IQC(Π(z), ρ) =⇒ ∆ ∈ IQC(Π(z), ρ′).

All of the ρ-IQCs discussed herein satisfy the monotonicity property. If an IQC does not
satisfy this property, then a grid search may be used instead of bisection.

Remark 4. The results above may also be carried through in continuous time. In that case,
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an equation analogous to (3.5) must be satisfied for G(s− a) for all ω ∈ [0,∞), and can be
verified by finding P = P> and λ ≥ 0 such that

[
Â>P + PÂ− 2aP PB̂

B̂>P 0

]
+ λ

[
Ĉ>

D̂>

]
M
[
Ĉ D̂

]
≺ 0 .

An alternative continuous-time formulation is detailed in Hu and Seiler [2016].

3.5 Exponential Rates from Gain Bounds

In Megretski and Rantzer [1997], IQC analysis is used to certify L2 stability1 of intercon-
nected systems. As noted in Megretski and Rantzer [1997]: “for general classes of ordinary
differential equations, exponential stability is equivalent to the input/output stability...”.
However, while input/output stability often implies exponential stability, we will show that
rates constructed from `2 bounds can be conservative. This fact justifies the use of a dedi-
cated technique for certifying exponential rates rather than using an `2 analysis.

To make explicit this suboptimal rate, we will need two results. First, a generalization
of Theorem 3.2.1 that allows us to optimize the `2 gains over any pair of signals. We will
consider the scenario of Figure 3.5, which is slightly more general than the setup in Figure 3.1.

G11 G12

G21 G22

∆

z

e

w

d
Figure 3.5: Augmented LTI system G in feedback with a nonlinearity ∆.

We would like to show that the input d and output e satisfy an IQC of the form

∫

T

[
d̂(z)
ê(z)

]∗
Πp(z)

[
d̂(z)
ê(z)

]
dz ≥ 0 . (3.7)

1L2 being the continuous-time analog of `2.
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The following result appears (for example) in Apkarian and Noll [2006], and a complete proof
is given in Summers [2012].

Theorem 3.5.1. Let G(z) ∈ RHm×n
∞ and let ∆ be a bounded causal operator. Suppose G

is partitioned according to the dimensions of the input and output channels in Figure 3.5.
Suppose the interconnection of G11 and ∆ is well-posed and stable and ∆ ∈ IQC(Π(z)). If
there exists ε > 0 such that

[
?
]∗
[
Π(z) 0

0 −Πp(z)

]



G11(z) G12(z)
I 0
0 I

G21(z) G22(z)


 � −εI ∀z ∈ T (3.8)

then for all d ∈ `2 and e ∈ `2, Equation (3.7) is satisfied.

Remark 5 (see Summers [2012]). In Theorem 3.5.1, if Πp,22 � 0 and (G11,∆) satisfies
assumptions (i) and (ii) of Theorem 3.2.1, then stability of the (G11,∆) interconnection is
immediate as the (1, 1) block of the FDI provides the remaining requirement for stability in
Theorem 3.5.1.

Next, we will need a way to convert an `2 gain into an exponential rate bound. The sequel
is similar to [Megretski and Rantzer, 1997, Prop. 1], but presented here with an explicit rate
construction and adapted for discrete-time systems.

Lemma 3.5.1. Define the recursion with x0 = 0 by:

xk+1 = φ(xk) + gk k = 0, 1, 2, . . . (3.9)

where φ : Rn → Rn satisfies φ(0) = 0. Suppose that there exists a constant c > 0 such that
whenever g ∈ `2, and (g, x) is a valid trajectory of (3.9), then

‖x‖2
`2
≤ c ‖g‖2

`2
. (3.10)

Then, we also have the bound

‖xk+1‖2
2 ≤

k∑

i=0

c

(
1− 1

c

)k−i
‖gi‖2

2 .

Proof. We write (x, g) ∈ S to denote a valid trajectory of (3.9). Define the function
V : Rn → R as follows:

V (ξ) := sup
x1=ξ
g∈`2

(g,x)∈S

(
‖x‖2

`2
− c ‖g‖2

`2
+ c ‖ξ‖2

2

)
.
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The first step is to bound V (ξ). Note that x0 = 0 and φ(0) = 0, implies ξ = x1 = g0. A
simple lower bound is found by specializing to g1 = g2 = · · · = 0, and an upper bound is
found by using (3.10). Combining, we have

‖ξ‖2
2 ≤ V (ξ) ≤ c ‖ξ‖2

2 . (3.11)

Now, fix (ḡ, x̄) ∈ S to be any feasible trajectory of (3.9). We may lower-bound V (x̄1) by
setting g1 = ḡ1 and shifting the entire x and g vectors forward one timestep:

V (x̄1) ≥ sup
x1=x̄1

g∈`2, g1=ḡ1

(g,x)∈S

(
‖x‖2

`2
− c ‖g‖2

`2
+ c ‖x̄1‖2

2

)

= V (x̄2) + ‖x̄1‖2
2 − c ‖ḡ1‖2

2

≥ V (x̄2) + 1
c
V (x̄1)− c ‖ḡ1‖2

2 ,

where the final step follows from (3.11). Rearranging, we obtain

V (x̄2) ≤
(

1− 1

c

)
V (x̄1) + c ‖ḡ1‖2

2 .

We may lower-bound V (x̄3) by setting g1 = ḡ2 and using a similar argument. Continuing in
this fashion, we see that

V (x̄k+1) ≤
(

1− 1

c

)
V (x̄k) + c ‖ḡk‖2 for k = 0, 1, 2, . . . .

It then follows that for all k, we have

V (x̄k+1) ≤
(

1− 1

c

)k
V (x̄1) +

k∑

i=1

c

(
1− 1

c

)k−i
‖ḡi‖2 .

Applying the bound (3.11) one final time, we conclude that

‖x̄k+1‖2 ≤ V (x̄k+1)

≤
(

1− 1

c

)k
V (x̄1) +

k∑

i=1

c

(
1− 1

c

)k−i
‖ḡi‖2

≤ c

(
1− 1

c

)k
‖x̄1‖2 +

k∑

i=1

c

(
1− 1

c

)k−i
‖ḡi‖2

=
k∑

i=0

c

(
1− 1

c

)k−i
‖ḡi‖2 ,

where we used ḡ0 = x̄1 in the final step.
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By combining Theorem 3.5.1 and Lemma 3.5.1, we can find exponential rate bounds
for LTI systems in feedback with nonlinearities that satisfy IQCs. First, use the setup of
Figure 3.5 with d = g and e = x. Next, view the `2 bound in (3.10) is an IQC as in (3.7),
with

Πp =

[
c 0
0 −1

]
.

Then, transform Figure 3.1 into augmented form by setting

[
G11 G12

G21 G22

]
=



A B B

C D D
I 0 0


 .

Finally, the appropriate initial condition can be set by using g = d =
[
x>0 0 0 . . .

]>
.

Applying Lemma 3.5.1 leads to a bound of the form ‖xk+1‖2
2 ≤ c

(
1− 1

c

)k ‖x0‖2
2; equivalently,

an exponential rate of ρ =
√

1− 1
c
.

The FDI of Theorem 3.5.1 can be transformed into an LMI in a manner similar to that
described in Section 3.4. This LMI is linear in P and c, so it can be efficiently solved to
find the minimal c and in turn the smallest exponential rate ρ. However, we will show in
Section 3.7 that this “classical” rate ρ can be conservative.

3.6 IQC Library

In this section, we show classes of nonlinearities describable by ρ-IQCs and therefore appli-
cable to Theorem 3.3.1 to prove robust exponential stability of an interconnected system.
In the case where ρ = 1, these ρ-IQCs reduce to standard IQCs as given in Megretski and
Rantzer [1997]. This class of IQCs will be constructed for single-input single-output systems,
but they may be adapted for square multi-input multi-output systems where the nonlinearity
is of the form diag({∆i}) for a scalar ∆.

3.6.1 Noisy Multiplication

As noted for continuous time in Hu and Seiler [2016], nonlinearities of the form ∆(yk) ≡ δkyk
for some unknown and/or time-varying δk may satisfy ρ-IQCs. As ∆ and ρ± commute, in the
parlance of Proposition 3.3.2 we have that ∆ = ∆′, so ∆ ∈ IQC(Π, 1) implies ∆ ∈ IQC(Π, ρ).
See Megretski and Rantzer [1997] for examples of noisy multiplication.
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3.6.2 Uncertain Time Delay

The following is a discrete-time analog of the ρ-IQC first developed in Hu and Seiler [2016].
Let ∆ be the operator defined by

∆(yk) =

{
0, k < τ

yk−τ , k ≥ τ
,

for some unknown τ in [0, τ0], where τ0 is known. Now, observe that

∆′(yk) = ρ−k∆(ρ−kyk) = ρ−k ·
{

0, k < τ

ρ−(k−τ)yk−τ , k ≥ τ

= ρ−τ∆(yk) .

Since ∆′(yk) = ρ−τ∆(yk), we may transform the system into one with a block diagonal
nonlinearity diag{∆, ρ−τ}. We can then use existing IQCs for noisy multiplication and time
delays, always using Π(ρz) instead of Π(z).

Alternatively, with any bounded Hermitian function X(ρz) = X(ρz)∗ � 0, we see that
[
ŷ(ρz)
û(ρz)

]∗ [
ρ−2τ0X(ρz) 0

0 −X(ρz)

] [
ŷ(ρz)
û(ρz)

]

=

[
ŷ(ρz)

ρ−τ ŷ(ρz)

]∗ [
ρ−2τ0X(ρz) 0

0 −X(ρz)

] [
ŷ(ρz)

ρ−τ ŷ(ρz)

]

= (ρ−2τ0 − ρ−2τ )ŷ(ρz)∗X(ρz)ŷ(ρz) ≥ 0 .

Thus, ∆ ∈ IQC(diag{ρ−2τ0X(z),−X(z)}, ρ).

3.6.3 Pointwise IQCs

A nonlinearity ∆ satisfies a pointwise IQC with a factorization (Ψ,M) if z>kMzk ≥ 0 for
each k. In other words, the IQC holds pointwise in time. In this case, ∆ also satisfies the
associated ρ-IQC for all ρ < 1. Examples of pointwise IQCs include the γ norm-bounded
IQC

Π =

[
γ2 0
0 −1

]
,

and the [α, β] sector-bounded IQC, given by

Π =

[
−2αβ α + β
α + β −2

]
.

The latter corresponds to a nonlinearity ∆ that satisfies

(∆(x)− βx)>(∆(x)− αx) ≤ 0 ∀ x .
Note that the norm-bounded IQC is a special case of the sector IQC with the sector [−γ, γ].
These IQCs hold even if ∆ is time-varying, if ∆ satisfies the IQC at each k.



Chapter 3: Exponential Stability Analysis using IQCs 21

3.6.4 Zames–Falb IQCs

A nonlinearity ∆ is slope-restricted on [α, β] where 0 ≤ α ≤ β ≤ ∞ if the following relation
holds for all x, y.

(
∆(x)−∆(y)− α(x− y)

)>(
∆(x)−∆(y)− β(x− y)

)
≤ 0 .

This relation states that the chord joining input-output pairs of ∆ has a slope that is bounded
between α and β. This class of functions satisfies the Zames–Falb family of IQCs (see Zames
and Falb [1968] and Heath and Wills [2005]). We give the definition below.2

Proposition 3.6.1. A nonlinearity ∆ that is static and slope-restricted on [α, β] satisfies
the Zames–Falb IQC

Π =

[
−αβ(2−ĥ−ĥ∗) α(1−ĥ)+β(1−ĥ∗)

α(1−ĥ∗)+β(1−ĥ) −(2−ĥ−ĥ∗)

]
(3.12)

where ĥ(z) is any proper transfer function with impulse response h := (h0, h1, . . . ) that
satisfies ||h||1 ≤ 1 and hk ≥ 0 for all k. Moreover, it admits the factorization

Ψ =

[
β(1− ĥ) −(1− ĥ)
−α 1

]
and M =

[
0 1
1 0

]
.

If ∆ is odd (∆(−x) = −∆(x)), then we may remove the constraint that hk ≥ 0 for all k.

In general, for a fixed ρ, only a subset of Zames–Falb IQCs will be ρ-IQCs. We now give
a characterization of this subset.

Theorem 3.6.1 (Zames–Falb ρ-IQC). Suppose ∆ is static and slope-restricted on [α, β].
Then ∆ ∈ IQC(Π(z), ρ) where Π is the Zames–Falb IQC (3.12) and ĥ also satisfies the
additional constraint ∞∑

k=0

ρ−2k|hk| ≤ 1 .

Proof. The proof involves rewriting the IQC as a discrete-time sum which can be split into
parts that can separately be shown to be nonnegative. See Appendix A.2 for the full proof
of Theorem 3.6.1 and related extensions.

The concept of a ρ-IQC can also be extended to handle noncausal Zames—Falb multipliers
as in Freeman [2018]. Sector-bounded and/or slope-restricted functions show up in various
specialized contexts. We will derive ρ-IQCs for two such cases: stiction nonlinearities and
quasi-monotone/quasi-odd nonlinearities.

2The β =∞ case for this and similar IQCs considers only the β terms, i.e. Π[α,∞] = limβ→∞ β−1Π.
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Figure 3.6: Example stiction nonlinearity (taken from Rantzer [2001].)

3.6.4.1 Stiction Nonlinearities

Stiction nonlinearities (shown in Figure 3.6) satisfy Zames–Falb ρ-IQCs with additional
constraints on the coefficients hk.

Corollary 3.6.1 (Stiction ρ-IQC). Suppose ∆ is a stiction nonlinearity with slope 1/ε and
overshoot δ as defined in Rantzer [2001]. Then ∆ ∈ IQC(Π(z), ρ) where Π is the [0, 1/ε]
Zames–Falb IQC (3.12) and H satisfies the additional constraint

∞∑

k=0

ρ−2k|hk| ≤
1− δ
1 + δ

.

3.6.4.2 Quasi-monotone and Quasi-odd Nonlinearities

Following the definition in Heath et al. [2015] (shown in Figure 3.7), quasi-monotone and
quasi-odd nonlinearities also satisfy Zames–Falb ρ-IQCs under additional constraints on the
hk.

Corollary 3.6.2 (Quasi-monotone/odd ρ-IQC). Suppose ∆ is static and is quasi-monotone
or quasi-odd as defined in Heath et al. [2015]. Then ∆ ∈ IQC(Π(z), ρ) where Π is the
Zames–Falb IQC (3.12) and H satisfies the additional constraint

∞∑

k=0

γ−1
k ρ−2k|hk| ≤ 1, where γ−1

k :=

{
Rm, hk ≥ 0

Ro, hk < 0
.

Given a fixed ρ, searching over (finite) hk when solving the feasibility LMI using this IQC
is still a convex problem. To see this, observe that we can equivalently write this constraint
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Figure 3.7: Monotone and odd bounds for unknown nonlinearities (modified from Heath et al.
[2015]). The nonlinearity must lie within envelopes generated by multiplicative perturbations
of a known monotone linearity nm(perturbation between 1 and Rm ≥ 1) and a known
monotone odd nonlinearity no (perturbation between 1 and Ro ≥ 1). In this example, the
nonlinearities of interest lie in the darkest region, the intersection of both envelopes.

on the hk (assuming Rm ≥ Ro, the other case is similar) as

Ro

K∑

k=0

ρ−2k|hk|+ (Rm −Ro)
K∑

k=0

ρ−2k ·max(hk, 0) ≤ 1 .

However, the proof of Corollary 3.6.2 will show that these general Zames–Falb ρ-IQCs can be
written as a nonnegative linear combination off “off-by-j” ρ-IQCs. Thus, when solving (3.6)
it is sufficient to search over all nonnegative linear combinations of simpler ρ-IQC atoms,
rather than formulating the constraint on the hk explicitly. Whether this is more efficient
depends on the specific problem dimensions.

It is a useful exercise to derive the correct chain of implications for this constraint (and
others), which is as follows:

• Compared to the odd Zames–Falb IQC, a quasi-odd IQC as defined in Corollary 3.6.2
gives less information about the nonlinearity φ, i.e. we must provide a certificate of
stability for every nonlinearity in a larger class.

• Since Rm, Ro ≥ 1, the weights satisfy γ−1
k ≥ 1, so there is less freedom in choosing the

hk.

• This restriction in choosing hk leads to a smaller feasible set for the LMI. Thus, the
upper bound we find for the convergence rate will be larger.
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3.6.5 Repeated Sector Nonlinearities

We say a real symmetric matrix Γ is (ρ,H)-diagonally dominant if, for a symmetric matrix of
nonnegative proper transfers functions Ĥ with impulse responses Hij,k, we have that Γii ≥ 0,
Γij ≤ 0 (for i 6= j), Hij,k ≥ 0,

∑∞
k=0 ρ

−2k|Hij,k| ≤ 1 ∀ (i, j) and

Γii ≥
n∑

j=1,j 6=i
|Γij|+

n∑

j=1

∞∑

k=0

ρ−2k|Hij,k| ∀ i .

We call Γ just diagonally dominant3 if the above holds with H = 0 and ρ = 1. Now, let ∆
be a repeated monotone scalar nonlinearity in some sector; that is, ∆(y) = diag{φ(yi)}.

Proposition 3.6.2. ∆ satisfies the pointwise ρ-IQC

Π =

[
0 Γ
Γ 0

]

for any symmetric diagonally dominant matrix Γ.

Proof. This proposition is analogous to Theorem 1 in the Appendix of D’Amato et al. [2001]
with H = 0.

Theorem 3.6.2. Assume Γ is (ρ,H)-diagonally dominant. Then, if a static nonlinearity φ
is [α, β] slope-restricted, the repeated nonlinearity ∆(y) = diag{φ(yi)} satisfies the ρ-IQC

Π =

[
−αβ(2Γ− Ĥ − Ĥ∗) α(Γ− Ĥ) + β(Γ− Ĥ∗)

α(Γ− Ĥ∗) + β(Γ− Ĥ) −2Γ + Ĥ + Ĥ∗

]
. (3.13)

Moreover, it admits the factorization

Ψ =

[
β(Γ− Ĥ) −(Γ− Ĥ)
−αI I

]
, M =

[
0 I
I 0

]
.

Proof. The proof is similar in spirit to that of Theorem 3.6.1 but more involved; see
Appendix A.3.

See Appendix A.4 for a note on how to search over general nonnegative combinations of
ρ-IQCs of the form (3.13), which is not immediately apparent.

3Note that the conventional definition of “diagonally dominant” does not restrict the diagonal elements
to be nonnegative.
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3.7 Examples

3.7.1 Using Multiple IQCs

Using multiple IQCs can lead to more refined `2 gain bounds. Likewise, using multiple ρ-
IQCs can lead to refined exponential rates. In this section, we present numerical examples
using both pointwise and dynamic ρ-IQCs. Now, consider a stable discrete-time LTI system
G(z) in feedback with the sigmoidal nonlinearity ∆(x) = b arctan(x). This interconnection
is shown in Figure 3.8.

G

b

Figure 3.8: LTI system G in feedback with the static sigmoidal nonlinearity
∆(x) = b arctan(x).

Since this nonlinearity is static, in the [0, b] sector, and [0, b] slope-restricted, it satisfies
the following ρ-IQCs:

Πn(z) :=

[
b2 0
0 −1

]
(norm-bounded) (3.14)

Π0(z) :=

[
0 b
b −2

]
(sector bounded) (3.15)

Πk(z) :=

[
0 b(1− ρ2kz̄−k)

b(1− ρ2kz−k) −2 + ρ2k(z−k + z̄−k)

]
(off-by-k Zames–Falb) (3.16)

where we may choose any k ≥ 1.

3.7.1.1 A simple bound

For our first case study, we analyzed the interconnection of Figure 3.8 with the LTI system4

G1(z) = − (z + 1)(10z + 9)

(2z − 1)(5z − 1)(10z − 1)
.

4This example was inspired by the continuous-time example given in Weiland and Scherer [2015], which
showed that adding more IQCs yields better `2 gain bounds.
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Figure 3.9: Upper bounds on the exponential convergence rate ρ for the system G1(z) given
in (3.7.1.1) in feedback as in Figure 3.8. A tight bound is achieved using two ρ-IQCs. The
bound derived from the `2 gain is very conservative.

We solved the feasibility LMI (3.6) using MATLAB together with CVX [Grant and Boyd,
2008, 2014] to find the fastest guaranteed rate of convergence, and we searched over positive
linear combinations of subsets of the IQCs (3.14)–(3.16). Figure 3.9 shows the rate bounds
achieved as a function of which IQCs were used. Figure 3.10 shows sample state trajectories
for the case b = 1.

The true exponential rate can be found by linearizing the system about its equilib-
rium point; namely, ∆(x) ≈ bx. Formally, this is an application of Lyapunov’s indirect
method [Khalil, 2002, Thm. 4.13]. The result is that the decay rate should correspond to
the maximal pole magnitude of the closed-loop map G(z)/(1− bG(z)). We display the true
exponential rate as the dashed black curve in Figure 3.9 and Figure 3.10.

For this example, the ρ-IQC approach yields a tight upper bound to the true exponential
rate when we use a combination of the sector and off-by-1 IQCs. We also computed the
exponential rate derived from `2 gain as described in Section 3.5 (dotted line). The `2 bound
is very conservative despite being computed using all available IQCs.

3.7.1.2 A more complex bound

The ρ-IQC approach does not always achieve tight bounds as in the previous example.
Consider the same interconnection of Figure 3.8 but this time using

G2(z) =
2z − 1

10(2z2 − z + 1)
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Figure 3.10: State decay over time of the system G1(z) in feedback as in Figure 3.8 with b = 1
for various initial conditions x0 ∈ [−15, 15]. The dashed black line is ρk, where ρ = .7058 is
the true rate at b = 1 in Figure 3.9.

The rate bounds for various ρ-IQCs are shown in Figure 3.11. This time, we again observe
that using more IQCs achieves better rate bounds, but the bound is not tight even after
using six IQCs. However, if we add the Zames–Falb IQCs corresponding to odd monotone
nonlinearities, the rate improves to within a small tolerance of the true rate.

As in the previous example, the best achievable rate derived from an `2 gain bound as
detailed in Section 3.5 is still very conservative when compared to the rates obtained by
using the ρ-IQC approach.

3.7.1.3 A quasi-odd nonlinearity

Consider the asymmetric nonlinearity in Figure 3.12, shown with the associated monotone
and odd bounds as defined in Heath et al. [2015]. In this example, we have Rm = 1 and
Ro = 2.

Thus, we may invoke Corollary 3.6.2 and use the associated ρ-IQC. Using this system
in feedback with the G(z) from the second example, we see in Figure 3.13 that the quasi-
odd Zames–Falb IQCs yield better performance than the monotone Zames–Falb IQCs of the
same order (which requires all filter coefficients hk to be positive).

3.7.1.4 Repeated nonlinearities

To illustrate the need for repeated nonlinearity IQCs, first instantiate some stable SISO
system G with realization (A,B,C,D). Now, consider the “extended” 2-input 2-output
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Figure 3.11: Upper bounds on the exponential convergence rate ρ for the system G2(z) given
in (3.7.1.2) in feedback as in Figure 3.8. As we include more ρ-IQCs, we can certify tighter
bounds. Once again, the `2-derived bound is more conservative.

system

Gext =



A B −B
C D 0
C 0 D




and consider Gext in positive feedback with the block-diagonal nonlinearity diag{∆1,∆2}. If
we constrain ∆1 = ∆2, then the nonlinearities cancel each other out and the system is in open
loop. The convergence rate of the state is therefore determined by the largest magnitude
eigenvalue of A. However, if our IQC does not capture that the nonlinearity is repeated and
instead only assumes each individual nonlinearity is (say) [0, b] slope-restricted, then G must
essentially be robust to b-norm bounded nonlinearities in the feedback loop. This will result
in a worse rate certificate or even none at all (if G is made unstable by positive feedback).

Indeed, constructing Gext using our previous “tight bound” example with b = 0.3 leads to
a rate certificate of ≈ 0.825 using only the odd monotone IQC; replacing it with the repeated
odd monotone nonlinearity IQC gives a certificate matching the true convergence rate, 0.5.
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Figure 3.12: Plot of the monotone and quasi-odd asymmetric nonlinearity
φ(x) = max{arctan(x),−1} with its associated bounds.
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Figure 3.13: Comparison of monotone Zames–Falb and quasi-odd (denoted with superscript
q) Zames–Falb IQC rate certificates.
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3.8 An Aside: Application to Optimization Systems

3.8.1 Previous Work

As mentioned in the previous sections, LMIs have been a useful tool to verify properties of
interconnected dynamical systems [Boyd et al., 1994; Rantzer, 1996]. Recent work by Lessard
et al. [2016] looked at an inverse approach, i.e. using tools from control and system theory to
verify properties of optimization algorithms. Using techniques similar to ones developed there
and in this chapter, we look at generalizing Lessard et al. [2016] to stochastic optimization
algorithms.

3.8.2 First-order Optimization Systems

In Lessard et al. [2016], the authors made a fundamental connection between optimization
algorithms (specifically, first-order ones) and discrete-time linear dynamical systems. They
noted that many commonly-used algorithms be described by a linear discrete-time system
G composed with a nonlinear feedback function φ—with the nonlinearity being the gradient
of the objective function. The feedback in the system is then defined by u = ∇f(y). For
example, the linear system G corresponding to the gradient descent method with step size
α can be described by standard state-space equations:

[
A B

C D

]
:=

[
I −αI
I 0

]
.

As seen before, when such a system satisfies an IQC with a factorization (Ψ,M), analyzing
only the linear portions of the constrained system can give stability information about the
original system. This decomposition is seen in Figure 3.14 (taken from Lessard et al. [2016]).

We now seek to describe stochastic optimization algorithms, such as stochastic gradient
descent, using this framework. Some related results can be found in Hu [2016].

3.8.3 Gradient Descent with Additive Input Noise

We present a preliminary result and contrast it with the main result from Lessard et al. [2016].
Consider an optimization algorithm described by linear system under nonlinear (gradient)
feedback, with additive input noise wk. For example, take the stochastic gradient descent
update

xk+1 = xk − αgk ,
where gk is a noisy (but unbiased) estimate of ∇f(xk), such as gk = ∇f(xk) + wk where wk
is independent of the gradient and zero-mean. In general, such an optimization algorithm
can be viewed as the dynamical system

G :
ξk+1 = Aξk +B(uk + wk)

yk = Cξk
(3.17)
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(a) An auxiliary system Ψ produces z, a filtered version of the
signals y and u.
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(b) The nonlinearity φ is replaced by a constraint on z, so we
may remove φ entirely.

Figure 3.14: Feedback interconnection between a system G and a nonlinearity φ. An IQC is
a constraint on (y, u) satisfied by φ. We only analyze the constrained system and so we may
remove the φ block entirely.

where uk is the gradient of some function f . Now, assume that the gradient satisfies an IQC
with a factorization defined by the linear system Ψ, with dynamics

ζk+1 = AΨζk +
[
By

Ψ Bu
Ψ

] [yk
uk

]
(3.18)

zk = CΨζk +
[
Dy

Ψ Du
Ψ

] [yk
uk

]

The block diagram shown in Figure 3.15 shows the overall system with the new noise input w.
Consider the dynamics of G and Ψ from (3.17) and (3.18), respectively. As in Corollary 3.4.1,
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Figure 3.15: The perturbed system, including additive input noise w.

upon eliminating y the recursions may be combined to obtain another linear system

xk+1 = Âxk + B̂uk +

[
B
0

]
wk

zk = Ĉxk + D̂uk

where xk :=

[
ξk
ζk

]
, (3.19)

for some matrices Â, B̂, Ĉ, D̂.
Recall the definition of a ρ-hard IQC from Lessard et al. [2016, Def. 3], which is similar

to the discrete-time ρ-IQC given in Remark 3 but is required to hold for all finite sums.

Definition 3.8.1. The IQC defined by (Ψ,M) is ρ-hard if

k∑

t=0

ρ−2t(zt − z?)>M(zt − z?) ≥ 0 for k = 0, 1, . . .

If we now know that the gradient of f satisfies a ρ-hard IQC, we can say something about
the convergence of the system— the convergence of the optimization algorithm.

Theorem 3.8.1. Consider the block interconnection of Figure 3.15. Assume the error sig-
nal wk comes i.i.d. from a distribution with zero mean and covariance matrix Λw, and is
independent of uk and xk. Suppose G is given by (3.17) and φ satisfies a ρ-hard IQC defined
by (Ψ,M, z?) where Ψ is given by (3.18) and 0 ≤ ρ ≤ 1. Assume x? is a fixed point of the
dynamical system given by (3.19) when wk = 0. Consider the LMI

[
Â>PÂ− ρ2P Â>PB̂

B̂>PÂ B̂>PB̂

]
+ λ

[
Ĉ D̂

]>
M
[
Ĉ D̂

]
� 0 . (3.20)

If (3.20) is feasible for some P � 0 and λ ≥ 0, then for any x0, we have

E||xk − x?||2 ≤ κ(P )ρ2k||x0 − x?||2 +
tr(B>P11BΛw)

λmin(P )

1− ρ2k

1− ρ2
∀ k .
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Proof. The complete proof (given in Appendix A.5) follows in the same vein as the main re-
sult in Lessard et al. [2016], which is a direct discrete-time proof in contrast to the frequency-
domain results in Section 3.3.

We can compare Theorem 3.8.1 to the main result of Lessard et al. [2016, Thm 4], which
states that, if the LMI is feasible, then

||xk − x?||2 ≤ κ(P )ρ2k||x0 − x?||2 for all k.

3.9 Conclusion

IQC theory is the most general tool available for certifying robust stability of systems in
feedback with unknown, uncertain, or otherwise difficult nonlinearities. As stable systems
are often exponentially stable, it is reasonable to want finer control over not only stability,
but also exponential decay rate. The generalization presented herein enables the certification
of robust exponential stability with precise control over the decay rate. Moreover, the library
of ρ-IQCs provided shows how this approach can be applied as broadly and efficiently as the
classical IQC theory.
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Chapter 4

H∞ Bounds for System Estimation

4.1 Introduction

Most control design relies on establishing a model of the system to be controlled. For
simple physical systems, a model with reasonable fidelity can typically be constructed from
knowledge of the physics at hand. However, for complex, uncertain systems, building models
from first principles becomes quickly intractable and one usually resorts to fitting models
from empirical input/output data. This approach naturally raises an important question:
how well must we identify a system in order to control it?

In this chapter, we attempt to answer this question by striking a balance between system
identification and robust control. We aim to identify coarse estimates of the true underlying
model while coupling our estimation with precise probabilistic bounds on the inaccuracy of
our estimates. With a coarse model in hand, we can use standard robust synthesis tools that
take into account the derived bounds on the model uncertainty.

More precisely, given an unknown stable discrete-time plant G, we bound the error ac-
crued by fitting a finite impulse response (FIR) approximation to G from noisy output
measurements. These bounds balance the sample complexity of estimating an unknown FIR
filter against the capability of such a filter to approximate the behavior of G. In particular,
we show that notably short FIR filters provide a sufficient approximation to stable systems
in order to ensure robust performance for a variety of control design tasks. In particular,
we demonstrate considerable savings in experimental measurements as compared to other
non-asymptotic schemes that aim to precisely identify G.

In the process of fitting a FIR filter, a natural question arises as to what inputs should be
used to excite the unknown system. Of course, due to actuator limitations and other physical
constraints, we are not free to choose any arbitrary input. Hence, we model the choice of
inputs as an experiment design question, where the practitioner specifies a bounded input
set and asks for the best m inputs to use to minimize FIR identification error. We propose a
new optimal experiment design procedure for solving this problem, and relate it to the well
studied A-optimal experiment design objective from the statistics literature [Pukelsheim,
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1993]. This connection is used to study practical cases of input constraints. Specifically,
we prove that when the inputs are `2-power constrained, then impulse responses are the
optimal choice of inputs. However, we show that is not the case when the inputs are `∞-
constrained. For `∞ constraints, we construct a deterministic set of inputs which is within a
factor of 2 to the optimal solution. Combining these designs with our probabilistic bounds,
we show that for estimating a length-r FIR filter Gr, as long as m ≥ 4r, the residual
H∞ error ‖Gr − Ĝr‖H∞ on the estimate Ĝr satisfies Õ(1/

√
m)1 with high probability. This

is a substantial improvement over the Õ(
√
r/m) scaling which we show occurs in the `2-

constrained case. We also prove an information-theoretic lower bound which shows that
when the true system happens to be an FIR filter, our bounds are minimax optimal up to
constant factors for the given estimation problem.

Experimentally, we show that H∞ loop-shaping controller design on the estimated FIR
model, using probabilistic bounds, can be used to synthesize controllers with both stability
and performance guarantees on the closed loop with the true plant. We also demonstrate that
our probabilistic bounds can be estimated directly from data using Monte–Carlo techniques.
We hope that our results encourage further investigation into a rigorous foundation for data-
driven controller synthesis.

4.1.1 A Sample Complexity Bound for FIR Identification

We now state our main results for this section: upper and lower bounds on the sample
complexity of FIR system identification. Let G be a stable, discrete-time SISO LTI system.
Suppose we are given query access to G via independent, noisy measurements of the form

yu,T := (g ∗ u)T−1
k=0 + ξ , ξ ∼ N (0, σ2IT ) . (4.1)

Above, g denotes the impulse response of G and T is the length of the output we observe
(we add the u and t subscripts to reinforce the notions of a generating input and number of
samples). We assume that we are allowed to choose any input u contained within a bounded
set U , which is specified beforehand. From these measurements, we can approximate G by
a length-r FIR filter Ĝr(z) as

Ĝr(z) :=
r−1∑

k=0

ĝkz
−k , (4.2)

where r ≤ T , and the coefficients ĝk are estimated from ordinary least-squares (c.f. Sec-
tion 4.3). We note that the extra degree of freedom in allowing r 6= T reduces the variance
of the higher lag terms, which is a standard trick used in the system-identification literature
(see e.g. Wahlberg et al. [2010, Section 2]).

The main quantity of interest in this setting is the number of timesteps needed in order
to ensure that the H∞-norm of the error G − Ĝr satisfies the bound ‖G− Ĝr‖H∞ ≤ ε

1The notation Õ(·) suppresses dependence on polylogarithmic factors.
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with probability at least 1 − δ over the randomness of the noise. Here, the total number
of timesteps is the product of the number of queries of the form (4.1) times length of the
queries. That is, the number of timesteps is m × T , where m is number of measurements
taken and T denotes the length of each measurement. This quantity depends on the set
U ; we restrict (for now) to the case where U is either the unit `2-ball or the unit `∞-ball.
These two sets comprise the most common input constraints found in the controls literature.
Nevertheless, our analysis later will cover all `p-balls for p ∈ [1,∞].

In both cases, we must first consider the length of the FIR filter (4.2) required to ensure
reasonable approximation in the H∞-norm. We must guarantee that we are able to accu-
rately capture the large components of the impulse response of G. Therefore, we will need
some measure of how quickly the impulse response coefficients tend to zero. It turns out
that the H∞-norm of G provides a convenient proxy for the decay of the impulse response.
Throughout, we will use the following sufficient bound on the truncation length:

Definition 4.1.1 (Sufficient Length Condition). Let G be stable with stability radius ρ ∈
(0, 1). Fix a ε > 0. Let R(ε) be the smallest integer which satisfies

R(ε) ≥ inf
ρ<γ<1

1

1− γ log

(‖G(γz)‖H∞
ε(1− γ)

)
. (4.3)

Equation (4.3) characterizes the approximation error of an FIR filter to G as a balance
between the growth of 1/(1−γ) versus the decay of the logarithm of ‖G(γz)‖H∞ , as γ varies
between (ρ, 1).

We first study the `2-ball case. In this case, we will set all m inputs to an impulse; that
is, u(i) = e1, where e1 ∈ Rr is the first standard basis vector.

Theorem 4.1.1 (Main result, `2-constrained case). Fix an ε > 0 and δ ∈ (0, 1), and
suppose that U = {x ∈ RT : ‖x‖2 ≤ 1}. Let G be stable with stability radius ρ ∈ (0, 1), and
set r ≥ R(ε/2) from (4.3) and T = 2r. Set m inputs u(i) = e1 ∈ U for i = 1, ...,m, where
m ≥ 1 satisfies

m ≥ C
σ2r

ε2

(
log r + log

(
1

δ

))
.

Then, with probability at least 1 − δ, we have ‖G− Ĝr‖H∞ ≤ ε. Above, C is an absolute
positive constant.

Theorem 4.1.1 states that the number of timesteps to achieve identification error ε with
`2-constrained inputs scales as Õ(σ2r2/ε2) in the regime when σ/ε � 1. It also turns out
that this input ensemble is optimal for the `2-ball case, which we will discuss shortly.

We next turn to the `∞-ball case. In this case, we take m = 2n to be an even number,
and construct the input ensemble

u
(i)
c,t = cos

(
2πit

n

)
and u

(i)
s,t = sin

(
2πit

n

)
for i = 0, ..., n− 1 . (4.4)

With this input ensemble, we prove the following result for `∞-constraints.
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Theorem 4.1.2 (Main result, `∞-constrained case). Fix an ε > 0 and δ ∈ (0, 1), and
suppose that U = {x ∈ RT : ‖x‖∞ ≤ 1}. Let G be stable with stability radius ρ ∈ (0, 1), and
set r ≥ R(ε/2) from (4.3) and T = 2r. Set m inputs as described in (4.4), where m ≥ 4r
satisfies

m ≥ C
σ2

ε2

(
log r + log

(
1

δ

))
. (4.5)

Then, with probability at least 1 − δ, we have ‖G− Ĝr‖H∞ ≤ ε. Above, C is an absolute
positive constant.

In the regime when σ/ε � 1, Theorem 4.1.2 states that the number of timesteps to

achieve identification error ε with `∞-constrained inputs scales as Õ(σ2r/ε2). This is sub-

stantially more efficient than the complexity Õ(σ2r2/ε2) which arises in the `2-constrained
case. We conclude by noting that this particular input ensemble is optimal for the `∞-ball
case up to constants, which we turn our attention to now.

In the case where, G itself is an length-r FIR filter, we also have a lower bound for
estimation. We consider the general case when all m inputs are constrained to a unit `p-ball,
where p ∈ [1,∞].

Theorem 4.1.3 ([Tu et al., 2017, Thm. 1.3]). Fix a p ∈ [1,∞] and r ≥ 16. Suppose that
m ≥ 1 measurements u(1), . . . , u(m) ∈ RT are fixed beforehand, with T = 2r and ‖u(i)‖p ≤ 1
for all i = 1, ...,m. Let Hr denote the space of all length-r FIR filters. We have that

inf
Ĝ

sup
G∈Hr

E‖Ĝ−G‖H∞ ≥ Cσ

√
r2/max(p,2) log r

m
,

where the infimum ranges over all measurable functions Ĝ : ⊗mk=1RT −→ Hr, and C is an
absolute positive constant.

In view of Theorem 4.1.3, we see that the rates prescribed by Theorem 4.1.1 for the
`2-constrained case and by Theorem 4.1.2 for the `∞-constrained case are minimax optimal
up to constant factors. We conclude by noting that our choice of T = 2r is arbitrary. Indeed,
the same results hold for T = d(1 + ε)re for any fixed ε > 0, which only a change in the
constant factors.

4.2 Related Work

4.2.1 Transfer Function Identification

Estimating the transfer function of a linear time-invariant system from input/output pairs
has been studied in various forms in both the controls literature [Ljung and Wahlberg,
1992; Ljung and Yuan, 1985] and the statistics literature [Gerencsér, 1992; Goldenshluger



Chapter 4: H∞ Bounds for System Estimation 38

and Zeevi, 2001; Shibata, 1980], where it is closely related to estimating the coefficients
of a stable autoregressive (AR) process. The main difference between our work and that of
autoregressive estimation is that we assume the noise process driving the system is chosen by
the practitioner (which we denote as the input to the system), and the stochastic component
enters only during the output of the system. This simplifying assumption allows us to
provide stronger non-asymptotic guarantees. Also by making prior assumptions on the
stability radius of the underlying system, we circumvent the delicate issue of model order
selection; a similar assumption is made in Goldenshluger and Zeevi [2001].

Most closely related to our work is that of Goldenshluger [1998], where he considers
the problem of estimating the impulse response coefficients of a stable SISO LTI system.
Goldenshluger provides upper and lower bounds on the `p-error when the residual between
the estimate and the true coefficients is treated as a sequence in `p for p ∈ [1,∞]. The main
difference between Goldenshluger’s setting and ours is that he restricts himself to the case
when the input u is `∞-constrained, and furthermore assumes only a single realization is
available. On the other hand, we make assumption that multiple independent realizations
of the system are available, which is reasonable in a controlled laboratory setting. This
assumption simplifies the analysis and allows us to study more general `p-constrained inputs.

4.2.2 System Identification

We now turn our attention to system identification, where the classical results can be found
in Ljung [1999]. Sample complexity guarantees in the system identification literature of-
ten require strong assumptions, which are difficult to verify. Most analyses are asymptotic
and are based on the idea of persistence of excitation or mixing [McDonald et al., 2017;
Vidyasagar and Karandikar, 2008]. There has been some progress in estimating the sam-
ple complexity of dynamical system identification using machine learning tools [Campi and
Weyer, 2002; Vidyasagar and Karandikar, 2008], but such results typically yield pessimistic
sample complexity bounds that are exponential in the degree of the linear system or other
relevant quantities.

Two recent results provide polynomial sample complexity for identifying linear dynam-
ical systems. Shah et al. [2012] show that if certain frequency domain measurements are
obtained from a linear dynamical system, then the system can be approximately identified
by solving a second-order cone programming problem. The degree of the estimated IIR
system scales as (1 − ρ(A))−2 where ρ(A) denotes the stability radius. Similarly, Hardt
et al. [2016] show that one can estimate an IIR system from time domain observations
with a number of measurements polynomial in (1 − ρ(A))−2, under the assumption that
the impulse response coefficients {gk}k≥0 satisfy the decay law |gk| ≤ Cρ(A)k, where C is
considered a constant independent of the degree of the system. In this work, we show that
under the same decay assumption, a considerably smaller FIR approximation with degree
Õ((1− ρ(A))−1) suffices to complete many control design tasks. However, there has been a
significant amount of recent work from the machine learning community on non-asymptotic
rates for estimation in LTI systems; much of it is focused on removing this dependence on the
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decay assumption and extending the results to marginally stable systems and/or partially
observed systems [Faradonbeh et al., 2017; Hazan et al., 2017, 2018; Oymak and Ozay, 2018;
Sarkar and Rakhlin, 2018; Sarkar et al., 2019; Simchowitz et al., 2019].

4.2.3 Robust Control

Classical robust control literature focuses much of its effort on designing a controller while
taking into account fixed bounds on the uncertainty in the model. There are numerous
algorithms for controller synthesis under various uncertainty specifications, such as coprime
factor uncertainty [McFarlane and Glover, 1992] or state-space uncertainty [Packard and
Doyle, 1993]. However, there are only a few branches of the robust control literature that
couple identification to control design, and the identification procedure best suited for a
particular control synthesis scheme is usually not specified.

4.2.4 H∞ Identification and Gain Estimation

Most related to our work is the literature on H∞ identification. In this literature, noisy
input/output data from an unknown stable linear time-invariant (LTI) plant is collected in
either the frequency domain [Helmicki et al., 1991; Hindi et al., 2002] or the time domain Chen
and Nett [1993]; the goal is often to estimate a model with low H∞ error. A comprehensive
review of this line of work is given by Chen and Gu [2000].

The main difference between the H∞ identification literature and our work is that we
assume a probabilistic noise model instead of worst-case (adversarial), and we assume that
our identification algorithm is allowed to pick its inputs to the plant G. As we will see, these
simplifying assumptions lead to simple algorithms, straightforward analysis, and finite-time
sample complexity guarantees.

Another related line of work is the use of the power method [Rojas et al., 2012; Wahlberg
et al., 2010] for estimating the H∞-norm of an unknown SISO plant. The key insight is
that in the SISO case, a time-reversal trick can be applied to effectively query the system
G∗ ◦ G, where G∗ denotes the adjoint system. This approach is appealing, since the power
method is known to converge exponentially quickly to the leading eigenvector. However, the
leading factor in the convergence rate is the ratio of λ1/λ2, and hence providing a finite-time
guarantee of this method would require a non-asymptotic analysis of the rate of convergence
of the second singular value of finite sections of a Toeplitz operator.

4.2.5 Norms of Random Polynomials

Our analysis relies on bounding the norms of random trigonometric polynomials of the form
Q(z) =

∑r−1
k=0 εkz

k. The study of the supremum norm of random finite degree polynomials
was first initiated by Salem and Zygmund [1954], who studied the setting where the coeffi-
cients are drawn from a symmetric Bernoulli distribution supported on {±1}. Later, Kahane
[1994] proved that when the coefficients are distributed as an isotropic Gaussian, then with
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probability at least 1− δ, ‖Q‖∞ ≤ O(
√
r log(r/δ)). More recently, Meckes [2007] extended

this result to hold for independent sub-Gaussian random variables by employing standard
tools from probability in Banach spaces. In Section 4.3, we extend these results to the case
when the coefficients follow a non-isotropic Gaussian distribution. This is important because
it allows us to reduce the overall error of our estimate by using non-isotropic covariance ma-
trices from experiment design.

4.3 System Identification of Finite Impulse Responses

Recall from Section 4.1.1 that we are given query access to G via the form

yu,T = (g ∗ u)T−1
k=0 + ξ , ξ ∼ N (0, σ2IT ) ,

where u ∈ U for some fixed set U . Therefore, the ratio of some measure of the size of U to
σ serves as the signal-to-noise (SNR) ratio for our setting. In what follows, we will always
assume U is a unit `p-ball for p ∈ [1,∞].

Fix a set of m inputs u(1), . . . , u(m) ∈ U . Given a realization of {yuk,T}mk=1, we can
estimate the first T coefficients {gk}T−1

k=0 of G(z) =
∑∞

k=0 gkz
−k via ordinary least-squares

(OLS). Calling the vector Y := (yu(1),T , . . . , yu(m),T ) ∈ RTm, it is straightforward to show
that the least squares estimator ĝ0:T−1 is given by

ĝ0:T−1 :=




ĝ0

ĝ1
...

ĝT−1


 = (Z>Z)−1Z>Y , Z :=




Toep(u(1))
...

Toep(u(m))


 ∈ RTm×T .

Let us clarify the Toep(u) notation. For a vector u ∈ RT , Toep(u) is the T × T lower-
triangular Toeplitz matrix where the first column is equal to u. Later on, we will use the
notation Toepa×b(u), where a, b are positive integers. This is to be interpreted as the upper
left a× b section of the semi-infinite lower-triangular Toeplitz matrix form by treating u as
a zero-padded sequence in RN.

Above, we assume the matrix Z>Z is invertible, which we will ensure in our analy-
sis. From ĝ0:T−1, we form the estimated finite impulse response Ĝr for any r ≤ T as
Ĝr(z) :=

∑r−1
k=0 ĝkz

−k. The Gaussian output noise assumption means that the error vector

ĝ0:T−1 − g0:T−1 is distributed N (0, σ2(Z>Z)−1), and hence Ĝr − Gr is equal in distribution
to the random polynomial Q(z) =

∑r−1
k=0 εkz

−k with ε ∼ N (0, σ2Er(Z
>Z)−1E>r ), where

Er :=
[
Ir 0r×(T−r)

]
∈ Rr×T . Here, Gr(z) :=

∑r−1
k=0 gkz

−k is the length-r FIR truncation of
G. Since the covariance matrix will play a critical role in our analysis to follow, we introduce
the notation

Σ(u) :=
m∑

k=1

Toep(uk)
>Toep(uk) , (4.6)
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where m will be clear from context. We will also use the shorthand notation [M ][r], to refer
to the r × r matrix ErME>r for any T × T matrix M .

The roadmap for this section is as follows. In Section 4.3.1, we characterize the behavior
of the random quantity ‖Q‖∞ as a function of the covariance matrix σ2Σ(u)−1 and the
polynomial degree r. Next, we study in Section 4.3.2 the problem of experiment design for
choosing the best inputs u(1), ..., u(m) to minimize the error ‖Q‖∞. Using these results, we
give upper bounds for FIR identification with `p-constrained inputs in Section 4.3.3. We
then combine these results and prove in Section 4.3.4 the main results from Theorem 4.1.1
and Theorem 4.1.2. We will omit some sections and proofs for brevity and refer the reader
to Tu et al. [2017].

Process Noise Before we begin our analysis, we note that our upper bounds easily extend
to the case where process noise enters the system through the same channel as the input.
Specifically, suppose the input signal is corrupted by ζ ∼ N(0, σ2

nIT ) which is independent
of the output noise ξ, and instead of observing Yu,T we observe

ỹu,T = (g ∗ ũ)T−1
k=0 + ξ , ũ := u+ ζ .

In this setting, the error vector ĝ0:T−1 − g0:T−1 of the least-squares estimator on {ỹuk,T}mk=1

is distributed

N (0,Λ) , Λ := (Z>Z)−1Z>(σ2
nToepT×T (g)ToepT×T (g)> + σ2IT )Z(Z>Z)−1 .

Since g is the impulse response of a stable system, ‖ToepT×T (g)‖ ≤ ‖G‖H∞ , and therefore
Λ � (σ2

n‖G‖2
H∞ + σ2)(Z>Z)−1. Thus, the upper bounds carry over to this process noise

setting with the variable substitution σ2 ← σ2
n‖G‖2

H∞ + σ2. The modification to the lower
bounds in this setting is more delicate, and we leave this to future work.

4.3.1 A concentration result for the error polynomial

We first address the behavior of the error ‖Q‖∞. Our main tool is a discretization result
from Bhaskar et al. [2012]:

Lemma 4.3.1 (Bhaskar et al. [2012]). Let Q(z) :=
∑r−1

k=0 εkz
−k, where εk ∈ C. For any

N ≥ 4πr,

‖Q‖∞ ≤
(

1 +
4πr

N

)
max

k=0,...,N−1

∣∣Q(ej2πk/N)
∣∣ .

Lemma 4.3.1 immediately reduces controlling the H∞-norm2 of a system defined by
a finite-degree polynomial to controlling the maxima of a finite set of points on the torus.

2The H∞-norm is equivalent to the ‖ · ‖∞ norm when viewed as a complex polynomial.
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Hence, upper bounding the expected value of ‖Q‖∞ and showing concentration is straightfor-
ward. Before we state the result, we define some useful notation which we will use throughout
this section. For a z ∈ C, define the vector of monomials ϕ(z) as

ϕ(z) := (1, z, z2, ..., zr−1) ∈ Cr , ϕ1(z) := Re{ϕ(z)} , ϕ2(z) := Im{ϕ(z)} , (4.7)

where the length r will be implicit from context. Now, using standard concentration results
for suprema of Gaussian processes (see e.g. Boucheron et al. [2013]) and Lemma 4.3.1, we
have the following error concentration result.

Lemma 4.3.2. Let ε ∼ N (0, V ) where ε ∈ Rr, and put Q(z) =
∑r−1

k=0 εkz
−k. Define for

` = 1, 2,
η2
` := sup

z∈T
ϕ`(z)>V ϕ`(z) .

We have that
E‖Q‖∞ ≤ 4

√
2η
√

log(8πr) ,

where η := max(η1, η2). Furthermore, with probability at least 1− δ, we have

‖Q‖∞ ≤ 4
√

2η(
√

log(8πr) +
√

log(2/δ)) .

Note that when V = I, η2 ≤ r which recovers the known results from Kahane [1994] up
to constants. Furthermore, when V is diagonal, η2 ≤ tr(V ). We will exploit this result in
the sequel.

4.3.2 Experiment design

We now consider the problem of choosing a set of inputs u ∈ U in order to minimize
the expected error of the residual polynomial. Fixing the number of inputs m, the input
constraint set U , and recalling the definition of the covariance Σ(u) from (4.6), the optimal
experiment design problem is

minimize
u(1),...,u(m)∈ U

Eε∼N (0,[Σ(u)−1][r])‖Q‖∞ . (4.8)

In (4.8) and the sequel, if the covariance matrix Σ(u) is not invertible then we assign the
function value +∞. Problem (4.8) is difficult to solve as written because the expected value
does not have a form which is easy to work with computationally. The following design
problem provides a good approximation of (4.8). Let {z1, ..., zs} ⊆ T denote a grid of s
points on T. Consider the problem

minimize
u(1),...,u(m)∈ U

max
1≤k≤s
`=1,2

ϕ`(zk)
>[Σ(u)−1][r]ϕ`(zk) . (4.9)
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The objective (4.9) minimizes the maximum pointwise variance of Q(z) over all points on
the grid {z1, ..., zs}. If the grid is uniformly spaced and s ≥ 4πr, then by Lemma 4.3.1 we
can interpret (4.9) as minimizing an upper bound to the objective function in (4.8), since

Eε∼N (0,[Σ(u)−1][r])‖Q‖∞ ≤ (1 + 4πr/s)E max
1≤k≤s

|〈ϕ(zk), ε〉|

≤ (1 + 4πr/s)
√

2 log(2s)
2∑

`=1

max
1≤k≤s

√
ϕ`(zk)>[Σ(u)−1][r]ϕ`(zk) .

(4.10)

However, (4.9) is non-convex in the u(i)’s. A convex version of the problem can be written
by choosing m0 inputs u(1), . . . , u(m) ∈ U and solving the semidefinite program (SDP)

minimize
λ∈Rm

max
1≤k≤s
`=1,2

ϕ`(zk)
>[Σ−1][r]ϕ`(zk) s.t. Σ =

m0∑

i=1

λiToep(u(i))TToep(u(i)) , λ>1 = 1 , λ ≥ 0 .

(4.11)

Equation (4.11) is a convex program and can be solved with any off-the-shelf solver such as
MOSEK [MOSEK ApS, 2015].

We now study two special cases of U to show how input constraints can affect design.
We first observe that when Σ(u) is diagonal, continuing the estimates from (4.10), we have
the following upper bound which holds since ‖ϕ`(z)‖∞ ≤ 1,

Eε∼N (0,[Σ(u)−1][r])‖Q‖∞ ≤ (1 + 4πr/s) 2
√

2 log(2s) tr([Σ(u)−1][r]) . (4.12)

Even though (4.12) only holds when Σ(u) is diagonal, it motivates us to consider the standard
A-optimal design problem

minimize
u(1),...,u(m)∈ U

tr([Σ(u)−1][r]) . (4.13)

An advantage of (4.13) versus (4.9) is that the reduced complexity of the objective function
allows us to make statements about optimality when U is an `p-ball. The analogous SDP
relaxation of (4.13), similar to (4.11), is also more efficient to implement in practice for more
general U ’s.

Let F ∗p (T, r) denote the optimal value of (4.13) with U = BT
p for p ∈ [1,∞], where BT

p

denotes the unit `p-ball in RT . We will always assume T ≥ r. It is not hard to show that
F ∗p (T, r) is finite and the value is attained (and hence Σ(u) at the optimum is invertible).
We claim the following statements about (4.13):

(a) When p ∈ [1, 2], the optimal solution is to set u(i) = e1, i = 1, ...,m.

(b) When p ∈ (2,∞], we can solve (4.13) to within a factor of two of optimal by convex
programming.
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(c) When p = ∞, we can give an exact closed form solution for (4.13) in the special case
when r = 2n with n ≥ 0, T = 2kr with k ≥ 1, and m is a multiple of T .

These statements follow from the following three lemmas, which are proved in full in Tu
et al. [2017, Section 3.2].

First, we have an optimization problem which lower bounds the optimal value F ∗p .

Lemma 4.3.3. For all p ∈ [2,∞], we have that

F ∗p (T, r) ≥ 1

m
inf
w∈RT

‖w‖p/2≤1,w≥0

r∑

i=1

[
T−r+i∑

`=1

w`

]−1

:=
1

m
Dp(T, r) .

Lemma 4.3.4. For p ∈ [1, 2], we have that F ∗p (T, r) = r
m

, which is achieved by setting

u(1) = . . . = u(m) = e1.

Lemma 4.3.5. Fix positive integers m,n, T , and suppose that m = 2n and n ≥ T . Let
zi = e2πji/n for i = 0, . . . , n− 1. Define the vectors u(0), . . . , u(n−1) and u(n), . . . , u(2n−1) as

u(i) = Re{wp(T, r)� ϕ(zi)} , u(n+i) = Im{wp(T, r)� ϕ(zi)} , i = 0, ..., n− 1 .

We have that the covariance matrix Σ(u) satisfies

tr([Σ(u)−1][r]) =
2

m
Dp(T, r) .

4.3.3 Upper Bounds on FIR Identification with `p-constrained
Inputs

Combining the results from Section 4.3.1 and Section 4.3.2, we now prove an upper bound
on length-r FIR identification when the inputs are `p-constrained.

Lemma 4.3.6. Fix positive integers m and r, and set T = 2r. Consider the input ensemble
u(1) = . . . = u(m) = e1 when p ∈ [1, 2], or the input ensemble defined in Lemma 4.3.5 when

p ∈ (2,∞] (with additional restrictions on m, r in this case). Let Ĝr denote the length-r
FIR estimate derived from least-squares, and let Gr denote the length-r FIR truncation of
G. With probability at least 1− δ,

‖Ĝr −Gr‖H∞ ≤





4
√

2σ
√

r
m

(√
log(8πr) +

√
log(2/δ)

)
if p ∈ [1, 2]

8
√

2 log 2σ
√

r2/p

m

(√
log(8πr) +

√
log(2/δ)

)
if p ∈ (2,∞] .

Proof. From Lemma 4.3.2, we have that with probability at least 1− δ,

‖Ĝr −Gr‖H∞ ≤ 4
√

2σ
√

tr([Σ(u)−1][r])
(√

log(8πr) +
√

log(2/δ)
)
.
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We only need to upper bound the variance term tr([Σ(u)−1][r]). When p ∈ [1, 2], by
Lemma 4.3.4 the optimal input ensemble is the impulse response u(i) = e1, so we have
tr([Σ(u)−1][r]) ≤ r/m. On the other hand, when p ∈ (2,∞], one can show (see Tu et al.
[2017, Lemma 3.5]) that the specified u’s satisfy

tr([Σ(u)−1][r]) ≤
2

m
Dp(2r, r) ≤

4

m
r2/p(H2r −Hr) ≤

4 log 2

m
r2/p ,

where Hr is the r-th harmonic number.

4.3.4 Proof of Main Results

We now prove Theorem 4.1.1 and Theorem 4.1.2. Recall that Ĝr is the estimated length-r
FIR approximation to G, and Gr is the true length-r FIR truncation of G. By the triangle
inequality, we have the following error decomposition into an approximation error and an
estimation error

‖G− Ĝr‖H∞ ≤ ‖G−Gr‖H∞︸ ︷︷ ︸
Approx. error.

+ ‖Gr − Ĝr‖H∞︸ ︷︷ ︸
Estimation error.

.

Hence, in order for ‖G− Ĝr‖H∞ ≤ ε to hold, it suffices to have both the approximation error

‖G−Gr‖H∞ ≤ ε/2 and the estimation error ‖Gr − Ĝr‖H∞ ≤ ε/2.
The approximation error is a deterministic quantity, and its behavior is governed by

the tail decay of the impulse response coefficients {gk}k≥0. In Section 4.4, we prove in
Lemma 4.4.1 that as long as r satisfies

r ≥ inf
ρ<γ<1

1

1− γ log

(
2‖G(γz)‖H∞
ε(1− γ)

)
,

then we have ‖G−Gr‖H∞ ≤ ε/2.
We now turn our attention to the estimation error. For the case when p = 2, Lemma 4.3.6

tells us with probability at least 1− δ, the estimation error satisfies

‖Gr − Ĝr‖H∞ ≤ 4
√

2σ

√
r

m

(√
log(8πr) +

√
log(2/δ)

)
.

Setting the RHS less than ε/2, solving for m, and using the inequality (a+ b)2 ≤ 2(a2 + b2),
we conclude that a sufficient condition on m is

m ≥ max

{
256σ2r

ε2

(
log(8πr) + log

(
2

δ

))
, 1

}
.

This concludes the proof of Theorem 4.1.1.
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The proof of Theorem 4.1.2 is nearly identical. For the case when p = ∞, Lemma 4.3.6
tells us with probability at least 1− δ, the estimation error satisfies

‖Gr − Ĝr‖H∞ ≤ 8
√

2 log 2σ

√
1

m

(√
log(8πr) +

√
log(2/δ)

)
.

Setting the RHS less than ε/2 and solving for m, we conclude that the sufficient condition is

m ≥ max

{
(1024 log 2)σ2

ε2

(
log(8πr) + log

(
2

δ

))
, 4r

}
.

This concludes the proof of Theorem 4.1.2.

4.4 Finite Truncation Error Analysis for Stable

Systems

In Section 4.3, we presented both probabilistic guarantees and experiment design for identi-
fication of FIR systems of length r, which were independent of any system specific properties
of G. In this section, we analyze how system behavior affects the necessary truncation length
needed to reach a desired approximation error tolerance.

In order to provide guarantees, we require that the underlying system G is stable with
stability radius ρ ∈ (0, 1). A standard fact states that stability is equivalent to the existence
of a constant C > 0 such that the tail decay on the coefficients of the Laurent expansion
G =

∑∞
k=0 gkz

−k satisfies the following condition

|gk| ≤ Cρk , k ≥ 1 . (4.14)

Under this assumption, a calculation reveals that as long as

r ≥ 1

1− ρ log

(
C

ε(1− ρ)

)
,

then we have that the approximation error ‖G−Gr‖H∞ satisfies ‖G−Gr‖H∞ ≤ ε.
Unfortunately, without more knowledge of the system at hand, a bound on C in (4.14) is

hard to characterize. However, by slightly relaxing the decay condition (4.14), we are able to
derive a tail bound using system-theoretic ideas. Intuitively, if a system has long transient
behavior, then we expect the constant C in (4.14) to be large, since in order to obtain a
small approximation error one needs to capture the transient behavior. The next lemma
shows that the H∞-norm provides a sufficient characterization of this transient behavior; we
include the proof for completeness.

Lemma 4.4.1 (Goldenshluger and Zeevi [2001, Lemma 1]). Let G(z) =
∑∞

k=0 gkz
−k be a

stable SISO LTI system with stability radius ρ ∈ (0, 1). Fix any γ satisfying ρ < γ < 1.
Then for all k ≥ 1,

|gk| ≤ ‖G(γz)‖H∞γk .
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Proof. Define the function H(z) := G(z−1), which is analytic for all |z| ≤ 1/γ. It is easy to
check that k-th derivative of H(z) evaluated at zero is H(k)(0) = k!gk. Therefore,

k! |gk| =
∣∣H(k)(0)

∣∣ ≤ k!γk max
|z|≤1/γ

|H(z)| = k!γk max
|z|≥γ
|G(z)|

= k!γk max
|z|≥1
|G(γz)| = k!γk‖G(γz)‖H∞ .

Above, the first inequality is Cauchy’s estimate formula for analytic functions, and the last
equality follows from the maximum modulus principle.

We note that the technique used in Lemma 4.4.1 of considering the proxy system G(γz)
instead of G(z) directly also appears in Boczar et al. [2017] in the context of certifying
exponential rates of convergence for linear dynamical systems.

4.5 Robust Controller Design

In Section 4.3, we described how to obtain a FIR system Gfir with a probabilistic guarantee
that G = Gfir + ∆, where ∆ is an LTI system satisfying ‖∆‖H∞ ≤ ε. This description of G
naturally lends itself to many robust control synthesis methods. In this section, we describe
the application of one particular method based on H∞ loop-shaping to a particular unknown
plant.

Suppose that G is itself an FIR described with z-transform

G(z) = |w0|+
149∑

k=1

|wk| ρk−1z−k , ρ = 0.95 , (4.15)

where wk ∼ N (0, 1) are independent Gaussians. In this section, we will detail the design of
a reference tracking controller for G using probabilistic guarantees.

4.5.1 Computing Bounds

While the non-asymptotic bounds of Section 4.3 and Section 4.4 give us upper bounds on the
error of noisy FIR approximation, the constant factors in the bounds are not optimal. Hence,
strictly relying on the bounds will cause oversampling by a constant factor of (say) 10 or
more. For real systems, this is extremely undesirable– using the sharpest bound possible is
of great practical interest. Fortunately, we can do this via simple Monte–Carlo simulations,
which we detail in Section B.1 the appendix. For now, we describe the results of these
simulations.

Our first Monte–Carlo simulation establishes that G satisfies the tail decay specified in
(4.14) with C = 3.9703 and ρ = 0.95. If we truncate G with r = 75, we see that our

worst-case upper bound on ‖G−Gr‖H∞ is C ρr−1

1−ρ = 3.9703 × 0.9574

1−0.95
= 1.7840. In general,

assuming we have no other information about G other than the bounds on C and ρ, this is
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the sharpest approximation error bound possible, since for any system with real-valued, all
non-negative Fourier coefficients, the H∞-norm is simply the sum of the coefficients.

However, if we further assume we know the structure of G as in this case where we know
the form of (4.15), but not the values of wk, we can further sharper our approximation
bound. Specifically, we know that Eapprox := ‖G−Gr‖H∞ =

∑149
k=75 |wk| ρk−1, and hence we

can perform another Monte–Carlo simulation to estimate the tail probability of this random
variable. The result of our simulation is that P(Eapprox ≤ 0.46) ≥ 0.99. This is a substantial
improvement over the previous bound of Eapprox ≤ 1.7840 which only uses the information
contained in the tail decay.

We can use the same technique to sharpest the estimates from Lemma 4.3.2. We perform
our final Monte–Carlo simulation, now on the random variable Enoise := σ√

N
‖∑74

k=0 ξkz
−k‖∞,

with σ2 = 1 and ξk ∼ N (0, 1). Note that this corresponds to choosing the inputs to the
system as impulse responses, which we recall from Section 4.3.2 is optimal under `2-power
constraints. With this simulation, we obtain that P(Enoise ≤ 3.5954) ≥ 0.99.

4.5.2 Controller Design

Gfir

∆

K
y

n

−
er

Figure 4.1: Closed-loop experimental setup. The goal is to design the controller K. Gfir is
estimated from noisy output data, and ‖∆‖H∞ is bounded via Monte–Carlo simulations.

Our goal is to design a controller K in the setup described in Figure 4.1, under the
assumption that ‖∆‖H∞ ≤ Eapprox + Enoise ≤ 4.0554. This assumption comes from the
calculations in Section 4.5.1. We note that ‖∆‖H∞/‖G‖H∞ fluctuates between 10-20%, so
Gfir is a relatively coarse description of G. We use standard loop-shaping performance goals
(see e.g. Doyle et al. [1990]). Let Tr 7→e and Tn 7→e denote the transfer functions from r 7→ e
and n 7→ e, respectively. At low frequencies, we would like |Tr 7→e| to have small gain, and
at high frequencies we would like |Tr 7→e| ≤ 2. Similarly, we would like |Tn7→e| ≤ 2 at low
frequencies and |Tn7→e| small at high frequencies. Of course, we would like these goals to be
achieved, in addition to closed loop stability, for all G = Gfir + ∆.

We proceed in two steps. We first design a controller with the nominal Gfir usingH∞ loop-
shaping synthesis (mixsyn in MATLAB). We choose weights to encourage our performance
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goals on Tr 7→e and Tn 7→e to be met. Next, we check that our performance goal is met, in
addition to robust stability. To make the computation easier, we check the performance
goals separately. First, it is well known (see e.g. Doyle et al. [1990]) that the goal on Tr 7→e is
met (in addition to robust stability) if the following holds

‖|W1S|+ γ |KS|‖H∞ < 1 , (4.16)

where S = 1
1+KGfir

and γ = 4.0554. Specifically, under (4.16), the closed loop with K

in feedback with G is stable and achieves the performance guarantee |Tr 7→e(z)| ≤ 1
|W1(z)| for

every frequency z ∈ T. On the other hand, to the best of our knowledge no simple expression
for the performance goal on Tn7→e exists, so we resort to a standard structured singular value
(SSV) calculation [Packard and Doyle, 1993].

We generate our controller K via the following MATLAB commands

w_c = 0.07; % Cross-over freq

W1 = makeweight(5000, w_c, .5, 1); % Low-freq disturbance rejection

W2 = 1.5*fir_error_bound; % Robust stability

W3 = makeweight(.5, 3 * w_c, 5000, 1); % High-freq noise insensitivity

P = augw(G_fir, W1, W2, W3);

K = hinfsyn(P);

In Figure 4.2, we plot the open loop gain L = GfirK, sensitivity function S = 1/(1 + L),
and complementary sensitivity function T = 1−S. Here, we see that the cross-over frequency
ωc ≈ 0.1.

Next, in Figure 4.3, we plot the µ values for both the reference tracking objective Tr 7→e
and the noise insensitivity objective Tn7→e, and check that both curves lies below 1 for all
frequencies. Recall that this means that G in feedback with K is not only exponentially
stable, but also satisfies both performance guarantees.

Finally, in Figure 4.4, we plot the output y as a function of a noisy square wave input
u, to show the desired reference tracking behavior, on both the closed loop simulation (with
Gfir), and the actual closed loop behavior (with G). This shows that, while the model Gfir

was a coarse grained description of G with up to 20% relative error, it was faithful enough
to allow for a robust controller design.

4.5.3 Varying truncation length

We next study the effect of truncation length r on controller design. In Figure 4.5, we assume
the same setup and performance goals as the previous section, but vary the truncation length
r ∈ {10, 30, 50, 70}. We also include the result of a controller design which has full knowledge
of the true system G, which we label as Opt. We see that for r = 10, the resulting controller
unsurprisingly has undesirable overshoot behavior. However, as r increases the resulting
controller mimics the behavior of Opt quite closely. This plot shows that, at least for reference
tracking behavior, a fairly low-fidelity model suffices. For instance, across different trials,
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Figure 4.2: Loop-shaping curves from the experimental setup of Figure 4.1. L = GfirK
denotes the open-loop gain, S = 1/(1 + L) is the sensitivity function, and T = 1− S.

the relative error of Gfir for r = 30 fluctuated between 15% to 30%, but in many cases r = 30
was able to provide reasonable reference tracking behavior.

4.6 Conclusion

This chapter explored the use of a coarse-grained FIR model estimated from noisy output
data for control design. We showed that sharp bounds on the H∞ error between the true
unknown plant and the estimated FIR filter can be derived using tools from concentration of
measure, and the constant factors on these bounds can be further refined via Monte–Carlo
simulation techniques. Finally, we demonstrated empirically that one can perform controller
synthesis using only a coarse-grained approximation of the true system while meeting certain
performance goals.

There are many possible future extensions of this work. We highlight a few ideas below.

MIMO Systems. While our approach can be generalized to the MIMO case by estimating
filters for each input/output pair separately, we believe that when the MIMO transfer matrix
has special structure (e.g. low rank), it should be possible to couple the estimation procedure
to reduce the n2 factor increase in sample complexity. This is motivated by the vast literature
on compressed sensing, where sparse models embedded in a much larger ambient dimension
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Figure 4.3: The pointwise frequency µ value for both reference tracking Tr 7→e and noise insen-
sitivity Tn7→e. Robust performance is guaranteed as the curve lies below 1 at all frequencies.

can be uniquely recovered with at most a logarithmic factor more samples than the degree
of the intrinsic sparsity.

Nonlinear Systems. An extension of these techniques to nonlinear systems is another
exciting direction. One possible idea is to treat a nonlinear system’s Jacobian linearization
as the target unknown system, and fit a FIR using our techniques by exciting the nonlinear
system locally. One would expect that the controller designed on the FIR would be valid in
a neighborhood, and upon exiting the neighborhood, the process would repeat itself. The
challenge here remains to estimate online the regime for which a controller is valid.
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Figure 4.4: Reference tracking behavior of the closed loop with the model Gfir and the actual
plant G.
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Figure 4.5: Reference tracking behavior as the FIR truncation length is varied, as well as
the optimal nominal tracking.
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Chapter 5

H∞ Bounds for Gain Estimation

5.1 Introduction

Recently, many researchers have proposed algorithms for estimating the H∞-norm of a linear
time-invariant (LTI) filter from input/output data [Müller et al., 2017; Oomen et al., 2014;
Rallo et al., 2017; Rojas et al., 2012; van Heusden et al., 2007; Wahlberg et al., 2010]. A
common property of these algorithms is eschewing model parameter estimation for directly
estimating either the worst case `2-input signal [Rojas et al., 2012; Wahlberg et al., 2010]
or the maximizing frequency [Müller et al., 2017; Rallo et al., 2017]. One of the major
motivations behind these algorithms is sample efficiency: since the H∞-norm is a scalar
estimate whereas the number of model parameters can be very large and possibly infinite,
intuitively one expects that norm estimation can be performed using substantially fewer
samples compared with model estimation.

In this chapter, we study the fundamental limits of estimating the H∞-norm of a finite
impulse response (FIR) filter, and compare to known bounds for FIR model estimation. We
show that for passive algorithms which do not adapt their inputs in response to the result
of previous queries, it is no more efficient to estimate the H∞-norm than to estimate the
model. For active algorithms which do adapt their inputs, we show that compared to model
estimation, norm estimation is only at most a log r factor more efficient when the underlying
model is a length r FIR filter. Our analysis raises an interesting open question: whether or
not there exists an active sampling strategy which attains our stated lower bound.

Based on our theoretical findings, we study the empirical performance of several existing
adaptive algorithms compared to a simple (non-adaptive) estimator which first fits a model
via least-squares and then returns the norm of the model. Surprisingly, we find that the
current adaptive methods do not perform significantly better than the simple estimator.
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5.2 Related Work

Data-driven methods for estimating the H∞-norm of an LTI system fall into roughly two
major approaches: (a) estimating the worst case `2-signal via a power-iteration type algo-
rithm [Oomen et al., 2014; Rojas et al., 2012; Wahlberg et al., 2010] and (b) discretizing the
interval [0, 2π) and searching for the maximizing frequency [Müller et al., 2017; Rallo et al.,
2017].

Algorithms that rely on power iteration take advantage of a clever time-reversal procedure
introduced by Wahlberg et al. [2010], which allows one to query the adjoint system G∗ with
only input/output access to the original system G. One issue with these methods is that
the rate of convergence of the top singular value of the truncated Toeplitz matrix to the
H∞-norm of the system is typically O(1/n2) (c.f. Böttcher and Grudsky [2000]), but the
constant hidden in the O(·) notation can be quite large as pointed out in Tu et al. [2018b].
A non-asymptotic analysis of the statistical quality of the norm estimate returned by the
power iteration remains an open question; asymptotic results can be found in Rojas et al.
[2012].

The algorithms developed in Müller et al. [2017] and Rallo et al. [2017] are based on
discretizing the frequencies [0, 2π) and are rooted in ideas from the multi-armed bandit
literature. Here, each frequency can be treated as either an “arm” or an “expert”, and
an adaptive algorithm such as Thompson sampling [Müller et al., 2017] or multiplicative
weights [Rallo et al., 2017] is applied. While sharp regret analysis for bandits has been
developed by the machine learning and statistics communities [Bubeck and Cesa-Bianchi,
2012], one of the barriers to applying this analysis is a lack of a sharp theory for the level of
discretization required. In practice, the number of grid points is a parameter that must be
appropriately tuned for the problem at hand.

The problem of estimating the model parameters of a LTI system with model error
measured in H∞-norm is studied in Tu et al. [2017], and in `p-norms by Goldenshluger
[1998]. For the FIR setting, the matching upper and lower bounds of Chapter 4 will serve
as a baseline for us to compare our bounds with in the norm estimation setting. Helmicki
et al. [1991] provide lower bounds for estimating both a model in H∞-norm and its frequency
response at a particular frequency in a query setting where the noise is worst-case. In this
work we consider a less conservative setting with stochastic noise. Müller et al. Müller
et al. [2017] prove an asymptotic regret lower bound over algorithms that sample only one
frequency at every iteration. Their notion of regret is however defined with respect to the
best frequency in a fixed discrete grid and not the H∞-norm. As we discuss in Section 5.3.2,
this turns out to be a subtle but important distinction.

5.3 Problem Setup and Main Results

In this section we formulate the problem under consideration and state our main results. We
fix a filter length r and consider an unknown length r causal FIR filter H(g) :=

∑r−1
k=0 gkz

−k
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with g ∈ Cr. We study the following time-domain input/output query model for H(g): for
N rounds, we first choose an input u(t) ∈ Cr such that ‖u(t)‖2 ≤ M , and then we observe
a sample y(t) ∼ N (T (g)u(t), σ2I), where T (g) denotes the r × r upper left section of the
semi-infinite Toeplitz matrix induced by treating g as an element of `2.1 By N (µ, σ2I) for a
complex µ ∈ Cr we mean we observe (Re(µ) + ξ1) + j(Im(µ) + ξ2) where ξi ∼ N (0, σ2I) and
are independent.

After these N rounds, we are to return an estimate Ĥ ∈ R of the norm ‖H(g)‖H∞ based
on the collected data (u(1), y(1), . . . , u(N), y(N)). The expected risk of any algorithm for this

problem is measured as E
[∣∣∣Ĥ − ‖H(g)‖H∞

∣∣∣
]
, where the expectation is taken with respect

to both the randomness of the algorithm and the noise of the outputs y(t).
Our results distinguish between passive and active algorithms. A passive algorithm

is one in which the distribution of the input u(t) at time t is independent of the history
(u(1), y(1), . . . , u(t−1), y(t−1)). An active algorithm is one where the distribution of u(t) is
allowed to depend on this history.

Given this setup, our first result is a minimax lower bound for the risk attained by any
passive algorithm.

Theorem 5.3.1 (Passive lower bound). Fix a γ > 0. Let r ≥ c for a universal constant
c > 0 and N ≥ poly(r,M, 1/γ). We call a passive algorithm A admissible if the matrix
1
N

∑N
t=1 Eu(t) [T (u(t))∗T (u(t))] � γI. We have the following minimax lower bound on the risk

of any passive admissible algorithm A:

inf
A

sup
g∈Cr

E
[∣∣∣ĤA − ‖H(g)‖H∞

∣∣∣
]
≥ C ′

σ

M

√
r log r

N
. (5.1)

Here, C ′ is a universal constant. We note the form of the poly(r,M, 1/γ) can be recovered
from the proof.

The significance of Theorem 5.3.1 is due to the fact that under our query model, one

can easily produce an estimate ĝ ∈ Cr such that E[‖H(ĝ)−H(g)‖H∞ ] ≤ C ′′ σ
M

√
r log r
N

;

concretely setting u(t) = Me1 by appealing to the arguments in Chapter 4. That is, for
passive algorithms the number of samples to estimate the r model parameters is equal (up
to constants) to the number of samples needed to estimate the H∞-norm, at least for the
worst-case. The situation changes slightly when we look at active algorithms.

Theorem 5.3.2 (Active lower bound). The following minimax lower bound on the risk of
any active algorithm A holds:

inf
A

sup
g∈Cr

E
[∣∣∣ĤA − ‖H(g)‖H∞

∣∣∣
]
≥ C ′

σ

M

√
r

N
. (5.2)

1We note that our results extend naturally to the setting when T (g) is the αr×αr upper left section for
a positive integer α ≥ 1. Furthermore, one can restrict both the system coefficients g and the inputs u(t) to
be real-valued by considering the discrete cosine transform (DCT) instead of the discrete Fourier transform
(DFT) in our proofs.
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Here, C ′ is a universal constant.

We see in the active setting that the lower bound is weakened by a logarithmic factor
in r. This bound shows that for low SNR regimes when M � √

r, the gains of being
active are minimal in the worst case. On the other hand, for high SNR regimes when
M � √r, the gains are potentially quite substantial. We are unaware of any algorithm that
provably achieves the active lower bound; it is currently unclear whether or not the lower
bound is loose, or if more careful design/analysis is needed to find a better active algorithm.
However, in Section 5.3.2 we discuss special cases of FIR filters for which the lower bound
in Theorem 5.3.2 is not improvable.

We note that our proof draws heavily on techniques used to prove minimax lower bounds
for functional estimation, specifically in estimating the `∞-norm of a unknown mean vector
in the Gaussian sequence model. An excellent overview of these techniques is given in Wu
[2017, Chapter 22].

5.3.1 Hypothesis Testing and Sector Conditions

An application that is closely related to estimating theH∞-norm is testing whether or not the
H∞-norm exceeds a certain fixed threshold τ . Specifically, consider a test statistic ψ ∈ {0, 1}
that discriminates between the two alternatives H0 : ‖H(g)‖H∞ ≤ τ and H1 : ‖H(g)‖H∞ > τ .
This viewpoint is useful because it encompasses testing for more fine-grained characteristics
of the Nyquist plot H(ω) via simple transformations. For instance, given finite a < 0 < b, one
may test if H(ω) is contained within a circle in the complex plane centered at (a+ b)/2 + 0j
with radius (b−a)/2 by equivalently checking if the H∞-norm of the system H(g)−(a+b)/2
is less than (b− a)/2; this is known as the [a, b]-sector condition [Gupta and Joshi, 1994].

Due to the connection between estimation and hypothesis testing, our results also give
lower bounds on the sum of the Type-I and Type-II errors of any test ψ discriminating
between the hypothesis H0 and H1. Specifically, Ω(σ

2r log r
τ2M

) queries in the passive case (when

τ is sufficiently small) and Ω( σ2r
τ2M

) queries in the active case are necessary for any test to
have Type-I and Type-II error with less than constant probability.

5.3.2 Shortcomings of Discretization

In order to close the gap between the upper and lower bounds, one needs to explicitly deal
with the continuum of frequencies on [0, 2π); here we argue that if the maximizing frequency
is known a-priori to lie in discrete set of points, then the lower bound is sharp.

Suppose we consider a slightly different query model, where at each time t the algorithm
chooses a frequency ωt ∈ [0, 2π) and receives y(t) ∼ N (H(ωt), 1). For simplicity, let us also
assume that the H∞-norm is upper bounded by 1. Note that by slightly enlarging T (g)
to the 2r × 2r upper left triangle, we can emulate this query model by using a normalized
complex sinusoid with frequency ωt.

If the maximizing frequency for the H∞-norm of the underlying system is located on
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the grid {2πk/r}r−1
k=0 and its phase is known, this problem immediate reduces to a standard

r-arm multi-armed bandit (MAB) problem where each arm is associated with a point on the
grid. For this family of instances, the following active algorithm has expected risk upper
bounded by

√
r/N times a constant:

(a) Run a MAB algorithm that is optimal in the stochastic setting (such as MOSS [Audibert
and Bubeck, 2009]) for N/2 iterations, with each of the r arms associated to a frequency
2πk/r.

(b) Sample an index I ∈ {1, ..., r} where:

P(I = i) =
# number of times arm i was pulled

N/2
.

(c) Query ωI for N/2 times and return the sample mean.

More generally, for any grid of frequencies {ωk} such that the number of grid points is O(r),
this algorithm obtains O(

√
r/N) expected risk. Hence the lower bound of Theorem 5.3.2 is

actually sharp with respect to these instances.
Therefore, the issue that needs to be understood is whether or not the continuum of

frequencies on [0, 2π) fundamentally requires additional sample complexity compared to
a fixed discrete grid. Note that a näıve discretization argument is insufficient here. For
example, it is known (see Bhaskar et al. [2012]) that by choosing P equispaced frequencies
one obtains a discretization error bounded by O(r/P ), e.g. ‖H(g)‖H∞ − |H(ωk)| ≤ O(r/P )
for the largest ωk. This bound is too weak, however, since it requires that the number of
arms scale as O(r/ε) in order to obtain a risk bounded by ε; in terms of N , the risk would
scale O(1/N1/3).

To summarize, if one wishes to improve the active lower bound to match the rate given
by Theorem 5.3.1, one needs to consider a prior distribution over hard instances where the
support of the maximizing frequency is large (possibly infinite) compared to r. On the other
hand, if one wishes to construct an algorithm achieving the rate of Theorem 5.3.2, then one
will need to understand the function ω 7→ |H(ω)| at a much finer resolution than Lipschitz
continuity.

5.4 Proof of Main Results

The proof of Theorem 5.3.1 and Theorem 5.3.2 both rely on a reduction to Bayesian hy-
pothesis testing. While this reduction is standard in the statistics and machine learning
communities (see e.g. [Tsybakov, 2009, Chapter 2]), we briefly outline it here, as we believe
these techniques are not as widely used in the controls literature.

First, let π1, π2 be two prior distributions on Cr. Suppose that for all θ1 ∈ π1 we have
‖H(θ1)‖H∞ = 0 and for all θ2 ∈ π2 we have ‖H(θ2)‖H∞ = 2c for some c > 0. Let Pπi denote
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the joint distribution of (u(1), y(1), . . . , u(N), y(N)), which combines the prior distribution πi
with the observation model. Then Markov’s inequality implies that,

sup
θ∈Cr

E
[∣∣∣Ĥ − ‖H(θ)‖H∞

∣∣∣
]
≥ c

2
(1− dTV(Pπ1 ,Pπ2)) ,

where for two measures P,Q we define the total-variation (TV) distance as

dTV(P,Q) = sup
A
|P(A)−Q(A)| .

Hence, if one can construct two prior distributions π1, π2 with the aforementioned properties
and furthermore show that dTV(Pπ1 ,Pπ2) ≤ 1/2, then one deduces that the minimax risk
is lower bounded by c/4. This technique is known as Le Cam’s method, and will be our
high-level proof strategy.

As working directly with the TV distance is often intractable, one typically computes
upper bounds to the TV distance. We choose to work with both the KL-divergence and

the χ2-divergence. The KL-divergence is defined as dkl(P,Q) =
∫

log
(
dP
dQ

)
dP, and the

χ2-divergence is defined as dχ2(P,Q) =
∫ (

dP
dQ − 1

)2

dQ (we assume that P � Q so these

quantities are well-defined). One has the standard inequalities dTV(P,Q) ≤
√

1
2
dkl(P,Q) and

dTV(P,Q) ≤
√
dχ2(P,Q) [Tsybakov, 2009].

Omitted proofs in this section can be found in the full paper Tu et al. [2018a].

5.4.1 Proof of Passive Lower Bound (Theorem 5.3.1)

The main reason for working with the χ2-divergence is that it operates nicely with mixture
distributions, as illustrated by the following lemma.

Lemma 5.4.1 (see e.g. Lemma 22.1 of Wu [2017]). Let Θ be a parameter space and for
each θ ∈ Θ let Pθ be a measure over X indexed by θ. Fix a measure Q on X and a prior
measure π on Θ. Define the mixture measure Pπ =

∫
Pθ π(dθ). Suppose for every θ ∈ Θ,

the measures Pθ and Q are both absolutely continuous w.r.t. a fixed base measure µ on X .
Define the function G(θ1, θ2) as

G(θ1, θ2) :=

∫ dPθ1
dµ

dPθ2
dµ

dQ
dµ

µ(dx) .

Then, dχ2(Pπ,Q) = Eθ1,θ2∼π⊗2 [G(θ1, θ2)]− 1.

We now specialize this lemma to our setting. Here, our distributions Pθ are over the data,
i.e. (u(1), y(1), . . . , u(N), y(N)), for a fixed system parameter θ ∈ Cr. The joint distribution Pθ
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has the density (assuming that u(t) has the density γt(u
(t)))

pθ(u
(1), y(1), . . . , u(N), y(N)) =

N∏

t=1

γt(u
(t))φ(y(t);T (θ)u(t)) ,

where φ(·;µ) denotes the PDF of the multivariate Gaussian N (µ, σ2I). Note that this
factorization with γt(·) independent of θ is only possible under the passive assumption. A
straightforward calculation gives the value of G under this density.

Lemma 5.4.2. Supposing that u(t) ∼ γt(·), we have that

G(θ1, θ2) = Eu(t)

[
exp

(
1

σ2

N∑

t=1

Re(〈T (θ1)u(t), T (θ2)u(t)〉)
)]

.

We now construct two prior distributions on θ. The first prior will be the system with
all coefficients zeros, i.e. π1 = {0}. The second prior will be more involved. To construct
it, we let Σ := 1

N

∑N
t=1 Eu(t)∼γt [T (u(t))∗T (u(t))]. By the admissibility assumption on the

algorithm A, Σ is invertible. Let I ⊆ {1, ..., r} denote an index set to be specified. Let
F ∈ Cr×r denote the unnormalized discrete Fourier transform (DFT) matrix (i.e. FF ∗ = rI
and F−1 = 1

r
F ∗). We define our prior distribution π2 as, for some τ > 0 to be chosen,

π2 = Unif({τΣ−1/2F−1ei}i∈I). We choose I as according to the following proposition.

Proposition 5.4.1. Let u1, . . . , uN ∈ Cr be independently drawn from N distributions such
that ‖u(t)‖2 ≤ M almost surely for all t = 1, . . . , N . Let Σ = 1

N

∑N
t=1 Eu(t) [T (u(t))∗T (u(t))]

and suppose that Σ is invertible. There exists an index set I ⊆ {1, ..., r} such that |I| ≥ r/2
and for all i ∈ I,

‖FΣ−1/2F−1ei‖∞ ≥
1

2M
.

Now defining

∆ :=
N∑

t=1

(T (u(t))∗T (u(t))− Eu(t) [T (u(t))∗T (u(t))]) ,

we observe that for indices j1, j2 ∈ I,

N∑

t=1

〈T (Σ−1/2F−1ej1)u(t), T (Σ−1/2F−1ej2)u(t)〉 (a)
=

N∑

t=1

〈T (u(t))Σ−1/2F−1ej1 , T (u(t))Σ−1/2F−1ej2〉

=
N∑

t=1

e>j1F
−∗Σ−1/2T (u(t))∗T (u(t))Σ−1/2F−1ej2

= e>j1F
−∗Σ−1/2(NΣ + ∆)Σ−1/2F−1ej2

= Ne>j1F
−∗F−1ej2 + e∗j1F

−∗∆̃F−1ej2

=
N

r
1j1=j2 + e>j1F

−∗∆̃F−1ej2 ,
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where ∆̃ := Σ−1/2∆Σ−1/2. In (a) we used the fact that T (u)v = T (v)u, as convolution is
commutative. Combining this calculation with Lemma 5.4.2, we see that

Eθi [G(θ1, θ2)] = Eji,u(t)

[
exp

(
τ 2

σ2

N

r
1j1=j2

)
× exp

(
τ 2

σ2
Re
(
e>j1F

−∗∆̃F−1ej2

))]

(a)

≤
√
Eji,u(t)

[
exp

(
2τ 2N

σ2r
1j1=j2

)]
×
√

Eji,u(t)

[
exp

(
2τ 2

σ2
Re(e>j1F

−∗∆̃F−1ej2)

)]

(b)

≤
√

exp

(
2Nτ 2

σ2r

)
2

r
+ 1− 2

r
×
√
Eji,u(t)

[
exp

(
2τ 2

σ2
Re(e>j1F

−∗∆̃F−1ej2)

)]
.

where in (a) we used Cauchy-Schwarz and in (b) we used the fact that |I| ≥ r/2. Now
condition on j1, j2. For a 1 ≤ t ≤ N , define the random variable ψt as:

ψt := Re(e>j1F
−∗Σ−1/2T (u(t))∗T (u(t))Σ−1/2F−1ej2)

− Re(e>j1F
−∗Σ−1/2Eu(t) [T (u(t))∗T (u(t))]Σ−1/2F−1ej2) .

We have that Eu(t) [ψt] = 0 by construction. Furthermore, note that ‖F−1ej‖2 = 1/
√
r for

j = 1, ..., r and also that that ‖T (u)‖ ≤ ‖H(u)‖H∞ ≤ ‖u‖1 ≤
√
r‖u‖2 for any vector u ∈ Cr.

These facts, along with the assumption that Σ � γI, show that |ψt| ≤ 2M2/γ almost surely.
Hence,

∑N
t=1 ψt is a zero-mean sub-Gaussian random variable with sub-Gaussian parame-

ter 4M4N/γ2 (see Vershynin [2018, Chapter 2] for background exposition on sub-Gaussian
random variables). Therefore, we know that for any t > 0, its moment generating func-

tion (MGF) is bounded as Eu(t)|ji

[
exp

(
t
∑N

t=1 ψt

)]
≤ exp(2t2M4N/γ2). Hence by iterating

expectations and setting t = 2τ 2/σ2, we have:

Eji,u(t)

[
exp

(
2τ 2

σ2
Re(e>j1F

−∗Σ−1/2∆Σ−1/2F−1ej2)

)]
≤ exp(8τ 4M4N/(σ4γ2)) .

Therefore, for any choice of τ such that τ 4 ≤ (log(1.1)/8)σ4γ2/(M4N), we have that:

Eθi,u(t) [G(θ1, θ2)] ≤
√

1.1

√
exp

(
2Nτ 2

σ2r

)
2

r
+ 1− 2

r
.

Hence if r ≥ 5 and if we set τ 2 = σ2r log(0.211r)
2N

, we have:

dχ2(Pπ,P0) = Eθi,u(t) [G(θ1, θ2)]− 1 ≤ 1/4 ,

assuming the previous condition on τ is satisfied. This then implies that dTV(Pπ,P0) ≤ 1/2.

We now choose N ≥ (2/ log(1.1))r2 log2(0.211r)M4/γ2 = Ω̃(r2M4/γ2) so that our condition
on τ holds.
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To conclude, we need to show a minimum separation between the H∞-norm on π1 vs.
π2. Immediately, ‖H(θ)‖H∞ = 0 on π1. On the other hand, for i ∈ I,

‖H(τΣ−1/2F−1ei)‖H∞
(a)

≥ τ‖FΣ−1/2F−1ei‖∞
(b)

≥ τ

2M
,

where inequality (a) comes from ‖H(g)‖H∞ ≥ ‖Fg‖∞ for any g and inequality (b) comes
from Proposition 5.4.1. Hence we have constructed two prior distributions with a separation
of c = Ω(τ/M) but a total variation distance less than 1/2. Theorem 5.3.1 now follows.

5.4.2 Proof of Active Lower Bound (Theorem 5.3.2)

For this setting we let π1 = {0} and π2 = {τF−1ei}ri=1. The proof proceeds by bounding
dkl(Pπ1 ,Pπ2). To do this, we first bound dkl(P0,Pi), where P0 is the joint distribution induced
by the parameter g = 0 and Pi is the joint distribution induced by the parameter g = τF−1ei.
Proceeding as in the proof of Theorem 1.3 in Tu et al. [2017],

dkl(P0,Pi) = EP0

[
log

N∏

t=1

γt(u
(t)|{u(k), y(k)}t−1

k=1)p0(y(t)|u(t))

γt(u(t)|{u(k), y(k)}t−1
k=1)pi(y(t)|u(t))

]

=
N∑

t=1

Eu(t)∼P0
[dkl(N (0, σ2I),N (T (τF−1ei)u

(t), σ2I))]

=
τ 2

2σ2

N∑

t=1

Eu(t)∼P0
[‖T (F−1ei)u

(t)‖2
2] .

A straightforward calculation shows that:

r∑

i=1

T (F−1ei)
∗T (F−1ei) = diag

(
1,
r − 1

r
,
r − 2

r
, ...,

1

r

)
,

and hence the operator norm of this matrix is bounded by one. Therefore, by convexity of
dkl,

dkl(Pπ1 ,Pπ2) ≤ 1

r

r∑

i=1

dkl(P0,Pi) =
τ 2

2σ2r

N∑

t=1

Eu(t)∼P0

[
(u(t))∗

(
r∑

i=1

T (F−1ei)
∗T (F−1ei)

)
u(t)

]

≤ τ 2NM2

2σ2r

∥∥∥∥∥
r∑

i=1

T (F−1ei)
∗T (F−1ei)

∥∥∥∥∥ ≤
τ 2NM2

2σ2r
.

Hence if we set τ = σ
M

√
r
N

, we have by Pinsker’s inequality that dTV(Pπ1 ,Pπ2) ≤ 1/2.
Finally, we note that ‖H(τF−1ei)‖H∞ ≥ τ and conclude.
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5.5 Experiments

We conduct experiments comparing a simple non-adaptive estimator based on least-squares
(which we call the plugin estimator) to three active algorithms: two similar algorithms
essentially based on the power method [Rojas et al., 2012; Wahlberg et al., 2010] and one
based on weighted Thompson Sampling (WTS) [Müller et al., 2017]. Pseudocode for the
plugin estimator is shown in Algorithm 1. For completeness, in Appendix C we describe
the power method based algorithms in Algorithms 2 and 3, and the WTS algorithm in
Algorithm 4. For brevity, we assume input normalization of ‖u(t)‖2 = 1; for different SNR
the algorithms are modified accordingly.

Algorithm 1: Plugin Estimator

Input: Normalized {u(t)}.
for t = 1 to N do

Perform the experiment y(t) = Gu(t) + η(t).
end

Form Ĝ from a least-squares fit of {y(t)} and {u(t)}.
return Ĥ = ‖Ĝ‖H∞ .

We compare the performance of these four algorithms on a suite of random plants and
random draws of noise. We note, however, that it is difficult to place these algorithms on
even footing when making a comparison, especially in the presence of output noise. Reasons
for this are:

• The parameters deemed “fixed” may be beneficial (or adversarial) to one algorithm or
another.

• The amount of “side information” (e.g. noise covariance) an algorithm expects to
receive may not be comparable across algorithms.

For an example of the first point, a large experiment budget is beneficial to the plugin and
WTS estimators as they generally obtain better estimates with each new experiment while
power method estimators hit a “noise floor” and stop improving.

The plants under test are of the form G(z) =
∑r−1

k=0 z
−kρkηk where ρ ∈ (0, 1] and

ηk
i.i.d∼ Unif[−1, 1]. For each suite of tests, we hold all other parameters fixed as shown

in Table 5.1. To compare the aggregate performance across suites of random plants, we use
performance profiles, a tool in the optimization community popularized by Dolan and Moré
[2002]. Given a suite of methods {mi} and a metric d(mi,mj) for per-instance performance,
performance profiles show the percentage of instances where a particular method m is within
τ of the best method. In our case, the metric will be the difference in relative error between
the method’s estimate and the true H∞-norm of the plant under consideration. As an ex-
ample, Plugin(.05) would be the percentage of instances where the relative error of the
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Table 5.1: Experiment Parameters

Type Value

SNR ‖u‖2
σ

20 (high), 10 (low)

Experiment budget N 200

Plant length r 10

Input/output data length r′ 50

Plant decay ρ 0.75 (decay), 1.0 (no decay)

Number of random plants 100

Noise instances per plant 10

plugin estimator is within 5 percentage points of the smallest relative error on that instance.
Performance profiles are meant to show broad differences in algorithm performance and are
robust to per-instance variation in the data, when interpreted correctly.

With this in mind, the performance profiles comparing the four algorithms2 are shown in
Figures 5.1 and 5.2. We see that for the plants with decaying impulse response coefficients,
the plugin and WTS estimators are comparable. The latter estimator performs relatively
worse in the experiments corresponding to no coefficient decay. As alluded to previously,
this can most likely be attributed to our particular experimental setup: the WTS algorithm
effectively grids the frequency response curve of the plant, and this set of plants allows for
more relative variation in the curve than the onces with decaying coefficients.

5.6 Conclusion

In this chapter, we provide lower bounds for H∞-norm estimation for both passive and active
algorithms. Our analysis shows that in the passive case model identification and H∞-norm
estimation have the same worst-case sample complexity. In the active setting, the lower
bound improves by a factor that is logarithmic in the filter length. Experimentally, we see
that the performance of a simple pluginH∞-norm estimator is competitive with the proposed
active algorithms for norm estimation in the literature.

Our work raises an interesting question as to whether there exists an active algorithm
attaining the lower bound, or if instead the lower bound can be sharpened. In Section 5.3.2,
we briefly discussed the technical hurdles that need to be overcome for both cases. Beyond
resolving the gap between the lower bounds, an interesting question is how does the sample
complexity of both model and norm estimation degrade when the filter length is unknown.

2Code producing these plots can be found at https://github.com/rjboczar/hinf-lower-bounds-ACC.
The experiments were carried out using the PyWren framework [Jonas et al., 2017].
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Figure 5.1: Performance profiles for the plugin, power method A, power method B, and
weighted Thompson Sampling estimators (with coefficient decay).
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Figure 5.2: Performance profiles for the plugin, power method A, power method B, and
weighted Thompson Sampling estimators (without coefficient decay).
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Chapter 6

Finite-Data Performance Guarantees
for the Output-Feedback Control of
an Unknown System

6.1 Introduction

There have been many recent results that apply state-of-the-art machine learning techniques
to the control of systems with continuous action spaces [Bansal et al., 2017; Dean et al.,
2017; Duan et al., 2016; Fazel et al., 2018; Levine et al., 2016; Marco et al., 2017]. As the
systems we control become ever more complex, be it in their dynamics, their scale, or their
interaction with the environment, moving to a data-driven approach will be inevitable: in
these settings, first-principle modeling becomes either impossible or intractable. However,
as promising and exciting as recent empirical demonstrations of these techniques have been,
they have, for the most part, lacked the rigorous stability, safety and robustness guarantees
that the controls community has always prided itself in providing. Indeed, such guarantees
are not only desirable, but necessary when such techniques are being proposed for the control
of safety critical systems or infrastructures.

This chapter can be seen as a step towards providing such guarantees, albeit in a sim-
plified setting, wherein we establish rigorous baselines of robustness and performance when
controlling a single-input-single-output (SISO) system with an unknown transfer function.
To do so, we combine contemporary approaches to system identification and robust control
into what we term the “coarse-ID control” pipeline. In particular, we leverage the results
developed in Chapter 4 to provide finite-sample guarantees on optimally (in a certain sense)
estimating a stable single-input single-output linear time-invariant (SISO LTI) system, us-
ing input-output data pairs.1 Such finite-data guarantees are not only in stark contrast to

1We note that there have been recent results in the system identification literature (for example Campi
and Weyer [2002] and Shah et al. [2012]) that also seek to provide non-asymptotic guarantees of model
estimation quality.
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classical system identification results, which typically only provide asymptotic guarantees
of model fidelity (see Ljung [1999] for an overview), but also necessary for the principled
integration of these techniques with robust control, as they allow us to quantify the amount
of uncertainty that our controller must contend with. We then formulate a robust control
problem using the recently developed system-level synthesis (SLS) procedure [Wang et al.,
2019], which exploits a novel parameterization of stabilizing controllers for LTI systems that
allows us to quantify performance degradation in terms of the amount of uncertainty affect-
ing the system [Matni et al., 2017]. Again this is in contrast to classical methods from robust
control that are only able to provide robust stability guarantees for a prescribed amount of
uncertainty [Zhou et al., 1995].

Main contribution A feature of “coarse-ID control,” as described above, is that we can
analyze the end-to-end performance of this pipeline in a non-asymptotic setting. Specifically,
we show that the difference in cost between the optimal cost for the true system (an FIR SISO
system of length r) and the realized cost induced by instead solving a robust SLS procedure

for the approximate system is O

(√
σ2r
m

)
. Here, we assume that the approximate system

was estimated using the “optimal” coarse-grained system identification procedure described
in Chapter 4, with σ2 the measurement noise variance and m the number of experiments
conducted in order to construct an estimate of the system. Finally, this chapter should be
viewed as a step towards generalizing the results in Dean et al. [2017], which provides finite-
data end-to-end performance guarantees for the classical LQR optimal control problem, to
the output-feedback setting.

In Section 3.2 we fix notation and quickly outline the structure used by common robust
control problems. Section 6.3 then gives an overview of the system-level synthesis framework
and how it can be used to solve these problems. Finally, in Section 6.4 we combine this
framework with recent work on coarse-grained identification to provide quantitative bounds
on how the performance of a robust controller synthesized using the SLS framework degrades
when the plant to be controlled is only approximately identified. We conclude in Section 6.5
with computational examples.

6.2 Preliminaries

Notation Recall that we use boldface to denote frequency domain signals and transfer
functions. Unless otherwise noted, in this chapter ‖ · ‖ represents the H∞-norm (the induced
`2 → `2 norm) for elements inRH∞ (this reduces to the spectral norm for constant matrices).

6.2.1 The standard robust control problem

We first introduce a standard form for generic robust and optimal control problems, and then
show how simple disturbance attenuation and reference tracking problems can be cast into
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this standard form. We work with discrete-time LTI systems, but unless stated otherwise,
all results extend naturally to the continuous-time setting. A system in standard form can
be described by the following equations:

z = P11w + P12u

y = P21w + P22u (6.1)

u = Ky,

where z is the regulated output (e.g., deviations of the system state from a desired set-point),
y is the measured output available to the controller K to compute the control action u = Ky,
and w is the exogenous disturbance. We further assume that the full plant P admits a joint
realization,2 i.e.

P =

[
P11 P12

P21 P22

]
=




A B1 B2

C1

C2

D11 D12

D21 0


 (6.2)

where Pij = Ci(zI − A)−1Bj +Dij.
The standard optimal control problem of minimizing the gain from exogenous disturbance

w to regulated output z, subject to internal stability of the closed loop system shown in
Figure 6.1, can then be posed as

minimize
K

‖P11 + P12K(I −P22K)−1P21‖ (6.3)

subject to K(I −P22K)−1 ∈ RH∞.

Disturbance rejection Consider the feedback system shown in Figure 6.2, wherein a
controller K is in feedback with a SISO plant G, with input disturbance d and measurement
noise n. We can then define the disturbances and outputs as

w =

[
d
n

]

z =

[
v
ρu

]

y = v + n ,

2We assume throughout that P22 is strictly proper—it follows that K(I−P22K)−1 ∈ RH∞ is a necessary
and sufficient condition for internal stability of the closed loop system shown in Figure 6.1 [Zhou et al., 1995].
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where x, u, w, y, z̄ are the state vector, control action, external
disturbance, measurement, and regulated output, respectively.
Equation (1) can be written in state space form as

P =

2
4

A B1 B2

C1 D11 D12

C2 D21 D22

3
5 =


P11 P12

P21 P22

�

where Pij = Ci(zI � A)�1Bj + Dij . We refer to P as the
open loop plant model.

Consider a dynamic output feedback control law u = Ky.
The controller K is assumed to have the state space realization

⇠[t + 1] = Ak⇠[t] + Bky[t] (2a)
u[t] = Ck⇠[t] + Dky[t], (2b)

where ⇠ is the internal state of the controller. We have
K = Ck(zI � Ak)�1Bk + Dk. A schematic diagram of the
interconnection of the plant P and the controller K is shown
in Figure 1.

P11 P12

P21 P22

K

y u

wz̄

Fig. 1. Interconnection of the plant P and controller K.

The following assumptions are made throughout the paper.

Assumption 1: The interconnection in Figure 1 is well-
posed – the matrix (I �D22Dk) is invertible.

Assumption 2: Both the plant and the controller realizations
are stabilizable and detectable; i.e., (A, B2) and (Ak, Bk) are
stabilizable, and (A, C2) and (Ak, Ck) are detectable.

B. Structured Controller Synthesis, Youla, and QI

We follow the paradigm adopted in [11], [21]–[28], and
focus on information asymmetry introduced by delays in
the communication network – this is a reasonable modeling
assumption when one has dedicated physical communication
channels (e.g., fiber optic channels), but may not be valid
under wireless settings. In the references cited above, locally
acquired measurements are exchanged between sub-controllers
subject to delays imposed by the communication network,2

which manifest as subspace constraints on the controller itself.
We consider the following optimal structured controller

synthesis task, as defined in [11], [20], [30], [31]:

minimize
K

kP11 + P12K(I �P22K)�1P21k
subject to K internally stabilizes P

K 2 C,

(3)

2Note that this delay may range from 0, modeling instantaneous com-
munication between sub-controllers, to infinite, modeling no communication
between sub-controllers.

for C a subspace. This subspace can enforce, for instance, the
information sharing constraints imposed on the controller K
by the underlying communication network, as described above.

A synthesis of the main results of these papers can be
expressed as follows: if the subspace C is quadratically in-
variant with respect to P22 [11], then the set of all stabilizing
controllers lying in subspace C can be parameterized by those
stable transfer matrices Q 2 RH1 satisfying M(Q) 2 C, for
M an invertible affine map defined in terms of an arbitrary
doubly co-prime factorization of the plant P (we defer a
more detailed review of this material to Appendix A). Further,
these conditions can be viewed as tight, in the sense that
quadratic invariance is also a necessary condition [20], [30]
for a subspace constraint C on the controller K to be enforced
on the Youla parameter Q in a convex manner.

This allows the optimal control problem (3) to be recast as
the following convex model matching problem:

minimize
Q

kT11 + T12QT21k
subject to Q 2 RH1

M(Q) 2 C,

(4)

where the transfer matrices Tij can be expressed in terms of
the original plant Pij and the doubly co-prime factorization
used to construct the map M (c.f., Appendix A).

C. Beyond QI

We now present a simple example showing how the above
framework, built around the Youla parameterization, fails to
capture an “obvious” structured controller. We return to this
example at the end of this section to show that our system
level approach naturally recovers said obvious controller.

Example 1: Consider the optimal control problem:

minimize
u

limT!1 1
T

PT
t=0 Ekx[t]k22

subject to x[t + 1] = Ax[t] + u[t] + w[t],
(5)

with disturbance w[t]
i.i.d⇠ N (0, I). We assume full state-

feedback, i.e., the control action at time t can be expressed
as u[t] = f(x[0 : t]) for some function f . An optimal control
policy u? for this LQR problem is easily seen to be given by
u?[t] = �Ax[t].

Further suppose that the state matrix A is sparse and let its
support define the adjacency matrix of a graph G for which we
identify the ith node with the corresponding state/control pair
(xi, ui). In this case, we have that the optimal control policy
u? can be implemented in a localized manner. In particular,
in order to implement the state feedback policy for the ith
actuator ui, only those states xj for which Aij 6= 0 need to be
collected – thus only those states corresponding to immediate
neighbors of node i in the graph G, i.e., only local states,
need to be collected to compute the corresponding control
action, leading to a localized implementation. As we discuss
in more detail in Section IV-H and our companion paper [32],
the idea of locality is essential to allowing controller synthesis
and implementation to scale to arbitrarily large systems, and
hence such a structured controller is desirable.

Now suppose that we naively attempt to solve optimal
control problem (5) by converting it to its equivalent H2

Figure 6.1: The standard optimal control problem (6.3) for the plant P as defined in equa-
tions (6.1) and (6.2).

respectively, where ρ > 0. Furthermore, let the plant G have a state-space realization
(A,B,C). We then have that

z =

[
G 0
0 0

]
w +

[
G
ρ

]
u

:= P11w + P12u

y =
[
G 1

]
w + Gu

:= P21w + P22u,

from which it follows that the generalized plant P admits the joint realization

P =




A
[
B 0

]
B[

C
0

]

C

[
0 0
0 0

] [
0
ρ

]

[
0 1

]
0


 .

Reference tracking Now, consider the feedback system shown in Figure 6.3, wherein a
controller K is in feedback with a SISO plant G, with input disturbance d and reference
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G

K

v

n

u

d

Figure 6.2: The disturbance rejection problem for a SISO plant G with input disturbance d
and measurement noise n.

signal r. We can then define the disturbances and outputs as

w =

[
d
r

]

z =

[
e
ρu

]

y = e ,

respectively, where ρ > 0. Furthermore, let the plant G have a state-space realization
(A,B,C). We then have that

z =

[
G −1
0 0

]
w +

[
G
ρ

]
u

:= P11w + P12u

y =
[
G −1

]
w + Gu

:= P21w + P22u ,

from which it follows that the full plant P admits the joint realization

P =




A
[
B 0

]
B[

C
0

]

C

[
0 −1
0 0

] [
0
ρ

]

[
0 −1

]
0


 .

Specialization to FIR plant G Suppose that G is strictly proper and has a finite impulse
response (FIR) of order r, i.e., that G =

∑r−1
t=1 gtz

−t for a collection of real scalars {gt}r−1
t=1 .

Defining g = [g1, g2, . . . , gr−1]>, the plant G admits the state-space realization (Z, e1, g
>)

where Z is the right-shift operator (i.e., a matrix with ones one the sub-diagonal and zeros
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G

K

v

u

d

�r

e

Figure 6.3: The reference tracking problem for a SISO plant G with disturbance d and
reference r.

elsewhere). Given the examples presented thus far, going forward we assume that

C1 =
[
g 0

]>
, C2 = g>, (6.4)

as well as the standard assumption that D>12C1 = 0. Additionally, given that we are con-
sidering SISO systems, we can without loss of generality (by suitably rescaling B2) assume
that

D12 =
[
0 1

]>
. (6.5)

6.2.2 Coarse-grained identification

As our aim is to provide end-to-end guarantees for robust control problems, we must first have
a scheme to acquire an approximate plant model Ĝ. Recall our coarse-grained identification
setup3 from Section 4.3:

(i) carefully choose a series of m inputs {u(i)}, where u(i) ∈ U , and collect noisy outputs

{y(i)} where y(i) = Gu(i) + ξ(i) with ξ(i) i.i.d.∼ N (0, σ2I)

(ii) form a least-squares estimate Ĝ of the impulse response of G using {u(i), y(i)}.

We refer to each such pair (u(i),y(i)) as an experiment.
However, we need to make slight modifications to the results in Chapter 4. We will need

`2 bounds on the impulse response error, as these are more natural for our problem, and the
bounds in Chapter 4 are in term of the H∞-norm. However, while they can conservatively
be plugged in verbatim (as ‖g‖2 ≤ ‖G‖H∞), we will instead modify their proofs slightly to
fit our application.

3We use boldface notation for signals to reinforce the frequency-domain aspects in the sequel.
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6.3 System-Level Synthesis

The System-Level Synthesis (SLS) framework, proposed by Wang et al. [2019], provides a
parameterization of stabilizing controllers that achieve specified responses between distur-
bances and outputs. We briefly review here the SLS framework, and later show in Section
6.4.1 how it can be modified to solve a robust optimal control problem subject to bounded
uncertainty on the FIR coefficients g.

For an LTI system with dynamics described by (6.2), we define a system response
{R,M,N,L} to be the maps satisfying

[
x
u

]
=

[
R N
M L

] [
δx
δy

]
. (6.6)

where δx := B1w is the process noise, and δy := D21w is the measurement noise.
We call a system response Θ = {R,M,N,L} stable and achievable with respect to a plant

P if there exists an internally stabilizing controller K such that the control rule u = Ky
leads to closed loop behavior consistent with (6.6). It was shown in [Wang et al., 2019] that
the parameterization of all stable and achievable system responses {R,M,N,L} is defined
by the following affine space:

[
zI − A −B2

] [R N
M L

]
=
[
I 0

]
(6.7a)

[
R N
M L

] [
zI − A
−C2

]
=

[
I
0

]
(6.7b)

R,M,N ∈ 1

z
RH∞, L ∈ RH∞. (6.7c)

We call equations (6.7a) - (6.7c) the SLS constraints. The parameterization of all internally
stabilizing controllers is given by the following theorem.

Theorem 6.3.1 ([Wang et al., 2019, Thm. 2]). Suppose that a system response {R,M,N,L}
satisfies the SLS constraints (6.7a) - (6.7c). Then, K = L−MR−1N is an internally stabiliz-
ing controller for the plant (6.2) that yields the desired system response (6.6). Furthermore,
the solutions of (6.7a) - (6.7c) with the implementation K = L−MR−1N parameterize all
internally stabilizing controllers for the plant (6.2).

Using this parameterization, we can recast the standard optimal control problem (6.3)
as the SLS problem

minimize
{R,M,N,L}

J(G,Θ) :=

∥∥∥∥
[
C1 D12

] [R N
M L

] [
B1

D21

]
+D11

∥∥∥∥
subject to (6.7a)− (6.7c) .

(6.8)

In the FIR case, we use the abbreviated notation J(g,Θ) for the case where G is the plant
(Z, e1, g

>).
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Remark 6. Although we focus on the H∞ optimal control problem posed in equation (6.8),
the results that follow carry over naturally to H2 (LQG) and L1 optimal control problems as
well.

6.4 Sample Complexity Bounds

We now provide finite-data performance guarantees for a controller synthesized using the
system identification and robust synthesis procedures described in the previous sections.
Prior to stating our main results, we recall the problem set up and Coarse-ID Control
pipeline.

We consider the identification and control of the system (Z, e1, g
>), which is assumed to

be FIR of order r. We begin with the simplified setting that the order r of the true system is
known, and we use the Coarse-grained identification procedure described in Section 6.2.2 to
identify an approximate system (Z, e1, g̃

>), also of order r, using a series of m experiments.
We then use this approximate system (Z, e1, g̃

>), as well as high-probability bounds on the
estimation error ‖g− g̃‖2, in a robust SLS problem (see (6.13) in Section 6.4.1) to compute a
controller with provable suboptimality guarantees, as formalized in the following theorem.4

Theorem 6.4.1. Let Θ0 be the optimal solution of the SLS problem (6.8) for the plant
(Z, e1, g

>), and let g̃ be an estimate of g obtained using coarse-grained identification (σ2-
variance output noise only) with m experiments, where ‖u(i)‖p ≤ 1 ∀i. Let (Θ̃∗, α∗) be the
optimal solution to the robust SLS problem (6.13) for (Z, e1, g̃

>), and let Θ̂∗ be the response

achieved on the true system g by the synthesized controller K̃∗ = L̃∗ − M̃∗R̃−1
∗ Ñ∗. Then, if

m & σ2r‖N0‖2 log(η−1)
1
2 , with probability at least 1− η, the controller K̃∗ stabilizes the true

system (Z, e1, g
>) and has a suboptimality gap bounded by

J(g, Θ̂∗)−J(g,Θ0)

≤ 8

√
log 2

σ2r2/max(p,2)

m

(
1 +

√
2 log η−1

)∥∥∥∥
[
1 + g>N0

L0

]∥∥∥∥ ‖R0B1 + N0D21‖ .

Corollary 6.4.1. Assume that we are in the setting of Theorem 6.4.1, and further let there
be process noise with variance σ2

w that enters the system via the same channel as the control
input (i.e., B1 = B2) and measurement noise with variance σ2

ξ . Then, Theorem 6.4.1 holds
with σ2 ← σ2

w‖G‖2 + σ2
ξ .

We can further generalize these results to the setting where the order r of the underlying
system is not known, and that the true system is approximated by a length-r̃ FIR filter with
coefficients g̃ where r̃ < r. In this case, applying the triangle equality

‖δ‖2 ≤ ‖g0:r̃−1 − g̃‖2 + ‖gr̃:r−1‖2

4Here, & hides universal constants; see Lemma 6.4.3 for an explicit characterization.
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gives a similar sample complexity bound, albeit one where the cost difference does not tend
to zero as the number of experiments m tends to infinity.

Corollary 6.4.2. Assume that we are in the setting of Theorem 6.4.1, except let g̃ be a
length-r̃ (where r̃ < r) FIR estimate of g obtained using the prescribed coarse-grained iden-
tification. Furthermore, assume that ‖gr̃−1:r−1‖2 < (4N0)−1. Then, if

m & σ2r

( ‖N0‖
1− 4‖N0‖‖gr̃−1:r−1‖2

)2√
log(η−1) ,

with probability at least 1− η the controller K̃∗ = L̃∗ − M̃∗R̃−1
∗ Ñ∗ stabilizes the true system

(Z, e1, g
>) and has a suboptimal cost bounded by

J(g, Θ̂∗)−J(g,Θ0)

≤
(

8

√
log 2

σ2r2/max(p,2)

m

(
1 +

√
2 log η−1

)∥∥∥∥
[
1 + g>N0

L0

]∥∥∥∥+ 4‖gr̃−1:r−1‖2

)

× ‖R0B1 + N0D21‖ .

To prove the above results, we first derive a robust variant of the SLS framework presented
in Section 6.3, and then show how it can be used to pose a robust synthesis problem that ad-
mits suboptimality guarantees. In particular, these guarantees characterize the degradation
in performance of the synthesized controller as a function of the size of the uncertainty on
the transfer function coefficients g. We then combine this characterization of performance
degradation with high-probability bounds on the estimation error produced by the coarse-
grained identification procedure to provide an end-to-end analysis of the Coarse-ID control
procedure.

6.4.1 Robust SLS

As we only have access to approximately identified plants, we need a robust variant of
Theorem 6.3.1. First, we introduce a robust version of (6.7b),

[
R̃ Ñ

M̃ L̃

][
zI − A
−C2

]
=

[
I + ∆1

∆2

]
. (6.9)

We call equations (6.7a), (6.9), and (6.7c) the robust SLS constraints. We now have the
ingredients needed to connect the main and robust SLS constraints. The proof is mostly
algebraic and is thus deferred to the Appendix.
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Lemma 6.4.1 (Robust Equivalence). Consider system responses Θ̃ = {R̃, M̃, Ñ, L̃} and

Θ̂ = {R̂, M̂, N̂, L̂}, where the latter is given by

R̂ = (I + ∆1)−1R̃ (6.10)

M̂ = M̃−∆2(I + ∆1)−1R̃

N̂ = (I + ∆1)−1Ñ

L̂ = L̃−∆2(I + ∆1)−1Ñ ,

where by assumption (I + ∆1)−1 exists and is in RH∞. Let G = (A,B,C,D) be a given
plant, and consider the following statements.

(i) Θ̃ satisfies the robust SLS constraints for G.

(ii) Θ̂ satisfies the SLS constraints for G.

Under the assumptions, (i) =⇒ (ii). Furthermore, let G′ = (A,B,C ′, D), and let

∆1 = − Ñ(C − C ′)
∆2 = − L̃(C − C ′) .

Then, (i) is equivalent to a third statement (iii): Θ̃ satisfies the SLS constraints for G′.

A chain of corollaries follow from Lemma 6.4.1 that will be useful in quantifying the
performance achieved on the true system of a controller designed using an approximate
system model. Unless otherwise noted, let Θ̃, Θ̂ be defined as in Lemma 6.4.1.

Corollary 6.4.3. Suppose that Θ̃ satisfies the robust SLS constraints for the system (6.2).

Then, the controller K̃ = L̃−M̃R̃−1Ñ stabilizes the system (6.2) and achieves the closed-loop
system response Θ̂ if and only if (I + ∆1)−1 ∈ RH∞.

Proof. First note that the robust SLS constraints imply that ∆2 ∈ RH∞. Next, assume
(I + ∆1)−1 ∈ RH∞. By Lemma 6.4.1, Θ̂ satisfies the SLS constraints for (6.2). Thus, by

Theorem 6.3.1, K̂ = L̂ − M̂R̂−1N̂ is stabilizing and achieves the closed-loop response Θ̂.
Moreover, K̂ is precisely equal to K̃.

Conversely, assume (I + ∆1)−1 exists but is not in RH∞ (if it does not exist the system

response (6.10) is obviously not well-defined). It then follows that R̂ = (I + ∆1)−1R̃ is not

in RH∞ as R̃ is square and invertible.

This immediately gives us a sufficient condition for robustness of the SLS procedure.

Corollary 6.4.4. Suppose that Θ̃ satisfies the robust SLS constraints for the system (6.2).

A sufficient condition for the controller K̃ = L̃− M̃R̃−1Ñ to stabilize the system (6.2) and
achieve closed-loop response Θ̂ is that ‖∆1‖ < 1, for any induced norm ‖ · ‖.
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Proof. It follows from the small-gain theorem [Zhou et al., 1995] that ‖∆1‖ < 1 implies
(I + ∆1)−1 ∈ RH∞, and thus Corollary 6.4.3 applies.

We now specialize our results to the case where the plant P, as defined in (6.2), is FIR.
In this case, the modeling error arises only in the coefficient vector g defining the impulse
response. To that end, we define the the estimated plant G̃ with the realization (Z, e1, g̃

>)
and note that the resulting error arises only in the C1 and C2 terms of the corresponding
estimated plant P̃, where these state-space parameters are defined as in (6.4). To that end,
we define the estimation error vector δ := g − g̃, allowing us to further specialize Corollary
6.4.4.

Corollary 6.4.5. Suppose Θ̃ satisfies the SLS constraints for the estimated system (Z, e1, g̃
>).

If ‖Ñδ>‖ < 1 for any induced norm ‖ · ‖, then the controller K̃ = L̃−M̃R̃−1Ñ stabilizes the
true system (Z, e1, g

>) and achieves the closed-loop response Θ̂ as specified in (6.10). Addi-
tionally, if the induced norm ‖ · ‖ is either the H∞ or L1 norm, the response Θ̂ simplifies
to [

R̂ N̂

M̂ L̂

]
=

[
R̃ Ñ

M̃ L̃

]
+

1

1− δ>Ñ

[
Ñδ>

L̃δ>

] [
R̃ Ñ

]
. (6.11)

Proof. By Lemma 6.4.1, Θ̃ satisfies the robust SLS constraints for (Z, e1, g
>). The sufficient

condition then follows by applying Corollary 6.4.4.Furthermore, if the induced norm ‖ · ‖
used in Corollary 6.4.3 and Corollary 6.4.4 is either the H∞ or L1 norm, it follows from
Hölder’s inequality that ‖Ñδ>‖ < 1 implies that |δ>Ñ| < 1 on Dc. Hence, we can use the
Sherman-Morrison identity,

(I − xy>)−1 = I +
xy>

1− y>x ,

to simplify the response (6.10) achieved by the approximate controller K̃ = L̃− M̃R̃−1Ñ to
the expression (6.11).

We now use this robust parameterization to formulate a robust SLS problem that yields
a controller with stability and performance guarantees.

We will use these two facts without fanfare in the following sections.

Proposition 6.4.1. Let x ∈ Rn, y ∈ RHn
∞. Then ‖x>y‖ ≤ ‖x‖2‖y‖.

Proposition 6.4.2. ‖(I + A)−1‖ ≤ (1− ‖A‖)−1 for all ‖A‖ < 1.

Now, define J(g,Θ) to be the performance (i.e. the objective in (6.8)) of the controller
K = L−MR−1N induced by Θ = {R,M,N,L} when placed in closed-loop with the FIR
plant G specified by impulse response coefficients g. Now, assume we design a response Θ̃,
with corresponding controller K̃, that satisfies the SLS constraints specified by the estimate
system g̃. We saw in the previous section that under suitable conditions, the response on
the true system g is given by Θ̂, as specified in Corollary 6.4.5. By the triangle inequality,
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Corollary 6.4.5, and our parametric assumption (6.4)-(6.5), we can then bound the difference
between expectation J(g̃, Θ̃) and reality J(g, Θ̂) as follows:

J(g, Θ̂) =

∥∥∥∥∥
[
C1 D12

]
[

R̂ N̂

M̂ L̂

] [
B1

D21

]
+D11

∥∥∥∥∥

=

∥∥∥∥∥

[
g> 0
0 1

]([
R̃ Ñ

M̃ L̃

]
+

[
Ñδ>

1−δ>Ñ
L̃δ>

1−δ>Ñ

] [
R̃ Ñ

])[B1

D21

]
+D11

∥∥∥∥∥

=

∥∥∥∥∥

(([
g̃> 0
0 1

]
+

[
δ> 0
0 0

])[
R̃ Ñ

M̃ L̃

]
+

[
g> 0
0 1

] [ Ñδ>

1−δ>Ñ
L̃δ>

1−δ>Ñ

] [
R̃ Ñ

])[B1

D21

]
+D11

∥∥∥∥∥

≤ J(g̃, Θ̃) +

∥∥∥∥∥

([
δ>

0

]
+

[
g> 0
0 1

][ Ñδ>

1−δ>Ñ
L̃δ>

1−δ>Ñ

])[
R̃ Ñ

] [B1

D21

]∥∥∥∥∥

≤ J(g̃, Θ̃) +
1

1− ‖δ>Ñ‖

∥∥∥∥∥

[
δ> + g̃>Ñδ>

L̃δ>

]∥∥∥∥∥ ‖R̃B1 + ÑD21‖

≤ J(g̃, Θ̃) +
‖δ‖

1− ‖δ>Ñ‖

∥∥∥∥∥

[
1 + g̃>Ñ

L̃

]∥∥∥∥∥ ‖R̃B1 + ÑD21‖ ,

where we assume ‖Ñδ>‖ < 1 for the bound to be valid.
For any estimated response g̃ satisfying ‖δ‖ ≤ ε, it then follows that

J(g, Θ̂) ≤ J(g̃, Θ̃) + εα‖R̃B1 + ÑD21‖ (6.12)

for any α satisfying

εα‖Ñ‖+

∥∥∥∥∥

[
1 + g̃>Ñ

L̃

]∥∥∥∥∥ ≤ α ,

noting that ε‖Ñ‖ < 1, which implies ‖Ñδ>‖ < 1, is equivalent to α > 0. We denote the
right-hand side of this bound as

Q(g̃, Θ̃, α) := J(g̃, Θ̃) + εα‖R̃B1 + ÑD21‖ .
The bound (6.12) then suggests the following robust controller synthesis procedure, which
balances between solving for the optimal controller for the approximate system g̃ and con-
trolling a perturbative term. We call this problem the robust SLS problem for g̃.

minimize
{R̃,M̃,Ñ,L̃}

α>0

Q(g̃, Θ̃, α)

subject to Θ̃ satisfies SLS constraints

(6.7a) - (6.7c) for (Z, e1, g̃
>)

εα‖Ñ‖+

∥∥∥∥∥

[
1 + g̃>Ñ

L̃

]∥∥∥∥∥ ≤ α .

(6.13)
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Although this problem is not jointly convex in α and the system responses Θ̃, one can use
a golden section search on α in practice. Moreover, the sum of norms can be split into two
norm constraints using an epigraph formulation (see Boyd and Vandenberghe [2004, Chapter
3]).

6.4.2 Sub-optimality guarantees for robust SLS

We now show a bound on the change in the optimal control cost when the controller is
synthesized using the robust SLS problem (6.13).

Proposition 6.4.3. Let Θ0 and (Θ̃∗, α∗), as well as Θ̂∗, be defined as in Theorem (6.4.1),
and let ‖δ‖ ≤ ε. If ε < (2‖N0‖)−1, we have that

J(g,Θ̂∗)− J(g,Θ0) ≤ 2ε

1− 2ε‖N0‖

∥∥∥∥
[
1 + g>N0

L0

]∥∥∥∥ ‖R0B1 + N0D21‖ . (6.14)

To prove this proposition, we require a technical lemma that ensures that the true con-
troller K0 stabilizes the estimate system specified by the FIR coefficients g̃, i.e. that the
optimal system response Θ0 can be used to construct a feasible solution to the approximate
SLS synthesis problem (6.13).

Lemma 6.4.2. Let Θ0 and its induced controller K0 be as defined in Theorem 6.4.1, and
let ||δ|| ≤ ε, with ε < (2‖N0‖)−1. Then

α0 :=
1

1− 2ε‖N0‖

∥∥∥∥
[
1 + g>N0

L0

]∥∥∥∥

is strictly positive, and the controller K0 is stabilizing for the estimate system specified by
(Z, e1, g̃

>) and achieves the system response Θ̂0 defined by

R̂0 = (I + N0δ
>)−1R0

M̂0 = M0 − L0δ
>(I + N0δ

>)−1R0

N̂0 = (I + N0δ
>)−1N0

L̂0 = L0 − L0δ
>(I + N0δ

>)−1N0.

Furthermore, (Θ̂0, α0) are feasible solutions to the approximate SLS synthesis problem (6.13).

Proof. Both of these points are conditional on (I + N0δ
>)−1 existing in RH∞:

• By assumption, Θ0 satisfies the SLS constraints for (Z, e1, g
>); by Lemma 6.4.1, it

equivalently satisfies the robust SLS constraints for (Z, e1, g̃
>), where ∆1 = N0δ

> and
∆2 = L0δ

> (note the switched roles of g and g̃). By Corollary 6.4.3, K0 then stabilizes
(Z, e1, g̃

>) and achieves the system response Θ̂0.



Chapter 6: Finite-Data Performance Guarantees for Output-Feedback Control 79

• By Lemma 6.4.1, Θ̂0 satisfies the SLS constraints for (Z, e1, g̃
>), and is thus part of

a feasible point for the approximate SLS synthesis problem (6.13). Now, we need to
check that the corresponding α0 is also part of a feasible solution. Toward that end,
by the Sherman-Morrison identity, we see that

‖εN̂0‖ =

∥∥∥∥ε
(
I − N0δ

>

1 + δ>N0

)
N0

∥∥∥∥ ≤ ε‖N0‖+
(ε‖N0‖)2

1− ε‖N0‖
=

ε‖N0‖
1− ε‖N0‖

.

Furthermore,

∥∥∥∥∥

[
1 + g̃>N̂0

L̂0

]∥∥∥∥∥ =

∥∥∥∥∥

[
1+g>N0

1+δ>N0
L0

1+δ>N0

]∥∥∥∥∥ ≤
1

1− ε‖N0‖

∥∥∥∥
[
1 + g>N0

L0

]∥∥∥∥ .

Therefore,

1

1− ‖εN̂0‖

∥∥∥∥∥

[
1 + g̃>N̂0

L̂0

]∥∥∥∥∥ ≤ α0 ,

the final feasibility condition of (6.13).

It therefore remains to verify that (I + N0δ
>)−1 exists and is in RH∞. As we have seen,

a sufficient condition is ‖N0δ
>‖ < 1, and this condition is implied by the assumption that

α0 > 0.

Proof. [Proof of Proposition 6.4.3] We immediately invoke Lemma 6.4.2 by noting that our
assumption on ε ensures α0 > 0, and we are assured that (Θ̂0, α0) is a feasible point for the
approximate SLS synthesis problem (6.13). From inequality (6.12), we then have that

J(g, Θ̂∗) ≤ Q(g̃, Θ̃∗, α∗) ≤ Q(g̃, Θ̂0, α0)

= J(g̃, Θ̂0) + εα0‖R̂0B1 + N̂0D21‖

≤ J(g̃, Θ̂0) + εα0
‖R0B1 + N0D21‖

1− ε‖N0‖
, (6.15)

where the second inequality follows from the optimality of (Θ̃∗, α∗), and the final inequality

from the definitions of R̂0 and N̂0. Now, we repeat the argument used to derive (6.12) with
expectation and reality reversed: this time we assume our design expectation was J(g,Θ0)
but our reality is J(g̃, Θ̂0). This is a valid analogy as Θ0 satisfies the SLS equations for
(Z, e1, g

>). With the true and estimated parameters reversed, we can thus bound J(g̃, Θ̂0)
by

J(g̃, Θ̂0) ≤ J(g,Θ0) +
ε

1− ε‖N0‖

∥∥∥∥
[
1 + g>N0

L0

]∥∥∥∥ ‖R0B1 + N0D21‖ . (6.16)
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Finally, combining bounds (6.15) and (6.16) and plugging in α0 gives

J(g, Θ̂
∗
)− J(g,Θ0) ≤

(
α0 +

∥∥∥∥
[
1 + g>N0

L0

]∥∥∥∥
)
ε‖R0B1 + N0D21‖

1− ε‖N0‖

=
2ε

1− 2ε‖N0‖

∥∥∥∥
[
1 + g>N0

L0

]∥∥∥∥ ‖R0B1 + N0D21‖ .

6.4.3 Coarse-grained ID and the proof of Theorem 6.4.1

First, to prove the sample complexity of synthesizing a stabilizing controller based on an
approximate system, we require an intermediary lemma on how well coarse-grained iden-
tification can identify the true system. The proof of the lemma (and the related change
necessary for Corollary 6.4.1) is deferred to the Appendix.

Lemma 6.4.3. Assume we estimate the system g by a length-r FIR system g̃ using coarse-
grained identification (output noise only) on m experiments, where the inputs u(i) are con-
strained to lie in a unit `Tp ball. Then, with probability at least 1− η,

||δ||2 ≤ 2

√
log 2

σ2r2/max(p,2)

m

(
1 +

√
2 log η−1

)
.

Assuming we take m large enough such that ‖δ‖2 = ε < (4‖N0‖)−1 (implied by taking
m & σ2r‖N0‖2

√
log(η−1)), we have

2ε

1− 2ε‖N0‖
≤ 8

√
log 2

σ2r2/max(p,2)

m

(
1 +

√
2 log η−1

)
.

Finally, we show that K̃∗ is stabilizing for the true system (Z, e1, g
>). Since (Θ̃∗, α∗) is

optimal for the approximate SLS synthesis problem for g̃, it is feasible, and thus α∗ > 0
allows us to invoke Corollary 6.4.5, as we have that ‖Ñ∗δ>‖ < 1 .

6.5 Experiments

The robust SLS procedure analyzed in the previous section requires solving an infinite-
dimensional optimization problem as the responses {R̃, Ñ, M̃, L̃} are not required to be FIR.
However, as an approximation, we limit them to be FIR responses of a prescribed length
T . By making this restriction, the resulting optimization problem is then finite-dimensional
and admits an efficient solution using off-the-shelf convex optimization solvers.5

5Code for these computations can be found at https://github.com/rjboczar/OF-end-to-end-CDC.
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Figure 6.4 shows a quantification of this approximation. In this experiment, for each
r, we chose random FIR plants with impulse response coefficients uniformly distributed in
[−1, 1]r. We then computed the smallest T (r) such that the robust performance returned by
the SLS program was within 2% relative error of the performance calculated by MATLAB’s
hinfsyn with relative tolerance 10−8. Figure 6.4 also shows this calculation when each plant
was normalized to have unit H∞-norm.
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Figure 6.4: FIR approximation length T required to achieve small relative error in the robust
performance objective. For each plant length r, the boxes denote the middle quartiles for 10
random plants, and the whiskers show the extents of the data.

6.5.1 Optimization Model

Let vec(F) :=
[
F>0 . . . F>n−1

]>
, vec(F) := [F0 . . . Fn−1], and I be the (static) identity trans-

fer function. Furthermore, appealing to the SDP characterization of H∞-bounded FIR sys-
tems (Dumitrescu [2017] Thm. 5.8), define

H(Q,F, γ) :=

[
Q vec(F)

vec(F)> γI

]
.

Then, under the approximate assumption that R̃, Ñ, M̃, L̃ are FIR of length T , and using
the notation Q[j,k] for the (j, k)-th block of Q, we can write the full optimization problem of
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solving (6.13) for a fixed α:

minimize
{R̃,M̃,Ñ,L̃},
t1, t2, t3, t4

t1 + t2

subject to
[
vec(R̃) 0

]
−
[
0 A vec(R̃)

]
=
[
0 B2 vec(M̃) + vec(I)

]
[
vec(Ñ) 0

]
−
[
0 A vec(Ñ)

]
=
[
0 B2 vec(L̃)

]

[
vec(R̃)

0

]
−
[

0

vec(R̃)A

]
=

[
0

vec(Ñ)C2 + vec(I)

]

[
vec(M̃)

0

]
−
[

0
vec(M̃)A

]
=

[
0

vec(L̃)C2

]

1≤i≤4
0≤k≤n

{
H(Q(i),F(i), ti) � 0∑T−k

j=1 Q
(i)
[j+k,j] = δktiI

F(1) =

[
g̃> 0
0 1

][
R̃ Ñ

M̃ L̃

][
B1

D21

]
+D11

F(2) = εα
(
R̃B1 + ÑD21

)

F(3) = εαÑ, F(4) =

[
1 + g̃>Ñ

L̃

]

t3 + t4 ≤ α .

6.5.2 Computational Results

Instead of using Lemma 6.4.3 directly, we use a simulation-based technique6 (based on looking
at the empirical histogram) to achieve tighter probabilistic tail bounds on ‖δ‖2.

In what follows, we consider the following quantities:

(i) Jnominal: the cost achieved on the true system when the controller was designed using
hinfsyn with the approximate system

(ii) Ĵ : the cost achieved on the true system when the controller was designed using the
approximate SLS synthesis procedure

(iii) δJ = Jnominal−Ĵ
Jnominal

: the relative improvement of the approximate SLS synthesis procedure

(iv) ∆J, ∆̂J : the theoretical sub-optimality bound (6.14) and the actual sub-optimality
gap, respectively.

6The technique involves inverting the Chernoff bound to generate random variable tail bounds that hold
with high probability with respect to the simulated instances. See the Appendix of Tu et al. [2017] for details.
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Figure 6.5: “Swarm” plot of relative improvement δJ from using the approximate SLS
procedure across multiple random instances of plants and output noise (8× 10, σ = 0.1), for
number of experiments m ∈ {15, 20, 25, 30}. Each color dot represents a different plant.

Figure 6.5 shows δJ for random instances of H∞-normalized plants of different lengths
r, swept across number of experiments m.

While it is difficult to draw precise quantitative conclusions from a suite of random
plants, for the longer plants (r = 16) the approximate SLS procedure does perform better
on average. We hypothesize that the performance depends on an effective signal-to-noise
ratio (SNR): m

σ2r
. At low SNR, there may not be enough data for the approximate SLS

procedure to be valid (i.e. for ε < (2‖N0‖)−1). At high SNR, g̃ is very close to g and thus
the approximate SLS procedure may be too conservative. Thus, large improvements may be
hard to come by, which is seen as m increases or r decreases in Figure 6.5. Therefore, in
between these cases may be where the procedure is most effective—the r = 16 case may lie
in this regime.

Using the data generated for Figure 6.5, Figure 6.6 shows the looseness of the end-to-end
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Figure 6.6: Comparison on upper bound ∆J and actual suboptimality gap ∆̂J .

bound in Proposition 6.4.3. This looseness is somewhat unsurprising, as both the formulation
of the approximate SLS problem and the proof of Proposition 6.4.3 feature multiple uses of
the triangle inequality.

6.6 Conclusion

In this chapter, we provide a computational tool for optimal output feedback control for
the coarse-ID setting, as well as a non-asymptotic analysis of its performance. Future work
involves relaxing assumptions to allow IIR or unstable plants, the latter of which may require
significant modifications to the coarse-ID analysis.
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Appendix A

Supplementary Material for Chapter 3

A.1 Proof of Proposition 3.3.1

In these appendices, we will restate theorems, propositions, and lemmas for convenience.

Proposition 3.3.1. Suppose G(z) has a minimal realization (A,B,C,D). If the intercon-
nection in Figure 3.3 is BIBO stable, then the interconnection in Figure 3.1 with initial
state x0 is exponentially stable.

Suppose the interconnection of Figure 3.3 is stable. Then, there exists some K > 0 such
that for any choice of the signals e and f and for all T ,

T∑

k=0

(
‖wk‖2 + ‖vk‖2

)
≤ K

T∑

k=0

(
‖ek‖2 + ‖fk‖2

)
. (A.1)

The proof will follow by carefully choosing e and f to transform Figure 3.3 into Figure 3.1.
To this end, note that (A,B) is controllable by assumption. Thus, there exists a finite
sequence of inputs u0, . . . , un−1 and corresponding outputs y0, . . . , yn−1 that drives the state
of G from ξ0 = 0 to ξn = x0. Therefore, if we set

ek =

{
ρ−kuk 0 ≤ k < n

0 k ≥ n
, fk =

{
−ρ−kyk 0 ≤ k < n

0 k ≥ n
,

we obtain ξn = x0 in the interconnection of Figure 3.3. Moreover, ρ− ◦ ρ+ is the identity
operator. It follows that for k ≥ n, the two interconnections become identical and therefore
ξk = xk−n.

Substituting into (A.1), we conclude that

T∑

k=0

(
‖wk‖2 + ‖vk‖2

)
≤ K

n−1∑

k=0

(
‖ek‖2 + ‖fk‖2

)
. (A.2)
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The right-hand side of (A.2) is independent of T , but (A.2) holds for all T , so we must have

lim
k→∞
‖wk‖ = 0 and lim

k→∞
‖vk‖ = 0 .

Now, for k ≥ n, we have wk = ρ−kuk and vk = ρ−kyk. Therefore, there exists some constant
c > 0 such that

‖uk‖ ≤ cρk and ‖yk‖ ≤ cρk .

Since (A,C) is observable by assumption, we may choose L such that the eigenvalues of
A+ LC are all zero. Then, rewrite the dynamics of G as

xk+1 = Āxk + B̄hk , (A.3)

where Ā := A+LC, B̄ :=
[
LD +B −L

]
, and hk :=

[
u>k y>k

]>
. Iterating (A.3), we obtain

xk = Ākx0 +
k−1∑

i=0

Āk−1−iB̄hi . (A.4)

Since all eigenvalues of Ā are zero, Ā is nilpotent and so Ān = 0. For k ≥ n, (A.4) then
becomes

xk =
n−1∑

i=0

Ān−1−iB̄hk−n+i .

We can now finally bound the size of the state using the triangle inequality:

‖xk‖ ≤
∥∥[Ān−1B̄ . . . ĀB̄ B̄

]∥∥
︸ ︷︷ ︸

γ

k−1∑

i=k−n
‖hi‖

≤ 2γ c

(
ρ−n − 1

1− ρ

)
ρk .

A.2 Proof of Theorem 3.6.1 and Related Extensions

Theorem 3.6.1 (Zames–Falb ρ-IQC). Suppose ∆ is static and slope-restricted on [α, β].
Then ∆ ∈ IQC(Π(z), ρ) where Π is the Zames–Falb IQC (3.12) and ĥ also satisfies the
additional constraint ∞∑

k=0

ρ−2k|hk| ≤ 1 .
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A.2.1 [0,∞]-slope-restricted Case

We will prove this general result by first considering the simpler case where the slope restric-
tion is on [α, β] = [0,∞] and H(z) = ±γlρ2jz−l for some constants 0 < γl ≤ 1. Note that this
choice trivially satisfies (3.6.1), and the extensions of (3.6.1) follow for specific restrictions
on γk and mixed-sign hk. In this case, the Π from (3.12) (first taking the positive sign in
H(z)) becomes

Π =

[
0 1− γjρ2j z̄−l

1− γlρ2lz−l 0

]
(A.5)

where z̄ denotes the complex conjugate of z. We call (A.5) the “off-by-l” Zames–Falb IQC.
We would like to show that ∆ ∈ IQC(Π(z), ρ). Appealing to Definition 3.3.2, Remark 3,
and Proposition 3.6.1, this amounts to proving that

∞∑

k=0

ρ−2ku>k (yk − γlρ2lyk−l) ≥ 0 . (A.6)

We will prove (A.6) by borrowing the approach from Lessard et al. [2016]. If ∆ is multidi-
mensional, we require that ∆ be the gradient of a potential function [Heath and Wills, 2005].
By the assumption that ∆ is slope-restricted on [0,∞], we have that ∆ is monotone, i.e.

(∆(x)−∆(y))>(x− y) ≥ 0 holds for all x, y .

In other words, ∆ is monotone. Furthermore (see Rockafellar [1966]), there exists1 a convex
scalar function g such that ∆(x) is in the subdifferential of g at x for all x, meaning

g(y) ≥ g(x) + ∆(x)>(y − x) for all x, y .

Moreover, setting (x, y) 7→ (yk, 0) or (x, y) 7→ (yk, yk−l) leads to the two inequalities

u>k yk ≥ g(yk) (A.7)

u>k (yk − yk−l) ≥ g(yk)− g(yk−l) . (A.8)

1In the loop-transformed case for [α, β]-slope-restricted nonlinearities, the argument is more delicate.
See Freeman [2018] for a rigorous discussion.
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We will assume for simplicity that g(x) ≥ 0 for all x, and we will first prove the case where we
take the positive sign in H(z). Substituting (A.7) and (A.8) into the left-hand side of (A.6),
the partial sum from 0 to T is

T∑

k=0

ρ−2ku>k (yk − γlρ2lyk−l) =
T∑

k=0

ρ−2k
(
(1− γlρ2l)u>k yk + γlρ

2lu>k (yk − yk−l)
)

≥
T∑

k=0

ρ−2k
(
(1− γlρ2l)g(yk) + γlρ

2l(g(yk)− g(yk−l))
)

=
T∑

k=0

ρ−2k
(
g(yk)− γlρ2lg(yk−l)

)

=
T−l∑

k=0

(1− γl)ρ−2kg(yk) +
T∑

k=T−l+1

ρ−2kg(yk) ≥ 0 .

Since each partial sum is nonnegative, the infinite sum (which must converge) is also non-
negative, and therefore we have proven (A.6). Now, for the case where we take the negative
sign in H(z), further assume that ∆ is an odd function, which implies g is an even func-
tion. Using this fact and convexity inequality for g with (x, y) 7→ (yk,−yk−l) leads to the
additional inequality

u>k (yk + yk−l) ≥ g(yk)− g(yk−l) .

The proof of nonnegativity of the partial sums then follows as before. Thus, a [0,∞]-slope
restricted ∆ satisfies the off-by-l ρ-IQC (and also the negative version if ∆ is assumed to be
odd).

Now we consider the case of a more general ĥ(z). Suppose ĥ(z) =
∑∞

k=0 hkz
−k where hk

satisfies
∑

k γ
−1
k ρ−2k|hk| ≤ 1. Then,

1− ĥ(z) = 1−
∞∑

k=0

γ−1
k ρ−2k|hk|

︸ ︷︷ ︸
≡c

+
∑

hk≥0

γ−1
k ρ−2khk

(
1− γkρ2kz−k

)

+
∑

hk<0

γ−1
k ρ−2k(−hk)

(
1 + γkρ

2kz−k
)

= c (1− ĥs) +
∑

hk≥0

γ−1
k ρ−2khk

(
1− ĥ+

k (z)
)

+
∑

hk<0

γ−1
k ρ−2k(−hk)

(
1− ĥ−k (z)

)
,



Appendix A: Supplementary Material for Chapter 3 97

where ĥ±k (z) = ±γkρ2kz−k and ĥs = 0 (for illustration). Note that ĥk(z) corresponds the off-
by-k Zames–Falb IQC, which we proved above is a ρ-IQC, where the negative version is only
used (with corresponding negative hk) if ∆ is assumed to be odd. Also, 1− ĥs corresponds
to the sector IQC, which is also a ρ-IQC. Now note that the general Zames–Falb IQC (3.12)
is linear in 1− ĥ and 1− ĥ∗. Therefore, since by assumption c ≥ 0, Π(z) is a positive linear
combination of ρ-IQCs and must therefore be a ρ-IQC itself.

A.2.2 Specific Zames–Falb Classes

We would now like to generalize this proof (or equivalently, specify further the class of non-
linearities). Now, let us assume that the nonlinearity ∆ can be written as ∆2 ◦∆1, where ∆1

satisfies a ρ-IQC of the Zames–Falb type in the preceding section where
∑

k γ
−1
k ρ−2k|hk| ≤ 1.

Furthermore, assume that ∆2 (which is possibly time-varying) satisfies

(1− δ)uk ≤ ∆2(uk) ≤ (1 + δ)uk ∀ uk,∀k ,

or equivalently,

∆2(uk) = (1 + δk)uk, |δk| ≤ δ

for some δ < 1. We would like to show under what conditions ∆2 ◦∆1 satisfies a Zames–Falb
IQC with rate ρ.

To do this, we will show that ∆2 ◦∆1 satisfies the relevant off-by-l Zames–Falb ρ-IQC,
which then extends to general Zames–Falb by the preceding section. As in Section A.2.1, we
would like to show that

∞∑

k=0

ρ−2k∆(yk)
>(yk ∓ γlρ2lyk−l) ≥ 0 .

Using our prescribed ∆ (taking the negative sign for simplicity) and denoting ∆1(yk) := uk,
we see that each partial sum satisfies

T∑

k=0

ρ−2k(1 + δk)u
>
k (yk − γlρ2lyk−l) ≥

T∑

k=0

ρ−2k(1 + δk)
(
g(yk)− γlρ2lg(yk−l)

)

by the same argument from the preceding section. This is then equal to

T−l∑

k=0

(1 + δk − (1 + δk+l)γl)ρ
−2kg(yk) +

T∑

k=T−l+1

(1 + δk)ρ
−2kg(yk) .

A sufficient condition for this sum to be positive is

γl ≤
1 + δk

1 + δl+k
∀ k,
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which is satisfied if, for example,

γl ≡ γ ≤ 1− δ
1 + δ

.

If so, the partial sums converge and so does the infinite sum. Again, if we further assume
that ∆1 is odd, the negative off-by-l IQC is also satisfied. The argument for general H(z)
follows as before.

Proofs for specific classes of nonlinearities in the literature correspond to specific choices
of γk and δk. These are summarized in Table A.1.

Table A.1: Variable Choices for Specific Zames–Falb Proofs

Type δk γk Notes

[0,∞]-slope restricted 0 1

[α, β]-slope restricted 0 1
Loop transformation
(y, u) 7→ (βy− u, u−αy)

Noisy composition δ 1

Stiction (slope 1/ε) δ
1− δ
1 + δ

Quasi-monotone/odd
Rm − 1

Rm + 1
,
Ro − 1

Ro + 1

R−1
m , hk ≥ 0

R−1
o , hk < 0

Notational change in def.
from Heath et al. [2015]:
n∗ 7→ 2

R∗+1
n∗

A.3 Proof of Theorem 3.6.2

Theorem 3.6.2. Assume Γ is (ρ,H)-diagonally dominant. Then, if a static nonlinearity φ
is [α, β] slope-restricted, the repeated nonlinearity ∆(y) = diag{φ(yi)} satisfies the ρ-IQC

Π =

[
−αβ(2Γ− Ĥ − Ĥ∗) α(Γ− Ĥ) + β(Γ− Ĥ∗)

α(Γ− Ĥ∗) + β(Γ− Ĥ) −2Γ + Ĥ + Ĥ∗

]
. (3.13)

Moreover, it admits the factorization

Ψ =

[
β(Γ− Ĥ) −(Γ− Ĥ)
−αI I

]
, M =

[
0 I
I 0

]
.

We begin with an elementary lemma; a similar one is used in D’Amato et al. [2001] for
the proof of (3.6.2).
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Lemma A.3.1. For a repeated monotone nondecreasing nonlinearity ∆ and with u = ∆(y),
we have that

u[i]y[j] + u[j]y[i] ≤ u[i]y[i] + u[j]y[j],

and if φ is odd,
|u[i]y[j] + u[j]y[i]| ≤ u[i]y[i] + u[j]y[j],

for all indices i, j.

Proof. Assume without loss of generality that y[i] ≥ y[j]. By monotonicity and the fact that
the nonlinearity is repeated, we must have that u[i] ≥ u[j]. Thus:

(u[i] − u[j])(y[i] − y[j]) ≥ 0 .

If φ is odd, then the second equation is proven by also observing that

[u[i], −u[j]]> = ∆([y[i], −y[j]]>) =⇒ (u[i] + u[j])(y[i] + y[j]) ≥ 0 .

Let Eij denote the standard basis matrix. Now, given a diagonally dominant matrix Γ,
define the following symmetric matrices:

Γ̃ij = Γij(Eij + Eji) + (|Γij|+ 1)(Eii + Ejj), i 6= j

Γ̃ii = Eii

H̃ l
ij(z) = ρ2lz−l(Eij + Eji), i 6= j

H̃ l
ii(z) = ρ2lz−lEii.

Proposition A.3.1. ∆ satisfies the “(i, j) off-by-l ρ-IQC” defined by

Π =

[
0 Γ̃ij − H̃ l

ij*

Γ̃ij − H̃ l
ij 0

]

for all ρ in (0, 1].

Proof. As before, assume the φ is the gradient of a potential function f . For notational
convenience, define the following symbols:

dk = u
[i]
k y

[i]
k + u

[j]
k y

[j]
k

ck = u
[j]
k y

[i]
k + u

[i]
k y

[j]
k

plk = u
[j]
k y

[i]
k−l + u

[i]
k y

[j]
k−l

fk = f(y
[i]
k ) + f(y

[j]
k ) .
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Using convexity and the fact that the nonlinearity is repeated, we can obtain the inequalities

dk − plk ≥ fk − fk−l
dk ≥ fk .

Then,

T∑

k=0

ρ−2ku>k (Γ̃ij − H̃ l
ij)yk =

T∑

k=0

ρ−2k|Γij|(dk − ck) +
T∑

k=0

ρ−2k((1− ρ2l)dk + ρ2l(dk − pij,lk ))

≥
T∑

k=0

ρ−2k|Γij|(dk − ck) +
T∑

k=0

ρ−2k((1− ρ2l)fk + ρ2l(fk − fk−l)) .

The first sum is nonnegative by Lemma A.3.1 and the second sum is nonnegative by the
same arguments as in Appendix A.2.1.

We will now show that for a (ρ,H)-diagonally dominant matrix Γ, the ρ-IQC defined by

Π =

[
0 Γ− Ĥ∗

Γ− Ĥ 0

]

is a positive combination of satisfied ρ-IQCs and is thus a satisfied ρ-IQC. Toward this end,

Γ− Ĥ(z) = Γ−
∑

i≤j,k
ρ−2kHij,kΓ̃ij +

[∑

i≤j,k
ρ−2kHij,k(Γ̃ij − H̃k

ij(z))

]
.

The term in brackets is a nonnegative linear combination of satified IQCs, so let us focus on
the first term:

Q := Γ−
∑

i≤j,k
ρ−2kHij,kΓ̃ij =





Γii −
∑

k

[∑n
j=1,j 6=i ρ

−2kHij,k(|Γij|+ 1) + ρ−2kHii,k

]

(ii indices)

(1−∑k ρ
−2kHij,k)Γij

(ij indices).

.

We can see that this constant matrix Q is diagonally dominant, since

Qii −
n∑

j=1,j 6=i
|Qij| = Γii −

∑

k

[
n∑

j=1,j 6=i
ρ−2kHij,k(|Γij|+ 1) + ρ−2kHii,k]

−
n∑

j=1,j 6=i
(1−

∑

k

ρ−2kHij,k)|Γij|]

= Γii −
n∑

j=1,j 6=i
|Γij| −

n∑

j=1

∑

k

ρ−2kHij,k ≥ 0 ,
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where the last line follows from the assumption that Γ is (ρ,H)-diagonally dominant. Similar
modifications to the assumptions and proof hold for odd and [α, β]-sector nonlinearities.
Also, note that in the case of diagonal (but not necessarily repeating) ∆, Lemma A.3.1
will not hold in general. Thus, considering where it is used in the proof, we would need to
constrain Γ and H to be diagonal.

A.4 Computational Considerations

A.4.1 Homogeneity

We may leverage the structure of the repeated Zames–Falb ρ-IQCs to reduce the size and
complexity of the LMI (3.6).

Proposition A.4.1. (Homogeneity simplification) If we are searching over a combination
of repeated Zames–Falb IQCs with fixed α, β, ρ and varying over Γ and H matrices, and fixed
non-Zames–Falb ρ-IQCs, i.e.

ΠA =

{ n∑

θ=1

λθΠZF (Γθ, Hθ) +
r∑

δ=1

λδΠδ | λθ ≥ 0, λδ ≥ 0, Γθ is (ρ,Hθ)-diag. dom.

}
.

Then, searching over the associated LMI is equivalent to searching over

ΠB =

{
λΠZF (Γ, H) +

r∑

δ=1

λδΠδ | λ ≥ 0, λδ ≥ 0, Γ is (ρ,H)-diag. dom.

}
.

That is, ΠA = ΠB.

Proof. ΠB ⊆ ΠA is immediate. To check the other direction, first assume
∑

θ λθ = Λ > 0
(the Λ = 0 case is trivial). Now, note that, due to the linearity of the repeated Zames–Falb
IQC in terms of Γ and H, see that

n∑

θ=1

λθΠZF (Γθ, Hθ) = Λ ΠZF

(∑
θ λθΓθ
Λ

,

∑
θ λθHθ

Λ

)
.

All that remains is to check that the diagonal dominance definitions are satisfied; two require
care. First, the filter condition on H:

∑

k

ρ−2k

∣∣∣∣∣

∑
θ λθH

θ
ij,k

Λ

∣∣∣∣∣ ≤
∑

k

ρ−2k

∑
θ λθ|Hθ

ij,k|
Λ

=

∑
θ λθ
Λ

∑

k

ρ−2k|Hθ
ij,k|

≤
∑

θ λθ
Λ

(by assumption)

= 1 .
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Second, the main diagonal dominance condition:

∑
θ λθΓ

θ
ii

Λ
−

n∑

j=1,j 6=i

∣∣∣∣∣

∑
θ λθΓ

θ
ij

Λ

∣∣∣∣∣−
n∑

j=1

∑

k

ρ−2k

∣∣∣∣∣

∑
θ λθH

θ
ij,k

Λ

∣∣∣∣∣

≥
∑

θ λθΓ
θ
ii

Λ
−
∑

θ λθ
Λ

n∑

j=1,j 6=i
|Γθij| −

∑
θ λθ
Λ

n∑

j=1

∑

k

ρ−2k|Hθ
ij,k|

= Λ−1
∑

θ

λθ

(
Γθii −

n∑

j=1,j 6=i
|Γθij| −

n∑

j=1

∑

k

ρ−2k|Hθ
ij,k|
)

≥ 0, by assumption.

The non-Zames–Falb IQCs carry straight through in both directions. Therefore, we see that∑n
θ=1 λθΠZF (Γθ, Hθ) +

∑
δ λδΠδ ∈ ΠA, and we have ΠA = ΠB.

A.4.2 Convexification for Repeated Nonlinearities

For repeated nonlinearities, the main LMI (3.6) with constraints can be written as

min
P,λ,Γ,H

0

s.t. A(P ) + λM(Γ, H) ≺ 0

P � 0

λ ≥ 0

Γii ≥ 0, ∀ i
Γij ≤ 0, , ∀ i 6= j

Hij,k ≥ 0, ∀ i, j, k
∞∑

k=0

ρ−2k|Hij,k| ≤ 1, ∀ i, j

Γii ≥
n∑

j=1,j 6=i
|Γij|+

n∑

j=1

∞∑

k=0

ρ−2k|Hij,k|, ∀ i

for some known linear functions A,M (note that the latter is linear in the pair [Γ, H]). This
problem is nonconvex, due to the product of λ and [Γ, H].
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However, one can show that this program can be reduced to the convex problem

min
P̃,ζ,Γ̃,H̃

0

s.t. A(P̃ ) +M(Γ̃, H̃) � −I
P̃ � 0

ζ > 0

Γ̃ii ≥ 0, ∀ i
Γ̃ij ≤ 0, , ∀ i 6= j

H̃ij,k ≥ 0, ∀ i, j, k
∞∑

k=0

ρ−2k|H̃ij,k| ≤ ζ, ∀ i, j

Γ̃ii ≥
n∑

j=1,j 6=i
|Γ̃ij|+

n∑

j=1

∞∑

k=0

ρ−2k|H̃ij,k|, ∀ i .

In practice, for numerical considerations it is helpful to replace � −I with � −tI and
maximize over t, while placing upper bounds on ζ and t.

A.5 Proof of Theorem 3.8.1

Theorem 3.8.1. Consider the block interconnection of Figure 3.15. Assume the error sig-
nal wk comes i.i.d. from a distribution with zero mean and covariance matrix Λw, and is
independent of uk and xk. Suppose G is given by (3.17) and φ satisfies a ρ-hard IQC defined
by (Ψ,M, z?) where Ψ is given by (3.18) and 0 ≤ ρ ≤ 1. Assume x? is a fixed point of the
dynamical system given by (3.19) when wk = 0. Consider the LMI

[
Â>PÂ− ρ2P Â>PB̂

B̂>PÂ B̂>PB̂

]
+ λ

[
Ĉ D̂

]>
M
[
Ĉ D̂

]
� 0 . (3.20)

If (3.20) is feasible for some P � 0 and λ ≥ 0, then for any x0, we have

E||xk − x?||2 ≤ κ(P )ρ2k||x0 − x?||2 +
tr(B>P11BΛw)

λmin(P )

1− ρ2k

1− ρ2
∀ k .

The complete proof follows in the same vein as the main result in Lessard et al. [2016];
we show the modifications needed in order to handle the noisy input case.
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Let x, u, z ∈ `2,2, along with a sequence w, be a set of sequences that satisfies the
perturbed system (3.19). Suppose (P, λ) is a solution of (3.20). Suppose z? and u? are the
values of z and u associated with the fixed point x? of the unperturbed system (i.e. (3.19)
with wk = 0). By the definition of fixed point, denoting q̄k := qk − q? for all symbols q, we
see that

x̄k+1 = Âx̄k + B̂ūk +

[
B
0

]
wk (A.9)

z̄k = Ĉx̄k + D̂ūk .

For convenience, we denote an elementary probability fact.

Lemma A.5.1. If ak and bk are independent and Ebk = 0, then for every constant matrix
P ,

Ea>k Pak = E(ak + bk)
>P (ak + bk)− EbTkPbk .

If we multiply (3.20) on the left and right by
[
x̄>k ū>k

]
and its transpose, respectively,

by (A.9) we have that

(Âx̄k+ B̂ūk)
>P (Âx̄k + B̂ūk)− ρ2 x̄>k Px̄k + λ z̄>kMz̄k ≤ 0 . (A.10)

Taking expectations, we can apply Lemma A.5.1 to the first term of (A.10), with

ak := Âx̄k + B̂ūk, bk :=

[
B
0

]
wk .

We are then left with

E
[
x̄>k+1Px̄k+1 − ρ2 x̄>k Px̄k + λ z̄>kMz̄k

]
≤ Ew>k B>P11Bwk .

The rest of the proof follows as in Lessard et al. [2016]. Momentarily switching the index to
t, multiplying each side by ρ−2t and summing from t = 0 to k − 1 gives

E
[ k−1∑

t=0

(
ρ−2tx̄>t+1Px̄t+1 − ρ−2(t−1) x̄>t Px̄t

)
+ λ

k−1∑

t=0

ρ−2tz̄>t Mz̄t

]
≤ E

k−1∑

t=0

ρ−2tw>t B
>P11Bwt .

The sum telescopes, and only the t = 0 and t = k − 1 terms are left. Thus,

E
[
ρ−2(k−1)x̄>k Px̄k − ρ2 x̄>0 Px̄0+ λ

k−1∑

t=0

ρ−2tz̄>t Mz̄t

]
≤ E

k−1∑

t=0

ρ−2tw>t B
>P11Bwt .

2The precise version of this statement (much like many classical IQC-based arguments) would instead
invoke the “extended” space `2e but we leave those technical details aside.
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Using the fact that (Ψ,M) is a ρ-hard IQC, we can drop the term dependent on M , and
we are left with

E
[
ρ−2(k−1)x̄>k Px̄k − ρ2 x̄>0 Px̄0

]
≤ E

k−1∑

t=0

ρ−2tw>t B
>P11Bwt

=⇒ E
[
x̄>k Px̄k

]
≤ ρ2k x̄>0 Px̄0 +

k−1∑

t=0

ρ2(k−t−1)Ew>t B>P11Bwt

= E
[
x̄>k Px̄k

]
≤ ρ2k x̄>0 Px̄0 +

k−1∑

t=0

ρ2(k−t−1)tr(B>P11BΛw)

= E
[
x̄>k Px̄k

]
≤ ρ2k x̄>0 Px̄0 + tr(B>P11BΛw)

k−1∑

t=0

ρ2t ,

where the final step reverses the order of summation. Finally, bounding the quadratic terms
by the Rayleigh-Ritz inequalities gives

E||x̄k||2 ≤ κ(P )ρ2k||x̄0||2 +
tr(B>P11BΛw)

λmin(P )

k−1∑

t=0

ρ2t

= κ(P )ρ2k||x̄0||2 +
tr(B>P11BΛw)

λmin(P )

1− ρ2k

1− ρ2

≤ κ(P )ρ2k||x̄0||2 +
tr(B>P11BΛw)

(1− ρ2)λmin(P )
.
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Supplementary Material for Chapter 4

B.1 Details for Monte–Carlo Simulations

In all of our simulations we are faced with the following problem which we describe in some
generality. Let X be a random variable distributed according to the law P. We assume we
have access to iid samples from P. Our goal is to estimate an upper bound on P(X ≥ t) for
a fixed t ∈ R.

If the law P admits a density f(·) with respect to the Lebesgue measure, a possible
solution could be to solve this problem exactly by numerically integrating

∫

X(ξ)≥t
X(ξ)f(ξ) dξ .

However, numerical integration does not scale favorably with dimension. For our experi-
ments, ξ is 75-dimensional, which is prohibitive for numerical integration.

An alternative approach to numerical integration is to rely on concentration of measure.
Let X1, ..., XN be i.i.d. copies of X, and let PN denote the product measure PN = ⊗Nk=1P.
Using a Chernoff bound and defining Ft := P(X ≥ t), we have

PN
(

1

N

N∑

k=1

1{Xk≥t} ≤ Ft − ε
)
≤ e−N ·D(Ft−ε,Ft) , (B.1)

where D(p, q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q)) is the KL-divergence between two
Bernoulli distributions. Given a δ ∈ (0, 1), define the random variable Q as the solution to
the implicit equation

N ·D
(

1

N

N∑

k=1

1{Xk≥t}, Q

)
= log(1/δ) . (B.2)
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Note that, from a realization of X1, ..., XN , the realization of Q from (B.2) can be solved for
by numerical root finding. Plugging the definition of Q back into the Chernoff inequality
(B.1), we conclude that there exists an event E (in the product σ-algebra) such that on E
the inequality Ft ≤ Q holds, and furthermore PN(E) ≥ 1 − δ. This is the methodology
which we use to generate all our bounds, with δ = 10−4. Hence, the statements of the form
“Ft ≤ γ” in Section 4.5.1 should be understood as operating under the assumption that our
implementation of the simulation chose a particular realization which is contained in the
simulator event E described previously. This procedure—“inverting the Chernoff bound” is
proven in the sequel.1

B.2 Inverting the Chernoff Bound

For convenience, we will assume that all infimums in this section are finite, as the general
case is even more tedious. Our starting point is as follows: for any 0 < ε ≤ Ft, we have

PN (Ft ≥ p̂+ ε) ≤ e−N ·D(Ft−ε,Ft) := H(Ft − ε, Ft) ,

where p̂ = 1
N

∑
i 1{Xi≥t} and Ft = Ep̂ = P(X ≥ t). Define the quantity

α(Ft, δ) := inf{α : H(Ft − α, Ft) > δ, 0 < α ≤ Ft} .

Since H(u, v) is increasing in its first argument u for u ≤ v, we have that

PN (Ft ≥ p̂+ ε) ≤ H(Ft − ε, Ft) ≤ δ ,

for all ε ∈ (0, α(Ft, δ)). Furthermore, we claim that the function f(w) := w − α(w, δ) is
increasing in w, for each δ. To see this, consider some small η > 0. Then:

f(w + η) = w + η − α(w + η, δ)

= w + η − inf{α : H(w + η − α,w + η) > δ, 0 < α ≤ w + η}
= w − inf{α′ : H(w − α′, w + η) > δ, −η < α′ ≤ w}
≥ w − inf{α′ : H(w − α′, w + η) > δ, 0 < α′ ≤ w}
≥ w − inf{α′ : H(w − α′, w) > δ, 0 < α′ ≤ w}
= f(w) ,

where the penultimate inequality comes from the fact that H(u, v+η) ≤ H(u, v) when u ≤ v.
Next, define the random variable

Z(p̂, δ) := inf{z : z − α(z, δ) ≥ p̂}
1We thank Stephen Tu, Max Simchowitz, and Kevin Jamieson for their help in rigorously analyzing this

idea.
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and note that the increasing nature of f(w) implies that

Ft ≥ Z(p̂, δ) =⇒ Ft − α(Ft, δ) ≥ Z(p̂, δ)− α(Z(p̂, δ), δ) .

Thus,

P(Ft ≥ Z(p̂, δ)) ≤ P(Ft − α(Ft, δ) ≥ Z(p̂, δ)− α(Z(p̂, δ), δ)) .

However, by definition, we have that Z(p̂, δ)− α(Z(p̂, δ), δ) ≥ p̂, so

P(Ft − α(Ft, δ) ≥ Z(p̂, δ)− α(Z(p̂, δ), δ)) ≤ P(Ft − α(Ft, δ) ≥ p̂)

≤ P(Ft − ε ≥ p̂) (for any 0 < ε < α(Ft, δ))

≤ δ .

Therefore, Ft ≥ Z(p̂, δ) with probability at most δ, and Z(p̂, δ) is a computable quantity—it
is the solution z∗ to the system of equations

z − α = p̂

H(z − α, z) = δ (α < z) .

If we let z̃ be the (upper) solution to the equation H(p̂, z) = δ, we see that (z̃, z̃ − p̂) is a
solution to these equations. Finally, we see that Ft ≤ {z : H(p̂, z) = δ} with probability at
least 1− δ.
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Algorithm 2: Power Method A [Rojas et al., 2012]

Input: Normalized u(1).
for t = 1 to N do

Perform the experiment y(t) = Gu(t) + η(t).
Create the time-reversed ỹ(t).
µ(t) = ‖ỹ(t)‖2.
u(t+1) = ỹ(t)/µ(t).
Ĥt =

√
µ(t−1)(u(t−1))>ỹ(t).

end

return ĤN .

Algorithm 3: Power Method B [Wahlberg et al., 2010]

Input: Normalized u(1).
for t = 1 to N/2 do

Perform the experiment y(t) = Gu(t) + η(t).
Create the time-reversed ỹ(t).
Perform the experiment z(t) = Gỹ(t) + η′(t).
Create the time-reversed z̃(t).
Ĥt =

√
|(u(t))>z̃(t)|.

u(t+1) = z̃(t)/‖z̃(t)‖2.
end

return Ĥ(N/2).
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Algorithm 4: Weighted Thompson Sampling (WTS) [Müller et al., 2017]

Input: M,λ, σ, ρ1
k = 1/K ∀ k, m0 = 0, v0 = λ2I.

for t = 1 to N do
Input design: Create the normalized input signal u(t) proportional to the DFT
power profile pt = ρt.

Perform the experiment y(t) = Gu(t) + η(t) and obtain DFT coefficients
X t
k = Y t

k/U
t
k.

Update the posterior for all k:

mt+1
k =

λ2
∑t
`=1 p

`
kX

`
k

σ2+λ2
∑t
`=1 p

`
k

.

vt+1
k = λ2/(1 + λ2/σ2

∑t
`=1 p

`
k).

Update the posterior ρt+1:
Draw sl ∼ NC(mt+1

k , vt+1
k ), l = 1, . . . ,M .

ρt+1
k = 1

M

∑M
l=1 #(arg maxi{|sli|} = k).

Ĥt = maxk
∑t

`=1 p
`
kX

`
k/
∑t

`=1 p
`
k.

end

return ĤN .
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D.1 Proof of Lemma 6.4.1

Lemma 6.4.1 (Robust Equivalence). Consider system responses Θ̃ = {R̃, M̃, Ñ, L̃} and

Θ̂ = {R̂, M̂, N̂, L̂}, where the latter is given by

R̂ = (I + ∆1)−1R̃ (6.10)

M̂ = M̃−∆2(I + ∆1)−1R̃

N̂ = (I + ∆1)−1Ñ

L̂ = L̃−∆2(I + ∆1)−1Ñ ,

where by assumption (I + ∆1)−1 exists and is in RH∞. Let G = (A,B,C,D) be a given
plant, and consider the following statements.

(i) Θ̃ satisfies the robust SLS constraints for G.

(ii) Θ̂ satisfies the SLS constraints for G.

Under the assumptions, (i) =⇒ (ii). Furthermore, let G′ = (A,B,C ′, D), and let

∆1 = − Ñ(C − C ′)
∆2 = − L̃(C − C ′) .

Then, (i) is equivalent to a third statement (iii): Θ̃ satisfies the SLS constraints for G′.

• (i) ⇐⇒ (iii): The SLS constraints for G′ and the robust SLS constraints for G are
identical, by the definitions of ∆1 and ∆2.

• (i) =⇒ (ii): Satisfaction of (6.9) under (Θ̃,G) implies satisfaction of (6.7b) under
(Θ̂,G) as they are related by a linear transformation defined by

V =

[
(I + ∆1)−1 0

−∆2(I + ∆1)−1 I

]
.
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We readily see that

V

[
R̃ Ñ

M̃ L̃

]
=

[
R̂ N̂

M̂ L̂

]
and V

[
I + ∆1

∆2

]
=

[
I
0

]
.

Next, satisfaction of (6.7a) under (Θ̂,G) is implied by satisfaction of (6.7a) and (6.9)
under (Θ̃,G). To see this, note that multiplying (6.9) on the right by [zI − A; −C2]
gives B2∆2 = (zI − A)∆1. One can then verify that

[
zI − A −B2

]
[

R̂ N̂

M̂ L̂

]
=
[
I 0

]
.

Finally, consider (6.7c). The second equation of (6.9), i.e.

M̃(zI − A)− L̃C2 = ∆2 ,

shows that ∆2 ∈ RH∞. Combined with our assumption that (I + ∆1)−1 ∈ RH∞, by

the definition of Θ̂ we may assert that zR̂, zM̂, zN̂, L̂ ∈ RH∞.

D.1.1 Proof of Lemma 6.4.3 and Corollary 6.4.1

Lemma 6.4.3. Assume we estimate the system g by a length-r FIR system g̃ using coarse-
grained identification (output noise only) on m experiments, where the inputs u(i) are con-
strained to lie in a unit `Tp ball. Then, with probability at least 1− η,

||δ||2 ≤ 2

√
log 2

σ2r2/max(p,2)

m

(
1 +

√
2 log η−1

)
.

Recall the setup of Chapter 4 and the notation

Σ(u) :=
m∑

k=1

Toep(u(k))>Toep(u(k)) .

We readily see that δ ∼ N (0, σ2S) where S = (Σ(u)−1)[r]. Then, noting that ||δ||2 is a
σ‖S1/2‖-Lipschitz function of i.i.d. standard Gaussian random variables, from concentration
of measure (see Boucheron et al. [2013, Thm. 5.6]) we have that

P (||δ||2 ≥ E||δ||2 + t) ≤ e−t
2/(2σ2‖S‖) ,

for all t ≥ 0. Furthermore, by Jensen’s inequality,

E||δ||2 ≤

√√√√
r∑

i=1

Eδ2
i = σ

√
tr(S) .
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This then gives

||δ||2 ≤ σ
(
‖S‖1/2

√
2 log η−1 +

√
tr(S)

)

with probability at least 1 − η. To probabilistically guarantee small error, we would then
like to minimize the right hand side over input signals. When U is a unit `p-ball in RT , the
arguments around Lemma 4.3.6 provides relevant bounds on S. Since ||S|| ≤ tr(S), in the
most general case we have that

||δ||2 ≤ 2σ

√
log 2

r2/max(p,2)

m

(
1 +

√
2 log η−1

)

with probability at least 1− η . If p ∈ [1, 2], ||S|| can be computed to be 1
m

, and we have

||δ||2 ≤ 2σ

√
r

m

(
1 +

√
2 log η−1

r

)
.

Finally, with respect to Corollary 6.4.1, as noted in Section 4.3 we have that δ ∼ N (0,Λ),
where

Λ = (Z>Z)−1Z>(σ2
wToep(g)Toep(g)> + σ2

ξI)Z(Z>Z)−1 � (σ2
w‖G‖2

H∞ + σ2
ξ )(Z

>Z)−1,

where Z :=
[
Toep(u(1))> · · · Toep(u(m))>

]> ∈ RTm×T and the inequality comes from the
stability of G.
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