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Abstract

Towards Secure Computation with Optimal Complexity

by

Peihan Miao

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Sanjam Garg, Chair

Secure computation enables a set of mutually distrustful parties to collaboratively com-
pute a public function over their private data without leaking anything apart from the
output. In this thesis, we present improvements towards obtaining secure computation with
optimal computation, communication, and round complexity, in both theory and practice.

In Theory. We introduce a novel primitive called laconic oblivious transfer (or laconic
OT for short), which allows an OT receiver to commit to a large input D (of length M) via
a short message. Subsequently, a single short message from an OT sender allows the receiver
to learn mD[L], where the messages m0,m1 and the location L ∈ [M ] are dynamically chosen
by the sender. We present a construction of this primitive based on the Decisional Diffie-
Hellman (DDH) assumption, which makes is an innovative use of somewhere statistically
binding (SSB) hashing in conjunction with hash proof systems.

Since its introduction, laconic OT has proved to be an extremely powerful tool towards
achieving optimal computation and communication complexity in secure computation and
beyond. In this thesis, we show a few of its very first applications including non-interactive
secure computation and multi-hop homomorphic encryption for RAM programs.

In Practice. As a specific application of secure computation, we introduce a new no-
tion called password-based threshold token authentication, which protects password-based
authentication against single point of failures. Specifically, we distribute the role of a single
server among n servers and allow any t servers to collectively verify clients’ passwords and
generate tokens, while no t − 1 servers can forge a valid token or mount offline dictionary
attacks. We then introduce PASTA, a general framework wherein clients can sign on using
a two-round (optimal) protocol that meets our strong security guarantees.

Our experiments show that the overhead of PASTA, compared to a näıve single-server
solution, is extremely low (1-5%) in the most likely setting where parties communicate over
the internet. The overhead is higher for certain MAC tokens over a LAN (though still only a
few milliseconds) due to inherent public-key operations in PASTA. We show, however, that
public-key operations are necessary by proving a symmetric-key-only solution impossible.
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Chapter 1

Introduction

Secure computation allows mutually distrustful parties to jointly perform computation over
their private inputs without disclosing anything more than the output. Since its introduc-
tion by Yao in the 1980s [Yao82; Yao86], secure computation has found a wide range of
practical applications such as electronic voting, electronic auctions, genome data analysis,
secure signal processing, secure outsourcing computation, privacy-preserving machine learn-
ing, anonymous transactions, and many more.

Starting with the seminal works [Yao82; Yao86; GMW87; BGW88; CCD88; RB89] that
established the feasibility of secure computation for any function and any number of parties,
a central question in the cryptographic community has been whether secure computation
protocols can be efficient enough to serve for its countless applications. In the past few
decades, both theoretical and practical improvements have been pushing the limits of effi-
ciency of those protocols and have demonstrated impressive improvements. Furthermore, for
specific secure computation applications, massive research efforts have been devoted towards
designing tailored protocols to achieve better efficiency than generic approaches.

Nevertheless, despite its strong security guarantees, wide range of applications, beautiful
feasibility results, and substantial research progress, the adoption of secure computation
in real industry is very much limited as of today, the biggest challenge of which still boils
down to efficiency. Compared to a näıve insecure solution, the expensive cost of a secure
computation protocol deters most companies from adopting this technology because very
few of them are willing to trade-off their product performance for stronger security. This
brings us to a natural question that we would like to, and have to answer:

Can we achieve secure computation with optimal efficiency?

In examining the efficiency of a protocol, we consider several different measurement
aspects. Our eventual goal, of course, is to achieve the optimal efficiency in every aspect.
We briefly discuss these measurements below.

Efficiency Measurements. The most commonly considered efficiency measurement for
a protocol is the computational complexity, and in particular, the computational overhead
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of a secure computation protocol, compared to the näıve protocol that does not have any
security guarantee. This measurement is especially important in practice because of limited
computational resources.

Communication complexity, which refers to the total amount of communication in a pro-
tocol, is also one of the major efficiency bottlenecks in most secure computation applications.
This is due to the fact that network bandwidth is often times a shared resource for which
multiple applications compete and in general the price for expanding network bandwidth
tends to be much higher than the price for expanding computational resources. It is espe-
cially crucial to minimize communication complexity when secure computation protocols are
applied on large datasets, where requiring the communication complexity to scale with the
size of the datasets is usually infeasible for even moderate dataset sizes.

Apart from computation and communication complexity, another important metric in
the efficiency of a secure computation protocol is its round complexity, that is, the number of
rounds of interaction among the parties. As the time for one round of communication is lower
bounded by the network latency, a high round complexity can easily become a bottleneck of
a protocol especially when adopted on a high-latency network.

With explicit awareness of the limitations of available computational resources, network
bandwidth and network latency, in this thesis, we aim to achieve secure computation with
optimal computation, communication, and round complexity. We make substantial progress
in both theory and practice.

1.1 In Theory

Cryptographic protocols for secure computation are typically based on Boolean circuits,
where both the computational complexity and communication complexity scale with the
size of the input dataset, which makes it generally unsuitable for large datasets. Substantial
research effort has been devoted towards overcoming these challenges, including works on
fully-homomorphic encryption (FHE) [Gen09; BV11b; BV11a; GSW13] and on the RAM set-
ting of oblivious RAM [Gol87; Ost90] and secure RAM computation [OS97; GKK+12; LO13;
GHL+14; GGMP16]. Protocols based on FHE generally have a favorable communication
complexity and are basically non-interactive, yet incur a prohibitively large computational
overhead that scales with the dataset size. On the other hand, protocols for the RAM model
generally have a favorable computational overhead, but lack in terms of communication ef-
ficiency, which grows with the program running time, especially in the multi-party setting.
Can we achieve the best of both worlds?

In this work [CDG+17] we make positive progress on this question. Specifically, we
introduce a new tool called laconic oblivious transfer (or laconic OT for short) that helps to
strike a balance between the two seemingly opposing goals. Laconic OT is a key tool towards
the goal of improving communication complexity while at the same time maintaining low
computational complexity for a variety of scenarios of secure computation.
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1.1.1 Laconic Oblivious Transfer

Oblivious transfer (or OT for short), since its first introduction by Rabin [Rab81], has been
a foundational building block for realizing computationally efficient secure computation pro-
tocols [Yao82; Yao86; GMW87; IPS08]. However, typical secure computation protocols
involve executions of multiple instances of an oblivious transfer protocol. In fact, the num-
ber of needed oblivious transfers grows with the input size of one of the parties, which is
the receiver of the oblivious transfer. As a result, the communication complexity of such
protocols has to grow with the input size of the receiver.1

We introduce a novel technique for optimizing communication complexity of secure com-
putation over large inputs. Specifically, we provide a new oblivious transfer (OT) protocol
with a laconic receiver. Laconic OT allows a receiver to commit to a large input D (of length
M) via a short message. Subsequently, a single short message by a sender allows the receiver
to learn mD[L], where the messages m0,m1 and the location L ∈ [M ] are dynamically chosen
by the sender. All prior constructions of OT required the receiver’s outgoing message to
grow with D.

Our key contribution is an instantiation of this primitive based on the Decisional Diffie-
Hellman (DDH) assumption in the common reference string (CRS) model. The technical
core of this construction is a novel use of somewhere statistically binding (SSB) hashing in
conjunction with hash proof systems. Next, we show applications of laconic OT to non-
interactive secure computation on large inputs and multi-hop homomorphic encryption for
RAM programs.

1.1.2 Application I: Non-Interactive Secure Computation

Circuit Setting. Can a receiver publish a small encoding of her large confidential database
D so that any sender, who holds a secret input x, can reveal the output f(x,D) (where f is a
circuit) to the receiver by sending her a single message? For security, we want the receiver’s
encoding to hide D and the sender’s message to hide x. Using laconic OT, we present
the first solution to this problem. In our construction, the receiver’s published encoding
is independent of the size of her database, but we do not restrict the size of the sender’s
message.2

RAM Setting. Consider the scenario where f can be computed using a RAM program
P of running time t. We use the notation PD(x) to denote the execution of the program

1We remark that related prior works on OT extension [Bea96; IKNP03; KK13; ALSZ13] makes the
number of public key operations performed during protocol executions independent of the receiver’s input
size. However, the communication complexity of receivers in these protocols still grows with the input size
of the receiver.

2Solutions for this problem based on fully-homomorphic encryption (FHE) [Gen09; LNO13], unlike our
result, reduce the communication cost of both the sender’s and the receiver’s messages to be independent of
the size of D, but require additional rounds of interaction.



CHAPTER 1. INTRODUCTION 4

P on input x with random access to the database D. We provide a construction where as
before the size of the receiver’s published message is independent of the size of the database
D. Moreover, the size of the sender’s message (and computational cost of the sender and the
receiver) grows only with t and the receiver learns nothing more than the output PD(x) and
the locations in D touched during the computation. Note that in all prior works on general
secure RAM computation [OS97; GKK+12; LO13; WHC+14; GHL+14; GLOS15; GLO15]
the size of the receiver’s message grew at least with its input size.3

1.1.3 Application II: Homomorphic Encryption for RAM

Consider a scenario where S (a server), holding an input x, publishes an encryption ct0 of
her private input x under her public key. Now this ciphertext is passed on to a client Q1

that homomorphically computes a (possibly private) program P1 accessing (private) memory
D1 on the value encrypted in ct0, obtaining another ciphertext ct1. More generally, the
computation could be performed by multiple clients. In other words, clients Q2, Q3, · · ·
could sequentially compute private programs P2, P3, · · · accessing their own private databases
D2, D3, · · · . Finally, we want S to be able to use her secret key to decrypt the final ciphertext
and recover the output of the computation. For security, we require simulation based security
for a client Qi against a collusion of the server and any subset of the clients, and IND-CPA
security for the server’s ciphertext.

Though we described the simple case above, we are interested in the general case when
computation is performed in different sequences of the clients. Examples of two such com-
putation paths are shown in Figure 1.1. Furthermore, we consider the setting of persistent
databases, where each client is able to execute dynamically chosen programs on the en-
crypted ciphertexts while using the same database that gets updated as these programs are
executed.

FHE-Based Solution. Gentry’s [Gen09] fully homomorphic encryption (FHE) scheme
offers a solution to the above problem when circuit representations of the desired programs
P1, P2, . . . are considered. Specifically, S could encrypt her input x using an FHE scheme.
Now, the clients can publicly compute arbitrary programs on the encrypted value using a
public evaluation procedure. This procedure can be adapted to preserve the privacy of the
computed circuit [OPP14; DS16; BdMW16] as well. However, this construction only works
for circuits. Realizing the scheme for RAM programs involves first converting the RAM
program into a circuit of size at least linear in the size of the database. This linear effort can

3The communication cost of the receiver’s message can be reduced to depend only on the running time
of the program by allowing round complexity to grow with the running time of the program (using Merkle
Hashing). Analogous to the circuit case, we remark that FHE-based solutions can make the communication
of both the sender and the receiver small, but at the cost of extra rounds. Moreover, in the setting of
RAM programs FHE-based solutions additionally incur an increased computational cost for the receiver. In
particular, the receiver’s computational cost grows with the size of its database.
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be exponential in the running time of the program for several applications of interest such
as binary search.

S Q1 Q2 Q3 Q4 Q5

ct0 ct1

ct2

ct3

ct4 ct5 ct6

ct7

ct′0

ct′1

ct′2

Figure 1.1: Two example paths of computation
on server S’s ciphertexts.

Our Relaxation. In obtaining homo-
morphic encryption for RAM programs,
we start by relaxing the compactness re-
quirement in FHE.4 Compactness in FHE
requires that the size of the ciphertexts
does not grow with computation. In par-
ticular, in our scheme, we allow the eval-
uated ciphertexts to be bigger than the
original ciphertext. Gentry, Halevi and
Vaikuntanathan [GHV10] considered an
analogous setting for the case of circuits.
As in Gentry et al. [GHV10], in our setting
computation itself will happen at the time
of decryption. Therefore, we additionally
require that clients Q1, Q2, · · · first ship
pre-processed versions of their databases
to S for the decryption, and security will
additionally require that S does not learn the access pattern of the programs on client
databases. This brings us to the following question:

Can we realize multi-hop encryption schemes for RAM programs where the ciphertext grows
linearly only in the running time of the computation performed on it?

We show that laconic OT can be used to realize such a multi-hop homomorphic encryption
scheme for RAM programs. Our result bridges the gap between growth in ciphertext size
and computational complexity of homomorphic encryption for RAM programs.

Our work also leaves open the problem of realizing (fully or somewhat) homomorphic
encryption for RAM programs with (somewhat) compact ciphertexts and for which compu-
tational cost grows with the running time of the computation, based on traditional com-
putational assumptions. Our solution for multi-hop RAM homomorphic encryption is for
the semi-honest (or, semi-malicious) setting only. We leave open the problem of obtaining a
solution in the malicious setting.5

4One method for realizing homomorphic encryption for RAM programs [GKP+13; GHRW14; CHJV15;
BGL+15; KLW15] would be to use obfuscation [GGH+13] based on multilinear maps [GGH13]. However, in
this paper we focus on basing homomorphic RAM computation on DDH and defer the work on obfuscation
to future work.

5Using non-interactive zero-knowledge (NIZK) proofs alone does not solve the problem, because locations
accessed during computation are dynamically decided.
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1.1.4 Follow-Up Work

Since its introduction, laconic OT has proved to be an extremely powerful tool towards
achieving optimal communication complexity as well as computational complexity in various
settings of secure computation and beyond. Specifically, it has been utilized as a crucial tool
in achieving adaptively secure circuit garbling with nearly optimal online complexity [GS18],
adaptive garbled RAM from standard assumptions [GOS18], laconic function evaluation and
its applications [QWW18], and so on.

Furthermore, ideas from laconic OT have been useful in making significant progress
in areas beyond secure computation, including obtaining Identity-Based Encryption (IBE)
from the Computational Diffie-Hellman (CDH) assumption [DG17], anonymous IBE from
the CDH assumption [BLSV18], key-dependent message (KDM) secure encryption [BLSV18;
DGHM18], reusable designated-verifier NIZKs [LQR+19], etc.

1.2 In Practice

As a specific application of secure computation, we introduce and formalize the notion of
password-based threshold token authentication, which protects password-based token au-
thentication against single point of failures.

Token-Based Authentication. Token-based authentication is arguably the most com-
mon way we obtain authorized access to resources, services, and applications on the internet
and on enterprise networks.

Open standards such as JSON Web Token (JWT) [JWT] and SAML [SAML] are widely
used to facilitate single-sign-on authentication by allowing clients to initially sign on using
a standard mechanism such as username/password verification to obtain and locally store a
token in a cookie or the local storage. The token can then be used for all future accesses to
various applications without client involvement, until it expires.

A similar mechanism is used, via open standards such as OAuth [OAuth] and OpenID
[OpenID], by many companies including Google, Facebook and Amazon [Google; Facebook;
Amazon] to enable their users to share information about their accounts with (or authenticate
themselves to) third party applications or websites without revealing their passwords to them.

Finally, network authentication protocols such as Kerberos [Kerberos] are commonly used
by enterprises (e.g. Active Directory in Windows Servers) to, periodically but infrequently,
authenticate clients with their credentials and issue them a ticket-granting ticket (TGT) that
they can use to request access to various services on the enterprise network such as printers,
internal web and more.

It is therefore no surprise that most software-based secret management systems provide
tokens as a primary method for authenticating clients. For example, consider the following
statement from the popular open source solution Vault by Hashicorp [Vault]:
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Client Identity Provider

Service Provider

2. If (usr, h) & (usr, h′) match,

then generate a token; other-

wise return Fail

(msk,usr, h)

(vk)

1. usr, h′ = Hash(pwd′)

3. token/Fail

4. token 5. Succ/Fail

Figure 1.2: Generic flow diagram of commonly used password-based token generation solu-
tions. The figure shows only the sign-on phase which is preceded by a one-time registration
phase (not shown) where the client stores its username (usr) and the hash (h) of its password
with the identity provider. msk is the secret key used for generating tokens and vk is used
for verifying them.

The token auth method is built-in and is at the core of client authentication. Other
auth methods may be used to authenticate a client, but they eventually result in the
generation of a client token managed by the token backend.

In all these cases, the authentication flow is effectively the same. A client signs on with
its username/password, typically by sending hash of its password to an identity provider.
The identity server who stores the username along with its hashed passwords as part of a
registration phase, verifies the client’s credential by matching the hash during the sign-on
process before issuing an authentication token using a master secret key (see Figure 1.2). The
token is generated by computing a digital signature or a message authentication code (all the
above-mentioned standards support both digital signatures and MACs) on a message that
can contain client’s information/attributes, expiration time and a policy that would control
the nature of access. The token is later verified by an application server which holds the
verification key (for MACs this is equal to the master secret key). See Figure 1.3 for a sample
JWT authenticated using HMAC [KBC97]. Note that the only secret known to the client is
its password, and the device the client uses for access stores the temporary authentication
token on its behalf. Besides this temporary (and often restricted) token, client devices do
not store any long term secrets that are used to authenticate the client.

However, such an identity provider is a single point of failure that if breached, enables an
attacker to (i) recover the master secret key and forge arbitrary tokens that enable access to
arbitrary resources and information in the system and (ii) obtain hashed passwords to use
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Figure 1.3: A sample JSON Web Token [JWT] that uses HMAC. The base64 encoded token
on the left is what is sent and stored. When decoded, it contains a header with algorithm
and token type, a payload that includes various attributes and a HMAC of header/payload.

as part of an offline dictionary attack to recover client credentials.
In this work [AMMM18], we propose the notion of Password-based Threshold Authenti-

cation (PbTA) for distributing the role of the identity provider among n servers who collec-
tively verify clients’ passwords and generate authentication tokens for them (see Figure 1.4
for a generic flow). PbTA enables any t (2 ≤ t ≤ n) servers to authenticate the client and
generate valid tokens while any attacker who compromises at most t−1 servers cannot forge
valid tokens or mount offline dictionary attacks, thus providing very strong unforgeability
and password-safety properties.

This functionality is a specific application of secure computation and in the protocol
design round complexity is the major bottleneck. In order to achieve the optimal performance
we minimize the round of interaction between clients and servers.

Our Contributions. We formally introduce the notion of Password-based Threshold Au-
thentication (PbTA) with the goal of making password-based token generation secure against
server breaches that could compromise both long-term keys and user credentials. Our con-
tributions are as follows:

• Defining Security for PbTA. We formalize password-based threshold authenti-
cation, and establish the necessary security requirements of token unforgeability and
password-safety in presence of an adversary who may breach a subset of the identity
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2. Store: rec1
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2. Store: rec2
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(a) Generic flow diagram of a PbTA protocol in the registration phase.
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(msk1, rec1
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(msk2, rec2
usr)

(msk3, rec3
usr)
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1. req2
usr

3. token2
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usr
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usr

4. Combine to get

tokenusr or Fail

5. tokenusr
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(vk)

(b) Generic flow diagram of a PbTA protocol in the sign-on phase.

Figure 1.4: Generic flow diagrams of a PbTA protocol.
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servers. Our game-based definitions are strong and intuitive, and consider security in
a multi-client setting where many clients use the same identity provider. Adversary
could corrupt clients in an adaptive fashion during the game. We note that an alter-
native approach would be to use the Universal Composability framework [Can01] as
followed in some prior work involving password-based authentication (e.g. [JKKX17]).
We chose to focus on game-based definitions that are much simpler to work with but
comprehensive enough to cover a very broad set of attack scenarios.

• The PASTA Framework with Minimal Interaction. We propose a general frame-
work called PASTA, that uses as building blocks any threshold oblivious pseudorandom
function (TOPRF) and any threshold token generation (TTG) scheme, i.e. a threshold
MAC or digital signature. PASTA meets our stringent security requirements for PbTA.

After a one-time registration phase, a client just needs to remember its password.
It can sign-on using a two-round protocol wherein the servers do not talk to each
other (assuming only that the servers communicate to the client over an authenticated
channel). Therefore, PASTA requires minimal interaction.

The sign-on protocol ensures that if the client’s password is correct, he obtains a valid
authentication token: client sends a request message to a subset of the servers, and
servers respond with messages of their own. If the client password is a match, it can
combine server responses to obtain a valid token (see Figure 1.4).6 Otherwise, it does
not learn anything.

At the first glance, it may seem unnatural to define a general framework that works
for both symmetric-key tokens (i.e. MAC) and public-key tokens (i.e. digital signa-
ture). Though their verification procedures are different in terms of being private or
public, note that their token generation procedures are both private. PASTA focuses
on generating tokens, hence it works for both types of tokens.

• Instantiations and Implementation. We instantiate and implement our frame-
work in C++ with four different threshold token generation schemes: block-cipher
based and DDH-based threshold MACs of Naor et al. [NPR99], threshold RSA-based
signature of Shoup [Sho00] and threshold pairing-based signature of Boldyreva [Bol03].
Each instantiation has its own advantages and disadvantages. When instantiated with
a threshold MAC, we obtain a more efficient solution but the tokens are not pub-
licly verifiable, i.e. vk in Figure 1.2 and Figure 1.4b stored in the application server
would be the same as the master secret key msk, since the verifier needs the secret

6Note that in this setting, as opposed to the näıve solution (Figure 1.2), no matching takes place on the
identity provider side. In particular, an ID-server does not check against a record stored in the registration
phase, because, if it did, one can easily see that offline attacks would be possible even if a single server is
breached.



CHAPTER 1. INTRODUCTION 11

key for verification.7 PASTA with RSA-based and pairing-based token generation are
more expensive but are publicly verifiable. Among the signature-based solutions, the
pairing-based one is faster since signing does not require pairings but the RSA-based
solution has faster verification and produces signatures that are compatible with legacy
applications. To the best of our knowledge, our work is also the first to implement
several of the threshold token generation schemes (not password-based) and report on
their performance.

Our experiments show that the overhead of obtaining security against server breaches
using PASTA, in the sign-on stage, is at most 5% compared to the näıve solution of
using hashed passwords and a single-server token generation, in the most likely scenario
where clients connect to servers over the internet (a WAN network). This is primarily
due to the fact that in this case, network latency dominates the total runtime for all
token types. The overhead is a bit higher in the LAN setting but the total runtime of
sign-on (steps 1-4 in Figure 1.4b) is still very fast, ranging from 1.3 ms for (n, t) = (3, 2)
with a symmetric-key MAC token to 23 ms for (n, t) = (10, 10) with an RSA-based
token, where n is the number of servers and t is the threshold.

• Necessity of Computational Overhead. PASTA has its largest overhead com-
pared to the näıve single-server solution, for symmetric-key based tokens in the LAN
setting. This is because public-key operations dominate PASTA’s runtime while the
näıve solution only involves symmetric-key operations. Nevertheless, we show that this
inefficiency is inherent by proving that public-key operations are necessary to achieve
our notion of PbTA.

1.3 Organization

In Chapter 2 we introduce the notion of laconic OT formally and present a DDH-based
construction. In Chapter 3 we present the first application of laconic OT to non-interactive
secure computation on large inputs in the circuit setting as well as RAM setting. In Chapter 4
we formally define the setting of multi-hop homomorphic encryption for RAM programs and
present our construction using laconic OT.

In Chapter 5 we formalize password-based threshold authentication and propose the
PASTA framework with minimal round complexity as well as present experimental results
for various types of tokens.

7To achieve better security of the secret key, the verification process can also be made distributed using
a standard threshold MAC scheme. We omit the distributed verification in the rest of this paper because it
is not our focus.
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Chapter 2

Laconic Oblivious Transfer

In this chapter, we introduce the notion of laconic oblivious transfer (or laconic OT for
short). Laconic OT allows an OT receiver to commit to a large input D ∈ {0, 1}M via a
short message. Subsequently, the sender responds with a single short message to the receiver
depending on dynamically chosen two messages m0,m1 and a location L ∈ [M ]. The sender’s
response message allows the receiver to recovermD[L] (whilem1−D[L] remains computationally
hidden). Furthermore, without any additional communication with the receiver, the sender
could repeat this process for multiple choices of L.

Our construction of laconic OT is obtained by first realizing a “mildly compressing”
laconic OT protocol for which the receiver’s message is factor-2 compressing, i.e., half the
size of its input. We base this construction on the Decisional Diffie-Hellman (DDH) as-
sumption. We note that, subsequent to our work, the factor-2 compression construction
has been simplified by Döttling and Garg [DG17] (another alternative simplification can be
obtained using [AIKW13]). Next we show that such a “mildly compressing” laconic OT can
be bootstrapped, via the usage of a Merkle Hash Tree and Yao’s Garbled Circuits [Yao82;
Yao86], to obtain a “fully compressing” laconic OT, where the size of the receiver’s message
is independent of its input size.

The laconic OT scheme with a Merkle Tree structure allows for good properties like local
verification and local updates, which makes it a powerful tool in secure computation with
large inputs. We show new applications of laconic OT to non-interactive secure computation
in Chapter 3 and homomorphic encryption for RAM programs in Chapter 4.

Organization. In Section 2.1 we give a technical overview of this work. We introduce the
notion of laconic OT formally in Section 2.2 and give a construction with factor-2 compression
in Section 2.3, which can be bootstrapped to a fully compressing updatable laconic OT in
Section 2.4.
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2.1 Technical Overview

In this section we provide an overview of laconic OT and our constructions of this new
primitive.

Definition at a High Level. Laconic OT consists of two major components: a hash
function and an encryption scheme. We call the hash function Hash and the encryption
scheme (Send,Receive). In a nutshell, laconic OT allows a receiver R to compute a succinct
digest digest of a large database D and a private state D̂ using the hash function Hash. After
digest is made public, anyone can non-interactively send OT messages to R w.r.t. a location
L of the database such that the receiver’s choice bit is D[L]. Here, D[L] is the database-
entry at location L. In more detail, given digest, a database location L, and two messages
m0 and m1, the algorithm Send computes a ciphertext e such that R, who owns D̂, can use
the decryption algorithm Receive to decrypt e to obtain the message mD[L].

For security, we require sender privacy against semi-honest receiver. In particular, given
an honest receiver’s view, which includes the database D, the message m1−D[L] is computa-
tionally hidden. We formalize this using a simulation based definition. On the other hand,
we do not require receiver privacy as opposed to standard oblivious transfer, namely, no se-
curity guarantee is provided against a cheating (semi-honest) sender. This is mostly for ease
of exposition. Nevertheless, adding receiver privacy to laconic OT can be done in a straight-
forward manner via the usage of garbled circuits and two-message OT (see Section 2.2.1 for
a detailed discussion).

For efficiency, we have the following requirement: First, the size of digest only depends
on the security parameter and is independent of the size of the database D. Moreover, after
digest and D̂ are computed by Hash, the workload of both the sender and receiver (that is,
the runtime of both Send and Receive) becomes essentially independent of the size of the
database (i.e., depending at most polynomially on log(|D|)).

Notice that our security definition and efficiency requirement immediately imply that the
Hash algorithm used to compute the succinct digest must be collision resistant. Thus, it is
clear that the hash function must be keyed and in our case it is keyed by a common reference
string.

Construction at a High Level. We first construct a laconic OT scheme with factor-2
compression, which compresses a 2κ-bit database to a κ-bit digest. Next, to get laconic OT for
databases of arbitrary size, we bootstrap this construction using an interesting combination
of Merkle hashing and garbled circuits. Below, we give an overview of each of these steps.

2.1.1 Laconic OT with Factor-2 Compression

We start with a construction of a laconic OT scheme with factor-2 compression, i.e., a scheme
that hashes a 2κ-bit database to a κ-bit digest. This construction is inspired by the notion
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of witness encryption [GGSW13]. We first explain the scheme based on witness encryption.
Then, we show how this specific witness encryption scheme can be realized with the more
standard notion of hash proof systems (HPS) [CS02]. Our overall scheme is based on the
security of Decisional Diffie-Hellman (DDH) assumption.

Construction Using Witness Encryption. Recall that a witness encryption scheme is
defined for an NP-language L (with corresponding witness relation R). It consists of two
algorithms Enc and Dec. The algorithm Enc takes as input a problem instance x and a
message m, and produces a ciphertext. A recipient of the ciphertext can use Dec to decrypt
the message if x ∈ L and the recipient knows a witness w such that R(x,w) holds. There
are two requirements for a witness encryption scheme, correctness and security. Correctness
requires that if R(x,w) holds, then Dec(x,w,Enc(x,m)) = m. Security requires that if
x /∈ L, then Enc(x,m) computationally hides m.

We now discuss how to construct a laconic OT with factor-2 compression using a two-to-
one hash function and witness encryption. Let H : K × {0, 1}2κ → {0, 1}κ be a keyed hash
function, where K is the key space. Consider the language L = {(K,L, y, b) ∈ K × [2κ] ×
{0, 1}κ × {0, 1} | ∃D ∈ {0, 1}2κ such that H(K,D) = y and D[L] = b}. Let (Enc,Dec) be a
witness encryption scheme for the language L.

The laconic OT scheme is as follows: The Hash algorithm computes y = H(K,D)
where K is the common reference string and D ∈ {0, 1}2κ is the database. Then y is
published as the digest of the database. The Send algorithm takes as input K, y, a loca-
tion L, and two messages (m0,m1) and proceeds as follows. It computes two ciphertexts
e0 ← Enc((K,L, y, 0),m0) and e1 ← Enc((K,L, y, 1),m1) and outputs e = (e0, e1). The
Receive algorithm takes as input K,L, y,D, and the ciphertext e = (e0, e1) and proceeds as
follows. It sets b = D[L], computes m← Dec((K,L, y, b), D, eb) and outputs m.

It is easy to check that the above scheme satisfies correctness. However, we run into
trouble when trying to prove sender privacy. Since H compresses 2κ bits to κ bits, most hash
values have exponentially many pre-images. This implies that for most values of (K,L, y),
it holds that both (K,L, y, 0) ∈ L and (K,L, y, 1) ∈ L, that is, most problem instances are
yes-instances. However, to reduce sender privacy of our scheme to the security of witness
encryption, we ideally want that if y = H(K,D), then (K,L, y,D[L]) ∈ L while (K,L, y, 1−
D[L]) /∈ L. To overcome this problem, we use a somewhere statistically binding hash function
that allows us to artificially introduce no-instances as described below.

Somewhere Statistically Binding Hash to the Rescue. Somewhere statistically bind-
ing (SSB) hash functions [HW15; KLW15; OPWW15] support a special key generation pro-
cedure such that the hash value information theoretically fixes certain bit(s) of the pre-image.
In particular, the special key generation procedure takes as input a location L and generates
a key K(L). Then the hash function keyed by K(L) will bind the L-th bit of the pre-image.
That is, K(L) and y = H(K(L), D) uniquely determines D[L]. The security requirement for
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SSB hashing is the index-hiding property, i.e., keys K(L) and K(L′) should be computationally
indistinguishable for any L 6= L′.

We can now establish security of the above laconic OT scheme when instantiated with
SSB hash functions. To prove security, we will first replace the key K by a key K(L) that
statistically binds the L-th bit of the pre-image. The index hiding property guarantees
that this change goes unnoticed. Now for every hash value y = H(K(L), D), it holds that
(K,L, y,D[L]) ∈ L while (K,L, y, 1 − D[L]) /∈ L. We can now rely on the security of
witness encryption to argue that Enc((K(L), L, y, 1−D[L]),m1−D[L]) computationally hides
the message m1−D[L].

Working with DDH. The above described scheme relies on a witness encryption scheme
for the language L. We note that witness encryption for general NP languages is only
known under strong assumptions such as graded encodings [GGSW13] or indistinguishability
obfuscation [GGH+13]. Nevertheless, the aforementioned laconic OT scheme does not need
full power of general witness encryption. In particular, we leverage the fact that hash proof
systems [CS02] can be used to construct statistical witness encryption schemes for specific
languages [GGSW13]. Towards this end, we will carefully craft an SSB hash function that
is hash proof system friendly, that is, allows for a hash proof system (or statistical witness
encryption) for the language L required above. Our construction of the HPS-friendly SSB
hash is based on the Decisional Diffie-Hellman assumption and is inspired from a construction
by Okamoto et al. [OPWW15].

We briefly outline our HPS-friendly SSB hash below. We strongly encourage the reader
to see Section 2.3.2 for the full construction or see [DG17] for a simplified construction.

Let G be a (multiplicative) cyclic group of order p generated by a generator g. A hashing
key is of the form Ĥ = gH (the exponentiation is done component-wisely), where the matrix
H ∈ Z2×2κ

p is chosen uniformly at random. The hash function of x ∈ Z2κ
p is computed as

H(Ĥ,x) = Ĥx ∈ G2 (where (Ĥx)i =
∏2κ

k=1 Ĥxk
i,k, hence Ĥx = gHx). The binding key Ĥ(i) is

of the form Ĥ(i) = gA+T, where A ∈ Z2×2κ
p is a random rank 1 matrix, and T ∈ Z2×2κ

p is a
matrix with zero entries everywhere, except that T2,i = 1.

Now we describe a witness encryption scheme (Enc,Dec) for the language L = {(Ĥ, i, ŷ, b)
| ∃x ∈ Z2κ

p s.t. Ĥx = ŷ and xi = b}. Enc((Ĥ, i, ŷ, b),m) first sets

Ĥ′ =

(
Ĥ

ge
>
i

)
∈ G3×2κ,ŷ′ =

(
ŷ
gb

)
∈ G3,

where ei ∈ Z2κ
p is the i-th unit vector. It then picks a random r ∈ Z3

p and computes

a ciphertext c =
((

(Ĥ′)>
)r
,
(
(ŷ′)>

)r ⊕m). To decrypt a ciphertext c = (ĥ, z) given a

witness x ∈ Z2κ
p , we compute m = z ⊕ ĥx. It is easy to check correctness. For the security

proof, see Section 2.3.3.
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2.1.2 Laconic OT with Arbitrary Compression

We now provide a bootstrapping technique that constructs a laconic OT scheme with arbi-
trary compression factor from one with factor-2 compression. Let `OTconst denote a laconic
OT scheme with factor-2 compression.

Bootstrapping Hash Function via a Merkle Tree. A binary Merkle tree is a natural
way to construct hash functions with an arbitrary compression factor from two-to-one hash
functions, and this is exactly the route we pursue. A binary Merkle tree is constructed as
follows: The database is split into blocks of κ bits, each of which forms the leaf of the tree.
An interior node is computed as the hash value of its two children via a two-to-one hash
function. This structure is defined recursively from the leaves to the root. When we reach
the root node (of κ bits), its value is defined to be the (succinct) hash value or digest of the
entire database. This procedure defines the hash function.

The next step is to define the laconic OT algorithms Send and Receive for the above
hash function. Our first observation is that given the digest, the sender can transfer spe-
cific messages corresponding to the values of the left and right children of the root (via 2κ
executions of `OTconst.Send). Hence, a naive approach for the sender is to output `OTconst

encryptions for the path of nodes from the root to the leaf of interest. This approach runs
into an immediate issue because to compute `OTconst encryptions at any layer other than
the root, the sender needs to know the value at that internal node. However, in the scheme
a sender only knows the value of the root and nothing else.

Traversing Merkle Tree via Garbled Circuits. Our main idea to make the above
naive idea work is via an interesting usage of garbled circuits. At a high level, the sender
will output a sequence of garbled circuits (one per layer of the tree) to transfer messages
corresponding to the path from the root to the leaf containing the L-th bit, so that the
receiver can traverse the Merkle tree from the root to the leaf as illustrated in Figure 2.1.

In more detail, the construction works as follows: The Send algorithm outputs `OTconst

encryptions using the root digest and a collection of garbled circuits, one per layer of the
Merkle tree. The i-th circuit has a bit b hardwired in it, which specifies whether the path
should go to the left or right child at the i-th layer. It takes as input a pair of sibling nodes
(node0, node1) along the path at layer i and outputs `OTconst encryptions corresponding to
nodes on the path at layer i + 1 w.r.t. nodeb as the hash value. Conceptually, the circuit
computes `OTconst encryptions for the next layer.

The `OTconst encryptions at the root encrypt the input keys of the first garbled circuit. In
the garbled circuit at layer i, the messages being encrypted/sent correspond to the input keys
of the garbled circuit at layer i+ 1. The last circuit takes two sibling leaves as input which
contains D[L], and outputs `OTconst encryptions of m0 and m1 corresponding to location L
(among the 2κ locations).

Given a laconic OT ciphertext, which consists of `OTconst ciphertexts w.r.t. the root
digest and a sequence of garbled circuits, the receiver can traverse the Merkle tree as follows.
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digest

e0 = `OTconst.Send(crs, digest,Keys1)

node1

node2

C̃1 = GCircuit(`OTconst.Send(crs, ·,Keys2),Keys1)

Above GCircuit is a circuit garbling procedure, which garbles the circuit `OTconst.Send(crs,
·,Keys2) using input keys Keys1 (see Section 2.4.1.1 for the definition of garbled circuits).

Figure 2.1: Bootstrapping step of laconic OT.

First he runs `OTconst.Receive for the `OTconst ciphertexts using as witness the children of
the root, obtaining the input labels corresponding to these to be fed into the first garbled
circuit. Next, he uses the input labels to evaluate the first garbled circuit, obtaining `OTconst

ciphertexts for the second layer. He then runs `OTconst.Receive again for these ciphertexts
using as witness the children of the second node on the path. This procedure continues till
the last layer.

Security of the construction can be established using the sender security of `OTconst.Receive
and simulation based security of the circuit garbling scheme.

Extension. Finally, for our RAM applications we need a slightly stronger primitive which
we call updatable laconic OT that additionally allows for modifications/writes to the database
while ensuring that the digest is updated in a consistent manner. The construction sketched
in this paragraph can be modified to support this stronger notion. For a detailed description
of this notion refer to Section 2.2.2.

2.2 Definitions of Laconic OT

In this section, we give formal definitions for Laconic OT (or, `OT for short). We will start
by describing laconic OT and then provide an extension of it to the notion of updatable
laconic OT.
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2.2.1 Laconic OT

Definition 2.2.1 (Laconic OT). A laconic OT (`OT ) scheme syntactically consists of four
algorithms crsGen, Hash, Send and Receive.

• crs ← crsGen(1κ). It takes as input the security parameter 1κ and outputs a common
reference string crs.

• (digest, D̂) ← Hash(crs, D). It takes as input a common reference string crs and a
database D ∈ {0, 1}∗ and outputs a digest digest of the database and a state D̂.

• e ← Send(crs, digest, L,m0,m1). It takes as input a common reference string crs, a
digest digest, a database location L ∈ N and two messages m0 and m1 of length κ, and
outputs a ciphertext e.

• m ← ReceiveD̂(crs, e, L). This is a RAM algorithm with random read access to D̂. It
takes as input a common reference string crs, a ciphertext e, and a database location
L ∈ N. It outputs a message m.

We require the following properties of an `OT scheme (crsGen,Hash, Send,Receive).

• Correctness. We require that it holds for any database D of size at most M = poly(κ)
for any polynomial function poly(·), any memory location L ∈ [M ], and any pair of
messages (m0,m1) ∈ {0, 1}κ × {0, 1}κ that

Pr

m = mD[L]

crs ← crsGen(1κ)

(digest, D̂) ← Hash(crs, D)
e ← Send(crs, digest, L,m0,m1)

m ← ReceiveD̂(crs, e, L)

 = 1,

where the probability is taken over the random choices made by crsGen and Send.

• Sender Privacy Against Semi-Honest Receivers. There exists a PPT simulator
`OTSim such that the following holds. For any database D of size at most M = poly(κ)
for any polynomial function poly(·), any memory location L ∈ [M ], and any pair of
messages (m0,m1) ∈ {0, 1}κ×{0, 1}κ, let crs← crsGen(1κ) and digest← Hash(crs, D).
Then it holds that

(crs, Send(crs, digest, L,m0,m1))
c
≈
(
crs, `OTSim(D,L,mD[L])

)
.

• Efficiency. The length of digest is a fixed polynomial in κ independent of the size of
the database; we will assume for simplicity that |digest| = κ. Moreover, the algorithm
Hash runs in time |D| · poly(log |D|, κ), Send and Receive run in time poly(log |D|, κ).
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Receiver Privacy. In the above definition, we do not require receiver privacy as opposed
to standard oblivious transfer, namely, no security guarantee is provided against a cheating
(semi-honest) sender. This is mostly for ease of exposition. We would like to point out
that adding receiver privacy (i.e., standard simulation based security against a semi-honest
sender) to laconic OT can be done in a straightforward way. Instead of sending digest directly
from the receiver to the sender and sending e back to the receiver, the two parties compute
Send together via a two-round secure 2PC protocol, where the input of the receiver is digest
and the input of the sender is (L,m0,m1), and only the receiver obtains the output e. This
can be done using standard two-message OT and garbled circuits.

Multiple Executions of Send Sharing the Same digest. Notice that since the common
reference string is public (i.e., not chosen by the simulator), the sender can involve Send
function multiple times while still ensuring that security can be argued from the above
definition (for the case of single execution) via a standard hybrid argument.

It will be convenient to use the following shorthand notations (generalizing the above no-
tions) to run laconic OT for every single element in a database. Let Keys = ((Key1,0,Key1,1),
. . . , (KeyM,0,KeyM,1)) be a list of M = |D| key-pairs, where each key is of length κ. Then
we define

Send(crs, digest,Keys) =(
Send(crs, digest, 1,Key1,0,Key1,1), . . . , Send(crs, digest,M,KeyM,0,KeyM,1)

)
.

Likewise, for a vector e = (e1, . . . , eM) of ciphertexts define

ReceiveD̂(crs, e) =
(
ReceiveD̂(crs, e1, 1), . . . ,ReceiveD̂(crs, eM ,M)

)
.

Similarly, let Labels = KeysD = (Key1,D[1], . . . ,KeyM,D[M ]), and define

`OTSim(crs, D, Labels) =
(
`OTSim(crs, D, 1,Key1,D[1]), . . . , `OTSim(crs, D,M,KeyM,D[M ]

)
.

By the sender security for multiple executions, we have that

(crs, Send(crs, digest,Keys))
c
≈ (crs, `OTSim(crs, D, Labels)) .

Security Against Malicious Adversaries. The definition and construction we give is
secure against semi-honest adversaries, but it can be upgraded to the malicious setting in a
similar way as we will discuss in Chapter 3 for the first application. See Section 3.3 for a
detailed discussion.

2.2.2 Updatable Laconic OT

For our applications, we will need a version of laconic OT for which the receiver’s short
commitment digest to his database can be updated quickly (in time much smaller than the
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size of the database) when a bit of the database changes. We call this primitive supporting
this functionality updatable laconic OT and define more formally below. At a high level, up-
datable laconic OT comes with an additional pair of algorithms SendWrite and ReceiveWrite
which transfer the keys for an updated digest digest∗ to the receiver. For convenience, we
will define ReceiveWrite such that it also performs the write in D̂.

Definition 2.2.2 (Updatable Laconic OT). An updatable laconic OT (updatable `OT )
scheme consists of algorithms crsGen,Hash, Send,Receive as per Definition 2.2.1 and addi-
tionally two algorithms SendWrite and ReceiveWrite with the following syntax.

• ew ← SendWrite
(
crs, digest, L, b, {mj,0,mj,1}|digest|

j=1

)
. It takes as input the common ref-

erence string crs, a digest digest, a location L ∈ N, a bit b ∈ {0, 1} to be written,

and |digest| pairs of messages {mj,0,mj,1}|digest|
j=1 , where each mj,c is of length κ. And it

outputs a ciphertext ew.

• {mj}|digest|
j=1 ← ReceiveWriteD̂(crs, L, b, ew). This is a RAM algorithm with random read-

/write access to D̂. It takes as input the common reference string crs, a location L, a
bit b ∈ {0, 1} and a ciphertext ew. It updates the state D̂ (such that D[L] = b) and

outputs messages {mj}|digest|
j=1 .

We require the following properties on top of properties of a laconic OT scheme.

• Correctness with Regard to Writes. For any database D of size at most M =
poly(κ) for any polynomial function poly(·), any memory location L ∈ [M ], any bit

b ∈ {0, 1}, and any messages {mj,0,mj,1}|digest|
j=1 of length κ, the following holds. Let D∗

be identical to D, except that D∗[L] = b,

Pr


m′j = mj,digest∗j

∀j ∈ [|digest|]

crs ← crsGen(1κ)

(digest, D̂) ← Hash(crs, D)

(digest∗, D̂∗) ← Hash(crs, D∗)

ew ← SendWrite
(
crs, digest, L, b, {mj,0,mj,1}|digest|

j=1

)
{m′j}

|digest|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)

 = 1,

where the probability is taken over the random choices made by crsGen and SendWrite.

Furthermore, we require that the execution of ReceiveWriteD̂ above updates D̂ to D̂∗.
(Note that digest is included in D̂, hence digest is also updated to digest∗.)

• Sender Privacy Against Semi-Honest Receivers with Regard to Writes.
There exists a PPT simulator `OTSimWrite such that the following holds. For any
database D of size at most M = poly(κ) for any polynomial function poly(·), any

memory location L ∈ [M ], any bit b ∈ {0, 1}, and any messages {mj,0,mj,1}|digest|
j=1
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of length κ, let crs ← crsGen(1κ), (digest, D̂) ← Hash(crs, D), and (digest∗, D̂∗) ←
Hash(crs, D∗), where D∗ is identical to D except that D∗[L] = b. Then it holds that(

crs, SendWrite(crs, digest, L, b, {mj,0,mj,1}|digest|
j=1 )

)
c
≈

(
crs, `OTSimWrite

(
crs, D, L, b, {mj,digest∗j

}j∈[|digest|]

))
.

• Efficiency. We require that both SendWrite and ReceiveWrite run in time poly(log |D|, κ).

2.3 Laconic OT with Factor-2 Compression

In this section, based on the DDH assumption we construct a laconic OT scheme for which
the hash function Hash compresses a database of length 2κ into a digest of length κ. We refer
to this primitive as laconic OT with factor-2 compression. We note that, subsequent to our
work, the factor-2 compression construction has been simplified by Döttling and Garg [DG17]
(another alternative simplification can be obtained using [AIKW13]). We refer the reader
to [DG17] for the simpler construction and preserve the older construction here.

In the following, we give necessary background in Section 2.3.1 and construct two prim-
itives as building blocks: (1) a somewhere statistically binding (SSB) hash function that
is friendly to hash proof system (in Section 2.3.2) and (2) a hash proof system that allows
for proving knowledge of preimage bits for this SSB hash function (in Section 2.3.3). We
present the `OT scheme with factor-2 compression in Section 2.3.4 and prove its security in
Section 2.3.5.

2.3.1 Background

In this section, we first formalize notations and computational assumptions used in our
construction. We then give definitions of somewhere statistically binding (SSB) hash func-
tions [HW15] and hash proof systems [CS98]. For simplicity, we only define SSB hash
functions that compress 2κ values in the domain into κ bits. The more general definition
works analogously.

2.3.1.1 Notations

We start with some notations. Let (G, ·) be a cyclic group of order p with generator g. Let
M ∈ Zm×np be a matrix. We will denote by M̂ = gM ∈ Gm×n the element-wise exponentiation

of g with the elements of M. We also define L̂ = ĤM ∈ Gm×k, where Ĥ ∈ Gm×n and

M ∈ Zn×kp as follows: Each element L̂i,j =
∏n

k=1 Ĥ
Mk,j

i,k (intuitively this operation corresponds
to matrix multiplication in the exponent). This is well-defined and efficiently computable.
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2.3.1.2 Computational Assumptions

In the following, we define the computational problems on which we base the security of our
HPS-friendly SSB hash function.

Definition 2.3.1 (The Decisional Diffie-Hellman (DDH) Problem). Let (G, ·) be a cyclic
group of prime order p and with generator g. Let a, b, c be sampled uniformly at random from

Zp (i.e., a, b, c
$←− Zp). The DDH problem asks to distinguish the distributions (g, ga, gb, gab)

and (g, ga, gb, gc).

Definition 2.3.2 (Matrix Rank Problem). Let m,n be integers and let Zm×n;r
p be the set

of all m × n matrices over Zp with rank r. Further, let 1 ≤ r1 < r2 ≤ min(m,n). The
goal of the matrix rank problem, denoted as MatrixRank(G,m, n, r1, r2), is to distinguish the

distributions gM1 and gM2, where M1
$←− Zm×n;r1

p and M2
$←− Zm×n;r2

p .

In a recent result by Villar [Vil12] it was shown that the matrix rank problem can be
reduced almost tightly to the DDH problem.

Theorem 2.3.3 ([Vil12] Theorem 1, simplified). Assume there exists a PPT distinguisher
D that solves MatrixRank(G,m, n, r1, r2) problem with advantage ε. Then, there exists a
PPT distinguisher D′ (running in almost time as D) that solves DDH problem over G with
advantage at least ε

dlog2(r2/r1)e .

2.3.1.3 Somewhere Statistically Binding (SSB) Hash Functions

Definition 2.3.4 (Somewhere Statistically Binding Hashing). An SSB hash function SSBH
consists of three algorithms crsGen, bindingCrsGen and Hash with the following syntax.

• crs ← crsGen(1κ). It takes the security parameter κ as input and outputs a common
reference string crs.

• crs ← bindingCrsGen(1κ, i). It takes as input the security parameter κ and an index
i ∈ [2κ], and outputs a common reference string crs.

• y ← Hash(crs, x). For some domain D, it takes as input a common reference string crs
and a string x ∈ D2κ, and outputs a string y ∈ {0, 1}κ.

We require the following properties of an SSB hash function.

• Statistically Binding at Position i. For every i ∈ [2κ] and an overwhelming
fraction of crs in the support of bindingCrsGen(1κ, i) and every x ∈ D2κ, we have that
(crs,Hash(crs, x)) uniquely determines xi. More formally, for all x′ ∈ D2κ such that
xi 6= x′i we have that Hash(crs, x′) 6= Hash(crs, x).

• Index Hiding. It holds for all i ∈ [2κ] that crsGen(1κ)
c
≈ bindingCrsGen(1κ, i), i.e.,

common reference strings generated by crsGen and bindingCrsGen are computationally
indistinguishable.
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2.3.1.4 Hash Proof Systems

Next, we define hash proof systems [CS98] that are designated verifier proof systems that
allow for proving that the given problem instance in some language. We give the formal
definition as follows.

Definition 2.3.5 (Hash Proof System). Let Lz ⊆ Mz be an NP-language residing in a
universe Mz, both parametrized by some parameter z. Moreover, let Lz be characterized by
an efficiently computable witness-relation R, namely, for all x ∈Mz it holds that x ∈ Lz ⇔
∃w : R(x,w) = 1. A hash proof system HPS for Lz consists of three algorithms KeyGen,
Hpublic and Hsecret with the following syntax.

• (pk, sk)← KeyGen(1κ, z): Takes as input the security parameter κ and a parameter z,
and outputs a public-key and secret key pair (pk, sk).

• y ← Hpublic(pk, x, w): Takes as input a public key pk, an instance x ∈ Lz, and a witness
w, and outputs a value y.

• y ← Hsecret(sk, x): Takes as input a secret key sk and an instance x ∈Mz, and outputs
a value y.

We require the following properties of a hash proof system.

• Perfect Completeness. For every z, every (pk, sk) in the support of KeyGen(1κ, z),
and every x ∈ Lz with witness w (i.e., R(x,w) = 1), it holds that

Hpublic(pk, x, w) = Hsecret(sk, x).

• Perfect Soundness. For every z and every x ∈Mz\Lz, let (pk, sk)← KeyGen(1κ, z),
then it holds that

(z, pk,Hsecret(sk, x)) ≡ (z, pk, u),

where u is distributed uniformly random in the range of Hsecret. Here, ≡ denotes dis-
tributional equivalence.

2.3.2 HPS-Friendly SSB Hash Function

In this section, we construct an SSB hash function that supports a hash proof system. In
particular, there is a hash proof system that enables proving that a certain bit of the pre-
image of a hash-value has a certain fixed value (in our case, either 0 or 1).
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Construction. Our construction builds on the scheme of Okamoto et al. [OPWW15]. We
will not delve into the details of their scheme and directly jump into our construction.

Let n be an integer such that n = 2κ, and let (G, ·) be a cyclic group of order p and with
generator g. Let Ti ∈ Z2×n

p be a matrix which is zero everywhere except the i-th column,
and the i-th column is equal to t = (0, 1)>. The three algorithms of the SSB hash function
are defined as follows.

• crsGen(1κ): Pick a uniformly random matrix H
$←− Z2×n

p and output Ĥ = gH.

• bindingCrsGen(1κ, i): Pick a uniformly random vector (w1, w2)> = w
$←− Z2

p with the

restriction that w1 = 1, pick a uniformly random vector a
$←− Znp and set A← w · a>.

Set H← Ti + A and output Ĥ = gH.

• Hash(crs,x): Parse x as a vector in Dn (D = Zp) and parse crs = Ĥ. Compute y ∈ G2

as y = Ĥx. Parse y as a binary string and output the result.

Compression. Notice that we can get factor two compression for an input space {0, 1}2κ

by restricting the domain to D′ = {0, 1} ⊂ D. The input length n = 2κ, where κ is set to be
twice the number of bits in the bit representation of a group element in G. In the following
we assume that n = 2κ and that the bit-representation size of a group element in G is κ

2
.

Security Proof. We first show that the distributions crsGen(1κ) and bindingCrsGen(1κ, i)
are computationally indistinguishable for every index i ∈ [n], given that the DDH problem
is computationally hard in the group G.

Lemma 2.3.6 (Index Hiding). Assume that the MatrixRank(G, 2, n, 1, 2) problem is hard.
Then the distributions crsGen(1κ) and bindingCrsGen(1κ, i) are computationally indistinguish-
able, for every i ∈ [n].

Proof. Assume there exists a PPT distinguisherD that distinguishes the distributions crsGen(1κ)
and bindingCrsGen(1κ, i) with non-negligible advantage ε. We will construct a PPT distin-
guisher D′ that distinguishes MatrixRank(G, 2, n, 1, 2) with non-negligible advantage.

The distinguisher D′ does the following on input M̂ ∈ G2×n. It computes Ĥ ∈ G2×n as
element-wise multiplication of M̂ and gTi and runs D on Ĥ. If D outputs crsGen, then D′
outputs rank 2, otherwise D′ outputs rank 1.

We now show that D′ also has non-negligible advantage. Write D′’s input as M̂ = gM. If
M is chosen uniformly random with rank 2, then M is uniform in Z2×n

p with overwhelming
probability. Hence with overwhelming probability, M + Ti is also distributed uniformly
random and it follows that Ĥ = gM+Ti is uniformly random in G2×n which is identical
to the distribution generated by crsGen(1κ). On the other hand, if M is chosen uniformly
random with rank 1, then there exists a vector w ∈ Z2

p such that each column of M can
be written as ai · w. We can assume that the first element w1 of w is 1, since the case
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w1 = 0 happens only with probability 1/p = negl(κ) and if w1 6= 0 we can replace all
ai by a′i = ai · w1 and replace wi by w′i = wi

w1
. Thus, we can write M as M = w · a>

and consequently Ĥ as Ĥ = gw·a
>+Ti . Notice that a is uniformly distributed, hence Ĥ

is identical to the distribution generated by bindingCrsGen(1κ, i). Since D can distinguish
the distributions crsGen(1κ) and bindingCrsGen(1κ, i) with non-negligible advantage ε, D′
can distinguish MatrixRank(G, 2, n, 1, 2) with advantage ε − negl(κ), which contradicts the
hardness of MatrixRank(G, 2, n, 1, 2).

A corollary of Lemma 2.3.6 is that for all i, j ∈ [n] the distributions bindingCrsGen(1κ, i)
and bindingCrsGen(1κ, j) are indistinguishable, stated as follows.

Corollary 2.3.7. Assume the MatrixRank(G, 2, n, 1, 2) problem is computationally hard.
Then it holds for all i, j ∈ [n] that bindingCrsGen(1κ, i) and bindingCrsGen(1κ, j) are compu-
tationally indistinguishable.

We next show that if the common reference string crs = Ĥ is generated by bindingCrsGen(1κ, i),
then the hash value Hash(crs,x) is statistically binded to xi.

Lemma 2.3.8 (Statistically Binding at Position i). For every i ∈ [n], every x ∈ Znp , and all
choices of crs in the support of bindingCrsGen(1κ, i) we have that for every x′ ∈ Znp such that
x′i 6= xi, Hash(crs,x) 6= Hash(crs,x′).

Proof. We first write crs as Ĥ = gH = gw·a
>+Ti and Hash(crs,x) as Hash(Ĥ,x) = gy = gH·x.

Thus, by taking the discrete logarithm with basis g our task is to demonstrate that there
exists a unique xi from H = w · a> + Ti and y = H · x. Observe that

y = H · x = (w · a> + Ti) · x = w · 〈a,x〉+ Ti · x

=

(
1
w2

)
· 〈a,x〉+

(
0
1

)
· xi,

where 〈a,x〉 is the inner product of a and x. If a 6= 0, then we can use any non-zero element
of a to compute w2 from H, and recover xi by computing xi = y2−w2 · y1; otherwise a = 0,
so xi = y2.

2.3.3 A Hash Proof System for Knowledge of Preimage Bits

In this section, we give our desired hash proof systems. In particular, we need a hash proof
system for membership in a subspace of a vector space.

Construction. Fix a matrix Ĥ ∈ G2×n and an index i ∈ [n]. We will construct a hash
proof system HPS = (KeyGen,Hpublic,Hsecret) for the following language LĤ,i:

LĤ,i = {(ŷ, b) ∈ G2 × {0, 1} | ∃x ∈ Znp s.t. ŷ = Ĥx and xi = b}.
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Note that in our hash proof system we only enforce that a single specified bit is b, where
b ∈ {0, 1}. However, our hash proof system does not place any requirement on the value used
at any of the other locations. In fact the values used at the other locations may actually
be from the full domain D (i.e., Zp). Observe that the formal definition of the language
LĤ,i above incorporates this difference in how the honest computation of the hash function
is performed and what the hash proof system is supposed to prove.

For ease of exposition, it will be convenient to work with a matrix Ĥ′ ∈ G3×n
p :

Ĥ′ =

(
Ĥ

ge
>
i

)
,

where ei ∈ Znp is the i-th unit vector, with all elements equal to zero except the ith one which
is equal to one.

• KeyGen(1κ, (Ĥ, i)): Choose r
$←− Z3

p uniformly at random. Compute ĥ =
(

(Ĥ′)>
)r

.

Set pk = ĥ and sk = r. Output (pk, sk).

• Hpublic(pk, (ŷ, b),x): Parse pk as ĥ. Compute ẑ = (ĥ>)x and output ẑ.

• Hsecret(sk, (ŷ, b)): Parse sk as r and set ŷ′ =

(
ŷ
gb

)
. Compute ẑ = ((ŷ′)>)r and output

ẑ.

Security Proof. In our proof we need the following technical lemma.

Lemma 2.3.9. Let M ∈ Zm×np be a matrix. Let colsp(M) = {M · x | x ∈ Znp} be its column
space, and rowsp(M) = {x> ·M | x ∈ Zmp } be its row space. Assume that y ∈ Zmp and

y /∈ colsp(M). Let r
$←− Zmp be chosen uniformly at random. Then it holds that

(M,y, r>M, r>y) ≡ (M,y, r>M, u),

where u
$←− Zp is distributed uniformly and independently of r. Here, ≡ denotes distributional

equivalence.

Proof. For any t ∈ rowsp(M) and s ∈ Zp, consider following linear equation system{
r>M = t
r>y = s

.

Let N be the left null space of M. We know that y /∈ colsp(M), hence M has rank
≤ m− 1, therefore N has dimension ≥ 1. Let r0 be an arbitrary solution for r>M = t, and
let n be a vector in N such that n>y 6= 0 (there must be such a vector since y /∈ colsp(M)).
Then there exists a solution r for the above linear equation system, that is,

r = r0 + (n>y)−1 · (s− r>0 y) · n,
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where (n>y)−1 is the multiplicative inverse of n>y in Zp. Then two cases arise: (i) column
vectors of (M y) are full-rank, or (ii) not. In this first case, there is a unique solution for
r. In the second case the solution space has the same size as the left null space of (M y).
Therefore, in both cases, the number of solutions for r is the same for every (t, s) pair.

As r is chosen uniformly at random, all pairs (t, s) ∈ rowsp(M) × Zp have the same
probability of occurrence and the claim follows.

Now we are ready to prove security.

Theorem 2.3.10. For every matrix Ĥ ∈ G2×n and every i ∈ [n], HPS is a hash proof system
for the language LĤ,i.

Proof. Let Ĥ = gH, r = (r∗, r3) where r∗ ∈ Z2
p. Let y′ := logg ŷ′, y := logg ŷ, H′ := logg Ĥ′,

h := logg ĥ.

For perfect correctness, we need to show that for every i ∈ [n], every Ĥ ∈ G2×n, and every
(pk, sk) in the support of KeyGen(1κ, (Ĥ′, i)), if (ŷ, b) ∈ LĤ,i and x is a witness for member-

ship (i.e., ŷ = Ĥx and xi = b), then it holds that Hpublic(pk, (ŷ, b),x) = Hsecret(sk, (ŷ, b)).
To simplify the argument, we again consider the statement under the discrete logarithm

with basis g. Then it holds that

logg (Hsecret(sk, (ŷ, b)))

= logg
((

(ŷ′)>
)r)

= 〈y′, r〉 = 〈y, r∗〉+ b · r3

=〈H · x, r∗〉+ xi · r3 = 〈H′x, r〉 = 〈(H′)>r,x〉

=〈h,x〉 = logg

(
(ĥ>)x

)
= logg (Hpublic(pk, (ŷ, b),x)) .

For perfect soundness, let (pk, sk) ← KeyGen(1κ, (Ĥ′, i)). We will show that if (ŷ, b) /∈
LĤ,i, then Hsecret(sk, (ŷ, b)) is distributed uniformly random in the range of Hsecret, even given

Ĥ, i, and pk. Again under the discrete logarithm, this is equivalent to showing that 〈y′, r〉
is distributed uniformly random given H′ and h = (H′)>r.

Note that we can re-write the language LĤ,i = {(ŷ, b) ∈ G2×Zp | ∃x ∈ Znp s.t. H′x = y′}.
It follows that if (ŷ, b) /∈ LĤ,i, then y′ /∈ span(H′). Now it follows directly from Lemma 2.3.9
that

r>y′ ≡ u

given H′ and r>H′, where u is distributed uniformly random. This concludes the proof.

Remark 2.3.11. While proving the security of our applications based on the above hash-proof
system, we would generate Ĥ to be the output of bindingCrsGen(1κ, i) and use the property
that if (ŷ, b) ∈ LĤ,i, then (ŷ, (1 − b)) /∈ LĤ,i. This follows directly from Lemma 2.3.8 (that

is, Ĥ and ŷ uniquely fixes xi).
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2.3.4 Construction of Laconic OT with Factor-2 Compression

We are now ready to put the pieces together and provide our `OT scheme with factor-2
compression.

Let SSBH = (SSBH.crsGen, SSBH.bindingCrsGen, SSBH.Hash) be the HPS-friendly SSB
hash function constructed in Section 2.3.2 with domain D = Zp. Notice that we achieve
factor-2 compression (namely, compressing 2κ bits into κ bits) by restricting the domain
from Dn to {0, 1}n in our laconic OT scheme. Also, abstractly let the associated hash proof
system be HPS = (HPS.KeyGen,HPS.Hpublic,HPS.Hsecret) for the language

Lcrs,i = {(digest, b) ∈ {0, 1}κ×{0, 1} | ∃D ∈ D2κ : SSBH.Hash(crs, D) = digest and D[i] = b}.

Recall that the bit-representation size of a group element of G is κ
2
, hence the language

defined above is the same as the one defined in Section 2.3.3.

Now we construct the laconic OT scheme `OT = (crsGen,Hash, Send,Receive) as follows.

• crsGen(1κ): Compute crs← SSBH.crsGen(1κ) and output crs.

• Hash(crs, D ∈ {0, 1}2κ) :
digest← SSBH.Hash(crs, D)

D̂← (D, digest)

Output (digest, D̂)

• Send(crs, digest, L,m0,m1):
Let HPS be the hash-proof system for the language Lcrs,L

(pk, sk)← HPS.KeyGen(1κ, (crs, L))
c0 ← m0 ⊕ HPS.Hsecret(sk, (digest, 0))
c1 ← m1 ⊕ HPS.Hsecret(sk, (digest, 1))
Output e = (pk, c0, c1)

• ReceiveD̂(crs, e, L):
Parse e = (pk, c0, c1)

Parse D̂ = (D, digest), and set b← D[L].
m← cb ⊕ HPS.Hpublic(pk, (digest, b), D)
Output m

2.3.5 Security Proof

We now prove that `OT is a laconic OT protocol with factor-2 compression, i.e., it has
compression factor 2, and satisfies the correctness and sender privacy requirements. First
notice that SSBH.Hash is factor-2 compressing, so Hash also has compression factor 2. We
next argue correctness and sender privacy in Lemmas 2.3.12 and 2.3.13, respectively.
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Lemma 2.3.12. Given that HPS satisfies the correctness property, the `OT scheme also
satisfies the correctness property.

Proof. Fix a common reference string crs in the support of crsGen(1κ), a database string
D ∈ {0, 1}2κ and an index L ∈ [2κ]. For any crs, D, L such that D[L] = b, let digest =
Hash(crs, D). Then it clearly holds that (digest, b) ∈ Lcrs,L. Thus, by the correctness property
of the hash proof system HPS it holds that

HPS.Hsecret(sk, (digest, b)) = HPS.Hpublic(pk, (digest, b), D).

By the construction of Send(crs, digest, L,m0,m1), cb = mb ⊕ HPS.Hsecret(sk, (digest, b)).

Hence the output m of ReceiveD̂(crs, e, L) is

m =cb ⊕ HPS.Hpublic(pk, (digest, b), D)

=mb ⊕ HPS.Hsecret(sk, (digest, b))⊕ HPS.Hpublic(pk, (digest, b), D)

=mb.

Lemma 2.3.13. Given that SSBH is index-hiding and has the statistically binding property
and that HPS is sound, then the `OT scheme satisfies sender privacy against semi-honest
receiver.

Proof. We first construct the simulator `OTSim.

`OTSim(crs, D, L,mD[L]):
digest← SSBH.Hash(crs, D)
Let HPS be the hash-proof system for the language Lcrs,L

(pk, sk)← HPS.KeyGen(1κ, (crs, L))
c0 ← mD[L] ⊕ HPS.Hsecret(sk, (digest, 0))
c1 ← mD[L] ⊕ HPS.Hsecret(sk, (digest, 1))
Output (pk, c0, c1)

For any database D of size at most M = poly(κ) for any polynomial function poly(·),
any memory location L ∈ [M ], and any pair of messages (m0,m1) ∈ {0, 1}κ × {0, 1}κ, let
crs ← crsGen(1κ) and digest ← Hash(crs, D). Then we will prove that the two distributions
(crs, Send(crs, digest, L,m0,m1)) and (crs, `OTSim(crs, D, L,mD[L])) are computationally in-
distinguishable. Consider the following hybrids.

• Hybrid 0: This is the real experiment, namely (crs, Send(crs, digest, L,m0,m1)).

• Hybrid 1: Same as hybrid 0, except that crs is computed by crs← SSBH.bindingCrsGen(1κ, L).

• Hybrid 2: Same as hybrid 1, except that c1−D[L] is computed by c1−D[L] ← mD[L] ⊕
HPS.Hsecret(sk, (digest, 1 − D[L])). That is, both c0 and c1 encrypt the same message
mD[L].
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• Hybrid 3: Same as hybrid 2, except that crs is computed by crs ← SSBH.crsGen(1κ).
This is the simulated experiment, namely (crs, `OTSim(crs, D, L,mD[L])).

Indistinguishability of hybrid 0 and hybrid 1 follows directly from Lemma 2.3.6, as we
replace the distribution of crs from SSBH.crsGen(1κ) to SSBH.bindingCrsGen(1κ, L). Indistin-
guishability of hybrids 2 and 3 also follows from Lemma 2.3.6, as we replace the distribution
of crs from SSBH.bindingCrsGen(1κ, L) back to SSBH.crsGen(1κ).

We now show that hybrids 1 and 2 are identically distributed. Since crs is in the support
of SSBH.bindingCrsGen(1κ, i) and digest = SSBH.Hash(crs, D), by Lemma 2.3.8 it holds that
(digest, 1−D[L]) /∈ Lcrs,L. By the soundness property of the hash-proof system HPS, it holds
that

(crs, L, pk,HPS.Hsecret(sk, (digest, 1−D[L]))) ≡ (crs, L, pk, u),

for a uniformly random u. Furthermore, cD[L] can be computed bymD[L]⊕HPS.Hpublic(pk, (digest,
D[L]), D). Hence

(crs, L, pk,mD[L] ⊕ HPS.Hsecret(sk, (digest, 1−D[L])), cD[L])

≡(crs, L, pk, u, cD[L])

≡(crs, L, pk,m1−D[L] ⊕ HPS.Hsecret(sk, (digest, 1−D[L])), cD[L]).

This concludes the proof.

2.4 Laconic OT with Arbitrary Compression

In this section, we construct an updatable laconic OT that supports a hash function that
allows for compression from an input (database) of size an arbitrary polynomial in κ to κ bits.
As every updatable laconic OT protocol is also a (standard) laconic OT protocol, we will
only construct the former. Our main technique in this construction, is the use of garbled
circuits to bootstrap a laconic OT with factor-2 compression into one with an arbitrary
compression factor.

Below in Section 2.4.1 we describe some background on the primitives needed for realizing
our laconic OT construction. Then we give the construction of laconic OT along with its
correctness and security proofs in Sections 2.4.2 and 2.4.3, respectively.

2.4.1 Background

In this section we recall the needed background of garbled circuits and Merkle trees.

2.4.1.1 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82; Yao86] (see Lindell and Pinkas [LP09]
and Bellare et al. [BHR12] for a detailed proof and further discussion). A circuit garbling
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scheme GC is a tuple of PPT algorithms (GCircuit,GEval). Very roughly GCircuit is the circuit
garbling procedure and GEval the corresponding evaluation procedure. Looking ahead, each
individual wire w of the circuit being garbled will be associated with two labels, namely
labw,0, labw,1.

• C̃← GCircuit
(
1κ,C, {labw,b}w∈inp(C),b∈{0,1}

)
: GCircuit takes as input a security parameter

κ, a circuit C, and a set of labels labw,b for all the input wires w ∈ inp(C) and b ∈ {0, 1}.
This procedure outputs a garbled circuit C̃.

• y ← GEval
(
C̃, {labw,xw}w∈inp(C)

)
: Given a garbled circuit C̃ and a garbled input repre-

sented as a sequence of input labels {labw,xw}w∈inp(C), GEval outputs y.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}m
(here m is the input length to C) we have that:

Pr
[
C(x) = GEval

(
C̃, {labw,xw}w∈inp(C)

)]
= 1

where C̃← GCircuit
(
1κ,C, {labw,b}w∈inp(C),b∈{0,1}

)
.

Security. For security, we require that there is a PPT simulator CircSim such that for any
C, x, and uniformly random keys {labw,b}w∈inp(C),b∈{0,1}, we have that(

C̃, {labw,xw}w∈inp(C)

)
c
≈ CircSim (1κ,C, y)

where C̃← GCircuit
(
1κ,C, {labw,b}w∈inp(C),b∈{0,1}

)
and y = C(x).

Terminology of Keys and Labels. We use the notation Keys to refer to both the secret
values sampled for wires and the notation Labels to refer to exactly one of them. In other
words, generation of garbled circuit involves Keys while computation itself depends just on
Labels. Let Keys = ((lab1,0, lab1,1), . . . , (labn,0, labn,1)) be a list of n key-pairs, we denote Keysx
for a string x ∈ {0, 1}n to be a list of labels (lab1,x1 , . . . , labn,xn).

2.4.1.2 Merkle Tree

In this section we briefly review Merkle trees. A Merkle tree is a hash based data structure
that generically extend the domain of a hash function. The following description will be
tailored to the hash function of the laconic OT scheme that we will present in Section 2.4.2.
Given a two-to-one hash function Hash : {0, 1}2κ → {0, 1}κ, we can use a Merkle tree to
construct a hash function that compresses a database of an arbitrary (a priori unbounded
polynomial in κ) size to a κ-bit string. Now we briefly illustrate how to compress a database
D ∈ {0, 1}M (assume for ease of exposition that M = 2d · κ). First, we partition D into
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strings of length 2κ; we call each string a leaf. Then we use Hash to compress each leaf into
a new string of length κ; we call each string a node. Next, we bundle the new nodes in pairs
of two and call these pairs siblings, i.e., each pair of siblings is a string of length 2κ. We then
use Hash again to compress each pair of siblings into a new node of size κ. We continue the
process till a single node of size κ is obtained. This process forms a binary tree structure,
which we refer to as a Merkle tree. Looking ahead, the hash function of the laconic OT
scheme has output (D̂, digest), where D̂ is the entire Merkle tree, and digest is the root of the
tree.

A Merkle tree has the following property. In order to verify that a database D with hash
root digest has a certain value b at a location L (namely, D[L] = b), there is no need to
provide the entire Merkle tree. Instead, it is sufficient to provide a path of siblings from the
Merkle tree root to the leaf that contains location L. It can then be easily verified if the
hash values from the leaf to the root are correct.

Moreover, a Merkle tree can be updated in the same fashion when the value at a certain
location of the database is updated. Instead of recomputing the entire tree, we only need to
recompute the nodes on the path from the updated leaf to the root. This can be done given
the path of siblings from the root to the leaf.

2.4.2 Construction of Updatable Laconic OT with Arbitrary
Compression

We now present our construction to bootstrap an `OT scheme with factor-2 compression
into an updatable `OT scheme with an arbitrary compression factor, which can compress a
database of an arbitrary (a priori unbounded polynomial in κ) size.

Overview. We first give an overview of the construction. Consider a database D ∈ {0, 1}M
such that M = 2d · κ. Given a laconic OT scheme with factor-2 compression (denoted as
`OTconst), we will first use a Merkle tree to obtain a hash function with arbitrary (polynomial)
compression factor. As described in Section 2.4.1.2, the Hash function of the updatable `OT
scheme will have an output (D̂, digest), where D̂ is the entire Merkle tree, and digest is the
root of the tree.

In the Send algorithm, suppose we want to send a message depending on a bit D[L], we
will follow the natural approach of traversing the Merkle tree layer by layer until reaching
the leaf containing L. In particular, L can be represented as L = (b1, . . . , bd−1, t), where
b1, . . . , bd−1 are bits representing the path from the root to the leaf containing location L,
and t ∈ [2κ] is the position within the leaf. The Send algorithm first takes as input the root
digest of the Merkle tree, and it will generate a chain of garbled circuits, which would enable
the receiver to traverse the Merkle tree from the root to the leaf. And upon reaching the
leaf, the receiver will be able to evaluate the last garbled circuit and retrieve the message
corresponding to the t-th bit of the leaf.



CHAPTER 2. LACONIC OBLIVIOUS TRANSFER 33

We briefly explain the chain of garbled circuits as follows. The chain consists of d − 1
traversing circuits along with a reading circuit. Every traversing circuit takes as input a
pair of siblings sbl = (sbl0, sbl1) at a certain layer of the Merkle tree, chooses sblb which
is the node in the path from root to leaf, and generates a laconic OT ciphertext (using
`OTconst.Send) which encrypts the input keys of the next traversing garbled circuit and uses
sblb as the hash value. Looking ahead, when the receiver evaluates the traversing circuit and
obtains the laconic OT ciphertext, he can then use the siblings at the next layer to decrypt
the ciphertext (by `OTconst.Receive) and obtain the corresponding input labels for the next
traversing garbled circuit. Using the chain of traversing garbled circuits the receiver can
therefore traverse from the first layer to the leaf of the Merkle tree. Furthermore, the correct
keys for the first traversing circuit are sent via the `OTconst with digest (i.e., root of the tree)
as the hash value.

Finally, the last traversing circuit will transfer keys for the last reading circuit to the
receiver in a similar fashion as above. The reading circuit takes the leaf as input and outputs
mleaf[t], i.e., the message corresponding to the t-th bit of the leaf. Hence, when evaluating
the reading circuit, the receiver can obtain the message mleaf[t].

SendWrite and ReceiveWrite are similar as Send and Receive, except that (a) ReceiveWrite
updates the Merkle tree from the leaf to the root, and (b) the last writing circuit recomputes
the root of the Merkle tree and outputs messages corresponding to the new root. To enable
(b), the writing circuit will take as input the whole path of siblings from the root to the leaf.
The input keys for the writing circuit corresponding to the siblings at the (i+1)-th layer are
transferred via the i-th traversing circuit. That is, the i-th traversing circuit transfers the
keys for the (i + 1)-th transferring circuit as well as partial keys for the writing circuit. In
the actual construction, both the reading circuit and writing circuit take as input the entire
path of siblings (for the purpose of symmetry).

Construction. Let GC = (GCircuit,GEval) be a circuit garbling scheme. Let `OTconst =
(`OTconst.crsGen, `OTconst.Hash, `OTconst.Send, `OTconst.Receive) be a laconic OT protocol with
factor-2 compression. Without loss of generality, let D ∈ {0, 1}M be a database such that
|M | = 2d · κ. A location L ∈ [M ] can be represented as (b1, b2, . . . , bd−1, t) ∈ {0, 1}d−1× [2κ],
where the bits bi’s define the path from the root to a leaf in the Merkle tree, and t ∈ [2κ]
defines a position in that leaf.

Before delving into the construction, we first describe three gadget circuits: the traversing
circuit Ctrav, the reading circuit Cread, and the writing circuit Cwrite. These circuits are defined
formally in Figures 2.2, 2.3, and 2.4, respectively.

The traversing circuit has hardwired inside it a common reference string crs, a bit b and
two vectors of input keys Keys, K̃eys, each containing 2κ key-pairs (a key-pair is a pair of
κ-bit strings). It takes as input a pair of siblings sbl = (sbl0, sbl1), each of length κ, and

generates two laconic OT Send messages with sblb as the digest and Keys, K̃eys as message
vectors respectively. Further, it also has the randomness needed for `OTconst.Send hardwired
inside it.
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The reading circuit Cread has a location t ∈ [2κ], and messages m0,m1 ∈ {0, 1}κ hardwired
inside it. It takes as input a path of siblings from the root to a leaf, reads the t-th bit of the
leaf, and outputs either m0 or m1 depending on that bit.

The writing circuit Cwrite has hardwired inside it a common reference string crs, a location
L ∈ [M ], a bit b and a vector of messages Keys consisting of κ key-pairs. It takes as input
a path of siblings from the root to a leaf, changes the t-th bit of the leaf to b (where L
corresponds to t-th location in the leaf), recomputes the Merkle tree root along the path,
and outputs the corresponding labels for the new root/digest.

Circuit Ctrav

Hardwired Values: crs, b, Keys, K̃eys, r, r̃
Input: sbl
Parse sbl as (sbl0, sbl1)
e← `OTconst.Send(crs, sblb,Keys; r)

ẽ← `OTconst.Send(crs, sblb, K̃eys; r̃)
Output (e, ẽ)

Figure 2.2: Description of the traversing circuit Ctrav[crs, b,Keys, K̃eys, r, r̃].

Circuit Cread

Hardwired Values: t, m0, m1

Input: path
Parse path = (sbl1, . . . , sbld−1, leaf)
Output mleaf[t]

Figure 2.3: Description of the reading circuit Cread[t,m0,m1].

Circuit Cwrite

Hardwired Values: crs, L, b, Keys
Input: path
Parse L = (b1, b2, . . . , bd−1, t)

Parse path = (sbl1, . . . , sbld−1, leaf), and parse sbli = (sbli0, sbl
i
1) for i ∈ [d− 1]

leaf[t]← b

sbld ← leaf
For i = d− 1 downto 1:

sblibi ← `OTconst.Hash(crs, sbli+1)
digest∗ ← `OTconst.Hash(crs, sbl1).
Output Keysdigest∗

Figure 2.4: Description of the writing circuit Cwrite[crs, L, b,Keys].
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Now we construct the updatable `OT , namely (crsGen,Hash, Send,Receive, SendWrite,
ReceiveWrite) as follows.

• crsGen(1κ): Sample crs← `OTconst.crsGen(1κ) and output crs.

• Hash(crs, D ∈ {0, 1}M):

Build a Merkle tree D̂ of D using `OTconst.Hash(crs, ·), as in Section 2.4.1.2.

Let digest be the root of D̂.

Output (digest, D̂).

• Send(crs, digest, L,m0,m1):
Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cread,

where K̃eys
i

corresponds to the input keys of sbli for i ∈ [d− 1],

and K̃eys
d

corresponds to the input keys of leaf.

C̃read ← GCircuit
(

1κ,Cread[t,m0,m1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto 1:
Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1κ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

e0 ← `OTconst.Send(crs, digest,Keys1)

ẽ0 ← `OTconst.Send(crs, digest, K̃eys
1
)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

• ReceiveD̂(crs, L, e):

Parse e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

Parse L = (b1, b2, . . . , bd−1, t)

Parse D̂ as a Merkle tree.

Denote the end node of path b1b2 . . . bi by D̂b1b2...bi .
For i = 1 to d− 1:

sbli ← (D̂b1...bi−10, D̂b1...bi−11)
Labelsi ← `OTconst.Receive(crs, ei−1, sbl

i)

L̃abels
i

← `OTconst.Receive(crs, ẽi−1, sbl
i)

(ei, ẽi)← GEval(C̃i, Labels
i)

leaf ← (D̂b1...bd−10, D̂b1...bd−11)

L̃abels
d

← `OTconst.Receive(crs, ẽd−1, leaf)

m← GEval

(
C̃read,

(
L̃abels

1

, . . . , L̃abels
d
))
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Output m

• SendWrite(crs, digest, L, b, {mj,0,mj,1}κj=1):

Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cwrite,

where K̃eys
i

corresponds to the input keys of sbli for i ∈ [d− 1],

and K̃eys
d

corresponds to the input keys of leaf.

C̃write ← GCircuit
(

1κ,Cwrite[crs, L, b, {mj,0,mj,1}κj=1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto 1:
Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1κ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

e0 ← `OTconst.Send(crs, digest,Keys1)

ẽ0 ← `OTconst.Send(crs, digest, K̃eys
1
)

Output ew = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
write)

• ReceiveWriteD̂(crs, L, b, ew):

Parse ew = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
write)

Parse L = (b1, b2, . . . , bd−1, t)

Parse D̂ as a Merkle tree.

Denote the end node of path b1b2 . . . bi by D̂b1b2...bi .
Computing messages corresponding to the new digest:

For i = 1 to d− 1:

sbli ← (D̂b1...bi−10, D̂b1...bi−11)
Labelsi ← `OTconst.Receive(crs, ei−1, sbl

i)

L̃abels
i

← `OTconst.Receive(crs, ẽi−1, sbl
i)

(ei, ẽi)← GEval(C̃i, Labels
i)

leaf ← (D̂b1...bd−10, D̂b1...bd−11)

L̃abels
d

← `OTconst.Receive(crs, ẽd−1, leaf)

{mj}κj=1 ← GEval

(
C̃write,

(
L̃abels

1

, . . . , L̃abels
d
))

Updating the Merkle tree:(
D̂b1...bd−10||D̂b1...bd−11

)
[t]← b

For i = d− 1 downto 0:

D̂b1...bi ← `OTconst.Hash(crs, D̂b1...bi0||D̂b1...bi1)

Update digest with the new root of D̂
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Output {mj}κj=1

Efficiency. It can be seen from the scheme that the length of digest is κ. The algorithm
Hash runs in time |D| · poly(log |D|, κ). Furthermore, Send,Receive, SendWrite, SendWrite all
run in time poly(log |D|, κ).

Correctness. We briefly argue (perfect) correctness of the updatable laconic OT scheme.

Given a ciphertext e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read) computed by Send, correctness of `OTconst

ensures that Labels1 ← `OTconst.Receive(crs, e0, sbl
1) outputs the correct labels for C̃1 and

that L̃abels
1

← `OTconst.Receive(crs, ẽ0, sbl
1) outputs the correct labels for C̃read, namely

Labels1 = Keys1
sbl1 and L̃abels

1

= K̃eys
1

sbl1 . In turn, correctness of the garbling scheme guaran-

tees that C̃1 outputs the correct (e1, ẽ1), namely e1 = `OTconst.Send(crs, sbl1b1 ,Keys
2; r1) and

ẽ1 = `OTconst.Send(crs, sbl1b1 , K̃eys
2
; r̃1). It follows inductively that for every i = 1, 2, . . . , d−1,

Labelsi = Keysisbli , L̃abels
i

= K̃eys
i

sbli , ei = `OTconst.Send(crs, sblibi ,Keys
i+1; ri), and ẽi =

`OTconst.Send(crs, sblibi , K̃eys
i+1

; r̃i). Again by using the correctness of `OTconst, L̃abels
d

←

`OTconst.Receive(crs, ẽd−1, leaf) gives L̃abels
d

= K̃eys
d

leaf . Then by using correctness of the

garbling scheme it follows that evaluating C̃read gives the correct output mD[L]. Correctness
with regard to writes can be argued analogously.

2.4.3 Security Proof

In this section, we prove the security of the above updatable laconic OT scheme.

Theorem 2.4.1 (Sender Privacy against Semi-honest Receivers). Given that `OTconst has
sender privacy and that the garbled circuit scheme GCircuit is secure, the updatable laconic
OT scheme `OT has sender privacy.

Proof. Let `OTSimconst be the simulator for `OTconst and CircSim be the simulator for the
garbling scheme GCircuit. Below, we provide the two simulators `OTSim for a read and
`OTSimWrite for the write.

• `OTSim(crs, D, L,m):

(digest, D̂)← Hash(crs, D)
Parse L = (b1, b2, . . . , bd−1, t)(
C̃read,

(
L̃abels

1

, . . . , L̃abels
d
))
← CircSim(1κ,Cread,m)

leaf ← (D̂b1...bd−10, D̂b1...bd−11)
ed−1 ← `OTSimconst (crs, leaf, 0∗)
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ẽd−1 ← `OTSimconst

(
crs, leaf, L̃abels

d
)

For i = d− 1 downto 1:

(C̃i, Labels
i)← CircSim(1κ,Ctrav, (ei, ẽi))

sbli ← (D̂b1...bi−10, D̂b1...bi−11)
ei−1 ← `OTSimconst(crs, sbl

i, Labelsi)

ẽi−1 ← `OTSimconst(crs, sbl
i, L̃abels

i

)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

• `OTSimWrite(crs, D, L, b, {mj}κj=1):

(digest, D̂)← Hash(crs, D)
Parse L = (b1, b2, . . . , bd−1, t)(
C̃write,

(
L̃abels

1

, . . . , L̃abels
d
))
← CircSim(1κ,Cwrite, {mj}κj=1)

leaf ← (D̂b1...bd−10, D̂b1...bd−11)
ed−1 ← `OTSimconst (crs, leaf, 0∗)

ẽd−1 ← `OTSimconst

(
crs, leaf, L̃abels

d
)

For i = d− 1 downto 1:

(C̃i, Labels
i)← CircSim(1κ,Ctrav, (ei, ẽi))

sbli ← (D̂b1...bi−10, D̂b1...bi−11)
ei−1 ← `OTSimconst(crs, sbl

i, Labelsi)

ẽi−1 ← `OTSimconst(crs, sbl
i, L̃abels

i

)

Output ew = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
write)

In the following we only prove sender security with regard to reads. Since (Send, `OTSim)
and (SendWrite, `OTSimWrite) are very similar, sender security with regard to writes can be
argued analogously.

We prove security via a hybrid argument. In the first hybrid, we replace the ciphertexts
e0 and ẽ0 computed by `OTconst.Send with ciphertexts computed by `OTSimconst.

Afterwards, we can use security of the garbling scheme to replace the honestly generated
C̃1 with a simulated one, and run `OTSimconst using the simulated input labels of C̃1. As
the output of C̃1 is again a pair of ciphertexts (e1, ẽ1), we will simulate it using `OTSimconst

in the next hybrid. We continue alternating between simulating the garbled circuits and
simulating the ciphertexts, until reaching the reading circuit. Once we reach the reading

circuit, it holds that all L̃abels
i

are information theoretically fixed to the path from the root
to the leaf containing L. We will then invoke the garbled circuit security of the reading
circuit, and conclude the hybrid argument.

The formal proof is as follows. For every PPT machine A, let crs ← crsGen(1κ), and
let (D,L,m0,m1) ← A(crs). Further let digest ← Hash(crs, D). Then we will prove that
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the two distributions (crs, Send(crs, digest, L,m0,m1)) and (crs, `OTSim(crs, D, L,mD[L])) are
computationally indistinguishable. Consider the following hybrids.

• Hybrid 0: This is the real experiment, i.e., (crs, Send(crs, digest, L,m0,m1)).

• Hybrid 1: Same has hybrid 0, except that e0 and ẽ0 are computed as follows.

(digest, D̂)← Hash(crs, D)

Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cread

C̃read ← GCircuit
(

1κ,Cread[t,m0,m1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto 1:
Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1κ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

sbl1 ← (D̂0, D̂1)

Labels1 ← Keys1
sbl1

L̃abels
1

← K̃eys
1

sbl1

e0 ← `OTSimconst(crs, sbl
1, Labels1)

ẽ0 ← `OTSimconst(crs, sbl
1, L̃abels

1

)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

The differences between hybrid 0 and hybrid 1 have been marked with boxes. Indis-
tinguishability between hybrid 0 and hybrid 1 can be argued from the multi-execution
sender security of `OTconst via the following reduction. Given crs by the experiment and
the adversarial input D, compute hybrid 1 until e0 and ẽ0 are computed. In particular,

compute D̂,Keys1, K̃eys
1
, sbl1, Labels1 = Keys1

sbl1 , L̃abels
1

= K̃eys
1

sbl1 . Then choose sbl1 as

the database and (Keys1, K̃eys
1
) as the messages for `OTconst, and obtain the challenge

(e∗0, ẽ
∗
0), which is from one of the following two distributions:(

`OTconst.Send(crs, sbl1,Keys1), `OTconst.Send(crs, sbl1, K̃eys
1
)
)

;(
`OTSimconst(crs, sbl

1, Labels1), `OTSimconst(crs, sbl
1, L̃abels

1

)

)
.

If (e∗0, ẽ
∗
0) is from the first distribution, then it results in hybrid 0; otherwise it results

in hybrid 1. Hence the indistinguishability of the two distributions implies indistin-
guishability of the two hybrids.
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• Hybrid 2k (k = 1, 2, . . . , d− 1): Same has hybrid 2k− 1, except that C̃k is computed
as follows.

(digest, D̂)← Hash(crs, D)
Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cread

C̃read ← GCircuit
(

1κ,Cread[t,m0,m1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto k + 1 :
Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1κ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)

sblk ← (D̂b1...bk−10, D̂b1...bk−11)

ek ← `OTconst.Send(crs, sblkbk ,Keys
k+1)

ẽk ← `OTconst.Send(crs, sblkbk , K̃eys
k+1

)

For i = k downto 1:

(C̃i, Labels
i)← CircSim(1κ,Ctrav, (ei, ẽi))

sbli ← (D̂b1...bi−10, D̂b1...bi−11)

L̃abels
i

← K̃eys
i

sbli

ei−1 ← `OTSimconst(crs, sbl
i, Labelsi)

ẽi−1 ← `OTSimconst(crs, sbl
i, L̃abels

i

)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

• Hybrid 2k + 1 (k = 1, 2, . . . , d − 1): Same has hybrid 2k, except that ek and ẽk are
computed as follows.

(digest, D̂)← Hash(crs, D)
Parse L = (b1, b2, . . . , bd−1, t).

Pick
(
K̃eys

1
, . . . , K̃eys

d
)

as input keys for Cread

C̃read ← GCircuit
(

1κ,Cread[t,m0,m1],
(
K̃eys

1
, . . . , K̃eys

d
))

Let Keysd be 0∗

For i = d− 1 downto k + 1:
Pick Keysi as input keys for Ctrav

Pick ri, r̃i as random coins for `OTconst.Send

C̃i ← GCircuit
(

1κ,Ctrav[crs, bi,Keys
i+1, K̃eys

i+1
, ri, r̃i],Keys

i
)
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sblk+1 ← (D̂b1...bk0, D̂b1...bk1)

Labelsk+1 ← Keysk+1

sblk+1

L̃abels
k+1

← K̃eys
k+1

sblk+1

ek ← `OTSimconst(crs, sbl
k+1, Labelsk+1)

ẽk ← `OTSimconst(crs, sbl
k+1, L̃abels

k+1

)

For i = k downto 1:

(C̃i, Labels
i)← CircSim(1κ,Ctrav, (ei, ẽi))

sbli ← (D̂b1...bi−10, D̂b1...bi−11)

L̃abels
i

← K̃eys
i

sbli

ei−1 ← `OTSimconst(crs, sbl
i, Labelsi)

ẽi−1 ← `OTSimconst(crs, sbl
i, L̃abels

i

)

Output e = (e0, ẽ0, C̃1, . . . , C̃d−1, C̃
read)

We first show that hybrids 2k − 1 and 2k are indistinguishable via a reduction to
the security of the garbling scheme GCircuit. Notice that the only difference between
hybrids 2k − 1 and 2k is (C̃k, ek−1). Consider the following two distributions:

(C̃k, Labels
k)←

(
GCircuit

(
1κ,Ctrav[crs, bk,Keys

k+1, K̃eys
k+1

, ri, r̃k],Keys
k
)
,Keysksblk

)
;

(C̃k, Labels
k)← CircSim (1κ,Ctrav, (ek, ẽk)) ,

where ek ← `OTconst.Send(crs, sblkbk ,Keys
k+1) and ẽk ← `OTconst.Send(crs, sblkbk , K̃eys

k+1
).

Notice that (ek, ẽk) is the output of (C̃k, Labels
k) from the first distribution. By secu-

rity of the garbled circuit scheme, the above two distributions are computationally
indistinguishable. Furthermore, if C̃k is generated using the first distribution and ek−1

is computed using Labelsk from the first distribution, then it results in hybrid 2k − 1;
otherwise it results in hybrid 2k. Hence the two hybrids are computationally indistin-
guishable.

Indistinguishability of hybrids 2k and 2k + 1 follows again from sender security of
`OTconst, in the same fashion as the indistinguishability between hybrids 0 and 1.

• Hybrid 2d: This is the simulated experiment, namely (crs, `OTSim(crs, D, L,mD[L])).

The difference between hybrids 2d − 1 and 2d is
(
C̃read, ẽ0, . . . , ẽd−1

)
. The indistin-

guishability would follow from the security of garbled circuit scheme, similarly as when
we argue indistinguishability hybrids 2k − 1 and 2k.
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Chapter 3

Non-Interactive Secure Computation

In this chapter, we apply laconic OT to reduce communication complexity in non-interactive
secure computation on large inputs in the circuit setting as well as RAM setting. Our
construction for the circuit setting is presented in Section 3.1 and for the RAM setting is
presented in Section 3.2. Finally we discuss how to enhance the security guarantee from
semi-honest security to malicious security in Section 3.3.

3.1 Circuit Setting

In the circuit setting, consider a receiver R, holding a large database D, publishes a short
encoding of it such that any sender S, with private input x, can send a single message to reveal
C(x,D) to R. Here, C is the circuit being evaluated. For security, we want the receiver’s
encoding to hide D and the sender’s message to hide x. For communication complexity, we
restrict the receiver’s published encoding to be independent of the size of her database.

This is a straightforward application of laconic OT. Recall the garbled circuit based
approach to non-interactive secure computation, where R can publish the first message of a
two-message oblivious transfer (OT) for his input D, and the sender responds with a garbled
circuit for C[x, ·] (with hardcoded input x) and sends the input labels corresponding to D
via the second OT message. The downside of this protocol is that R’s public message grows
with the size of D, which could be substantially large.

We resolve this issue via our new primitive laconic OT. In our protocol, R’s first message
is the digest digest of his large database D. Next, the sender generates the garbled circuit
for C[x, ·] as before. It also transfers the labels for each location of D via laconic OT Send
messages. Hence, by efficiency requirements of laconic OT, the length of R’s public message
is independent of the size of D. Moreover, sender privacy against a semi-honest receiver
follows directly from the sender privacy of laconic OT and security of garbled circuits. To
achieve receiver privacy, we can enhance the laconic OT with receiver privacy (discussed in
Section 2.2.1).
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3.2 RAM Setting

In this section, we consider the application of non-interactive secure computation in the RAM
(random access machine) setting. It is the RAM version of the above application where S
holds a RAM program P and R holds a large database D. As before, we want that (1) the
length of R’s first message is independent of |D|, (2) R’s first message can be published and
used by multiple senders, (3) the database is persistent for a sequence of programs for every
sender, and (4) the computational complexity of both S and R per program execution grows
only with running time of the corresponding program. For this application, we only achieve
unprotected memory access (UMA) security against a corrupt receiver, i.e., the memory
access pattern in the execution of PD(x) is leaked to the receiver. We achieve full security
against a corrupt sender.

Organization. In Section 3.2.1 we give a technical overview of this application. In Sec-
tion 3.2.2 we describe necessary background needed for our construction. Then we formalize
our model in Section 3.2.3 and present our construction for a single sender executing a single
program with the receiver in Sections 3.2.4. Correctness and security proofs are provided in
Sections 3.2.5 and 3.2.6, respectively. Finally we discuss how to extend our construction to
executing multiple programs on a persistent database in Section 3.2.7.

3.2.1 Technical Overview

For simplicity, consider a read-only program such that each CPU step outputs the next
location to be read based on the value read from last location. At a high level, since we want
the sender’s complexity to grow only with the running time t of the program, we cannot
create a garbled circuit that takes D as input. Instead, we would go via the garbled RAM
based approaches where we have a sequence of t garbled circuits where each circuit executes
one CPU step. A CPU step circuit takes the current CPU state and the last bit read from
the database D as input and outputs an updated state and a new location to be read. The
new location would be read from the database and fed into the next CPU step. The most
non-trivial part in all garbled RAM constructions is being able to compute the correct labels
for the next circuit based on the value of D[L], where L is the location being read. Since we
are working with garbled circuits, it is crucial for security that the receiver does not learn
two labels for any input wire. We solve this issue via laconic OT as follows.

For the simpler case of sender security, R publishes the short digest of D, which is fed
into the first garbled circuit and this digest is passed along the sequence of garbled circuits.
When a circuit wants to read a location L, it outputs the laconic OT ciphertexts which
encrypt the input keys for the next circuit and use digest of D as the hash value.1 Security

1We note that the above idea of using laconic OT also gives a conceptually very simple solution for UMA
secure garbled RAM scheme [LO13]. Moreover, there is a general transformation [GHL+14] that converts any
UMA secure garbled RAM into one with full security via the usage of symmetric key encryption and oblivious
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against a corrupt receiver follows from the sender security of laconic OT and security of
garbled circuits. To achieve security against a corrupt sender, R does not publishes digest in
the clear. Instead, the labels for digest for the first circuit are transferred to R via regular
OT.

Note that the garbling time of the sender as well as execution time of the receiver will grow
only with the running time of the program. This follows from the efficiency requirements of
laconic OT.

Above, we did not describe how we deal with general programs that also write to the
database or memory. We achieve this via updatable laconic OT (for definition see Sec-
tion 2.2.2), This allows for transferring the labels for updated digest (corresponding to the
updated database) to the next circuit. For a formal description of our scheme for general
RAM programs, see Section 3.2.4.

Other Related Work. Prior works consider secure computation which hides the input
size of one [MRK03; IP07; ADT11; LNO13] or both parties [LNO13]. Our notion only
requires the receiver’s communication cost to be independent of the its input size, and is
therefore weaker. However, these results are largely restricted to special functionalities, such
as zero-knowledge sets and computing certain branching programs (which imply input-size
hiding private set intersection). The general result of [LNO13] uses FHE and as mentioned
earlier needs more rounds of interaction.2

3.2.2 Background

We recall the needed background of RAM computation model and two-message oblivious
transfer in this section. We also use garbled circuits (see Section 2.4.1.1) as building blocks.

3.2.2.1 Random Access Machine (RAM) Model of Computation

Now we define the RAM model of computation. Parts of this subsection have been taken
verbatim from [GLO15].

Notations. The RAM model consists of a CPU and a memory storage of size M . The
CPU executes a program that can access the memory by using read/write operations. In
particular, for a program P with memory of size M we denote the initial contents of the
memory data by D ∈ {0, 1}M . Additionally, the program gets a “short” input x ∈ {0, 1}m,
which we alternatively think of as the initial state of the program. We use the notation
PD(x) to denote the execution of program P with initial memory contents D and input x.

RAM. This would give a simplified construction of fully secure garbled RAM under DDH assumption.
2In an orthogonal work of Hubacek and Wichs [HW15] obtain constructions where the communica-

tion cost is independent of the length of the output of the computation using indistinguishability obfusca-
tion [GGH+13].



CHAPTER 3. NON-INTERACTIVE SECURE COMPUTATION 45

The program P can read from and write to various locations in memory D throughout its
execution.3

We will also consider the case where several different programs are executed sequentially
and the memory persists between executions. We denote this process as (y1, . . . , y`) =
(P1(x1), . . . , P`(x`))

D to indicate that first PD
1 (x1) is executed, resulting in some memory

contents D1 and output y1, then PD1
2 (x2) is executed resulting in some memory contents D2

and output y2 etc. As an example, imagine that D is a huge database and the programs Pi
are database queries that can read and possibly write to the database and are parameterized
by some values xi.

CPU-Step Circuit. Consider an execution of a RAM program which involves at most t
CPU steps. We represent a RAM program P via t small CPU-Step Circuits each of which
executes one CPU step. In this work we will denote one CPU step by:

CP
CPU(state, rData) = (state′,R/W, L,wData)

This circuit takes as input the current CPU state state and a bit rData. Looking ahead the
bit rData will be read from the memory location that was requested by the previous CPU
step. The circuit outputs an updated state state′, a read or write bit R/W, the next location
to read/write from L ∈ [M ], and a bit wData to write into that location (wData = ⊥ when
reading). The sequence of locations and read/write values collectively form what is known
as the access pattern, namely MemAccess = {(R/Wτ , Lτ ,wDataτ ) : τ = 1, . . . , t}.

Note that in the description above without loss of generality we have made some simpli-
fying assumptions. We assume that each CPU-step circuit always reads from or write some
location in memory. This is easy to implement via a dummy read and write step. More-
over, we assume that the instructions of the program itself are hardwired into the CPU-step
circuits.

Representing RAM Computation by CPU-Step Circuits. The computation PD(x)
starts with the initial state set as state1 = x. In each step τ ∈ {1, . . . t}, the computation pro-
ceeds as follows: If τ = 1 or R/Wτ−1 = write, then rDataτ := 0; otherwise rDataτ := D[Lτ−1].
Next it executes the CPU-Step Circuit CP

CPU(stateτ , rDataτ ) = (stateτ+1,R/Wτ , Lτ ,wDataτ ).
If R/Wτ = write, then set D[Lτ ] = wDataτ . Finally, when τ = t, then stateτ+1 is the output
of the program.

3.2.2.2 Oblivious Transfer

[AIR01; NP01; HK12] gave two-message oblivious transfer (OT) protocols. We describe the
definition below and refer the reader to [AIR01; NP01; HK12] for details.

3In general, the distinction between what to include in the program P , the memory data D and the short
input x can be somewhat arbitrary. However as motivated by our applications we will typically be interested
in a setting where the data D is large while the size of the program |P | and input length m is small.
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Definition 3.2.1 (Two-Message Oblivious Transfer). A two-message oblivious transfer pro-
tocol OT = (OT1,OT2,OT3) is a protocol between a sender S and a receiver R where S gets
as input two strings s1, s2 of equal length and R gets as input a choice bit x ∈ {0, 1}. The
algorithms have the following syntax:

• (m1, secret) ← OT1(1κ, x): It takes as input the security parameter 1κ and receiver’s
choice bit x ∈ {0, 1} and outputs the first OT message m1 (sent by the receiver) and
receiver’s secret state secret.

• m2 ← OT2(m1, s0, s1): It takes as input the first OT message and the sender’s input
(s0, s1), and outputs the second OT message m2 (sent back to the receiver).

• s← OT3(m2, secret): It takes m2 and secret as input, and outputs a string s.

The following conditions are satisfied:

• Perfect Correctness. For all security parameter κ, sender input strings (s1, s2)
of equal length, and receiver’s choice bit x, let (m1, secret) ← OT1(1κ, x), m2 ←
OT2(m1, s0, s1), and s← OT3(m2, secret), then it holds that

Pr [s = sx] = 1.

• Receiver Security. The following two distributions are computationally indistin-
guishable:

OT1(1κ, 0)
c
≈ OT1(1κ, 1).

• Sender Security. There exists a PPT simulator OTSim such that for all sender input
strings (s1, s2) of equal length and receiver’s choice bit x, and any first message m1 in
the support of OT1(1κ, x), the following two distributions are statistically close:

OT2(m1, s0, s1)
s
≈ OTSim(1κ, x, sx,m1).

We described the above definition with respect to one OT, but the same formalism
naturally extends to support multiple parallel executions of OT. We use the following short-
hand notations (generalizing the above notions) to run multiple parallel executions. Let
Keys = ((Key1,0,Key1,1), . . . , (Keyn,0,Keyn,1)) be a list of n string-pairs, and x ∈ {0, 1}n be
an n-bit choice string. Then we define

• (m1, secret)← OT1(1κ, x) = (OT1(1κ, x1), . . . ,OT1(1κ, xn)) .

• m2 ← OT2(m1,Keys) =
(
OT2(m1,1,Key1,0,Key1,1), · · · ,OT2(m1,n,Keyn,0,Keyn,1)

)
.

• Labels← OT3(m2, secret) = (OT3(m2,1, secret1), . . . ,OT3(m2,n, secretn)) .
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In the above m1 = (m1,1, . . . ,m1,n), m2 = (m2,1, . . . ,m2,n), secret = (secret1, . . . , secretn).
Correctness guarantees that Labels = Keysx =

(
Key1,x1 , . . . ,Keyn,xn

)
.

Moreover, we will use two important properties of the oblivious transfer [NP01] for our
applications: (1) Security holds for multiple second OT messages with regard to the same
first OT message. This will be crucial for extending NISC for RAM to support multiple
senders with the same receiver. (2) The second OT message is re-randomizable. This will
be crucial for the application of multi-hop homomorphic encryption for RAM.

3.2.3 Our Model

Suppose the receiver owns a large confidential database D ∈ {0, 1}M . It first publishes a
short message, denoted by m1, which hides D. Afterwards, if a sender wants to run a RAM
program P (with input x) on D, it can send a single message m2 to the receiver. For security
we require that m2 only reveals the output PD(x) and the memory access pattern MemAccess
of the execution to the receiver. We require that once m1 is published, the computational
cost of both the sender (in computing m2) and the receiver (in evaluation), as well as the
size of m2, should grow only with the running time of the RAM computation and the size
of m1, and is independent of the size of D.

Moreover, the sender can run a sequence of programs on a persistent database by sending
one message per program to the receiver. Finally, the receiver can run the protocol in
parallel with multiple senders, where the same m1 is used. For ease of exposition, below we
will describe the setting of one single sender executing one program with the receiver. We
provide details on above extensions in Section 3.2.7.

Definition 3.2.2 (Non-Interactive Secure RAM Computation). A non-interactive secure
RAM computation scheme NISC-RAM = (Setup,EncData,EncProg,Dec) has the following
syntax. It is a two-party protocol between a receiver holding a large secret database D and a
sender holding secret program P of running time t and a short input x.

• Setup. crs← Setup(1κ).
On input the security parameter 1κ, it outputs a common reference string.

• Database Encryption. (m1, D̃)← EncData(crs, D).
On input the common reference string crs and a database D ∈ {0, 1}M , it outputs a

message m1 and a secret state D̃. The receiver publishes m1 as the short message
corresponding to D.

• Program Encryption. m2 ← EncProg(crs,m1, (P, x, t)).
It takes as input the crs, a message m1, a RAM program P with input x and maximum
run-time t. It then outputs another message m2. The sender sends the message m2.

• Decryption. y ← DecD̃(crs,m2).
The procedure Dec is modeled as a RAM program that can read and write to arbitrary
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locations of its database initially containing D̃. This procedure is run by the receiver.
On input the crs and m2, it outputs y.

The following conditions are satisfied:

• Correctness. For every database D ∈ {0, 1}M where M = poly(κ) for any polynomial
function poly(·), for every RAM program (P, x, t), it holds that

Pr
[
DecD̃(crs,m2) = PD(x)

]
= 1,

where crs← Setup(1κ), (m1, D̃)← EncData(crs, D), m2 ← EncProg(crs,m1, (P, x, t)).

• Receiver Privacy. For every pair of databases D0 ∈ {0, 1}M , D1 ∈ {0, 1}M where

M is polynomial in κ, for every crs in the support of Setup(1κ), let (m0, D̃0) ←
EncData(crs, D0), (m1, D̃1)← EncData(crs, D1). Then it holds that

(crs,m0)
c
≈ (crs,m1).

• Sender Privacy. There exists a PPT simulator niscSim such that for every database
D ∈ {0, 1}M where M = poly(κ) for any polynomial function poly(·), and for every
RAM program (P, x, t), let y = PD(x) be the output of the program, and MemAccess
be the memory access pattern, then it holds that

(crs, D, (m1, D̃),m2)
c
≈ niscSim(1κ, D, (y,MemAccess))

where crs← Setup(1κ), (m1, D̃)← EncData(crs, D) and m2 ← EncProg(crs,m1, (P, x, t)).

• Efficiency. The length of m1 is a fixed polynomial in κ independent of the size of the
database. Moreover, the algorithm EncData runs in time M · poly(κ, logM), EncProg
and Dec run in time t · poly(κ, logM).

3.2.4 Construction of Non-Interactive Secure RAM Computation

Overview. We first give an overview of the construction. For ease of exposition, consider
a read-only program where each CPU step outputs the next location to be read based on
the value read from last location.

We first describe the EncProg procedure. As already mentioned in technical overview
(see Section 3.2.1), our construction is based on high level ideas of garbled RAM (introduced
by Lu and Ostrovsky [LO13]) to make sender and receiver complexity grow only with the
running time of the program. In particular, the sender would generate a garbled RAM
program consisting of a sequence of t garbled step circuits. Similar to the RAM computation
model described in Section 3.2.2.1, every step circuit takes as input the current CPU state
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and the last read bit and outputs the updated state and the next read location, say L. Note
that the next step circuit would take the new value read from database as input.

The main challenge in program garbling is revealing the correct labels for the next circuit
based on the value of D[L]. Moreover, it is crucial for garble circuit security that the receiver
does not learn the label corresponding to 1−D[L]. Prior works [LO13; GHL+14; GLOS15;
GLO15] proposed several different solutions to the above problem. Here we present a new
and arguably simpler solution for achieving this using laconic oblivious transfer.

Let digest be the hash value of D that would be fed into the first step circuit and passed
along the sequence of circuits. That is, each circuit would take this digest as input and also
output the correct input labels corresponding to the digest for the next circuit. Now, to
transfer the correct label corresponding to the value in the database, a step circuit would
output a laconic OT ciphertext (using algorithm Send) that encrypts the input keys of
the next step circuit and uses digest as the hash value. Looking ahead, when the receiver
evaluates the step circuit which outputs the laconic OT ciphertext, he can use D to decrypt
it to obtain the correct labels (using the procedure Receive of laconic OT).

We show that the sender privacy follows from the sender privacy of laconic OT and
security of circuit garbling. In order to achieve receiver privacy, the receiver does not publish
digest in the clear, but instead, the labels for digest of the first step circuit are transferred
from the sender to the receiver via a two-message OT. In particular, the EncData procedure
outputs the first OT message of digest, and EncProg will output the garbled step circuits
along with the second OT message for digest’s labels.

Finally, note that a general program can also write to the database, in which case we
need to update the database as well as the step circuits need to know the updated digest for
the correctness of laconic OT and future reads/writes. This is achieved via the updatability
property of the laconic OT which allows a sender to generate a ciphertext that allows the
receiver to learn messages corresponding to the updated digest. In our case, the messages
encrypted would be the input digest keys of the next step circuit.

Next, we give a more formal construction of our scheme.

Construction. Let `OT = (crsGen,Hash, Send,Receive, SendWrite,ReceiveWrite) be an up-
datable laconic OT protocol as per Definition 2.2.2. Let OT = (OT1,OT2,OT3) be a
two-message secure oblivious transfer, and let GC = (GCircuit,GEval) be a circuit gar-
bling scheme. The non-interactive secure RAM computation scheme NISC-RAM = (Setup,
EncData,EncProg,Dec) is constructed as follows.

• Setup. crs← Setup(1κ).
The set up algorithm is described in Figure 3.1. It generates the common reference
string for the updatable laconic OT scheme.

• Database Encryption. (m1, D̃)← EncData(crs, D).
The algorithm is formally described in Figure 3.2. It hashes the database D using
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Setup. crs← Setup(1κ).
1. crs← crsGen(1κ).

2. Output crs.

Figure 3.1: Setup procedure of NISC-RAM.

laconic OT Hash function and obtains digest. Then digest is encrypted using the OT1

procedure of two-message OT protocol.

Database Encryption. (m1, D̃)← EncData(crs, D).
1. (digest, D̂)← Hash(crs, D).

2. (m1, secret)← OT1(1κ, digest).

3. Output
(
m1, D̃ = (digest, D̂, secret)

)
.

Figure 3.2: Database encryption procedure of NISC-RAM.

• Program Encryption. m2 ← EncProg(crs,m1, (P, x, t)).
The program encryption procedure is formally described in Figure 3.3. As mentioned
above, it generates t garbled step circuits {C̃step

τ }tτ=1, where every step circuit imple-
ments the functionality of a CPU-step circuit. We describe the structure of a step
circuit Cstep below. The program encryption also consists of the second OT message
corresponding to the short message m1 of the receiver (for digest) where the sender’s
messages consist of the input keys for the first garbled circuit. Finally, it also outputs
the keys for decrypting the output of the last step circuit.

Program Encryption. m2 ← EncProg(crs,m1, (P, x, t)).

1. Generate the garbled program for P : Generate garbled circuits {C̃step
τ }tτ=1.

a) Sample stateKeysτ , dataKeysτ , digestKeysτ for each τ ∈ {1, . . . , t+ 1}.
b) For each τ ∈ {1, . . . , t}

C̃step
τ ← GCircuit

(
1κ,Cstep[crs, P,Keysτ+1],Keysτ

)
,

where Keysτ = (stateKeysτ , dataKeysτ , digestKeysτ ).

c) For τ = 1, embed labels dataKeys1
0 and stateKeys1

x in C̃step
1 .

2. Compute L← OT2

(
m1, digestKeys

1
)
.

3. Output m2 =
(
L, {C̃step

τ }tτ=1, stateKeys
t+1
)

.

Figure 3.3: Program encryption procedure of NISC-RAM.

Now we elaborate on the logic of a step circuit. The pseudocode of a step circuit
Cstep is formally described in Figure 3.4, and the structure is illustrated in Figure 3.5.
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Hardwired Parameters: [crs, P, nextKeys = (stateKeys, dataKeys, digestKeys)].
Input: (state, rData, digest).

(state′,R/W, L,wData) := CP
CPU(state, rData).

if R/W = read then
edata ← Send(crs, digest, L, dataKeys).
return

(
(stateKeysstate′ , edata, digestKeysdigest),R/W, L

)
.

else
edigest ← SendWrite (crs, digest, L,wData, digestKeys).
return ((stateKeysstate′ , dataKeys0, edigest,wData),R/W, L).

Figure 3.4: Pseudocode of a step circuit Cstep [crs, P, nextKeys].

state

rData

digest

stateKeysstate′

edata or dataKeys0

digestKeysdigest or (edigest,wData)

R/W, L

Cstep [crs, P, nextKeys]

Figure 3.5: Input-output behavior of a step circuit Cstep [crs, P, nextKeys] .

The input of a step circuit can be partitioned into (state, rData, digest), where state
is the current CPU state, rData is the bit read from the database, and digest is the
up-to-date digest of the database. If the previous step is a write, then rData = 0. The
program encryption outputs garbled circuits for these step circuits, hence, the first
step of EncProg is to pick the input keys for all the circuits. The τ -th step circuit Cstep

τ

has hardwired in it the input keys nextKeys = (stateKeys, dataKeys, digestKeys) for the
next step circuit Cstep

τ+1.

The logic of the step circuit is as follows: It first computes the new (state′,R/W, L,
wData). Then, in the case of a “read” it outputs stateKeys corresponding to state′,
labels for rData via laconic OT procedure Send(·), and digestKeys corresponding to
digest. The case of a write is similar, but now the labels of new updated digest are
transferred via laconic OT procedure SendWrite(·).
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• Decryption: y ← DecD̃(crs,m2).
The decryption procedure is described in Figure 3.6. At a high level the receiver
evaluates the garbled step circuits one by one from C̃step

1 to C̃step
t , and uses the database

to decrypt `OT ciphertexts between two consecutive circuits. The output of the last
step circuit can be decrypted using stateKeyst+1 and hence y is obtained.

Decryption. y ← DecD̃(crs,m2).

1. Parse D̃ = (digest, D̂, secret).

2. Parse m2 =
(
L, {C̃step

τ }tτ=1, stateKeys
t+1
)

.

3. Compute digestLabels1 ← OT3(L, secret).

4. Parse C̃step
1 = (C̃step

1 , dataLabels1, stateLabels1).

5. For τ = 1 to t do the following:

(X,R/W, L) := GEval
(
C̃step
τ , (stateLabelsτ , dataLabelsτ , digestLabelsτ )

)
.

if R/W = read then
Parse X = (stateLabelsτ+1, edata, digestLabels

τ+1)

dataLabelsτ+1 = ReceiveD̂(crs, edata, L)
else

Parse X = (stateLabelsτ+1, dataLabelsτ+1, edigest,wData)

digestLabelsτ+1 = ReceiveWriteD̂(crs, L,wData, edigest)

6. Use stateKeyst+1 to decode stateLabelst+1 and obtain y.

Figure 3.6: Decryption procedure of NISC-RAM.

More precisely, the receiver first obtains the digestLabels for the first step circuit by
running OT3. Note that the first garbled step circuit already has labels for the rData
and state embedded. Hence the receiver can obtain all the labels for the first step
circuit and evaluate it. Then the receiver executes the circuits {C̃step

τ }tτ=1 one by one,
and learns the labels for the next circuit by running the receiver algorithms of laconic
OT on its database.

3.2.5 Correctness

For correctness, we require that for every database D ∈ {0, 1}M , for every RAM program
(P, x, t), it holds that

Pr
[
DecD̃(crs,m2) = PD(x)

]
= 1,

where crs ← Setup(1κ), (m1, D̃) ← EncData(crs, D), m2 ← EncProg(crs,m1, (P, x, t)). Cor-
rectness follows from Lemma 3.2.4 that we will prove below.
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Claim 3.2.3. The first garbled step circuit C̃step
1 gets evaluated on (x, 0, digest), where (digest,

D̂) = Hash(crs, D).

Proof. Since (m1, secret)← OT1(1κ, digest), L← OT2

(
m1, digestKeys

1
)
, and digestLabels1 ←

OT3(L, secret), by correctness of OT, digestLabels1 = digestKeys1
digest. Moreover, C̃step

1 already

has labels stateKeys1
x and dataKeys1

0 embedded in it, by correctness of the circuit garbling

scheme, C̃step
1 gets evaluated on (x, 0, digest).

Lemma 3.2.4. Consider the execution of PD(x). Let (stateτ , rDataτ ) be the input to the
τ -th CPU step. Let Dτ be the database at the beginning of step τ , and let (digestτ , D̂τ ) =

Hash(crs, Dτ ). During the Dec procedure, for every τ ∈ [t], C̃step
τ is evaluated on inputs

(stateτ , rDataτ , digestτ ). Moreover, the state of the database held by the receiver at the begin-

ning of evaluating C̃step
τ is D̂τ .

Proof. We will prove this lemma by induction on τ . The base case follows from Claim 3.2.3.
Assume that the lemma holds for τ = ρ, then we prove that the lemma holds for ρ + 1
in the following. We know that (D̂ρ, digestρ) = Hash(crs, Dρ), and that C̃step

ρ is executed

on (stateρ, rDataρ, digestρ). By correctness of GC, C̃step
ρ implements its code of a CPU

step, namely (state′,R/W, L,wData) = CP
CPU(stateρ, rDataρ). Also notice that nextKeys =

(stateKeys, dataKeys, digestKeys) hardwired in C̃step
ρ are the input keys for C̃step

ρ+1. There are
two cases:

• R/W = read: In this case, it follows directly from the Dec procedure that stateLabelsρ+1 =
stateKeysstate′ and digestLabelsρ+1 = digestKeysdigest. Since edata ← Send(crs, digestρ, L,

dataKeys) and dataLabelsρ+1 = ReceiveD̂ρ(crs, edata, L), by correctness of the `OT scheme,

dataLabelsρ+1 = dataKeysDρ[L]. Hence C̃step
ρ+1 is evaluated on inputs (state′, Dρ[L], digest),

which is exactly (stateρ+1, rDataρ+1, digestρ+1). And (D̂ρ, digestρ) remains unchanged.

• R/W = write: In this case, it follows from the Dec procedure that stateLabelsρ+1

= stateKeysstate′ and dataLabelsρ+1 = dataKeys0. Since edigest ← SendWrite(crs, digestρ,

L,wData, digestKeys) and digestLabelsρ+1 = ReceiveWriteD̂ρ(crs, L,wData, edigest), by cor-

rectness of the `OT scheme, digestLabelsρ+1 = digestKeysdigest′ where (D̂′, digest′) =
Hash(crs, D′) for an updated database D′ (D′ is identical to Dρ except that D′[L] =

wData). Hence C̃step
ρ+1 is evaluated on inputs (state′, 0, digest′), which is exactly (stateρ+1,

rDataρ+1, digestρ+1). In addition, (D̂ρ, digestρ) gets updated to (D̂′, digest′), which is ex-
actly (D̂ρ+1, digestρ+1).
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3.2.6 Security Proof

In this section we prove sender privacy and receiver privacy as defined in Section 3.2.3 under
the decisional Diffie-Hellman (DDH) assumption. The receiver privacy follows directly from
the receiver security of OT. Below we prove sender privacy by describing a PPT simulator
niscSim such that for every database D ∈ {0, 1}M where M is polynomial in κ, and for every
RAM program (P, x, t), let y = PD(x) be the output of the program, and MemAccess be the
memory access pattern, then it holds that(
crs, (m1, D̃),EncProg(crs,m1, (P, x, t))

)
c
≈
(
crs, (m1, D̃), niscSim(crs,m1, D, y,MemAccess)

)
,

where crs ← Setup(1κ), (m1, D̃) ← EncData(crs, D). Notice that this definition is slightly
different from the definition in Section 3.2.3, but in the semi-honest case it implies a simulator
as defined in Section 3.2.3

1. Sample input keys (stateKeyst+1, dataKeyst+1, digestKeyst+1) for Cstep.

2. Parse MemAccess as {(R/Wτ , Lτ ,wDataτ ) : τ ∈ [t]}, where (R/Wτ , Lτ ,wDataτ ) is par-
tial output of the τ -th CPU step circuit. Compute (rDataτ , Dτ , digestτ ) at the beginning
of step τ for every τ ∈ [t+ 1].

3. Compute (stateLabelst+1, dataLabelst+1, digestLabelst+1):

stateLabelst+1 ← stateKeyst+1
y .

digestLabelst+1 ← digestKeyst+1
digestt+1 .

dataLabelst+1 ← dataKeyst+1
rDatat+1 .

4. For τ = t downto 1, proceed as follows:

if R/Wτ = read then
edata ← `OTSim

(
crs, Dτ , Lτ , dataLabelsτ+1

)
.

X ← (stateLabelsτ+1, edata, digestLabels
τ+1).

else
edigest ← `OTSimWrite

(
crs, Dτ , Lτ ,wDataτ , digestLabelsτ+1

)
.

X ← (stateLabelsτ+1, dataLabelsτ+1, edigest,wData
τ ).(

C̃step
τ , stateLabelsτ , dataLabelsτ , digestLabelsτ

)
← CircSim (1κ,Cstep, (X,R/Wτ , Lτ )).

5. L← OT2

(
m1, (digestLabels

1, digestLabels1)
)
.

6. Output
(
L, {C̃step

τ }tτ=1, stateKeys
t+1
)

.

We show that the above simulation is indistinguishable from the real execution through
a sequence of hybrids where the first hybrid outputs the real execution and the last hybrid
outputs the simulated one.
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• H2i for i ∈ {0, 1, . . . , t}: Notice that in the output, there are t garbled step circuits

{C̃step
τ }tτ=1. In hybrid H2i, the garbled step circuits from 1 to i are simulated while

the remaining step circuits (i+ 1 to t) are generated honestly. Given the program, all
the intermediate outputs of every step circuit can all be computed. Given the correct
output of circuit Cstep

i , the step circuits from 1 to i can be simulated one by one from
the i-th to the first similarly as niscSim. More formally, it proceeds as follows.

1. Execute PD(x) to obtain (R/Wτ , Lτ ,wDataτ ) for every τ ∈ [t] and statet+1 = y.
Compute (rDataτ , Dτ , digestτ ) at the beginning of step τ for every τ ∈ [t+ 1].

2. Generate the garble circuits {C̃step
τ }tτ=i+1 honestly (same as Step 1 in EncProg).

3. Let
(
stateKeysi+1, dataKeysi+1, digestKeysi+1

)
be the input keys of C̃step

i+1 .

4. Compute (stateLabelsi+1, dataLabelsi+1, digestLabelsi+1):

stateLabelsi+1 ← stateKeysi+1
statei+1 .

digestLabelsi+1 ← digestKeysi+1
digesti+1 .

dataLabelsi+1 ← dataKeysi+1
rDatai+1 .

5. For τ = i downto 1, proceed as in Step 4 of the simulator niscSim.

6. L← OT2

(
m1, (digestLabels

1, digestLabels1)
)
.

7. Output
(
L, {C̃step

τ }tτ=1, stateKeys
t+1
)

.

• H2i+1 for i ∈ {0, . . . , t−1}: Hybrid H2i+1 is identical to H2i except that H2i+1 simulates

C̃step
i+1 based on the real output of Cstep

i+1 . In particular, H2i+1 is the same as H2i except
that Steps 2, 3, 4 proceed as follows:

2. Generate the garble circuits {C̃step
τ }tτ=i+2 honestly (same as Step 1 in EncProg).

3. Let
(
stateKeysi+2, dataKeysi+2, digestKeysi+2

)
be the input keys of C̃step

i+2 .

4. if R/Wi+1 = read then
edata ← Send(crs, digesti+1, Li+1, dataKeysi+2).
X ← (stateKeysi+2

statei+2 , edata, digestKeys
i+2
digest).

else
edigest ← SendWrite

(
crs, digesti+1, Li+1,wDatai+1, digestKeysi+2

)
.

X ← (stateKeysi+1
statei+1 , dataKeys

i+1
0 , edigest,wData

i+1).(
C̃step
i+1 , stateLabels

i+1, dataLabelsi+1, digestLabelsi+1
)
←

CircSim
(

1κ,Cstep, (X,R/Wi+1, Li+1)
)

.

It is easy to see that H0 is the output of the real execution, and H2t is the simulated
output. Now we prove that the consecutive hybrids are computationally indistinguishable.

Below we prove that H2i
c
≈ H2i+1

c
≈ H2(i+1) for every i ∈ {0, . . . , t − 1}. Since hybrid H2i+1

simulates C̃step
i+1 based on the real output of Cstep

i+1 , the output of C̃step
i+1 is identical for hybrids
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H2i and H2i+1. That said, indistinguishibility of hybrids H2i and H2i+1 follows from the
garbled circuit security. Next, indistinguishability between H2i+1 and H2(i+1) follows from
the sender’s privacy property of the updatable laconic OT since the laconic OT responses
are simulated in H2(i+1). This concludes the proof.

3.2.7 Extension

For simplicity of exposition, the protocol we described so far is for a single sender executing a
single program with the receiver. It can be extended to the setting where a sender can execute
a sequence of programs on a persistent database. Moreover, the message m1 published by
the receiver can be used by multiple senders, in which case the receiver maintains a different
copy of the database for every sender.

Executing Multiple Programs on a Persistent Database. After receiving the first
message m1 from the receiver, a sender can run multiple programs on a persistent database
(with initial content D) by sending one message per program to the receiver. For security
we require only the output and the memory access pattern of every program execution are
revealed to the receiver. We also require that once m1 is published, the computational cost
of both the sender and the receiver for every program should grow only with the running
time of the RAM computation, and is independent of the size of D. The NISC-RAM scheme
we constructed in Section 3.2.4 can be naturally extended to the multi-program setting.
We explain the extension by describing the changes of EncProg and Dec procedures for the
second program. Encryption and evaluation of more programs would follow analogously.

• EncProg: When encrypting the first program, the sender should store locally digestKeys∗

= digestKeyst+1. Then, when encrypting the second program, there are two changes
in EncProg compared to encrypting the first program: (1) digestKeys∗ is used as the
digest keys of the first step circuit, (2) L is not generated.

• Dec: When evaluating the first program, the receiver should store locally digestLabels∗ =
digestLabelst+1. Then, when evaluating the second program, the sender should use
digestLabels∗ as the digest labels for the first step circuit.

Multiple Senders with a Single Receiver. The above protocol also works for multiple
parallel senders. That is, after the receiver publishes the first message m1, every sender S
can send a message mS to the receiver enabling the execution of PD

S (xS), where D is the
initial database of the receiver, and (PS, xS) is the program of S. Security follows from the
security of OT which supports multiple second OT messages with the same first OT message.
Moreover, every sender can execute a sequence of programs on a persistent database. In this
case, the receiver keeps a different copy of her initial database for every sender.
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3.3 Security Against Malicious Adversaries

The aforementioned results are obtained in the semi-honest setting. We can upgrade to
security against a malicious sender by use of (i) non-interactive zero knowledge proofs
(NIZKs) [FLS90] at the cost of additionally assuming doubly enhanced trapdoor permu-
tations or bilinear maps [CHK04; GOS06], (ii) the techniques of Ishai et al. [IKO+11] while
obtaining slightly weaker security,4 or (iii) interactive zero-knowledge proofs but at the cost
of additional interaction.

Upgrading to security against a malicious receiver is tricky. This is because the receiver’s
public encoding is short and hence, it is not possible to recover the receiver’s entire database
just given the encoding. Standard simulation-based security can be obtained by using (i)
universal arguments as done by [CV12; COV15] at the cost of additional interaction, or (ii)
using SNARKs at the cost of making extractability assumptions [BCCT12; BCG+13].5

4The receiver is required to keep the output of the computation private.
5We finally note that relaxing to the weaker notion of indistinguishability-based security we can expect

to obtain the best of both worlds, i.e. a non-interactive solution while making only a black-box use of the
adversary (a.k.a. avoiding the use of extractability assumptions). We leave this open for future work.



58

Chapter 4

Homomorphic Encryption for RAM

In this chapter, we present another application of laconic OT, that is multi-hop homomor-
phic encryption for RAM programs. In Section 4.1 we give a technical overview of this
application and then we formalize our model in Section 4.2. We present our construction
with unprotected memory access (UMA) security in Section 4.3 and enhance it to obtain full
security in Section 4.4.

4.1 Technical Overview

Our Model. We consider a scenario where a server S, holding an input x, publishes a
public key pk and an encryption ct of x under pk. Now this ciphertext is passed on to a
client Q that will compute a (possibly private) program P accessing memory D on the value
encrypted in ct, obtaining another ciphertext ct′. Finally, we want that the server can use
its secret key to recover PD(x) from the ciphertext ct′ and D̃, where D̃ is an encrypted form
of D that has been previously provided to S in a one-time setup phase. More generally, the
computation could be performed by multiple clients Q1, . . . , Qn. In this case, each client is
required to place a pre-processed version of its database D̃i with the server during setup.
The computation itself could be performed in different sequences of the clients (for different
extensions of the model, see Section 4.2). Examples of two such computation paths are
shown in Figure 1.1.

For security, we want IND-CPA security for server’s input x. For honest clients, we want
program-privacy as well as data-privacy, i.e., the evaluation does not leak anything beyond
the output of the computation even when the adversary corrupts the server and any subset of
the clients. We note that data-privacy is rather easy to achieve via encryption and ORAM.
Hence we focus on the challenges of achieving UMA security for honest clients, i.e., the
adversary is allowed to learn the database D as well as memory access pattern of P on D.

UMA Secure Multi-Hop Scheme. We first build on the ideas from non-interactive
secure computation for RAM programs. Every client first passes its database to the server.
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Then in every round, the server sends an OT message for input x. We assume for simplicity
that every client has an up-to-date digest of its own database. Next, the first client Q1

generates a garbled program for P1, say ct1 and sends it to Q2. Here, the garbled program
consists of t1 (t1 is the running time of P1) garbled circuits accessing D1 via laconic OT as
described in the previous application. Now, Q2 appends its garbled program for P2 to the
end of ct1 and generates ct2 consisting of ct1 and new garbled program. Note that P2 takes
the output of P1 as input and hence, the output keys of the last garbled circuit of P1 have to
be compatible with the input keys of the first garbled circuit of P2 and so on. If we continue
this procedure, after the last client Qn, we get a sequence of garbled circuits where the first
t1 circuits access D1, the next set accesses from D2 and so on. Finally, the server S can
evaluate the sequence of garbled circuits given D1, . . . , Dn. It is easy to see that correctness
holds. But we have no security for clients.

The issue is similar to the issue pointed out by [GHV10] for the case of multi-hop garbled
circuits. If the client Qi−1 colludes with the server, then they can learn both input labels for
the garbled program of Qi. To resolve this issue it is crucial that Qi re-randomizes the garbled
circuits provided by Qi−1. For this we rely on re-randomizable garbled circuits provided by
[GHV10], where given a garbled circuit anyone can re-garble it such that functionality of the
original circuit is preserved while the re-randomized garbled circuit is unrecognizable even
to the party who generated it. In our protocol we use re-randomizable garbled circuits but
we stumble upon the following issue.

Recall that in the RAM application above, a garbled circuit outputs the laconic OT
ciphertexts corresponding to the input keys of the next circuit. Hence, the input keys of the
(τ + 1)-th circuit have to be hardwired inside the τ -th circuit. Since all of these circuits will
be re-randomized for security, for correctness we require that we transform the hardwired
keys in a manner consistent with the future re-randomization. But for security, Qi−1 does
not know the randomness that will be used by Qi.

Our first idea to resolve this issue is as follows: The circuits generated by Qi−1 will
take additional inputs si, . . . sn which are the randomness used by future parties for their
re-randomization procedure. Since we are in the non-interactive setting, we cannot run an
OT protocol between clients Qi−1 and later clients. We resolve this issue by putting the first
message of OT for sj in the public key of client Qj and client Qi−1 will send the OT second
messages along with cti−1. We do not want the clients’ public keys to grow with the running
time of the programs, hence, we think of sj as PRF keys and each circuit re-randomization
will invoke the PRF on a unique input.

The above approach causes a subtle issue in the security proof. Suppose, for simplicity,
that client Qi is the only honest client. When arguing security, we want to simulate all the
garbled circuits in cti. To rely on the security of re-randomization, we need to replace the
output of the PRF with key si with uniform random values but this key is fed as input to
the circuits of the previous clients. We note that this is not a circularity issue but makes
arguing security hard. We solve this issue as follows: Instead of feeding in PRF keys directly
to the garbled circuits, we feed in corresponding outputs of the PRF. We generate the PRF
output via a bunch of PRF circuits that take the PRF keys as input (see Figure 4.1). Now
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CPRF[i+ 1] CPRF[n]

si+1 sn

state

rData

digest

Cstep [P, nextKeys]

Figure 4.1: One step circuit for Pi along with the attached PRF circuits generated by Qi.

during simulation, we first simulate these PRF circuits, followed by the simulation of the
main circuits.

4.2 Our Model

Consider a server S and a collection of clients Q1, Q2, . . . with private databases D1, D2, . . .,
respectively. The clients ship their encrypted databases to S to be computed on later in
multiple executions in a persistent manner. At the beginning of any execution, the server
S encrypts his private input x as ct0, chooses a subset of clients Qi1 , . . . , Qin and sends the
ct0 to client Qi1 . Next, for all j ∈ [n], client Qij homomorphically evaluates an arbitrary
program Pj of his choice on ctj−1 to obtain ctj. Finally, client Qin sends ctn to the server S.
The server decrypts this ciphertext using his secret key of encryption as well as encrypted

databases sent earlier to learn P
Din
n

(
. . . P

Di1
1 (x) . . .

)
. During this execution, the databases

get updated and future execution of any client happens on respective updated databases.
We require that the size of the ciphertext only grows with the cumulative running time

of all programs in an execution and is independent of the size of the databases. For security,
we require program and data privacy for all honest clients against an adversary that corrupts
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the server and any subset of the clients. Next, we describe the model formally.

Syntax. We say that an ordered sequence of RAM programs P1, · · · , Pn are compatible
if the output length of Pi is the same as the input length of Pi+1 for every i ∈ [n − 1].
A multi-hop RAM homomorphic encryption scheme mhop-RAM = (Setup,KeyGen, InpEnc,
EncData,Eval,Dec) has the following syntax. We define the algorithms with regard to clients
Q1, . . . , Qn.

• Setup. crs← Setup(1κ).
On input the security parameter 1κ, it outputs a common reference string.

• Key Generation. (pk, sk)← KeyGen(1κ).
On input the security parameter 1κ, it outputs a public/secret key pair (pk, sk).

• Database Encryption. (D̃ = (D̂, digest))← EncData(crs, D).
On input the common reference string crs and database D ∈ {0, 1}M , it outputs an

encrypted database D̃ = (D̂, digest), where digest is a short digest of the database.

• Input Encryption. (ct, x secret)← InpEnc(x).
On input S’s input x, it outputs a ciphertext ct and secret state for S denoted by
x secret.

• Homomorphic Evaluation. ct′ ← Eval(crs, i, {pkj}nj=i+1, ct, sk, (P, t), digest).
It takes as input the crs, the client number i, the public keys of the clients later in the
sequence, i.e., Qi+1, · · · , Qn, a ciphertext from the previous client, Q’s secret key sk,
Q’s RAM program P with maximum run-time t and the digest digest of the database
D of Q. It then outputs a new ciphertext ct′.

• Decryption. y = DecD̃1,··· ,D̃n(crs, x secret, ct).
On input the crs, server’s state x secret, the final ciphertext ct from client Qn, and
RAM access to encrypted databases D̃1, · · · , D̃n, it outputs y. The procedure Dec is
itself modeled as a RAM program that can read and write to arbitrary locations of its
database initially containing D̃1, · · · , D̃n.

Next, we describe how these algorithms are used in a real execution.

Real Scenario. In our multi-hop scheme for RAM programs, after the initialization phase
that generates the common-random string crs, each cleint runs key generation to generate
the public key and the secret key, followed by the database encryption. The encrypted
database is sent to the server, and the cleint stores the digest of the database locally. After
this initialization phase, the server S can initiate various executions of RAM computations
with different subsets of the clients. After each execution, the database of a client gets
updated by the server during the decryption phase. It is ensured that the server also learns
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the updated digest of the database that is communicated to the clients during the start of
the next execution.

At the onset of any execution, the server S encrypts his input and sends the ciphertext
ct0 to the first client Q1 and maintains x secret to be used later. The client Q1 generates the
ciphertext ct1 using his program P1 and digest digest1 and sends it to Q2. Similarly, when a
client Qi receives cti−1 from Qi−1, it uses program Pi and digesti to generate cti and sends it
to Qi+1. This continues and finally, Qn sends ctn back to the server S. Then, the server runs
the decryption procedure on ctn using all the encrypted databases and secret state x secret
to obtain output y.

For the case of multiple executions, each of the above procedures take the session identifier
sid as additional input. We denote by D̃

(sid)
1 , · · · , D̃(sid)

n the encrypted databases before the

execution with session identifier sid. Initially D̃
(1)
1 = D̃1, · · · , D̃(1)

n = D̃n.
We require the algorithms above to satisfy the correctness, sender privacy, client privacy

and efficiency properties described below.

Correctness. We require that in a sequence of executions, each output of homomorphic
evaluation equals the output of the corresponding computation in the clear. We formalize this
as follows: For every set of keys {(pki, ski)}

n
i=1 in the support of KeyGen, and any collection

of initial databases D1, · · · , Dn, for any unbounded polynomial N number of executions the
following holds: For sid ∈ N, let P

(sid)
1 , . . . , P

(sid)
n be the sequence of programs, x(sid) be the

server’s input and D
(sid)
i be the resulting database after executing the session sid-1 in the

clear, then

Pr

[
DecD̃

(sid)
1 ,··· ,D̃(sid)

n
(
crs, x secret(sid), ct(sid)

n

)
= P (sid)

n

D
(sid)
n

(
· · ·
(
P

(sid)
1

D
(sid)
1

(x(sid))

)
· · ·
)]

= 1,

where D̃
(sid)
i is the resulting garbled database after executing sid-1 homomorphic evalu-

ations, (ct
(sid)
0 , x secret(sid)) ← InpEnc(x(sid)), ct

(sid)
i ← Eval(crs, i, {pkj}nj=i+1, ct

(sid)
i−1 , sk, P

(sid)
i ,

t
(sid)
i , digest

(sid)
i ).

Server Privacy (Semantic Security). For server privacy, we require that for every pair
of inputs (x0, x1), let (CTb, x secretb)← InpEnc(xb) for b ∈ {0, 1}, then

CT0
c
≈ CT1.

Client Privacy (Program Privacy) with Unprotected Memory Access (UMA).
We define client privacy against a semi-honest adversary that corrupts the server S as well
as an arbitrary subset of clients I ⊂ [n]. Intuitively, we require program-privacy for the
honest clients such that the adversary cannot learn anything beyond the output of the
honest client’s program on one input. We formalize this as follows:

There exists a PPT simulator ihopSim such that the following holds. Let crs← Setup(1κ),
for every set of keys {(pki, ski)}

n
i=1 in the support of KeyGen, and any collection of initial
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databases D1, · · · , Dn, for any unbounded polynomial N number of executions: For sid ∈ N,

let P
(sid)
1 , . . . , P

(sid)
n be the sequence of programs, x(sid) be the server’s input, then(

crs, (D̃1, . . . , D̃n),
{
ct

(sid)
0 , ct

(sid)
1 , . . . , ct(sid)

n

}
sid∈[N]

)
c
≈(

crs, ihopSim

(
crs,

{
{pki, ski}i∈[n],

(
{Dj , P

(sid)
j }j∈I , x(sid)

)
,
{
Dj ,MemAccess

(sid)
j , y

(sid)
j

}
j∈[n]\I

}
sid∈[N]

))

where D̃i, ct
(sid)
i corresponds to outputs in the real execution given all the programs and

databases and y
(sid)
j = P

(sid)
j

D
(sid)
j

(
· · ·
(
P

(sid)
1

D
(sid)
1

(x(sid))

)
· · ·
)

.

Remark 4.2.1. We note that the above definition also captures the security against a semi-
malicious adversary who may choose his randomness for KeyGen maliciously but behaves
honestly in the protocol.

Client Privacy (Program Privacy) with Full Security. For full client privacy, the sim-
ulator does not get the database or access pattern of the honest clients. That is, the simulator

ihopSim takes as input

{
{pki, ski}i∈[n], ({Dj , P

(sid)
j }j∈I , x(sid)),

{
1Mj , 1t

(sid)
j , y

(sid)
j

}
j∈[n]\I

}
sid∈[N]

,

where Mj is the size of Dj and t
(sid)
j is the running time of P

(sid)
j .

Efficiency. We require the following efficiency guarantees from mhop-RAM. Let Mi = |Di|.

• |D̃i| = Mi · poly(κ, logMi) for all i ∈ [n].

• |ct0| = |x| · poly(κ), where ct0 is the output of InpEnc(x).

• |cti| =
∑i

j=1 n · tj · poly(κ, logMj, log tj) for all i ∈ [n].

Extension. This definition (and our construction) can be extended to the setting where in
each execution all the clients do not necessarily join the homomorphic evaluation. We allow
for different set of clients to participate in different executions. In particular, before the first
execution, the initial database of every client is encrypted. Later before each execution, a
sequence of distinct clients 〈i1, · · · , im〉 can be specified.

The input encryption is the same as above, while the homomorphic evaluation is executed
in the specified order (as specified by the server) as ctj ← Eval(crs, j, {pkiu}nu=j+1, skij , ctj−1,

Pij , tij , digestij) for every j ∈ [m]. And the decryption is executed as y = DecD̃i1 ,··· ,D̃im (crs,

x secret, ctm), where D̃i1 , · · · , D̃im are the up-to-date garbled databases of clientsQi1 , . . . , Qim .
The correctness and privacy properties can be naturally extended to this setting.
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4.3 UMA-Secure Construction

In this section, we first describe the UMA-secure scheme for a single execution in Section 4.3.2
and then explain how this scheme can be extended naturally for multiple executions in
Section 4.3.5. Also, as we shall see our scheme can easily be extended to the setting where
different subset of parties participate in each session. The correctness and security proofs are
presented in Sections 4.3.3 and 4.3.4, respectively. Necessary background for our construction
is given in Section 4.3.1.

4.3.1 Background

In this section we introduce building blocks needed in our construction. The two-message
secure function evaluation (SFE) and re-randomizable secure function evaluation that we
consider are both based on garbled circuits (see Section 2.4.1.1 for the definition of garbled
circuits). In addition to these building blocks, we will also need RAM computation model
(see Section 3.2.2.1) and two-message oblivious transfer (see Section 3.2.2.2). We use [n] to
denote the set {1, . . . , n}.

4.3.1.1 Two-Message Secure Function Evaluation

A two-message secure function evaluation (SFE) based on garbled circuits is as follows: Let
U(·, ·) be a particular “universal circuit evaluator” that takes as input the description of
a circuit C and an argument x, and returns U(C, x). We write C(x) as a shorthand for
U(C, x). Let Alice be the client with private input x and Bob have private input a circuit
C. The protocol is as follows:

1. (m1, x secret) ← SFE1(x): Alice computes (m1, x secret) ← OT1(x) and sends m1 to
Bob.

2. m2 ← SFE2(C,m1): Bob computes C̃← GCircuit
(
C, {labwb }w∈inp(C),b∈{0,1}

)
and

L← OT2

(
m1, {labwb }w∈inp(C),b∈{0,1}

)
. Sends m2 := (C̃, L).

3. y = SFEout(x secret,m2): Alice locally computes the output: {labwxw}w∈inp(C) = OT3(L,

s secret), and y = GEval
(
C̃, {labwxw}w∈inp(C)

)
.

The correctness of the above protocol follows from the correctness of Yao garbled circuits.
It can be shown that the above protocol is a secure function evaluation protocol satisfying
both semi-honest client privacy and semi-honest server privacy.

4.3.1.2 Re-Randomizable Secure Function Evaluation

[GHV10] defined the tool of “re-randomizable secure function evaluation” that was used to
realize multi-hop homomorphic computation for circuits. This tool was constructed under
the DDH assumption by instantiating Yao’s garbled circuits with a special encryption scheme
(BHHO [BHHO08]) and using re-randomizable two-message oblivious transfer [NP01].
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Definition 4.3.1. A secure function evaluation protocol is said to be re-randomizable if
there exists an efficient procedure Re-rand such that for every input x and function f and
every (m1, x secret) ∈ SFE1(x) and m2 ∈ SFE2(C,m1), the distributions {x,C,m1, x secret,
m2,Re-rand(m1,m2)} and {x,C,m1, x secret,m2, SFE2(C,m1)} are computationally indistin-
guishable.

[GHV10] proved the following:

Theorem 4.3.2 ([GHV10]). Under the DDH assumption, there exists a re-randomizable
secure function evaluation protocol satisfying Definition 4.3.1.

Below, we abstract out the scheme of [GHV10] by stating some of the procedures implic-
itly provided by [GHV10] that will be needed for this paper.

Definition 4.3.3 (Re-randomizable Yao garbled circuits.). The scheme in [GHV10] provides
the following algorithms (implicitly) for their re-randomizable Yao scheme.

1. Keys = SampleKeys(1κ,W; r): Takes as input a set of input wires W as well randomness
r and outputs the input-keys for set of wires W for re-randomizable Yao. Note that it
is a deterministic function given the randomness r. When clear from context, we will
skip mentioning the inputs in the calls to this function.

2. C̃← ReGCircuit(C, InpKeys): Takes as input a circuit C and InpKeys for the input wires

of C and outputs a re-randomizable garbled circuit C̃ where input wires have keys as
InpKeys.

3. C̃′ ← ReGCircuit′(C, InpKeys,OutKeys): Takes as input a circuit C, InpKeys for input
wires of C and OutKeys for output wires of C, and outputs a re-randomizable garbled
circuit C̃ where input wires have keys as InpKeys and output wires have keys as OutKeys.

4. Keys† = Transform(Keys, r): Takes as input Keys and randomness r and outputs ran-
domized keys Keys†. Also, we use Transform(Keys, {r1, . . . , rk}) to denote

Transform(Transform(. . . (Transform(Keys, r1), . . .), rk−1), rk)

5. (C̃′, L′) ← Re-rand
(

(C̃, L), {rw}w∈Wires(C)

)
: Takes as input a re-randomizable garbled

circuit C̃ and OT second messages L for the keys of input wires of C and random-
ness to re-randomize each wire of C and outputs a new functionally equivalent re-
randomizable garbled circuit C̃′ and consistent OT second messages L′. This procedure
satisfies the property of re-randomizable SFE. Moreover, the guarantee is that after ran-
domization, for any wire w, the new keys for w in C̃′ are Transform(labw, rw). Finally,
re-randomization of OT messages only requires1 {rw}w∈inp(C).

1In fact, each OT message for keys of a wire can be randomized consistently just given the randomness
used for that wire.
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For our multi-hop homomorphic scheme for RAM it will be useful to define SampleKeys(·)
as follows: SampleKeys(1κ,W, r) = Transform(SampleKeys(1κ,W, 0?), r).

4.3.2 Construction For a Single Execution Involving All Parties

Let Q1, . . . , Qn be the clients holding databases D1, . . . , Dn, respectively, and S be the
server. Let the server’s private input be x and secret programs of clients be P1, . . . , Pn,
respectively. Let `OT = (crsGen,Commit, Send,Receive, SendWrite,ReceiveWrite) be an up-
datable laconic OT scheme with sender privacy as defined in Definition 2.2.2. Let Re-GC =
(SampleKeys,ReGCircuit, ReGCircuit′,Transform,Re-rand) be a re-randomizable scheme for
Yao’s garbled circuits given by [GHV10] (see Definition 4.3.3). Let OT = (OT1,OT2,OT3)
be a two-message oblivious transfer protocol as defined in Section 3.2.2.2.

The multi-hop RAM scheme mhop-RAM = (Setup,KeyGen,EncData, InpEnc,Eval,Dec) is
as follows: The algorithms Setup,KeyGen,EncData are formally described in Figure 4.2.

Setup. crs← Setup(1κ)
Setup algorithm generates the common reference string for laconic OT.

Key Generation. (pk, sk)← KeyGen(1κ)
Each client runs this algorithm once to generate the secret-key sk and public-key pk. A client
Q picks a PRF seed s as the secret key. Next, it generates the public key as the first message
of OT for s and secret-key as the secret state for OT as well as PRF key.

Looking ahead, the client Q will use the PRF key s to garble his own P and to randomize
the garbled program generated by all previous clients in any execution.

Database Encryption. D̃ ← EncData(crs, D)
Each client runs this algorithm at the beginning to garble the database and sends the garbled
database to the server S. The garbled database is generated by executing the Hash procedure
of laconic OT. This outputs an encoded database D̂ and a digest digest, both of which are
given to the server S.

Input Encryption. (ct, x secret)← InpEnc(x)
In each execution, the server S encrypts its input x as follows: It computes the first message
of OT as the ciphertext and stores the secret state of OT to be used for decryption of
computation later. The ciphertext is sent the first client, w.l.o.g. Q1. The algorithm InpEnc
is described formally in Figure 4.3.

Homomorphic Evaluation. ct′ ← Eval
(
crs, i, {pkj}nj=i+1, ct, sk = (s, s secret), (P, t), digest

)
.

This algorithm is executed by client Qi to generate the next ciphertext ct′ given ct from
client Qi−1, and is described formally in Figure 4.4. This is the most involved procedure in
our construction, and hence, we first provide an informal description. At a very high level,
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Setup. crs← Setup(1κ).
1. Sample crs← crsGen(1κ).

2. Output crs.

Key Generation. (pk, sk)← KeyGen(1κ).
1. Sample a PRF key s← {0, 1}κ and generate (pk, s secret)← OT1(s).

2. Output (pk, sk := (s, s secret)).

Database Encryption. D̃ ← EncData(crs, D).
1. (digest, D̂)← Hash(crs, D).

2. Output D̃ = (digest, D̂).

Figure 4.2: Description of the setup, key generation and database encryption algorithms.

Input Encryption. (ct, x secret)← InpEnc(crs, x).

1. (ct, x secret)← OT1(x).

Figure 4.3: Description of the input encryption algorithm.

as illustrated in Figure 4.5, the client Qi generate the garbled program for P consisting of
t garbled circuits and also re-randomize all the circuits in ct. As mentioned before, this
re-randomization step is crucial to get program privacy for this client. Moreover, the re-
randomization has to be done carefully so that the previous ct is consistent with the new
garbled program.2

This procedure consists of four main steps: Let T be the number of step-circuits in ct.

Step 1 Garble the new program P : For each τ ∈ [T + 1, T + t], client does the following: It
generates a “super-circuit” that is illustrated in Figure 4.6 consisting of a CPU step
circuit Cstep

τ (see Figure 4.7) and PRF circuits CPRF
τ,i+1, . . . ,C

PRF
τ,n (see Figure 4.8). A step

circuit, encodes the logic of a CPU step of a program P and PRF circuits provide a part
of the randomness used in re-randomization. We will elaborate on the functionality of
PRF circuits later.

The garbled program will consists of garbled circuits corresponding to all the step
circuits and PRF circuits. The first step is to pick the keys for the input wires of all
of these circuits. Next, we begin by describing the step circuits.

Step Circuits Cstep
τ (Figure 4.7): The inputs of a step circuit (see Figure 4.6) can be

partitioned into ((state, rData, digest),Rd), where state is the current CPU state, rData
is the bit-read from database, and digest is the up-to-date digest of the database. Rd
corresponds to the randomness given as input to the step-circuit computed from the

2We do this by keeping track of the randomness used in randomizing the input wires for each garbled
circuit.
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Homomorphic Evaluation.

ct′ ← Eval

(
crs, i, {pkj}nj=i+1, ct =

(
L0,
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i
}
τ∈[T ]

)
, sk = (s, s secret), (P, t), digest

)
.

1. Generate the “new” garbled program for P : Generate garbled circuits{
C̃step
τ , {C̃PRF

τ,j }nj=i+1

}T+t

τ=T+1
.

a) Set stateKeysτ , dataKeysτ , digestKeysτ ,RdKeysτ,j,PKeysτ,j for each τ ∈ [T+1, T+t]
and j ∈ [i+1, n] as SampleKeys(Fs(GC ? ||τ)) where Fs(GC ? ||τ) is the randomness
used and ? ∈ {STATE, DATA, DIGEST, RD, P}, respectively.
Set stateKeysτ , dataKeysτ , digestKeysτ to SampleKeys(0∗) for τ = T + t+ 1.

b) Garble Cstep circuits: For each τ ∈ [T + 1, T + t]

C̃step
τ ← ReGCircuit

(
Cstep[i, crs, P,Keysτ+1, Fs(PSI||τ)],

(
Keysτ , {RdKeysτ,j}nj=i+1

))
,

where Keysτ = (stateKeysτ , dataKeysτ , digestKeysτ ).

Embed labels dataKeysT+1
0 and digestKeysT+1

digest in C̃step
T+1.

c) Garble CPRF circuits: For each [T + 1, T + t] and j ∈ [i+ 1, n], compute

C̃PRF
τ,j ← ReGCircuit′

(
CPRF[τ ],PKeysτ,j,RdKeysτ,j

)
.

2. Generate the OT second messages for newly generated circuits: For all τ ∈
[T + 1, T + t] and j ∈ [i+ 1, n] compute Lτ,j ← OT2

(
pkj,PKeys

τ,j
)
.

3. Obtain partial labels for previous circuits:

a) For every τ ∈ [T ], compute Mτ,i = OT3 (Lτ,i, s secret) and C̃PRF
τ,i using input labels

Mτ,i and embed the labels in C̃step
τ .

b) If i = 1, then L0 ← OT2(L0, stateKeys
1).

4. Re-randomize previous garbled circuits: If i > 1, do the following:

a) For each τ ∈ [T ], re-randomize the circuit C̃step
τ using Re-rand(·) (see Defini-

tion 4.3.3) such that the input wire keys are randomized using Fs(GC ? ||τ), where
? ∈ {STATE, DATA, DIGEST, RD} for different input wires appropriately.

b) For each τ ∈ [T ], re-randomize the circuits {CPRF
τ,j }j∈[i+1,n] and {Lτ,j}j∈[i+1,n] using

Re-rand(·) such that the input wires are randomized using Fs(GC P||τ) and output
wires are randomized using Fs(GC RD||τ).

c) Re-randomize L0 using Fs(GC STATE||1).

5. Output ct′ =

(
L0,
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i+1

}T+t

τ=1

)
.

Figure 4.4: Description of the homomorphic evaluation algorithm.
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Homomorphic Evaluation by Qi

Program by Q1

si sn si sn si sn

Program by Q2

si sn si sn si sn

Program by Qi−1

si sn si sn si sn

Program by Q1

si+1 sn si+1 sn si+1 sn

Program by Qi−1

si+1 sn si+1 sn si+1 sn

Program by Qi

si+1 sn si+1 sn si+1 sn

Figure 4.5: Homomorphic Evaluation by Qi: Qi contributes new circuits (denoted in white in
the lower layer) and processes the input circuits as follows: (i) computes the yellow circuits,
and (ii) re-randomizes all input circuits. The re-randomized circuits are shown in gray color.

PRF circuits. A step circuit executes one CPU step and passes on the updated state,
new bit read, and new digest to the next step circuit. Note that we do not achieve this
by passing the output wires of τ into input wires of τ + 1. That is, the output wire of
τ will not have same keys as input wires of τ + 1 (Note that the two consecutive step
circuits are not connected by solid lines in Figure 4.5.). Hence, the step circuit τ will
have the keys of the next circuit hard-coded inside it.

Next, we explain the logic of a step-circuit. First, it computes the new (state′,R/W, L,wData).
Next, it computes the transformed keys nextKeys† of the next step-circuit using the
hard-coded keys and the input randomness (this uses the transform functionality of
re-randomizable Yao from Section 4.3.1.2). Then, in the case of a “read” it outputs
stateKeys† corresponding to new state′, labels for data via laconic OT procedure Send(·)
for location L where the sender’s inputs are dataKeys†0, dataKeys

†
1 and digestKeys† cor-

responding to digest. The case of a write is similar, but now the labels of new updated
digest are transferred via laconic OT procedure SendWrite(·). Note that it follows via
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CPRF[i+ 1]

Rdi+1

CPRF[n]

si+1 sn

Rdn

state

rData

digest

stateKeys†state′

edata or dataKeys†0

digestKeys†digest or (edigest,wData)

R/W, L

Cstep [crs, P, nextKeys, ψ]

Figure 4.6: One step circuit along with the attached PRF circuits.

correctness of reads and writes of the laconic OT that the evaluator would be able to
recover the correct labels for the read-data and the new digest.

The down-bend in output and input wires of step-circuits for data and digest in Fig-
ure 4.5 represents that these keys are not output in the clear, but are output using
laconic OT. Correct labels will be learnt during execution using the encoded database
D̃i and laconic OT procedures.

PRF circuits CPRF
τ,j (Figure 4.8): This circuit takes as input a PRF key sj of client

Qj and outputs the PRF value corresponding to time-step τ . The use of these circuits
will be clear when we describe the re-randomization step below.

All these circuits are garbled such that the keys for output wires of PRF circuits
are same as keys for Rd input keys of step circuits. In Figure 4.5, this is depicted by
joining the output wires of PRF circuits with Rd input wires of step circuit with a solid
line. The garbled program consists of garbled step circuits and garbled PRF circuits
{C̃step

τ , {C̃PRF
τ,j }j∈{i+1,...,n}}τ∈[T+1,T+t]. The client also embeds labels for rData = 0 and

digesti in the first step circuit.

Step 2 Generate OT messages for CPRF
τ,j : Recall that this circuit takes as input a PRF key sj of
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Hard-coded parameters: [i, crs, P, nextKeys = (stateKeys, dataKeys, digestKeys), ψ].
Input: ((state, rData, digest), ({ωj, φj}j>i)).

(state′,R/W, L,wData) := CP
CPU(state, rData).

nextKeys† := Transform(nextKeys, {ωj}j>i).
Parse nextKeys† as (stateKeys†, dataKeys†, digestKeys†).

if R/W = read then
edata ← Send(crs, digest, L, dataKeys†;ψ ⊕

⊕
j>i φj).

return
(

(stateKeys†state′ , edata, digestKeys†digest),R/W, L
)

.

else
edigest ← SendWrite

(
crs, digest, L,wData, digestKeys†;ψ ⊕

⊕
j>i φj

)
.

return
(

(stateKeys†state′ , dataKeys†0, edigest,wData ),R/W, L
)

.

Figure 4.7: Pseudocode of the step circuit Cstep [i, crs, P, nextKeys, ψ].

Hard-coded parameters: [τ ].
Input: s.

Output:
(
{Fs(GC ? ||τ + 1)}?∈{STATE,DATA,DIGEST} , Fs(LACONIC OT||τ)

)
.

Figure 4.8: Pseudocode of the PRF circuit CPRF[τ ].

client Qj whose OT first message is present in pkj. Client Qi generates the OT second

message Lτ,j for the input keys of C̃PRF
τ,j .

Step 3 Evaluating the PRF circuits for itself: Note that the ciphertext ct consists of a sequence
of step circuits and PRF circuits for each step circuit corresponding to j ∈ {i, . . . , n}.
See Figure 4.5 where the PRF circuits for client Qi are depicted in yellow. Qi computes
the input labels for C̃PRF

τ,i using the OT message Lτ,i and embeds the output labels in

to C̃step
τ for all τ ∈ [T ]. In other words, Qi consumes the first PRF circuits from each

step of previous ciphertext ct.

Step 4 Re-randomize the previous circuits: After consuming the first PRF circuit from each
step, Qi randomizes all the remaining circuits using appropriate randomness. Note
that the input keys of C̃step

τ+1 are randomized using the exact randomness that was fed
into Cstep

τ via the PRF circuit for Qi. This makes sure that the hard-coded input keys
of step τ + 1 are randomized consistently in the same way as how Qi will randomize
the circuit C̃step

τ+1.

Hence, to conclude, the PRF circuits are present to provide the randomness needed to
randomize the hard-coded keys inside the step circuits 3.

3Note that randomization of garbled circuits preserves the functionality. Since the keys for the next
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Homomorphic Decryption. y = DecD̃1,··· ,D̃n
(
crs, x secret, ct =

(
L0,
{
C̃step
τ

}
τ∈[T ]

))
.

The algorithm is described formally in Figure 4.9. It takes as input the secret state of the
server x secret and the final ciphertext ctn consisting of OT message for x and sequence of T
step-circuits, where T =

∑
i∈[n] ti. Note that all the PRF circuits have been evaluated already

by correct parties and correct labels for RdKeys have been embedded into the step-circuits.
The server does the following for decryption:

1. It obtains the stateLabels for the first circuit by running OT3. Note that the first circuit
of program of any client has labels for data and digest already embedded. Hence, now
the server knows all the labels for the first circuit.

2. For τ ∈ [T ], the server executes the circuit C̃step
τ , and learns the labels for the next

circuit via running the receiver algorithms of laconic OT correctly.

4.3.3 Correctness

Here we prove correctness (as defined in Section 4.2) for a single execution. In fact, we
prove something stronger that would help us extend the scheme to multiple executions in a
straight-forward manner. We prove the following two properties:

Property 1. For the above scheme, y = PDn
n

(
. . . PD1

1 (x) . . .
)
, where programs, databases

and input x are as defined above.

Property 2. Let D̂′i, digest
′
i denote the updated encoded database and digest with the server

after the execution. We show that these are equal to Hash(crs, D′i), where D′ results after

executing PDi
i (P

Di−1

i−1 (. . . PD1
1 (x) . . .)).

Below we prove correctness via a sequence of facts and claims.

Fact 4.3.4. At any point in homomorphic evaluation, the circuit C̃PRF
τ,j and the second OT

message for its input keys Lτ,j are consistent.

This follows from correctness of OT2(·, ·) procedure when it is generated and the fact
that re-randomization happens consistently in Re-rand procedure of re-randomizable garbled
circuits.

Fact 4.3.5. During the homomorphic evaluation of client Qi, in Step 3a, Figure 4.4 while
obtaining partial labels, Mτ,i = PKeysτ,is , where s is the PRF key of Qi.

This follows from the correctness of OT protocol as well as Fact 4.3.4.

circuit are transferred using the laconic OT, we need to feed in correct keys into the Send functions of
laconic OT.
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Decryption.

y = DecD̃1,··· ,D̃n
(
crs, x secret, ct =

(
L0,
{
C̃step
τ

}
τ∈[T ]

))
, where T =

∑
i∈[n] ti.

1. For all i ∈ [n], parse D̃i =
(
digesti, D̂i

)
.

2. Compute M0 = OT3 (L0, x secret).

3. Parse C̃step
1 = (C̃step

1 , dataLabels, digestLabels).

4. Define Labels1 = (stateLabels1 = M0, dataLabels
1 = dataLabels, digestLabels1 =

digestLabels).

5. For τ = 1 to T do the following:

Define i s.t. τ ∈
[∑

j∈[i−1] tj + 1,
∑

j∈[i] tj

]
.

(X,R/W, L) := ReEval
(
C̃step
τ , Labelsτ

)
.

if R/W = read then
Parse X = (stateLabelsτ+1, edata, digestLabels

τ+1).

dataLabelsτ+1 := ReceiveD̂i(crs, edata, L).
else

Parse X = (stateLabelsτ+1, dataLabelsτ+1, edigest,wData).

digestLabelsτ+1 := ReceiveWriteD̂i(crs, L,wData, edigest).

if τ =
∑

j∈[i] tj and τ < T then

Parse C̃step
τ+1 = (C̃step

τ+1, dataLabels, digestLabels)
Set dataLabelsτ+1 = dataLabels and digestLabelsτ+1 = digestLabels.

Labelsτ+1 := (stateLabelsτ+1, dataLabelsτ+1, digestLabelsτ+1).

6. Decode output y using
(
stateLabelsT+1, SampleKeys(0∗)

)
.

Figure 4.9: Decryption algorithm for multi-hop RAM.

Fact 4.3.6. During the homomorphic evaluation of client Qi, in Step 3a, Figure 4.4 the
labels embedded in circuit C̃step

τ correspond to RdKeysτ,iωi,φi where φi = Fs(LACONIC OT||τ) and
ωi = {Fs(GC ? ||τ + 1)}?∈{STATE,DATA,DIGEST}.

This is because the functionality of the CPRF is preserved in randomization so far, Fact 4.3.5
and because the output keys of C̃PRF

τ,i and RdKeysτ,i are same when they are generated and
are re-randomized using same randomness in Step 4b of Figure 4.4.

Recall that ctn consists of garbled step-circuits of client Q1 followed by Q2 and so on.
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We prove the following fact about garbled step circuits belonging to some client Qi in final
ciphertext ctn.

Claim 4.3.7. Consider circuits C̃step
τ and C̃step

τ+1 such that both belong to program Pi for some

i. Since all the PRF circuits C̃PRF have been evaluated, the value nextKeys† in C̃step
τ is well

defined. Then, nextKeys† = Keysτ+1 where Keysτ+1 corresponds to the input keys for C̃step
τ+1 in

ctn.

Proof. Initially, Qi picks Keysτ+1 as SampleKeys(Fs(GC ? ||τ + 1)), where ? ∈ {STATE, DATA,
DIGEST} and uses them in garbling of C̃step

τ+1 as well as are hardcoding inside Cstep
τ .

Then, C̃step
τ+1 is randomized by clients Qi+1, . . . , Qn such that the stateKeys, dataKeys,

digestKeys are randomized sequentially using ωj = (Fsj(GC STATE||τ + 1), Fsj(GC DATA||τ +

1), Fsj(GC DIGEST||τ + 1)). This is same as Transform(Keysτ+1, {ωj}j>i) inside C̃step
τ . By

Fact 4.3.6, ωj is the value used for Transform in C̃step
τ .

Claim 4.3.8. The above claim also holds for C̃step
τ and C̃step

τ+1 when τ is the last circuit of a
program for Qi and τ + 1 is the first circuit for Qi+1.

Proof. When the client Qi generates C̃step
τ , the keys hard-coded are SampleKeys(0?). Then,

this circuit is re-randomized by Qi+1 resulting in keys SampleKeys(Fsi+1
(GC ? ||τ + 1)) which

same as the value used by Qi+1 to generate the step-circuit C̃step
τ+1.

Fact 4.3.9. The first garbled step circuit C̃step
1 gets evaluated on (x, 0, digest1).

This follows from correctness of OT and consistency of re-rerandomization of OT and
garbled circuits similar to Fact 4.3.4.

Now, we will prove a lemma about the execution of circuits generated by client Q1.
Then, we will prove a claim about the inputs on which circuit of Q2 is executed. Finally,
the correctness of execution programs of all clients would follow in a similar manner.

Lemma 4.3.10. Consider the program P1 and the database D1 of the first client and the
input x of the server. Consider the execution PD1

1 (x) execution in the clear as (stateτ , rDataτ )
as the values on which Cstep is executed. Also, let (D̂τ

1, digestτ ) denote the Hash(crs, Dτ
1), where

Dτ
1 is the database at beginning of step τ . Then, while decryption, C̃step

τ is executed on inputs
(stateτ , rDataτ , digestτ ). Moreover, the encoded database held by the server before step τ is
D̂τ

1.

Proof. We will prove this lemma by induction on τ . The base case follows from Fact 4.3.9.
Assume that the lemma holds for τ = ρ, then we prove that the lemma holds for ρ + 1 as
follows: So it holds that C̃step

ρ is executed on (stateρ, rDataρ, digestρ). Moreover, (D̂ρ
1, digestρ)

denote the Hash(crs, Dρ
1). Note that C̃step

ρ correctly implements its code that includes one
CPU step of P1. Hence, (state′,R/W, L,wData) = CP

CPU(stateρ, rDataρ). Also, by Claim 4.3.7,

nextKeys† in C̃step
ρ are correct input keys for C̃step

ρ+1. There are following two cases:
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• R/W = read: In this case, database and the digest are unchanged. New CPU state
and digest are output correctly. Moreover, the labels for bit read from the memory
will be learnt via Receive of updatable laconic OT. Correctness of these labels follows
from correctness of read of laconic OT.

• R/W = write: Similar to above, in this case new state and data keys are correctly
output. Moreover, the digest keys w.r.t. the new updated digest are output via
laconic OT. The correctness of these labels follows from correctness of laconic OT
write function ReceiveWrite. Finally, in this function, the encoded database is updated
correctly.

Lemma 4.3.11. Let C̃step
t1 be the last circuit of client Q1 or program P1. Then, during

decryption, C̃step
t1+1 is executed on (y1, 0, digest2), where y1 = PD1

1 (x) and digest2 is the digest
for D2.

Proof. At the time of homomorphic evaluation, in Step 1b, Figure 4.4, labels dataKeyst1+1
0

and digestKeyst1+1
digest are embedded in C̃step

t1+1. Also, by Claim 4.3.8, in the final ciphertext ct,

nextKeys† inside C̃step
t1 are correct keys for C̃step

t1+1. Hence, the lemma holds since C̃step
t1 outputs

stateKeys†state′ , where state′ = y1.

Lemma 4.3.12. Consider the program Pi and the database Di of the client Qi and the input
x of the server. Consider the execution PDi

i (yi−1) execution in the clear as (stateτ , rDataτ ) as

the values on which Cstep is executed. Also, let (D̂τ
i , digestτ ) denote the Hash(crs, Dτ

i ), where

Dτ
i is the database at beginning of step τ . Then, while decryption, C̃step

τ is executed on inputs
(stateτ , rDataτ , digestτ ). Moreover, the encoded database held by the server before step τ is
D̂τ
i .

Proof. The lemma follows via induction on number of clients where the base case is proved
in Lemma 4.3.10. The rest of the proof follows simply via induction similar to Lemma 4.3.10
where at the end of each program and beginning of a new program we prove Lemma 4.3.11.
This proves both the properties 1 and 2.

4.3.4 Security Proof

Server privacy follows receiver privacy of oblivious transfer. For ease of exposition, we prove
client UMA privacy for the setting of a single honest client Qi for a single execution. At
the end of this section we will show that the proof can be extended for the case of multiple
honest clients and multiple executions as well.

In the following, we prove that there exists a PPT simulator ihopSim such that, for
any set of databases {Dj}j∈[n], any sequence of compatible programs P1, · · · , Pn running
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time t1, · · · , tn and input x, the outputs of the following two experiments are computational
indistinguishable:
Real experiment

• (pkj, skj)← KeyGen(1κ) for ∀j ∈ [n].

• D̃j = (digestj, D̂j)← EncData(crs, Dj) for ∀j ∈ [n].

• (ct0, x secret)← InpEnc(crs, x).

• ctj ← Eval
(
crs, j, {pkk}nk=j+1, ctj−1, skj, (Pj, tj), digestj

)
for ∀j ∈ [n].

• Output ct0, {D̃j, ctj}j∈[n].

Simulated experiment

• (pki, ski)← ihopSim(1κ, i).

• (pkj, skj)← KeyGen(1κ; rj) for ∀j ∈ [n] \ {i}. Here, rj are uniform random coins.

•
(
ct0, {D̃j, ctj}j∈[n]

)
← ihopSim(crs, x, {pkj, skj, Dj, tj}j∈[n], {Pj, rj}j∈[n]\{i},MemAccessi,

yi), where yi = Pi
Di
(
· · ·
(
P1

D1(x)
)
· · ·
)
.

• Output ct0, {D̃j, ctj}j∈[n].

The above definition can be made semi-malicious by allowing the adversary to pick ran-
dom coins rj adversarially given the public key pki of honest client as follows: {rj}j∈[n]\{i} ←
A(1κ, crs, pki) that will be used to define (pkj, skj) in Step 2. Our proof would also support
this stronger setting as well.

Construction of ihopSim: We describe the two phases of ihopSim. In the first phase,
ihopSim generates the keys of honest client Qi as (pki, ski)← KeyGen(1κ).

In the second phase, ihopSim is described in Figure 4.10. At a high level, ihopSim gener-
ates everything honestly except cti. When generating cti, it simulates the step circuits one
by one from the last to the first using the output yi and memory access MemAccessi. In
particular, since ihopSim takes Di and MemAccessi as input, it can compute Di and digesti
before every step circuit, and use that to compute the output of every step circuit. Security
follows from security of re-randomization of SFE, namely re-randomized garbled circuits are
indistinguishable from freshly generated ones and that freshly generated garbled circuits are
indistinguishable from simulated ones.

Now we give a series of hybrids such that the first hybrid outputs
(
ct0, {D̃j, ctj}j∈[n]

)
in the real execution, and the last hybrid is the output of ihopSim. Notice that the only
difference between the real and ideal experiments is cti, so all the hybrids generate everything
in the same way except cti.

• Ĥ0: Output in the real experiment.
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(
ct0, {D̃j , ctj}j∈[n]

)
← ihopSim

(
crs, x, {pkj , skj , Dj , tj}j∈[n], {Pj}j∈[n]\{i},MemAccessi, yi

)
.

1. Compute D̃j = (digestj , D̂j)← EncData(crs, Dj) for ∀j ∈ [n].
Compute (ct0, x secret)← InpEnc(x).

Compute ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for every j ∈ [i− 1].

Pick a random function F (in the following use random values for F (·)).
2. Let Tj :=

∑
k∈[j] tk. Generate cti as follows:

a) Run the program Pi−1
Di−1

(
· · ·
(
P1

D1(x)
)
· · ·
)

to obtain (R/Wτ
, Lτ ,wDataτ ) for every CPU step

τ ∈ [Ti−1]. Obtain (R/Wτ
, Lτ ,wDataτ ) for τ ∈ [Ti−1 + 1, Ti] from MemAccessi.

b)
(
stateKeysTi+1, dataKeysTi+1, digestKeysTi+1

)
← SampleKeys(0∗).

Compute stateLabelsTi+1 using yi; compute dataLabelsTi+1, digestLabelsTi+1 using (Di, digesti,
R/W, L,wData) of the last CPU step.

c) For τ = Ti downto 1, do the following:

(R/W, L,wData) := (R/Wτ
, Lτ ,wDataτ ).

Define j s.t. τ ∈ [Tj−1 + 1, Tj ].
Let D be the database of Qj before step τ .(
stateLabelsτ+1, dataLabelsτ+1, digestLabelsτ+1

)
← Transform

(
(stateLabelsτ+1, dataLabelsτ+1, digestLabelsτ+1),{

Fsi+1(GC ? ||τ + 1)
}
?∈{STATE,DATA,DIGEST} || · · · || {Fsn(GC ? ||τ + 1)}?∈{STATE,DATA,DIGEST}

)
.

if R/W = read then
edata ← `OTSim

(
crs, D, L, dataLabelsτ+1

)
.

X ← (stateLabelsτ+1, edata, digestLabels
τ+1).

else
edigest ← `OTSimWrite

(
crs, D, L,wData, digestLabelsτ+1

)
.

X ← (stateLabelsτ+1, dataLabelsτ+1, edigest,wData)({
C̃step
τ , {C̃PRF

τ,j }nj=i+1

}
, Labelsτ

)
← CircSim (1κ,U , (X,R/W, L)) such that the output labels

of C̃PRF
τ,j are the same as input labels of RdLabsτ,j for C̃step

τ .

Parse Labelsτ =
(
stateLabelsτ , dataLabelsτ , digestLabelsτ , {PLabelsτ,j}j∈[i+1,n]

)
.

Lτ,j ← OT2

(
pkj , (PLabels

τ,j ,PLabelsτ,j)
)

for every j ∈ [i+ 1, n].

if τ = Tj−1 + 1 then

Embed stateLabelsτ and digestLabelsτ in C̃step
τ .

(stateKeysτ , dataKeysτ , digestKeysτ )← Transform
(
SampleKeys(0∗),{

Fsj (GC ? ||τ)
}
|| · · · ||

{
Fsi−1

(GC ? ||τ)
}
|| {F (GC ? ||τ)}?∈{STATE,DATA,DIGEST}

)
.

Compute (dataLabelsτ , digestLabelsτ ) using (Dj−1, digestj−1,R/W, L,wData) at step τ−1.

d) L0 ← OT2

(
ct0, (stateLabels

1, stateLabels1)
)
.

e) cti :=

(
L0,
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i+1

}
τ∈[Ti]

)
.

3. Compute ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for every j ∈ [i+ 1, n].

4. Output ct0, {D̃j , ctj}j∈[n].

Figure 4.10: Simulator for multi-hop RAM.
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1. Compute D̃j = (digestj , D̂j)← EncData(crs, Dj) for ∀j ∈ [n].
Compute (ct0, x secret)← InpEnc(x).

Compute ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for every j ∈ [i− 1].

Pick a random function F (in the following use random values for F (·)).
2. Let Tj :=

∑
k∈[j] tk. Generate cti as follows:

a) Compute
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i+1

}
τ∈[m+1,Ti]

honestly as in Figure 4.4.

b) Run the program Pi
Di
(
· · ·
(
P1

D1(x)
)
· · ·
)

to obtain (stateτ ,R/Wτ , Lτ ,wDataτ ) for every
τ ∈ [Ti].

c) Define j s.t. m ∈ [Tj−1 + 1, Tj ].

d) Set stateKeysm+1, dataKeysm+1, digestKeysm+1 as SampleKeys(Fsj (GC ? ||m+ 1)) where
? ∈ {STATE, DATA, DIGEST}, respectively.
If m = Tj , then set stateKeysm+1, dataKeysm+1, digestKeysm+1 to SampleKeys(0∗).
If j < i, then

(
stateKeysm+1, dataKeysm+1, digestKeysm+1

)
← Transform

( (
stateKeysm+1, dataKeysm+1, digestKeysm+1

)
,{

Fsj+1(GC ? ||m+ 1)
}
|| · · · ||

{
Fsi−1(GC ? ||m+ 1)

}
||

{F (GC ? ||m+ 1)}?∈{STATE,DATA,DIGEST}
)

.

e) Compute (stateLabelsm+1, dataLabelsm+1, digestLabelsm+1) using (statem,R/Wm, Lm,
wDatam) and (Dj , digestj) at step m.

f) For τ = m downto 1, do the following:
Follow the same steps as in Figure 4.10 step 2c.

g) L0 ← OT2

(
ct0, (stateLabels

1, stateLabels1)
)
.

h) cti :=

(
L0,
{
C̃step
τ , {C̃PRF

τ,j , Lτ,j}nj=i+1

}
τ∈[Ti]

)
.

3. Compute ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj , (Pj , tj), digestj

)
for every j ∈ [i+ 1, n].

4. Output ct0, {D̃j , ctj}j∈[n].

Figure 4.11: Decryption of hybrid Hm

• H0: In this hybrid, replace Fsi(·) with a truly random function F . In particular, when
computing cti as in Figure 4.4, in steps 1a and 4, use the values generated by F ; in
step 3a embed labels corresponding to the values from F . The indistinguishability
of this hybrid with Ĥ0 follows from the pseudo-randomness of Fsi(·) and privacy of
oblivious transfer (si is hidden in pki).

• Hm (m ∈ [Ti]): Next we consider a sequence of hybrids H1, · · · ,HTi . The description
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(R/W, L,wData) := (R/Wτ , Lτ ,wDataτ ).
Define j s.t. τ ∈ [Tj−1 + 1, Tj ].
Let (D, digest) be the database and digest of Qj before step τ .
Let state′ be the CPU state after step τ .(
stateKeysτ+1, dataKeysτ+1, digestKeysτ+1

)
← Transform

(
(stateKeysτ+1, dataKeysτ+1, digestKeysτ+1),{

Fsi+1(GC ? ||τ + 1)
}
?∈{STATE,DATA,DIGEST} || · · · || {Fsn(GC ? ||τ + 1)}?∈{STATE,DATA,DIGEST}

)
.

if R/W = read then
edata ← Send(crs, digest, L, dataKeysτ+1;F (PSI||τ)⊕

⊕
j>i Fsj (LACONIC OT||τ)).

X ← (stateKeysτ+1
state′ , edata, digestKeys

τ+1
digest).

else
edigest ← SendWrite

(
crs, digest, L,wData, digestKeysτ+1;F (PSI||τ)⊕

⊕
j>i Fsj (LACONIC OT||τ)

)
.

X ← (stateKeysτ+1
state′ , dataKeys

τ+1
0 , edigest,wData).({

C̃step
τ , {C̃PRF

τ,j }nj=i+1

}
, Labelsτ

)
← CircSim (1κ,U , (X,R/W, L)) such that the output labels of

C̃PRF
τ,j are the same as input labels of RdLabsτ,j for C̃step

τ .

Parse Labelsτ =
(
stateLabelsτ , dataLabelsτ , digestLabelsτ , {PLabelsτ,j}j∈[i+1,n]

)
.

Lτ,j ← OT2

(
pkj , (PLabels

τ,j ,PLabelsτ,j)
)

for every j ∈ [i+ 1, n].

if τ = Tj−1 + 1 then

Embed stateLabelsτ and digestLabelsτ in C̃step
τ .

(stateKeysτ , dataKeysτ , digestKeysτ )← Transform
(
SampleKeys(0∗),{

Fsj (GC ? ||τ)
}
|| · · · ||

{
Fsi−1(GC ? ||τ)

}
|| {F (GC ? ||τ)}?∈{STATE,DATA,DIGEST}

)
.

Compute (dataLabelsτ , digestLabelsτ ) using (Dj−1, digestj−1,R/W, L,wData) at step τ − 1.

Figure 4.12: Difference of Hm and Ĥm.

of Hm is in Figure 4.11. Notice that cti consists of Ti step circuits with corresponding
PRF circuits. In hybrid Hm, the step circuits from 1 to m are simulated while the
remaining step circuits (m + 1 to Ti) are generated honestly. Given all the programs
and secret keys, the intermediate outputs as well as input/output labels of every step
circuit can all be computed. Given the correct output of circuit Cstep

m , the step circuits
from 1 to m can be simulated one by one from the m-th to the first similarly as in
ihopSim.

To show Hm is indistinguishable from Hm−1, first notice that they are the same except(
C̃step
m , {C̃PRF

m,j , Lm,j}nj=i+1

)
in cti. Consider an intermediate hybrid Ĥm which is the

same as Hm except that in step 2f when τ = m, follow the steps in Figure 4.12. In
particular, when τ = m, Ĥm computes the output of Cstep

m and uses that output to
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simulate C̃step
m by CircSim and OT2. The output of C̃step

m is the same for Hm−1 and Ĥm.
The indistinguishibility of Ĥm and Hm−1 follows from the security of garbled circuits
directly whenm ∈ [Ti−1+1, Ti]. Whenm ∈ [Ti−1], it follows from the security of garbled
circuits and re-randomization. More precisely, the re-randomized garbled circuit is
indistinguishable from a freshly generated garbled circuit, which is indistinguishable
from a simulated one. Notice that the random coins used in re-randomization for C̃step

m

is F (GC ? ||m), which is not used anywhere else in Hm−1, so it can be treated as truly
random coins.

To switch from Ĥm to Hm, we replace X in Figure 4.12 with simulated edata and edigest

for CircSim and OT2. The indistinguishability follows from sender privacy of updatable
laconic OT and that Send and SendWrite both take random coins F (PSI||m).

• ĤTi : Output in the simulated experiment. This hybrid is the same as HTi .

Extension. The above proof can be naturally extended to provide security for multiple
clients and many executions. For example in the case of two clients Qi1 and Qi2 , ihopSim first

computes
(
ct0, {D̃j}j∈[n], {ctj}j∈[i1−1]

)
honestly, then computes cti1 same as in Figure 4.10

step 2. It then computes {ctj}j∈[i1+1,i2−1] from cti1 by Eval, and computes cti2 same as in
Figure 4.10 step 2.4 Finally it computes {ctj}j∈[i2+1,n] from cti2 by Eval. To show this is
indistinguishable from the real execution, we consider the following hybrids:

• H0: Output in the real experiment.

• H1: First compute
(
ct0, {D̃j}j∈[n], {ctj}j∈[i2−1]

)
honestly, and then compute cti2 same

as in Figure 4.10 step 2. Finally it computes {ctj}j∈[i2+1,n] from cti2 honestly by Eval.

• H2: Output in the simulated experiment.

The above hybrids are indistinguishable because an honestly generated cti1 or cti2 is indis-
tinguishable from a simulated one, as we have shown in the single-client case.

To simulate multiple executions, ihopSim can simply repeat the procedure for every ex-
ecution. We note that there is no connection between executions except the digest, so they
can be simulated separately given the initial digests of every execution. The hybrids go from
the real experiment to the simulated experiment by replacing all the honestly generated ct’s
in one execution by simulated ones, one execution per hybrid.

4Notice that different from Figure 4.10, the simulator here doesn’t take Pi1 as input, but the simulation
can still obtain (R/Wτ

, Lτ ,wDataτ ) for every step τ ∈ [Ti1−1 + 1, Ti1 ] given Di1 and MemAccessi1 , and that
is enough for the simulation.
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4.3.5 Extending to Multiple Executions

Recall that for correctness we also proved that the after one execution, the resulting garbled
database D̃ = (D̂, digest) corresponds to the output of Hash(crs, D′), where D′ is the correct
database resulting after the execution in the clear (See Property 2, Section 4.3.3).

Given this invariant after the first execution, the next execution happens identically as
the first execution with minor differences. To run the algorithm Eval, the clients need the
updated digest of their respective databases. The updated digests of all the clients taking
part in an execution would be sent by the server to the first client on that execution path,
and would be passed along with each ciphertext. Also, to ensure that no PRF output is
used twice, each PRF invocation would take the session identifier sid as an additional input.
With these changes, the second execution is identical to the first execution and hence, its
correctness follows in a straight-forward manner.

Also, this does not affect the UMA-security because the simulator of the ideal world is
given the databases as well as memory access pattern of the honest clients as input.

Moreover, note that this generalizes to the scenario when different subset of clients take
part in different executions. Only the digests of the relevant client are passed around by the
server.5

4.4 From UMA to Full Security

In this section we provide a fully secure multi-hop RAM scheme. We first review Obliv-
ious RAM (ORAM), which was first introduced by Goldreich [Gol87; GO96] and Ostro-
vsky [Ost90; Ost92; GO96], in Section 4.4.1. We then use ORAM as a compiler to encode
the memory and program into a special format that does not reveal the access pattern or
data contents during an execution. We present the generic construction in Section 4.4.2 and
its correctness and security proofs in Sections 4.4.3 and 4.4.4, respectively.

4.4.1 Oblivious RAM

Definition 4.4.1. An Oblivious RAM scheme consists of two procedures (OData,OProg)
with syntax:

• (D∗, s∗) ← OData(1κ, D): Given a security parameter κ and memory D ∈ {0, 1}M as
input, OData outputs the encoded memory D∗ and encoding key s∗.

• P ∗ ← OProg(1κ, 1logM , 1t, P ): Given a security parameter κ, a memory size M , and a
program P that runs in time t, OProg outputs an oblivious program P ∗ that can access
D∗ as RAM and takes two inputs x and s∗.

5It can also extended to the setting, when a client Qi occurs multiple times in the chain of clients in an
execution. To handle this setting, the digest of Di is passed along all the programs between two instances
of this client as additional state.
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Efficiency. We require that the run-time of OData should be M · polylog(M) · poly(κ), and
the run-time of OProg should be t · poly(κ) · polylog(M). Finally, the oblivious program P ∗

itself should run in time t′ = t · poly(κ) · polylog(M). Both the new memory size M ′ = |D∗|
and the running time t′ should be efficiently computable from M, t, and κ.

Correctness. Let P1, . . . , P` be programs running in polynomial times t1, . . . , t` on memory
D of size M . Let x1, . . . , x` be the inputs and κ be a security parameter. Then we require
that:

Pr[(P ∗1 (x1, s
∗), . . . , P ∗` (x`, s

∗))D
∗

= (P1(x1), . . . , P`(x`))
D] = 1

where (D∗, s∗)← OData(1κ, D), P ∗i ← OProg(1κ, 1logM , 1t, Pi) and (P ∗1 (x1, s
∗), . . . , P ∗` (x`, s

∗))D
∗

indicates running the ORAM programs on D∗ sequentially.

Security. For security, we require that there exists a PPT simulator Sim such that for any
sequence of programs P1, . . . , P`, initial memory data D ∈ {0, 1}M , and inputs x1, . . . , x` we
have that:

(D∗,MemAccess)
c
≈ Sim(1κ, 1M , {1ti , yi}`i=1)

where (y1, . . . , y`) = (P1(x1), . . . , P`(x`))
D, (D∗, s∗)← OData(1κ, D), and MemAccess corre-

sponds to the access pattern of the CPU-step circuits during the sequential execution of the
oblivious programs (P ∗1 (x1, s

∗), . . . , P ∗` (x`, s
∗))D

∗
.

4.4.2 Generic Construction

We prove the following theorem.

Theorem 4.4.2. Assume there exists a UMA-secure multi-hop RAM scheme and an ORAM
scheme. Then there exists a fully secure multi-hop RAM scheme. Moreover, we give a black-
box construction of one given a UMA-secure multi-hop RAM and ORAM scheme.

Proof. We first give the construction of the scheme itself and then provide a construction of
an appropriate simulator to prove security. Let (Setup,KeyGen,EncData, InpEnc,Eval,Dec)
be a UMA-secure multi-hop RAM scheme and let (OData,OProg) be an ORAM scheme.

We construct a new multi-hop RAM scheme (Ŝetup, K̂eyGen, ̂EncData, ̂InpEnc, Êval, D̂ec) as
follows:

• Ŝetup(1κ): Generate crs same as Setup.

• K̂eyGen(1κ): Generate (pk, sk) same as KeyGen.

• ̂EncData(crs, D): Execute (D∗, s∗)← OData(1κ, D) followed by D̃ ← EncData(1κ, D∗).

• ̂InpEnc(x): Execute (ct, x secret)← InpEnc(x).
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• Êval
(
i, {pkj}nj=i+1, ct, sk, (P, t), digest

)
: Execute (P ∗, t∗) ← OProg(1κ, 1logM , 1t, P ) fol-

lowed by Eval
(
i, {pkj}nj=i+1, ct, sk, (P

∗[s∗], t∗), digest
)
, where P ∗ has s∗ hard-coded in-

side it.

• D̂ec
D̃1,··· ,D̃n

(x secret, ct): Output DecD̃1,··· ,D̃n (x secret, ct).

We prove that the construction above given by (Ŝetup, K̂eyGen, ̂EncData, ̂InpEnc, Êval, D̂ec)
is a fully secure multi-hop RAM scheme.

4.4.3 Correctness

For a Single Execution. First we prove correctness for a single execution, and then we
will generalize to multiple executions. In a single execution, our goal is to demonstrate that

Pr

[
D̂ec

D̃1,··· ,D̃n
(x secret, ctn) = Pn

Dn
(
· · ·
(
P1

D1(x)
)
· · ·
)]

= 1,

where D̃i ← ̂EncData(1κ, Di), (ct0, x secret) ← ̂InpEnc(x), cti ← Êval(i, {pkj}nj=i+1, cti−1,
sk, Pi, ti, digesti).

By definition, D̂ec
D̃1,··· ,D̃n

(x secret, ctn) = DecD̃1,··· ,D̃n (x secret, ctn). By the correct-

ness of the UMA-secure multi-hop RAM scheme, we have that DecD̃1,··· ,D̃n(x secret, ctn) =

P ∗n [s∗n]D
∗
n

(
· · ·
(
P ∗1 [s∗1]D

∗
1 (x)

)
· · ·
)

. Finally, by the correctness of the ORAM scheme, it holds

that P ∗n [s∗n]D
∗
n

(
· · ·
(
P ∗1 [s∗1]D

∗
1 (x)

)
· · ·
)

= Pn
Dn
(
· · ·
(
P1

D1(x)
)
· · ·
)
.

For Multiple Executions. To prove correctness in multiple executions, we need to show
that

Pr

[
D̂ec

D̃
(sid)
1 ,··· ,D̃(sid)

n (
x secret(sid), ct(sid)

n

)
= P (sid)

n

D
(sid)
n

(
· · ·
(
P

(sid)
1

D
(sid)
1

(x(sid))

)
· · ·
)]

= 1,

where D̃
(sid)
i is the resulting garbled database after executing sid-1 homomorphic evaluations,

(ct
(sid)
0 , x secret(sid))← ̂InpEnc(x(sid)), ct

(sid)
i ← Êval(i, {pkj}nj=i+1, ct

(sid)
i−1 , sk, P

(sid)
i , t

(sid)
i , digest

(sid)
i ).

Recall that for correctness of the UMA-secure multi-hop RAM scheme we proved that
the after every execution, the resulting garbled database D̃

(sid)
i corresponds to the output

of Hash(crs, D
(sid)
i ), where D

(sid)
i is the correct D∗i resulting after previous sid− 1 executions

in the clear (see Property 2, Section 4.3.3). By correctness of ORAM and the underlying
UMA-secure multi-hop RAM scheme, we conclude the correctness in multiple executions.

4.4.4 Security

For a Single Client in a Single Execution. Server privacy is follows by receiver privacy
of oblivious transfer. Now we prove client privacy for a single honest client Qi in a single
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execution. More precisely, we prove that there exists a PPT simulator ihopSim such that,
for any set of databases {Dj}j∈[n], any sequence of compatible programs P1, · · · , Pn running
time t1, · · · , tn and input x, the outputs of the following two experiments are computational
indistinguishable:
Real experiment

• (pkj, skj)← KeyGen(1κ) for ∀j ∈ [n].

• D̃j = (digestj, D̂j)← EncData(crs, Dj) for ∀j ∈ [n].

• (ct0, x secret)← InpEnc(x).

• ctj ← Eval
(
j, {pkk}nk=j+1, ctj−1, skj, (Pj, tj), digestj

)
for ∀j ∈ [n].

• Output ct0, {D̃j, ctj}j∈[n].

Simulated experiment

• (pki, ski)← ihopSim(1κ, i).

• (pkj, skj)← KeyGen(1κ; rj) for ∀j ∈ [n] \ {i}. Here, rj are uniform random coins.

•
(
ct0, {D̃j, ctj}j∈[n]

)
← ihopSim

(
crs, x, {pkj, skj, tj}j∈[n], {Dj, Pj, rj}j∈[n]\{i}, 1

Mi , yi
)
, where

yi = Pi
Di
(
· · ·
(
P1

D1(x)
)
· · ·
)
.

• Output ct0, {D̃j, ctj}j∈[n].

We let OSim be the ORAM simulator, and USim be the simulator for the UMA-secure
multi-hop RAM scheme. We describe the two phases of ihopSim. In the first phase, ihopSim
generates the keys of honest client Qi as (pki, ski) ← KeyGen(1κ). In the second phase,
ihopSim proceeds as follows.

1. Compute (D∗i ,MemAccessi)← OSim(1κ, 1Mi , 1ti , yi).

2. Compute (D∗j , s
∗
j) from ̂EncData and P ∗j from Êval for every j ∈ [n] \ {i}.

3. Compute
(
ct0, {D̃j, ctj}j∈[n]

)
← USim(crs, x, {pkj, skj, t∗j}j∈[n], {D∗j , P ∗j [s∗j ], rj}j∈[n]\{i},

D∗i ,MemAccessi, yi).

4. Output
(
ct0, {D̃j, ctj}j∈[n]

)
.

We now prove the output of the simulator is computationally indistinguishable from the
real distribution.

• H0: Output of the real experiment.
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• H1: Compute (D∗j , s
∗
j) from ̂EncData and P ∗j from Êval for every j ∈ [n] \ {i}. Use

the honestly generated (D∗i , s
∗
i ) from ̂EncData and P ∗i from Êval to execute the pro-

gram P ∗i [s∗i ]
D∗i
(
· · ·
(
P ∗1 [s∗1]D

∗
1 (x)

)
· · ·
)

and obtain yi and a sequence of memory ac-

cesses MemAccessi. Then run
(
ct0, {D̃j, ctj}j∈[n]

)
← USim(crs, x, {pkj, skj, t∗j}j∈[n],

{D∗j , P ∗j [s∗j ], rj}j∈[n]\{i}, D
∗
i ,MemAccessi, yi) and output.

Since (D∗i ,MemAccessi) is the same as the real execution, the indistinguishability of this
hybrid and H0 follows from UMA-security of the underlying multi-hop RAM scheme.

• H2: Output of the simulated experiment. The only thing that differs in H1 and H2 is
how we generate D∗i and MemAccessi. In H1 they are generated honestly and in H2

they are generated by OSim. H1
c
≈ H2 follows from the security of ORAM.

For Multiple Clients in Multiple Executions. Similar as in the proof of UMA security,
the above proof can be naturally extended to provide security for multiple clients and many
executions. For example in the case of two clients Qi1 and Qi2 , ihopSim first computes(
ct0, {D̃j}j∈[n], {ctj}j∈[i1−1]

)
honestly, then simulates cti1 same as above as if there were only

one honest client Qi1 . It then computes {ctj}j∈[i1+1,i2−1] from cti1 by Êval, and simulates
cti2 same as above as if there were only one honest client Qi2 . Notice that when simulating
cti2 , similar as in the UMA-secure scenario, ihopSim cannot generate (D∗i1 , s

∗
i1
, P ∗i1) honestly.

Instead it will use the simulated (D∗i1 ,MemAccessi1) generated from OSim, and that is enough

for the simulation. Finally it computes {ctj}j∈[i2+1,n] from cti2 by Êval. To show this is
indistinguishable from the real execution, we consider the following hybrids:

• H0: Output in the real experiment.

• H1: First compute
(
ct0, {D̃j}j∈[n], {ctj}j∈[i2−1]

)
honestly, and then compute cti2 same

as above as if there were only one honest client Qi2 . Finally it computes {ctj}j∈[i2+1,n]

from cti2 honestly by Êval.

• H2: Output in the simulated experiment.

The above hybrids are indistinguishable because an honestly generated cti1 or cti2 is indis-
tinguishable from a simulated one, as we have shown in the single-client case.

To simulate multiple executions, ihopSim should first use OSim to simulate (D∗i ,MemAccessi)
for every honest client Qi in all executions, and then repeat the above procedure for every
execution. In the hybrids, we start from the real execution and first replace the honestly
generated ct’s by simulated ones while using honestly generated (D∗i ,MemAccessi), and this
step follows from the UMA-security of the underlying multi-hop RAM scheme. Afterwards
we replace the honestly generated (D∗i ,MemAccessi) by the output of OSim, and this step
follows from the security of ORAM supporting multiple executions.



86

Chapter 5

Password-Based Threshold
Authentication

Token-based authentication is commonly used to enable a single-sign-on experience on the
web, in mobile applications and on enterprise networks using a wide range of open standards
and network authentication protocols: clients sign on to an identity provider using their
username/password to obtain a cryptographic token generated with a master secret key, and
store the token for future accesses to various services and applications. The authentication
server(s) are single point of failures that if breached, enable attackers to forge arbitrary
tokens or mount offline dictionary attacks to recover client credentials.

In this chapter, we introduce and formalize the notion of password-based threshold token-
based authentication which distributes the role of an identity provider among n servers. Any
t servers can collectively verify passwords and generate tokens, while no t − 1 servers can
forge a valid token or mount offline dictionary attacks. This serves as a special functionality
of secure computation.

For this specific application of secure computation, we introduce PASTA, a general frame-
work that can be instantiated using any threshold token generation scheme, wherein clients
can “sign-on” using a 2-round (optimal) protocol that meets our strong notions of unforge-
ability and password-safety.

We instantiate and implement our framework in C++ using two threshold message au-
thentication codes (MAC) and two threshold digital signatures with different trade-offs. Our
experiments show that the overhead of protecting secrets and credentials against breaches
in PASTA, i.e. compared to a näıve single server solution, is extremely low (1-5%) in the
most likely setting where client and servers communicate over the internet. The overhead is
higher in case of MAC-based tokens over a LAN (though still only a few milliseconds) due
to public-key operations in PASTA. We show, however, that this cost is inherent by proving
a symmetric-key only solution impossible.

Organization. We first give a technical overview in Section 5.1. Then we introduce nec-
essary background in Section 5.2. An important building block, threshold oblivious pseudo-
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random function (TOPRF) is presented in Section 5.3. We formalize password-based thresh-
old token-based authentication and present our PASTA framework in Section 5.4 and show
experimental results in Section 5.5. Finally we prove necessity of using public-key operations
in Section 5.6.

5.1 Technical Overview

We start with a plain password-based token generation protocol that is insecure against
server breaches. As briefly mentioned in Section 1.2, the plain protocol works as follows. In
the registration phase, a client registers with its username/password by storing its username
and hashed password h = Hash(password) on the identity server. In the sign-on phase,
client sends its username and hashed password h′ to the server; server checks if h′ = h for
the username. If the check passes, server then uses a master secret key msk to compute a
token authmsk(x) and sends it to client, where auth is either a MAC or a digital signature
and x is the data to be signed. In this solution, both the master secret key msk and the
hashed password h are compromised if the server is breached. Hence clients’ passwords could
be recovered using offline dictionary attacks.

Threshold Solution. A natural approach for protecting the master secret key msk is to
combine the above plain solution with a threshold token generation (TTG) scheme (i.e. a
threshold MAC or threshold signature). TTG schemes enable us to secret share msk among
n servers such that any t servers can jointly generate valid tokens while any subset of up to
t− 1 servers cannot forge valid tokens or recover msk. To combine with the plain solution,
the client registers to every server by sending its username and hashed password h in the
registration phase. Then in the sign-on phase, client sends to t servers its username and
hashed password h′. Every server checks if the h = h′ for the username, and performs its
portion of the TTG scheme if the check passes. This solution guarantees the security of msk
when at most t − 1 servers are breached, but clients’ passwords are still vulnerable against
offline dictionary attacks even if a single server is breached.

Changing Secret Information Stored on Servers. The above two näıve solutions
follow the same paradigm: server issues a token or executes the TTG scheme only if client
is using the correct password. In order to check if client is using the correct password in the
sign-on phase, server needs to store some “secret information” about client’s password in the
registration phase. In the above solutions, this secret information is the hashed password.
A fundamental problem with this is that the secret information can be computed given only
the password, hence enabling offline dictionary attacks on the password. To resolve this
issue, we make the stored secret information also depend on a server-side secret.

This can be achieved by a threshold oblivious pseudorandom function (TOPRF) [FIPR05].
In a TOPRF protocol, a secret key k for a pseudorandom function F is initially shared among
n servers. A client can obtain a PRF value of its password h = Fk(password) by interacting
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with t servers, without revealing any information about its password to servers. Moreover,
the function Fk(·) is computable by any t servers, but cannot be computed by up to t − 1
servers. To this end, the PRF value h = Fk(password) serves as our new secret information
stored on servers, and the protocol is now secure against offline dictionary attacks.

From Four Rounds to Two Rounds. A TOPRF protocol requires at least two rounds.
Hence the sign-on phase in the above protocol requires at least four rounds: client and
servers run the TOPRF protocol which requires two rounds for the client to obtain h; client
then sends h back to servers as a third-round message; servers verify and respond with token
shares of the TTG scheme as fourth-round messages. We would like to reduce the interaction
to two rounds because network latency is a major bottleneck in the protocol especially over
WAN networks (see Section 5.5.2 for details).

On the one hand, in order to prevent offline dictionary attack, we require that the “secret
information” be computed jointly by client and servers, which requires at least two rounds.
On the other hand, servers must ensure that generation of token is only performed after the
secret information is checked, which also requires two rounds, so it seems that four rounds
is necessary to achieve our goal.

We resolve this deadlock by observing that the check does not have to be done on the
server side. Instead of checking the secret information and then participating in the TTG
scheme to generate token shares, the servers generate token shares directly and encrypt them
under the secret information h using a symmetric-key encryption scheme. The ciphertexts
are sent along with the second-round message of the TOPRF protocol. Now the protocol
only has two rounds, and the check is done on the client side: only if the client has used the
correct password in the first round of TOPRF can it calculate the correct h and decrypt the
ciphertexts to obtain t token shares, and combine them to recover the final token.

Mitigating Client Impersonation Attacks. There is still a subtle security problem.
Consider an attacker who compromises a single server and retrieves the secret information h
of a client, and then impersonates the client to which h belongs without knowing its password
by participating in a sign-on protocol with the servers. The servers generate token shares,
encrypt them under h, and send back to the attacker. Since the attacker already knows h, it
can decrypt all the ciphertexts and combine the token shares to obtain a valid token without
ever knowing the client’s password or the master secret key. This issue occurs because when
reducing the round complexity from four to two, we make the servers generate token shares
without checking the secret information, but encrypt them using the secret information.

We address this issue by further modifying the secret information stored on servers. A
client who computes h in the registration phase only sends hi = Hash′(h, i) to server i where
Hash′ is assumed to be a random oracle. In other words, h is never revealed to or stored
by any server, and each server only learns its corresponding hi. Later in the sign-on phase,
token shares are encrypted under the his. The client impersonation attack no longer works
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since compromising certain servers only reveals the his of these servers to the attacker, while
the remaining his are still kept secret.

Multi-Client Security. In our final protocol, we require that the only allowed attack is to
impersonate a certain client and try different passwords by participating in an online sign-on
protocol. This type of online attack is easy to detect in practice (e.g. if the same client
is trying to sign-on very frequently within a short period of time). But enforcing the same
across a large set of clients is not possible. Hence an important security requirement is that
attacking one client should not help in attacking any other client.

This is not true for the protocol we have described so far. Consider an attacker who
does not compromise any server, and performs the above online attack on one client1, trying
all possible passwords. As a result, the attacker would obtain all the PRF values h =
PRFk(password) for all possible passwords. Then the attacker impersonates another client
by participating in a single sign-on protocol with the servers. Since the attacker already
knows all possible PRF values, it could try decrypting the ciphertexts sent from servers
using the collected dictionary of PRF values (offline) to find the correct value and hence
recover the password. In other words, he can leverage his online attack against one client
to perform offline attacks (after a single online interaction) on many other clients. Note
that including client username as part of the input to the PRF does not solve the problem
either since servers have no way of checking what username the attacker incorporates in
the TOPRF protocol without adding expensive zero-knowledge proofs to this effect to the
construction.

One natural idea is to have a distinct TOPRF key for every client, so that PRF values
learned from one client would be useless for any other client. This means that servers need
to generate a sufficiently large number of TOPRF keys in the global setup phase, which
is not practical. There is a simple and efficient fix: we let every client generate its own
TOPRF key and secret share it between servers in the registration phase. This yields our
final protocol which we formally prove to meet all our security requirements under the gap
TOMDH assumption [JKKX17] in the random oracle model.

Related Work. Password-based techniques are the most common methods for authenti-
cating users. However, the traditional approach of storing hashed passwords on the servers is
susceptible to offline dictionary attacks [WW15; Dan]. Standard remedies such as salting or
more advanced remedies such as memory-hard functions [Scrypt; ACK+16; DKAN; BD16;
ACP+17; BZ17], pursued in the recent password-hashing competition [PHC], surely make
the task of the attacker harder, but do not resolve the fundamental issue of trusting a single
server.

A large body of work considers distributed token generation through threshold digital
signatures [DF90; DDFY94; GHKR08; DK01; Bol03; AMN01; GJKR96; GGN16; Sho00;

1A smarter attacker would distribute its online attack across many clients to avoid detection. We use
the single client in this example just to highlight the underlying multi-client security issue.
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BS01] and threshold message authentication codes [BLMR13; NPR99; MPS+03] which can
protect the master key against t− 1 breached servers. A separate line of work on threshold
password-authenticated key exchange (T-PAKE) [MSJ02; DG03; AFP05; ACFP05; CLN15;
KMTG05] aims to prevent offline dictionary attacks in standard password-authenticated key
exchange (PAKE) [BPR00; BMP00; KOY01; GK10; KV11; CHK+05; PS10; KOY03] by
employing multiple servers.

While PAKE and T-PAKE solve the problem of establishing a secret key between a server
and a client, where the client authenticates with a password, they do not solve the problem
posed in this paper of distributing trust in password-based token generation. Specifically,
PbTA generates tokens and provides token unforgeability, which T-PAKE does not deal with.
Moreover, PbTA works in a setting where multiple clients share the same token generation
set-up, and guarantees that attacks on one client do not affect the security of others. Finally,
PbTA has a per-client registration phase that further differentiates it from PAKE and T-
PAKE.

It is also worth noting that a straightforward composition of a T-PAKE followed by
a threshold signature/MAC meets neither the efficiency nor the security requirements for
PbTA. For efficiency, recall that we require minimal interaction where servers need not
communicate with each other after a one-time setup procedure, and both the password
verification and the token generation can be performed simultaneously in two rounds. The
most efficient T-PAKE schemes require at least three rounds of interaction between the client
and servers and additional communication among the servers (which could further increase
when combined with threshold token generation). For security, it is unclear how to make
such a composition meet our strong unforgeability and password-safety properties which we
elaborate on shortly.

Another line of work focuses on constructing password-based server-aided signatures [CLNS16;
XS03; Gan95; GT11; MR01]. However, they assume that apart from the password, a client
also needs to use a secret state (e.g. a shared secret key) to generate a signature. In contrast,
we focus on a solution in which a client only needs to use a password to generate a signature
(more generally, a token).

Password-protected secret sharing (PPSS) [BJSL11; JKKX17; ACNP16; JKK14; YHCL15;
CLLN14; CLN12; CEN15; JKKX16] considers the related problem of sharing a secret among
multiple servers where t servers can reconstruct the secret if client’s password verifies. This
line of work does not meet our goal of keeping the master secret distributed at all times
for use in a threshold token generation scheme. Moreover, PPSS is commonly studied in
a single client setting where each client has its own unique secret. As we will see shortly,
the multi-client setting and the common master-key used for all clients introduces additional
technical challenges.

A very recent work of Harchol et al. [HAP18] implements and uses similar building blocks
to ours, i.e. a threshold oblivious PRF [JKKX17] and a proactive variant of threshold RSA
signature scheme [Sho00]. But it uses them for the different end goal of distributing server
secret keys and protecting client secret keys with a password in SSH implementations. As
such, it neither formalizes nor addresses the security/efficiency requirements of a password-
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based token generation scheme.

5.2 Background

We use κ to denote the security parameter. Let Z denote the set of all integers and Zn the
set {0, 1, 2, . . . , n − 1}. Z∗n is defined as Z∗n := {x ∈ Zn| gcd(x, n) = 1}. We use [a, b] for
a, b ∈ Z, a ≤ b, to denote the set {a, a+ 1, . . . , b− 1, b}. [b] denotes the set [1, b]. N denotes
the set of natural numbers.

We use x ←$ S to denote that x is sampled uniformly at random from a set S. We use
PPT as a shorthand for probabilistic polynomial time and negl to denote negligible functions.

We use JaK as a shorthand for (a, a1, . . . , an) where a1, . . . , an are shares of a. A concrete
scheme will specify how the shares will be generated. The value of n will be clear from
context.

We use a ‘require’ statement in the description of an oracle to enforce some checks on
the inputs. If any of the checks fail, the oracle outputs ⊥.

In a security game, we use 〈O〉 to denote the collection of all the oracles defined in the
game. For e.g., if a game defines oracles O1, . . . ,O`, then for an adversary A, A〈O〉 denotes
that A has access to the collection 〈O〉 := (O1, . . . ,O`).

Shamir’s Secret Sharing. Shamir’s secret sharing is a simple way to generates shares of
a secret so that a threshold of the shares are sufficient to reconstruct the secret, while any
smaller number hides it completely. We consider a slightly more general form of Shamir’s
sharing here. Let GenShare be an algorithm that takes inputs p, n, t, {(i, αi)}i∈S s.t. t ≤ n <
p, p is prime, S ⊆ [0, n] and |S| < t. It picks a random polynomial f of degree at most t− 1
over Zp s.t. f(i) = αi for all i ∈ S, and outputs f(0), f(1), . . . , f(n).

To generate a (t, n)-Shamir sharing of a secret s ∈ Zp, GenShare is given p, n, t and (0, s)
as inputs to produce shares s0, s1, . . . , sn. Using the shorthand defined above, one can write
the output compactly as JsK. Given any t or more of the shares, say {sj}j∈T for |T | ≥ t,
one can efficiently find coefficients {λj}j∈T such that s = f(0) =

∑
j∈T λj · sj. However,

knowledge of up to t−1 shares reveals no information about s if it is chosen at random from
Zp.

Cyclic Group Generator. Let GroupGen be a PPT algorithm that on input 1κ outputs
(p, g,G) where p = Θ(κ), p is prime, G is a group of order p, and g is a generator of G. We
will use multiplication to denote the group operation.

5.2.1 Hardness Assumption

Threshold oblivious PRF (TOPRF) was introduced by Jarecki et al. [JKKX17] in a recent
work. They propose a simple TOPRF protocol called 2HashTDH and prove that it is UC-
secure under the Gap Threshold One-More Diffie-Hellman (Gap-TOMDH) assumption in
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the random oracle model. They also show that Gap-TOMDH is hard in the generic group
model.

Rather than modeling TOPRF as a functionality in the UC-sense, we will explicitly
formalize two natural properties for it, obliviousness and unpredictability, in Section 5.3.
We will show that Jarecki et al.’s 2HashTDH protocol satisfies these properties under the
same assumption. Here, we formally state the assumption.

For q1, . . . , qn ∈ N and t′, t ∈ N where t′ < t ≤ n, define MAXt′,t(q1, . . . , qn) to be the
largest value of ` such that there exists binary vectors u1, . . . ,u` ∈ {0, 1}n such that each
ui has t − t′ number of 1’s in it and (q1, . . . , qn) ≥

∑
i∈[`] ui. (All operations on vectors

are component-wise integer operations.) Looking ahead, t and t′ will be the parameters in
the security definition of TOPRF and PbTA (t will be the threshold and t′ the number of
corrupted parties).

Definition 5.2.1 (Gap-TOMDH). A cyclic group generator GroupGen satisfies the Gap
Threshold One-More Diffie-Hellman (Gap-TOMDH) assumption if for all t′, t, n,N such
that t′ < t ≤ n and for all PPT adversary A, there exists a negligible function negl s.t.
One-MoreA(1κ, t′, t, n,N) (Figure 5.1) outputs 1 with probability at most negl(κ).

In this game, a random polynomial of degree t−1 is picked but A gets to choose its value
at t′ points (steps 3 and 4). A gets access to two oracles:

• O allows it to compute xki , where ki is the value of the randomly chosen polynomial
at i, for ki that it does not know. A counter qi is incremented for every such call.

• ODDH allows it to check if the discrete log of g2 w.r.t. g1 is the same as the discrete log
of h2 w.r.t. h1.

Intuitively, to compute a pair of the form (g, gk0), A should somehow get access to k0.
It clearly knows ki for i ∈ U , but shares outside U can only be obtained in the exponent,
with the help of oracle O. One option for A is to invoke O with (i, g) for at least t − t′

different values of i outside of U , and then combine them together along with the ki it knows
to obtain gk0 .

IfA sticks to this strategy, it would have to repeat it entirely to compute hk0 for a different
base h. It could invoke O on different subsets of [n] for different basis, but MAXt′,t(q1, . . . , qn)
will be the maximum number of pairs of type (x, xk0) it will be able to generate through this
process.

Certainly, an adversary is not restricted to producing pairs in the way described above.
However, Gap-TOMDH assumes that no matter what strategy a PPT adversary takes, it
can effectively do no better than this.

5.2.2 Threshold Token Generation

A threshold token generation (TTG) scheme distributes the task of generating tokens for
authentication among a set of n servers, such that at least a threshold t number of servers
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One-MoreA(1κ, t′, t, n,N):

1. (p, g,G)
$← GroupGen(1κ)

2. g1, . . . , gN ←$ G

3. ({(i, αi)}i∈U , D̂)
$← A(p, g,G, g1, . . . , gN ), where U ⊆ [n], |U| = t′

4. (k0, k1, . . . , kn)
$← GenShare(p, n, t, {(i, αi)}i∈U )

5. q1, . . . , qn := 0

6. ((g′1, h1), . . . , (g′`, h`))
$← A〈O〉(D̂)

7. output 1 iff

• ` > MAXt′,t(q1, . . . , qn),

• ∀ i ∈ [`], g′i ∈ {g1, . . . , gN} and hi = g′i
k0 , and

• ∀ i, j ∈ [`] s.t. i 6= j, g′i 6= g′j .

O(i, x):

• require: i ∈ [n] \ U , x ∈ G
• increment qi by 1

• return xki

ODDH(g1, g2, h1, h2)

• require: g1, g2, h1, h2 ∈ G
• return 1 iff ∃ a ∈ Zp s.t. g2 = ga1 and h2 = ha1

Figure 5.1: The Gap-TOMDH game.

must be contacted to compute a token. TTG provides a strong unforgeability guarantee:
even if t′ < t of the servers are corrupt, any time a token on some new value x is needed, at
least t− t′ servers must be contacted.

We formally define a TTG scheme and the unforgeability guarantee associated with it
below.

Definition 5.2.2 (Threshold Token Generation). A threshold token generation scheme TTG
is a tuple of four PPT algorithms (Setup, PartEval, Combine, Verify) that satisfies the con-
sistency property below.

• Setup(1κ, n, t)→ (JskK, vk, pp). It generates a secret key sk, shares sk1, sk2, . . ., skn of
the key, a verification key vk, and public parameters pp. Share ski is given to party i.
(pp will be an implicit input in the algorithms below.)
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• PartEval(ski, x) → yi. It generates shares of token for an input. Party i computes the
i-th share yi for x by running PartEval with ski and x.

• Combine({i, yi}i∈S) =: tk/⊥. It combines the shares received from parties in the set S
to generate a token tk. If the algorithm fails, its output is denoted by ⊥.

• Verify(vk, x, tk) =: 1/0. It verifies whether token tk is valid for x or not using the
verification key vk. (Output 1 denotes validity.)

Consistency. For all κ ∈ N, any n, t ∈ N such that t ≤ n, all (JskK, vk, pp) generated by

Setup(1κ, n, t), any value x, and any set S ⊆ [n] of size at least t, if yi
$← PartEval(ski, x) for

i ∈ S, then Verify(vk, x,Combine({(i, yi)}i∈S)) = 1.

Definition 5.2.3 (Unforgeability). A threshold token generation scheme TTG := (Setup,
PartEval, Combine, Verify) is unforgeable if for all PPT adversaries A, there exists a negli-
gible function negl such the probability that the following game outputs 1 is at most negl(κ).

UnforgeabilityTOP,A(1κ, n, t):

• Initialize. Run Setup(1κ, n, t) to get (JskK, vk, pp). Give pp to A.

• Corrupt. Receive the set of corrupt parties U from A, where t′ := |U| < t. Give
{ski}i∈U to A.

• Evaluate. In response to A’s query (Eval, x, i) for i ∈ [n]\U , return yi := PartEval(ski, x).
Repeat this step as many times as A desires.

• Challenge. A outputs (x?, tk?). Check if

– |{i | A made a query (Eval, x?, i)}| < t− t′ and

– Verify(vk, x?, tk?) = 1.

Output 1 if and only if both checks succeed.

The unforgeability property captures the requirement that it must not be possible to
generate a valid token on some value if less than t− t′ servers are contacted with that value.

Concrete Schemes. Below we describe the concrete threshold token generation schemes
we implement.

• The DDH-based DPRF scheme of Naor, Pinkas and Reingold [NPR99] as a public-key
threshold MAC (Figure 5.2).

• The PRF-only DRPF scheme of Naor, Pinkas and Reingold [NPR99] as a symmetric-
key MAC (Figure 5.3).
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• The threshold RSA-signature scheme of Shoup [Sho00] as a threshold signature scheme
based on RSA assumption (Figure 5.4).

• The pairing-based signature scheme of Boldyreva [Bol03] as a threshold signature
scheme based on the gap-DDH assumption (Figure 5.5).

Ingredients: Let G = 〈g〉 be a multiplicative cyclic group of prime order p in which the DDH
assumption holds and Hash : {0, 1}∗ → G be a hash function modeled as a random oracle.
Let GenShare be Shamir’s secret sharing scheme.

• Setup(1κ, n, t) → (JskK, vk, pp). Sample s ←$ Zp and get (s, s1, . . . , sn) ←
GenShare(n, t, p, (0, s)). Set pp := (p, g,G), ski := si and vk := s. Give (ski, pp) to
party i. (pp will be an implicit input in the algorithms below.).

• PartEval(ski, x)→ yi. Compute w := Hash(x), hi := wski and output hi.

• Combine({i, yi}i∈S) =: tk/⊥. If |S| < t output ⊥. Otherwise parse yi as hi for i ∈ S
and output

∏
i∈S h

λi,S
i

• Verify(vk, x, tk) =: 1/0. Return 1 if and only if Hash(x)vk = tk.

Figure 5.2: DDH-based DPRF construction of Naor et al. [NPR99] (public-key threshold
MAC).

Ingredients: Let f : {0, 1}κ × {0, 1}∗ → {0, 1}∗ be a pseudo-random function.

• Setup(1κ, n, t) → (JskK, vk, pp). Pick d :=
(

n
n−t+1

)
keys k1, . . . , kd ←$ {0, 1}κ for f .

Let D1, . . . , Dd be the d distinct (n − t + 1)-sized subsets of [n]. For i ∈ [n], let
ski := {kj | i ∈ Dj for all j ∈ [d]} and vk := (k1, . . . , kd). Set pp := f and give
(ski, pp) to party i.

• PartEval(ski, x)→ yi. Compute hi,k := fk(x) for all k ∈ ski and output {hi,k}k∈ski .

• Combine({i, yi}i∈S) =: tk/⊥. If |S| < t output ⊥. Otherwise parse yi as {hi,k}k∈ski

for i ∈ S. Let {sk′i}i∈S be mutually disjoint sets such that ∪i∈Ssk′i = {k1, . . . , kd} and
sk′i ⊆ ski for every i. Output ⊕k∈sk′i,i∈S(hi,k).

• Verify(vk, x, tk) =: 1/0. Return 1 if and only if ⊕i∈[d](fki(x)) = tk where vk =
{k1, . . . , kd}.

Figure 5.3: PRF-based DPRF of Naor et al. [NPR99] (symmetric-key threshold MAC).
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Ingredients: Let GenShare be a Shamir’s secret sharing scheme and Hash : {0, 1}∗ → Z∗N be
a hash function modeled as a random oracle.

• Setup(1κ, n, t)→ (JskK, vk, pp). Let p′, q′ be two randomly chosen large primes of equal
length and set p := 2p′ + 1 and q = 2q′ + 1. Set N := pq. Choose another large
prime e at random and compute d ≡ e−1 mod Φ(N) where Φ(·) : N→ N is the Euler’s
totient function. Then (d, d1, . . . , dn)← GenShare(n, t,Φ(N), (0, d)). Let ski := di and
vk := (N, e). Set pp := ∆ where ∆ := n!. Give (pp, vk, ski) to party i.

• PartEval(ski, x)→ yi. Output yi := Hash(x)2∆di .

• Combine({i, yi}i∈S) =: tk/⊥. If |S| < t output ⊥, otherwise compute z :=∏
i∈S y

2λ′i,S
i mod N where λ′i,S := λi,S∆ ∈ Z. Find integer (a, b) by Extended Euclidean

GCD algorithm such that 4∆2a + eb = 1. Then compute tk := za · Hash(x)b mod N .
Output tk.

• Verify(vk, x, tk) = 1/0. Return 1 if and only if tke = Hash(x) mod N .

Figure 5.4: Threshold RSA-signature scheme of Shoup [Sho00].

Ingredients: Let G = 〈g〉 be a multiplicative cyclic group of prime order p that sup-
ports pairing and in which CDH is hard. In particular, there is an efficient algorithm
VerDDH(ga, gb, gc, g) that returns 1 if and only if c = ab mod p for any a, b, c ∈ Z∗p and
0 otherwise. Let Hash : {0, 1}∗ → G be a hash function modeled as a random oracle. Let
GenShare be the Shamir’s secret sharing scheme.

• Setup(1κ, n, t) → (JskK, vk, pp). Sample s ←$ Z∗p and get (s, s1, . . . , sn) ←
GenShare(n, t, p, (0, s)). Set pp := (p, g,G), ski := si and vk := gs. Give (ski, pp)
to party i.

• PartEval(ski, x)→ yi. Compute w := Hash(x), hi := wski and output hi.

• Combine({i, yi}i∈S) =: tk/⊥. If |S| < t output ⊥. Otherwise parse yi as hi for i ∈ S
and output

∏
i∈S h

λi,S mod p
i

• Verify(vk, x, tk) =: 1/0. Return 1 if and only if VerDDH(Hash(x), vk, tk, g) = 1.

Figure 5.5: Pairing-based threshold signature scheme of Boldyreva [Bol03].

5.3 Threshold Oblivious Pseudo-Random Function

A pseudo-random function (PRF) family is a keyed family of deterministic functions. A
function chosen at random from the family is indistinguishable from a random function.
Oblivious PRF (OPRF) is an extension of PRF to a two-party setting where a server S
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holds the key and a party P holds an input [FIPR05]. S can help P in computing the PRF
value on the input but in doing so P should not get any other information and S should not
learn P ’s input.

Jarecki et al. [JKKX17] extend OPRF to a multi-server setting so that a threshold number
t of the servers are needed to compute the PRF on any input. Furthermore, a collusion of at
most t − 1 servers learns no information about the input. They propose a functionality for
TOPRF and show how to realize it in a UC-secure way. We instead treat TOPRF as a set
of algorithms that must satisfy two natural properties, unpredictability and obliviousness.

5.3.1 Syntax

Definition 5.3.1 (Threshold Oblivious Pseudo-Random Function). An (X ,R)-threshold
oblivious pseudo-random function (TOPRF) TOP is a tuple of four PPT algorithms (Setup,
Encode,Eval,Combine) that satisfies the consistency property below.

• Setup(1κ, n, t) → (JskK, pp). It generates n secret key shares sk1, sk2, . . ., skn and
public parameters pp. Share ski is given to party i. (pp will be an implicit input in the
algorithms below.)

• Encode(x, ρ) =: c. It generates an encoding c of x ∈ X using randomness ρ ∈ R.

• Eval(ski, c) =: zi. It generates shares of TOPRF value from an encoding. Party i
computes the i-th share zi from c by running Eval with ski and c.

• Combine(x, {(i, zi)}i∈S, ρ) =: h/⊥. It combines the shares received from parties in the
set S using randomness ρ to generate a value h. If the algorithm fails, its output is
denoted by ⊥.

Consistency. For all κ ∈ N, any n, t ∈ N such that t ≤ n, all (JskK, pp) generated by
Setup(1κ, n, t), any value x ∈ X , any randomness ρ, ρ′ ∈ R, and any two sets S, S ′ ⊆ [n]
of size at least t, if c := Encode(x, ρ), c′ := Encode(x, ρ′), zi := Eval(ski, c) for i ∈ S, and
z′j := Eval(skj, c

′) for j ∈ S ′, then Combine(x, {(i, zi)}i∈S, ρ) = Combine(x, {(j, z′j)}j∈S′ , ρ′)
6= ⊥.

Thus, irrespective of the randomness used to encode an x and the set of parties whose
shares are combined, the output of Combine does not change (as long as Combine is given
the same randomness used for encoding). We call this output the output of the TOPRF on
x, and denote it by TOP(sk, x).

Public Combine. We also consider a public combine algorithm PubCombine that could
be run by anyone with access to just the partial evaluations. It would be used to check
if a purported set of evaluations can lead to the right PRF value or not. Formally, for
Z := {(i, zi)}i∈S generated in the same manner as that for the consistency property, and any
arbitrary Z? := {(i, z?i )}i∈S, if PubCombine(Z) = PubCombine(Z?) then Combine(x, Z, ρ) =
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Combine(x, Z?, ρ). More importantly though, if the former equality does not hold then the
later must not hold either (with high probability).

5.3.2 Security Properties

We want a TOPRF scheme to satisfy two properties, unpredictability and obliviousness.
Unpredictability mandates that it must be difficult to predict TOPRF output on a random
value, and obliviousness mandates that the random value itself is hard to guess even if the
TOPRF output is available.

UnpredictabilityTOP,A(1κ, n, t):

• (JskK, pp)
$← Setup(1κ, n, t)

• U $← A(pp)

• x̃←$ X
• q1, . . . , qn := 0

• h? $← A〈O〉({ski}i∈U )

• output 1 iff TOP(sk, x̃) = h?

Oenc&eval():

• c := Encode(x̃, ρ) for ρ←$ R

• for i ∈ [n] \ U , zi
$← Eval(ski, c)

• return c, {zi}i∈[n]\U

Oeval(i, c):

• require: i ∈ [n] \ U
• increment qi by 1

• return Eval(ski, c)

Ocheck(h):

• return 1 if h = TOP(sk, x̃); else return 0

Figure 5.6: The unpredictability game.

Definition 5.3.2 (Unpredictability). A (X ,R)-TOPRF TOP := (Setup, Encode, Eval,
Combine) is unpredictable if for all n, t ∈ N, t ≤ n, and PPT adversaries A, there ex-
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ists a negligible function negl s.t.

Pr[UnpredictabilityTOP,A(1κ, n, t) = 1] ≤
MAX|U|,t(q1, . . . , qn)

|X |
+ negl(κ), (5.1)

where Unpredictability is defined in Figure 5.6.

Our unpredictability definition provides several interfaces to an adversary A. Oracle
Oenc&eval can be called any number of times to get different sets of partial evaluations on
the challenge input x̃, but the randomness used in this process is not revealed to A. If no
query is made to Oeval, so that none of the qi change, then A’s probability of guessing the
TOPRF output on x̃ should be negligible (see Eq. (5.1)). In other words, any number of
partial evaluations by themselves should not help at all.
A could, however, encode an arbitrary input itself, get partial evaluations through Oeval,

and then combine them to learn the TOPRF output. It could also check if this output is same
as the TOPRF output on the challenge input through Ocheck. Thus, by repeatedly querying
Oeval, adversary can increase its chances of making the right guess. Eq. (5.1) requires that
the probability of success should be no more than the maximum number of TOPRF outputs
A can learn through this process over the size of password space. In some sense, this is the
best we can hope to achieve.

Definition 5.3.3 (Obliviousness). An (X ,R)-TOPRF TOP := (Setup, Encode, Eval, Combine)
is oblivious if for all n, t ∈ N, t ≤ n, and all PPT adversaries A, there exists a negligible
function negl s.t.

Pr[ObliviousnessTOP,A(1κ, n, t) = 1] ≤
MAX|U|,t(q1, . . . , qn) + 1

|X |
+ negl(κ), (5.2)

where Obliviousness is defined in Figure 5.7.

The obliviousness definition differs from unpredictability in small but crucial ways. Unlike
the unpredictability game, A directly gets h fromOenc&eval because our goal is not to challenge
the adversary on guessing the TOPRF output. A can still use Oeval to learn new TOPRF
outputs and check (by itself) it they match with h or not. Thus it can improve its chances
of guessing x̃. The bound of Eq. 5.2 differs slightly from that of Eq. 5.1 though: there is an
extra additive factor of 1 in the former case. This is to take into account that A can output
a guess for x̃ different from the ones it has tried in the game.

5.3.3 Construction

We recall here the TOPRF construction, 2HashTDH, of Jarecki et al. [JKKX17, Section 3],
for an input space X . We refer to this construction as TOP from here onwards.
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ObliviousnessTOP,A(1κ, n, t):

• (JskK, pp)
$← Setup(1κ, n, t)

• U $← A(pp)

• x̃←$ X
• q1, . . . , qn := 0

• x? $← A〈O〉({ski}i∈U )

• output 1 iff x? = x̃

Oenc&eval():

• c := Encode(x̃, ρ) for ρ←$ R

• for i ∈ [n], zi
$← Eval(ski, c)

• h := Combine(x̃, {(i, zi)}i∈[n], ρ)

• return c, {zi}i∈[n]\U , h

Oeval(i, c):

• require: i ∈ [n] \ U
• increment qi by 1

• return Eval(ski, c)

Figure 5.7: The obliviousness game.

• Setup(1κ, n, t). Run GroupGen(1κ) to get (p, g,G). Pick an sk at random from Zp.
Let JskK $← GenShare(p, n, t, (0, sk)) be a (t, n)-Shamir sharing of sk. Let Hash1 :
X × G → {0, 1}κ and Hash2 : X → G be hash functions. Output JskK and pp :=
(p, g,G, n, t,Hash1,Hash2).

• Encode(x, ρ). Output Hash2(x)ρ.

• Eval(ski, c). Output cski .

• Combine(x, {(i, zi)}i∈S, ρ). If |S| < t − 1, output ⊥. Else, use S to find coefficients
{λi}i∈S, compute z :=

∏
i∈S z

λi
i , and output Hash1(x‖zρ−1

).
It is easy to see that TOP is a consistent (X ,Z∗p)-TOPRF scheme.

Public Combine. One can define PubCombine({(i, zi)}i∈S) for 2HashTDH to output z,
the intermediate value in Combine. Given x, z and ρ, the output of Combine is fixed. So, if
an arbitrary set of partial evaluations produces the same z, Combine would output the same
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thing. Moreover, if PubCombine produces a z? different from z, then z?ρ
−1 6= zρ

−1
, and output

of Combine will be different with high probability (assuming that Hash1 is collision-resistant).

5.3.4 Security Proof

We prove unpredictability and obliviousness of TOP in Sections 5.3.4.1 and 5.3.4.2, respec-
tively.

5.3.4.1 Unpredictability

In this section we prove output unpredictability of our construction. Suppose there exists a
PPT adversary A such that

Pr[UnpredictabilityTOP,A(1κ, n, t) = 1] ≥
MAX|U|,t(q1, . . . , qn)

|X |
+ non-negl(κ). (5.3)

We will consider two cases of A. In the first case, there exists k ∈ N such that when A
calls Hash1 with k distinct valid (x, y) pairs, MAX|U|,t(q1, . . . , qn) < k. In this case, we will
use A to break the gap TOMDH assumption. In the second case, for any k ∈ N, when A
calls Hash1 with k valid (x, y) pairs, MAX|U|,t(q1, . . . , qn) ≥ k. In this case, we will prove that
information theoretically Formula 5.3 does not hold.

First Case. There exists k ∈ N such that when A calls Hash1 with k distinct valid (x, y)
pairs, MAX|U|,t(q1, . . . , qn) < k. Then we construct an adversary B that breaks the gap
TOMDH assumption (see Definition 5.2.1).

We construct B as follows. It first receives (p, g,G, g1, . . . , gN) from the TOMDH game
One-MoreB(1κ, t′, t, n,N), presents pp := (p, g,G, n, t,Hash1,Hash2) to A and gets back U .
It then generates {αi}i∈U at random, sends {(i, αi)}i∈U to the TOMDH game, and sends
{αi}i∈U to A. It then samples x̃ ←$ X , set L := [], set LIST := ∅, and set k := 0. Then B
computes gαi1 for i ∈ U , calls O(i, g1) to get gαi1 for all i ∈ [n] \ U , and computes y1 := gsk

1 .
It adds (g1, y1) to LIST, sets q = 1, and handles A’s oracle queries as follows:

• On A’s call to Oenc&eval(): Pick an unused gj where j ∈ [N ], set c := gj, compute

zi
$← Eval(ski, c) for i ∈ U and call O(i, c) to get zi for all i ∈ [n] \ U . Use [n] to find

coefficients {λi}i∈[n] and compute yj :=
∏

i∈[n] z
λi
i . Add (gj, yj) to LIST, and increment

q by 1. Compute h := Hash1(x̃, yj), and return (c, {zi}i∈[n]\U , h) to A.

• On A’s call to Oeval(i, c): Call O(i, c) in the TOMDH game and return the output to
A.

• On A’s call to Hash1(x, y): If x /∈ L, compute Hash1(x, y) honestly and return to A.
Otherwise, let gj := L[x]. If loggj y = logg1 y1 and (gj, ?) /∈ LIST (i.e., (gj, y) is a new
valid pair), increment k by 1, add (gj, y) to LIST, and output LIST in the TOMDH
game if MAX|U|,t(q1, . . . , qn) < k. Compute Hash1(x, y) honestly and return to A.
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• On A’s call to Hash2(x): If x ∈ L, return L[x]; otherwise, pick an unused gj where
j ∈ [N ], set L[x] := gj and return gj to A.

A’s view in the game UnpredictabilityTOP,A(1κ, n, t) is information theoretically indistin-
guishable from the view simulated by B in the random oracle model. This can be proved via
a hybrid argument:

H0: The first hybrid is A’s view in the real-world game UnpredictabilityTOP,A(1κ, n, t).
H1: This hybrid is the same as H0 except that in the response to Oenc&eval(), c is randomly

sampled as c ←$ G. This hybrid is information theoretically indistinguishable from H0

because G is a cyclic group of prime order.
H2: This hybrid is the same as H1 except that the output of Hash2(·) is a truly random

group element in G. The indistinguishability of H1 and H2 follows from the random oracle
model.

H3: This hybrid is A’s view simulated by B. It is the same as H2 except that the random
group elements are replaced by gj’s where j ∈ [N ]. Since gj’s are also randomly sampled
from G in the TOMDH game, the two hybrids are indistinguishable.

From the construction of B, we know that

MAXt′,t(q
′
1, . . . , q

′
n) = MAX|U|,t(q1, . . . , qn) + q,

where MAXt′,t(q
′
1, . . . , q

′
n) is from the TOMDH game, and MAX|U|,t(q1, . . . , qn) is from the

unpredictability game. Since MAX|U|,t(q1, . . . , qn) < k, the output of B has the following
number of valid pairs:

|LIST| = k + q

> MAX|U|,t(q1, . . . , qn) + q

= MAXt′,t(q
′
1, . . . , q

′
n).

Therefore, B breaks the gap TOMDH assumption.

Second Case. For any k ∈ N, when A calls Hash1 with k valid (x, y) pairs, MAX|U|,t(q1,
. . . , qn) ≥ k.

We define a predicting game in Figure 5.8. Information theoretically we have that for
any PPT adversary A, there exists a negligible function negl s.t.

Pr[PredictingA(1κ) = 1] ≤ k

|X |
+ negl(κ).

We will use A to construct an adversary B that breaks the predicting game. The con-
struction of B is the following. It first runs Setup(1κ, n, t) to generate (JskK, pp), presents pp
to A and gets back U . It thens gives {ski}i∈U to A. It sets L := [], and then handles A’s
oracle queries as follows:
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PredictingA(1κ):

1. for every x ∈ X : h←$ {0, 1}κ, M[x] := h

2. x̃←$ X , h̃ :=M[x̃]

3. k := 0

4. h?
$← A〈O〉(1κ)

5. output 1 iff h? = h̃

Ocompute(x):

• increment k by 1

• return M[x]

Ocompare(h):

• return 1 if h = h̃; else return 0

Figure 5.8: The predicting game.

• On A’s call to Oenc&eval(): Sample c ←$ G, compute zi
$← Eval(ski, c) for i ∈ [n], and

return (c, {zi}i∈[n]\U) to A.

• On A’s call to Oeval(i, c): Return Eval(ski, c).

• On A’s call to Ocheck(h): Call Ocompare(h) and return the output to A.

• On A’s call to Hash1(x, y):

a. If (x, y) ∈ L, let h := L[(x, y)].

b. If (x, y) /∈ L and y 6= Hash2(x)sk, then sample h←$ {0, 1}κ and set L[(x, y)] := h.

c. If (x, y) /∈ L and y = Hash2(x)sk (i.e., (x, y) is a valid pair), call Ocompute(x) to get
h. Set L[(x, y)] := h.

Return h to A.

• On A’s call to Hash2(x): Compute Hash2(x) honestly and return the output.

A’s view in the game UnpredictabilityTOP,A(1κ, n, t) is information theoretically indistin-
guishable from the view simulated by B in the random oracle model. This can be proved via
a hybrid argument:

H0: The first hybrid is A’s view in the real-world game UnpredictabilityTOP,A(1κ, n, t).
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H1: This hybrid is the same as H0 except that in the response to Oenc&eval(), c is randomly
sampled as c ←$ G. This hybrid is information theoretically indistinguishable from H0

because G is a cyclic group of prime order.
H2: This hybrid is the same as H1 except that the output of Hash1(·) is a truly random

string. The indistinguishability of H1 and H2 follows from the random oracle model.
H3: This hybrid is A’s view simulated by B. It is the same as H2 except that x̃ is

not sampled in the game, but sampled in the predicting game PredictingB(1κ), and that
Hash1(x, y) for valid (x, y) pairs are sampled in predicting game. Since these values are
randomly sampled in both hybrids, they are indistinguishable.

Therefore, if A breaks the game UnpredictabilityTOP,A(1κ, n, t), then B breaks the predict-
ing game:

Pr[PredictingB(1κ) = 1] ≥
MAX|U|,t(q1, . . . , qn)

|X |
+ non-negl(κ)

≥ k

|X |
+ non-negl(κ).

This is information theoretically impossible, leading to a contradiction, and hence concludes
the proof.

5.3.4.2 Input Obliviousness

In this section we prove input obliviousness of our construction. Suppose there exists a PPT
adversary A such that

Pr[ObliviousnessTOP,A(1κ, n, t) = 1] ≥
MAX|U|,t(q1, . . . , qn) + 1

|X |
+ non-negl(κ). (5.4)

We consider two cases of A. In the first case, there exists k ∈ N such that when A calls
Hash1 with k distinct valid (x, y) pairs, MAX|U|,t(q1, . . . , qn) < k. In this case, we will use
A to break the gap TOMDH assumption. In the second case, for any k ∈ N, when A calls
Hash1 with k valid (x, y) pairs, MAX|U|,t(q1, . . . , qn) ≥ k. In this case, we will prove that
information theoretically Formula 5.4 does not hold.

First Case. There exists k ∈ N such that when A calls Hash1 with k distinct valid (x, y)
pairs, MAX|U|,t(q1, . . . , qn) < k. Then we construct an adversary B that breaks the gap
TOMDH assumption (see Definition 5.2.1). The proof is the same as the first case in Sec-
tion 5.3.4.1.

Second Case. WheneverA calls Hash1 with a valid (x, y) pair for the k-th time, MAX|U|,t(q1,
. . . , qn) ≥ k at that time.
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We define a guessing game in Figure 5.9. Information theoretically we have that for any
PPT adversary A, there exists a negligible function negl s.t.

Pr[GuessingA(1κ) = 1] ≤ k + 1

|X |
+ negl(κ).

GuessingA(1κ):

1. x̃←$ X
2. k := 0

3. x?
$← A〈O〉(1κ)

4. output 1 iff x? = x̃

Oguess(x):

• increment k by 1

• return 1 if x = x̃; else return 0

Figure 5.9: The guessing game.

We will use A to construct an adversary B that breaks the guessing game. The construc-
tion of B is the following. It first runs Setup(1κ, n, t) to generate (JskK, pp), presents pp to
A and gets back U . It thens gives {ski}i∈U to A. It samples h̃ ←$ {0, 1}κ, set L := [], and
then handles A’s oracle queries as follows:

• On A’s call to Oenc&eval(): Sample c ←$ G, compute zi
$← Eval(ski, c) for i ∈ [n], and

return (c, {zi}i∈[n]\U , h̃) to A.

• On A’s call to Oeval(i, c): Return Eval(ski, c).

• On A’s call to Hash1(x, y):

a. If (x, y) ∈ L, let h := L[(x, y)].

b. If (x, y) /∈ L and y 6= Hash2(x)sk, then sample h←$ {0, 1}κ and set L[(x, y)] := h.

c. If (x, y) /∈ L and y = Hash2(x)sk (i.e., (x, y) is a valid pair), call Oguess(x). If the
output if 1, then h := h̃; otherwise sample h←$ {0, 1}κ. Set L[(x, y)] := h.

Return h to A.

• On A’s call to Hash2(x): Compute Hash2(x) honestly and return the output.
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A’s view in the game ObliviousnessTOP,A(1κ, n, t) is information theoretically indistin-
guishable from the view simulated by B in the random oracle model. This can be proved via
a hybrid argument:

H0: The first hybrid is A’s view in the real-world game ObliviousnessTOP,A(1κ, n, t).
H1: This hybrid is the same as H0 except that in the response to Oenc&eval(), c is randomly

sampled as c ←$ G. This hybrid is information theoretically indistinguishable from H0

because G is a cyclic group of prime order.
H2: This hybrid is the same as H1 except that the output of Hash1(·) is a truly random

string. The indistinguishability of H1 and H2 follows from the random oracle model.
H3: This hybrid is A’s view simulated by B. It is the same as H2 except that x̃ is not

sampled in the game, but sampled in the guessing game GuessingB(1κ). Since x̃ is randomly
sampled as x̃←$ X in both hybrids, they are indistinguishable.

Therefore, if A breaks the game ObliviousnessTOP,A(1κ, n, t), then B breaks the guessing
game:

Pr[GuessingB(1κ) = 1] ≥
MAX|U|,t(q1, . . . , qn) + 1

|X |
+ non-negl(κ)

≥ k + 1

|X |
+ non-negl(κ).

This is information theoretically impossible, leading to a contradiction, and hence concludes
the proof.

5.4 Password-Based Threshold Authentication

In a password-based threshold authentication (PbTA) system, there are n servers and any
number of clients. PbTA is naturally split into four phases: (i) during a global set-up
phase, a master secret key is shared among the servers, which they later use to generate
authentication tokens, (ii) in the registration phase, a client C computes sign-up messages
(one for each server) based on its username and password and sends them to the servers.
Each server processes the message it receives and stores a unique record for that client. (iii)
in the sign-on phase, a client initiates authentication by sending a request message that
incorporates its username/password and additional information to be included in the token.
Each server computes a response using its record for the client. This response contains
shares of the authentication token the client eventually wants to obtain. If client’s password
is a match he is able to combine and finalize the token shares into a single valid token for
future accesses. (iv) The finalized token can be verified using a verification algorithm that
takes a public or private (depending on the token type) verification key to validate that
the token was generated using the unique master secret key. The verification process can
also be distributed among multiple servers (may be required for MAC-based tokens) but for
simplicity we use a centralized verification phase.
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We also note that in a PbTA scheme, clients need not store any persistent secret infor-
mation. The only secret they need to sign-on is their password which would not be stored
anywhere. The device(s) a client uses to sign-on can store certain public parameters of the
system (e.g. the identities of the servers).

For simplicity, we assume that clients choose passwords uniformly at random from a
space P. Our definitions can be extended to the general case.

Below we define the syntax and security of PbTA in Sections 5.4.1 and 5.4.2, respectively.
Next we present our PASTA framework in Section 5.4.3 and prove its security in Section 5.4.4.

5.4.1 Syntax

Definition 5.4.1 (Password-based Threshold Authentication). A PbTA scheme Π is a tuple
of seven PPT algorithms (GlobalSetup, SignUp, Store, Request, Respond, Finalize, Verify) that
satisfies the correctness requirement below.

• GlobalSetup(1κ, n, t,P) → (JskK, vk, pp). It takes the security parameter, number of
servers n, a threshold t and the space of passwords P as inputs. It outputs a secret key
sk, shares sk1, sk2, . . ., skn of the key, and a verification key vk. The public parameters
pp include all the inputs to GlobalSetup and some other information if needed.

pp will be an implicit input in the algorithms below. The n servers will be denoted by
S1, . . . , Sn. Si receives (ski, pp) and initializes a set of records reci := ∅, for i ∈ [n].

Registration Phase.

• SignUp(C, pwd) → {(C,msgi)}i∈[n]. It takes as inputs a client id C and a password
pwd ∈ P, and outputs a message for each server.

• Store(C,msgi) =: Ri,C. It takes as input a client id C and a message msgi, and outputs
a record Ri,C. Si stores (C,Ri,C) in its list of records reci if no record for C exists;
otherwise, it does nothing.

Sign-On Phase.

• Request(C, pwd, x, T )→ (D̂, {(C, x, reqi)}i∈T ). It takes as inputs a client id C, a pass-
word pwd, a value x, and a set T ⊆ [n], and outputs a secret state D̂ and request
messages {reqi}i∈T . For i ∈ T , (C, x, reqi) is sent to Si.

• Respond(ski,reci, C, x, reqi) → resi. It takes as inputs the secret key share ski, the
record set reci, a client id C, a value x and a request message reqi, and outputs a
response message resi.

• Finalize(D̂, {resi}i∈T ) =: tk. It takes as input a secret state D̂ and response messages
{resi}i∈T , and outputs a token tk.
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Verification.

• Verify(vk, C, x, tk)→ {0, 1}. It takes as inputs the verification key vk, a client id C, a
value x and a token tk, and outputs 1 (denotes validity) or 0.

Correctness. For all κ ∈ N, any n, t ∈ N such that t ≤ n, any password space P, all
(JskK, vk, pp) generated by Setup(1κ, n, t,P), any client id C, any password pwd ∈ P, any
value x, and any T ⊆ [n] of size at least t, if

• ((C,msg1), . . . , (C,msgn))
$← SignUp(C, pwd),

• Ri,C := Store(C,msgi) for i ∈ [n],

• (D̂, {(C, x, reqi)}i∈T )
$← Request(C, pwd, x, T ),

• resi
$← Respond(ski,reci, C, x, reqi) for i ∈ T , and

• tk := Finalize(D̂, {resi}i∈T ),

then Verify(vk, C, x, tk) = 1.

5.4.2 Security Properties

We define security properties for PbTA with the help of a security game, described in Figure
5.10 in detail. In the security game, an adversary A gets access to a number of oracles,
which run PbTA algorithms and do some bookkeeping. 2

We do not allow the adversary to interfere with the registration phase. We assume
that registration happens over secure channels. In practice, a client would establish a TLS
connection with the servers over which it will send the sign-up messages. (Thus, the actual
number of rounds in registration could be several.) The sign-on phase, however, is completely
under the control of the adversary. Adversary can insert, delete or modify messages sent
between clients and servers, even if client/server is not corrupt. This is captured by providing
A access to three oracles for the three different algorithms of the sign-on phase (as opposed
to just one oracle for registration). A can give any input to these oracles.

At the start of the game, GlobalSetup is run to generate shares of the master secret,
verification key, public parameters and decryption keys. Public parameters are given to A.
It outputs the set of servers U it wants to corrupt and the client C? it wants to target.

A number of variables are initialized before A is given access to the oracles. V keeps track
of clients as they are corrupted in the game, through Ocorrupt oracle. PwdList stores clients’
passwords in the form of (id, password) pairs, indexed by id, as they sign-up. ReqListC,i

2During a run of an oracle, if an algorithm does not produce a valid output, then the oracle stops
immediately and returns ⊥. We do not make this explicit in Figure 5.10 for simplicity.
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SecGameΠ,A(1κ, n, t,P):

• (JskK, vk, pp, (SK1, . . . ,SKn))
$← GlobalSetup(1κ, n, t,P)

• (U , C?, stadv)
$← A(pp) # U : corrupt servers, C?: targeted client

• V := ∅ # set of corrupt clients
• PwdList := ∅ # list of (C, pwd) pairs, indexed by C
• ReqListC,i := ∅ for i ∈ [n] # token requests C makes to Si
• ct := 0, LiveSessions = [] # LiveSessions is indexed by ct
• TokList := ∅ # list of tokens generated through Ofinal

• QC,i := 0 for all C and i ∈ [n]
• QC,x := 0 for all C and x

• out
$← A〈O〉({ski}i∈U , {SKi}i∈U , stadv)

Ocorrupt(C).

• V := V ∪ {C}
• if (C, ?) ∈ PwdList, return PwdList[C]

Oregister(C).

• require: PwdList[C] = ⊥
• pwd←$ P
• add (C, pwd) to PwdList

• ((C,msg1), . . . , (C,msgn))
$← SignUp(C, pwd)

• Ri,C := Store(C,msgi) for all i ∈ [n]
• add Ri,C to reci for all i ∈ [n]

Oreq(C, x, T ).

• require: PwdList[C] 6= ⊥
• (D̂, {reqi}i∈T )

$← Request(C,PwdList[C])

• LiveSessions[ct] := D̂
• add reqi to ReqListC,i for i ∈ T
• increment ct by 1
• return {reqi}i∈T

Oresp(i, C, x, reqi).

• resi
$← Respond(ski,reci, C, x, reqi)

• if reqi /∈ ReqListC,i, increment QC,i by 1
• increment QC,x by 1
• return resi

Ofinal(ct, {resi}i∈S).

• D̂ := LiveSessions[ct]

• tk := Finalize(D̂, {resi}i∈S)
• add tk to TokList
• return tk

Overify(C, x, tk).

• return Verify(vk, C, x, tk)

Figure 5.10: Security game for PbTA.
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stores the requests generated by C for the i-th server. These requests will not be counted
against the adversary, as we will see later.
Oreq(C, x, T ) allows A to start a sign-on session of C—who may not be corrupt—with

servers in T to generate a token on x. Oreq runs Request to generate request messages,
using the password of C stored in PwdList. While these messages are revealed to A, C’s
intermediate state D̂ is stored in LiveSessions at position ct. A can resume this sign-on session
at any point in the future by invoking Ofinal with ct and any arbitrary responses from the
servers in T .
Oresp can be invoked to get responses from a server as part of the sign-on phase. A

can invoke Oresp with any message (C, x, reqi) of its choice. Oserver does not check if reqi
was indeed generated by C or not; a response is generated anyway, and returned to the
adversary. However, if the request reqi was not generated by C before, then this could give
some advantage to A in attacking C; so we increment a counter QC,i in this case. A different
counter QC,x is incremented even if reqi was generated by C. This is just to count the number
of times different servers are invoked on C and x. If this number is less than even t − |U|,
then A should not be able to generate a token on (C, x) except with negligible probability
(see Def. 5.4.3, first point).

Note that the counters Q are separate for each client. If Oserver is invoked with a certain
client id, then the counters for just that id are updated. When we define the security
properties for PbTA below, only the counters for C? (the target client) are taken into account.
Thus, we consider A to be attacking C? only when it reveals this id to the servers. In other
words, we do not allow A to gain any advantage in attacking C? if it pretends to be someone
else.
Ofinal, as mentioned before, can be used to resume a sign-on session. Client’s state D̂ is

retrieved from LiveSessions, and Finalize is run on D̂ and the server responses given as input.
A can provide any arbitrary response on behalf of any server—even the ones that are not
corrupt. The token generated through Finalize is given to A and added to TokList. Finally,
A can use Overify to check if a token is valid or not.

We are now ready to formally state the two security properties we would like any PbTA
scheme to satisfy.

Definition 5.4.2 (Password Safety). A PbTA scheme Π is password safe if for all n, t ∈ N,
t ≤ n, all password space P and all PPT adversary A in SecGameΠ,A(1κ, n, t,P) (Figure
5.10), there exists a negligible function negl s.t.

Pr[C? /∈ V ∧ out = PwdList[C?] 6= ⊥] ≤
MAX|U|,t(QC?,1, . . . , QC?,n) + 1

|P|
+ negl(κ). (5.5)

To get some intuition into the above definition, consider the following attack. A guesses
a password for C?, generates request messages on its own (so that it knows the intermediate
state), invokes Oresp to get the corresponding responses, combines them using Finalize to get
a token, and finally checks if the token is valid or not. If the password guess was correct,
then the token would be valid by the correctness property of PbTA.
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As such, A is not restricted to attacking a PbTA scheme in the above manner. However,
we require that, essentially, this is the best it can do. MAX|U|,t(QC?,1, . . . , QC?,n) in Eq. 5.5
gives a bound on the number of password attempts A can make through the above attack.

We do not penalize A for just replaying the requests generated by C itself by not incre-
menting QC,i in those cases. The additive factor of 1 captures the possibility that A can
output a new guess at the end of the game (similar to the obliviousness property for TOPRF,
see Def. 5.3.3).

Definition 5.4.3 (Unforgeability). A PbTA scheme Π is unforgeable if for all n, t ∈ N,
t ≤ n, all password space P and all PPT adversary A in SecGameΠ,A(1κ, n, t,P) (Figure
5.10), there exists a negligible function negl s.t.

• if QC?,x? < t− |U|,

Pr[Verify(vk, C?, x?, tk?) = 1] ≤ negl(κ); (5.6)

• else

Pr[C? /∈ V ∧ tk? /∈ TokList ∧ Verify(vk, C?, x?, tk?) = 1] ≤
MAX|U|,t(QC?,1, . . . , QC?,n)

|P|
+ negl(κ), (5.7)

where A’s output out is parsed as (x?, tk?).

The security game for unforgeability is the same as password-safety (Figure 5.10) but A
produces a token tk? now. The probability of it being valid on (C?, x?) depends on several
cases. First, if the value of QC?,x? is smaller than even t − |U|, then A didn’t even contact
enough servers on (C?, x?). So we would like its probability of producing a valid token to be
negligible. (Eq. 5.6 also captures that querying servers on (C, x) for a different C or x than
C? and x? should not help.)

If A does contact enough servers and C? was corrupted, then A can easily generate a valid
token; so this case is not interesting. However, if C? is not corrupt but A is able to guess its
password, then it can also produce a valid token (with respect to C? only). Comparing Eq.
5.7 and 5.5, one can see that unforgeability property basically requires that this is the best
A can do.

5.4.3 PASTA: Our Construction

In this section we present PASTA, our framework for building PbTA schemes. PASTA
provides a way to combine any threshold token generation scheme (TTG) and any threshold
oblivious PRF (TOP) in a black-box way to build a PbTA scheme that provides strong
password-safety and unforgeability guarantees. Figure 5.11 provides a complete description
of the framework.
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PASTA uses the two main underlying primitives, TTG and TOP, in a fairly light-weight
manner. The sign-on phase, which consists of Request, Respond and Finalize, does not add
any public-key operations on top of what the primitives may have. Request runs TOP.Encode
once; Respond runs both TOP.Eval and TTG.PartEval, but only once each; and, Finalize runs
TOP.Combine and TTG.Combine once each. Even though number of decryptions in Finalize
is proportional to t, these operations are very fast symmetric-key operations. Thus, PASTA
makes minimal use of the two primitives that it builds on and its performance is mainly
governed by the efficiency of these primitives.

PASTA needs a key-binding symmetric-key encryption scheme so that when a ciphertext
is decrypted with a wrong key, decryption fails [Fis99]. Key-binding can be obtained very
efficiently in the random oracle model, for e.g., by appending a hash of the secret key to
every ciphertext.

For the sign-on phase, PASTA assumes that the servers communicate to clients over
authenticated channels so that an adversary cannot send arbitrary messages to a client on
behalf of honest servers. PASTA does not assume that these channels provide any confiden-
tiality. Observe that if there is an authenticated channel in the other direction, namely the
servers can identity the sender of every message they receive, then passwords are not needed,
and hence a PbTA scheme is moot.

An important feature of PASTA, especially from the point of view of proving security, is
that the use of TOP and TTG overlaps very slightly. The output of TOP is used to encrypt
the partial evaluations of TTG but, apart from that, they operate independently. Thus,
even if TTG is broken in some manner, it would not affect the safety of clients’ passwords.
Furthermore, even if TOP is broken, a threshold number of servers would still be needed to
generate a token. However, PASTA must prevent against several other attack scenarios, as
captured by the game in Figure 5.10. The formal security guarantee of PASTA is stated as
follows.

Theorem 5.4.4 (Security of PASTA). If TTG is an unforgeable threshold token generation
scheme (Def. 5.2.3), TOP is an unpredictable (Def. 5.3.2) and oblivious (Def. 5.3.3) TOPRF,
and SKE is a key-binding CPA-secure symmetric-key encryption scheme, then the PbTA
scheme PASTA as described in Figure 5.11 is password-safe (Def. 5.4.2) and unforgeable
(Def. 5.4.3) when Hash is modeled as a random oracle.

5.4.4 Security Proof

Password-safety and unforgeability properties are proved in Sections 5.4.4.1 and 5.4.4.2 re-
spectively.

5.4.4.1 Password Safety

PASTA’s password safety primarily relies on the obliviousness of TOP. Intuitively, if we use
a TOPRF on clients’ passwords, then obliviousness of TOPRF would make it hard to guess
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Ingredients:

• A threshold token generation scheme TTG := (TTG.Setup,TTG.PartEval,TTG.Combine,TTG.Verify).

• A threshold oblivious PRF TOP := (TOP.Setup,TOP.Encode,TOP.Eval,TOP.Combine).

• A symmetric-key encryption scheme SKE := (SKE.Encrypt,SKE.Decrypt).

• A hash function Hash.

GlobalSetup(1κ, n, t,P) → (JskK, vk, pp).

• Run TTG.Setup(1κ, n, t) to get (JtskK, tvk, tpp).

• Set ski := tski for all i ∈ [n], vk := tvk and pp := (κ, n, t, P, tpp).

SignUp(C, pwd)→ ((C,msg1), . . . , (C,msgn)).

• Run TOP.Setup(1κ, n, t) to get (JkK, opp).

• Compute h := TOP(k, pwd) and hi = Hash(h‖i) for i ∈ [n].

• Set msgi := (ki, hi) for i ∈ [n].

Store(SKi, C,msgi) =: Ri,C .

• Parse msgi as (ki, hi).

• Set Ri,C := (ki, hi)

Request(C, pwd, x, T )→ ({(C, x, reqi)}i∈T , D̂).

• If |T | < t, output ⊥.

• Pick a ρ at random. Run TOP.Encode(pwd, ρ) to get c.

• Set reqi := c for all i ∈ [n] and D̂ := (C, pwd, ρ, T ).

Respond(ski,reci, C, x, reqi)→ resi.

• If Ri,C /∈ reci, output ⊥. Else, parse Ri,C as (ki, hi).

• Run TOP.Eval(ki, reqi) to get zi.

• Run TTG.PartEval(tski, C‖x) to get yi.

• Set resi := (zi,SKE.Encrypt(hi, yi)).

Finalize(D̂, {resi}i∈S)→ tk.

• Parse resi as (zi, ctxti) and D̂ as (C, pwd, ρ, T ).

• If S 6= T , output ⊥.

• Run TOP.Combine(pwd, {(i, zi)}i∈T , ρ) to get h.

• For all i ∈ T , compute hi := Hash(h‖i) and yi := SKE.Decrypt(hi, ctxti).

• Finally, set tk to be TTG.Combine({i, yi}i∈T ).

(If any of TOP.Combine, SKE.Decrypt or TTG.Combine fail, ⊥ is output.)

Verify(vk, C, x, tk)→ {0, 1}.

• Output TTG.Verify(tvk, C‖x, tk).

Figure 5.11: A complete description of PASTA.
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them. Formally, we build an adversary B that can translate an adversary A’s advantage
in the password-safety game into a similar advantage in the TOPRF obliviousness game
Obliviousness (Figure 5.7). B will run A internally simulating the password-safety for it,
while playing the role of adversary externally in Obliviousness.
B can implicitly set the targeted client C?’s password to be the random value chosen

in Obliviousness. If A guesses the password, B can output the same guess. However, to
simulate SecGame properly for A, B needs to run the oracles in a way that A cannot tell the
difference. In particular, B needs partial TOPRF evaluations zi on the password for Oresp,
the final TOPRF value for Oregister and the randomness ρ used for encoding for Ofinal. B can
take help of the oracles Oeval and Oenc&eval provided by Obliviousness to handle the first two
problems, but there is no way to get ρ in Obliviousness.

Intermediate Hybrid. We tackle the latter problem first by going through a hybrid. We
refer to the original game as H0 and the new game as H1. H0 is described in Figure 5.12;
it basically replaces Π in Figure 5.10 with PASTA. H1 is described in Figure 5.13. In H1,
several oracles behave differently for the targeted client C?. Oreq evaluates the TOPRF in
advance for C?. It stores the partial evaluations zi and the final result h in LiveSessions itself.
Importantly, it does not store ρ. When Oresp is invoked, it checks if C? generated reqi for
Si before (reqi ∈ ReqListC,i). If yes, then zi is picked up from LiveSessions. Now, whether
a zi computed in advance is used in Oresp or not makes no difference from the point of the
adversary because zi is derived deterministically from ki and reqi.

Oracle Ofinal also behaves differently for C?. First, note that if TOP.PubCombine({zi}i∈T )
is equal to TOP.PubCombine({z′i}i∈T ), then combining either set will lead to the same value.
The only difference in H1 is that h was computed beforehand. Once again, for the same
reason as above, this makes no difference.

The crucial step where H0 and H1 differ is when the two outputs of PubCombine do not
match. While H0 does not do any test of this kind, H1 simply outputs ⊥. For these hybrids
to be indistinguishable, we need to argue that had the outputs of PubCombine not matched
in H0, it would have output ⊥ as well (at least with a high probability).

Note that the right zi and h are well-defined for H0; they can be derived from pwd and ρ.
If one were to do the public combine test in this hybrid and it fails, then h′ 6= h with high
probability. Therefore, using the collision resistance of Hash, one can argue that h′i 6= hi.
Now, observe that there must be an honest Sj in T , so ctxt′j could only have been generated
by Sj (recall our authenticated channels assumption). When ciphertext ctxt′j, which was
encrypted under hj, is decrypted with h′j 6= hj, decryption fails with high probability due to
the key-binding property of SKE. Thus, H0 returns ⊥ just like H1.

Reduction. Now that we know that absence of encoding randomness ρ would not prevent
a successful simulation of Ofinal, we come back to the task of exploiting TOPRF obliviousness
to hide the targeted client’s password. Towards this, adversary B is formally described in
Figure 5.14. When B outputs a message, it should be interpreted as sending the message to
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the obliviousness game. Let’s now go through the differences between H1 and B’s simulation
of it one by one.

Simulation of Oregister differs only for C = C?. In H1, a randomly chosen password for
C? is used to compute h, while in B’s simulation, C?’s password is implicitly set to be
the random input x̃ chosen by Obliviousness and Oenc&eval is called to get h. Clearly, this
difference does not affect A. There is one other difference though: while all of k1, . . . , kn are
known in H1, B knows ki for corrupt servers only. As a result, B defines Ri,C? to be (0, hi)
for i ∈ [n] \ U .

Like the registration oracle, request oracle behaves differently only when C = C?. How-
ever, one can easily see that the difference is insignificant: while H1 computes c, zi and h
using PwdList[C?], B invokes Oenc&eval to get them, which uses x̃.

Finally, B invokes Oeval to get zi in the simulation of Oresp (because it does not know
ki for honest servers) but it is computed directly in H1. This does not make any difference
either. The important thing to note is that the counter QC?,i is incremented if and only if
the counter qi of Obliviousness is incremented. As a result, the final value of QC?,i will be the
same as qi. Therefore, B will successfully translate A’s probability of guessing C?’s password
to guessing x̃.

5.4.4.2 Unforgeability

First we handle the easier case of QC?,x? < t − |U|. Here C? could even be corrupt,
so A may know its password. Note that QC?,x? is incremented on every invocation of
Oresp(i, C?, x?, reqi) irrespective of the value of i and whether or not reqi ∈ ReqListi,C? . So if
QC?,x? < t−|U|, A simply doesn’t have enough shares to generate a valid token, irrespective
of whether C? is corrupt or not. One can formally prove unforgeability in this case by in-
voking the unforgeability of the threshold token generation scheme TTG (Definition 5.2.3).
We skip the details.

When QC?,x? ≥ t− |U|, unforgeability can only be expected when C? is never corrupted.
We need to show that generating a valid token for (C?, x?) for any x? effectively amounts to
guessing C?’s password. Indistinguishability of H0 (Figure 5.12) and H1 (Figure 5.13) still
holds because it just relies on the properties of PubCombine and authenticated channels.

We now wish to build an adversary B′ that can use an adversary A who breaks the
unforgeability guarantee of PASTA to break the unpredictability of TOPRF. The first natural
question to ask is whether B′ can break unpredictability of TOPRF in the same way as B
broke obliviousness. Not quite, because there are some key differences in the two settings:

• Even though both B and B′ get access to an oracle Oenc&eval that both encodes and
evaluates, B’s oracle returns the final TOPRF output h while B′’s oracle doesn’t. So
it is not clear how hi will be generated by Oregister and Ofinal for C?.

• B was able to use the output of A for the password-safety game directly into the
obliviousness game, but B′ cannot. A now outputs a token for the authentication
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SecGamePASTA,A(1κ, n, t,P):

• (JtskK, tvk, tpp)
$← TTG.Setup(1κ, n, t)

• set ski := tski for all i ∈ [n], vk := tvk and pp := (κ, n, t, P, tpp).

• (U , C?, stadv)
$← A(pp)

• V,PwdList,TokList := ∅, ReqListC,i := ∅ for i ∈ [n]
• ct := 0, LiveSessions = []
• QC,i, QC,x := 0 for all C, i ∈ [n] and x

• out
$← A〈O〉({ski}i∈U , {SKi}i∈U , stadv)

Ocorrupt(C).

• V := V ∪ {C}
• if (C, ?) ∈ PwdList, return PwdList[C]

Oregister(C).

• require: PwdList[C] = ⊥
• pwd←$ P
• add (C, pwd) to PwdList

• (JkK, opp)
$← TOP.Setup(1κ, n, t)

• h := TOP(k, pwd) and hi := Hash(h‖i) for i ∈ [n]
• Ri,C := (ki, hi) for all i ∈ [n]
• add Ri,C to reci for all i ∈ [n]

Oreq(C, x, T ).

• if PwdList[C] = ⊥ or |T | < t, output ⊥
• c := TOP.Encode(PwdList[C], ρ) for a random ρ
• set reqi := c for i ∈ [n]
• LiveSessions[ct] := (C,PwdList[C], ρ, T )
• add reqi to ReqListC,i for i ∈ T
• increment ct by 1
• return {reqi}i∈T

Oresp(i, C, x, reqi).

• require: i ∈ [n] \ U
• if Ri,C /∈ reci, return ⊥; else, parse Ri,C as (ki, hi)
• if reqi /∈ ReqListC,i, increment QC,i by 1
• zi := TOP.Eval(ki, reqi)

• yi
$← TTG.PartEval(tski, C‖x)

• set resi := (zi,SKE.Encrypt(hi, yi))
• increment QC,x by 1
• return resi

Ofinal(ct, {resi}i∈S).

• D̂ := LiveSessions[ct]

• parse resi as (z′i, ctxt
′
i) and D̂ as (C, pwd, ρ, T ).

• if S 6= T , output ⊥
• h′ := TOP.Combine(pwd, {(i, z′i)}i∈T , ρ)
• for i ∈ T , h′i := Hash(h′‖i) and y′i := SKE.Decrypt(h′i, ctxt

′
i)

• set tk := TTG.Combine({i, y′i}i∈T )
• add tk to TokList
• return tk

Overify(C, x, tk).

• return TTG.Verify(tvk, C‖x, tk)

Figure 5.12: SecGame in hybrid H0 for PASTA.
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SecGamePASTA,A(1κ, n, t,P):
Same as H0, except the following oracles behave differently when C = C?. Below, we describe their behavior
for this case only, highlighting the differences in red. When C 6= C?, they behave in the same way as H0.

Oreq(C?, x, T ).

• if PwdList[C?] = ⊥ or |T | < t, output ⊥
• c := TOP.Encode(PwdList[C?], ρ) for a random ρ

• set reqi := c for i ∈ [n]

• zi := TOP.Eval(ki, reqi)

• h := TOP.Combine(PwdList[C?], {(i, zi)}i∈T , ρ)

• LiveSessions[ct] := (C?, c, {(i, zi)}i∈T , h)

• add reqi to ReqListC?,i for i ∈ T
• increment ct by 1

• return {reqi}i∈T

Oresp(i, C?, x, reqi).

• require: i ∈ [n] \ U
• if Ri,C? /∈ reci, return ⊥; else, parse Ri,C? as (ki, hi)

• if reqi /∈ ReqListC?,i, increment QC?,i by 1

• if (reqi /∈ ReqListC?,i):

– zi := TOP.Eval(ki, reqi)

• else:

– let zi be the value associated with i in the entry (C?, reqi, . . . , (i, zi) . . .) in LiveSessions

• yi
$← TTG.PartEval(tski, C

?‖x)

• set resi := (zi,SKE.Encrypt(hi, yi))

• increment QC?,x by 1

• return resi

Ofinal(ct, {resi}i∈S).

• (C?, c, {(i, zi)}i∈T , h) := LiveSessions[ct]

• parse resi as (z′i, ctxt
′
i)

• if S 6= T , output ⊥
• if (TOP.PubCombine({zi}i∈T ) 6= TOP.PubCombine({z′i}i∈T )):

– return ⊥
• for i ∈ T , h′i := Hash(h‖i) and y′i := SKE.Decrypt(h′i, ctxt

′
i)

• set tk := TTG.Combine({i, y′i}i∈T )

• add tk to TokList

• return tk

Figure 5.13: SecGame in hybrid H1.
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BA(1κ, n, t,P):
Same as H1, except the following oracles are simulated differently when C = C?. Below, these oracles are
described for this case only, with the differences highlighted in red. Output whatever A does.

Oregister(C
?).

• require: PwdList[C?] = ⊥
• add (C?, unknown) to PwdList

• output U , get back {ki}i∈U
• query Oenc&eval to get (c, {zi}i∈[n], h)

• hi := Hash(h‖i) for i ∈ [n]

• for i ∈ [n] \ U , Ri,C? := (0, hi)

• for i ∈ U , Ri,C? := (ki, hi)

• add Ri,C? to reci for all i ∈ [n]

Oreq(C?, x, T ).

• if PwdList[C?] = ⊥ or |T | < t, output ⊥
• query Oenc&eval to get (c, {zi}i∈[n], h)

• set reqi := c for i ∈ [n]

• LiveSessions[ct] := (C, c, {i, zi}i∈T , h)

• add reqi to ReqListC?,i for i ∈ T
• increment ct by 1

• return {reqi}i∈T

Oresp(i, C?, x, reqi).

• require: i ∈ [n] \ U
• if Ri,C? /∈ reci, return ⊥; else, parse Ri,C? as (ki, hi)

• if reqi /∈ ReqListC?,i, increment QC?,i by 1

• if (reqi /∈ ReqListC?,i):

– query Oeval(i, reqi) to get zi

• else:

– let zi be the value associated with i in the entry (C?, reqi, . . . , (i, zi) . . .) in LiveSessions

• yi
$← TTG.PartEval(tski, C

?‖x)

• set resi := (zi,SKE.Encrypt(hi, yi))

• increment QC?,x by 1

• return resi

Figure 5.14: Description of adversary B.
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scheme while B′ is supposed to guess the TOPRF output h on the (hidden) password
of C?.

As a result, B′’s behavior differs from B in the following manner. At the start of the
simulation, B′ picks random numbers r1, . . . , rn and will use them instead of h1, . . . , hn in
the registration oracle. LiveSessions cannot contain h anymore, so when it is needed in the
finalize oracle, r1, . . . , rn will be used once again. If A queries Hash on h′‖i at any time, B′
will query Ocheck on h′ to check if h′ = h or not. If Ocheck returns 1, then B′ sends ri to A.

This also gives a way for B′ to guess h. If A queries Hash for some h′‖i and Ocheck returns
1 on h′, then B′ just outputs h′ in the unpredictability game. However, we don’t have the
guarantee that A will make such a query. All we know is that A can produce a valid token.
Hence, we must argue that A can produce a valid token only if it queries Hash on h.

Any token share sent by the i-th server is encrypted with hi. At a high level, A needs to
decrypt at least one token share from an honest server, say j-th, to construct a token. The
only way to get this key is by querying Hash on h‖j.

5.5 Performance Evaluation

We implement PASTA for four types of threshold token generation schemes: a block-cipher
based MAC [NPR99], a DDH-based (requires exponentiations) MAC [NPR99], a pairing
based signature [Bol03] and an RSA based signature [Sho00]. In this section we report on
the performance of these instantiations.

5.5.1 Implementation Details

PASTA is a generic construction consisting of two building blocks: a threshold oblivious
pseudo-random function and a threshold token generation scheme. We implement PASTA
with the 2HashTDH TOPRF protocol of Jarecki et al. [JKKX17] and the aforementioned
TTG schemes (see Section 5.2.2 for their descriptions) to obtain four types of tokens. To
the best of our knowledge, most of these TTG schemes were not implemented before.

We implement pseudorandom functions (PRFs) using AES-NI and hash functions using
Blake2 [Blake2]. The elliptic curve operations, pairing operations, and RSA operations are
implemented using the Relic library [Relic]. The key length in AES-NI is 128 bits. The
cyclic group used in 2HashTDH TOPRF and the DDH based MAC is the group G1 on 256-bit
Barreto-Naehrig curves (BN-curves) [BN06]. Pairing is implemented on 256-bit BN-curves.
The key length in RSA based signature is 2048 bits.

In order to evaluate the performance, we implement various settings described below.
The experiments are run on a single server with 2x 24-core 2.2 GHz CPUs and 64 GB of
RAM. We run all the parties on different cores of the same server (1 core per server), and
simulate network connections using the Linux tc command: a LAN setting with 10 Gbps
network bandwidth and 0.1 ms round-trip latency; a WAN setting with 40 Mbps network
bandwidth and a simulated 80 ms round-trip latency.
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5.5.2 Token Generation Time

Table 5.1 shows the total runtime for a client to generate a single token in the sign-on phase
after registration in our PASTA protocol. We show experiments for various types of tokens
in the LAN and WAN settings and different values of (n, t) where n is the number of servers
and t is the threshold. The reported time is an average of 10,000 token requests. We discuss
a few observations below.

(n, t) Sym-MAC Public-MAC Pairing-Sig RSA-Sig

LAN

(2, 2) 1.3 1.7 1.7 14.5
(3, 2) 1.3 1.7 1.7 14.5
(6, 2) 1.3 1.7 1.7 14.5
(10, 2) 1.3 1.7 1.7 14.5
(10, 3) 1.6 2.1 2.1 15.1
(10, 5) 2.3 3.0 3.0 16.8
(10, 7) 3.0 3.9 3.9 19.1
(10, 10) 4.1 5.4 5.4 22.6

WAN

(2, 2) 81.4 81.8 81.8 94.6
(3, 2) 81.4 81.8 81.8 94.6
(6, 2) 81.4 81.8 81.8 94.6
(10, 2) 81.4 81.9 81.9 94.6
(10, 3) 81.7 82.2 82.2 95.0
(10, 5) 82.4 83.1 83.1 96.9
(10, 7) 83.1 83.9 83.9 99.2
(10, 10) 84.2 85.4 85.4 102.8

Table 5.1: Total runtime (in milliseconds) of our PASTA protocol for generating a single
token for the number of servers n and threshold t in LAN and WAN settings.

Notice that for the same threshold t = 2 and the same type of token, different values of n
result in similar runtime. This is aligned with our construction: for a threshold t, the client
only needs to communicate with t servers, and the communication and computation cost for
every server is the same, hence the total runtime should also be the same. Therefore, the
total runtime is independent of n and only depends on the threshold t. For other values of
threshold t, we only report the runtime for n = 10; the runtime for other values of n would
be roughly the same.

Also notice that for the same (n, t) and same type of token, the runtime in the WAN
setting is roughly the runtime in the LAN setting plus 80 ms round-trip latency. This is
because in our protocol, the client sends a request to t servers and receive their responses
in parallel. The communication complexity is very small, hence the bulk of communication
overhead is roughly the round-trip latency. It is worth noting that the PASTA protocol has
the minimal two rounds of interaction, and hence this overhead is inevitable in the WAN
setting.
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The runtime of public-key based MAC and pairing based signature are almost the same
under the same setting. This is because in our implementation, TTG schemes for public-key
based MAC and pairing based signature are both implemented on the 256-bit Barreto-
Naehrig curves (BN-curves) [BN06] in group G1. This group supports Type-3 pairing op-
eration and is believed to satisfy the Decisional Diffie-Hellman (DDH) assumption, hence a
good fit for both primitives.

We do not report the runtime for user registration because (i) it is done only once for
every user and (ii) it is more efficient than obtaining a token.

5.5.3 Time Breakdown

We show the runtime breakdown for three different (n, t) values in Table 5.2 in the LAN
setting. For each value of (n, t) in the table, the first row is the total runtime, and the
second and third rows are the computation time on the client side and on a single server,
respectively.

Sym-MAC Public-MAC Pairing-Sig RSA-Sig

(10, 2) 1.3 1.7 1.7 14.5

Client 1.0 1.2 1.2 2.8

Server 0.2 0.4 0.4 11.4

(10, 5) 2.3 3.0 3.0 16.8

Client 1.9 2.4 2.4 5.2

Server 0.2 0.4 0.4 11.4

(10, 10) 4.1 5.4 5.4 22.6

Client 3.7 4.6 4.6 10.7

Server 0.2 0.4 0.4 11.5

Table 5.2: Breakdown of runtime (in milliseconds) in LAN setting.

As shown in the table, for the same token type the computation time on a single server
does not vary. On the other hand, the computation on the client grows with the threshold.
Figure 5.15 shows the dependence of the computation time at the client side on the threshold
t. For all four types of tokens, the computation time grows linearly in the threshold t.

5.5.4 Comparison with Näıve Solutions

We implement two näıve solutions to compare with our PASTA protocol:

• Plain Solution. The client signs on to a single server with its username/password.
The server verifies its credential and then issues an authentication token using a master
secret key.
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Figure 5.15: Growth of computation time (in milliseconds) at client’s side with threshold t
(where n is fixed to 10).

• Threshold Solution. This solution utilizes a threshold token generation scheme. The
secret key shares sk1, sk2, . . ., skn of the threshold scheme are distributed among the
n servers. The client signs on with its username/password to t servers, where each
server verifies its credential and then issues a share of the token. The client combines
the shares received from the servers to generate the final token.

In the plain solution, a breached server would enable the attacker to (i) recover the
master secret key and (ii) perform offline dictionary attacks to recover users’ passwords.
Comparing our solution with the plain solution presents the extra cost of protecting both
the master secret key and users’ passwords. In the threshold solution, if up to t− 1 servers
are breached, then the master secret key stays secure, but users’ passwords are vulnerable
to offline dictionary attacks. Comparing our solution with the threshold solution gives the
extra cost of protecting users’ passwords.

Table 5.3 shows the total runtime for a client to generate a single token after registration
using the plain solution and the threshold solution for different values of (n, t). The reported
time is an average of 10,000 token requests in LAN and WAN settings. For the same setting
and the same type of token, the runtime in the WAN network is roughly the runtime in the
LAN network plus 80 ms round-trip latency, for the same reason discussed above for the
PASTA protocol. Notice that in the threshold solution, the total runtime is independent of n
and only depends on the threshold t. Hence we only report the runtime for the same n = 10
and different thresholds.

We compare our solution with the two näıve solutions and show the multiplicative over-
head of our solution in Figure 5.16. The two figures represent the comparison in the LAN
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(n, t) Sym-MAC Public-MAC Pairing-Sig RSA-Sig

LAN

Plain 0.1 0.4 0.4 11.3

T
h

re
sh

ol
d (10, 2) 0.1 0.6 0.6 13.2

(10, 3) 0.1 0.6 0.6 13.3
(10, 5) 0.2 0.9 0.9 14.4
(10, 7) 0.3 1.2 1.2 16.0
(10, 10) 0.4 1.5 1.5 18.6

WAN

Plain 80.2 80.5 80.5 91.4

T
h

re
sh

o
ld

(10, 2) 80.2 80.7 80.7 93.3
(10, 3) 80.2 80.7 80.7 93.4
(10, 5) 80.3 81.0 81.0 94.5
(10, 7) 80.4 81.3 81.3 96.1
(10, 10) 80.5 81.6 81.6 98.8

Table 5.3: Total runtime (in milliseconds) for generating a single token through näıve solu-
tions, for various settings in LAN and WAN networks.

and WAN network, respectively. Different types of tokens are represented in different colors.
In each picture, the first set of four bars represent the overhead of our solution compared to
the plain solution. Note that there is no notion of (n, t) in the plain solution, hence we pick
a setting (5, 3) for our solution to compare with the plain solution. If comparing the plain
solution with other (n, t) settings of our solution, the results would be slightly different. The
remaining five sets of bars in each figure represent the overhead of our solution compared to
the threshold solution for various values of (n, t). When comparing with those, we use the
same (n, t) setting of our solution.

In the LAN network, notice that there is nearly no overhead for the RSA-based token
generation. The overhead for public-key based MAC and pairing based signature is a small
constant. There is a higher overhead for symmetric-key based MAC. This is because the
näıve solutions only involve symmetric-key operations while our solution involves public-
key operations, which is much more expensive. This overhead is necessary as we prove in
Section 5.6 that public-key operations are necessary to achieve a password-based threshold
authentication (PbTA) system.

In the WAN network, since the most time-consuming component is the network latency
in our protocol as well as the näıve solutions, the overhead of our solution compared with
the näıve solutions is fairly small. As shown in Figure 5.16, the overhead is less than 5% in
all the settings and all token types.
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Figure 5.16: Multiplicative overhead of our solution in runtime compared to näıve solutions
in LAN and WAN networks.

5.6 Necessity of Public-Key Operations

In both the registration phase and sign-on phase of PASTA, we instantiate the TOPRF
component with the 2HashTDH protocol of Jarecki et al. [JKKX17] which uses public-key
operations. Therefore, all the instantiations of PASTA use public-key operations even if the
threshold token generation scheme is purely symmetric-key. This could become a significant
overhead in some cases compared to the näıve insecure solutions (see Section 5.5.4 for details).
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So the natural question is whether public-key operations can be avoided, or, put differently,
is it just an artifact of PASTA and its instantiations? In this section we prove that public-key
operations are indeed necessary to construct any secure PbTA scheme.

In more detail, we prove that if one can construct PbTA that only makes black-box use of
one-way functions, then a secure two-party key agreement protocol can also be constructed
by only making black-box use of one-way functions, which would imply P 6= NP [IR90].
Hence this gives us evidence that it is unlikely to construct PbTA using only symmetric-key
operations.

Overview. We now give an overview of our proof technique. At a high level, we construct
a secure key-agreement protocol from PbTA in a black-box way. As a result, if one can
construct PbTA that only makes black-box use of one-way functions, then our construction
is a secure key-agreement protocol that only makes black-box use of one-way functions,
contradicting the impossibility result of Impagliazzo and Rudich [IR90].

To construct the secure key-agreement protocol, think of the two parties P1 and P2 in
the key-agreement protocol as a client C and the set of all servers in the PbTA protocol,
respectively. We set the password space to contain only one password pwd, which means the
password of C is known to both parties. Thus P2, which represents the set of all servers, can
run GlobalSetup and the registration phase of C on its own. Then the two parties run the
sign-on phase so that P1 obtains a token for x = 0. Since both parties know the password,
P2 can emulate the sign-on phase on its own to generate a token for x = 0. The resulting
token is the agreed key by both parties.

Notice that the generated token might not be a valid output for the key agreement proto-
col, but the two parties can apply randomness extractor to the token and obtain randomness
to generate a valid key. We omit the details here.

The security of the key-agreement protocol relies on the unforgeability of the PbTA
scheme. Intuitively speaking, if there exists a PPT adversary that outputs the agreed token
by P1 and P2 with non-negligible probability, then the adversary is able to generate a valid
token in the PbTA scheme with non-negligible probability, without making any fake requests
to the servers (thus keeping all QC,i to zero), contradicting the unforgeability property. Next
we give provide a formal proof.

Theorem 5.6.1. A secure two-party key agreement protocol can be constructed from any
PbTA scheme in a black-box way.

Proof. Let Π = (GlobalSetup, SignUp, Request, Respond, Finalize, Verify) be a PbTA scheme.
The secure two-party key agreement protocol is presented in Figure 5.17.

The protocol uses PbTA in a black-box way. Since the tokens tk, tk′ are generated using
the same C, x, and secret key, they are equivalent. Hence the two parties agree on a token
(which can be used to extract randomness to generate a key). Now we show that if there
exists a PPT adversary A that outputs the agreed token by P1, P2 in the key-agreement
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Let the password space be P := {pwd}, set n := 2, t := 2, let T be the set of all servers in
Πsym, and set x := 0.

1. P2 executes the following:

• Run GlobalSetup(1κ, n, t,P) → (JskK, vk, pp).

• Run SignUp(C, pwd)→ ((C,msg1), . . . , (C,msgn)).

• Set Ri,C := msgi.

• Send (pp, C) to P1.

2. On receiving the first message from P2, P1 does the following:

• Run Request(C, pwd, x, T )→ ({(C, x, reqi)}i∈T , D̂).

• Send {reqi}i∈T to P2.

3. On receiving the message from P1, P2 does the following:

• Run Respond(ski,reci, C, x, reqi)→ resi for i ∈ T .

• Send {resi}i∈T to P1.

• Emulate the protocol:

a. Request(C, pwd, x, T )→ ({(C, x, req′i)}i∈T , D̂′).
b. Respond(ski,reci, C, x, req

′
i)→ res′i for i ∈ T .

c. Finalize(D̂′, {res′i}i∈T )→ tk′.

• Output tk′.

4. On receiving the second message from P2, P1 executes the following:

• Run Finalize(D̂, {resi}i∈T )→ tk.

• Output tk.

Figure 5.17: Secure two-party key agreement protocol.

protocol, then we can construct another adversary B that breaks unforgeability of the PbTA
scheme.
B does not corrupt any server or client. It then calls Osignup(C) to obtain {msgi}i∈[n], and

calls Oserver(i, store,msgi) to register C for all i ∈ T . Then it calls Oreq(C, pwd, 0, T ) to obtain
{reqi}i∈T , and callsOserver(i, respond, reqi) to obtain resi for all i ∈ T . B runsA with input be-
ing the transcript of the key-agreement protocol, consisting of {(pp, C), {reqi}i∈T , {resi}i∈T },
and obtains an output t̃k from A. Then B simply outputs (C, 0, t̃k).

In the security game SecGameΠ,A(1κ, n, t,P) (Figure 5.10) for B, we have QC,i = 0 for all
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i. By the unforgeability definition, there exists a negligible function negl such that

Pr[Verify(vk, C, 0, t̃k) = 1] ≤ negl(κ).

However, A’s token t̃k is valid with non-negligible probability, leading to a contradiction.

Combining the above theorem with the result of Impagliazzo and Rudich [IR90], we have
the following corollary:

Corollary 5.6.2. If there exists a PbTA scheme that only makes black-box use of one-way
functions, then P 6= NP .

This corollary provides us with evidence that it is unlikely to construct PbTA schemes
that only makes black-box use of one-way functions. Notice that we did not rule out the
possibility of getting around this problem by making non-black-box use of one-way functions.
We leave that as an interesting open problem.
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[DG17] Nico Döttling and Sanjam Garg. “Identity-Based Encryption from the Diffie-
Hellman Assumption”. In: CRYPTO 2017, Part I. Ed. by Jonathan Katz and
Hovav Shacham. Vol. 10401. LNCS. Springer, Heidelberg, Aug. 2017, pp. 537–
569. doi: 10.1007/978-3-319-63688-7_18.

http://dx.doi.org/10.1007/978-3-319-44618-9_19
http://dx.doi.org/10.1007/978-3-662-46803-6_18
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/978-3-642-32009-5_15
https://www.alpinesecurity.com/blog/offline-password-cracking-the-attack-and-the-best-defense-against-it
https://www.alpinesecurity.com/blog/offline-password-cracking-the-attack-and-the-best-defense-against-it
http://dx.doi.org/10.1145/195058.195405
http://dx.doi.org/10.1007/0-387-34805-0_28
http://dx.doi.org/10.1007/3-540-39200-9_32
http://dx.doi.org/10.1007/3-540-39200-9_32
http://dx.doi.org/10.1007/978-3-319-63688-7_18


BIBLIOGRAPHY 134
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