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Abstract
We consider the problem of best Markovian arm identification, where we sequentially collect sam-
ples fromK Markov chains with our goal being to identify the one with the largest stationary mean
with some fixed level of confidence. In Theorem 4 we derive an instance specific non-asymptotic
lower bound for the sample complexity, which in the high confidence regime (Corollary 5) gener-
alizes the asymptotic lower bound of Garivier and Kaufmann (2016) which deals with the special
case where the K stochastic processes are i.i.d. processes.
Keywords: multi-armed bandits, best Markovian arm identification with fixed confidence, Markov
chains
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1. Introduction

Consider the following simple setting: we have K stochastic processes/arms which are stationary
or converge to stationarity, with stationary means µ1, . . . , µK , and at each time-step we select the
process/arm from which we want to observe a sample while the others stay still.

In the stochastic multi-armed bandits literature one objective that has been extensively studied
is the one of maximizing the expected value of the sum of the observed samples, or minimize the
so called regret. The seminal work of Lai and Robbins (1985) popularized this problem, in the
case that each of the K process is an i.i.d. process. Anantharam et al. (1987a) first generalized the
problem to the scenario when one is allowed to get multiple samples at each time-step, and then
in Anantharam et al. (1987b) they dropped the i.i.d. assumption and considered K irreducible and
aperiodic finite state Markov chains. We refer the reader to the survey of Bubeck and Cesa-Bianchi
(2012) for more details.

An alternative objective, which only recently draw the attention of the research community,
is the one of identifying the process with the highest/best mean as fast as and as accurately as
possible, notions which are made precise in Section 3. In the i.i.d. setting, Even-Dar et al. (2006)
establish an elimination based algorithm in order to find an approximately best arm, and Mannor
and Tsitsiklis (2004) provide a matching lower bound. Jamieson et al. (2014) propose an upper
confidence strategy, inspired by the law of iterated logarithm, for exact best arm identification given
some fixed level of confidence. In the asymptotic high confidence regime, the problem is settled
by the work of Garivier and Kaufmann (2016), who provide instance specific matching lower and
upper bounds. For their upper bound they propose the Track-and-Stop strategy which is further
explored in the work of Kaufmann and Koolen (2018).

In this work we consider K irreducible and positive recurrent Markov chains over a countable
state space, with the objective being to identify the best arm with fixed confidence. In Section 4
we establish an instance specific non-asymptotic lower bound, which in the high confidence regime
generalizes the lower bound of the i.i.d. setting established by Garivier and Kaufmann (2016). In
our subsequent work Moulos (2019) we provide an analysis of the Track-and-Stop strategy in the
Markovian setting with asymptotic sample complexity that is at most four times the asymptotic
lower bound. We note that the Markov chains that we consider in this work are more general than
the Markov chains considered in Moulos (2019), since here we allow the state space to be countable
infinite and we don’t enforce all K Markov chains to come from an exponential family of transition
probability functions.

2. Preliminaries

Let S ⊂ R be a countable subset of the real numbers, which will serve as our state space. On this
state space we consider a one-parameter family of transition probability functions

P := {Pθ : S × S → [0, 1] : θ ∈ Θ ⊆ R}.

For the one-parameter family we impose the following assumptions:

1. For all θ ∈ Θ, Pθ is the transition probability function of an irreducible and positive recurrent
Markov chain. Therefore, there exists a unique stationary distribution πθ corresponding to Pθ.
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2. Assume that for all θ ∈ Θ,
∑

x∈S |x|πθ(x) < ∞, and denote by µθ the stationary mean of
the Markov chain with transition probability function Pθ, i.e.

µθ :=
∑
x∈S

xπθ(x).

3. The map θ 7→ µθ is a bijection of Θ to an intervalM. Therefore, with some abuse of notation
for µ ∈M we may write Pµ in order to denote Pθ, where θ is the preimage of µ.

4. For all x, y ∈ S and all θ, θ′ ∈ Θ, Pθ(x, y) > 0 ⇒ Pθ′(x, y) > 0.

For two probability measures ν, ξ over the same measure space (Ω,F), we define the relative en-
tropy from ξ to ν as

D (ν ‖ ξ) :=

{∫
log
(
dν
dξ

)
dν, if ν � ξ

∞, otherwise

Let M1(S
k) be the set of all probability distributions on Sk. For ν, ξ ∈ M1(S

k) the relative
entropy from ξ to ν simplifies to

D (ν ‖ ξ) =
∑
x∈Sk

ν(x) log
ν(x)

ξ(x)
,

with the standard notational conventions log 0 =∞, log α
0 =∞ if α > 0, 0 log 0 = 0 log 0

0 = 0.
We denote the binary relative entropy from Bernoulli(q) to Bernoulli(p) with

D2 (p ‖ q) := p log
p

q
+ (1− p) log

1− p
1− q

.

We will be mostly interested in bi-variate distributions, which arise from stationary Markov chains.
Let q ∈ M1(S), and Q be a transition probability function on S. We define the bi-variate distribu-
tion q �Q ∈M1(S

2) as
q �Q(x, y) := q(x)Q(x, y).

So in particular the stationary relative entropy between two Markov chains of the family P is given
by

D
(
θ
∥∥ θ′), D (µθ ‖ µθ′) := D (πθ � Pθ ‖ πθ � Pθ′) =

∑
x∈S

πθ(x)D (Pθ(x, ·) ‖ Pθ′(x, ·)).

3. Markovian Bandit Model

Our Markovian bandit model consists of K irreducible and positive recurrent Markov chains, each
determined by an initial distribution and a transition probability function.

Let I := M1(S)K be the set of all possible initial distributions of K Markov chains. Let
T ⊂ MK be a set of vectors such that for each µµµ = (µ1, . . . , µK) ∈ T there exists an a∗(µµµ) ∈
{1, . . . ,K} such that µa∗(µµµ) > µa for all a 6= a∗(µµµ). Eachµµµ = (µ1, . . . , µK) ∈ S should be though
of as a vector (Pµ1 , . . . , PµK ) ∈ PK of K irreducible and positive recurrent Markov chains, with a
single of them possessing the highest stationary mean.
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A Markovian bandit model is a pair

(qqq,µµµ) = ((q1, . . . , qK), (µ1, . . . , µK)) ∈ I × T .

The evolution of each arm a = 1, . . . ,K is completely determined by its initial distribution qa ∈
M1(S) and its transition probability function Pµa ∈ P . We will denote samples coming from arm a
as Xa,0, Xa,1, . . . , Xa,n, . . .. In addition after observing t samples over all, let Na(t) be the number
of transitions coming from the Markovian arm a. We will define Ft to be the observed information
up to and including the t-th sample, i.e.

Ft := σ
(
X1,0, X1,1, . . . , X1,N1(t), . . . , XK,0, XK,1, . . . , XK,NK(t)

)
.

Our goal is to identify the best arm a∗(µµµ) as fast and as accurately as possible, where by accuracy
we mean that given a level δ ∈ (0, 1) we have to find the best arm with probability at least 1 − δ.
To this end for the given level δ we need to come up with a strategy Aδ which is a triple Aδ =
((At)t∈Z>0 , τδ, âτδ) consisting of:

• a sampling rule (At)t∈Z>0 , which based on the past observations Ft, determines which arm
At+1 we should sample next, so At+1 is Ft-measurable;

• a stopping rule τδ, which denotes the end of the data collection phase and is stopping time
with respect to (Ft)t∈Z>0 , such that E(q,µq,µq,µ) τδ <∞ for all (q, µq, µq, µ) ∈ I × T ;

• a decision rule âτδ , which is Fτδ -measurable, and determines the arm that we estimate to be
the best one.

So if we use strategy Aδ, after observing t samples the number of transitions coming from arm a is

Na(t) =

t∑
s=1

1{As = a} − 1.

Of course our strategies need to perform well across all possible bandit instances, therefore
we need to restrict our strategies to a class of ‘uniformly accurate’ strategies. This motivates the
following standard definition.

Definition 1 (δδδ-PC) Given a level δ ∈ (0, 1), a strategy Aδ = ((At)t∈Z>0 , τδ, âτδ) is called δ-PC
(Probably Correct) if,

P(q,µq,µq,µ)(âτδ 6= a∗(µµµ)) ≤ δ, for all (q, µq, µq, µ) ∈ I × T .

Overall given a bandit model (q, µq, µq, µ) ∈ I × T , and an accuracy level δ ∈ (0, 1) our goal is to
derive an instance specific lower bound for the quantity

inf
Aδ: δ-PC

E(q,µq,µq,µ)[τδ].
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4. Lower Bound on the Sample Complexity

Deriving lower bounds in the multi-armed bandits setting is a task performed by change of measure
arguments which roughly speaking say that in order to identify the best arm we should at least be
able to differentiate between two bandit models that exhibit different best arms but are statistically
similar, a technique popularized by Lai and Robbins (1985). For our purposes we use a variant
developed by Garivier and Kaufmann (2016) which combines several change of measures at once.

Let (qqq,µµµ) ∈ I × T be a bandit model, and (qqq,λλλ) ∈ I × Alt(µµµ) be an alternative bandit model.
The key link between the two bandit models is their log-likelihood ratio up to time t, which can be
written in the following way

log

(
dP(q,µq,µq,µ) |Ft
dP(q,λq,λq,λ) |Ft

)
=

K∑
a=1

Na(t)−1∑
s=0

log
Pµa(Xa,s, Xa,s+1)

Pλa(Xa,s, Xa,s+1)
=

K∑
a=1

∑
x,y

Na(x, y, 0, t) log
Pµa(x, y)

Pλa(x, y)
,

whereNa(x, y, 0, t) denotes the number of transitions from state x to state y that occurred from time
0 up to time t in the Markov chain with initial distribution qa and transition probability function Pµa ,
i.e.

Na(x, y, 0, t) :=

t−1∑
s=0

1{Xa,s = x,Xa,s+1 = y}.

Using the likelihood ratio we can perform a change of measure from the (qqq,µµµ) model to the (qqq,λλλ)
model for every fixed t, as well as for random stopping times as the following identity suggests. Its
proof can be found in Appendix A.1.

Lemma 2 Let τ be an almost surely finite stopping time with respect to (Ft)t∈Z>0 , for both (q, µq, µq, µ)
and (q, λq, λq, λ). For every X ∈ Fτ we have that

E(q,λq,λq,λ)[X] = E(q,µq,µq,µ)

[
X
dP(q,λq,λq,λ) |Fτ
dP(q,µq,µq,µ) |Fτ

]
,

and in particular if we instantiate this with X = 1E for some E ∈ Fτ we get that

P(q,λq,λq,λ)(E) = E(q,µq,µq,µ)

[
1E
dP(q,λq,λq,λ) |Fτ
dP(q,µq,µq,µ) |Fτ

]
.

In order to extend the lower bounding technique of Garivier and Kaufmann (2016), to the context
of Markov chains we need the following Lemma which is a variant of Lemma 2.1 in Anantharam
et al. (1987b), and its proof is based on a renewal argument given in Appendix A.3.

Lemma 3 Let X0, X1, . . . , Xn, . . . be an irreducible and positive recurrent Markov chain on a
countable state space S, with initial distribution q, transition probability function P , and stationary
distribution π. Assume that the mean return time of the chain is finite

R = Eq[inf {n > 0 : Xn = X0}] <∞,

and define

N(x, y, n,m) =

m−1∑
s=n

1{Xs = x,Xs+1 = y},
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the number of transitions from x to y that occurred from time n up to time m.
In addition let Fn = σ(X0, X1, . . . , Xn) be the observe information up to time n, and let

G be a σ-algebra which is independent of σ(∪∞n=0Fn). Let τ be a stopping time with respect to
(σ(Fn ∪G))n∈N , with Eq τ <∞. Then

EqN(x, y, 0, τ) ≤ π(x)P (x, y)(Eq τ +R), for all x, y ∈ S.

Some more notation is needed in order to be able to express those bandit models that exhibit a
different best arm than the model in consideration. We define

Alt(µµµ) := {λλλ ∈ T : a∗(λλλ) 6= a∗(µµµ)}.

We are now ready to establish our non-asymptotic lower bound in the Markovian bandit setting.

Theorem 4 Let δ ∈ (0, 1). For any δ-PC strategy and any Markovian bandit model (qqq,µµµ) ∈ I×T
such that the mean return times are finite

Ra = Eqa [inf{n > 0 : Xa,n = Xa,0}] <∞, for a = 1, . . . ,K,

we have that

T ∗(µµµ)D2 (δ ‖ 1− δ)−
K∑
a=1

Ra ≤ E(q,µq,µq,µ)[τδ],

where

T ∗(µµµ)−1 := sup
w∈M1([K])

inf
λλλ∈Alt(µµµ)

K∑
a=1

waD (µa ‖ λa).

Proof Fix a δ-PC strategy Aδ = ((At), τδ, âτδ) and a bandit model (qqq,µµµ) ∈ I × T . Consider an
alternative bandit model (qqq,λλλ) ∈ I × Alt(µµµ).

The data processing inequality (see the book of Cover and Thomas (2006) for some context on
the inequality) give us as a way to lower bound the divergence of the two models P(q,µq,µq,µ) |Fτδ and
P(q,λq,λq,λ) |Fτδ .

D2

(
P(q,µq,µq,µ)(E)

∥∥ P(q,λq,λq,λ)(E)
)
≤ D

(
P(q,µq,µq,µ) |Fτδ

∥∥∥ P(q,λq,λq,λ) |Fτδ
)
, for any E ∈ Fτδ .

We apply this inequality with the event E = {âτδ 6= a∗(µµµ)} ∈ Fτδ . The fact that the strategy Aδ is
δ-PC implies that

P(q,µq,µq,µ)(E) ≤ δ, and P(q,λq,λq,λ)(E) ≥ 1− δ,

hence
D2 (δ ‖ 1− δ) ≤ D

(
P(q,µq,µq,µ) |Fτδ

∥∥∥ P(q,λq,λq,λ) |Fτδ
)
,

Using Lemma 3 we further have that

D
(
P(q,µq,µq,µ) |Fτδ

∥∥∥ P(q,λq,λq,λ) |Fτδ
)

= E(q,µq,µq,µ)

[
log

dP(q,µq,µq,µ) |Fτδ
dP(q,λq,λq,λ) |Fτδ

]
≤

K∑
a=1

(
E(q,µq,µq,µ)[Na(τδ)] +Ra

)
D (µa ‖ λa).
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Combining those two we get that

D2 (δ ‖ 1− δ) ≤
K∑
a=1

(
E(q,µq,µq,µ)[Na(τδ)] +Ra

)
D (µa ‖ λa), for all λλλ ∈ Alt(µµµ).

The fact that
∑K

a=1Na(τδ) ≤ τδ gives

D2 (δ ‖ 1− δ) ≤

(
E(q,µq,µq,µ)[τδ] +

K∑
a=1

Ra

)
K∑
a=1

E(q,µq,µq,µ)[Na(τδ)] +Ra∑K
b=1

(
E(q,µq,µq,µ)[Nb(τδ)] +Rb

)D (µa ‖ λa),

and now we follow the technique of combining multiple alternative models λλλ in order to obtain

D2 (δ ‖ 1− δ) ≤

(
E(q,µq,µq,µ)[τδ] +

K∑
a=1

Ra

)
inf

λλλ∈Alt(µµµ)

K∑
a=1

E(q,µq,µq,µ)[Na(τδ)] +Ra∑K
b=1

(
E(q,µq,µq,µ)[Nb(τδ)] +Rb

)D (µa ‖ λa)

≤

(
E(q,µq,µq,µ)[τδ] +

K∑
a=1

Ra

)
sup

w∈M1([K])
inf

λλλ∈Alt(µµµ)

K∑
a=1

waD (µa ‖ λa).

Corollary 5 D2 (δ ‖ 1− δ) ∼ log 1
δ as δ goes to 0, and so Theorem 4 yields the asymptotic lower

bound

T ∗(µµµ) ≤ lim inf
δ→0

E(q,µq,µq,µ)[τδ]

log 1
δ

.

It is worth mentioning that our asymptotic lower bound has no dependence on the initial distri-
butions of the Markov chains, as one would expect because in the long run the effect of the initial
distributions vanishes. In addition it generalizes the asymptotic lower bound of Garivier and Kauf-
mann (2016), where each arm is an i.i.d. sequence, to the Markovian setting.

As shown in Garivier and Kaufmann (2016) the supremum in the definition of T ∗(µ)−1 is
actually a maximum and we define

w∗(µµµ) := arg max
w∈M1([K])

inf
λλλ∈Alt(µµµ)

K∑
a=1

waD (µa ‖ λa).

Those weights w∗(µµµ) play an important role in the derivation of the (α, δ)-Track-and-Stop strategy
as they represent the optimal proportions that we should sample the K Markov chains. For a de-
velopment of the (α, δ)-Track-and-Stop strategy in the Markovian setting the interested reader can
see Moulos (2019).

5. Conclusion

We developed instance specific non-asymptotic and asymptotic lower bounds for the problem of
identifying the best Markovian arm with fixed confidence. In our subsequent work Moulos (2019)
we analyze the (α, δ)-Track-and-Stop strategy in the Markovian setting, and we derive an upper
bound which is a factor of four apart from the lower bound. A direction for future research is to
eliminate this factor of four, and establish the exact sample complexity of the best Markovian arm
identification problem.
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Appendix A. Lower Bound on the Sample Complexity

A.1. Proof of Lemma 2

It is straightforward to see that for each fixed t and X ∈ Ft we have that

E(q,λq,λq,λ)[X] = E(q,µq,µq,µ)

[
X
dP(q,λq,λq,λ) |Ft
dP(q,µq,µq,µ) |Ft

]
.
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Now let τ be an almost surely finite stopping time with respect to (Ft)t∈Z>0 , for both P(q,µq,µq,µ) and
P(q,λq,λq,λ), and X ∈ Fτ . Then

E(q,λq,λq,λ)[X] =
∞∑
t=0

E(q,λq,λq,λ)

X1{τ = t}︸ ︷︷ ︸
∈Ft

)


=
∞∑
t=0

E(q,µq,µq,µ)

[
X1{τ = t}

dP(q,λq,λq,λ) |Ft
dP(q,µq,µq,µ) |Ft

]
= E(q,µq,µq,µ)

[
X
dP(q,λq,λq,λ) |Fτ
dP(q,µq,µq,µ) |Fτ

]
.

A.2. Markov Chains

Here we establish some facts about Markov chains, which are needed in the argument for the the
lower bound. Let (S,S) be a measure space, with S a countable state space, and S = 2S the σ-field
containing all subsets of S. This measure space can be extended to a product measure space on
(n + 1)-tuples (Ωn,Fn) = (Sn+1,S⊗(n+1)), as well as on sequences (Ω∞,F∞) = (S∞,S⊗∞).
We let (Xn, n ∈ N) be the coordinate process, i.e. Xn(ω) = ωn for ω ∈ S∞. We fix a transition
probability function P : S × S → [0, 1]. For each initial probability distribution q on (Ω0,F0) we
define a probability distribution Pq |Fn on (Ωn,Fn) as

Pq |Fn (X0 = x0, . . . , Xn = xn) = q(x0)P (x0, x1) · · ·P (xn−1, xn).

By Kolmogorov’s extension Theorem we can extend the finite dimensional distributions to a unique
probability distribution Pq on (Ω∞,F∞).

The fundamental Markov property can be written as

Pq(Xn+1 ∈ B | Fn) = P (Xn, B), for any B ∈ S.

The Markov property can be extended to the so called strong Markov property which asserts that if
τ is a Pq-a.s. finite stopping time with respect to (Fn)n∈N , then

Pq(Xτ+1 ∈ B | Fτ ) = P (Xτ , B), for any B ∈ S.

For a more thorough discussion on the Markov and the strong Markov properties the interested
reader is referred to Durrett (2010).

Using the strong Markov property we can prove a fundamental Lemma about Markov chains
that reveals the i.i.d. structure that is present. Define recursively the k-th return time to the initial
state as {

τ0 = 0

τk = inf {n > τk−1 : Xn = X0}, for k ≥ 1,

and for k ≥ 1 let rk = τk − τk−1 be the residual time.
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Lemma 6 If we further assume that the Markov chain is irreducible and recurrent, then those
random times partition the Markov chain in a sequence v1, v2, . . . , vk, . . . of i.i.d. random blocks
given by

v1 = (r1, Xτ0 , . . . , Xτ1−1), v2 = (r2, Xτ1 , . . . , Xτ2−1), . . . , vk = (rk, Xτk−1
, . . . , Xτk−1), . . . .

Proof First note that due to recurrence τk is Pq-a.s. finite

Pq(τk <∞) =
∑
x∈S

q(X0 = x)Px(τk <∞)︸ ︷︷ ︸
=1

= 1,

which will enable us to apply the strong Markov property. In addition observe that vk = v1 ◦ θτk−1
,

and the block random variable vk is a discrete random variable, since it can take on only countably
many values. Let v be such a possible value, then the strong Markov property informs us that

Px(vk = v | Fτk−1
) = Px(v1 ◦ θτk−1

= v | Fτk−1
) = Px(v1 = v), for each x ∈ S,

and so
Pq(vk = v | Fτk−1

) = Pq(v1 = v),

which means that for each k ≥ 1, vk is independent of Fτk−1
, and so independent of v1, . . . , vk−1,

and has the same distribution as v1.

We let N(x, n,m) be the number of visits to x that occurred from time n up to (but not including)
time m, and N(x, y, n,m) to be the number of transitions from x to y that occurred from time n up
to time m:

N(x, n,m) =

m−1∑
s=n

1{Xs = x};

N(x, y, n,m) =

m−1∑
s=n

1{Xs = x,Xs+1 = y}.

It is well know, for instance see Durrett (2010), that if the Markov chain is irreducible and positive
recurrent then it posses a unique stationary distribution π which satisfies the relation

π(x) =
Ex0 N(x, 0, τ1)

Ex0 τ1
=

1

Ex τ1
, for all x0, x ∈ S.

In the following Lemma we establish a similar relation for the invariant distribution over pairs of
the Markov chain.

Lemma 7 Further assume that the Markov chain is irreducible and positive recurrent, so it posses
a unique stationary distributions π. Then

π(x)P (x, y) =
Ex0 N(x, y, 0, τ1)

Ex0 τ1
, for any x0, x, y ∈ S.

If in addition the initial distribution q is such that Eq τ1 <∞, then

π(x)P (x, y) =
EqN(x, y, 0, τ1)

Eq τ1
, for any x, y ∈ S.
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Remark 8 The assumption Eq τ1 <∞ is essential because π(x) = 1
Ex τ1 , and so if we take q = π,

and S is countably infinite, then Eπ τ1 =∞.

Proof Since π(x) =
Ex0 N(x,0,τ1)

Ex0 τ1
, it is enough to show that

Ex0 N(x, 0, τ1)P (x, y) = Ex0 N(x, y, 0, τ1),

or expanding out the definitions that

Ex0
τ1−1∑
n=0

1{Xn = x}P (x, y) = Ex0
τ1−1∑
n=0

1{Xn = x,Xn+1 = y}.

Conditioning over the possible values of τ1 and using Fubini’s Theorem we obtain

Ex0
τ1−1∑
n=0

1{Xn = x}P (x, y) =
∞∑
t=1

Px0(τ1 = t)
t−1∑
n=0

Px0(Xn = x | τ1 = t)P (x, y)

=
∞∑
n=0

∞∑
t=n+1

Px0(Xn = x, τ1 = t)P (x, y)

=
∞∑
n=0

Px0(Xn = x, τ1 > n)P (x, y)

=
∞∑
n=0

Px0(Xn = x,Xn+1 = y)Px0(τ1 > n | Xn = x)

=

∞∑
n=0

Px0(Xn = x,Xn+1 = y, τ1 > n)

= Ex0
τ1−1∑
n=0

1{Xn = x,Xn+1 = y},

where the second to last equality holds true because because Markov chains satisfy a reversed
Markov property as well and so

Px0(τ1 > n | Xn = x,Xn+1 = y) = Px0(τ1 > n | Xn = x).

Finally, under the assumption Eq τ1 <∞ we conclude that

π(x)P (x, y) =
EqN(x, y, 0, τ1)

Eq τ1
, for any x, y ∈ S.

A.3. Proof of Lemma 3

We are going to use the k-th return times{
τ0 = 0

τk = inf {n > τk−1 : Xn = X0}, for k ≥ 1.
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in order to decompose N(x, y, 0, τk) in k i.i.d. summands according to Lemma 6

N(x, y, 0, τk) =
k−1∑
i=0

N(x, y, τi, τi+1).

Now let κ = inf {k > 0 : τk ≥ τ}, so that τκ is the first return time to the initial state after or at
time τ . By definition of τκ we have the following two inequalities

τκ − τ ≤ τκ − τκ−1, and N(x, y, 0, τ) ≤ N(x, y, 0, τκ).

Taking expectations in the first one we obtain

Eq[τκ − τ ] ≤ Eq[τκ − τκ−1] = Eq r1 = R,

which also gives that
Eq τκ ≤ Eq τ +R <∞.

This allows us to use Wald’s identity, followed by Lemma 7, followed by Wald’s idenity again, in
order to get

EqN(x, y, 0, τκ) = Eq
κ−1∑
i=0

N(x, y, τi, τi+1)

= EqN(x, y, 0, τ1)Eq κ
= p(x)P (x, y)Eq τ1 Eq κ
= p(x)P (x, y)Eq τκ.

Therefore

EqN(x, y, 0, τ) ≤ EqN(x, y, 0, τκ) = π(x)P (x, y)Eq τκ ≤ π(x)P (x, y)(Eq τ +R).
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