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Abstract
In this work we explore the usefulness and practical-
ity of domain adaptation and multi-domain learning
methods in question-answer generation. Unlike recent
work in question-answer generation which focuses on
processing single-domain data to create synthetic read-
ing comprehension datasets (Du and Cardie, 2018), we
propose a question-answer generation system that can
adapt to datasets containing multiple domains while still
achieving similar or better performance in single do-
mains compared to a baseline. We apply our system,
consisting of an answer extraction system and a ques-
tion generation system, to the SQuAD and SciQ read-
ing comprehension datasets and evaluate its efficacy in
mixed- and single-domain settings. Our domain adapta-
tion method achieves higher performance than baselines
on the mixed-domain and SciQ datasets in both answer
extraction and question generation.

Problem Definition and Motivation
In recent years, phishing attacks have grown more common
and more sophisticated. The effectiveness of such attacks
means the best defense against phishing is to automatically
detect and deflect attacks without allowing the human victim
to be exposed. Due to the rise of spear phishing, which are
highly personalized and targeted attacks on just one or a few
victims in an organization, it is sometimes extremely diffi-
cult to verify if an email is legitimate or not. For instance,
the attacker may impersonate someone in the victim’s con-
tact book. In such a case, it would be advantageous to have
a bot capable of engaging in dialogue with the attacker and
verifying their identity in lieu of the human to detect these
subtle spear phishing attacks.

One way in which this can be achieved is through an
automated question-answer generation system that can ver-
ify a sender’s identity through generating security questions.
Such a system would use data about a user’s previous com-
munications with the sender in order to create relevant ques-
tions that verify whether the email sender is truly who they
claim to be. This system would be able to effectively draw
from prior email and chat text to generate a question that
only the real email sender would be able to answer. Since se-
curity question generation has many uses outside of phishing
defense, this system can be applied in many different secu-
rity applications, not just phishing.

With this motivation, we investigate methods to apply do-
main adaptation to the question-answer generation task. In
our particular use case, the task is to achieve high perfor-
mance over multiple-domain data in a setting where the do-
mains seen in training encompass all domains seen during
inference, that is, for the set of domains in the training data
Dp and the set of domains in the test data Dq , Dq ⊆ Dp.
Such domains would include emails, chat messages, and
other types of communication. Email and chat texts dif-
fer greatly in content and structure. We wish to generate
high-quality question-answer pairs for each domain in the
dataset, necessitating that the question-answer generation
system captures domain-specific information. This differs
from other work in domain adaptation that focus on training
a model in a source domain such that it can achieve high per-
formance in an unknown target domain, and shares similari-
ties with the problem of multi-domain learning (Dredze and
Crammer, 2008). We aim to improve the question-answer
generation system’s overall performance on a dataset with
multiple domains while still maintaining comparable or bet-
ter performance on each domain individually.

Recently, research has been directed towards using
question-answer generation systems to create reading com-
prehension datasets for training models on various NLP
tasks (Du and Cardie, 2018). Similar to previous work, we
approach this problem by first extracting potential answers
from a text input, and then using these answers and the in-
put to generate questions relevant to the answers. However,
the problem of domain adaptation on this task is still little-
explored. To this end, we contribute the following:
• The implementation and evaluation of an answer extrac-

tion system which leverages BERT pre-trained models to
identify answer spans in a document. We also apply a
domain adaptation method to this model and assess its
impact on the model’s performance on both single- and
multiple-domain data.

• The implementation and evaluation of a domain adapta-
tion method on the QG-Net question generation model ar-
chitecture, assessed on both single- and multiple-domain
data.

• Proposed methods in which domain adaptation in this task
can be improved to achieve even higher performance than
the results in the aforementioned implementations.



Context: Newton’s laws and Newtonian mechanics in
general were first developed to describe how forces affect
idealized point particles rather than three-dimensional

objects . However, in real life, matter has extended struc-
ture and forces that act on one part of an object might affect
other parts of an object . For situations where ...

Question: What may a force on one part of an object
affect?
Answer: other parts of an object

Question: What did Newton’s mechanics affect?
Answer: idealized point particles rather than three-
dimensional objects

Figure 1: Example context sequence from the SQuAD
dataset (Rajpurkar et al., 2016) with ground truth question
and answer pairs. Text spans highlighted in pink are answer
spans. The context has been truncated for brevity.

Related Work

Question-answer generation is a multi-faceted problem that
has been tackled in various ways in the past. Until recently,
most work has focused on either automated question answer-
ing or question generation and not both together.

Answer Extraction

We frame the task of extracting answer spans from an in-
put sequence as a token classification problem, a research
area that has already received much attention in tasks such
as named entity recognition, part-of-speech tagging (Huang,
Xu, and Yu, 2015), and other token classification tasks (De-
vlin et al., 2018).

In the context of question-answer generation, the major-
ity of previous work on answer extraction has focused on
automated question answering. Question answering systems
take in an input question and context, and output an an-
swer to the question that is a span of text in the context.
Effective systems for automated question answering have
been implemented with machine learning approaches. Cui
et al. (2016) used recurrent networks with nested attention
to tackle cloze-style reading comprehension tasks. Yu et al.
(2018) proposes a convolutional neural network with atten-
tion that trains significantly faster than recurrent network ap-
proaches while also achieving better performance. Devlin et
al. (2018) pre-trained transformers (Vaswani et al., 2017) on
a wide range of tasks and fine-tuned them for question an-
swering and achieved very high performance, demonstrat-
ing the advantages of transfer learning. The SQuAD dataset
(Rajpurkar et al., 2016) is commonly used for training and
evaluation question answering tasks. It is a collection of
Wikipedia article texts with labeled answer spans and as-
sociated questions created through crowdsourcing.

Question Generation
Early work in question generation used rule-based ap-
proaches that often required well-written templates with
blanks to be filled in by relevant text spans in the input con-
text (Ali, Chali, and Hasan, 2011). However, with the rise
of deep learning and large QA datasets like SQuAD, re-
cent work has successfully used recurrent neural network
architectures to achieve better performance on this task. Re-
cent approaches treat the problem as a sequence-to-sequence
learning task similar to machine translation. Input sequences
are first encoded into a feature-rich representation using
word embeddings and an architecture such as a convolu-
tional neural network or a bi-directional LSTM (biLSTM).
A decoder then uses the encoded input to generate an out-
put sequence. These systems require the answer span to be
known a priori, so as to generate relevant questions.

Du, Shao, and Cardie (2017) use a biLSTM with attention
to encode a given context and answer pair and then feeds
this information into an LSTM decoder to generate a ques-
tion sequence. Yuan et al. (2017) uses both supervised and
reinforcement learning with a biLSTM and augments word
vectors with part of speech tags. Wang et al. (2018) extends
on the biLSTM approach by augmenting word vectors with
additional information such as named entity tags, part-of-
speech, and whether a token is part of an answer span. Dur-
ing decoding, generated question tokens are picked proba-
bilistically from an output word distribution using an LSTM
or from the input context using a pointer network.

Creating Question-Answer Datasets
More recently, work has been done on generating question-
answer pairs from unlabeled text. There are a wide range of
applications of question-answer generation, aside from the
aforementioned security application. Question-answer gen-
eration can be used to create test questions for educational
purposes or even generate datasets for question-answering
networks to train on. Du and Cardie (2018) first does an-
swer span identification using methods similar to named en-
tity recognition, then uses the identified answer spans to per-
form question generation. Input contexts are encoded using
a LSTM with additional features such as a co-reference po-
sition feature embedding and answer labels. The encoded
input is then fed into a decoder with an attention-copy mech-
anism. By using this method, they are able to generate
question-answer pairs from unlabeled text, creating a syn-
thetic question answering dataset. Kumar et al. (2018) uses
a pointer network to select an answer span from the input
context and appends answer information and rich linguistic
features to the input representation. They encode the input
with a biLSTM with attention and output a generated ques-
tion using an LSTM decoder.

Our work aims to apply domain adaptation methods to
question-answer generation to achieve high performance
across multiple domains of text. Previous work such as (Du
and Cardie, 2018) focus on a single text domain, for in-
stance a set of Wikipedia articles. For an application such
as generating security questions for phishing protection, the
input text could be parts of emails or chat conversations,
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Figure 2: Overview of the question-answer generation sys-
tem.

which differ greatly in structure and content compared to
Wikipedia articles. In such a case it is important to be able
to adapt to different types of text. To my knowledge, do-
main adaptation in question-answer generation has not yet
been explored, although methods for domain adaptation in
machine translation (Britz, Le, and Pryzant, 2017; Chen and
Cardie, 2018) share some similarities.

Approach
In order to generate question-answer pairs from a source
text, we first identify continuous spans in the text that con-
stitute answer candidates. These are considered question-
worthy text spans. For each candidate answer span, a ques-
tion Q is generated based on the given span and the sentence
from the context that contains the answer span, such that Q
asks a question relevant to the span that may rely on other
information in the sentence. We additionally apply domain
adaptation methods to both the answer extraction system and
the question generation system to improve performance over
multiple domains.

Answer Span Extraction
We treat answer span extraction as a token classification task
and use a pre-trained BERT model (Devlin et al., 2018) as
a base for our token classifier. The BERT model, or Bidi-
rectional Encoder Representations from Transformers, has
representations pre-trained on cloze tasks and next-sequence
prediction which allows it to be fine-tuned for both token-
and sequence-classification tasks. Fine-tuned BERT models
have achieved state-of-the-art performance on a wide vari-
ety of tasks. For this task, we fine-tune the BERT-base cased
model, the smaller of the two model architectures introduced
in (Devlin et al., 2018) with approximately 110M parame-
ters. Better performance may be achieved by the BERT-large
model at the cost of taking significantly longer to fine-tune.

The answer span extraction system takes in paragraph
contexts and a list of answer spans found in each con-
text. The contexts are tokenized into WordPieces (Wu et
al., 2016). Each token’s input representation T is created
by summing its WordPiece embedding Ew and BERT po-
sitional embedding Ep. A segment embedding Es used for
next-sentence tasks is also added, but for single-sequence

Figure 3: Visualization of the answer extraction system
showing the domain discriminator. The weighted average
loss is backpropagated such that the model is encouraged to
learn features that are unique to each domain but still capture
useful information for answer token classification.

tasks such as this one it is a constant value.

T = Ew + Ep + Es

The list of answer spans is then processed to assign a label
to each token indicating whether it is part of an answer span
or not. The pre-trained BERT transformer takes in the para-
graph context and outputs the final hidden state representa-
tion of the context, a fixed-size 768-element vector. This fi-
nal hidden state is then fed into a linear classifier that learns
to classify each token from the BERT output. During back-
propagation both the token classifier and the BERT model
are updated using the token classifier’s loss.

Since this system predicts an answer label for each token
rather than text spans, the token labels must be processed to
reconstruct answer spans from the predictions. This is done
both to facilitate evaluation of the results and to enable the
output to be used for the question generation system. All
adjacent tokens labeled as an answer are considered part of
the same answer span.

Domain Adaptation To apply domain adaptation to the
answer span extraction task, we modify the BERT model
by adding a discriminator that jointly predicts the domain
of the given context from the encoders final hidden state.
The discriminator is a linear classifier that takes in a fixed-
dimension, pooled representation of the input sequence.
During training, we minimize the weighted average of the
token classifier’s loss and the discriminator’s loss. This com-
bined loss is then used to update the token classifier, domain
classifier, and BERT model.

Intuitively, the addition of this discriminator forces the
BERT model to learn a feature representation that captures



Figure 4: Visualization of the question generation system
showing the domain discriminator. The domain token is
prepended to the target sequence during training only.

domain-related information so that the domain discrimina-
tor can more easily differentiate between domains. These
domain-specific features help the classifier maintain good
performance in each domain in the dataset while also being
able to flexibly shift gears when performing inference on a
dataset with multiple domains mixed together. At the same
time, the BERT model must continue to capture features that
are useful for token classification. In tandem, these two ef-
fects cause the BERT model to learn to output a feature rep-
resentation with domain-specific features that are useful for
answer identification.

Question Generation
We frame the problem of question generation as a sequence-
to-sequence task (Sutskever, Vinyals, and Le, 2014), map-
ping an input sequence (a context sentence) to an output se-
quence (a question). We use the QG-Net model architecture
(Wang et al., 2018) which consists of a biLSTM encoder
that encodes word vectors into hidden states, and a LSTM
decoder that outputs the predicted question.

QG-Net takes in pairs of answers and the sentence that
contains each answer. The sentences are tokenized and con-
verted into vectors using the GloVe (Pennington, Socher,
and Manning, 2014) word embeddings, then are addition-
ally augmented with features that indicate whether the word
is part of an answer span, its part of speech, whether it’s
a named entity, and its word case. That is, for an input sen-
tence with word vectors {c1, c2, ...cn} then each word vector
ci is modified as follows:

c̃i = [ci, ANS, POS,NER,CAS]

During encoding, a biLSTM processes the input sentence
{c̃1, c̃2, ...c̃n} in the forward and backward directions to pro-
duce a hidden state for each word vector that captures depen-
dencies on words that come before and after it. During de-
coding, a LSTM generates a predicted sentence one token at
a time. The token generated at timestep t is dependent on the
encoding of the input sequence and all previously generated
tokens. That is, if st is the hidden state of the tth generated
token,

st = LSTM(C, st−1)

where C is the encoded input context. During decoding,
each token output is probabilistically chosen from either an
output vocabulary distribution (determined by the decoder)
or a distribution over the words in the input context (deter-
mined by a pointer network). The addition of the pointer
network helps increase question relevance by using words
from the input. Therefore the final generated token is chosen
from a union of the question vocabulary V Q and the set of
unique words in the input context V S . Beam search is used
to select the best candidate output sequence.

Domain Adaptation To apply domain adaptation to the
question generation task, we prepend a domain token to the
target sequences in the training data. This method is referred
to as ”target token mixing” in Britz, Le, and Pryzant (2017).
Similar to a discriminator used in the answer extraction task,
this forces the encoder to output a feature representation of
the input that captures domain-related data, so that the de-
coder can output the correct domain token during training.
Additionally, since each word generated during decoding is
affected by the words that come before it, the predicted do-
main token also has the effect of altering the probability dis-
tribution of words generated in the question. This allows the
question generator to identify the domain of the input dur-
ing inference and use that information to adjust the output
accordingly.

The domain token at the start of the predicted sequence is
removed during evaluation, and target sequences in the dev
set do not contain a domain token.

Training and Experimental Setup
Datasets
We use the SQuAD (Rajpurkar et al., 2016) and SciQ (Jo-
hannes Welbl and Gardner, 2017) datasets as our two do-
mains during training and evaluation. SQuAD consists of
paragraph contexts from Wikipedia articles and more than
100K question-answer pairs associated with these contexts.
In the dataset, answers are a contiguous span of text from
their associated context. The questions in SQuAD are gen-
erated by human crowdworkers through Amazon Mechan-
ical Turk. The SQuAD dataset consists of 18,896 contexts
in the training set with 86,832 associated question-answer
pairs, and 2,067 contexts in the dev set with 10,526 associ-
ated question-answer pairs.

The SciQ dataset consists of paragraph contexts from sci-
ence textbooks and 13,679 multiple-choice questions asso-
ciated with these contexts. These multiple choice questions
are also crowdsourced, but unlike SQuAD, the answers are



Method Eval data Precision Recall F-measure
Prop Bin Exact Prop Bin Exact Prop Bin Exact

Train on SQuAD SQuAD 50.16 52.43 20.61 35.08 46.10 20.11 41.29 49.06 20.35
SciQ 13.82 16.75 8.70 59.55 64.00 34.06 22.44 26.56 13.86

Train on SciQ SquAD 53.67 53.86 13.41 2.27 3.93 1.05 4.36 7.33 1.94
SciQ 51.56 53.31 35.36 41.24 46.06 31.76 45.83 49.42 33.46

Trained on mixed data SQuAD 48.51 50.79 19.62 35.33 46.28 19.91 40.88 48.43 19.76
SciQ 52.38 54.08 38.40 36.93 41.21 29.70 43.32 46.78 33.49

Mixed w/domain adaptation SQuAD 50.07 52.54 20.63 32.81 43.08 18.72 39.64 47.34 19.63
SciQ 51.28 52.81 38.10 39.83 43.39 32.00 44.83 47.64 34.78

Table 1: Precision, recall, and F1 metrics for each answer extraction model evaluated on single-domain data.

Method Precision Recall F-measure
Prop Bin Exact Prop Bin Exact Prop Bin Exact

Train on SQuAD 34.59 37.11 15.32 39.26 49.41 22.41 36.77 42.38 18.20
Train on SciQ 53.26 54.56 28.66 8.85 11.20 6.20 15.18 18.58 10.19
Trained on mixed data 48.75 50.93 21.40 35.10 45.18 20.95 40.81 47.89 21.17
Mixed w/domain adaptation 50.73 53.06 22.61 34.00 43.82 20.45 40.71 48.00 21.48

Table 2: Precision, recall, and F1 metrics for each answer extraction model evaluated on mixed-domain data. The evaluation set
consists of an equal number of SQuAD and SciQ examples.

not necessarily text spans from the context. We convert SciQ
into a SQuAD-like format to facilitate training and testing on
both datasets. The multiple-choice questions are converted
into question-answer pairs by pairing each question with its
correct answer. In addition, if an answer is not a contigu-
ous text span from the associated context, we remove this
example from the dataset. After processing, this leaves us
with 9,574 contexts in the training set with 9,219 associatd
question-answer pairs and 825 contexts in the dev set with
793 associated question-answer pairs.

For training and testing answer extraction, we assign a
label to each token in the context indicating whether it is
part of a ground truth answer span. For question generation,
we take each answer and the sentence containing the answer
and pair them with the associated ground truth question.

To evaluate the effectiveness of our domain adaptation
methods, we also created a mixed dataset that consists of
an equal number of SQuAD and SciQ examples with do-
main labels. As SciQ is smaller than SQuAD, we use the
full SciQ train and dev sets when creating the mixed dataset.
For training and testing answer extraction, each example in
the training and dev set has a domain label that must be pre-
dicted jointly along with the token labels. For question gen-
eration, the domain label is prepended to the target sequence
for the training set and no domain labels are provided during
evaluation.

Evaluation Metrics
For answer span extraction, we evaluate our models per-
formance using precision, recall, and F1 scores calculated
against the ground truth answer spans. The boundaries of
answer expressions are difficult to define even by human an-
notators (Wiebe, Wilson, and Cardie, 2005) so besides exact
match (EM) metrics, we also use two types of soft precision
and recall metrics: proportional overlap and binary overlap.

Proportional overlap gives partial credit to predicted answer
spans that overlap with a ground truth answer span, propor-
tional to the amount of overlap (Johansson and Moschitti,
2010). Binary overlap counts any predicted answer span that
overlaps with a ground truth answer span as correct (Breck,
Choi, and Cardie, 2007).

For question generation, we evaluate our model’s per-
formance using BLEU (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), and ROUGE-L (Lin, 2004).
BLEU measures n-gram precision against ground truth ques-
tions while penalizing overly short sequences. The ME-
TEOR metric measures n-gram recall while also taking into
account synonyms, paraphrasing, and stemming. ROUGE-
L is a text summarization metric that measures the longest
matching n-gram between the predicted and ground truth
question.

Finally, we link our answer extraction and question gen-
eration systems with domain adaptation methods to produce
a generated set of question-answer pairs from the mixed
dataset. We then apply a top-performing question-answering
system Document Reader (Chen et al., 2017) which has
been pre-trained on SQuAD to our generated dataset and
evaluate its performance. During evaluation we use the offi-
cial SQuAD evaluation script which calculates exact match
and F1 scores for the answers generated by the question-
answering system.

Experiments
Training Data For both the answer extraction system and
question generation system, we train four separate models.
One model is trained solely on the full SQuAD set with-
out any domain adaptation (”baseline SQuAD model”). One
model is trained solely on the full SciQ set without domain
adaptation (”baseline SciQ model”). One is trained on a the
mixed dataset, which has an equal number of SQuAD and



SQuAD Context: The game’s media day, which was typi-
cally held on the Tuesday afternoon prior to the game ,

was moved to the Monday evening and re-branded

as Super Bowl Opening Night . The event was held on

February 1, 2016 at SAP Center in San Jose . Alongside
the traditional media availabilities, the event featured an
opening ceremony with player introductions on a replica

of the Golden Gate Bridge .

SciQ Context: The strong force only acts directly upon
elementary particles . However, a residual of the force is

observed between hadrons (the best known example being
the force that acts between nucleons in atomic nuclei ) as
the nuclear force . Here the strong force acts indirectly,
transmitted as gluons , which form part of the virtual pi
and rho mesons, which classically transmit the nuclear force
(see this topic for more). The failure of many searches for
free quarks has shown that the elementary particles affected
are not directly observable. This phenomenon is called
color confinement .

Figure 5: Example answer spans in one SQuAD and one
SciQ context sequence. Ground truth answer spans are high-
lighted in pink, predicted answer spans in blue, and spans
where the predicted answer overlaps with a ground truth an-
swer are highlighted in green.

SciQ examples (”baseline mixed model”). Finally a model
that uses domain adaptation techniques is trained on the
mixed set with domain labels (”domain adaptation model”).

Model Parameters To fine-tune BERT for the answer ex-
traction task, we used a batch size of 18 and 5 epochs for
each of the models we trained. For each model, we used a
learning rate of 3e-5 and a maximum sequence length of 512
tokens for context sequences. Contexts longer than 512 to-
kens were truncated, while contexts shorter than 512 tokens
were padded. This length was chosen because it is the max-
imum length supported by BERT’s positional embeddings.
Only 0.03% of the SQuAD dataset and 0.1% of the SciQ
dataset are longer than 512 tokens and were truncated.

When training the QG-Net models, we used a batch size
of 64 and 20 epochs for each model and optimize using
stochastic gradient descent.

Results and Discussion
We evaluate the effectiveness of our domain adaptation
methods by comparing the performance of the domain adap-
tation model with the non-domain adaptation model trained
on the mixed set (referred to as the ”baseline mixed model”).
We also verify that the domain adaptation model achieves
comparable performance with the baseline SQuAD and

Context 1: temporomandibular joint the temporomandibu-
lar joint ( tmj ) is the joint that allows for opening (
mandibular depression ) and closing ( mandibular elevation
) of the mouth , as well as side-to-side and protrac-
tion/retraction motions of the lower jaw . this joint involves
the articulation between the mandibular fossa and articular
tubercle of the temporal bone , with the condyle ( head ) of
the mandible .
Human: the temporomandibular joint ( tmj ) is the joint that
allows for opening ( mandibular depression ) and closing (
mandibular elevation ) of this ?
Baseline mixed model: what involves the articulation
between the mandibular depression and closing of the lower
jaw ?
Domain adaptation model: what is the name of the joint
where the articulation between the mandibular and articular
tubercle ?

Context 2: during the period in which the negotia-
tions were being conducted , tesla said that efforts had been
made to steal the invention . his room had been entered
and his papers had been scrutinized , but the thieves , or
spies , left empty-handed .
Human: what was tesla afraid someone was trying to do
with his invention ?
Baseline mixed model: what were tesla ’s efforts made to
do ?
Domain adaptation model: what did tesla say efforts had
been made to do ?

Figure 6: Comparison of the ground truth human-written
questions with our domain adaptation model’s questions
generated from the given context. Answers are highlighted.
Context 1 is from the SciQ dataset, while Context 2 is from
the SQuAD dataset. Both contexts’ domains were correctly
identified by the domain adaptation model.

baseline SciQ models in a single-domain setting.

Answer Span Extraction Evaluation
Table 2 shows the precision, recall, and F1 metrics for each
model evaluated on the mixed dataset. On all datasets, the
domain classifier in the domain adaptation model achieved
over 95% accuracy. The domain adaptation model outper-
forms the models trained on single domain data by a large
margin. It also outperforms the mixed baseline model on
precision metrics and on the binary and exact match F1 met-
rics. While the gains are modest, there is a clear trend of
increased precision in the domain adaptation model com-
pared to the baseline which indicates that the model is cor-
rectly learning domain-specific features that make its pre-
dictions more accurate in each domain. However, the ad-
dition of domain adaptation appears to also reduce the re-
call of the model on the mixed set. By comparing the per-
formance of the domain adapation model with the baseline
mixed model in Table 1 we see that this drop in recall occurs
on SQuAD data. Since the proportion of answer words in



Figure 7: BLEU-4, METEOR, and ROUGE-L scores for each of the trained question generation models when evaluated on the
mixed dataset, the full SciQ dataset, and the full SquAD dataset.

SciQ is much lower than in SQuAD, it may be that learning
domain-specific features for the SciQ dataset inadvertently
affected predictions in the SQuAD dataset.

As seen in Table 1, the domain adaptation model’s perfor-
mance on single-domain datasets is comparable to that of the
baseline models trained on each respective domain. In addi-
tion, the domain adaptation model achieves comparable per-
formance with the baseline mixed model on single-domain
data, and even outperforms the baseline mixed model when
evaluated on the SciQ dataset. This demonstrates that the
addition of domain adaptation does not reduce the model’s
effectiveness on single domains. The fact that the domain
adaptation model is able to improve its performance on the
SciQ dataset by learning from additional SQuAD data indi-
cates that the model is able to adapt what it learns from the
SQuAD data to produce better predictions in the SciQ do-
main. From this we infer that this domain adaptation method
can also be used to gain performance increases on known do-
mains with few training examples. Thus this domain adap-
tation method offers modest gains in performance on mixed
datasets while still performing well in a single-domain set-
ting.

These results demonstrate that applying domain adapta-
tion is both useful and practical in the task of multi-domain
question-answer generation. Even with a simple approach,
we are able to achieve performance gains on multiple do-
main data and adapt what it learns from one domain to im-
prove inference in other domains. There are multiple ways
in which the domain adaptation method can be modified to
achieve greater improvements.

The fact that we are leveraging pre-trained BERT models
could partially account for the slightness of the performance
gains, as the pretraining tasks used to create the model al-
ready help it generalize across datasets. Training a BERT
model from scratch would likely yield greater performance
gains with this domain adaptation method.

There is also a flaw in the domain adaptation method
where learned domain-specific features are not selectively
used for predictions on their respective domain, but are

used to make predictions on all domains. This reduces the
number of domain-specific features per domain, which can
cause problems in datasets with many domains. Addition-
ally, the domain-specific features capture for other domains
may reduce performance on a target domain. This is likely
the reason why the domain adaptation model has lower re-
call scores on the SQuAD dataset compared to the baseline
mixed model. To further improve performance, we could
instead learn a separate set of features for each domain.
This can be achieved by training a separate model for each
domain. Then during prediction, the domain discriminator
would first determine the domain of the example and choose
the appropriate set of features to perform token classification
with.

In conjunction with domain-specific feature sets, the
model could also learn a set of general features that can
be concatenated with domain-specific features during infer-
ence. These domain-indifferent features should capture use-
ful information across all the datasets and therefore will im-
prove token classifier performance in each domain. In order
to extract these domain-indifferent features, we can use a do-
main discriminator that adversarially attempts to determine
the domain from the set of features. The goal becomes to
learn a set of features that are indistinguishable between do-
mains, similar to the concept of generative adversarial net-
works (Goodfellow et al., 2014).

Question Generation Evaluation
Figure 7 shows the BLEU-4, METEOR, and ROUGE-L
metrics for each model. During evaluation, we used the
ground truth answer spans in order to get a clear idea of
solely the question generation system’s performance. We
link the answer extraction and question generation systems
together in the next section where we perform end-to-end
evaluation.

The domain adaptation model is the highest performing
on all metrics when evaluated on the mixed dataset. This
shows that the addition of the domain token to the target se-
quence during training explicitly aids in question generation



Model Dataset Exact Match F1 Score

Document
Reader

Entire Generated
Dataset 56.08 71.20

SciQ portion 74.61 85.93
SQuAD portion 52.86 68.65

Table 3: Performance of the pre-trained DocReader reading
comprehension model on the dataset generated by our do-
main adaptation models. We report its performance on the
entire dataset as well as each domain in the dataset.

on mixed domain data.
The domain adaptation model also has comparable or bet-

ter performance on single domain data compared to the other
models. In particular, it outperforms all other models by a
significant margin on the SciQ dataset. This demonstrates
that the domain adaptation method also helps the model
adapt what it learns during training on one domain to im-
prove the quality of question generation on different do-
mains. SciQ has approximately half the training data size
of SQuAD, so the effect is more pronounced in this dataset.
In essence, the mixed dataset can be seen as augmenting the
SciQ dataset with SQuAD examples. Because we are utiliz-
ing a domain adaptation method the model is able to apply
what it learns from SQuAD training when doing SciQ in-
ference. These results demonstrate that this domain adapta-
tion method does not significantly degrade performance in
a single-domain setting, and can even improve performance
on domains with less training data.

Similar to the answer extraction domain adaptation
method, the method we utilize from question generation
focuses on teaching the model to extract domain-specific
features. The performance of the domain adaptation model
could be further improved on the mixed-domain dataset by
also learning to extract domain-inspecific features which
generalize well across all domains in the training set.
These domain-inspecific features could be concatenated
with domain-specific features during inference to produce
higher quality output sequences.

End-to-End Evaluation
Using the domain adaptation answer extraction system and
the domain adaptation question generation system we gener-
ated 3,938 question-answer pairs based off the context para-
graphs contained in the mixed dev set. Unlike in the question
generation evaluation, for end-to-end evaluation we gener-
ated questions based off of the answers extracted by our
domain adaptation answer extraction system. The generated
dataset contains an equal number of SQuAD and SciQ con-
texts, but only 583 of the question-answer pairs are from
SciQ while 3,356 pairs are from SQuAD. We then use the
single model Document Reader that has been pre-trained on
the SQuAD dataset, the details of which are discussed in
(Chen et al., 2017), to attempt to answer the questions in
the generated dataset. Results are evaluated using the offi-
cial SQuAD evaluation script which calculates exact match
and F1 measures. Exact match measures the percentage of
predictions that match any one of the ground truth answers

exactly. F1 score measures the average amount of overlap
between predicted and ground truth answers.

3 shows the performance of the Document Reader on
our generated dataset. Compared to its performance on the
SQuAD dev set where it achieves an exact match score of
69.5% and F1 score of 78.8%, the Document Reader per-
forms less well on the generated dataset, indicating that it
is more difficult or less coherent than SQuAD. This drop in
performance makes sense in that the generated dataset con-
tains question-answer pairs in two different domains, which
inherently makes the task of question answering somewhat
more difficult. Additionally, the question-answer pairs in
the SQuAD dataset are human-generated, and accordingly
are more coherent than generated pairs. Overall, the perfor-
mance of the Document Reader on our dataset is reasonable
and indicates that our generated dataset is more difficult than
a single-domain dataset but not much lower in quality.

We also examine the performance of the Document
Reader on each domain of the generated dataset separately.
In the SciQ domain, the Document Reader actually performs
better on our generated data than on the SciQ dev set, where
it achieves an EM score of 69.09% and F1 score of 80.55%.
As noted in previous sections, our domain adaptation model
performs significantly better than other models when gener-
ating questions in the SciQ domain. Therefore, it is possible
that the questions generated by our model are highly relevant
to the associated answer and therefore easier to answer. An-
other possible cause for this performance increase is that our
domain adaptation model is using what it has learned from
the SQuAD training data to make the generated question-
answer pairs more SQuAD-like. Since the Document Reader
is trained on SQuAD, this would make the SciQ questions
more similar to its training data.

Conclusion
We have presented domain adaptation methods to improve
the performance of answer extraction and question genera-
tion in multiple-domain data and demonstrated their efficacy
on the SQuAD and SciQ reading comprehension datasets.
The addition of these methods produced improvements over
the baseline model trained on the mixed dataset when eval-
uated on the mixed-domain data and on SciQ. These results
demonstrate that the domain adaptation methods not only
improve the model’s ability to learn and do inference in
multiple domains, but also can adapt what it learns in one
domain to improve its performance in a separate domain.
The domain adaptation model’s significant performance in-
crease in the SciQ domain indicates that these domain adap-
tation methods can also be used to increase performance on
a known domain with few training examples by augment-
ing the training data with labeled examples from another
domain.

Future work can improve on the domain adaptation meth-
ods presented in this paper by also learning a set of domain-
inspecific features through using an adversarial domain dis-
criminator. Further improvements can also be made by
learning a separate set of domain-specific features for each
domain and swapping between them based on the predicted
domain of the test example.
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