
Zero-Voltage Switching for Flying Capacitor Multi-Level
Converters

Margaret Blackwell

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-35
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-35.html

May 14, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Zero-Voltage Switching for Flying Capacitor Multi-Level Converters

by

Margaret Elizabeth Blackwell

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Robert Pilawa-Podgurski, Chair
Professor Seth Sanders

Associate Professor Duncan Callaway

Spring 2019

Zero-Voltage Switching for Flying Capacitor Multi-Level Converters

Copyright 2019
by

Margaret Elizabeth Blackwell

1

Abstract

Zero-Voltage Switching for Flying Capacitor Multi-Level Converters

by

Margaret Elizabeth Blackwell

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Robert Pilawa-Podgurski, Chair

This thesis presents a control technique to improve power density and efficiency of a spe-
cific power converter topology, the flying capacitor multi-level (FCML) topology. Controlling
these converters in such a way to achieve zero-voltage switching (ZVS) across the full range
of duty cycles, reduces switching losses and therefore can be used to allow for more dense
designs, or more efficient operation. Previous works have used variable frequency control
to enable ZVS at specific duty cycles in FCML converters, but have not been able to use
these methods to enable ZVS across the full range. This work uses dynamic level selection
and variable frequency control to increase inductor current ripple at duty cycle ranges for
which ZVS was previously unattainable. Furthermore, a mathematical analysis to determine
parameters for active voltage balancing of the flying capacitors during a dynamic level tran-
sition is presented. An experimental 5-level FCML prototype was built using GaN devices
on a single-sided printed circuit board (PCB) to demonstrate this control technique. We
demonstrate 4-level and 5-level operation with ZVS at duty cycles that are not possible with
5-level operation alone, as well as dynamic level transitioning with active flying capacitor
voltage balancing.

i

To Mom and Dad, for your infinite love and encouragement
and

To Devin, for your incessant love and encouragement

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 Background 3
2.1 Conventional Buck Converter . 3
2.2 Flying Capacitor Multi-Level Converter . 4

3 Zero-Voltage Switching 7
3.1 Quasi-Square-Wave Zero-Voltage Switching 7
3.2 QSW ZVS for FCML Converters . 10
3.3 ZVS Challenges for FCML Converters . 11

4 Dynamic Level Selection 13
4.1 Dynamic Level Selection . 13
4.2 Level Evaluation . 14
4.3 Frequency Limitations . 17

5 Flying Capacitor Active Balancing 19
5.1 Constant Effective Duty Cycle Active Balancing 19
5.2 Active Balancing Parameter Calculation . 21

6 Experimental Results 29
6.1 Experimental Prototype . 29
6.2 Zero-Voltage Switching . 30
6.3 Dynamic Level Transitioning . 32
6.4 Active Balancing Parameter Calculations . 35
6.5 Converter Efficiency . 37

iii

7 Conclusions 40
7.1 Future Work . 40

Bibliography 42

A Matlab Active Balancing Calculations 47

B Five-level FCML Hardware Prototype Circuit Schematic and PCB Layout 86

C Microcontroller Code for Dynamic Level Transitioning with Active Bal-
ancing 103

iv

List of Figures

2.1 Conventional two-level buck converter schematic. 3
2.2 5-Level FCML Converter Schematic. 5
2.3 Five-level FCML PS-PWM control signals at different duty cycles and the associ-

ated switch-node voltage exhibiting the effective duty cycle and reduced inductor
voltage swing. 5

2.4 Multiple discrete voltage levels can be generated at the switch-node with an
FCML converter, in this example with a 5-level FCML, thereby reducing the
dV/dt transitions at the switch-node and across the inductor, allowing for a re-
duction in filter requirements. 6

3.1 Two-level buck converter waveforms for ZVS conditions. The inductor current
must have enough ripple to reach a peak negative value, IZV S, which can discharge
the parasitic capacitance CS1A

of the buck switch-pair and allow for ZVS. 8
3.2 Two-level buck switch-pair with parasitic capacitances. 8
3.3 Inductor current must have enough ripple to reach a peak negative value, IZV S

which can discharge the parasitic capacitance CSiA
of an arbitrary switch pair

and allow for ZVS. 11
3.4 Higher-level FCML converters inherently exhibit lower inductor current than two-

level buck converters, but introduce inductor ripple valleys at certain duty cycles. 12

4.1 The proposed method implements dynamic level changing to avoid operation at
the inductor current ripple valleys and to maintain ZVS across the entire duty
cycle range. 14

4.2 The 5-level FCML operated as a 4-level with C2 voltage maintained at the 5-level
value while C1 and C3 re-balance to 4-level operation. 15

4.3 Simulated converter waveforms for the proposed method. 17
4.4 When operating near resonant frequency, the inductor current is not linear, and

therefore, only quasi-ZVS may be possible. 18

5.1 Active balancing through duty cycle adjustment for γ number of cycles is imple-
mented at transitions between different numbers of levels. 21

v

5.2 Sub-periods for the lowest duty-cycle range of a 5/4-level FCML for calculating
active balancing capacitor voltages. 22

5.3 Flowchart for determining the α and γ combination for the fastest active re-
balancing during dynamic level transitioning. 24

5.4 The active balancing parameters corresponding to the shortest settling time ex-
hibit a similar relationship with output current for different input voltages. . . . 28

6.1 Hardware Prototype. 29
6.2 Five-level FCML circuit schematic drawing. 30
6.3 Annotated photograph of the experimental prototype. 30
6.4 ZVS is achieved for 4-level operation at a duty cycle for which 5-level operation

cannot achieve ZVS. 32
6.5 ZVS is achieved for 5-level operation at a duty cycle for which 4-level operation

cannot achieve ZVS. 32
6.6 Level transitioning with natural balancing. 33
6.7 Active balancing decreases the settling time of capacitors C1 and C3 during a

transition from 5- to 4-level operation. 33
6.8 Active balancing decreases the settling time of capacitors C1 and C3 during a

transition from 4- to 5-level operation. 34
6.9 Level transitioning with less aggressive active balancing has a longer settling time,

but a lower magnitude of increased inductor current ripple. 35
6.10 The active balancing model calculated in Matlab closely corresponds to measured

waveforms for this 5- to 4-level transition with α = 2.0 and γ = 7. 36
6.11 Higher efficiency points closely correspond with the proposed method in Fig. 4.1. 37
6.12 Power loss for 4- and 5-level operation with manually tuned ZVS switching fre-

quency. 38

B.1 Top level circuit schematic for the 5-level FCML prototype. 87
B.2 Circuit schematic for the 5-level FCML power stage. 88
B.3 Circuit schematic for a high-side switch including gate driver. 89
B.4 Circuit schematic for a low-side switch including gate driver. 90
B.5 Circuit schematic for the LDOs. 91
B.6 Circuit schematic for the (unused) unfolder stage. 92
B.7 Circuit schematic for the switch pairs of the unfolder stage. 93
B.8 Circuit schematic for the LDOs used for the unfolder stage. 94
B.9 Circuit schematic for current sensing. 95
B.10 Circuit schematic for voltage sensing. 96
B.11 Circuit schematic for a voltage sensing network. 97
B.12 Top layer of PCB. 99
B.13 First inner layer of PCB. 100
B.14 Second inner layer of PCB. 101
B.15 Bottom layer of PCB. 102

vi

List of Tables

4.1 4/5 Level Switch Pair Configurations and Flying Capacitor Impact 16
4.2 5/6 Level Switch Pair Configurations and Flying Capacitor Impact 16
4.3 Frequency Limits . 17

5.1 Flying Capacitor Charge and Discharge Sub-periods 20

6.1 Component Listing of the Hardware Prototype 31

vii

Acknowledgments

Firstly, I would like to thank the University of Illinois Urbana-Champaign SURGE Fel-
lowship program for funding my first year of graduate school and ARPA-E for funding this
work during the second year.

I would like to thank Dr. Prasad Enjeti at Texas A&M University for providing me with
the opportunity to jump into power electronics research as an undergraduate student, and
for being a proponent of my success even after graduation.

I am also extremely grateful to my research adviser, Dr. Robert Pilawa-Podgurski. Not
only did he take a chance on inviting me to join his group, but when a job opportunity
arose at UC Berkeley, he extended the offer for me to join him in the move before ever
having worked with me. His confidence in me and in my potential has been much needed
encouragement over the past two years (and likely will continue to be in the years to come).
Thank you for taking the time to be involved with my research, as well as caring about my
life outside of the lab.

I want to thank the members of the “Pilawa Research Group” as well: Derek Chou, Nate
Pallo, Zichao Ye, Zitao Liao, Chris Barth, Rose Abramson, Yizhe Zhang, Kelly Fernandez,
Pourya Assem, Wen-Cheun (Joseph) Liu, Joseph Schaadt, Tom Foulkes, and Pei Han Ng. In
addition to helping answer questions, discussing ideas, as well as helping in the lab, they have
continually supported my success and have been sincere friends to me. A special “thank you”
to both Nathan Brooks, for challenging my thoughts, ideas, and methods, and for helping
to think up solutions, and to Dr. Enver Candan for being so genuine with including me in
your work from the moment I entered the group, and for taking the time to teach me.

I want to thank Sam Coday, for being by my side and navigating graduate school with me.
When I started graduate school, I never expected to make such an amazing friend as Sam and
if not for her, I surely would not have even made it through the first semester. Thank you
for sharing in my struggles and accomplishments and for motivating me, especially through
the writing of this thesis.

The member of my research group I would most like to thank is Andrew Stillwell. Without
Andrew, this thesis would not exist. From proposing the idea, to working with me to
complete it, he has been my guide and mentor through these first two years of graduate
school. Thank you for not only encouraging me and having confidence in my abilities, but
letting me know that when I needed to hear it. I want to thank you for teaching me, helping
me through my struggles, being excited about my successes, and for being my friend.

Finally, I would like to thank my friends and family, who provide motivation and encour-
agement. I want to especially thank Mom, Dad, Matthew, Timothy, Andrew, and Sabrina
for loving me and not forgetting me even though I am several states away. Thank you for
being proud of me; it is what keeps me continuing on in my studies and career. Last, but
certainly not least, I want to send a million thanks to Devin. Thank you for your dedication
to me and to helping me pursue my dreams. Thank you for loving me with your whole heart
and for always being there for me. You know I would be lost without you, so I am eternally
grateful that I have found a partner in you.

1

Chapter 1

Introduction

Power electronics, the field of utilizing switching devices to convert between forms and levels
of power, is continually growing and open to crucial advancements. Oak Ridge National
Laboratory estimates that by 2030, about 80% of electricity could flow through power elec-
tronics [1], either on the side of power generation or consumption. Applications that are
heavily dependent on power electronics, such as electrification of transportation, grid in-
tegration of renewable energy sources, and data center power delivery are expanding, con-
sequently pushing the advancement of power electronics, specifically in the areas of power
density and efficiency [2]. A few potential methods of approaching these challenges are:
increasing switching frequency, changing topologies, or targeting and reducing component
losses. Increasing switching frequency or changing topologies can allow for reduced com-
ponent sizing. Reducing specific component losses, such as those associated with magnetic
components or switching devices, can increase efficiency, as well as allow for further increase
in power density. In this work, we combine each of these methods using a novel control
technique with the flying capacitor multi-level (FCML) topology to improve both efficiency
and power density.

FCML converters utilize one or more flying capacitors, which are capacitors that are con-
nected to various voltage potentials in the circuit via a network of switching devices. These
capacitors in an FCML converter act as energy storage elements to reduce the switch voltage
stress of each transistor and to reduce the volt-second on the inductor [3–8]. These benefits
allow the use of lower voltage rated switches, which permits higher switching frequencies as
a result of lower switching losses. The increase in switching frequency, in conjunction with
the reduction in inductor volt-second, due to inherent qualities of the FCML topology, leads
to a reduction in the volume of the inductor and the total volume of the converter. However,
with this decrease in volume comes a necessity to increase efficiency because the surface area
for heat transfer is reduced. Further reduction in volume can be achieved through higher fre-
quency switching at the cost of higher switching losses. To mitigate these switching losses,
zero-voltage switching (ZVS) can be employed at selected duty cycles as shown in [9, 10]
through variable frequency control. However, both works noted the challenges inherent to
FCML operation of obtaining ZVS at specific duty cycles. For DC/AC or AC/DC con-

CHAPTER 1. INTRODUCTION 2

verter applications, or for applications with wide input voltage ranges, the duty cycle of the
switches must vary across a wide range. However, due to the nature of FCML operation
detailed in this paper, maintaining ZVS across the full range is a challenge. In [11], the in-
ductor current ripple is minimized by dynamically varying the number of levels of the FCML
converter, which is suitable for hard-switched operation. Here, we propose to dynamically
vary the number of levels to increase the inductor current ripple and, in conjunction with
variable frequency control, maintain the necessary conditions for ZVS across the full duty
cycle range.

We derive the underlying mechanisms in FCML converters which make ZVS difficult or
impossible at specific duty cycle ranges, and show how dynamic level selection overcomes this
challenge. Additionally, we detail the capacitor voltage considerations necessary to decide
the number of converter levels and switch implementation. Our control strategy is validated
in hardware through a 5-level experimental prototype, which demonstrates ZVS at duty
cycles previously unattainable. Level transitioning is demonstrated with active balancing
through the use of duty cycle adjustment. This thesis presents a method of ensuring ZVS
operation across a full range of conversion ratios for an FCML converter, and demonstrates
this method in a compact and flat hardware prototype [12].

The remainder of this thesis is organized as follows: Chapter 2 reviews the basics of
a conventional two-level buck converter, as well as details FCML operation. Chapter 3 de-
scribes quasi-square-wave ZVS operation and how this approach applies to FCML converters.
Additionally, this chapter derives the fundamental characteristics of FCML converters that
prevent ZVS operation at specific duty cycles. Chapter 4 explores current solutions to FCML
ZVS challenges and proposes dynamic level selection to overcome these challenges. This
chapter also steps through the design process of implementing level transitioning. Chapter 5
describes the active balancing method for level transitions and presents a method to deter-
mine parameters for active balancing corresponding to the shortest settling time. Chapter 6
demonstrates the method of dynamic level selection for a wide duty cycle range in hardware,
as well as the efficiency benefits of using this method for wide-range ZVS. Finally, Chapter 7
summarizes the contribution of this thesis and proposes future work on this topic.

3

Chapter 2

Background

Several applications including data center power delivery rely on power electronics to perform
voltage step-down processes. Converting energy from the electrical grid at higher voltages to
the lower voltages used by various systems (e.g. the servers and individual CPUs within the
data center architecture) require highly efficient power converters. In this chapter, we discuss
a simple step-down power converter as the basis for an expanded multi-level step-down
converter: the flying capacitor multi-level (FCML) topology. We detail FCML operation as
well as the advantages of the FCML topology over the simple buck converter.

2.1 Conventional Buck Converter

S1A

S1B

L

+

Vout

-

Vsw

Vin Cout
Cin

+-

Figure 2.1: Conventional two-level buck converter schematic.

A standard switching power converter for voltage step-down is the buck converter [13].
Fig. 2.1 shows the circuit schematic for the conventional buck converter. The two switches,
S1A and S1B, are operated as a complementary pair; that is, when S1A turns on, S1B turns
off, and vice-versa. The percentage of time within the switching period Tsw that each switch
is turned on is the duty cycle, D. For the buck converter, the voltage conversion ratio from
the input to the output is equivalent to the duty cycle, as given by (2.1). A method of
varying the duty cycle, called pulse width modulation (PWM), can be used to adjust the
conversion ratio across a 60/50 Hz AC line cycle for AC/DC and DC/AC conversion.

CHAPTER 2. BACKGROUND 4

In the conventional buck converter, the maximum voltage stress (neglecting ringing)
across each of the switches is equal to the full input voltage, Vin. Furthermore, the voltage
across the inductor during the on-time (D · Tsw) of S1A is (1 − D) · Vin, and the current
ripple found by using the inductor voltage, (2.2), is given by (2.3) where L is the inductance
and fsw = 1/Tsw is the switching frequency. The voltage swing across the inductor for the
buck converter is equal to Vin. This voltage swing is the difference in voltage between the
highest voltage across the inductor and the lowest voltage across the inductor during one
switching period. While the conventional buck converter is relatively simple, a few drawbacks
include the large voltage ratings necessary for the switches, as well as the large voltage at
the switch-node (Vsw in Fig. 2.1) which requires a larger filter inductor, L. Furthermore,
the large voltage swing and therefore, large dV/dt transitions at the switch-node can induce
voltage overshoots at the switching transistions because of parasitic inductances, as well as
can pose a problem for filtering electromagnetic interference (EMI). These limitations can
be addressed by investigating other circuit topologies.

Vout = D · Vin (2.1)

VL = L
diL
dt

(2.2)

∆iL =
Vin · (1−D) ·D

L · fsw
(2.3)

2.2 Flying Capacitor Multi-Level Converter

One potential way to address the limitations of the conventional buck converter is to extend
the converter to a multi-level topology, for example, the flying capacitor multi-level (FCML)
topology, introduced in [3]. The FCML can be configured to step-up [14–17] or step-down [9,
18–21] the input voltage. or have bi-directional capabilities [10, 22]; here we use the buck
configuration. Fig. 2.2 shows a schematic drawing of the 5-level FCML buck converter used
in this work with flying capacitors labeled C1, C2, and C3. The voltage conversion ratio of
the buck FCML is equivalent to that of the traditional two-level buck converter, given by
(2.1) [3]. Phase-shifted PWM (PS-PWM) [3, 18] is typically used for FCML converters of
N levels with each switch pair (labeled SiA and SiB) operated complementary to each other
at duty cycle, D, and phase shifted by Φ = 360°/(N − 1). Inherent to the FCML operation
are both the converter duty cycle, D, and an effective duty cycle at the switching-node,
Deff given by (2.4), which affects the inductor current ripple, ∆ipp, given by (2.5). Fig. 2.3a
and Fig. 2.3b show the switch control signals for two different duty cycles that generate
the same effective duty cycle at the switch-node. At these two duty cycles, the switch-node
voltage swing remains the same in magnitude, but the absolute voltage levels are shifted.
This voltage shift is a characteristic of the multi-level nature of the FCML topology.

Deff = D · (N − 1)− floor(D · (N − 1)) (2.4)

CHAPTER 2. BACKGROUND 5

S4A S3A S2A S1A

S1BS2BS3BS4B

L

+

Vout

-

Vsw

Vin

iL

Cout
Cin C3 C2 C1

+-

Figure 2.2: 5-Level FCML Converter Schematic.

Gate Signals

Converter Signals

q4A

q3A

q2A

q1A

1/fsw

1/feff

0 V

Vsw

D/fsw

Deff /feff

�

Vin/4

(a) For lower duty cycles (0 - 25%), the switch-node
voltage in a 5-level FCML alternates between 0 V and
1
4 of the input voltage. Here, a 12.5% duty cycle at a
switching frequency, fsw, yields a 50% effective duty
cycle and an effective switching frequency feff = 3 ·
fsw at the switch node.

Gate Signals

Converter Signals

q4A

q3A

q2A

q1A

1/fsw

1/feff

Vin/2
Vsw

D/fsw

Deff /feff

�

Vin/4

(b) For a range of duty cycles higher than those in
Fig. 2.3a (e.g. 25 - 50%), the switch-node voltage
in a 5-level FCML alternates between 1

4 and 1
2 of the

input voltage. Here, a 37.5% duty cycle at a switching
frequency, fsw, yields a 50% effective duty cycle and
an effective switching frequency feff = 3 · fsw at the
switch node.

Figure 2.3: Five-level FCML PS-PWM control signals at different duty cycles and the asso-
ciated switch-node voltage exhibiting the effective duty cycle and reduced inductor voltage
swing.

∆ipp =
Vin · (Deff · (1−Deff))

L · fsw · (N − 1)2
(2.5)

One advantage of the FCML converter with PS-PWM control is the reduced switch
voltage stress, Vin/(N − 1), because the flying capacitors, Ck, are held at a steady-state
voltage, (2.6). The capacitors that flank each switch are separated by only a fraction of the
input voltage based on the number of levels. This voltage differential is the voltage that
the switch must be rated to block (neglecting margins for overshoot/ringing). Because of
the reduced voltage requirement, higher power density converters can be designed by using
smaller transistors [6, 18].

CHAPTER 2. BACKGROUND 6

VCk
=

k · Vin
(N − 1)

, k = 1, 2...(N − 2) (2.6)

Additionally, the voltage across the inductor swings by only Vin/(N − 1) as compared
to the conventional buck inductor which swings by the full input voltage. Fig. 2.4 shows
this reduced voltage step on the inductor and demonstrates the multi-level structure of this
topology as evident by the number of discrete voltage levels at the inductor. Across a period
of changing duty cycles, the switch-node voltage alternates between different voltage levels
that are determined by the level number, N , of the converter, but experiences a constant
voltage swing, reduced from that of the two-level buck converter. Furthermore, the FCML
topology has an inherent frequency multiplication at the switch-node, Vsw in Fig. 2.2, that
allows for a reduction in filter inductance. For a given switching frequency, fsw, the effective
switching frequency, feff , seen at the inductor is (N − 1) · fsw, shown in Fig. 2.3. Both the
frequency multiplication and voltage reduction lead to a required inductance decrease by
(N − 1)2. A reduction in the passive component requirements can allow for converters of
higher power density. However, decreased passive component volume is only one aspect to
address when designing high efficiency, high density power converters. The following chapter
will explore another technique that can be used to reduce converter power losses and increase
efficiency.

Vsw

Vout

dt
dV

Vin

¾Vin

½Vin

¼Vin

0 V
Time

V
o
lt

ag
e

A
m

p
li

tu
d
e

Figure 2.4: Multiple discrete voltage levels can be generated at the switch-node with an
FCML converter, in this example with a 5-level FCML, thereby reducing the dV/dt transi-
tions at the switch-node and across the inductor, allowing for a reduction in filter require-
ments.

7

Chapter 3

Zero-Voltage Switching

One approach to increase converter power density is to reduce the size of the passive compo-
nents (capacitors and inductors). Chapter 2 describes how the inductor size can be reduced
by using a multi-level topology; in this chapter, we discuss a control technique that can be
used to reduce converter losses. Loss reduction can be used to increase efficiency in the
same converter volume or allow the same efficiency in a smaller volume by reducing passive
components further.

By rearranging (2.3), we can see that either increasing the allowed current ripple or
increasing the switching frequency can lead to a smaller inductance requirement. However,
increasing the peak-to-peak current ripple on the inductor increases inductor core losses
and AC conduction losses. Similarly, increasing the switching frequency increases the losses
associated with switching. Although, through control techniques, such as implementing
soft-switching, we can reduce switching losses and allow faster switching without incurring
excessive penalties.

Zero-voltage switching (ZVS) is one method of achieving soft-switching conditions by
switching when the voltage across the transistor is zero [13,23]. ZVS can be realized through
resonant operation [24–26] or by using quasi-square-wave (QSW) control [9, 23, 27–29]. The
fundamental operation of QSW ZVS is described in Section 3.1, as well as design and control
considerations for ZVS. Sections 3.2 and 3.3 detail how QSW ZVS can be applied to the
FCML topology and the challenges that arise in maintaining ZVS across wide operating
conditions.

3.1 Quasi-Square-Wave Zero-Voltage Switching

The quasi-square-wave (QSW) control method entails adjusting the on-times and dead-
times (time when neither switch is on) of the transistors such that the inductor current
charges/discharges the parasitic capacitances of the transistor, and allows a zero-voltage
switch transition [23, 27]. If either the voltage across the transistor or the current through
the transistor is zero, then the power loss (P = I · V) is zero. In this case, we control the

CHAPTER 3. ZERO-VOLTAGE SWITCHING 8

Gate Signals

0 V

Converter Signals

qS1B

qS1A

1/feff

VinVCS1A

iL

VCS1B

0 A

2 1 2

IZVS

Figure 3.1: Two-level buck converter
waveforms for ZVS conditions. The in-
ductor current must have enough ripple to
reach a peak negative value, IZV S, which
can discharge the parasitic capacitance
CS1A

of the buck switch-pair and allow for
ZVS.

CS1A

CS1B

S1A

S1B

Cin

+_

+ _

iL
Vout

(a) Positive inductor current in Region 1 of
Fig. 3.1 discharges the parasitic capacitance of
the low-side switch and allows ZVS.

CS1A

CS1B

S1A

S1B

Cin

+_

+ _

iL
Vout

(b) Negative inductor current is needed in Re-
gion 2 of Fig. 3.1 to discharge the parasitic ca-
pacitance of the high-side switch and allow ZVS.

Figure 3.2: Two-level buck switch-pair
with parasitic capacitances.

switch voltage to be zero before the transition.
The QSW ZVS approach is described here, first using a two-level buck converter, and

then extended to a multi-level buck (the FCML topology). Fig. 3.1 shows the control signals
and drain-source voltages, Vds, for the switch-pair in a two-level buck converter, shown in
Fig. 2.1. The switch-pair consists of a high-side switch, which is closer in potential to the
input than the low-side switch, which is closer to the ground connection. The voltage, Vds,
is equivalent to the voltage across the parasitic output capacitance of the switch, VCS1A/B

.
For QSW ZVS, a sufficiently long deadtime (Regions 1 and 2 in Fig. 3.1) is imposed based
on the inductor current and parasitic capacitances. Only the switching losses for the switch
turn-on transition are considered because when the switch is on and about to turn off, there
is no voltage present across the switch. There is, however, voltage overshoot during the turn-
off transition due to stray inductances, but the losses due to this transition are neglected
because they are much smaller in magnitude than losses due to the turn-on transition [30]. In
buck-mode operation, because the inductor current is naturally positive during the deadtime
before the low-side switch, S1B, turns on (Region 1 in Fig. 3.1), ZVS is easily attainable for
the low-side switches. The small parasitic capacitance of the low-side transistor, CS1B

in

CHAPTER 3. ZERO-VOLTAGE SWITCHING 9

Fig. 3.2a, can discharge quickly from VCS1B
= Vin to 0 V with this positive current, iL,

thus enabling a zero-voltage at the time of switching. Once the parasitic capacitance has
fully discharged, the body diode (or body diode-like mechanism in GaN transistors) of the
switch becomes forward biased and begins to conduct, contributing a small diode voltage
drop shown in Fig. 3.1. Therefore, the deadtime should be designed to be sufficiently long
to allow the switch capacitance to fully discharge, but short enough to minimize the length
of the body diode conduction time.

Conversely, ZVS for the high-side switch, S1A, is more difficult because a negative current
during the deadtime of Region 2 is required to discharge the parasitic capacitance, CS1A

, to
0 V before switching, shown in Fig. 3.2b. The ZVS mechanism for the high-side switch is
the same as that for the low-side switch, however it requires the inductor current to be in
the opposite direction. Having a negative inductor current for a portion of the switching
cycle requires a sufficiently large inductor current ripple. This ripple may need to be rather
large as the average output current of the converter increases. It is possible in some cases to
design the inductor and control the switching frequency such that the inductor current does
go negative. This control method and its shortcomings in some applications are discussed
below.

The deadtimes set for Region 1 and Region 2 are determined based on the current at the
switch turn-on and turn-off transitions in these regions, and the total effective capacitance
and voltage that needs to be charged or discharged. In [31], the total charge equivalent
capacitance is found by (3.1) and is used to determine the minimum amount of negative
current, IZV S, needed to discharge the parasitic switch capacitances. The amount of energy
stored in the inductor at the time of the transition must be sufficient to discharge the
parasitic switch capacitance from its full Vds voltage, which in the case of the two-level buck
is Vin, to zero volts. By comparing the energy stored in the inductor with the energy needed
to be discharged from the total charge equivalent parasitic capacitance (3.2), the minimum
negative current peak needed for ZVS can be found by (3.3) [31]. For the two-level buck
converter, the total equivalent capacitance is the parallel combination of two switch output
capacitors since while one capacitor is discharging, the other is charging in parallel, as seen in
Fig. 3.2. The time needed to discharge the equivalent capacitance is found using an analysis
of resonance between the inductor and switch capacitance [32,33].

Ceqv,ch =

∫ Vds
0

Coss(v)dv

Vds
(3.1)

1

2
LIZV S ≥ CtotV

2
ds (3.2)

IZV S =

√
2 · (Ctot)V 2

ds

L
(3.3a)

Ctot = 2 · Ceqv,ch (3.3b)

CHAPTER 3. ZERO-VOLTAGE SWITCHING 10

The minimum deadtime for ZVS conditions can be calculated by (3.4) and (3.5) [30, 34].
The solution to the second-order differential equation that describes the current waveshape
during the deadtime is dependent on the initial voltage across the inductor. The initial
inductor voltage, VLZV S

, differs for the high-side and low-side switches based on how the
switches connected the circuit components before the ZVS deadtime and is given by (3.5).
The deadtime should be designed to minimize body diode conduction as mentioned above
since this unnecessary diode conduction leads to power loss and lower efficiency. Furthermore,
selection of the switches should take into account the equivalent output capacitance of the
switches. Larger parasitic capacitance requires more energy to discharge, which means either
a longer deadtime, which can hurt efficiency, or a larger negative inductor current/ larger
inductor current ripple, which consequently leads to increased inductor core losses and AC
conduction losses.

td ≥
1

ω0

(tan−1(
VLZV S

Z0 · IZV S
) +

π

2
) (3.4a)

ω0 =
√
L · Ctot (3.4b)

Z0 =

√
L

Ctot
(3.4c)

(3.4d)

VLZV S
=

{
−D · Vin, for S1A

(1−D) · Vin, for S1B

(3.5)

3.2 QSW ZVS for FCML Converters

The above quasi-square-wave technique can be applied to the phase-shifted PWM (PS-PWM)
control scheme typically used with FCML converters. However, there are a few differences
between QSW ZVS for a two-level topology and for a multi-level topology. As seen in
Fig. 2.2, there are now several switch-pairs that need ZVS. Because PS-PWM is utilized,
the parasitic switch capacitances do not necessarily charge/discharge directly through the
input source, instead there may be flying capacitors through which the inductor current also
flows. However, because only one pair, Fig. 3.3b, transitions at a time and the two switches
in that pair are complementary, only the commutation loop between the two switches in a
single pair affects ZVS operation. Furthermore, the voltage needed to be discharged from
the parasitic capacitances is reduced from the full input voltage (for a two-level buck) to
only a fraction, of the input voltage (for the FCML buck), shown in Fig. 3.3a, due to the
flying capacitors adjacent to the switch-pair having fractional voltages of the input voltage.

Because FCML ZVS functions similarly to ZVS in the two-level buck converter [30, 34],
this deadtime minimum is given by the same (3.4). However, the initial voltage across the

CHAPTER 3. ZERO-VOLTAGE SWITCHING 11

Gate Signals

0 V

Converter Signals

qSiB

qSiA

1/feff

Vin/(N-1)VCSiA

iL

VCSiB

0 A

2 1 2

IZVS

(a) FCML converter waveforms for ZVS conditions.

CSiA

CSiB

SiA

SiB

......

... ...

Ci-1Ci

iLB
+_

+ _

iLA

(b) Arbitrary FCML
switch pair with parasitic
capacitances.

Figure 3.3: Inductor current must have enough ripple to reach a peak negative value, IZV S
which can discharge the parasitic capacitance CSiA

of an arbitrary switch pair and allow for
ZVS.

inductor, VLZV S
, varies with the switching pattern, so for the high-side and low-side switches,

the initial inductor voltage is different, given by (3.6). The inductor voltage also changes
as the duty cycle changes and the multi-level characteristics become evident. The initial
inductor voltage equation for FCML converters is equivalent to that of the conventional
buck converter (3.5) when N = 2.

VLZV S
=

Vin

(N − 1)
· floor(D(N − 1))−D · Vin, for SiA

Vin
(N − 1)

· ceil(D(N − 1))−D · Vin, for SiB

(3.6)

3.3 ZVS Challenges for FCML Converters

Previous works, [23] and [28], have shown that a sufficiently large inductor current ripple
is required to provide a negative current, iL, during a specified deadtime which discharges
the transistor parasitic capacitance and allows ZVS operation. However, due to the multi-
level operation of the FCML, certain duty cycles inherently exhibit low or no current ripple,
inhibiting the ability to achieve ZVS without going to extremely low switching frequencies.

Revisiting (2.4), it is apparent that Deff is zero for certain values of D (when D · (N −1)
is an integer value) and therefore, the inductor current ripple approaches zero as well, (2.5).
Fig. 3.4 shows the inductor current ripple at a fixed switching frequency, fsw, for a 4- and
5-level FCML normalized to the conventional two-level buck converter, with current ripple

CHAPTER 3. ZERO-VOLTAGE SWITCHING 12

Duty Cycle

0 0.25 0.5 0.75 1

N
o

rm
al

iz
ed

 I
n

d
u

ct
o

r
R

ip
p

le

0

0.2

0.4

0.6

0.8

1
Buck

4-Level

5-Level

25% 33%

Figure 3.4: Higher-level FCML converters inherently exhibit lower inductor current than
two-level buck converters, but introduce inductor ripple valleys at certain duty cycles.

valleys at duty cycles of 0.33 and 0.66 for the 4-level FCML, and 0.25, 0.5, and 0.75 for
the 5-level FCML. Compared to the two-level buck converter, one advantage of the FCML
is evident by the reduced magnitude of inductor current ripple. For the same inductor,
a reduced inductor current ripple reduces the core losses and AC conduction losses of the
inductor. However, this reduction in inductor current ripple poses a challenge for maintaining
ZVS conditions, which as discussed above requires a sufficiently large current ripple.

Previous works [9], [10] have shown that by varying the switching frequency along the duty
cycle range, the inductor current ripple can be changed to keep ZVS operation. However,
the switching frequency can only be decreased to limits imposed by the flying capacitor
voltage ripple, inductor saturation, or practical limitations [10]. These switching frequency
limitations are summarized in Section 4.3 along with an evaluation of how the resonant
frequency should be factored in to the ZVS frequency limitation. Moreover, the valleys of
the inductor current ripple plot in Fig. 3.4, cannot be avoided by decreasing the switching
frequency and consequently, ZVS cannot be maintained at these operating points by using
only QSW ZVS and variable frequency control (VFC).

13

Chapter 4

Dynamic Level Selection

As demonstrated in Chapter 3, zero-voltage switching conditions cannot be maintained across
the full duty cycle range due to the current ripple minimums at specific duty cycles. If we
compare the inductor current ripple across the full duty cycle range, Fig. 3.4, for FCMLs
with an adjacent number of levels (e.g. 4-Level and 5-Level FMCL), we can see that for
duty cycles where one configuration has a current ripple minimum, the other configuration
does not. In this work, we propose to take advantage of this fact and use dynamic level
selection [11] to maintain a minimally sufficient inductor current ripple required for ZVS
operation. Dynamically re-configuring a 5-level FCML to operate as a 4-level FCML can
avoid the current ripple minimums of each configuration and maintain ZVS conditions [12].

4.1 Dynamic Level Selection

Being able to re-configure the FCML converter through control techniques alone, can enable
customization based on specific operating conditions, such as maintaining inductor current
ripple as the duty cycle changes. The inductor current ripple is important for maintaining
ZVS conditions to reduce switching losses, and its relationship with the duty cycle differs
between different FCML level counts. Fig. 4.1 illustrates the proposed method for selecting
the number of levels to operate across all duty cycles. By rearranging (2.5), we can solve
for and plot the switching frequency required to achieve ZVS for 4- and 5-level operation
with constant output current and constant inductor current ripple across the full range of
duty cycles. Also plotted is a minimum switching frequency, flim,4/5, for which the converter
is not designed to operate below [10] for 4- and 5-level operation, respectively. This plot
is for a constant peak negative inductor current which can be controlled [35] to maintain
ZVS. Furthermore, in this work, a constant negative inductor current peak, IZV S, is chosen
along with a constant deadtime, by (3.1 - 3.4). With constant output current, designing for
a constant deadtime leads to a constant peak-to-peak inductor current ripple in (2.5).

At each duty cycle, we prioritize 5-level operation because the switch voltage stress and
therefore, the switching loss per device, is reduced in the case of a higher number of levels.

CHAPTER 4. DYNAMIC LEVEL SELECTION 14

0 0.25 0.5 0.75 1

Duty Cycle

0

100

200

300

400

500

600

S
w

it
ch

in
g

 F
re

q
u

en
cy

 [
k

H
z]

flim,4

flim,5

4-Level

5-Level

Proposed

Figure 4.1: The proposed method implements dynamic level changing to avoid operation at
the inductor current ripple valleys and to maintain ZVS across the entire duty cycle range.

Moreover, as shown in [36], lower device operating voltage also reduces dynamic Rds,on

effects in GaN transistors, another important design consideration. The voltage swing of
the inductor is also reduced for the case of a higher number of levels, consequently reducing
inductor core losses. If the 5-level switching frequency must be below flim,5 to maintain
ZVS, the converter transitions to 4-level operation at a new switching frequency to maintain
ZVS. However, there are some duty cycles for which both the 4- and 5-level converter have
ZVS frequencies below their respective flim values; in these cases, we operate as a 5-level
converter due to efficiency benefits of a higher level count as described above.

4.2 Level Evaluation

An analysis of the steady-state capacitor voltages for different number of FCML levels is
used as reasoning for choosing a 5/4 level converter over a different number of levels. The
steady-state capacitor voltages for 5-level operation, as well as for 4-level operation with
different switches operated as a pair are shown in Table 4.1. Additionally, the amount of
capacitor voltage change required to transition from 5-level to 4-level operation is also shown.
This analysis was performed for 5/4, 6/5, and 7/6 level converters. A generalized analysis for
any two adjacent number of levels can be expanded from the form of Table 4.1, which shows
a 5/4 analysis and of Table 4.2, which shows a 6/5 analysis. Transitioning from a higher
odd number of levels down to an even number of levels reduces the capacitor voltage change
required. For the 5/4 converter and the 7/6 converter, the minimum voltage change required

CHAPTER 4. DYNAMIC LEVEL SELECTION 15

Figure 4.2: The 5-level FCML operated as a 4-level with C2 voltage maintained at the 5-level
value while C1 and C3 re-balance to 4-level operation.

is 1
12
Vin and 1

15
Vin, respectively compared to the 6/5 level converter which requires 1

10
Vin.

For the 7/6 level converter, two flying capacitors would need to change by 1
30
Vin and two by

1
15
Vin, with one remaining unchanged. However, for the 5/4 level converter, the capacitors

which need re-balancing all require the same change in voltage, therefore simplifying the
active balancing technique used to re-balance the flying capacitors.

Furthermore, this evaluation of the steady-state flying capacitor voltages is used to select
which switch-pair to operate in phase when in the 4-level mode [11]. Configurable-level
operation requires switches to be controlled similarly in phase so that the effective number
of switches coincides with the desired level operation. For the 5/4 FCML, when the two
middle switch pairs, S3 and S2 of Fig. 4.2, are operated as one switch pair, configuration
4b in Table 4.1, the blocking voltage of the transistors is more evenly distributed, therefore
distributing the voltage stress on each of the transistors. Considering the amount of capacitor
voltage change required to re-balance on a new number of levels, the configuration with the
middle pairs acting as one yields the smallest ∆V , 1

12
Vin.

In 4-level operation, the two middle pairs of switches (labeled S2 and S3 in Fig. 4.2) are
controlled in phase as shown by control signals q2A and q3A in Fig. 4.3a. This switch pair is
chosen so that the amount the flying capacitor voltages need to adjust by is minimized. The
remaining switch pairs are operated as a 4-level FCML with a phase shift of 120°, shown in
Fig. 4.3a. Consequently, the voltage on the middle flying capacitor (labeled C2 in Fig. 4.2)
remains constant at Vin/2 from the 5-level operation, while the remaining flying capacitors,
C1 and C3 are re-balanced (actively or passively) to Vin/3 and 2 · Vin/3, respectively, in
accordance with 4-level FCML operation, as shown in Table 4.1.

Similarly, when the converter needs to transition from 4-level to 5-level operation, the
capacitors are re-balanced to 5-level voltages either by active balancing techniques or passive
natural balancing of the converter. The middle switch-pairs are no longer controlled by
similar PWM signals and the control scheme returns to that of the 5-level FCML, shown
in Fig. 4.3b. When sizing the switches and capacitors, the voltage ratings of the 4-level
operation should be used since they are of greater magnitude, as shown in Table 4.1.

CHAPTER 4. DYNAMIC LEVEL SELECTION 16

T
ab

le
4.

1:
4/

5
L

ev
el

S
w

it
ch

P
ai

r
C

on
fi
gu

ra
ti

on
s

an
d

F
ly

in
g

C
ap

ac
it

or
Im

p
ac

t

L
ev

el
P

ai
r

S
4

S
3

S
2

S
1

V
C
3

V
C
2

V
C
1

∆
V
C

C
3

C
2

C
1

5
1 4
V
in

1 4
V
in

1 4
V
in

1 4
V
in

3 4
V
in

1 2
V
in

1 4
V
in

0
0

0

4a
S
4
,
S
3

1 4
V
in

1 1
2
V
in

1 3
V
in

1 3
V
in

3 4
V
in

2 3
V
in

1 3
V
in

0
+

1 6
V
in

+
1 1
2
V
in

4b
S
3
,
S
2

1 3
V
in

1 6
V
in

1 6
V
in

1 3
V
in

2 3
V
in

1 2
V
in

1 3
V
in
−

1 1
2
V
in

0
+

1 1
2
V
in

4c
S
2
,
S
1

1 3
V
in

1 3
V
in

1 1
2
V
in

1 4
V
in

2 3
V
in

1 3
V
in

1 4
V
in
−

1 1
2
V
in
−

1 6
V
in

0

T
ab

le
4.

2:
5/

6
L

ev
el

S
w

it
ch

P
ai

r
C

on
fi
gu

ra
ti

on
s

an
d

F
ly

in
g

C
ap

ac
it

or
Im

p
ac

t

L
ev

el
P

ai
r

S
5

S
4

S
3

S
2

S
1

V
C
4

V
C
3

V
C
2

V
C
1

∆
V
C

C
4

C
3

C
2

C
1

6
1 5
V
in

1 5
V
in

1 5
V
in

1 5
V
in

1 5
V
in

4 5
V
in

3 5
V
in

2 5
V
in

1 5
V
in

0
0

0
0

5a
S
5
,
S
4

1 5
V
in

1 2
0
V
in

1 4
V
in

1 4
V
in

1 4
V
in

4 5
V
in

3 4
V
in

1 2
V
in

1 4
V
in

0
+

3 2
0
V
in

+
1 1
0
V
in

+
1 2
0
V
in

5b
S
4
,
S
3

1 4
V
in

3 2
0
V
in

1 1
0
V
in

1 4
V
in

1 4
V
in

3 4
V
in

3 5
V
in

1 2
V
in

1 4
V
in
−

1 2
0
V
in

0
+

1 1
0
V
in

+
1 2
0
V
in

5c
S
3
,
S
2

1 4
V
in

1 4
V
in

1 1
0
V
in

3 2
0
V
in

1 4
V
in

3 4
V
in

1 2
V
in

2 5
V
in

1 4
V
in
−

1 2
0
V
in
−

1 1
0
V
in

0
+

1 2
0
V
in

5d
S
2
,
S
1

1 4
V
in

1 4
V
in

1 4
V
in

1 2
0
V
in

1 5
V
in

3 4
V
in

1 2
V
in

1 4
V
in

1 5
V
in
−

1 2
0
V
in
−

1 1
0
V
in
−

3 2
0
V
in

0

CHAPTER 4. DYNAMIC LEVEL SELECTION 17

Gate Signals

0 V

Converter Signals

q4A

q3A

q2A

q1A

1/fsw
1/feff

Vin/3

Vsw

iL

Deff /feff

D/fsw

(a) Four-level operation.

Gate Signals

0 V

Converter Signals

q4A

q3A

q2A

q1A

1/fsw
1/feff

Vin/4Vsw

iL

D/fsw

Deff /feff

(b) Five-level operation.

Figure 4.3: Simulated converter waveforms for the proposed method.

4.3 Frequency Limitations

As mentioned in Section 3.3, there are limitations placed on the converter switching fre-
quency, which prevent QSW zero-voltage switching conditions for all duty cycles in an FCML
converter. These limits, summarized in Table 4.3 for 5-level operation, are due to converter
components [10], such as inductor current saturation, flying capacitor voltage ripple, and due
to converter operation (e.g. resonance) [26]. In [10], the component frequency limitations
are derived for 4-level operation. Moreover, the resonant frequency of the converter must
also be accounted for when determining the lower limit on switching frequency. As shown
in Fig. 4.4, when operating near resonant frequency, the inductor current is no longer linear
which causes the negative peaks of the inductor current to vary throughout the switching

Table 4.3: Frequency Limits

0 < D < 1
4

1
4
< D < 3

4
3
4
< D < 1

fswCfly
IL·Deff

2·Cfly ·%Vr·Vin,pk

IL
2·Cfly ·%Vr·Vin,pk

IL·(1−Deff)

2·Cfly ·%Vr·Vin,pk

fswIsat
Vin,pk·(Deff ·(1−Deff))

2·L·(N−1)2·(Isat−IL)
Vin,pk·(Deff ·(1−Deff))

2·L·(N−1)2·(Isat−IL)
Vin,pk·(Deff ·(1−Deff))

2·L·(N−1)2·(Isat−IL)

fswRes
1

2π
√
L·Ceff

1

2π
√
L·Ceff

1

2π
√
L·Ceff

fswZV S
Vin,pk·(Deff ·(1−Deff))

2·L·(N−1)·(IL−IZV S)

Vin,pk·(Deff ·(1−Deff))

2·L·(N−1)·(IL−IZV S)

Vin,pk·(Deff ·(1−Deff))

2·L·(N−1)·(IL−IZV S)

CHAPTER 4. DYNAMIC LEVEL SELECTION 18

period. Because of this variation, the converter is unable to maintain ZVS in quasi-resonant
operation without additional implementation complexity such as valley current detection
and setting specific deadtimes for each current valley. As detailed in [26], there are two
resonant frequencies for the FCML converter based on the switching configuration when
current flows through either one or two flying capacitors. The resonant frequency, fswRes, is
given by the equation in Table 4.3, where Ceff is given by either one or two series-connected
flying capacitors, depending on the switch configuration. To avoid quasi-resonant operation
and maintain linear inductor current, a switching frequency limit is chosen to be sufficiently
larger than the resonant frequency of the two flying capacitors in series (about 1.5 to 2.5
times higher).

In
d
u
ct

o
r

C
u
rr

en
t

[A
m

p
s]

-2

-1

0

1

2

3

4

5

Measured Current

t t+¼T t+½T t+¾T t+T

Time

Figure 4.4: When operating near resonant frequency, the inductor current is not linear, and
therefore, only quasi-ZVS may be possible.

19

Chapter 5

Flying Capacitor Active Balancing

Level transitioning, as proposed in Chapter 4, requires flying capacitor re-balancing because
the steady-state voltages on flying capacitors, C1 and C3 of Fig. 4.2, are at different values
based on the number of levels, as shown in Table 4.1. The FCML topology has natural
balancing qualities [37–41], which re-align the capacitor voltages with steady-state operation
after some time without implementing a new control strategy. However, an extended number
of switching cycles spent in an unbalanced condition, leads to more uneven voltage stress
on the transistors. To reduce the amount of re-balancing time necessary, active balancing
control techniques can be used.

5.1 Constant Effective Duty Cycle Active Balancing

Previous work [11] on level transitioning in FCML converters has used repeated switch
states within each cycle to actively increase/decrease the charge on the capacitors. However,
here we utilize a technique of duty cycle adjustment [8, 35, 42] to increase or decrease the
charge/discharge time of the flying capacitors that require re-balancing. By using duty cycle
adjustment instead of repeated states, PS-PWM is maintained with each switch only turning
on and off once within a switching cycle. With only one on/off transition in a cycle, the
turn-on switching losses, which should be minimized, are limited to occur only once in a
switching cycle for each switch. Furthermore, this control technique can be more easily
implemented with a micro-controller instead of needing a Field-Programmable Gate Array
(FPGA). This control technique, Constant Effective Duty Cycle (CEDC), is done such that
the effective duty cycle seen by the inductor, Deff in Fig. 2.3 is kept constant from before,
during, and after active balancing by changing the relative phase difference of the control
signals as the duty cycles of each signal are adjusted.

In this work, active balancing for a level transition is done while in 4-level operation
because FCML converters have more balanced performance on even-numbered levels [41].
When transitioning from 5-level operation to 4-level operation, the active balancing is work-
ing in unison with the relatively strong natural tendency of the even-level converter to

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 20

re-balance the flying capacitor voltages. To begin a transition from 5- to 4-levels, the duty
cycles of each control signal (q1A-q4A and their complements q1B-q4B), as well as the relative
phase delay are updated to 4-level PS-PWM values. Gate signals for the two middle switch
pairs q2A/B and q3A/B are controlled in phase to emulate 4-level operation. If active balancing
is to be used, the duty cycles and relative phase difference of each control signal are adjusted
using the CEDC method (altered to have the middle switch pairs with the same phase delay
and same duty cycle). For the purpose of maintaining ZVS across the full duty cycle range,
the switching frequency needed for ZVS (from Fig. 4.1) is updated as well from the 5-level
to 4-level switching frequency so that before and after the transition, the current ripple is
maintained and ZVS can occur. During the transition, ZVS conditions are not maintained
due to the re-balancing needs.

Here, when transitioning from 4- to 5-level operation, the flying capacitors are re-balanced
to 5-level voltages using a 4-level PS-PWM control scheme before the control signals are
changed to the 5-level configuration. This choice of active re-balancing is applied for simple
implementation in the microcontroller, as well as for more clear juxtaposition with the 5-
to 4-level transition re-balancing. However, by actively adjusting the flying capacitors to 5-
level steady-state voltages while still in the 4-level configuration, the active balancing control
may be fighting against the natural tendency of the flying capacitors to balance at 4-level
voltages.

Table 5.1 shows the charge/discharge behavior of the flying capacitors for sub-periods in
the lowest duty cycle range of 4-level operation (0 - 33%). This analysis can be similarly
extended for the larger duty cycle ranges [35]. For the transition from 5- to 4-level operation,
Fig. 5.1, the voltage on capacitor C1 needs to increase and the voltage on capacitor C3 needs
to decrease, while capacitor C2 is maintained. To achieve this voltage differential, the sub-
period where C1 charges (indicated by a ‘+’ in Table 5.1), d2, when the middle switch
pairs (S2/S3) are on (indicated by ‘1’), should be increased, while the sub-period where C1

discharges (indicated by a ‘−’), d1, when switch S1 is on, should be decreased. Similarly,
to decrease the voltage on C3, sub-periods d2 and d4 should be increased and decreased,
respectively.

In contrast, active re-balancing for the transition from 4- to 5-level operation is accom-
plished by decreasing d2 while increasing d1 and d4. The sub-periods d1 and d4 are adjusted
equivalently and are changed with respect to d2 so that the effective duty cycle at the switch
node remains equivalent to that of normal 4-level operation [35].

Equation (5.1) shows the relationship between the switching sub-periods in 4-level oper-

Table 5.1: Flying Capacitor Charge and Discharge Sub-periods

Sub-period S4A S3A/S2A S1A VC3 VC2 VC1

d1 0 0 1 −
d2 0 1 0 − +
d4 1 0 0 +

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 21

ation and (5.2) shows the relative phase calculation in 4-level operation for duty cycles less
than 33%. CEDC expanded for other duty cycle ranges is included in [35]. Applying this
duty cycle adjustment technique across multiple switching cycles can re-balance the voltages
to the new steady-state operation values as shown in Fig. 5.1. The amount to adjust the
sub-periods by is chosen along with the number of active re-balancing cycles to achieve the
shortest settling time to balanced flying capacitor voltages.

Deff = d2 + d1 + d4 = d2 + 2 · d1 (5.1)

ΦSi
= (i− 1) · 360◦

(N − 1)
; i = 1, 2, ..., (N − 1) (5.2)

Gate Signals

0 V

Converter Signals

q4A

q3A

q2A

q1A

1/fsw

3Vin/4VC3

VC2

VC1

Vin/2

Vin/4

5-Level 4-Level

2Vin/3

Vin/3

Active Balancing

d1

d2

d2

d4

γ

Figure 5.1: Active balancing through duty cycle adjustment for γ number of cycles is imple-
mented at transitions between different numbers of levels.

5.2 Active Balancing Parameter Calculation

The two parameters governing the speed at which the converter balances using constant
effective duty cycle (CEDC) active balancing [35] are the duty cycle adjustment, α, and the
number of cycles of active balancing, γ. Equations (5.3) - (5.5) show the relationship between
the duty cycle adjustment parameter, α, and the duty cycles and phase delays of each control
signal, while maintaining the constant effective duty cycle (5.1). These equations are given

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 22

in terms of the sub-periods, T1, T2, T4 shown in Fig. 5.2. A mathematical approach is used
to find the shortest settling time of the flying capacitor voltages by determining the best
combination of α and γ.

0 V

3Vin/4VC3

VC1 Vin/4

2Vin/3

Vin/3

t0 t1 t2 t3 t4 t5 t6

iC1

iC3

�iL

�VC3

�VC1

0 A

0 A

0 A

�

�

Converter Signals

Gate Signals

Active Balancing

�2

�4

q1A

q2A

q3A

q4A

d1

d2

d2

d4

T4T1 T2

Figure 5.2: Sub-periods for the lowest duty-cycle range of a 5/4-level FCML for calculating
active balancing capacitor voltages.

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 23

T0 =
1

(N − 1)
(5.3a)

T2 = α · T0, (5.3b)

T1 =
1− T2

2
, (5.3c)

T4 = T1 (5.3d)

d2 = T2 ·Deff = α ·D, (5.4a)

d1 = T1 ·Deff =
Deff − d2

2
, (5.4b)

d4 = d1 (5.4c)

ΦS1 = 0, (5.5a)

ΦS2 = T2 = α · 360◦

(N − 1)
, (5.5b)

ΦS3 = T2 = ΦS2 , (5.5c)

ΦS4 = T2 + T1 = 180◦(1− α

(N − 1)
) (5.5d)

(5.5e)

Fig. 5.3 describes the steps for determining the combination of duty cycle adjustment
(α) and number of active balancing cycles (γ) that corresponds to the shortest settling time
during level transitioning. Converter parameters are defined, such as input voltage, Vin,
average output current, Iout, inductance, L, flying capacitance, Cfly,k, output capacitance,
Cout, and the levels for transitioning, starting level, N0, ending level, N1. The valley current,
IZV S, is defined for calculating the ZVS frequencies. Furthermore, the design space is set
up to limit the duty cycle adjustment parameter, α, and the number of active balancing
cycles, γ. The parameter, α is constrained by not allowing any of the sub-periods, T1, T2, T4
to be greater than 1 (where 1 corresponds to a full switching period). This limitation is also
equivalent to maintaining sub-period duty cycles, d1, d2, d4, below Deff . Equations (5.6a-d)
show the calculation of this limit for the lowest duty cycle range. The limit on the number
of cycles, γ is decided by the designer.

d2 ≤ Deff , (5.6a)

d2 = αD, (5.6b)

Deff = (N − 1)D, (5.6c)

α ≤ (N − 1) (5.6d)

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 24

t = 2·(N1-1)?

Calculate fsw limit:

max (fres, fswCfly, fswIsat)

Table 4.3

Set converter specifications:

Vin, Iout, L, Cfly, Cout, Izvs, N0, N1

Set design space:

α: α ϵ [1.0, N1-1]; γ: γ ϵ ℤ, γ ϵ [1, Γ]

Calculate transition

point:

fzvsN0
, fzvsN1

, Dtran

Calculate N0 values:

Vout, VCfly,k, iL, Imax

at Dtran, fzvsN0

Calculate sub-period

voltages and currents:

Figure 5.2

Calculate Cfly,k voltage

error:

ΔVC,k

Calculate norm:

∆𝑉𝐶𝑓𝑙𝑦
Eq. 5.15

Find α and γ corresponding to

min ∆𝑉𝐶𝑓𝑙𝑦

Ipk < Imax?

γ = Γ?

α = N1-1?

γ = γ +1

i = i+1

no

i = 0

γ = 0

t = 0

no

no

yes

yes

yes

yes

no

t = t+1

Figure 5.3: Flowchart for determining the α and γ combination for the fastest active re-
balancing during dynamic level transitioning.

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 25

With all of the parameters specified, the switching frequency limitation for the converter
is calculated based on operating conditions (Vin, Iout) and component parameters (L, Cfly).
A switching frequency limitation is chosen for both 4- and 5-level operation by choosing the
maximum switching frequency of the calculated switching frequencies (fswCfly, fswIsat, and
fswRes in Table 4.3) across all duty cycles. If the converter operates above the maximum
of these limits, none of the limits will be violated at any duty cycle. Then, based on these
switching frequency limits, the duty cycle, Dtran, when the ZVS frequency crosses the limit,
flim,N , is calculated. At this duty cycle the converter will dynamically transition levels to
maintain ZVS. Because 5-level operation is prioritized, if the ZVS switching frequency falls
below the 5-level limit, the converter transitions from 5- to 4-level only until the 5-level ZVS
frequency is above the 5-level limit, at which point the converter transitions back to 5-level
operation. If both the 4- and 5-level ZVS frequencies violate their respective limits, 5-level
operation is used as discussed in Section 4.1.

Imax = Izvs + ∆ipp,max (5.7)

∆Vout =
1

N

∆ipp,max
8fswCout

(5.8)

The maximum inductor current allowed, Imax, is calculated (5.7) based on the output
capacitance allowable ripple (5.8) [26] and the negative inductor current peak, Izvs. The
N0 voltages and currents are calculated for the starting point of the level transitioning and
active re-balancing. Then the converter voltages and currents are calculated for the region
of active balancing based on a value-pair: the duty cycle adjustment α and the number of
active balancing cycles, γ. Fig. 5.2 shows an example active balancing switching cycle with
sub-periods used in calculating the voltages and currents. For an N-level converter, there
are 2 · (N − 1) sub-periods within a switching cycle. For each sub-period, the following are
calculated:

1. Inductor voltage, VL(t), from Vsw(t− 1) and Vout(t− 1)

2. Change in inductor current, ∆iL(t), from (5.9), where dx is the ratio of the sub-period
to the full switching period

∆iL(t) =
VL · dx · T

L
(5.9)

3. Updated inductor current:

iL(t) = iL(t− 1) + ∆iL(t) (5.10)

4. Capacitor de-rating for Cfly,k(t) and Cout(t), based on VC,k(t− 1) and VCout(t− 1)

5. Capacitor current, ±∆iL(t), depending on the sub-period

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 26

6. Change in flying capacitor voltage, (5.11), where dt is the length of time of the sub-
period (area under the capacitor current curve)

∆VC,k(t) =
1

Cfly,k

∫
iC,kdt (5.11)

7. Change in output capacitor voltage, (5.12), where dt is the length of time of the sub-
period (area under the capacitor current curve)

∆VCout(t) =
1

Cout

∫
(iL − Iout)dt (5.12)

8. Updated capacitor voltages:

VC,k(t) = VC,k(t− 1) + ∆VC,k(t) (5.13)

VCout(t) = VCout(t− 1) + ∆VCout(t) (5.14)

Once a full switching cycle has been calculated, the differences between the calculated
voltages on the flying capacitors and the goal voltages (of N1 level) are calculated. This
process is then repeated for the number of cycles determined by γ. The peak current during
active balancing is checked against the maximum allowed current based on the output ca-
pacitor voltage ripple. If the peak current that occurs during active balancing violates the
maximum current limit, then the α − γ pair is deemed invalid and no further calculations
are done with this pair.

Next, for all valid combinations, the Euclidean norm for the flying capacitor voltage
differences is calculated based on (5.15). It is assumed that the α-γ value-pair with the
minimum deviation, or minimum Euclidean norm, is the combination that will correspond to
the shortest settling time since the flying capacitor voltages are the closest to the goal at the
end of the active balancing stage. However, this does not take into account the length of any
residual settling time for natural balancing needed if the capacitor voltages are not exactly
at the goal voltages after active balancing. It is possible that the number of cycles needed
for the smallest deviation after active balancing plus additional settling time corresponds
to a longer physical time than a different α − γ pair (with a larger voltage deviation from
the goal) with fewer active balancing cycles, but more natural balancing time. While the
analysis is set up to calculate for natural balancing, as discussed later in Section 6.4, the
current implementation of the active balancing calculations is not very accurate for natural
balancing settling time because parasitic resistances and switch resistances are neglected.

||Vc||2 =
√

∆V 2
c1 + ∆V 2

c3 (5.15)

This process, calculated in Matlab (see Appendix A), was repeated for several average
output current values (at an input voltage of 50 V and 75 V with a 5.6 µH inductor) and

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 27

a curve-fit was done for the parameter values of α and γ, shown in Figs. 5.4a and 5.4b
for 50 V and in Figs. 5.4c and 5.4d for 75 V. The number of active balancing cycles, γ,
exhibits a staircase form. For each gamma value, the corresponding α values exhibit a linear
relationship with the average output current, up to a point. After a certain output current
value, the γ drops drastically, and the α parameter becomes quadratic. This relationship is
because the active balancing mechanism is severely limited by the constraint on the output
voltage ripple. In this range of output current, the shortest settling time is achieved by
allowing the maximum output voltage disturbance, and therefore the largest inductor current
ripple (which corresponds to a large α value), but only for a short number of cycles. For
the average output current values that are not severely limited, a lower duty cycle increase
is needed as the current increases because there is more current and therefore more charge
that can be controlled to charge/discharge the capacitors in a smaller sub-period. Similarly,
for increasing current, a shorter number of cycles can be used due to the increased available
charge for re-balancing. However, even though the parameters α and γ are decreasing with
increased average output current, the output voltage ripple is increasing due to the excess
charge. Once the output voltage ripple limit is reached, the relationship among the active
balancing parameters changes as discussed above.

As the voltage is increased, the point at which active balancing is limited by the output
voltage ripple is extended because the absolute magnitude of voltage deviation is larger with
a larger input voltage (and consequently larger output voltage for the same initial duty
cycle). The slope of the linear region of α values is less steep as voltage increases because
these values correspond to higher γ values. For a larger input voltage, higher γ values are
needed because the flying capacitors need to re-adjust by a larger magnitude as a proportion
of the input voltage. Using these two plots, the value-pair that will give the shortest settling
time can be determined for any output current for a specified input voltage value.

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 28

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Output Current [A]

1

1.5

2

2.5

3

A
lp

h
a

 = -0.53214*Iout + 1.6961

 = 1.4697*Iout2 + -5.1136*Iout + 6.8085

(a) The magnitude of duty cycle adjustment that
corresponds to the fastest active re-balancing in
combination with the gamma value in Fig. 5.4b
for several output current values at an input volt-
age 50 V.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Output Current [A]

2

4

6

8

10

12

14

G
am

m
a

(b) The number of active balancing cycles that
correspond to the fastest active re-balancing in
combination with the alpha value in Fig. 5.4a for
several output current values at an input voltage
50 V.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Output Current [A]

1

1.5

2

2.5

3

A
lp

h
a

 = -0.3475*Iout + 1.6437

 = 1.25*Iout2 + -6.185*Iout + 10.3515

(c) The magnitude of duty cycle adjustment that
corresponds to the fastest active re-balancing in
combination with the gamma value in Fig. 5.4b
for several output current values at an input volt-
age 75 V.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Output Current [A]

2

4

6

8

10

12

14

G
am

m
a

(d) The number of active balancing cycles that
correspond to the fastest active re-balancing in
combination with the alpha value in Fig. 5.4c for
several output current values at an input voltage
75 V.

Figure 5.4: The active balancing parameters corresponding to the shortest settling time
exhibit a similar relationship with output current for different input voltages.

29

Chapter 6

Experimental Results

A 5-level FCML converter was built to demonstrate this control technique that maintains
ZVS across the full duty cycle range. Operation as a 5-level FCML and as a 4-level FCML
was tested, as well as ZVS operation at various duty cycles. Of most interest are the duty
cycles highlighted in Fig. 3.4 for which ZVS is not possible on a certain level count. The
dynamic transitioning between levels was tested with natural balancing and with CEDC
active balancing implemented. Finally, the efficiency benefits of employing this technique of
ensuring ZVS are also examined.

6.1 Experimental Prototype

Figure 6.1: Hardware Prototype.

The constructed 5-level FCML converter, Fig. 6.1 and 6.3, was built to demonstrate this
control technique that maintains ZVS across the full duty cycle range. The circuit schematic
and printed circuit board (PCB) layout are included in Appendix B. The prototype was
built using 100 V GaN devices from GaN Systems due to their low conduction and switching
losses, as well as their low output capacitance which is important for ZVS design. Because
these GaN devices are bottom-side cooled, the FCML was constructed on a single-sided PCB
to facilitate a heat sink across the whole bottom side. Assembling the FCML on a single side

CHAPTER 6. EXPERIMENTAL RESULTS 30

S4A S3A S2A S1A

S1BS2BS3BS4B

L

+

Vout

-

Vsw

Vin

iL

Cout
Cin C3 C2 C1

+-

Figure 6.2: Five-level FCML circuit schematic drawing.

LC1C2C3Cin

Decoupling

CapacitorsGate Drivers and Digital Power

Gate Drivers and Digital PowerGaN

Transistor

S1A

S1BS2B

S2AS3A

S3B

S4A

S4B

Figure 6.3: Annotated photograph of the experimental prototype.

increases the commutation loop and introduces more parasitic inductance into the conduction
path. To decrease the commutation loop area and absorb the excess parasitic energy, local
decoupling capacitors are used for each switch pair [10]. Additionally, previous work [43] has
demonstrated the merit of using a cascaded bootstrap technique to power the isolated gate
drivers for each switch of the FCML. The cascaded bootstrap technique has a reduced area
and better efficiency when compared to the conventional single IC isolated gate driver [43].
This prototype was designed with an unfolder stage for DC to AC capabilites, however,
in this work, the unfolder stage was unused. A Texas Instruments C2000 microcontroller,
TMX320F28377D, was chosen for its low-cost, number of PWM pins, and simplicity of code
implementation. A control card was used to interface the microcontroller with the FCML
PCB. Table 6.1 shows the full component listing of the hardware prototype.

6.2 Zero-Voltage Switching

To demonstrate the proposed method, the experimental prototype was tested in multiple
operating conditions. Fig. 6.4 shows the converter operating as a 4-level FCML at an input
voltage of 100 V, 10 W, a switching frequency of 350 kHz, and a duty ratio of 25%, which, as

CHAPTER 6. EXPERIMENTAL RESULTS 31

T
ab

le
6.

1:
C

om
p

on
en

t
L

is
ti

n
g

of
th

e
H

ar
d
w

ar
e

P
ro

to
ty

p
e

F
u
n
ct

io
n

B
lo

ck
C

om
p

on
en

t
M

fr
.

&
P

ar
t

N
u
m

b
er

P
ar

am
et

er
s

F
C

M
L

G
aN

F
E

T
s

G
aN

S
y
st

em
s

G
S
61

00
8P

10
0

V
,

7m
Ω

C
ap

ac
it

or
s

(C
1
,
C

2
,
C

3
)

T
D

K
C

57
50

X
6S

2W
22

5K
25

0K
A
×

3
45

0
V

,
2.

2µ
F

C
ap

ac
it

or
s

(C
in

)
T

D
K

C
57

50
X

6S
2W

22
5K

25
0K

A
×

8
45

0
V

,
2.

2µ
F

C
ap

ac
it

or
s

(C
o
u
t)

T
D

K
C

57
50

X
6S

2W
22

5K
25

0K
A
×

8
45

0
V

,
2.

2µ
F

In
d
u
ct

or
(L

)
V

is
h
ay

IH
L

P
40

40
D

Z
-0

1
26

A
,

2.
2µ

H
C

as
ca

d
ed

B
o
ot

st
ra

p
Is

ol
at

ed
ga

te
d
ri

ve
rs

S
il
ic

on
L

ab
s

S
I8

27
1G

B
-I

S
B

o
ot

st
ra

p
D

io
d
es

V
is

h
ay

V
S
-2

E
F

H
02

H
M

3
40

0
V

L
D

O
T

ex
as

In
st

ru
m

en
ts

L
P

29
85

IM
5-

6.
1/

N
O

P
B

C
on

tr
ol

le
r

B
oa

rd
L

og
ic

le
ve

l
sh

if
te

rs
T

ex
as

In
st

ru
m

en
ts

S
N

74
L
V

4T
12

5P
W

R
M

ic
ro

co
n
tr

ol
le

r
T

ex
as

In
st

ru
m

en
ts

T
M

X
32

0F
28

37
7D

CHAPTER 6. EXPERIMENTAL RESULTS 32

shown in Fig. 3.4, is an operation point where the 5-level FCML has no current ripple and
cannot maintain ZVS. The inductor current ripple is shown to go negative which discharges
the parasitic capacitances of the high-side transistors and allows ZVS, which is evident by
the minimal overshoot on the rising edge of the switch-node voltage, Vsw. Likewise, Fig. 6.5
shows the converter operating in ZVS as a 5-level FCML at the same voltage and loading
condition, a 255 kHz switching frequency and a 33% duty ratio, which is a current ripple
valley of the 4-level converter. These results show that ZVS is possible at two different duty
cycles for which ZVS is not possible with a fixed number of levels.

iL

Vsw

0 A

-1 A

33 V

0 V

feff

feff

Deff

1

D = 0.25

Deff = 0.75

Figure 6.4: ZVS is achieved for 4-level op-
eration at a duty cycle for which 5-level
operation cannot achieve ZVS.

0 A

-1 A
50 V

25 V

feff

feff

Deff

1

D = 0.33

Deff = 0.33

iL

Vsw

Figure 6.5: ZVS is achieved for 5-level op-
eration at a duty cycle for which 4-level
operation cannot achieve ZVS.

6.3 Dynamic Level Transitioning

A dynamic transition between levels is demonstrated in Fig. 6.6. Due to microcontroller
limitations in implementing level transitioning, the dynamic level transitioning was tested
with a 5.6 µH Vishay inductor (IHLP-3232DZ-5A) at an input voltage of 50 V and an
average output current of 0.5 A. When implementing level transitioning and CEDC active
balancing on the Texas Instruments C2000 microcontroller, there were timing challenges
when updating the switching frequency, duty cycle, and phase delay at the same time. The
microcontroller code used in this work is given in Appendix C. In the case demonstrated
in Fig. 6.6, the converter transitions from 5-level to 4-level operation (Fig. 6.6a) and vice-
versa (Fig. 6.6b) with only natural balancing. The measured settling time of the capacitor
voltages, VC1 and VC3 for the 5- to 4-level transition is about 2.8 ms and from 4- to 5-levels is
about 0.89 ms. Here, we see that the transition to the odd-level FCML is faster than to the
even-level FCML, this is contrary to our extension of [41], mentioned previously, that even-
level FCMLs have better natural balancing. Further investigation is required to explain how
the number of levels affects the flying capacitor balancing after a relatively large transient,
such as that due to dynamically transitioning levels.

CHAPTER 6. EXPERIMENTAL RESULTS 33

iL

VC1

Vsw

VC3

5-level

Natural

Balancing 4-level

2.8 ms

(a) Five to four level transition.

iL

VC1

Vsw

VC3

4-level

Natural

Balancing 5-level

0.89 ms

(b) Four to five level transition.

Figure 6.6: Level transitioning with natural balancing.

88 s

Figure 6.7: Active balancing decreases the settling time of capacitors C1 and C3 during a
transition from 5- to 4-level operation.

CHAPTER 6. EXPERIMENTAL RESULTS 34

Figure 6.8: Active balancing decreases the settling time of capacitors C1 and C3 during a
transition from 4- to 5-level operation.

Fig. 6.7 shows the transition from 5- to 4-level operation with a region of active balancing
by duty cycle adjustment (CEDC) to charge C1 and discharge C3 from 5-level steady-state
voltages to 4-level voltages. The capacitor voltages balance to steady-state in 88 µs, which
is over 30 times faster than the settling time using natural balancing. Fig. 6.8 shows the
transition from 4- to 5-level operation with active balancing, which takes 0.66 ms, which
is about 1.3 times faster than natural balancing alone. As mentioned in Section 5.1, the
settling time can possibly be reduced if active balancing is employed in 5-level configuration
instead of 4-level configuration when transitioning to 5-level operation.

When performing active balancing, two parameters can be tuned for different balancing
characteristics — the magnitude of duty cycle adjustment (α), and the number of active
balancing cycles (γ). If rapid balancing is desired, the percent change of duty cycles is set
high, with a corresponding low number of active balancing cycles. Alternatively, slower,
but with less inductor current ripple induced, balancing operation can be achieved with low
percent change of duty cycles, and a higher number of active balancing cycles. In the case of
the 5- to 4-level transition, shown in Fig. 6.7, seven cycles of active balancing were used and
the sub-periods were adjusted: d2 was 40%, or twice the width of the baseline duty cycle
of 20%, and d1 and d4 where each 10%, maintaining a constant effective duty cycle at the
switch node of 60%. This approach demonstrates a more aggressive duty cycle adjustment
with a smaller number of active balancing cycles, which leads to a shorter settling time,

CHAPTER 6. EXPERIMENTAL RESULTS 35

Figure 6.9: Level transitioning with less aggressive active balancing has a longer settling
time, but a lower magnitude of increased inductor current ripple.

with the trade-off of a brief time period with increased current ripple. However, if a more
moderate adjustment to duty cycle and more cycles of active balancing can be permitted,
then the magnitude of the increased current ripple can be lower as shown in Fig. 6.9 (d2 at
25% for 25 cycles) as compared to aggressive re-balancing in Fig. 6.7. Furthermore, as shown
below in Section 6.4, due to the relatively large current ripple at the beginning of the active
balancing transition, there is also a transient response on the output voltage. Constraints
can be placed on the allowable inductor current ripple, detailed in Section 5.2, during ac-
tive balancing to limit the voltage deviation on the output capacitor. Both moderate and
aggressive implementations of active balancing still reduce the settling time when compared
to natural balancing.

6.4 Active Balancing Parameter Calculations

Section 5.2 details the modeling of dynamic level transitioning and the process by which
the active balancing parameters, α and γ, can be determined. To validate this model, the
calculated current and voltage waveforms were compared to experimental measurements.
Fig. 6.10 shows an overlay of the simulated/calculated flying capacitor voltages, VC1 and VC3,
output voltage, VCout, and the inductor current, iL, on to experimental measured waveforms.

CHAPTER 6. EXPERIMENTAL RESULTS 36

VC1

VC3

Vout

iL

5

Level

Active

Balancing

4

Level

Figure 6.10: The active balancing model calculated in Matlab closely corresponds to mea-
sured waveforms for this 5- to 4-level transition with α = 2.0 and γ = 7.

The operating conditions and active balancing parameters shown here are the same as those
in Fig. 6.7. During the region of active balancing, the calculated waveforms are very close
to the measured waveforms. Again, due to the increased inductor current ripple, there is
a voltage deviation on the output capacitor that can be limited by limiting the intensity
of the active balancing parameter, α. During normal operation (or natural balancing), the
calculations continue to oscillate and do not match closely with experimental data. This
discrepancy is because damping, in the form of capacitor equivalent series resistance (ESR)
or switch on-state resistance (Rds,on) was not factored into the calculations. Implementing
the damping factors would allow the simulated system to converge to the balanced steady-
state and the total settling time could be calculated. The assumption is made in Section 5.2
that the active balancing parameters corresponding to final flying capacitor voltages closest
to the goal are the parameters that yield the shortest settling time.

CHAPTER 6. EXPERIMENTAL RESULTS 37

0 0.2 0.4 0.6 0.8 1

Duty Cycle

75

80

85

90

95

100

E
ff

ic
ie

n
cy

 [
%

]

5-Level

4-Level

(a) Efficiency measurements of 4- and 5-level operation, maintaining ZVS
where possible without violating converter switching frequency limitations.

0 0.2 0.4 0.6 0.8 1

Duty Cycle

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
o

w
er

 L
o

ss
 [

W
]

4, 5 54 54 44, 5 4, 5 4, 5ZVS:

(b) Corresponding power loss for 4- and 5-level operation.

Figure 6.11: Higher efficiency points closely correspond with the proposed method in Fig. 4.1.

6.5 Converter Efficiency

To demonstrate the efficiency benefits of the proposed control method, we tested 4- and
5-level operation over a wide range of duty cycles. The efficiency at each duty cycle was
measured in 4- and 5-level operation at 100 Vin and 0.5 A load with constant negative
inductor current peak, IZV S, with a high precision power analyzer (Keysight PA2201A).

The frequency was adjusted to achieve ZVS conditions, if possible, without violating
the converter frequency limitation. When the switching frequency limit is reached, instead
of further reducing the frequency, the converter is operated at that limit (without a large
enough current ripple for ZVS) until a sufficient ripple can be maintained with a larger

CHAPTER 6. EXPERIMENTAL RESULTS 38

switching frequency (i.e. a frequency above the limit). In regions where both the 4- and
5-level ZVS switching frequency violates the limit, the converter operates in the 5-level
mode, with a relaxed switching frequency limit. In the tested operating conditions, because
the resonant frequency is the critical frequency for choosing the limit, operating slightly
below this limit does not violate the fswCfly or fswIsat limits. However, operating below
the switching frequency limit means that the converter is in a quasi-resonant mode, and
as describe above, ZVS may only occur on some switching edges instead of all edges. This
quasi-resonant operation is allowed until either level mode has a ZVS frequency above its
corresponding limit. The switching frequency required for each 4- and 5-level operation is
different, which is necessary as discussed above. Fig. 6.11 shows the efficiency of 5- and 4-level
operation at each duty cycle, which aligns with the proposed level transitioning technique
in Fig. 4.1.

Operation as a 4-level converter is more efficient for duty cycle ranges around 25%, 50%,
and 75%, shaded yellow in Fig. 6.11b. The 4-level converter is more efficient than the 5-level
converter when the 5-level converter exhibits a current ripple minimum and cannot maintain
ZVS, but where the 4-level can. In this case, even though the 4-level converter is operating
at a higher switching frequency than the 5-level converter, the switching losses and core
losses in non-ZVS 5-level operation are greater than the core losses on the 4-level converter.
Furthermore, operation as a 5-level converter is more efficient for regions surrounding 33%
and 66%, shaded blue in Fig. 6.11b, which are the regions where the 4-level converter cannot
achieve ZVS. In the green-shaded regions, both the 4- and 5-level converters achieve ZVS. In
these regions, the 5-level is more efficient because, as shown in Fig. 4.1, in these duty cycle
ranges, the switching frequency needed to maintain ZVS for the 5-level converter is lower
than for 4-level operation. Due to the higher level count and lower switching frequency, the
5-level converter has lower switching losses and lower inductor core loss.

15 20 25 30 35 40

Duty Cycle [%]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
o

w
er

 L
o

ss
 [

W
]

4-Level
5-Level

Figure 6.12: Power loss for 4- and 5-level operation with manually tuned ZVS switching
frequency.

CHAPTER 6. EXPERIMENTAL RESULTS 39

To further improve the efficiency benefits of level transitioning to maintain ZVS, the
ZVS frequency that is calculated can be adjusted based on sensing the current ripple valleys
to ensure ZVS conditions, assuming a constant deadtime. A manual adjustment of the
switching frequency was performed for the lowest duty cycle range, Fig. 6.12. It can be seen
that the ranges for which the converter that has ZVS conditions out-performs the non-ZVS
converter are wider than in Fig. 6.11b.

For both the 4- and 5-level converters, when ZVS can be maintained, the losses display a
nearly sinusoidal characteristic similar to that of the proposed method and equations of [10].
Despite the 4-level converter operating at a much higher switching frequency, the switching
losses can be reduced by maintaining ZVS, therefore demonstrating the benefit of dynamic
level transitioning in order to maintain ZVS across duty cycles.

40

Chapter 7

Conclusions

This thesis presented a method for maintaining ZVS across the full range of duty cycles for
an FCML converter by both controlling the switching frequency and dynamically changing
the number of levels. An analysis of flying capacitor voltages and switch configurations
was used to determine the number of levels and the switching scheme to achieve dynamic
level transitioning. Additionally, a method of dynamic level transitioning with active capac-
itor voltage balancing through duty cycle adjustment was detailed. A hardware prototype
was constructed using bottom-side cooled GaN Systems devices, a single-sided PCB for im-
proved cooling methods, and a cascaded bootstrap to supply the isolated gate drivers. The
prototype achieved ZVS operation under 4-level and 5-level conditions at duty cycles not
possible for a fixed number of levels. Dynamic level transitioning with active re-balancing of
the flying capacitors was demonstrated in hardware. A method for determining the active
balancing parameters was derived including a curve-fit for simple implementation in a con-
troller. Transitioning between numbers of levels to avoid inductor current ripple valleys and
maintain ZVS conditions improves converter efficiency by reducing switching losses, which
allows for more power dense designs.

7.1 Future Work

Potential improvements to the current hardware implementation include designing/choosing
an optimal inductor for the testing conditions or using an air-core inductor to eliminate the
additional inductor core losses incurred by increasing the inductor current ripple. Using an
air-core inductor would allow the ZVS benefits to be more evident.

Additionally, future work can delve into the 4-level to 5-level transition. In this work,
for both directions of level transitioning (i.e. 4 to 5 and 5 to 4), active balancing was
done using CEDC in 4-level PS-PWM configuration. However, it is possible that the 4-
to 5-level transition can be improved by actively re-balancing using CEDC in 5-level PS-
PWM configuration. Moreover, the dynamic level transitioning can be tested at higher duty
cycles and other loading conditions. To test this method at other operating conditions, it

CHAPTER 7. CONCLUSIONS 41

is necessary to resolve microcontroller timing issues pertaining to the frequency and phase
delay updates associated with level transitioning and CEDC active balancing. Alternatively,
variable frequency control and level transitioning with active balancing can be implemented
with an FPGA instead of a microcontroller.

Furthermore, dynamic level transitioning for ZVS can be implemented across a full AC
line cycle with load variation and compared to the two static level cases for any efficiency im-
provements. Closed-loop feedback can also be implemented with ZVS detection and switch-
ing frequency adjustment based on sensing the current ripple valleys. The curve-fit active
balancing parameters can also be implented in a controller to perform active balancing for
level transitioning. Dynamic level transitioning for maintaining current ripple can be com-
pared to the case of minimizing inductor current ripple [11]. However, because the benefits
of each of these methods are dependent on which type of converter losses are dominant (in-
ductor core losses or switching losses), perhaps level transitioning for ZVS can be combined
with level transitioning for ripple minimization. At low load, minimizing switching losses
by level transitioning to maintain ZVS can be prioritized, whereas at higher loads, where
inductor core losses and switch conduction losses dominate, level transitioning for ripple
minimization can be prioritized.

42

Bibliography

[1] L. Tolbert, “Power electronics for distributed energy systems and transmission and
distribution applications: Assessing the technical needs for utility applications,” -, 12
2005.

[2] Half-Cooked Research Reports, “Power electronics market research report- global fore-
cast to 2023,” -, Jan 2019.

[3] T. Meynard and H. Foch, “Multi-level conversion: high voltage choppers and voltage-
source inverters,” in Power Electronics Specialists Conference, 1992. PESC ’92 Record.,
23rd Annual IEEE, Jun 1992, pp. 397–403 vol.1.

[4] J.-S. Lai and F. Z. Peng, “Multilevel converters-a new breed of power converters,”
in Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS ’95.,
Conference Record of the 1995 IEEE, vol. 3, Oct 1995, pp. 2348–2356 vol.3.

[5] F. Z. Peng, “A generalized multilevel inverter topology with self voltage balancing,”
Industry Applications, IEEE Transactions on, vol. 37, no. 2, pp. 611–618, Mar 2001.

[6] S. Modeer, Y. Lei, and R. C. N. Pilawa-Podgurski, “An analytical method for evaluating
the power density of multilevel converters,” in 2016 IEEE 17th Workshop on Control
and Modeling for Power Electronics (COMPEL), 2016.

[7] Y. Lei, C. Barth, S. Qin, W. c. Liu, I. Moon, A. Stillwell, D. Chou, T. Foulkes, Z. Ye,
Z. Liao, and R. C. N. Pilawa-Podgurski, “A 2 kw, single-phase, 7-level, gan inverter with
an active energy buffer achieving 216 w/in3 power density and 97.6% peak efficiency,”
in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), March
2016, pp. 1512–1519.

[8] J. S. Rentmeister and J. T. Stauth, “A 48v:2v flying capacitor multilevel converter
using current-limit control for flying capacitor balance,” in 2017 IEEE Applied Power
Electronics Conference and Exposition (APEC), March 2017, pp. 367–372.

[9] D. Chou, Y. Lei, and R. C. N. Pilawa-Podgurski, “A zero-voltage switching, physically
flexible multilevel gan dc-dc converter,” in 2017 IEEE Energy Conversion Congress and
Exposition (ECCE), Oct 2017, pp. 3433–3439.

BIBLIOGRAPHY 43

[10] A. Stillwell, M. E. Blackwell, and R. C. N. Pilawa-Podgurski, “Design of a 1 kv bidi-
rectional dc-dc converter with 650 v gan transistor,” in 2018 IEEE Applied Power
Electronics Conference and Exposition (APEC), March 2018, pp. 1155–1162.

[11] N. Vukadinović, A. Prodić, B. A. Miwa, C. B. Arnold, and M. W. Baker, “Ripple min-
imizing digital controller for flying capacitor dc-dc converters based on dynamic mode
levels switching,” in 2017 IEEE Applied Power Electronics Conference and Exposition
(APEC), Mar 2017, pp. 1090–1096.

[12] M. E. Blackwell, A. Stillwell, and R. C. N. Pilawa-Podgurski, “Dynamic level selection
for full range zvs in flying capacitor multi-level converters,” in 2018 IEEE 19th Workshop
on Control and Modeling for Power Electronics (COMPEL), June 2018, pp. 1–8.

[13] R. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Kluwer Aca-
demics, 2000.

[14] Z. Liao, N. C. Brooks, Z. Ye, and R. C. N. Pilawa-Podgurski, “A high power density
power factor correction converter with a multilevel boost front-end and a series-stacked
energy decoupling buffer,” in 2018 IEEE Energy Conversion Congress and Exposition
(ECCE), Sep. 2018, pp. 7229–7235.

[15] Z. Liao, Y. Lei, and R. C. N. Pilawa-Podgurski, “Analysis and design of a high power
density flying-capacitor multilevel boost converter for high step-up conversion,” IEEE
Transactions on Power Electronics, vol. 34, no. 5, pp. 4087–4099, May 2019.

[16] S. Qin, Y. Lei, Z. Ye, D. Chou, and R. C. N. Pilawa-Podgurski, “A high power density
power factor correction front end based on seven-level flying capacitor multilevel con-
verter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, pp. 1–1,
2018.

[17] E. Candan, A. Stillwell, N. C. Brooks, R. A. Abramson, J.Strydom, and R. C. N.
Pilawa-Podgurski, “A 6-level flying capacitor multi-level converter for single phase buck-
type power factor correction,” in 2019 IEEE Applied Power Electronics Conference and
Exposition (APEC), Mar 2019, pp. –.

[18] Y. Lei, C. Barth, S. Qin, W. c. Liu, I. Moon, A. Stillwell, D. Chou, T. Foulkes, Z. Ye,
Z. Liao, and R. C. N. Pilawa-Podgurski, “A 2 kw, single-phase, 7-level, gan inverter with
an active energy buffer achieving 216 w/in3 power density and 97.6% peak efficiency,”
IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8570–8581, 2017.

[19] T. Modeer, C. B. Barth, N. Pallo, W. H. Chung, T. Foulkes, and R. C. N. Pilawa-
Podgurski, “Design of a gan-based, 9-level flying capacitor multilevel inverter with low
inductance layout,” in 2017 IEEE Applied Power Electronics Conference and Exposition
(APEC), March 2017, pp. 2582–2589.

BIBLIOGRAPHY 44

[20] N. Pallo, T. Foulkes, T. Modeer, S. Coday, and R. Pilawa-Podgurski, “Power-dense mul-
tilevel inverter module using interleaved gan-based phases for electric aircraft propul-
sion,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC),
March 2018, pp. 1656–1661.

[21] A. Stillwell and R. C. N. Pilawa-Podgurski, “A 5-level flying capacitor multi-level con-
verter with integrated auxiliary power supply and start-up,” IEEE Transactions on
Power Electronics, 2018, in press.

[22] D. Chou, K. Fernandez, and R. C. N. Pilawa-Podgurski, “An interleaved 6-level gan
bidirectional converter for level ii electric vehicle charging,” in 2019 IEEE Applied Power
Electronics Conference and Exposition (APEC), Mar 2019, pp. –.

[23] C. P. Henze, H. C. Martin, and D. W. Parsley, “Zero-voltage switching in high frequency
power converters using pulse width modulation,” in Proc. 1988. Third Annual IEEE
Applied Power Electronics Conf and Exposition APEC ’88, 1988, pp. 33–40.

[24] J. G. Kassakian, “A new current mode sine wave inverter,” in 1980 IEEE Power Elec-
tronics Specialists Conference, June 1980, pp. 168–173.

[25] K. Liu and F. C. Lee, “Zero-voltage switching technique in dc/dc converters,” in 1986
17th Annual IEEE Power Electronics Specialists Conference, June 1986, pp. 58–70.

[26] K. Kesarwani and J. T. Stauth, “Resonant and multi-mode operation of flying capacitor
multi-level dc-dc converters,” in 2015 IEEE 16th Workshop on Control and Modeling
for Power Electronics (COMPEL), July 2015, pp. 1–8.

[27] V. Vorperian, “Quasi-square-wave converters: topologies and analysis,” IEEE J PWRE,
vol. 3, no. 2, pp. 183–191, 1988.

[28] Y. Naeimi and A. Huang, “Design and optimization of high conversion ratio quasi square
wave buck converters,” in 2017 IEEE 5th Workshop on Wide Bandgap Power Devices
and Applications (WiPDA), Oct. 2017, pp. 148–152.

[29] D. Neumayr, D. Bortis, E. Hatipoglu, J. W. Kolar, and G. Deboy, “Novel efficiency-
optimal frequency modulation for high power density dc/ac converter systems,” in 2017
IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC
2017 - ECCE Asia), Jul. 2017, pp. 834–839.

[30] A. Avila, A. Garcia-Bediaga, A. Rodriguez, L. Mir, and A. Rujas, “Analysis of optimal
operation conditions for gan-based power converters,” in 2018 IEEE Energy Conversion
Congress and Exposition (ECCE), Sep. 2018, pp. 1932–1939.

[31] M. Kasper, R. M. Burkart, G. Deboy, and J. W. Kolar, “Zvs of power mosfets revisited,”
IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8063–8067, Dec 2016.

BIBLIOGRAPHY 45

[32] D. Maksimovic, “Design of the zero-voltage-switching quasi-square-wave resonant
switch,” in Proceedings of IEEE Power Electronics Specialist Conference - PESC ’93,
June 1993, pp. 323–329.

[33] S. Bandyopadhyay and J. Morroni, “Quasi-square wave converters-modeling and perfor-
mance benefits of gan over silicon,” in 2017 IEEE Applied Power Electronics Conference
and Exposition (APEC), March 2017, pp. 2700–2705.

[34] C. Yeh, X. Zhao, and J. Lai, “An investigation on zero-voltage-switching condition
in synchronous-conduction-mode buck converter,” in 2017 IEEE Energy Conversion
Congress and Exposition (ECCE), Oct 2017, pp. 1728–1732.

[35] A. Stillwell, E. Candan, and R. C. N. Pilawa-Podgurski, “Active voltage balancing
in flying capacitor multi-level converters with valley current detection and constant
effective duty cycle control,” in IEEE Transactions on Power Electronics, 2019.

[36] T. Foulkes, T. Modeer, and R. C. N. Pilawa-Podgurski, “Developing a standardized
method for measuring and quantifying dynamic on-state resistance via a survey of low
voltage gan hemts,” in 2018 IEEE Applied Power Electronics Conference and Exposition
(APEC), March 2018, pp. 2717–2724.

[37] R. Wilkinson, T. Meynard, and H. du Toit Mouton, “Natural balance of multicell
converters: The general case,” Power Electronics, IEEE Transactions on, vol. 21, no. 6,
pp. 1658–1666, Nov 2006.

[38] X. Yuan, H. Stemmler, and I. Barbi, “Self-balancing of the clamping-capacitor-voltages
in the multilevel capacitor-clamping-inverter under sub-harmonic pwm modulation,”
Power Electronics, IEEE Transactions on, vol. 16, no. 2, pp. 256–263, Mar 2001.

[39] A. Ruderman and B. Reznikov, “Five-level single-leg flying capacitor converter voltage
balance dynamics analysis,” in Industrial Electronics, 2009. IECON ’09. 35th Annual
Conference of IEEE, Nov 2009, pp. 486–491.

[40] S. Thielemans, A. Ruderman, B. Reznikov, and J. Melkebeek, “Improved natural bal-
ancing with modified phase-shifted pwm for single-leg five-level flying-capacitor con-
verters,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1658–1667, April
2012.

[41] Z. Ye, Y. Lei, Z. Liao, and R. C. N. Pilawa-Podgurski, “Investigation of capacitor voltage
balancing in practical implementations of flying capacitor multilevel converters,” in 2017
IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), July
2017, pp. 1–7.

[42] G. Gateau, M. Fadel, P. Maussion, R. Bensaid, and T. Meynard, “Multicell converters:
active control and observation of flying-capacitor voltages,” Industrial Electronics, IEEE
Transactions on, vol. 49, no. 5, pp. 998–1008, Oct 2002.

BIBLIOGRAPHY 46

[43] Z. Ye, Y. Lei, W. c. Liu, P. S. Shenoy, and R. C. N. Pilawa-Podgurski, “Design and
implementation of a low-cost and compact floating gate drive power circuit for gan-
based flying capacitor multi-level converters,” in 2017 IEEE Applied Power Electronics
Conference and Exposition (APEC), Mar 2017, pp. 2925–2931.

47

Appendix A

Matlab Active Balancing Calculations

Included here are the Matlab files used for calculating the active balancing parameters for a
4/5-level FCML converter using dynamic level selection.

Active Balancing Optimization Routine

Contents

• Constant Parameters
• Design Space Parameters
• Initialize
• De-rated capacitor look-up table
• Loop Statements
• Plot Norm of Capacitor Voltages
• Optimization

% Active Balancing Optimization1

clear2

tic3

Constant Parameters4

c.Vin = 50;5

c.L = 5.6e-6;6

c.cap = 2.2e-6;7

c.num_cap = 3;8

c.num_capOut = 4;9

c.C = c.num_cap*c.cap;10

11

c.Iv = -0.7; % ZVS12

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 48

c.Isat = 9; % saturation current of inductor13

14

Design Space Parameters15

N = [4,5]; % levels switching between16

Iout_avg = linspace(0.5, 4, 8); % average output current17

18

% a = abfactor = alpha19

a = linspace(1.0,3.0,201); % factor of duty cycle adjustment on d220

21

% g = abcycle = gamma22

g = 1:40; % number of cycles in Active Balancing23

Initialize24

flim = zeros(length(Iout_avg),2);25

Dtran = zeros(length(Iout_avg),1);26

fsw4 = zeros(length(Iout_avg),1);27

fsw5 = zeros(length(Iout_avg),1);28

norm = zeros(length(Iout_avg),length(a),length(g));29

norm_alt = zeros(length(Iout_avg),length(a),length(g));30

diff_Vc1 = zeros(length(Iout_avg),length(a),length(g));31

diff_Vc3 = zeros(length(Iout_avg),length(a),length(g));32

curr_max = zeros(length(Iout_avg),length(a),length(g));33

mini = zeros(length(Iout_avg),1);34

index_k = zeros(length(Iout_avg),1);35

index_j = zeros(length(Iout_avg),1);36

opt = zeros(length(Iout_avg),7);37

De-rated capacitor look-up table38

% C5750X6S2W225K250KA39

c.V_base = linspace(00,500,50001);40

c.C_int = [2.2e-06...]; % interpolated values from data-sheet41

Loop Statements42

% for every Iout, calculate Duty cycle where first 5 to 4 transition occurs43

for i = 1:length(Iout_avg)44

clock45

i46

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 49

c.Iout_avg = Iout_avg(i);47

d = dutyCalc(c,N); % call dutyCalc function48

flim(i,:) = d.flim;49

Dtran(i) = d.Dtran;50

fsw4(i) = d.fsw4;51

fsw5(i) = d.fsw5;52

53

for j = 1:length(a) % for each alpha value loop through54

c.a = a(j);55

for k = 1:length(g) % for each gamma value loop through56

c.g = g(k);57

58

% call main active balancing function59

abmain = ABmain(Dtran(i), fsw4(i), fsw5(i), N, c);60

61

norm(i,j,k) = abmain.norm;62

diff_Vc1(i,j,k) = abmain.diff_Vc1;63

diff_Vc3(i,j,k) = abmain.diff_Vc3;64

curr_max(i,j,k) = abmain.curr_max;65

c.Imax = abmain.c.Imax;66

67

end68

end69

Plot Norm of Capacitor Voltages70

% Norm graphs71

% figure72

% hold on73

% scatter(diff_Vc3(i,:),diff_Vc1(i,:),’k.’)74

% grid on75

% xlabel(’\Delta V_{c3} [V]’,’FontSize’,16,’FontName’,’Times New Roman’);76

% ylabel(’\Delta V_{c1} [V]’,’FontSize’,16,’FontName’,’Times New Roman’);77

% title([’V_{in}= ’ num2str(c.Vin),’ V, I_{out}= ’78

num2str(Iout_avg(i)),’ A, I_{zvs}= ’ num2str(c.Iv),’ A79

’],’FontSize’,16,’FontName’,’Times New Roman’);80

%81

% figure82

% hold on83

% surf(g(1,:),a(1,:),squeeze(norm(i,:,:)))84

% xlabel(’Gamma’,’FontSize’,16,’FontName’,’Times New Roman’);85

% ylabel(’Alpha [cycles]’,’FontSize’,16,’FontName’,’Times New Roman’);86

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 50

% zlabel(’Norm’,’FontSize’,16,’FontName’,’Times New Roman’);87

% title([’V_{in}= ’ num2str(c.Vin),’ V, I_{out}= ’88

num2str(Iout_avg(i)),’ A, I_{zvs}= ’ num2str(c.Iv),’ A89

’],’FontSize’,16,’FontName’,’Times New Roman’);90

Optimization91

for j = 1:length(a)92

for k = 1:length(g)93

% Should update this to check against a current maximum based on94

% the output voltage ripple, not saturation current.95

96

% check peak current is below maximum current allowed97

if (curr_max(i,j,k) > c.Imax)98

norm_alt(i,j,k) = inf; % if above limit, set norm to inf99

% so is not a choice for optimal solution100

else101

norm_alt(i,j,k) = norm(i,j,k);102

end103

end104

end105

106

% Find minimum of norm and set optimal parameters107

[mini(i), index_k(i)] = min(min(norm_alt(i,:,:)));108

[mini(i), index_j(i)] = (min(norm_alt(i,:,index_k(i))));109

opt(i,:) = [Iout_avg(i), mini(i),110

curr_max(i,index_j(i),index_k(i)),111

diff_Vc1(i,index_j(i),index_k(i)),112

diff_Vc3(i,index_j(i),index_k(i)), a(index_j(i)), g(index_k(i))];113

114

end115

116

% Plot alpha and gamma vs Iout117

%sys_plot(opt)118

119

120

save(’’)121

toc122

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 51

Transition Duty Cycle Calculation

Contents

• Frequency limitation
• Initialize
• Loop statement to calculate transition duty cycle
• Calculate Optimum switching frequency for proposed method
• Outputs
• Plots

function duty = dutyCalc(c, N)1

Vout_pk = c.Vin;2

f_grid = 60;3

Frequency limitation4

flim = zeros(1,length(N));5

6

% allowable error between linear and slightly non-linear7

error_lim = linspace(0.005, 0.6, 5951) current8

error = zeros(1,2);9

10

for n = 1:length(N)11

f1.flim = 0;12

L5diff = inf;13

L4diff = inf;14

for k = 1:length(error_lim)15

% Should be revisited, basic idea is that once the inductor current16

% deviates from a linear relationship by a certain degree, the switching17

% frequency is too close to the resonant switching frequency18

% Calculate the switching frequency for which the current deviation19

% is below the limit20

% only set up for 4 and 5 level!!21

f = ResFrequencyLimit(c,N(n),error_lim(k));22

23

% Calculate for 4 and 5 level operation24

% Because there are two resonant frequencies for the FCML in PSPWM25

% the acceptable allowable error is determined by finding26

% the error limit that makes the crossover of the two resonant27

% limits as close to each other as possible at the duty cycle where28

% circuit transitions from being predominately in operation with29

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 52

% the first resonant frequency to operation with the second30

31

if (N(n) == 5)32

if (abs(f.f_diff) <= L5diff) %33

L5diff = abs(f.f_diff);34

f1.flim = f.flim;35

error(1,n) = error_lim(k);36

else37

f1.flim = f1.flim;38

end39

else40

if (abs(f.f_diff) <= L4diff)41

L4diff = abs(f.f_diff);42

f1.flim = f.flim;43

error(1,n) = error_lim(k);44

else45

f1.flim = f1.flim;46

end47

end48

end49

% Calculate frequency limits based on inductor saturation50

% and flying capacitor voltage ripple51

% outputs the maximum of the two52

f2 = fnFrequencyLimit(c,N(n)); % only set up for 4 and 5 level53

54

% find the maximum of the limits55

flim(n) = max([f1.flim, f2.flim]);56

57

end58

t = 0:1e-6:1/(4*f_grid);59

Initialize60

Vout=zeros(2,length(t));61

D=zeros(2,length(t));62

Deff=zeros(2,length(t));63

Iout=zeros(2,length(t));64

Pout=zeros(2,length(t));65

Ipk=zeros(2,length(t));66

dIpp=zeros(2,length(t));67

fsw=zeros(2,length(t));68

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 53

Dtran = 0;69

Loop statement to calculate transition duty cycle70

% for a range of duty cycles, calculate the ZVS switching frequency71

for i=1:length(t)72

for j=1:length(N)73

Vout(j,i) = Vout_pk*abs(sin(2*pi*f_grid*t(i)));74

%Vout(j,i)=Vout_pk;75

D(j,i) = Vout(j,i)/c.Vin;76

Deff(j,i) = (N(j)-1)*D(j,i)-floor((N(j)-1)*D(j,i));77

Iout(j,i) = c.Iout_avg;78

Pout(j,i)= Iout(j,i)*Vout(j,i);79

Ipk(j,i) = 2*Iout(j,i)-c.Iv;80

dIpp(j,i) = Ipk(j,i)-c.Iv;81

fsw(j,i) = ((c.Vin*(Deff(j,i)*(1-Deff(j,i))))/82

(c.L*dIpp(j,i)*(N(j)-1)^2))*10^-3; %in kHz83

end84

85

end86

Calculate Optimum switching frequency for proposed method87

f_opt0 = zeros(1,length(t));88

f_opt0(1) = fsw(2,1);89

90

for i = 1:length(t)91

if (fsw(1,i) >= flim(1) && fsw(2,i) > flim(2))92

f_opt0(i) = fsw(2,i);93

94

elseif (fsw(1,i) > flim(1) && fsw(2,i) < flim(2))95

f_opt0(i) = fsw(1,i);96

if (Dtran == 0 && D(1,i) >= .125)97

Dtran = D(1,i+1);98

fsw4 = fsw(1,i+1);99

fsw5 = fsw(2,i+1);100

end101

elseif (fsw(1,i) < flim(1) && fsw(2,i) > flim(2))102

f_opt0(i) = fsw(2,i);103

else104

if (i ~= 1 && (f_opt0(i-1) == fsw(2,i-1)))105

f_opt0(i) = fsw(2,i);106

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 54

elseif (i ~= 1 && (f_opt0(i-1) == fsw(1,i-1)))107

f_opt0(i) = fsw(1,i);108

else109

f_opt0(i) = fsw(2,i);110

end111

end112

113

end114

Outputs115

duty.error = error;116

duty.flim = flim;117

duty.fsw4 = fsw4;118

duty.fsw5 = fsw5;119

duty.Dtran = Dtran;120

Plots121

% f_pk=max(fsw(1,1:length(t)));122

% figure1 = figure(’Name’,’ZVS Switching Frequency vs. Duty Cycle’,123

’Color’,[1 1 1]);124

% axes1 = axes(’Parent’,figure1,’YMinorTick’,’on’,...125

% ’YMinorGrid’,’off’,...126

% ’XMinorTick’,’on’,...127

% ’XMinorGrid’,’off’,...128

% ’FontSize’,16,...129

% ’FontName’,’Times New Roman’);130

% box(axes1,’on’);131

% grid(axes1,’on’);132

% hold(axes1,’all’);133

%134

% f_lim=ones(1,length(t));135

% plot(D(1,1:length(t)),fsw(1,1:length(t)), ’--’,136

’color’, [1 0.667 0], ’LineWidth’,1.5)137

% plot(D(2,1:length(t)),fsw(2,1:length(t)),’:’,138

’color’, [0.57 0 0.713],’LineWidth’,1.5)139

% plot(D(2,1:length(t)),f_opt0(1:length(t)),140

’color’, [0.134 0.55 0.134],’LineWidth’,2)141

% plot(D(2,1:length(t)),flim(1)*f_lim, ’y’)142

% plot(D(2,1:length(t)),flim(2)*f_lim, ’b’)143

%144

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 55

% set(gca, ’XTick’, [0,0.25,0.5,0.75,1])145

% xlabel(’Duty Cycle’,’FontSize’,16,’FontName’,’Times New Roman’);146

% ylabel(’Switching Frequency [kHz]’,’FontSize’,16,147

’FontName’,’Times New Roman’, ’Interpreter’, ’tex’);148

% grid on;149

%150

% set(gca,’FontSize’,16, ’FontName’,’Times New Roman’)151

% h = legend(’4-Level’,’5-Level’,’Proposed’, ’Location’, ’northeast’);152

% set(h,’FontSize’,12);153

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 56

Resonant Frequency Limit

function f = ResFrequencyLimit(c, N, error_lim)1

L = c.L;2

Izvs = c.Iv;3

Idc = c.Iout_avg;4

Vin = c.Vin;5

D = linspace(0.0126,1,80);6

VDC_max_Cfly = (Vin*(N-2)/(N-1));7

VDC_mid_Cfly = (Vin*(N-3)/(N-1));8

%’C5750X6S2W225K250KA’9

10

C_int = c.C_int;11

12

% instead of interpolate, look up value from table13

14

index_Vmax = (round(VDC_max_Cfly*100))+1;15

index_Vmid = (round(VDC_mid_Cfly*100))+1;16

17

Cfly = c.num_cap*C_int(index_Vmax); % read from look-up table18

Cfly_mid = c.num_cap*C_int(index_Vmid);19

20

% C_data = [2.20E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.22E+00;21

% 2.18E+00; 2.10E+00; 2.05E+00; 1.93E+00; 1.81E+00; 1.63E+00;22

% 1.47E+00; 1.29E+00; 1.10E+00; 9.63E-01; 7.69E-01; 6.39E-01;23

% 5.48E-01; 4.31E-01; 3.89E-01; 0.347] * 1e-6;% * 2.014/2.2;24

% VDC = [0.00E+00; 1.00E+00; 2.00E+00; 4.00E+00; 6.30E+00; 1.00E+01;25

% 1.60E+01; 2.50E+01; 3.00E+01; 4.00E+01; 5.00E+01; 6.50E+01;26

% 8.00E+01; 1.00E+02; 1.25E+02; 1.50E+02; 2.00E+02; 2.50E+02;27

% 3.00E+02; 4.00E+02; 4.50E+02; 500];28

29

% Capacitor de-rating30

% Cfly = c.num_cap*interp1(VDC,C_data,VDC_max_Cfly);31

% Cfly_mid = c.num_cap*interp1(VDC,C_data,VDC_mid_Cfly);32

C = Cfly;33

Ca = Cfly_mid;34

Cb = C;35

36

Cx = ((1/Ca)+(1/Cb))^-1; % effective capacitance for two37

% capacitors in series38

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 57

% Calculate resonant frequency39

w1 = 1/sqrt(L*C);40

wx = 1/sqrt(L*Cx);41

iL0 = Izvs; % initial condition for on-time42

ipk = 2*Idc-Izvs; % initial condition for off-time43

Tmax = 2*pi/(2*wx); % used to scale window of time, set window44

% to be half the period of the faster current45

46

t = linspace(0,Tmax,1000);47

48

% Initialize49

Deff = zeros(1,length(D));50

iL1 = zeros(1,length(t));51

iL2 = zeros(1,length(t));52

iL1off = zeros(1,length(t));53

iL2off = zeros(1,length(t));54

ton_max = zeros(1,length(D));55

toff_max = zeros(1,length(D));56

fsw = zeros(1,length(D));57

fsw_off = zeros(1,length(D));58

Dregion = zeros(1,N-1);59

60

% set boundaries of duty cycle regions61

for k = 1:N-162

Dregion(k) = k/(N-1);63

end64

65

% calculate i_1cap and i_2cap for every duty cycle66

% resonant current based on two resonant frequencies67

% (one cap or two caps in series)68

% dependent on duty cycle region69

for i = 1:length(D)70

71

% calculate effective duty cycle72

Deff(i) = D(i)*(N-1) - floor(D(i)*(N-1));73

74

if (N == 5)75

if (D(i) <= Dregion(1))76

iL1 = iL0*cos(w1*t) + (Vin*(Dregion(1) -77

D(i)))*sqrt(C/L)*sin(w1*t);78

iL2 = iL0*cos(wx*t) + (Vin*(Dregion(1) -79

D(i)))*sqrt(Cx/L)*sin(wx*t);80

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 58

81

elseif (D(i) > Dregion(1) && D(i) <= Dregion(2))82

iL1 = iL0*cos(w1*t) + (Vin*(Dregion(2) -83

D(i)))*sqrt(C/L)*sin(w1*t);84

iL2 = iL0*cos(wx*t) + (Vin*(Dregion(2) -85

D(i)))*sqrt(Cx/L)*sin(wx*t);86

87

% off time with different initial conditions88

iL1off = ipk*cos(w1*t) + (Vin*(Dregion(1) -89

D(i)))*sqrt(C/L)*sin(w1*t);90

% off time with different initial conditions91

iL2off = ipk*cos(wx*t) + (Vin*(Dregion(1) -92

D(i)))*sqrt(Cx/L)*sin(wx*t);93

94

elseif (D(i) > Dregion(2) && D(i) <= Dregion(3))95

iL1 = iL0*cos(w1*t) + (Vin*(Dregion(3) -96

D(i)))*sqrt(C/L)*sin(w1*t);97

iL2 = iL0*cos(wx*t) + (Vin*(Dregion(3) -98

D(i)))*sqrt(Cx/L)*sin(wx*t);99

iL1off = ipk*cos(w1*t) + (Vin*(Dregion(2) -100

D(i)))*sqrt(C/L)*sin(w1*t);101

iL2off = ipk*cos(wx*t) + (Vin*(Dregion(2) -102

D(i)))*sqrt(Cx/L)*sin(wx*t);103

104

elseif (D(i) > Dregion(3) && D(i) <= Dregion(4))105

iL1 = iL2;106

iL1off = ipk*cos(w1*t) + (Vin*(Dregion(3) -107

D(i)))*sqrt(C/L)*sin(w1*t);108

iL2off = ipk*cos(wx*t) + (Vin*(Dregion(3) -109

D(i)))*sqrt(Cx/L)*sin(wx*t);110

111

end112

113

elseif (N == 4)114

if (D(i) <= Dregion(1))115

iL1 = iL0*cos(w1*t) + (Vin*(Dregion(1) -116

D(i)))*sqrt(C/L)*sin(w1*t);117

iL2 = iL0*cos(wx*t) + (Vin*(Dregion(1) -118

D(i)))*sqrt(Cx/L)*sin(wx*t);119

120

elseif (D(i) > Dregion(1) && D(i) <= Dregion(2))121

iL1 = iL0*cos(w1*t) + (Vin*(Dregion(2) -122

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 59

D(i)))*sqrt(C/L)*sin(w1*t);123

iL2 = iL0*cos(wx*t) + (Vin*(Dregion(2) -124

D(i)))*sqrt(Cx/L)*sin(wx*t);125

iL1off = ipk*cos(w1*t) + (Vin*(Dregion(1) -126

D(i)))*sqrt(C/L)*sin(w1*t);127

iL2off = ipk*cos(wx*t) + (Vin*(Dregion(1) -128

D(i)))*sqrt(Cx/L)*sin(wx*t);129

130

elseif (D(i) > Dregion(2) && D(i) <= Dregion(3))131

iL1 = iL2;132

iL1off = ipk*cos(w1*t) + (Vin*(Dregion(2) -133

D(i)))*sqrt(C/L)*sin(w1*t);134

iL2off = ipk*cos(wx*t) + (Vin*(Dregion(2) -135

D(i)))*sqrt(Cx/L)*sin(wx*t);136

137

end138

end139

140

141

% error_lim from Operation Points142

error_lim_off = error_lim;143

144

error = zeros(1,length(t));145

error_off = zeros(1,length(t));146

147

tmax = 0;148

tmax_off = 0;149

150

for k = 2:length(t)151

152

% calculate difference in currents (1cap vs 2cap) for on-time current153

error(k) = (iL1(k) - iL2(k));154

155

% calculate difference in currents (1cap vs 2cap) for off-time current156

error_off(k) = iL1off(k) - iL2off(k);157

158

if ((error(k) >= error_lim) && (error(k-1) < error_lim))159

% after the error limit is reached set tmax to that time160

tmax = t(k);161

end162

if ((error_off(k) >= error_lim_off) &&163

(error_off(k-1) < error_lim_off))164

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 60

% after the error limit is reached set tmax to that time165

tmax_off = t(k);166

end167

end168

169

ton_max(i) = tmax; % each duty cycle has own ton_max170

toff_max(i) = tmax_off; % each duty cycle has own toff_max171

172

% calculate switching frequency minimum to satisfy173

% on-time less that ton_max174

fsw(i) = Deff(i)/(ton_max(i)*(N-1));175

176

% calculate switching frequency minimum to satisfy177

% off-time less that toff_max178

fsw_off(i) = (1-Deff(i))/(toff_max(i)*(N-1));179

180

end181

182

D_off = D;183

for i = 1:length(fsw)184

185

if (isfinite(fsw(i))) % don’t plot fsw infinite186

fsw(i) = fsw(i);187

else188

fsw(i) = 0;189

D(i) = 0;190

end191

end192

if N == 4193

f_diff = fsw_off(40) - fsw(40);194

else195

f_diff = fsw_off(30) - fsw(30);196

end197

% find maximum of the frequency for on-time calculations198

[maxf, Dmaxf] = max(fsw);199

%maxf/1000 % print maximum fsw_on200

%D(Dmaxf) %print duty cycle for maximum fsw_on201

202

% figure % plot 2 currents for on and off-times203

% plot(t,iL1)204

% hold on205

% plot(t,iL2)206

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 61

% plot(t,iL1off)207

% plot(t,iL2off)208

% legend(’iL1’, ’iL2’, ’iL1off’, ’iL2off’);209

210

%%%%%211

% figure212

% scatter(D,fsw/1000)213

% hold on214

% scatter(D_off,fsw_off/1000)215

% grid on216

% grid minor217

% xlim([0 1])218

% legend(’fsw-on’, ’fsw-off’);219

220

f.f_diff = f_diff;221

f.flim = maxf/1000;222

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 62

Component Frequency Limit

function f2 = fnFrequencyLimit(c,N)1

2

Vin = c.Vin;3

Vout_rms = Vin/sqrt(2);4

Iout_dc = c.Iout_avg;5

6

Izvs = c.Iv;7

8

L = c.L;9

10

f_grid = 60;11

t = 0:1e-6:1/f_grid;12

for i=1:length(t)13

Vout(i) = (Vout_rms*(sqrt(2)))*abs(sin(2*pi*f_grid*t(i)));14

Iout(i) = Iout_dc;15

end16

17

18

19

Isat = c.Isat;20

ripple = 0.1; %percent ripple on Caps21

22

23

VDC_max_Cfly = max(Vin*(N-2)/(N-1));24

%’C5750X6S2W225K250KA’25

C.C = [2.20E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.22E+00; 2.18E+00;26

2.10E+00; 2.05E+00; 1.93E+00; 1.81E+00; 1.63E+00; 1.47E+00;27

1.29E+00; 1.10E+00; 9.63E-01; 7.69E-01; 6.39E-01; 5.48E-01;28

4.31E-01; 3.89E-01; 0.347] * 1e-6;% * 2.014/2.2;29

C.VDC = [0.00E+00; 1.00E+00; 2.00E+00; 4.00E+00; 6.30E+00; 1.00E+01;30

1.60E+01; 2.50E+01; 3.00E+01; 4.00E+01; 5.00E+01; 6.50E+01;31

8.00E+01; 1.00E+02; 1.25E+02; 1.50E+02; 2.00E+02; 2.50E+02;32

3.00E+02; 4.00E+02; 4.50E+02; 500];33

Cfly = c.num_cap*interp1(C.VDC,C.C,VDC_max_Cfly);34

35

36

37

Dregion = zeros(1,N-1);38

D = zeros(1,length(Vout));39

Deff = zeros(1,length(Vout));40

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 63

Pout = zeros(1,length(Vout));41

Iin = zeros(1,length(Vout));42

IL = zeros(1,length(Vout));43

44

fswCfly = zeros(1,length(Vout));45

fswIsat = zeros(1,length(Vout));46

fswZVS = zeros(1,length(Vout));47

48

for k = 1:N-149

Dregion(k) = k/(N-1);50

end51

52

53

for i = 1:length(Vout)54

55

D(i) = Vout(i)/Vin;56

Deff(i) = (N-1)*D(i)-floor((N-1)*D(i));57

Pout(i) = Iout(i)*Vout(i);58

Iin(i) = Pout(i)/Vin;59

IL(i) = Iout(i);60

61

62

if (N == 5)63

if (D(i) <= Dregion(1))64

fswCfly(i) = IL(i)*Deff(i)/(2*Cfly*ripple*Vin);65

fswIsat(i) = (Dregion(1)-D(i))*Vin*Deff(i)/66

(2*L*(N-1)*(Isat-IL(i)));67

fswZVS(i) = (Dregion(1)-D(i))*Vin*Deff(i)/68

(2*L*(N-1)*(IL(i)-Izvs));69

70

elseif (D(i) > Dregion(1) && D(i) <= Dregion(2))71

fswCfly(i) = IL(i)/(2*Cfly*ripple*Vin);72

fswIsat(i) = (Dregion(2)-D(i))*Vin*Deff(i)/73

(2*L*(N-1)*(Isat-IL(i)));74

fswZVS(i) = (Dregion(2)-D(i))*Vin*Deff(i)/75

(2*L*(N-1)*(IL(i)-Izvs));76

77

elseif (D(i) > Dregion(2) && D(i) <= Dregion(3))78

fswCfly(i) = IL(i)/(2*Cfly*ripple*Vin);79

fswIsat(i) = (Dregion(3)-D(i))*Vin*Deff(i)/80

(2*L*(N-1)*(Isat-IL(i)));81

fswZVS(i) = (Dregion(3)-D(i))*Vin*Deff(i)/82

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 64

(2*L*(N-1)*(IL(i)-Izvs));83

84

elseif (D(i) > Dregion(3) && D(i) <= Dregion(4))85

fswCfly(i) = IL(i)*(1-Deff(i))/(2*Cfly*ripple*Vin);86

fswIsat(i) = (Dregion(4)-D(i))*Vin*Deff(i)/87

(2*L*(N-1)*(Isat-IL(i)));88

fswZVS(i) = (Dregion(4)-D(i))*Vin*Deff(i)/89

(2*L*(N-1)*(IL(i)-Izvs));90

91

end92

elseif (N == 4)93

if (D(i) <= Dregion(1))94

fswCfly(i) = IL(i)*Deff(i)/(2*Cfly*ripple*Vin);95

fswIsat(i) = (Dregion(1)-D(i))*Vin*Deff(i)/96

(2*L*(N-1)*(Isat-IL(i)));97

fswZVS(i) = (Dregion(1)-D(i))*Vin*Deff(i)/98

(2*L*(N-1)*(IL(i)-Izvs));99

100

elseif (D(i) > Dregion(1) && D(i) <= Dregion(2))101

fswCfly(i) = IL(i)/(2*Cfly*ripple*Vin);102

fswIsat(i) = (Dregion(2)-D(i))*Vin*Deff(i)/103

(2*L*(N-1)*(Isat-IL(i)));104

fswZVS(i) = (Dregion(2)-D(i))*Vin*Deff(i)/105

(2*L*(N-1)*(IL(i)-Izvs));106

107

elseif (D(i) > Dregion(2) && D(i) <= Dregion(3))108

fswCfly(i) = IL(i)*(1-Deff(i))/(2*Cfly*ripple*Vin);109

fswIsat(i) = (Dregion(3)-D(i))*Vin*Deff(i)/110

(2*L*(N-1)*(Isat-IL(i)));111

fswZVS(i) = (Dregion(3)-D(i))*Vin*Deff(i)/112

(2*L*(N-1)*(IL(i)-Izvs));113

114

end115

end116

end117

Cfly_lim = max(fswCfly)/1000;118

Isat_lim = max(fswIsat)/1000;119

ZVS_lim = max(fswZVS)/1000;120

f_lim = max([Cfly_lim, Isat_lim]);121

f2.flim = f_lim;122

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 65

Main Active Balancing

Contents

• values
• design parameters
• initialize
• current loop
• Initialize function
• Active Balancing Function
• error calculation
• display waveforms

% Active Balancing Calculations, specific to 4 level AB1

% Also currently specific to lowest duty cycle range2

% Assume capacitor voltage is constant in each subperiod ty to tz3

4

function abmain = ABmain(D, fsw4, fsw5, N, c)5

values6

c.D0 = D;7

c.T0 = 1/(fsw5*10^3);8

c.N0 = N(2);9

c.N1 = N(1);10

c.Def0 = (c.N0-1)*c.D0-floor((c.N0-1)*c.D0);11

c.T = 1/(fsw4*10^3);12

c.Tef4 = c.T/(c.N1-1);13

14

15

c.R = c.D0*c.Vin/c.Iout_avg;16

17

c.Def4 = (c.N1-1)*c.D0-floor((c.N1-1)*c.D0);18

c.kx = [1 2 3];19

c.div = 75;20

design parameters21

Iout = c.Iout_avg;22

a = c.a; % factor of duty cycle adjustment on d223

abcount = c.g; % number of cycles in Active Balancing24

endcount = round(1.2.*abcount); % total number of cycles to calculate25

%waveforms = zeros(1,2);26

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 66

initialize27

c.Vc = zeros(3, 7); % capacitor voltages at times 1-6 (cap x time)28

c.dVc = zeros(3,3,2); % change in capacitor voltage specific for 4 case29

c.VL = zeros(2, 3); % inductor voltage30

c.ix = zeros(1, 7); % inductor current31

c.di = zeros(2, 3); % change in inductor current32

33

% Areas used for capacitor charge eqn Ax_y is area for cap x in region y34

c.Area = zeros(3, 3);35

36

diff = zeros(length(Iout),length(a));37

alpha_index = 1;38

gamma_index = 1;39

t = 2; % start time required for matlab indexing40

current loop41

opt(1,:) = [inf 0 0];42

43

cycle.abcount = abcount;44

cycle.endcount = endcount;45

46

47

cycle.a = a;48

Initialize function49

%initializations depend on parameters being swept50

init = ABinit(c,cycle,t,Iout);51

c = init.c;52

Active Balancing Function53

abcalc = ABCalc(c,cycle,t);54

c = abcalc.c;55

error calculation56

norm = sqrt(abcalc.diff.Vc1_diff^2 +57

abcalc.diff.Vc3_diff^2);58

diff_Vc1 = abcalc.diff.Vc1_diff;59

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 67

diff_Vc3 = abcalc.diff.Vc3_diff;60

% if diff(j,k) < opt(1,1)61

% waveforms(1) = c;62

% cycle_plot = cycle;63

% opt = [diff(j,k) j k];64

% alpha_index = k;65

% gamma_index = j;66

% elseif diff(j,k) == opt(1,1)67

% waveforms(2) = c;68

% opt(2,:) = [diff(j,k) j k];69

% end70

71

72

73

% end74

display waveforms75

% ABplot(waveforms(1),cycle_plot);76

%Current = Iout(opt(1,2))77

outputs78

%%output79

abmain.norm = norm;80

abmain.diff_Vc1 = diff_Vc1;81

abmain.diff_Vc3 = diff_Vc3;82

abmain.curr_max = max(c.curr);83

abmain.c = c;84

% abmain.alpha = a(alpha_index);85

% abmain.gamma = abcount(gamma_index);86

% abmain.opt = opt;87

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 68

Active Balancing Initialization

Contents1

• Set duty cycles and subperiods to active balancing2

• initial voltages and currents, t03

• Output4

function init = ABinit(c, cycle,t,Iout)5

Set duty cycles and subperiods to active balancing6

% adjust subperiod of q2, using effective period7

% ALWAYS use 4 level N and 4 level T8

c.Tab(2) = cycle.a/(c.N1-1);9

c.Tab(1) = 0.5*(1-c.Tab(2)); % T1+T2+T4=110

c.Tab(3) = c.Tab(1); % Keep T1=T411

12

% D2 = Def4*a*Tef1,13

% where Tef1 is the fraction of the main period that is14

% the effective period at Vsw15

c.D(2) = c.Def4*c.Tab(2);16

c.D(1) = c.Def4*c.Tab(1); % D1 = Def4*Tab117

c.D(3) = c.Def4*c.Tab(3); % Keep D1=D418

initial voltages and currents, t019

c.Vout(t-1) = c.D0*c.Vin; % Buck conversion ratio20

21

% capacitor voltages as fraction of input voltage during previous N22

Vc0(1) = c.kx(1)*c.Vin/(c.N0-1); % k1 = 123

Vc0(2) = c.kx(2)*c.Vin/(c.N0-1); % k2 = 224

Vc0(3) = c.kx(3)*c.Vin/(c.N0-1); % k3 = 325

26

c.Vc(:,1) = Vc0; % concatenate flying cap voltages and initial conditions27

% Capacitor voltage goals28

c.Vc_4L(1) = c.kx(1)*c.Vin/(c.N1-1); % k1 = 129

c.Vc_4L(2) = c.kx(2)*c.Vin/(c.N0-1); % k2 = 230

c.Vc_4L(3) = c.kx(2)*c.Vin/(c.N1-1); % k2 = 231

32

%Capacitor derating33

c.CapC = [2.20E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.22E+00;34

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 69

2.18E+00; 2.10E+00; 2.05E+00; 1.93E+00; 1.81E+00; 1.63E+00;35

1.47E+00; 1.29E+00; 1.10E+00; 9.63E-01; 7.69E-01; 6.39E-01;36

5.48E-01; 4.31E-01; 3.89E-01; 0.347] * 1e-6;% * 2.014/2.2;37

c.CapVDC = [0.00E+00; 1.00E+00; 2.00E+00; 4.00E+00; 6.30E+00; 1.00E+01;38

1.60E+01; 2.50E+01; 3.00E+01; 4.00E+01; 5.00E+01; 6.50E+01;39

8.00E+01; 1.00E+02; 1.25E+02; 1.50E+02; 2.00E+02; 2.50E+02;40

3.00E+02; 4.00E+02; 4.50E+02; 500];41

42

% inductor current at time t0 is the43

% minimum iL from the previous N operation44

% <iL>-dipp/2 with <iL> = Iout45

% and dipp = Vin*T0*Def0*(1-Def0)/(L*(N0-1)^2)46

i0 = (Iout - c.Vin*c.T0*c.Def0*(1-c.Def0)/(2*c.L*(c.N0-1)^2));47

c.curr(:,1) = i0;48

49

% Calc Max current50

c.Imax = c.N1*c.Vripple*c.Vin*8*(1/c.T)*c.num_capOut*c.cap + c.Iv;51

Output52

init.c = c;53

init.Iout = Iout;54

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 70

Set-up for Active Balancing Loop

Contents

• Outer Loop (time Block)
• calculate error on cap voltages
• Output
• Display

function abcalc = ABCalc(c, cycle, t)1

Outer Loop (time Block)2

for n = 1:cycle.endcount % for n cycles do calculations3

% only 5 to 4 level case right now4

% if (c.N1 == c.N1 && (c.Vc(3,end) > k(2)*c.Vin/(c.N1-1) ||5

c.Vc(1,end) < k(1)*c.Vin/(c.N1-1)))6

% if the cycle index is within AB range, do AB calcs7

if(n <= cycle.abcount)8

9

tend = t + 2*(4-1)-1; % for indexing10

% and saving calculated values for next cycle11

ab = ActiveBalancing(c, n, t);12

c.Vc(:,t:tend) = ab.Vc; % save calculated values13

c.curr(:,t:tend) = ab.curr; % save calculated values14

c.Vout(:,t:tend) = ab.Vout;15

t = tend + 1; %increase index16

17

18

elseif (n > cycle.abcount)19

cycle.a = 1;20

21

% reset subperiod to normal 4 level operation after AB22

c.Tab(2) = cycle.a/(c.N1-1);23

c.Tab(1) = cycle.a/(c.N1-1);24

c.Tab(3) = cycle.a/(c.N1-1);25

26

% reset duty cycle to normal 4 level operation after AB27

c.D(2) = c.D0;28

c.D(1) = c.D0;29

c.D(3) = c.D0;30

31

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 71

tend = t + 2*(4-1)-1; % for indexing32

% and saving calculated values for next cycle33

ab = ActiveBalancing(c, n, t);34

35

c.Vc(:,t:tend) = ab.Vc; % save calculated values36

c.curr(:,t:tend) = ab.curr; % save calculated values37

c.Vout(:,t:tend) = ab.Vout;38

t = tend + 1; %increase index39

40

end41

42

43

end44

calculate error on cap voltages45

diff.Vc1_diff = abs(c.Vc_4L(1)-c.Vc(1,end));46

diff.Vc3_diff = abs(c.Vc_4L(3)-c.Vc(3,end));47

Output48

abcalc.c = c;49

abcalc.diff = diff;50

Display51

% %% Display52

% figure53

% timesteps1 = [c.D(1)*c.T54

c.Tab(1)*c.T55

c.Tab(1)*c.T+c.D(2)*c.T56

c.Tab(1)*c.T+c.Tab(2)*c.T57

c.Tab(1)*c.T+c.Tab(2)*c.T+c.D(3)*c.T58

c.Tab(1)*c.T+c.Tab(2)*c.T+c.Tab(3)*c.T];59

% timeshift = c.T*ones(1,length(timesteps1));60

% timesteps(1) = 0;61

% index = 2;62

%63

% timeshift4 = c.T*ones(1,length(timesteps1));64

%65

% for m = 1:cycle.endcount66

%67

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 72

% timesteps(index:index + (2*c.N1-3)) =68

timesteps1 + (m-1)*timeshift4;69

% index = index + (2*c.N1-3) + 1;70

%71

% end72

%73

% Vout = c.Vout*ones(length(timesteps));74

% % current = eval(c.curr(1:end));75

% % voltage1 = eval(c.Vc(1,1:end));76

% % voltage3 = eval(c.Vc(3,1:end));77

% current = c.curr(1:end);78

% voltage1 = c.Vc(1,1:end);79

% voltage3 = c.Vc(3,1:end);80

% outVoltage = c.Vout(1:end);81

%82

% hold on83

%84

% ylim([-40 40])85

% plot(timesteps, voltage1, ’color’, [0.953 0.918 0.257], ’linewidth’, 2)86

% plot(timesteps, voltage3,’color’, [0.953 0.257 0.918], ’linewidth’, 2)87

% plot(timesteps, outVoltage, ’color’, [0.257 0.953 0.894], ’linewidth’, 2)88

%89

% volt4L = c.Vc_4L’*ones(1,length(timesteps));90

% plot(timesteps, volt4L(1,:), ’color’, [0 0 0])91

% plot(timesteps, volt4L(3,:), ’color’, [0 0 0])92

%93

% yyaxis right94

% ylim([-5 35])95

% plot(timesteps, current, ’color’, [0.324 0.953 0.257], ’linewidth’, 2)96

%97

%98

% resize_figure(6, 1.2)99

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 73

Sub-period Active Balancing Calculations

Contents

• Active Balancing Function
• On time of q4 from t0 to t1, region 1
• Off time of q1 t1 to t2, region 1
• On time of q2 from t2 to t3, region 2
• Off time of q2 t3 to t4, region 2
• On time of q3 from t4 to t5, region 3
• Off time of q3 t5 to t6, region 3
• Output

Active Balancing Function1

function ab = ActiveBalancing(c,n,t)2

Vc(1,t-1) = c.Vc(1,t-1);3

Vc(2,t-1) = c.Vc(2,t-1);4

Vc(3,t-1) = c.Vc(3,t-1);5

curr(t-1) = c.curr(t-1);6

Vout(t-1) = c.Vout(t-1);7

8

Vc_loop = zeros(3,c.div);9

curr_loop = zeros(1,c.div);10

Vout_loop = zeros(1,c.div);11

iload = zeros(1,c.div);12

ic = zeros(1,c.div);13

dVout = zeros(1,c.div);14

15

% de-rated capacitor look-up table16

V_base = c.V_base;17

C_int = c.C_int;18

19

On time of q4 from t0 to t1, region 120

Vc_loop(:,1) = Vc(:,t-1);21

curr_loop(1) = curr(t-1);22

Vout_loop(1) = Vout(t-1);23

24

for j = 1:c.div25

% during on time, voltage across inductor is sum of series26

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 74

% cap voltages - Vout (this one is specific to 4 level)27

VL(1,1) = c.Vin-Vc_loop(3,j)-Vout_loop(j);28

29

% change in inductor current in on time (D4*T) is30

% di=dt*VL/L divided into smalled div31

di(1,1) = VL(1,1)*c.D(3)*c.T/(c.div*c.L);32

33

% update current at end of subperiod, old value + di34

curr_loop(j+1) = curr_loop(j)+di(1,1);35

36

% c.C1 = 3*(interp1(c.CapVDC,c.CapC,Vc_loop(1,j)));37

% c.C3 = 3*(interp1(c.CapVDC,c.CapC,Vc_loop(3,j)));38

% c.Cout = 4*(interp1(c.CapVDC,c.CapC,Vout_loop(j)));39

40

% instead of interpolate, look up value from table41

42

indexC1 = ((round(Vc_loop(1,j)*100)))+1;43

indexC3 = ((round(Vc_loop(3,j)*100)))+1;44

indexCout = ((round(Vout_loop(j)*100)))+1;45

46

if indexC1 <= 047

indexC1 = 1;48

end49

if indexC3 <= 050

indexC3 = 1;51

end52

if indexCout <= 053

indexCout = 1;54

end55

56

c.C1 = c.num_cap*C_int(indexC1); % read from look-up table57

c.C3 = c.num_cap*C_int(indexC3);58

c.Cout = c.num_capOut*C_int(indexCout);59

60

61

% Charge area of cap C1, C1 not charged/discharged in this region62

Area(1,1) = 0;63

64

dVc(1,1,1) = Area(1,1)/c.C1; % change in cap voltage dV = Q/C65

66

% update cap voltage at end of subperiod, old value + dV67

Vc_loop(1,j+1) = Vc_loop(1,j)+dVc(1,1,1);68

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 75

69

% Voltage on cap C2 does not change because no current into C270

71

% Charge area of cap C3, triangle (0.5*b*h = 0.5*D4*T*di)72

% and rectangle (b*h=D4*T*i_start) where i_start is current73

% value from end of last subperiod74

Area(3,1) = ((0.5*c.D(3)*c.T*di(1,1)+curr_loop(j)*c.D(3)*c.T))/75

c.div;76

77

% change in cap voltage dV = Q/C78

dVc(3,1,1) = Area(3,1)/c.C3;79

80

% update cap voltage at end of subperiod, old value + dV81

Vc_loop(3,j+1) = Vc_loop(3,j)+dVc(3,1,1);82

83

iload(j) = Vout_loop(j)/c.R;84

ic(j) = curr_loop(j)-iload(j);85

dVout(j) = ic(j)*c.D(3)*c.T/(c.div*c.Cout);86

Vout_loop(j+1) = Vout_loop(j) + dVout(j); % ?87

end88

89

% update current at end of subperiod, old value + di90

curr(t) = curr_loop(end);91

92

% update cap voltage at end of subperiod, old value + dV93

Vc(1,t) = Vc_loop(1,end);94

95

% Voltage on cap C2 does not change because no current into C296

97

% update cap voltage at end of subperiod, old value + dV98

Vc(3,t) = Vc_loop(3,end);99

100

Vout(t) = Vout_loop(end); % update101

Off time of q1 t1 to t2, region 1102

Vc_loop(:,1) = Vc(:,t);103

curr_loop(1) = curr(t);104

Vout_loop(1) = Vout(t);105

106

for j = 1:c.div107

% during off time, voltage across inductor is sum of108

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 76

% series cap voltages - Vout (this one is specific to 4 level)109

VL(2,1) = -Vout_loop(j);110

111

% change in inductor current in on time (Tab3-D3*T) is di=dt*VL/L112

di(2,1) = VL(2,1)*((c.Tab(3)-c.D(3))*c.T)/(c.div*c.L);113

114

% update current at end of subperiod, old value + di115

curr_loop(j+1) = curr_loop(j)+di(2,1);116

117

% c.Cout = 4*(interp1(c.CapVDC,c.CapC,Vout_loop(j)));118

% instead of interpolate, look up value from table119

indexCout =((round(Vout_loop(j)*100)))+1;120

121

if indexCout <= 0122

indexCout = 1;123

end124

c.Cout = c.num_capOut*C_int(indexCout);125

126

127

iload(j) = Vout_loop(j)/c.R;128

ic(j) = curr_loop(j)-iload(j);129

dVout(j) = (ic(j)*(c.Tab(3)-c.D(3))*c.T)/(c.div*c.Cout);130

Vout_loop(j+1) = Vout_loop(j) + dVout(j); % ?131

132

end133

134

% update current at end of subperiod, old value + di135

curr(t+1) = curr_loop(end);136

137

% cap voltage does not change in off time (specific to lowest D range)138

Vc(1,t+1) = Vc_loop(1,end);139

140

% cap voltage does not change in off time (specific to lowest D range)141

Vc(3,t+1) = Vc_loop(3,end);142

143

Vout(t+1) = Vout_loop(end);144

**On time of q2 from t2 to t3, region 2145

% doing a half step here, update voltage, do other half146

Vc_loop(:,1) = Vc(:,t+1);147

curr_loop(1) = curr(t+1);148

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 77

Vout_loop(1) = Vout(t+1);149

150

for j = 1:c.div151

152

% during on time, voltage across inductor is sum of series153

% cap voltages - Vout (this one is specific to 4 level)154

VL(1,2) = Vc_loop(3,j)-Vc_loop(1,j)-Vout_loop(j);155

156

% change in inductor current in on time (D2*T) is di=dt*VL/L157

di(1,2) = VL(1,2)*c.D(2)*c.T/(c.div*c.L);158

159

% update current at end of subperiod, old value + di160

curr_loop(j+1) = curr_loop(j)+di(1,2);161

162

% c.C1 = 3*(interp1(c.CapVDC,c.CapC,Vc_loop(1,j)));163

% c.C3 = 3*(interp1(c.CapVDC,c.CapC,Vc_loop(3,j)));164

% c.Cout = 4*(interp1(c.CapVDC,c.CapC,Vout_loop(j)));165

166

% instead of interpolate, look up value from table167

168

indexC1 = ((round(Vc_loop(1,j)*100)))+1;169

indexC3 = ((round(Vc_loop(3,j)*100)))+1;170

indexCout = ((round(Vout_loop(j)*100)))+1;171

if indexC1 <= 0172

indexC1 = 1;173

end174

if indexC3 <= 0175

indexC3 = 1;176

end177

if indexCout <= 0178

indexCout = 1;179

end180

181

c.C1 = c.num_cap*C_int(indexC1); % read from look-up table182

c.C3 = c.num_cap*C_int(indexC3);183

c.Cout = c.num_capOut*C_int(indexCout);184

185

% charge area of cap C1, triangle (0.5*b*h = 0.5*D2*T*di)186

% and rectangle (b*h=D2*T*i_start) where i_start is current187

% value from end of last subperiod188

Area(1,2) = (0.5*c.D(2)*c.T*di(1,2)+curr_loop(j)*c.D(2)*c.T)/c.div;189

190

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 78

% change in cap voltage dV = Q/C191

dVc(1,2,1) = Area(1,2)/c.C1;192

193

% update cap voltage at end of subperiod, old value + dV194

Vc_loop(1,j+1) = Vc_loop(1,j)+dVc(1,2,1);195

196

% Voltage on cap C2 does not change because no current into C2197

198

% discharge area of cap C3, triangle (0.5*b*h = 0.5*D2*T*di)199

% and rectangle (b*h=D2*T*i_start) where i_start is current200

% value from end of last subperiod201

Area(3,2) = -((0.5*c.D(2)*c.T*di(1,2)+curr_loop(j)*c.D(2)*c.T))/202

c.div;203

204

% change in cap voltage dV = Q/C205

dVc(3,2,1) = Area(3,2)/c.C3;206

207

% update cap voltage at end of subperiod, old value + dV208

Vc_loop(3,j+1) = Vc_loop(3,j)+dVc(3,2,1);209

210

iload(j) = Vout_loop(j)/c.R;211

ic(j) = curr_loop(j)-iload(j);212

dVout(j) = ic(j)*c.D(2)*c.T/(c.div*c.Cout);213

Vout_loop(j+1) = Vout_loop(j) + dVout(j); %214

end215

216

% update current at end of subperiod, old value + di217

curr(t+2) = curr_loop(end);218

219

% update cap voltage at end of subperiod, old value + dV220

Vc(1,t+2) = Vc_loop(1,end);221

222

% Voltage on cap C2 does not change because no current into C2223

224

% update cap voltage at end of subperiod, old value + dV225

Vc(3,t+2) = Vc_loop(3,end);226

227

Vout(t+2) = Vout_loop(end); % update228

Off time of q2 t3 to t4, region 2229

Vc_loop(:,1) = Vc(:,t+2);230

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 79

curr_loop(1) = curr(t+2);231

Vout_loop(1) = Vout(t+2);232

233

for j = 1:c.div234

235

% during off time, voltage across inductor is sum of series236

% cap voltages - Vout (this one is specific to 4 level)237

VL(2,2) = -Vout_loop(j);238

239

% change in inductor current in off time (Tab2-D2*T) is di=dt*VL/L240

di(2,2) = VL(2,2)*((c.Tab(2)-c.D(2))*c.T)/(c.div*c.L);241

242

% update current at end of subperiod, old value + di243

curr_loop(j+1) = curr_loop(j)+di(2,2);244

245

% c.Cout = 4*(interp1(c.CapVDC,c.CapC,Vout_loop(j)));246

% instead of interpolate, look up value from table247

indexCout = ((round(Vout_loop(j)*100)))+1;248

249

if indexCout <= 0250

indexCout = 1;251

end252

c.Cout = c.num_capOut*C_int(indexCout);253

254

255

iload(j) = Vout_loop(j)/c.R;256

ic(j) = curr_loop(j)-iload(j);257

dVout(j) = (ic(j)*(c.Tab(2)-c.D(2))*c.T)/(c.div*c.Cout);258

Vout_loop(j+1) = Vout_loop(j) + dVout(j); %259

260

end261

262

curr(t+3) = curr_loop(end);263

264

% cap voltage does not change in off time (specific to lowest D range)265

Vc(1,t+3) = Vc_loop(1,end);266

267

% cap voltage does not change in off time (specific to lowest D range)268

Vc(3,t+3) = Vc_loop(3,end);269

270

Vout(t+3) = Vout_loop(end);271

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 80

On time of q3 from t4 to t5, region 3272

Vc_loop(:,1) = Vc(:,t+3);273

curr_loop(1) = curr(t+3);274

Vout_loop(1) = Vout(t+3);275

276

for j = 1:c.div277

278

% during on time, voltage across inductor is sum of series279

% cap voltages - Vout (this one is specific to 4 level)280

VL(1,3) = Vc_loop(1,j)-Vout_loop(j);281

282

% change in inductor current in on time (D1*T) is di=dt*VL/L283

di(1,3) = VL(1,3)*c.D(1)*c.T/(c.div*c.L);284

285

% update current at end of subperiod, old value + di286

curr_loop(j+1) = curr_loop(j)+di(1,3);287

288

% c.C1 = 3*(interp1(c.CapVDC,c.CapC,Vc_loop(1,j)));289

% c.C3 = 3*(interp1(c.CapVDC,c.CapC,Vc_loop(3,j)));290

% c.Cout = 4*(interp1(c.CapVDC,c.CapC,Vout_loop(j)));291

292

% instead of interpolate, look up value from table293

294

indexC1 = ((round(Vc_loop(1,j)*100)))+1;295

indexC3 = ((round(Vc_loop(3,j)*100)))+1;296

indexCout = ((round(Vout_loop(j)*100)))+1;297

if indexC1 <= 0298

indexC1 = 1;299

end300

if indexC3 <= 0301

indexC3 = 1;302

end303

if indexCout <= 0304

indexCout = 1;305

end306

307

c.C1 = c.num_cap*C_int(indexC1); % read from look-up table308

c.C3 = c.num_cap*C_int(indexC3);309

c.Cout = c.num_capOut*C_int(indexCout);310

311

312

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 81

% discharge area of cap C1, triangle (0.5*b*h = 0.5*D1*T*di)313

% and rectangle (b*h=D1*T*i_start) where i_start is current314

% value from end of last subperiod315

Area(1,3) = -((0.5*c.D(1)*c.T*di(1,3)+curr_loop(j)*c.D(1)*c.T))/316

c.div;317

318

% change in cap voltage dV = Q/C319

dVc(1,3,1) = Area(1,3)/c.C1;320

321

% update cap voltage at end of subperiod, old value + dV322

Vc_loop(1,j+1) = Vc_loop(1,j)+dVc(1,3,1);323

324

% Voltage on cap C2 does not change because no current into C2325

326

% Charge area of cap C3, C3 not charged/discharged in this region327

Area(3,3) = 0;328

329

% change in cap voltage dV = Q/C330

dVc(3,3,1) = Area(3,3)/c.C3;331

332

% update cap voltage at end of subperiod, old value + dV333

Vc_loop(3,j+1) = Vc_loop(3,j)+dVc(3,3,1);334

335

iload(j) = Vout_loop(j)/c.R;336

ic(j) = curr_loop(j)-iload(j);337

dVout(j) = ic(j)*c.D(1)*c.T/(c.div*c.Cout);338

Vout_loop(j+1) = Vout_loop(j) + dVout(j); % ?339

end340

341

% update current at end of subperiod, old value + di342

curr(t+4) = curr_loop(end);343

344

% update cap voltage at end of subperiod, old value + dV345

Vc(1,t+4) = Vc_loop(1,end);346

347

% Voltage on cap C2 does not change because no current into C2348

349

% update cap voltage at end of subperiod, old value + dV350

Vc(3,t+4) = Vc_loop(3,end);351

352

Vout(t+4) = Vout_loop(end); % update353

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 82

Off time of q3 t5 to t6, region 3354

Vc_loop(:,1) = Vc(:,t+4);355

curr_loop(1) = curr(t+4);356

Vout_loop(1) = Vout(t+4);357

358

for j = 1:c.div359

360

% during off time, voltage across inductor is sum of series361

% cap voltages - Vout (this one is specific to 4 level)362

VL(2,3) = -Vout_loop(j);363

364

% change in inductor current in on time (Tab1-D1*T) is di=dt*VL/L365

di(2,3) = VL(2,3)*((c.Tab(1)-c.D(1))*c.T)/(c.div*c.L);366

367

% update current at end of subperiod, old value + di368

curr_loop(j+1) = curr_loop(j)+di(2,3);369

370

% c.Cout = 4*(interp1(c.CapVDC,c.CapC,Vout_loop(j)));371

372

% instead of interpolate, look up value from table373

indexCout = ((round(Vout_loop(j)*100)))+1;374

375

if indexCout <= 0376

indexCout = 1;377

end378

c.Cout = c.num_capOut*C_int(indexCout);379

380

iload(j) = Vout_loop(j)/c.R;381

ic(j) = curr_loop(j)-iload(j);382

dVout(j) = (ic(j)*(c.Tab(1)-c.D(1))*c.T)/(c.div*c.Cout);383

Vout_loop(j+1) = Vout_loop(j) + dVout(j); % ?384

385

end386

387

% update current at end of subperiod, old value + di388

curr(t+5) = curr_loop(end);389

390

% cap voltage does not change in off time (specific to lowest D range)391

Vc(1,t+5) = Vc_loop(1,end);392

393

% cap voltage does not change in off time (specific to lowest D range)394

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 83

Vc(3,t+5) = Vc_loop(3,end);395

396

Vout(t+5) = Vout_loop(end);397

Output398

ab.Vc = Vc(:,t:t+5);399

ab.curr = curr(:,t:t+5);400

ab.Vout = Vout(:,t:t+5);401

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 84

Plot Active Balancing Waveforms

Display1

function display = ABplot(c,cycle)2

figure3

timesteps1 = [c.D(1)*c.T4

c.Tab(1)*c.T5

c.Tab(1)*c.T+c.D(2)*c.T6

c.Tab(1)*c.T+c.Tab(2)*c.T7

c.Tab(1)*c.T+c.Tab(2)*c.T+c.D(3)*c.T8

c.Tab(1)*c.T+c.Tab(2)*c.T+c.Tab(3)*c.T];9

timeshift = c.T*ones(1,length(timesteps1));10

timesteps(1) = 0;11

index = 2;12

13

timeshift4 = c.T*ones(1,length(timesteps1));14

15

for m = 1:cycle.endcount16

17

timesteps(index:index + (2*c.N1-3))= timesteps1 + (m-1)*timeshift4;18

index = index + (2*c.N1-3) + 1;19

20

end21

22

Vout = c.Vout*ones(length(timesteps));23

% current = eval(c.curr(1:end));24

% voltage1 = eval(c.Vc(1,1:end));25

% voltage3 = eval(c.Vc(3,1:end));26

current = c.curr(1:end);27

voltage1 = c.Vc(1,1:end);28

voltage3 = c.Vc(3,1:end);29

outVoltage = c.Vout(1:end);30

31

hold on32

33

ylim([-40 100])34

plot(timesteps, voltage1, ’color’, [0.953 0.918 0.257], ’linewidth’, 2)35

plot(timesteps, voltage3,’color’, [0.953 0.257 0.918], ’linewidth’, 2)36

plot(timesteps, outVoltage, ’color’, [0.257 0.953 0.894],37

’linewidth’, 2)38

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 85

39

volt4L = c.Vc_4L’*ones(1,length(timesteps));40

plot(timesteps, volt4L(1,:), ’color’, [0 0 0])41

plot(timesteps, volt4L(3,:), ’color’, [0 0 0])42

43

yyaxis right44

ylim([-10 35])45

plot(timesteps, current, ’color’, [0.324 0.953 0.257], ’linewidth’, 2)46

47

48

resize_figure(6, 1.2)49

Plot Active Balancing Parameters

Display1

function disp = sys_plot(opt)2

figure3

plot(opt(:,1), opt(:,6), ’-*’)4

title(’Alpha’,’FontSize’,16,’FontName’,’Times New Roman’);5

grid on6

xlabel(’Average Output Current [A]’,’FontSize’,16,7

’FontName’,’Times New Roman’);8

ylabel(’\alpha’,’FontSize’,16,’FontName’,’Times New Roman’);9

10

figure11

plot(opt(:,1), opt(:,7), ’-*’)12

title(’Gamma’,’FontSize’,16,’FontName’,’Times New Roman’);13

grid on14

xlabel(’Average Output Current [A]’,’FontSize’,16,15

’FontName’,’Times New Roman’);16

ylabel(’\gamma [cycles] ’,’FontSize’,16,’FontName’,’Times New Roman’);17

86

Appendix B

Five-level FCML Hardware Prototype
Circuit Schematic and PCB Layout

Included here for reference are the circuit schematic and PCB layout for the 5-level FCML
prototype that was built for testing dynamic level selection to maintain wide-range ZVS.

Schematic

Below, are the circuit schematics for the 5-level FCML prototype.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 87

F
ig

u
re

B
.1

:
T

op
le

ve
l

ci
rc

u
it

sc
h
em

at
ic

fo
r

th
e

5-
le

ve
l

F
C

M
L

p
ro

to
ty

p
e.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 88

F
ig

u
re

B
.2

:
C

ir
cu

it
sc

h
em

at
ic

fo
r

th
e

5-
le

ve
l

F
C

M
L

p
ow

er
st

ag
e.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 89

F
ig

u
re

B
.3

:
C

ir
cu

it
sc

h
em

at
ic

fo
r

a
h
ig

h
-s

id
e

sw
it

ch
in

cl
u
d
in

g
ga

te
d
ri

ve
r.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 90

F
ig

u
re

B
.4

:
C

ir
cu

it
sc

h
em

at
ic

fo
r

a
lo

w
-s

id
e

sw
it

ch
in

cl
u
d
in

g
ga

te
d
ri

ve
r.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 91

F
ig

u
re

B
.5

:
C

ir
cu

it
sc

h
em

at
ic

fo
r

th
e

L
D

O
s.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 92

F
ig

u
re

B
.6

:
C

ir
cu

it
sc

h
em

at
ic

fo
r

th
e

(u
n
u
se

d
)

u
n
fo

ld
er

st
ag

e.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 93

F
ig

u
re

B
.7

:
C

ir
cu

it
sc

h
em

at
ic

fo
r

th
e

sw
it

ch
p
ai

rs
of

th
e

u
n
fo

ld
er

st
ag

e.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 94

F
ig

u
re

B
.8

:
C

ir
cu

it
sc

h
em

at
ic

fo
r

th
e

L
D

O
s

u
se

d
fo

r
th

e
u
n
fo

ld
er

st
ag

e.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 95

F
ig

u
re

B
.9

:
C

ir
cu

it
sc

h
em

at
ic

fo
r

cu
rr

en
t

se
n
si

n
g.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 96

F
ig

u
re

B
.1

0:
C

ir
cu

it
sc

h
em

at
ic

fo
r

vo
lt

ag
e

se
n
si

n
g.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 97

F
ig

u
re

B
.1

1:
C

ir
cu

it
sc

h
em

at
ic

fo
r

a
vo

lt
ag

e
se

n
si

n
g

n
et

w
or

k
.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 98

PCB Layout

Below, are the PCB layers for the 5-level FCML prototype.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 99

F
ig

u
re

B
.1

2:
T

op
la

ye
r

of
P

C
B

.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 100

F
ig

u
re

B
.1

3:
F

ir
st

in
n
er

la
ye

r
of

P
C

B
.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 101

F
ig

u
re

B
.1

4:
S
ec

on
d

in
n
er

la
ye

r
of

P
C

B
.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 102

F
ig

u
re

B
.1

5:
B

ot
to

m
la

ye
r

of
P

C
B

.

103

Appendix C

Microcontroller Code for Dynamic
Level Transitioning with Active
Balancing

Included here are the program files for operating dynamic level selection for a 4/5-level
FCML converter using a TI C2000 microcontroller for control.

Global Variables Header File

/*1

* global_variables.h2

*/3

4

#ifndef ZVS_FCML_28377D_GLOBAL_VARIABLES_H_5

#define ZVS_FCML_28377D_GLOBAL_VARIABLES_H_6

7

#include "F28x_Project.h" // Device Headerfile and Examples Include File8

9

#define fundamental_frequency 60 // fundamental frequency in Hz10

11

// Global variable declarations12

13

extern int32 enable;14

//extern __interrupt void cpu_timer0_isr(void);15

extern __interrupt void ePWMInterrupt(void);16

extern __interrupt void ADCInterrupt(void);17

18

extern int32 sysclk;19

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 104

extern float sysclk_inv;20

extern float main_duty; // initial duty cycle21

extern int32 period; // switching period22

extern int32 period1; // adjusted switching period due to mcu timing issues23

24

// Switching periods for active balancing25

extern int32 periodAB451; // adjusted due to mcu timing issues26

extern int32 periodAB45;27

28

29

// Global variable definitions30

31

extern int32 enable;32

extern int32 state;33

extern int32 N;34

extern int fs; // switching frequency35

extern int feff; // effective switching frequency at inductor36

extern int freq;37

38

// switching frequency lower limit (when to switch levels)39

extern int32 f_lim;40

41

extern int32 f_high; // set a switching frequency maximum42

extern int f_set;43

extern float L; // inductor value44

extern float main_duty; // initial duty cycle45

extern float duty;46

extern float deff_r; // effective duty cycle47

extern float deff;48

extern int abcount; // number of active balancing cycles (gamma)49

50

// (alpha) duty cycle adjustment factor from 5 to 4 levels51

extern float abfactor54;52

// (alpha) duty cycle adjustment factor from 4 to 5 levels53

extern float abfactor45;54

55

56

// Local variable definitions57

58

59

extern int32 period; // period of the ePWM counter60

extern int32 periodp; // period for 1st AB due to mcu timing issues61

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 105

extern int32 periodZVS; // period needed for ZVS62

extern int32 deadtime_r; // deadtime, constant63

extern int32 deadtime_f; // deadtime, constant64

extern int32 phase; // phase shift of each ePWM, in degrees65

extern int32 sysclk; // system clock, in kHz66

67

// phase shift factor for each switch pair68

extern float ps2_float;69

extern float ps3_float;70

extern float ps4_float;71

extern float ps5_float;72

extern float ps6_float;73

extern float ps7_float;74

75

// duty cycles for each subperiod76

// factors77

extern float d1;78

extern float d2;79

extern float d4;80

extern float d8;81

// total duty cycle in system clock ticks82

extern float d1p;83

extern float d2p;84

extern float d4p;85

extern float d8p;86

87

// factor for length of sub-periods88

extern float Tx; // inital subperiod89

extern float T1;90

extern float T2;91

extern float T4;92

93

// total duty cycle in system clock ticks94

extern int32 D_ePWM2;95

extern int32 D_ePWM3;96

extern int32 D_ePWM4;97

extern int32 D_ePWM5;98

99

// phase shift for ePWM2, etc100

extern int32 ps2;101

extern int32 ps3;102

extern int32 ps4;103

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 106

extern int32 ps5;104

extern int32 ps6;105

extern int32 ps7;106

extern float phaseshift; // initial phase shift107

108

109

extern int32 index;110

extern int32 currentRead_period;111

extern int32 i; //counter to control when level transition112

113

extern float pre54;114

extern float post54;115

extern float pre45;116

extern float post45;117

extern int32 period4; // 4 level switching period118

extern int32 period5; // 5 level switching period119

extern int32 periodbase; // initial period120

extern float pfactor; // factor of period adjustment between 4 and 5 levels121

extern float pshift; // shift in period due to mcu timing issues122

123

// current sense124

extern Uint16 dummy_read;125

extern Uint16 Iout_bias_count;126

extern int16 Iout_count;127

extern float Iout;128

extern float Iout_sample_array[];129

extern Uint16 Iout_pointer;130

extern float Iout_sum;131

extern float Iout_avg;132

extern float Iout_adc_range_count;133

extern float Iout_adc_range_count_div;134

extern float Iout_ADC_Max_Amp;135

extern float Iout_ADC_Min_Amp;136

extern float Iout_adc_range_fullamp;137

extern float Iout_adc_range_fullamp_div;138

extern float Iout_adc_fullamp_to_count_ratio;139

extern float Iout_adc_count_to_fullamp_ratio;140

extern float mov_avg_size;141

extern float mov_avg_size_div;142

143

// duty cycle regions for 4 and 5 level144

extern Uint16 N_minus1;145

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 107

extern float L4region1;146

extern float L4region2;147

extern float L4region3;148

extern float L5region1;149

extern float L5region2;150

extern float L5region3;151

extern float L5region4;152

153

154

extern int32 Vin; // input voltage155

extern float Izvs; // negative peak of inductor current for ZVS156

extern float f_ZVS; // switching frequency needed for ZVS157

extern float T_ZVS; // switching period for ZVS158

extern float T_const;159

160

// debug variable161

extern float bug;162

extern float bug2;163

extern float shiftx;164

extern float shifty;165

extern int16 lim;166

#endif /* ZVS_FCML_28377D_GLOBAL_VARIABLES_H_ */167

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 108

Global Variables Definition File

1

/*2

* global_variables.c3

*/4

5

#include "F28x_Project.h" // Device Headerfile and Examples Include File6

#include "global_variables.h"7

8

// Global variable definitions9

10

int32 enable = 0;11

int32 N = 5;12

int fs = 75;13

int feff;14

int freq = 0;15

int32 f_lim = 80;16

int32 f_high = 135;17

int f_set = 96;18

float main_duty = 0.25;19

int32 Vin = 150;20

float L = 0.0000056;21

float Izvs = -0.9;22

float duty;23

float deff_r;24

float deff;25

int abcount = 7;26

float abfactor54 = 1.0;27

float abfactor45 = 1;28

float pfactor = 0.375;29

30

31

// Local variable definitions32

33

//int32 num_levels;34

int32 period = 4000; // period of the ePWM counter35

int32 period1;36

int32 periodp = 4000; //period for 1st AB37

int32 period4;38

int32 periodbase;39

int32 periodZVS = 4000;40

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 109

int32 deadtime_r = 10; // deadtime41

int32 deadtime_f = 10; // deadtime42

int32 phase; // phase shift of each ePWM, in degrees43

int32 sysclk = 200000; // system clock, in kHz44

float sysclk_inv = 0.000005; // system clock in ms45

46

// period of cpu timer, to trigger current sense read47

int32 currentRead_period = 200000;48

49

int32 periodAB451;50

int32 periodAB45;51

52

float ps2_float;53

float ps3_float;54

float ps4_float;55

float ps5_float;56

float ps6_float;57

float ps7_float;58

59

float d1;60

float d2;61

float d4;62

float d8;63

float d1p;64

float d2p;65

float d4p;66

float d8p;67

68

float Tx = 0.333333;69

float T1;70

float T2;71

float T4;72

73

int32 D_ePWM2;74

int32 D_ePWM3;75

int32 D_ePWM4;76

int32 D_ePWM5;77

78

79

int32 ps2; // phase shift for ePWM280

int32 ps3;81

int32 ps4;82

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 110

int32 ps5;83

int32 ps6;84

int32 ps7;85

86

87

int32 i = 1; //counter to control when level transition88

int32 index = 1;89

90

int32 state = 5; // initial state (number of levels)91

92

// Dummy variable for ADC measurement93

Uint16 dummy_read = 0;94

95

// ADC current measurements (in counts)96

Uint16 Iout_bias_count = 0;97

int16 Iout_count = 0;98

float Iout_adc_range_count = 0;99

float Iout_adc_range_count_div;100

float Iout_ADC_Max_Amp = 3.5;101

float Iout_ADC_Min_Amp = 0;102

float Iout_adc_range_fullamp;103

float Iout_adc_range_fullamp_div;104

float Iout_adc_fullamp_to_count_ratio;105

float Iout_adc_count_to_fullamp_ratio;106

107

108

// ADC current measurements (in amps)109

float Iout = 0;110

111

// Moving average variables112

float Iout_sample_array[200];113

Uint16 Iout_pointer = 0;114

float Iout_sum = 0;115

float Iout_avg = 0;116

float mov_avg_size = 200;117

float mov_avg_size_div;118

119

120

float pshift;121

int32 period5;122

float phaseshift;123

124

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 111

// debug variables125

float shiftx = 0;126

float shifty = 0;127

int16 lim = 0;128

float bug = 0.0;129

float bug2 = 0;130

131

// ZVS frequency calculation variables132

float deff;133

Uint16 N_minus1;134

float L4region1 = 1.0/3.0;135

float L4region2 = 2.0/3.0;136

float L4region3 = 1.0;137

float L5region1 = 1.0/4.0;138

float L5region2 = 1.0/2.0;139

float L5region3 = 3.0/4.0;140

float L5region4 = 1.0;141

float f_ZVS;142

float T_ZVS;143

float T_const;144

145

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 112

Main MCU Function

/*1

* main.c2

*/3

#include "F28x_Project.h" // Device Headerfile and Examples Include File4

#include "ZVS_FCML.h"5

#include "initialize.h"6

#include "global_variables.h"7

8

9

#define RESULTS_BUFFER_SIZE 25610

Uint16 AdcaResults[RESULTS_BUFFER_SIZE];11

Uint16 resultsIndex;12

Uint16 bufferFull;13

14

15

void main(void)16

{17

18

enable = 0;19

// Step 1. Initialize System Control:20

InitSysCtrl();21

22

// Step 2. Initialize GPIO:23

InitGpio();24

25

26

// Step 3. Clear all interrupts and initialize PIE vector table:27

// Disable CPU interrupts28

Init_interrupts();29

InitCpuTimers();30

ConfigCpuTimer(&CpuTimer0, 200, 10000);31

32

// Use write-only instruction to set TSS bit = 033

CpuTimer0Regs.TCR.all = 0x4000;34

35

36

// Step 4. Initialize all the Device Peripherals:37

38

// Initialize the ePWM39

40

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 113

EALLOW;41

CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 0; // disable PWM timer42

//CpuSysRegs.PCLKCR0.bit.CPUTIMER0 = 0; // disable CPU timer43

ClkCfgRegs.PERCLKDIVSEL.bit.EPWMCLKDIV = 0;44

EDIS;45

46

Init_phase_shifted_pwm(); // Initial PWM for phase shifted operation47

48

//Init_cputimer(); // Initialize cputimer 1 for interrupt49

Init_ADCb();50

51

EALLOW;52

CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1; // enable synchronize ePWM53

//CpuSysRegs.PCLKCR0.bit.CPUTIMER0 = 1; // start cpu timer54

EDIS;55

56

// Get ADC bias values for differential voltage57

// and current sensor measurements58

ADC_bias();59

60

// Initialize global variables. Includes some ADC conversion61

// calculations so must be called after62

Init_global_variables(); ADC_bias().63

64

65

// Step 5. User specific code, enable interrupts:66

67

// Enable global Interrupts and higher priority real-time debug events:68

EINT; // Enable Global interrupt INTM69

ERTM; // Enable Global realtime interrupt DBGM70

71

72

// Step 6. IDLE loop. Just sit and loop forever (optional):73

74

75

// Interrupt76

__interrupt void ADCInterrupt(void)77

{78

79

//GpioDataRegs.GPADAT.bit.GPIO14 = 1;80

//ADC_calc();81

82

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 114

// for each state (number of levels) calculate the effective duty cycle,83

// and the switching frequency/period need for ZVS84

// based on duty cycle region85

if (state == 4){86

//N_minus1 = state - 1;87

N_minus1 = 3;88

89

if (main_duty <= L4region1){90

deff = main_duty*N_minus1;91

92

// 1000 in denominator to make f_ZVS in kHz93

f_ZVS = ((L4region1 - main_duty)*Vin*deff)/94

(1000*2*L*N_minus1*(Iout - Izvs));95

96

// T_const = 1000*2*L, 1000 to make kHz97

//T_ZVS = (T_const*N_minus1*(Iout - Izvs))/98

((L4region1 - main_duty)*Vin*deff);99

}100

else if (main_duty > L4region1 && main_duty <= L4region2){101

deff = (main_duty - L4region1)*N_minus1;102

103

// 1000 in denominator to make f_ZVS in kHz104

f_ZVS = ((L4region2 - main_duty)*Vin*deff)/105

(1000*2*L*N_minus1*(Iout - Izvs));106

107

// T_const = 1000*2*L, 1000 to make kHz108

//T_ZVS = (T_const*N_minus1*(Iout - Izvs))/109

((L4region2 - main_duty)*Vin*deff);110

}111

else if (main_duty > L4region2){112

deff = (main_duty - L4region2)*N_minus1;113

114

// 1000 in denominator to make f_ZVS in kHz115

f_ZVS = ((L4region3 - main_duty)*Vin*deff)/116

(1000*2*L*N_minus1*(Iout - Izvs));117

//T_ZVS = (T_const*N_minus1*(Iout - Izvs))/118

((L4region3 - main_duty)*Vin*deff);119

}120

121

}122

else {123

124

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 115

N_minus1 = state - 1;125

if (main_duty <= L5region1){126

deff = main_duty*N_minus1;127

128

// 1000 in denominator to make f_ZVS in kHz129

f_ZVS = ((L5region1 - main_duty)*Vin*deff)/130

(1000*2*L*N_minus1*(Iout - Izvs));131

//T_ZVS = (T_const*N_minus1*(Iout - Izvs))/132

((L5region1 - main_duty)*Vin*deff);133

}134

else if (main_duty > L5region1 && main_duty <= L5region2){135

deff = (main_duty - L5region1)*N_minus1;136

137

// 1000 in denominator to make f_ZVS in kHz138

f_ZVS = ((L5region2 - main_duty)*Vin*deff)/139

(1000*2*L*N_minus1*(Iout - Izvs));140

//T_ZVS = (T_const*N_minus1*(Iout - Izvs))/141

((L5region2 - main_duty)*Vin*deff);142

}143

else if (main_duty > L5region2 && main_duty <= L5region3){144

deff = (main_duty - L5region2)*N_minus1;145

146

// 1000 in denominator to make f_ZVS in kHz147

f_ZVS = ((L5region3 - main_duty)*Vin*deff)/148

(1000*2*L*N_minus1*(Iout - Izvs));149

//T_ZVS = (T_const*N_minus1*(Iout - Izvs))/150

((L5region3 - main_duty)*Vin*deff);151

}152

else if (main_duty > L5region3){153

deff = (main_duty - L5region3)*N_minus1;154

155

// 1000 in denominator to make f_ZVS in kHz156

f_ZVS = ((L5region4 - main_duty)*Vin*deff)/157

(1000*2*L*N_minus1*(Iout - Izvs));158

//T_ZVS = (T_const*N_minus1*(Iout - Izvs))/159

((L5region4 - main_duty)*Vin*deff);160

}161

162

}163

164

// select switching frequency based on calculations checked165

// against limits166

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 116

if (f_ZVS < f_lim){167

// f_ZVS = flim;168

periodZVS = sysclk/f_lim;169

170

}171

else if (f_ZVS > f_high){172

periodZVS = sysclk/f_high;173

}174

else{175

periodZVS = sysclk/f_ZVS;176

//periodZVS = sysclk*T_ZVS;177

}178

179

AdcbRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; //clear INT2 flag on ADCB180

PieCtrlRegs.PIEACK.all = PIEACK_GROUP10; // Acknowledge read of PIE Group 10181

//GpioDataRegs.GPADAT.bit.GPIO14 = 0;182

}183

184

// current sense, ADC calaculations185

void ADC_calc(void)186

{187

188

// Read measured voltages from ADC results registers and189

// subtract off zero bias.190

// Get ADC result and subtract off initial bias191

Iout_count = AdcbResultRegs.ADCRESULT0 - Iout_bias_count;192

193

// Compute moving averages of measured voltages.194

// Done in units of "counts" (int16)195

// Compute a moving average (LPF) of measured Iout (in counts)196

197

// Iout_sum = Iout_sum + newest value - oldest value198

Iout_sum = Iout_sum + Iout_count - Iout_sample_array[Iout_pointer];199

200

// replace the oldest value with the newest value201

Iout_sample_array[Iout_pointer] = Iout_count;202

203

// Divide the moving sum by the size of the moving204

// average filter to compute the average value205

Iout_avg = Iout_sum*mov_avg_size_div;206

Iout_pointer++; //increment pointer by 1207

208

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 117

// Reset the pointer to zero if it exceeds Iout array size209

if (Iout_pointer == mov_avg_size) Iout_pointer = 0;210

211

// Scale Iout from counts to full amps.212

// Go from ADC counts to amps (full). Conversion derived analytically.213

Iout = Iout_count*Iout_adc_count_to_fullamp_ratio;214

215

}216

217

218

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 118

Initialization Header File

/*1

* initialize.h2

*/3

4

#ifndef ZVS_FCML_28377D_INITIALIZE_H_5

#define ZVS_FCML_28377D_INITIALIZE_H_6

7

#include "F28x_Project.h" // Device Headerfile and Examples Include File8

9

void Clear_interrupts(void);10

void Init_phase_shifted_pwm(void);11

void InitEPwm_1(void);12

void InitEPwm_2(void);13

void InitEPwm_3(void);14

void InitEPwm_4(void);15

void InitEPwm_5(void);16

void InitEPwm_6(void);17

void InitEPwm_7(void);18

19

void Init_cputimer(void);20

void Init_global_variables(void);21

22

23

// Initialize the necessary interrupts (without enabling)24

void Init_interrupts(void);25

26

27

void Init_ADCb(void);28

void ADC_bias(void);29

void ADC_conversion_wait(void);30

31

void ADC_calc(void);32

33

#endif /* BUFFER_V5_INITIALIZE_H_ */34

35

36

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 119

Initialization Function File

/*1

* initialize.c2

*/3

4

#include "F28x_Project.h" // Device Headerfile and Examples Include File5

#include "initialize.h"6

#include "global_variables.h"7

8

// Initialize all global variables to their nonzero values.9

void Init_global_variables()10

{11

12

// Declare and define local variables for adc conversion from13

// full voltage to counts (and vice versa)14

15

// Full adc range in counts (w/ bias)16

float Iout_adc_range_count = (4096 - Iout_bias_count);17

18

// Inverse of full adc range in counts (w/ bias)19

float Iout_adc_range_count_div = 1/Iout_adc_range_count;20

21

// Full adc range in volts (full voltage)22

float Iout_adc_range_fullamp = (Iout_ADC_Max_Amp - Iout_ADC_Min_Amp);23

24

// Inverse of full adc range in volts (full voltage)25

float Iout_adc_range_fullamp_div = 1/Iout_adc_range_fullamp;26

27

// Define global adc conversion ratios for adc conversion from28

// full voltage to counts (and vice versa)29

30

// Full volt to count adc conversion. Count = Volt*Ratio.31

Iout_adc_fullamp_to_count_ratio =32

Iout_adc_range_count*Iout_adc_range_fullamp_div;33

34

// Full volt to count adc conversion. Volt = Count*Ratio.35

Iout_adc_count_to_fullamp_ratio =36

Iout_adc_range_count_div*Iout_adc_range_fullamp;37

38

39

mov_avg_size_div = 1/mov_avg_size; // Inverse of mov_avg_size.40

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 120

41

}42

43

void Init_phase_shifted_pwm()44

{45

feff = (N-1)*fs;46

47

// enable PWM1, PWM2, PWM3, PWM4, PWM5, PWM6 PWM748

CpuSysRegs.PCLKCR2.bit.EPWM1=1;49

CpuSysRegs.PCLKCR2.bit.EPWM2=1;50

CpuSysRegs.PCLKCR2.bit.EPWM3=1;51

CpuSysRegs.PCLKCR2.bit.EPWM4=1;52

CpuSysRegs.PCLKCR2.bit.EPWM5=1;53

CpuSysRegs.PCLKCR2.bit.EPWM6=1;54

// CpuSysRegs.PCLKCR2.bit.EPWM7=1;55

56

// Initialize GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4, ePWM557

// These functions are in the F28M36x_EPwm.c file58

InitEPwm1Gpio();59

InitEPwm2Gpio();60

InitEPwm3Gpio();61

InitEPwm4Gpio();62

InitEPwm5Gpio();63

//InitEPwm6Gpio();64

65

// output pin for debug66

GpioCtrlRegs.GPADIR.bit.GPIO14 = 1;67

GPIO_SetupPinOptions(14, GPIO_OUTPUT, GPIO_PUSHPULL);68

GpioDataRegs.GPADAT.bit.GPIO14 = 0; // set low for 5 L case69

70

// output pin for debug71

GpioCtrlRegs.GPADIR.bit.GPIO10 = 1;72

GPIO_SetupPinOptions(10, GPIO_OUTPUT, GPIO_PUSHPULL);73

GpioDataRegs.GPADAT.bit.GPIO10 = 0; //74

75

period = sysclk/fs; // ePWM timer period76

77

T_const = 1000*2*L;78

D_ePWM2 = main_duty;79

D_ePWM3 = main_duty;80

D_ePWM4 = main_duty;81

D_ePWM5 = main_duty;82

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 121

83

// Phase shift for each ePWM84

phase = 360/(N-1);85

// Effective periods86

// Tx = 1/3;87

// T1 = 1/3;88

// T2 = 1/3;89

// T4 = 1/3;90

// 5 level91

ps2_float = (phase*3.0/360.0);92

ps3_float = (phase*2.0/360.0);93

ps4_float = (phase*1.0/360.0);94

ps5_float = 0;95

96

/*// 4 level97

ps2_float = 0;98

ps3_float = (phase*1.0/360.0);99

ps4_float = (phase*1.0/360.0);100

ps5_float = (phase*2.0/360.0);101

*/102

103

ps2=period*ps2_float;104

ps3=period*ps3_float;105

ps4=period*ps4_float;106

ps5=period*ps5_float;107

108

// Initialize each ePWM109

InitEPwm_1();110

InitEPwm_2();111

InitEPwm_3();112

InitEPwm_4();113

InitEPwm_5();114

InitEPwm_6();115

116

}117

118

void InitEPwm_1()119

{120

121

EPwm1Regs.TBPRD = period; // Set timer period122

EPwm1Regs.TBCTR = 0x0000; // Clear counter123

124

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 122

// Setup TBCLK125

EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up126

127

// Disable phase loading for the first ePWM, this becomes the master ePWM128

EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;129

130

EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT131

132

// Same frequency as main clock133

EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;134

135

// send sync output signal when counter is zero136

EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO;137

EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; // load period from shadow register138

//EPwm1Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE;139

140

// Setup compare141

EPwm1Regs.CMPA.bit.CMPA = period*.05; // initial 50% duty ratio142

143

// load compare value from shadow registor at CTR=ZERO144

EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;145

146

// configure pwm as a slave (for syncing) (Note: the default is slave)147

EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;148

//EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_IMMEDIATE;149

150

// Set actions151

EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on Zero152

EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET;153

154

// Active high complementary PWMs and Setup the deadband155

EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;156

EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;157

EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;158

EPwm1Regs.DBRED = 4;159

EPwm1Regs.DBFED = 4;160

161

//setup for ADC conversions162

EPwm1Regs.ETSEL.bit.SOCAEN = 1; // Disable SOC on A group163

EPwm1Regs.ETSEL.bit.SOCASEL = ET_CTR_ZERO; // Select SOC on up-count164

EPwm1Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event165

166

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 123

EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable ePWM interrupt167

168

//enable event time-base counter equal to zero169

EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;170

171

EPwm1Regs.ETPS.bit.INTPSSEL = 0;172

EPwm1Regs.ETPS.bit.INTCNT = 0;173

EPwm1Regs.ETPS.bit.INTPRD = ET_1ST;174

EPwm1Regs.ETCLR.bit.INT = 1; //clear interrupt flag intially175

}176

177

void InitEPwm_2()178

{179

180

EPwm2Regs.TBPRD = period; // Set timer period181

EPwm2Regs.TBPHS.bit.TBPHS = ps2; // Phase is 0182

EPwm2Regs.TBCTR = 0x0000; // Clear counter183

184

// Setup TBCLK185

EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up186

EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Enable phase loading187

EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT188

EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Same frequency as main clock189

EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // pass sync in to sync out190

EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW; // load period from shadow register191

192

// load period from shadow register at SYNC event193

EPwm2Regs.TBCTL2.bit.PRDLDSYNC = TB_PRD_SYNC;194

195

// Setup compare196

EPwm2Regs.CMPA.bit.CMPA = period*main_duty; // initial 50% duty ratio197

198

// load from shadow register at CTR=ZERO199

//EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;200

201

// configure pwm as a slave (for syncing) (Note: the default is slave)202

EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;203

204

// load from shadow register at SYNC event205

EPwm2Regs.CMPCTL.bit.LOADASYNC = CC_SYNC;206

207

// Set actions208

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 124

EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on Zero209

EPwm2Regs.AQCTLA.bit.ZRO = AQ_SET;210

211

212

// Active high complementary PWMs - Setup the deadband213

EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;214

EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;215

EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL;216

EPwm2Regs.DBRED = deadtime_r;217

EPwm2Regs.DBFED = deadtime_f;218

219

}220

221

void InitEPwm_3()222

{223

... // same as InitEPwm_2()224

// but with EPwm3Regs.TBPHS.bit.TBPHS = ps3;225

}226

227

void InitEPwm_4()228

{229

... // same as InitEPwm_2()230

// but with EPwm4Regs.TBPHS.bit.TBPHS = ps4;231

}232

void InitEPwm_5()233

{234

... // same as InitEPwm_2()235

// but withEPwm5Regs.TBPHS.bit.TBPHS = ps5;236

237

}238

void InitEPwm_6()239

{240

... // same as InitEPwm_2()241

// but withEPwm6Regs.TBPHS.bit.TBPHS = ps5;242

}243

244

void Init_interrupts()245

{246

// Step 1: Disable interrupts globally247

248

// Disable CPU interrupts249

DINT;250

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 125

251

// Initialize the PIE control registers to their default state.252

// The default state is all PIE interrupts disabled and flags253

// are cleared.254

InitPieCtrl();255

256

// Disable CPU interrupts and clear all CPU interrupt flags:257

EALLOW;258

IER = 0x0000;259

IFR = 0x0000;260

EDIS;261

262

// Step 2: Enable the PIE by setting the ENPIE bit of the PIECTRL register.263

264

InitPieVectTable();265

266

// Enable the PIE267

PieCtrlRegs.PIECTRL.bit.ENPIE = 1;268

269

// Step 3: Write the ISR vector for each interrupt to the appropriate270

// location in the PIE vector table, which can be found in Table 2-2.271

272

EALLOW; // This is needed to write to EALLOW protected registers273

274

// ISR function address for ADCB interrupt #1275

// PieVectTable.ADCB1_INT = &ADC_interrupt1;276

277

//ISR function address for ADCC interrupt #1278

// PieVectTable.ADCC1_INT = &ADC_interrupt2;279

280

// Step 4: Set the appropriate PIEIERx bit for each interrupt.281

// The PIE group and channel assignments can be found in Table 2-2.282

// Map ISR functions283

284

//PieVectTable.TIMER0_INT = &cpu_timer0_isr;285

286

// ISR function address for ADCB interrupt #2287

PieVectTable.ADCB2_INT = &ADCInterrupt;288

289

// ISR function address for ePWM2 interrupt290

PieVectTable.EPWM1_INT = &ePWMInterrupt;291

292

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 126

EDIS; // This is needed to disable write to EALLOW protected registers293

294

// Step 5: Set the CPU IER bit for any295

// PIE group containing enabled interrupts.296

// Enable PIE interrupt (see Table 2.2 of Technical Reference Manual)297

298

// Enable TINT0 in the PIE: Group 1 interrupt 7299

PieCtrlRegs.PIEIER1.bit.INTx7 = 1;300

301

// Enable EPWM INTn in the PIE: Group 3 interrupt 1302

PieCtrlRegs.PIEIER3.bit.INTx1 = 1;303

304

// Enable ADCB2 INTn in the PIE: Group 10 interrupt 10.6305

PieCtrlRegs.PIEIER10.bit.INTx6 = 1;306

307

// Set the CPU IER bit for any PIE308

// group containing enabled interrupts.,309

IER |= M_INT1; //Enable group 1 interrupts310

IER |= M_INT3; //Enable group 3 interrupts311

IER |= M_INT10; //Enable group 10 interrupts312

EDIS;313

314

// Step 6: Enable the interrupt in the peripheral.315

316

// This step is completed in main.c317

318

}319

320

void Init_ADCb(void)321

{322

EALLOW;323

//write configurations324

AdcbRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4325

AdcbRegs.ADCCTL2.bit.RESOLUTION = ADC_RESOLUTION_12BIT;326

AdcbRegs.ADCCTL2.bit.SIGNALMODE = ADC_SIGNALMODE_SINGLE;327

//AdcSetMode(ADC_ADCB, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);328

//Set pulse positions to late (at the end of conversion)329

AdcbRegs.ADCCTL1.bit.INTPULSEPOS = 1;330

//power up the ADC331

AdcbRegs.ADCCTL1.bit.ADCPWDNZ = 1;332

333

//SOC0 measure Iout on pin B2334

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 127

335

//SOC0 will convert channel 2 of ADCB (pin B2)336

AdcbRegs.ADCSOC0CTL.bit.CHSEL = 2;337

338

//sample window (# of SYSCLK, needs to corresponds to at least 75ns)339

AdcbRegs.ADCSOC0CTL.bit.ACQPS = 50;340

341

//trigger on CPU1 timer 0, see page 1467342

AdcbRegs.ADCSOC0CTL.bit.TRIGSEL = 1;343

344

// Enable interrupt for SOC0 of ADCB (in this case, B3 = SOC0)345

346

//end of SOC0 (i.e. EOC0) will set INT2 flag347

AdcbRegs.ADCINTSEL1N2.bit.INT2SEL = 0;348

AdcbRegs.ADCINTSEL1N2.bit.INT2E = 1; //enable INT2 flag349

350

//No further ADCINT2 pulses are generated until351

// ADCINT2 flag is cleared by user352

AdcbRegs.ADCINTSEL1N2.bit.INT2CONT = 0;353

354

AdcbRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; //make sure INT2 flag is cleared355

356

EDIS;357

358

}359

360

361

// This function calculates the bias on all ADC inputs362

// (especially desirable for differential voltage and current sensors)363

// and stores as a global variable for later use364

void ADC_bias(void)365

{366

367

// The first ADC reading might not be accurate,368

// so do a dummy read and throw away this value369

370

ADC_conversion_wait();371

372

// Wait for the ADC conversion to finish373

dummy_read = AdcbResultRegs.ADCRESULT0; // (ADCB SOC0)374

375

AdcbRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; //clear INT2 flag on ADCB376

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 128

377

// wait........378

// make sure wait for 1s at least for all the external circuit379

// to power on !!!!!380

// 1s is the measured delay from power on to current sensing381

// amp has valid signal382

// otherwise the bias measurement might have unexpected error383

DELAY_US(700000);384

385

Uint32 Iout_bias_count_sum = 0;386

387

// measure bias voltage of current sensing amplifier388

Uint16 adc_read_count = 0;389

390

// Number of bits to average for ADC measurement (9 bits = 512 counts)391

Uint16 adc_read_count_num_bits = 9;392

393

for (adc_read_count=0;394

adc_read_count<(1<<adc_read_count_num_bits);395

adc_read_count++)396

{397

398

ADC_conversion_wait(); // Wait for the ADC conversion to finish399

400

// read result from ADCB SOC0401

Iout_bias_count_sum += AdcbResultRegs.ADCRESULT0;402

403

AdcbRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; //clear INT2 flag on ADCB404

}405

Iout_bias_count = Iout_bias_count_sum>>adc_read_count_num_bits;406

407

}408

409

// This function waits until all enabled ADC conversions are finished.410

// Note: call this function only after ADC triggering is enabled but411

// before interrupts are enabled412

void ADC_conversion_wait(void)413

{414

// Make sure all ADC conversions are finished (check interrupt flag)415

while (AdcbRegs.ADCINTFLG.bit.ADCINT2 != 1);416

417

}418

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 129

419

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 130

FCML ZVS Header File

/*1

* ZVS_FCML.h2

*/3

4

#ifndef FCMC_H_5

#define FCMC_H_6

7

#ifdef __cplusplus8

extern "C" {9

#endif10

11

12

13

14

/* Function prototypes */15

16

void Init_cputimer_sin_TMU(void);17

void Init_phase_shifted_pwm(void);18

19

void InitEPwm_1(void);20

void InitEPwm_2(void);21

void InitEPwm_3(void);22

void InitEPwm_4(void);23

void InitEPwm_5(void);24

void InitEPwm_6(void);25

void InitEPwm_7(void);26

27

//state functions28

void Level5(void);29

void PreAB54(void);30

void AB54(void);31

void PostAB54(void);32

void Level4(void);33

void PreAB45(void);34

void AB45(void);35

void PostAB45(void);36

37

38

#endif /* FCMC_H_ */39

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 131

FCML ZVS Function

/*1

* ZVS_FCML.c2

*/3

4

5

6

#include "F28x_Project.h" // Device Headerfile and Examples Include File7

#include "ZVS_FCML.h"8

#include "initialize.h"9

#include "global_variables.h"10

11

12

13

//__interrupt void cpu_timer0_isr(void)14

__interrupt void ePWMInterrupt(void)15

{16

17

EPwm5Regs.CMPA.bit.CMPA = D_ePWM5; // set duty cycle ePWM 518

// set here bc of mcu timing issue19

20

if(i < 200000){21

i++;22

}23

//24

else if (i == 200000){ //after some time change levels25

if(state == 5){ // if 5 levels26

GpioDataRegs.GPADAT.bit.GPIO14 = 1;27

28

state = 4; // change to preAB state29

i = 1; // reset count30

index = 1; // reset AB count31

}32

else if(state == 4){ // if 4 levels33

GpioDataRegs.GPADAT.bit.GPIO14 = 0;34

35

state = 4; // AB to 5 levels36

i = 1; // reset count37

index = 1; // reset AB count38

}39

else40

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 132

state = 5;41

}42

else43

i = 1;44

45

// this is base period, updates when change fs in debug terminal46

periodbase = (sysclk/fs);47

48

if(state == 4){49

N = 4;50

phase = 360/(N-1);51

period4 = pfactor*periodbase;52

// period = period4;53

54

// period = periodZVS;55

period = sysclk/f_set;56

periodp = period;57

freq = sysclk/period;58

Level4();59

60

if(index == 1){ // Adjusted Active Balancing on 4-levels61

index++;62

pshift = ps2 - ps3;63

64

PreAB54();65

pshift = pshift - ps2 + ps3;66

67

//pshift = 0;68

69

period = period4 + pshift + shiftx;70

71

72

}73

74

else if(index > 1 && index <= abcount){ // Active Balancing on 4-levels75

index++;76

AB54();77

78

79

}80

// Adjusted Active Balancing on 4-levels before 4level operation81

else if(index == abcount+1){82

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 133

index++;83

pshift = ps2 - ps3;84

85

PostAB54();86

pshift = ps2 - ps3 - pshift;87

//pshift = 0;88

89

period = period4 - pshift;90

}91

else if (index > abcount+1){92

index++;93

Level4();94

pshift = ps2;95

96

}97

98

}99

100

else if(state == 5){101

N = 5;102

phase = 360/(N-1);103

period5 = periodbase;104

period4 = pfactor*period5;105

//period = period5;106

107

108

//period = periodZVS;109

period = sysclk/f_set;110

freq = sysclk/period;111

Level5();112

113

if(index == 1){ // Adjusted Active Balancing on 4-levels114

index++;115

116

pshift = ps2 - ps3;117

118

PreAB45();119

pshift = ps2 - ps3 - pshift;120

period = period4 - pshift;121

122

}123

124

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 134

else if(index > 1 && index <= abcount){ // Active Balancing on 4-levels125

index++;126

AB45();127

period1 = period;128

129

}130

else if(index == abcount+1){ // Active Balancing on 4-levels131

index++;132

133

pshift = ps2 - ps3;134

period = period4 + (periodbase*(0.75) - ps2);135

136

PostAB45();137

pshift = pshift - (ps2 - ps3);138

139

}140

141

else if (index > abcount+1){142

index++;143

period = periodbase;144

Level5();145

146

147

}148

}149

150

// update ePWM registers151

EPwm5Regs.TBPRD = period;152

EPwm4Regs.TBPRD = period;153

EPwm3Regs.TBPRD = period;154

EPwm2Regs.TBPRD = period;155

EPwm1Regs.TBPRD = period;156

157

GpioDataRegs.GPADAT.bit.GPIO10 = 1;158

EPwm5Regs.TBPHS.bit.TBPHS = ps5;159

EPwm4Regs.TBPHS.bit.TBPHS = ps4;160

EPwm3Regs.TBPHS.bit.TBPHS = ps3;161

EPwm2Regs.TBPHS.bit.TBPHS = ps2;162

GpioDataRegs.GPADAT.bit.GPIO10 = 0;163

164

EPwm4Regs.CMPA.bit.CMPA = D_ePWM4;165

EPwm3Regs.CMPA.bit.CMPA = D_ePWM3;166

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 135

EPwm2Regs.CMPA.bit.CMPA = D_ePWM2;167

168

169

EPwm5Regs.DBRED = deadtime_r;170

EPwm5Regs.DBFED = deadtime_f;171

EPwm4Regs.DBRED = deadtime_r;172

EPwm4Regs.DBFED = deadtime_f;173

EPwm3Regs.DBRED = deadtime_r;174

EPwm3Regs.DBFED = deadtime_f;175

EPwm2Regs.DBRED = deadtime_r;176

EPwm2Regs.DBFED = deadtime_f;177

178

179

180

181

182

// Clear interrupt flag183

EPwm1Regs.ETCLR.bit.INT = 1;184

PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;185

186

}187

188

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 136

State Logic Functions

/*1

* state_logic.c2

*/3

4

#include "F28x_Project.h" // Device Headerfile and Examples Include File5

#include "initialize.h"6

#include "global_variables.h"7

#include "ZVS_FCML.h"8

9

void Level5(){10

11

// set ePWM registers12

ps2_float = (phase*0.00833333); // 0.0083333=3.0/360.013

ps3_float = (phase*0.00555555); // 0.0055=2.0/360.014

ps4_float = (phase*0.00277777); // 0.0027=1.0/360.015

ps5_float = 0;16

17

ps2=period*ps2_float;18

ps3=period*ps3_float;19

ps4=period*ps4_float;20

ps5=period*ps5_float;21

22

D_ePWM2 = (int32) period*main_duty;23

D_ePWM3 = (int32) period*main_duty;24

D_ePWM4 = (int32) period*main_duty;25

D_ePWM5 = (int32) period*main_duty;26

}27

28

void PreAB54(){29

30

periodp = pfactor*periodbase;31

32

// T2 (period corresponding to pulse of EPWM3/4) adjusted from nominal33

// value by a factor, abfactor, which is calculated above based on34

// load current35

T2 = abfactor54*Tx;36

37

// T1 (period corresponding to pulse of EPWM5) adjusted from nominal value38

T1 = (1-T2)/2;39

40

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 137

// T4 (period corresponding to pulse of EPWM2) adjusted from nominal value41

T4 = T1;42

43

// d2 (duty corresponding to pulse of EPWM3/4) adjusted from nominal44

// value based on new adjusted period45

d2 = T2*deff;46

47

//d1 (duty corresponding to pulse of EPWM5) adjusted from nominal value48

// based on new adjusted period49

d1 = T1*deff;50

51

//d4 (duty corresponding to pulse of EPWM2) adjusted from nominal value52

// based on new adjusted period53

d4 = d1;54

55

// set ePWM registers56

ps5_float = 0;57

ps4_float = T2;58

ps3_float = ps4_float;59

ps2_float = T2+T4;60

61

ps2=periodp*ps2_float;62

ps3=periodp*ps3_float;63

ps4=periodp*ps4_float;64

ps5=periodp*ps5_float;65

66

67

D_ePWM2 = periodp*d4;68

D_ePWM3 = periodp*d2;69

D_ePWM4 = periodp*d2;70

D_ePWM5 = periodp*d1;71

}72

void AB54(){73

period = period4;74

75

// T2 (period corresponding to pulse of EPWM3/4) adjusted from nominal76

// value by a factor, abfactor, which is calculated above based on77

// load current78

T2 = abfactor54*Tx;79

80

// T1 (period corresponding to pulse of EPWM5) adjusted from nominal value81

T1 = (1-T2)/2;82

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 138

83

// T4 (period corresponding to pulse of EPWM2) adjusted from nominal value84

T4 = T1;85

86

// d2 (duty corresponding to pulse of EPWM3/4) adjusted from nominal87

// value based on new adjusted period88

d2 = T2*deff;89

90

// d1 (duty corresponding to pulse of EPWM5) adjusted from nominal value91

// based on new adjusted period92

d1 = T1*deff;93

94

// d4 (duty corresponding to pulse of EPWM2) adjusted from nominal value95

// based on new adjusted period96

d4 = d1;97

98

// set ePWM registers99

ps5_float = 0;100

ps4_float = T2;101

ps3_float = ps4_float;102

ps2_float = T2+T4;103

104

ps2=period*ps2_float;105

ps3=period*ps3_float;106

ps4=period*ps4_float;107

ps5=period*ps5_float;108

109

D_ePWM2 = period*d4;110

D_ePWM3 = period*d2;111

D_ePWM4 = period*d2;112

D_ePWM5 = period*d1;113

}114

void PostAB54(){115

116

periodp = period4;117

118

// set ePWM registers119

ps2_float = (phase*0.00555555); // 0.0055=2.0/360.0120

ps3_float = (phase*0.00277777); // 0.0027=1.0/360.0121

ps4_float = (phase*0.00277777); // 0.0027=1.0/360.0122

ps5_float = 0;123

124

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 139

ps2=periodp*ps2_float;125

ps3=periodp*ps3_float;126

ps4=periodp*ps4_float;127

ps5=periodp*ps5_float;128

129

D_ePWM2 = periodp*main_duty;130

D_ePWM3 = periodp*main_duty;131

D_ePWM4 = periodp*main_duty;132

D_ePWM5 = periodp*main_duty;133

}134

135

void Level4(){136

137

// set ePWM registers138

ps2_float = (phase*0.00555555); // 0.0055=2.0/360.0139

ps3_float = (phase*0.00277777); // 0.0027=1.0/360.0140

ps4_float = (phase*0.00277777); // 0.0027=1.0/360.0141

ps5_float = 0;142

143

ps2=periodp*ps2_float;144

ps3=periodp*ps3_float;145

ps4=periodp*ps4_float;146

ps5=periodp*ps5_float;147

148

D_ePWM2 = (int32) period*main_duty;149

D_ePWM3 = (int32) period*main_duty;150

D_ePWM4 = (int32) period*main_duty;151

D_ePWM5 = (int32) period*main_duty;152

}153

void PreAB45(){154

155

periodp = period4;156

157

// T2 (period corresponding to pulse of EPWM3/4) adjusted from nominal158

// value by a factor, abfactor, which is calculated above based on159

// load current160

T2 = abfactor45*Tx;161

162

// T1 (period corresponding to pulse of EPWM5) adjusted from nominal value163

T1 = (1-T2)/2;164

165

// T4 (period corresponding to pulse of EPWM2) adjusted166

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 140

// from nominal value167

T4 = T1;168

169

// d2 (duty corresponding to pulse of EPWM3/4) adjusted from nominal value170

// based on new adjusted period171

d2 = T2*deff;172

173

// d1 (duty corresponding to pulse of EPWM5) adjusted from nominal value174

// based on new adjusted period175

d1 = T1*deff;176

177

// d4 (duty corresponding to pulse of EPWM2) adjusted from nominal value178

// based on new adjusted period179

d4 = d1;180

181

// set ePWM registers182

ps5_float = 0;183

ps4_float = T2;184

ps3_float = ps4_float;185

ps2_float = T2+T4;186

187

ps2=periodp*ps2_float;188

ps3=periodp*ps3_float;189

ps4=periodp*ps4_float;190

ps5=periodp*ps5_float;191

192

D_ePWM2 = periodp*d4;193

D_ePWM3 = periodp*d2;194

D_ePWM4 = periodp*d2;195

D_ePWM5 = periodp*d1;196

}197

void AB45(){198

199

period = period4;200

201

// T2 (period corresponding to pulse of EPWM3/4) adjusted from nominal202

// value by a factor, abfactor, which is calculated above based203

// on load current204

T2 = abfactor45*Tx;205

206

// T1 (period corresponding to pulse of EPWM5) adjusted from nominal value207

T1 = (1-T2)/2;208

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 141

209

//T4 (period corresponding to pulse of EPWM2) adjusted from nominal value210

T4 = T1;211

212

// d2 (duty corresponding to pulse of EPWM3/4) adjusted from nominal213

// value based on new adjusted period214

d2 = T2*deff;215

216

// d1 (duty corresponding to pulse of EPWM5) adjusted from nominal value217

// based on new adjusted period218

d1 = T1*deff;219

220

//d4 (duty corresponding to pulse of EPWM2) adjusted from nominal value221

// based on new adjusted period222

d4 = d1;223

224

// set ePWM registers225

ps5_float = 0;226

ps4_float = T2;227

ps3_float = ps4_float;228

ps2_float = T2+T4;229

230

ps2=period*ps2_float;231

ps3=period*ps3_float;232

ps4=period*ps4_float;233

ps5=period*ps5_float;234

235

D_ePWM2 = period*d4;236

D_ePWM3 = period*d2;237

D_ePWM4 = period*d2;238

D_ePWM5 = period*d1;239

}240

void PostAB45(){241

242

periodp = periodbase;243

244

// set ePWM registers245

ps2_float = (phase*0.00833333); // 0.0083333=3.0/360.0246

ps3_float = (phase*0.00555555); // 0.0055=2.0/360.0247

ps4_float = (phase*0.00277777); // 0.0027=1.0/360.0248

ps5_float = 0;249

250

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 142

ps2=periodp*ps2_float;251

ps3=periodp*ps3_float;252

ps4=periodp*ps4_float;253

ps5=periodp*ps5_float;254

255

D_ePWM2 = periodp*main_duty;256

D_ePWM3 = periodp*main_duty;257

D_ePWM4 = periodp*main_duty;258

D_ePWM5 = periodp*main_duty;259

}260

261

262

