Zero-Voltage Switching for Flying Capacitor Multi-Level
Converters

Margaret Blackwell

..
1

hl--

& i

A .I. II i W | % l: ..II. : -l
i, .“ij1lullll' ! h
i (e, St u

e
!

Electrical Engineering and Computer Sciences
University of California at Berkeley

18

Technical Report No. UCB/EECS-2019-35
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-35.html

May 14, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Zero-Voltage Switching for Flying Capacitor Multi-Level Converters

by

Margaret Elizabeth Blackwell

A thesis submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Associate Professor Robert Pilawa-Podgurski, Chair

Professor Seth Sanders
Associate Professor Duncan Callaway

Spring 2019

Zero-Voltage Switching for Flying Capacitor Multi-Level Converters

Copyright 2019
by
Margaret Elizabeth Blackwell

Abstract

Zero-Voltage Switching for Flying Capacitor Multi-Level Converters
by
Margaret Elizabeth Blackwell
Master of Science in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley
Associate Professor Robert Pilawa-Podgurski, Chair

This thesis presents a control technique to improve power density and efficiency of a spe-
cific power converter topology, the flying capacitor multi-level (FCML) topology. Controlling
these converters in such a way to achieve zero-voltage switching (ZVS) across the full range
of duty cycles, reduces switching losses and therefore can be used to allow for more dense
designs, or more efficient operation. Previous works have used variable frequency control
to enable ZVS at specific duty cycles in FCML converters, but have not been able to use
these methods to enable ZVS across the full range. This work uses dynamic level selection
and variable frequency control to increase inductor current ripple at duty cycle ranges for
which ZVS was previously unattainable. Furthermore, a mathematical analysis to determine
parameters for active voltage balancing of the flying capacitors during a dynamic level tran-
sition is presented. An experimental 5-level FCML prototype was built using GaN devices
on a single-sided printed circuit board (PCB) to demonstrate this control technique. We
demonstrate 4-level and 5-level operation with ZVS at duty cycles that are not possible with
5-level operation alone, as well as dynamic level transitioning with active flying capacitor
voltage balancing.

To Mom and Dad, for your infinite love and encouragement
and
To Devin, for your incessant love and encouragement

i

Contents

Contents ii
List of Figures iv
List of Tables vi
1 Introduction 1
2 Background 3
2.1 Conventional Buck Converter 3
2.2 Flying Capacitor Multi-Level Converter 4
3 Zero-Voltage Switching 7
3.1 Quasi-Square-Wave Zero-Voltage Switching 7
3.2 QSW ZVS for FCML Converters 10
3.3 ZVS Challenges for FCML Converters 11
4 Dynamic Level Selection 13
4.1 Dynamic Level Selection oL 13
4.2 Level Evaluation 14
4.3 Frequency Limitationso 17
5 Flying Capacitor Active Balancing 19
5.1 Constant Effective Duty Cycle Active Balancing 19
5.2 Active Balancing Parameter Calculation 21
6 Experimental Results 29
6.1 Experimental Prototype 29
6.2 Zero-Voltage Switching oL oL 30
6.3 Dynamic Level Transitioning 32
6.4 Active Balancing Parameter Calculations 35
6.5 Converter Efficiencyo 37

il

7 Conclusions 40

7.1 Future Work 40
Bibliography 42
A Matlab Active Balancing Calculations 47

B Five-level FCML Hardware Prototype Circuit Schematic and PCB Layout 86

C Microcontroller Code for Dynamic Level Transitioning with Active Bal-
ancing 103

List of Figures

2.1
2.2
2.3

24

3.1

3.2
3.3

3.4

4.1

4.2

4.3
4.4

5.1

Conventional two-level buck converter schematic.
5-Level FCML Converter Schematic.
Five-level FCML PS-PWM control signals at different duty cycles and the associ-
ated switch-node voltage exhibiting the effective duty cycle and reduced inductor
voltage SWINg.
Multiple discrete voltage levels can be generated at the switch-node with an
FCML converter, in this example with a 5-level FCML, thereby reducing the
dV/dt transitions at the switch-node and across the inductor, allowing for a re-
duction in filter requirements.

Two-level buck converter waveforms for ZVS conditions. The inductor current
must have enough ripple to reach a peak negative value, Iy g, which can discharge
the parasitic capacitance Cg,, of the buck switch-pair and allow for ZVS.
Two-level buck switch-pair with parasitic capacitances.
Inductor current must have enough ripple to reach a peak negative value, Izyg
which can discharge the parasitic capacitance Cg,, of an arbitrary switch pair
and allow for ZVS.
Higher-level FCML converters inherently exhibit lower inductor current than two-
level buck converters, but introduce inductor ripple valleys at certain duty cycles.

The proposed method implements dynamic level changing to avoid operation at
the inductor current ripple valleys and to maintain ZVS across the entire duty
cyclerange.
The 5-level FCML operated as a 4-level with (5 voltage maintained at the 5-level
value while C; and ('3 re-balance to 4-level operation.
Simulated converter waveforms for the proposed method.
When operating near resonant frequency, the inductor current is not linear, and
therefore, only quasi-ZVS may be possible. 0L,

Active balancing through duty cycle adjustment for v number of cycles is imple-
mented at transitions between different numbers of levels.

v

5.2 Sub-periods for the lowest duty-cycle range of a 5/4-level FCML for calculating

active balancing capacitor voltages. 22
5.3 Flowchart for determining the o and v combination for the fastest active re-

balancing during dynamic level transitioning. 24
5.4 The active balancing parameters corresponding to the shortest settling time ex-

hibit a similar relationship with output current for different input voltages. . . . 28
6.1 Hardware Prototype. 29
6.2 Five-level FCML circuit schematic drawing. 30
6.3 Annotated photograph of the experimental prototype. 30
6.4 ZVS is achieved for 4-level operation at a duty cycle for which 5-level operation

cannot achieve ZVS. 32
6.5 ZVS is achieved for 5-level operation at a duty cycle for which 4-level operation

cannot achieve ZVS. 32
6.6 Level transitioning with natural balancing. 33
6.7 Active balancing decreases the settling time of capacitors C; and C3 during a

transition from 5- to 4-level operation.o 33
6.8 Active balancing decreases the settling time of capacitors C; and Cj during a

transition from 4- to 5-level operation. L. 34
6.9 Level transitioning with less aggressive active balancing has a longer settling time,

but a lower magnitude of increased inductor current ripple. 35
6.10 The active balancing model calculated in Matlab closely corresponds to measured

waveforms for this 5- to 4-level transition with « =2.0andv=7. 36

6.11 Higher efficiency points closely correspond with the proposed method in Fig. 4.1. 37
6.12 Power loss for 4- and 5-level operation with manually tuned ZVS switching fre-

QUETICY. « o o e e e e e e e e e e e e e e e e e 38
B.1 Top level circuit schematic for the 5-level FCML prototype. 87
B.2 Circuit schematic for the 5-level FCML power stage. 88
B.3 Circuit schematic for a high-side switch including gate driver. 89
B.4 Circuit schematic for a low-side switch including gate driver. 90
B.5 Circuit schematic for the LDOs. oL 91
B.6 Circuit schematic for the (unused) unfolder stage. 92
B.7 Circuit schematic for the switch pairs of the unfolder stage. 93
B.8 Circuit schematic for the LDOs used for the unfolder stage. 94
B.9 Circuit schematic for current sensing. 95
B.10 Circuit schematic for voltage sensing. 96
B.11 Circuit schematic for a voltage sensing network. 97
B.12 Top layer of PCB. 99
B.13 First inner layer of PCB. 100
B.14 Second inner layer of PCB.o 101

B.15 Bottom layer of PCB. 102

vi

List of Tables

4.1
4.2
4.3

5.1
6.1

4/5 Level Switch Pair Configurations and Flying Capacitor Impact 16
5/6 Level Switch Pair Configurations and Flying Capacitor Impact 16
Frequency Limits 17
Flying Capacitor Charge and Discharge Sub-periods 20
Component Listing of the Hardware Prototype 31

vil

Acknowledgments

Firstly, I would like to thank the University of Illinois Urbana-Champaign SURGE Fel-
lowship program for funding my first year of graduate school and ARPA-E for funding this
work during the second year.

I would like to thank Dr. Prasad Enjeti at Texas A&M University for providing me with
the opportunity to jump into power electronics research as an undergraduate student, and
for being a proponent of my success even after graduation.

I am also extremely grateful to my research adviser, Dr. Robert Pilawa-Podgurski. Not
only did he take a chance on inviting me to join his group, but when a job opportunity
arose at UC Berkeley, he extended the offer for me to join him in the move before ever
having worked with me. His confidence in me and in my potential has been much needed
encouragement over the past two years (and likely will continue to be in the years to come).
Thank you for taking the time to be involved with my research, as well as caring about my
life outside of the lab.

I want to thank the members of the “Pilawa Research Group” as well: Derek Chou, Nate
Pallo, Zichao Ye, Zitao Liao, Chris Barth, Rose Abramson, Yizhe Zhang, Kelly Fernandez,
Pourya Assem, Wen-Cheun (Joseph) Liu, Joseph Schaadt, Tom Foulkes, and Pei Han Ng. In
addition to helping answer questions, discussing ideas, as well as helping in the lab, they have
continually supported my success and have been sincere friends to me. A special “thank you”
to both Nathan Brooks, for challenging my thoughts, ideas, and methods, and for helping
to think up solutions, and to Dr. Enver Candan for being so genuine with including me in
your work from the moment I entered the group, and for taking the time to teach me.

[want to thank Sam Coday, for being by my side and navigating graduate school with me.
When I started graduate school, I never expected to make such an amazing friend as Sam and
if not for her, I surely would not have even made it through the first semester. Thank you
for sharing in my struggles and accomplishments and for motivating me, especially through
the writing of this thesis.

The member of my research group I would most like to thank is Andrew Stillwell. Without
Andrew, this thesis would not exist. From proposing the idea, to working with me to
complete it, he has been my guide and mentor through these first two years of graduate
school. Thank you for not only encouraging me and having confidence in my abilities, but
letting me know that when I needed to hear it. I want to thank you for teaching me, helping
me through my struggles, being excited about my successes, and for being my friend.

Finally, I would like to thank my friends and family, who provide motivation and encour-
agement. [want to especially thank Mom, Dad, Matthew, Timothy, Andrew, and Sabrina
for loving me and not forgetting me even though I am several states away. Thank you for
being proud of me; it is what keeps me continuing on in my studies and career. Last, but
certainly not least, I want to send a million thanks to Devin. Thank you for your dedication
to me and to helping me pursue my dreams. Thank you for loving me with your whole heart
and for always being there for me. You know I would be lost without you, so I am eternally
grateful that I have found a partner in you.

Chapter 1

Introduction

Power electronics, the field of utilizing switching devices to convert between forms and levels
of power, is continually growing and open to crucial advancements. Oak Ridge National
Laboratory estimates that by 2030, about 80% of electricity could flow through power elec-
tronics [1], either on the side of power generation or consumption. Applications that are
heavily dependent on power electronics, such as electrification of transportation, grid in-
tegration of renewable energy sources, and data center power delivery are expanding, con-
sequently pushing the advancement of power electronics, specifically in the areas of power
density and efficiency [2]. A few potential methods of approaching these challenges are:
increasing switching frequency, changing topologies, or targeting and reducing component
losses. Increasing switching frequency or changing topologies can allow for reduced com-
ponent sizing. Reducing specific component losses, such as those associated with magnetic
components or switching devices, can increase efficiency, as well as allow for further increase
in power density. In this work, we combine each of these methods using a novel control
technique with the flying capacitor multi-level (FCML) topology to improve both efficiency
and power density.

FCML converters utilize one or more flying capacitors, which are capacitors that are con-
nected to various voltage potentials in the circuit via a network of switching devices. These
capacitors in an FCML converter act as energy storage elements to reduce the switch voltage
stress of each transistor and to reduce the volt-second on the inductor [3-8]. These benefits
allow the use of lower voltage rated switches, which permits higher switching frequencies as
a result of lower switching losses. The increase in switching frequency, in conjunction with
the reduction in inductor volt-second, due to inherent qualities of the FCML topology, leads
to a reduction in the volume of the inductor and the total volume of the converter. However,
with this decrease in volume comes a necessity to increase efficiency because the surface area
for heat transfer is reduced. Further reduction in volume can be achieved through higher fre-
quency switching at the cost of higher switching losses. To mitigate these switching losses,
zero-voltage switching (ZVS) can be employed at selected duty cycles as shown in [9, 10]
through variable frequency control. However, both works noted the challenges inherent to
FCML operation of obtaining ZVS at specific duty cycles. For DC/AC or AC/DC con-

CHAPTER 1. INTRODUCTION 2

verter applications, or for applications with wide input voltage ranges, the duty cycle of the
switches must vary across a wide range. However, due to the nature of FCML operation
detailed in this paper, maintaining ZVS across the full range is a challenge. In [11], the in-
ductor current ripple is minimized by dynamically varying the number of levels of the FCML
converter, which is suitable for hard-switched operation. Here, we propose to dynamically
vary the number of levels to increase the inductor current ripple and, in conjunction with
variable frequency control, maintain the necessary conditions for ZVS across the full duty
cycle range.

We derive the underlying mechanisms in FCML converters which make ZVS difficult or
impossible at specific duty cycle ranges, and show how dynamic level selection overcomes this
challenge. Additionally, we detail the capacitor voltage considerations necessary to decide
the number of converter levels and switch implementation. Our control strategy is validated
in hardware through a 5-level experimental prototype, which demonstrates ZVS at duty
cycles previously unattainable. Level transitioning is demonstrated with active balancing
through the use of duty cycle adjustment. This thesis presents a method of ensuring ZVS
operation across a full range of conversion ratios for an FCML converter, and demonstrates
this method in a compact and flat hardware prototype [12].

The remainder of this thesis is organized as follows: Chapter 2 reviews the basics of
a conventional two-level buck converter, as well as details FCML operation. Chapter 3 de-
scribes quasi-square-wave ZVS operation and how this approach applies to FCML converters.
Additionally, this chapter derives the fundamental characteristics of FCML converters that
prevent ZVS operation at specific duty cycles. Chapter 4 explores current solutions to FCML
ZVS challenges and proposes dynamic level selection to overcome these challenges. This
chapter also steps through the design process of implementing level transitioning. Chapter 5
describes the active balancing method for level transitions and presents a method to deter-
mine parameters for active balancing corresponding to the shortest settling time. Chapter 6
demonstrates the method of dynamic level selection for a wide duty cycle range in hardware,
as well as the efficiency benefits of using this method for wide-range ZVS. Finally, Chapter 7
summarizes the contribution of this thesis and proposes future work on this topic.

Chapter 2

Background

Several applications including data center power delivery rely on power electronics to perform
voltage step-down processes. Converting energy from the electrical grid at higher voltages to
the lower voltages used by various systems (e.g. the servers and individual CPUs within the
data center architecture) require highly efficient power converters. In this chapter, we discuss
a simple step-down power converter as the basis for an expanded multi-level step-down
converter: the flying capacitor multi-level (FCML) topology. We detail FCML operation as
well as the advantages of the FCML topology over the simple buck converter.

2.1 Conventional Buck Converter

Figure 2.1: Conventional two-level buck converter schematic.

A standard switching power converter for voltage step-down is the buck converter [13].
Fig. 2.1 shows the circuit schematic for the conventional buck converter. The two switches,
S14 and Spp, are operated as a complementary pair; that is, when S;4 turns on, Sip turns
off, and vice-versa. The percentage of time within the switching period Ty, that each switch
is turned on is the duty cycle, D. For the buck converter, the voltage conversion ratio from
the input to the output is equivalent to the duty cycle, as given by (2.1). A method of
varying the duty cycle, called pulse width modulation (PWM), can be used to adjust the
conversion ratio across a 60/50 Hz AC line cycle for AC/DC and DC/AC conversion.

CHAPTER 2. BACKGROUND 4

In the conventional buck converter, the maximum voltage stress (neglecting ringing)
across each of the switches is equal to the full input voltage, V;,. Furthermore, the voltage
across the inductor during the on-time (D - Ty,) of Sia is (1 — D) - V;,, and the current
ripple found by using the inductor voltage, (2.2), is given by (2.3) where L is the inductance
and fs, = 1/Ts, is the switching frequency. The voltage swing across the inductor for the
buck converter is equal to V;,. This voltage swing is the difference in voltage between the
highest voltage across the inductor and the lowest voltage across the inductor during one
switching period. While the conventional buck converter is relatively simple, a few drawbacks
include the large voltage ratings necessary for the switches, as well as the large voltage at
the switch-node (V, in Fig. 2.1) which requires a larger filter inductor, L. Furthermore,
the large voltage swing and therefore, large dV/dt transitions at the switch-node can induce
voltage overshoots at the switching transistions because of parasitic inductances, as well as
can pose a problem for filtering electromagnetic interference (EMI). These limitations can
be addressed by investigating other circuit topologies.

‘/;)ut =D- ‘/zn (21)
dig,
v, — % 2.2
BTt (22)
4 Vin-(1—=D)-D

2.2 Flying Capacitor Multi-Level Converter

One potential way to address the limitations of the conventional buck converter is to extend
the converter to a multi-level topology, for example, the flying capacitor multi-level (FCML)
topology, introduced in [3]. The FCML can be configured to step-up [14-17] or step-down [9,
18-21] the input voltage. or have bi-directional capabilities [10,22]; here we use the buck
configuration. Fig. 2.2 shows a schematic drawing of the 5-level FCML buck converter used
in this work with flying capacitors labeled C}, Cs, and C5. The voltage conversion ratio of
the buck FCML is equivalent to that of the traditional two-level buck converter, given by
(2.1) [3]. Phase-shifted PWM (PS-PWM) [3,18] is typically used for FCML converters of
N levels with each switch pair (labeled S;4 and S;p) operated complementary to each other
at duty cycle, D, and phase shifted by & = 360°/(N — 1). Inherent to the FCML operation
are both the converter duty cycle, D, and an effective duty cycle at the switching-node,
D,y given by (2.4), which affects the inductor current ripple, Ai,,, given by (2.5). Fig. 2.3a
and Fig. 2.3b show the switch control signals for two different duty cycles that generate
the same effective duty cycle at the switch-node. At these two duty cycles, the switch-node
voltage swing remains the same in magnitude, but the absolute voltage levels are shifted.
This voltage shift is a characteristic of the multi-level nature of the FCML topology.

Dejp =D - (N —1) — floor(D - (N — 1)) (2.4)

CHAPTER 2. BACKGROUND 5

Sia S3a Soa Sia L
b—kv—kv—k»—
+
= Sip Ssp SB Sis =
Figure 2.2: 5-Level FCML Converter Schematic.
DIt Gate Signals DIf., Gate Signals
Qia[| Q1A | ‘
q2a [1 oA
d3a 1 Ba 10
Qaa ¢ [] QAT | ¢ [
U, s
Converter Signals Converter Signals
D /f Deﬁ"/f;{{f' Vm/2
V.ij off S eff Vin/4 V\'WJ | | | | | | I Vm/4

(a) For lower duty cycles (0 - 25%), the switch-node
voltage in a 5-level FCML alternates between 0 V and
i of the input voltage. Here, a 12.5% duty cycle at a
switching frequency, fs., yields a 50% effective duty
cycle and an effective switching frequency ferr = 3 -
fsw at the switch node.

(b) For a range of duty cycles higher than those in
Fig. 2.3a (e.g. 25 - 50%), the switch-node voltage
in a 5-level FCML alternates between % and % of the
input voltage. Here, a 37.5% duty cycle at a switching
frequency, fs., yvields a 50% effective duty cycle and

an effective switching frequency ferr = 3 - fsu at the

switch node.

Figure 2.3: Five-level FCML PS-PWM control signals at different duty cycles and the asso-
ciated switch-node voltage exhibiting the effective duty cycle and reduced inductor voltage
swing.

Vin (Degy - (1 = Degy))

L fo- (N—1)2

One advantage of the FCML converter with PS-PWM control is the reduced switch
voltage stress, Vi,/(N — 1), because the flying capacitors, Cj, are held at a steady-state
voltage, (2.6). The capacitors that flank each switch are separated by only a fraction of the
input voltage based on the number of levels. This voltage differential is the voltage that
the switch must be rated to block (neglecting margins for overshoot/ringing). Because of
the reduced voltage requirement, higher power density converters can be designed by using
smaller transistors [6, 18].

Aiyy, = (2.5)

CHAPTER 2. BACKGROUND 6

(N -1)

Additionally, the voltage across the inductor swings by only V;, /(N — 1) as compared
to the conventional buck inductor which swings by the full input voltage. Fig. 2.4 shows
this reduced voltage step on the inductor and demonstrates the multi-level structure of this
topology as evident by the number of discrete voltage levels at the inductor. Across a period
of changing duty cycles, the switch-node voltage alternates between different voltage levels
that are determined by the level number, N, of the converter, but experiences a constant
voltage swing, reduced from that of the two-level buck converter. Furthermore, the FCML
topology has an inherent frequency multiplication at the switch-node, V,, in Fig. 2.2, that
allows for a reduction in filter inductance. For a given switching frequency, fs,, the effective
switching frequency, fesr, seen at the inductor is (N — 1) - fs,, shown in Fig. 2.3. Both the
frequency multiplication and voltage reduction lead to a required inductance decrease by
(N —1)2. A reduction in the passive component requirements can allow for converters of
higher power density. However, decreased passive component volume is only one aspect to
address when designing high efficiency, high density power converters. The following chapter
will explore another technique that can be used to reduce converter power losses and increase
efficiency.

Ve k=1,2..(N-2) (2.6)

Vit Vi W HH dv
- dt
é 3AtVin"
2 | ‘
48: I/ZI/in"
gﬂ | V()Uf
% 1AJ/m_
=l \
XY _
Time

Figure 2.4: Multiple discrete voltage levels can be generated at the switch-node with an
FCML converter, in this example with a 5-level FCML, thereby reducing the dV/dt transi-
tions at the switch-node and across the inductor, allowing for a reduction in filter require-
ments.

Chapter 3

Zero-Voltage Switching

One approach to increase converter power density is to reduce the size of the passive compo-
nents (capacitors and inductors). Chapter 2 describes how the inductor size can be reduced
by using a multi-level topology; in this chapter, we discuss a control technique that can be
used to reduce converter losses. Loss reduction can be used to increase efficiency in the
same converter volume or allow the same efficiency in a smaller volume by reducing passive
components further.

By rearranging (2.3), we can see that either increasing the allowed current ripple or
increasing the switching frequency can lead to a smaller inductance requirement. However,
increasing the peak-to-peak current ripple on the inductor increases inductor core losses
and AC conduction losses. Similarly, increasing the switching frequency increases the losses
associated with switching. Although, through control techniques, such as implementing
soft-switching, we can reduce switching losses and allow faster switching without incurring
excessive penalties.

Zero-voltage switching (ZVS) is one method of achieving soft-switching conditions by
switching when the voltage across the transistor is zero [13,23]. ZVS can be realized through
resonant operation [24-26] or by using quasi-square-wave (QSW) control [9,23,27-29]. The
fundamental operation of QSW ZVS is described in Section 3.1, as well as design and control
considerations for ZVS. Sections 3.2 and 3.3 detail how QSW ZVS can be applied to the
FCML topology and the challenges that arise in maintaining ZVS across wide operating
conditions.

3.1 Quasi-Square-Wave Zero-Voltage Switching

The quasi-square-wave (QSW) control method entails adjusting the on-times and dead-
times (time when neither switch is on) of the transistors such that the inductor current
charges/discharges the parasitic capacitances of the transistor, and allows a zero-voltage
switch transition [23,27]. If either the voltage across the transistor or the current through
the transistor is zero, then the power loss (P = I - V) is zero. In this case, we control the

CHAPTER 3. ZERO-VOLTAGE SWITCHING 8

Gate Signals -
2 1 2 A

qSIA_ Ct ‘E:
qSIB)

Converter Signals = Ly
Vegm Vi s
” X_ (a) Positive inductor current in Region 1 of
CsiB] oV Fig. 3.1 discharges the parasitic capacitance of

i the low-side switch and allows ZVS.
0A

IZVS

Ufeyr

Figure 3.1: Two-level buck converter

waveforms for ZVS conditions. The in- (b) Negative inductor current is needed in Re-

ductor current must have enough ripple to gion 2 of Fig. 3.1 to discharge the parasitic ca-
. . pacitance of the high-side switch and allow ZVS.

reach a peak negative value, Iy g, which

can discharge the parasitic capacitance Figure 3.2: Two-level buck switch-pair
CSlA of the buck Switch—pair and allow for with parasitic Capacitanees.
ZVS.

switch voltage to be zero before the transition.

The QSW ZVS approach is described here, first using a two-level buck converter, and
then extended to a multi-level buck (the FCML topology). Fig. 3.1 shows the control signals
and drain-source voltages, Vy,, for the switch-pair in a two-level buck converter, shown in
Fig. 2.1. The switch-pair consists of a high-side switch, which is closer in potential to the
input than the low-side switch, which is closer to the ground connection. The voltage, Vs,
is equivalent to the voltage across the parasitic output capacitance of the switch, Ve, , -
For QSW ZVS, a sufficiently long deadtime (Regions 1 and 2 in Fig. 3.1) is imposed based
on the inductor current and parasitic capacitances. Only the switching losses for the switch
turn-on transition are considered because when the switch is on and about to turn off, there
is no voltage present across the switch. There is, however, voltage overshoot during the turn-
off transition due to stray inductances, but the losses due to this transition are neglected
because they are much smaller in magnitude than losses due to the turn-on transition [30]. In
buck-mode operation, because the inductor current is naturally positive during the deadtime
before the low-side switch, Sip, turns on (Region 1 in Fig. 3.1), ZVS is easily attainable for
the low-side switches. The small parasitic capacitance of the low-side transistor, Cg,, in

CHAPTER 3. ZERO-VOLTAGE SWITCHING 9

Fig. 3.2a, can discharge quickly from Vg, , = Vi, to 0 V with this positive current, i,
thus enabling a zero-voltage at the time of switching. Once the parasitic capacitance has
fully discharged, the body diode (or body diode-like mechanism in GaN transistors) of the
switch becomes forward biased and begins to conduct, contributing a small diode voltage
drop shown in Fig. 3.1. Therefore, the deadtime should be designed to be sufficiently long
to allow the switch capacitance to fully discharge, but short enough to minimize the length
of the body diode conduction time.

Conversely, ZVS for the high-side switch, S 4, is more difficult because a negative current
during the deadtime of Region 2 is required to discharge the parasitic capacitance, Cs, ,, to
0 V before switching, shown in Fig. 3.2b. The ZVS mechanism for the high-side switch is
the same as that for the low-side switch, however it requires the inductor current to be in
the opposite direction. Having a negative inductor current for a portion of the switching
cycle requires a sufficiently large inductor current ripple. This ripple may need to be rather
large as the average output current of the converter increases. It is possible in some cases to
design the inductor and control the switching frequency such that the inductor current does
go negative. This control method and its shortcomings in some applications are discussed
below.

The deadtimes set for Region 1 and Region 2 are determined based on the current at the
switch turn-on and turn-off transitions in these regions, and the total effective capacitance
and voltage that needs to be charged or discharged. In [31], the total charge equivalent
capacitance is found by (3.1) and is used to determine the minimum amount of negative
current, Iy g, needed to discharge the parasitic switch capacitances. The amount of energy
stored in the inductor at the time of the transition must be sufficient to discharge the
parasitic switch capacitance from its full Vj, voltage, which in the case of the two-level buck
is Vi, to zero volts. By comparing the energy stored in the inductor with the energy needed
to be discharged from the total charge equivalent parasitic capacitance (3.2), the minimum
negative current peak needed for ZVS can be found by (3.3) [31]. For the two-level buck
converter, the total equivalent capacitance is the parallel combination of two switch output
capacitors since while one capacitor is discharging, the other is charging in parallel, as seen in
Fig. 3.2. The time needed to discharge the equivalent capacitance is found using an analysis
of resonance between the inductor and switch capacitance [32,33].

des Coss(v)dv
Clogo.ch = J0 o 3.1
qu,ch ‘/ds ()
1 2
éLIZVS > Ciot Vg (3.2)

2 (Ciop) V2
Izvs = w+% (3.3a)

C(tot =2- Ceqv,ch (33b)

CHAPTER 3. ZERO-VOLTAGE SWITCHING 10

The minimum deadtime for ZVS conditions can be calculated by (3.4) and (3.5) [30, 34].
The solution to the second-order differential equation that describes the current waveshape
during the deadtime is dependent on the initial voltage across the inductor. The initial
inductor voltage, Vi, , differs for the high-side and low-side switches based on how the
switches connected the circuit components before the ZVS deadtime and is given by (3.5).
The deadtime should be designed to minimize body diode conduction as mentioned above
since this unnecessary diode conduction leads to power loss and lower efficiency. Furthermore,
selection of the switches should take into account the equivalent output capacitance of the
switches. Larger parasitic capacitance requires more energy to discharge, which means either
a longer deadtime, which can hurt efficiency, or a larger negative inductor current/ larger
inductor current ripple, which consequently leads to increased inductor core losses and AC
conduction losses.

1 Vi T
fs X an-t zZvs _ 4
d_wo(an ZO'IZVS)+2) .
. \/m (3.4b)
L
. L (3.4¢)
tot
(3.4d)
— D -V, for .Sy
y B N 3.5
Lzvs { (1 — D) - Vin, for SlB ()

3.2 QSW ZVS for FCML Converters

The above quasi-square-wave technique can be applied to the phase-shifted PWM (PS-PWM)
control scheme typically used with FCML converters. However, there are a few differences
between QSW ZVS for a two-level topology and for a multi-level topology. As seen in
Fig. 2.2, there are now several switch-pairs that need ZVS. Because PS-PWM is utilized,
the parasitic switch capacitances do not necessarily charge/discharge directly through the
input source, instead there may be flying capacitors through which the inductor current also
flows. However, because only one pair, Fig. 3.3b, transitions at a time and the two switches
in that pair are complementary, only the commutation loop between the two switches in a
single pair affects ZVS operation. Furthermore, the voltage needed to be discharged from
the parasitic capacitances is reduced from the full input voltage (for a two-level buck) to
only a fraction, of the input voltage (for the FCML buck), shown in Fig. 3.3a, due to the
flying capacitors adjacent to the switch-pair having fractional voltages of the input voltage.
Because FCML ZVS functions similarly to ZVS in the two-level buck converter [30, 34],
this deadtime minimum is given by the same (3.4). However, the initial voltage across the

CHAPTER 3. ZERO-VOLTAGE SWITCHING 11

Gate Signals
1

2 2 Cs,,
i, 1 b
s I _ﬁ+ZLA
Converter Signals S_iA|
Vesd Y /(N-1)
SAX_ X- X: C,=—= =— C;,
VCSE r 0 V S
iB
le /\ I_
VA Iip
Wfer —
CSiB
(a) FCML converter waveforms for ZVS conditions. (b) Arbitrary FCML
switch pair with parasitic
capacitances.

Figure 3.3: Inductor current must have enough ripple to reach a peak negative value, I,y g
which can discharge the parasitic capacitance Cg,, of an arbitrary switch pair and allow for

ZVS.

inductor, V7, ., varies with the switching pattern, so for the high-side and low-side switches,
the initial inductor voltage is different, given by (3.6). The inductor voltage also changes
as the duty cycle changes and the multi-level characteristics become evident. The initial
inductor voltage equation for FCML converters is equivalent to that of the conventional
buck converter (3.5) when N = 2.

_Vin floor(D(N —1)) — D -V,,, for S;,
(N—1)
Vipoe =4 O (3.6)
" eeillDIN — 1) =D -V, f ;
N-1) ceil (D() Vin, or Sy

3.3 ZVS Challenges for FCML Converters

Previous works, [23] and [28], have shown that a sufficiently large inductor current ripple
is required to provide a negative current, iy, during a specified deadtime which discharges
the transistor parasitic capacitance and allows ZVS operation. However, due to the multi-
level operation of the FCML, certain duty cycles inherently exhibit low or no current ripple,
inhibiting the ability to achieve ZVS without going to extremely low switching frequencies.

Revisiting (2.4), it is apparent that D,y is zero for certain values of D (when D - (N —1)
is an integer value) and therefore, the inductor current ripple approaches zero as well, (2.5).
Fig. 3.4 shows the inductor current ripple at a fixed switching frequency, f.,, for a 4- and
5-level FCML normalized to the conventional two-level buck converter, with current ripple

CHAPTER 3. ZERO-VOLTAGE SWITCHING 12

Buck
4-Level
.......... 5-Level

< < <
~ N oo

Normalized Inductor Ripple

<o
[}

s, |t R
Gl MNP

0 0.25 0.5 0.75 1
Duty Cycle

Figure 3.4: Higher-level FCML converters inherently exhibit lower inductor current than
two-level buck converters, but introduce inductor ripple valleys at certain duty cycles.

valleys at duty cycles of 0.33 and 0.66 for the 4-level FCML, and 0.25, 0.5, and 0.75 for
the 5-level FCML. Compared to the two-level buck converter, one advantage of the FCML
is evident by the reduced magnitude of inductor current ripple. For the same inductor,
a reduced inductor current ripple reduces the core losses and AC conduction losses of the
inductor. However, this reduction in inductor current ripple poses a challenge for maintaining
ZVS conditions, which as discussed above requires a sufficiently large current ripple.
Previous works [9], [10] have shown that by varying the switching frequency along the duty
cycle range, the inductor current ripple can be changed to keep ZVS operation. However,
the switching frequency can only be decreased to limits imposed by the flying capacitor
voltage ripple, inductor saturation, or practical limitations [10]. These switching frequency
limitations are summarized in Section 4.3 along with an evaluation of how the resonant
frequency should be factored in to the ZVS frequency limitation. Moreover, the valleys of
the inductor current ripple plot in Fig. 3.4, cannot be avoided by decreasing the switching

frequency and consequently, ZVS cannot be maintained at these operating points by using
only QSW ZVS and variable frequency control (VFC).

13

Chapter 4

Dynamic Level Selection

As demonstrated in Chapter 3, zero-voltage switching conditions cannot be maintained across
the full duty cycle range due to the current ripple minimums at specific duty cycles. If we
compare the inductor current ripple across the full duty cycle range, Fig. 3.4, for FCMLs
with an adjacent number of levels (e.g. 4-Level and 5-Level FMCL), we can see that for
duty cycles where one configuration has a current ripple minimum, the other configuration
does not. In this work, we propose to take advantage of this fact and use dynamic level
selection [11] to maintain a minimally sufficient inductor current ripple required for ZVS
operation. Dynamically re-configuring a 5-level FCML to operate as a 4-level FCML can
avoid the current ripple minimums of each configuration and maintain ZVS conditions [12].

4.1 Dynamic Level Selection

Being able to re-configure the FCML converter through control techniques alone, can enable
customization based on specific operating conditions, such as maintaining inductor current
ripple as the duty cycle changes. The inductor current ripple is important for maintaining
ZVS conditions to reduce switching losses, and its relationship with the duty cycle differs
between different FCML level counts. Fig. 4.1 illustrates the proposed method for selecting
the number of levels to operate across all duty cycles. By rearranging (2.5), we can solve
for and plot the switching frequency required to achieve ZVS for 4- and 5-level operation
with constant output current and constant inductor current ripple across the full range of
duty cycles. Also plotted is a minimum switching frequency, fiim 4/5, for which the converter
is not designed to operate below [10] for 4- and 5-level operation, respectively. This plot
is for a constant peak negative inductor current which can be controlled [35] to maintain
ZVS. Furthermore, in this work, a constant negative inductor current peak, I7y g, is chosen
along with a constant deadtime, by (3.1 - 3.4). With constant output current, designing for
a constant deadtime leads to a constant peak-to-peak inductor current ripple in (2.5).

At each duty cycle, we prioritize 5-level operation because the switch voltage stress and
therefore, the switching loss per device, is reduced in the case of a higher number of levels.

CHAPTER 4. DYNAMIC LEVEL SELECTION 14

4-Level
600 ————————. Heve

Proposed

500 [/'\]

N
(=]
(=)
T
I

7‘flim,4

ARANANNAH

Switching Frequency [kHz]
(%]
el
(e}

200 B K H H i
0 i ¥
0 0.25 0.5 0.75 1

Duty Cycle

Figure 4.1: The proposed method implements dynamic level changing to avoid operation at
the inductor current ripple valleys and to maintain ZVS across the entire duty cycle range.

Moreover, as shown in [36], lower device operating voltage also reduces dynamic Ry o,
effects in GaN transistors, another important design consideration. The voltage swing of
the inductor is also reduced for the case of a higher number of levels, consequently reducing
inductor core losses. If the 5-level switching frequency must be below f;, 5 to maintain
ZVS, the converter transitions to 4-level operation at a new switching frequency to maintain
ZVS. However, there are some duty cycles for which both the 4- and 5-level converter have
ZVS frequencies below their respective fj;,, values; in these cases, we operate as a H-level
converter due to efficiency benefits of a higher level count as described above.

4.2 Level Evaluation

An analysis of the steady-state capacitor voltages for different number of FCML levels is
used as reasoning for choosing a 5/4 level converter over a different number of levels. The
steady-state capacitor voltages for 5-level operation, as well as for 4-level operation with
different switches operated as a pair are shown in Table 4.1. Additionally, the amount of
capacitor voltage change required to transition from 5-level to 4-level operation is also shown.
This analysis was performed for 5/4, 6/5, and 7/6 level converters. A generalized analysis for
any two adjacent number of levels can be expanded from the form of Table 4.1, which shows
a 5/4 analysis and of Table 4.2, which shows a 6/5 analysis. Transitioning from a higher
odd number of levels down to an even number of levels reduces the capacitor voltage change
required. For the 5/4 converter and the 7/6 converter, the minimum voltage change required

CHAPTER 4. DYNAMIC LEVEL SELECTION 15

S3A

v, o:\TKTK WE o Vo

S3B

Figure 4.2: The 5-level FCML operated as a 4-level with (5 voltage maintained at the 5-level
value while C'; and C3 re-balance to 4-level operation.

1 75 Vin and V;n, respectively compared to the 6/5 level converter Which requires %V
For the 7/6 level converter, two flying capacitors would need to change by 35 Vin and two by

Vm, with one remaining unchanged. However, for the 5/4 level converter the capacitors
Which need re-balancing all require the same change in voltage, therefore simplifying the
active balancing technique used to re-balance the flying capacitors.

Furthermore, this evaluation of the steady-state flying capacitor voltages is used to select
which switch-pair to operate in phase when in the 4-level mode [11]. Configurable-level
operation requires switches to be controlled similarly in phase so that the effective number
of switches coincides with the desired level operation. For the 5/4 FCML, when the two
middle switch pairs, S3 and Sy of Fig. 4.2, are operated as one switch pair, configuration
4b in Table 4.1, the blocking voltage of the transistors is more evenly distributed, therefore
distributing the voltage stress on each of the transistors. Considering the amount of capacitor
voltage change required to re-balance on a new number of levels, the configuration with the
middle pairs acting as one yields the smallest AV, 12Vm

In 4-level operation, the two middle pairs of switches (labeled Sy and S5 in Fig. 4.2) are
controlled in phase as shown by control signals ¢4 and ¢34 in Fig. 4.3a. This switch pair is
chosen so that the amount the flying capacitor voltages need to adjust by is minimized. The
remaining switch pairs are operated as a 4-level FCML with a phase shift of 120°, shown in
Fig. 4.3a. Consequently, the voltage on the middle flying capacitor (labeled C5 in Fig. 4.2)
remains constant at Vj, /2 from the 5-level operation, while the remaining flying capacitors,
Cy and Cj are re-balanced (actively or passively) to V,/3 and 2 - V;,,/3, respectively, in
accordance with 4-level FCML operation, as shown in Table 4.1.

Similarly, when the converter needs to transition from 4-level to 5-level operation, the
capacitors are re-balanced to 5-level voltages either by active balancing techniques or passive
natural balancing of the converter. The middle switch-pairs are no longer controlled by
similar PWM signals and the control scheme returns to that of the 5-level FCML, shown
in Fig. 4.3b. When sizing the switches and capacitors, the voltage ratings of the 4-level
operation should be used since they are of greater magnitude, as shown in Table 4.1.

16

CHAPTER 4. DYNAMIC LEVEL SELECTION

0 A%- AN A% [T ol mE ol e @€ oyt ol oyt gag | pg
AT+ 0 YAT AT | AT YA AT MAg | AT AT AT AT AT | %St G
A S 0 M- b ol g g A b s g b s s | ag
AT AT+ AT 0 | MAT AT AR AT tAp At Mab M ag |t is | e
0 0 0 0 |"af udouiouilwdoudoud oudou 0
ie, O 0 o,
AV A A A P4 TS s S 'S) ed | [PA9]
joedw] 103ede)) SUIA] puR SUOIRINGHUO)) Ired UDIMSG [9AT] 9/G :g'F 9[qR],
0o i T [abowf ullai T ul wi[ses| o
AT 0 AT | AT AT MAg | AT MAT O MAT MAT | S ES v
w8l w9 up & uwp € w Vw8 w8 w, Bl w, Vol ety
AT ATt 0 AT Az TAg | A3 A7 AT A7 | 5578 i
0 0 o |"ab ud oui|tuloub bl ¢
D 0 0
AV PAC®A ALY S B TG | Tred | [PA9T]

joedu] 10910Rde)) SUIA]] pUR SUOI)RINSYUO)) IR UDIMG [9AdT G/F T O[qR],

CHAPTER 4. DYNAMIC LEVEL SELECTION

Gate Signals

sw

D/f
Qa1 I
QoA
d3a
Qaa]

1fs
Uty

D./f.; Converter Signals

V L

NAVAVAVE

(a) Four-level operation.

Figure 4.3: Simulated converter waveforms for the proposed method.

Gate Signals

D/J(:YW'
Qa1
QoA 1
A [
4 EVN 1
I/,
Ufey
V.3 Dty Converter Signal

ov l_l I—I l—| |_
Z \/\/\/\/\

(b) Five-level operation.

4.3 Frequency Limitations

1n
AN

v, /4

in

ov

17

As mentioned in Section 3.3, there are limitations placed on the converter switching fre-
quency, which prevent QSW zero-voltage switching conditions for all duty cycles in an FCML
converter. These limits, summarized in Table 4.3 for 5-level operation, are due to converter
components [10], such as inductor current saturation, flying capacitor voltage ripple, and due
to converter operation (e.g. resonance) [26]. In [10], the component frequency limitations
are derived for 4-level operation. Moreover, the resonant frequency of the converter must
also be accounted for when determining the lower limit on switching frequency. As shown
in Fig. 4.4, when operating near resonant frequency, the inductor current is no longer linear
which causes the negative peaks of the inductor current to vary throughout the switching

Table 4.3: Frequency Limits

0<D<?: lopD<3 3<D<1
4 4 4 4
f Ir-Deyy Ip Ir-(1—Deyy)
S’LUCfly 2'Cfly'%v’r"/in,pk 2'Cfly'%v’r"/in,pk 2'Cvfly'(%‘/’F"/in,pk
¥ Vinpk'(Depr(1=Degr)) | Vinpk (Deps(1=Deys)) | Vingpk (Depr-(1=Degy))
swlsat 2 L(N—1)2-(Isqi—11) 2 L(N—1)2-(Isqi—17) 2 L(N—1)2-(Isqi—11)
f 1 _ 1 _ 1
swhes 21/ L-Ceyy 2/ L-Ceyy 21/ L-Ceyy
Vinpk'(Depr(1=Desr)) | Vinpk (Deps(1=Deys)) | Vingpk (Degr-(1=Degy))
fstVS

2:-L-(N-1)-(Ir—Izvs)

2:-L-(N-1)-(Ir—1Izvs)

2:-L-(N-1)-(Ir—Izvs)

CHAPTER 4. DYNAMIC LEVEL SELECTION 18

period. Because of this variation, the converter is unable to maintain ZVS in quasi-resonant
operation without additional implementation complexity such as valley current detection
and setting specific deadtimes for each current valley. As detailed in [26], there are two
resonant frequencies for the FCML converter based on the switching configuration when
current flows through either one or two flying capacitors. The resonant frequency, fo,ges, 1S
given by the equation in Table 4.3, where C.s¢ is given by either one or two series-connected
flying capacitors, depending on the switch configuration. To avoid quasi-resonant operation
and maintain linear inductor current, a switching frequency limit is chosen to be sufficiently

larger than the resonant frequency of the two flying capacitors in series (about 1.5 to 2.5
times higher).

5

4 H L H H
g 3 :
ﬁl :
g 27
E
5 14
3 1
S}
g 0
5
= -1

27 — Measured Current

t t+%T t+T t+%T t+T

Time

Figure 4.4: When operating near resonant frequency, the inductor current is not linear, and
therefore, only quasi-ZVS may be possible.

19

Chapter 5

Flying Capacitor Active Balancing

Level transitioning, as proposed in Chapter 4, requires flying capacitor re-balancing because
the steady-state voltages on flying capacitors, C; and C5 of Fig. 4.2, are at different values
based on the number of levels, as shown in Table 4.1. The FCML topology has natural
balancing qualities [37-41], which re-align the capacitor voltages with steady-state operation
after some time without implementing a new control strategy. However, an extended number
of switching cycles spent in an unbalanced condition, leads to more uneven voltage stress
on the transistors. To reduce the amount of re-balancing time necessary, active balancing
control techniques can be used.

5.1 Constant Effective Duty Cycle Active Balancing

Previous work [11] on level transitioning in FCML converters has used repeated switch
states within each cycle to actively increase/decrease the charge on the capacitors. However,
here we utilize a technique of duty cycle adjustment [8,35,42] to increase or decrease the
charge/discharge time of the flying capacitors that require re-balancing. By using duty cycle
adjustment instead of repeated states, PS-PWM is maintained with each switch only turning
on and off once within a switching cycle. With only one on/off transition in a cycle, the
turn-on switching losses, which should be minimized, are limited to occur only once in a
switching cycle for each switch. Furthermore, this control technique can be more easily
implemented with a micro-controller instead of needing a Field-Programmable Gate Array
(FPGA). This control technique, Constant Effective Duty Cycle (CEDC), is done such that
the effective duty cycle seen by the inductor, D.¢s in Fig. 2.3 is kept constant from before,
during, and after active balancing by changing the relative phase difference of the control
signals as the duty cycles of each signal are adjusted.

In this work, active balancing for a level transition is done while in 4-level operation
because FCML converters have more balanced performance on even-numbered levels [41].
When transitioning from 5-level operation to 4-level operation, the active balancing is work-
ing in unison with the relatively strong natural tendency of the even-level converter to

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 20

re-balance the flying capacitor voltages. To begin a transition from 5- to 4-levels, the duty
cycles of each control signal (¢;4-q44 and their complements ¢;5-q45), as well as the relative
phase delay are updated to 4-level PS-PWM values. Gate signals for the two middle switch
pairs g24,p and gs34/p are controlled in phase to emulate 4-level operation. If active balancing
is to be used, the duty cycles and relative phase difference of each control signal are adjusted
using the CEDC method (altered to have the middle switch pairs with the same phase delay
and same duty cycle). For the purpose of maintaining ZVS across the full duty cycle range,
the switching frequency needed for ZVS (from Fig. 4.1) is updated as well from the 5-level
to 4-level switching frequency so that before and after the transition, the current ripple is
maintained and ZVS can occur. During the transition, ZVS conditions are not maintained
due to the re-balancing needs.

Here, when transitioning from 4- to 5-level operation, the flying capacitors are re-balanced
to b-level voltages using a 4-level PS-PWM control scheme before the control signals are
changed to the 5-level configuration. This choice of active re-balancing is applied for simple
implementation in the microcontroller, as well as for more clear juxtaposition with the 5-
to 4-level transition re-balancing. However, by actively adjusting the flying capacitors to 5-
level steady-state voltages while still in the 4-level configuration, the active balancing control
may be fighting against the natural tendency of the flying capacitors to balance at 4-level
voltages.

Table 5.1 shows the charge/discharge behavior of the flying capacitors for sub-periods in
the lowest duty cycle range of 4-level operation (0 - 33%). This analysis can be similarly
extended for the larger duty cycle ranges [35]. For the transition from 5- to 4-level operation,
Fig. 5.1, the voltage on capacitor C} needs to increase and the voltage on capacitor C'3 needs
to decrease, while capacitor (5 is maintained. To achieve this voltage differential, the sub-
period where C; charges (indicated by a ‘+’ in Table 5.1), d2, when the middle switch
pairs (52/53) are on (indicated by ‘1’), should be increased, while the sub-period where C
discharges (indicated by a ‘—’), d1, when switch Sy is on, should be decreased. Similarly,
to decrease the voltage on Cj, sub-periods d2 and d4 should be increased and decreased,
respectively.

In contrast, active re-balancing for the transition from 4- to 5-level operation is accom-
plished by decreasing d2 while increasing d1 and d4. The sub-periods d1 and d4 are adjusted
equivalently and are changed with respect to d2 so that the effective duty cycle at the switch
node remains equivalent to that of normal 4-level operation [35].

Equation (5.1) shows the relationship between the switching sub-periods in 4-level oper-

Table 5.1: Flying Capacitor Charge and Discharge Sub-periods

Sub—period ‘ S4A SgA/SQA SlA ‘ ch VCZ VCl
d1 0 0 1 —
d2 0 1 0 — +
d4 1 0 0 +

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 21

ation and (5.2) shows the relative phase calculation in 4-level operation for duty cycles less
than 33%. CEDC expanded for other duty cycle ranges is included in [35]. Applying this
duty cycle adjustment technique across multiple switching cycles can re-balance the voltages
to the new steady-state operation values as shown in Fig. 5.1. The amount to adjust the
sub-periods by is chosen along with the number of active re-balancing cycles to achieve the
shortest settling time to balanced flying capacitor voltages.

Depy=d2+dl +dd=d2+2-dl (5.1)
. 360°
Ps, = (1= 1) gy = 12 (V= 1) (5.2)

Gate Signals

5-Level Active Balancing y 4-Level
dia _| [di] T 1 L
G2a e . [
G rr— & 1 [
daa]l

Converter Signals

ov

Figure 5.1: Active balancing through duty cycle adjustment for v number of cycles is imple-
mented at transitions between different numbers of levels.

5.2 Active Balancing Parameter Calculation

The two parameters governing the speed at which the converter balances using constant
effective duty cycle (CEDC) active balancing [35] are the duty cycle adjustment, «, and the
number of cycles of active balancing, . Equations (5.3) - (5.5) show the relationship between
the duty cycle adjustment parameter, «, and the duty cycles and phase delays of each control
signal, while maintaining the constant effective duty cycle (5.1). These equations are given

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 22

in terms of the sub-periods, 17, T5, T4 shown in Fig. 5.2. A mathematical approach is used
to find the shortest settling time of the flying capacitor voltages by determining the best
combination of a and 7.

Active Balancing
Gate Signals

Qia 4]
Qa | d, &
d3a _L, d, &
qsa ‘(D4 > d, |
Converter Signals
T, T, R V"

0A

0A

0A
N

ov

th 6 t t3 ty t5 1t

Figure 5.2: Sub-periods for the lowest duty-cycle range of a 5/4-level FCML for calculating
active balancing capacitor voltages.

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 23

1
Ty = D.
T2 = - To, (53b)
1 -1
T =—; 2 (5.3¢)
T, =T (5.3d)
dQZTQ'DEff :Oé'D, (54&)
Desr—d2
dl =Ty Dy = %‘Z, 5.4b)
d4 = dl (5.4¢)
dg, =0, (5.5a)
360°
Sg, =T = - .
So 2 « (N—l)’ (55b)
CI)SS = T2 = (I)Sg; (55C)
o
by, =T+ 1) = 180°(1 — (v = 1>) (5.5d)
(5.5¢)

Fig. 5.3 describes the steps for determining the combination of duty cycle adjustment
() and number of active balancing cycles (y) that corresponds to the shortest settling time
during level transitioning. Converter parameters are defined, such as input voltage, V,,
average output current, I,,, inductance, L, flying capacitance, C', x, output capacitance,
Cout, and the levels for transitioning, starting level, Ny, ending level, N;. The valley current,
Izvs, is defined for calculating the ZVS frequencies. Furthermore, the design space is set
up to limit the duty cycle adjustment parameter, o, and the number of active balancing
cycles, 7. The parameter, « is constrained by not allowing any of the sub-periods, T, T5, T}
to be greater than 1 (where 1 corresponds to a full switching period). This limitation is also
equivalent to maintaining sub-period duty cycles, d1, d2, d4, below D.r;. Equations (5.6a-d)
show the calculation of this limit for the lowest duty cycle range. The limit on the number
of cycles, v is decided by the designer.

d2 < Deyy, (5.6a)
d2 = aD, (5.6b)
Degr = (N —1)D, (5.6¢)
o< (N-1) (5.6d)

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING

C Set converter specifications:
Vins louts Ly Ciys Couts luss No, Ny)
— I—'

Set design space:
aae[l0,N;-1];y:yeZ, ye[1,T]

Calculate fg, limit:

MaX (fres, fowcys fowtsa)
Table 4.3

I i=0
Calculate transition
point:

s oty Dian

=

Calculate N, values:

Voutv Vcﬂy,k- I Imax

at Dygan: favsn

[t=0

Calculate sub-period
voltages and currents:

Figure 5.2

Calculate Cy, voltage
error:
AVey

yes

Calculate norm:

llavesy |
Eq.5.15

C Find « and y corresponding to
min([AVes,y |)

Figure 5.3: Flowchart for determining the o and « combination for the fastest active re-
balancing during dynamic level transitioning.

24

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 25

With all of the parameters specified, the switching frequency limitation for the converter
is calculated based on operating conditions (V;,,) and component parameters (L, C'sy).
A switching frequency limitation is chosen for both 4- and 5-level operation by choosing the
maximum switching frequency of the calculated switching frequencies (fswcofiy, fswisat, and
fswres in Table 4.3) across all duty cycles. If the converter operates above the maximum
of these limits, none of the limits will be violated at any duty cycle. Then, based on these
switching frequency limits, the duty cycle, Dy, when the ZVS frequency crosses the limit,
fiim, N, 1s calculated. At this duty cycle the converter will dynamically transition levels to
maintain ZVS. Because 5-level operation is prioritized, if the ZVS switching frequency falls
below the 5-level limit, the converter transitions from 5- to 4-level only until the 5-level ZVS
frequency is above the 5-level limit, at which point the converter transitions back to 5-level
operation. If both the 4- and 5-level ZVS frequencies violate their respective limits, 5-level
operation is used as discussed in Section 4.1.

Imax =l + AZ.pp,ma:(; (57)
1 A

AVyyy = — tppimaz 5.8

! N8fswcout ()

The maximum inductor current allowed, I, is calculated (5.7) based on the output
capacitance allowable ripple (5.8) [26] and the negative inductor current peak, I,,s;. The
Ny voltages and currents are calculated for the starting point of the level transitioning and
active re-balancing. Then the converter voltages and currents are calculated for the region
of active balancing based on a value-pair: the duty cycle adjustment a and the number of
active balancing cycles, v. Fig. 5.2 shows an example active balancing switching cycle with
sub-periods used in calculating the voltages and currents. For an N-level converter, there
are 2+ (N — 1) sub-periods within a switching cycle. For each sub-period, the following are
calculated:

1. Inductor voltage, VL (t), from Vi, (t — 1) and V. (t — 1)

2. Change in inductor current, Aiy(t), from (5.9), where d, is the ratio of the sub-period

to the full switching period
Vp-d,-T

Biy(t) =~

(5.9)
3. Updated inductor current:
ir(t) =ip(t —1) 4+ Aig(t) (5.10)

4. Capacitor de-rating for Cyy, 1 (t) and C,u(t), based on Ve (t — 1) and Ve (t — 1)

5. Capacitor current, £Ai(t), depending on the sub-period

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 26

6. Change in flying capacitor voltage, (5.11), where dt is the length of time of the sub-
period (area under the capacitor current curve)

1
AVQ}C(t) = Cfl k/io’kdt (5.11)
y7

7. Change in output capacitor voltage, (5.12), where dt is the length of time of the sub-
period (area under the capacitor current curve)

1)
AVC’out(t) = C /(ZL — Iout)dt (512)
out

8. Updated capacitor voltages:
Ver(t) = Vor(t —1) + AVox(t) (5.13)
VCout (t) — VCOut<t -].) + AVCout(t) (514)

Once a full switching cycle has been calculated, the differences between the calculated
voltages on the flying capacitors and the goal voltages (of N; level) are calculated. This
process is then repeated for the number of cycles determined by v. The peak current during
active balancing is checked against the maximum allowed current based on the output ca-
pacitor voltage ripple. If the peak current that occurs during active balancing violates the
maximum current limit, then the o — v pair is deemed invalid and no further calculations
are done with this pair.

Next, for all valid combinations, the Euclidean norm for the flying capacitor voltage
differences is calculated based on (5.15). It is assumed that the a-y value-pair with the
minimum deviation, or minimum Euclidean norm, is the combination that will correspond to
the shortest settling time since the flying capacitor voltages are the closest to the goal at the
end of the active balancing stage. However, this does not take into account the length of any
residual settling time for natural balancing needed if the capacitor voltages are not exactly
at the goal voltages after active balancing. It is possible that the number of cycles needed
for the smallest deviation after active balancing plus additional settling time corresponds
to a longer physical time than a different ov — « pair (with a larger voltage deviation from
the goal) with fewer active balancing cycles, but more natural balancing time. While the
analysis is set up to calculate for natural balancing, as discussed later in Section 6.4, the
current implementation of the active balancing calculations is not very accurate for natural
balancing settling time because parasitic resistances and switch resistances are neglected.

[Vell, =/ AVA + AV (5.15)

This process, calculated in Matlab (see Appendix A), was repeated for several average
output current values (at an input voltage of 50 V and 75 V with a 5.6 gH inductor) and

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING 27

a curve-fit was done for the parameter values of @ and v, shown in Figs. 5.4a and 5.4b
for 50 V and in Figs. 5.4c and 5.4d for 75 V. The number of active balancing cycles, -,
exhibits a staircase form. For each gamma value, the corresponding « values exhibit a linear
relationship with the average output current, up to a point. After a certain output current
value, the v drops drastically, and the a parameter becomes quadratic. This relationship is
because the active balancing mechanism is severely limited by the constraint on the output
voltage ripple. In this range of output current, the shortest settling time is achieved by
allowing the maximum output voltage disturbance, and therefore the largest inductor current
ripple (which corresponds to a large « value), but only for a short number of cycles. For
the average output current values that are not severely limited, a lower duty cycle increase
is needed as the current increases because there is more current and therefore more charge
that can be controlled to charge/discharge the capacitors in a smaller sub-period. Similarly,
for increasing current, a shorter number of cycles can be used due to the increased available
charge for re-balancing. However, even though the parameters a and v are decreasing with
increased average output current, the output voltage ripple is increasing due to the excess
charge. Once the output voltage ripple limit is reached, the relationship among the active
balancing parameters changes as discussed above.

As the voltage is increased, the point at which active balancing is limited by the output
voltage ripple is extended because the absolute magnitude of voltage deviation is larger with
a larger input voltage (and consequently larger output voltage for the same initial duty
cycle). The slope of the linear region of a values is less steep as voltage increases because
these values correspond to higher ~ values. For a larger input voltage, higher v values are
needed because the flying capacitors need to re-adjust by a larger magnitude as a proportion
of the input voltage. Using these two plots, the value-pair that will give the shortest settling
time can be determined for any output current for a specified input voltage value.

CHAPTER 5. FLYING CAPACITOR ACTIVE BALANCING

o = 1.4697#Tout? + -5.1136*Tout + 6.8085

Alpha

o =-0.53214*Tout + 1.6961

1k

0.4 0.‘6 0.‘8 1‘ 112 1,‘4 1.‘6 1.‘8 é 2.‘2 2.‘4
Output Current [A]

(a) The magnitude of duty cycle adjustment that

corresponds to the fastest active re-balancing in

combination with the gamma value in Fig. 5.4b

for several output current values at an input volt-

age 50 V.

3r \\
5 o = 1.25*Tout? + -6.185*Tout + 10.3515
£ 2f
=y
<
« =-0.3475*Iout + 1.6437
1.5
1k
04 06 08 1 12 14 16 18 2 22 24

Output Current [A]

(¢) The magnitude of duty cycle adjustment that
corresponds to the fastest active re-balancing in
combination with the gamma value in Fig. 5.4b
for several output current values at an input volt-
age 75 V.

Figure 5.4: The active balancing parameters corresponding to the shortest settling time

Gamma
o]
L]
L]
L]

2+ e o o ¢ o o 0 0 o o o

0.4 O,‘G O.‘B 1‘ 1.‘2 1.‘4 1.‘8 1.‘8 é 2.‘2 2.‘4
Output Current [A]

(b) The number of active balancing cycles that

correspond to the fastest active re-balancing in

combination with the alpha value in Fig. 5.4a for

several output current values at an input voltage

50 V.

141+
o o
12
e o o
10
< e o o
g
£ 8 o o
<
O e o o o o
6l
a4l
2 e o o o
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Output Current [A]

(d) The number of active balancing cycles that
correspond to the fastest active re-balancing in
combination with the alpha value in Fig. 5.4c for
several output current values at an input voltage
75 V.

exhibit a similar relationship with output current for different input voltages.

28

29

Chapter 6

Experimental Results

A 5-level FCML converter was built to demonstrate this control technique that maintains
ZVS across the full duty cycle range. Operation as a 5-level FCML and as a 4-level FCML
was tested, as well as ZVS operation at various duty cycles. Of most interest are the duty
cycles highlighted in Fig. 3.4 for which ZVS is not possible on a certain level count. The
dynamic transitioning between levels was tested with natural balancing and with CEDC
active balancing implemented. Finally, the efficiency benefits of employing this technique of
ensuring ZVS are also examined.

6.1 Experimental Prototype

Figure 6.1: Hardware Prototype.

The constructed 5-level FCML converter, Fig. 6.1 and 6.3, was built to demonstrate this
control technique that maintains ZVS across the full duty cycle range. The circuit schematic
and printed circuit board (PCB) layout are included in Appendix B. The prototype was
built using 100 V GaN devices from GaN Systems due to their low conduction and switching
losses, as well as their low output capacitance which is important for ZVS design. Because
these GaN devices are bottom-side cooled, the FCML was constructed on a single-sided PCB
to facilitate a heat sink across the whole bottom side. Assembling the FCML on a single side

CHAPTER 6. EXPERIMENTAL RESULTS 30

S4A S3A SZA
-
+
Vi C;, G, C, v

Figure 6.2: Five-level FCML circuit schematic drawing.

Decoupling

/Caacitors

Gate Drivers and Digital Power

GaN Gate Drivers and Digital Power
Transistor

Figure 6.3: Annotated photograph of the experimental prototype.

increases the commutation loop and introduces more parasitic inductance into the conduction
path. To decrease the commutation loop area and absorb the excess parasitic energy, local
decoupling capacitors are used for each switch pair [10]. Additionally, previous work [43] has
demonstrated the merit of using a cascaded bootstrap technique to power the isolated gate
drivers for each switch of the FCML. The cascaded bootstrap technique has a reduced area
and better efficiency when compared to the conventional single IC isolated gate driver [43].
This prototype was designed with an unfolder stage for DC to AC capabilites, however,
in this work, the unfolder stage was unused. A Texas Instruments C2000 microcontroller,
TMX320F28377D, was chosen for its low-cost, number of PWM pins, and simplicity of code
implementation. A control card was used to interface the microcontroller with the FCML
PCB. Table 6.1 shows the full component listing of the hardware prototype.

6.2 Zero-Voltage Switching

To demonstrate the proposed method, the experimental prototype was tested in multiple
operating conditions. Fig. 6.4 shows the converter operating as a 4-level FCML at an input
voltage of 100 V, 10 W, a switching frequency of 350 kHz, and a duty ratio of 25%, which, as

31

CHAPTER 6. EXPERIMENTAL RESULTS

QNNM%N@ONWMEH maQQESMmeH m@N@H M@EOH@QOOOMOME
UMJSCTIVATYLNS SHDWNIISU] SeXa], SIOYIIYS [9A9] D107 pIROg] IO[[01UO))

TdON/T 9-GINIGR63d T SHDWNIISU] SeXI]T, oaT

A 00 CINHZOHAAZ-SA AeUsIp sopor(derysjoogq
mHumUHNNme wﬁﬁd QOOEMW w.H®>E.© @pdw .@@p@ﬁOwH Q@.Ewpoom ﬁ@.@ﬁowﬁo

H"2'C V 92 T0-ZA0F0Fd'THI ABYSIA (7) 1010mpUy

AM2°T ‘A 0GF 8 X VMO0GZMETTMTSIX0GLED MAL (*°0) s10q10RdR))

A2 ‘A 0SF 8 X YMOGTMSTTMTSIX0ELED MAL (*9) s10yede))

A7z *A 05T ¢ X YM0STIMSTEMTSIX0GLED AL (8D @) ‘1)) s103oede))
suL ‘A 001 d800T9SD SwoIsLg NeH STAA N®9H TINDJA
SIojomeIR J oquny Jed 3 "IN juouoduo)) porg uonoung

0d£101014 erempIey o1} Jo SunsI juouoduwo)) :T°9 d[qe],

CHAPTER 6. EXPERIMENTAL RESULTS 32

shown in Fig. 3.4, is an operation point where the 5-level FCML has no current ripple and
cannot maintain ZVS. The inductor current ripple is shown to go negative which discharges
the parasitic capacitances of the high-side transistors and allows ZVS, which is evident by
the minimal overshoot on the rising edge of the switch-node voltage, V. Likewise, Fig. 6.5
shows the converter operating in ZVS as a 5-level FCML at the same voltage and loading
condition, a 255 kHz switching frequency and a 33% duty ratio, which is a current ripple
valley of the 4-level converter. These results show that ZVS is possible at two different duty
cycles for which ZVS is not possible with a fixed number of levels.

Y. 1 Y.]

L L
feﬂ fe/f

I ;]
4 L 0A P I > | 0A
Sw + 'l A
WV .__l A f 50V
[S) f‘, { 33V } | |
| | | |
\ wnd MWJ 25V
_— 5 4
Loy off
' i PMM D=025 0V D=033
Dy=075 D= 0.33

M 200ns 25GSk IT 40.0pst
ch3 100V chd 104 Q@ A Ch3 s 358Y

Figure 6.4: ZVS is achieved for 4-level op-
eration at a duty cycle for which 5-level
operation cannot achieve ZVS.

M200ns 25GSks IT 40 Opsipt
ch3 100V chd 104 Q A Ch3 s 5149

Figure 6.5: ZVS is achieved for 5-level op-
eration at a duty cycle for which 4-level
operation cannot achieve ZVS.

6.3 Dynamic Level Transitioning

A dynamic transition between levels is demonstrated in Fig. 6.6. Due to microcontroller
limitations in implementing level transitioning, the dynamic level transitioning was tested
with a 5.6 pH Vishay inductor (IHLP-3232DZ-5A) at an input voltage of 50 V and an
average output current of 0.5 A. When implementing level transitioning and CEDC active
balancing on the Texas Instruments C2000 microcontroller, there were timing challenges
when updating the switching frequency, duty cycle, and phase delay at the same time. The
microcontroller code used in this work is given in Appendix C. In the case demonstrated
in Fig. 6.6, the converter transitions from 5-level to 4-level operation (Fig. 6.6a) and vice-
versa (Fig. 6.6b) with only natural balancing. The measured settling time of the capacitor
voltages, Vo1 and Vg for the 5- to 4-level transition is about 2.8 ms and from 4- to 5-levels is
about 0.89 ms. Here, we see that the transition to the odd-level FCML is faster than to the
even-level FCML, this is contrary to our extension of [41], mentioned previously, that even-
level FCMLs have better natural balancing. Further investigation is required to explain how
the number of levels affects the flying capacitor balancing after a relatively large transient,
such as that due to dynamically transitioning levels.

CHAPTER 6. EXPERIMENTAL RESULTS 33

Natural Natural
Balancing 4-level

T |||1|||1§||1| LI L

5 -level|

T

4-level| Balancing S-level

LU I O L

2.8 msg 0.89 ms
oo b b b b T b s by b s L a s ol e b T e e e L

ch1 10.0v Chz 100V I 400ps 12 SMS/s BEI:Unstl ch1 10.0v chz 100v M 400ps 12.5MSks 80.0ns#t
ch3 100v Chd4 504 A Aus s 23V ch3 100v Chd4 504 A dus s 23Y

(a) Five to four level transition. (b) Four to five level transition.

Figure 6.6: Level transitioning with natural balancing.

5-level Active 4-level
C TTrIrr I/ I TTr 1T l TTrrIrr l TTrrIrr T TTr T I TTr T I TTrrIrr l TTrrr l TTrrIrr]
: 4 T]
- S~ T -]
- - — —
_ —]
o T~ <
L T -~ < I]
Ssw - -

—

y o=

4+5 i
g Iy 88 us]
L L1l l R l 11 1 1 I 111 1 | 1111 L1 11 l 111 1 l 1111 I 111 1 | L1 1 l_
Ch1 10.0v Ch2 10.0v M 400ps 12.5MSs 80.0nsiot
Ch3 10.0% Ch4 5.04 A dur s 2.3V

Figure 6.7: Active balancing decreases the settling time of capacitors C; and C5 during a
transition from 5- to 4-level operation.

CHAPTER 6. EXPERIMENTAL RESULTS 34

Active Natural
4-level 5-level

TT T 1\‘/\\\\\!\\\\ LA [B L L B L

6 ms

ol b by by T v v v bua g

AR
Ch1 10.0¥ Ch2 10.0% M 400ps 125MSk 80.0nsht
Ch3 10.0v Ch4 5.04 A AuR s 23Y

Figure 6.8: Active balancing decreases the settling time of capacitors C; and C3 during a
transition from 4- to 5-level operation.

Fig. 6.7 shows the transition from 5- to 4-level operation with a region of active balancing
by duty cycle adjustment (CEDC) to charge C and discharge C3 from 5-level steady-state
voltages to 4-level voltages. The capacitor voltages balance to steady-state in 88 us, which
is over 30 times faster than the settling time using natural balancing. Fig. 6.8 shows the
transition from 4- to 5-level operation with active balancing, which takes 0.66 ms, which
is about 1.3 times faster than natural balancing alone. As mentioned in Section 5.1, the
settling time can possibly be reduced if active balancing is employed in 5-level configuration
instead of 4-level configuration when transitioning to 5-level operation.

When performing active balancing, two parameters can be tuned for different balancing
characteristics — the magnitude of duty cycle adjustment («), and the number of active
balancing cycles (7). If rapid balancing is desired, the percent change of duty cycles is set
high, with a corresponding low number of active balancing cycles. Alternatively, slower,
but with less inductor current ripple induced, balancing operation can be achieved with low
percent change of duty cycles, and a higher number of active balancing cycles. In the case of
the 5- to 4-level transition, shown in Fig. 6.7, seven cycles of active balancing were used and
the sub-periods were adjusted: d2 was 40%, or twice the width of the baseline duty cycle
of 20%, and d1 and d4 where each 10%, maintaining a constant effective duty cycle at the
switch node of 60%. This approach demonstrates a more aggressive duty cycle adjustment
with a smaller number of active balancing cycles, which leads to a shorter settling time,

CHAPTER 6. EXPERIMENTAL RESULTS 35

Active
5-level Natural 4-level

TT T TYT

LI LI L L L L L L L L L L

1.68 ms
< >
JJL\\\JJ\\\JJJL\\]JJL\lJJJ\lLJJJ\\\JJJl\\JJJl\
Ch1 10.0v Chz 10.0v M 400ps 125MSs 80.0nshot
Ch3 10.0v Chd S5.04 A Aur s 23V

Figure 6.9: Level transitioning with less aggressive active balancing has a longer settling
time, but a lower magnitude of increased inductor current ripple.

with the trade-off of a brief time period with increased current ripple. However, if a more
moderate adjustment to duty cycle and more cycles of active balancing can be permitted,
then the magnitude of the increased current ripple can be lower as shown in Fig. 6.9 (d2 at
25% for 25 cycles) as compared to aggressive re-balancing in Fig. 6.7. Furthermore, as shown
below in Section 6.4, due to the relatively large current ripple at the beginning of the active
balancing transition, there is also a transient response on the output voltage. Constraints
can be placed on the allowable inductor current ripple, detailed in Section 5.2, during ac-
tive balancing to limit the voltage deviation on the output capacitor. Both moderate and
aggressive implementations of active balancing still reduce the settling time when compared
to natural balancing.

6.4 Active Balancing Parameter Calculations

Section 5.2 details the modeling of dynamic level transitioning and the process by which
the active balancing parameters, o and 7, can be determined. To validate this model, the
calculated current and voltage waveforms were compared to experimental measurements.
Fig. 6.10 shows an overlay of the simulated/calculated flying capacitor voltages, Vo and Vs,
output voltage, Vioour, and the inductor current, ir, on to experimental measured waveforms.

CHAPTER 6. EXPERIMENTAL RESULTS 36

5 Active 4
Level, Balancing Level

L out
m» —— I | 1 1 | 1 1
T 1 1 1 — 1
ol
.k 1111 j SLI I - l 11 11111 J | -
Ch1 10.0¥ Chz 10.0v B
Ch3 10.0% Ch4 5.04 Q

Figure 6.10: The active balancing model calculated in Matlab closely corresponds to mea-
sured waveforms for this 5- to 4-level transition with o = 2.0 and v = 7.

The operating conditions and active balancing parameters shown here are the same as those
in Fig. 6.7. During the region of active balancing, the calculated waveforms are very close
to the measured waveforms. Again, due to the increased inductor current ripple, there is
a voltage deviation on the output capacitor that can be limited by limiting the intensity
of the active balancing parameter, a. During normal operation (or natural balancing), the
calculations continue to oscillate and do not match closely with experimental data. This
discrepancy is because damping, in the form of capacitor equivalent series resistance (ESR)
or switch on-state resistance (Rgson) Was not factored into the calculations. Implementing
the damping factors would allow the simulated system to converge to the balanced steady-
state and the total settling time could be calculated. The assumption is made in Section 5.2
that the active balancing parameters corresponding to final flying capacitor voltages closest
to the goal are the parameters that yield the shortest settling time.

CHAPTER 6. EXPERIMENTAL RESULTS 37

100 S
95 J]
S
> 0r]
o
=}
.8 b
o L -
= 857
m
80 B
[—¥— 5-Level
L 4-Level
0 0.2 0.4 0.6 0.8 1

Duty Cycle

(a) Efficiency measurements of 4- and 5-level operation, maintaining ZVS
where possible without violating converter switching frequency limitations.

ZV&’ 4,5 ‘4’ 5 |45 4 |45 5 4’ 4,5
1.6 T ; T T —
—¥— 5-Level
14+ 4-Level
—12r
=
z 1
—
508 [A
= o
]
mo6r \\'/ \/w \JZA‘\']
it /’\/ et i) _
02 TR T S T T S [ST T Y T S S S T S ST T Y TS S T S [S S S O T S S ¥) T S S T S T S
0 0.2 0.4 0.6 0.8 1

Duty Cycle

(b) Corresponding power loss for 4- and 5-level operation.

Figure 6.11: Higher efficiency points closely correspond with the proposed method in Fig. 4.1.

6.5 Converter Efficiency

To demonstrate the efficiency benefits of the proposed control method, we tested 4- and
5-level operation over a wide range of duty cycles. The efficiency at each duty cycle was
measured in 4- and 5-level operation at 100 V;, and 0.5 A load with constant negative
inductor current peak, Izyg, with a high precision power analyzer (Keysight PA2201A).
The frequency was adjusted to achieve ZVS conditions, if possible, without violating
the converter frequency limitation. When the switching frequency limit is reached, instead
of further reducing the frequency, the converter is operated at that limit (without a large
enough current ripple for ZVS) until a sufficient ripple can be maintained with a larger

CHAPTER 6. EXPERIMENTAL RESULTS 38

switching frequency (i.e. a frequency above the limit). In regions where both the 4- and
5-level ZVS switching frequency violates the limit, the converter operates in the 5-level
mode, with a relaxed switching frequency limit. In the tested operating conditions, because
the resonant frequency is the critical frequency for choosing the limit, operating slightly
below this limit does not violate the fo,cfiy O fowrser limits. However, operating below
the switching frequency limit means that the converter is in a quasi-resonant mode, and
as describe above, ZVS may only occur on some switching edges instead of all edges. This
quasi-resonant operation is allowed until either level mode has a ZVS frequency above its
corresponding limit. The switching frequency required for each 4- and 5-level operation is
different, which is necessary as discussed above. Fig. 6.11 shows the efficiency of 5- and 4-level
operation at each duty cycle, which aligns with the proposed level transitioning technique
in Fig. 4.1.

Operation as a 4-level converter is more efficient for duty cycle ranges around 25%, 50%,
and 75%, shaded yellow in Fig. 6.11b. The 4-level converter is more efficient than the 5-level
converter when the 5-level converter exhibits a current ripple minimum and cannot maintain
ZVS, but where the 4-level can. In this case, even though the 4-level converter is operating
at a higher switching frequency than the 5-level converter, the switching losses and core
losses in non-ZVS 5-level operation are greater than the core losses on the 4-level converter.
Furthermore, operation as a 5-level converter is more efficient for regions surrounding 33%
and 66%, shaded blue in Fig. 6.11b, which are the regions where the 4-level converter cannot
achieve ZVS. In the green-shaded regions, both the 4- and 5-level converters achieve ZVS. In
these regions, the 5-level is more efficient because, as shown in Fig. 4.1, in these duty cycle
ranges, the switching frequency needed to maintain ZVS for the 5-level converter is lower
than for 4-level operation. Due to the higher level count and lower switching frequency, the
5-level converter has lower switching losses and lower inductor core loss.

0.8

4-Level
—e—5-Level

<
N
e

Power Loss [W]
I <o o o
w BN (o] @)}
. A

e
o

0.1°"
15 20 25 30 35 40

Duty Cycle [%]

Figure 6.12: Power loss for 4- and 5-level operation with manually tuned ZVS switching
frequency.

CHAPTER 6. EXPERIMENTAL RESULTS 39

To further improve the efficiency benefits of level transitioning to maintain ZVS, the
ZVS frequency that is calculated can be adjusted based on sensing the current ripple valleys
to ensure ZVS conditions, assuming a constant deadtime. A manual adjustment of the
switching frequency was performed for the lowest duty cycle range, Fig. 6.12. It can be seen
that the ranges for which the converter that has ZVS conditions out-performs the non-ZVS
converter are wider than in Fig. 6.11b.

For both the 4- and 5-level converters, when ZVS can be maintained, the losses display a
nearly sinusoidal characteristic similar to that of the proposed method and equations of [10].
Despite the 4-level converter operating at a much higher switching frequency, the switching
losses can be reduced by maintaining ZVS, therefore demonstrating the benefit of dynamic
level transitioning in order to maintain ZVS across duty cycles.

40

Chapter 7

Conclusions

This thesis presented a method for maintaining ZVS across the full range of duty cycles for
an FCML converter by both controlling the switching frequency and dynamically changing
the number of levels. An analysis of flying capacitor voltages and switch configurations
was used to determine the number of levels and the switching scheme to achieve dynamic
level transitioning. Additionally, a method of dynamic level transitioning with active capac-
itor voltage balancing through duty cycle adjustment was detailed. A hardware prototype
was constructed using bottom-side cooled GaN Systems devices, a single-sided PCB for im-
proved cooling methods, and a cascaded bootstrap to supply the isolated gate drivers. The
prototype achieved ZVS operation under 4-level and 5-level conditions at duty cycles not
possible for a fixed number of levels. Dynamic level transitioning with active re-balancing of
the flying capacitors was demonstrated in hardware. A method for determining the active
balancing parameters was derived including a curve-fit for simple implementation in a con-
troller. Transitioning between numbers of levels to avoid inductor current ripple valleys and
maintain ZVS conditions improves converter efficiency by reducing switching losses, which
allows for more power dense designs.

7.1 Future Work

Potential improvements to the current hardware implementation include designing/choosing
an optimal inductor for the testing conditions or using an air-core inductor to eliminate the
additional inductor core losses incurred by increasing the inductor current ripple. Using an
air-core inductor would allow the ZVS benefits to be more evident.

Additionally, future work can delve into the 4-level to 5-level transition. In this work,
for both directions of level transitioning (i.e. 4 to 5 and 5 to 4), active balancing was
done using CEDC in 4-level PS-PWM configuration. However, it is possible that the 4-
to 5-level transition can be improved by actively re-balancing using CEDC in 5-level PS-
PWM configuration. Moreover, the dynamic level transitioning can be tested at higher duty
cycles and other loading conditions. To test this method at other operating conditions, it

CHAPTER 7. CONCLUSIONS 41

is necessary to resolve microcontroller timing issues pertaining to the frequency and phase
delay updates associated with level transitioning and CEDC active balancing. Alternatively,
variable frequency control and level transitioning with active balancing can be implemented
with an FPGA instead of a microcontroller.

Furthermore, dynamic level transitioning for ZVS can be implemented across a full AC
line cycle with load variation and compared to the two static level cases for any efficiency im-
provements. Closed-loop feedback can also be implemented with ZVS detection and switch-
ing frequency adjustment based on sensing the current ripple valleys. The curve-fit active
balancing parameters can also be implented in a controller to perform active balancing for
level transitioning. Dynamic level transitioning for maintaining current ripple can be com-
pared to the case of minimizing inductor current ripple [11]. However, because the benefits
of each of these methods are dependent on which type of converter losses are dominant (in-
ductor core losses or switching losses), perhaps level transitioning for ZVS can be combined
with level transitioning for ripple minimization. At low load, minimizing switching losses
by level transitioning to maintain ZVS can be prioritized, whereas at higher loads, where
inductor core losses and switch conduction losses dominate, level transitioning for ripple
minimization can be prioritized.

42

Bibliography

L. Tolbert, “Power electronics for distributed energy systems and transmission and
distribution applications: Assessing the technical needs for utility applications,” -, 12
2005.

Half-Cooked Research Reports, “Power electronics market research report- global fore-
cast to 2023,” -, Jan 2019.

T. Meynard and H. Foch, “Multi-level conversion: high voltage choppers and voltage-
source inverters,” in Power Electronics Specialists Conference, 1992. PESC "92 Record.,
23rd Annual IEEE, Jun 1992, pp. 397-403 vol.1.

J.-S. Lai and F. Z. Peng, “Multilevel converters-a new breed of power converters,”
in Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS 95.,
Conference Record of the 1995 IEEE, vol. 3, Oct 1995, pp. 2348-2356 vol.3.

F. Z. Peng, “A generalized multilevel inverter topology with self voltage balancing,”
Industry Applications, IEEE Transactions on, vol. 37, no. 2, pp. 611-618, Mar 2001.

S. Modeer, Y. Lei, and R. C. N. Pilawa-Podgurski, “An analytical method for evaluating
the power density of multilevel converters,” in 2016 IEEE 17th Workshop on Control
and Modeling for Power Electronics (COMPEL), 2016.

Y. Lei, C. Barth, S. Qin, W. c. Liu, I. Moon, A. Stillwell, D. Chou, T. Foulkes, Z. Ye,
7. Liao, and R. C. N. Pilawa-Podgurski, “A 2 kw, single-phase, 7-level, gan inverter with
an active energy buffer achieving 216 w/in3 power density and 97.6% peak efficiency,”
in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), March
2016, pp. 1512-1519.

J. S. Rentmeister and J. T. Stauth, “A 48v:2v flying capacitor multilevel converter
using current-limit control for flying capacitor balance,” in 2017 IEEE Applied Power
FElectronics Conference and Ezposition (APEC), March 2017, pp. 367-372.

D. Chou, Y. Lei, and R. C. N. Pilawa-Podgurski, “A zero-voltage switching, physically
flexible multilevel gan dc-dc converter,” in 2017 IEEE Energy Conversion Congress and
Ezposition (ECCE), Oct 2017, pp. 3433-3439.

BIBLIOGRAPHY 43

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Stillwell, M. E. Blackwell, and R. C. N. Pilawa-Podgurski, “Design of a 1 kv bidi-
rectional dc-dc converter with 650 v gan transistor,” in 2018 IEEE Applied Power
FElectronics Conference and Ezposition (APEC), March 2018, pp. 1155-1162.

N. Vukadinovi¢, A. Prodié¢, B. A. Miwa, C. B. Arnold, and M. W. Baker, “Ripple min-
imizing digital controller for flying capacitor dc-dc converters based on dynamic mode
levels switching,” in 2017 IEEE Applied Power FElectronics Conference and Ezposition
(APEC), Mar 2017, pp. 1090-1096.

M. E. Blackwell, A. Stillwell, and R. C. N. Pilawa-Podgurski, “Dynamic level selection
for full range zvs in flying capacitor multi-level converters,” in 2018 IEEE 19th Workshop
on Control and Modeling for Power Electronics (COMPEL), June 2018, pp. 1-8.

R. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Kluwer Aca-
demics, 2000.

Z. Liao, N. C. Brooks, Z. Ye, and R. C. N. Pilawa-Podgurski, “A high power density
power factor correction converter with a multilevel boost front-end and a series-stacked
energy decoupling buffer,” in 2018 IEEE Energy Conversion Congress and Ezrposition
(ECCE), Sep. 2018, pp. 7229-7235.

Z. Liao, Y. Lei, and R. C. N. Pilawa-Podgurski, “Analysis and design of a high power
density flying-capacitor multilevel boost converter for high step-up conversion,” IFEFE
Transactions on Power Electronics, vol. 34, no. 5, pp. 40874099, May 2019.

S. Qin, Y. Lei, Z. Ye, D. Chou, and R. C. N. Pilawa-Podgurski, “A high power density
power factor correction front end based on seven-level flying capacitor multilevel con-

verter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, pp. 1-1,
2018.

E. Candan, A. Stillwell, N. C. Brooks, R. A. Abramson, J.Strydom, and R. C. N.
Pilawa-Podgurski, “A 6-level flying capacitor multi-level converter for single phase buck-
type power factor correction,” in 2019 IEEE Applied Power Electronics Conference and
FEzposition (APEC), Mar 2019, pp. —

Y. Lei, C. Barth, S. Qin, W. c. Liu, I. Moon, A. Stillwell, D. Chou, T. Foulkes, Z. Ye,
7. Liao, and R. C. N. Pilawa-Podgurski, “A 2 kw, single-phase, 7-level, gan inverter with
an active energy buffer achieving 216 w/in3 power density and 97.6% peak efficiency,”
IEEFE Transactions on Power Electronics, vol. 32, no. 11, pp. 8570-8581, 2017.

T. Modeer, C. B. Barth, N. Pallo, W. H. Chung, T. Foulkes, and R. C. N. Pilawa-
Podgurski, “Design of a gan-based, 9-level flying capacitor multilevel inverter with low
inductance layout,” in 2017 IEEE Applied Power Electronics Conference and Exposition
(APEC), March 2017, pp. 2582-2589.

BIBLIOGRAPHY 44

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

N. Pallo, T. Foulkes, T. Modeer, S. Coday, and R. Pilawa-Podgurski, “Power-dense mul-
tilevel inverter module using interleaved gan-based phases for electric aircraft propul-
sion,” in 2018 IEEE Applied Power FElectronics Conference and Exposition (APEC),
March 2018, pp. 1656-1661.

A. Stillwell and R. C. N. Pilawa-Podgurski, “A 5-level flying capacitor multi-level con-
verter with integrated auxiliary power supply and start-up,” IFEFE Transactions on
Power Electronics, 2018, in press.

D. Chou, K. Fernandez, and R. C. N. Pilawa-Podgurski, “An interleaved 6-level gan
bidirectional converter for level ii electric vehicle charging,” in 2019 IEEE Applied Power
FElectronics Conference and Ezxposition (APEC), Mar 2019, pp. —.

C. P. Henze, H. C. Martin, and D. W. Parsley, “Zero-voltage switching in high frequency
power converters using pulse width modulation,” in Proc. 1988. Third Annual IEEE
Applied Power FElectronics Conf and Exposition APEC 88, 1988, pp. 33—40.

J. G. Kassakian, “A new current mode sine wave inverter,” in 1980 IEEE Power Elec-
tronics Specialists Conference, June 1980, pp. 168-173.

K. Liu and F. C. Lee, “Zero-voltage switching technique in dc/dc converters,” in 1986
17th Annual IEEE Power Electronics Specialists Conference, June 1986, pp. 58-70.

K. Kesarwani and J. T. Stauth, “Resonant and multi-mode operation of flying capacitor
multi-level de-de converters,” in 2015 IEEE 16th Workshop on Control and Modeling
for Power Electronics (COMPEL), July 2015, pp. 1-8.

V. Vorperian, “Quasi-square-wave converters: topologies and analysis,” IEFE J PWRE,
vol. 3, no. 2, pp. 183-191, 1988.

Y. Naeimi and A. Huang, “Design and optimization of high conversion ratio quasi square
wave buck converters,” in 2017 IEEE 5th Workshop on Wide Bandgap Power Devices
and Applications (WiPDA), Oct. 2017, pp. 148-152.

D. Neumayr, D. Bortis, E. Hatipoglu, J. W. Kolar, and G. Deboy, “Novel efficiency-
optimal frequency modulation for high power density dc/ac converter systems,” in 2017
IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC
2017 - ECCE Asia), Jul. 2017, pp. 834-839.

A. Avila, A. Garcia-Bediaga, A. Rodriguez, L. Mir, and A. Rujas, “Analysis of optimal
operation conditions for gan-based power converters,” in 2018 IEEE Energy Conversion
Congress and Ezxposition (ECCE), Sep. 2018, pp. 1932-1939.

M. Kasper, R. M. Burkart, G. Deboy, and J. W. Kolar, “Zvs of power mosfets revisited,”
IEEFE Transactions on Power Electronics, vol. 31, no. 12, pp. 8063-8067, Dec 2016.

BIBLIOGRAPHY 45

[32]

[33]

[34]

[35]

[36]

[41]

D. Maksimovic, “Design of the zero-voltage-switching quasi-square-wave resonant
switch,” in Proceedings of IEEE Power Electronics Specialist Conference - PESC 93,
June 1993, pp. 323-329.

S. Bandyopadhyay and J. Morroni, “Quasi-square wave converters-modeling and perfor-
mance benefits of gan over silicon,” in 2017 IEEE Applied Power Electronics Conference
and Exposition (APEC), March 2017, pp. 2700-2705.

C. Yeh, X. Zhao, and J. Lai, “An investigation on zero-voltage-switching condition
in synchronous-conduction-mode buck converter,” in 2017 IEEE Energy Conversion
Congress and Exposition (ECCE), Oct 2017, pp. 1728-1732.

A. Stillwell, E. Candan, and R. C. N. Pilawa-Podgurski, “Active voltage balancing
in flying capacitor multi-level converters with valley current detection and constant
effective duty cycle control,” in IEEE Transactions on Power Electronics, 2019.

T. Foulkes, T. Modeer, and R. C. N. Pilawa-Podgurski, “Developing a standardized
method for measuring and quantifying dynamic on-state resistance via a survey of low
voltage gan hemts,” in 2018 IEEFE Applied Power Electronics Conference and Fxposition
(APEC), March 2018, pp. 2717-2724.

R. Wilkinson, T. Meynard, and H. du Toit Mouton, “Natural balance of multicell
converters: The general case,” Power Electronics, IEEE Transactions on, vol. 21, no. 6,
pp. 16568-1666, Nov 2006.

X. Yuan, H. Stemmler, and I. Barbi, “Self-balancing of the clamping-capacitor-voltages
in the multilevel capacitor-clamping-inverter under sub-harmonic pwm modulation,”
Power Electronics, IEEE Transactions on, vol. 16, no. 2, pp. 256-263, Mar 2001.

A. Ruderman and B. Reznikov, “Five-level single-leg flying capacitor converter voltage
balance dynamics analysis,” in Industrial Electronics, 2009. IECON ’09. 35th Annual
Conference of IEEE, Nov 2009, pp. 486—491.

S. Thielemans, A. Ruderman, B. Reznikov, and J. Melkebeek, “Improved natural bal-
ancing with modified phase-shifted pwm for single-leg five-level flying-capacitor con-
verters,” IEEE Transactions on Power FElectronics, vol. 27, no. 4, pp. 16581667, April
2012.

Z.Ye, Y. Lei, Z. Liao, and R. C. N. Pilawa-Podgurski, “Investigation of capacitor voltage
balancing in practical implementations of flying capacitor multilevel converters,” in 2017
IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), July
2017, pp. 1-7.

G. Gateau, M. Fadel, P. Maussion, R. Bensaid, and T. Meynard, “Multicell converters:
active control and observation of flying-capacitor voltages,” Industrial Electronics, IEEE
Transactions on, vol. 49, no. 5, pp. 998-1008, Oct 2002.

BIBLIOGRAPHY 46

[43] Z. Ye, Y. Lei, W. c. Liu, P. S. Shenoy, and R. C. N. Pilawa-Podgurski, “Design and
implementation of a low-cost and compact floating gate drive power circuit for gan-
based flying capacitor multi-level converters,” in 2017 IEEE Applied Power Electronics
Conference and Ezposition (APEC), Mar 2017, pp. 2925-2931.

© 0 N o O

11
12

47

Appendix A

Matlab Active Balancing Calculations

Included here are the Matlab files used for calculating the active balancing parameters for a
4/5-level FCML converter using dynamic level selection.

Active Balancing Optimization Routine

Contents

Constant Parameters

Design Space Parameters
Initialize

De-rated capacitor look-up table
Loop Statements

Plot Norm of Capacitor Voltages
Optimization

% Active Balancing Optimization
clear
tic

Constant Parameters

.Vin = 50;
.L = 5.6e-6;
.cap = 2.2e-6;

.num_cap = 3;
.num_capOut = 4;
.C = c.num_cap*c.cap;

O o o0 o0 o0 0

c.Iv = -0.7; % ZVS

13
14

15

16
17
18
19
20
21
22
23

24

25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40
41

42

43
44
45
46

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

c.Isat = 9; Y saturation current of inductor

Design Space Parameters

N = [4,5]; % levels switching between
Iout_avg = linspace(0.5, 4, 8); % average output current

h

a

= abfactor = alpha
linspace(1.0,3.0,201); % factor of duty cycle adjustment on d2

o

% g = abcycle = gamma
g = 1:40; % number of cycles in Active Balancing

(0]

Initialize

flim = zeros(length(Iout_avg),2);

Dtran = zeros(length(Iout_avg),1);

fsw4d = zeros(length(Iout_avg),1);

fswb = zeros(length(Iout_avg),1);

norm = zeros(length(Iout_avg),length(a),length(g));
norm_alt = zeros(length(Iout_avg),length(a),length(g));
diff_Vcl = zeros(length(Iout_avg),length(a),length(g));
diff_Vc3 = zeros(length(Iout_avg),length(a),length(g));
curr_max = zeros(length(Iout_avg),length(a),length(g));
mini = zeros(length(Iout_avg),1);

index_k = zeros(length(Iout_avg),1);

index_j = zeros(length(Iout_avg),1);

opt = zeros(length(Iout_avg),7);

De-rated capacitor look-up table

% C5750X6S2W225K250KA
c.V_base = linspace(00,500,50001);
c.C_int = [2.2e-06...]; % interpolated values from data-sheet

Loop Statements

48

% for every Iout, calculate Duty cycle where first 5 to 4 transition occurs

for i = 1:length(Iout_avg)
clock
i

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

c.Ilout_avg = Iout_avg(i);

d = dutyCalc(c,N); % call dutyCalc function
flim(i,:) = d.flim;

Dtran(i) = d.Dtran;

fswd(i) = d.fsw4;
fswb(i) = d.fswb;
for j = 1:length(a) % for each alpha value loop through
c.a = a(j);
for k = 1:length(g) % for each gamma value loop through
c.g = glk);

% call main active balancing function
abmain = ABmain(Dtran(i), fsw4(i), fswb(i), N, c);

norm(i,j,k) = abmain.norm;
diff_Vc1(i,j,k) = abmain.diff_Vci;
diff_Vc3(i,j,k) = abmain.diff_Vc3;
curr_max(i,j,k) = abmain.curr_max;
c.Imax = abmain.c.Imax;

end
end

Plot Norm of Capacitor Voltages

% Norm graphs
yA figure
% hold on
% scatter(diff_Vc3(i,:),diff_Vc1(i,:),’k.’)
% grid on
% xlabel(’\Delta V_{c3} [V]’,’FontSize’, 16, ’FontName’,’Times New Roman’);
% ylabel(’\Delta V_{c1} [V]’,’FontSize’,16,’FontName’,’Times New Roman’);
% title([’V_{in}= > num2str(c.Vin),’ V, I_{out}=

num2str(Iout_avg(i)),’ A, I_{zvs}= ’ num2str(c.Iv),’ A

>],’FontSize’, 16, ’FontName’,’Times New Roman’);

yA
% figure
% hold on
% surf(g(l,:),a(l,:),squeeze(norm(i,:,:)))
% xlabel(’Gamma’,’FontSize’,16, ’FontName’,’Times New Roman’);
% ylabel(’Alpha [cycles]’,’FontSize’,16,’FontName’,’Times New Roman’);

49

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 50

87 % zlabel(’Norm’,’FontSize’,16,’FontName’,’Times New Roman’);
g8 % title([’V_{in}= ’ num2str(c.Vin),’ V, I_{out}= >’

89 num2str(Iout_avg(i)),’ A, I_{zvs}= > num2str(c.Iv),’ A
90 >],’FontSize’, 16, FontName’,’Times New Roman’);

o1 Optimization

92 for j = 1:length(a)

93 for k = 1:length(g)

94 % Should update this to check against a current maximum based on
95 % the output voltage ripple, not saturation current.

96

97 % check peak current is below maximum current allowed

98 if (curr_max(i,j,k) > c.Imax)

99 norm_alt(i,j,k) = inf; % if above limit, set norm to inf
100 % so is not a choice for optimal solution
101 else

102 norm_alt(i,j,k) = norm(i,j,k);

103 end

104 end

105 end

106

107 % Find minimum of norm and set optimal parameters

108 [mini(i), index_k(i)] = min(min(norm_alt(i,:,:)));

109 [mini(i), index_j(i)] = (min(norm_alt(i,:,index_k(i))));

110 opt(i,:) = [Iout_avg(i), mini(i),

111 curr_max(i,index_j(i),index_k(i)),

112 diff_Vc1(i,index_j(i),index_k(i)),

113 diff_Vc3(i,index_j(i),index_k(i)), a(index_j(i)), g(index_k(i))];
114

115 end

116

117 % Plot alpha and gamma vs Iout
118 %sys_plot (opt)

119

120

121 save(’’)

122 toc

© 0 N o O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 51

Transition Duty Cycle Calculation

Contents

Frequency limitation

Initialize

Loop statement to calculate transition duty cycle

Calculate Optimum switching frequency for proposed method
Outputs

Plots

function duty = dutyCalc(c, N)

Vout_pk = c.Vin;
f_grid = 60;

Frequency limitation

flim

= zeros(1,length(N));

% allowable error between linear and slightly non-linear
error_lim = linspace(0.005, 0.6, 5951) current
error = zeros(1,2);

for n = 1:1length(N)

f1.flim = O;
Lbdiff = inf;
L4diff = inf;

for k = 1:length(error_lim)
% Should be revisited, basic idea is that once the inductor current
% deviates from a linear relationship by a certain degree, the switching
% frequency is too close to the resonant switching frequency
% Calculate the switching frequency for which the current deviation
% is below the limit
% only set up for 4 and 5 level!!
f = ResFrequencyLimit(c,N(n),error_lim(k));

% Calculate for 4 and 5 level operation

% Because there are two resonant frequencies for the FCML in PSPWM
% the acceptable allowable error is determined by finding

% the error limit that makes the crossover of the two resonant

% limits as close to each other as possible at the duty cycle where
% circuit transitions from being predominately in operation with

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

60

61
62
63
64
65
66
67
68

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

% the first resonant frequency to operation with the second

if (N(n) == 5)
if (abs(f.f_diff) <= Lbdiff) %
Lodiff = abs(f.f_diff);
f1.flim = f.flim;
error(1,n) = error_lim(k);
else
f1.flim = f1.flim;
end
else
if (abs(f.f_diff) <= L4diff)
L4diff = abs(f.f_diff);
f1.flim = £.f1im;
error(1l,n) = error_lim(k);
else
f1.flim = f1.flim;
end
end
end
% Calculate frequency limits based on inductor saturation
% and flying capacitor voltage ripple
% outputs the maximum of the two
f2 = fnFrequencyLimit(c,N(n)); % only set up for 4 and 5 level

% find the maximum of the limits
flim(n) = max([f1.flim, f2.flim]);

end

t = 0:1e-6:1/(4xf_grid);

Initialize

Vout=zeros(2,length(t));
D=zeros(2,length(t));
Deff=zeros(2,length(t));
Tout=zeros(2,length(t));
Pout=zeros(2,length(t));
Ipk=zeros(2,length(t));
dIpp=zeros(2,length(t));
fsw=zeros(2,length(t));

52

69

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87

88
89
90
91

93
94
95
96
97
98
99
100
101
102
103
104
105
106

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 53
Dtran = O;

Loop statement to calculate transition duty cycle

% for a range of duty cycles, calculate the ZVS switching frequency
for i=1:length(t)
for j=1:length(N)
Vout(j,i) = Vout_pk*abs(sin(2*pi*f_grid*t(i)));
%Vout (j,i)=Vout_pk;
D(j,i) = Vout(j,i)/c.Vin;
Deff(j,i) = (N(§)-1)*D(j,i)-floor ((N(j)-1)*D(j,i));
Tout(j,i) = c.Iout_avg;
Pout(j,i)= Iout(j,i)*Vout(j,i);
Ipk(j,i) = 2*Iout(j,i)-c.Iv;
dIpp(j,i) = Ipk(j,i)-c.Iv;
fsw(j,i) = ((c.Vin*(Deff(j,i)*(1-Deff(j,i))))/
(c.LxdIpp(j,i)*(N(j)-1)"2))*10"-3; %in kHz
end

end

Calculate Optimum switching frequency for proposed method

f_opt0 = zeros(1l,length(t));
f_opt0(1) = fsw(2,1);

for i = 1:length(t)
if (fsw(l,i) >= flim(1) && fsw(2,i) > flim(2))
f_opt0(i) = fsw(2,i);

elseif (fsw(1l,i) > flim(1) && fsw(2,i) < flim(2))
f_opt0(i) = fsw(l,i);
if (Dtran == 0 && D(1,i) >= .125)
Dtran = D(1,i+1);
fswd = fsw(l,i+1);
fswb = fsw(2,i+1);
end
elseif (fsw(1l,i) < flim(1) && fsw(2,i) > flim(2))
f_opt0(i) = fsw(2,1);
else
if (i "= 1 && (f_opt0(i-1) == fsw(2,i-1)))
f_opt0(i) = fsw(2,i);

107
108
109
110
111
112
113
114

115

116
117
118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

elseif (i "= 1 && (f_opt0(i-1) == fsw(l,i-1)))
f_opt0(i) = fsw(l,i);
else
f_opt0(i) = fsw(2,1);
end
end
end
Outputs
duty.error = error;

duty.flim = flim;

duty.fswd
duty.fswb

fswd;
fswh;

duty.Dtran = Dtran;

Plots

b
b

b
o
b
b
b
b
b
b
b
b
b
b

b
b
o

b
b

f_pk=max(fsw(l,1:1length(t)));
figurel = figure(’Name’,’ZVS Switching Frequency vs. Duty Cycle’,
’Color’,[1 1 11);
axesl = axes(’Parent’,figurel,’YMinorTick’,’on’,...
’YMinorGrid’,’off’, ...
’>XMinorTick’,’on’, ...
’XMinorGrid’ ,’off’, ...
’FontSize’,16, ...
’FontName’ ,’Times New Roman’);
box (axesl,’on’);
grid(axesl,’on’);
hold(axesl,’all’);

f_lim=ones(1,length(t));
plot(D(1,1:1length(t)),fsw(l,1:length(t)), ’--7,

’color’, [1 0.667 0], ’LineWidth’,1.5)
plot(D(2,1:1length(t)),fsw(2,1:1length(t)),’:’,

>color’, [0.57 0 0.713],’LineWidth’,1.5)
plot(D(2,1:1length(t)),f_opt0(1l:length(t)),

’color’, [0.134 0.55 0.134],’LineWidth’,2)
plot(D(2,1:1ength(t)),flim(1)*f_lim, ’y’)
plot(D(2,1:1length(t)),flim(2)*f_1im, ’b’)

54

145
146
147
148
149
150
151
152
153

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

b
b
b

b
b
b
b
b

set(gca, ’XTick’, [0,0.25,0.5,0.75,1])

xlabel (’Duty Cycle’,’FontSize’,16,’FontName’,’Times New Roman’);

ylabel(’Switching Frequency [kHz]’,’FontSize’,16,
’FontName’,’Times New Roman’, ’Interpreter’, ’tex’);

grid on;

set(gca, ’FontSize’,16, ’FontName’,’Times New Roman’)
h = legend(’4-Level’,’b-Level’,’Proposed’, ’Location’, ’northeast’);
set(h,’FontSize’,12);

%)

o g~ W N

~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

Resonant Frequency Limit
function f = ResFrequencyLimit(c, N, error_lim)

L =c.L;

Izvs = c.Iv;

Idc = c.Iout_avg;

Vin = c¢.Vin;

D = linspace(0.0126,1,80);

VDC_max_Cfly = (Vinx(N-2)/(N-1));
VDC_mid_Cfly = (Vinx(N-3)/(N-1));
%’ C5750X6S2W225K250KA

C_int = c.C_int;

% instead of interpolate, look up value from table

index_Vmax = (round(VDC_max_Cfly*100))+1;
index_Vmid (round (VDC_mid_Cfly=*100))+1;

Cfly = c.num_cap*C_int(index_Vmax); % read from look-up table
Cfly_mid = c.num_cap*C_int(index_Vmid);

% C_data = [2.20E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.22E+00;

pA 2.18E+00; 2.10E+00; 2.05E+00; 1.93E+00; 1.81E+00; 1.63E+00;
pA 1.47E+00; 1.29E+00; 1.10E+00; 9.63E-01; 7.69E-01; 6.39E-01;
b 5.48E-01; 4.31E-01; 3.89E-01; 0.347] * 1le-6;% * 2.014/2.2;
% VDC = [0.00E+00; 1.00E+00; 2.00E+00; 4.00E+00; 6.30E+00; 1.00E+01;

pA 1.60E+01; 2.50E+01; 3.00E+01; 4.00E+01; 5.00E+01; 6.50E+01;

yA 8.00E+01; 1.00E+02; 1.25E+02; 1.50E+02; 2.00E+02; 2.50E+02;

yA 3.00E+02; 4.00E+02; 4.50E+02; 500];

% Capacitor de-rating
% Cfly = c.num_cap*interpl(VDC,C_data,VDC_max_Cfly);
% Cfly_mid = c.num_cap*interpl(VDC,C_data,VDC_mid_Cfly);

C = Cfly;
Ca = Cfly_mid;
Cb = C;

Cx

((1/Ca)+(1/Cb))~-1; % effective capacitance for two
% capacitors in series

56

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

% Calculate resonant frequency
wl = 1/sqrt(LxC);
wx = 1/sqrt (L*Cx);
iL0 = Izvs; % initial condition for on-time
ipk = 2*%Idc-Izvs; % initial condition for off-time
Tmax = 2xpi/(2%wx); % used to scale window of time, set window
% to be half the period of the faster current

t = linspace(0,Tmax,1000) ;

% Initialize

Deff = zeros(1l,length(D));
iL1l = zeros(1,length(t));

iL2 = zeros(1,length(t));
iLloff = zeros(1l,length(t));
iL20ff = zeros(1l,length(t));
ton_max = zeros(1l,length(D));
toff_max = zeros(l,length(D));
fsw = zeros(1,length(D));
fsw_off = zeros(l,length(D));
Dregion = zeros(1,N-1);

% set boundaries of duty cycle regions
for k = 1:N-1

Dregion(k) = k/(N-1);
end

% calculate i_lcap and i_2cap for every duty cycle

% resonant current based on two resonant frequencies
% (one cap or two caps in series)

% dependent on duty cycle region

for i = 1:length(D)

% calculate effective duty cycle
Deff (i) = D(1)*(N-1) - floor(D(i)*(N-1));

if (N == B)
if (D(i) <= Dregion(1))
iL1 = iLO*cos(wlxt) + (Vinx(Dregion(1l) -
D(i)))*sqrt(C/L)*sin(wlxt);
iL2 = iLO*cos(wx*t) + (Vinx(Dregion(1) -
D(i)))*sqrt(Cx/L) *sin(wx*t) ;

57

81
82
83
84
85
86
87
88
89
)
91
92
093
94
95
96
97
08
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 58

elseif (D(i) > Dregion(1l) && D(i) <= Dregion(2))
iLl = iLO*cos(wl*t) + (Vin*(Dregion(2) -
D(i)))*sqrt(C/L)*sin(wixt);
iL2 = iLO*cos(wx*t) + (Vin*(Dregion(2) -
D(i)))*sqrt(Cx/L) *sin(wx*t) ;

% off time with different initial conditions

iLloff = ipk*cos(wl*t) + (Vin*(Dregion(1l) -
D(i)))*sqrt(C/L)*sin(wlx*t);

% off time with different initial conditions

iL20ff = ipkxcos(wx*t) + (Vin*(Dregion(1l) -
D(i)))*sqrt(Cx/L)*sin(wx*t) ;

elseif (D(i) > Dregion(2) && D(i) <= Dregion(3))
iLl = iLO*cos(wlxt) + (Vin*(Dregion(3) -
D(1i)))*sqrt(C/L)*sin(wlx*t);
iL2 = iLO*cos(wx*t) + (Vinx(Dregion(3) -
D(i)))*sqrt(Cx/L)*sin(wx*t) ;

iLloff = ipk*cos(wl*t) + (Vin*x(Dregion(2) -
D(i)))*sqrt(C/L)*sin(wlx*t);
iL20ff = ipkxcos(wx*t) + (Vin*(Dregion(2) -

D(i)))*sqrt(Cx/L) *sin(wx*t) ;

elseif (D(i) > Dregion(3) && D(i) <= Dregion(4))
ill = iL2;
iLloff = ipkxcos(wl*t) + (Vin*(Dregion(3) -
D(1i)))*sqrt(C/L)*sin(wixt) ;
iL20ff = ipk*cos(wx*t) + (Vin*x(Dregion(3) -
D(i)))*sqrt(Cx/L)*sin(wx*t) ;

end

elseif (N == 4)
if (D(i) <= Dregion(1))
iLl = iLO*cos(wlxt) + (Vin*(Dregion(1l) -
D(i)))*sqrt(C/L)*sin(wl*t);
iL2 = iLO*cos(wx*t) + (Vin*(Dregion(1l) -
D(i)))*sqrt (Cx/L) *sin(wx*t) ;

elseif (D(i) > Dregion(1l) && D(i) <= Dregion(2))
iLl = iLO*cos(wlxt) + (Vin*(Dregion(2) -

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

D(i)))*sqrt(C/L)*sin(wlx*t);
iL2 = iLO*cos(wx*t) + (Vinx(Dregion(2) -
D(i)))*sqrt(Cx/L)*sin(wx*t) ;

iLloff = ipk*cos(wl*t) + (Vin*x(Dregion(1l) -
D(i)))*sqrt(C/L)*sin(wlx*t);
iL20ff = ipkxcos(wx*t) + (Vin*(Dregion(1l) -

D(1i)))*sqrt(Cx/L) *sin(wx*t) ;

elseif (D(i) > Dregion(2) && D(i) <= Dregion(3))
ill = iL2;
iLloff = ipkxcos(wlx*t) + (Vin*(Dregion(2) -
D(1i)))*sqrt(C/L)*sin(wixt);
iL20ff = ipk*cos(wx*t) + (Vin*x(Dregion(2) -
D(i)))*sqrt(Cx/L)*sin(wx*t) ;

end
end

% error_lim from Operation Points
error_lim_off = error_lim;

error = zeros(1l,length(t));
error_off = zeros(1,length(t));

tmax = 0;
tmax_off = O;

for k = 2:1length(t)

% calculate difference in currents (lcap vs 2cap) for on-time current
error(k) = (iL1(k) - iL2(k));

% calculate difference in currents (lcap vs 2cap) for off-time current
error_off(k) = iLloff(k) - iL2off (k) ;

if ((error(k) >= error_lim) && (error(k-1) < error_lim))
% after the error limit is reached set tmax to that time
tmax = t(k);
end
if ((error_off(k) >= error_lim_off) &&
(error_off(k-1) < error_lim_off))

59

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

% after the error limit is reached set tmax to that time
tmax_off = t(k);
end
end

ton_max(i) = tmax; % each duty cycle has own ton_max
toff_max(i) = tmax_off; J each duty cycle has own toff_max

% calculate switching frequency minimum to satisfy
% on-time less that ton_max
fsw(i) = Deff(i)/(ton_max(i)*(N-1));

% calculate switching frequency minimum to satisfy
% off-time less that toff_max
fsw_off(i) = (1-Deff(i))/(toff_max(i)*x(N-1));

end

D_off
for i

D;
1:1length(fsw)

if (isfinite(fsw(i))) 7% don’t plot fsw infinite
fsw(i) = fsw(i);

else
fsw(i) = 0;
D(i) = O;

end

end

if N ==
f_diff

else
f_diff

fsw_off(40) - fsw(40);

fsw_off(30) - fsw(30);

end
% find maximum of the frequency for on-time calculations
[maxf, Dmaxf] = max(fsw);

Jmaxf/1000 % print maximum fsw_on

%D (Dmaxf) %print duty cycle for maximum fsw_on

% figure % plot 2 currents for on and off-times
% plot(t,iL1)

% hold on

% plot(t,ilL2)

60

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

207 % plot(t,iLloff)

208 % plot(t,iL2off)

209 % legend(’iL1’, ’iL2’, ’iLloff’, ’iL20ff’);
210

211 hohohote

212 % figure

213 % scatter(D,fsw/1000)

214 % hold on

215 % scatter(D_off,fsw_off/1000)
216 % grid on

217 % grid minor

218 % x1im([0 1])

219 % legend(’fsw-on’, ’fsw-off’);
220

221 f.f_diff = f_diff;

222 f.flim = maxf/1000;

© 0 N O a »~ W N =

AW W W W W W W W W wWNDNDNDDNDDNDDNDDNDDNDDNDDNDN P22 R 2R R R
O © 00 N O O A~ W N H O © 00N O P, W N H O VU 0o N OO O~ W NN = O

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 62

Component Frequency Limit

function f2 = fnFrequencyLimit(c,N)

Vin = c¢.Vin;
Vout_rms = Vin/sqrt(2);
Iout_dc = c.Iout_avg;

Izvs = c.1Iv;
L =c.L;

f_grid = 60;

t = 0:1e-6:1/f_grid;

for i=1:length(t)
Vout (i) = (Vout_rms*(sqrt(2)))*abs(sin(2*pi*f_grid*t(i)));
Tout (i) Iout_dc;

end

Isat = c.Isat;
ripple = 0.1; Ypercent ripple on Caps

VDC_max_Cfly = max(Vinx(N-2)/(N-1));

%’ C5750X6S2W225K250KA

C.C = [2.20E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.22E+00; 2.18E+00;
2.10E+00; 2.05E+00; 1.93E+00; 1.81E+00; 1.63E+00; 1.47E+00;
1.29E+00; 1.10E+00; 9.63E-01; 7.69E-01; 6.39E-01; 5.48E-01;
4.31E-01; 3.89E-01; 0.347] * 1le-6;% * 2.014/2.2;

C.VDC = [0.00E+00; 1.00E+00; 2.00E+00; 4.00E+00; 6.30E+00; 1.00E+01;
1.60E+01; 2.50E+01; 3.00E+01; 4.00E+01; 5.00E+01; 6.50E+01;
8.00E+01; 1.00E+02; 1.25E+02; 1.50E+02; 2.00E+02; 2.50E+02;
3.00E+02; 4.00E+02; 4.50E+02; 500];

Cfly = c.num_cap*interp1(C.VDC,C.C,VDC_max_Cfly);

Dregion = zeros(1,N-1);
D = zeros(1,length(Vout));
Deff = zeros(1l,length(Vout));

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

Pout = zeros(1,length(Vout));
Iin = zeros(1,length(Vout));
IL = zeros(1,length(Vout));

fswCfly = zeros(1,length(Vout));
fswIsat = zeros(1l,length(Vout));
fswZVS = zeros(1,length(Vout));

for k = 1:N-1
Dregion(k) = k/(N-1);
end

for i = 1:length(Vout)

D(i) = Vout(i)/Vin;

Deff (i) (N-1)*D(i)-floor ((N-1)*D(i));
Pout (1) Iout (i)*Vout(i);

Iin(i) = Pout(i)/Vin;

IL(i) = Iout(i);

if (N == 5)
if (D(i) <= Dregion(1))
fswCfly (i) = IL(i)+*Deff (i)/(2xCfly*ripplex*Vin);
fswIisat(i) = (Dregion(1)-D(i))*Vin*Deff (i)/

(2%L*x (N-1) * (Isat-IL(i)));

fswZVS(i) = (Dregion(1)-D(i))*VinxDeff (i)/

(2%L* (N-1)*(IL(i)-Izvs));

elseif (D(i) > Dregion(1l) && D(i) <= Dregion(2))
fswCfly (i) = IL(i)/(2+Cfly*ripple*Vin);
fswisat(i) = (Dregion(2)-D(i))*Vin*Deff (i)/

(2*L* (N-1) * (Isat-IL(i)));

fswZVS(i) = (Dregion(2)-D(i))+*Vin*Deff (i)/

(2+L* (N-1)*(IL(i)-Izvs));

elseif (D(i) > Dregion(2) &% D(i) <= Dregion(3))
fswCfly (i) = IL(i)/(2+Cfly*ripple*Vin);
fswlsat(i) = (Dregion(3)-D(i))*Vin*Deff (i)/

(2xLx (N-1) *(Isat-IL(i)));

fswZVS(i) = (Dregion(3)-D(i))*Vin*Deff (i)/

63

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

83 (2*xL*x (N-1)*(IL(1i)-Izvs));
84

85 elseif (D(i) > Dregion(3) && D(i) <= Dregion(4))

86 fswCfly(i) = IL(i)*(1-Deff(i))/(2xCfly*ripple*Vin);
87 fswIisat(i) = (Dregion(4)-D(i))*Vin*Deff (i)/

88 (2xLx (N-1)*(Isat-IL(i)));
89 fswZVS(i) = (Dregion(4)-D(i))*Vin*Deff (i)/

90 (2*xLx (N-1)*(IL(i)-Izvs));
91

92 end

93 elseif (N == 4)

94 if (D(i) <= Dregion(1))

95 fswCfly (i) = IL(i)*Deff(i)/(2*%Cfly*ripple*Vin);

96 fswlsat(i) = (Dregion(1)-D(i))*Vin*Deff (i)/

97 (2xLx (N-1)*(Isat-IL(i)));
98 fswZVS(i) = (Dregion(1)-D(i))*Vin*Deff (i)/

99 (2*xL*x (N-1)*(IL(1i)-Izvs));
100

101 elseif (D(i) > Dregion(1l) && D(i) <= Dregion(2))

102 fswCfly (i) = IL(i)/(2*Cfly*ripple*Vin);

103 fswIsat(i) = (Dregion(2)-D(i))*Vin*Deff (i)/

104 (2*xL*x (N-1)*(Isat-IL(i)));
105 fswZVS(i) = (Dregion(2)-D(i))*Vin*Deff (i)/

106 (2*xLx (N-1)*(IL(i)-Izvs));
107

108 elseif (D(i) > Dregion(2) && D(i) <= Dregion(3))

109 fswCfly (i) = IL(i)*(1-Deff(i))/(2xCfly*ripple*Vin);
110 fswisat(i) = (Dregion(3)-D(i))*Vin*Deff (i)/

111 (2%L*x (N-1)*(Isat-IL(i)));
112 fswZVS(i) = (Dregion(3)-D(i))*Vin*Deff (i)/

113 (2%L*x (N-1)*(IL(i)-Izvs));
114

115 end

116 end

117 end

118 Cfly_lim = max(fswCfly)/1000;

119 Isat_lim = max(fswIsat)/1000;

120 ZVS_lim = max(fswZVS)/1000;

121 f_lim = max([Cfly_lim, Isat_lim]);
122 f2.flim = f_lim;

[N O S

10
11
12
13
14
15
16
17
18
19
20

22
23
24
25
26

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 65

Main Active Balancing

Contents

values

design parameters
initialize

current loop

Initialize function

Active Balancing Function
error calculation

display waveforms

% Active Balancing Calculations, specific to 4 level AB
% Also currently specific to lowest duty cycle range
% Assume capacitor voltage is constant in each subperiod ty to tz

function abmain = ABmain(D, fsw4, fswb, N, c)

values
c.DO = D;
c.TO = 1/(fswb*1073);
c.NO = N(2);
c.N1 = N(1);
c.Def0 = (c.NO-1)*c.DO-floor((c.NO-1)*c.DO);
c.T = 1/(fswd*x1073) ;
c.Tefd = ¢.T/(c.N1-1);

c.R = c.DO*c.Vin/c.Iout_avg;

c.Def4 = (c.N1-1)*c.DO-floor((c.N1-1)*c.DO);
c.kx = [1 2 3];
c.div = 75;

design parameters

Iout = c.Iout_avg;

a = c.a; % factor of duty cycle adjustment on d2

abcount = c.g; ’% number of cycles in Active Balancing

endcount = round(1l.2.*abcount); % total number of cycles to calculate
Ywaveforms = zeros(1,2);

27

28
29
30
31
32
33
34
35
36
37
38
39
40

41

42
43
44
45
46
a7
48

49

50
51
52

53

54
55

56

57
58
59

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 66

initialize
c.Vc = zeros(3, 7); % capacitor voltages at times 1-6 (cap x time)
c.dVc = zeros(3,3,2); % change in capacitor voltage specific for 4 case
c.VL = zeros(2, 3); % inductor voltage
c.ix = zeros(1l, 7); % inductor current
c.di = zeros(2, 3); % change in inductor current

% Areas used for capacitor charge eqn Ax_y is area for cap x in region y
c.Area = zeros(3, 3);

diff = zeros(length(Iout),length(a));
alpha_index = 1;

gamma_index = 1;

t = 2; % start time required for matlab indexing

current loop
opt(1,:) = [inf 0 0];

cycle.abcount = abcount;
cycle.endcount = endcount;

cycle.a = a;

Initialize function

hinitializations depend on parameters being swept
init = ABinit(c,cycle,t,Iout);
c = init.c;

Active Balancing Function

abcalc = ABCalc(c,cycle,t);
c = abcalc.c;

error calculation

norm = sqrt(abcalc.diff.Vcl_diff~2 +
abcalc.diff.Vc3_diff~2);
diff_Vcl = abcalc.diff.Vcl_diff;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75

76
7

78

79
80
81
82
83
84
85
86
87

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

diff_Vc3 = abcalc.diff.Vc3_diff;

b if diff(j,k) < opt(1,1)
yA waveforms (1) = c;
pA cycle_plot = cycle;
% opt = [diff(j,k) j k];
b alpha_index = k;
pA gamma_index = j;
yA elseif diff(j,k) == opt(1,1)
% waveforms(2) = c;
% opt(2,:) = [diff(j,k) j kI;
b end
% end

display waveforms

% ABplot(waveforms(1),cycle_plot);
%Current = Iout(opt(1,2))

outputs
hhoutput
abmain.norm = norm;
abmain.diff_Vcl = diff_Vci;
abmain.diff_Vc3 = diff_Vc3;

abmain.curr_max = max(c.curr);
abmain.c = c;
yA abmain.alpha = a(alpha_index);
yA abmain.gamma = abcount (gamma_index) ;
yA abmain.opt = opt;

67

10
11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 68

Active Balancing Initialization

Contents

e Set duty cycles and subperiods to active balancing
e initial voltages and currents, t0
e Output

function init = ABinit(c, cycle,t,Iout)

Set duty cycles and subperiods to active balancing

% adjust subperiod of g2, using effective period
% ALWAYS use 4 level N and 4 level T

c.Tab(2) = cycle.a/(c.N1-1);
c.Tab(1l) = 0.5%x(1-c.Tab(2)); % T1+T2+T4=1
c.Tab(3) = c.Tab(1); % Keep T1=T4

% D2 = DefdxaxTef1l,

% where Tefl is the fraction of the main period that is
% the effective period at Vsw

c.D(2) = c.Defdxc.Tab(2);

c.D(1) c.Defdxc.Tab(1); % D1 = Def4x*Tabl

c.D(3) = c.Defd*c.Tab(3); % Keep D1=D4

initial voltages and currents, t0

c.Vout(t-1) = c.DO*xc.Vin; % Buck conversion ratio

/» capacitor voltages as fraction of input voltage during previous N

Vec0(1) = c.kx(1)*c.Vin/(c.NO-1); % k1 =1
Vec0(2) = c.kx(2)*c.Vin/(c.NO-1); % k2 = 2
Ve0(3) = c.kx(3)*c.Vin/(c.NO-1); % k3 = 3
c.Vc(:,1) = VcO; % concatenate flying cap voltages and initial conditions

% Capacitor voltage goals

c.Vc_4L(1) = c.kx(D)*c.Vin/(c.N1-1); % k1 =1
c.Vc_4L(2) = c.kx(2)*c.Vin/(c.NO-1); % k2 = 2
c.Vc_4L(3) = c.kx(2)*c.Vin/(c.N1-1); % k2 = 2

%Capacitor derating
c.CapC = [2.20E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.23E+00; 2.22E+00;

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

53
54

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

b
b
b
b

i0
c.

T

C.

2.18E+00; 2.10E+00; 2.05E+00; 1.93E+00; 1.81E+00; 1.63E+00;
1.47E+00; 1.29E+00; 1.10E+00; 9.63E-01; 7.69E-01; 6.39E-01;
5.48E-01; 4.31E-01; 3.89E-01; 0.347] * 1le-6;% * 2.014/2.2;

.CapVDC = [0.00E+00; 1.00E+00; 2.00E+00; 4.00E+00; 6.30E+00; 1.00E+01;
1.60E+01; 2.50E+01; 3.00E+01; 4.00E+01; 5.00E+01; 6.50E+01;
8.00E+01; 1.00E+02; 1.25E+02; 1.50E+02; 2.00E+02; 2.50E+02;
3.00E+02; 4.00E+02; 4.50E+02; 500];

inductor current at time tO is the
minimum iL from the previous N operation
<il>-dipp/2 with <il> = Iout
and dipp = VinxTOxDefO*(1-Def0)/(L*(NO-1)"2)
= (Iout - c.Vin*c.TOxc.DefO*(1-c.Def0)/(2*c.L*x(c.NO-1)"2));
curr(:,1) = i0;

Calc Max current
Imax = c.Nl*c.Vripple*c.Vin*8*(1/c.T)*c.num_capOut*c.cap + c.Iv;

Output

init.c = c;
init.JIout = Iout;

© 0 N o a »~» W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

Set-up for Active Balancing Loop

Contents

Outer Loop (time Block)
calculate error on cap voltages
Output

Display

function abcalc = ABCalc(c, cycle, t)

Outer Loop (time Block)

for n = l:cycle.endcount % for n cycles do calculations
% only 5 to 4 level case right now
% if (c.N1 == c.N1 && (c.Vc(3,end) > k(2)*c.Vin/(c.N1-1) ||
c.Vc(1,end) < k(1)*c.Vin/(c.N1-1)))
% if the cycle index is within AB range, do AB calcs
if(n <= cycle.abcount)

tend = t + 2x(4-1)-1; % for indexing

% and saving calculated values for next cycle
ab = ActiveBalancing(c, n, t);
c.Vc(:,t:tend) = ab.Vc; % save calculated values
c.curr(:,t:tend) = ab.curr; % save calculated values
c.Vout(:,t:tend) ab.Vout;
t = tend + 1; %increase index

elseif (n > cycle.abcount)
cycle.a = 1;

% reset subperiod to normal 4 level operation after AB
c.Tab(2) = cycle.a/(c.N1-1);
c.Tab(1l) = cycle.a/(c.N1-1);
c.Tab(3) = cycle.a/(c.N1-1);

% reset duty cycle to normal 4 level operation after AB
c.D(2) = c.DO;
c.D(1) = c¢.DO;
c.D(3) = ¢.DO;

70

32
33
34
35
36
37
38
39
40
41
42
43
44

45

46
47

48

49
50

51

52
53

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

end

calculate error on cap voltages

diff.Vcl_diff
diff.Vc3_diff

¢t 0O 0 O

tend = t + 2%(4-1)-1; % for indexing
% and saving calculated values for next cycle
ab = ActiveBalancing(c, n, t);

.Ve(:,t:tend)
.curr(:,t:tend)
.Vout(:,t:tend)
= tend + 1; Yincrease index

= abs(c.Vc_4L(1)-c.Vc(1,end));
abs(c.Vc_4L(3)-c.Vc(3,end));

ab.Vc; % save calculated values
ab.curr; % save calculated values

Output

abcalc.c ;

abcalc.diff = diff;

Display

% %% Display

% figure

% timestepsl = [c.D(1)*c.T
c.Tab(1)*c.T
c.Tab(1)*c.T+c.D(2)*c.T
c.Tab(1)*c.T+c.Tab(2)*c.T
c.Tab(1)*c.T+c.Tab(2)*c.T+c.D(3)*c.T
c.Tab(1)*c.T+c.Tab(2)*c.T+c.Tab(3)*c.T];

% timeshift = c.T*ones(1,length(timestepsl));

% timesteps(1l) = 0;

63
64
65
66
67

% index = 2;

b

% timeshift4 = c.T*ones(1,length(timestepsl));
h

b 1:cycle.endcount

T

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
08
99

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 72

T

b
o
b
b
b
b
b
b
b
b
b
b
b
b
b
b
o
b
b
b
b
b
b
b
b
b
b
o
b
b

timesteps(index:index + (2%c.N1-3)) =
timestepsl + (m-1)*timeshift4;
index = index + (2*c.N1-3) + 1;
end
Vout = c.Vout*ones(length(timesteps));

% current = eval(c.curr(l:end));
% voltagel = eval(c.Vc(l,1:end));

% voltage3 = eval(c.Vc(3,1:end));
current = c.curr(l:end);

voltagel = c.Vc(1,1:end);
voltage3 = c.Vc(3,1:end);
outVoltage = c.Vout(1l:end);

hold on

ylim([-40 40])

plot(timesteps, voltagel, ’color’, [0.953 0.918 0.257], ’linewidth’, 2)
plot(timesteps, voltage3,’color’, [0.953 0.257 0.918], ’linewidth’, 2)
plot(timesteps, outVoltage, ’color’, [0.257 0.953 0.894], ’linewidth’, 2)

volt4l = c.Vc_4L’*ones(1l,length(timesteps));
plot(timesteps, volt4L(1,:), ’color’, [0 0 0])
plot(timesteps, volt4L(3,:), ’color’, [0 0 0])

yyaxis right

ylim([-5 35])
plot(timesteps, current, ’color’, [0.324 0.953 0.257], ’linewidth’, 2)

resize_figure(6, 1.2)

© o N o 0o~ W

11
12
13
14
15
16
17
18
19

21
22
23
24
25
26

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

Sub-period Active Balancing Calculations

Contents

Active Balancing Function

On time of g4 from t0 to t1, region 1
Off time of q1 t1 to t2, region 1

On time of 2 from t2 to t3, region 2
Off time of q2 t3 to t4, region 2

On time of q3 from t4 to t5, region 3
Off time of g3 t5 to t6, region 3
Output

Active Balancing Function

function ab = ActiveBalancing(c,n,t)

On

Ve(l,t-1) = c.Vc(1,t-1);
Ve(2,t-1) = c.Vc(2,t-1);
Vec(3,t-1) = c.Vc(3,t-1);
curr(t-1) = c.curr(t-1);
Vout (t-1) = c.Vout(t-1);

Vc_loop = zeros(3,c.div);
curr_loop = zeros(l,c.div);
Vout_loop = zeros(l,c.div);
iload = zeros(1l,c.div);

ic = zeros(1l,c.div);

dVout = zeros(1l,c.div);

% de-rated capacitor look-up table
V_base = c.V_base;
C_int = c.C_int;

time of q4 from t0 to t1, region 1

Vc_loop(:,1) = Vc(:,t-1);
curr_loop(1l) = curr(t-1);
Vout_loop(1l) = Vout(t-1);

for j = 1l:c.div

% during on time, voltage across inductor is sum of series

73

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

% cap voltages - Vout (this one is specific to 4 level)

VL(1,1) = c.Vin-Vc_loop(3,j)-Vout_loop(j);

% change in inductor current in on time (D4xT) is
% di=dt*VL/L divided into smalled div
di(1,1) = VL(1,1)*c.D(3)*c.T/(c.divxc.L);

% update current at end of subperiod, old value + di
curr_loop(j+1) = curr_loop(j)+di(1,1);

% c.Cl = 3*(interpl(c.CapVDC,c.CapC,Vc_loop(1,3)));
% c.C3 = 3x(interpl(c.CapVDC,c.CapC,Vc_loop(3,3)));
% c.Cout = 4x(interpl(c.CapVDC,c.CapC,Vout_loop(j)));

% instead of interpolate, look up value from table

indexCl = ((round(Vc_loop(1l,j)*100)))+1;
indexC3 = ((round(Vc_loop(3,j)*100)))+1;
indexCout = ((round(Vout_loop(j)*100)))+1;

if indexCl1l <= 0

indexC1l = 1;
end
if indexC3 <= 0
indexC3 = 1;
end

if indexCout <= 0
indexCout = 1;

c
c.C3 = c.num_cap*C_int (indexC3) ;
= c.num_capOut*C_int (indexCout) ;

% Charge area of cap C1, C1 not charged/discharged in this region

Area(1,1) = 0;

dvc(1,1,1) = Area(1,1)/c.Cl; % change in cap voltage dV = Q/C

% update cap voltage at end of subperiod, old value + dV

Vc_loop(1l,j+1) = Vc_loop(l,j)+dVc(l,1,1);

.num_cap*C_int (indexC1); % read from look-up table

74

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

69

70 % Voltage on cap C2 does not change because no current into C2
71

72 % Charge area of cap C3, triangle (0.5%bxh = 0.5%D4*T*di)
73 % and rectangle (bxh=D4*T*i_start) where i_start is current
74 % value from end of last subperiod

75 Area(3,1) = ((0.5%c.D(3)*c.Txdi(1,1)+curr_loop(j)*c.D(3)*c.T))/
76 c.div;
77

78 % change in cap voltage dV = Q/C

79 dvc(3,1,1) = Area(3,1)/c.C3;

80

81 % update cap voltage at end of subperiod, old value + dV
82 Vc_loop(3,j+1) = Vc_loop(3,j)+dvc(3,1,1);

83

84 iload(j) = Vout_loop(j)/c.R;

85 ic(j) = curr_loop(j)-iload(j);

86 dVout (j) = ic(j)*c.D(3)*c.T/(c.div*c.Cout);

87 Vout_loop(j+1) = Vout_loop(j) + dVout(j); % 7

88 end

89

90 % update current at end of subperiod, old value + di

91 curr(t) = curr_loop(end);

92

93 % update cap voltage at end of subperiod, old value + dV

94 Vec(1l,t) = Vc_loop(l,end);

95

96 % Voltage on cap C2 does not change because no current into C2
97

98 % update cap voltage at end of subperiod, old value + dV

99 Vc(3,t) = Vc_loop(3,end);

100

101 Vout(t) = Vout_loop(end); % update

102 Off time of q1 t1 to t2, region 1

103 Vc_loop(:,1) = Vc(:,t);
104 curr_loop(1) = curr(t);
105 Vout_loop(1l) = Vout(t);
106

107 for j = 1:c.div

108 % during off time, voltage across inductor is sum of

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145

146
147
148

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

% series cap voltages - Vout (this one is specific to 4 level)
VL(2,1) = -Vout_loop(j);

% change in inductor current in on time (Tab3-D3*T) is di=dt*VL/L
di(2,1) = VL(2,1)*((c.Tab(3)-c.D(3))*c.T)/(c.divxc.L);

% update current at end of subperiod, old value + di
curr_loop(j+1) = curr_loop(j)+di(2,1);

% c.Cout = 4*(interpl(c.CapVDC,c.CapC,Vout_loop(j)));
% instead of interpolate, look up value from table
indexCout =((round(Vout_loop(j)*100)))+1;

if indexCout <= 0
indexCout = 1;
end
c.Cout = c.num_capOut*C_int (indexCout) ;

iload(j) = Vout_loop(j)/c.R;

ic(j) = curr_loop(j)-iload(j);

dVout (j) = (ic(j)*(c.Tab(3)-c.D(3))*c.T)/(c.divxc.Cout);
Vout_loop(j+1) = Vout_loop(j) + dVout(j); % ?

end

% update current at end of subperiod, old value + di
curr(t+1) = curr_loop(end);

% cap voltage does not change in off time (specific to lowest D range)
Vec(1,t+1) = Vc_loop(1l,end);

% cap voltage does not change in off time (specific to lowest D range)
Vc(3,t+1) = Vc_loop(3,end);

Vout (t+1) = Vout_loop(end);

**0On time of q2 from t2 to t3, region 2

% doing a half step here, update voltage, do other half
Vc_loop(:,1) = Vc(:,t+1);
curr_loop(1) = curr(t+1l);

76

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 77

149 Vout_loop(1) = Vout(t+1l);

150

151 for j = 1l:c.div

152

153 % during on time, voltage across inductor is sum of series
154 % cap voltages - Vout (this one is specific to 4 level)
155 VL(1,2) = Vc_loop(3,j)-Vc_loop(1l,j)-Vout_loop(j);

156

157 % change in inductor current in on time (D2xT) is di=dt*VL/L
158 di(1,2) = VL(1,2)*c.D(2)*c.T/(c.div*c.L);

159

160 % update current at end of subperiod, old value + di

161 curr_loop(j+1) = curr_loop(j)+di(1,2);

162

163 % c.Cl = 3*(interpl(c.CapVDC,c.CapC,Vc_loop(1,3j)));

164 % c.C3 = 3x(interpl(c.CapVDC,c.CapC,Vc_loop(3,3)));

165 % c.Cout = 4x(interpl(c.CapVDC,c.CapC,Vout_loop(j)));

166

167 % instead of interpolate, look up value from table

168

169 indexCl = ((round(Vc_loop(1l,j)*100)))+1;

170 indexC3 = ((round(Vc_loop(3,j)*100)))+1;

171 indexCout = ((round(Vout_loop(j)*100)))+1;

172 if indexCl <= 0

173 indexC1l = 1;

174 end

175 if indexC3 <=0

176 indexC3 = 1;

177 end

178 if indexCout <= 0

179 indexCout = 1;

180 end

181

182 c.Cl = c.num_cap*C_int(indexC1); % read from look-up table
183 c.C3 = c.num_cap*C_int (indexC3);

184 c.Cout = c.num_capOut*C_int (indexCout) ;

185

186 % charge area of cap Cl, triangle (0.5%bxh = 0.5%D2*T*di)
187 % and rectangle (bxh=D2*Txi_start) where i_start is current
188 % value from end of last subperiod

189 Area(1,2) = (0.5%c.D(2)*c.T*di(1,2)+curr_loop(j)*c.D(2)*c.T)/c.div;
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229

230

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

end

% change in cap voltage dV = Q/C
dvc(1,2,1) = Area(1,2)/c.C1;

% update cap voltage at end of subperiod, old value + dV
Vc_loop(1l,j+1) = Vc_loop(1l,j)+dVc(1,2,1);

% Voltage on cap C2 does not change because no current into C2

% discharge area of cap C3, triangle (0.5%bxh = 0.5%D2*T*di)

% and rectangle (b*h=D2%T*i_start) where i_start is current

% value from end of last subperiod

Area(3,2) = -((0.5%c.D(2)*c.T*di(1,2)+curr_loop(j)*c.D(2)*c.T))/
c.div;

% change in cap voltage dV = Q/C
dvc(3,2,1) = Area(3,2)/c.C3;

% update cap voltage at end of subperiod, old value + dV
Vc_loop(3,j+1) = Vc_loop(3,j)+dvc(3,2,1);

iload(j) = Vout_loop(j)/c.R;

ic(j) = curr_loop(j)-iload(j);

dVout (j) = ic(j)*c.D(2)*c.T/(c.div*c.Cout);
Vout_loop(j+1) = Vout_loop(j) + dVout(j); %

% update current at end of subperiod, old value + di
curr(t+2) = curr_loop(end);

% update cap voltage at end of subperiod, old value + dV
Vc(1,t+2) = Vc_loop(l,end);

% Voltage on cap C2 does not change because no current into C2

% update cap voltage at end of subperiod, old value + dV
Vc(3,t+2) = Vc_loop(3,end);

Vout (t+2) = Vout_loop(end); % update

Off time of q2 t3 to t4, region 2
Vc_loop(:,1) = Vc(:,t+2);

78

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

curr_loop(1l) = curr(t+2);

Vout_loop(1)

for

end

Vout (t+2) ;

j = 1l:c.div

% during off time, voltage across inductor is sum of series

% cap voltages - Vout (this one is specific to 4 level)
VL(2,2) = -Vout_loop(j);

% change in inductor current in off time (Tab2-D2#T) is di=dt*VL/L

di(2,2) = VL(2,2)*((c.Tab(2)-c.D(2))*c.T)/(c.div*xc.L);

% update current at end of subperiod, old value + di
curr_loop(j+1) = curr_loop(j)+di(2,2);

% c.Cout = 4*(interpl(c.CapVDC,c.CapC,Vout_loop(j)));
% instead of interpolate, look up value from table
indexCout = ((round(Vout_loop(j)*100)))+1;

if indexCout <= 0
indexCout = 1;
end
c.Cout = c.num_capOut*C_int (indexCout) ;

iload(j) = Vout_loop(j)/c.R;

ic(j) = curr_loop(j)-iload(j);

dVout (j) = (ic(j)*(c.Tab(2)-c.D(2))*c.T)/(c.div*c.Cout);
Vout_loop(j+1) = Vout_loop(j) + dVout(j); %

curr (t+3) = curr_loop(end);

% cap voltage does not change in off time (specific to lowest D range)

Vc(1,t+3) = Vc_loop(1l,end);

% cap voltage does not change in off time (specific to lowest D range)

Vc(3,t+3) = Vc_loop(3,end);

Vout (t+3) = Vout_loop(end);

79

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

o722 On time of q3 from t4 to t5, region 3

273 Vc_loop(:,1) = Vc(:,t+3);

274 curr_loop(1l) = curr(t+3);

275 Vout_loop(1) = Vout(t+3);

276

277 for j = 1:c.div

278

279 % during on time, voltage across inductor is sum of series
280 % cap voltages - Vout (this one is specific to 4 level)
281 VL(1,3) = Vc_loop(1l,j)-Vout_loop(j);

282

283 % change in inductor current in on time (D1%T) is di=dt*VL/L
284 di(1,3) = VL(1,3)*c.D(1)*c.T/(c.div*c.L);

285

286 % update current at end of subperiod, old value + di
287 curr_loop(j+1) = curr_loop(j)+di(1,3);

288

289 % c.Cl = 3x(interpl(c.CapVDC,c.CapC,Vc_loop(1,j)));

290 % c.C3 = 3*(interpl(c.CapVDC,c.CapC,Vc_loop(3,3)));

291 % c.Cout = 4*(interpl(c.CapVDC,c.CapC,Vout_loop(j)));
292

293 % instead of interpolate, look up value from table

294

205 indexC1l = ((round(Vc_loop(1l,j)*100)))+1;

206 indexC3 = ((round(Vc_loop(3,j)*100)))+1;

297 indexCout = ((round(Vout_loop(j)*100)))+1;

298 if indexCl <= 0

299 indexC1 = 1;

300 end

301 if indexC3 <= 0

302 indexC3 = 1;

303 end

304 if indexCout <= 0

305 indexCout = 1;

306 end

307

308 c.Cl = c.num_cap*C_int(indexC1); % read from look-up table
309 c.C3 = c.num_cap*C_int (indexC3) ;

310 c.Cout = c.num_capOut*C_int (indexCout) ;

311

312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

% discharge area of cap C1, triangle (0.5%bxh = 0.5%D1*T*di)

% and rectangle (b*h=D1%T*i_start) where i_start is current

% value from end of last subperiod

Area(1,3) = -((0.5%c.D(1)*c.T*di(1,3)+curr_loop(j)*c.D(1)*c.T))/
c.div;

% change in cap voltage dV = Q/C
dvec(1,3,1) = Area(1,3)/c.C1;

% update cap voltage at end of subperiod, old value + dV
Vc_loop(1l,j+1) = Vc_loop(1l,j)+dVc(1,3,1);

% Voltage on cap C2 does not change because no current into C2

% Charge area of cap C3, C3 not charged/discharged in this region
Area(3,3) = 0;

% change in cap voltage dV = Q/C
dvc(3,3,1) = Area(3,3)/c.C3;

% update cap voltage at end of subperiod, old value + dV
Vc_loop(3,j+1) = Vc_loop(3,j)+dVc(3,3,1);

iload(j) = Vout_loop(j)/c.R;

ic(j) = curr_loop(j)-iload(j);

dVout (j) = ic(j)*c.D(1)*c.T/(c.div*c.Cout);

Vout_loop(j+1) = Vout_loop(j) + dVout(j); % 7
end

% update current at end of subperiod, old value + di
curr(t+4) = curr_loop(end);

% update cap voltage at end of subperiod, old value + dV
Vec(1l,t+4) = Vc_loop(1l,end);

% Voltage on cap C2 does not change because no current into C2

% update cap voltage at end of subperiod, old value + dV
Vc(3,t+4) = Vc_loop(3,end);

Vout (t+4) = Vout_loop(end); % update

81

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 82

35 Off time of g3 t5 to t6, region 3

355 Vc_loop(:,1) = Vc(:,t+4);

356 curr_loop(1l) = curr(t+4);

357 Vout_loop(1) = Vout(t+4);

358

359 for j = 1:c.div

360

361 % during off time, voltage across inductor is sum of series
362 % cap voltages - Vout (this one is specific to 4 level)
363 VL(2,3) = -Vout_loop(j);

364

365 % change in inductor current in on time (Tab1-D1*T) is di=dt*VL/L
366 di(2,3) = VL(2,3)*((c.Tab(1)-c.D(1))*c.T)/(c.div*c.L);
367

368 % update current at end of subperiod, old value + di

369 curr_loop(j+1) = curr_loop(j)+di(2,3);

370

371 % c.Cout = 4x(interpl(c.CapVDC,c.CapC,Vout_loop(j)));
372

373 % instead of interpolate, look up value from table

374 indexCout = ((round(Vout_loop(j)*100)))+1;

375

376 if indexCout <= 0

377 indexCout = 1;

378 end

379 c.Cout = c.num_capOut*C_int (indexCout) ;

380

381 iload(j) = Vout_loop(j)/c.R;

382 ic(j) = curr_loop(j)-iload(j);

383 dVout (j) = (ic(j)*(c.Tab(1)-c.D(1))*c.T)/(c.div*c.Cout);
384 Vout_loop(j+1) = Vout_loop(j) + dVout(j); % 7

385

386 end

387

388 % update current at end of subperiod, old value + di

389 curr(t+5) = curr_loop(end);

390

391 % cap voltage does not change in off time (specific to lowest D range)
392 Vc(1,t+5) = Vc_loop(1l,end);

393

394 % cap voltage does not change in off time (specific to lowest D range)

395
396
397

398

399
400
401

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 83

Vc(3,t+5) = Vc_loop(3,end);
Vout (t+5) = Vout_loop(end);
Output

ab.Vc = Vc(:,t:t+5);
ab.curr = curr(:,t:t+5);
ab.Vout = Vout(:,t:t+5);

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS 84

Plot Active Balancing Waveforms

Display

function display = ABplot(c,cycle)

figure

timestepsl = [c.D(1)*c.T
c.Tab(1)*c.T
c.Tab(1)*c.T+c.D(2)*c.T
c.Tab(1)*c.T+c.Tab(2)*c.T
c.Tab(1)*c.T+c.Tab(2)*c.T+c.D(3)*c.T
c.Tab(1)*c.T+c.Tab(2)*c.T+c.Tab(3)*c.T];

timeshift = c.T*ones(1,length(timestepsl));

timesteps(1l) = 0;

index = 2;

timeshift4 = c.Txones(1l,length(timestepsl));
for m = 1:cycle.endcount

timesteps(index:index + (2*c.N1-3))= timestepsl + (m-1)*timeshift4;
index = index + (2*%c.N1-3) + 1;

end

Vout = c.Vout*ones(length(timesteps));
% current = eval(c.curr(l:end));

% voltagel = eval(c.Vc(1l,1:end));

% voltage3 = eval(c.Vc(3,1:end));
current = c.curr(l:end);

voltagel = c.Vc(1,1:end);
voltage3 = c.Vc(3,1:end);
outVoltage = c.Vout(l:end);
hold on

ylim([-40 100])
plot(timesteps, voltagel, ’color’, [0.953 0.918 0.257], ’linewidth’, 2)
plot(timesteps, voltage3,’color’, [0.953 0.257 0.918], ’linewidth’, 2)
plot(timesteps, outVoltage, ’color’, [0.257 0.953 0.894],

’linewidth’, 2)

39
40
41
42
43
44
45
46
47
48
49

APPENDIX A. MATLAB ACTIVE BALANCING CALCULATIONS

voltd4l = c.Vc_4L’*ones(1,length(timesteps));
plot(timesteps, volt4L(1l,:), ’color’, [0 O 0])
plot(timesteps, volt4L(3,:), ’color’, [0 0 0])

yyaxis right
ylim([-10 35])
plot(timesteps, current, ’color’, [0.324 0.953 0.257], ’linewidth’, 2)

resize_figure(6, 1.2)

Plot Active Balancing Parameters

Display

function disp = sys_plot(opt)
figure
plot(opt(:,1), opt(:,6), ’-%’)
title(’Alpha’,’FontSize’,16, ’FontName’,’Times New Roman’);
grid on
xlabel (’Average Output Current [A]’,’FontSize’,16,

’FontName’, ’Times New Roman’);

ylabel(’\alpha’,’FontSize’,16, ’FontName’,’Times New Roman’);

figure
plot(opt(:,1), opt(:,7), ’-*7)
title(’Gamma’,’FontSize’,16, ’FontName’,’Times New Roman’);
grid on
xlabel (’Average Output Current [A]’,’FontSize’,16,
’FontName’ ,’Times New Roman’);
ylabel(’\gamma [cycles] ’,’FontSize’,16,’FontName’,’Times New Roman’) ;

85

86

Appendix B

Five-level FCML Hardware Prototype
Circuit Schematic and PCB Layout

Included here for reference are the circuit schematic and PCB layout for the 5-level FCML
prototype that was built for testing dynamic level selection to maintain wide-range ZVS.

Schematic

Below, are the circuit schematics for the 5-level FCML prototype.

FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

APPENDIX B.

87

odA10301d TIND [PAS]-G 9Y) I0J DTPRWSYDS JIMNDI [0Ad] dOJ, :1°¢ 9INSI]

g I T z T
(s5eHace0H6-9¢G—A3p—131-0'09) pe
B70Z 110y 338 | Y 1aziS
SAZ TNI4 91l
Y9SZATSAZ TN 214
/ 12345
(a186ep) dnoig emeud onin N5 d

20tdl T0TdL &

oTTr

Y35 TWI470a7 :31ld

3SU3G93IN_IVA|

8T

T LY ANNTN3 LT7ANNTNI ST
T LY ANI"WMd LT7ANN"WMd 7T
T WMd #H WMd TT|

T

Fzz(5Aal

3
A
S
B
T

UBAITPROTHIXZOTUU0D
2011

y23s°3suas :3)l4
_ T"aN9~0G—T_aN9a
6071 aNO Vv ANV S ——
H=ON9~a—~(H=aN9 @
H#0OXTQTULA)
L TAS_QAAHATAS™AGA
.M‘ ‘Hm- AND'V H-AG_QQAFKIH AS QOA
wopog~do —nQxzpuuD) SA9<H—GA9]
80711 —
3suag 1399 WD 00T 1334S
S 33 #T WM #H WM
£1WMd CH WM
35°13p10LUN :311 . . ZTNMd ZH WMd
4 P1o4 14 Y9STTWOH 314 Ty TH WM
LAINNTNIG—| 5=y R
aNod-O INOd LaNTWMd A AN ?..ﬁj\zsn‘m 7 TIT Wma
LN R G 1 sy 7 T IH WAL ST
LTNANIG= - 4unng
Z20xTQTuuo) | =
ot | 14
@ACy anod
H#0XT0"Uu0) = —
93N DVAFOOIN JVA
MSAG MSA
(SOdOVAHOSOd VA
£OTr
UIA
Japjojun :333ys TWI4 3234S
] 4 g 4

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

88

08e)s 10Mod TIND [PAS][-G 9Y) I0] DIPRWDYDS JINDIL) 7 { 2INTIq

I

S

I

Y

62/2 :PI %

(s5e995e046-9¢G—A3p—131-0'0"9) PEIY 'v'0'3 PEII

TZ A3y | B70Z 114dy :a1eq | Y 13zZ1S
SAZ TWNO4 3Rl

435 IND4 214

/IWD4/ 323Y4S

(a166ep) dnoio emend Snin

yos yoyms—a)buls a4 2 yos yspmsTabuls)14 2 yas'ysyms=albuis :a)ig =
< <
TAS_ddA)PAaaA ans< I=07AS"aaA-aan aNna g - 0TAS"daA)-aan ana< =[0-AG_GQA
~
WMd< WMd <] WMd<
ur300q<; urooqdg uim00qd
jnoTjo0q I L lgnnojoog I L tqnomjooq I —
—OUIRIP 32N0S— —OUlRIP 32IN0SY— —OUIRIP 32JN0S— —
TH2S 3334S 1£3S “3334s 12IS *3334s
=2 0 sl s sl ﬁnéw\ sl
Lzoags] ol oD Pl €] ;ﬁ% eea+
H0Zde—@
<
I
= -
yos yoyms—abuls a4 yos yo3ms—a1buls :3)14 yas'ya3ms—albuls :3)14 - yos

7H NAd

Ladinos ulespor

L1>adinos ulespoH

L1oaosinos ulespoH

2)ms—31buls

Ladinos ulespoH

yos+ysyims—a)buls :ayiy

DaaA anodg

WMd<

004
Kino-j0aq

uleJp 32Jn0sSY—
1T2S 13334s

Fl éﬁﬁ
90D

A4

TR T WMd

aNSd

ynoTjo0qry ynamj00qry Jnomj00qry ynoy00qy
Dujmyooq | L ——bumooq | L ——bunoog | L——bumoog
DIid DHMd DIid DIid
< < <
DAN9 QOACKHAS AN E (DOND QOAG<HASQAA |- (PANS QOACKHAS AN £ (PANY QdAd<HAS 4N
FEFSEER HEDS 12305 ~ HZ2S 119305 a HT9S 7asus

T RRaQ L TIH WM

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

89

"IOALIP 9188 SUIPN[OUL YOJIMS dPIS-USIY © I0J JIJRWOYDS JINOIL) € ¢ 9IN3I

I S I 4 g 4
62/€ Pl % (cGet9ce0H6-9CG—A3p—121-0'0"9) PEIIX °v'd'3 PEIIY
TZ A | 8707 11dv :31eq_ | Y 1zIS

SAZ TN24 ‘31l

y25°y23Ms~3)6u}
/HTIS/IN24/

(a166ep) dnoip emend Snin

cocs 12281S 8052]F L05D|* 9053*
324n0s (ot | VOND N3 Aagaa
g N=0A u, 1ND
i3 /+OA w 1047
Tog Iz Ncﬁmx Z
B ¢ L 31 00A In {agl—<INMd
o cogn
80079SD
ulelp ELI) ELI
~ ~

-t

SO0EJ |+ 40ED

R

+I\

4u03 ﬁ.
N

Gl

£0£D [+ z

dg 4

40/NQ
W 440/N0re
£1LN0A NI
1'9-G862d1 70£N

zoEd [+ 108D [+

&8
SITEN

. Qui3e0q
rgogﬁ

1/SWHZOHAIZ-BA
T0£0

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

90

"IOALIP 9188 SUIPN[OUL YO}IMS 9PIS-MO[® I0] DIJRUWDYDS DI ¢ 9INSIq

I S I 4 g 4
62/L Pl % (cGet9ce0H6-9CG—A3p—121-0'0"9) PEIIX °v'd'3 PEIIY
TZ A | 8707 11dv :31eq_ | Y 1zIS

SAZ TN24 ‘31l

y25°y23Ms—3)6u}
/1%3S/1W24/

(a166ep) dnoio emend dnin

coss 12281S 803+ L0303+
324n0s (ot | VOND N3 Aagaa
g N=0A u, 1ND
i3 /+OA w 1047
1oL Iz NcHE Z
B ¢ L 31 00A In {ag ——<INMd
o coLn
80079SD
ulelp ELI) ELI
~ ~

-t

S0L2 |+ 40LD

R

+I\

4u03 ﬁ.
N

Gl

s0L0 [+ z

dg 4

40/NQ
W 440/N0re
£1LN0A NIAfT
1'9-G862d1 T0LN

ToLd |+ TOLD [+

e
SITEN

T0L0

. Qui3e0q
rgogﬁ

1/SWHZOHAIZ-BA

91

"SOT @Y} I0J O1JeWYDS JMIIL) (G ¢ 9INSTI]

I S I 4 g 4 T
62/62 ‘Pl % (cGet9ce0H6-9CG—A3p—121-0'0"9) PEIIX °v'd'3 PEIIY
TZ Ay | 8707 10dv :aeq | Y 2215
SAZ TWO4 3Rl
4354247001 2114 a

/TWD470d1/ #23Y4S

(a166ep) dnoin emend dnin

TAGagA— DT AS Q0A

HAG—gaA—DHAS QOA
(ONSV]

—ang—g—JT N9 Q
L\Eﬁﬁ TTAN9 @

4no
(BoTeuy REPARELL*

SA9 _ _ — \
£2105732005-00LTdIW H N9 d H N9 @
1a62n
o H ON97(] o 1 ONO~q M
L L
EL\li.L\ - anog | 470
] 90222 |+ 2 soLzo |+
__moczdlgose [+ on Z Iﬁ _zorzsvoLeal+ on © |ﬁ
HTAGAaA [h— GA9 1T°AS AdA [4 h— SA9
£Z105732005-004TdoW £Z10573Z00S-00LTdIN
zozzn 1020
A —ISA9 v
g % g z T

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

92

"08®)S Iop[ojun (posnun) o) I0J JIIBWOYDS JINDIL) 9 ¢ oINS

I S I 4 g 4 T
6Z/1F :PI % (cGet9ce0H6-9CG—A3p—121-0'0"9) PEIIX °v'd'3 PEIIY
TT A | 8707 11dv :31eq_ | Y 1zIS

SAZ TN24 ‘31l

y2s°i3piojun 314
/13p10jun/ 3234S

(a166ep) dnoin emend Snin

yas' IR 44apiosun :3)14 y3s*1jedlapiojun 314

anea < ANOd
aNog—PaNod aN9dd—quoqg
y05°25U3s| 314
I\ozu\am,ng mw + @Esuas—pasuas) HUI\Dzu\E,
WA S zyrars ﬁWW are , ino| Ul ToTTar 88 IVA
uM I3 JT3suas| naays
L¥TINNTNID—D INNTNI o S yShasuas 1 INNTNIG—ALTTINNTNG
=z
m
- © (38UgHna]} K19suag| - 19331 Mms
INAA—PANNTA — INNTAG— N uzaﬂzﬁf»t|a A
O no ul
LYTANNTWMJD—D INNTIWMd 50d OVA [inel g ANNTHMIG—ALT NN WM
Zi1ed 13345 IN0TAsUIS| 1A3YS BIIECES
g [g z T

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

93

"o8e)s Iop[ojun oy} Jo sired UOIIMS 9} I0] DIJRWDYDS JMNDIL)) ¢ 2INTIq

I S I 4 g 4 T
62/2F Pl % (cGet9ce0H6-9CG—A3p—121-0'0"9) PEIIX °v'd'3 PEIIY
TT A | 8707 11dv :31eq_ | Y 1zIS

SAZ TN24 ‘31U

yas'ijediapiojun :ay4
/T41Rd/13p10jUN/ 32345

(a166ep) dnoin emend Snin

02Ty = S0ZTY

<JANN™N3

w
=
=

$13A1I0312D7AAA

—JaN9d
495°007 ‘214
12815 Tagos A1 A OS] aN9~aG—HaNDa
[IETe8ESST T yagmos——dH AS 0S| 77 gN9 0S| (J<TNod
1992243 H™aN9 051 E—
I
VA " . g Srod—em
151685551 " y _ A9
I TN targaredgan (o4 2A 2389 adA
£%0Z2d3 = =
10270 WM ———CINNTHAd J1ed=007 13334
102N
H-gno—os——CH aN9™Os|
L—ainnA
g [g z T

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

94

"98e)s I9POJUN 9T} 10J Pasn SO)(J7T @) I0J OIJRUWADS NI :R'¢] 9INSI,]

I S I 4 g 4 T
6Z/5T :PI % (cGet9ce0H6-9CG—A3p—121-0'0"9) PEIIX °v'd'3 PEIIY
TT A | 8707 11dv :31eq_ | Y 1zIS
SAZ TNI4 91l

y3s'0q1 a4 q
/412d70Q71/T41ed/13P104UN/ $334S

(a166ep) dnoio emend dnin

s1aAIgaeg—ggA—D $12A1021297AA

T AGos—DTAS OS]

HAg—os—DHASTOS|

Qzu\ai an9~a

Tang—os—dT UNDTOs]

$13414 mymom%%mﬁmgméet%z £0£TN — —
HgN9 os|OH ON9 05|

. H ON9OS|] . T"aN9Tos| H
| L
ELA
o mcﬂﬂﬁ
T0£T2 [+ oA 4
H™AG™OS| e GA9 TAGTOS| 4 LAy, SA9

€Z10573Z00G-DOLTdIN

£Z105732005-00LTdIW
zogIn T0€IN

A —ISA9 v

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

95

"SUISTSS JUSLIND JI0J DIPRUWDYDS JINDIL) (6 g 2INTI

I g I 7 T z T
62/97 pI | (£Geyaseonb-9cG—13p—721-0'0"9) PEI "V'Q'3 PRI
TZ A3y | B70Z 110y 338 | Y 3215
SAZ TNI4 91l
Y25°35U3s| :3)14
/1725U3s|/13p|0Jun/ 12345
(2166ep) dnoip emend dnin
BULIRS
aN9V % ’
Tdd 2 T ulﬁ\
%0912 2 so9fd Tdd £
_ + 09T === NIATIHTY
[BoreuvAG e uin MOA + £09TH
Z10843 03 Eul_l “"
20974 097D anNg +A

S K

zo9tn a o 43 N-A

35U3G|<t 71 Lnaa NI+A (—

3 £l NOHSA +A T

7097 qui|
Td) 666T11

7097N

10912 ﬁ

Bojeuy—Ag]

FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

APPENDIX B.

96

"SUISUSS 9GRI[OA I0J OIJRWDYDS HNDIL) ()] g 2INSI

T g T 7 T z T
62/87 pI | (£5e495e046-95G—A3p—13:-0'0'9) PE3N "v'0’'3 PEIIN
TT A | 8707 11dv :31eq_ | Y 1zIS
SAZ TNI4 91l
4y25°35Uds :3)14
/3su3s/ }23yS

(a166ep) dnoip emend Snin

yss'a

suagabeyon :

yas-asuagabeyjon :

AN9TVO1{anT] N9V
NG—23INIVA NG—S0d VA
93INTIVA 3334S SOd DVA 3334S
yos-asuasabejion yos-asuasabeyon : yas-asuagabeyjon :
ANO™VOaNaTy] AND™VO{aNgTY] ANO™VO{aNSTY]
(CETESRIE o WERTELT 35UasTEON—(]3SUBSA 3SUaS- e OA—]3SUBSA
AG—RsA AG—TEIR AHHEA
MSA 333yS TEIA 3334S H™EDA 13345
y3s-asuagabeyjon y3s-asuagabeyjon yos-asuasabejion yos-asuasabeyon : yas-asuagabeyjon :
N9 V<—1aNDTY] N9 V<—anNoy] AN9TV ANV AND VOr-1aNoTY NS VOr-1anNoTY] NS VO aNS TV
35U3S T ZONKJ3SU3SA 35U3SH ZOAKJ3SU3SA 35U3S T TOAKI3SU3SA 3SUSG H TOAHKJ3SU3SA (3SUSGTUIA(]3SU3SA
AN—T2oA ANHZZON AG—TT0A AHTTOA NG
T ZOA 33345 H™ZOA 13345 TTIA 33345 H A 3234S UIA 133345
g % g z T

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT

l 1d: 19/29

[Rev: 24

=
0
3
[° o
A
°
S
&
o
|
©
"
a
|
>
®3
gle
|
NH
Z|¥
[o al
g |
S
& 82
I RP A
Er S|l
e o
S0 s n
a2 .
2 <
u}gd
»
a2 XE| |
3020 3
EIRE
i &2l
M B
]
3|2 &
3|n X

TOLTY 20L7Y
[d] (3]

A_GND

Figure B.11: Circuit schematic for a voltage sensing network.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT

PCB Layout

Below, are the PCB layers for the 5-level FCML prototype.

98

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

99

‘g0d Jo 1ehey doy, :g1°g oS3

[]]
/T ‘Pl i (£Ge0age0nb-9eG—-13p—724-0"0"9) PeI ¥'Q’3 Pedly

1T Ay | 870z 1dv 38 | WV 13ZIS

SAZ W24

92d7Peda1y"ZATSAZ IND (31ld
BEEIES

(a166ey) dnosg emed JnIN

Hgoe

it

AN :

§

)

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT

SCHEMATIC AND PCB LAYOUT

100

‘g0 d Jo 10Ae] I0UUL }SII 1§ 2In31,]

|] g 4 i

1/7 01 |

]
(£Ge0age0nb-9eG—-13p—724-0"0"9) PeI ¥'Q’3 Pedly

TT Ay |

870C 11Mdy 338 | RS

SAZ TWO4 aRlL

92d7Peda1y"ZATSAZ IND (31ld
BEELS

(a16bey) dnosg emeyid JNIN

()
H0000000600000.

0000000000000 0
| @

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 101

[Rev: 2.4
‘ Id: 1/1

)

o

<

o < Lol

i

>

S

<

>

1

©

I

o

]

>

@3

=l

1

N\—'

=T

H ~ o =Z|e
L] u af |

CI

g © s|e
A

= m(S
< (@|e

SR

2

3 > o

SN
e FE

5 Do 2

B Fw| =

& z| .0 i 4]

(51 =

222 <

3S|n A

Figure B.14: Second inner layer of PCB.

APPENDIX B. FIVE-LEVEL FCML HARDWARE PROTOTYPE CIRCUIT
SCHEMATIC AND PCB LAYOUT 102

[Rev: 2.4
‘ Id: 1/3

)

o

<

o < Lol

i

>

S

<

>

1

©

I

o

]

>

@3

=l

1

N\—'

=T

H ~ o =Z|e
L] u af |

CI

g © s|e
A

= m(S
< (@|e

SR

2

3 > o

SN
e FE

5 Do 2

B Fw| =

& z| .0 i 4]

(51 =

222 <

3S|n A

Figure B.15: Bottom layer of PCB.

© 0 N o a ~ W N =

e e e e =~ = = S
© 0 N o o~ W N = O

103

Appendix C

Microcontroller Code for Dynamic
Level Transitioning with Active
Balancing

Included here are the program files for operating dynamic level selection for a 4/5-level
FCML converter using a TT C2000 microcontroller for control.

Global Variables Header File
/%

* global_variables.h

*/

#ifndef ZVS_FCML_28377D_GLOBAL_VARIABLES_H_
#define ZVS_FCML_28377D_GLOBAL_VARIABLES_H_

#include "F28x_Project.h" // Device Headerfile and Examples Include File
#define fundamental_frequency 60 // fundamental frequency in Hz

// Global variable declarations

extern int32 enable;

//extern __interrupt void cpu_timerO_isr(void);

extern __interrupt void ePWMInterrupt(void) ;

extern __interrupt void ADCInterrupt(void);

extern int32 sysclk;

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 104

extern float sysclk_inv;

extern float main_duty; // initial duty cycle

extern int32 period; // switching period

extern int32 periodl; // adjusted switching period due to mcu timing issues

// Switching periods for active balancing
extern int32 periodAB451; // adjusted due to mcu timing issues
extern int32 periodAB45;

// Global variable definitions

extern int32 enable;

extern int32 state;

extern int32 N;

extern int fs; // switching frequency

extern int feff; // effective switching frequency at inductor
extern int freq;

// switching frequency lower limit (when to switch levels)
extern int32 f_lim;

extern int32 f_high; // set a switching frequency maximum
extern int f_set;

extern float L; // inductor value

extern float main_duty; // initial duty cycle

extern float duty;

extern float deff_r; // effective duty cycle

extern float deff;

extern int abcount; // number of active balancing cycles (gamma)

// (alpha) duty cycle adjustment factor from 5 to 4 levels
extern float abfactorb4;
// (alpha) duty cycle adjustment factor from 4 to 5 levels
extern float abfactor45;

// Local variable definitions

extern int32 period; // period of the ePWM counter
extern int32 periodp; // period for 1st AB due to mcu timing issues

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING

extern int32 periodZVS; // period needed for ZVS

extern int32 deadtime_r; // deadtime, constant
extern int32 deadtime_f; // deadtime, constant
extern int32 phase; // phase shift of each ePWM, in degrees

extern int32 sysclk; // system clock, in kHz

// phase shift factor for each switch pair
extern float ps2_float;
extern float ps3_float;
extern float ps4_float;
extern float psb_float;
extern float ps6_float;
extern float ps7_float;

// duty cycles for each subperiod
// factors

extern float di;

extern float d2;

extern float d4;

extern float d§;

// total duty cycle in system clock ticks
extern float dip;

extern float d2p;

extern float d4p;

extern float d8p;

// factor for length of sub-periods
extern float Tx; // inital subperiod
extern float T1,;

extern float T2;

extern float T4;

// total duty cycle in system clock ticks
extern int32 D_ePWM2;
extern int32 D_ePWM3;
extern int32 D_ePWM4;
extern int32 D_ePWM5;

// phase shift for ePWM2, etc
extern int32 ps2;
extern int32 ps3;
extern int32 ps4;

105

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 106

104 extern int32 psb;

105 extern int32 ps6;

106 extern int32 ps7;

107 extern float phaseshift; // initial phase shift
108

109

110 extern int32 index;

111 extern int32 currentRead_period;

112 extern int32 i; //counter to control when level transition
113

114 extern float preb4;

115 extern float postb4;

116 extern float pre4b;

117 extern float post45;

118 extern int32 period4; // 4 level switching period
119 extern int32 period5; // 5 level switching period
120 extern int32 periodbase; // initial period

121 extern float pfactor; // factor of period adjustment between 4 and 5 levels
122 extern float pshift; // shift in period due to mcu timing issues
123

124 // current sense

125 extern Uintl6 dummy_read;

126 extern Uintl6 Iout_bias_count;

127 extern intl1l6 Iout_count;

128 extern float Iout;

120 extern float Iout_sample_arrayl[];

130 extern Uintl6 Iout_pointer;

131 extern float Iout_sum;

132 extern float Iout_avg;

133 extern float Iout_adc_range_count;

134 extern float Iout_adc_range_count_div;

135 extern float Iout_ADC_Max_Amp;

136 extern float Iout_ADC_Min_Amp;

137 extern float Iout_adc_range_fullamp;

138 extern float Iout_adc_range_fullamp_div;

139 extern float Iout_adc_fullamp_to_count_ratio;

140 extern float Iout_adc_count_to_fullamp_ratio;

141 extern float mov_avg_size;

142 extern float mov_avg_size_div;

143

144 // duty cycle regions for 4 and 5 level

145 extern Uintl6 N_minusi;

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 107

146 extern float L4regionl;

147 extern float L4region2;

148 extern float L4region3;

149 extern float Lbregionl;

150 extern float Lbregion2;

151 extern float Lbregion3;

152 extern float Lbregion4;

153

154

155 extern int32 Vin; // input voltage

156 extern float Izvs; // negative peak of inductor current for ZVS
157 extern float f_ZVS; // switching frequency needed for ZVS
158 extern float T_ZVS; // switching period for ZVS
159 extern float T_const;

160

161 // debug variable

162 extern float bug;

163 extern float bug2;

164 extern float shiftx;

165 extern float shifty;

166 extern intl6 lim;

167 #endif /* ZVS_FCML_28377D_GLOBAL_VARIABLES_H_ */

© 0 N O a »~ W N o=

AW W W W W W W W WW N NDNDNDDNDDNDDNDDNDDNDDNDN P22 R R R R
O © 00 N O O A~ W N H O © 00N O P, W N H O OV 0o N 0~ W NN = O

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL

TRANSITIONING WITH ACTIVE BALANCING
Global Variables Definition File

/*
* glo
*/

#include "F28x_Project.h"

bal_variables.c

#include '"global_variables.h"

// Glo

int32
int32
int fs
int fe
int fr
int32
int32
int f_
float
int32
float
float
float
float
float

bal variable definitions

enable = 0;

N = 5;

= 75;

ff;

eq = 0;

f_lim = 80;
f_high = 135;
set = 96;
main_duty = 0.25;
Vin = 150;

L = 0.0000056;
Izvs = -0.9;
duty;

deff_r;

deff;

int abcount = 7;

float
float
float

// Loc

abfactorb54 1.0;
abfactor4b 1;
pfactor = 0.375;

al variable definitions

//int32 num_levels;

int32
int32
int32
int32
int32
int32

period = 4000; // period of the ePWM counter
periodl;

periodp = 4000; //period for 1st AB

period4;

periodbase;

periodZVS = 4000;

// Device Headerfile and Examples Include File

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING

int32
int32
int32
int32
float

deadtime_r = 10; // deadtime

deadtime_f = 10; // deadtime

phase; // phase shift of each ePWM, in degrees
sysclk = 200000; // system clock, in kHz

sysclk_inv = 0.000005; // system clock in ms

// period of cpu timer, to trigger current sense read

int32

int32
int32

float
float
float
float
float
float

float
float
float
float
float
float
float
float

float
float
float
float

int32
int32
int32
int32

int32
int32
int32

currentRead_period = 200000;

periodAB451;
periodAB45;

ps2_float;
ps3_float;
ps4_float;
psb_float;
ps6_float;
ps7_float;

di;
d2;
d4;
ds;
dip;
d2p;
d4p;
d3p;

Tx = 0.333333;
T1;
T2;
T4,

D_ePWM2;
D_ePWM3;
D_ePWM4;
D_ePWM5;

ps2; // phase shift for ePWM2
ps3;
psé;

109

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING

int32 psb;
int32 ps6;
int32 ps7;

int32 i = 1; //counter to control when level transition
int32 index = 1;

int32 state = 5; // initial state (number of levels)

// Dummy variable for ADC measurement
Uint16 dummy_read = O;

// ADC current measurements (in counts)
Uint16 Iout_bias_count = O;

int16 Iout_count = 0;

float Iout_adc_range_count = O;

float Iout_adc_range_count_div;

float Iout_ADC_Max_Amp = 3.5;

float Iout_ADC_Min_Amp = O;

float Iout_adc_range_fullamp;

float Iout_adc_range_fullamp_div;
float Iout_adc_fullamp_to_count_ratio;
float Iout_adc_count_to_fullamp_ratio;

// ADC current measurements (in amps)
float Iout = 0;

// Moving average variables
float Iout_sample_array[200];
Uint16 Iout_pointer = 0;
float Iout_sum = 0;

float Iout_avg = O;

float mov_avg_size = 200;
float mov_avg_size_div;

float pshift;
int32 periodb5;
float phaseshift;

110

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 111

125 // debug variables

126 float shiftx = O;

127 float shifty = O;

128 intl6 lim = O;

129 float bug = 0.0;

130 float bug2 = O;

131

132 // ZVS frequency calculation variables
133 float deff;

134 Uint16 N_minusi;

135 float L4regionl = 1.0/3.0;
136 float L4region2 = 2.0/3.0;
137 float L4region3 = 1.0;

138 float Lbregionl = 1.0/4.0;
130 float Lbregion2 = 1.0/2.0;
140 float Lbregion3 = 3.0/4.0;
141 float Lbregiond = 1.0;

142 float f_ZVS;
143 float T_ZVS;
144 float T_const;
145

© 0 N O a »~ W N o=

AW W W W W W W W WW N NDNDNDDNDDNDDNDDNDDNDDNDN P22 R R R R
O © 00 N O O A~ W N H O © 00N O P, W N H O OV 0o N 0~ W NN = O

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL

TRANSITIONING WITH ACTIVE BALANCING
Main MCU Function

/*
* main.c
*/
#include "F28x_Project.h" // Device Headerfile
#include "ZVS_FCML.h"
#include "initialize.h"
#include '"global_variables.h"

#define RESULTS_BUFFER_SIZE 256

Uint16 AdcaResults[RESULTS_BUFFER_SIZE];
Uint16 resultsIndex;

Uint16 bufferFull;

void main(void)

{

enable = 0;
// Step 1. Initialize System Control:
InitSysCtrl();

// Step 2. Initialize GPIO:
InitGpio();

// Step 3. Clear all interrupts and initialize PIE vector table:

// Disable CPU interrupts
Init_interrupts();
InitCpuTimers();
ConfigCpuTimer (&CpuTimer0, 200, 10000);

// Use write-only instruction to set TSS bit =
CpuTimerORegs.TCR.all = 0x4000;

// Step 4. Initialize all the Device Peripherals:

// Initialize the ePWM

and Examples Include File

0

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 113

EALLQOW;

CpuSysRegs.PCLKCRO.bit.TBCLKSYNC = 0; // disable PWM timer
//CpuSysRegs .PCLKCRO.bit.CPUTIMERO = 0; // disable CPU timer
ClkCfgRegs .PERCLKDIVSEL.bit .EPWMCLKDIV = O;

EDIS;

Init_phase_shifted_pwm(); // Initial PWM for phase shifted operation

//Init_cputimer(); // Initialize cputimer 1 for interrupt
Init_ADCb();

EALLOW;

CpuSysRegs .PCLKCRO.bit.TBCLKSYNC = 1; // enable synchronize ePWM
//CpuSysRegs .PCLKCRO.bit.CPUTIMERO = 1; // start cpu timer

EDIS;

// Get ADC bias values for differential voltage
// and current sensor measurements
ADC_bias();

// Initialize global variables. Includes some ADC conversion
// calculations so must be called after
Init_global_variables(); ADC_bias().

// Step 5. User specific code, enable interrupts:
// Enable global Interrupts and higher priority real-time debug events:

EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM

// Step 6. IDLE loop. Just sit and loop forever (optional):

// Interrupt
__interrupt void ADCInterrupt(void)

{

//GpioDataRegs.GPADAT .bit.GPI014 = 1;
//ADC_calc();

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL

TRANSITIONING WITH ACTIVE BALANCING 114
83 // for each state (number of levels) calculate the effective duty cycle,
84 // and the switching frequency/period need for ZVS
85 // based on duty cycle region

g6 1if (state == 4){

g7 //N_minusl = state - 1;

88 N_minusl = 3;

89

90 if (main_duty <= L4regionl){

91 deff = main_duty*N_minusl;

92

93 // 1000 in denominator to make f_ZVS in kHz

94 f_ZVS = ((L4regionl - main_duty)*Vinxdeff)/

95 (1000*2*L*N_minusi*(Iout - Izvs));
96

97 // T_const = 1000%2xL, 1000 to make kHz

98 //T_ZVS = (T_const*N_minusi*(Iout - Izvs))/

99 ((L4regionl - main_duty)*Vin*deff) ;
100 }

101 else if (main_duty > L4regionl && main_duty <= L4region2){

102 deff = (main_duty - L4regionl)*N_minusi;

103

104 // 1000 in denominator to make f_ZVS in kHz

105 f_ZVS = ((L4region2 - main_duty)*Vinkxdeff)/

106 (1000%2*L*N_minusl*(Iout - Izvs));
107

108 // T_const = 1000%2xL, 1000 to make kHz

100 //T_ZVS = (T_const*N_minusl*(Iout - Izvs))/

110 ((L4region2 - main_duty)*Vin*deff) ;
111}

112 else if (main_duty > L4region2){

113 deff = (main_duty - L4region2)*N_minusi;

114

115 // 1000 in denominator to make f_ZVS in kHz

116 f£_ZVS = ((L4region3 - main_duty)*Vinkxdeff)/

117 (1000%2*L*N_minusl*(Iout - Izvs));
118 //T_ZVS = (T_const*N_minusl*(Iout - Izvs))/

119 ((L4region3 - main_duty)*Vinxdeff);
120 }

121

122 }

123 else {
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 115

N_minusl = state - 1;
if (main_duty <= Lbregioni1){
deff = main_duty*N_minusl;

// 1000 in denominator to make f_ZVS in kHz
f_7ZVS = ((Lb5regionl - main_duty)*Vin*deff)/
(1000*2*L*N_minusi*(Iout - Izvs));
//T_ZVS = (T_const*N_minusl*(Iout - Izvs))/
((Lbregionl - main_duty)*Vinxdeff) ;
}
else if (main_duty > Lb5regionl && main_duty <= Lbregion2){
deff = (main_duty - Lbregionl)*N_minusi;

// 1000 in denominator to make f_ZVS in kHz
f_7ZVS = ((Lbregion2 - main_duty)*Vin*deff)/

(1000%2*L*N_minusl*(Iout - Izvs));
//T_ZVS = (T_const*N_minusl*(Iout - Izvs))/

((Lbregion2 - main_duty)*Vin*deff) ;

}
else if (main_duty > Lbregion2 && main_duty <= Lbregion3){
deff = (main_duty - Lbregion2)*N_minusi;

// 1000 in denominator to make f_ZVS in kHz
f_ZVS = ((Lbregion3 - main_duty)*Vin*deff)/
(1000%2*L*N_minusl*(Iout - Izvs));
//T_ZVS = (T_const*N_minusl*(Iout - Izvs))/
((Lbregion3 - main_duty)*Vinxdeff) ;
}
else if (main_duty > Lbregion3){
deff = (main_duty - Lbregion3)*N_minusi;

// 1000 in denominator to make f_ZVS in kHz
f_ZVS = ((Lbregion4 - main_duty)*Vin*deff)/
(1000*2*L*N_minusi*(Iout - Izvs));
//T_ZVS = (T_const*N_minusl*(Iout - Izvs))/
((Lbregion4 - main_duty)*Vinxdeff);

// select switching frequency based on calculations checked
// against limits

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 116

if (f_ZVS < f_lim){
// £_ZVS = flim;
periodZVS = sysclk/f_lim;

}

else if (f_ZVS > f_high){
periodZVS = sysclk/f_high;
}

else{

periodZVS = sysclk/f_ZVS;
//periodZVS = sysclk*T_ZVS;
}

AdcbRegs . ADCINTFLGCLR.bit .ADCINT2 = 1; //clear INT2 flag on ADCB
PieCtrlRegs.PIEACK.all = PIEACK_GROUP10; // Acknowledge read of PIE Group 10
//GpioDataRegs.GPADAT.bit.GPI014 = 0;

}

// current sense, ADC calaculations
void ADC_calc(void)
{

// Read measured voltages from ADC results registers and
// subtract off zero bias.

// Get ADC result and subtract off initial bias
Iout_count = AdcbResultRegs.ADCRESULTO - Iout_bias_count;

// Compute moving averages of measured voltages.
// Done in units of "counts" (int16)
// Compute a moving average (LPF) of measured Iout (in counts)

// Iout_sum = Iout_sum + newest value - oldest value
Tout_sum = Iout_sum + Iout_count - Iout_sample_array[Iout_pointer];

// replace the oldest value with the newest value
Tout_sample_array[Iout_pointer] = Iout_count;

// Divide the moving sum by the size of the moving
// average filter to compute the average value
Iout_avg = Iout_sum*mov_avg_size_div;
Iout_pointer++; //increment pointer by 1

209
210
211
212
213
214
215
216
217
218

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL

TRANSITIONING WITH ACTIVE BALANCING 117
// Reset the pointer to zero if it exceeds Iout array size
if (Iout_pointer == mov_avg_size) Iout_pointer = O;

// Scale Iout from counts to full amps.
// Go from ADC counts to amps (full). Conversion derived analytically.
Iout = Iout_count*Iout_adc_count_to_fullamp_ratio;

© 0 N O a »~ W N o=

W W W W W W W N N N N N NN N N NN B 2 2 2 1 = e
D 01~ W N B O © 00 N O OB~ W NN H O VW 00 N g0~ W NN = O

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 118

Initialization Header File

/%
* initialize.h

*/

#ifndef ZVS_FCML_28377D_INITIALIZE_H_
#define ZVS_FCML_28377D_INITIALIZE_H_

#include "F28x_Project.h" // Device Headerfile and Examples Include File

void Clear_interrupts(void);

void Init_phase_shifted_pwm(void);
void InitEPwm_1(void);

void InitEPwm_2(void);

void InitEPwm_3(void);

void InitEPwm_4(void);

void InitEPwm_5(void);

void InitEPwm_6(void);

void InitEPwm_7(void);

void Init_cputimer(void);

void Init_global_variables(void);

// Initialize the necessary interrupts (without enabling)
void Init_interrupts(void);

void Init_ADCb(void);
void ADC_bias(void);
void ADC_conversion_wait(void);

void ADC_calc(void);

#endif /* BUFFER_V5_INITIALIZE_H_ */

© 0 N O a »~ W N o=

AW W W W W W W W WW N NDNDNDDNDDNDDNDDNDDNDDNDN P22 R R R R
O © 00 N O O A~ W N H O © 00N O P, W N H O OV 0o N 0~ W NN = O

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 119

Initialization Function File

/*
* initialize.c
*/
#include "F28x_Project.h" // Device Headerfile and Examples Include File

#include "initialize.h"
#include '"global_variables.h"

// Initialize all global variables to their nonzero values.
void Init_global_variables()
{

// Declare and define local variables for adc conversion from
// full voltage to counts (and vice versa)

// Full adc range in counts (w/ bias)
float Iout_adc_range_count = (4096 - Iout_bias_count);

// Inverse of full adc range in counts (w/ bias)
float Iout_adc_range_count_div = 1/Iout_adc_range_count;

// Full adc range in volts (full voltage)
float Iout_adc_range_fullamp = (Iout_ADC_Max_Amp - Iout_ADC_Min_Amp);

// Inverse of full adc range in volts (full voltage)
float Iout_adc_range_fullamp_div = 1/Iout_adc_range_fullamp;

// Define global adc conversion ratios for adc conversion from
// full voltage to counts (and vice versa)

// Full volt to count adc conversion. Count = Volt*Ratio.
Tout_adc_fullamp_to_count_ratio =
Iout_adc_range_count*Iout_adc_range_fullamp_div;

// Full volt to count adc conversion. Volt = Count*Ratio.

Iout_adc_count_to_fullamp_ratio =
Tout_adc_range_count_div*Iout_adc_range_fullamp;

mov_avg_size_div = 1/mov_avg_size; // Inverse of mov_avg_size.

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 120

void Init_phase_shifted_pwm()

{
feff = (N-1)*fs;

// enable PWM1, PWM2, PWM3, PWM4, PWM5, PWM6 PWM7
CpuSysRegs .PCLKCR2.bit .EPWM1=1;

CpuSysRegs .PCLKCR2.bit .EPWM2=1;

CpuSysRegs .PCLKCR2.bit .EPWM3=1;

CpuSysRegs .PCLKCR2.bit .EPWM4=1;

CpuSysRegs .PCLKCR2.bit .EPWMb=1;

CpuSysRegs .PCLKCR2.bit .EPWM6=1;

// CpuSysRegs.PCLKCR2.bit.EPWM7=1;

// Initialize GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4, ePWM5
// These functions are in the F28M36x_EPwm.c file
InitEPwm1Gpio();

InitEPwm2Gpio () ;

InitEPwm3Gpio();

InitEPwm4Gpio() ;

InitEPwmbGpio () ;

//InitEPwm6Gpio() ;

// output pin for debug

GpioCtrlRegs.GPADIR.bit.GPI014 = 1;
GPIO_SetupPinOptions(14, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPADAT.bit.GPIO14 = 0; // set low for 5 L case

// output pin for debug
GpioCtrlRegs.GPADIR.bit.GPI010 = 1;
GPIO_SetupPinOptions(10, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPADAT.bit.GPI010 = 0; //

period = sysclk/fs; // ePWM timer period
T_const = 1000%2xL;
D_ePWM2 = main_duty;
D_ePWM3 = main_duty;
D_ePWM4 = main_duty;
D_ePWM5 = main_duty;

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 121

83

g4 // Phase shift for each ePWM
85 phase = 360/(N-1);

g6 // Effective periods

g7 // Tx = 1/3;

g8 // T1 = 1/3;

89 // T2 = 1/3;

90 // T4 = 1/3;

91 // 5 level

92 ps2_float = (phasex3.0/360.0);
93 ps3_float = (phasex2.0/360.0);
94 ps4_float = (phase*1.0/360.0);
95 psb_float = 0O;

96

97 /*// 4 level

98 ps2_float = O;

99 ps3_float = (phase*1.0/360.0);
100 ps4_float = (phasex1.0/360.0);
101 ps5_float = (phasex2.0/360.0);
102 */

103

104 ps2=period*ps2_float;

105 ps3=periodxps3_float;

106 psé4=period*ps4_float;

107 psb=periodxpsb_float;

108

100 // Initialize each ePWM

110 InitEPwm_1();

111 InitEPwm_2(Q);

112 InitEPwm_3Q);

113 InitEPwm_4Q);

114 InitEPwm_5(Q);

115 InitEPwm_6();

116

117}

118

119 void InitEPwm_1()

120 {

121

122 EPwmlRegs.TBPRD = period; // Set timer period
123 EPwmlRegs.TBCTR = 0x0000; // Clear counter

124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL

TRANSITIONING WITH ACTIVE BALANCING 122
// Setup TBCLK
EPwmiRegs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

// Disable phase loading for the first ePWM, this becomes the master ePWM
EPwmlRegs.TBCTL.bit .PHSEN = TB_DISABLE;

EPwmlRegs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT

// Same frequency as main clock
EPwmlRegs.TBCTL.bit.CLKDIV = TB_DIV1;

// send sync output signal when counter is zero

EPwmlRegs .TBCTL.bit.SYNCOSEL = TB_CTR_ZERO;

EPwm1Regs .TBCTL.bit.PRDLD = TB_SHADOW; // load period from shadow register
//EPwm1Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE;

// Setup compare
EPwm1Regs.CMPA.bit.CMPA = period*.05; // initial 50% duty ratio

// load compare value from shadow registor at CTR=ZERO
EPwmlRegs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;

// configure pwm as a slave (for syncing) (Note: the default is slave)
EPwmlRegs.CMPCTL.bit . SHDWAMODE = CC_SHADOW;
//EPwm1Regs .CMPCTL.bit.SHDWAMODE = CC_IMMEDIATE;

// Set actions
EPwmlRegs .AQCTLA.bit.CAU
EPwmlRegs.AQCTLA.bit.ZRO

AQ_CLEAR; // Set PWM3A on Zero
AQ_SET;

// Active high complementary PWMs and Setup the deadband
EPwmlRegs .DBCTL.bit.0OUT_MODE = DB_FULL_ENABLE;

EPwmiRegs .DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwmlRegs .DBCTL.bit.IN_MODE = DBA_ALL;

EPwmlRegs .DBRED = 4;

EPwmlRegs .DBFED = 4;

//setup for ADC conversions

EPwmlRegs .ETSEL.bit.SOCAEN = 1; // Disable SOC on A group

EPwmiRegs .ETSEL.bit.SOCASEL = ET_CTR_ZERO; // Select SOC on up-count
EPwmlRegs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 123

EPwmlRegs .ETSEL.bit.INTEN = 1; // Enable ePWM interrupt

//enable event time-base counter equal to zero
EPwmlRegs .ETSEL.bit.INTSEL = ET_CTR_ZERO;

EPwmlRegs .ETPS.bit.INTPSSEL = O;
EPwmlRegs .ETPS.bit.INTCNT = O;

EPwmlRegs .ETPS.bit . INTPRD

ET_18T;

EPwmlRegs .ETCLR.bit.INT = 1; //clear interrupt flag intially

}

void InitEPwm_2()

{

EPwm2Regs .TBPRD = period; // Set timer period
EPwm2Regs .TBPHS.bit .TBPHS = ps2; // Phase is 0

EPwm2Regs .TBCTR = 0x0000; // Clear counter

// Setup TBCLK

EPwm2Regs .TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm2Regs . TBCTL.
EPwm2Regs . TBCTL.
EPwm2Regs . TBCTL.
EPwm2Regs . TBCTL.
EPwm2Regs . TBCTL.

bit
bit
bit
bit
bit

.PHSEN = TB_ENABLE; // Enable phase loading

.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT
.CLKDIV = TB_DIV1; // Same frequency as main clock
.SYNCOSEL = TB_SYNC_IN; // pass sync in to sync out
.PRDLD = TB_SHADOW; // load period from shadow register

// load period from shadow register at SYNC event
EPwm2Regs . TBCTL2.bit .PRDLDSYNC = TB_PRD_SYNC;

// Setup compare

EPwm2Regs .CMPA.bit.CMPA = period*main_duty; // initial 50% duty ratio

// load from shadow register at CTR=ZERO
//EPwm2Regs .CMPCTL.bit .LOADAMODE = CC_CTR_ZERO;

// configure pwm as a slave (for syncing) (Note: the default is slave)
EPwm2Regs .CMPCTL.bit . SHDWAMODE = CC_SHADOW;

// load from shadow register at SYNC event
EPwm2Regs .CMPCTL.bit . LOADASYNC = CC_SYNC;

// Set actions

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING

EPwm2Regs . AQCTLA.bit.CAU
EPwm2Regs . AQCTLA.bit.ZRO

AQ_CLEAR; // Set PWM3A on Zero
AQ_SET;

// Active high complementary PWMs - Setup the deadband
EPwm2Regs .DBCTL.bit.0OUT_MODE = DB_FULL_ENABLE;
EPwm2Regs .DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwm2Regs .DBCTL.bit.IN_MODE = DBA_ALL;

EPwm2Regs .DBRED = deadtime_r;

EPwm2Regs .DBFED = deadtime_f;

}
void InitEPwm_3()
{
... // same as InitEPwm_2()
// but with EPwm3Regs.TBPHS.bit.TBPHS = ps3;
}

void InitEPwm_4()
{
... // same as InitEPwm_2()
// but with EPwm4Regs.TBPHS.bit.TBPHS = ps4;
+
void InitEPwm_5()
{
... // same as InitEPwm_2()
// but withEPwmSRegs.TBPHS.bit.TBPHS

ps5;

+
void InitEPwm_6()
{
... // same as InitEPwm_2()
// but withEPwm6Regs . TBPHS.bit . TBPHS
+

psb5;

void Init_interrupts()

{
// Step 1: Disable interrupts globally

// Disable CPU interrupts
DINT;

124

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
201
292

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 125

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.

InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
EALLOW;

IER = 0x0000;
IFR = 0x0000;
EDIS;

// Step 2: Enable the PIE by setting the ENPIE bit of the PIECTRL register.
InitPieVectTable();

// Enable the PIE
PieCtrlRegs.PIECTRL.bit .ENPIE = 1;

// Step 3: Write the ISR vector for each interrupt to the appropriate
// location in the PIE vector table, which can be found in Table 2-2.

EALLOW; // This is needed to write to EALLOW protected registers

// ISR function address for ADCB interrupt #1
// PieVectTable.ADCB1_INT = &ADC_interruptl;

//ISR function address for ADCC interrupt #1
// PieVectTable.ADCC1_INT = &ADC_interrupt2;

// Step 4: Set the appropriate PIEIERx bit for each interrupt.
// The PIE group and channel assignments can be found in Table 2-2.
// Map ISR functions

//PieVectTable.TIMERO_INT = &cpu_timerO_isr;

// ISR function address for ADCB interrupt #2
PieVectTable.ADCB2_INT = &ADCInterrupt;

// ISR function address for ePWM2 interrupt
PieVectTable.EPWM1_INT = &ePWMInterrupt;

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 126

EDIS; // This is needed to disable write to EALLOW protected registers

// Step 5: Set the CPU IER bit for any
// PIE group containing enabled interrupts.
// Enable PIE interrupt (see Table 2.2 of Technical Reference Manual)

// Enable TINTO in the PIE: Group 1 interrupt 7
PieCtrlRegs .PIEIER1.bit.INTx7 = 1;

// Enable EPWM INTn in the PIE: Group 3 interrupt 1
PieCtrlRegs.PIEIER3.bit.INTx1 = 1;

// Enable ADCB2 INTn in the PIE: Group 10 interrupt 10.6
PieCtrlRegs.PIEIER10.bit.INTx6 = 1;

// Set the CPU IER bit for any PIE

// group containing enabled interrupts.,

IER |= M_INT1; //Enable group 1 interrupts
IER |= M_INT3; //Enable group 3 interrupts
IER |= M_INT10; //Enable group 10 interrupts
EDIS;

// Step 6: Enable the interrupt in the peripheral.

// This step is completed in main.c

}

void Init_ADCb(void)

{

EALLOW;

//write configurations

AdcbRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4

AdcbRegs.ADCCTL2.bit .RESOLUTION ADC_RESOLUTION_12BIT;

AdcbRegs.ADCCTL2.bit.SIGNALMODE = ADC_SIGNALMODE_SINGLE;
//AdcSetMode (ADC_ADCB, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE);

//Set pulse positions to late (at the end of conversion)

AdcbRegs .ADCCTL1.bit.INTPULSEPOS = 1;

//power up the ADC

AdcbRegs.ADCCTL1.bit.ADCPWDNZ = 1;

//S0C0 measure Iout on pin B2

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 127

//S0CO will convert channel 2 of ADCB (pin B2)
AdcbRegs . ADCSOCOCTL.bit.CHSEL = 2;

//sample window (# of SYSCLK, needs to corresponds to at least 75ns)
AdcbRegs . ADCSOCOCTL.bit.ACQPS = 50;

//trigger on CPUl timer O, see page 1467
AdcbRegs . ADCSOCOCTL.bit.TRIGSEL = 1;

// Enable interrupt for SOCO of ADCB (in this case, B3 = S0CO0)

//end of SOCO (i.e. EOCO) will set INT2 flag

AdcbRegs . ADCINTSELIN2.bit.INT2SEL = O;

AdcbRegs . ADCINTSEL1IN2.bit.INT2E = 1; //enable INT2 flag

//No further ADCINT2 pulses are generated until

// ADCINT2 flag is cleared by user

AdcbRegs . ADCINTSELIN2.bit.INT2CONT = O;

AdcbRegs . ADCINTFLGCLR.bit.ADCINT2 = 1; //make sure INT2 flag is cleared

EDIS;

b

// This function calculates the bias on all ADC inputs

// (especially desirable for differential voltage and current sensors)
// and stores as a global variable for later use

void ADC_bias(void)

{

// The first ADC reading might not be accurate,
// so do a dummy read and throw away this value

ADC_conversion_wait () ;

// Wait for the ADC conversion to finish
dummy_read = AdcbResultRegs.ADCRESULTO; // (ADCB S0CO)

AdcbRegs . ADCINTFLGCLR.bit.ADCINT2 = 1; //clear INT2 flag on ADCB

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 128

// wait........

// make sure wait for 1s at least for all the external circuit
// to power on !!!!!

// 1s is the measured delay from power on to current sensing
// amp has valid signal

// otherwise the bias measurement might have unexpected error
DELAY_US (700000) ;

Uint32 Iout_bias_count_sum = O;

// measure bias voltage of current sensing amplifier
Uint16 adc_read_count = O;

// Number of bits to average for ADC measurement (9 bits = 512 counts)

Uint16 adc_read_count_num_bits = 9;

for (adc_read_count=0;
adc_read_count<(1<<adc_read_count_num_bits);
adc_read_count++)

ADC_conversion_wait(); // Wait for the ADC conversion to finish

// read result from ADCB S0CO
Iout_bias_count_sum += AdcbResultRegs.ADCRESULTO;

AdcbRegs . ADCINTFLGCLR.bit.ADCINT2 = 1; //clear INT2 flag on ADCB
}

Iout_bias_count = Iout_bias_count_sum>>adc_read_count_num_bits;

// This function waits until all enabled ADC conversions are finished.
// Note: call this function only after ADC triggering is enabled but
// before interrupts are enabled

void ADC_conversion_wait(void)

{

// Make sure all ADC conversions are finished (check interrupt flag)
while (AdcbRegs.ADCINTFLG.bit.ADCINT2 != 1);

}

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 129

419

© 0 N O a »~ W N o=

W W W W W W W W W W N N N N NN NN NN B 2 2 2l =
© 00 N o o~ W N B O © 00 N O g0~ W N B O © 00 N o1~ W NN = O

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING

FCML ZVS Header File

/%
* ZVS_FCML.h
*/

#ifndef FCMC_H_
#tdefine FCMC_H_

#ifdef __cplusplus

extern "C" {
#endif

/* Function prototypes */

void Init_cputimer_sin_TMU(void) ;
void Init_phase_shifted_pwm(void);

void InitEPwm_1(void);
void InitEPwm_2(void);
void InitEPwm_3(void);
void InitEPwm_4(void);
void InitEPwm_b5(void);
void InitEPwm_6(void);
void InitEPwm_7(void);

//state functions
void Level5(void);
void PreAB54(void);
void AB54(void);
void PostAB54(void);
void Level4(void);
void PreAB45(void);
void AB45(void);
void PostAB45(void);

#endif /* FCMC_H_ */

© 0 N O a »~ W N o=

AW W W W W W W W WW N NDNDNDDNDDNDDNDDNDDNDDNDN P22 R R R R
O © 00 N O O A~ W N H O © 00N O P, W N H O OV 0o N 0~ W NN = O

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 131

FCML ZVS Function

/%
* ZVS_FCML.c
*/

#include "F28x_Project.h" // Device Headerfile and Examples Include File
#include "ZVS_FCML.h"

#include "initialize.h"

#include '"global_variables.h"

//__interrupt void cpu_timer0O_isr(void)
__interrupt void ePWMInterrupt(void)
{

EPwmbRegs .CMPA.bit.CMPA = D_ePWM5; // set duty cycle ePWM 5
// set here bc of mcu timing issue

if (i < 200000){

i++;

}

//

else if (i == 200000){ //after some time change levels
if (state == 5){ // if 5 levels
GpioDataRegs.GPADAT.bit.GPIO14 = 1;

state = 4; // change to preAB state
i =1; // reset count

index = 1; // reset AB count

}

else if(state == 4){ // if 4 levels

GpioDataRegs.GPADAT.bit.GPI014 = O;

state = 4; // AB to 5 levels
i =1; // reset count
index = 1; // reset AB count

b

else

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL

TRANSITIONING WITH ACTIVE BALANCING 132
state = 5;

}

else

i=1;

// this is base period, updates when change fs in debug terminal
periodbase = (sysclk/fs);

if (state == 4){

N = 4;

phase = 360/ (N-1);

period4 = pfactor*periodbase;
// period = period4;

// period = periodZVS;
period = sysclk/f_set;
periodp = period;

freq = sysclk/period;
Leveld();

if (index == 1){ // Adjusted Active Balancing on 4-levels
index++;
pshift = ps2 - ps3;

PreAB54() ;
pshift = pshift - ps2 + ps3;

//pshift = 0;

period = period4 + pshift + shiftx;

else if(index > 1 && index <= abcount){ // Active Balancing on 4-levels
index++;
AB54 Q) ;

}
// Adjusted Active Balancing on 4-levels before 4level operation
else if (index == abcount+1){

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 133

index++;
pshift = ps2 - ps3;

PostAB54() ;
pshift = ps2 - ps3 - pshift;
//pshift = 0;

period = period4 - pshift;

}

else if (index > abcount+1){
index++;

Leveld();

pshift = ps2;

}

}

else if(state == 5){
N = 5;

phase = 360/(N-1);
periodb5 = periodbase;

period4 = pfactor*period5;
//period = periodb;

//period = periodZVS;
period = sysclk/f_set;
freq = sysclk/period;
Level5();

if (index == 1){ // Adjusted Active Balancing on 4-levels
index++;

pshift = ps2 - ps3;
PreAB45() ;
pshift = ps2 - ps3 - pshift;

period = period4 - pshift;

}

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL

TRANSITIONING WITH ACTIVE BALANCING

else if(index > 1 && index <= abcount){ // Active Balancing on 4-levels

index++;
AB45() ;
periodl = period;

+

else if(index == abcount+1){ // Active Balancing on 4-levels

index++;

pshift = ps2 - ps3;
period

PostAB45() ;

period4 + (periodbasex(0.75)

pshift = pshift - (ps2 - ps3);

}

else if (index > abcount+1){

index++;
period = periodbase;
Level5();

// update ePWM registers
EPwmbRegs.TBPRD = period;

EPwm4Regs . TBPRD

period;

EPwm3Regs .TBPRD = period;
EPwm2Regs . TBPRD = period;

EPwm1Regs.TBPRD

period;

GpioDataRegs.GPADAT.bit.GPIO10 = 1;

EPwmbRegs . TBPHS.bit . TBPHS
EPwm4Regs . TBPHS.bit . TBPHS
EPwm3Regs . TBPHS.bit . TBPHS

psb5;
psé;
ps3;

EPwm2Regs . TBPHS.bit .TBPHS = ps2;
GPIO010 = O;

GpioDataRegs.GPADAT.bit.

EPwm4Regs.CMPA.bit.CMPA
EPwm3Regs.CMPA.bit.CMPA

D_ePWM4;
D_ePWM3;

- ps2);

134

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING

EPwm2Regs .CMPA.bit.CMPA = D_ePWM2;

EPwmbRegs .DBRED = deadtime_r;
EPwmbRegs .DBFED = deadtime_f;
EPwm4Regs .DBRED = deadtime_r;
EPwm4Regs .DBFED = deadtime_f;
EPwm3Regs .DBRED = deadtime_r;
EPwm3Regs .DBFED = deadtime_f;
EPwm2Regs .DBRED = deadtime_r;
EPwm2Regs .DBFED = deadtime_f;

// Clear interrupt flag
EPwmlRegs .ETCLR.bit.INT = 1;
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

135

© 0 N O a »~ W N o=

AW W W W W W W W WW N NDNDNDDNDDNDDNDDNDDNDDNDN P22 R R R R
O © 00 N O O A~ W N H O © 00N O P, W N H O OV 0o N 0~ W NN = O

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 136

State Logic Functions
/*

* state_logic.c

*/

#include "F28x_Project.h" // Device Headerfile and Examples Include File
#include "initialize.h"

#include '"global_variables.h"

#include "ZVS_FCML.h"

void Level5(){

// set ePWM registers
ps2_float = (phase*0.00833333); // 0.0083333=3.0/360.0
ps3_float = (phase*0.00555555); // 0.0055=2.0/360.0
ps4_float = (phase*0.00277777); // 0.0027=1.0/360.0
psb_float = 0;

ps2=period*ps2_float;
ps3=period*ps3_float;
psé4=period*ps4_float;
psb=period*psb5_float;

D_ePWM2 = (int32) period#*main_duty;
D_ePWM3 = (int32) period#*main_duty;
D_ePWM4 = (int32) period*main_duty;
D_ePWM5 = (int32) period#*main_duty;
}

void PreAB54(){
periodp = pfactor*periodbase;

// T2 (period corresponding to pulse of EPWM3/4) adjusted from nominal
// value by a factor, abfactor, which is calculated above based on
// load current

T2 = abfactorb54x*Tx;

// T1 (period corresponding to pulse of EPWM5) adjusted from nominal value
T1 = (1-T2)/2;

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 137

// T4 (period corresponding to pulse of EPWM2) adjusted from nominal value
T4 = T1;

// d2 (duty corresponding to pulse of EPWM3/4) adjusted from nominal
// value based on new adjusted period
d2 = T2xdeff;

//dl (duty corresponding to pulse of EPWM5) adjusted from nominal value
// based on new adjusted period
dl = Ti1xdeff;

//d4 (duty corresponding to pulse of EPWM2) adjusted from nominal value
// based on new adjusted period
d4d = di;

// set ePWM registers
psb_float = 0;
psé4_float = T2;
ps3_float = psd4_float;
ps2_float = T2+T4;

ps2=periodp*ps2_float;
ps3=periodp*ps3_float;
ps4=periodp*ps4_float;
psb=periodp*psb_float;

D_ePWM2 = periodp*d4;
D_ePWM3 = periodp*d2;
D_ePWM4 = periodp*d2;
D_ePWM5 = periodp*dl;
+

void AB54(){
period = period4;

// T2 (period corresponding to pulse of EPWM3/4) adjusted from nominal
// value by a factor, abfactor, which is calculated above based on
// load current

T2 = abfactor54*Tx;

// T1 (period corresponding to pulse of EPWM5) adjusted from nominal value
T1 = (1-T2)/2;

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 138

// T4 (period corresponding to pulse of EPWM2) adjusted from nominal value
T4 = T1,;

// d2 (duty corresponding to pulse of EPWM3/4) adjusted from nominal
// value based on new adjusted period
d2 = T2xdeff;

// d1 (duty corresponding to pulse of EPWM5) adjusted from nominal value
// based on new adjusted period
dl = Tlxdeff;

// d4 (duty corresponding to pulse of EPWM2) adjusted from nominal value
// based on new adjusted period
d4 = di;

// set ePWM registers
psb_float = 0;

psé4_float = T2;
ps3_float = ps4_float;
ps2_float = T2+T4;

ps2=period*ps2_float;
ps3=period*ps3_float;
psé4=period*ps4_float;
psb=period*psb_float;

D_ePWM2 = period*d4;
D_ePWM3 = period*d2;
D_ePWM4 = periodxd2;
D_ePWMb = period*dil;
}

void PostAB54(){
periodp = period4;

// set ePWM registers
ps2_float = (phase*0.00555555); // 0.0055=2.0/360.0
ps3_float = (phasex0.00277777); // 0.0027=1.0/360.0
ps4_float = (phasex0.00277777); // 0.0027=1.0/360.0
psb_float = O;

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 139

ps2=periodp*ps2_float;
ps3=periodp*ps3_float;
ps4=periodp*ps4_float;
psb=periodp*psb_float;

D_ePWM2 = periodp*main_duty;
D_ePWM3 = periodp*main_duty;
D_ePWM4 = periodp*main_duty;
D_ePWM5 = periodp*main_duty;
+

void Leveld(){

// set ePWM registers
ps2_float = (phasex0.00555555); // 0.0055=2.0/360.0
ps3_float = (phasex*0.00277777); // 0.0027=1.0/360.0
ps4_float = (phase*0.00277777); // 0.0027=1.0/360.0
psb_float = 0;

ps2=periodp*ps2_float;
ps3=periodp*ps3_float;
psé4=periodp*ps4_float;
psb=periodp*psb5_float;

D_ePWM2 = (int32) period#*main_duty;
D_ePWM3 = (int32) period#*main_duty;
D_ePWM4 = (int32) period#*main_duty;
D_ePWM5 = (int32) period*main_duty;
}

void PreAB450){

periodp = period4;
// T2 (period corresponding to pulse of EPWM3/4) adjusted from nominal
// value by a factor, abfactor, which is calculated above based on
// load current

T2 = abfactor4b*Tx;

// T1 (period corresponding to pulse of EPWM5) adjusted from nominal value
T1 = (1-T2)/2;

// T4 (period corresponding to pulse of EPWM2) adjusted

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 140

// from nominal value
T4 = T1,;

// d2 (duty corresponding to pulse of EPWM3/4) adjusted from nominal value
// based on new adjusted period
d2 = T2xdeff;

// d1 (duty corresponding to pulse of EPWM5) adjusted from nominal value
// based on new adjusted period
dl = Ti1xdeff;

// d4 (duty corresponding to pulse of EPWM2) adjusted from nominal value
// based on new adjusted period
d4d = di;

// set ePWM registers
psb_float = 0;

psé4_float = T2;
ps3_float = psd4_float;
ps2_float = T2+T4;

ps2=periodp*ps2_float;
ps3=periodp*ps3_float;
ps4=periodp*ps4_float;
psb=periodp*psb_float;

D_ePWM2 = periodp*d4;
D_ePWM3 = periodp*d2;
D_ePWM4 = periodp*d2;
D_ePWM5 = periodp*dil;
+

void AB45(){
period = period4;

// T2 (period corresponding to pulse of EPWM3/4) adjusted from nominal
// value by a factor, abfactor, which is calculated above based
// on load current

T2 = abfactor4b*Tx;

// T1 (period corresponding to pulse of EPWM5) adjusted from nominal value
T1 = (1-T2)/2;

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING 141

//T4 (period corresponding to pulse of EPWM2) adjusted from nominal value
T4 = T1,;

// d2 (duty corresponding to pulse of EPWM3/4) adjusted from nominal
// value based on new adjusted period
d2 = T2xdeff;

// dl1 (duty corresponding to pulse of EPWM5) adjusted from nominal value
// based on new adjusted period
dl = Tlxdeff;

//d4 (duty corresponding to pulse of EPWM2) adjusted from nominal value
// based on new adjusted period
d4d = di;

// set ePWM registers
psb_float = 0;

psé4_float = T2;
ps3_float = ps4_float;
ps2_float = T2+T4;

ps2=period*ps2_float;
ps3=period*ps3_float;
psé4=period*ps4_float;
psb=period*psb_float;

D_ePWM2 = periodxd4;
D_ePWM3 = period*d2;
D_ePWM4 = period*d2;
D_ePWMb = period*dil;
}

void PostAB45(){
periodp = periodbase;

// set ePWM registers
ps2_float = (phase*0.00833333); // 0.0083333=3.0/360.0
ps3_float = (phasex*0.00555555); // 0.0055=2.0/360.0
ps4_float = (phasex0.00277777); // 0.0027=1.0/360.0
psb_float = 0;

252
253
254
255
256
257
258
259
260
261
262

APPENDIX C. MICROCONTROLLER CODE FOR DYNAMIC LEVEL
TRANSITIONING WITH ACTIVE BALANCING

ps2=periodp*ps2_float;
ps3=periodp*ps3_float;
ps4=periodp*ps4_float;
psb=periodp*psb_float;

D_ePWM2
D_ePWM3
D_ePWM4
D_ePWM5
}

periodp*main_duty;
periodp*main_duty;
periodp*main_duty;
periodp*main_duty;

142

