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Abstract

On Collaborative Intelligence

by

Ramasubramanian Balasubramanian

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Gerald Friedland, Chair

We first explore the behavior of self-assembling wires, ball bearings that form emergent
structures, under an electric field. We model this behavior using the laws of physics as well
as some heuristics, with the aim to implement this self-organizing behavior on to a group of
drones covering a given region optimally, communicating with each other in a peer-to-peer
manner, and collating multimedia information demonstrating collaborative intelligence. After
looking at how these ball bearings turn ‘intelligent’ even with simple adaptation rules, we
explore frameworks with more theoretically grounded rules: can neural networks collaborate
to improve performance? We realize that we first need a way to understand what goes on
behind-the-scenes when a neural network makes a particular decision to discuss its behavior,
and hence we turn to heatmapping. We use it to figure out how much does each pixel
contribute to the final output in an image classification task, or in other words what parts of
an image led a network to classify an image into a particular class. We demonstrate that
the network looks for characteristic features belonging to each class while trying to classify
and how this could lead to errors. We then ask the important question of whether we can
use heatmaps obtained from one neural network to filter out background noise from the
images by blackening out the pixels that don’t contribute much to the final output, and if
so, can these filtered images, when passed through another neural network, lead to a higher
classification accuracy. We see that the data processing inequality holds and the accuracy
does not increase, but given that the images are simpler now, they need fewer bits to be
encoded and hence networks with simpler architectures, having a smaller capacity, are enough
for the task without much drop in the accuracy.
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Chapter 1

Introduction and Motivation

Collaborative intelligence characterizes a large number of agents having enough local autonomy
in a system to intelligently communicate with each other and self-organize, distribute the load,
and optimize the group’s combined output for a task. We started by asking the question: can
we find an optimal path for a group of drones acting in a self-organizing setting, flying around
in say flood affected areas, for a search-and-rescue operation, with the added constraint that
each drone can only communicate with drones within a certain radius and not directly with
the central station? Can we collate multimedia information, say the images from one drone
and the audio from another to increase the confidence of detection of people in danger so that
rescue teams could be sent to that location? How can we cover the maximum area with as
few drones as possible while also ensuring that all important information reaches the central
station via a chain of drones within a reasonable time?

We needed an approach that works such that we wouldn’t have to come up with a path
for each drone and such that it works in several different scenarios, in terms of the shape of
the area to be covered. Hence, we wanted the drones to self-organize and find optimal paths.
We turned to nature for this and realized that there are many processes in nature that are
self-organizing. One very interesting experiment was the self-assembling wires experiment
[10], in which a group of ball bearings form emergent structures under an electric field. This
experiment mirrored what we wanted to achieve, since the ball bearings first form chains and
pull other ball bearings with them till one of the chains touches the rim of the petridish that
they are in. This is similar to how we imagined a group of drones would all start off from a
central base station and keep moving outwards, while maintaining a distance such that it can
communicate with another drone to send its information back to the central station, till one
of the drones reaches the boundary of the region we want to cover. Then, we see in the ball
bearings experiment mentioned that the other bearings just snake around trying to occupy
as much area as they can while still maintaining contact with their chains. This is again in
line with what we thought should happen in our case, where the drones spread around to
cover as much area as possible, while still maintaining contact with nearby drones.
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The other place we were taking inspiration from was fractal theory, as we could see those
structures too, in the ball-bearing experiment. Some of the chains going towards the rim
would branch and new chains would start with similar properties as the original bigger chains
and now those two would move towards the rim. We also decided to approach the problem
from different angles: in one approach, we tried to model the complex physical interactions
between the ball bearings and their surrounding environment, in another we came up with
heuristics for how the balls should move and treated the ball bearings as solutions to an
ordinary differential equation, which led us to look at the theory of cellular automatons. The
applications of this could be far reaching: we already discussed the possibility of search and
rescue operations, but any similar situation wherein one needs to look for something in a
confined space, communicate that information to a central station efficiently, and cover the
entire space in a reasonable time could use this idea, such as in battlefields to detect enemy
soldiers etc.

After looking at how simple adaptation rules are sometimes enough to make agents act in a
self-organizing manner and collaborate ‘intelligently’, we turned our attention to collaboration
between neural networks and more theoretically grounded frameworks. But to understand
the behavior of neural networks, we needed to understand the inner workings first. It is
useful to understand how networks reach a particular decision in order to understand how to
make them self-optimizing. A simple example of that would be to drop connections between
neurons that are not contributing much to final output for a particular task.

Interpreting a nonlinear classifier, especially the ones that are seen as ‘black-boxes’, is
gaining traction in the AI community as it is important to gain trust into the predictions made
and to identify potential data selection biases or artefacts. Heatmapping [6] is a technique to
decompose the prediction of a neural network in terms of contributions of individual input
variables such that the produced decomposition can be visualized in the same way as the
input data. Previous works using heatmapping have used the corresponding explanations
obtained to compare classifiers [21], measure context use in text documents [13], analyze
facial expressions [4], increase interpretability in the sciences etc.

We worked on a project to find out whether images, obtained through satellite imagery
or otherwise, had centrifuges in them. Such projects highlight the need for interpretability
because centrifuges are used in nuclear weapon programs, so if a network labels an image as
having a centrifuge, we need to understand why it thought so, what were the characteristic
features in the image that led to this conclusion, is the network able to see some patterns or
features that we humans might miss etc.

Given that a heatmap gives the contribution of each pixel in predicting the output, a
natural question that arose in our minds was about whether we could use heatmaps to
improve the accuracy of classification. Our initial attempts involved passing the heatmap
obtained from the neural network through another neural network but that led to the loss of
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a large amount of information, as the heatmap is just an RGB representation of the relevance
scores; hence it didn’t perform well. Finally, we decided to blacken out those pixels that
didn’t contribute much to the prediction, thus ‘filtering’ the image, and use these filtered
images for classification. Here, we see that the heatmap produced by one neural network is
used to educate the second neural network in some sense, and the neural networks collaborate
and work towards improving the performance, as measured by accuracy. We then discuss why
this idea did not work, and what other insights we drew from this negative result. The major
roadblock was the Data processing inequality, an information theoretic concept which states
that the information content of a signal cannot be increased via a local physical operation.
In other words, post-processing cannot increase information. [16]
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Chapter 2

Related Work

Explainability in AI has been around for some time now, but the use of layerwise relevance
propagation provided a much-needed thrust to this field. A joint project at Fraunhofer
HHI, TU Berlin and SUTD Singapore on developing new method to understand nonlinear
predictions of state-of-the-art machine learning models led to some very interesting and
impactful results and publications, paving way for other researchers to build on it. The work
by Montovan et. al. on using deep Taylor decomposition to explain nonlinear classification
decisions [7] in terms of input variables proved to be a foundation stone throughout our
experiments. The theoretical connections between the Taylor decomposition of a function,
and rule-based relevance propagation techniques, provide good starting point for further
research. They showed that the model was stable under different architectures and datasets,
and it does away with the need for hyperparameter tuning. The work on Layerwise relevance
propagation put the Deep Taylor method to use. Layer-wise relevance propagation is a
method to compute scores for image pixels and image regions denoting the impact of the
particular image region on the prediction of the classifier for one particular test image [1].
They explore the impact of different parameter settings on the resulting explanation.

Another work that came out around the same time is the one by Samek et. al.[23] in
which they present a general methodology based on region perturbation for evaluating ordered
collections of pixels such as heatmaps as an objective quality measure for the usefulness of
heatmaps. They support the aforementioned work and arrive at the conclusion that the
recently proposed layer-wise relevance propagation algorithm qualitatively and quantitatively
provides a better explanation of what made a DNN arrive at a particular classification decision
than a sensitivity-based approach or a deconvolution method. They also explore the use of
heatmaps for unsupervised assessment of the neural network performance.

A few slightly older works in this domain were important theoretical milestones as well.
A paper from 2015 [19] talks about a general solution to the problem of understanding
classification decisions by pixel-wise decomposition of nonlinear classifiers. They talk about
a methodology that allows to visualize the contributions of single pixels to predictions for
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kernel-based classifiers over Bag-of-Words features and for multilayered neural networks.
Simonyan et.al. [11] try to address the visualisation of image classification models, learnt
using deep Convolutional Networks. They compute a class saliency map, specific to a given
image and class, and show that such maps can be employed for weakly supervised object
segmentation using classification ConvNets. They also establish the connection between the
gradient-based ConvNet visualisation methods and deconvolutional networks.

2.1 Heatmapping for classification
Heatmapping has mostly been used to explain the predictions made by a network, as opposed
to making or improving the predictions. Analyzing and comparing the properties and
strategies of different models beyond classification accuracy often opens up new ways for
model improvements. Some of these works on LRP and understanding how a model makes a
decision formed the motivation for us to try and improve the classification accuracy based
on these understandings. Becker et. al. [20] trained two neural network architectures on
a spectrogram and raw waveform data for audio classification tasks on the AudioMNIST
dataset and applied layer-wise relevance propagation (LRP) to investigate the models’ feature
selection and decision making. They demonstrate that the networks are highly reliant on
features marked as relevant by LRP through systematic manipulation of the input data.
Based on the relevance scores, they hypothesized that gender classification is based on the
fundamental frequency and its immediate harmonics. Apart from being a discriminant feature
for gender, it also opens up avenues for rule-based classification methods where a basic
prediction could be made based on the fundamental frequency. Ideas like these help improve
the classification accuracy. This work also shows that such attempts have their fair share of
difficulties: the derivation of higher-order concepts such as phonemes or certain frequency
ranges proved to be more difficult than for gender classification.

Works on pixel flipping drove home the idea that LRP identifies pixels, in image-related
tasks, in accordance to their relevance in predicting the output, thus motivating our idea
that the low-relevance pixels are nothing but noise. Bach et. al. [19] propose a novel way to
judge objectively the quality measure of the usefulness of heatmaps. They present a general
methodology based on region perturbation for evaluating ordered collections of pixels such as
heatmaps. Samek et. al. [23] propose a general solution to the problem of understanding
classification decisions by pixel-wise decomposition of nonlinear classifiers. They introduce
a methodology that allows to visualize the contributions of single pixels to predictions for
kernel-based classifiers over Bag-of-Words features and for multilayered neural networks.
These pixel contributions can be visualized as heatmaps and are provided to a human expert
who can intuitively not only verify the validity of the classification decision, but also focus
further analysis on regions of potential interest. Although they concede that there are still
some issues that need to be addressed, such as the greediness of the layer-wise relevance
propagation procedure and the analytical justification of the distribution of the relevance
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messages being proportional to the weighted neuron activations, they propose a pixel-flipping
method that allows to discriminate between two heatmapping methods that may otherwise
look of similar quality to the human. They show that if the heatmap is random, the decrease
in the classification function is much slower than when the heatmap is informative and pixels
in the informative region are destroyed. They compare the selectivity of different heatmap
approaches and show that removing input features that are deemed relevant reduces the
evidence at the output. Though none of these works directly address the task of trying to
improve classification accuracy based on the insights gained about how a network makes
predictions, that seemed like the logical next step for us to pursue.

2.2 Self-organizing agents
One of the main driving experiments behind our simulations related to self-organizing agents
was the self-assembling wires experiment by the Stanford Complexity group. The experiment
is based on [10]. In this paper, the authors work with stationary ramified transportation
networks in a macroscopic nonbiological system. They describe the dynamical formation
of the network which consists of three growth stages, called by them as strand formation,
boundary formation, and geometric expansion. The strand formation phase is the one with
shooters as described in the video and as has been described later in our simulations. We
combine the strand formation and boundary formation phases and called it phase 1, and
called the phase where the ball bearings spread to occupy maximum area as phase 2. The
authors also found that the system forms statistically robust network features, which wasn’t
very useful to our simulation. What was useful though was their finding that the networks
are usually trees, meaning that they lack closed loops since those are unstable. They also
establish that the final topology of the network is sensitive to the initial conditions of the
particles, in particular to its geometry, which again was useful to us, as the drones in our
bigger picture and the ball bearings in the simulation need to have a starting formation, so
to speak.

Given that our main objective was to implement the behavior observed in the ball bearings
onto drones, we also needed data from drones as well as 3d model estimation methodologies
for aerial and ground images. The work by Potje et.al. [8] proposes an efficient approach
for automatic generation of 3D models from images based on structure from motion (SfM)
and multi-view stereo reconstruction techniques. They use meta-data information such as
GPS, keypoint filtering and multiple local bundle adjustment refinement instead of global
optimization in a novel scheme to speed up the incremental SfM process. Given that we didn’t
want to reinvent the wheel and that our main focus wasn’t to improve upon image processing
algorithms, we decided to use this work to stitch the images that the drone captures. Though
the accuracy of the GPS was an issue, this was a good starting point as our idea involved
collating multimedia information, such as image, audio etc. from different drones to make
decisions in search-and-rescue operations.
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Closely mirroring the experiment was the work by Marani et.al. [15] where they study
the stationary state of a Poisson problem for a system of N perfectly conducting metal balls
driven by electric forces to move within a medium of very low electrical conductivity onto
which charges are sprayed from outside. When grounded at a confining boundary, the system
of metal balls is experimentally known to self-organize into stable fractal aggregates. They
simulate the dynamical conditions leading to the formation of such aggregated patterns
and analyze the fractal properties. They talk about minimum total energy dissipation (and
potential energy of the system as a whole), and suggest rules for the emergence of scale-free
structures in nature. This work was pivotal in our potential model as well as for the updates
that the balls receive in each iteration based on rules. Other works on self-assembling objects
in nature and fractals were also helpful, such as [3], which develops a new model of the self
assembly process starting from the underlying physical interaction between conductors.

Works such as [14] have also explored self-constructing and self-repairing electrical con-
nections built by agglomeration of metallic particles between two electrodes. They show
that self-assembling electrical connections grow by building a chain of particles between
two electrodes immersed in a dielectric liquid. They establish that the growth time for the
self-assembling process is a linear function of the initial average spacing of metallic particles
and a linear function of the distance between the electrodes. They also demonstrate that
the agglomeration process occurs in such a way as to minimize the overall resistance of the
system, which corroborates some of the other works mentioned before.
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Chapter 3

Self-Organising Agents

3.1 The problem statement
The big picture we had in mind was this: imagine a group of drones and a central station. In
the simplest setting of the problem, we can have as many drones as we want, and all of them
can contact the central base station. The objective is for the drones to go around the central
station and cover a particular area and report back certain things. One example would
be employing these drones in flood affected areas to look for people who need help, either
because they are stranded or are drowning etc. The other use-case could be in battlefields,
for the drones to go around and detect enemy soldiers, tanks etc.

In a slightly advanced version of the problem, the drones can only communicate within a
certain radius, so for a drone to send some information back to the central base station, it
would possibly have to send it through a chain of other drones, in a peer-to-peer communication
sort of manner. The issues that could arise here are things like how to prevent cross-talk,
what if multiple drones want to send information at the same time through the same set of
drones, what is the best path for the drones to fly to cover maximum area while remaining
in contact with at least one other drone so that the information could be transmitted back,
what is the best path for the drones to transmit the information if there are multiple paths
etc.

We also wanted drones to be a bit smart and collate multimedia information, something
along the lines of collaborative intelligence, consider this: let us say one drone is able to see
from a high up position that a person is sinking but is not able to hear that person because of
the distance; another drone is able to hear someone crying for help but is not able to see the
person because of a wall; can we somehow combine the information from these two drones
and increase the confidence of detection so that rescue forces are sent only to those places
where there’s a high chance that someone actually needs help. Reducing false positives is
important here since the resources (time, personnel etc.) are limited, but missing positives (a
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positive here being a person in danger, for instance) is also expensive as that would cost lives.

3.2 Models and approaches
The main motivator behind our logic for the path of the drones was the self-assembling wires
experiment [10] and the corresponding video by the Stanford Complexity Group. In the
video, they take metal ball bearings in a petridish to study self-assembling wires. These ball
bearings form emergent structures. The ball bearings are placed in a petridish containing
castor oil. Castor oil is used to keep the ball bearings from moving around too fast. They
apply a negative charge to a metal ring placed at the edge of the petridish. They then hang a
wire connected to a power supply above the petridish, and spray electrons onto the petridish
by applying a large voltage (∼ 20kV ).

In the first set-up, they start with all the ball bearings at the center of the petridish.
The negative electrode, as was mentioned, is attached to the metal ring at the edge and the
wire that’s hanging above the petridish serves as the positive electrode. When the voltage is
applied, nothing happens in the beginning. But after some time, they observed that some
balls start moving and they also interestingly observe that the balls moving out pull other
balls near them with them, thus forming chains (which they call ‘shooters’). Hence, several
shooters emerge from the mass of balls at the center, all of them pulling other balls thus
elongating the chain, and moving towards the outer ring. The chain ensures that the balls
are in contact with this central mass of balls. This process of moving towards the metal
ring continues till one such chain touches the rim. Then, that becomes a stem and all the
other shooters die, and a new structure starts to emerge. All the other shooters stop going
towards the rim and start spreading out in a snake-like fashion, to cover as much area as
possible, all while recruiting more and more balls into their chain. Finally, all the balls that
were initially at the center are part of some chain and the chains have all spread nicely all
over the petridish, except the one shooter that touched the rim first.

In another set-up, they start by having all the ball bearings spread near the edge of the
petridish. In this case, a lot of stems/chains form, and all these chains go on pulling as
many balls from nearby positions as they can into their chain. In some sense, the different
chains compete to get balls, and in this case, the motion is not in a straight line, rather they
twist and turn in an effort to recruit more balls. This experiment demonstrates some of the
complex dynamics arising from local interactions and the different structures that arise as a
result of different starting points.

The second set-up wasn’t very relevant to our case, but the first set-up is a good starting
point for our problems. Let us think about that scenario by replacing the balls with the
drones, all of them starting from a central base station. In the scenario where drones are
only allowed peer-to-peer communication, the situation boils down to what was observed
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with the balls where they had to recruit other balls to form chains and move towards the
boundary. The communication that the leaders of the shooters had with the central mass
of balls was through this chain, just like how drones that fly far enough will have to rely
on other drones to send their message to the central station. After the first chain touches
the rim, we observed that all the other shooters just died and the balls started spreading
evenly, still maintaining contact with their chains. Similarly, we have a ring/boundary in our
problem and once one drone reaches there, the other drones just need to spread out optimally
to cover as much area as possible, while still maintaining contact with a few other drones.
The balls do follow laws of physics, whereas there are no such restrictions when it comes to
the drones, since we can assign a path to each of them. But we made the assumption that
the path followed by drones was the most optimal one since humans and science have learnt
a lot from nature and natural processes.

The first logical step after this was to simulate the ball bearings experiment. After coming
up with some method to assign paths to the drones, either by following the laws of physics or
heuristically but still ensuring that the behavior seen with the ball bearings is replicated, the
idea was to implement this on drones used to survey underground gold mines in Brazil. The
issue with that was that the location determined by the GPS on the drones was within 10
meters of the accurate location, and that was a slightly large error margin to work with. The
idea was this: we were planning to use pixels as images and a circle as the boundary. In each
iteration, we would go over each pixel and assign a new position to it (which could be same
as the previous position) based on how that ball bearing should move.

3.2.1 Simple agent

We started off by defining functions to convert Cartesian coordinates to polar, as it would be
easy to work with polar coordinates especially when things moving radially outwards from
a center to the circumference of a circle are involved. We also defined functions to get the
L2 norm as well as the distance between two points. We started by getting N number of
points randomly within a circle of very small radius, which served as the balls starting off as
a central mass. We varied N to see how that affected the results and we’ll discuss that later.
The initial set up looked like the one shown in Fig.3.1.

We then defined a class called the agent, and each ball bearing would then be an instance
of this class. The inherent properties include a radius, a charge, a mass, and a position.
There were functions to find the distance between two ball bearings and to maintain the size
of a ball bearing bearing if it suffers a collision with another ball bearing. Such measures
were needed since pixels could easily overlap during a collision, a case that won’t happen with
the ball bearings. For each pair of agents, the position was updated based on the force acting
on them in agreement with the Coulomb’s law. Agents’ position was also updated based
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Figure 3.1: Initial set-up

on the force they experienced from the rim of the petridish, which was also charged. Hence
the forces considered were the gradient force, which was a function of charge and distance
from the outer ring, and the pair potential, which was a function of two agents (charges and
distance). Whenever there’s a collision and two agents touch, they share the charge and
hence have equal charge.

We defined another class for the rest of the world, where the circular rim was modelled as
a point mass with charge equivalent to that of the entire rim, at the center of the petridish.
All the location updates for the agents were carried out and the behavior was monitored by
constantly plotting the petridish and its contents. We realized that the model didn’t behave
the way we expected it to. Since the Coulombic forces between like charges just push the
balls apart, all the balls just started going away from each other and no chains were formed
as the balls with like charges couldn’t come close to each other. We realized that there were
other forces at play here. What we got by just implementing the Coulombic forces is shown
in Fig.3.2.

We called this attempt the simple agent. To recap, each agent has a position, charge,
radius, and mass. Agents have two forces acting on them, local (between other agents) and
global (between the agent and the outer ring). The outer ring was simulated as a point
charge in the center that repels charges. In every iteration, we apply the local forces and
global forces, both computed by Coulomb’s law.
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Figure 3.2: Ball bearings under the effect of the Coulomb force alone

3.2.2 Double agent

We called our next approach the double agent approach. One of the issues that we faced with
the previous approach was that given that all the ball bearings had the same sign of charge
on them, no chains were being formed as like charges repel. To mitigate this issue, we came
up with ball bearings that have both a positive and a negative side. Each Double Agent is
made of a linked positive and negative subagent. This allows some small linking between
Double Agents as one’s positive subagent can be attracted to another’s negative subagent.
We were able to observe the linking behavior in the simulation. Now, each agent had a top
subagent and a bottom subagent and we had to ensure that all the sizes were maintained
upon collision and that the locations of the top and the bottom subagents were such that
they were still together, after each update etc. To be consistent with the ball bearings seen
in the actual experiment, we still had to maintain the overall charge on a ball bearing to be
-1. Hence we assigned a charge of -3 to the negative half and +2 to the positive half.

The updates were pretty similar to the first case, where Coulomb’s law was used for
pairwise updates of agents as well as for the forces acting between the rim and the ball
bearings. The only difference here being that each agent is now comprised of two subagents,
so we had to find the forces acting on the top subagent, find the forces acting on the bottom
subagent, and move the ball in such a way that these forces are taken into consideration
while maintaining the size of the ball and keeping the subagents together. The obtained
result is shown in Fig.3.3. As mentioned, we did observe some linking behavior between the
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Figure 3.3: Ball bearings with linked positive and negative subagents under Coulomb force

balls and we could see some chains being formed but since like charges repel each other and
since the rim attracts the balls from the outside (or repels from the center), the balls did
move out in general.

3.2.3 Shooter agent

Our next approach was the shooter agent approach. Shooter was the name given to the
leading ball bearing in each chain by the original authors. We decided to use some heuristics
to simulate the behavior seen. We start off by choosing a few agents as the leaders. We do
this by finding all those agents that are farther than a given radius from the center. The
logic behind choosing these outermost agents as leaders was that the role of the leaders is
to lead their chains to the outer rim and the agents farthest from the centers have the best
chance of doing that. This was also in agreement with what we observed in the ball bearings
video. In this set-up, every agent has a leader and a follower attribute. So, in some sense,
every agent knows who its leader is and who its follower is.

This is what happens in every iteration: every leader updates its position radially outwards,
every leader’s follower goes to its corresponding leader’s old position, their followers similarly
move into their original position and so on. This is continued down the chain until we reach
an agent without a follower. This is where recruitment happens. The free agent closest to
this agent without a follower is recruited into this chain and is assigned as the follower of
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the last ball in the chain. Here, a free agent is a ball bearing that is not a part of any chain.
Hence a free agent is a ball bearing that neither has a follower nor a leader. Followers are the
ones that have a leader and leaders are the ones that don’t have a leader but only a follower.
These actions are repeated then in subsequent iterations. The sizes are maintained in case of
collisions as in the previous approaches.

One thing we ensured while trying to find followers was that the closest free agent shouldn’t
be farther than a threshold distance away, which was set to a default value of 10. This
ensured that ball bearings didn’t randomly jump really far from one iteration to the next.
This is also done when initially choosing the leaders, because if we choose a ball lying really
far away from the central mass of balls as a leader, it wouldn’t be able to recruit any other
balls since they would be very far away and that defeats the purpose of the shooter. The
outer rim was still considered as a point charge at the center with a very high negative charge.
Coulomb’s force between this point charge and all the ball bearings was also considered.
The pairwise Coulomb’s forces weren’t considered as the movement and locations of the ball
bearings were described by the heuristics explained. Fig 3.4 shows a few iterations of this
approach. The leaders are marked in red, the followers in green and the free agents in blue.
We can see how in the first iteration, the ball bearings farthest from the center, but still
connected to the central mass, are chosen as leaders. We see some green balls in the second
iteration and it becomes clearer in the third iteration, these are the followers being recruited
by the leaders and their followers. We then see in subsequent iterations how the leader moves
radially outwards and the followers occupy their leaders’ positions. We also see the number
of free agents reducing and more and more balls becoming part of some chain. The race is on
and this phase will end when one of the chains reaches the rim (not shown in the figure).

3.2.4 Shooter agent: discretized version

We tried a variant of the shooter agent approach described before. We discretized the
petridish and hence the ball bearings are allowed to take only certain positions now. Hence,
on updating the radial position, if the new position is one of the allowed ones, we just let
it be. If not, the closest position that is allowed is found and the ball is moved there. This
is inefficient as we have to go through all the allowed positions to get the closest one. This
would be more inefficient when Y-shaped branches are introduced into the simulation, to
mimic the real life experiment better. The size of balls is maintained as before in the event
of a collision.

The process of choosing leaders was also changed. The idea here was this: imagine an
arc of a circle with center at any given agent, radius being the distance between that agent
and the center of the petridish, and angle defined as a hyperparameter. Now imagine the
line segment from the agent to the center of the petridish sweeping angle/2 both to its right
and left with the location of the agent being a pivotal point. If all the other agents lie in
this imaginary arc, then that agent is a leader. To put things into perspective, let’s say the
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

(g) Iteration 7 (h) Iteration 8 (i) Iteration 9

Figure 3.4: Ball bearings as shooter agents with leader and follower attributes

chosen angle is 180°. So we are asking the question whether all the agents lie in a half plane
which is defined by the line perpendicular to the line joining the agent and the center of the
petridish and passing through the agent. If all agents lie in this half-plane, then we say that
that agent is a leader. The idea is that followers or free agents will be more surrounded as
compared to leaders. Leaders will always have an arc where they would no agents, the angle
covered by this arc is a hyperparameter.

The way that is done is like this: we find the slope of the line perpendicular to the line
joining a given agent and the center of the petridish, by using the logic that the product of
slopes of perpendicular lines is -1. With this slope, we find the intercept of the line passing
through the agent. Thus, we have the hyperplane that divides the plan into two half-planes,
in the 180°angle case. Then, we looked at two cases: if the desired angle is less than 180°and
if it’s greater than 180°. One question that comes to mind is whether we can reduce the
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dependence on having an idea about the location of the center of the petridish. We realized
that we needed to know where the center was because otherwise it could happen that some
agent has no agents in the arc that mentioned before but that arc might include the center of
the petridish, as in, the agent under consideration might be way inside the central mass and
have neighbors surrounding it in the direction facing the petridish wall but not towards the
inside; such an agent can not be a leader and we wouldn’t know this if we didn’t know the
location of the center.

In the first case, where the desired arc covers an angle of less than a 180°, we first check
to see if there’s any agent in the half plane not containing the origin. If there is, then the
agent under consideration can not be a leader and we move on to the next agent. If not,
then we find the slope of line joining the agent under consideration and every other agent.
We then find the acute angle between these two lines, since we know their slopes. The angle
between two lines with slopes m1 and m2 is tan−1 m1−m2

1+m1∗m2
. Using this, we can figure out

whether every agent lies within a large arc of a circle swept by the line passing through the
agent under consideration and the center of the petridish and covering an angle determined
by us on either side, with the agent under consideration being the center. All the cases with
infinite slopes, zero slopes etc. were taken care of. If so, the agent under consideration is
assigned the role of a leader. If the angle is greater than 180°, the only points that could be
the ones not lying in the desired arc are the ones not in the half-plane containing the origin.
For such points, we just use the analysis used above for the case when the angle was less
than 180°.

We found the angles between agents over several simulations and tried to manually look
at the angles made by what we thought could be called leaders with all the other agents and
we realized that the best angle was a 170°. Another change in this particular approach to
more realistically model the behavior seen in the self-assembling wires experiment was that
the recruitment happened before the chain moved. If a chain could not recruit a member, it
wasn’t allowed to move radially outward in that iteration. The way to recruit as well as to
update the position of agents based on forces acting on them was the same as was used in
the previous approaches. Also, to make the recruitment easier, we made the free agents repel
each other away from the central mass using Coulombic forces, taking care to see that they
weren’t repelled very far away. The sizes were also maintained as before upon collision. A
few iterations from this approach are shown in Fig 3.5. The allowed locations are marked
in cyan. The leaders are chosen with the modified approach mentioned here, and then they
recruit, and move their chain ahead only if they are successfully able to recruit in an iteration.
We see that this approach replicates the original experiment really well, preventing some
balls from going astray, since there are only a fixed number of positions that the balls can
take. The only thing missing from the first phase seen in the experiment is the Y-shaped
branch. The issue with that is that the number of allowed spots becomes less dense as one
goes radially outward but most of the branches were seen later, when the leaders moved
sufficiently away from the central mass. In that case, we would have to define new allowed
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

(g) Iteration 7 (h) Iteration 8 (i) Iteration 9

(j) Iteration 10 (k) Iteration 11 (l) Iteration 12

Figure 3.5: Shooter agents but with only certain positions allowed

spots that move radially outward starting from each branching point.
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3.2.5 Neighbor Model

In this model, the ball bearings move based off of local neighbor statistics. The shooter logic
was still kept the same: the furthest agent from the center would be the one to move out.
But now we tried to pose a question asking what if the center itself is not known? In such
a case, what exactly does one mean by the furthest agent? So instead of the furthest ball
bearing, we started looking for the least connected ball bearing. Now, by connected, we not
only mean touching another ball bearing, but the number of neighbors around a ball bearing
within a given radius. It was observed that the shooters, which were mostly on the edge, had
only as much as half the number of neighbors as compared to their counterparts that were
not at the edge of the central mass of ball bearings.

We also needed to figure out how would the ball bearings form chains in this setup. The
underlying concept here is that each ball bearing needs to be within a delta of another, and
if that’s not the case, we would heuristically move it towards the closest neighbor. We tried
another approach, where instead of moving it towards its closest neighbor, we pulled the
closest neighbor towards the ball bearing under consideration, using it as an anchor and
this replicated the experiment seen better. We finally decided to pull each ball a distance
of radius/2 towards the other. Thus, in each coordinate, we pulled it by [distance in that
coordinate] X radius/[2 X Euclidean distance between the balls].

Just like in the previous approaches, the sizes of the balls were maintained in the event of
a collision. For each agent, the number of neighbors within a radius of 5*radius of the agent
was found out. Then, this is what we did for each agent: we iteratively went through all the
neighbors of an agent, hence we looked at all the balls that were within 5 radii away from
the agent under consideration. The number of neighbors for each of these was found out and
the minimum number was noted. Now, if the agent under consideration had zero neighbors,
that would mean that it is really far away from all the other balls and hence can’t serve as a
leader since it would have to pull another ball to be a leader but then there are no balls in
its vicinity. So, for such balls, we just found the closest agent, and moved the two close to
each other by a distance equal to the radius.

The other case was when the number of neighbors of the agent under consideration was
the less than that of each of its neighbors, but not zero. So, in its circle of agents, this ball is
the one that is least connected, but it has neighbors that it can pull with itself. Such balls
are perfect candidates to be leaders. Hence, we move them radially outward by a distance
equal to 1.5 times the radius, just like in the shooter case, then we find the nearest agent,
and then we move the two close to each other by a distance equal to the radius to simulate
the Coulombic forces. The last case was when the number of neighbors of the agent under
consideration wasn’t lesser than each of its neighbors, which just means that it’s a follower.
After each iteration, the number of neighbors was updated for each agent. The results of a



CHAPTER 3. SELF-ORGANISING AGENTS 19

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

Figure 3.6: Ball bearings in the neighbor model move based off of local neighbor statistics

few iteration are shown in Fig 3.6.

This model didn’t work as expected. The selection of leaders at the beginning was fine,
we do see that the ball bearings at the edge with lesser number of neighbors as compared to
their neighbors are selected as leaders. But at times, two balls would sort of pair up and
move away from the central mass. Both of them would then only have one neighbor, which
would be the other ball, and hence their number of neighbors wouldn’t be lower as compared
to their neighbors’, and it would be non zero as well. So, they would act as followers but
given that they are not part of any chain and given that their closest neighbor would be
their pair, they are in some sense perpetually stuck with the other ball. This was a pretty
prevalent problem as can be seen from the figure: there are several balls in pairs. We do see
some leaders leading their chains well towards the outer rim. In some cases, we see that the
leader gets converted to a follower since once balls start moving out in chains, their number
of neighbors reduces and hence the leader doesn’t have much issue with matching the number
of neighbors with a follower, hence not satisfying the criteria defined in this approach to be
a leader. Thus as time goes on, the number of leaders decrease, which was not something
that we observed. We tried implementing a criteria that once a ball becomes a leader, it
can’t become a follower, but that came with its own set of problems. Another issue observed
due to the decrease in the number of neighbors as balls are pulled out of the central mass
was that some of these followers start becoming leaders as they have the least number of
neighbors as compared to their neighbors, which are mostly balls in the central mass. Hence
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the last follower in a chain, closer to the central mass, starts acting like a leader and starts a
new chain, thus breaking the connection that the original chain had with the central mass.
Due to these inherent issues with the model, we decided to discard it.

3.2.6 Potential model

The other attempt to simulate the self assembling wires experiment was to leave out the
heuristics and model the entire behavior based on laws of physics. To this end, we started off
by initializing a square grid of size N X N with 1s everywhere and 0s along the boundary. We
placed m balls on the grid, drawn from a 2d Gaussian. The iterations, which will be described
later, were run till convergence. Then, the direction of maximum gradient for each ball was
found and the ball was moved. Similar to the collisions that we have described before, we
took care of slots with double occupancy by moving in the direction of the second highest
gradient. This entire process was continued till some ball became a part of the boundary,
which marked the end of phase 1, after which the potential was computed again.

We started off with a N X N grid, where N was chosen as 20, and 30 balls. As mentioned
before, the grid was initialized with ones everywhere, except the boundary slots, which were
initialized to zero. We created another grid to keep track of the balls in the square grid.
We then drew m, which was 30 in this case, locations for the m balls from a 2d Gaussian
distribution whose mean was at the center of the square grid, with an identity covariance
matrix. Given that these were independent draws, it could happen that a ball is picked out
to be at the same location as another one, in which case that draw was performed again.
Before we settled on the Gaussian multivariate distribution, we also tried picking locations
at random but that led to a couple of issues: there was no central mass as was seen in the
experiment; this was resolved by restricting the locations that the balls can choose to start at
to only those around the center; even then some balls were really far away from each other,
so they couldn’t be a part of any chain, so we went ahead with the Gaussian model. We also
tried assigning fixed positions to all the balls, in and around the center, this will be described
later. One such arrangement of the balls, drawn from the 2d Gaussian is shown in Fig. 3.7.
The white squares are the locations in the grid where balls start at. As we see, they are
pretty concentrated around the center and hence this model was a good starting point.

Keeping in mind that the potential values need to be recompute if any ball reaches the
boundary, we start off by checking whether any ball is already touching the boundary. This
could happen as the locations are drawn from a distribution, though the probability is very
low since that would be somewhere in the tail of the Gaussian distribution. We initialized
another grid, apart from the square potential grid and the grid to track the balls, called
boundary points with zeros everywhere but ones at the boundary. Initially, only the points
at the boundary can be boundary points, but as the iterations go on, if a ball touches the
boundary, its entire chain will be considered boundary point for our purposes since they’ll all
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Figure 3.7: Potential model: Initial position of the ball bearings in a square grid

have the same potential value of zero. Hence, this grid is to figure out if any ball is touching
the boundary as part of a chain. We go to each location that has a ball and look at this grid
to see if that’s touching already. If not, we look at its neighbors in all eight directions. If any
of them are touching the boundary, information that we would get from the boundary points
grid, and by touching we mean through other balls, then we update the boundary points grid
to say that this location is a boundary point as well and change the potential of that location
to zero. If this happens, then we need to go through all the balls again to see whether any of
them are now a part of the boundary. Hence, we keep doing this till in an iteration, there are
no updates to the boundary point grid at all.

Then, we start by recomputing the potential values at all the locations. This is done as
follows: the first thing to keep in mind is that the potential of the boundary points is zero
and that can not change. We look at each point in the potential grid and see if the potential
value at a point is the average of its eight neighbors. If so, we move to the next location. If
not, we assign the potential value at a location to be the average of its eight neighbors. We
have to go through all the locations again even if one potential value changes, and this is
what we meant by iterations till convergence. Once this is done, we need to now update the
location of the balls.

For this, we initialize another grid to keep track of which balls have received an update in
the current iteration. Also, balls will receive an update only if they haven’t become a part of
the boundary, as has been described before. For each ball that hasn’t received an update in
the current iteration, we compute the direction of the maximum gradient. We considered
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several approaches for this. The first approach was to calculate the difference in the potential
values in the first directions: vertical, horizontal, and the two diagonal directions, given that
each ball has eight neighbors. So, in the vertical direction, we would just find the difference in
the values of potential between the location above and below a ball’s location. We abandoned
this approach as it didn’t consider the potential of the ball’s position.

In our next approach, we went ahead with the same logic as before that the ball would
move from a location of higher potential to that of lower potential, but this time we considered
the potential at the ball’s location as well. We found out the difference in potential between
that of the ball’s location and each of its eight neighbors. We then move the ball to the
location with maximum positive difference, if that location is empty. If that location is not
empty, we find the location with the second highest positive difference and move the ball
there. Otherwise, the ball is left untouched. Once this direction that the agent is supposed to
be moved in is found out, we update the grid that was being used to track the balls, we add
this ball to the list of balls that have received an update in this iteration, and we also check
to see whether any of the eight new neighbors of the ball are boundary points, and if so, we
update the potential of the ball’s location to zero, we add it to the list of locations that count
as boundary points, and we recompute the potential at all the locations in the next iteration.

A few iterations of the potential model with a 20 X 20 square grid and 30 balls has been
shown in Fig. 3.8. We see that all the balls start somewhere near the center, the locations
were drawn from a 2d Gaussian distribution. We initially see the entire mass shifting towards
the top left corner, that is because that’s a region of lower potential, but we also observe some
chaining. Some chains completely break away from the central mass, thus not replicating
what we saw in the experiment. This behavior is needed since in our bigger picture, we want
the drones to communicate back to the central base station in a peer-to-peer manner and
hence it needs other drones to form a chain till the central station.

We tried increasing the number of balls to resemble the original ball bearing experiment.
We took a 40 X 40 grid and 100 balls. The iterations are shown in Fig. 3.9. We again
see the mass of balls moving towards the rim, again because of the fact that the boundary
points start off with zero potential, which is the lowest and by the averaging of the neighbors
logic we used to determine the potential of a location, the gradient is towards the rim. We
again see similar behavior where some chains are formed but the chains lose contact with the
central mass. We discarded this approach as it wasn’t replicating the behavior seen in the
experiment. The physics and calculus involved were much more nuanced and we couldn’t
model in all the laws. Electrons are discrete entities and one of the first deviations from
the actual experiment is that we didn’t account for how many electrons land on each ball
per step. We also didn’t account for charge lost automatically, as in due to some electrons
travelling the whole way through the oil to the outer ring. This will be proportional to the
squared distance to the ring. Also, to get to the attracting outer rim, the balls need to move,
which costs energy. In other words, when they move, they lose some of their charge. We
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

(g) Iteration 7 (h) Iteration 8 (i) Iteration 9

Figure 3.8: Iterations from the potential model with N = 20 and m = 30: the white squares
show the location of the balls.
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didn’t experiment with how much charge is lost per distance.

3.2.7 Visualization and phase 2

We also created visualizations as each of the aforementioned approaches went through the
different iterations, by putting together the snapshots pertaining to each iteration and
converting that to a video. We wrote a utility code called the visualizer for this purpose. It
has functions that generate animations of the generated plots over different iterations. It
runs the plotter with specified engines and saves figures as well. This helps in easily following
the path of different ball bearings and in seeing how similar or different each approach is as
compared to the original experiment. One of the initial issues we faced with our visualization
was that all the particles were in the entire field of view all the time. So, for instance in
the simple case with only Coulombic forces in action, the video started off showing the
entire central mass in full screen and as particles moved away from each other, the axes were
correspondingly scaled but one couldn’t clearly see the particles move outwards. Similarly, in
the shooter agent case, instead of looking like the agents were shooting out of the central
mass, it looked like the the central mass was contracting and shrinking away from the shooters
which were just at their place. This issued was fixed simply by preventing the scaling of the
axes.

We went ahead with the shooter model and the discretized grid as that was the approach
that most closely resembled the original experiment. The first leader touching the rim of the
petridish marks the end of phase 1. In phase 2, as has been described before, the ball bearings
sort of spread around trying to cover as much area as they can while still maintaining contact
with their chains. The chains start snaking and twist and twirl, and this also helps with our
big picture of implementing this approach to determine an ideal path for a swarm of drones
to cover as much area as possible in a specific region. To this end, apart from updating the
radial position, we realized that we also needed to update the angular position of the ball
bearings. Given a certain angle to update the position of an agent, the ball bearing was
moved by that many radians in the required direction, and then if the new position was not
one of the allowed positions, then just like with the position update case, we found the slot
closest to the current location that was an allowed slot and moved the ball there.

To replicate the snaky motion, we initially just decided to move every odd numbered
ball, starting from the leader, in one direction, say left; and every even numbered ball to the
right. On running the simulation, we realized that some degree of randomness was needed as
this made all the chains, except the one that has made a connection with the rim, behave
similarly. We then flipped a coin for each agent and let it decide whether it wanted to move
left or right by a radian. This ensured that there was enough randomness in the system. But,
the connections between agents in a chain was getting broken. We then used alternate agents
as anchors, not letting them move in a given iteration, and using the ones that moved in this
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

(g) Iteration 7 (h) Iteration 8 (i) Iteration 9

Figure 3.9: Iterations from the potential model with N = 40 and m = 100: the white squares
show the location of the balls.
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(a) (b) (c)

Figure 3.10: A few iterations from phase 2 of the shooter agent and the discretized grid
approach.

iteration as the anchors for the next iteration. This idea helped keep the connections intact.
We also imposed a threshold on how far an agent can move away from another agent it’s in
contact with to prevent large deviations. Sizes of the agents were also maintained, which was
especially important when two chains snaked and came close to each other, situations pretty
similar to collisions described and dealt with before.

When we looked at our simulations again, we realized that the free agents were not getting
any updates in phase 2. Coulombic forces are still in action and even though they don’t
contribute much covering maximum area directly, they still help indirectly because by moving
closer to an existing chain, they provide a path for the agents in that chain to transmit the
information back to the central mass, in the case where the agents are replaced by drones.
So we incorporated those updates as well. Again, collisions were taken care of. A couple of
iterations of phase 2 are shown in Fig. 3.10.
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Chapter 4

Heatmapping

4.1 Theory
Layer-wise Relevance Propagation (LRP) is a method that identifies important pixels by
running a backward pass in the neural network. The backward pass is a conservative relevance
redistribution procedure, where neurons that contribute the most to the higher-layer receive
most relevance from it [19]. A pictorial representation, from the heatmapping.org website, is
shown in Fig. 4.1

Figure 4.1: Layerwise relevance propagation procedure
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Deep Taylor decomposition is a method to explain individual neural network predictions
in terms of input variables [7]. This provided a much-needed push in the AI community
towards not only the need for, but also a method to achieve, explainability. It operates by
running a backward pass on the network using a predefined set of rules. It produces as a
result a decomposition of the neural network output on the input variables. A heatmap is
basically an assignment of these relevance scores onto pixels/input features. Deep Taylor
Decomposition can be used as a visualization tool, or as part of a more complex analysis
pipeline. The inspiration for Deep Taylor decomposition, as described by the authors [7], was
derived from the way error backpropagation operates: dissociating the overall computation
into a set of localized neuron computations, and recombining these local computations in an
appropriate manner, similar to the chain rule for error backpropagation.

A decomposition seeks to redistribute the whole predicted output onto inputs, which
in our case are the pixels of the input image. Decomposition techniques, as opposed to
sensitivity etc. which only measure a differential effect, seek to explain the prediction in
its entirety. It operates on a more global scale. The authors did introduce some positivity
constraints as well, to prevent the possibility of a decomposition where a really large positive
and a really large negative relevance values are assigned such that their sum is a small desired
value. Consider xf to be the final output and [xf ]p to be the contribution of xp to the output.
As we just discussed, we enforce the positivity constraint:

[xf ]P ≥ 0, ∀p

And then, the main idea behind decomposition being:∑
p

[xf ]p = xf

As has been discussed, we’ll start with the last layer and find the contribution of each
neuron there to the output and iteratively keep coming back and redistributing the relevance
till we reach the input layer. Now consider a neuron xj and let’s say we have found out that
it contributes [xf ]j to the output. Now the question is: how to redistribute this [xf ]j to all
the neurons in the previous layer that are connected to xj. Consider any one such neuron
and let’s call it (xi)i, where it’s the ith neuron in the ith layer, which is the previous layer,
say. We want to find something like [[xf ]j ]i. To solve this issue, the authors went ahead with
an assumption that we can write [xf ]j = cjxj, where xj is the neuron activation and cj is
a factor by which the neuron activation affects the contribution, with the added constraint
that cj ≥ 0. This is a very convenient assumption that leads to distributions that satisfy all
the properties and constraints mentioned till now.

The interested reader may refer to the original paper [7] which explains the concepts
of root points, search directions, and the use of Taylor decomposition to arrive at the final
result. We’ll take a more intuitive approach to it. The ith neuron in the ith layer has an
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activation xi. Now, out of all the neurons in the ith layer, which interact with the neuron
with activation xj through weights wi′j, where i’ is any neuron in the ith layer, it intuitively
makes sense that the fraction of the relevance that should be redistributed on the ith neuron
should be something like pijwij∑

i′ pi′jwi′j
. Now pij should depend on the neuron activation xi, and

given that we are using ReLU activations, we should only consider those weights wij that are
non-negative. The authors reach the same conclusion in the paper [7]. There’s one additional
thing, what we get from doing whatever has been described till now is the contribution of
the ith neuron in the ith layer that it gets from xj, but this ith neuron of the ith layer also
interacts with other neurons in the next layer, so we need to sum up the contributions from
all such neurons that this neuron interacts with:

[xf ]i =
∑
j

xiw
+
ij∑

i′ xi′w
+
i′j

[xf ]j

.

4.2 Preliminary Experiments - MNIST dataset
The first task was to reproduce the task of predicting handwritten digits by training a neural
network on the MNIST data set and the associated Layerwise Relevance Propagation (LRP)
demo which results in a heatmap that highlights the regions of the image, basically the
pixels, in proportion to how relevant they are in predicting the output. A couple of different
architectures were tried out. The first one was a fully connected neural network with two
hidden layers having 250 and 100 neurons respectively, with ReLU activations. The network
was trained for 75 epochs, at which point the test error was at 1.12%. Following the steps
outlined in the heatmapping tutorial at heatmapping.org and the corresponding paper on
Deep Taylor Decomposition [7], a global propagation procedure from the top to the bottom
of the network was implemented. The method described there iteratively visits layers of
the network in reverse order, calls the propagation function of each individual layers, and
feeds the output of each called function to the function of the previous layer, pretty much
like how gradient propagation is implemented. As is described by the authors, relevance
propagation operates at a higher level of granularity than standard gradient backpropagation.
In particular, it considers as a layer the pairing of a linear and ReLU layer. Instead gradient
propagation implementations typically treat them as two separate layers.

Next, I am going to describe the propagation rules for a linear-detection layer. This is
affected by the input domain. Both of these rules are from the aforementioned paper, and
as is explained there, the z+-rule applies to layers with positive input domain (e.g. hidden
layers receiving as input the ReLU features of a previous layer) and the zβ -rule, applies to
box-constrained domains (e.g. input layer receiving as input pixel values). The rules are
being replicated here, from the tutorial at heatmapping.org and from [7]. The z+-rule is
defined by the equation:
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Ri =
∑
j

xiw
+
ij∑

i xiw
+
ij

Rj

where Ri is the relevance of the ith neuron of some layer in predicting the output, wij
is the weight assigned to the edge connecting the ith and the jth neurons. This is sort of
intuitive actually, just by looking at the equation (and forgetting the non-linearity for a
moment), we see that the procedure starts from the output and moves backwards. So, at any
stage, we have the relevance of all the neurons in the next layer. To find the contribution of
the ith neuron in the current layer, we simply visualize it as contributing something to each
neuron that it is connected to in the next layer (the outer summation), and how much is
it contributing to a particular neuron in the next layer: that is simply in proportion to its
output times the weight as compared to that of all the neurons connected to this specific
neuron in the next layer under consideration. Now, to account for the ReLU nonlinearity,
we only take those weights that are positive. This method is very intuitive and does satisfy
certain constraints like positivity and summation, though the correctness of just saying that
the relevance is proportional to the function value needs more justification. Certain small
things had to be taken care of such as what happens when none of the inputs of a layer
contribute positively to the neuron activation etc. To make the computations faster, it’s often
a good practice to vectorize the operations. We can look at the above rule as the following
sequence of operations [7]:

∀j : zj =
∑
i

xiw
+
ij∀j : sj = Rj.z

−1
j ∀i : ci =

∑
j

wij
+sj∀i : Ri = xi.ci

For layers whose input activations belong to some closed interval [li, hi], the zβ-rule is
defined as follows [7]:

Ri =
∑
j

xiwij − liw+
ij − hiw−

ij∑
i xiwij − liw

+
ij − hiw−

ij

Rj

As is known, MNIST images are 28X28, are often converted to a 1X784 vector. We stored
all the images in this format, and scaled them so that the values lied between -1 and 1. The
target labels were one-hot vectors of length 10. We ran the classic feedforward pass on the
network. This helps in getting the neuron activations at each layer and completes the beaten-
to-death MNIST classification task. Only retaining the part of the output corresponding to
the correct class, the output was backpropagated. The heatmaps we obtained were similar
to the ones obtained by the original authors, and it is seen that the heat is spread more
exhaustively on the contour of the digit. The heatmaps obtained are shown in Fig 4.2. We
also needed to understand how to implement the relevance propagation procedures w.r.t.
CNNs, and there were certain modelling artefacts in the MLP implementation, so we looked
at a CNN implementation as well, for this MNIST classification task, again from the same
tutorial.
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Figure 4.2: MLP - Deep Taylor

Figure 4.3: CNN - Deep Taylor

Since most of our main task (to be described later) was dealing with images, we had to
deal with CNNs, and especially with propagating the relevance between a Conv/pool layer
and a fully connected layer. This was one of the few things missing from the tutorial, but
we were able to leverage the previously applied techniques by simply reshaping the outputs
of different layers so that the shapes matched. Next, we describe the relevance propagation
for CNNs. We used the LeNet-5 architecture described by LeCun et. al. in [24], with ReLU
nonlinearities. One top-level pooling layer was added to further increase global translation
invariance, as this was suggested by the authors of the tutorial. A test error of 0.81% was
achieved after training for 15 epochs. Now we have to deal with convolution and pooling
layers, for the decomposition of the output, and the rules for these can also be expressed in
terms by feedforward activation and gradient propagation (both of them performing efficient
multiplications by the weight matrix). The multiplication-type operations of both the z+-rule
and the zβ-rule can be expressed as forward computation and gradient propagation of cloned
layers with modified parameters. The proportional redistribution occurring in the sum-pooling
layer given by the equation [7]:

Ri =
∑
j

xiδij∑
i xiδij

Rj

, where δij is 1 if neuron xi is in the pool of xj.

Sensitivity analysis experiments were also reproduced from the original tutorial, both for
the multilayer perceptron case and this CNN case, but details about that have been omitted
for brevity. By inputting all the data as images of size 32X32X1, we obtain the heatmaps.
The heatmaps obtained are shown in Fig 4.3. Comparing these heatmaps with the ones
obtained from the MLP classifier, we see that the images are much more crisp here, in the
sense that the heat (the red spots) is more concentrated on where the digits actually are and
the background is pretty much completely white (less relevance). I guess this was expected
because the task, at its core, is an image classification task. MLP gives good results because
the task is a relatively easy one, one that requires very little capacity, but with other more
complex tasks, the difference will be pronounced.

What we finally used in our main task, which is described in the next subsection, is
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Figure 4.4: CNN - Alpha Beta

something called the LRP − αβ rule, which helps increase the focus of the heatmaps and
leverages the spread of heat very effectively [7]. One obvious question that came to our minds,
and to the minds of the authors of the tutorial I believe, is whether negative relevance can be
leveraged somehow. Given that we know the total number of classes in advance, we can think
about why an image is not classified as something else (negative relevance) and whether that
will help. We delve deeper into this in our discussion about our attempts to make the testing
phase of classification using heatmaps, where the true label in not known yet is needed for
generating heatmaps, faster and more efficient without having to try out all the classes. At
this point, we just describe the implementation and the rule as described by the authors, and
the application to MNIST data.

With the above objective of increasing the focus of the heatmaps in mind, it was found
that injecting some negative relevance into the redistribution process helped. The LRP rule
generalizes the z+-rule mentioned before and we reach the z+ rule simply by plugging in
α = 1 and β = 0 in the following rule [7]:

Ri =
∑
j

(α
xiw

+
ij∑

i xiw
+
ij

− β
xiw

−
ij∑

i xiw
−
ij

)Rj

This negative relevance that is being injected in a way that is controlled by us has an
inhibitory effect on neurons in the higher layers. This rule also satisfies relevance conservation
between layers, as it should. The case where all the weights are of the same sign are also
handled well. In the absence of negative weights, this implementation redistributes counter-
relevance uniformly to all input neurons. The heatmaps obtained using this rule, with the
value of alpha set to 2 (recommended), for the set of MNIST digits we selected, have been
shown in Fig.4.4.

We see a few blue regions in the images here, those are the ones depicting negative
relevance. If we look at some of the 8s shown, the loop isn’t complete, and that’s what the
blue region shows. It says that that’s a local irregularity, 8 is supposed to have complete loops.
We see that the heatmap isn’t as dense as seen earlier. Again, the heatmaps concentrate the
heat on the region where the digit is present and assign very little relevance to the background.
This is the rule we used in our main task, as we felt that this gives more information as
we learn about what a template for each class should look like according to the machine
or the presence/absence of certain characteristic features (such as a cat’s ears or whiskers
when it comes to a cat/dog classifier) that distinguish one class from another. This will not
only inform humans about what features does the machine look for, it might also lead to
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characteristics that humans might have never thought would be distinguishing (obviously, not
every group of pixels seen by the computer as distinguishing would make sense to a human).

4.3 Centrifuge classification
This project was part of a larger effort to detect centrifuges in images. Centrifuges are used in
nuclear power and nuclear weapon programs to enrich rare isotopes relevant to nuclear energy
(such as Uranium-235) out of the mixture of isotopes found in naturally occurring compounds.
Finding whether an image, obtained using satellite imagery or otherwise, has a centrifuge can
be useful for national security purposes. Going manually through each image is not feasible
and in scenarios like this, it’s often important to understand why a machine thought that
there was a centrifuge in an image. Interpretability and explainability are important and
sometimes also help us see and understand things that human eyes might miss.

The first task was to classify a given set of images as being/having a centrifuge or not.
We had a few images which had centrifuges in them, and hence served as ground truth (NFC
imagedata). Given that manual annotation is both expensive and time consuming, this corpus
was rather small, with about 300 different centrifuge images, classified into subcategories
such as BWR Fuel, Magnox Fuel , Cooling Tower, Magnox Fuel, Reactor fuel pools, Reactor
core fuel matrix, UF6 cylinders 30, and UF6 cylinders 48. For our purposes, all of these were
under the broader umbrella (and hence the single class) of centrifuges. We got images of cats
and dogs from the internet and used that as the not-centrifuge class. We scraped about 300
images of the not-centrifuge class as well. The dataset was roughly divided in a 5:1:1 ratio
as training, validation, and test set. By stratified sampling, we ensured that each set had
images from all the subclasses so that the distribution from which the images are drawn is
similar for training, validation, and test sets.

We read each image in each of the folders (train and test, and 2 classes), resized them to
a standard size of 150X150X3, reshaped them to #channels X height X width, and appended
them to a list, which was then stacked. All of these were then typecasted to uint8. We
skipped images that didn’t have three channels, as the number of such images was so little
that taking care of that issue didn’t seem to be very useful. Labels were assigned to all the
images, and then the labels were converted to categorical variables. We went ahead with a
CNN architecture as the task was that of image classification. We tried filters of sizes 16, 32,
64, and 128; kernels of sizes 3X3, 5X5, and 7X7; pooling area for max pooling of sizes 2X2,
3X3, and 4X4; stride of 1 and 2 in both directions etc. in a grid-search manner. There were
two conv layers with ReLU activations, each followed by a pooling layer. The images were not
padded, hence the output size was smaller than the input size. Glorot normal initialization
was used (also called Xavier normal initialization). From the documentation, it draws samples
from a truncated normal distribution centered on 0 with stddev =

√
2

(fan_in+fan_out)), where
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fan_in is the number of input units in the weight tensor and fan_out is the number of output
units in the weight tensor.

We got the best result with 64 filters, a kernel size of 3X3, pooling size of 4X4, and
a stride of 1 in each direction. The output of the final pooling layer was flattened and
passed through a fully connected layer consisting of 10 times the number of neurons as
there were classes, with ReLU activation. This was followed by dropout. We tried playing
around with the number of fully connected layers and the number of neurons and this
produced the best results. This was followed by one more fully connected layer with 2
neurons and a softmax activation function. We also tried different optimizers, such as
Adam (learningrate = 1e− 3, β1 = 0.9, β2 = 0.999, ε = 1e− 06), Nesterov Adam Optimizer
(learningrate = 1e− 3, β1 = 0.9, β2 = 0.999, ε = 1e− 06, scheduledelay = 0.0001), and SGD
(learning rate = 0.01). Categorical crossentropy was used as the loss function and the metric
to be optimized for was accuracy. We tried another model with a very similar architecture,
but with 64 neurons in the fully connected layer, binary crossentropy as the loss function, a
sigmoid activation function after the last layer (which had only 1 neuron), and rmsprop as
the optimizer. After training for 50 epochs, the best accuracy from either of these models
was 58.16%, which is only slightly better than a coin flip. We realized that the major issue
here was the lack of enough training data, so we decided to try something different.

Since the amount of training data was less, we turned to using a pretrained model. We
went ahead with VGG16 trained on Imagenet[12]. Researchers at Oxford came up with this
model, which won the 2014 ImageNet images classification challenge, and the ease with which
one can simply load and use the model weights made it a good choice. VGG16 has since then
been used in a lot of transfer learning settings, where these pre-trained models are used with
minor modification on wholly new predictive modeling tasks, harnessing the state-of-the-art
feature extraction capabilities of these proven models. The final few layers often need to be
retrained to fit to the task under consideration. We used the Keras deep learning library as
it provides an application interface for loading and using pretrained models. There are two
versions of the VGG model that the authors put out, a 19 layer model and a 16 layer model.
We went ahead with the 16 layer model. The model expects inputs of a particular shape,
specifically 224X224X3, so we had to reshape all our input images, which were of several
different shapes. The architecture of VGG16 is shown in Fig.4.5.

Given that we are using this pretrained model for our own problem in a transfer learning
framework, we chose the option to not include the top output layers, as those are very specific
to the problem it was trained on. We added a couple of fully connected layers with softmax
activation and trained these on our dataset. We did retain the weights of the convolutional
layers from the original model, using those layers as feature extractors, as it was obviously not
desirable to just retain the architecture and train it from scratch due to the lack of enough
training data (and hence to avoid overfitting) and the required computational power. Most
of these models learn hierarchical representations, that’s why transfer learning works well.
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Figure 4.5: The original VGG16 architecture. The block marked in red is the one we played
around with, in terms of the number of layers, number of neurons in each layer, activations,
dropouts etc. The layers in this block were retrained on our data to fit our task. The weights
in all the convolutional layers prior to this block were retained and those layers were used as
feature extractors.
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The first few layers learn general features (such as edge detection etc.) which can be reused
across datasets and tasks, whereas the final few layers (which we retrained) are specific to
the problem at hand. Also, the thumb-rule for using transfer learning over something like
fine tuning is that the dataset should be small and the task should be similar, both of which
hold to a good extent in our case.

The images are loaded using the load_img() function. Keras by default uses the PIL
format, so the images are width X height X channels. Keras works well mostly with NumPy
arrays, so the images had to be converted from pixels to arrays. One of the preprocessings
done in the original paper [12] was that they subtracted the mean RGB value, computed
on the training set, from each pixel. We did so as well, since the pretrained network is used
to such inputs. Also, we removed all the images which were grayscale or had 4 channels
as these were in some sense, outliers. Finally we stack all the images up as the input that
Keras expects is a 4 dimensional tensor, samples X width X height X channels, this is called
batching. There are a lot of convenient functions and classes which help us load images and
batch them, from their respective folders. We used the ImageDataGenerator class to load
the images and flow_from_directory function to generate batches of images and labels. One
of the things that we observed was that the output was a 7X7X512 shaped 3-dimensional
tensor. We added a sequential model on top, with a fully connected layer consisting of 250
neurons and a ReLU activation, followed by dropout, followed by another fully connected
layer with 2 neurons (equal to the number of output classes) and a softmax activation.

After loading the images and generating batches of features and labels, for both the train
and the validation set, the top layers were trained using categorical crossentropy as the loss
function, and RMS Prop as the optimizer. Accuracies of around 90% were obtained on the
validation set for this binary classification task. The model weights were stored for future
use. Then we ran some basic checks such as visualising which images were wrongly classified
etc. We observed that more images from the not-centrifuge class were wrongly classified.
Given the higher variance of the images in the not-centrifuge class, this wasn’t surprising as
that meant that a network with a higher capacity would be needed to accurately classify the
images in that class.

The complete architecture of both the VGG16 model and the FC layers was defined,
and the weights and bias parameters of each layer were instantiated, as this was needed
for the heatmapping part. Heatmapping is a technique to decompose the prediction of a
neural network in terms of contributions of individual input variables such that the produced
decomposition can be visualized in the same way as the input data. A heatmap, in our case,
is thus an assignment of the scores onto pixels, based on their relevance in predicting the
outcome [6]. Layer-wise Relevance Propagation (LRP) identifies important pixels by running
a backward pass in the neural network. Firstly, the global propagation procedure from the
top to the bottom of the network was defined. Deeptaylor propagation [7] rules (LRP is a
deeptaylor decomposition of the prediction function), which are just a combination of the
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Figure 4.6: An example heatmap belonging to the centrifuge class

feedforward activations and gradient propagation, were implemented in the convolutional
and pooling layers, as well as the FC layers. For the FC layers, a feed-forward pass was run
to collect neuron activations at each layer, and only the part of the output corresponding to
the correct class was kept. The backward pass was a conservative relevance redistribution
procedure, where neurons that contribute the most to the higher-layer receive most relevance
from it. So basically, layers of the network were iteratively visited in reverse order, propagation
function of each individual layer was called, and output of each called function was fed to the
function of the previous layer.

All the images were resized to 1 X 224 X 224 X 3, which was the standard input size we
chose. A forward pass was run through the convolutional and pooling layers, and the output
was collected, reshaped appropriately, and fed into the fully connected layers. Then, the
output of that was sent to the backward pass and once we reached the first fully connected
layer (last fully connected layer, coming from the back), which acted as a boundary between
the fully connected and the convolutional parts of the network, the relevances there were
redistributed accordingly taking into consideration the output at the convolutional layers.
Then, these relevances were further propagated backwards through the convolutional and
pooling layers till we reached the input layer. We converted RGB to grayscale and used
helper functions to visualize the heatmap. An example heatmap is shown in Fig.4.6.

We did look at the heatmaps of a few images that were incorrectly classified. The regions
highlighted in red (the regions with higher relevance, according to the network) did resemble
eyes and other features from other classes, even though as humans, we could see barrels and
cooling towers. Similarly, in certain images with cats and dogs, the background had a barrel
or a pot and that was the region that was highlighted, and hence the image was wrongly
classified as a centrifuge. There were interesting outcomes when we passed these images as
part of the training set with labels. For instance, we took an example image which had a cat
in the foreground and a huge flower vase in the background, as shown in Fig 4.7. When we
told the network that the label was a centrifuge, it highlighted the vase, and when we said it
was a cat, it highlighted the cat, both with probabilities very close to 1.
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(a) Heatmap with ‘cat’ as the label (b) Heatmap with ‘centrifuge’ as the label

Figure 4.7: An example containing characteristic features of multiple classes, thus making it
harder for the network to classify

4.4 Other attempts
We also experimented to see if heatmapping could be used to correct labels in geotagging. We
basically had a geolocation model inspired by the ideas presented in [22]. The data we used
is from the geotagged images in the YFCC100M Multimedia Commons dataset. Training,
validation, and test images were split so that images uploaded by the same person did not
appear in multiple sets. The classes were created with the training data using Google’s S2
Geometry Library as described in the [22]. This data did not have GPS labels though. We
also looked at the Google landmark dataset released on Kaggle [18] for a recognition task.
Our basic aim was this: all these images had tags which would give more information about
the image. But some of the tags were either wrong or couldn’t be seen in the image. We
wanted to clean up the tags using heatmapping. The basic idea was to come up with a
template heatmap for each class, by looking at the heatmaps for all the examples in the
training set, and then removing a label from an image if some metric of the image under
consideration was greater than a threshold value from the template.

We ran into several issues with this approach. Firstly, none of the approaches we tried
served as promising candidates for what a template heatmap would look like for a class.
Approaches such as averaging all the heatmaps, which worked for simpler datasets such as
MNIST, didn’t work with noisy images as seen in Fig.4.8. Some approaches didn’t work in
lieu of the fact that the main object in each image was present in different locations and the
picture was taken at different angles. The definitions of the metric as well as the threshold
were fuzzy as well. We used the sum of the absolute differences of the pixel values as the
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(a) Heatmaps of digit 0 averaged (b) Landmark heatmaps averaged

Figure 4.8: Averaging to obtain a template heatmap

metric which again ran into issues due to noise. We then only looked at the regions with
high relevance but there was no quantitative measure to say that this was a good metric. As
for the threshold, we just used the maximum difference between the template and any given
image in the training set.

We then turned to Regional Maximum Activation of Convolutions and used the Keras
implementation of that, as described in [9], [2], and [17]. The architecture of the model is
as shown in Fig.4.9. In the original paper, the authors re-visit both filtering and re-ranking
retrieval stages by employing CNN activations of convolutional layers. The compact vector
representation encodes several image regions with simple aggregation method and is shown
to outperform state-of-the-art competitors. The localization increases the performance of
the retrieval system that is initially based on a compact representation. The same CNN
information adopted during the filtering stage is employed for re-ranking as well. We employed
this to find where the object of interest is in the image, and then use the heatmap of only
this region of interest for our purposes of creating a template. This approach also suffered
from some of the issues described above.
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Figure 4.9: Architecture of the RMAC feature extractor
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Chapter 5

The data processing inequality

5.1 Experimental procedure
The task was to classify a given set of images as being/having a centrifuge or not. The
centrifuge images were obtained from NFC imagedata 1 and the images for the other class
were images of cats and dogs scraped from the internet. Since the amount of training data
was less, a pretrained model, VGG16 trained on Imagenet [12], was used. The weights of the
convolutional layers were retained from the original model, thus using those layers as a feature
extractor, and the top fully connected layers were trained on our dataset for our classification
task. After loading the images and generating batches of features and labels, for both the
train and the validation set, the top layers were trained using categorical crossentropy as the
loss function, and RMS Prop as the optimizer.

The complete architecture of both the VGG16 model and the FC layers was defined,
and the weights and bias parameters of each layer were instantiated, as this was needed for
the heatmapping part. A heatmap, in our case, is an assignment of the scores onto pixels,
based on their relevance in predicting the outcome. Layer-wise Relevance Propagation (LRP)
[6] identifies important pixels by running a backward pass in the neural network. Firstly,
the global propagation procedure from the top to the bottom of the network was defined.
Deeptaylor propagation rules [7] (LRP is a deeptaylor decomposition of the prediction func-
tion), which are just a combination of the feedforward activations and gradient propagation,
were implemented in the convolutional and pooling layers, as well as the Fully Connected
(FC) layers. For the FC layers, a feed-forward pass was run to collect neuron activations at
each layer, and only the part of the output corresponding to the correct class was kept.The
backward pass was a conservative relevance redistribution procedure, where neurons that
contribute the most to the higher-layer receive most relevance from it. So basically, layers of
the network were iteratively visited in reverse order, propagation function of each individual
layer was called, and output of each called function was fed to the function of the previous

1http://www.icsi.berkeley.edu/ fractor/NFC-imagedata.zip
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layer.

We tried a couple of things from here. In our first approach, we employed two neural
networks: the first neural network was trained on the given images, thus generating the
heatmaps. These heatmaps were then used as the input for the second neural network,
which did the final classification. The idea here was that given that the heatmap highlights
important regions in an image, training a new neural network on these regions of interest
would help the second neural network learn the characteristic features of that class. We
would then do the same thing for the test images. Given that the test images don’t have a
label, and that a label is necessary to generate the heatmap, we would first assign a label of
‘centrifuge’ to the test image and ask the neural network to highlight those parts of the image
that it thinks were characteristic for the image to be classified as a centrifuge. We then assign
a label of ‘not-centrifuge’ to the test image and again ask the network to highlight regions
of high relevance. We then pass these two heatmaps through the second neural network,
which was trained on heatmaps and hence has an idea of what the characteristic features of
each class would be, which then gives probabilities that the heatmap that came from the
part of the pipeline labelled ‘centrifuge’ is a centrifuge and the one from the other pipeline is
not a centrifuge. We simply compare these probabilities and make the final prediction. The
pipeline described here for testing is very similar to the pipeline we used for our approach
with ‘filtered’ images described slightly later, which has been illustrated in Fig.5.2.

As mentioned in the discussion section, we observed that the second network was over-
turning some of the right predictions made by the first network. So, in our next approach,
we looked at the prediction made by the first network and turned to the second network only
if the confidence of the first prediction was low. In another approach we tried to come up
with a weighted combination of the confidences of the predictions made by the two networks
for our final prediction. Given that we are using the LRP - αβ rule, there were blue regions
indicating negative relevance. In another approach, we incorporated that as well because
when the image was clearly that of a cat and we told the network to find the characteristics
of a centrifuge in that, it simply marked several regions blue showing why that image is not
that of a centrifuge.

For our next approach, we looked at the prediction made by the first network, generated
heatmaps for the case when the class was not the one predicted by the first network, passed
that through the second network trained on heatmaps, and looked at the confidence that
that image belonged to the class not predicted by the first network. To give an example, if
the first network predicts an image to be of class 0, we generated the corresponding heatmap
with the label of class 1, passed that heatmap through the second network and looked at
the confidence of it being class 1. If this confidence was high, we overturned the decision.
Firstly, we concede that this is harder to generalize for multiple classes, but that in some
sense holds for all our approaches because a heatmap needs a label and given that a test
image does not have a label, we have to generate a heatmap corresponding to each class in
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the dataset assuming in that pipeline that that class is the correct one. To tackle this, we did
another experiment where the goal was to look at the confidences of all the classes obtained
by passing the heatmap obtained by assuming any one class through the second network and
seeing if classes with really low confidences could be eliminated from consideration.

The next logical thing was to think about what would happen if we just looked at all the
pixels whose contribution was low and set those to zero in the original image, and retrained
the network with these images. The first approach here was to look at the three channels in
the heatmaps. We know that the relevant regions are highlighted in red, hence we looked
at whether the value in the red channel was considerably higher than those in the other
two, and if not (with the threshold being a difference of 0.1, after some tuning) we would
blacken out that pixel in the original image because those are not regions of high relevance.
This approach suffered a lot due to it being not dependant on the data itself and a lot of
images where the most relevant regions were only slightly red got affected. Also, images with
blue regions were not being focused on since we were looking only at the red channels and
negative relevance was indeed a big factor to consider. We wanted an approach that filters
based on the relevance values in each image. Hence, we employed two neural networks: the
first neural network was trained on the given images, thus generating the heatmaps. We
plotted a histogram of the relevance scores obtained from the heatmaps. We observed that if
we took the absolute values of the relevances, then those bins with lower absolute values (low
relevance, irrespective of positive or negative) had lots of pixels, and were noise. The bins
with high absolute relevance values had only a few pixels, showing that both the positive and
negative relevance pixels are important indicators. After adjusting for positive and negative
relevance, we heuristically blackened out the pixels in the lowest two bins, using the logic
that these pixels are mostly background noise as they are not contributing much to the final
prediction, and that their removal would be akin to passing the image through a filter, which
would result in better classification accuracies. A second neural network was trained on these
‘filtered’ images (Figure 5.1).

Figure 5.1: Training phase: an example of the not-centrifuge (cats/dogs) class is shown here.

During the testing phase, since the true label is needed for generation of the heatmaps, we
passed the given test image through two pipelines. In the first, we assumed that it belonged
to the centrifuge class, generated the corresponding heatmap, filtered it as described above,
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passed the filtered image through the second network, and obtained the probability that it
belonged to the centrifuge class. In the second pipeline, we did the same thing, except that
we assumed that the image belonged to the ‘not-centrifuge’ class. Finally, these probabilities
were compared, and if the probability that the given test image belongs to the centrifuge class
from the first pipeline was higher than the probability that it belongs to the ‘not-centrifuge’
class from the second one, we predict its class as centrifuge, and so on. (Figure 5.2). All our
work can be reproduced using the attached Jupyter notebook.

Figure 5.2: Testing phase: an example of the centrifuge class is shown here. In the top
pipeline, we assume that the class of the image is 0 (centrifuge) and we get a heatmap
with that assumption. The histogram has been omitted here for brevity. The filtered image
obtained after blackening the pixels with low relevance is then fed to the second network,
which outputs the probability of the image belonging to class 0 and to class 1. pij here
corresponds to the probability of the label being j for assumed label i. In the bottom pipeline,
we assume that the class of the image is 1 (not-centrifuge). This has to be done since the
label is needed for generating heatmaps and the true label is not known for a test image.
We see that the heatmap shows a lot of negative relevance (blue color). The filtered image
obtained here doesn’t blacken out most of the background like is the case when the label is
correct (top pipeline) because here we are telling it to find relevance that it is not a centrifuge.
The final decision is made this way: if p00>p11, we declare that it is class 0; if p00<p11,
then class 1, if p00 = p11 and p01<p10, class 0; else class 1.

5.2 Results
87.36% accuracy was obtained on the validation set for the binary classification task, during
retraining of the top layers of the VGG16 model. The accuracy obtained with the approach
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where we fed heatmaps as the inputs to the second network was 82.66%. The accuracy with
the approach where the second network was called into action only when the confidence
of prediction was low for the first network gave an accuracy of 82.92% and the accuracy
didn’t change much when we incorporated the negative relevance. The accuracy dropped
a bit when we tried looking at heatmaps corresponding to the class not predicted by the
original network. The accuracy obtained with the filtered images was 85.26%, which was
lesser than that obtained with just the original architecture without the heatmapping part,
but higher than all the other approaches. The experiment was repeated multiple times and
the same results were observed every time. Most of the misclassified images belonged to
the not-centrifuge class, which was understandable as that class had higher variance among
the images and hence required more bits/higher capacity for encoding. Another interesting
observation was that all the images that were misclassified by the original architecture were
misclassified by our entire pipeline as well. Hence, the heatmapping and filtering couldn’t
overturn any of the wrong decisions made by the first neural network.

5.3 Discussion
Talking about the approach where the heatmaps of the images were used to train the second
network and predictions were made using that, the accuracy went down by a good amount.
The idea in this approach was that given that the heatmap would highlight the parts of the
image relevant to predicting that class, we could use those as characteristic features of a class,
and when a test image comes in, its characteristic parts could be compared with the ones
that the network has learnt, thus making classification better. That did not work because
a heatmap can only explain why a network made a particular prediction and not overturn
wrong predictions. Let’s consider an example. Let’s consider an image that has a cat and a
flower vase in the background. Now, if the first network predicts that it’s a centrifuge, then
when we pass it through the second network, the vase would be highlighted more (when it
is sent in with a label of ‘centrifuge’) than what the cat would be highlighted (when it is
sent in with the label of ‘not-centrifuge’). This is so because the heatmap is just explaining
the network’s predictions and given that the network predicted the original image to be
a centrifuge, the characteristic features of that would be highlighted much more strongly
(because that’s what the network sees) than the features to say that the image was that of a
cat. This explains why the accuracy would not go up. Talking about why it went down, a lot
of information is lost when an image is converted to a heatmap, a simple example being the
fact that it is converted from rgb to grayscale. Some of these play an important role in the
classification, so sometimes the second network was overturning some of the correct decisions
made by the first network, and that led to a decrease in the accuracy. Interestingly, not even
a single wrong prediction made by the first network was being overturned.

The second approach where we look at the predictions made by the network trained on
heatmaps only if the confidence of the first network was low lead to a slight improvement in
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the accuracy, but that can not be attributed to the issue of the second network overturning
the first one’s right predictions having been tackled. We clearly observed a lot of cases
where that was still happening, and the definition of what a ‘low’ confidence meant was
a heuristic. It still suffered from all the issues that the first approach did and hence the
accuracy was still relatively low as compared to the approach with just the original network.
The approach where we explicitly included the negative relevance as a feature didn’t work for
a couple of reasons. Firstly, the network was already taking that into consideration while
making a prediction. Second, to train for that particular feature, we fed the same images
labelled as centrifuge once and as not-centrifuge the other time. The idea was this: if the
image was originally that of a centrifuge, the heatmap would have regions highlighted in red
corresponding to those pixels that help the network in making the prediction that it is a
centrifuge, and so when we tell the network that it is not a centrifuge, it highlights the same
regions in blue to say why it thinks it is not a ‘not-centrifuge’ image. So essentially we are
just feeding two images to the second network for training, with the only difference being the
color of the highlighted regions. This didn’t help the network learn anything more than what
it was learning already and hence there was no improvement seen in the accuracy.

There was a drop in the accuracy seen when we passed only the heatmap of the class
that was not the one that was predicted by the first network to second network. This was
because we are telling the network to look for regions that might show that it belongs to the
class not predicted by the first network and in certain cases, it was able to do that effectively.
Given that we didn’t have another heatmap, corresponding to the class predicted by the
first network, to compare with the confidences seen for the heatmap corresponding to the
class not predicted by the first network, that again was just a heuristic and despite some
tuning, it didn’t yield any promising results. Talking about our approach to tackle the issue
of having to generate as many heatmaps as there are classes for each test image, we observed
that the confidences corresponding to the other classes was not very informative. As in, if
we generate the heatmap for an image with an assumed label of class 0, and then pass that
through the second network and look at the probabilities that it belongs to classes 1, 2, 3,
and so on, those probabilities don’t tell you anything about whether there’s a need to look at
the heatmaps with those classes assumed to be the correct one. More often than not, the
probabilities were equally distributed on all the other classes, apart from the one assumed to
be correct in that round. In other cases, given that we had the ground truth, we observed
that there were several cases where the correct class had lower probability than most of the
other classes and disregarding that would harm us. This made sense because we are looking
at the pixels that contribute to the output being predicted as class 0, say (when the correct
label is class 3, say). So, the network will highlight in red those pixels which it thinks are
the reason why it is class 0, and these don’t help us in anyway to predict that it is class 3;
and will highlight those regions in blue which it thinks show that it doesn’t belong to class 0,
some irregularities, some features which are expected to be present were it class 0 but are not
present, again, this doesn’t say anything about it being class 3. There were cases where the
correct class had higher probability and those were when the network was able to highlight
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features not characteristic of class 0, but of class 3.

Finally, coming to the approach with the filtered images, we set out to improve the
classification accuracy by filtering out the noise in images using heatmapping. We observed
that the classification accuracy didn’t increase, rather there was a slight decrease. This
reiterates the data processing inequality, which states that information is never gained (usually
lost) when transmitted through a noisy channel. The heatmaps, which are used for filtering,
are obtained by passing the image through a neural network. This neural network determines
which pixels are important and which ones are not for the prediction, and hence, by zeroing
out the pixels that have very low relevance, we will never be able to increase the information
available. The neural network already uses this information to make the prediction, hence it
acts as a filter itself. But then, something should be different given that the ‘filtered’ images
have lesser pixels to deal with. We realized that fewer bits were required to encode the
information now, and hence an architecture with lesser capacity was sufficient. Leveraging
the work on capacity scaling laws [5], we are now working on dynamic network optimization.
The idea is to iteratively prune the network to obtain the network with the smallest capacity
(weights) that can still classify the given images without much loss in the accuracy.
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Chapter 6

Conclusion and Future Work

We tried several models to replicate the self-organizing behavior seen in the self-assembling
wires experiment, where ball bearings places in castor oil in a petridish under an electric field
form emergent structures. We discussed our approaches like the simple agent, the double
agent, the neighbor model, the potential model, the shooter agent, the shooter agent with the
discretized grid etc. The shooter agent with the discretized grid approach was the one that
resembled the strand formation and boundary formation phases the most. We then added
phase 2 into the model as well, but I guess this is where some more work could be done. As
of now, we heuristically move the ball bearings either right or left by flipping a coin while
ensuring that no collisions happen and that the peer-to-peer communication or the chains
are maintained. This doesn’t necessarily lead to them covering the maximum area.

The other direction that one could look at is how to collate the multimedia information
from different drones to increase the accuracy of object detection. Also, we did implement
Y-shaped branches in our approach, but that was based on heuristics and not any laws of
physics or fractals. It would be interesting to see what laws govern the formation of those
structures and in such a case what happens if multiple branches want to send information
back to the base station: how does one handle the case such that the messages don’t get mixed
up. I think the other interesting aspect to look at would be the 3d version of the problem:
right now, we are looking at the petridish problem which is essentially 2d. But drones can be
flying at different heights as well, and in that case, the peer-to-peer communication would
be possible within a sphere around each drone. The other interesting question is whether a
drone should only pass information through its chain: let’s say the leader of a drone is close
to some member of another chain and the path to the base station is shorter through that
chain than its own chain; can the leader then transmit information using that or should that
be prohibited as that might then involve having to figure out whether that chain itself is
trying to send some information of its own and if so how to route the two messages etc. The
accuracy of a drone’s GPS location adds additional complexity to the problem, especially in
cases where accurate objection detection is needed, and the errors might compound as the
information travels through different drones.
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We realized that simple adaptation rules were themselves doing a good job of making the
ball bearings ‘intelligent’, in such a way that they could self-organize. Then, to understand
how theoretically grounded adaptation rules would help other agents, such as neural networks,
to collaborate and self-optimize, we looked first at heatmapping and explainable AI to
understand how neural networks make predictions. We ran Layerwise Relevance Propagation
(LRP) to identify the important pixels by running a backward pass in the neural network.
We did some preliminary experiments on the widely used MNIST dataset and implemented
LRP for both a multi-layer perceptron and a CNN (and a combination of the two). We
clearly demonstrated the parts of the images that the network was looking at, which were
mostly just the outlines of the digits, to make predictions. We also showed the use of negative
relevance, wherein the network looked at some image and predicted that it does not belong
to a particular class as it was missing some characteristic feature of that class. We then
moved on to the actual task of interpreting a network’s decisions as to why certain images
were classified as containing a centrifuge and others as not. We used a pretrained model for
this task and characterised some features that the network looks for. We also tried to see
if heatmapping could be used to correct labels in geotagging, but that was an unsuccessful
attempt.

One case that is hard to distinguish is when characteristic features of both the classes exist
in an image. Depending on what label is assigned at training time, the network is able to find
parts of the image to justify that label with a very high confidence. The issue is when such
images show up in the test set. This is something to think about in the future. The other
problematic case was when certain images were very clear to the human eye as belonging to
a particular class but the network classified it as some other class and highlighted some part
of the image that didn’t seem like the characteristic feature of any class. That makes one
wonder why did the network miss something so glaringly obvious to the human eye. The
other direction one could explore is the geotagging task: to find a template heatmap for
different types of landscapes and given a newer image, using heatmaps, figure out whether
the image has the landscape mentioned in its labels or not.

Finally, we tried to explore the question of whether filtered images, obtained by blackening
out those parts of the image that don’t contribute much to the final output as determined by
the heatmaps obtained from one neural network, can help improve classification accuracy
when passed through another neural network. We realized that a heatmap can only explain a
decision made by the network and can not produce any new information in the process. As
the data processing inequality states, no information is gained by post-processing. Hence, this
didn’t lead to any increase in the accuracy. We have discussed a couple of different approaches
that we tried and how the accuracy varied with these approaches. We are repeating the
experiment for the CIFAR-10 dataset and expect similar results.

We realized in the process that though the classification accuracy can not be improved,
the system could be made more efficient. Given that fewer bits are needed to encode the
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newer images, an architecture with lesser capacity would be enough for the task now, and
that leads to a lot of savings in cost, time etc. A future direction of work would be to figure
out an ideal way to prune the network. Currently, works exist where people have tried to
come up with the most optimal architecture for a given task and dataset by using techniques
such as parameter sharing etc., but that involves brute force search over large solution spaces,
guessing and checking in a massively parallel way. Given that we have an exact way to
quantify how much each neuron contributes to the output, we can drop entire neurons or
some of the weights associated with it. And this could happen in an iterative manner such
that the network dynamically self-optimizes to reach an efficient architecture.

We finally conclude that the information content present in the observations/initial
conditions dictates accuracy, not the amount of collaboration. Collaboration therefore does
not improve accuracy once a single intelligence has enough capacity to tackle the problem.
This is often seen in multimedia communities where projects report that accuracy did
not increase by much, or in some cases didn’t increase at all, when other modalities were
incorporated. And that would be the case unless the new modality has some information
complementary to the information already captured by the existing modalities. Just having
more modalities does not guarantee an improvement in terms of accuracy. That does help
make the system robust though, as collaboration can be used to distribute the computational
load.
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