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Abstract

Sample Complexity Bounds for the Linear Quadratic Regulator

by

Stephen L. Tu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Benjamin Recht, Chair

Reinforcement learning (RL) has demonstrated impressive performance in various domains
such as video games, Go, robotic locomotion, and manipulation tasks. As we turn towards
RL to power autonomous systems in the physical world, a natural question to ask is, how
do we ensure that the behavior observed in the laboratory reflects the behavior that occurs
when systems are deployed in the real world? How much data do we need to collect in order
to learn how to control a system with a high degree of confidence?

This thesis takes a step towards answering these questions by establishing the Linear
Quadratic Regulator (LQR) as a baseline for comparison of RL algorithms. LQR is a fun-
damental problem in optimal control theory for which the exact solution is efficiently com-
putable with perfect knowledge of the underlying dynamics. This makes LQR well suited as
a baseline for studying the sample complexity of RL algorithms which learn how to control
from observing repeated interactions with the system.

The first part of this thesis focuses on model-based algorithms which estimate a model
of the underlying system, and then build a controller based on the estimated dynamics.
We show that the classic certainty equivalence controller, which discards confidence inter-
vals surrounding the estimated dynamics, is efficient in regimes of low uncertainty. For
regimes of moderate uncertainty, we propose a new model-based algorithm based on robust
optimization, and show that it is also sample efficient.

The second part studies model-free algorithms which learn intermediate representations
instead, or directly search for the parameters of the optimal controller. We first look at
the classical least-squares policy iteration algorithm, and establish an upper bound on its
sample complexity. We then use tools from asymptotic statistics to characterize the asymp-
totic behavior of both the certainty equivalence controller and the popular policy gradient
method on a particular family of LQR instances, which allows us to directly compare the
bounds. This comparison reveals that the model-free policy gradient method has polynomial
in state/input dimension and horizon length worse sample complexity than the model-based
certainty equivalence controller. Our experiments corroborate this finding and show that
model-based algorithms are more sample efficient than model-free algorithms for LQR.
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Chapter 1

Introduction

Reinforcement learning (RL) has achieved impressive performance in the past decade on a
wide variety of tasks across different domains such as video games [33, 81, 85], Go [103, 104],
robotic locomotion [56, 66, 69, 111], autonomous racing [91, 125], and object manipulation
tasks [59, 67, 68, 86]. Given these successes, it is natural to expect an increasing reliance on
RL in the systems that we interact with on a daily basis. While widespread deployment of
RL presents tremendous opportunities for our society as a whole, it is prudent to critically
examine the potential consequences. In particular, when RL is deployed in the real world
on a physical robotic system, how do we ensure that the system will act as it did in the
laboratory? Put differently, how much data do we need to collect in order to learn how to
control an autonomous system with a high degree of confidence?

In this thesis, we take a step towards answering these questions by establishing a useful
baseline for comparison of core algorithms in RL. We turn to one of the most fundamen-
tal problems in optimal control theory, the Linear Quadratic Regulator (LQR). The LQR
problem seeks to control a linear dynamical system, that is a dynamical system where the
state evolution equation is described by a linear function of the current state and input,
subject to a quadratic cost. We use LQR to understand the sample complexity of learning
to control an unknown dynamical system. A celebrated result in control theory states that
with perfect knowledge of the dynamics, an optimal control strategy can be exactly and
efficiently computed. Therefore, LQR is a useful baseline for delineating the performance of
methods which operate with imperfect knowledge of the dynamics.

We will study algorithms which broadly fall into two categories: (1) model-based ap-
proaches and (2) model-free approaches. While there is not a widely accepted technical
definition of what it means for an algorithm to be model-based or model-free, we will use
a common informal definition that describes model-based algorithms as those which, as an
intermediate step, build an estimate of the transition dynamics which is then used to solve
the control problem. On the other hand, model-free algorithms are defined as those which
either directly search for the optimal controller, or learn other types of representations (such
as value functions) as an intermediate step. It is important to note that this definition is
not absolute; hybrid approaches that build models and learn other representations are in-
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deed possible. This categorization into model-based and model-free is mostly for our own
understanding, helping us to group algorithms together in order to understand better how
they relate to each other.

One reoccurring theme we will see in this thesis is that learning the transition matrices
that describe the underlying linear dynamics is one of the most statistically efficient ways to
use the input/output data given to us, compared to learning other representations such as
value and state-value functions. As a consequence, both in theory and practice, we will see
that model-based algorithms tend to out-perform various model-free approaches for LQR.
A natural question to ask as the reader is, what is the overall takeaway from this finding?
We caution against coming to the näıve conclusion that model-based methods are always
preferable to model-free methods. Indeed, it is hard for the author to imagine that this is
true in full generality. Instead, the reader is asked to reflect upon why such a separation
exists for LQR. What we will see is that the structure of the LQR problem lends itself very
naturally to classical least-squares estimation of the linear dynamics, whereas estimating
other representations is less natural and less sample efficient. Hence the real takeaway from
this thesis is a lesson that we knew all along: take advantage of known structure when
possible, and use the right tools for the problem at hand.

1.1 Markov Decision Processes and the Linear

Quadratic Regulator

The Markov Decision Process (MDP) is the central object of study in RL. See Bertsekas
[14] for an overview of RL and fundamental results. An infinite horizon average cost MDP
is defined as a 4-tuple (X ,U , p, c) where X is the state space, U is the input space, p(·|x, u)
for x ∈ X , u ∈ U describes the probability distribution over the next state conditioned on
the pair (x, u), and c(x, u) denotes the stage-wise cost. The MDP task is to find a policy
π = {ut(·)}∞t=1 that minimizes the infinite horizon average cost:

J? = inf
π

lim sup
T→∞

E

[
1

T

T∑
t=1

c(xt, ut)

]
s.t. xt+1 ∼ p(·|xt, ut) . (1.1.1)

Here, each function ut(·) is allowed to depend on the history (x1, u1, ..., xt−1, ut−1, xt), but
not on the future values. This type of function is called causal.

In general, without any more assumptions, solving (1.1.1) is intractable, even given per-
fect knowledge of the dynamics p and cost c. The classic assumption of RL is that the
state space X and input space U is finite (this is often referred to as the “tabular setting”).
Under this finiteness assumption, algorithms based on dynamic programming such as policy
iteration or Q-learning can be used to solve (1.1.1). However, these algorithms typically
scale polynomially in the size of X and U , in both space and time complexity. While this is
feasible for small problems, when X and U become large (e.g. arising from the discretization
of a continuous space), then dynamic programming without any further structure becomes
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intractable. Therefore, since we are primarily interested in the application of RL for contin-
uous control problems, tabular methods are insufficient for our purposes.

One common assumption frequently made in the RL literature to move beyond a discrete
state space is the function approximation setting (see e.g. Tsitsiklis and Van Roy [115] and
the references within). The assumption is that we are given a finite set of basis functions
{φi(·)} such that the relevant quantities we are interested in can be well approximated in
the span of the basis functions. For instance, if we are interested in learning a value function
V π, we would assume that V π ≈ ∑iwiφi for some set of coefficients {wi}. It turns out
that many tabular algorithms have corresponding variants in the function approximation
setting. The function approximation setting is an important framework for RL that gives
us a natural way to tackle continuous state spaces, but it is still a very general setting. In
particular, minimal assumptions on the basis functions are assumed. Furthermore, given a
particular problem at hand, it is often not clear what basis functions to pick, and quantifying
the approximation error introduced by a particular set of basis function is a very non-trivial
task.

In light of this discussion, we turn to the Linear Quadratic Regulator (LQR) as our
main object of study. Let us now formally introduce the infinite horizon average cost LQR
problem. Let S1 be an n × n positive definite matrix and R be a d × d positive definite
matrix. The LQR problem is to find the optimal policy π that minimizes:

J? = inf
π

lim
T→∞

E

[
1

T

T∑
t=1

xTt Sxt + uTt Rut

]
(1.1.2)

s.t. xt+1 = Axt +But + wt , wt ∼ N (0,W ) . (1.1.3)

Here, the sequence {wt} will be referred to as the process noise. It is understood that wt is
independent across time, i.e. wi is independent from wj for i 6= j. Comparing with (1.1.1),
we see that the LQR problem (1.1.2)-(1.1.3) is a specific instance of an MDP with the state
space X = Rn, the input space U = Rd, the transition probability p(·|x, u) = N (Ax+Bu,W ),
and the stage wise cost c(x, u) = xTSx+ uTRu.

The LQR problem is the most fundamental problem studied in the field of optimal control.
See the book of Anderson and Moore [8] for an excellent introduction to linear quadratic
control. We assume that the pair (A,B) is stabilizable, which means there exists a feedback
matrix F such that A+BF is a stable matrix (all eigenvalues have modulus strictly less than
one). This assumption has several remarkable consequences. First, the optimal control law
is a stationary linear feedback policy, i.e. ut = Kxt. Second, the feedback matrix K can be
recovered by first solving for the unique2 positive definite solution to the discrete algebraic
Riccati equation (DARE):

V = ATV A− ATV B(BTV B +R)−1BTV A+ S , (1.1.4)

1We depart from the usual convention of calling the cost matrix associated to the state as Q, in order
to avoid confusion with the Q in Q-function.

2We made a simplifying assumption that both S and R are positive definite, which eliminates cases
where the solution is not unique.
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and setting K = −(BTV B + R)−1BTV A. We will refer to the positive definite solution V
of (1.1.4) as V = dare(A,B, S,R). The optimal cost J? is then given by tr(VW ).

Why is the LQR model a reasonable one to study from a practical engineering standpoint?
Suppose for now that our dynamics are non-linear, that is:

xt+1 = f(xt, ut) ,

where f(·) is no longer a linear function of xt, ut. It is clear that (1.1.3) no longer applies
globally to our new dynamics. However, we can still apply (1.1.3) locally. There are many
different methods of increasing complexity: here we briefly describe Jacobian linearization,
which is one of the simplest schemes. Suppose that (x?, 0) is an equilibrium point of f ,
meaning that x? = f(x?, 0). Let us define the error et := xt − x?, and suppose our goal is
to send et to zero. Assuming that f is continuously differentiable and differentiating around
this equilibrium point,

et+1 = [Dxf(x?, 0)]et + [Duf(x?, 0)]ut + H.O.T. . (1.1.5)

We expect this linear model to be a reasonable approximation to the true non-linear dynamics
locally around the equilibrium point.

It is hopefully clear from this discussion what the advantages are of studying LQR for
obtaining an understanding of RL for continuous control: the state and input spaces are
naturally continuous, and given knowledge of the dynamics (A,B) and the cost matrices
(S,R), we can efficiently compute the optimal solution. Therefore, we can completely isolate
the effects of model uncertainty.

Problem statement. With this setup in place, we can more formally describe the core
problem studied in this thesis:

Find a nearly optimal solution to the LQR problem (1.1.2)-(1.1.3), where
the cost matrices (S,R) are known, but the only access to the transition
matrices (A,B) is via input/output data. Specifically, design an algorithm
that chooses an input sequence {ut}, observes the resulting trajectory {xt}
of (1.1.3) induced by the chosen sequence {ut}, and then returns a controller

K̂ that stabilizes (A,B) and incurs average cost J(K̂) such that the sub-

optimality gap J(K̂) − J? is small. Here, the notation J(K̂) refers to the

infinite horizon average cost induced by the controller ut = K̂xt.

We will be primarily interested in algorithms which come with probably approximately
correct (PAC) style guarantees: after observing T = T (ε, δ) timesteps from the trajectory

{xt}, with probability at least 1− δ we have that J(K̂)− J? ≤ ε. The quantity T (ε, δ) will
be referred to as the sample complexity of the algorithm.
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1.2 Model-based Methods for LQR

The first step of model-based methods is to construct an estimate (Â, B̂) of the true dynamics
(A,B) from the trajectory data {xt} and input data {ut}. While there are many ways to
do this, we exploit the linear nature of the dynamics (1.1.3) and use ordinary least-squares
(OLS):

(Â, B̂) = arg min
A,B

1

2

T−1∑
t=0

‖xt+1 − Axt −But‖2 . (1.2.1)

It is also possible to use a Tikhonov regularized least-squares estimator of the form:

(Â, B̂) = arg min
A,B

1

2

T−1∑
t=0

‖xt+1 − Axt −But‖2 +
λ

2
(‖A‖2

F + ‖B‖2
F ) . (1.2.2)

Under the appropriate invertibility assumptions, the solution to (1.2.1) is given by:

(Â, B̂) =

(
T−1∑
t=0

xt+1

[
xt
ut

]T)(T−1∑
t=0

[
xt
ut

] [
xt
ut

]T)−1

. (1.2.3)

Of course, since (Â, B̂) ≈ (A,B) only, an important question to answer is how to characterize

the quality of the estimate (Â, B̂). In general, describing the resulting confidence set is a
non-trivial task, and we will see that the answer depends intimately on whether or not the
matrix A is stable or not.

Another question that remains to be answered is how to best choose the input sequence
{ut} to maximize the amount of information gained from the rollout. Indeed, there is an inter-
esting experiment design question lurking here: given the past history x0, u0, ..., xt−1, ut−1, xt,
adaptively choose the next input ut to play that would reveal the maximal amount of in-
formation. In this thesis, we leave the experiment design question to future work. Instead,
we work with a passive input sequence where ut ∼ N (0, σ2

uI) and the ut’s are independent
across time, or an feedback sequence of the form ut = Kxt + ηt with ηt ∼ N (0, σ2

ηI) and the
ηt’s are independent across time. Here, K is some stabilizing controller for (A,B) that is not
necessarily optimal for LQR. We will see that both of these sequences provide rich enough
excitation of the system that allows us to construct reasonable (not necessarily optimal,
however) confidence intervals. In particular, these confidence intervals will be of the form:

Ct(δ) := {(A,B) : ‖A− Â‖ ≤ εA(t, δ) , ‖B − B̂‖ ≤ εB(t, δ)} . (1.2.4)

where t here denotes the length of the trajectory observed and δ ∈ (0, 1) will be such that
P((A,B) ∈ Ct(δ)) ≥ 1− δ. Here, the probability is taken over the randomness of the process
noise {wt} (c.f. (1.1.3)) and the randomness of the inputs {ut}.



CHAPTER 1. INTRODUCTION 6

Armed with these confidence intervals, we now consider the question of learning a con-
troller from the estimated model (Â, B̂) and the interval Ct(δ). The most natural solution to
this is known as the certainty equivalence principle [11]. The idea is to discard the interval

Ct(δ), and use the controller K̂ given by:

K̂ = −(B̂TV̂ B̂ +R)−1B̂TV̂ Â , (1.2.5)

V̂ = dare(Â, B̂, S, R) . (1.2.6)

We will also interchangeably refer to this controller as the nominal controller or the plug-in
controller. When the interval Ct(δ) is very small (i.e. εA � 1 and εB � 1), then we expect

that the nominal controller will not only stabilize (A,B) but also deliver cost J(K̂) that is
quite competitive with J?. Quantifying when this happens, however, requires some work,
and is one of the contributions of this thesis (Section 5.1). Furthermore, for moderate to
large intervals, we do not expect nominal control to perform well because it does not take
the uncertainty into account.

In regimes where the uncertainty in the model is moderate to large, we will look at a
more sophisticated algorithm inspired from robust control. In particular, we will look at
solving the following robust optimization procedure:

inf
π∈Π

sup
(A,B)∈Ct(δ)

J(A,B, π) . (1.2.7)

Here, the notation J(A,B, π) denotes the average cost assuming the dynamics are described
by (A,B) and the policy π is followed. We will take Π, the policy class we optimize over,
to be the space of time-invariant linear feedback policies with memory. That is, the policy
π is itself a linear dynamical system taking as input the sequence {xt} and outputting the
control signal {ut}. We note that as written, solving (1.2.7) is a non-trivial task. One of the
contributions of this thesis (Section 5.2) is to show how to reasonably approximate (1.2.7)
with tools from convex optimization.

1.3 Model-free Methods for LQR

We now describe methods which skip the model identification step and learn other repre-
sentations for control. We first review two fundamental representations from RL, which are
the value and state-value functions, the latter which is often referred to as the Q-function.
Because we are dealing with infinite horizon average cost problems, the definition of these
representations is more nuanced than the corresponding definitions in the finite horizon or
discounted infinite horizon settings. Let K be a feedback policy which stabilizes (A,B), and
let λK be the infinite horizon average cost associated to the policy K. We follow Tsitsiklis
and Van Roy [116] and define the (relative) value function of K as:

V K(x) := lim
T→∞

E

[
T∑
t=0

(xTt Sxt + uTt Rut − λK)

∣∣∣∣ x0 = x

]
s.t. ut = Kxt . (1.3.1)
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The Bellman equation associated to (1.3.1) is:

λK + V K(x) = c(x,Kx) + Ex′∼p(·|x,Kx)[V
K(x′)] . (1.3.2)

From this, we see that V K(x) = xTV x, where V solves the discrete Lyapunov equation

V = (A+BK)TV (A+BK) + S +KTRK . (1.3.3)

We will denote this solution as V = dlyap(A+BK,S +KTRK).
Now, similar to (1.3.1), we define the relative Q-function of K as:

QK(x, u) := lim
T→∞

E

[
T∑
t=0

(xTt Sxt + uTt Rut − λK)

∣∣∣∣ x0 = x, u0 = u

]
s.t. ut = Kxt . (1.3.4)

The Bellman equation associated to (1.3.4) is:

λK +QK(x, u) = c(x, u) + Ex′∼p(·|x,u)[Q
K(x′, Kx′)] . (1.3.5)

Solving this equation, we obtain that QK(x, u) =

[
x
u

]T
Q

[
x
u

]
where Q is:

Q =

[
S 0
0 R

]
+

[
AT

BT

]
V
[
A B

]
. (1.3.6)

Equation 1.3.5 gives us a natural algorithm to estimate the parameter Q of the Q-function

QK . We let q = svec(Q)3 and write QK(x, u) = φ(x, u)Tq, where φ(x, u) = svec

([
x
u

] [
x
u

]T)
.

Substituting this into (1.3.4) and using the fact that λK =

〈
Q,

[
I
K

]
W

[
I
K

]T〉
, we obtain:

qT(φ(x, u)− Ex′∼p(·|x,u)[φ(x′, Kx′)] + f) = c(x, u) , (1.3.7)

where f = svec

([
I
K

]
W

[
I
K

]T)
. Therefore, given samples of the form {(xt, ut, xt+1)}T−1

t=0 we

can use the errors-in-variables approach [25] to construct (under the necessary invertibility
assumptions) the following least-squares estimator for q:

q̂ =

(
T−1∑
t=0

φ(xt, ut)(φ(xt, ut)− φ(xt+1, Kxt+1) + f)T

)−1 T−1∑
t=0

c(xt, ut)φ(xt, ut) . (1.3.8)

3Here, svec : Symn×n → Rn(n+1)/2 is the linear operator mapping the space of n × n symmetric ma-
trices (denoted Symn×n) to vectors while preserving the property that 〈svec(M1), svec(M2)〉Rn(n+1)/2 =
〈M1,M2〉Rn×n for all symmetric M1,M2.
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This estimator q̂ will be referred to as the LSTD-Q estimator. One of the contributions of
this thesis (Section 6.1.2) will be to quantify the error ‖q − q̂‖ incurred by LSTD-Q.

Given an algorithm that estimates the parameters of its associated Q-function for a
policy K, we can use this algorithm as a sub-routine to construct an algorithm for policy
optimization. One of the most classical approaches in RL is approximate policy iteration
(PI), and it is a basic form of approximate dynamic programming. Algorithm 1 presents
least-squares policy iteration (LSPI) from Lagoudakis and Parr [63], which is approximate
PI combined with LSTD-Q for policy evaluation.

Algorithm 1 Least-Squares Policy Iteration (LSPI) for LQR

Require: Initial stabilizing controller K0, exploration controller Kplay, N number of policy
iterations, T length of rollout for estimation, σ2

η exploration variance, µ lower eigenvalue
bound.

1: Collect a trajectory D = {(xk, uk, xk+1}Tk=1 using input uk = Kplayxk + ηk, with ηk ∼
N (0, σ2

ηI).
2: for t = 0, ..., N − 1 do
3: Q̂t = Projµ(LSTDQ(D, Kt)).

4: Kt+1 = G(Q̂t) (c.f. (1.3.9)).
5: end for
6: return KN .

In Algorithm 1, Projµ(·) = arg minX=XT:X�µ·I‖X − ·‖F is the Euclidean projection onto the
set of symmetric matrices lower bounded by µ · I. Furthermore, the map G(·) takes an
(n+ d)× (n+ d) positive definite matrix and returns a d× n matrix:

G

([
Q11 Q12

QT
12 Q22

])
= −Q−1

22 Q
T
12 . (1.3.9)

One of the contributions of this thesis is to provide a sample complexity analysis of Algo-
rithm 1 (Section 6.1).

We now turn our attention to an alternative style of model-free algorithm which is based
on ideas from derivative-free optimization (DFO) instead of approximate dynamic program-
ming. See the book by Spall [107] for an overview of derivative-free optimization. We will
present an overview of two methods based on DFO that are closely related. The first is
based on random perturbations. As before, define the function J(K) as:

J(K) = lim
T→∞

E

[
1

T

T∑
t=1

xTt Sxt + uTt Rut

]
s.t. ut = Kxt . (1.3.10)
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The function J(K) is finite when K stabilizes (A,B), and equals +∞ otherwise. In the
domain of stabilizing K, the function J(K) is differentiable. Therefore, in principle we could
optimize J(K) via a local search method:

Kt+1 = Kt − ηt∇J(Kt) .

However, in order to compute ∇J(K), we need access to the transition dynamics (A,B)
(and if we knew (A,B) we could just compute the optimal controller directly). The trick to
get around needing the dynamics is to smooth (convolve) the function J(K), and construct
a stochastic gradient estimate of the smoothed function. In particular, we fix a σ > 0 and
define:

Jσ(K) = Eξ[J(K + σξ)] , (1.3.11)

where each entry of ξ is drawn independently from a N (0, 1) distribution. A standard fact
is that the gradient of Jσ(K) can be expressed as:

∇Jσ(K) = Eξ
[
J(K + σξ)− J(K − σξ)

2σ
ξ

]
. (1.3.12)

Hence we can use the following stochastic gradient estimator ĝ:

ĝ =
J(K + σξ)− J(K − σξ)

2σ
ξ . (1.3.13)

Notice how this formula does not involve computing any gradients of the original function
J(K), but only requires pointwise evaluation of J(K) which we can obtain from rollouts.
That is, we have side-stepped the issue of needing to know the model dynamics (A,B). We
can now use ĝ as a stochastic gradient estimate of ∇Jσ(K) and plug it into our favorite
stochastic optimization algorithm to optimize Jσ. Furthermore, for small σ we expect that
Jσ(K) ≈ J(K). An analysis of the behavior of these type of DFO algorithms on LQR can
be found in Malik et al. [73].

We now describe a different approach based on policy gradients (REINFORCE) [126].
Instead of directly perturbing the parameters of the controller K, we will perturb the actions
ut. Again, we fix a σ > 0, and this time we define:

Jσ(K) = lim
T→∞

E

[
1

T

T∑
t=1

xTt Sxt + uTt Rut

]
s.t. ut = Kxt + ηt . (1.3.14)

Here, we have ηt ∼ N (0, σ2I) and the ηt’s are independent across time. Let τ1:T =
(x1, u1, x2, u2, ..., xT , uT ) denote a trajectory of length T . Then under appropriate regularity
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conditions, with c(τs:T ) :=
∑T

t=s c(xt, ut),

∇Jσ(K) = ∇ lim
T→∞

∫
τ1:T

1

T
c(τ1:T )p(τ1:T ) dτ1:T

= lim
T→∞

∇
∫
τ1:T

1

T
c(τ1:T )p(τ1:T ) dτ1:T

= lim
T→∞

∫
τ1:T

1

T
c(τ1:T )∇p(τ1:T ) dτ1:T

= lim
T→∞

∫
τ1:T

1

T
c(τ1:T )∇ log p(τ1:T )p(τ1:T ) dτ1:T .

Now we write:

log p(τ1:T ) =
T−1∑
t=0

log p(xt+1|xt, ut) +
T∑
t=1

log p(ut|xt) ,

and because the transition dynamics p(xt+1|xt, ut) do not depend on K, we have that the
gradient ∇ log p(xt+1|xt, ut) = 0 and therefore:

∇ log p(τ1:T ) =
T∑
t=1

∇ log p(ut|xt) =
T∑
t=1

1

σ2
ηtx

T
t .

Above, the last equality follows since p(ut|xt) = N (Kxt, σ
2I). Therefore, we have:

∇Jσ(K) = lim
T→∞

E

[
1

T

T∑
t=1

c(τ1:T )

σ2
ηtx

T
t

]

= lim
T→∞

T∑
t=1

E
[
E
[

1

T

c(τ1:T )

σ2
ηtx

T
t

∣∣∣∣ x1, η1, ..., xt

]]

= lim
T→∞

E

[
1

T

T∑
t=1

c(τt:T )

σ2
ηtx

T
t

]
.

We can therefore choose a large T and use the following stochastic gradient estimate ĝ which
we compute from a rollout with ut = Kxt + ηt:

ĝ =
1

T

T∑
t=1

c(τt:T )

σ2
ηtx

T
t .

As with DFO, we can plug the estimate ĝ into our favorite stochastic optimization algorithm.
An upper bound analysis of the behavior of policy gradient like algorithms on LQR can be
found in Fazel et al. [41]. In this thesis, we will study REINFORCE in particular using
asymptotic analysis in order to compare the performance of REINFORCE to the model-
based nominal control method (Section 6.2).
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Chapter 2

Related Work

We survey the literature on obtaining approximate LQR solutions from imperfect knowledge
of the dynamics, focusing on work which combines learning and control. We mostly focus on
work that contains non-asymptotic results, since non-asymptotic results are the main focal
point of this thesis. We divide the related work broadly into two categories: model-based
and model-free methods. Within each of these categories, there is a further sub-division
between offline (batch) settings and online (adaptive) settings. While this thesis will focus
only on the offline setting, we discuss the online setting here for completeness.

2.1 Model-based Methods

We first discuss model-based methods in the offline setting. Fiechter [42] is the first to
consider PAC style bounds for LQR with unknown dynamics. He studies the infinite horizon
discounted LQR problem, and shows that the nominal controller, if it stabilizes the true
system, achieves cost J(K̂) satisfying J(K̂)−J? ≤ O(ε), where ε is the error of the estimated
parameters. In Section 5.1, we will give sufficient conditions to ensure that the true system
is stabilized by the nominal controller, and we will also show that the sub-optimality gap
actually scales as O(ε2) instead of O(ε). Turning to methods based on robust control,
we note there is a rich literature in controls dealing with structured uncertainty such as µ-
synthesis [89] or integral quadratic constraints [79]. The main drawback of traditional robust
control approaches is that we are unaware of a way to quantify the performance degradation
as a function of the size of the uncertainty set. Our approach in Section 5.2, which is based
on a recent development in robust control called System Level Synthesis (SLS) [35], is to
the best of our knowledge, the first robust control approach that comes with a guaranteed
bound on the sub-optimality gap.

We now turn our attention to the online adaptive setting, which is inspired from the
classical problem of adaptive control of LQR [11]. We will focus on the regret formulation
introduced by Abbasi-Yadkori and Szepesvári [1]. Inspired by the classic “bet on the best”
principle of Bittanti and Campi [18], Abbasi-Yadkori and Szepesvári [1] show how opti-
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mism in the face of uncertainty (OFU) yields a Õ(
√
T ) regret algorithm for LQR. Ibrahimi

et al. [50] extend this work to high dimensional systems with sparsity in the dynamics, and
Faradonbeh et al. [38] remove some un-necessary technical assumptions. The main issue with
the OFU algorithm proposed by Abbasi-Yadkori and Szepesvári [1] is computational: it is
not clear if the OFU sub-routine can be efficiently solved, as it is a non-convex optimization
problem. There have been several attempts to remedy this issue. First, several works have
looked at Thompson sampling as an alternative to OFU [5, 6, 87]. The work of Abeille

and Lazaric [5] shows a Õ(T 2/3) regret for Thompson sampling which was later improved

by Abeille and Lazaric [6] to Õ(T 1/2), but the analysis only applies to scalar systems. On

the other hand, Ouyang et al. [87] study a Bayesian regret formulation and show Õ(T 1/2)
regret under strong technical assumptions. Dean et al. [32] show how to use SLS to achieve

an efficient Õ(T 2/3) regret algorithm. Based on the techniques in Section 5.1, it is possible
to show that the nominal controller coupled with a greedy exploration strategy is sufficient
to achieve Õ(T 1/2) regret: this is described in more detail in Mania et al. [75]. Parallel to

Mania et al. [75], Cohen et al. [30] give an efficient procedure that also achieves Õ(T 1/2)
regret and is based on semidefinite programming.

2.2 Model-free Methods

We now survey the literature studying model-free algorithms on LQR. The Ph.D. thesis
of Bradtke [24] studies the least-squares policy iteration algorithm applied to noiseless
LQR and shows asymptotic consistency. For policy evaluation, Tu and Recht [117] give
a non-asymptotic bound for least-squares temporal difference learning for infinite horizon
discounted LQR. They empirically evaluate LSPI and observe that it has worse sample com-
plexity than the model-based methods they compared to, but do not provide an analysis. In
Section 6.1, we will provide the first non-asymptotic analysis for LSPI. For policy gradients,
Fazel et al. [41] show that policy gradients converges to the optimal solution with polynomial
(in the relevant quantities) sample complexity. However, Fazel et al. [41] focus on the case
where the only noise in the system is in the initial state, and the rest of the state transitions
are deterministic. Malik et al. [73] study derivative-free optimization for LQR and also show
polynomial sample complexity. Their bounds suggest that having two samples in each eval-
uation allow one to obtain Õ(1/ε) sample complexity versus Õ(1/ε2) with only one sample.
Mania et al. [74] empirically evaluate derivative-free optimization on LQR and show that
it is competitive with LSPI. Vemula et al. [120] study the different regimes in which action
space perturbation outperforms parameter space perturbation and vice-versa.

For the online setting, Abbasi-Yadkori et al. [4] show that a model-free algorithm based

on follow the leader achieves Õ(T 2/3+ε) regret for any T ≥ C1/ε where C > 0 is a constant
that depends on the system. Based on the techniques in Section 6.1, this can be improved to
Õ(T 2/3) using LSPI coupled with greedy exploration. It remains open whether a model-free

algorithm based on approximate policy iteration can achieve the optimal Õ(
√
T ) regret.
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2.3 Identification of Linear Systems

While not the direct focus of this thesis, we review results surrounding non-asymptotic
identification of an unknown linear system from trajectory data. The asymptotic version
of this question has classically been studied in the sub-field of control theory known as
system identification [71]. Early non-asymptotic rates are given by Campi and Weyer [28]
and Vidyasagar and Karandikar [123]. Goldenshluger [44] and Tu et al. [119] study the
identification of a linear system from an input/output map (transfer function) perspective.
Hardt et al. [46] show that gradient descent can learn the parameters of a linear system such
that the resulting parameters deliver good predictive performance, under some technical
assumptions on the A matrix. Hazan and Zhang [47] and Hazan et al. [48] propose a spectral
filtering technique to learn unknown linear systems, with performance measured in a regret
framework. One notable property of their bounds is that they apply to marginally stable
systems when the spectral radius ρ(A) = 1; the bounds do not degrade as ρ(A) approaches
one.

By making the additional assumption that the state can be observed, one can prove
stronger results regarding parameter estimation. Simchowitz et al. [105] show how to recover
the A matrix of a linear system xt+1 = Axt + wt, with the results applicable to the regime
of marginal stability. This result is discussed in more detail in Chapter 3. Faradonbeh
et al. [39] and Sarkar and Rakhlin [98] show how to obtain identification results for unstable
systems under some technical assumptions. Rantzer [95] gives concentration bounds for the
least-squares estimator in the scalar setting (which was sharpened by the scalar analysis in
Simchowitz et al. [105]). Finally, there has been recent work in extending the parameter
identification results to the case of partially observed linear systems [88, 99, 106, 114].
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Chapter 3

Linear System Identification

In this chapter, we survey some basic non-asymptotic results for linear system identification.
While not the primary focus of this thesis, the results here and the techniques behind them
will play an important role for the remainder of the thesis.

We recall the setting from Chapter 1. We are interested in an unknown linear dynamical
system:

xt+1 = Axt +But + wt . (3.0.1)

Here and for the remainder of this thesis, we will assume for simplicity that wt ∼ N (0, σ2
wI)

instead of the more general N (0,W ). We will also assume that x0 = 0. Suppose that we
have access to N independent trajectories of (3.0.1), each of length T (that is, we perform
N rollouts of length T , resetting the system after each rollout). Let us denote this data by

{x(i)
t } with 1 ≤ i ≤ N and 1 ≤ t ≤ T + 1. Given this data, we consider the least-squares

estimator:

(Â, B̂) = arg min
A,B

1

2

N∑
i=1

T∑
t=1

‖x(i)
t+1 − Ax(i)

t −Bu(i)
t ‖2 . (3.0.2)

The solution to (3.0.2) is given by:

(Â, B̂) =

 N∑
i=1

T∑
t=1

x
(i)
t+1

[
x

(i)
t

u
(i)
t

]T N∑
i=1

T∑
t=1

[
x

(i)
t

u
(i)
t

][
x

(i)
t

u
(i)
t

]T−1

. (3.0.3)

Here, we assume the empirical covariance matrix is invertible. It is not hard to see that the
error of (3.0.3) is given by:

(Â− A, B̂ −B) =

 N∑
i=1

T∑
t=1

w
(i)
t

[
x

(i)
t

u
(i)
t

]T N∑
i=1

T∑
t=1

[
x

(i)
t

u
(i)
t

][
x

(i)
t

u
(i)
t

]T−1

. (3.0.4)
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We consider the following question: how do we bound the error ‖Â − A‖ and ‖B̂ − B‖ as
a function of N, T and various quantities relating to (A,B)? We note that this question

is non-trivial because along the i-th trajectory, the covariates {x(i)
t } are correlated across

time (the covariates are independent across trajectories, however). Therefore, the standard
analysis of random design least-squares regression (see e.g. Hsu et al. [49]) does not apply.

Before we proceed, we discuss heuristically how we qualitatively expect the error to
depend on (A,B). The more stable A is roughly means that the process noise entering the
system dampens out quicker, whereas if A is unstable then the process noise drives the system
state away from the origin exponentially fast. While the latter behavior is undesirable for
regulation purposes, it is actually quite desirable from an estimation perspective, because it
means that the signal to noise ratio is extremely high. This heuristic reasoning suggests that
systems that are more “explosive” should yield better estimation rates than those that are
very stable. We note this qualitative behavior is at odds with estimation bounds that depend
on the mixing time of the system [61, 62, 127]. Indeed, the mixing time of a linear system
degrades as the system tends towards instability, and does not exist for unstable systems. It
is for this reason we do not utilize learning bounds based on mixing time arguments in the
sequel.

3.1 A Simple Analysis Based on Independent

Rollouts

We first consider a slight modification to the estimator (3.0.3) which yields a simple and very
general analysis that applies to any (A,B). This modification is that, we will discard all
the trajectory data except the very last state transition, exploiting the independence across
trajectories. Mathematically,

(Â, B̂) =

 N∑
i=1

x
(i)
T+1

[
x

(i)
T

u
(i)
T

]T N∑
i=1

[
x

(i)
T

u
(i)
T

][
x

(i)
T

u
(i)
T

]T−1

. (3.1.1)

This modification makes the analysis simple because now we have that (x
(i)
T , u

(i)
T ) is inde-

pendent across rollouts. Therefore, the existing tools we have for analyzing least-squares
apply.

Proposition 3.1.1. Define the matrices

GT =
[
AT−1B AT−2B ... B

]
and FT =

[
AT−1 AT−2 ... I

]
. (3.1.2)

Assume we collect data from the linear, time-invariant system initialized at x0 = 0, using
inputs ut ∼ N (0, σ2

uI) for t = 1, ..., T . Suppose that the process noise is wt ∼ N (0, σ2
wI) and

that

N ≥ 8(n+ d) + 16 log(4/δ) .
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Then, with probability at least 1− δ, the least squares estimator using only the final sample
of each trajectory satisfies both the inequality

‖Â− A‖ ≤ 16σw√
λmin(σ2

uGTGT
T + σ2

wFTF
T
T )

√
(n+ 2d) log(36/δ)

N
, (3.1.3)

and the inequality

‖B̂ −B‖ ≤ 16σw
σu

√
(n+ 2d) log(36/δ)

N
. (3.1.4)

Note that Proposition 3.1.1 yields an optimal dependence in terms of the number of pa-
rameters from a parameter counting perspective: (A,B) together have n(n+ d) parameters
to learn and each measurement consists of n values. Moreover, this proposition further il-
lustrates that not all linear systems are equally easy to estimate. The matrices GTG

T
T and

FTF
T
T are finite time controllability Gramians for the control and noise inputs, respectively.

These are standard objects in control: each eigenvalue/vector pair of such a Gramian charac-
terizes how much input energy is required to move the system in that particular direction of
the state-space. Therefore λmin

(
σ2
uGTG

T
T + σ2

wFTF
T
T

)
quantifies the least controllable, and

hence most difficult to excite and estimate, mode of the system. This property is captured
nicely in our bound, which indicates that for systems for which all modes are easily excitable
(i.e., all modes of the system amplify the applied inputs and disturbances), the identification
task becomes easier.

The bounds (3.1.3) and (3.1.4) in Proposition 3.1.1 require knowledge of the true (A,B) in
order to compute. Section 2 of Dean et al. [31] describes two alternative methods that avoid
knowledge of (A,B), based on data-dependent concentration bounds and the bootstrap.

Before we present a proof of Proposition 3.1.1, we state some auxiliary results which will
aid our analysis.

Lemma 3.1.2. Fix a δ ∈ (0, 1) and N ≥ 2 log(1/δ). Let fk ∈ Rm, gk ∈ Rn be independent
random vectors fk ∼ N (0,Σf ) and gk ∼ N (0,Σg) for 1 ≤ k ≤ N . With probability at least
1− δ, ∥∥∥∥∥

N∑
k=1

fkg
T
k

∥∥∥∥∥ ≤ 4‖Σf‖1/2‖Σg‖1/2
√
N(m+ n) log(9/δ) .

Proof. First, recall Bernstein’s inequality. Let X1, ..., Xp be zero-mean independent r.v.s
satisfying the Orlicz norm bound ‖Xi‖ψ1 ≤ K (see Section 2.7.1 of Vershynin [122] for an
overview of Orlicz spaces). Then as long as p ≥ 2 log(1/δ), with probability at least 1− δ,

p∑
i=1

Xi ≤ K
√

2n log(1/δ) .
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Next, let Q be an m × n matrix. Let u1, ..., uMε be a ε-net for the m-dimensional `2 ball,
and similarly let v1, ..., vNε be a ε covering for the n-dimensional `2 ball. For each ‖u‖ = 1
and ‖v‖ = 1, let ui, vj denote the elements in the respective nets such that ‖u−ui‖ ≤ ε and
‖v − vj‖ ≤ ε. Then,

uTQv = (u− ui + ui)
TQv = (u− ui)TQv + uTi Q(v − vj + vj)

= (u− ui)TQv + uTi Q(v − vj) + uTi Qvj .

Hence,

uTQv ≤ 2ε‖Q‖+ uTi Qvj ≤ 2ε‖Q‖+ max
1≤i≤Mε,1≤j≤Nε

uTi Qvj .

Since u, v are arbitrary on the sphere,

‖Q‖ ≤ 1

1− 2ε
max

1≤i≤Mε,1≤j≤Nε
uTi Qvj .

Now we study the problem at hand. Choose ε = 1/4. By a standard volume comparison
argument, we have that Mε ≤ 9m and Nε ≤ 9n, and that∥∥∥∥∥

N∑
k=1

fkg
T
k

∥∥∥∥∥ ≤ 2 max
1≤i≤Mε,1≤j≤Nε

N∑
k=1

(uTi fk)(g
T
k vj) .

Note that uTi fk ∼ N (0, uTi Σfui) and gTk vj ∼ N (0, vTj Σgvj). By independence of fk and gk,
(uTi fk)(g

T
k vj) is a zero mean sub-Exponential random variable, and therefore ‖(uTi fk)(gTk vj)‖ψ1 ≤√

2‖Σf‖1/2
2 ‖Σg‖1/2

2 . Hence, for each pair ui, vj we have with probability at least 1− δ/9m+n,

N∑
k=1

(uTi fk)(g
T
k vj) ≤ 2‖Σf‖1/2‖Σg‖1/2

√
N(m+ n) log(9/δ) .

Taking a union bound over all pairs in the ε-net yields the claim.

Lemma 3.1.2 shows that if X is n1 ×N with i.i.d. N (0, 1) entries and Y is N × n2 with
i.i.d. N (0, 1) entries, and X and Y are independent, then with probability at least 1− δ we
have

‖XY ‖ ≤ 4
√
N(n1 + n2) log(9/δ) .

Next, we state a standard non-asymptotic bound on the minimum singular value of a stan-
dard Wishart matrix (see e.g. Corollary 5.35 of Vershynin [121]).

Lemma 3.1.3. Let X ∈ RN×n have i.i.d. N (0, 1) entries. With probability at least 1− δ,√
λmin(XTX) ≥

√
N −√n−

√
2 log(1/δ) .
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We combine the previous lemmas into a statement on the error of random design regres-
sion.

Proposition 3.1.4. Let z1, ..., zN ∈ Rn be i.i.d. from N (0,Σ) with Σ invertible. Let ZT :=[
z1 ... zN

]
. Let W ∈ RN×p with each entry i.i.d. N (0, σ2

w) and independent of Z. Let
E := (ZTZ)†ZTW , and suppose that

N ≥ 8n+ 16 log(2/δ) . (3.1.5)

For any fixed matrix Q, we have with probability at least 1− δ,

‖QE‖ ≤ 16σw‖QΣ−1/2‖
√

(n+ p) log(18/δ)

N
.

Proof. First, observe that Z is equal in distribution to XΣ1/2, where X ∈ RN×n has i.i.d.
N (0, 1) entries. By Lemma 3.1.3, with probability at least 1− δ/2,√

λmin(XTX) ≥
√
N −√n−

√
2 log(2/δ) ≥

√
N/2 .

The last inequality uses (3.1.5) combined with the inequality (a+ b)2 ≤ 2(a2 + b2). Further-
more, by Lemma 3.1.2 and (3.1.5), with probability at least 1− δ/2,

‖XTW‖ ≤ 4σw
√
N(n+ p) log(18/δ) .

Let E denote the event which is the intersection of the two previous events. By a union
bound, P(E) ≥ 1 − δ. We continue the rest of the proof assuming the event E holds. Since
XTX is invertible,

QE = Q(ZTZ)†ZTW = Q(Σ1/2XTXΣ1/2)†Σ1/2XTW = QΣ−1/2(XTX)−1XTW .

Taking operator norms on both sides,

‖QE‖ ≤ ‖QΣ−1/2‖‖(XTX)−1‖‖XTW‖ = ‖QΣ−1/2‖ ‖X
TW‖

λmin(XTX)
.

Combining the inequalities above,

‖XTW‖
λmin(XTX)

≤ 16σw

√
(n+ p) log(18/δ)

N
.

The result now follows.

We now have the necessary tools in place to prove Proposition 3.1.1.
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Proof of Proposition 3.1.1. It is not hard to see that[
x

(i)
T

u
(i)
T

]
∼ N

(
0,

[
σ2
uGTG

T
T + σ2

wFTF
T
T 0

0 σ2
uI

])
. (3.1.6)

Then applying Proposition 3.1.4 with QA =
[
I 0

]
so that QAE extracts only the estimate

for A, we conclude that with probability at least 1− δ/2,

‖Â− A‖ ≤ 16σw√
λmin(σ2

uGTGT
T + σ2

wFTF
T
T )

√
(n+ 2d) log(36/δ)

N
, (3.1.7)

as long as N ≥ 8(n + d) + 16 log(4/δ). Now applying Proposition 3.1.4 under the same
condition on N with QB =

[
0 I

]
, we have with probability at least 1− δ/2,

‖B̂ −B‖ ≤ 16σw
σu

√
(n+ 2d) log(36/δ)

N
. (3.1.8)

The result follows by application of the union bound.

3.2 Results for Stable Systems

We now present results for the estimation of (A,B) based on the estimator (3.0.3), without
having to discard all but the last state transition. In this section, for simplicity we assume
that the number of independent rollouts N = 1. It is not hard to generalize these results to
handle N > 1. The key assumption in this section will be that the matrix A is stable, i.e.
ρ(A) ≤ 1.

Proposition 3.2.1. Fix a δ ∈ (0, 1) and k ≥ 1. Define the matrices:

Γt =

[
σ2
w

∑t−1
k=0(Ak)(Ak)T + σ2

u

∑t−2
k=0(Ak)BBT(Ak)T 0

0 σ2
uI

]
,

Γsb = Γdk/2e ,

Γ =
n+ d

δ
ΓT .

Then as long as T satisfies:

T/k ≥ c0(log(1/δ) + (n+ d) + log det(ΓΓ−1
sb )) , (3.2.1)

with probability at least 1− δ we have:

max{‖Â− A‖, ‖B̂ −B‖} ≤ c1σw

√
(n+ d) + log det(ΓΓ−1

sb ) + log(1/δ)

Tλmin(Γsb)
. (3.2.2)

Here c0, c1 are universal constants.
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Proof. Fix an s ≥ 0 and t ≥ 1. Let Fs = σ(w0, ..., ws−1, u0, ..., us). Then we have that
(xs, us) is Fs-measurable. Therefore,[

xt+s
ut+s

]
|Fs d

= N
([
Atxs + At−1Bus

0

]
,Γt

)
.

We can follow the argument of Proposition 3.1 from Simchowitz et al. [105] to conclude that

for any unit vector v, then process Zt =

〈
v,

[
xt
ut

]〉
satisfies the block martingale small ball

condition with parameters (k,Γsb, p) given by (k,Γdk/2e, 3/20). Next, it is simple to verify
with Markov’s inequality that:

P

(
T∑
t=1

[
xt
ut

] [
xt
ut

]T
6� T

n+ d

δ
ΓT

)
≤ δ .

This means we can set Γ = n+d
δ

ΓT . The claim now follows applying Theorem 2.4 of Sim-
chowitz et al. [105].

We can simplify Proposition 3.2.1 by choosing k = 1 and assuming that A is strictly
stable, i.e. ρ(A) < 1. We fix a γ ∈ (ρ(A), 1) and set τ = sup{‖Ak‖γ−k : k = 0, 1, ...}.
Because A is stable, we have Γt � Γ∞, where Γ∞ is given by

Γ∞ =

[
dlyap(AT, σ2

wI + σ2
uBB

T) 0
0 σ2

uI

]
.

Here, dlyap(A,M) for a stable matrix A and a symmetric matrix M is the solution P to
the discrete Lyapunov equation ATPA − P + M = 0. It is also not hard to see that
λmin(Γsb) ≥ min{σ2

w, σ
2
u}. Using the inequality log det(M) ≤ n log(‖M‖) for any positive

definite M , as long as T satisfies:

T ≥ c0

(
log(1/δ) + n+ d+ n log

(
τ 2

1− γ2

(
1 +

σ2
u

σ2
w

‖B‖2

)))
,

we have that with probability at least 1− δ:

max{‖Â− A‖, ‖B̂ −B‖} ≤ c1σw

√√√√n+ d+ n log
(

τ2

1−γ2

(
1 + σ2

u

σ2
w
‖B‖2

))
+ log(1/δ)

T min{σ2
w, σ

2
u}

.

(3.2.3)

We note that we present the bound (3.2.3) because it is simple to interpret– sharper
bounds are in general possible by exploiting the degree of freedom in choosing k, at the
expense of a less interpretable result.

We now compare (3.2.3) to the bounds (3.1.3) and (3.1.4) from Proposition 3.1.1. First,

both bounds are of the form Õ(
√

n+d
T

), where the Õ(·) hides specific constants depending on
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A. However, the analysis of Proposition 3.1.1 is able to separately treat ‖Â−A‖ and ‖B̂−B‖
instead of Proposition 3.2.1, which combines the two. This gives (3.1.3) a dependence on
the properties of A that is closer to what we expect intuitively compared to (3.2.3). It is an
open question of how to decouple the estimation of A and B using the proof technique of
Simchowitz et al. [105].
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Chapter 4

Basic Robustness and Perturbation
Results

In this chapter we cover basic robustness results which will play a fundamental part of the
analysis to follow. We first start with a basic definition.

Definition 1. Let L be a square matrix. Let τ ≥ 1 and ρ ∈ (0, 1). We say that L is (τ, ρ)
stable if

‖Lk‖ ≤ τρk , k = 0, 1, 2, ... .

While stability of a matrix is an asymptotic notion, Definition 1 quantifies the degree of
stability by characterizing the transient response of the powers of a matrix by the parameter
τ . It is closely related to the notion of strong stability from Cohen et al. [29, 30].

The first question we will study is a fundamental one. Suppose that A is a (τ, ρ) stable
matrix, and we perturb A by ∆. Can we find a τ̃ , ρ̃ such that A + ∆ is (τ̃ , ρ̃) stable? We
note that the question of whether A + ∆ is stable is answered precisely by the structured
singular value (SSV) [89]. Here, we will present an answer to our quantitative version of
stability that is merely sufficient (as opposed to the exact characterization of SSV).

Proposition 4.0.1. Let A be a (τ, ρ) stable matrix. Fix a γ ∈ (ρ, 1). Suppose that ∆ is a
perturbation that satisfies:

‖∆‖ ≤ γ − ρ
τ

.

Then we have that (a) A+ ∆ is a stable matrix with ρ(A+ ∆) ≤ γ and (b) A+ ∆ is (τ, γ)
stable.

Proof. We start by proving (b). Fix an integer k ≥ 1. Consider the expansion of (A + ∆)k

into 2k terms. Label all these terms as Ti,j for i = 0, ..., k and j = 1, ...,
(
k
i

)
where i denotes

the degree of ∆ in the term (hence there are
(
k
i

)
terms with a degree of i for ∆). Using the
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fact that ‖Ak‖ ≤ τρk for all k ≥ 0, we can bound ‖Ti,j‖ ≤ τ i+1ρk−i‖∆‖i. Hence by triangle
inequality:

‖(A+ ∆)k‖ ≤
k∑
i=0

∑
j

‖Ti,j‖

≤
k∑
i=0

(
k

i

)
τ i+1ρk−i‖∆‖i

= τ

k∑
i=0

(
k

i

)
(τ‖∆‖)iρk−i

= τ(τ‖∆‖+ ρ)k

≤ τγk ,

where the last inequality uses the assumption ‖∆‖ ≤ γ−ρ
τ

. This gives the claim (b).
To derive the claim (a), we use the inequality that ρ(A + ∆) ≤ ‖(A + ∆)k‖1/k ≤ τ 1/kγ

for any k ≥ 1. Since this holds for any k ≥ 1, we can take the infimum over all k ≥ 1 on the
RHS, which yields the desired claim.

Next, we introduce some notation that we will use heavily in the sequel. Let L be a
stable matrix and M be a symmetric matrix. We write P = dlyap(L,M) to denote the
unique solution to the discrete Lyapunov equation, i.e.

LTPL− P +M = 0 .

We now present an upper bound on the norm of the discrete Lyapunov solution that uses
the notion of (τ, ρ) stability.

Proposition 4.0.2. Let A be a (τ, ρ) stable matrix, and let |||·||| be either the operator or
Frobenius norm. We have that:

|||dlyap(A,M)||| ≤ τ 2

1− ρ2
|||M ||| . (4.0.1)

Proof. It is a well known fact that we can write P =
∑∞

k=0(Ak)TM(Ak). Therefore the
bound follows from triangle inequality and the (τ, ρ) stability assumption.

Next, we look at the following question which arises in the context of policy iteration.
Suppose that we have two controllers K,K0 such that their associated value functions V, V0

satisfy the inequality V � V0. How can we deduce (τ, ρ) stability bounds from V0 alone?

Proposition 4.0.3. Let K,K0 be two stabilizing policies for (A,B). Let V, V0 denote their
respective value functions and suppose that V � V0. We have that for all k ≥ 0:

‖(A+BK)k‖ ≤
√
λmax(V0)

λmin(S)
(1− λmin(V −1

0 S))k/2 .
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Proof. This proof is inspired by the proof of Lemma 5.1 of Abbasi-Yadkori et al. [4]. Since
V is the value function for K, we have:

V = (A+BK)TV (A+BK) + S +KTRK

� (A+BK)TV (A+BK) + S .

Conjugating both sides by V −1/2 and defining H := V 1/2(A+BK)V −1/2,

I � V −1/2(A+BK)TV (A+BK)V −1/2 + V −1/2SV −1/2

= HTH + V −1/2SV −1/2 .

This implies that ‖H‖2 = ‖HTH‖ ≤ ‖I − V −1/2SV −1/2‖ = 1 − λmin(S1/2V −1S1/2) ≤ 1 −
λmin(S1/2V −1

0 S1/2). The last inequality holds since V � V0 iff V −1 � V −1
0 , Now observe:

‖V 1/2(A+BK)kV −1/2‖ = ‖Hk‖ ≤ ‖H‖k ≤ (1− λmin(V −1
0 S))k/2

Next, for M positive definite and N square, observe that:

‖MNM−1‖ =
√
λmax(MNM−2NTM)

≥
√
λmin(M−2)λmax(MNNTM)

=
√
λmin(M−2)λmax(NTM2N)

≥
√
λmin(M−2)λmin(M2)‖N‖2

=
‖N‖
κ(M)

.

Therefore, we have shown that:

‖(A+BK)k‖ ≤
√
κ(V )(1− λmin(V −1

0 S))k/2 ≤
√
λmax(V0)

λmin(S)
(1− λmin(V −1

0 S))k/2 .

Next, we look at perturbations to discrete Lyapunov equations. A similar result to the
following proposition can be found in Gahinet et al. [43].

Proposition 4.0.4. Suppose that A1, A2 are stable matrices. Suppose furthermore that Ai
is (τ, ρ) stable for i = 1, 2. Let Q1, Q2 be PSD matrices. Put Pi = dlyap(Ai, Qi). We have
that:

‖P1 − P2‖ ≤
τ 2

1− ρ2
‖Q1 −Q2‖+

τ 4

(1− ρ2)2
‖A1 − A2‖(‖A1‖+ ‖A2‖)‖Q2‖ .
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Proof. Let the linear operators F1, F2 be such that Pi = F−1
i (Qi), i.e. Fi(X) = X −AT

i XAi.
Then:

P1 − P2 = F−1
1 (Q1)− F−1

2 (Q2)

= F−1
1 (Q1 −Q2) + F−1

1 (Q2)− F−1
2 (Q2)

= F−1
1 (Q1 −Q2) + (F−1

1 − F−1
2 )(Q2) .

Hence ‖P1−P2‖ ≤ ‖F−1
1 ‖‖Q1−Q2‖+‖F−1

1 −F−1
2 ‖‖Q2‖. Now for any M satisfying ‖M‖ ≤ 1

‖F−1
i (M)‖ =

∥∥∥∥∥
∞∑
k=0

(AT
i )kMAki

∥∥∥∥∥ ≤ τ 2

1− ρ2
.

Next, we have that:

‖F−1
1 − F−1

2 ‖ = ‖F−1
1 (F2 − F1)F−1

2 ‖ ≤ ‖F−1
1 ‖‖F−1

2 ‖‖F1 − F2‖ ≤
τ 4

(1− ρ2)2
‖F1 − F2‖ .

Now for any M satisfying ‖M‖ ≤ 1,

‖F1(M)− F2(M)‖ = ‖AT
2MA2 − AT

1MA1‖
= ‖(A2 − A1)TMA2 + AT

1M(A2 − A1)‖
≤ ‖A1 − A2‖(‖A1‖+ ‖A2‖) .

The claim now follows.

We now turn to the following question. Suppose that K̂ is a controller that stabilizes
(A,B), but is not necessarily optimal for the LQR problem with parameters (A,B, S,R).
On the other hand, suppose that K is the unique optimal LQR controller. The following
lemma shows how to relate the cost sub-optimality gap J(K̂)− J? to the error ‖K̂ −K‖F .

Lemma 4.0.5 (Lemma 12, Fazel et al. [41]). Let K̂ stabilize (A,B) and let K denote the

optimal LQR controller for (A,B, S,R). Let Σ(K̂) = dlyap((A + BK̂)T,W ) denote the

stationary covariance matrix of (A,B) in feedback with K̂, and let V = dare(A,B, S,R). We
have that:

J(K̂)− J? = tr(Σ(K̂)(K̂ −K)T(R +BTV B)(K̂ −K)) . (4.0.2)

Proof. We give a slightly more direct proof than Fazel et al. [41]. Let V (K) = dlyap(L(K), S+
KTRK) and let Σ(K) = dlyap(L(K)T,W ) with L(K) = A+BK. We abbreviate V = V (K)

and V̂ = V (K̂), and similarly with Σ, Σ̂ and L, L̂. Let ∆ = K̂ −K. We have that:

J(K̂)− J? = tr(WV̂ )− tr(WV )

= tr(Σ̂(S + K̂TRK̂))− tr((Σ̂− L̂Σ̂L̂T)V )

= tr(Σ̂(S + K̂TRK̂ + L̂TV L̂− V )) .
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Now we expand out:

S + K̂TRK̂ + L̂TV L̂− V
= S + ∆TR∆ + ∆TRK +KTR∆ +KTRK

+ LTV L+ LTV B∆ + ∆TBTV L+ ∆TBTV B∆− V
= (S +KTRK + LTV L− V ) + ∆TRK +KTR∆ + LTV B∆

+ ∆TBTV L+ ∆T(R +BTV B)∆

= ∆T(RK +BTV L) + (KTR + LTV B)∆ + ∆T(R +BTV B)∆

= ∆T(R +BTV B)∆ .

The last equality holds because RK+BTV L = (R+BTV B)K+BTV A = 0 by the optimality
of K. The claim now follows.

We conclude this section with a simple perturbation result for the minimizers of strongly
convex functions.

Proposition 4.0.6. Let f1, f2 be two µ-strongly convex twice differentiable functions. Let
x1 = arg minx f1(x) and x2 = arg minx f2(x). Suppose ‖∇f1(x2)‖ ≤ ε. Then ‖x1 − x2‖ ≤ ε

µ
.

Proof. Taylor expanding ∇f1, we have:

∇f1(x2) = ∇f1(x1) +∇2f1(x̃)(x2 − x1) = ∇2f1(x̃)(x2 − x1) .

for x̃ = tx1 + (1− t)x2 with some t ∈ [0, 1]. Therefore:

µ‖x1 − x2‖ ≤ ‖∇2f1(x̃)(x2 − x1)‖ = ‖∇f1(x2)‖ ≤ ε .

Proposition 4.0.6 gives us a way to bound the difference between the resulting greedily
induced controllers of two different Q-functions for LQR.

Proposition 4.0.7. Let M � µI and N � µI be a positive definite matrices partitioned as

M =

[
M11 M12

MT
12 M22

]
and similarly for N . Let T (M) = −M−1

22 M
T
12. We have that:

‖T (M)− T (N)‖ ≤ (1 + ‖T (N)‖)‖M −N‖
µ

.

Proof. Fix a unit norm x. Define f(u) = (1/2)xTM11x+ (1/2)uTM22u+xTM12u and g(u) =
(1/2)xTN11x+ (1/2)uTN22u+ xTN12u. Let u? = T (N)x. We have that

∇f(u?) = ∇f(u?)−∇g(u?) = (M22 −N22)u? + (M12 −N12)Tx .

Hence, ‖∇f(u?)‖ ≤ ‖M12 − N12‖ + ‖M22 − N22‖‖u?‖. We can bound ‖u?‖ = ‖T (N)x‖ ≤
‖T (N)‖. The claim now follows using Proposition 4.0.6.
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Chapter 5

Model-based Methods for LQR

In this chapter, we present results on the performance bounds for model-based methods on
LQR. The results in this chapter are based on Mania et al. [75] and Dean et al. [31]. We first
present results for certainty equivalent control (also referred to nominal control), followed
by results for a new synthesis method based on robust control.

We recall the basic problem setting. We assume (A,B) is a stabilizable system, and S,R
are positive definite matrices. Our goal is to solve for an optimal controller for the infinite
horizon LQR problem (1.1.2). We assume we are given estimates Â, B̂ that satisfy the

bounds ‖Â− A‖ ≤ εA and ‖B̂ − B‖ ≤ εB. These bounds can, for instance, be probabilistic
in nature, coming from the concentration inequalities of Chapter 3. As a reminder, we are
interested in designing algorithms which take in as input (Â, B̂, εA, εB, S, R) and output a

controller K̂ such that J(K̂)− J? is well controlled.

5.1 Certainty Equivalence Control

Recall that the certainty equivalence controller discards the error bounds εA, εB and outputs:

K̂ = −(B̂TV̂ B̂ +R)−1B̂TV̂ Â , (5.1.1)

V̂ = dare(Â, B̂, S, R) . (5.1.2)

Here, V̂ is the unique positive definite solution to the discrete algebraic Riccati equation:

V̂ = ÂTV̂ Â− ÂTV̂ B̂(B̂TV̂ B̂ +R)−1V̂ TB̂Â+ S .

While this control scheme is simple and intuitive, it raises many questions. The first is, how
do we ensure that the solution to (5.1.2) exists? We know that dare(A,B, S,R) must exist
by the stabilizable assumption of (A,B), but how small do the errors εA, εB need to be so

that this transfers over to dare(Â, B̂, S, R)? The second question is, once we ensure that V̂

and K̂ are well-defined, how do we quantify the sub-optimality incurred with J(K̂)− J??
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5.1.1 A Meta Theorem

We first focus on the question of quantifying the sub-optimality incurred in terms of the
distance of V̂ = dare(Â, B̂, S, R) to V = dare(A,B, S,R). We define the constant Γ :=
1 + max{‖A‖, ‖B‖, ‖V ‖, ‖K‖}.

Theorem 5.1.1. Suppose that d ≤ n. Let L := A + BK be the optimal closed loop matrix,
and suppose that L is (τ, ρ) stable. Also, let ε > 0 such that ‖Â−A‖ ≤ ε and ‖B̂ −B‖ ≤ ε

and assume ‖V̂ − V ‖ ≤ f(ε) for some function f such that f(ε) ≥ ε. Then, if (S,R) are

both positive definite with λmin(R) ≥ 1, the certainty equivalent controller ut = K̂xt satisfies
the sub-optimality gap

J(K̂)− J? ≤ 200σ2
w dΓ9 τ 2

1− ρ2
f(ε)2, (5.1.3)

as long as f(ε) is small enough so that the right hand side is smaller than σ2
w.

The proof of Theorem 5.1.1 builds on tools from Chapter 4. We first relate the difference
of ‖K̂ −K‖ to the difference of ‖V̂ − V ‖.

Proposition 5.1.2. Define fi(u;x) = 1
2
uTRu + 1

2
(Aix + Biu)TVi(Aix + Biu) for i = 1, 2,

with R, V1, and V2 positive definite matrices. Let Ki be the unique matrix such that ui :=
arg minu fi(u;x) = Kix for any vector x. Also, denote Γ1 := 1+max{‖A1‖, ‖B1‖, ‖V1‖, ‖K1‖}.
Suppose there exists ε such that 0 ≤ ε < 1 and ‖A1 − A2‖ ≤ ε, ‖B1 − B2‖ ≤ ε, and
‖V1 − V2‖ ≤ ε. Then, we have

‖K1 −K2‖ ≤
7εΓ3

1

σmin(R)
.

Proof. We first compute the gradient ∇fi(u;x) with respect to u:

∇fi(u;x) = (BT
i ViBi +R)u+BT

i ViAix .

Now, we observe that:

‖BT
1 V1B1 −BT

2 V2B2‖ ≤ 7Γ2
1ε and ‖BT

1 V1A1 −BT
2 V2A2‖ = 7Γ2

1ε.

Hence, for any vector x with ‖x‖ ≤ 1, we have

‖∇f1(u;x)−∇f2(u;x)‖ ≤ 7Γ2
1ε(‖u‖+ 1).

We can bound ‖u1‖ ≤ ‖K1‖‖x‖ ≤ ‖K1‖. Then, from Proposition 4.0.6 we obtain

σmin(R)‖(K1 −K2)x‖ = σmin(R)‖u1 − u2‖ ≤ 7Γ3
1ε.
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The previous proposition allows us to upper bound ‖K̂ −K‖.

Proposition 5.1.3. Let ε > 0 such that ‖Â − A‖ ≤ ε and ‖B̂ − B‖ ≤ ε. Also, let

‖V̂ − V ‖ ≤ f(ε) for some function f such that f(ε) ≥ ε. Then, if λmin(R) ≥ 1,

‖K̂ −K‖ ≤ 7Γ3 f(ε). (5.1.4)

Now suppose that L = A + BK is (τ, ρ) stable. Then, if f(ε) is small enough so that the

right hand side of (5.1.4) is smaller than 1−γ
2τ

, we have A+BK̂ is (τ, (1 + γ)/2) stable.

Proof. By our assumptions ‖Â − A‖, ‖B̂ − B‖, and ‖V̂ − V ‖ are smaller than f(ε), and
σmin(R) ≥ 1. Then, Proposition 5.1.2 ensures that

‖K̂ −K‖ ≤ 7Γ3 f(ε).

Finally, when ε is small enough so that the right hand side of (5.1.4) is smaller or
equal than 1−ρ

2τ
, we can apply the perturbation result of Proposition 4.0.1 to guarantee that

‖(A+BK̂)k‖ ≤ τ
(

1+ρ
2

)k
for all k ≥ 0.

Now, we have the necessary ingredients to complete the proof of Theorem 5.1.1.

Proof of Theorem 5.1.1. The second order perturbation result of Lemma 4.0.5 implies:

J(K̂)− J? ≤ ‖Σ(K̂)‖‖R +BTV B‖‖K̂ −K‖2
F .

Proposition 5.1.3 states that K̂ stabilizes the system (A,B) when the estimation error is small

enough. More precisely, under the assumptions of Theorem 5.1.1, we have L̂ is (τ, (1 + ρ)/2)

stable with L̂ = A+BK̂. Therefore by Proposition 4.0.2,

‖Σ(K̂)‖ ≤ σ2
wτ

2

1−
(
ρ+1

2

)2 ≤
4σ2

wτ
2

1− ρ2
.

Recalling that Γ = 1 + max{‖A‖, ‖B‖, ‖V ‖, ‖K‖}, we have ‖R +BTV B‖ ≤ Γ3. Then,

J(K̂)− J? ≤ 4σ2
wΓ3 τ 2

1− ρ2
‖K̂ −K‖2

F

≤ 4σ2
w min{n, d}Γ3 τ 2

1− ρ2
‖K̂ −K‖2

≤ 200σ2
wdΓ9 τ 2

1− ρ2
f(ε)2 .
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5.1.2 Riccati Perturbation

Theorem 5.1.1 reduces the problem of bounding J(K̂)− J? to the problem of bounding the

error ‖V̂ − V ‖ of the solutions to the Riccati equation. In particular, if we can show that

‖V̂ −V ‖ ≤ Lε if ε < b, for some b and L, then Theorem 5.1.1 implies that J(K̂)−J? = O(ε2).
In other words, it suffices to show that the solutions to the discrete Riccati equation are
locally Lipschitz with respect to the problem parameters.

However, we note that one cannot hope to find universal values b and L such that for
any 0 < ε < b one has ‖V̂ − V ‖ ≤ Lε for arbitrary (A,B) and (Â, B̂) with ‖Â − A‖ ≤ ε

and ‖B̂ −B‖ ≤ ε. To see this, consider the one dimensional linear system (n = 1) given by

A = 1 and B = ε and consider the estimated system Â = 1 and B̂ = 0. Then, the estimated
system is ε close to the optimal system, but the estimated system is not stabilizable and
hence V̂ is not finite. Even when B̂ = ε/2, there is no universal L such that the desired
inequality holds for all positive ε. Therefore, b and L must depend on the system parameters
(A,B).

While there is a long line of work analyzing perturbations of Riccati equations, we are
not aware of any result that offers explicit and easily interpretable b and L for a fixed system
(A,B). See the book by Konstantinov et al. [58] for an overview of this literature. We
present two new results for Riccati perturbation which offer interpretable bounds. The first
one expands upon the operator-theoretic proof of Konstantinov et al. [57], and the second
one is based on a new elementary approach. The proofs for these results are omitted here,
and can be found in Mania et al. [75].

Proposition 5.1.4. Let L := A + BK be the optimal closed-loop matrix and suppose that
L is (τ, ρ) stable. Let ε be such that ‖Â − A‖ ≤ ε and ‖B̂ − B‖ ≤ ε. Put ‖·‖+ := ‖·‖ + 1.
Suppose that λmin(S) ≥ 1, λmin(R) ≥ 1 and the system (A,B) is stabilizable. We have

‖V̂ − V ‖ ≤ O(1) ε
τ 2

1− ρ2
‖A‖2

+‖V ‖2
+‖B‖+‖R−1‖+,

as long as

ε ≤ O(1)
(1− ρ2)2

τ 4
‖A‖−2

+ ‖V ‖−2
+ ‖B‖−3

+ ‖R−1‖−2
+ min

{
‖L‖−2

+ , ‖V ‖−1
+

}
.

Before we present a new direct bound, we need a new definition. Recall that a linear
system (A,B) is called controllable when the controllability matrix[

B AB A2B . . . An−1B
]

has full row rank. Controllability is a fundamental concept in control theory; it states that
there exists a sequence of inputs to the system (A,B) that moves it from any starting
state to any final state in at most n steps. We now introduce a definition that quantifies
how controllable a linear system is. We denote, for any integer ` ≥ 1, the matrix C` :=
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[
B AB . . . A`−1B

]
and call the system (`, ν)-controllable if the n-th singular value of

C` is greater or equal than ν, i.e. σmin(C`) =
√
λmin

(
C`C>`

)
≥ ν. Intuitively, the larger ν is,

the less control effort is needed to move the system between two different states.
We now present a new direct approach, which uses (`, ν)-controllability to give a bound

which is sharper for some systems (A,B) then the one provided by Proposition 5.1.4. Recall
that any controllable system is always (`, ν)-controllable for some ` and ν. For any square
matrix M , we define

τ(M,ρ) := sup
{
‖Mk‖ρ−k : k ≥ 0

}
. (5.1.5)

Note that if ρ ≥ ρ(M), then τ(M,ρ) is guaranteed to be finite (this is a consequence of
Gelfand’s formula). This holds even if ρ(M) ≥ 1.

Proposition 5.1.5. Suppose that (A,B) is (`, ν)-controllable. Let ρ ≥ ρ(A) and also let

ε ≥ 0 such that ‖Â − A‖ ≤ ε and ‖B̂ − B‖ ≤ ε. Let β := max{1, ετ(A, ρ) + ρ}. Suppose
that λmin(S) ≥ 1 and λmin(R) ≥ 1. We have that:

‖V̂ − V ‖ ≤ 32 ε `
5
2 τ(A, ρ)3β2(`−1)

(
1 +

1

ν

)
(1 + ‖B‖)2‖V ‖ max{‖S‖, ‖R‖}

min{λmin(S), λmin(R)} ,

as long as ε is small enough so that the right hand side is smaller or equal than one.

Proposition 5.1.5 requires an (`, ν)-controllable system (A,B), whereas Proposition 5.1.4
only requires a stabilizable system, which is a milder assumption. However, Proposition 5.1.5
can offer a sharper guarantee. For example, consider the linear system with two dimensional

states (n = 2) given by A = 1.01 ·I2 and B =

[
1 0
0 β

]
. The cost functions S and R are chosen

to be the identity matrix I2. This system (A,B) is readily checked to be (1, β)-controllable.
It is also straightforward to verify that as β tends to zero, Proposition 5.1.4 gives a bound of
‖V̂ −V ‖ = O(ε/β4), whereas Proposition 5.1.5 gives a sharper bound of ‖V̂ −V ‖ = O(ε/β3).

5.1.3 Putting it Together

We now combine the meta theorem Theorem 5.1.1 with the Riccati perturbation result
Proposition 5.1.5 and obtain the main sub-optimality bound for certainty equivalence control.

Theorem 5.1.6. Suppose that d ≤ n. Let ρ and γ be two real values such that ρ(A) ≤ ρ
and ρ(L) ≤ γ < 1, where L := A + BK is the optimal closed-loop matrix. Also, let ε > 0

such that ‖Â − A‖ ≤ ε and ‖B̂ − B‖ ≤ ε and define β := max{1, ετ(A, ρ) + ρ}. Suppose
that λmin(S) ≥ 1 and λmin(R) ≥ 1. Suppose also that (A,B) is (`, ν)-controllable. Then, the

certainty equivalent controller ut = K̂xt satisfies the sub-optimality gap

J(K̂)− J? ≤ O(1)σ2
w d `

5 Γ15 τ(A, ρ)6β4(`−1) τ(L, γ)2

1− γ2

max{‖S‖2, ‖R‖2}
min {λmin(S)2, λmin(R)2}

(
1 +

1

ν

)2

ε2 ,

(5.1.6)
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as long as ε is small enough so that the right hand side is smaller than σ2
w. Here, O(1)

denotes a universal constant.

The exact form of Equation 5.1.6, such as the polynomial dependence on `, Γ, etc, can
be improved at the expense of conciseness of the expression. In our proof we optimized for
the latter. The factor max{‖S‖2, ‖R‖2}/min {λmin(S)2, λmin(R)2} is the squared condition
number of the cost function, a natural quantity in the context of the optimization prob-
lem (1.1.2), which can be seen as an infinite dimensional quadratic program with a linear

constraint. The term τ(L,γ)2

1−γ2 quantifies the rate at which the optimal controller drives the
state towards zero. Generally speaking, the less stable the optimal closed loop system is, the
larger this term becomes.

An interesting trade-off arises between the factor `5β4(`−1) (which arises from upper
bounding perturbations of powers of A on a time interval of length `) and the factor ν
(the lower bound on σmin(C`)), which is increasing in `. Hence, the parameter ` should be
seen as a free-parameter that can be tuned to minimize the right hand side of (5.1.6). Now,
we specialize Theorem 5.1.6 to a few cases.

Case: A is contractive, i.e. ‖A‖ < 1. In this case, we can choose ρ = ‖A‖ and ε small
enough so that ε ≤ 1− ‖A‖. Then, (5.1.6) simplifies to:

J(K̂)− J? ≤ O(1) d σ2
w `

5 Γ15 τ(L, γ)2

1− γ2

max{‖S‖2, ‖R‖2}
min {λmin(S)2, λmin(R)2}

(
1 +

1

ν

)2

ε2 .

Case: B has rank n. In this case, we can choose ` = 1. Then, (5.1.6) simplifies to:

J(K̂)− J? ≤ O(1) d σ2
w Γ15τ(A, ρ)6 τ(L, γ)2

1− γ2

max{‖S‖2, ‖R‖2}
min {λmin(S)2, λmin(R)2}

(
1 +

1

ν

)2

ε2 .

5.2 Robust Control

In this section we discuss our approach based on System Level Synthesis (SLS), a recently
developed approach to control design that relies on a particular parameterization of signals
in a control system [78, 124]. We review the main SLS framework, highlighting the key
constructions that we will use to solve the robust LQR problem. As we show in this and
the following section, using the SLS framework, as opposed to traditional techniques from
robust control, allows us to (a) compute robust controllers using semidefinite programming,
and (b) provide sub-optimality guarantees in terms of the size of the uncertainties on our
system estimates.

5.2.1 Useful Results from System Level Synthesis

The SLS framework focuses on the system responses of a closed-loop system. As a motivating
example, consider linear dynamics under a fixed a static state-feedback control policy K,
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i.e., let uk = Kxk. Then, the closed loop map from the disturbance process {w0, w1, . . . } to
the state xk and control input uk at time k is given by

xk =
∑k

t=1(A+BK)k−twt−1 ,

uk =
∑k

t=1K(A+BK)k−twt−1 .
(5.2.1)

Letting Φx(k) := (A+BK)k−1 and Φu(k) := K(A+BK)k−1, we can rewrite (5.2.1) as[
xk
uk

]
=

k∑
t=1

[
Φx(k − t+ 1)
Φu(k − t+ 1)

]
wt−1 , (5.2.2)

where {Φx(k),Φu(k)} are called the closed-loop system response elements induced by the
static controller K.

Note that even when the control is a linear function of the state and its past history (i.e. a
linear dynamic controller), the expression (5.2.2) is valid. Though we conventionally think of
the control policy as a function mapping states to input, whenever such a mapping is linear,
both the control input and the state can be written as linear functions of the disturbance
signal wt. With such an identification, the dynamics require that the {Φx(k),Φu(k)} must
obey the constraints

Φx(k + 1) = AΦx(k) +BΦu(k) , Φx(1) = I , ∀k ≥ 1 , (5.2.3)

As we describe in more detail below in Theorem 5.2.1, these constraints are in fact both
necessary and sufficient. Working with closed-loop system responses allows us to cast optimal
control problems as optimization problems over elements {Φx(k),Φu(k)}, constrained to
satisfy the affine equations (5.2.3). Comparing equations (5.2.1) and (5.2.2), we see that
the former is non-convex in the controller K, whereas the latter is affine in the elements
{Φx(k),Φu(k)}.

As we work with infinite horizon problems, it is notationally more convenient to work
with transfer function representations of the above objects, which can be obtained by taking
a z-transform of their time-domain representations. The frequency domain variable z can
be informally thought of as the time-shift operator, i.e., z{xk, xk+1, . . . } = {xk+1, xk+2, . . . },
allowing for a compact representation of LTI dynamics. We use boldface letters to denote
such transfer functions signals in the frequency domain, e.g., Φx(z) =

∑∞
k=1 Φx(k)z−k. Then,

the constraints (5.2.3) can be rewritten as

[
zI − A −B

] [Φx

Φu

]
= I ,

and the corresponding (not necessarily static) control law u = Kx is given by K = ΦuΦ
−1
x .

The relevant frequency domain connections for LQR are illustrated in Section 5.2.6.
We formalize our discussion by introducing notation that is common in the controls

literature. For a thorough introduction to the functional analysis commonly used in control
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theory, see Chapters 2 and 3 of Zhou et al. [129]. Let T (resp. D) denote the unit circle
(resp. open unit disk) in the complex plane. The restriction of the Hardy spaces H∞(T)
and H2(T) to matrix-valued real-rational functions that are analytic on the complement of
D will be referred to as RH∞ and RH2, respectively. In controls parlance, this corresponds
to (discrete-time) stable matrix-valued transfer functions. For these two function spaces, the
H∞ and H2 norms simplify to

‖G‖H∞ = sup
z∈T
‖G(z)‖2 , ‖G‖H2 =

√
1

2π

∫
T
‖G(z)‖2

F dz . (5.2.4)

Finally, the notation 1
z
RH∞ refers to the set of transfer functions G such that zG ∈ RH∞.

Equivalently, G ∈ 1
z
RH∞ if G ∈ RH∞ and G is strictly proper.

The most important transfer function for the LQR problem is the map from the state
sequence to the control actions: the control policy. Consider an arbitrary transfer function
K denoting the map from state to control action, u = Kx. Then the closed-loop transfer
matrices from the process noise w to the state x and control action u satisfy[

x
u

]
=

[
(zI − A−BK)−1

K(zI − A−BK)−1

]
w. (5.2.5)

We then have the following theorem parameterizing the set of stable closed-loop transfer
matrices, as described in (5.2.5), that are achievable by a given stabilizing controller K.

Theorem 5.2.1 (State-Feedback Parameterization [124]). The following are true:

• The affine subspace defined by

[
zI − A −B

] [Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ (5.2.6)

parameterizes all system responses (5.2.5) from w to (x,u), achievable by an internally
stabilizing state-feedback controller K.

• For any transfer matrices {Φx,Φu} satisfying (5.2.6), the controller K = ΦuΦ
−1
x is

internally stabilizing and achieves the desired system response (5.2.5).

Note that in particular, {Φx,Φu} = {(zI−A−BK)−1,K(zI−A−BK)−1} as in (5.2.5) are
elements of the affine space defined by (5.2.6) whenever K is a causal stabilizing controller.

We will also make extensive use of a robust variant of Theorem 5.2.1.

Theorem 5.2.2 (Robust Stability [78]). Suppose that the transfer matrices {Φx,Φu} ∈
1
z
RH∞ satisfy [

zI − A −B
] [Φx

Φu

]
= I + ∆. (5.2.7)
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Then the controller K = ΦuΦ
−1
x stabilizes the system described by (A,B) if and only if

(I + ∆)−1 ∈ RH∞. Furthermore, the resulting system response is given by[
x
u

]
=

[
Φx

Φu

]
(I + ∆)−1w. (5.2.8)

Corollary 5.2.3. Under the assumptions of Theorem 5.2.2, if ‖∆‖ < 1 for any induced
norm ‖ · ‖, then the controller K = ΦuΦ

−1
x stabilizes the system described by (A,B).

Proof. Follows immediately from the small gain theorem, see for example Section 9.2 in Zhou
et al. [129].

5.2.2 Robust LQR Synthesis

We return to the problem setting where estimates (Â, B̂) of a true system (A,B) satisfy

‖∆A‖ ≤ εA, ‖∆B‖ ≤ εB

where ∆A := Â−A and ∆B := B̂−B and where we wish to minimize the LQR cost for the
worst instantiation of the parametric uncertainty.

Before proceeding, we must formulate the LQR problem in terms of the system responses
{Φx(k),Φu(k)}. It follows from Theorem 5.2.1 and the standard equivalence between infinite
horizon LQR and H2 optimal control that, for a disturbance process distributed as wt ∼
N (0, σ2

wI), the standard LQR problem (1.1.2) can be equivalently written as

min
Φx,Φu

σ2
w

∥∥∥∥[S 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥2

H2

s.t. equation (5.2.6). (5.2.9)

We provide a full derivation of this equivalence in Section 5.2.6. Going forward, we drop the
σ2
w multiplier in the objective function as it affects neither the optimal controller nor the

sub-optimality guarantees that we compute in Section 5.2.3.
We begin with a simple sufficient condition under which any controller K that stabilizes

(Â, B̂) also stabilizes the true system (A,B). To state the lemma, we introduce one additional
piece of notation. For a matrix M , we let RM denote the resolvent

RM := (zI −M)−1 . (5.2.10)

We now can state our robustness lemma.

Lemma 5.2.4. Let the controller K stabilize (Â, B̂) and (Φx,Φu) be its corresponding system

response (5.2.5) on system (Â, B̂). Then if K stabilizes (A,B), it achieves the following LQR
cost √

J(A,B,K) :=

∥∥∥∥∥
[
S

1
2 0

0 R
1
2

] [
Φx

Φu

](
I +

[
∆A ∆B

] [Φx

Φu

])−1
∥∥∥∥∥
H2

. (5.2.11)
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Furthermore, letting

∆̂ :=
[
∆A ∆B

] [Φx

Φu

]
= (∆A + ∆BK)RÂ+B̂K . (5.2.12)

a sufficient condition for K to stabilize (A,B) is that ‖∆̂‖H∞ < 1.

Proof. Follows immediately from Theorems 5.2.1, 5.2.2 and Corollary 5.2.3 by noting that
for system responses (Φx,Φu) satisfying[

zI − Â −B̂
] [Φx

Φu

]
= I,

it holds that [
zI − A −B

] [Φx

Φu

]
= I + ∆̂

for ∆̂ as defined in equation (5.2.12).

We can therefore recast the robust LQR problem (1.2.7) in the following equivalent form

min
Φx,Φu

sup
‖∆A‖≤εA
‖∆B‖≤εB

J(A,B,K)

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ .

(5.2.13)

The resulting robust control problem is one subject to real-parametric uncertainty, a class
of problems known to be computationally intractable [23]. Although effective computational
heuristics (e.g., DK iteration [129]) exist, the performance of the resulting controller on the
true system is difficult to characterize analytically in terms of the size of the perturbations.

To circumvent this issue, we take a slightly conservative approach and find an upper-
bound to the cost J(A,B,K) that is independent of the uncertainties ∆A and ∆B. First,
note that if ‖∆̂‖H∞ < 1, we can write√

J(A,B,K) ≤ ‖(I + ∆̂)−1‖H∞
√
J(Â, B̂,K) ≤ 1

1− ‖∆̂‖H∞

√
J(Â, B̂,K) . (5.2.14)

Because J(Â, B̂,K) captures the performance of the controller K on the nominal system

(Â, B̂), it is not subject to any uncertainty. It therefore remains to compute a tractable
bound for ‖∆̂‖H∞ , which we do using the following fact.

Proposition 5.2.5. For any α ∈ (0, 1) and ∆̂ as defined in (5.2.12)

‖∆̂‖H∞ ≤
∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

=: Hα(Φx,Φu) . (5.2.15)
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Proof. Note that for any block matrix of the form
[
M1 M2

]
, we have∥∥[M1 M2

]∥∥
2
≤
(
‖M1‖2

2 + ‖M2‖2
2

)1/2
. (5.2.16)

To verify this assertion, note that∥∥[M1 M2

]∥∥2
= λmax(M1M

∗
1 +M2M

∗
2 ) ≤ λmax(M1M

∗
1 ) + λmax(M2M

∗
2 ) = ‖M1‖2 + ‖M2‖2 .

With (5.2.16) in hand, we have∥∥∥∥[∆A ∆B

] [Φx

Φu

]∥∥∥∥
H∞

=

∥∥∥∥∥[√αεA ∆A

√
1−α
εB

∆B

] [ εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

≤
∥∥∥[√αεA ∆A

√
1−α
εB

∆B

]∥∥∥
2

∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

≤
∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

,

completing the proof.

The following corollary is then immediate.

Corollary 5.2.6. Let the controller K and resulting system response (Φx,Φu) be as defined
in Lemma 5.2.4. Then if Hα(Φx,Φu) < 1, the controller K = ΦuΦ

−1
x stabilizes the true

system (A,B).

Applying Proposition 5.2.5 in conjunction with the bound (5.2.14), we arrive at the
following upper bound to the cost function of the robust LQR problem (1.2.7), which is
independent of the perturbations (∆A,∆B):

sup
‖∆A‖≤εA
‖∆B‖≤εB

√
J(A,B,K) ≤

∥∥∥∥[S 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

1

1−Hα(Φx,Φu)
=

√
J(Â, B̂,K)

1−Hα(Φx,Φu)
.

(5.2.17)

The upper bound is only valid when Hα(Φx,Φu) < 1, which guarantees the stability of the
closed-loop system as in Corollary 5.2.6. We remark that Corollary 5.2.6 and the bound in
(5.2.17) are of interest independent of the synthesis procedure for K. In particular, they can

be applied to the optimal LQR controller K̂ computed using the nominal system (Â, B̂).
As the next lemma shows, the right hand side of Equation 5.2.17 can be efficiently

optimized by an appropriate decomposition. The proof of the lemma is immediate.

Lemma 5.2.7. For functions f : X → R and g : X → R and constraint set C ⊆ X , consider

min
x∈C

f(x)

1− g(x)
.
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Assuming that f(x) ≥ 0 and 0 ≤ g(x) < 1 for all x ∈ C, this optimization problem can
be reformulated as an outer single-variable problem and an inner constrained optimization
problem (the objective value of an optimization over the emptyset is defined to be infinity):

min
x∈C

f(x)

1− g(x)
= min

γ∈[0,1)

1
1−γ min

x∈C
{f(x) | g(x) ≤ γ}

Then combining Lemma 5.2.7 with the upper bound in (5.2.17) results in the following
optimization problem:

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu

∥∥∥∥[S 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I,

∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

≤ γ

Φx,Φu ∈
1

z
RH∞.

(5.2.18)

We note that this optimization objective is jointly quasi-convex in (γ,Φx,Φu). Hence, as a
function of γ alone the objective is quasi-convex, and furthermore is smooth in the feasible
domain. Therefore, the outer optimization with respect to γ can effectively be solved with
methods like golden section search. We remark that the inner optimization is a convex
problem, though an infinite dimensional one. We show in Section 5.2.4 that a simple finite
impulse response truncation yields a finite dimensional problem with similar guarantees of
robustness and performance.

We further remark that because γ ∈ [0, 1), any feasible solution (Φx,Φu) to optimization
problem (5.2.18) generates a controller K = ΦuΦ

−1
x satisfying the conditions of Corollary

5.2.6, and hence stabilizes the true system (A,B). Therefore, even if the solution is ap-
proximated, as long as it is feasible, it will be stabilizing. As we show in the next section,
for sufficiently small estimation error bounds εA and εB, we can further bound the sub-
optimality of the performance achieved by our robustly stabilizing controller relative to that
achieved by the optimal LQR controller K.

5.2.3 Sub-optimality Guarantees

We now return to analyzing the Coarse-ID control problem. We upper bound the perfor-
mance of the controller synthesized using the optimization (5.2.18) in terms of the size of
the perturbations (∆A,∆B) and a measure of complexity of the LQR problem defined by A,
B, S, and R. The following result is one of our main contributions.

Theorem 5.2.8. Let J? denote the minimal LQR cost achievable by any controller for the
dynamical system with transition matrices (A,B), and let K denote the optimal controller.
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Let (Â, B̂) be estimates of the transition matrices such that ‖∆A‖ ≤ εA, ‖∆B‖ ≤ εB. Then,
if K is synthesized via (5.2.18) with α = 1/2, the relative error in the LQR cost is√

J(A,B,K)−√J?√
J?

≤ 5(εA + εB‖K‖)‖RA+BK‖H∞ , (5.2.19)

as long as (εA + εB‖K‖)‖RA+BK‖H∞ ≤ 1/5.

This result offers a guarantee on the performance of the SLS synthesized controller re-
gardless of the estimation procedure used to estimate the transition matrices. Together with
the estimation results in Chapter 3, Theorem 5.2.8 yields a sample complexity upper bound
on the performance of the robust SLS controller K when (A,B) are not known. We make
this guarantee precise in Corollary 5.2.10 below.

We now compare the guarantee offered by Theorem 5.2.8 to the certainty equivalence
controller guarantee from Theorem 5.1.6. Theorem 5.2.8 states that as long as

ε ≤ 1

5(1 + ‖K‖)‖RA+BK‖H∞
,

then the resulting controller satisfies:√
J(K)−

√
J? ≤ 5(1 + ‖K‖)‖RA+BK‖H∞

√
J? ε . (5.2.20)

Equation 5.2.20 implies that:

J(K)− J? ≤ 10(1 + ‖K‖)‖RA+BK‖H∞J?ε+O(ε2) . (5.2.21)

In order to compare Equation 5.2.21 to Equation 5.1.6, we upper bound the quantity Ψ? in
terms of τ(L, γ) and γ. In particular, by a infinite series expansion of the inverse:

‖RA+BK‖H∞ = sup
z∈T
‖(zI − L)−1‖ = sup

z∈T

∥∥∥∥∥
∞∑
k=0

Lkz−(k+1)

∥∥∥∥∥ ≤
∞∑
k=0

‖Lk‖ ≤ τ(L, γ)

1− γ .

We can also upper bound J? = σ2
w tr(V ) ≤ σ2

wnΓ. Therefore, Equation 5.2.21 gives us that:

J(K)− J? ≤ O(1)nσ2
wΓ2 τ(L, γ)

1− γ ε+O(ε2) .

We see that the dependence on the parameters Γ and τ(L, γ) is significantly milder compared
to Equation 5.1.6. Furthermore, this upper bound is valid for larger ε than the upper bound
given in Theorem 5.1.6. Comparing these upper bound suggests that there is a price to pay
for obtaining a fast rate, and that in regimes of moderate uncertainty (moderate size of ε),
being robust to model uncertainty is important.

A similar trade-off between slow and fast rates arises in the setting of first-order convex
stochastic optimization. The convergence rate O(1/

√
T ) of the stochastic gradient descent
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method can be improved to O(1/T ) under a strong convexity assumption. However, the
performance of stochastic gradient descent, which can achieve a O(1/T ) rate, is sensitive
to poorly estimated problem parameters [84]. Similarly, in the case of LQR, the nominal
controller achieves a fast rate, but it is much more sensitive to estimation error than the
robust controller based on SLS.

The rest of the section is dedicated to proving Theorem 5.2.8. Recall that K is the
optimal LQR static state feedback matrix for the true dynamics (A,B), and let ∆ :=
− [∆A + ∆BK]RA+BK . We begin with a technical result.

Lemma 5.2.9. Define ζ := (εA + εB‖K‖)‖RA+BK‖H∞, and suppose that ζ < (1 +
√

2)−1.
Then (γ0, Φ̃x, Φ̃u) is a feasible solution of (5.2.18) with α = 1/2, where

γ0 =

√
2ζ

1− ζ , Φ̃x = RA+BK(I + ∆)−1, Φ̃u = KRA+BK(I + ∆)−1. (5.2.22)

Proof. By construction Φ̃x, Φ̃u ∈ 1
z
RH∞. Therefore, we are left to check three conditions:

γ0 < 1,
[
zI − Â −B̂

] [Φ̃x

Φ̃u

]
= I , and

∥∥∥∥∥
[

εA√
α
Φ̃x

εB√
1−αΦ̃u

]∥∥∥∥∥
H∞

≤
√

2ζ

1− ζ . (5.2.23)

The first two conditions follow by simple algebraic computations. Before we check the last
condition, note that ‖∆‖H∞ ≤ (εA + εB‖K‖)‖RA+BK‖H∞ = ζ < 1. Now observe that,∥∥∥∥∥

[
εA√
α
Φ̃x

εB√
1−αΦ̃u

]∥∥∥∥∥
H∞

=
√

2

∥∥∥∥[ εARA+BK

εBKRA+BK

]
(I + ∆)−1

∥∥∥∥
H∞

≤
√

2‖(I + ∆)−1‖H∞
∥∥∥∥[ εARA+BK

εBKRA+BK

]∥∥∥∥
H∞

≤
√

2

1− ‖∆‖H∞

∥∥∥∥[ εAIεBK

]
RA+BK

∥∥∥∥
H∞

≤
√

2(εA + εB‖K‖)‖RA+BK‖H∞
1− ‖∆‖H∞

≤
√

2ζ

1− ζ .

Proof of Theorem 5.2.8. Let (γ?,Φ
?
x,Φ

?
u) be an optimal solution to problem (5.2.18) and let

K = Φ?
u(Φ

?
x)
−1. We can then write√
J(A,B,K) ≤ 1

1− ‖∆̂‖H∞

√
J(Â, B̂,K) ≤ 1

1− γ?

√
J(Â, B̂,K) ,

where the first inequality follows from the bound (5.2.14), and the second follows from
the fact that ‖∆̂‖H∞ ≤ γ? due to Proposition 5.2.5 and the constraint in optimization
problem (5.2.18).
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From Lemma 5.2.9 we know that (γ0, Φ̃x, Φ̃u) defined in equation (5.2.22) is also a feasible
solution. Therefore, because K = Φ̃uΦ̃

−1
x , we have by optimality,

1

1− γ?

√
J(Â, B̂,K) ≤ 1

1− γ0

√
J(Â, B̂,K) ≤

√
J(A,B,K)

(1− γ0)(1− ‖∆‖H∞)
=

√
J?

(1− γ0)(1− ‖∆‖H∞)
,

where the second inequality follows by the argument used to derive (5.2.14) with the true and
estimated transition matrices switched. Recall that ‖∆‖H∞ ≤ ζ and that γ0 =

√
2ζ/(1 + ζ).

Therefore √
J(A,B,K)−√J?√

J?
≤ 1

1− (1 +
√

2)ζ
− 1 =

(1 +
√

2)ζ

1− (1 +
√

2)ζ
≤ 5ζ ,

where the last inequality follows because ζ < 1/5 < 1/(2+2
√

2). The conclusion follows.

With this sub-optimality result in hand, we are now ready to give an end-to-end perfor-
mance guarantee for our procedure when the independent data estimation scheme is used.

Corollary 5.2.10. Let λG = λmin(σ2
uGTG

T
T +σ2

wFTF
T
T ), where FT , GT are defined in (3.1.2).

Suppose the independent data estimation procedure described in (3.1.1) is used to produce

estimates (Â, B̂) and K is synthesized via (5.2.18) with α = 1/2. Then there are universal
constants C0 and C1 such that the relative error in the LQR cost satisfies√

J(A,B,K)−√J?√
J?

≤ C0σw‖RA+BK‖H∞
(

1√
λG

+
‖K‖
σu

)√
(n+ d) log(1/δ)

N
(5.2.24)

with probability 1− δ, as long as N ≥ C1(n+ d)σ2
w‖RA+BK‖2

H∞(1/λG + ‖K‖2/σ2
u) log(1/δ).

Proof. Recall from Proposition 3.1.1 that for the independent data estimation scheme, we
have

εA ≤
16σw√
λG

√
(n+ 2d) log(32/δ)

N
, and εB ≤

16σw
σu

√
(n+ 2d) log(32/δ)

N
, (5.2.25)

with probability 1− δ, as long as N ≥ 8(n+ d) + 16 log(4/δ).
To apply Theorem 5.2.8 we need (εA + εB‖K‖)‖RA+BK‖H∞ < 1/5, which will hold as

long as N ≥ O
{

(n+ d)σ2
w‖RA+BK‖2

H∞(1/λG + ‖K‖2/σ2
u) log(1/δ)

}
. A direct plug in of

(5.2.25) in (5.2.19) yields the conclusion.

Corollary 5.2.10 states that the sub-optimality gap is:√
J(A,B,K)−√J?√

J?
≤ CLQR

√
(n+ d) log(1/δ)

N
.
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with the constant CLQR defined as:

CLQR := C0σw

(
1√
λG

+
‖K‖2

σu

)
‖RA+BK‖H∞ .

Note that CLQR decreases as the minimum eigenvalue of the sum of the input and noise
controllability Gramians increases. This minimum eigenvalue tends to be larger for systems
that amplify inputs in all directions of the state-space. CLQR increases as function of the
operator norm of the gain matrix K and the H∞ norm of the transfer function from dis-
turbance to state of the closed-loop system. These two terms tend to be larger for systems
that are “harder to control.” The dependence on Q and R is implicit in this definition since
the optimal control matrix K is defined in terms of these two matrices. Note that when R
is large in comparison to Q, the norm of the controller K tends to be smaller because large
inputs are more costly. However, such a change in the size of the controller could cause an
increase in the H∞ norm of the closed-loop system. Thus, our upper bound suggests an
odd balance. Stable and highly damped systems are easy to control but hard to estimate,
whereas unstable systems are easy to estimate but hard to control. Our theorem suggests
that achieving a small relative LQR cost requires for the system to be somewhere in the
middle of these two extremes.

Finally, we remark that the above analysis holds more generally when we apply additional
constraints to the controller in the synthesis problem (5.2.18). In this case, the sub-optimality
bounds presented in Theorem 5.2.8 and Corollary 5.2.10 are true with respect to the minimal
cost achievable by the constrained controller with access to the true dynamics. In particular,
the bounds hold unchanged if the search is restricted to static controllers, i.e. ut = Kxt.
This is true because the optimal controller is static and therefore feasible for the constrained
synthesis problem.

As posed, the main optimization problem (5.2.18) is a semi-infinite program, and we
are not aware of a way to solve this problem efficiently. We now turn to two alternative
formulations that provide upper bounds to the optimal value and that can be solved in
polynomial time.

5.2.4 Finite impulse response approximation

An elementary approach to reducing the aforementioned semi-infinite program to a finite
dimensional one is to only optimize over the first L elements of the transfer functions Φx

and Φu, effectively taking a finite impulse response (FIR) approximation. Since these are
both stable maps, we expect the effects of such an approximation to be negligible as long as
the optimization horizon L is chosen to be sufficiently large – in what follows, we show that
this is indeed the case.

By restricting our optimization to FIR approximations of Φx and Φu, we can cast the
H2 cost as a second order cone constraint. The only difficulty arises in posing the H∞
constraint as a semidefinite program. Though there are several ways to cast H∞ constraints
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as linear matrix inequalities, we use the formulation in Theorem 5.8 of Dumitrescu’s text to
take advantage of the FIR structure in our problem [36]. We note that using Dumitrescu’s
formulation, the resulting problem is affine in α when γ is fixed, and hence we can solve
for the optimal value of α. Then the resulting system response elements can be cast as a
dynamic feedback controller using Theorem 2 of Anderson and Matni [9].

5.2.4.1 Sub-optimality guarantees

Here, we show that optimizing over FIR approximations incurs only a small degradation
in performance relative to the solution to the infinite-horizon problem. In particular, this
degradation in performance decays exponentially in the FIR horizon L, where the rate of
decay is specified by the decay rate of the spectral elements of the optimal closed loop system
response RA+BK .

Before proceeding, we introduce additional concepts and notation needed to formalize
guarantees in the FIR setting. A linear-time-invariant transfer function is stable if and only
if it is exponentially stable, i.e., Φ =

∑∞
t=0 z

−tΦ(t) ∈ RH∞ if and only if there exists positive
values τ and ρ ∈ [0, 1) such that for every spectral element Φ(t), t ≥ 0, it holds that

‖Φ(t)‖ ≤ τρt. (5.2.26)

In what follows, we pick τ? and ρ? to be any such constants satisfying ‖RA+BK(t)‖ ≤ τ?ρ
t
?

for all t ≥ 0.
We introduce a version of the optimization problem (5.2.13) with a finite number of

decision variables:

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu,V

∥∥∥∥[S 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I +

1

zL
V,∥∥∥∥∥

[
εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

+ ‖V ‖ ≤ γ

Φx =
L∑
t=1

1

zt
Φx(t), Φu =

L∑
t=1

1

zt
Φu(t).

(5.2.27)

In this optimization problem we search over finite response transfer functions Φx and Φu.
Given a feasible solution Φx, Φu of problem (5.2.27), we can implement the controller KL =
ΦuΦ

−1
x with an equivalent state-space representation (AK , BK , CK , DK) using the response

elements {Φx(k)}Lk=1 and {Φu(k)}Lk=1 via Theorem 2 of Anderson and Matni [9].
The slack term V accounts for the error introduced by truncating the infinite response

transfer functions of problem (5.2.13). Intuitively, if the truncated tail is sufficiently small,
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then the effects of this approximation should be negligible on performance. The next result
formalizes this intuition.

Theorem 5.2.11. Set α = 1/2 in (5.2.27) and let τ? > 0 and ρ? ∈ [0, 1) be such that
‖R(A+BK)(t)‖ ≤ τ?ρ

t
? for all t ≥ 0. Then, if KL is synthesized via (5.2.27), the relative error

in the LQR cost is√
J(A,B,KL)−√J?√

J?
≤ 10(εA + εB‖K‖)‖RA+BK‖H∞ ,

as long as

εA + εB‖K‖ ≤
1− ρ?
10τ?

and L ≥
4 log

(
τ?

(εA+εB‖K‖)‖RA+BK‖H∞

)
1− ρ?

.

The proof of this result can be found in Dean et al. [31]. It is conceptually the same
as that of the infinite horizon setting. The main difference is that care must be taken to
ensure that the approximation horizon L is sufficiently large so as to ensure stability and
performance of the resulting controller. From the theorem statement, we see that for such
an appropriately chosen FIR approximation horizon L, our performance bound is the same,
up to universal constants, to that achieved by the solution to the infinite horizon problem.
Furthermore, the approximation horizon L only needs to grow logarithmically with respect
to one over the estimation rate in order to preserve the same statistical rate as the controller
produced by the infinite horizon problem. Finally, an end-to-end sample complexity result
analogous to that stated in Corollary 5.2.10 can be easily obtained by simply substituting
in the sample-complexity bounds on εA and εB specified in Proposition 3.1.1.

5.2.5 Static controller and a common Lyapunov approximation

As we have reiterated above, when the dynamics are known, the optimal LQR control law
takes the form ut = Kxt for properly chosen static gain matrix K. We can reparameterize
the optimization problem (5.2.18) to restrict our attention to such static control policies:

minimizeγ∈[0,1)
1

1− γ min
Φx,Φu,K

∥∥∥∥[S 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥
H2

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I,

∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

≤ γ

Φx,Φu ∈
1

z
RH∞ , K = ΦuΦ

−1
x .

(5.2.28)

Under this reparameterization, the problem is no longer convex. Here we present a simple
application of the common Lyapunov relaxation that allows us to find a controller K using
semidefinite programming.
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Note that the equality constraints imply:

I =
[
zI − Â −B̂

] [Φx

Φu

]
=
[
zI − Â −B̂

] [ I
K

]
Φx = (zI − Â− B̂K)Φx ,

revealing that we must have

Φx = (zI − Â− B̂K)−1 and Φu = K(zI − Â− B̂K)−1 .

With these identifications, (5.2.28) can be reformulated as

minimizeγ∈[0,1)
1

1− γ min
K

∥∥∥∥[S 1
2 0

0 R
1
2K

]
(zI − Â− B̂K)−1

∥∥∥∥
H2

s.t.

∥∥∥∥∥
[

εA√
α

εB√
1−αK

]
(zI − Â− B̂K)−1

∥∥∥∥∥
H∞

≤ γ

(5.2.29)

Using standard techniques from the robust control literature, we can upper bound this
problem via the semidefinite program

minimizeX,Z,W,α,γ
1

(1−γ)2
{tr(SW11) + tr(RW22)}

subject to

X X ZT

X W11 W12

Z W21 W22

 � 0
X − I (Â+ B̂K)X 0 0

X(Â+ B̂K)T X εAX εBZ
T

0 εAX αγ2I 0
0 εBZ 0 (1− α)γ2I

 � 0 .

(5.2.30)

Note that this optimization problem is affine in α when γ is fixed. Hence, in practice we
can find the optimal value of α as well. A static controller can then be extracted from this
optimization problem by setting K = ZX−1. A full derivation of this relaxation can be
found in Dean et al. [31]. Note that this compact SDP is simpler to solve than the truncated
FIR approximation.

5.2.6 Derivation of the LQR cost as an H2 norm

In this section, we consider the transfer function description of the infinite horizon LQR
optimal control problem. In particular, we show how it can be recast as an equivalent H2

optimal control problem in terms of the system response variables defined in Theorem 5.2.1.
Recall that stable and achievable system responses (Φx,Φu), as characterized in equation

(5.2.6), describe the closed-loop map from disturbance signal w to the state and control
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action (x,u) achieved by the controller K = ΦuΦ
−1
x , i.e.,

[
x
u

]
=

[
Φx

Φu

]
w. Letting Φx =∑∞

t=1 Φx(t)z
−t and Φu =

∑∞
t=1 Φu(t)z

−t, we can then equivalently write for any t ≥ 1[
xt
ut

]
=

t∑
k=1

[
Φx(k)
Φu(k)

]
wt−k. (5.2.31)

For a disturbance process distributed as wt ∼ N (0, σ2
wI), it follows from equation (5.2.31)

that

E
[
xTt Sxt

]
= σ2

w

t∑
k=1

tr(Φx(k)TSΦx(k)) ,

E
[
uTt Rut

]
= σ2

w

t∑
k=1

tr(Φu(k)TRΦu(k)) .

We can then write

lim
T→∞

1

T

T∑
t=1

E
[
xTt Sxt + uTt Rut

]
= σ2

w

[
∞∑
t=1

tr(Φx(t)
TSΦx(t)) + tr(Φu(t)

TRΦu(t))

]

= σ2
w

∞∑
t=1

∥∥∥∥[S 1
2 0

0 R
1
2

] [
Φx(t)
Φu(t)

]∥∥∥∥2

F

=
σ2
w

2π

∫
T

∥∥∥∥[S 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥2

F

dz

= σ2
w

∥∥∥∥[S 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥2

H2

,

where the second to last equality is due to Parseval’s Theorem.
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Chapter 6

Model-free Methods for LQR

In this chapter, we study model-free methods for LQR. We first turn to a non-asymptotic
analysis of the classic least-squares policy iteration (LSPI) algorithm from Lagoudakis and
Parr [63] applied to LQR. One issue with the non-asymptotic analysis is that we will pro-
duce an upper bound on the sample complexity, which is not directly comparable to the
upper bounds established in Chapter 5. We partially resolve this issue in the later part of
this chapter by turning to an asymptotic analysis of various model-based and model-free
algorithms, which allows us to directly compare the sample complexity of model-based and
model-free algorithms on LQR. The LSPI analysis in this chapter is new material, whereas
the later part of the thesis is based on Tu and Recht [118].

Notation. For a positive scalar x ≥ 0, we let x+ = max{1, x}. As before, we let svec(M) ∈
Rn(n+1)/2 denote the vectorized version of the upper triangular part of a symmetric matrix
M so that ‖M‖2

F = 〈svec(M), svec(M)〉. Finally, smat(·) denotes the inverse of svec(·), so
that smat(svec(M)) = M .

6.1 Least-squares Policy Iteration for LQR

6.1.1 Related Work

We first discuss related RL results for the general function approximation setting. Antos
et al. [10] and Lazaric et al. [64] analyze variants of LSPI for discounted MDPs where the
state space is a compact set, the action space finite, and the feature vectors and rewards are
uniformly bounded. Furthermore, Lazaric et al. [64] study a version of LSPI where LSTD is
applied to learn the value function of the current policy, and the policy is greedily updated
via an update operator that requires access to the underlying dynamics (and is therefore
not implementable). Farahmand et al. [40] extend the results of Lazaric et al. [64] to when
the function spaces considered are reproducing kernel Hilbert spaces. Zou et al. [130] give
a finite-time analysis of both Q-learning and SARSA, combining the asymptotic analysis
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of Melo et al. [80] with the finite-time analysis of TD-learning from Bhandari et al. [16].
We note that checking the required assumptions to apply the results of Zou et al. [130] is
non-trivial (c.f. Section 3.1, [80]). We also note that we are un-aware of any non-asymptotic
analysis of LSPI in the average cost setting considered in this paper, which is substantially
more difficult as the Bellman operator is no longer a contraction.

6.1.2 Least-squares temporal difference learning for Q-functions

The first component towards an understanding of approximate PI is to understand least-
squares temporal difference learning (LSTD-Q) for Q-functions, which is the fundamental
building block of LSPI. We briefly recap the LSTD-Q algorithm from the discussion in
Section 1.3.

Given a policy Keval which stabilizes (A,B), the goal of LSTD-Q is to estimate the
parameters of the Q-function associated to Keval. Bellman’s equation for infinite-horizon
average cost MDPs (c.f. Bertsekas [14]) states that the (relative) Q-function associated to a
policy π satisfies the following fixed-point equation:

λ+Q(x, u) = c(x, u) + Ex′∼p(·|x,u)[Q(x′, π(x′))] . (6.1.1)

Here, λ ∈ R is a free parameter chosen so that the fixed-point equation holds. LSTD-Q
operates under the linear architecture assumption, which states that the Q-function can be
described as Q(x, u) = qTφ(x, u), for a known (possibly non-linear) feature map φ(x, u). It
is well known that LQR satisfies this assumption, since we have:

Q(x, u) = svec(Q)Tsvec

([
x
u

] [
x
u

]T)
,

Q =

[
S 0
0 R

]
+

[
AT

BT

]
V
[
A B

]
,

V = dlyap(A+BKeval, S +KT
evalRKeval) ,

λ =

〈
Q, σ2

w

[
I

Keval

] [
I

Keval

]T〉
.

Here, we slightly abuse notation and let Q denote the function and also the matrix parame-
terizing the Q function. Now suppose that a trajectory {(xt, ut, xt+1)}Tt=1 is collected. Note
that LSTD-Q is an off-policy method (unlike the closely related LSTD estimator for value
functions), and therefore the inputs ut can come from any sequence that provides sufficient
excitation for learning. In particular, it does not have to come from the policy Keval. In this
paper, we will consider inputs of the form:

ut = Kplayxt + ηt , ηt ∼ N (0, σ2
ηI) , (6.1.2)

where Kplay is a stabilizing controller for (A,B). Once again we emphasize that Kplay 6= Keval

in general. The injected noise ηt is needed in order to provide sufficient excitation for learning.
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In order to describe the LSTD-Q estimator, we define the following quantities which play a
key role throughout the paper:

φt := φ(xt, ut) , ψt := φ(xt, Kevalxt) ,

f := svec

(
σ2
w

[
I

Keval

] [
I

Keval

]T)
, ct := xTt Sxt + uTt Rut .

The LSTD-Q estimator estimates q via:

q̂ :=

(
T∑
t=1

φt(φt − ψt+1 + f)T

)† T∑
t=1

φtct . (6.1.3)

Here, (·)† denotes the Moore-Penrose pseudo-inverse. Our first result establishes a non-
asymptotic bound on the quality of the estimator q̂, measured in terms of ‖q̂ − q‖.

Theorem 6.1.1. Fix a δ ∈ (0, 1). Let policies Kplay and Keval stabilize (A,B), and assume
that both A + BKplay and A + BKeval are (τ, ρ)-stable. Let the initial state x0 ∼ N (0,Σ0)
and consider the inputs ut = Kplayxt + ηt with ηt ∼ N (0, σ2

ηI). For simplicity, assume that
ση ≤ σw. Let P∞ denote the steady-state covariance of the trajectory {xt}:

P∞ = dlyap((A+BKplay)T, σ2
wI + σ2

ηBB
T) . (6.1.4)

Define the proxy variance σ2 by:

σ2 := τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2
η‖B‖2 . (6.1.5)

Suppose that T satisfies:

T ≥ Õ(1) max

{
(n+ d)2,

τ 4

ρ4(1− ρ2)2

(n+ d)4

σ4
η

σ2
wσ

2‖Kplay‖4
+‖Keval‖8

+(‖A‖4 + ‖B‖4)+

}
.

(6.1.6)

Then we have with probability at least 1− δ,

‖q̂ − q‖ ≤ Õ(1)
τ 2

ρ2(1− ρ2)

(n+ d)

σ2
η

√
T
σwσ‖Kplay‖2

+‖Keval‖4
+(‖A‖2 + ‖B‖2)+‖QKeval‖F . (6.1.7)

Here the Õ(1) hides polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, T/δ, 1/ση) factors.

Theorem 6.1.1 states that:

T ≤ Õ
(

(n+ d)4,
1

σ4
η

(n+ d)3

ε2

)
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timesteps are sufficient to achieve error ‖q̂ − q‖ ≤ ε. Several remarks are in order. First,
while the (n + d)4 burn-in is sub-optimal, the (n + d)3/ε2 dependence is likely sharp as
suggested by the asymptotic results in the later part of this chapter. We leave improving
the polynomial dependence of the burn-in period to future work.

Before we turn to the proof of Theorem 6.1.1, we remark that it rests on top of several
recent advances. First, we build off the work of Abbasi-Yadkori et al. [4] to derive a new
basic inequality for LSTD-Q which serves as a starting point for the analysis. Next, we com-
bine the small-ball techniques of Simchowitz et al. [105] with the self-normalized martingale
inequalities of Abbasi-Yadkori et al. [2]. While an analysis of LSTD-Q is presented in Abbasi-
Yadkori et al. [4] (which builds on the analysis for LSTD from Tu and Recht [117]), a direct
application of their result yields a 1/σ8

η dependence; the use of self-normalized inequalities
is necessary in order to reduce this dependence to 1/σ4

η.
We now turn to the proof. Because of stability, we have that Pt converges to a limit

P∞ = dlyap((A+BKplay)T, σ2
wI + σ2

ηBB
T), where Pt is:

Pt :=
t−1∑
k=0

(A+BKplay)k(σ2
wI + σηBB

T)((A+BKplay)T)k .

The covariance of xt for t ≥ 1 is:

Cov(xt) = Σt := Pt + (A+BKplay)tΣ0((A+BKplay)T)t .

We define the following data matrices:

Φ =

−φ
T
1−
...

−φT
T−

 , Ψ+ =

 −ψ
T
2−
...

−ψT
T+1−

 , c = (c1, ..., cT )T , F =

−f
T−
...

−fT−

 .

With this notation, the LSTD-Q estimator is:

q̂ =
(
ΦT(Φ−Ψ+ + F )

)†
ΦTc .

Next, let Ξ be the matrix:

Ξ =

 −E[φ(x2, Kevalx2)|x1, u1]T−
...

−E[φ(xT+1, KevalxT+1)|xT , uT ]T−

 .

For what follows, we let the notation ⊗s denote the symmetric Kronecker product. See
Schäcke [100] for more details. The following lemma, based on Lemma 4.1 of Abbasi-Yadkori
et al. [4], gives us a starting point for analysis. Recall that q = svec(Q) and Q is the matrix
which parameterizes the Q-function for Keval.
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Lemma 6.1.2 (Lemma 4.1, [4]). Let L :=

[
I

Keval

] [
A B

]
. Suppose that Φ has full column

rank, and that

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖
σmin(Φ)σmin(I − L⊗s L)

≤ 1/2 .

Then we have:

‖q̂ − q‖ ≤ 2
‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q‖
σmin(Φ)σmin(I − L⊗s L)

. (6.1.8)

Proof. By the Bellman equation (6.1.1), we have the identity:

Φq = c+ (Ξ− F )q

By the definition of q̂, we have the identity:

Φq̂ = PΦ(c+ (Ψ+ − F )q̂) ,

where PΦ = Φ(ΦTΦ)−1ΦT is the orthogonal projector onto the columns of Φ. Combining
these two identities gives us:

PΦ(Φ− Ξ + F )(q − q̂) = PΦ(Ξ−Ψ+)q̂ .

Next, the i-th row of Φ− Ξ + F is:

svec

([
xi
ui

] [
xi
ui

]T
− E

[[
I

Keval

]
x̃x̃T

[
I

Keval

]T ∣∣∣∣ xi, ui
]

+ σ2
w

[
I

Keval

] [
I

Keval

]T)

= svec

([
xi
ui

] [
xi
ui

]T
− L

[
xi
ui

] [
xi
ui

]T
LT

)
= (I − L⊗s L)φ(xi, ui) .

Therefore, Φ− Ξ + F = Φ(I − L⊗s L)T. Combining with the above identity:

Φ(I − L⊗s L)T(q − q̂) = PΦ(Ξ−Ψ+)q̂ .

Because Φ has full column rank, this identity implies that:

(I − L⊗s L)T(q − q̂) = (ΦTΦ)−1ΦT(Ξ−Ψ+)q̂ .

Using the inequalities:

‖(I − L⊗s L)T(q − q̂)‖ ≥ σmin((I − L⊗s L))‖q − q̂‖ ,

(ΦTΦ)−1ΦT(Ξ−Ψ+)q̂ ≤ ‖(Φ
TΦ)−1/2ΦT(Ξ−Ψ+)q̂‖
λmin((ΦTΦ)−1/2)

=
‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q̂‖

σmin(Φ)
,
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we obtain:

‖q − q̂‖ ≤ ‖(Φ
TΦ)−1/2ΦT(Ξ−Ψ+)q̂‖

σmin(Φ)σmin(I − L⊗s L)
.

Next, let ∆ = q − q̂. By triangle inequality:

‖∆‖ ≤ ‖(Φ
TΦ)−1/2ΦT(Ξ−Ψ+)‖‖∆‖
σmin(Φ)σmin(I − L⊗s L)

+
‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q‖
σmin(Φ)σmin(I − L⊗s L)

.

The claim now follows.

In order to apply Lemma 6.1.2, we first bound the minimum singular value σmin(Φ). We
do this using the small-ball argument of Simchowitz et al. [105].

Proposition 6.1.3. Given an arbitrary vector y ∈ Sn+d−1, define the process Zt := 〈φt, y〉,
the filtration Ft := σ({ui, wi−1}ti=0), and the matrix C :=

[
I 0

Kplay I

] [
σwI 0

0 σηI

]
. Then

(Zt)t≥1 satisfies the (1, σ2
min(C), 1/324) block martingale small-ball (BMSB) condition from

Definition 2.1 of Simchowitz et al. [105]. That is, almost surely, we have:

P(|Zt+1| ≥ σ2
min(C)|Ft) ≥ 1/324.

Proof. Let Y := smat(y) and µt := Axt +But. We have that:[
xt+1

ut+1

]
=

[
I

Kplay

]
µt +

[
I 0

Kplay I

] [
wt
ηt+1

]
.

Therefore:

〈φt+1, y〉 =

[
xt+1

ut+1

]T
Y

[
xt+1

ut+1

]
=

([
I

Kplay

]
µt +

[
I 0

Kplay I

] [
wt
ηt+1

])T

Y

([
I

Kplay

]
µt +

[
I 0

Kplay I

] [
wt
ηt+1

])
,

which is clearly a Gaussian polynomial of degree 2 given Ft. Hence by Gaussian hyper-
contractivity results (see e.g. [20]), we have that almost surely:

E[|Zt+1|4|Ft] ≤ 81E[|Zt+1|2|Ft]2.

Hence we can invoke the Paley-Zygmund inequality to conclude that for any θ ∈ (0, 1),
almost surely we have:

P(|Zt+1| ≥
√
θE[|Zt+1|2|Ft]|Ft) ≥ (1− θ)2E[|Zt+1|2|Ft]2

E[|Zt+1|4|Ft]
≥ (1− θ)2

81
.

We now state an useful proposition.
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Proposition 6.1.4. Let µ,C, Y be fixed and g ∼ N (0, I). We have that:

E[((µ+ Cg)TY (µ+ Cg))2] ≥ 2‖CTY C‖2
F .

Proof. Let Z := (µ + Cg)TY (µ + Cg). We know that E[Z2] ≥ E[(Z − E[Z])2]. A quick
computation yields that E[Z] = µTY µ+ tr(CTY C). Hence

Z − E[Z] = gTCTY Cg − tr(CTY C) + 2µTY Cg .

Therefore,

E[(Z − E[Z])2] ≥ E[(gTCTY Cg − tr(CTY C))2] = 2‖CTY C‖2
F .

Invoking Proposition 6.1.4 and using basic properties of the Kronecker product, we have
that:

E[Z2
t+1|Ft] ≥ 2‖CTY C‖2

F = 2‖(CT ⊗ CT)y‖2 ≥ 2σ2
min(CT ⊗ CT) = 2σ4

min(C) .

The claim now follows by setting θ = 1/2.

With the BMSB bound in place, we can now utilize Proposition 2.5 of Simchowitz et al.
[105] to obtain the following lower bound on the minimum singular value σmin(Φ).

Proposition 6.1.5. Fix δ ∈ (0, 1). Suppose that ση ≤ σw, and that T exceeds:

3242 · 8
(

(n+ d)2 log

(
1 +

20736
√

3√
δ

(1 + ‖Kplay‖2)2(τ 2ρ2n‖Σ0‖+ tr(P∞))

σ2
η

)
+ log(2/δ)

)
.

(6.1.9)

Suppose also that A+BKplay is (τ, ρ)-stable. Then we have with probability at least 1− δ,

σmin(Φ) ≥ σ2
η

1296
√

8

1

1 + ‖Kplay‖2

√
T .

We also have with probability at least 1− δ,

‖ΦTΦ‖ ≤ 12T

δ
(1 + ‖Kplay‖2)2(τ 2ρ2n‖Σ0‖+ tr(P∞))2 .

Proof. We first compute a crude upper bound on ‖Φ‖ using Markov’s inequality:

P(‖Φ‖2 ≥ t2) =
E[λmax(ΦTΦ)]

t2
≤ tr(E[ΦTΦ])

t2
.
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Now we upper bound E[‖φt‖2]. Letting zt = (xt, ut), we have that E[‖φt‖2] = E[‖zt‖4] ≤
3(E[‖zt‖2])2. We bound E[‖zt‖2] ≤ (1 + ‖Kplay‖2) tr(Σt) + σ2

ηd, and therefore:√
E[‖φt‖2] ≤

√
3((1 + ‖Kplay‖2) tr(Σt) + σ2

ηd)

≤
√

3((1 + ‖Kplay‖2)(τ 2ρ2n‖Σ0‖+ tr(P∞)) + σ2
ηd)

≤ 2
√

3(1 + ‖Kplay‖2)(τ 2ρ2n‖Σ0‖+ tr(P∞)) .

Above, the last inequality holds because σ2
ηd ≤ σ2

wn ≤ tr(P∞). Therefore, we have from
Markov’s inequality:

P

(
‖Φ‖ ≥

√
T√
δ

2
√

3(1 + ‖Kplay‖2)(τ 2ρ2n‖Σ0‖+ tr(P∞))

)
≤ δ .

Fix an ε > 0, and let N (ε) denote an ε-net of the unit sphere S(n+d)(n+d+1)/2−1. Next, by
Proposition 2.5 of Simchowitz et al. [105] and a union bound over N (ε):

P
(

min
v∈N (ε)

‖Φv‖ ≥ σ2
min(C)

324
√

8

√
T

)
≥ 1− (1 + 2/ε)(n+d)2e−

T
3242·8 .

Now set

ε =

√
δ

5184
√

3

σ2
min(C)

(1 + ‖Kplay‖2)(τ 2ρ2n‖Σ0‖+ tr(P∞))
,

and observe that as long as T exceeds:

3242 · 8
(

(n+ d)2 log

(
1 +

10368
√

3√
δ

(1 + ‖Kplay‖2)(τ 2ρ2n‖Σ0‖+ tr(P∞))

σ2
min(C)

)
+ log(2/δ)

)
,

we have that P
(

minv∈N (ε)‖Φv‖ ≥ σ2
min(C)

324
√

8

√
T
)
≥ 1− δ/2. To conclude, observe that:

σmin(Φ) = inf
‖v‖=1
‖Φv‖ ≥ min

v∈N (ε)
‖Φv‖ − ‖Φ‖ε ,

and union bound over the two events. To conclude the proof, note that Lemma F.6 in Dean

et al. [32] yields that σ2
min(C) ≥ σ2

η

2
1

1+‖Kplay‖2
since ση ≤ σw.

We now turn our attention to upper bounding the self-normalized martingale terms:

‖(ΦTΦ)−1ΦT(Ξ−Ψ+)‖ and ‖(ΦTΦ)−1ΦT(Ξ−Ψ+)q‖ .

Our main tool here will be the self-normalized tail bounds of Abbasi-Yadkori et al. [2].
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Lemma 6.1.6 (Corollary 1, [2]). Let {Ft} be a filtration. Let {xt} be a Rd1 process that
is adapted to {Ft} and let {wt} be a Rd2 martingale difference sequence that is adapted to
{Ft}. Let V be a fixed positive definite d1 × d1 matrix and define:

V̄t = V +
t∑

s=1

xsx
T
s , St =

t∑
s=1

xsw
T
s+1 .

(a) Suppose for any fixed unit h ∈ Rd2 we have that 〈wt, h〉 is conditionally R-sub-Gaussian,
that is:

∀λ ∈ R, t ≥ 1 , E[eλ〈wt+1,h〉|Ft] ≤ e
λ2R2

2 .

We have that with probability at least 1− δ, for all t ≥ 1,

‖V̄ −1/2
t St‖2 ≤ 8R2

(
d2 log 5 + log

(
det(V̄t)

1/2 det(V )−1/2

δ

))
.

(b) Now suppose that δ̄ satisfies the condition:

T+1∑
s=2

P(‖ws‖ > R) ≤ δ̄ .

Then with probability at least 1− δ − δ̄, for all 1 ≤ t ≤ T ,

‖V̄ −1/2
t St‖2 ≤ 32R2

(
d2 log 5 + log

(
det(V̄t)

1/2 det(V )−1/2

δ

))
.

Proof. Fix a unit h ∈ Rd2 . By Corollary 1 of Abbasi-Yadkori et al. [2], we have with
probability at least 1− δ,

‖V̄ −1/2
t Sth‖2 ≤ 2R2 log

(
det(V̄t)

1/2 det(V )−1/2

δ

)
, 1 ≤ t ≤ T .

A standard covering argument yields that:

‖V̄ −1/2
t St‖2 ≤ 4 max

h∈N (1/2)
‖V̄ −1/2

t Sth‖2 .

Union bounding over N (1/2), we obtain that:

‖V̄ −1/2
t St‖2 ≤ 8R2 log

(
5d2

det(V̄t)
1/2 det(V )−1/2

δ

)
= 8R2

(
d2 log 5 + log

(
det(V̄t)

1/2 det(V )−1/2

δ

))
.
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This yields (a).
For (b), we use a simple stopping time argument to handle truncation. Define the stop-

ping time τ := inf{t ≥ 1 : ‖wt‖ > R} and the truncated process w̃t := wt1τ≥t. Because
τ is a stopping time, this truncated process {w̃t} remains a martingale difference sequence.
Define Zt =

∑t
s=1 xsw̃

T
s+1. For any ` > 0 we observe that:

P(∃1 ≤ t ≤ T : ‖V̄ −1/2
t St‖ > `)

≤ P({∃1 ≤ t ≤ T : ‖V̄ −1/2
t St‖ > `} ∩ {τ > T + 1}) + P(τ ≤ T + 1)

= P({∃1 ≤ t ≤ T : ‖V̄ −1/2
t Zt‖ > `} ∩ {τ > T + 1}) + P(τ ≤ T + 1)

≤ P(∃t ≥ 1 : ‖V̄ −1/2
t Zt‖ > `) + P(τ ≤ T + 1)

≤ P(∃t ≥ 1 : ‖V̄ −1/2
t Zt‖ > `) +

T+1∑
s=2

P(‖ws‖ > R)

≤ P(∃t ≥ 1 : ‖V̄ −1/2
t Zt‖ > `) + δ̄ .

Now set ` = 32R2
(
d2 log 5 + log

(
det(V̄t)1/2 det(V )−1/2

δ

))
and using the fact that a R bounded

random variable is 2R-sub-Gaussian, the claim now follows by another application of Corol-
lary 1 from [2].

With Lemma 6.1.6 in place, we are ready to bound the martingale difference terms.

Proposition 6.1.7. Suppose the hypothesis of Proposition 6.1.5 hold. With probability at
least 1− δ,

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q‖ ≤ (n+ d)σw

√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2(1 + ‖Keval‖2)‖Q‖F
× polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, T/δ, 1/ση) ,

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖ ≤ (n+ d)2σw

√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2(1 + ‖Keval‖2)

× polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, T/δ, 1/ση) .

Proof. For the proof, constants c, ci will denote universal constants. Define two matrices:

V1 := c1

σ4
η

(1 + ‖Kplay‖2)2
T · I ,

V2 := c2
T

δ
(1 + ‖Kplay‖2)2(τ 2ρ2n‖Σ0‖+ tr(P∞))2 · I .

By Proposition 6.1.5, with probability at least 1− δ/2, we have that:

V1 � ΦTΦ � V2 .

Call this event E1.
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Next, we have:

E[xt+1x
T
t+1|xt, ut]− xt+1x

T
t+1

= E[(Axt +But + wt)(Axt +But + wt)
T|xt, ut]− (Axt +But + wt)(Axt +But + wt)

T

= (Axt +But)(Axt +But)
T + σ2

wI

− (Axt +But)(Axt +But)
T − (Axt +But)w

T
t − wt(Axt +But)

T − wtwT
t

= σ2
wI − wtwT

t − (Axt +But)w
T
t − wt(Axt +But)

T .

Therefore,

E[ψt+1|xt, ut]− ψt+1

= svec

([
I

Keval

]
(σ2

wI − wtwT
t − (Axt +But)w

T
t − wt(Axt +But)

T)

[
I

Keval

]T)
.

Taking the inner product of this term with q,

(E[ψt+1|xt, ut]− ψt+1)Tq

= tr

(
(σ2

wI − wtwT
t − (Axt +But)w

T
t − wt(Axt +But)

T)

[
I

Keval

]T
Q

[
I

Keval

])

= tr

(
(σ2

wI − wtwT
t )

[
I

Keval

]T
Q

[
I

Keval

])
− 2wT

t

[
I

Keval

]T
Q

[
I

Keval

]
(Axt +But) .

By the Hanson-Wright inequality (see e.g. Rudelson and Vershynin [97]), with probability
at least 1− δ/T ,∣∣∣∣∣tr

(
(σ2

wI − wtwT
t )

[
I

Keval

]T
Q

[
I

Keval

])∣∣∣∣∣ ≤ c1σ
2
w(1 + ‖Keval‖2)‖Q‖F log(T/δ) .

Now, let Lplay := A+BKplay. By Proposition 4.7 in Tu and Recht [117], with probability at
least 1− δ/T ,∣∣∣∣∣wT

t

[
I

Keval

]T
Q

[
I

Keval

]
(Axt +But)

∣∣∣∣∣
≤ c1σw(1 + ‖Keval‖2)

√
‖Lt+1

playΣ0(Lt+1
play)T‖+ ‖LplayPtLT

play‖+ σ2
η‖B‖2‖Q‖F log(T/δ)

≤ c1σw(1 + ‖Keval‖2)
√
τ 2ρ2(t+1)‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2‖Q‖F log(T/δ) ,
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where the inequality above comes from Pt � P∞ and LplayP∞L
T
play � P∞. Therefore, we

have:

|(E[ψt+1|xt, ut]− ψt+1)Tv|
≤ c2(σ2

w + σw

√
τ 2ρ2(t+1)‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)(1 + ‖Keval‖2)‖Q‖F log(T/δ)

≤ c3σw

√
τ 2ρ2(t+1)‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2(1 + ‖Keval‖2)‖Q‖F log(T/δ) .

The last inequality holds because P∞ � σ2
wI and hence σw ≤ ‖P∞‖1/2. Therefore we can set

R = c3σw

√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2(1 + ‖Keval‖2)‖Q‖F log(T/δ) ,

and invoke Lemma 6.1.6 to conclude that with probability at least 1− δ/2,

‖(V1 + ΦTΦ)−1/2ΦT(Ξ−Ψ+)v‖ ≤ c4(n+ d)R + c5R

√
log(det((V1 + ΦTΦ)V −1

1 )1/2/δ) .

Call this event E2.
For the remainder of the proof we work on E1 ∩ E2, which has probability at least 1− δ.

Since ΦTΦ � V1, we have that (ΦTΦ)−1 ≤ 2(V1 + ΦTΦ)−1. Therefore, by another application
of Lemma 6.1.6:

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖
≤
√

2‖(V1 + ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖

≤ c6(n+ d)R + c7R

√
log(det((V1 + ΦTΦ)V −1

1 )1/2/δ)

≤ c6(n+ d)R + c7R

√
log(det((V1 + V2)V −1

1 )1/2/δ)

≤ c6(n+ d)R + c8R(n+ d)

√
log

(
(1 + ‖Kplay‖2)4

δ

(τ 2ρ2n‖Σ0‖+ tr(P∞))2

σ4
η

)
≤ c(n+ d)R polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, 1/δ, 1/ση) .

Next, we bound:

‖E[ψt+1|xt, ut]− ψt+1‖

≤
∥∥∥∥∥
[

I
Keval

]
(σ2

wI − wtwT
t )

[
I

Keval

]T∥∥∥∥∥
F

+

∥∥∥∥∥
[

I
Keval

]
wt(Axt +But)

T

[
I

Keval

]T∥∥∥∥∥
F

≤ (1 + ‖Keval‖2)(‖σ2
wI − wtwT

t ‖F + ‖wt(Axt +But)
T‖F ) .

Now, by standard Gaussian concentration results, with probability 1− δ/T ,

‖σ2
wI − wtwT

t ‖F ≤ cσ2
w(n+ log(T/δ)) ,
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and also

‖wt(Axt +But)
T‖F

≤ cσw(
√
n+

√
log(T/δ))(

√
tr(Lt+1

playΣ0(Lt+1
play)T) + tr(LplayPtLT

play) + σ2
η‖B‖2

F

+
√
‖Lt+1

playΣ0(Lt+1
play)T‖+ ‖LplayPtLT

play‖+ σ2
η‖B‖2

√
log(T/δ))

≤ cσw(n+ d)
√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖ log(T/δ) .

Therefore, with probability 1− δ/T ,

‖E[ψt+1|xt, ut]− ψt+1‖
≤ c(1 + ‖Keval‖2)(n+ d)σw

√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2 log(T/δ) .

We are now in a position to prove Theorem 6.1.1. We first observe that we can lower
bound σmin(I − L⊗s L) using the (τ, ρ)-stability of A+BKeval. This is because for k ≥ 1,

‖Lk‖ =

∥∥∥∥[ I
Keval

]
(A+BKeval)

k−1
[
A B

]∥∥∥∥
≤ 2‖Keval‖+‖

[
A B

]
‖τρk−1

≤ 2‖Keval‖+ max{1,
√
‖A‖2 + ‖B‖2}

ρ
τ · ρk .

Hence we see that L is (
2‖Keval‖+ max{1,

√
‖A‖2+‖B‖2}

ρ
τ, ρ)-stable. Next, we know that σmin(I −

L⊗s L) = 1
‖(I−L⊗sL)−1‖ . Therefore, for any unit norm v,

‖(I − L⊗s L)−1v‖ = ‖(I − L⊗s L)−1svec(smat(v))‖ = ‖dlyap(LT, smat(v))‖F

≤ 4‖Keval‖2
+(‖A‖2 + ‖B‖2)+τ

2

ρ2(1− ρ2)
.

Here, the last inequality uses Proposition 4.0.2. Hence we have the bound:

σmin(I − L⊗s L) ≥ ρ2(1− ρ2)

4‖Keval‖2
+(‖A‖2 + ‖B‖2)+τ 2

.

By Proposition 6.1.5, as long as T ≥ Õ(1)(n+ d)2 with probability at least 1− δ/2:

σmin(Φ) ≥ c
σ2
η

‖Kplay‖2
+

√
T .
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By Proposition 6.1.7, with probability at least 1− δ/2:

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)q‖ ≤ (n+ d)σw

√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2‖Keval‖2
+‖QKeval‖F Õ(1) ,

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖ ≤ (n+ d)2σw

√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2‖Keval‖2
+Õ(1) .

We first check the condition

‖(ΦTΦ)−1/2ΦT(Ξ−Ψ+)‖
σmin(Φ)σmin(I − L⊗s L)

≤ 1/2 ,

from Lemma 6.1.2. A sufficient condition is that T satisfies:

T ≥ Õ(1)
‖Kplay‖4

+

σ4
η

· (n+ d)4σ2
w(τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

× ‖Keval‖4
+ ·
‖Keval‖4

+(‖A‖2 + ‖B‖2)2
+τ

4

ρ4(1− ρ2)2

= Õ(1)
τ 4

ρ4(1− ρ2)2

(n+ d)4

σ4
η

σ2
w(τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

× ‖Kplay‖4
+‖Keval‖8

+(‖A‖4 + ‖B‖4)+ .

Once this condition on T is satisfied, then we have that the error ‖q̂ − q‖ is bounded by:

Õ(1)
‖Kplay‖2

+

σ2
η

√
T
· (n+ d)σw

√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2

× ‖Keval‖2
+‖QKeval‖F ·

‖Keval‖2
+(‖A‖2 + ‖B‖2)+τ

2

ρ2(1− ρ2)

= Õ(1)
τ 2

ρ2(1− ρ2)

(n+ d)

σ2
η

√
T
σw

√
τ 2ρ4‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2

× ‖Kplay‖2
+‖Keval‖4

+(‖A‖2 + ‖B‖2)+‖QKeval‖F .

Theorem 6.1.1 now follows from Lemma 6.1.2.

6.1.3 Exact Policy Iteration for LQR

Exact policy iteration works as follows. We start with a stabilizing controller K0 for (A,B),
and let V0 denote its associated value function. We then apply the following recursions for
t = 0, 1, 2, ...:

Kt+1 = −(R +BTVtB)−1BTVtA , (6.1.10)

Vt+1 = dlyap(A+BKt+1, S +KT
t+1RKt+1) . (6.1.11)
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Note that this recurrence is related to, but different from, that of value iteration, which
starts from a PSD V0 and recurses:

Vt+1 = ATVtA− ATVtB(R +BTVtB)−1BTVtA+ S .

While the behavior of value iteration for LQR is well understood (see e.g. Lincoln and Rantzer
[70] or Kailath et al. [55]), the behavior of policy iteration is less studied. Fazel et al. [41]
show that policy iteration is equivalent to the Gauss-Newton method on the objective J(K)
with a specific step-size, and give a simple analysis which shows linear convergence to the
optimal controller.

In this section, we present an analysis of the behavior of exact policy iteration that builds
on top of the fixed-point theory from Lee and Lim [65]. A key component of our analysis is
the following invariant metric δ∞ on positive definite matrices:

δ∞(A,B) := ‖log(A−1/2BA−1/2)‖ .

Various properties of δ∞ are reviewed at the end of this section. We use the fixed-point
analysis because it lends itself nicely to handling error in the updates, which we exploit in
the next section on approximate policy iteration.

Our analysis proceeds as follows. First, we note by the matrix inversion lemma:

S + AT(BR−1BT + V −1)−1A = S + ATV A− ATV B(R +BTV B)−1BTV A =: F (V ) .

Let V? be the unique positive definite solution to V = F (V ). For any positive definite V we
have by Lemma 6.1.10:

δ∞(F (V ), V?) ≤
α

λmin(S) + α
δ∞(V, V?) , (6.1.12)

with α = max{λmax(ATV A), λmax(ATV?A)}. Indeed, (6.1.12) gives us another method to
analyze value iteration, since it shows that the Riccati operator F (V ) is contractive in the
δ∞ metric. Our next result combines this contraction property with the policy iteration
analysis of Bertsekas [15].

Proposition 6.1.8 (Policy Iteration for LQR). Suppose that S,R are positive definite and
there exists a unique positive definite solution to the discrete algebraic Riccati equation
(DARE). Let K0 be a stabilizing policy for (A,B) and let V0 = dlyap(A+BK0, S+KT

0 RK0).
Consider the following sequence of updates for t = 0, 1, 2, ...:

Kt+1 = −(R +BTVtB)−1BTVtA ,

Vt+1 = dlyap(A+BKt+1, S +KT
t+1RKt+1) .

The following statements hold:

(i) Kt stabilizes (A,B) for all t = 0, 1, 2, ...,
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(ii) V? � Vt+1 � Vt for all t = 0, 1, 2, ...,

(iii) δ∞(Vt+1, V?) ≤ ρ · δ∞(Vt, V?) for all t = 0, 1, 2, ..., with ρ := λmax(ATV0A)
λmin(S)+λmax(ATV0A)

. Conse-

quently, δ∞(Vt, V?) ≤ ρt · δ∞(V0, V?) for t = 0, 1, 2, ....

Proof. We first prove (i) and (ii) using the argument of Proposition 1.3 from Bertsekas [15].
Let c(x, u) = xTSx + uTRu, f(x, u) = Ax + Bu, and V K(x1) =

∑∞
t=1 c(xt, ut) with

xt+1 = f(xt, ut) and ut = Kxt. Let Vt = V Kt . With these definitions, we have that for all x:

Kt+1x = arg min
u
c(x, u) + Vt(f(x, u)) .

Therefore,

Vt(x) = c(x,Ktx) + Vt(f(x,Ktx))

≥ c(x,Kt+1x) + Vt(f(x,Kt+1x))

= c(x,Kt+1x) + c(f(x,Kt+1x), Ktf(x,Kt+1x)) + Vt(f(f(x,Kt+1x), Ktf(x,Kt+1x)))

≥ c(x,Kt+1x) + c(f(x,Kt+1x), Kt+1f(x,Kt+1x)) + Vt(f(f(x,Kt+1x), Kt+1f(x,Kt+1x)))

...

≥ Vt+1(x) .

This proves (i) and (ii).
Now, observe that by partial minimization of a strongly convex quadratic:

c(x,Kt+1x) + Vt(f(x,Kt+1x)) = min
u
c(x, u) + Vt(f(x, u))

= xT(S + ATVtA− ATVtB(R +BTVtB)−1BTVtA)x

= xTF (Vt)x .

Combined with the above inequalities, this shows that Vt+1 � F (Vt) � Vt. Therefore, by
(6.1.12) and Proposition 6.1.12,

δ∞(Vt+1, V?) ≤ δ∞(F (Vt), V?)

= δ∞(F (Vt), F (V?))

≤ αt
λmin(Q) + αt

δ∞(Vt, V?) ,

where αt = max{λmax(ATVtA), λmax(ATV?A)} = λmax(ATVtA), since V? � Vt. But since
Vt � V0, we can upper bound αt ≤ λmax(ATV0A). This proves (iii).

6.1.3.1 Properties of the Invariant Metric

Here we review relevant properties of the invariant metric δ∞(A,B) = ‖log(A−1/2BA−1/2)‖
over positive definite matrices.
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Lemma 6.1.9 (c.f. [65]). Suppose that A is positive semidefinite and X, Y are positive
definite. Also suppose that M is invertible. We have:

(i) δ∞(X, Y ) = δ∞(X−1, Y −1) = δ∞(MXMT,MYMT).

(ii) δ∞(A + X,A + Y ) ≤ α
α+β

δ∞(X, Y ), where α = max{λmax(X), λmax(Y )} and β =

λmin(A).

Lemma 6.1.10 (c.f. Theorem 4.4, [65]). Consider the map f(X) = A+M(B+X−1)−1MT,
where A,B are PSD and X is positive definite. Suppose that X, Y are two positive definite
matrices and A is invertible. We have:

δ∞(f(X), f(Y )) ≤ max{λ1(MXMT), λ1(MYMT)}
λmin(A) + max{λ1(MXMT), λ1(MYMT)}δ∞(X, Y ) .

Proof. We first assume that M is invertible. Using the properties of δ∞ from Lemma 6.1.9,
we have:

δ∞(f(X), f(Y )) = δ∞(A+M(B +X−1)−1MT, A+M(B + Y −1)−1MT)

≤ α

λmin(A) + α
δ∞(M(B +X−1)−1MT,M(B + Y −1)−1MT)

=
α

λmin(A) + α
δ∞((B +X−1)−1, (B + Y −1)−1)

=
α

λmin(A) + α
δ∞(B +X−1, B + Y −1)

≤ α

λmin(A) + α
δ∞(X−1, Y −1)

=
α

λmin(A) + α
δ∞(X, Y ) ,

where α = max{λmax(M(B+X−1)−1MT), λmax(M(B+X−1)−1MT)}. Now, we observe that:

B +X−1 � X−1 ⇐⇒ (B +X−1)−1 � X .

This means that M(B+X−1)−1MT �MXMT and similarly M(B+Y −1)−1MT �MYMT.
This proves the claim when M is invertible. When M is not invertible, we use a standard
limiting argument, for which the details are omitted.

Proposition 6.1.11. Suppose that A,B are positive definite matrices satisfying A � µI,
B � µI. We have that:

δ∞(A,B) ≤ ‖A−B‖
µ

.
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Proof. We have that:

‖A−1/2BA−1/2‖ = ‖A−1/2(B − A)A−1/2 + I‖ ≤ 1 +
‖B − A‖

µ
.

Taking log on both sides and using log(1 + x) ≤ x for x ≥ 0 yields the claim.

Proposition 6.1.12. Suppose that B � A1 � A2 are all positive definite matrices. We have
that:

δ∞(A1, B) ≤ δ∞(A2, B) .

Proof. The chain of orderings implies that:

I � B−1/2A1B
−1/2 � B−1/2A2B

−1/2 .

Therefore:

δ∞(A1, B) = log λmax(B−1/2A1B
−1/2) ≤ log λmax(B−1/2A2B

−1/2) = δ∞(A2, B) .

Each step requires careful justification. The first equality holds because I � B−1/2A1B
−1/2

and the second inequality uses the monotonicity of the scalar function x 7→ log x on R+ in
addition to B−1/2A1B

−1/2 � B−1/2A2B
−1/2.

Proposition 6.1.13. Suppose that A,B are positive definite matrices with B � A. We have
that:

‖A−B‖ ≤ ‖A‖(exp(δ∞(A,B))− 1) .

Furthermore, if δ∞(A,B) ≤ 1 we have:

‖A−B‖ ≤ e‖A‖δ∞(A,B) .

Proof. The assumption that B � A implies that A−1/2BA−1/2 � I and that ‖A − B‖ =
λmax(B − A). Now observe that:

‖A−B‖ = λmax(B − A)

= λmax(A1/2(A−1/2BA−1/2 − I)A1/2)

≤ ‖A‖λmax(A−1/2BA−1/2 − I)

= ‖A‖(λmax(A−1/2BA−1/2)− 1)

= ‖A‖(exp(δ∞(A,B))− 1) .

This yields the first claim. The second follows from the crude bound that ex ≤ 1 + ex for
x ∈ (0, 1).
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6.1.4 Approximate Policy Iteration for LQR

We now turn to the analysis of approximate policy iteration. We present an analysis of a
modified version of Algorithm 1, which is described in Algorithm 2. The main difference
between Algorithm 1 and Algorithm 2 is that Algorithm 2 does not reuse trajectory data
for each invocation of LSTD-Q unlike Algorithm 1. This makes each invocation of LSTD-Q
in Algorithm 2 independent from the previous invocations, which is much more amenable
to analysis. We leave open the question of analyzing data reuse in the context of LSPI.
Algorithm 2 also uses the initial policy K0 as the exploration policy throughout the algorithm
unlike Algorithm 1 which delineates between the generated policies {Kt} and the evaluation
policy Keval. This simplification is not fundamental to the analysis.

Algorithm 2 Least-Squares Policy Iteration (LSPI) for LQR

Require: Initial stabilizing controller K0, N number of policy iterations, T length of rollout
for estimation, σ2

η exploration variance, µ lower eigenvalue bound.
1: for t = 0, ..., N − 1 do
2: Collect a trajectory Dt = {(x(t)

k , u
(t)
k , x

(t)
k+1}Tk=1 using input u

(t)
k = K0x

(t)
k + η

(t)
k , with

η
(t)
k ∼ N (0, σ2

ηI).

3: Q̂t = Projµ(LSTDQ(Dt, Kt)).

4: Kt+1 = G(Q̂t) (c.f. (1.3.9)).
5: end for
6: return KN .

Before we state our main finite-sample guarantee for Algorithm 2, we review the notion
of a (relative) value-function. The infinite horizon average-cost Bellman equation states that
the (relative) value function V associated to a policy π satisfies the fixed-point equation:

λ+ V (x) = c(x, π(x)) + Ex′∼p(·|x,π(x))[V (x′)] . (6.1.13)

For a stabilizing policy K, it is well known that for LQR the value function V (x) = xTV x
with

V = dlyap(A+BK,S +KTRK) , λ = 〈σ2
wI, V 〉 .

Once again as we did for Q-functions, we slightly abuse notation and let V denote the
value function and the matrix that parameterizes the value function. Our main result of
Algorithm 1 appears in the following theorem. For simplicity, we will assume that ‖S‖ ≥ 1
and ‖R‖ ≥ 1.
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Theorem 6.1.14. Fix a δ ∈ (0, 1). Let the initial policy K0 to Algorithm 2 stabilize (A,B).
Suppose the initial state x0 ∼ N (0,Σ0) and that the excitation noise satisfies ση ≤ σw. Recall
that the steady-state covariance of the trajectory {xt} is

P∞ = dlyap((A+BK0)T, σ2
wI + σ2

ηBB
T) .

Let V0 denote the value function associated to the initial policy K0, and V? denote the value
function associated to the optimal policy K? for the LQR problem (1.1.2). Define the variables
µ, L as:

µ := min{λmin(S), λmin(R)} ,
L := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2 + 1)‖V0‖+ .

Fix an ε > 0 that satisfies:

ε ≤ 5

(
L

µ

)2

min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2

8µ2 log(‖V0‖/λmin(V?))

}
. (6.1.14)

Suppose we run Algorithm 1 for N := N0 + 1 policy improvement iterations where

N0 :=

⌈
(1 + L/µ) log

(
2 log(‖V0‖/λmin(V?))

ε

)⌉
, (6.1.15)

and we set the rollout length T to satisfy:

T ≥ Õ(1) max

{
(n+ d)2,

L2

(1− µ/L)2

(
L

µ

)17
(n+ d)4

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2),

1

ε2

L4

(1− µ/L)2

(
L

µ

)42
(n+ d)3

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

}
. (6.1.16)

Then with probability 1− δ, we have that each policy Kt for t = 1, ..., N stabilizes (A,B) and
furthermore:

‖KN −K?‖ ≤ ε .

Here the Õ(1) hides polylog(n, τ, ‖Σ0‖, ‖P∞‖, L/µ, T/δ,N0, 1/ση) factors.

Theorem 6.1.14 states roughly that T ·N ≤ Õ( (n+d)3

ε2
log(1/ε)) samples are sufficient for

LSPI to recover a controller K that is within ε of the optimal K?. That is, only log(1/ε)
iterations of policy improvement are necessary, and furthermore more outer iterations of
policy improvement do not necessary help due to the inherent statistical noise of estimating
the Q-function for every policy Kt. We note that the polynomial factors in (L/µ) is by no
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means optimal and was made quite conservative in order to simplify the presentation of the
bound. A sharper bound can be recovered from our analysis techniques at the expense of
keeping track of extra terms.

It is worth taking a moment to compare Theorem 6.1.14 to classical results in the RL
literature regarding approximate policy iteration. For example, a well known result reported
in Theorem 3.1 of Lagoudakis and Parr [63] states that if LSTD-Q is able to returnQ-function
estimates with error L∞ bounded by ε, then we have that:

lim sup
t→∞

‖Q̂t −Q?‖∞ ≤
2γε

(1− γ)2
.

Here, Q? is the optimal Q-function and γ is the discount factor of the MDP. Theorem 6.1.14
is qualitatively similar to this result in that we show roughly that ε error in the Q-function
estimate translates to ε error in the estimated policy. However, there are several fundamental
differences. First, our analysis does not rely on discounting to show contraction of the
Bellman operator. Instead, we use the (τ, ρ) stability of closed loop system to achieve this
effect. Second, our analysis does not rely on L∞ bounds on the estimated Q-function, which
are generally not possible to achieve with LQR since the Q-function is a quadratic function
and the states and inputs are not uniformly bounded. And finally, our analysis gives a
non-asymptotic result.

The proof of Theorem 6.1.14 combines the estimation guarantee of Theorem 6.1.1 with
a new analysis of policy iteration for LQR, which we believe is of independent interest.
Our new policy iteration analysis combines the work of Bertsekas [15] on policy iteration
in infinite horizon average cost MDPs with the contraction theory of Lee and Lim [65] for
non-linear matrix equations.

Algorithm 3 Approximate Policy Iteration for LQR (offline)

Require: Initial stabilizing controller K0, N number of policy iterations, T length of rollout
for estimation, σ2

η exploration variance.
1: for t = 0, ..., N − 1 do
2: Collect a trajectory Dt = {(x(t)

k , u
(t)
k , x

(t)
k+1)}Tk=1 using input u

(t)
k = K0x

(t)
k + η

(t)
k , with

η
(t)
k ∼ N (0, σ2

ηI).

3: Q̂t = EstimateQ(Dt, Kt).

4: Kt+1 = G(Q̂t).
5: end for
6: return KN .

Before analyzing Algorithm 2, we analyze a slightly more general algorithm described in
Algorithm 3. In Algorithm 3, the procedure EstimateQ takes as input an off-policy trajectory
Dt and a policy Kt, and returns an estimate Q̂t of the true Q function Qt. We will analyze
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Algorithm 3 first assuming that the procedure EstimateQ delivers an estimate with a certain
level of accuracy. We will then use the results of Section 6.1.2 to specialize EstimateQ to
LSTD-Q. We define the sequence of variables for our analysis:

(i) Qt is true state-value function for Kt.

(ii) Vt is true value function for Kt.

(iii) Kt+1 = G(Qt).

(iv) V t is true value function for Kt.

The following proposition is our main result regarding Algorithm 3.

Proposition 6.1.15. Consider the sequence of updates defined by Algorithm 3. Suppose we
start with a stabilizing K0 and let V0 denote its value function. Fix an ε > 0. Define the
following variables:

µ := min{λmin(S), λmin(R)} ,
Qmax := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2)‖V0‖ ,

γ :=
2‖A‖2‖V0‖

µ+ 2‖A‖2‖V0‖
,

N0 := d 1

1− γ log(2δ∞(V0, V?)/ε)e ,

τ :=

√
2‖V0‖
µ

,

ρ :=
√

1− 1/τ 2 ,

ρ := Avg(ρ, 1) .

Let N1 ≥ N0. Suppose the estimates Q̂t output by EstimateQ satisfy, for all 0 ≤ t ≤ N1 − 1,
Q̂t � µI and furthermore,

‖Q̂t −Qt‖ ≤ min

{‖V0‖
N1

, εµ(1− γ)

}(
µ

28

(1− ρ2)2

τ 5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

)
.

Then we have for any N satisfying N0 ≤ N ≤ N1 the bound δ∞(VN , V?) ≤ ε. We also have
that for all 0 ≤ t ≤ N1, A+BKt is (τ, ρ)-stable and ‖Kt‖ ≤ 2Qmax/µ.

Proof. We first start by observing that if V, V0 are value functions satisfying V � V0, then
their state-value functions also satisfy Q � Q0. This is because

Q =

[
S 0
0 R

]
+

[
AT

BT

]
V
[
A B

]
�
[
S 0
0 R

]
+

[
AT

BT

]
V0

[
A B

]
= Q0 .
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From this we also see that any state-value function satisfies Q �
[
S 0
0 R

]
.

The proof proceeds as follows. We observe that since V t+1 � Vt (Proposition 6.1.8-(ii)):

Vt = Vt − V t + V t − Vt−1 + Vt−1 � Vt − V t + Vt−1 .

Therefore, by triangle inequality we have ‖Vt‖ ≤ ‖Vt−V t‖+‖Vt−1‖. Supposing for now that
we can ensure for all 1 ≤ t ≤ N1:

‖Vt − V t‖ ≤
‖V0‖
N

, (6.1.17)

unrolling the recursion for ‖Vt‖ for N1 steps ensures that ‖Vt‖ ≤ 2‖V0‖ for all 0 ≤ t ≤ N1.
Furthermore,

‖Qt‖ ≤ max{‖S‖, ‖R‖}+ ‖
[
A B

]
‖2‖Vt‖

≤ max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2)‖V0‖
= Qmax .

for all 0 ≤ t ≤ N1.
Now, by triangle inequality and Proposition 6.1.8-(iii), for all 0 ≤ t ≤ N1 − 1,

δ∞(Vt+1, V?) ≤ δ∞(Vt+1, V t+1) + δ∞(V t+1, V?)

≤ δ∞(Vt+1, V t+1) + γ · δ∞(Vt, V?)

≤ ‖Vt+1 − V t+1‖
µ

+ γ · δ∞(Vt, V?) , (6.1.18)

where γ = 2‖A‖2‖V0‖
µ+2‖A‖2‖V0‖ , and the last inequality uses Proposition 6.1.11 combined with the

fact that Vt+1 � µI and V t+1 � µI.
We now focus on bounding ‖Vt+1 − V t+1‖. To do this, we first bound ‖Kt+1 − Kt+1‖,

and then use the Lyapunov perturbation result from Chapter 4. First, observe the simple
bounds:

‖Kt+1‖ = ‖T (Qt)‖ ≤
‖Qt‖
µ
≤ Qmax

µ
,

‖Kt+1‖ = ‖T (Q̂t)‖ ≤
‖Q̂t‖
µ
≤ ∆ +Qmax

µ
≤ 2Qmax

µ
.

where the second bound uses the assumption that the estimates Q̂t satisfy Q̂t � µI and
‖Q̂t −Qt‖ ≤ ∆ with

∆ ≤ Qmax . (6.1.19)
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Now, by Proposition 4.0.7 we have:

‖Kt+1 −Kt+1‖ = ‖G(Q̂t)−G(Qt)‖

≤ (1 + ‖Kt+1‖)‖Q̂t −Qt‖
µ

≤ (1 +Qmax/µ)∆

µ

≤ 2Qmax

µ2
∆ .

Above, the last inequality holds since Qmax ≥ µ by definition.
By Proposition 4.0.3, because V t+1 � Vt, we know that Kt+1 satisfies for all k ≥ 0:

‖(A+BKt+1)k‖ ≤
√
‖Vt‖

λmin(S)
·
√

1− λmin(V −1
t S)

k

≤
√

2‖V0‖
µ

√
1− µ

2‖V0‖
k

= τ · ρk .

Let us now assume that ∆ satisfies:
2Qmax

µ2
·∆ ≤ 1− ρ

2τ‖B‖ . (6.1.20)

Then by Proposition 4.0.1, we know that ‖(A + BKt+1)k‖ ≤ τ · ρk. Hence, we have that
A+BKt+1 is (τ, ρ)-stable.

Next, by the Lyapunov perturbation result of Proposition 4.0.4,

‖Vt+1 − V t+1‖
= ‖dlyap(A+BKt+1, S +KT

t+1RKt+1)− dlyap(A+BKt+1, S +K
T

t+1RKt+1)‖

≤ τ 2

1− ρ2‖KT
t+1RKt+1 −KT

t+1RKt+1‖

+
τ 4

(1− ρ2)2
‖B(Kt+1 −Kt+1)‖(‖A+BKt+1‖+ ‖A+BKt+1‖)‖S +K

T

t+1RKt+1‖ .

We bound:

‖KT
t+1RKt+1 −KT

t+1RKt+1‖ ≤ ‖R‖‖Kt+1 −Kt+1‖(‖Kt+1‖+ ‖Kt+1‖)

≤ 6‖R‖Q2
max

µ3
∆ ,

‖B(Kt+1 −Kt+1)‖ ≤ 2‖B‖Qmax

µ2
∆ ,

max{‖A+BKt+1‖, ‖A+BKt+1‖} ≤ τ ,

‖S +K
T

t+1RKt+1‖ ≤ ‖S‖+
‖R‖Q2

max

µ2
.
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Therefore,

‖Vt+1 − V t+1‖ ≤
τ 2

1− ρ2

6‖R‖Q2
max

µ3
∆ + 8

τ 5

(1− ρ2)2
‖B‖max{‖S‖, ‖R‖}Q

3
max

µ4
∆

=
1

µ

(
τ 2

1− ρ2

6‖R‖Q2
max

µ2
+ 8

τ 5

(1− ρ2)2
‖B‖max{‖S‖, ‖R‖}Q

3
max

µ3

)
∆

≤ 14

µ

τ 5

(1− ρ2)2
‖B‖+ max{‖S‖, ‖R‖}Q

3
max

µ3
∆ .

Now suppose that ∆ satisfies:

∆ ≤ 1

2
εµ(1− γ)

(
µ

14

(1− ρ2)2

τ 5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

)
=

ε

28
µ2(1− γ)

(1− ρ2)2

τ 5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

, (6.1.21)

we have for all t ≤ N1 − 1 from (6.1.18):

δ∞(Vt+1, V?) ≤ (1− γ)ε/2 + γ · δ∞(Vt, V?) .

Unrolling this recursion, we have that for any N ≤ N1:

δ∞(VN , V?) ≤ γN · δ∞(V0, V?) + ε/2 .

Now observe that for any N ≥ N0 := d 1
1−γ log(2δ∞(V0, V?)/ε)e, we obtain:

δ∞(VN , V?) ≤ ε .

The claim now follows by combining our four requirements on ∆ given in (6.1.19), (6.1.17),
(6.1.20), and (6.1.21).

We now proceed to make several simplifications to Proposition 6.1.15 in order to make
the result more presentable. These simplifications come with the tradeoff of introducing
extra conservatism into the bounds.

Our first simplification of Proposition 6.1.15 is the following corollary.

Corollary 6.1.16. Consider the sequence of updates defined by Algorithm 3. Suppose we
start with a stabilizing K0 and let V0 denote its value function. Define the following variables:

µ := min{λmin(S), λmin(R)} ,
L := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2 + 1)‖V0‖+ ,

N0 := d(1 + L/µ) log(2δ∞(V0, V?)/ε)e .
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Fix an N1 ≥ N0 and suppose that

ε ≤ 1

µ

(
1 +

L

µ

) ‖V0‖
N1

. (6.1.22)

Suppose the estimates Q̂t output by EstimateQ satisfy, for all 0 ≤ t ≤ N1 − 1, Q̂t � µI and
furthermore,

‖Q̂t −Qt‖ ≤
ε

448

µ

µ+ L

(µ
L

)19/2

.

Then we have for any N0 ≤ N ≤ N1 that δ∞(VN , V?) ≤ ε. We also have that for any
0 ≤ t ≤ N1, that A+BKt is (

√
L/µ,Avg(

√
1− µ/L, 1))-stable and ‖Kt‖ ≤ 2L/µ.

Proof. First, observe that the map x 7→ x
µ+x

is increasing, and therefore γ ≤ L
µ+L

which

implies that 1− γ ≥ µ
µ+L

. Therefore if ε ≤ 1
µ

(
1 + L

µ

)
‖V0‖
N1

holds, then we can bound:

min

{‖V0‖
N1

, εµ(1− γ)

}
≥ εµ

(
µ

µ+ L

)
.

Next, observe that

1− ρ2 = (1 + ρ)(1− ρ) = (1 + 1/2 + ρ/2)(1/2− ρ/2) ≥ (1 + ρ)(1− ρ)/4 = (1− ρ2)/4 .

Therefore,

(1− ρ2)2 ≥ (1− (1− µ/L))2/16 = (1/16)(µ/L)2 .

We also have that τ ≤
√

L
µ

. This means we can bound:

µ

28

(1− ρ2)2

τ 5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

≥ µ

28 · 16
(µ/L)5/2+2 µ

3

L5
=

1

448L

(µ
L

)17/2

.

Therefore,

min

{‖V0‖
N1

, εµ(1− γ)

}
µ

28

(1− ρ2)2

τ 5

1

‖B‖+ max{‖S‖, ‖R‖}
µ3

Q3
max

≥ ε

448

(
µ

µ+ L

)(µ
L

)19/2

.

The claim now follows from Proposition 6.1.15.

Corollary 6.1.16 gives a guarantee in terms of δ∞(VN , V?) ≤ ε. By Proposition 6.1.13,
this implies a bound on the error of the value functions ‖VN − V?‖ ≤ O(ε) for ε ≤ 1. In the
next corollary, we show we can also control the error ‖KN −K?‖ ≤ O(ε).
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Corollary 6.1.17. Consider the sequence of updates defined by Algorithm 3. Suppose we
start with a stabilizing K0 and let V0 denote its value function. Define the following variables:

µ := min{λmin(S), λmin(R)} ,
L := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2 + 1)‖V0‖+ ,

N0 :=

⌈
(1 + L/µ) log

(
2 log(‖V0‖/λmin(V?))

ε

)⌉
.

Suppose that ε > 0 satisfies:

ε ≤ min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2

8µ2 log(‖V0‖/λmin(V?))

}
.

Suppose we run Algorithm 3 for N := N0 + 1 iterations. Suppose the estimates Q̂t output by
EstimateQ satisfy, for all 0 ≤ t ≤ N0, Q̂t � µI and furthermore,

‖Q̂t −Qt‖ ≤
ε

448

µ

µ+ L

(µ
L

)19/2

. (6.1.23)

We have that:

‖KN −K?‖ ≤ 5

(
L

µ

)2

ε

and that A+BKt is (
√
L/µ,Avg(

√
1− µ/L, 1))-stable and ‖Kt‖ ≤ 2L/µ for all 0 ≤ t ≤ N .
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Proof. We set N1 = N0 + 1. From this, we compute:

‖KN1 −K?‖ = ‖G(Q̂N0)−G(Q?)‖
(a)

≤ (1 + ‖G(Q?)‖)
µ

‖Q̂N0 −Q?‖

≤ (1 + ‖G(Q?)‖)
µ

(‖Q̂N0 −QN0‖+ ‖QN0 −Q?‖)

=
(1 + ‖G(Q?)‖)

µ

(
‖Q̂N0 −QN0‖+

∥∥∥∥[AT

BT

]
(VN0 − V?)

[
A B

]∥∥∥∥)
≤ (1 + ‖G(Q?)‖)

µ
(‖Q̂N0 −QN0‖+ ‖

[
A B

]
‖2‖VN0 − V?‖)

(b)

≤ (1 + ‖G(Q?)‖)
µ

(
ε

448

µ

µ+ L

(µ
L

)19/2

+ ‖
[
A B

]
‖2‖VN0 − V?‖

)
(c)

≤ (1 + ‖G(Q?)‖)
µ

(
ε

448

µ

µ+ L

(µ
L

)19/2

+ e(‖A‖2 + ‖B‖2)‖V?‖ε
)

≤ 2L

µ2

(
1

448

µ

µ+ L

(µ
L

)19/2

+ 2L

)
ε

=

(
1

224

1

µ+ L

(µ
L

)17/2

+ 4

(
L

µ

)2
)
ε

≤ 5

(
L

µ

)2

ε .

Above, (a) follows from Proposition 4.0.7, (b) follows from the bound on ‖Q̂N0 −QN0‖ from
Corollary 6.1.16, and (c) follows from Proposition 6.1.13 and the fact that δ∞(VN0 , V?) ≤ ε
from Corollary 6.1.16.

Next, we observe that since V0 � V?:

δ∞(V0, V?) = log(‖V −1/2
? V0V

−1/2
? ‖) ≤ log(‖V0‖/λmin(V?)) .

Hence we can upper bound N0 from Corollary 6.1.16 by:

N0 = 2(1 + L/µ) log(2 log(‖P0‖/λmin(V?))/ε) .

From (6.1.22), the requirement on ε is that:

ε ≤ min

‖V0‖
2µ

1

log
(

2 log(‖V0‖/λmin(V?))
ε

) , 1
 .

We will show with Proposition 6.1.18 that a sufficient condition is that:

ε ≤ min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2

8µ2 log(‖V0‖/λmin(V?))

}
.
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With Corollary 6.1.17 in place, we are now ready to prove Theorem 6.1.14.

Proof of Theorem 6.1.14. Let L0 := A+ BK0 and let (τ, ρ) be such that L0 is (τ, ρ)-stable.
We know we can pick τ =

√
L/µ and ρ =

√
1− µ/L. The covariance Σt of xt satisfies:

Σt = Lt0Σ0(Lt0)T + Pt � τ 2ρ2t‖Σ0‖I + P∞ .

Hence for either t = 0 or t ≥ log(τ)/(1 − ρ), ‖Σt‖ ≤ ‖Σ0‖ + ‖P∞‖. Therefore, if the
trajectory length T ≥ log(τ)/(1 − ρ), then the operator norm of the initial covariance for
every invocation of LSTD-Q can be bounded by ‖Σ0‖ + ‖P∞‖, and therefore the proxy
variance (6.1.5) can be bounded by:

σ2 ≤ τ 2ρ4‖Σ0‖+ (1 + τ 2ρ4)‖P∞‖+ σ2
η‖B‖2

≤ 2(L/µ)(‖Σ0‖+ ‖P∞‖+ σ2
η‖B‖2) .

By Corollary 6.1.17, when condition (6.1.23) holds, we have that A+BKt is (τ,Avg(ρ, 1))
stable, ‖Kt‖ ≤ 2L/µ, and ‖Qt‖ ≤ L for all 0 ≤ t ≤ N0 + 1. We now define ε := 5(L/µ)2ε.
If we can ensure that

‖Q̂t −Qt‖ ≤
1

2240

(
µ

µ+ L

)(µ
L

)23/2

ε , (6.1.24)

then if

ε ≤ 5

(
L

µ

)2

min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2

8µ2 log(‖V0‖/λmin(V?))

}
,

then by Corollary 6.1.17 we ensure that ‖KN −K‖ ≤ ε. By Theorem 6.1.1, (6.1.24) can be

ensured by first observing that Qt � µI and therefore for any symmetric Q̂ we have:

‖Projµ(Q̂)−Qt‖ ≤ ‖Projµ(Q̂)−Qt‖F ≤ ‖Q̂−Qt‖F .

Above, the last inequality holds because Projµ(·) is the Euclidean projection operator asso-
ciated with ‖·‖F onto the convex set {Q : Q � µI , Q = QT}. Now combining (6.1.7) and

(6.1.6) and using the bound τ2

ρ2(1−ρ2)
≤ (L/µ)2

1−µ/L :

T ≥ Õ(1) max

{
(n+ d)2,

L2

(1− µ/L)2

(
L

µ

)17
(n+ d)4

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2),

1

ε2

L4

(1− µ/L)2

(
L

µ

)42
(n+ d)3

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

}
.

Theorem 6.1.14 now follows.
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The following proposition allows us to solve explicitly for an upper bound on ε.

Proposition 6.1.18. Let C > 0. Then for any ε ∈ (0,min{1/e, C2}), we have the following
inequality holds:

ε log(1/ε) ≤ C .

As a corollary, let M > 0, then for ε ∈ (0,min{M/e,C2/M}) we have that:

ε log(M/ε) ≤ C .

Proof. Let f(ε) := ε log(1/ε). We have that limε→0+ f(ε) = 0 and that f ′(ε) = log(1/ε)− 1.
Hence f is increasing on the interval ε ∈ [0, 1/e], and f(1/e) = 1/e. Therefore, if C ≥ 1/e
then f(ε) ≤ C for any ε ∈ (0, 1/e).

Now suppose that C < 1/e. One can verify that the function g(x) := 1/x + 2 log x
satisfies g(x) ≥ 0 for all x > 0. Therefore:

g(C) ≥ 0⇐⇒ 1/C + 2 logC ≥ 0

⇐⇒ 1/C ≥ log(1/C2)

⇐⇒ C ≥ C2 log(1/C2)

⇐⇒ f(C2) ≤ C .

Since C < 1/e we have C2 ≤ C and therefore f(ε) ≤ f(C2) ≤ C for all ε ∈ (0, C2). This
proves the first part.

To see the second part, use the variable substitution ε← ε/M , C ← C/M .

6.2 Asymptotic Analysis of Model-based and

Model-free Methods for LQR

We focus our asymptotic analysis on two tasks for LQR. The first task is policy evaluation,
which given a stabilizing policy K for (A,B), estimates the value function V associated with
K. The second task is policy optimization, which finds the optimal LQR controller.

6.2.1 Related Work

We give a brief overview of known model-based and model-free results in the tabular MDP
setting.

The best known regret bound in the model-based case is Õ(
√
H2SAT ) from Azar et al.

[13], which matches the known lower bound of Ω(
√
H2SAT ) from [51, 53] up to log factors.

On the other hand, the best known regret bound in the model-free case is Õ(
√
H3SAT ) from

the UCB-style Q-learning algorithm of Jin et al. [53], which is worse than the model-based
case by a factor of the horizon length H. Interestingly, there is no gap in terms of the number
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of states S and actions A. It is open whether or not the gap in H for regret is fundamental
or can be closed.

We now turn to the PAC setting. We first look at the “simulator” setting, where an
oracle exists that allows one to query the state transition from any state/action pair at every
timestep. For infinite horizon discounted MDPs, Azar et al. [12] show that model-based

policy iteration can find a ε optimal policy with Õ(SA/((1 − γ)3ε2)) samples as long as
ε ≤ O(1/

√
(1− γ)S), which matches the minimax lower bound given in the same work.

Sidford et al. [102] show that a model-free variance reduced value iteration algorithm also

achieves Õ(SA/((1 − γ)3ε2)) sample complexity even beyond the small ε regime of the
model-based method. Therefore, in this setting, there is no gap between model-based and
model-free methods in the small ε regime, and the best upper bounds currently suggest that
model-free methods actually outperform model-based methods in the moderate ε regime by
a factor of 1/(1− γ)2 in sample complexity. It is still open if this gap can be resolved in the
moderate ε regime.

For tabular MDPs, a popular definition in the literature of a model-free method is one
where the space complexity is sub-linear in the amount of storage needed for a model-based
method. For example, for a finite horizon MDP, one can define a model-free method as having
space complexity o(S2AH), where S is the number of states, A is the number of actions, and
H is the horizon length (see e.g. Jin et al. [53] and Strehl et al. [109]). We note that this
definition does not generalize to the continuous setting; using LQR as an example, storing
the (A,B) matrices for the model requires O(n(n+d)) space, whereas storing the Q-function
requires O((n + d)2) space. Sun et al. [110] present a new information-theoretic definition
of model-free algorithms. Under their definition, they construct a family of factored MDPs
with horizon length H where any model-free algorithm incurs sample complexity Ω(2H),
whereas there exists a model-based algorithm that has sample complexity polynomial in H
and other relevant quantities.

6.2.2 Policy Evaluation

Given a controller K ∈ Rd×n that stabilizes (A,B), the policy evaluation task is to compute
the (relative) value function V K(x):

V K(x) = lim
T→∞

E

[
T−1∑
t=0

(xTt Qxt + uTt Rut − λK)

∣∣∣∣ x0 = x

]
, ut = Kxt . (6.2.1)

Above, λK is the infinite horizon average cost. It is well-known that V K(x) can be written
as:

V K(x) = σ2
wx

TV?x , V? = dlyap(A+BK,Q+KTRK) . (6.2.2)

From the Lyapunov equation, it is clear that given (A,B), the solution to policy evaluation
task is readily computable. W study algorithms which only have input/output access to
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(A,B). Specifically, we study on-policy algorithms that operate on a single trajectory,
where the input ut is determined by ut = Kxt. The variable that controls the amount of
information available to the algorithm is T , the trajectory length. The trajectory will be
denoted as {xt}Tt=0. We are interested in the asymptotic behavior of algorithms as T →∞.

Model-based algorithm. In light of Equation (6.2.2), the plugin estimator is a very
natural model-based algorithm to use. Let L? := A + BK denote the true closed-loop
matrix. The plugin estimator uses the trajectory {xt}Tt=0 to estimate L? via least-squares;

call this L̂(T ). The estimator then returns V̂plug(T ) by using L̂(T ) in-place of L? in (6.2.2).
Algorithm 4 describes this estimator.

Algorithm 4 Model-based algorithm for policy evaluation.

Require: Policy π(x) = Kx, rollout length T , regularization λ > 0, thresholds ζ ∈ (0, 1)
and ψ > 0.

1: Collect trajectory {xt}Tt=0 using the feedback ut = π(xt) = Kxt.
2: Estimate the closed-loop matrix via least-squares:

L̂(T ) =

(
T−1∑
t=0

xt+1x
T
t

)(
T−1∑
t=0

xtx
T
t + λIn

)−1

.

3: if ρ(L̂(T )) > ζ or ‖L̂(T )‖ > ψ then

4: Set V̂plug(T ) = 0.
5: else
6: Set V̂plug(T ) = dlyap(L̂(T ), Q+KTRK).
7: end if
8: return V̂plug(T ).

Model-free algorithm. By observing that V K(x) = σ2
wx

TV?x = σ2
w〈svec(V?), svec(xxT)〉,

one can apply Least-Squares Temporal Difference Learning (LSTD) [22, 25] with the feature
map φ(x) := svec(xxT) to estimate V?. This is a classical algorithm in RL related to the
LSTD-Q algorithm studied in Section 6.1.2; the pseudocode is given in Algorithm 5.

We now proceed to compare the risk of Algorithm 4 versus Algorithm 5. Our notion of risk
will be the expected squared error of the estimator: E[‖V̂ − V?‖2

F ]. Our first result gives an
upper bound on the asymptotic risk of the model-based plugin Algorithm 4.

Theorem 6.2.1. Let K stabilize (A,B). Define L? to be the closed-loop matrix A + BK
and let ρ(L?) ∈ (0, 1) denote its stability radius. Recall that V? is the solution to the discrete-
time Lyapunov equation (6.2.2) that parameterizes the value function V K(x). We have that
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Algorithm 5 Model-free algorithm for policy evaluation (LSTD) [25].

Require: Policy π(x) = Kx, rollout length T .
1: Collect trajectory {xt}Tt=0 using the feedback ut = π(xt) = Kxt.
2: Estimate λt ≈ σ2

w tr(V?) from {xt}Tt=0.
3: Compute (recall that φ(x) = svec(xxT)):

ŵlstd(T ) =

(
T−1∑
t=0

φ(xt)(φ(xt)− φ(xt+1))T

)−1(T−1∑
t=0

(ct − λt)φ(xt)

)
,

4: Set V̂lstd(T ) = smat(ŵlstd(T )).

5: return V̂lstd(T ).

Algorithm 4 with thresholds (ζ, ψ) satisfying ζ ∈ (ρ(L?), 1) and ψ ∈ (‖L?‖,∞) and any fixed
regularization parameter λ > 0 has the asymptotic risk upper bound:

lim
T→∞

T · E[‖V̂plug(T )− V?‖2
F ] ≤ 4 tr((I − LT

? ⊗s LT
? )−1(LT

? V
2
? L? ⊗s σ2

wP
−1
∞ )(I − LT

? ⊗s LT
? )−T) .

Here, P∞ = dlyap(LT
? , σ

2
wIn) is the stationary covariance matrix of the closed-loop system

xt+1 = L?xt + wt and ⊗s denotes the symmetric Kronecker product.

We make a few quick remarks regarding Theorem 6.2.1. First, while the risk bound is
presented as an upper bound, the exact asymptotic risk can be recovered from the proof.
Second, the thresholds (ζ, ψ) and regularization parameter λ do not affect the final asymp-
totic bound, but do possibly affect both higher order terms and the rate of convergence to
the limiting risk. We include these thresholds as they simplify the proof. In practice, we
find that thresholding or regularization is generally not needed, with the caveat that if the
estimate L̂(T ) is not stable then the solution to the discrete Lyapunov equation is not guar-
anteed to exist (and when it exists is not guaranteed to be positive semidefinite). Finally,
we remark that a non-asymptotic high probability upper bound for the risk of Algorithm 4
can be easily derived by combining the single trajectory learning results of Simchowitz et al.
[105] with the Lyapunov perturbation results of Chapter 4.

We now turn our attention to the model-free LSTD algorithm. Our next result gives a
lower bound on the asymptotic risk of Algorithm 5.

Theorem 6.2.2. Let K stabilize (A,B). Define L? to be the closed-loop matrix A + BK.
Recall that V? is the solution to the discrete-time Lyapunov equation (6.2.2) that parameter-
izes the value function V K(x). We have that Algorithm 5 with the cost estimates λt set to
the true cost λ? := σ2

w tr(V?) satisfies the asymptotic risk lower bound:

lim inf
T→∞

T · E[‖V̂lstd(T )− V?‖2
F ] ≥ 4Rplug

+ 8σ2
w〈P∞, LT

? V
2
? L?〉 tr((I − LT

? ⊗s LT
? )−1(P−1

∞ ⊗s P−1
∞ )(I − LT

? ⊗s LT
? )−T)
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Here, Rplug := limT→∞ T ·E[‖V̂plug(T )−V?‖2
F ] is the asymptotic risk of the plugin estimator,

P∞ = dlyap(LT
? , σ

2
wIn) is the stationary covariance matrix of the closed loop system xt+1 =

L?xt + wt, and ⊗s denotes the symmetric Kronecker product.

Theorem 6.2.2 shows that the asymptotic risk of the model-free method always exceeds
that of the model-based plugin method. We remark that we prove the theorem under an
idealized setting where the infinite horizon cost estimate λt is set to the true cost λ?. In
practice, the true cost is not known and must instead be estimated from the data at hand.
However, for the purposes of our comparison this is not an issue because using the true cost
λ? over an estimator of λ? only reduces the variance of the risk.

To get a sense of how much excess risk is incurred by the model-free method over the
model-based method, consider the following family of instances, defined for ρ ∈ (0, 1) and
1 ≤ d ≤ n:

F (ρ, d,K) := {(A,B) : A+BK = τPE + γIn , (τ, γ) ∈ (0, 1) , τ + γ ≤ ρ , dim(E) ≤ d} .
(6.2.3)

With this family, one can show with elementary computations that under the simplifying
assumptions that Q+KTRK = In and d � n, Theorem 6.2.1 and Theorem 6.2.2 state that:

lim
T→∞

T · E[‖V̂plug(T )− V?‖2
F ] ≤ O

(
ρ2n2

(1− ρ2)3

)
,

lim inf
T→∞

T · E[‖V̂lstd(T )− V?‖2
F ] ≥ Ω

(
ρ2n3

(1− ρ2)3

)
.

That is, for F (ρ, d,K), the plugin risk is a factor of state-dimension n less than the LSTD
risk. Moreover, the non-asymptotic result for LSTD-Q from Section 6.1.2 can be modified
to give a bound ‖V̂lstd(T ) − V?‖2

F ≤ Õ(n3/T ) w.h.p., which matches the asymptotic bound
of Theorem 6.2.2 in terms of n up to logarithmic factors.

Our final result for policy evaluation is a minimax lower bound on the risk of any estimator
over F (ρ, d,K).

Theorem 6.2.3. Fix a ρ ∈ (0, 1) and suppose that K satisfies S + KTRK = In. Suppose
that n is greater than an absolute constant and T & n(1− ρ2)/ρ2. We have that:

inf
V̂

sup
(A,B)∈F (ρ,n

4
,K)

E[‖V̂ − V?‖2
F ] &

ρ2n2

(1− ρ2)3T
,

where the infimum is taken over all estimators V̂ taking input {xt}Tt=0.

Theorem 6.2.3 states that the rate achieved by the model-based Algorithm 6 over the
family F (ρ, d,K) cannot be improved beyond constant factors, at least asymptotically; its
dependence on both the state dimension n and stability radius ρ is optimal.
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6.2.3 Policy Optimization

Given a finite horizon length T , the policy optimization task we study in this section is to
solve the finite horizon optimal control problem:

J? := min
ut(·)

E

[
T−1∑
t=0

(xTt Sxt + uTt Rut) + xTTSxT

]
, xt+1 = Axt +But + wt . (6.2.4)

We will focus on a special case of this problem when there is no penalty on the input:
S = In, R = 0, and range(A) ⊆ range(B). In this situation, the cost function reduces to
E[
∑T

t=0‖xt‖2
2] and the optimal solution simply chooses a ut that cancels out the state xt;

that is ut = K?xt with K? := −B†A. We work with this simple class of instances so that
we can ensure that policy gradient converges to the optimal solution; in general this is not
guaranteed.

We consider a slightly different input/output oracle model in this setting than we did in
Section 6.2.2. The horizon length T is now considered fixed, and N rounds are played. At
each round i = 1, ..., N , the algorithm chooses a feedback matrix Ki ∈ Rd×n. The algorithm
then observes the trajectory {x(i)

t }Tt=0 by playing the control input u
(i)
t = Kix

(i)
t + η

(i)
t , where

η
(i)
t ∼ N (0, σ2

ηId) is i.i.d. noise used for the policy. This process then repeats for N total

rounds. After the N rounds, the algorithm is asked to output a K̂(N) and is assigned the

risk E[J(K̂(N)) − J?], where J(K̂(N)) denotes playing the feedback ut = K̂(N)xt on the
true system (A,B). We will study the behavior of algorithms when N →∞ (and T is held
fixed).

Model-based algorithm. Under this oracle model, a natural model-based algorithm is
to first use random open-loop feedback (i.e. Ki = 0) to observe N independent trajectories
(each of length T ), and then use the trajectory data to fit the state transition matrices (A,B);

call this estimate (Â(N), B̂(N)). After fitting the dynamics, the algorithm then returns the

estimate of K? by solving the finite horizon problem (6.2.4) with (Â(N), B̂(N)) taking the

place of (A,B). In general, however, the assumption that range(Â(N)) ⊆ range(B̂(N)) will
not hold, and hence the optimal solution to (6.2.4) will not be time-invariant. Moreover,
solving for the best time-invariant static feedback for the finite horizon problem in gen-
eral is not tractable. In light of this, to provide the fairest comparison to the model-free
policy gradient method, we use the time-invariant static feedback that arises from infinite
horizon solution given by the discrete algebraic Riccati equation as a proxy. We note that
under our range inclusion assumption, the infinite horizon solution is a consistent estimator
of the optimal feedback. The pseudo-code for this model-based algorithm is described in
Algorithm 6.

1 A sufficient condition for the existence of a unique positive definite solution to the discrete algebraic
Riccati equation when R = 0 is that (A,B) is stabilizable and B has full column rank (Lemma 6.2.19).
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Algorithm 6 Model-based algorithm for policy optimization.

Require: Horizon length T , rollouts N , regularization λ, thresholds % ∈ (0, 1), ζ, ψ, γ.

1: Collect trajectories {{(x(i)
t , u

(i)
t )}Tt=0}Ni=1 using the feedback Ki = 0 (open-loop).

2: Estimate the dynamics matrices (A,B) via regularized least-squares:

Θ̂(N) =

(
N∑
i=1

T−1∑
t=0

xt+1(z
(i)
t )T

)(
N∑
i=1

T−1∑
t=0

z
(i)
t (z

(i)
t )T + λIn+d

)−1

, z
(i)
t := (x

(i)
t , u

(i)
t ) .

3: Set (Â, B̂) = Θ̂(N).

4: if ρ(Â) > % or ‖Â‖ > ζ or ‖B̂‖ > ψ or σd(B̂) < γ then

5: Set K̂plug(N) = 0.
6: else
7: Set V̂ = dare(Â, B̂, In, 0) as the positive definite solution to1:

V = ÂTV Â− ÂTV B̂(B̂TV B̂)−1B̂TV Â+ In .

8: Set K̂plug(N) = −(B̂TV̂ B̂)−1B̂TV̂ Â.
9: end if

10: return K̂plug(N).

Model-free algorithm. We study a model-free algorithm based on policy gradients (see
e.g. [92, 126]). Here, we choose to parameterize the policy as a time-invariant linear feedback.
The algorithm is described in Algorithm 7.

Algorithm 7 Model-free algorithm for policy optimization (REINFORCE) [92, 126].

Require: Horizon length T , rollouts N , baseline functions {Ψt(·; ·)}, step-sizes {αi}, initial
K1, threshold ζ.

1: for i = 1, ..., N do
2: Collect trajectory T (i) := {(x(i)

t , u
(i)
t )}Tt=0 using feedback Ki.

3: Compute policy gradient gi as: gi = 1
σ2
η

∑T−1
t=0 η

(i)
t (x

(i)
t )TΨt(T (i);Ki).

4: Take policy gradient step: Ki+1 = Proj‖·‖≤ζ(Ki − αigi).
5: end for
6: Set K̂pg(N) = KN .

7: return K̂pg(N).

In general for problems with a continuous action space, when applying policy gradient
one has many degrees of freedom in choosing how to represent the policy π. Some of these
degrees of freedom include whether or not the policy should be time-invariant and how much
of the history before time t should be used to compute the action at time t. More broadly,
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the question is what function class should be used to model the policy. Ideally, one chooses
a function class which is both capable of expressing the optimal solution and is easy to
optimize over.

Another issue that significantly impacts the performance of policy gradient in practice
is choosing a baseline which effectively reduces the variance of the policy gradient estimate.
What makes computing a baseline challenging is that good baselines (such as value or ad-
vantage functions) require knowledge of the unknown MDP transition dynamics in order to
compute. Therefore, one has to estimate the baseline from the empirical trajectories, adding
another layer of complexity to the policy gradient algorithm.

In general, these issues are still an active area of research in RL and present many
hurdles to a general theory for policy optimization. However, by restriction our attention
to LQR, we can sidestep these issues which enables our analysis. In particular, by studying
problems with no penalty on the input and where the state can be canceled at every step, we
know that the optimal control is a static time-invariant linear feedback. Therefore, we can
restrict our policy representation to static linear feedback controllers without introducing any
approximation error. Furthermore, it turns out that the specific assumptions on (A,B) that
we impose imply that the optimization landscape satisfies a standard notion of restricted
strong convexity. This allows us to study policy gradient by leveraging the existing theory
on the asymptotic distribution of stochastic gradient descent for strongly convex objectives.
Finally, we can compute many of the standard baselines used in closed form, which further
enables our analysis.

We note that in the literature, the model-based method is often called nominal control
or the certainty equivalence principle. As noted in Section 5.2, one issue with this approach
is that on an infinite horizon, there is no guarantee of robust stability with nominal control.
However, as we are dealing with only finite horizon problems, the notion of stability is
irrelevant.

Our first result for policy optimization gives the asymptotic risk of the model-based
Algorithm 6.

Theorem 6.2.4. Let (A,B) be such that A is stable, range(A) ⊆ range(B), and B has full
column rank. We have that the model-based plugin Algorithm 6 with thresholds (%, ζ, ψ, γ)
such that % ∈ (ρ(A), 1), ζ ∈ (‖A‖,∞), ψ ∈ (‖B‖,∞), and γ ∈ (0, σd(B)) satisfies the
asymptotic risk bound:

lim
N→∞

N · E[J(K̂plug(N))− J?] = O(d(tr(P−1
∞ ) + ‖K?‖2

F )) + oT (1) .

Here, P∞ = dlyap(A, σ2
ηBB

T + σ2
wIn) is the steady-state convariance of the system driven

with control input ut ∼ N (0, σ2
ηId), K? is the optimal controller, and O(·) hides constants

depending only on σ2
w, σ

2
η.

We can interpret Theorem 6.2.4 by upper bounding P−1
∞ � σ−2

w In. In this case if
‖K?‖2

F ≤ O(n), then this result states that the asymptotic risk scales as O(nd/N). Sim-
ilar to Theorem 6.2.1, Theorem 6.2.4 requires the setting of thresholds (%, ζ, ψ, γ). These
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thresholds serve two purposes. First, they ensure the existence of a unique positive definite
solution to the discrete algebraic Riccati solution with the input penalty R = 0 (the details
of this are worked out in Section 6.2.7.2). Second, they simplify various technical aspects of
the proof related to uniform integrability. In practice, such strong thresholds are not needed,
and we leave either removing them or relaxing their requirements to future work.

Next, we look at the model-free case. As mentioned previously, baselines are very in-
fluential on the behavior of policy gradient. In our analysis, we consider three different
baselines:

Ψt(T ;K) =
T∑

`=t+1

‖x`‖2
2 , (Simple baseline bt(xt;K) = ‖xt‖2

2.)

Ψt(T ;K) =
T∑
`=t

‖x`‖2
2 − V K

t (xt) , (Value function baseline bt(xt;K) = V K
t (xt).)

Ψt(T ;K) = AKt (xt, ut) . (Advantage baseline AKt (xt, ut) = QK
t (xt, ut)− V K

t (xt).)

Above, the simple baseline should be interpreted as having effectively no baseline; it turns out
to simplify the variance calculations. On the other hand, the value function baseline V K

t is a
very popular heuristic used in practice [92]. Typically one has to actually estimate the value
function for a given policy, since computing it requires knowledge of the model dynamics.
In our analysis however, we simply assume the true value function is known. While this is
an unrealistic assumption in practice, we note that this assumption substantially reduce the
variance of policy gradient, and hence only serves to reduce the asymptotic risk. The last
baseline we consider is to use the advantage function AKt . Using advantage functions has
been shown to be quite effective in practice [101]. It has the same issue as the value function
baseline in that it needs to be estimated from the data; once again in our analysis we simply
assume we have access to the true advantage function.

Our main result for model-free policy optimization is the following asymptotic risk lower
bound on Algorithm 7.

Theorem 6.2.5. Let (A,B) be such that A is stable, range(A) ⊆ range(B), and B has full
column rank. Consider Algorithm 7 with K1 = 0d×n, step-sizes αi = [2(T −1)σ2

wσd(B)2 · i]−1,
and threshold ζ ∈ (‖K?‖,∞). We have that the risk is lower bounded by:

lim inf
N→∞

N · E[J(K̂pg(N))− J?] ≥
1

σd(B)2(1 + ‖B‖2)
×

Ω(T 2d(n+ ‖B‖2
F )3) + oT (T 2) (Simple baseline)

Ω(Td(n+ ‖B‖2
F )(n+ ‖BTB‖2

F )) + oT (T ) (Value function baseline)

Ω(d(n+ ‖B‖2
F )‖BTB‖2

F ) (Advantage baseline)

.

Here, Ω(·) hides constants depending only on σ2
w, σ

2
η.
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In order to interpret Theorem 6.2.5, we consider a restricted family of instances (A,B).
For a ρ ∈ (0, 1) and 1 ≤ d ≤ n, we define the family G (ρ, d) over (A,B) as:

G (ρ, d) := {(ρU?UT
? , ρU?) : U? ∈ Rn×d , UT

? U? = Id} .

This is a simple family where the A matrix is stable and contractive, and furthermore we
have range(A) = range(B). The optimal feedback is K? = −UT

? for each of these instances.
Theorem 6.2.5 states that for instances from G (ρ, d), the simple baseline has risk Ω(T 2 ·

dn3/N), the value function baseline has risk Ω(T · dn2/N), and the advantage baseline has
risk Ω(d2n/N). On the other hand, Theorem 6.2.4 states that the model-based risk is
upper bounded by O(nd/N), which is less than the lower bound for all baselines considered
in Theorem 6.2.5. For the simple and value function baselines, we see that the sample
complexity of the model-free policy gradient method is several factors of n and T more
than the model-based method. The extra factors of the horizon length appear due to the
large variance of the policy gradient estimator without the variance reduction effects of the
advantage baseline. The advantage baseline performs the best, only one factor of d more
than the model-based method.

We note that we prove Theorem 6.2.5 with a specific choice of step size αi. This step size
corresponds to the standard 1/(mt) step sizes commonly found in proofs for SGD on strongly
convex functions (see e.g. Rakhlin et al. [94]), where m is the strong convexity parameter.
We leave to future work extending our results to support Polyak-Ruppert averaging, which
would yield asymptotic results that are more robust to specific step size choices.

Finally, we turn to our information-theoretic lower bound for any (possibly adaptive)
method over the family G (ρ, d).

Theorem 6.2.6. Fix a d ≤ n/2 and suppose d(n− d) is greater than an absolute constant.
Consider the family G (ρ, d) as describe above. Fix a time horizon T and number of rollouts
N . The risk over any algorithm A which plays (possibly adaptive) feedbacks of the form
ut = Kixt + ηt with ‖Ki‖ ≤ 1 and ηt ∼ N (0, σ2

ηId) is lower bounded by:

inf
A

sup
ρ∈(0,1/4),

(A,B)∈G (d,ρ)

E[J(A)− J?] &
σ4
w

σ2
w + σ2

η

d(n− d)

N
.

Observe that this bound is Ω(nd/N). Therefore, Theorem 6.2.6 tells us that asymptoti-
cally, the model-based method in Algorithm 6 is optimal in terms of its dependence on the
state and input dimensions n and d over the family G (ρ, d).

6.2.4 Asymptotic Toolbox

Our analysis relies heavily on computing limiting distributions for the various estimators we
study. A crucial fact we use is that if the matrix L? is stable, then the Markov chain {xt}
given by xt+1 = L?xt + wt with wt ∼ N (0, σ2

wIn) is geometrically ergodic. This allows us
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to apply well known limit theorems for ergodic Markov chains. In what follows, we let
a.s.−→

denote almost sure convergence and
D
 denote convergence in distribution.

Our main limit theorem is the following CLT for ergodic Markov chains.

Theorem 6.2.7 (Corollary 2 of Jones [54]). Suppose that {xt}∞t=0 ⊆ X is a geometrically
ergodic (Harris) Markov chain with stationary distribution π. Let f : X → R be a Borel
function. Suppose that Eπ[|f |2+δ] <∞ for some δ > 0. Then for any initial distribution, we
have:

√
n

(
1

n

n∑
i=1

f(xi)− Eπ[f(x)]

)
D
 N (0, σ2

f ) ,

where

σ2
f := Varπ(f(x0)) + 2

∞∑
i=1

Covπ(f(x0), f(xi)) .

We first state a well-known result that concerns the least-squares estimator of a stable
dynamical system. In the scalar case, this result dates back to Mann and Wald [76].

Lemma 6.2.8. Let xt+1 = L?xt + wt be a dynamical system with L? stable and wt ∼
N (0, σ2

wI). Given a trajectory {xt}Tt=0, let L̂(T ) denote the least-squares estimator of L?
with regularization λ ≥ 0:

L̂(T ) = arg min
L∈Rn×n

1

2

T−1∑
t=0

‖xt+1 − Lxt‖2
2 +

λ

2
‖L‖2

F .

Let P∞ denote the stationary covariance matrix of the process {xt}∞t=0, i.e. L?P∞L
T
? −P∞+

σ2
wIn = 0. We have that L̂(T )

a.s.−→ L? and furthermore:
√
Tvec(L̂(T )− L?) D

 N (0, σ2
w(P−1

∞ ⊗ In)) .

Proof. Let X ∈ RT×n be the data matrix with rows (x0, ..., xT−1) and W ∈ RT×n be the
noise matrix with rows (w0, ..., wT−1). We write:

L̂(T )− L? = −λL?(XTX + λIn)−1 +WTX(XTX + λIn)−1 .

Using the fact that vec(AXB) = (BT ⊗ A)vec(X),
√
Tvec(L̂(T )− L?) = −

√
Tvec(λL?(X

TX + λIn)−1) + ((T−1XTX)−1 ⊗ In)vec(T−1/2WTX) .

It is well-known that {xt} is geometrically ergodic (see e.g. Mokkadem [82]), and therefore
the augmented Markov chain {(xt, wt)} is geometrically ergodic as well. By Theorem 6.2.7
combined with the Cramér-Wold theorem we conclude:

vec(T−1/2WTX) = T−1/2

T∑
t=1

vec(wtx
T
t )

D
 N (0,Ex∼ν∞,w[vec(wxT)vec(wxT)T]) .
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Above, we let ν∞ denote the stationary distribution of {xt}. We note that the cross-
correlation terms disappear in the asymptotic covariance due to the martingale property
of
∑T−1

t=0 wtx
T
t . We now use the identity vec(wxT) = (x⊗ In)w and compute

Ex∼ν∞,w[vec(wxT)vec(wxT)T] = Ex∼ν∞,w[(x⊗ In)wwT(xT ⊗ In)]

= σ2
wEx∼ν∞ [(x⊗ In)(xT ⊗ In)]

= σ2
wEx∼ν∞ [(xxT ⊗ In)]

= σ2
w(P∞ ⊗ In) .

We have that T−1XTX
a.s.−→ P∞ by the ergodic theorem. Therefore by the continuous

mapping theorem followed by Slutsky’s theorem, we have that

((T−1XTX)−1 ⊗ In)vec(T−1/2WTX)
D
 N (0, σ2

w(P−1
∞ ⊗ In)) .

On the other hand, we have:

√
Tvec(λL?(X

TX + λIn)−1) =
1√
T

vec(λL?(T
−1XTX + T−1λIn)−1)

a.s.−→ 0 .

The claim now follows by another application of Slutsky’s theorem.

We now consider a slightly altered process where the system is no longer autonomous,
and instead will be driven by white noise.

Lemma 6.2.9. Let xt+1 = Axt + But + wt be a stable dynamical system driven by ut ∼
N (0, σ2

ηId) and wt ∼ N (0, σ2
wIn). Consider a least-squares estimator Θ̂ of Θ? := (A,B) ∈

Rn×(n+d) based off of N independent trajectories of length T , i.e. {{z(i)
t := (x

(i)
t , u

(i)
t )}Tt=0}Ni=1,

Θ̂(N) = arg min
(A,B)∈Rn×(n+d)

1

2

N∑
i=1

T−1∑
t=0

‖x(i)
t+1 − Ax(i)

t −Bu(i)
t ‖2

2 +
λ

2
‖
[
A B

]
‖2
F .

Let P∞ denote the stationary covariance of the process {xt}∞t=0, i.e. P∞ solves

AP∞A
T − P∞ + σ2

ηBB
T + σ2

wIn = 0 .

We have that Θ̂(N)
a.s.−→ Θ? and furthermore:

√
Nvec(Θ̂(N)−Θ?)

D
 N

(
0,
σ2
w

T

[
P−1
∞ 0
0 (1/σ2

η)Id

]
⊗ In + o(1/T )

)
.
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Proof. Let Z(i) ∈ RT×(n+d) be a data matrix with the rows (z
(i)
0 , ..., z

(i)
T−1), and letW (i) ∈ RT×n

be the noise matrix with the rows (w
(i)
0 , ..., w

(i)
T−1). With this notation we write:

Θ̂(N)−Θ? =

(
N∑
i=1

1

T

T−1∑
t=0

z
(i)
t+1(z

(i)
t )T

)(
N∑
i=1

1

T

T−1∑
t=0

z
(i)
t (z

(i)
t )T + λIn+d

)−1

−Θ?

= Θ?

(
N∑
i=1

1

T
(Z(i))TZ(i)

)(
N∑
i=1

1

T
(Z(i))TZ(i) + λIn+d

)−1

−Θ?

+

(
N∑
i=1

1

T
(W (i))TZ(i)

)(
N∑
i=1

1

T
(Z(i))TZ(i) + λIn+d

)−1

= −λΘ?

(
N∑
i=1

1

T
(Z(i))TZ(i) + λIn+d

)−1

+

(
N∑
i=1

1

T
(W (i))TZ(i)

)(
N∑
i=1

1

T
(Z(i))TZ(i) + λIn+d

)−1

=: G1(N) +G2(N) .

Taking vec of G2(N):

vec(G2(N)) =

( 1

N

N∑
i=1

1

T
(Z(i))TZ(i) +

λ

N
In+d

)−1

⊗ In

 vec

(
1

N

N∑
i=1

1

T

T−1∑
t=0

w
(i)
t (z

(i)
t )T

)
.

Now we write vec(wtz
T
t ) = (zt ⊗ In)wt and hence

E

vec

(
1

T

T−1∑
t=0

wtz
T
t

)
vec

(
1

T

T−1∑
t=0

wtz
T
t

)T
 =

1

T 2

T−1∑
t1,t2=0

E[(zt1 ⊗ In)wt1w
T
t2

(zTt2 ⊗ In)]

=
σ2
w

T 2

T−1∑
t=0

E[ztz
T
t ]⊗ In .

We have that:

1

N

N∑
i=1

1

T
(Z(i))TZ(i) +

λ

N
In+d

a.s.−→ 1

T

T−1∑
t=0

E[ztz
T
t ] .

Hence by the central limit theorem combined with the continuous mapping theorem and
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Slutsky’s theorem,

√
Nvec(G1(N))

a.s.−→ 0 ,

√
Nvec(G2(N))

D
 N

0,
σ2
w

T

[
1

T

T−1∑
t=0

E[ztz
T
t ]

]−1

⊗ In


= N

(
0,
σ2
w

T

[
[ 1
T

∑T−1
t=0 E[xtx

T
t ]]−1 0

0 (1/σ2
η)Id

]
⊗ In

)
.

To finish the proof, we note that E[xtx
T
t ] =

∑t−1
`=0 A

`M(A`)T := Pt with M := σ2
ηBB

T +σ2
wIn

and P0 = 0 (since x0 = 0). Since A is stable, there exists a ρ ∈ (0, 1) and C > 0 such that
‖Ak‖ ≤ Cρk for all k ≥ 0. Hence,

‖P∞ − Pt‖ =

∥∥∥∥∥
∞∑
`=t

A`M(A`)T

∥∥∥∥∥ ≤ C2‖M‖
∞∑
`=t

ρ2` = C2‖M‖ ρ2t

1− ρ2
.

Therefore, ∥∥∥∥∥ 1

T

T−1∑
t=0

Pt − P∞
∥∥∥∥∥ =

∥∥∥∥∥ 1

T

T−1∑
t=1

(Pt − P∞) +
1

T
P∞

∥∥∥∥∥
≤ 1

T

T−1∑
t=1

‖P∞ − Pt‖+
1

T
‖P∞‖

≤ C2‖M‖
T (1− ρ2)

T−1∑
t=1

ρ2t +
1

T
‖P∞‖

≤ C2‖M‖
T (1− ρ2)2

+
1

T
‖P∞‖ = O(1/T ) .

Therefore, [ 1
T

∑T−1
t=0 E[xtx

T
t ]]−1 = P−1

∞ +O(1/T ) from which the claim follows.

Next, we consider the asymptotic distribution of Least-Squares Temporal Difference
Learning for LQR.

Lemma 6.2.10. Let xt+1 = Axt + But + wt be a linear system driven by ut = Kxt and
wt ∼ N (0, σ2

wIn). Suppose the closed-loop matrix A + BK is stable. Let ν∞ denote the
stationary distribution of the Markov chain {xt}∞t=0. Define the two matrices A∞, B∞, the
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mapping ψ(x), and the vector w? as

A∞ := E
x∼ν∞,

x′∼p(·|x,π(x))

[φ(x)(φ(x)− φ(x′))T] ,

B∞ := E
x∼ν∞,

x′∼p(·|x,π(x))

[((φ(x′)− ψ(x))Tw?)
2φ(x)φ(x)T] ,

ψ(x) := E
x′∼p(·|x,π(x))

[φ(x′)] ,

w? := svec(V?) .

Let ŵlstd(T ) denote the LSTD estimator given by:

ŵlstd(T ) =

(
T−1∑
t=0

φ(xt)(φ(xt)− φ(xt+1))T

)−1(T−1∑
t=0

(ct − λt)φ(xt)

)
.

Suppose that LSTD is run with the true λt = λ? := σ2
w tr(V?) and that the matrix A∞ is

invertible. We have that ŵlstd(T )
a.s.−→ w? and furthermore:

√
T (ŵlstd(T )− w?) D

 N (0, A−1
∞ B∞A

−T
∞ ) .

Proof. Let ct = xTt (S + KTRK)xt. From Bellman’s equation, we have ct − λ? = (φ(xt) −
ψ(xt))

Tw?. We write:

ŵlstd(T )− w? =

(
T−1∑
t=0

φ(xt)(φ(xt)− φ(xt+1))T

)−1(T−1∑
t=0

(ct − λ?)φ(xt)

)
− w?

=

(
T−1∑
t=0

φ(xt)(φ(xt)− φ(xt+1))T

)−1(T−1∑
t=0

φ(xt)(φ(xt)− ψ(xt))
T

)
w? − w?

=

(
T−1∑
t=0

φ(xt)(φ(xt)− φ(xt+1))T

)−1(T−1∑
t=0

φ(xt)(φ(xt+1)− ψ(xt))
Tw?

)

=

(
1

T

T−1∑
t=0

φ(xt)(φ(xt)− φ(xt+1))T

)−1(
1

T

T−1∑
t=0

φ(xt)(φ(xt+1)− ψ(xt))
Tw?

)
.

We now proceed by considering the Markov chain {zt := (xt, wt)}. Observe that xt+1 is
zt-measurable, and furthermore the stationary distribution of this chain is ν∞×N (0, σ2

wIn).
From this we conclude two things. First, we conclude by the ergodic theorem that the
term inside the inverse converges a.s. to A∞ and hence the inverse converges a.s. to A−1

∞
by the continuous mapping theorem. Next, Theorem 6.2.7 combined with the Cramér-Wold
theorem allows us to conclude that

1√
T

T∑
t=1

φ(xt)(φ(xt+1)− ψ(xt))
Tw?

D
 N (0, B∞) .

The final claim now follows by Slutsky’s theorem.
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As a corollary to Lemma 6.2.10, we work out the formulas for A∞ and B∞ and a useful
lower bound.

Corollary 6.2.11. In the setting of Lemma 6.2.10, with L? = A + BK, we have that the
matrix A∞ is invertible, and:

A∞ = (P∞ ⊗s P∞)− (P∞L
T
? ⊗s P∞LT

? ) ,

B∞ = (σ2
w〈P∞, LT

? V
2
? L?〉+ 2σ4

w‖V?‖2
F )(2(P∞ ⊗s P∞) + svec(P∞)svec(P∞)T)

+ 2σ2
w(svec(P∞)svec(P∞L

T
? V

2
? L?P∞)T + svec(P∞L

T
? V

2
? L?P∞)svec(P∞)T)

+ 8σ2
w(P∞L

T
? V

2
? L?P∞ ⊗s P∞) .

Furthermore, we can lower bound the matrix A−1
∞ B∞A

−T
∞ by:

A−1
∞ B∞A

−T
∞ � 8σ2

w〈P∞, LT
? V

2
? L?〉(I − LT

? ⊗s LT
? )−1(P−1

∞ ⊗s P−1
∞ )(I − LT

? ⊗s LT
? )−T

+ 16σ2
w(I − LT

? ⊗s LT
? )−1(LT

? V
2
? L? ⊗s P−1

∞ )(I − LT
? ⊗s LT

? )−T . (6.2.5)

The proof of Corollary 6.2.11 is involved and deferred to the end of this section. Next, we
state a standard lemma which we will use to convert convergence in distribution guarantees
to guarantees regarding the convergence of risk.

Lemma 6.2.12. Suppose that {Xn} is a sequence of random vectors and Xn
D
 X. Suppose

that f is a non-negative continuous real-valued function such that E[f(X)] < ∞. We have
that:

lim inf
n→∞

E[f(Xn)] ≥ E[f(X)] .

If additionally we have supn≥1 E[f(Xn)1+ε] < ∞ holds for some ε > 0, then the limit
limn→∞ E[f(Xn)] exists and

lim
n→∞

E[f(Xn)] = E[f(X)] .

Proof. Both facts are standard consequences of weak convergence of probability measures;
see e.g. Chapter 5 of Billingsley [17] for more details.

The next claim uniformly controls the p-th moments of the regularized least-squares
estimate when T is large enough. This technical result will allow us to invoke Lemma 6.2.12
to obtain convergence in Lp.

Lemma 6.2.13. Let xt+1 = L?xt + wt with wt ∼ N (0, σ2
wIn) and L? stable. Fix a regular-

ization parameter λ > 0 and let L̂(T ) denote the LS estimator:

L̂(T ) = arg min
L∈Rn×n

1

2

T−1∑
t=0

‖xt+1 − Lxt‖2
2 +

λ

2
‖L‖2

F .
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Fix a finite p ≥ 1. Let CL?,λ,n and CL?,λ,n,p denote constants that depend only on L?, λ, n
(resp. L?, λ, n, p) and not on T, δ. Fix a δ ∈ (0, 1). With probability at least 1 − δ, as long
as T ≥ CL?,λ,n log(1/δ) we have:

‖L̂(T )− L?‖ ≤ C ′L?,λ,n

√
log(1/δ)

T
.

Furthermore, as long as T ≥ CL?,λ,n,p, then:

E[‖L̂(T )− L?‖p] ≤ C ′L?,λ,n,p
1

T p/2
.

Proof. Recall in the notation of the proof of Lemma 6.2.8,

L̂(T )− L? = −λL?(XTX + λIn)−1 +WTX(XTX + λIn)−1 .

Now let us suppose that we are on an event where XTX is invertible. Let X = UΣV T denote
the compact SVD of X. We have:

‖L̂(T )− L?‖ ≤ λ
‖L?‖

λmin(XTX + λIn)
+ ‖WTX(XTX + λIn)−1‖

(a)

≤ λ
‖L?‖

λmin(XTX + λIn)
+ ‖WTX(XTX)−1‖ .

The inequality (a) holds due to the following. First observe that (XTX+λIn)−2 � (XTX)−2.
Therefore with M = WTX, conjugating both sides by M , we have M(XTX + λIn)−2MT �
M(XTX)−2MT. Hence,

‖M(XTX + λIn)−1‖ =
√
λmax(M(XTX + λIn)−2MT)

≤
√
λmax(M(XTX)−2MT)

= ‖M(XTX)−1‖ .

By Theorem 2.4 of Simchowitz et al. [105] for T ≥ CL?,n log(1/δ), there exists an event E
with P(E) ≥ 1− δ such that on E we have:

‖L̂ols(T )− L?‖ ≤ C ′L?,n
√

log(1/δ)/T , XTX � C ′′L?,nT · In .

Hence on this event we have ‖L̂(T )− L?‖ ≤ C ′L?,n,λ
√

log(1/δ)/T .
For the remainder of the proof, O(·) will hide constants that depend on L?, n, p, λ but

not on T or δ. We bound the p-th moment as follows. We decompose:

E[‖L̂(T )− L?‖p] = E[‖L̂(T )− L?‖p1E ] + E[‖L̂(T )− L?‖p1Ec ] .

On E we have by the inequality (a+ b)p ≤ 2p−1(ap + bp) for non-negative a, b,

‖L̂(T )− L?‖p ≤ 2p−1(O(λp/T p) +O((log(1/δ)/T )p/2)) .
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On the other hand, we always have:

‖L̂(T )− L?‖p ≤ 2p−1(‖L?‖p + (‖WTX‖/λ)p) .

Hence:

E[‖L̂(T )− L?‖p1Ec ] ≤ 2p−1‖L?‖pP(Ec) +
2p−1

λp
E[‖WTX‖p1Ec ]

≤ 2p−1‖L?‖pδ +
2p−1

λp

√
E[‖WTX‖2p]δ .

We will now compute a very crude bound on E[‖WTX‖2p] which will suffice. For non-negative
at, we have (a1 + ...+ aT )2p ≤ T 2p−1(

∑T
t=1 a

2p
i ) by Hölder’s inequality. Hence

E[‖WTX‖2p] = E

∥∥∥∥∥
T−1∑
t=0

wix
T
i

∥∥∥∥∥
2p


≤ T 2p−1E

[
T∑
t=1

‖wt‖2p‖xt‖2p

]

= T 2p−1E[‖w1‖2p]
T∑
t=1

E[‖xt‖2p]

≤ T 2pE[‖w1‖2p]‖P∞‖pEg∼N (0,I)[‖g‖2p]

= O(T 2p) .

Above, P∞ denotes the covariance of the stationary distribution of {xt}. Continuing from
above:

E[‖L̂(T )− L?‖p1Ec ] = 2p−1‖L?‖pδ +
2p−1

λp

√
O(T 2p)δ .

We now set δ = O(1/T 3p) so that the term above is O(1/T p/2). Doing this we obtain that
for T sufficiently large (as a function of only L?, p, λ),

E[‖L̂(T )− L?‖p] ≤ O(1/T p/2) .

The next result is the analogue of Lemma 6.2.13 for the non-autonomous system driven
by white noise.

Lemma 6.2.14. Let xt+1 = Axt + But + wt with wt ∼ N (0, σ2
wIn), ut ∼ N (0, σ2

ηId), and A

stable. Fix a regularization parameter λ > 0 and let Θ̂(N) denote the LS estimator:

Θ̂(N) = arg min
(A,B)∈Rn×(n+d)

1

2

N∑
i=1

T−1∑
t=0

‖x(i)
t+1 − Ax(i)

t −Bu(i)
t ‖2 +

λ

2
‖
[
A B

]
‖2
F .
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Fix a finite p ≥ 1. Let CΘ?,T,λ,n,d and CΘ?,T,λ,n,d,p denote constants that depend only on
Θ?, T, λ, n, d (resp. Θ?, T, λ, n, d, p) and not on N, δ. Fix a δ ∈ (0, 1). With probability at
least 1− δ, as long as N ≥ CΘ?,T,λ,n,d log(1/δ) we have:

‖Θ̂(N)−Θ?‖ ≤ C ′Θ?,T,λ,n,d

√
log(1/δ)

N
.

Furthermore, as long as N ≥ CΘ?,T,λ,n,d,p, then:

E[‖Θ̂(N)−Θ?‖p] ≤ C ′Θ?,T,λ,n,d,p
1

Np/2
.

Proof. The proof is nearly identical to that of Lemma 6.2.13, except we use the concen-
tration result of Proposition 3.1.1 instead of Proposition 3.2.1 to establish concentration
over multiple independent rollouts. We omit the details as they very closely mimic that of
Lemma 6.2.13.

We note that in doing this we obtain a sub-optimal dependence on the horizon length
T . This can be remedied by a more careful argument combining Proposition 3.1.1 with
Proposition 3.2.1. However, as in our limit theorems only N the rollout length is being sent
to infinity (e.g. T is considered a constant), a sub-optimal bound in T will suffice for our
purpose.

Our final asymptotic result deals with the performance of stochastic gradient descent
(SGD) with projection. This will be our key ingredient in analyzing policy gradient (Algo-
rithm 7). While the asymptotic performance of SGD (and more generally stochastic approx-
imation) is well-established (see e.g. Kushner and Yin [60]), we consider a slight modification
where the iterates are projected back into a compact convex set at every iteration. As long
as the optimal solution is not on the boundary of the projection set, then one intuitively does
not expect the asymptotic distribution to be affected by this projection, since eventually as
SGD converges towards the optimal solution the projection step will effectively be inactive.
Our result here makes this intuition rigorous. It follows by combining the asymptotic analy-
sis of Toulis and Airoldi [113] with the high probability bounds for SGD from Rakhlin et al.
[94].

To state the result, we need a few definitions. First, we say a differentiable function
F : Rd → R satisfies restricted strong convexity (RSC) on a compact convex set Θ ⊆ Rd if it
has a unique minimizer θ? ∈ int(Θ) and for some m > 0, we have 〈∇F (θ), θ−θ?〉 ≥ m‖θ−θ?‖2

for all θ ∈ Θ. We denote this by RSC(m,Θ).

Lemma 6.2.15. Let F ∈ C3(Θ) and suppose F satisfies RSC(m,Θ). Let θ? ∈ Θ denote the
unique minimizer of F in Θ. Suppose we have a stochastic gradient oracle g(θ; ξ) such that
g is continuous in both θ, ξ and ∇F (θ) = Eξ[g(θ; ξ)] for some distribution over ξ. Suppose
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that for some G1, G2, L > 0, for all p ∈ [1, 4] and δ ∈ (0, 1), we have that

sup
θ∈Θ

Eξ[‖g(θ; ξ)‖p] ≤ Gp
1 , (6.2.6)

Pξ
(

sup
θ∈Θ
‖g(θ; ξ)‖ > G2 polylog(1/δ)

)
≤ δ , (6.2.7)

Eξ[‖g(θ; ξ)− g(θ?; ξ)‖2] ≤ L‖θ − θ?‖2 ∀θ ∈ Θ . (6.2.8)

Given an sequence {ξt}∞t=1 drawn i.i.d. from the law of ξ, consider the sequence of iterates
{θt}∞t=1 starting with θ1 ∈ Θ and defined as:

θt+1 = ProjΘ(θt − αtg(θt; ξt)) , αt =
1

mt
.

We have that:

lim
T→∞

mT · Var(θT ) = Ξ , (6.2.9)

where Ξ = lyap(m
2
Id − ∇2F (θ?),Eξ[g(θ?; ξ)g(θ?; ξ)

T]) solves the continuous-time Lyapunov
equation:(m

2
Id −∇2F (θ?)

)
Ξ + Ξ

(m
2
Id −∇2F (θ?)

)
+ Eξ[g(θ?; ξ)g(θ?; ξ)

T] = 0 . (6.2.10)

We also have that for any G ∈ C3(Θ) with ∇G(θ?) = 0 and ∇2G(θ?) � 0,

lim inf
T→∞

T · E[G(θT )−G(θ?)] ≥
1

2m
tr(∇2G(θ?) · Ξ) . (6.2.11)

We defer the proof of this lemma to Section 6.2.5 of the Appendix. We quickly comment
on how the last inequality can be used. Taking trace of both sides from Equation 6.2.10, we
obtain:

tr(Ξ · (∇2F (θ?)−
m

2
Id)) =

1

2
Eξ[‖g(θ?; ξ)‖2] .

We now upper bound the LHS as:

tr(Ξ · (∇2F (θ?)−
m

2
Id))

= tr(Ξ · ∇2G(θ?)
1/2 · ∇2G(θ?)

−1/2(∇2F (θ?)−
m

2
Id)∇2G(θ?)

−1/2 · ∇2G(θ?)
1/2)

≤ tr(Ξ · ∇2G(θ?))λmax(∇2G(θ?)
−1/2(∇2F (θ?)−

m

2
Id)∇2G(θ?)

−1/2)

= tr(Ξ · ∇2G(θ?))λmax(∇2G(θ?)
−1(∇2F (θ?)−

m

2
Id)) .



CHAPTER 6. MODEL-FREE METHODS FOR LQR 96

Combining the last two equations we obtain that:

lim inf
T→∞

T · E[G(θT )−G(θ?)] ≥
1

2m
tr(Ξ · ∇2G(θ?))

≥ 1

4mλmax(∇2G(θ?)−1(∇2F (θ?)− m
2
Id))

Eξ[‖g(θ?; ξ)‖2] .

(6.2.12)

We will use this last estimate in our analysis.

6.2.4.1 Deferred Proof of Corollary 6.2.11

Proof. In the proof we write Σ = σ2
wIn. First, we note that a quick computation shows that

ψ(x) = svec(LxxTLT + Σ).

Matrix A∞. We have

φ(x)− φ(x′) = svec(xxT − (Lx+ w)(Lx+ w)T)

= svec(xxT − LxxTLT − LxwT − wxTLT − wwT) .

Hence, conditioning on x and iterating expectations, we have

A∞ = Ex∼ν∞ [φ(x)svec(xxT − LxxTLT − Σ)T] .

Now let m,n be two test vectors and M = smat(m), N = smat(n). We have that,

mTA∞n = Ex∼ν∞ [xTMx〈xxT − LxxTLT − Σ, N〉]
= Ex∼ν∞ [xTMx(xT(N − LTNL)x− 〈Σ, N〉)]
= Ex∼ν∞ [xTMxxT(N − LTNL)x]− 〈Σ, N〉Ex∼ν∞ [xTMx]

= Eg[gTP 1/2
∞ MP 1/2

∞ ggTP 1/2
∞ (N − LTNL)P 1/2

∞ g]− 〈Σ, N〉〈M,P∞〉
= 2〈P 1/2

∞ MP 1/2
∞ , P 1/2

∞ (N − LTNL)P 1/2
∞ 〉+ 〈M,P∞〉〈N − LTNL,P∞〉

− 〈Σ, N〉〈M,P∞〉
= 2〈P 1/2

∞ MP 1/2
∞ , P 1/2

∞ (N − LTNL)P 1/2
∞ 〉 ,

where the last identity follows since LP∞L
T − P∞ + Σ = 0. We therefore have:

A∞ = (P∞ ⊗s P∞)− (P∞L
T ⊗s P∞LT)

= (P∞ ⊗s P∞)(I − LT ⊗s LT) .

Note that this writes A∞ as the product of two invertible matrices and hence A∞ is invertible.
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Matrix B∞. We have

〈φ(x′)− ψ(x), w?〉 = svec(LxwT + wxTLT + wwT − Σ)Tw?

= 2xTLTV?w + 〈wwT − Σ, V?〉 .
Hence,

〈φ(x′)− ψ(x), w?〉2 = 4(xTLTV?w)2 + 〈wwT − Σ, V?〉2 + 4xTLTV?w〈wwT − Σ, V?〉
=: T1 + T2 + T3 .

Now we have that mTB∞n is

mTB∞n = E[T1x
TMxxTNx] + E[T2x

TMxxTNx] + E[T3x
TMxxTNx] . (6.2.13)

First, we have

E[T1x
TMxxTNx] = 4E[(xTLTV?w)2xTMxxTNx]

= 4E[xTLTV?ww
TV?Lxx

TMxxTNx]

= 4E[xTLTV?ΣV?Lxx
TMxxTNx]

= 4Eg[gT(P 1/2
∞ LTV?ΣV?LP

1/2
∞ )ggT(P 1/2

∞ MP 1/2
∞ )ggT(P 1/2

∞ NP 1/2
∞ )g]

Now we state a result from Magnus to compute the expectation of the product of three
quadratic forms of Gaussians.

Lemma 6.2.16 (See e.g. Magnus [72]). Let g ∼ N (0, I) and A1, A2, A3 be symmetric ma-
trices. Then,

E[gTA1gg
TA2gg

TA3g] = tr(A1) tr(A2) tr(A3)

+ 2(tr(A1) tr(A2A3) + tr(A2) tr(A1A3) + tr(A3) tr(A1A2))

+ 8 tr(A1A2A3) .

Now by setting

A1 = P 1/2
∞ LTV?ΣV?LP

1/2
∞ ,

A2 = P 1/2
∞ MP 1/2

∞ ,

A3 = P 1/2
∞ NP 1/2

∞ ,

we can compute the expectation E[T1x
TMxxTNx] using Lemma 6.2.16. In particular,

tr(A1) tr(A2) tr(A3) = 〈P∞, LTV?ΣV?L〉mTsvec(P∞)svec(P∞)Tn ,

tr(A1) tr(A2A3) = 〈P∞, LTV?ΣV?L〉mT(P∞ ⊗s P∞)n ,

tr(A2) tr(A1A3) = mTsvec(P∞)svec(P∞L
TV?ΣV?LP∞)Tn ,

tr(A3) tr(A1A2) = mTsvec(P∞L
TV?ΣV?LP∞)svec(P∞)Tn ,

tr(A1A2A3) = mT(P∞L
TV?ΣV?LP∞ ⊗s P∞)n .
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Hence,

E[gTA1gg
TA2gg

TA3g] = mT(〈P∞, LTV?ΣV?L〉(2(P∞ ⊗s P∞) + svec(P∞)svec(P∞)T)

+ 2svec(P∞)svec(P∞L
TV?ΣV?LP∞)T + 2svec(P∞L

TV?ΣV?LP∞)svec(P∞)T

+ 8(P∞L
TV?ΣV?LP∞ ⊗s P∞))n .

Next, we compute

E[T2x
TMxxTNx] = E[〈wwT − Σ, V?〉2xTMxxTNx]

= E[〈wwT − Σ, V?〉2]E[xTMxxTNx] .

First, we have

E[〈wwT − Σ, V?〉2] = E[(wTV?w)2]− 2〈Σ, V?〉E[wTV?w] + 〈Σ, V?〉2

= 2‖Σ1/2V?Σ
1/2‖2

F + 〈V?,Σ〉2 − 2〈Σ, V?〉2 + 〈V?,Σ〉2

= 2‖Σ1/2V?Σ
1/2‖2

F .

On the other hand,

E[xTMxxTNx] = 2〈P 1/2
∞ MP 1/2

∞ , P 1/2
∞ NP 1/2

∞ 〉+ 〈M,P∞〉〈N,P∞〉 .

Combining these calculations,

E[T2x
TMxxTNx] = 2‖Σ1/2V?Σ

1/2‖2
F (2〈P 1/2

∞ MP 1/2
∞ , P 1/2

∞ NP 1/2
∞ 〉+ 〈M,P∞〉〈N,P∞〉)

= 2‖Σ1/2V?Σ
1/2‖2

Fm
T(2(P∞ ⊗s P∞) + svec(P∞)svec(P∞)T)n

Finally, we have E[T3x
TMxxTNx] = 0, which is easy to see because it involves odd powers

of w. This gives us that B∞ is:

B∞ = (〈P∞, LTV?ΣV?L〉+ 2‖Σ1/2V?Σ
1/2‖2

F )(2(P∞ ⊗s P∞) + svec(P∞)svec(P∞)T)

+ 2svec(P∞)svec(P∞L
TV?ΣV?LP∞)T + 2svec(P∞L

TV?ΣV?LP∞)svec(P∞)T

+ 8(P∞L
TV?ΣV?LP∞ ⊗s P∞) .

This completes the proof of the formulas for A∞ and B∞.
To obtain the lower bound, we need the following lemma which gives a useful lower bound

to Lemma 6.2.16.

Lemma 6.2.17. Let A1 be positive semi-definite and let A2 be symmetric. Let g ∼ N (0, I).
We have that:

E[gTA1g(gTA2g)2] ≥ 2 tr(A1) tr(A2
2) + 4 tr(A1A

2
2) .
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Proof. Suppose that A1 6= 0, otherwise the bound holds vacuously. From Lemma 6.2.16,

E[gTA1g(gTA2g)2] = tr(A1) tr(A2)2 + 2 tr(A1) tr(A2
2) + 4 tr(A2) tr(A1A2) + 8 tr(A1A

2
2) .

Since A1 is PSD and non-zero, this means that tr(A1) > 0. We proceed as follows:

4| tr(A2) tr(A1A2)| = 2| tr(A2) tr(A1)1/2|
∣∣∣∣2tr(A1A2)

tr(A1)1/2

∣∣∣∣
(a)

≤ tr(A1) tr(A2)2 + 4
tr(A1A2)2

tr(A1)

= tr(A1) tr(A2)2 + 4
tr(A

1/2
1 A

1/2
1 A2)2

tr(A1)

(b)

≤ tr(A1) tr(A2)2 + 4
‖A1/2

1 ‖2
F‖A1/2

1 A2‖2
F

tr(A1)

= tr(A1) tr(A2)2 + 4 tr(A1A
2
2) ,

where in (a) we used Young’s inequality and in (b) we used Cauchy-Schwarz. The claim now
follows.

We now start from the decomposition (6.2.13) for B∞, with m = n and noting that
E[T2(xTMx)2] ≥ 0 and E[T3(xTMx)3] = 0:

mTB∞m ≥ E[T1(xTMx)2]

(a)

≥ 8〈P∞, LTV?ΣV?L〉mT(P∞ ⊗s P∞)m+ 16mT(P∞L
TV?ΣV?LP∞ ⊗s P∞)m .

Above in (a) we applied the lower bound from Lemma 6.2.17. Hence since m is arbitrary,

B∞ � 8〈P∞, LTV?ΣV?L〉(P∞ ⊗s P∞) + 16(P∞L
TV?ΣV?LP∞ ⊗s P∞) .

We also have that A∞ = (P∞⊗sP∞)(I−LT⊗LT), and hence A−1
∞ = (I−LT⊗LT)−1(P−1

∞ ⊗s
P−1
∞ ). Therefore,

A−1
∞ B∞A

−T
∞ � 8〈P∞, LTV?ΣV?L〉(I − LT ⊗s LT)−1(P−1

∞ ⊗s P−1
∞ )(I − LT ⊗s LT)−T

+ 16(I − LT ⊗s LT)−1(LTV?ΣV?L⊗s P−1
∞ )(I − LT ⊗s LT)−T .

6.2.5 Asymptotic Analysis of Projected SGD

We now state a high probability bound for SGD. This is a straightforward modification of
Lemma 6 from Rakhlin et al. [94] (modifications are needed to deal with the lack of almost
surely bounded gradients), and hence we omit the proof.
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Lemma 6.2.18 (Lemma 6, Rakhlin et al. [94]). Let the assumptions of Lemma 6.2.15 hold.
Define two constants:

M := sup
θ∈Θ
‖θ‖ , G3 := sup

θ∈Θ
‖∇F (θ)‖ .

Note that since Θ is compact, both M and G3 are finite. Fix a T ≥ 4 and δ ∈ (0, 1/e). We
have that with probability at least 1− δ, for all t ≤ T ,

‖θt − θ?‖2 .
polylog(T/δ)

t

(
G2

1 +G2
2

m2
+
M(G2 +G3)

m

)
.

We are now in a position to analyze the asymptotic variance of SGD with projection. As
mentioned previously, our argument follows closely that of Toulis and Airoldi [113]. For the
remainder of the proof, O(·) and Ω(·) will hide all constants except those depending on t
and δ. Introduce the notation:

θ̃t+1 = θt − αtg(θt; ξt) ,

θt+1 = ProjΘ(θ̃t+1) .

Let Et := {θ̃t = θt} be the event that the projection step is inactive at time t. Recall that
we assumed that θ? is in the interior of Θ. This means there exists a radius R > 0 such that
{θ : ‖θ − θ?‖ ≤ R} ⊆ Θ. Therefore, the event {‖θ̃t − θ?‖ ≤ R} ⊆ Et. We now decompose,

Var(θt+1) = Var(θt+1 − θ̃t+1 + θ̃t+1)

= Var(θ̃t+1) + Var(θt+1 − θ̃t+1) + Cov(θt+1 − θ̃t+1, θ̃t+1) + Cov(θ̃t+1, θt+1 − θ̃t+1) .

We have that,

θt+1 − θ̃t+1 = (θt+1 − θ̃t+1)1Ect+1
.

Hence,

‖Var(θt+1 − θ̃t+1)‖ ≤ E[‖θ̃t+11Ect+1
− θt+11Ect+1

‖2]

≤ 2(E[‖θ̃t+1‖21Ect+1
] + E[‖θt+1‖21Ect+1

])

≤ 2(
√

E[‖θ̃t+1‖4]E[1Ect+1
] +M2E[1Ect+1

]) .

We can bound E[‖θ̃t+1‖4] by a constant for all t using our assumption (6.2.6). On the other
hand,

E[1Ect+1
] ≤ P(‖θ̃t+1 − θ?‖ > R) .

By triangle inequality,

‖θ̃t+1 − θ?‖ ≤ ‖θt − θ?‖+ αt‖gt‖ .
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By Lemma 6.2.18 and the concentration bound on ‖gt‖ from our assumption (6.2.7), with
probability at least 1− δ,

‖θ̃t+1 − θ?‖ ≤ O(polylog(t/δ)/
√
t) .

Hence for t large enough, E[1Ect+1
] ≤ O(exp(−tα)) for some α > 0. This shows that

‖Var(θt+1 − θ̃t+1)‖ ≤ O(exp(−tα)). Similar arguments show that

max{‖Cov(θt+1 − θ̃t+1, θ̃t+1)‖, ‖Cov(θ̃t+1, θt+1 − θ̃t+1)‖} ≤ O(exp(−tα)) .

Hence:

Var(θt+1) = Var(θ̃t+1) +O(exp(−tα)) .

Therefore,

Var(θt+1) = Var(θ̃t+1) +O(exp(−tα))

= Var(θt − αtg(θt; ξt)) +O(exp(−tα))

= Var(θt) + α2
tVar(g(θt; ξt))− αtCov(θt, g(θt; ξt))− αtCov(g(θt; ξt), θt) (6.2.14)

+O(exp(−tα))

= Var(θt) + α2
tVar(g(θt; ξt))− αtCov(θt,∇F (θt))− αtCov(∇F (θt), θt) (6.2.15)

+O(exp(−tα)) .

Now we write:

Var(g(θt; ξt)) = Var(g(θ?; ξt) + (g(θt; ξt)− g(θ?; ξt)))

= Var(g(θ?; ξt)) + Var(g(θt; ξt)− g(θ?; ξt))

+ Cov(g(θ?; ξt), g(θt; ξt)− g(θ?; ξt)) + Cov(g(θt; ξt)− g(θ?; ξt), g(θ?; ξt)) .

We have by our assumption (6.2.8),

‖Var(g(θt; ξt)− g(θ?; ξt))‖ ≤ E[‖g(θt; ξt)− g(θ?; ξt)‖2]

= EθtEξ[‖g(θt; ξt)− g(θ?; ξt)‖2]

≤ LE[‖θt − θ?‖2] .

On the other hand,

‖Cov(g(θ?; ξt), g(θt; ξt)− g(θ?; ξt))‖ ≤ 2E[‖g(θ?; ξt)‖‖g(θt; ξt)− g(θ?; ξt)‖]
≤ 2
√

E[‖g(θ?; ξt)‖2]E[‖g(θt; ξt)− g(θ?; ξt)‖2]

≤ 2
√
LG2

1E[‖θt − θ?‖2] .
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The same bound also holds for ‖Cov(g(θt; ξt) − g(θ?; ξt), g(θ?; ξt))‖. Since we know that
E[‖θt − θ?‖2] ≤ O(1/t), this shows that:

Var(g(θt; ξt)) = Var(g(θ?; ξ)) + ot(1) .

Next, by a Taylor expansion of ∇F (θt) around θ?, we have that:

∇F (θt) = ∇2F (θ?)(θt − θ?) + Rem(θt − θ?) ,
where ‖Rem(θt−θ?)‖ ≤ O(‖θt−θ?‖2). Therefore, utilizing the fact that adding a non-random
vector does not change the covariance,

Cov(θt,∇F (θt)) = Cov(θt,∇2F (θ?)(θt − θ?) + Rem(θt − θ?))
= Cov(θt,∇2F (θ?)(θt − θ?)) + Cov(θt,Rem(θt − θ?))
= Cov(θt,∇2F (θ?)θt) + Cov(θt − θ?,Rem(θt − θ?))
= Var(θt)∇2F (θ?) + Cov(θt − θ?,Rem(θt − θ?)) .

We now bound Cov(θt − θ?,Rem(θt − θ?)) as:

‖Cov(θt − θ?,Rem(θt − θ?))‖ ≤ O(E[‖θt − θ?‖3]) ≤ O(polylog(t)/t3/2) .

Above, the last inequality comes from the high probability bound given in Lemma 6.2.18.
Observing that Cov(θt,∇F (θt))

T = Cov(∇F (θt), θt), combining our calculations and contin-
uing from Equation (6.2.15),

Var(θt+1) = Var(θt) + α2
t (Var(g(θ?; ξ)) + ot(1))− αt(Var(θt)∇2F (θ?) +∇2F (θ?)Var(θt))

+ αtO(polylog(t)/t3/2) +O(exp(−tα)) .

We now make two observations. Recall that αt = 1/(mt). Hence we have O(exp(−tα)) =
α2
tO(t2 exp(−tα)) = α2

t ot(1). Similarly, αtO(polylog(t)/t3/2) = α2
tO(polylog(t)/t1/2) =

α2
t ot(1). Therefore,

Var(θt+1) = Var(θt)− αt(Var(θt)∇2F (θ?) +∇2F (θ?)Var(θt)) + α2
t (Var(g(θ?; ξ)) + ot(1)) .

This matrix recursion can be solved by Corollary C.1 of Toulis and Airoldi [113], yielding
(6.2.9).

To complete the proof, by a Taylor expansion we have:

T · E[F (θT )− F (θ?)] =
T

2
tr(∇2F (θ?)E[(θT − θ?)(θT − θ?)T]) +

T

6
E[∇3f(θ̂)(θT − θ?)⊗3] .

As above, we can bound |E[∇3f(θ̂)(ΘT − θ?)⊗3]| ≤ O(E[‖θT − θ?‖3]) ≤ O(polylog(T )/T 3/2),
and hence T · |E[∇3f(θ̂)(ΘT − θ?)⊗3]| → 0. On the other hand, letting µT := E[θT ], by a
bias-variance decomposition,

E[(θT − θ?)(θT − θ?)T] = E[(θT − µT )(θT − µT )T] + (µT − θ?)(µT − θ?)T

� E[(θT − µT )(θT − µT )T] = Var(θT ) .
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Therefore,

T · E[F (θT )− F (θ?)] ≥
1

2m
tr(∇2F (θ?)(mT )Var(θT ))− T

6
|E[∇3f(θ̂)(θT − θ?)⊗3]| .

Taking limits on both sides yields (6.2.11). This concludes the proof of Lemma 6.2.15.

6.2.6 Analysis of Policy Evaluation Methods

In this section, recall that S,R,K are fixed, and furthermore define M := S +KTRK.

6.2.6.1 Proof of Theorem 6.2.1

The strategy is as follows. Recall that Lemma 6.2.8 gives us the asymptotic distribution
of the (regularized) least-squares estimator L̂(T ) of the true closed-loop matrix L?. For a
stable matrix L, let V (L) = dlyap(L,M). Since the map L 7→ V (L) is differentiable, using

the delta method we can recover the asymptotic distribution of
√
T svec(V (L̂(T )) − V?).

Upper bounding the trace of the covariance matrix for this asymptotic distribution then
yields Theorem 6.2.1.

Let [DV (L)] denote the Fréchet derivative of the map V (·) evaluated at L, and let
[DV (L)](X) denote the action of the linear operator [DV (L)] on X. By a straightforward
application of the implicit function theorem, we have that:

[DV (L?)](X) = dlyap(L?, X
TV?L? + LT

? V?X) .

Before we proceed, we introduce some notation surrounding Kronecker products. Let Γ
denote the matrix such that (A ⊗s B) = 1

2
ΓT(A ⊗ B + B ⊗ A)Γ for any square matrices

A,B. It is a fact that Γvec(S) = svec(S) for any symmetric matrix S. Also let Π be the
orthonormal matrix such that Πvec(X) = vec(XT) for all square matrices X. It is not hard
to verify that ΠT(A ⊗ B)Π = (B ⊗ A), a fact we will use later. With this notation, we
proceed as follows:

svec([DV (L?)](X)) = (I − LT
? ⊗s LT

? )−1svec(XTV?L? + LT
? V?X)

= (I − LT
? ⊗s LT

? )−1Γvec(XTV?L? + LT
? V?X)

= (I − LT
? ⊗s LT

? )−1Γ((LT
? V? ⊗ In)Π + (In ⊗ LT

? V?))vec(X) .

Applying Lemma 6.2.8 in conjunction with the delta method, we obtain:

√
T svec(V (L̂(T ))− V?) D

 N (0, σ2
w(I − LT

? ⊗s LT
? )−1Σ(I − LT

? ⊗s LT
? )−T) ,
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where,

Σ := Γ[((LT
? V? ⊗ In)Π + (In ⊗ LT

? V?))(P
−1
∞ ⊗ In)((LT

? V? ⊗ In)Π + (In ⊗ LT
? V?))

T]ΓT

(a)

� 2Γ[(LT
? V? ⊗ In)Π(P−1

∞ ⊗ In)ΠT(V?L? ⊗ In) + (In ⊗ LT
? V?)(P

−1
∞ ⊗ In)(In ⊗ V?L?)]ΓT

= 2Γ[(LT
? V? ⊗ In)(In ⊗ P−1

∞ )(V?L? ⊗ In) + (In ⊗ LT
? V?)(P

−1
∞ ⊗ In)(In ⊗ V?L?)]ΓT

= 2Γ[(LT
? V

2
? L? ⊗ P−1

∞ ) + (P−1
∞ ⊗ LT

? V
2
? L?)]Γ

T

= 4(LT
? V

2
? L? ⊗s P−1

∞ ) .

In (a), we used the inequality for any matrices X, Y and positive definite matrices F,G, (see
e.g. Chapter 3, page 94 of Zhang [128]):

(X + Y )(F +G)−1(X + Y )T � XF−1XT + Y G−1Y T .

Suppose that the sequence {‖ZT‖2
F} is uniformly integrable, where ZT :=

√
T svec(V (L̂(T ))−

V?). Then:

lim
T→∞

T · E[‖V (L̂(T ))− V?‖2
F ] ≤ 4 tr((I − LT

? ⊗s LT
? )−1(LT

? V
2
? L? ⊗s σ2

wP
−1
∞ )(I − LT

? ⊗s LT
? )−T) ,

which is the desired bound on the asymptotic risk.
We now show that the sequence {‖ZT‖2

F} is uniformly integrable. Fix a finite p ≥ 1.
Since L? is stable and ζ ∈ (ρ(L?), 1), there exists a C? such that ‖Lk?‖ ≤ C?ζ

k for all k ≥ 0.
For the rest of the proof, O(·),Ω(·) will hide constants that depend on L?, C?, n, p, λ, ζ, ψ,
but not on T . Set δT = O(1/T p/2) and let T be large enough so that there exists an
event EBdd promised by Lemma 6.2.13 such that P(EBdd) ≥ 1 − δT and on EBdd we have

‖L̂(T ) − L?‖ ≤ O(
√

log(1/δT )/T ). Let T also be large enough so that on EBdd, we have

‖L̂(T )−L?‖ ≤ min((γ− ρ?)/C?, ψ−‖L?‖). With this setting, we have that on EBdd, for any
α ∈ (0, 1),

L̃(α) := αL̂(T ) + (1− α)L?

∈
{
L ∈ Rn×n : ρ(L) ≤ ζ , ‖L‖ ≤ min

(
‖L?‖+

γ − ρ?
C?

, ψ

)}
=: G .

Therefore on EBdd, for some α ∈ (0, 1),

‖V (L̂(T ))− V?‖ = ‖[DV (L̃(α))](L̂(T )− L?)‖
≤ sup

L̃∈G
‖[DV (L̃)]‖‖L̂(T )− L?‖ =: Clip‖L̂(T )− L?‖ .

Here the norm ‖[H]‖ := sup‖X‖≤1‖[H](X)‖. We have that Clip is finite since G is a compact
set. Next, define the set GAlg as:

GAlg := {L ∈ Rn×n : ρ(L) ≤ ζ , ‖L‖ ≤ ψ} ,
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and define the event EAlg as EAlg := {L̂(T ) ∈ GAlg}. Consider the decomposition:

E[‖V̂plug(T )− V?‖p] = E[‖V̂plug(T )− V?‖p1EBdd ] + E[‖V̂plug(T )− V?‖p1EcBdd ]
≤ E[‖V̂plug(T )− V?‖p1EBdd ] + E[‖V̂plug(T )− V?‖p1EcBdd∩EAlg ]

+ E[‖V̂plug(T )− V?‖p1EcBdd∩EcAlg ] .

In what follows we will assume that T is sufficiently large.

On EBdd. On this event, since we have EBdd ⊆ EAlg, we can bound by Lemma 6.2.13:

E[‖V̂plug(T )− V?‖p1EBdd ] = E[‖V̂plug(T )− V?‖p1EBdd∩EAlg ] ≤ Cp
lipE[‖L̂(T )− L?‖p] ≤ O(1/T p/2) .

On EcBdd ∩ EAlg. On this event, we use the fact that GAlg is compact to bound:

E[‖V̂plug(T )− V?‖p1EcBdd∩EAlg ] ≤ sup
L̂∈GAlg

‖dlyap(L̂, S +KTRK)− V?‖pP(EcBdd ∩ EAlg)

≤ sup
L̂∈GAlg

‖dlyap(L̂, S +KTRK)− V?‖pδT

≤ O(1/T p/2) .

On EcBdd ∩ EcAlg. On this event, we simply have:

E[‖V̂plug(T )− V?‖p1EcBdd∩EcAlg ] = ‖V?‖pP(EcBdd ∩ EcAlg) ≤ ‖V?‖pδT ≤ O(1/T p/2) .

Putting it together. Combining these bounds we obtain that E[‖V̂plug(T ) − V?‖p] ≤
O(1/T p/2). Recall that ZT = svec(V (L̂(T )) − V?). We have that for any finite γ > 0 and
T ≥ Ω(1):

E[‖ZT‖2+γ
F ] = T (2+γ)/2E[‖V (L̂(T ))− V?‖2+γ

F ]

≤ n(2+γ)/2T (2+γ)/2E[‖V (L̂(T ))− V?‖2+γ]

≤ n(2+γ)/2T (2+γ)/2O(1/T (2+γ)/2)

≤ n(2+γ)/2O(1) .

On the other hand, when T ≤ O(1) it is easy to see that E[‖ZT‖2+γ
F ] is finite. Hence we

have supT≥1 E[‖ZT‖2+γ
F ] <∞ which shows the desired uniformly integrable condition. This

concludes the proof of Theorem 6.2.1.
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6.2.6.2 Proof of Theorem 6.2.2

Lemma 6.2.10 (specifically (6.2.5)) combined with Lemma 6.2.12 tells us that:

lim inf
T→∞

T · E[‖V̂lstd(T )− V?‖2
F ] ≥ tr(A−1

∞ B∞A
−T
∞ )

≥ 8σ2
w tr(〈P∞, LT

? V
2
? L?〉(I − LT

? ⊗s LT
? )−1(P−1

∞ ⊗s P−1
∞ )(I − LT

? ⊗s LT
? )−T)

+ 16σ2
w tr((I − LT

? ⊗s LT
? )−1(LT

? V
2
? L? ⊗s P−1

∞ )(I − LT
? ⊗s LT

? )−T) .

The claim now follows by using the risk bound from Theorem 6.2.1.

6.2.6.3 Proof of Theorem 6.2.3

Let E1, ..., EN be d-dimensional subspaces of Rn with d ≤ n/2 such that ‖PEi−PEj‖F &
√
d.

By Proposition 8 of Pajor [90], we can take N ≥ en(n−d). Now consider instances Ai with
Ai = τPEi + γIn for a τ, γ ∈ (0, 1) to be determined. We will set τ + γ = ρ so that each Ai
is contractive (i.e. ‖Ai‖ < 1) and hence stable. This means implicitly that we will require
τ < ρ. Let Pi denote the distribution over (x1, ..., xT ) induced by instance Ai. We have that:

KL(Pi,Pj) =
T∑
t=1

Ext∼Pi [KL(N (Aixt, σ
2I),N (Ajxt, σ

2I))]

=
1

2σ2

T∑
t=1

Ext∼Pi [‖(Ai − Aj)xt‖2
2]

≤ ‖Ai − Aj‖
2

2σ2

T∑
t=1

tr(Ext∼Pi [xtxTt ])

≤ τ 2

σ2
T tr(P∞)

= τ 2T

(
d

1− ρ2
+
n− d
1− γ2

)
≤ τ 2T

n

1− ρ2
.

Now if we choose n(n − d) ≥ 4 log 2 and T & n(1 − ρ2)/ρ2, we can set τ 2 � n(1−ρ2)
T

and

obtain that I(V ;X)+log 2
log |V | ≤ 1/2.

On the other hand, let Pi = dlyap(Ai, In). We have that for any integer k ≥ 0:

(τPEi + γIn)k − (τPEj + γIn)k =
k∑
`=0

(
k

`

)
γk−`τ `(P `

Ei
− P `

Ej
)

= kγk−1τ(PEi − PEj) +
k∑
`=2

(
k

`

)
γk−`τ `(P `

Ei
− P `

Ej
) .
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Hence,

Pi − Pj =
∞∑
k=1

((Aki )
TAki − (Akj )

TAkj )

=
∞∑
k=1

(A2k
i − A2k

j )

=

(
∞∑
k=1

2kγ2k−1τ +
∞∑
k=2

2k∑
`=2

(
2k

`

)
γ2k−`τ `

)
(PEi − PEj)

=

(
2γτ

(1− γ2)2
+
∞∑
k=2

k∑
`=2

(
k

`

)
γk−`τ `

)
(PEi − PEj) .

Therefore,

‖Pi − Pj‖F ≥
2γτ

(1− γ2)2
‖PEi − PEj‖F &

γτ

(1− γ2)2

√
d .

The claim now follows by Fano’s inequality and setting d = n/4.

6.2.7 Analysis of Policy Optimization Methods

6.2.7.1 Preliminary Calculations

Given (A,B) with range(A) ⊆ range(B) and rank(B) = d, let JW (K) for a K ∈ Rd×n denote
the following cost:

JW (K) := E

[
T∑
t=1

‖xt‖2

]
, xt+1 = Axt +But + wt , ut = Kxt , wt ∼ N (0,W ) .

Here we assume T ≥ 2 and W is positive definite. We write J(K) = Jσ2
wIn

(K) as shorthand.

Under this feedback law, we have xt ∼ N (0,
∑t−1

`=0 L(K)`W (L(K)`)T) with L(K) := A+BK.
Letting L be shorthand for L(K), the cost can be written as:

JW (K) =
T∑
t=1

t−1∑
`=0

tr(L`W (L`)T) = T tr(W ) +
T∑
t=1

t−1∑
`=1

tr(L`W (L`)T) .

Let K? denote the minimizer of JW (K); under our assumptions we have that K? = −B†A.
Furthermore, because of the range condition we can write A = BB†A. Therefore, L(K) =
B(B†A + K). While the function JW (K) is not convex, it has many nice properties. First,
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JW (K) satisfies a quadratic growth condition:

JW (K)− JW (K?) ≥ (T − 1) tr(LWLT)

= (T − 1) tr(B(B†A+K)W (B†A+K)TBT)

= (T − 1)vec(B†A+K)T(W ⊗BTB)vec(B†A+K)

≥ (T − 1)λmin(W )σmin(B)2‖K −K?‖2
F . (6.2.16)

Next, we will see JW (K) satisfies restricted strong convexity. To do this, we first compute
the gradient ∇JW (K). Consider the function M 7→M ` for any integer ` ≥ 2. We have that
the derivatives are:

[DM `](∆) =
`−1∑
k=0

Mk∆M `−k−1 , [D(M `)T](∆) =
`−1∑
k=0

(M `−k−1)T∆T(Mk)T .

By the chain rule,

[DL(K)`](∆) =
`−1∑
k=0

L(K)kB∆L(K)`−k−1 .

Hence by the chain rule again,

[D tr(L(K)`W (L`)T)](∆) = tr

(
L`W

`−1∑
k=0

(L`−k−1)T∆TBT(Lk)T

)

+ tr

(
`−1∑
k=0

LkB∆L`−k−1W (L`)T

)

= 2

〈
`−1∑
k=0

BT(Lk)TL`W (L`−k−1)T,∆

〉
.

We have shown that:

∇K tr(L(K)`W (L(K)`)T) = 2
`−1∑
k=0

BT(Lk)TL`W (L`−k−1)T .

Therefore we can compute the gradient of JW (K) as:

∇JW (K) = 2(T − 1)BTLW + 2
T−1∑
`=2

`−1∑
k=0

(T − `)BT(Lk)TL`W (L`−k−1)T .
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Now observe that L(K) = B(K −K?) and therefore:

〈∇JW (K), K −K?〉 = tr(∇JW (K)(K −K?)
T)

= 2(T − 1) tr(LWLT) + 2
T−1∑
`=2

`−1∑
k=0

(T − `) tr(L`W (L`)T)

(a)

≥ 2(T − 1) tr(LWLT)

≥ 2(T − 1)λmin(W )σmin(B)2‖K −K?‖2
F .

Above, (a) follows since tr(AB) ≥ 0 for positive semi-definite matrices A,B. This condition
proves that K = K? is the unique stationary point, and establishes the restricted strong
convexity RSC(m,Rd×n) condition for JW (K) with constant m = 2(T − 1)λmin(W )σmin(B)2.

Finally, we show that the Hessian of JW (K) evaluated at K? is positive definite. Fix a
test matrix H ∈ Rd×n, and define the function g(t) := 〈H,∇JW (K? + tH)〉. By standard
properties of the directional derivative, we have that HessJW (K?)[H,H] = g′(0). Observing
that L(K? + tH) = t ·BH, we have that:

g(t) = 2(T − 1)t tr(WHTBTBH)

+ 2
T−1∑
`=2

`−1∑
k=0

(T − `)t2`−1 tr(HTBT(HTBT)k(BH)`W (HTBT)`−k−1) ,

from which we conclude:

HessJW (K?)[H,H] = 2(T − 1) tr(WHTBTBH) = 2(T − 1)vec(H)T(W ⊗BTB)vec(H) .

6.2.7.2 Proof of Theorem 6.2.4

Recal that the pair (A,B) is stabilizable if there exists a feedback matrix K such that
ρ(A + BK) < 1. We first state a result which gives a sufficient condition for the existence
of a unique positive definite solution to the discrete algebraic Riccati equation.

Lemma 6.2.19 (Theorem 2, Molinari [83]). Suppose that V � 0, (A,B) is stabilizable, and
B has full column rank. Then there exists a unique positive definite solution V to the DARE:

V = ATV A− ATV B(BTV B)−1BTV A+ S . (6.2.17)

This V satisfies the lower bound V � S, and if A is contractive (i.e. ‖A‖ < 1) satisfies the

upper bound ‖V ‖ ≤ ‖V ‖
1−‖A‖2 .

Proof. Define the map Ψ(z;A) := BT(z−1In − A)−TV (zIn − A)−1B. Let K be such that
A+BK is stable. We observe that for |z| = 1, we have that:

Ψ(z;A+BK) = B∗(zIn − (A+BK))−∗V (zIn − (A+BK))−1B � 0 .
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This is because V � 0, B∗B � 0, and the matrix zIn − (A+BK) does not drop rank since
A+BK has no eigenvalues on the unit circle. Therefore by Theorem 2 of Molinari [83], there
exists a unique symmetric solution V that satisfies (6.2.17) with the additional constraint
that BTV B � 0 and that ρ(Ac) < 1 with Ac := A−B(BTV B)−1BTV A. But (6.2.17) means
that:

AT
c V Ac = (A−B(BTV B)−1BTV A)TV (A−B(BTV B)−1BTV A)

= ATV A− ATV B(BTV B)−1BTV A− ATV B(BTV B)−1BTV A

+ ATV B(BTV B)−1BTV B(BTV B)−1BTV A

= ATV A− ATV B(BTV B)−1BTV A

= V − S .

Hence, we have AT
c V Ac − V + S = 0, and since Ac is stable by Lyapunov theory we know

that V � S. Furthermore, since V � 0, (6.2.17) implies that V � ATV A + S from which
the upper bound on ‖V ‖ follows under the contractivity assumptions.

Next, we state a result which gives the derivative of the discrete algebraic Riccati equa-
tion.

Lemma 6.2.20 (Section A.2 of Abeille and Lazaric [5]). Let (S,R) be positive semidefinite
matrices. Suppose that (A,B) are such that there exists a unique positive definite solution
V (A,B) to dare(A,B, S,R). For a perturbation

[
∆A ∆B

]
∈ Rn×(n+d), we have that the

Fréchet derivative [D(A,B)V (A,B)] evaluated at the perturbation
[
∆A ∆B

]
is given by:

[D(A,B)V (A,B)](
[
∆A ∆B

]
) = dlyap

(
Ac, A

T
c V
[
∆A ∆B

] [In
K

]
+

[
In
K

]T [
∆A ∆B

]T
V Ac

)
,

where V = V (A,B), K = −(BTV B +R)−1BTV A, and Ac = A+BK.

With these two lemmas, we are ready to proceed. We differentiate the map h(A,B) :=
−(BTV (A,B)B +R)−1BTV (A,B)A. By the chain rule:

[D(A,B)h(A,B)](∆) = −(BTV B +R)−1(BTV∆A + ∆T
BV A+BT[D(A,B)V ](∆)A)

+ (BTV B +R)−1(∆T
BV B +BTV∆B +BT[D(A,B)V ](∆)B)(BTV B +R)−1BTV A .

We now evaluate this derivative at:

A = A ,B = B , V = In , R = 0 .

Note that V (A,B) = In and also by Lemma 6.2.20, we have that [D(A,B)V (A,B)] = 0, since
Ac = 0. Therefore the derivative [D(A,B)h(A,B)](∆) simplifies to:

[D(A,B)h(A,B)](∆) = −(BTB)−1(BT∆A + ∆T
BA) + (BTB)−1(∆T

BB +BT∆B)B†A

= −B†∆A +B†∆BB
†A .
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Hence we have:

vec([D(A,B)h(A,B)](∆)) =
[
−(In ⊗B†) (B†A)T ⊗B†

]
vec(∆) .

Now using the assumption that A is stable, from Lemma 6.2.9 we have that by the delta
method:

√
Nvec(h(Â(N), B̂(N))−K?)

D
 N (0,Ψ) =: ϕ ,

where

Ψ :=
σ2
w

T

[
−(In ⊗B†) (B†A)T ⊗B†

]([P−1
∞ 0
0 (1/σ2

η)Id

]
⊗ In

)[
−(In ⊗ (B†)T)
B†A⊗ (B†)T

]
+ o(1/T ) .

We now make use of the second order delta method. Recall that the Hessian of J at K? is

HessJ(K?)[H,H] = 2(T −1)σ2
w〈H,BTBH〉. If

√
Nvec(K̂(N)−K?)

D
 ϕ, then by the second

order delta method:

N · (J(K̂(N))− J?) D
 (T − 1)σ2

wϕ
T(In ⊗BTB)ϕ .

Next we make an intermediate calculation:[
−(In ⊗ (B†)T)
B†A⊗ (B†)T

]
(In ⊗BTB)

[
−(In ⊗B†) (B†A)T ⊗B†

]
=

[
In ⊗BB† −((B†A)T ⊗BB†)

−(B†A⊗BB†) B†AAT(B†)T ⊗BB†
]

=

[
In −(B†A)T

−B†A B†AAT(B†)T

]
⊗BB† .

Let ZN := N ·(J(K̂(N))−J?). To conclude the proof, we show that the sequence {ZN} is
uniformly integrable. Once we have the uniform integrability in place, then by Lemma 6.2.12:

lim
N→∞

N · (J(K̂(N))− J?)

= σ4
w

T − 1

T
tr

(([
P−1
∞ 0
0 (1/σ2

η)Id

]
⊗ In

)([
In −(B†A)T

−B†A B†AAT(B†)T

]
⊗BB†

))
+ oT (1)

= σ4
w

T − 1

T
tr

([
P−1
∞ 0
0 (1/σ2

η)Id

] [
In −(B†A)T

−B†A B†AAT(B†)T

])
tr(BB†) + oT (1)

= σ4
w

T − 1

T

(
tr(P−1

∞ ) +
‖B†A‖2

F

σ2
η

)
d+ oT (1) .

To conclude the proof, let C?, ρ? be such that ‖Ak‖ ≤ C?ρ
k
? with ρ? ∈ (0, 1): these

constants exist because A is stable. Now define the events:

EAlg := {ρ(Â(N)) ≤ % , ‖Â(N)‖ ≤ ζ , ‖B̂(N)‖ ≤ ψ , σd(B̂(N)) ≥ γ} ,

EBdd := {‖Â(N)− A‖ ≤ 1− ρ?
2C?

, ‖B̂(N)−B‖ ≤ σd(B)/2} .
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Fix a finite p ≥ 1. We write:

E[Zp
N ] = NpE[(J(K̂(N))− J?)p1EBdd ] +NpE[(J(K̂(N))− J?)p1EcBdd ]

= NpE[(J(K̂(N))− J?)p1EBdd ] +NpE[(J(K̂(N))− J?)p1EcBdd∩EAlg ]
+NpE[(J(K̂(N))− J?)p1EcBdd∩EcAlg ]

= NpE[(J(K̂(N))− J?)p1EBdd ] +NpE[(J(K̂(N))− J?)p1EcBdd∩EAlg ]
+Np(J(0)− J?)pP(EcBdd ∩ EcAlg)

≤ NpE[(J(K̂(N))− J?)p1EBdd ] +NpE[(J(K̂(N))− J?)p1EcBdd∩EAlg ]
+Np(J(0)− J?)pP(EcBdd) .

We now consider what happens on these three events. For the remainder of the proof, we
let C denote a constant that depends on n, d, p, C?, ρ?, %, ζ, ψ, γ, A,B, T, ε, σ

2
w, σ

2
η but not on

N , whose value can change from line to line.

On the event EBdd. By a Taylor expansion we write:

h(Â(N), B̂(N))− h(A,B) = [D(A,B)h(Ã, B̃)]
([
Â(N)− A B̂(N)−B

])
,

where Ã = tA+ (1− t)Â(N) and B̃ = tB+ (1− t)B̂(N) for some t ∈ [0, 1]. Observe that on
EBdd, we have that

Ã, B̃ ∈ G :=

{
(A,B) : ‖A‖ ≤ ‖A‖+

1− ρ?
2C?

, ‖B‖ ≤ ‖B‖+ σd(B)/2 , σd(B) ≥ σd(B)/2

}
.

By Proposition 4.0.1 each (A,B) ∈ G is stabilizable (since A is stable) and B has full column
rank. Therefore by Lemma 6.2.19, for any (A,B) ∈ G we have that dare(A,B, In, 0) has a
unique positive definite solution and its derivative is well defined. By the compactness of G
and the continuity of h and its derivative, we define the finite constants

CK := sup
A,B∈G

‖h(A,B)‖ , Cderiv := sup
A,B∈G

‖[D(A,B)h(A,B)]‖ .

We can now Taylor expand J(K) around K? and obtain:

J(K̂(N))− J? =
1

2
HessJ(K̃)[K̂(N)−K?, K̂(N)−K?]

≤ 1

2

(
sup

‖K̃‖≤CK+‖K?‖
‖HessJ(K̃)‖

)
‖K̂(N)−K?‖2

F

≤ d

2

(
sup

‖K̃‖≤CK+‖K?‖
‖HessJ(K̃)‖

)
C2

deriv(‖Â(N)− A‖2 + ‖B̂(N)−B‖2) .
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Hence for N sufficiently large, by Lemma 6.2.14 we have

Np · E[(J(K̂(N))− J?)p1EBdd ] ≤ CNp(E[‖Â(N)− A‖2p] + E[‖B̂(N)−B‖2p])

≤ CNp(
1

Np
) = C .

On the event EcBdd ∩ EAlg. In this case, we use the bounds given by EAlg to bound the

controller K̂(N). Lemma 6.2.19 ensures that the solution V̂ = dare(Â(N), B̂(N), In, 0)

exists and satisfies V̂ � In. Let the finite constant CP be

CP := sup
ρ(A)≤%,‖A‖≤ζ,‖B‖≤ψ,σd(B)≥γ

‖dare(A,B, In, 0)‖ .

We can then bound ‖K̂(N)‖ as follows. Dropping the indexing of N ,

‖K̂‖ = ‖(B̂TV̂ B̂)−1B̂TV̂ Â‖ ≤ 1

σmin(B̂TV̂ B̂)
‖B̂TV̂ Â‖ ≤ CPψζ

γ2
.

Therefore:

Np · E[(J(K̂(N))− J?)p1EcBdd∩EAlg ] ≤ Np ·

 sup
‖K‖≤CPψζ

γ2

(J(K)− J?)p
P(EcBdd) ≤ CNpP(EcBdd) .

By Lemma 6.2.14, we can choose N large enough such that P(EcBdd) ≤ 1/Np so that Np ·
E[(J(K̂(N))− J?)p1EcBdd∩EAlg ] ≤ C.

On the event EcBdd ∩ EcAlg. This case is simple. We simply invoke Lemma 6.2.14 to choose
an N large enough such that P(EcBdd) ≤ 1/(N(J(0)− J?))p.

Putting it together. If we take N as the maximum over the three cases described above,
we have hence shown that for all N greater than this constant:

E[Zp
N ] ≤ C .

This shows the desired uniform integrability condition for ZN . The asymptotic bound now
follows from Lemma 6.2.12.

6.2.7.3 Proof of Theorem 6.2.5

The proof works by applying Lemma 6.2.15 with the function F (θ) = JW (K) with W =
σ2
ηBB

T + σ2
wIn and G(θ) = J(K). We first need to verify the hypothesis of the lemma. We
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define the convex domain Θ as Θ = {K ∈ Rd×n : ‖K‖ ≤ ζ}. Note that K? is in the interior
of Θ, since we assume that ‖K?‖ < ζ. Recall that the policy gradient g(K; ξ) is:

g(K; ξ) =
1

σ2
η

T−1∑
t=1

ηtx
T
t Ψt , ξ = (η0, w0, η1, w1, ..., ηT−1, wT−1) .

It is clear that xt is a polynomial in (K, ξ). Furthermore, all three of the Ψt’s we study are
also polynomials in (K, ξ). Hence [DKg(K; ξ)] is a matrix with entries that are polynomial
in (K, ξ). Therefore, for every ξ, for all fixed K1, K2 ∈ Θ,

‖g(K1; ξ)− g(K2; ξ)‖F ≤ sup
K∈Θ
‖[DKg(K; ξ)]‖F‖K1 −K2‖F .

Hence squaring and taking expectations,

Eξ[‖g(K1; ξ)− g(K2; ξ)‖2
F ] ≤ Eξ

[
sup
K∈Θ
‖[DKg(K; ξ)]‖2

F

]
‖K1 −K2‖2

F .

We can now define the constant L := Eξ [supK∈Θ‖[DKg(K; ξ)]‖2
F ]. To see that this quantity

L is finite, observe that ‖[DKg(K; ξ)]‖2
F is a polynomial of ξ with coefficients given by K

(and A,B). Since K lives in a compact set Θ, these coefficients are uniformly bounded and
hence the their moments are bounded. In Section 6.2.7.1, we showed that the function JΣ(K)
satisfies the RSC(m,Θ) condition with m = 2(T − 1)σ2

wσmin(B)2. Also it is clear that the
high probability bound on ‖g(K; ξ)‖F can be achieved by standard Gaussian concentration
results. Hence by Lemma 6.2.15, and in particular Equation 6.2.12,

lim inf
N→∞

N · E[J(K̂)− J?] ≥
Eξ[‖g(K?; ξ)‖2

F ]

8(T − 1)σ2
wσmin(B)2λmax((∇2J(K?))−1(∇2JΣ(K?)− m

2
Ind))

=
Eξ[‖g(K?; ξ)‖2

F ]

8(T − 1)σmin(B)2(σ2
w + σ2

η‖B‖2)
. (6.2.18)

Above, the inequality holds since we have that,

∇2J(K?) = 2(T − 1)(σ2
wIn ⊗BTB) ,

∇2JΣ(K?) = 2(T − 1)((σ2
wIn + σ2

ηBB
T)⊗BTB) = ∇2J(K?) + 2(T − 1)σ2

η(BB
T ⊗BTB) ,

and therefore,

(∇2J(K?))
−1(∇2JΣ(K?)−

m

2
Ind) = Ind +

σ2
η

σ2
w

(BBT ⊗ Id)−
σmin(B)2

2
(In ⊗ (BTB)−1)

� Ind +
σ2
η

σ2
w

(BBT ⊗ Id) .

The remainder of the proof is to estimate the quantity Eξ[‖g(K?; ξ)‖2
F ]. Note that at

K = K?, xt = Bηt−1 +wt−1 since the dynamics are cancelled out. Define ct→T :=
∑T

`=t‖x`‖2.
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At K = K?, we have ct→T =
∑T−1

`=t−1‖Bη` + w`‖2. Observe that we have for t2 > t1, for any
h that depends on only (ηt1 , wt1 , ηt1+1, wt1+1, ...):

E[〈ηt1 , ηt2〉〈xt1 , xt2〉h] = E[〈ηt1 , ηt2〉(〈Bηt1−1, Bηt2−1〉+ 〈wt1−1, wt2−1〉
+ 〈Bηt1−1, wt2−1〉+ 〈Bηt2−1, wt1−1〉)h]

= 0 .

As a consequence, we have that as long as Ψt only depends on (ηt, wt, ηt+1, wt+1, ...):

E[‖g(K; ξ)‖2
F ] =

1

σ4
η

T−1∑
t=1

E[‖ηt‖2‖xt‖2Ψ2
t ] +

2

σ4
η

T−1∑
t2>t1=1

E[〈ηt1 , ηt2〉〈xt1 , xt2〉Ψt1Ψt2 ]

=
1

σ4
η

T−1∑
t=1

E[‖ηt‖2‖xt‖2Ψ2
t ] .

Simple baseline. Recall that the simple baseline is to set bt(xt;K) = ‖xt‖2. Hence, the
policy gradient estimate simplifies to g(K; ξ) = 1

σ2
η

∑T−1
t=1 ηtx

T
t ct+1→T . Since we have that

ct+1→T at optimality only depends only on (ηt, wt, ηt+1, wt+1, ...), we compute E[‖g(K?; ξ)‖2
F ]
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as follows:

E[‖g(K?; ξ)‖2
F ]

=
1

σ4
η

T−1∑
t=1

E[‖ηt‖2‖xt‖2c2
t+1→T ]

=
1

σ4
η

T−1∑
t=1

E
[
‖ηt‖2‖Bηt−1 + wt−1‖2

×
( T−1∑

`=t

‖Bη` + w`‖4 + 2
T−1∑

`2>`1=t

‖Bη`1 + w`1‖2‖Bη`2 + w`2‖2

)]

=
1

σ4
η

T−1∑
t=1

E[‖Bηt−1 + wt−1‖2‖ηt‖2‖Bηt + wt‖4]

+
1

σ4
η

T−1∑
t=1

T−1∑
`=t+1

E[‖Bηt−1 + wt−1‖2‖ηt‖2‖Bη` + w`‖4]

+
2

σ4
η

T−1∑
t=1

T−1∑
`2>t

E[‖Bηt−1 + wt−1‖2‖ηt‖2‖Bηt + wt‖2‖Bη`2 + w`2‖2]

+
2

σ4
η

T−1∑
t=1

T−1∑
`2>`1=t+1

E[‖Bηt−1 + wt−1‖2‖ηt‖2‖Bη`1 + w`1‖2‖Bη`2 + w`2‖2]

=
2

σ4
η

T−1∑
t=1

T−1∑
`2>`1=t+1

E[‖Bηt−1 + wt−1‖2‖ηt‖2‖Bη`1 + w`1‖2‖Bη`2 + w`2‖2] + o(T 3)

=
2

σ4
η

T−1∑
t=1

T−1∑
`2>`1=t+1

σ2
ηd(E[‖Bη0 + w0‖2])3 + o(T 3)

� T 3 1

σ2
η

d(σ2
η‖B‖2

F + σ2
wn)3 + o(T 3) .

Value function baseline. Recall that the value function at time t for a particular policy
K is defined as:

V K
t (x) = E

[
T∑
`=t

‖x`‖2

∣∣∣∣xt = x

]
.

We now consider policy gradient with the value function baseline bt(xt;K) = V K
t (xt):

g(K; ξ) =
1

σ2
η

T−1∑
t=1

ηtx
T
t (ct→T − V K

t (xt)) .
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Recalling that under K? the dynamics are cancelled out, we readily compute:

V K?
t (x) = ‖x‖2 + (T − t)(σ2

η‖B‖2
F + σ2

wn) .

Therefore:

g(K?; ξ) =
1

σ2
η

T−1∑
t=1

ηtx
T
t (ct+1→T − (T − t)(σ2

η‖B‖2
F + σ2

wn)) .

Define β := σ2
η‖B‖2

F + σ2
wn. We compute the variance as:

E[‖g(K?; ξ)‖2
F ] =

1

σ4
η

T−1∑
t=1

E

[
‖ηt‖2‖Bηt−1 + wt−1‖2

×
(
T−1∑
`=t

(‖Bη` + w`‖2 − β)2 + 2
T−1∑

`2>`1=t

(‖Bη`1 + w`1‖2 − β)(‖Bη`2 + w`2‖2 − β)

)]

=
1

σ4
η

T−1∑
t=1

E[‖ηt‖2‖Bηt−1 + wt−1‖2(‖Bηt + wt‖2 − β)2]

+
1

σ4
η

T−1∑
t=1

T−1∑
`=t+1

E[‖ηt‖2‖Bηt−1 + wt−1‖2(‖Bη` + w`‖2 − β)2]

=
1

σ4
η

T−1∑
t=1

T−1∑
`=t+1

E[‖ηt‖2‖Bηt−1 + wt−1‖2(‖Bη` + w`‖2 − β)2] + o(T 2)

� T 2 d

σ2
η

(σ2
η‖B‖2

F + σ2
wn)(E[‖Bη` + w`‖4]− β2) + o(T 2)

(a)� T 2 d

σ2
η

(σ2
η‖B‖2

F + σ2
wn)(σ4

η‖BTB‖2
F + σ4

wn+ σ2
wσ

2
η‖B‖2

F ) + o(T 2) ,

Above, (a) follows because:

E[‖Bη` + w`‖4] = 2(σ4
η‖BTB‖2

F + σ4
wn+ 2σ2

wσ
2
η‖B‖2

F ) + (σ2
η‖B‖2

F + σ2
wn)2 .

Ideal advantage baseline. Let us first compute QK?
t (xt, ut). Under K?, x`+1 = Bη`+w`.

So we have:

QK?
t (xt, ut) = ‖xt‖2 + Ewt [‖Axt +But + wt‖2] + (T − t− 1)(σ2

η‖B‖2
F + σ2

wn)

= ‖xt‖2 + ‖Axt +But‖2 + σ2
wn+ (T − t− 1)(σ2

η‖B‖2
F + σ2

wn) .

Recalling that V K?
t (x) = ‖x‖2 + (T − t)(σ2

η‖B‖2
F + σ2

wn),

AK?t (xt, ut) = QK?
t (xt, ut)− V K?

t (xt) = ‖Axt +But‖2 − σ2
η‖B‖2

F .
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Therefore, if ut = K?xt + ηt, we have AK?t (xt, ut) = ‖Bηt‖2 − σ2
η‖B‖2

F . Since AK?t (xt, ut)
depends only on ηt,

E[‖g(K?; ξ)‖2
F ] =

1

σ4
η

T−1∑
t=1

E[‖ηt‖2‖xt‖2(‖Bηt‖2 − σ2
η‖B‖2

F )2]

=
1

σ4
η

(T − 1)(σ2
η‖B‖2

F + σ2
wn)E[‖η1‖2(‖Bη1‖2 − σ2

η‖B‖2
F )2] .

We have that E[‖η1‖2] = σ2
ηd, E[‖Bη1‖2‖η1‖2] = σ4

η(d + 2)‖B‖2
F , and E[‖Bη1‖4‖η1‖2] =

σ6
η((d+ 4)‖B‖4

F + (2d+ 8)‖BTB‖2
F ) (this can be computed using Lemma 6.2.16). Hence,

E[‖η1‖2(‖Bη1‖2 − σ2
η‖B‖2

F )2]

= E[‖Bη1‖4‖η1‖2 + σ4
η‖B‖4

F‖η1‖2 − 2σ2
η‖B‖2

F‖Bη1‖2‖η1‖2]

= σ6
η((d+ 4)‖B‖4

F + (2d+ 8)‖BTB‖2
F ) + σ6

η‖B‖4
Fd− 2σ6

η‖B‖4
F (d+ 2)

= σ6
η(2d+ 8)‖BTB‖2

F .

Therefore,

E[‖g(K?; ξ)‖2
F ] � T (σ2

η‖B‖2
F + σ2

wn)σ2
ηd‖BTB‖2

F .

Putting it together Combining Equation (6.2.18) with the calculations for the variance
Eξ[‖g(K?; ξ)‖2

F ], we obtain:

lim inf
N→∞

N · E[J(K̂pg(N))− J?] &
1

σd(B)2(σ2
w + σ2

η‖B‖2)
×

T 2 d
σ2
η
(σ2

η‖B‖2
F + σ2

wn)3 + o(T 2) (Simple baseline)

T d
σ2
η
(σ2

η‖B‖2
F + σ2

wn)(σ4
η‖BTB‖2

F + σ4
wn+ σ2

wσ
2
η‖B‖2

F ) + o(T ) (Value function baseline)

(σ2
η‖B‖2

F + σ2
wn)σ2

ηd‖BTB‖2
F (Advantage baseline)

from which Theorem 6.2.5 follows.

6.2.7.4 Proof of Theorem 6.2.6

Our proof is inspired by lower bounds for the query complexity of derivative-free optimization
of stochastic optimization (see e.g. Jamieson et al. [52]).
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Recall from (6.2.16) that the function J(K) satisfies the quadratic growth condition
J(K)− J? ≥ (T − 1)ρ2σ2

w‖K −K?‖2
F . Therefore for any ϑ > 0,

inf
K̂

sup
(A,B)∈G (ρ,d)

E[J(K̂)− J?]

≥ inf
K̂

sup
(A,B)∈G (ρ,d)

(T − 1)ρ2σ2
wϑ

2 · P(J(K̂)− J? ≥ (T − 1)ρ2σ2
wϑ

2)

≥ inf
K̂

sup
(A,B)∈G (ρ,d)

(T − 1)ρ2σ2
wϑ

2 · P((T − 1)ρ2σ2
w‖(−UT

? )− K̂‖2
F ≥ (T − 1)ρ2σ2

wϑ
2)

= inf
K̂

sup
(A,B)∈G (ρ,d)

(T − 1)ρ2σ2
wϑ

2 · P(‖(−UT
? )− K̂‖F ≥ ϑ) .

Above, the first inequality is Markov’s inequality and the second is the quadratic growth
condition.

We first state a result regarding the packing number of O(n, d), which we define as:

O(n, d) := {U ∈ Rn×d : UTU = Id} .

Lemma 6.2.21. Let δ > 0, and suppose that d ≤ n/2. We have that the packing number M
of O(n, d) in the Frobenius norm ‖·‖F satisfies

M(O(n, d), ‖·‖F , δd1/2) ≥
(c
δ

)d(n−d)

,

where c > 0 is a universal constant.

Proof. Let Gn,d denote the Grassman manifold of d-dimensional subspaces of Rn. For
two subspaces E,F ∈ Gn,d, equip Gn,d with the metric ρ(E,F ) = ‖PE − PF‖F , where
PE, PF are the projection matrices onto E,F respectively. Proposition 8 of Pajor [90] tells

us that the covering number N(Gn,d, ρ, δd
1/2) ≥

(
c
δ

)d(n−d)
. But since M(Gn,d, ρ, δd

1/2) ≥
N(Gn,d, ρ, δd

1/2), this gives us a lower bound on the packing number of Gn,d. Now for every
E ∈ Gn,d we can associate a matrix E1 ∈ O(n, d) such that span(E1) = E. The projector
PE is simply PE = E1E

T
1 . Now let E,F ∈ Gn,d and observe the inequality,

‖PE − PF‖F = ‖E1E
T
1 − F1F

T
1 ‖F ≤ 2‖E1 − F1‖F .

Hence a packing of Gn,d also yields a packing of O(n, d) up to constant factors.

Now letting U1, ..., UM be a 2ϑ-separated set we have by the standard reduction to mul-
tiple hypothesis testing that that the risk is lower bounded by:

(T − 1)ρ2σ2
wϑ

2 · inf
V̂

P(V̂ 6= V ) ≥ (T − 1)ρ2σ2
wϑ

2 ·
(

1− I(V ;Z) + log 2

logM

)
. (6.2.19)

where V is a uniform index over {1, ...,M} and the inequality is Fano’s inequality.
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Now we can proceed as follows. First, we let U1, ..., UM be elements of O(n, d) that form
a 2ϑ �

√
d packing in the ‖·‖F norm. We know we can let M ≥ ed(n−d) by Lemma 6.2.21.

Each Ui induces a covariance Σi = σ2
wIn + ρ2σ2

ηUiU
T
i � (σ2

w + ρ2σ2
η)In. Furthermore, the

closed-loop Li given by playing a feedback matrix K that satisfies ‖K‖ ≤ 1 is:

Li = ρUi(Ui +KT)T .

It is clear that ‖Li‖ ≤ 2ρ and hence if ρ < 1/2 then this system is stable. Furthermore, we
have that rank(Li) ≤ d. With this, we can control:

tr(E[xtx
T
t ]) = tr

(
t−1∑
`=0

L`iΣi(L
`
i)

T

)
≤ (σ2

w + ρ2σ2
η)

t−1∑
`=0

‖L`i‖2
F

≤ d(σ2
w + ρ2σ2

η)
t−1∑
`=0

‖L`i‖2 ≤ d(σ2
w + ρ2σ2

η)

1− (2ρ)2
.

Hence for one trajectory Z = (x0, u0, x1, u1, ..., xT−1, uT−1, xT ), conditioned on a particular
K,

KL(Pi|K ,Pj|K) ≤
T−1∑
t=0

1

2σ2
w

Ext∼Pi|K [‖(Li − Lj)xt‖2]

≤ 8ρ2

σ2
w

T−1∑
t=0

tr(E[xtx
T
t ])

≤ 8(σ2
w + ρ2σ2

η)ρ
2Td

σ2
w(1− (2ρ)2)

.

This allows us to bound the KL between the distributions involving all the iterations as:

KL(Pi,Pj) =
N∑
`=1

EK`∼Pi [KL(Pi|K` ,Pj|K`)] ≤
8(σ2

w + ρ2σ2
η)ρ

2NTd

σ2
w(1− (2ρ)2)

.

Assuming d(n− d) is greater than an absolute constant, we can set ρ to be (recall we have
N different rollouts):

ρ2 � σ2
w

σ2
w + σ2

η

n− d
TN

,

and bound I(V ;Z)+log 2
logM

≤ 1/2. The result now follows from plugging in our choice of ρ into

(6.2.19).
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Chapter 7

Experiments

7.1 Model-based Methods

Here, we show the empirical performance of the methods described in Chapter 5. We fo-
cus our experiments on a particular example system. Consider the LQR problem instance
specified by

A =

1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

 , B = I3, S = 10−3I3, R = I3 . (7.1.1)

The dynamics correspond to a marginally unstable graph Laplacian system where adjacent
nodes are weakly connected, each node receives direct input, and input size is penalized
relatively more than state. Dynamics described by graph Laplacians arise naturally in con-
sensus and distributed averaging problems. For this system, we estimate the dynamics with
the estimator (3.0.3), using inputs with variance σ2

u = 1 and noise with variance σ2
w = 1.

The error bounds of ‖Â−A‖ and ‖B̂ −B‖ are estimated via a simple bootstrap procedure
described in Dean et al. [31].

Using the estimates of the system in (7.1.1), we synthesize controllers using two robust
control schemes: the convex problem in (5.2.27) with filters of length L = 32 and V set to 0,
and the common Lyapunov (CL) relaxation of the static synthesis problem (5.2.28). Once the
FIR responses {Φx(k)}Fk=1 and {Φu(k)}Fk=1 are found, we need a way to implement the system
responses as a controller. We represent the dynamic controller K = ΦuΦ

−1
x by finding an

equivalent state-space realization (AK , BK , CK , DK) via Theorem 2 of Anderson and Matni
[9]. In what follows, we compare the performance of these controllers with the nominal
LQR controller (described in Section 5.1), and explore the trade-off between robustness,
complexity, and performance.

The relative performance of the nominal controller is compared with robustly synthesized
controllers in Figure 7.1. For both robust synthesis procedures, two controllers are compared:
one using the true errors on A and B, and the other using the bootstrap estimates of the



CHAPTER 7. EXPERIMENTS 122

(a) LQR Cost Suboptimality
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(b) Frequency of Finding Stabilizing Controller
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Figure 7.1: The performance of controllers synthesized on the results of the 100 identification
experiments is plotted against the number of rollouts. Controllers are synthesis nominally, using
FIR truncation, and using the common Lyapunov (CL) relaxation. In (a), the median suboptimal-
ity of nominal and robustly synthesized controllers are compared, with shaded regions displaying
quartiles, which go off to infinity in the case that a stabilizing controller was not found. In (b), the
frequency that the synthesis methods found stabilizing controllers.

(a) LQR Cost Suboptimality Bound
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(b) LQR Cost Suboptimality
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Figure 7.2: The performance of controllers synthesized with varying FIR filter lengths on the
results of 10 of the identification experiments using true errors. The median suboptimality of
robustly synthesized controllers does not appear to change for FIR lengths greater than 32, and the
common Lyapunov (CL) synthesis tracks the performance in both upper bound and actual cost.

errors. The robust static controller generated via the common Lyapunov approximation
performs slightly worse than the more complex FIR controller, but it still achieves reasonable
control performance. Moreover, the conservative bootstrap estimates also result in worse
control performance, but the degradation of performance is again modest.
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LQR Cost Suboptimality
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Figure 7.3: The performance of controllers synthesized on the results of 100 identification ex-
periments is plotted against the number of rollouts. The plot compares the median suboptimality
of nominal controllers with fixed-γ robustly synthesized controllers (γ = 0.999).

Furthermore, the experiments show that the nominal controller often outperforms the
robust controllers when it is stabilizing. On the other hand, the nominal controller is not
guaranteed to stabilize the true system, and as shown in Figure 7.1, it only does so in roughly
80 of the 100 instances after N = 60 rollouts. It is also important to note a distinction
between stabilization for nominal and robust controllers. When the nominal controller is
not stabilizing, there is no indication to the user (though sufficient conditions for stability
can be checked using our result in Corollary 5.2.4 or structured singular value methods [93]).
On the other hand, the robust synthesis procedure will return as infeasible, alerting the user
by default that the uncertainties are too high. We observe similar results when we fix the
number of trials but vary the rollout length.

Figure 7.2 explores the trade-off between performance and complexity for the computa-
tional approximations, both for FIR truncation and the common Lyapunov relaxation. We
examine the tradeoff both in terms of the bound on the LQR cost (given by the value of the
objective) as well as the actual achieved value. It is interesting that for smaller numbers of
rollouts (and therefore larger uncertainties), the benefit of using more complex FIR models
is negligible, both in terms of the actual costs and the upper bound. This trend makes sense:
as uncertainties decrease to zero, the best robust controller should approach the nominal
controller, which is associated with infinite impulse response (IIR) transfer functions. Fur-
thermore, for the experiments presented here, FIR length of L = 32 seems to be sufficient
to characterize the performance of the robust synthesis procedure in (5.2.18). Additionally,
we note that static controllers are able to achieve costs of a similar magnitude.

The SLS framework guarantees a stabilizing controller for the true system provided that
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the computational approximations are feasible for any value of γ between 0 and 1, as long
as the system errors (εA, εB) are upper bounds on the true errors. Figure 7.3 displays the
controller performance for robust synthesis when γ is set to 0.999. Simply ensuring a stable
model and neglecting to optimize the nominal cost yields controllers that perform nearly
an order of magnitude better than those where we search for the optimal value of γ. This
observation aligns with common practice in robust control: constraints ensuring stability
are only active when the cost tries to drive the system up against a safety limit. We cannot
provide end-to-end sample complexity guarantees for this method and leave such bounds as
an enticing challenge for future work.

7.2 Model-free Methods

In this section we look at the performance of the model-free methods described in Section 1.3
and Chapter 6: policy gradients, derivative-free optimization, and policy iteration. We will
compare these model-free methods to the model-based nominal control (Section 5.1) as a
baseline.

We consider the stable system:

A =

0.95 0.01 0
0.01 0.95 0.01

0 0.01 0.95

 , B =

1 0.1
0 0.1
0 0.1

 , S = I3 , R = I2 . (7.2.1)

We choose an LQR problem where the A matrix is stable, since the model-free methods
we consider need to be seeded with an initial stabilizing controller; using a stable A allows
us to start at K0 = 02×3. We fix the process noise σw = 1. As before, the model-based
nominal method learns (A,B) using (3.0.3), exciting the system with Gaussian noise that
has variance σu = 1.

For policy gradients and derivative-free optimization, we use the projected stochastic
gradient descent (SGD) method with a constant step size µ as the optimization procedure.
After every iteration, we project the iterate Kt onto the set {K : ‖K‖F ≤ 5‖K?‖F}, where
K? is the optimal LQR controller (we assume the value ‖K?‖F is known for simplicity).
We tune the parameters of each algorithm as follows. We consider a grid of step sizes
µ given by [10−3, 10−4, 10−5, 10−6] and a grid of ση’s given by [1, 10−1, 10−2, 10−3]. We fix
the rollout horizon length T = 100 and choose the pair of (ση, µ) in the grid which yields
the lowest cost after 106 timesteps. This resulted in the pair (ση, µ) = (1, 10−5) for policy
gradients and (ση, µ) = (10−3, 10−4) for DFO. We use the two point evaluation for derivative-
free optimization (1.3.13), so each iteration requires 2T timesteps. For policy gradient,
we evaluate two different baselines. One baseline, which we call the simple baseline, uses
the empirical average cost 1

T

∑T
t=1 ct from the previous iteration as a constant baseline.

The second baseline, which we call the value function baseline, uses the value function
V (x) = xTV (K)x with V (K) = dlyap(A + BK,S + KTRK) as the baseline. We note
that using this baseline requires exact knowledge of the dynamics (A,B); it can however be
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Comparison of Model-free Methods
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Figure 7.4: The performance of various model-free methods compared with the nominal (Sec-
tion 5.1) controller. The shaded regions represent the lower 10th and upper 90th percentile over 100
trials, and the solid line represents the median performance. Here, PG (simple) is policy gradients
with the simple baseline, PG (vf) is policy gradients with the value function baseline, PI is the
modified policy iteration (Algorithm 2), PI (full) is the standard policy iteration (Algorithm 1),
and DFO is derivative-free optimization.

estimated from data at the expense of additional sample complexity (c.f. Section 6.1). For
the purposes of this experiment, we simply assume the baseline is available to us.

For policy iteration, we use the least-squares policy iteration (LSPI) algorithm described
in Section 6.1. We evaluate both variants presented in Algorithm 1 and Algorithm 2. For
every iteration of LSTD-Q, we project the resulting Q-function parameter matrix onto the
set {Q : Q � γI} with γ = min{λmin(S), λmin(R)}. For Algorithm 1, we choose N = 15 by
picking the N ∈ [5, 10, 15] which results in the best performance after T = 106 timesteps.
For Algorithm 2, we set (N, T ) = (3, 333333) which yields the lowest cost over the grid
N ∈ [1, 2, 3, 4, 5, 6, 7] and T such that NT = 106.

Figure 7.4 shows the results of these experiments, plotting the relative error (J(K̂) −
J?)/J? versus the number of timesteps. We see that the nominal method is more sample
efficient than the other model-free methods considered. We also see that the value function
baseline is able to dramatically reduce the variance of the policy gradient estimator compared
to the simple baseline. The DFO method performs the best out of all the model-free methods
considered on this example after 106 timesteps, although the performance of policy iteration
is comparable.
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Chapter 8

Conclusion

In this thesis, we studied the sample complexity of learning to control the Linear Quadratic
Regulator. We looked at both model-based methods, which use trajectory data to build an
estimate of the dynamics and design a controller from the estimated model, and also model-
free methods which learn intermediate representations or directly search for the parameters of
the optimal controller. We saw both theoretically and experimentally that for our particular
setup, model-based methods substantially outperformed model-free methods.

8.1 Future Work

This thesis raises many questions for future study. Here, we outline several possible directions
for future research.

Partial observability. In this thesis, we studied settings with full state observation. In
practice it is often not possible to fully observe the state. The canonical model for partially
observed linear systems is given by the following model:

xt+1 = Axt +But + wt , wt ∼ N (0,W ) , (8.1.1)

yt = Cxt + vt , vt ∼ N (0, V ) . (8.1.2)

This is a specific instance of a partially observed Markov Decision Process (POMDP). Con-
sider the following optimal control problem:

min
ut(·)

lim
T→∞

E

[
1

T

T∑
t=1

xTt Sxt + uTt Rut

]
s.t. (8.1.1), (8.1.2) , (8.1.3)

where ut(·) is allowed to only depend on y1, ..., yt−1. This problem, known as the Linear
Quadratic Gaussian (LQG) problem, can also be solved exactly. Furthermore, the optimal
solution has an elegant structure known as the separation principle. In particular, the optimal
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feedback ut is given by ut = Kx̂t, where K is the optimal LQR solution for (A,B, S,R), and
x̂t = E[xt|y1, ..., yt−1]. The estimate x̂t can be solved for using Kalman filtering.

This setup naturally raises the question of how to learn the optimal LQG controller
from input/output observations of (8.1.1)-(8.1.2). This question is much more delicate than
the analogous question studied in this thesis for LQR because there are an infinite num-
ber of realizations that generate the same input/output map represented by (8.1.1)-(8.1.2).
Nevertheless, partial progress has been made on this problem, namely that of constructing
estimates (Â, B̂, Ĉ) of the true (A,B,C) up to a similarity transform [88, 99, 106, 114]. How-

ever, it remains open how to best use these estimate (Â, B̂, Ĉ) to design an LQG controller
that has a corresponding sub-optimality guarantee. A partial solution to this was given by
Boczar et al. [19] using the System Level Synthesis machinery from Section 5.2, under the
assumption that the dynamics are represented as a single input, single output (SISO) finite
impulse response (FIR) filter of known order. The general case, however, is still open.

Adversarial disturbances. Throughout this thesis, we assumed that the process noise
wt was stochastic zero-mean and independent across time. While this assumption helped to
simplify the analysis, it is not always realistic in practice. For instance, if we consider our
linear dynamics arising from local linearization of non-linear dynamics, then the process noise
would represent the linearization error which we certainly do not expect to be uncorrelated
across time. A better model would be where the process noise sequence is chosen in a non-
stochastic (possibly adversarial) manner. In this situation, we would still like to be able
to learn how to control an unknown system, although we will need to change the type of
guarantee we are after. A particular style of guarantee that has received a lot of attention in
the machine learning community is that of regret minimization, where a proposed adaptive
algorithm is compared to the best non-adaptive algorithm which has perfect knowledge of
the adversary’s behavior. One particular problem formulation is as follows. The goal is to
design an adaptive algorithm A = {ut(·)} to minimize the following regret:

Regret(T ;A) :=
T∑
t=1

xTt Sxt + uTt Rut − min
K:ut=Kxt

T∑
t=1

xTt Sxt + uTt Rut , (8.1.4)

where the comparator on the RHS searches over fixed static feedback policies with the
knowledge of the process noise {wt} sequence chosen by the adversary. Partial progress in
this formulation has been made recently. Abbasi-Yadkori et al. [3] study the closely related
problem of tracking an unknown target position that moves in an adversarial manner, under
the assumption that the algorithm has perfect knowledge of the dynamics (A,B). Cohen
et al. [29] study the problem where the cost matrices (S,R) are allowed to vary over time
in an adversarial manner. Here, it is also assumed that the (A,B) are known. Agarwal
et al. [7] study the formulation posed in (8.1.4), where the sequence {wt} is only assumed
to be uniformly bounded. They give an algorithm based on online convex optimization that
achieves Õ(

√
T ) regret. Once again, it is assumed in Agarwal et al. [7] that the dynamics
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matrices (A,B) are known. Extending this work to where the (A,B) are not known, and
even allowed to vary in some way over time, is interesting future work.

Non-linear dynamics. In general, many systems which appear in the physical world
are not linear. What kinds of guarantees can be made in a non-linear setting? There are
many possible approaches to making progress on this problem. Perhaps the most natural
way to get started is to look at techniques such as iterative LQR, differential dynamic
programming [112], and model predictive control [21], and see if it possible to analyze how
the model mismatch affects control performance. There is also a long line of research in RL
that uses Gaussian Process (GP) regression to estimate either the dynamics or the value
function (see e.g. [34, 37, 45, 96] and the references within). GP regression is appealing
because there are known powerful concentration inequalities (see e.g. Srinivas et al. [108])
which can be used to construct data-driven confidence intervals. There are also a few other
approaches which are less well-known in the machine learning communities that are also
worth exploring. One approach is based on the Koopman operator from dynamical systems
theory [27]. Brunton et al. [26] provide an overview of how the Koopman operator can be
used in the context of non-linear optimal control. The use of the Koopman operator for
data-driven control is an active area of current research. Another possibility is to model the
input/output behavior of non-linear systems using Volterra series [77], which is a non-linear
extension of the finite impulse response model.

It is worth mentioning however that regardless of approach taken, to obtain non-trivial
PAC style bounds one most likely needs to restrict both the function class of the non-linear
system and the function class of the controller considered. The question then becomes,
what is an interesting model class that is rich enough to capture practical applications, but
structured enough to be amenable to theoretical analysis? Given this, it is most likely that
true progress on the non-linear front will only be achieved by new insights that combine both
theory and practice together.



129

Bibliography
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