
Approximation and Hardness: Beyond P and NP

Pasin Manurangsi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-49
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-49.html

May 16, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Approximation and Hardness: Beyond P and NP

by

Pasin Manurangsi

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Luca Trevisan, Co-chair
Professor Prasad Raghavendra, Co-chair

Professor Nikhil Srivastrava

Spring 2019

Approximation and Hardness: Beyond P and NP

Copyright 2019
by

Pasin Manurangsi

1

Abstract

Approximation and Hardness: Beyond P and NP

by

Pasin Manurangsi

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Luca Trevisan, Co-chair

Professor Prasad Raghavendra, Co-chair

The theory of NP-hardness of approximation has led to numerous tight characterizations of
approximability of hard combinatorial optimization problems. Nonetheless, there are many funda-
mental problems which are out of reach for these techniques, such as problems that can be solved
(or approximated) in quasi-polynomial time, parameterized problems and problems in P.

This dissertation continues the line of work that develops techniques to show inapproximability
results for these problems. In the process, we provide hardness of approximation results for the
following problems.

• Problems Between P and NP: Dense Constraint Satisfaction Problems (CSPs), Densest
k-Subgraph with Perfect Completeness, VC Dimension, and Littlestone’s Dimension.

• Parameterized Problems: k-Dominating Set, k-Clique, k-Biclique, Densest k-Subgraph,
Parameterized 2-CSPs, Directed Steiner Network, k-Even Set, and k-Shortest Vector.

• Problems in P: Closest Pair, and Maximum Inner Product.

Some of our results, such as those for Densest k-Subgraph, Directed Steiner Network and Parame-
terized 2-CSP, also present the best known inapproximability factors for the problems, even in the
(believed) NP-hard regime. Furthermore, our results for k-Dominating Set and k-Even Set resolve
two long-standing open questions in the field of parameterized complexity.

i

To my parents

ii

Contents

Contents ii

1 Introduction and Overview 1
1.1 Part I: Problems Between P and NP . 2
1.2 Part II: Parameterized Problems . 6
1.3 Part III: Problems in P . 12
1.4 Discussion and Future Directions . 13
1.5 Bibliographic Notes . 13

2 Notation, Preliminaries and Tools 15
2.1 Notation . 15
2.2 Problem Definitions . 17
2.3 Exponential Time Hypotheses . 18
2.4 Fine-Grained Complexity Assumptions . 20
2.5 Nearly-Linear Size PCPs and (Sub)exponential Time Reductions 21
2.6 Parameterized Complexity . 23
2.7 Error-Correcting Codes . 27
2.8 Zarankiewicz Problem and Related Bounds . 28
2.9 Well-Behaved Subsets . 29
2.10 Two Variants of Label Covers . 31
2.11 Feige’s Reduction From Label Cover to Set Cover 34

I Problems Between P and NP 37

3 A Birthday Repetition Theorem and Its Applications 38
3.1 Additional Preliminaries and Notations . 45
3.2 Birthday Repetition Theorem and Its Proof . 47
3.3 Applications of the Birthday Repetition Theorem 50
3.4 Improved Approximation Algorithm for Dense CSPs 55
3.5 Discussion and Open Problems . 61

iii

4 Densest k-Subgraph with Perfect Completeness 63
4.1 The Reduction and Proofs of The Main Theorems 66
4.2 Discussion and Open Questions . 73

5 VC Dimension and Littlestone’s Dimension 75
5.1 Interpretation of the Results . 76
5.2 Additional Notations and Preliminaries . 78
5.3 VC Dimension . 79
5.4 Littlestone’s Dimension . 88
5.5 Discussion and Open Questions . 98

II Parameterized Problems 100

6 Inapproximability of k-Dominating Set 101
6.1 Connecting Communication Complexity and Parameterized Inapproximability: An

Overview . 107
6.2 Additional Preliminaries . 112
6.3 Product Space Problems and Popular Hypotheses 113
6.4 Communication Protocols and Reduction to MAXCOV 120
6.5 An Efficient Protocol for Set Disjointness . 126
6.6 An Efficient Protocol for MULTI-EQUALITY . 128
6.7 An Efficient Protocol for SUM-ZERO . 130
6.8 Connection to Fine-Grained Complexity . 131
6.9 Discussion and Open Questions . 133

7 Inapproximability from Gap-ETH I: k-Clique and k-Induced Subgraph with Hered-
itary Property 135
7.1 Hardness of Approximation from MAXCOV with Projection Property 137
7.2 Maximum Clique . 140
7.3 Maximum Induced Subgraph with Hereditary Properties 141
7.4 Discussion and Open Questions . 142

8 Inapproximability from Gap-ETH II: k-Biclique, k-Induced Matching on Bipartite
Graphs and Densest k-Subgraph 144
8.1 Rephrasing the Reduction from Chapter 4 as a Parameterized Inapproximability of

Clique-vs-Biclique . 146
8.2 Maximum Balanced Biclique . 147
8.3 Densest k-Subgraph . 149
8.4 Discussion and Open Questions . 150

9 Inapproximability from Gap-ETH III: Parameterized 2-CSPs, Directed Steiner
Network, k-Unique Set Cover 152

iv

9.1 Proof Overview . 157
9.2 Additional Preliminaries . 166
9.3 The Main Agreement Theorem . 167
9.4 Soundness Analysis of the Reduction . 176
9.5 Proof of Inapproximability Results of 2-CSPs . 179
9.6 Inapproximability of Directed Steiner Network 182
9.7 Inapproximability of Unique Set Cover . 183
9.8 Discussion and Open Questions . 186

10 Inapproximability from Gap-ETH IV: Even Set and Shortest Vector Problems 188
10.1 Additional Preliminaries . 192
10.2 Inapproximability of MLD and NVP . 192
10.3 Inapproximability of k-MDP . 194
10.4 Inapproximability of k-SVP: Following Khot’s Reduction 197
10.5 Discussion and Open Questions . 201

IIIProblems in P 203

11 Inapproximability in P: Closest Pair and Maximum Inner Product 204
11.1 Proof Overview . 207
11.2 Additional Preliminaries . 215
11.3 Lower Bound on (Exact) Closest Pair under OVH 220
11.4 Gadget Constructions . 222
11.5 Inapproximability of Maximum Inner Product . 229
11.6 Inapproximability of Closest Pair . 232
11.7 Inapproximability of Closest Pair in Edit Distance Metric 234
11.8 Discussion and Open Questions . 234

12 Discussion and Future Directions 237

Bibliography 243

v

Acknowledgments

Finishing up this dissertation is quite bittersweet; while I am certainly happy, the past four years
here at Berkeley have been some of the most wonderful in my life, and I would prefer to never
leave! There are so many people I would like to thank for making this happens, and I do apologize
in advance if I (inevitably) miss some.

First and foremost, I will never be able to thank my advisors, Luca Trevisan and Prasad
Raghavendra, enough for what they have done for me. From their guidance when I am (com-
pletely) lost to their moments of brilliance, they have truly shaped and inspired me as a researcher.
Outside of theory, their perspective of the world, patience, kindness, humility–and of course great
senses of humor–have a profound impact on me. Thank you very much Luca and Prasad!

Throughout my PhD, I have been very lucky to be mentored (and hosted) by: Dana Moshkovitz,
Yury Makarychev, Madhur Tulsiani, Irit Dinur, Eden Chlamtác, Arnab Bhattacharyya, and Kai-
Min Chung. I am grateful to all of them for teaching me so much, and for their continuing support
both professionally and personally.

In addition to those listed above, I have had the great pleasure and honor to work with many
amazing collaborators, without whom this thesis would not have been possible: Karthik C.S.,
Warut Suksompong, Bundit Laekhanukit, Aviad Rubinstein, Danupon Nanongkai, Haris Angeli-
dakis, Parinya Chalermsook, Rajesh Chitnis, Marek Cygan, Guy Kortsarz, Daniel Reichman, Igor
Shinkar, Suprovat Ghoshal, Euiwoong Lee, Andreas Feldmann, Jason Li, Michal Wlodarczyk,
Anupam Gupta, Aravindan Vijayaraghavan, Piotr Faliszewski, and Krzysztof Sornat. I will miss
(and, in some cases, have already missed) the times we spend trying out the craziest of ideas
together!

I would also like to thank all my fellow theory students and postdocs at Berkeley for their
friendship, our shared joyous moments–and their occasional late night companies at Soda Hall:
Lynn Chua, Akshay Srinivasan, Aviad Rubinstein, Tselil Schramm, Di Wang, Jonah Brown-Cohen,
Fotis Iliopoulos, Jingcheng Liu, Peihan Miao, Frank Ban, Siqi Liu, Seri Khoury, Grace Dinh,
Aaron Schild, Tarun Kathuria, Sidhanth Mohanty, Chinmay Nirkhe, Arun Ganesh, Morris Yau,
Elizabeth Yang, Richard Zhang, Manuel Sabin, Nick Spooner, Rotem Arnon-Friedman, Sam Hop-
kins, Antonio Blanca and Sam Wong. Without you guys, this journey would not have been nearly
as fun, interesting and enjoyable!

Lastly, I thank my family, especially mom and dad, and my girlfriend, Palmy, for their unwa-
vering love and support. I am most fortunate to have all of you with me throughout my life.

1

Chapter 1

Introduction and Overview

The most basic question regarding any computational problem is whether it admits an efficient
algorithm. On this front, the theory of NP-completeness [Coo71; Kar72; Leo73], arguably one of
the most important concepts in computer science, allows us to collectively explain why thousands
of computational problems arising in wide variety of fields in science and engineering are likely to
be computationally intractable. However, while powerful, the notion of “efficiency” of algorithms
used in NP-completeness—whether their running times are polynomial in the input size—still
falls short of providing satisfactory explanation to the complexity of a number of fundamental
problems. For one, it fails to explain why some problems admit quasi-polynomial time algorithms,
but yet do not seem to be solvable in polynomial time. Furthermore, while algorithms with running
times O(n) and O(n2) are both classified as efficient in this notion, the former would finish in
seconds whereas the latter could take years on an input of size say 1GB, a scenario that has become
increasingly common in the age of big data. Such blind spots have led to a relatively new area
of fine-grained complexity theory, which seeks to understand the computational complexity of
problems beyond whether they can be solved in polynomial time.

The aim of this thesis is to advance our understanding of optimization problems through the
lens of fine-grained complexity and approximation algorithms; these are algorithms that are al-
lowed to output estimated solutions rather than exact ones. Previous works have demonstrated that
such a relaxation can lead to a drastic change in computational complexity: some NP-hard prob-
lems admit polynomial time algorithms with good approximation guarantees, and some O(n2)-
time problem can be approximated well in O(n) time. However, this is not the case for every
problem, as some problems remain intractable even when approximate solutions are allowed. That
is, for certain approximation ratios, some NP-hard problems still do not admit polynomial time
algorithms, and some O(n2)-time problems still do not admit O(n)-time algorithms. The theory
of probabilistic checkable proofs (PCP)–which has by now been developed into the field of hard-
ness of approximation–provides justifications for the first type of inapproximability: indeed, many
NP-hard problems remain NP-hard even when approximation is allowed. On the other hand, until
the past few years, the second (fined-grained) phenomenon remained largely unexplained. This
dissertation continues this latter body of work, and is divided into three parts, based on the com-
plexity of the problems tackled: (I) problems between P and NP, (II) parameterized problems, and

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

(III) problems in P. Below we provide overviews of each section. To keep the discussion at a high
level, we will be mostly informal; all notations and results will be formalized later on in this thesis.

1.1 Part I: Problems Between P and NP
First, as mentioned earlier, we consider problems which admits quasi-polynomial time (approxi-
mation) algorithms. These problems are unlikely to be NP-hard, as otherwise all problems in NP
would be solvable in quasi-polynomial time, a scenario considered unlikely by most complexity
theorists. So how, then, can we justify the nature of these problems that lie “between P and NP”?

Similar to how polynomial-time reductions lie at the heart of the theory of NP-completeness,
subexponential-time reductions play a central role in establishing computational barriers for prob-
lems between P and NP. Suppose, for instance, that we would like to show that a problem A
cannot be solved in N o(logN) time, where N is the size of the input. One way to do this is to
reduce an instance of 3SAT with n variables to an instance of A of size N = 2O(

√
n). Now, if

we had an N o(logN)-time algorithm for A , then this algorithm would have solved 3SAT in time
(2O(

√
n))o(

√
n) = 2o(n); the latter is believed to be unlikely, a belief formalized under the name

Exponential Time Hypothesis (ETH)1 [IP01; IPZ01]. In other words, assuming ETH, we have
provided a matching running time lower bound for problem A .

Such a reduction was arguably first pioneered in the context of hardness of approximation by
Aaronson, Impagliazzo and Moshkovitz [AIM14]; they dub the reduction “birthday repetition”, a
name that will become clear shortly. Their reduction has since inspired hardness between P and NP
for many problems, including Densest k-Subgraph with perfect completeness [Bra+17; Man17a],
Nash Equilibrium and related problems [BKW15; Rub17b; BPR16; Rub16; Bha+16b; DFS16],
Community Detection [Rub17a] and VC Dimension [MR17b]. Indeed, the first part of our thesis
can be viewed as a study of the power of (variants of) birthday repetition.

1.1.1 Birthday Repetition Theorem and Dense CSPs
We start in the first chapter by considering the original birthday repetition construction from [AIM14].
The reduction is most intuitive when described in terms of (one-round) two-prover games. A two
prover game G consists of

• Finite sets of questions X, Y and corresponding answer sets ΣX ,ΣY .

• A distribution Q over pairs of questions X × Y .

• A verification function P : X × Y × ΣX × ΣY → {0, 1}.

The game is played as follows: the verifier picks a random pair of questions (x, y) according to the
distributionQ, and sends x to the first prover and y to the second prover. The provers then respond
back with answers σx ∈ ΣX and σy ∈ ΣY ; the verifier accepts if the predicate P (x, y, σx, σy)

1See Hypothesis 1 for a more formal statement of ETH.

CHAPTER 1. INTRODUCTION AND OVERVIEW 3

evaluates to one and rejects otherwise. The goal of the provers is to select a strategy that achieves
the highest possible acceptance probability; this probability is referred to as the value of the game.

Two-prover games and, more specifically, a special class of two-prover games known as the
projection games are the starting points for reductions in a large body of hardness of approxima-
tion results. In fact, the PCP Theorem [Aro+98; AS98] is equivalent to the NP-hardness of the
following problem: given a game, distinguish whether its value is one, or is at most 0.99.

Interestingly, the two-prover games generated by the PCP Theorem is usually “sparse”, in the
sense that the support of Q is very small2 compared to |X| · |Y |. It turns out that this is not a
coincidence: the “dense” case is much easier to approximate. Specifically, when Q is the uniform
distribution onX×Y (for which the game is said to be a free game), the problem of distinguishing
whether a given free game is satisfiable or whether its value is at most (1 − ε) can be solved in
NO(logN

ε) time [AIM14]3.
In this light, Aaronson et al.’s birthday repetition can be viewed as a reduction from any two-

prover game to a free game that, when initialize with appropriate parameters, yields the (almost)
matching N Ω̃(logN) running time lower bound for approximating the value of free games. For
parameters k, ` ∈ N, the (k × `)-birthday repetition Gk×` of a two-prover game G consists of

• The set of questions in Gk×` are
(
X
k

)
and

(
Y
`

)
respectively, i.e., each question is a subset

S ⊆ X of size k and subset T ⊆ Y of size `.

• The distribution over questions is the uniform product distribution over
(
X
k

)
×
(
Y
`

)
.

• The verifier accepts if, for every pair of (x, y) ∈ S × T such that (x, y) form a valid pair of
questions in G, i.e., (x, y) ∈ supp(Q), the answers to x and y are accepted in G.

Notice that, for small value of k, `, say k = ` = 1, the game Gk×` is “almost trivial” because, for
most of the pairs S, T , there will be no x ∈ S, y ∈ T such that (x, y) forms a valid pair of questions
in the original game G. This means that, on such (S, T), the verifier for Gk×` always accepts.

However, the situation becomes interesting as soon as k, ` = Ω
(√

N
)
. In this regime, the

expected number of valid (x, y) for a random pair S, T is Ω(1). This is also a good point to note
that this resembles the situation of the “birthday paradox”: if there are

√
D people whose birthdays

are independently identically uniformly sampled from {1, . . . , D}, then the expected number of
pairs of people sharing the same birthday is Θ(1). This indeed leads Aaronson et al. [AIM14] to
give the construction the name “birthday repetition”.

Under a mild non-degeneracy condition on G, the above expectation statement can be turned
into a probabilistic guarantee that, for most S, T , there exists at least one valid (x, y) ∈ S × T . In
other words, the verifier checks at least one constraint from the original game G. Intuitively, this
should mean that finding a good strategy for the new game Gk×` is “not easier” than that of the
original game G. The main contribution of [AIM14] is to confirm this intuition, by showing that
the value of Gk×` is no more than the value of G plus O(

√
k`/N).

2In fact, | supp(Q)| can be assumed to be linear in |X|+ |Y | [Tre01; Din07].
3Here, we use N to denote the size of the instance, i.e., N = |X||Y ||ΣX ||ΣY |.

CHAPTER 1. INTRODUCTION AND OVERVIEW 4

In doing so, they immediately arrives at the N Ω̃(logN) running time lower bound for approxi-
mating the value of free games: starting with a hardness of approximation result for approximating
the value of a two-prover game G of size N , we can consider the birthday repetition game Gk×`
with k = ` = Θ(

√
N). The latter is of size roughly Ñ =

(
N√
N

)
= 2O(

√
N logN). If we can approxi-

mate the value of Gk×` well in time Ñ
o

(
log Ñ

log log Ñ

)
, then we can approximate the value of the original

game G in time 2o(N), which would violate ETH.
As readers might have already noticed, the above paragraph glosses over a subtle but important

fact: we have to start with G whose value is hard to approximate, meaning that we have to evoke
the PCP Theorem to begin with. Hence, we have to also taken in the account the “size blow-up”
in the PCP. Fortunately, there are known PCP constructions with small blow-ups [BS08; Din07;
MR10]. Specifically, Dinur’s PCP [Din07] can produce a two-prover game (or alternatively an
instance of Gap-3SAT4) of size N = n polylog(n) when starting with a 3SAT formula of size n.
As a result, the described approach still gives hardness of Ñ Ω̃(log Ñ) for approximating the value of
free games.

While Aaronson et al.’s work [AIM14] appeared to have resolved the complexity of birthday
repetition, there were in fact a few open questions remained. The main one, which was highlighted
in [AIM14], is whether birthday repetition can decrease the value of a game (i.e. amplify the
hardness gap). In particular, since the verifier in Gk×` checks Θ(k`/N) pairs of questions from G
in expectation, it was suggested in [AIM14] that the value of Gk×` should decrease exponentially
in Θ(k`/N). The main contribution of our first chapter is to confirm this conjecture. In doing
so, we give an almost matching running time versus approximation ratio tradeoff curve for the
problem of approximating the value of free games. Roughly speaking, we show that, to achieve an
approximation ratio of N1/i, one needs N Ω̃(i) time, which is tight. On a more technical level, our
proof relies in the following fact from extremal graph theory: any dense graph must contain many
copies of (small) complete bipartite subgraphs (bicliques). With this in mind, we carefully bound
the number of bicliques in the “acceptance graph” for Gk×`. This technique turns out to be useful
in the next chapter as well.

We also provide several additional results. For instance, we show a similar lower bound in
terms of strong SDP relaxations (i.e. the Lasserre hierarchy) and we give an approximation algo-
rithm with similar running time to that of [AIM14] that works for a more general case of dense
constraint satisfaction problems (CSPs) and even when the instance might not be satisfiable.

1.1.2 Densest k-Subgraph (with Perfect Completeness)
In the second chapter, we consider the DENSEST k-SUBGRAPH (DkS) with perfect completeness
problem, which can be viewed as an approximate version of the classic k-CLIQUE problem. In
DkS with perfect completeness, we are given a graph G with a promise that it contains a k-clique.
The goal is to find a subgraph of size k that is as dense as possible. This problem again admits

4In the Gap-3SAT problem, we are given a 3CNF formula and the goal is to distinguish between the case that it is
satisfiable and the case where every assignment violates at least 1% of clauses.

CHAPTER 1. INTRODUCTION AND OVERVIEW 5

a quasi-polynomial time approximation scheme. That is, there is an nO(logn
ε)-time algorithm that

can find a k-vertex subgraph of density5 (1− ε) [FS97; Bar15].
There is a straightforward, albeit incorrect, reduction from free games to DkS with perfect

completeness: given a free game with question sets X, Y and answer sets ΣX ,ΣY , create a graph
whose vertex set is (X×ΣX)∪(Y ×ΣY), and two vertices (x, σx) ∈ X×ΣX and (y, σy) ∈ Y ×ΣY

are connected iff the verifier accepts (σx, σy) when the pair of questions (x, y) is drawn. The pairs
of vertices whose questions are from the same set are always linked. Such a graph is sometimes
referred to as the labelled extended graph of the game. It is obvious that, if the game is satisfiable,
then there is an (|X| + |Y |)-clique in the graph. Unfortunately, it is possible that the graph has a
dense subgraph, even when the value is very small; this reduction hence fails.

Remarkably, however, Braverman et al. [Bra+17] show that, if instead of starting from an ar-
bitrary free game we start from a birthday repetition game Gk×` with k, ` = Ω(

√
N), then the

reduction in fact works, in the sense that any (1 − ε)-dense subgraph of size (|X| + |Y |) (for a
small constant ε > 0) translates back to a strategy of G with high value. Similar to before, their
result immediately implies that (1− ε)-approximation of DkS with perfect completeness requires
nΩ̃(logn) time assuming ETH, which nearly matches the aforementioned algorithms.

In light of our result in the previous section, it is natural to ask whether we can achieve “gap
amplification” effect here as well. That is, can we prove hardness for DkS with perfect complete-
ness with large factors? Unfortunately, there is a counterexample showing that this construction
can achieve a factor of at most two (see the appendix of [Man17a]). The main contribution of this
chapter is to overcome this barrier and achieve inapproximability ratios that are almost polynomial.
Specifically, we show that, assuming ETH, no polynomial-time algorithm can approximates DkS
with perfect completeness to within n1/(log logn)c factor of the optimum. We also provide a finer
trade-off between the approximation ratio and running time, although this is not yet tight.

Due to the mentioned counterexample, we need to modify the reduction to make our proof
work. Roughly speaking, instead of starting with two prover games, we have to start with boolean
CSPs and, instead of picking sets of “questions”, we pick sets of variables instead. As alluded
to above, the key step of our proof is to bound the number of (small) bicliques in the constructed
graph, which is more challenging in this case than in the previous chapter because here we are
considering the labelled extended graph as opposed to the acceptance graph before.

Interestingly, while our proof is tailored for the special case of DkS with perfect completeness,
it does give the best known hardness for DkS, in which no promise of k-clique existence is given.
For the general DkS problem, Bhaskara et al.’s state-of-the-art algorithm for the problem achieves
only O(n1/4+ε) approximation ratio and it is believed that the problem is hard to approximate
to within a large (possibly even polynomial) factor. Despite this, previous attempts at proving
hardness of approximation, including those under average case assumptions, fail to even come
close to a polynomial ratio; the best ratios ruled out under any worst case assumption and any
average case assumption were only any constant [RS10] and 2O(log2/3 n) [Alo+11] respectively.
Thus, our results also present the best inapproximability factor so far for DkS.

5The density of an n-vertex graph for n > 2 is the number of its edges divided by
(
n
2
)
, which is a number between

zero and one (inclusive).

CHAPTER 1. INTRODUCTION AND OVERVIEW 6

1.1.3 VC Dimension and Littlestone’s Dimension
The last chapter of the first part studies the complexity of (approximating) two fundamental quan-
tities in learning theory: VC Dimension and Littlestone’s Dimension. These dimensions capture
the number of samples needed in the PAC learning model and the mistake bounds in the online
learning model respectively. We consider the model in which a concept class is given explicitly in
the input (as a binary matrix whose (x,C)-th entry is 1 iff element x belongs to concept C), and
we would like to compute the dimensions. It is not hard to see that both quantities can be com-
puted exactly in time NO(logN), where N denote the size of the input (i.e. matrix). Assuming the
randomized Exponential Time Hypothesis, we prove nearly matching lower bounds on the running
time, that hold even for approximation algorithms for small constant factors.

It should be noted that, while the constructions in this chapter are inspired by the aforemen-
tioned birthday repetition, there are additional challenges, and the proof techniques also diverge
quite significantly from the previous ones. However, this might not be completely coincidental:
while birthday repetition has found applications for very different problems, these problems all
share essentially the same quasi-polynomial time algorithm. The bottleneck in those problems is
a bilinear optimization problem maxu,v u>Av, which we want to approximate to within a (small)
constant additive factor. To do this, it suffices to find an O(log n)-sparse sample v̂ of the optimal
v∗; the algorithm enumerates over all sparse v̂’s [LMM03; Aro+12; Bar15; Che+15b]. Indeed, the
algorithms for both free games and DkS with perfect completeness are of this form.

In contrast, the problems we consider here have completely different quasi-polynomial time
algorithms: for VC Dimension, it suffices to simply enumerate over all log |C|-tuples of ele-
ments (where C denotes the concept class and log |C| is the trivial upper bound on the VC di-
mension) [LMR91]. Littlestone’s Dimension can be computed in quasi-polynomial time via a
recursive “divide and conquer” algorithm (See Section 5.4.4). We hope that our hardness in this
section serves as a supporting evidence that the birthday repetition framework might find more
applications for a wider range of problems in the future.

1.2 Part II: Parameterized Problems
The second part of this dissertation shifts the focus to the so-called parameterized complexity (or
multivariate complexity), an area which emerged in the late eighties and early nineties to pro-
vide yet another approach to tackle NP-hard problems. To illustrate, let us consider three classic
NP-hard problems from [Kar72]: VERTEX COVER, CLIQUE and DOMINATING SET (DOMSET).
While all are NP-hard, their complexity seems to differ if we are looking to find a solution of small
size k. In particular, whereas no N o(k)-time algorithm is known for either CLIQUE or DOMSET,
this is possible in time 2k · NO(1) for VERTEX COVER; such an algorithm can be much faster
than the trivial NO(k)-time algorithm. Motivated by this, a parameterized problem with parameter
k is said to be fixed-parameter tractable (FPT) if it can be solved in f(k) · NO(1) time for some
(computable) function f . This serves as the notion of “efficient algorithms” for parameterized com-
plexity, in the same way that polynomial-time algorithms do in the theory of NP-completeness.

CHAPTER 1. INTRODUCTION AND OVERVIEW 7

Since its inception, parameterized complexity has provided a fruitful platform for both algo-
rithmic and intractability results. Turning back to k-CLIQUE and k-DOMSET once again, the lack
of FPT algorithms for them can be explained: they are complete for the classes W[1] and W[2]
respectively [DF95a; DF95b]. Hence, assuming these classes do not collapse to FPT, the two
problems are intractable in this parameterized notion. In fact, under ETH, a stronger lower bound
is known: not even f(k) · N o(k)-time algorithm exists for k-CLIQUE and k-DOMSET [Che+04;
Che+06]. In other words, the trivial NO(k)-time algorithm is essentially the best possible (up to the
constant in the exponent).

Approximation has been suggested as a way to overcome these parameterized complexity bar-
riers. However, even when considering approximation algorithms, no “non-trivial” result is known.
On the other hand, despite the strong lower bounds established for exact algorithms, few inapprox-
imability results were known for parameterized problems, until the past few years.

To understand the barrier in proving hardness of approximation for parameterized problems, let
us first describe the standard strategy in proving tight running time lower bounds (e.g. from [Che+04;
Che+06]). These reductions can be thought of as taking an instance of 3SAT with n variables and
produces an instance of k-CLIQUE or k-DOMSET of size N = 2O(n/k). If we can solve either of
these problems in f(k) ·N o(k) time, then we can also solve 3SAT in 2o(n) time, violating ETH.

Suppose we try to take a similar path to prove hardness of approximation. The most natural
approach would be to first apply the PCP theorem so that we have hardness of the gap version of
3SAT problem; using the best known PCP [Din07], this Gap-3SAT consists of n′ = n ·polylog(n)
variables. Then, we can apply the reductions mentioned above to transform the Gap-3SAT instance
to a k-CLIQUE or k-DOMSET instance. This gives an instance of sizeN = 2O(n′/k) = 2n·polylog(n)/k.
However, N is already super exponential and does not give any lower bound at all!

With this obstacle in mind, there seems to be two paths going forward: first, we can try to
produce the gap in hardness of approximation via something different than the PCP Theorem. The
first chapter of this second part takes this route and in the process obtain strong inapproximability
results for k-DOMSET, which resolves a long-standing open question in parameterized complexity.

Second, we can just make a stronger assumption, that Gap-3SAT itself takes exponential time!
This assumption, now known under the name Gap-ETH, composes quite nicely with existing re-
ductions. Indeed, now that there is no polylog(n) size blow-up from the PCP Theorem, applying
the current known reductions to Gap-ETH already implies that k-CLIQUE is hard to approximate to
within a constant factor [Bon+15]. The main challenge here is thus the issue of gap amplification,
e.g., how can we prove hardness of large factor for k-CLIQUE (or other problems). This is a main
focus of this line of works, which appears in Chapters 7, 8, 9 and 10 in this dissertation.

1.2.1 Inapproximability of k-Dominating Set (via Distributed PCP)
Our results for k-DOMSET (and also k-CLIQUE in the next chapter) can be best stated via the
notion of total FPT inapproximability. To motivate this notion, recall that the greedy algorithm for
k-DOMSET achieves an approximation ratio of (lnn+1) [Joh74; Chv79; Lov75; Sri95; Sla96]. In
the setting of parameterized complexity, this can be quite bad: since we think of k as much smaller
than n, then overhead factor of O(lnn) can even be unbounded in terms of k. The question, which

CHAPTER 1. INTRODUCTION AND OVERVIEW 8

has been asked multiple times in literature (see e.g. [DFM06; CGG06; Dow+08; CH10; DF13]),
is whether we can get an g(k)-approximation algorithm for k-DOMSET in FPT time for some
function g (i.e. even with say g(k) = 22k).

The main contribution of this chapter is a negative answer to this question: we show that it
is W[1]-hard to approximate k-DOMSET to within g(k) factor for any function g. Furthermore,
we strengthen the running time lower bounds under ETH and Strong ETH (SETH) to f(k) · nΩ(k)

and f(k) · nk−ε respectively; once again, these apply for any g(k)-approximation algorithm for
k-DOMSET. In other words, there is little one can save in the running time compared to the
trivial algorithm, even when approximation is allowed. Previously, the best known hardness of
approximation of k-DOMSET due to Chen and Lin [CL16] rules out only any constant factor and
O(log1/4 k) factor under W[1]-hardness and ETH respectively.

As touched upon briefly in our above discussion, our proof uses a different way to produce
gap rather than the traditional approach of the PCP Theorem. In particular, we generalize the Dis-
tributed PCP framework of Abboud, Rubinstein and Williams [ARW17a] for proving hardness of
approximation in P, to the context of parameterized complexity. Roughly speaking, our generalized
view is that, if we start with a hypothesis that can be written in a certain form (see Section 6.3),
then, to prove hardness of approximation for a variant of the label cover problem called MAXCOV,
it suffices to give an “efficient” protocol for a certain multi-party communication problem. The
hardness of approximation for k-DOMSET is then established by reducing from the label cover
problem; such reductions were known in literature [Fei98; Cha+17] (see Section 2.11).

Stating the above connection/framework (even informally) requires a few additional notations
and hence it will be left out from the introduction; for interested readers, Section 6.1 provides a
brief overview of the framework without too much notational overhead.

1.2.2 Inapproximability from Gap-ETH I: k-Clique
Next, we consider the k-CLIQUE problem. For maximization problems such as k-CLIQUE, the
notion of total inapproximability becomes slightly different. Specifically, it is now obvious to get
a k-approximation for k-CLIQUE, by just outputting one vertex! As a result, such a maximization
problem is said to be totally inapproximable if there is no o(k)-approximation in FPT time. In this
chapter, we show that this is the case for k-CLIQUE. However, we need the stronger Gap-ETH
assumption for this result, as opposed to just W[1] 6= FPT or ETH in the previous chapter.

On a more technical level, the proof once again proceeds by first showing hardness of MAX-
COV, with a stronger requirement that the constraints have a “projection property”. Unfortunately,
such a property does not hold for instances created in the previous chapter. However, we can con-
struct a desirable instance relatively simply from Gap-ETH. The hardness for k-CLIQUE follows
immediately via a classic reduction from the NP-hardness of approximation literature [Fei+91].

Apart from k-CLIQUE, we also consider the problem of Maximum Induced Subgraph with
Hereditary Property (e.g. Maximum Induced Planar Subgraph). For this problem, Khot and Ra-
man [KR00] prove a dichotomy that, for a specific property, the problem is either FPT or W[1]-
hard. Here we extend this to show that, for the “hard” properties, the problem is even totally
inapproximable, assuming Gap-ETH. An interesting aspect of our reduction (from k-CLIQUE) is

CHAPTER 1. INTRODUCTION AND OVERVIEW 9

that it is noticeably simpler than that of Khot and Raman; this demonstrates that having a gap in
the starting problem can help simplify the reduction. Such a theme will come up again later in the
thesis.

1.2.3 Inapproximability from Gap-ETH II: k-Biclique and Densest
k-Subgraph

While the previous two chapters rely on hardness of (variants of) label cover as starting points for
hardness of approximation, we take a different route in this chapter; our starting point will instead
be the reduction from Chapter 4 (i.e. Section 1.1.2 above). As we mentioned above, the soudness
in Chapter 4 proceeds by arguing that the constructed graph contains few small bicliques. Hence,
if we subsample the graph by keeping each vertex independently at random with an appropriate
probability, then, in the soundness case, the small bicliques should all disappear. It turns out that
such an probability is still large enough that, in the completeness case, we are left with a large
clique. In other words, this implies that the “CLIQUE-VS-BICLIQUE” problem is “totally FPT
inapproximable”. This problem can then be easily reduce to k-BICLIQUE, by “bipartizing” the
graph.

It is not hard to observe that the total inapproximability of k-BICLIQUE implies some hardness
of approximation for DENEST k-SUBGRAPH, where k is the parameter. In particular, a classic
result of Kővári, Sós and Turán [KST54] says that any k-vertex graph which is t-biclique-free has
density at most k−Ω(1/t). Now, the total inapproximability of k-BICLIQUE implies that we cannot
distinguish in FPT time a graph containing k-biclique and one which is say (log log k)-biclique-
free. Then, in the former case we have a k-vertex subgraph that has density more than a half,
while in the latter any k-vertex subgraph has density at most k−Ω(1/ log log k). This gives hardness
of approximating DENSEST k-SUBGRAPH to within a factor of kO(1/ log log k). Of course, log log k
can be replaced with any function that goes to infinity as k → ∞, meaning that this approach can
gives an inapproximability for DENSEST k-SUBGRAPH to within a factor of ko(1).

It should be noted however that this does not give “total FPT inapproximability” for DENEST

k-SUBGRAPH, unlike our earlier results so far. Indeed, unfortunately, we do not manage to achieve
total FPT inapproximability for any of the problems from this point onwards, although for some
problems we still get pretty strong inapproximability results.

1.2.4 Inapproximability from Gap-ETH III: Parameterized 2-CSPs with
Strong Soundness (via Agreement Testing Theorem)

In an attempt to prove an even stronger hardness for DENSEST k-SUBGRAPH and related problems,
we consider a harder problem (i.e. easier to prove hardness) called PARAMETERIZED 2-CSPs. In
this context, it is easiest to described the problem in terms of the colorful version of DENEST k-
SUBGRAPH. Namely, in PARAMETERIZED 2-CSP, we are given a graph G and a partition of its
vertices V (G) = V1 ∪ · · · ∪ Vk, the goal is to find k vertices each from a different partition that

CHAPTER 1. INTRODUCTION AND OVERVIEW 10

maximizes the number of edges they induced. Here k is once again the parameter. Note that this
problem is exactly the same as DkS except that the vertices have to come from different partitions.

We show that the PARAMETERIZED 2-CSP problem is hard to approximate to within a factor
of k1−o(1) assuming Gap-ETH. Interestingly, our result also gives the best known hardness of ap-
proximation in terms of k, even for the non-parameterized version. In this regime, it is strongly
believe that the problem is NP-hard to approximate to within kΩ(1) factor, but no such result is
known; in fact, proving such an NP-hardness result seems quite challenging as it would resolve a
well-known conjecture in the theory of PCP called the Sliding Scale Conjecture [Bel+93]. Please
refer to Chapter 9 for discussions regarding the conjecture.

On a technical level, the main component in our proof is a “combinatorial agreement testing
theorem”, which can also be viewed as a derandomized direct product test. In particular, the
question is of the following form: given boolean functions f1, . . . , fk on domains S1, . . . , Sk ⊆ [n]
and suppose that δ fraction of the pairs agree on their intersections, can we recover a global function
g : [n]→ {0, 1} that “roughly” agrees with a “large” (≈ δk) fraction of the given functions? Here
S1, . . . , Sk are of size Ωk(n) and are “random looking” subsets. We show that such a statement
holds, even when δ is as small as 1/k1−o(1) (Theorem 9.9), which is roughly optimal since nothing
non-trivial can be said when δ 6 1/k. To the best of our knowledge, no prior derandomized direct
product tests work for such a low agreement (when measure in terms of k).

Our agreement testing theorem almost immediately yields the aforementioned hardness for 2-
CSPs, by taking S1, . . . , Sk to be the subsets of the variables of the starting Gap-3SAT formula, let
the i-th partition contains every function f : Si → {0, 1}, and let the constraints (i.e. edges) check
whether the two functions agree and that they do not violate any clauses. In the completeness case,
it is clear that we can pick k functions that are the restrictions of the global satisfying assignment;
this yields a k-clique. On the other hand, in the soundness case, our agreement testing theorem
implies that, if δ > 1/k1−o(1) fraction of pairs of the k selected functions agree, we can recover
g : [n]→ {0, 1} that agree with many of the fi’s. When setting parameters appropriately, a simple
counting argument implies that g must satisfy almost all clauses, which is a contradiction.

There are two consequences of our hardness of approximation of PARAMETERIZED 2-CSPS:

• First, due to a known reduction [DK99; CFM18], our result implies hardness of approxima-
tion for the DIRECTED STEINER NETWORK (DSN) problem with factor k1/4−o(1) where k
denotes the number of demand pairs (and k is the parameter). This is the first kΩ(1) hardness
for the problem (even in the non-parameterized regime).

• Secondly, we show, by rephrasing our 2-CSP instance in terms of label cover with a projec-
tion property and using the known reduction from label cover the set cover [Fei98], that the
k-UNIQUE SET COVER is hard to approximate to within a factor of k1/2−o(1). This hardness
will be useful in the next chapter.

Unfortunately, we still do not know how to translate the techniques developed for PARAM-
ETERIZED 2-CSPs back to DkS, and even proving k0.001-factor inapproximability for the latter
remains open.

CHAPTER 1. INTRODUCTION AND OVERVIEW 11

1.2.5 Inapproximability from Gap-ETH IV: k-Even Set and k-Shortest
Vector

In the next chapter, we consider the k-EVEN SET and k-SHORTEST VECTOR problems. The k-
EVEN SET problem is a parameterized variant of the MINIMUM DISTANCE PROBLEM of linear
codes over F2, which can be stated as follows: given a generator matrix A and an integer k,
determine whether the code generated by A has distance at most k, or in other words, whether
there is a nonzero vector x such that Ax has at most k nonzero coordinates.

In the k-SHORTEST VECTOR problem, we are given a lattice whose basis vectors are integral
and an integer k, and the goal is to determine whether the norm of the shortest vector (in the `p
norm for some fixed p) is at most k.

The question of whether k-EVEN SET and k-SHORTEST VECTOR are fixed-parameter tractable
has been repeatedly raised in literature; in fact, they were two of the few remaining open questions
from the seminal book of Downey and Fellow [DF99]. We stress here that the parameterized com-
plexity of these two problems were open even for exact algorithms. In this chapter, we negatively
answer this question by showing that, assuming Gap-ETH, there are no FPT algorithms for the two
problems. Our lower bound holds even against approximation algorithms; the inapproximability
ratios we can rule out for k-EVEN SET is any constant factor, whereas for k-SHORTEST VECTOR

we only rule out some constant factor.
Similar to the NP-hardness of approximation proofs for both problems [DMS03; Kho05], our

first step is to show that their non-homogenous counterpart, the k-NEAREST CODEWORD and k-
NEAREST VECTOR problems, are hard to approximate to within large factor. This is established
via a known reduction of Arora et al. [Aro+97] from k-UNIQUE SET COVER, for which we show
inapproximability in the previous chapter.

The second step of the proof is to reduce from hardness of approximating k-NEAREST CODE-
WORD and k-NEAREST VECTOR to k-EVEN SET and k-SHORTEST VECTOR respectively. In the
case of k-SHORTEST VECTOR, the same proof as Khot’s NP-hardness proof [Kho05] works in
the parameterized settings as well. As for k-EVEN SET, the NP-hardness of approximation re-
duction of Dumer, Micciancio and Sudan [DMS03] does not immediately work. While our final
reduction is still heavily inspired by their reduction, we need to define a new set of properties of
error-correcting codes, which are used as a gadget in the reduction. (See Section 10.3.1.) We then
show that a known family of codes (in particular, the BCH code) satisfies these properties.

Once again, we stress that it is crucial to have hardness of approximation of k-NEAREST

CODEWORD and k-NEAREST VECTOR for the reductions to work. This brings us back to the
point brought up earlier in Section 1.2.2 that starting with hardness of approximation can help
make the reductions easier. Indeed, even if one does not care about approximation algorithms at
all, obtaining hardness of approximation might still be useful in facilitating subsequent reductions,
as is demonstrated here in the case of k-EVEN SET and k-SHORTEST VECTOR.

CHAPTER 1. INTRODUCTION AND OVERVIEW 12

1.3 Part III: Problems in P

1.3.1 Closest Pair and Maximum Inner Product
Finally, we consider problems within P. We mentioned above that the Distributed PCP framework
was developed by Abboud et al. [ARW17a] to prove hardness of approximation of problems in P.
To be more specific, the canonical problems that they prove inapproximability results for are the
BICHROMATIC MAXIMUM INNER PRODUCT (BMIP) and the BICHROMATIC CLOSEST PAIR

(BCP) problems [ARW17a; Rub18], which serve as the sources of other hardness results shown in
their paper(s). In both problems, we are given two setsA,B ⊆ {0, 1}d of n points in d dimensions.
The goal of BCP (resp. BMIP) is to find a pair of points a ∈ A,b ∈ B that minimizes (resp.
maximizes) their distance ‖a− b‖2 (resp. inner product 〈a,b〉). Here we think of d as no(1). Both
problems can be trivially solved in O(n2+o(1)) time. The results of [ARW17a; Rub18] states that,
in O(n2−ε) time, BCP and BMIP cannot even be approximated to within (1 + δ) and 2log1−o(1)(n)

factors respectively where δ > 0 is a positive constant depending on ε. Their results and our results
discussed below hold under the Strong Exponential Time Hypothesis (SETH); see Hypothesis 2.

As some readers might have already noticed, the “bichromatic” in the problems’ names come
from the fact that there are two sets in the input, i.e., one for each “color”, and we are only allowed
to pick one point from each color. These are different than the (originally studied) “monochro-
matic” versions of the problems, where the input is just a single set and we can pick any two
(distinct) points from the set. Interestingly, despite the aforementioned strong inapproximability
results for BCP and BMIP, it was not even known whether (monochromatic) CLOSEST PAIR

(CP) and MAXIMUM INNER PRODUCT (IP) can be solved exactly in subquadratic time. This was
indeed highlighted as an open question in several recent works [ARW17b; Wil18a; DKL18].

In this penultimate chapter, we partially answer this question by showing that for every p ∈
R>1 ∪ {0}, under SETH, for every ε > 0, the following holds:

• No O(n2−ε)-time algorithm can solve CP in d = (log n)Ωε(1) dimensions in the `p metric.

• There exists δ = δ(ε) > 0 such that no O(n1.5−ε)-time algorithm can approximate CP to a
factor of (1 + δ) in d = Oε(log n) dimensions in the `p-metric.

• No O(n2−ε)-time algorithm can approximate MIP to within a factor of 2log1−o(1)(n) (for d =
no(1) dimensions).

In particular, our first result is shown by establishing the computational equivalence of the
BICHROMATIC CLOSEST PAIR problem and the (monochromatic) CLOSEST PAIR problem (up to
nε factor in the running time) for d = (log n)Ωε(1) dimensions.

At the heart of all our proofs is the construction of a dense bipartite graph with low contact
dimension, i.e., we construct a balanced bipartite graph on n vertices with n2−ε edges whose ver-
tices can be realized as points in a (log n)Ωε(1)-dimensional Euclidean space such that every pair
of vertices which have an edge in the graph are at distance exactly 1 and every other pair of ver-
tices are at distance greater than 1. This graph construction is inspired by the construction of

CHAPTER 1. INTRODUCTION AND OVERVIEW 13

locally dense codes introduced by Dumer, Miccancio and Sudan in [DMS03], which was also the
inspiration/template for our hardness of k-EVEN SET in the previous chapter!

1.4 Discussion and Future Directions
Although we provide several open problems in each of the chapters, these are usually problems
closely related to the study in that particular chapter. In the last chapter of this thesis (Chapter 12),
we provide a more high level view of the limitations of current techniques and discuss what we
feel are interesting directions to explore in the future.

1.5 Bibliographic Notes
Chapter 3 is based on a work co-authored with Prasad Raghavendra which was published at ICALP
2017 [MR17a]. However, the version in this thesis contains a significant improvement: the main
birthday repetition theorem (Theorem 3.5) has better parameter dependencies and the proof is
completely different from that in [MR17a]. The new proof in fact relies on the techniques orig-
inally developed for DENSEST k-SUBGRAPH in [Man17a], on which Chapter 4 is based. This
chapter closely follows the conference version of [Man17a] published in STOC 2017, with the
exception that the running time-vs-approximation ratio tradeoff is stated more explicitly here (see
Theorem 4.2). The fifth chapter is based on a joint work with Aviad Rubinstein published in COLT
2017 [MR17b]; the changes from the conference version are minimal.

The sixth chapter is based on a work co-authored with Karthik C.S. and Bundit Laekhanukit
from STOC 2018 [KLM18]. Chapters 7 and 8 are extracted from a joint work with Parinya
Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Danupon Nanongkai, and Luca
Trevisan [Cha+17]. These three chapters follow closely to the conference versions of the papers.

The ninth chapter is based on [DM18] from ITCS 2018 co-authored with Irit Dinur. The
major addition from there is an application for the hardness of UNIQUE SET COVER (Section 9.7).
Chapter 10 is based on a joint work with Arnab Bhattacharyya, Suprovat Ghoshal and Karthik C.
S. published at ICALP 2018 [Bha+18]. The main difference between the two versions is that here
we prove hardness of k-NCP and k-NVP simply by reducing from the hardness of UNIQUE SET

COVER from the previous chapter. The conference version uses a more direct reduction from 2-
CSP, which yields a worse inapproximability ratio and is arguably more complicated. The proofs
of hardness for k-MDP and k-SVP also contain some simplifications from a journal version in
preparation (which will be a merge between [Bha+18] and a manuscript [Bon+18] of Édouard
Bonnet, László Egri, Bingkai Lin and Dániel Marx).

Chapter 11 closely follows a joint work with Karthik C.S. from ITCS 2019 [KM19].

Excluded Works. While this dissertation includes a large part of my work, several papers have
to be (regretfully) left out of this thesis. These include works on “traditional” approximation algo-
rithms and hardness of approximation [MNT16; Chl+17b; AMM17; Man17b; CM18; Man19a],

CHAPTER 1. INTRODUCTION AND OVERVIEW 14

distributed algorithms [Bec+18], subexponential and parameterized approximation algorithms [Man19b;
Gup+19; MT18], and computational social choice [MS17a; MS17b; MS19a; MS19b; FSM19;
Bei+19].

15

Chapter 2

Notation, Preliminaries and Tools

In this section, we provide necessary preliminaries and tools that will be used in this dissertation.
Before we do so, let us first define several additional notations.

2.1 Notation
For any positive integer n, we use [n] to denote the set {1, . . . , n}. For two sets X and S, define
XS to be the set of tuples (xs)s∈S indexed by S with xS ∈ X . We sometimes view each tuple
(xs)s∈S as a function from S to X . For a set S and an integer n 6 |S|, we use

(
S
n

)
to denote the

collection of all subsets of S of size n. For convenience, we let
(
S
0

)
= {∅}. We use

(
S
6n

)
to denote(

S
0

)
∪ · · · ∪

(
S
n

)
. Moreover, let P(S) :=

(
S

6|S|

)
denotes the power set of S.

We use exp(x) and log(x) to denote 2x and log2(x) respectively. poly(n), polylog(n), polyloglog(n)
are used as a shorthand forO(nc), O((log n)c) andO((log log n)c) for some constant c respectively.
Finally, Ω̃(f(n)) and Õ(f(n)) are used to denote

⋃
c∈N Ω(f(n)/ logc f(n)) and

⋃
c∈NO(f(n) logc f(n))

correspondingly.

2.1.1 Graph Theoretic Notation
Unless state explicitly otherwise, graphs are used to referred to undirected unweighted graphs. For
any graph G, we denote by V (G) and E(G) the vertex and edge sets of G, respectively. For each
vertex u ∈ V (G), we denote the set of its neighbors by NG(v); when the graph G is clear from the
context, we sometimes drop it from the notation. For a subset S ⊆ V (G), we use G[S] to denote
the subgraph of G induced by S; for convenience, we sometimes use E(S) to denote the set of
edges in G[S], instead of the more cumbersome notion E(G[S]). The density1 of a graph G on
|V (G)| > 2 vertices is |E(G)|

(|V (G)|
2) . We say that a graph is α-dense if its density is α.

1It is worth noting that sometimes density is defined as |E(G)|/|V (G)|. For the DENSEST-k-SUBGRAPH problem,
both definitions of density result in the same objective since |S| = k is fixed. However, our notion is more convenient
to deal with as it always lies in [0, 1].

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 16

A bipartite graph G = (U, V,E) is said to be bi-regular if every left vertex (in U) has the same
degree, and every right vertex (in V) has the same degree. For a parameter τ > 1, a bipartite graph
is said to be τ -almost-biregular if the ratios maxu∈U deg(u)

minu∈U deg(u) and maxv∈V deg(v)
minv∈V deg(v) are at most τ .

A clique of G is a complete subgraph of G; sometimes we also refer to a clique as a subset
S ⊆ V (G) such that G[S] is a clique. A biclique of G is a balanced complete bipartite subgraph
of G. By k-biclique, we mean the graph Kk,k, i.e., a biclique where the number of vertices in each
partition is k. An independent set of G is a subset of vertices S ⊆ V (G) such there is no edge
joining any pair of vertices in S. A dominating set of G is a subset of vertices S ⊆ V (G) such
that every vertex in G is either in S or has a neighbor in S. The clique number (resp., independent
number) of G is the size of the largest clique (resp., independent set) in G. The biclique number of
G is the largest integer k such that G contains Kk,k as a subgraph. The domination number of G is
defined similarly as the size of the smallest dominating set inG. The clique, independent and dom-
ination numbers of G are usually denoted by ω(G), α(G) and γ(G), respectively. However, in this
dissertation, we will refer to these numbers by CLIQUE(G),MIS(G),DOMSET(G). Additionally,
we denote the biclique number of G by BICLIQUE(G).

Moreover, for every t ∈ N, we view each element of V t as a t-size ordered multiset of V .
(L,R) ∈ V t× V t is said to be a labelled copy of a t-biclique (or Kt,t) in G if, for every u ∈ L and
v ∈ R, u 6= v and (u, v) ∈ E. The number of labelled copies of Kt,t in G is the number of all such
(L,R)’s. It is important that we distinguish between a labelled copy of t-biclique as just defined,
and a copy of t-biclique; the latter is pair of disjoint subsets L,R ⊆ V each of size t such that, for
every u ∈ L and v ∈ R, we have (u, v) ∈ E. Finally, we say that a graph is t-biclique-free if it
does not contain a copy of t-biclique (or alternatively BICLIQUE(G) < t).

In one occasion (Section 3.2), we also use the notion of labelled copies for unbalanced biclique
as well, which is defined similar to above. Specifically, for s, t ∈ N, (L,R) ∈ V s × V t is said to
be a labelled copy of a (s, t)-biclique (or Ks,t) in G if, for every u ∈ L and v ∈ R, u 6= v and
(u, v) ∈ E.

2.1.2 Distance Measures

For any a ∈ RN , its `p norm is defined by ‖a‖p :=
(∑

i∈[N] |ai|p
)1/p

for 1 6 p < ∞. Its `0 norm,
denoted by ‖a‖0 is defined as |{i ∈ [N] : ai 6= 0}|. It `∞ norm ‖a‖∞ is maxi∈[N] |ai|.

The distance in the `p,`0,`∞ metric between two points a,b ∈ RN is defined as the correspond-
ing norm of a − b. Sometimes we refer to `0, `2 norms/metrics as the Hamming and Euclidean
norms/metrics respectively. The Hamming norm is also refered to as the Hamming weight.

We also sometimes use ∆(a) and ∆(a,b) to denote ‖a‖0 and ‖a − b‖0 respectively. Fur-
thermore, we define ∆(a, S) := min

b∈S
∆(a,b) for any a ∈ RN and S ⊆ RN . For a ∈ FNq and

d ∈ N, we use BN(a, d) to denote the (closed) Hamming ball of radius d centered at a, i.e.,
BN(a, d) := {b ∈ FNq | ∆(a,b) 6 d}; when the dimension is clear from context, we may simply
write B(a, d) instead of BN(a, d).

We denote the inner product (associated with the Euclidean space) of a and b by 〈a,b〉 :=∑
i∈[N]

ai ·bi. Finally, for every positive integer N we define the edit metric over Σ to be the space ΣN

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 17

endowed with distance function ed(a,b), which is defined as the minimum number of character
substitutions/insertions/deletions to transform a into b.

2.1.3 Probabilistic Notation
Let X be a probability distribution over a finite probability space Θ. We use x ∼ X to denote a
random variable x sampled according to X . Sometimes we use shorthand x ∼ Θ to denote x being
drawn uniformly at random from Θ. For each θ ∈ Θ, we denote Prx∼X [x = θ] by X (θ). The
support of X or supp(X) is the set of all θ ∈ Θ such that X (θ) 6= 0. For any event E, we use 1[E]
to denote the indicator variable for the event.

2.2 Problem Definitions
Since this thesis considers a number of computational problems some of which occur in multiple
chapters, we provide a list of recurring problems below for convenience of the readers.

• k-SAT. In the k-SAT problem (abbreviated as kSAT or k-SAT), we are given a CNF formula
Φ with at most k literals in each clause and the goal is to decide whether Φ is satisfiable.

• Dominating Set. In the k-DOMINATING SET problem (k-DOMSET), we are given a graph
G, and the goal is to decide whether G has a dominating set of size k. In the minimiza-
tion version, called Minimum Dominating Set (DOMSET, for short), the goal is to find a
dominating set in G of minimum size.

• Set Cover. The k-DOMSET is a special case of the k-SET COVER problem (k-SETCOV)
where we are given a ground set U , a collection of subsets S ⊆P(U) and an integer k. The
goal is to determine whether there are k subsets from S whose union is U . The minimization
version of the problem, called Minimum Set Cover (SETCOV, for short), asks to find as few
subsets from S as possible whose union is U . We use SETCOV(U ,S) to denote the optimum
of SETCOV on instance (U ,S).

• Clique. In the k-CLIQUE problem, we are given a graphG, and the goal is to decide whether
G has a clique of size k as a subgraph. In the maximization version, called Maximum Clique
(CLIQUE, for short), the goal is to find a clique in G of maximum size.

• Densest k-Subgraph. In the DENSEST k-SUBGRAPH (DkS), we are given a graph G and
an integer k, and the goal is to find S ⊆ V (G) of size k that induces maximum number
of edges. DENSEST k-SUBGRAPH with perfect completeness refers to the variant of the
problem where we are further promised that the graph G contains a k-clique.

• k-CSP. An instance G of MAX k-CSP consists of a variable set V , a finite alphabet set Σ, a
distributionQ over

(
V
k

)
and a predicate P :

(
V
k

)
×Σk → [0, 1]. The goal is to find an assign-

ment φ : V → Σ that maximizes the expected output of the predicate, i.e., ES∼Q[P (S, φ|S)].

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 18

We note here that MAX k-CSP is the only problem for which we study in the context of
parameterization and do not use “k” as the parameter. In particular, in our study in Chapter 9,
we study the problem when k = 2 and instead the parameter is the number of variables
|V |. Indeed, in that chapter, we use k to denote |V | instead of the arity of CSPs; to avoid
confusion, we refer to this parameterized version of 2-CSP as PARAMETERIZED 2-CSP.

Lastly, to make it clear to the readers, we use “Research Question” throughout this dissertation
for questions that we do answer (at least partially) in this dissertation. On the other hand, we use
“Open Question” for questions we do not know the answer and are hence still open.

2.3 Exponential Time Hypotheses
While computational tractabilities of NP-hard problems can be based on just the P 6= NP assump-
tion, fine-grained results often require stronger assumptions. The first type of such assumptions
are Exponential Time Hypotheses.

2.3.1 Exponential Time Hypothesis
The Exponential Time Hypothesis (ETH), proposed by Impagliazzo and Paturi [IP01], asserts that
3SAT cannot be solved in subexponential time, as stated below.

Hypothesis 1 (Exponential Time Hypothesis (ETH) [IP01; IPZ01]). There exists δ > 0 such that
no algorithm can solve 3-SAT in O(2δn) time where n is the number of variables. Moreover, this
holds even when restricted to formulae in which each variable appears in at most three clauses.

Note that the original version of the hypothesis from [IP01] does not enforce the requirement
that each variable appears in at most three clauses. To arrive at the above formulation, we first
apply the Sparsification Lemma of [IPZ01], which implies that we can assume without loss of
generality that the number of clauses m is O(n). We then apply Tovey’s reduction [Tov84] which
produces a 3-CNF instance with at most 3m+ n = O(n) variables and every variable occurs in at
most three clauses. This means that the bounded occurrence restriction is also w.l.o.g.

ETH has numerous implications in running time lower bounds for exact algorithms, parame-
terized complexity theory2, and, as we will see shortly, even hardness of approximation.

2.3.2 Strong Exponential Time Hypothesis
We will also use a stronger hypothesis called the Strong Exponential Time Hypothesis (SETH)
which postulates that, even the constant in the exponent has to be (1 − ε) for k-SAT when k is
sufficiently large. This is formulated below.

2Please refer to a survey by Lokshtanov, Marx and Saurabh [LMS11] for more information on implications of
ETH on lower bounds for exact algorithms and parameterized complexity theory.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 19

Hypothesis 2 (Strong Exponential Time Hypothesis (SETH) [IP01; IPZ01]). For every ε > 0,
there exists k = k(ε) ∈ N such that no algorithm can solve k-SAT in O(2(1−ε)n) time where n
is the number of variables. Moreover, this holds even when the number of clauses m is at most
c(ε) · n where c(ε) denotes a constant that depends only on ε.

Again, we note that, in the original form [IP01], the bound on the number of clauses is not
enforced. However, the Sparsification Lemma [IPZ01] allows us to do so without loss of generality.

2.3.3 Gap Exponential Time Hypothesis
Another strengthening of ETH we use is the Gap Exponential Time Hypothesis (Gap-ETH), which
essentially states that even approximating 3SAT to some constant ratio takes exponential time:

Hypothesis 3 (Gap Exponential Time Hypothesis (Gap-ETH) [Din16; MR17a]). There exist con-
stants δ, ε > 0 such that noO(2δn)-time algorithm can, given a 3-CNF formula φ with n variables,
distinguish between the case where φ is satisfiable and the case where val(φ) 6 1−ε. Here val(φ)
denote the maximum fraction of clauses of φ satisfied by any assignment.

Moreover, this holds even when the number of clauses m is O(n).

While both SETH and Gap-ETH imply ETH, no formal relationship is known between the two.
We would also like to remark that, while Gap-ETH may sound like a very strong assumption, as
pointed out in [Din16; MR17b], there are a few evidences supporting the conjecture:

• As will be explained in more details below, Dinur’s PCP Theorem [Din07] implies a running
time lower bound of 2o(n/polylog(n)) for Gap-3SAT, assuming ETH. The polylog(n) loss in the
exponent comes from the size blow-up of the PCP; if a linear-size PCP, one in which the size
blow-up is constant, exists then Gap-ETH would follow from ETH.

• No subexponential-time algorithm is known even for the following (easier) problem, which
is sometimes referred to as refutation of random 3SAT: for a constant density parameter ∆,
given a 3-CNF formula Φ with n variables and m = ∆n clauses, devise an algorithm that
outputs either SAT or UNSAT such that the following two conditions are satisfied:

– If Φ is satisfiable, the algorithm always output SAT.
– Over all possible 3-CNF formulae Φ with n clauses and m variables, the algorihtm

outputs UNSAT on at least 0.5 fraction of them.

Note here that, when ∆ is a sufficiently large constant (say 1000), a random 3-CNF formula
is, with high probability, not only unsatisfiable but also not even 0.9-satisfiable. Hence, if
Gap-ETH fails, then the algorithm that refutes Gap-ETH will also be a subexponential time
algorithm for refutation of random 3SAT with density ∆.

Refutation of random 3SAT, and more generally random CSPs, is an important question that
has connections to many other fields, including hardness of approximation, proof complex-
ity, cryptography and learning theory. We refer the reader to [AOW15] for a more com-
prehensive review of known results about the problem and its applications in various areas.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 20

Despite being intensely studied for almost three decades, no subexponential-time algorithm
is known for the above regime of parameter. In fact, it is known that the Sum-of-Squares hi-
erarchies cannot refute random 3-SAT with constant density in subexponential time [Gri01;
Sch08]. Given how powerful SDP [Rag08], and more specifically Sum-of-Squares [LRS15],
are for solving (and approximating) CSPs, this suggests that refutation of random 3-SAT
with constant density, and hence Gap-3SAT, may indeed be exponentially hard or, at the
very least, beyond our current techniques.

• Dinur speculated that Gap-ETH might follow as a consequence of some cryptographic as-
sumption [Din16]. This was recently confirmed by Applebaum [App17] who showed that
Gap-ETH follows from an existence of any exponentially-hard locally-computable one-way
function. In fact, he proved an even stronger result that Gap-ETH follows from ETH for
some CSPs that satisfy certain “smoothness” properties.

Lastly, we note that the assumption m = O(n) made in the conjecture can be made without
loss of generality. As pointed out in both [Din16] and [MR17b], this follows from the fact that,
given a 3-SAT formula φ with m clauses and n variables, if we create another 3-SAT formula φ′

by randomly selected m′ = ∆n clauses, then, w.h.p., |SAT(φ)/m− SAT(φ′)/m′| 6 O(1/∆).

2.4 Fine-Grained Complexity Assumptions
In addition to the Exponential Time Hypotheses, we will use two assumptions regarding problems
in P: the Orthogonal Vector Hypothesis and the k-SUM Hypothesis. There are many more such
assumptions that are used in fine-grained complexity, but we choose not to discuss them here; for
readers interested in learning about other assumptions and the state-of-the-art conditional lower
bounds, please refer to a survey of Williams [Wil18b].

2.4.1 Orthogonal Vector Hypothesis
The first fine-grained complexity assumption we use is the Orthogonal Vector Hypothesis (OVH).
In the Orthogonal Vector problem (OV), we are given two sets of n vectors A,B ⊆ {0, 1}d and
the goal is to determine whether there exist a ∈ A, b ∈ B that are orthogonal.

Clearly, the problem can be solved in O(n2d) by trivial brute-force algorithm. OVH states that
this algorithm is nearly optimal, in the sense that there is no truly subquadratic time algorithm for
the problem, even when d = O(log n). This is stated formally below.

Hypothesis 4 (Orthogonal Vector Hypothesis, OVH). For every ε > 0, no algorithm can solve
OV in O(n2−ε) time. Moreover, this holds even when the dimension d is at most c(ε) log n where
c(ε) denotes a constant that depends only on ε.

It is known that SETH implies OVH [Wil05], and therefore the results based on OVH (in
Chapter 11) also hold under SETH.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 21

2.4.2 k-SUM Hypothesis
Our final hypothesis is the k-SUM Hypothesis. In the k-SUM problem, we are given k sets
S1, . . . , Sk each of n integers in the range [−M,M], and we are asked to determine whether we
can pick k integers, one from each set, so that the sum is equal to zero. This problem can be solved
via a “meet-in-the-middle” approach in O(ndk/2e) time. The k-SUM Hypothesis states that this
algorithm is essentially optimal:

Hypothesis 5 (k-SUM Hypothesis [AL13]). For every integer k > 3 and every ε > 0, no
O(ndk/2e−ε) time algorithm can solve k-SUM where n denotes the total number of input integers,
i.e., n = |S1|+ · · ·+ |Sk|. Moreover, this holds even when M = n2k.

The above hypothesis is a natural extension of the more well-known 3-SUM Hypothesis [GO95;
Pat10], which states that 3-SUM cannot be solved in O(n2−ε) time for any ε > 0. Moreover, the
k-SUM Hypothesis is closely related to the question of whether SUBSET-SUM can be solved
in O(2(1/2−ε)n) time; if the answer to this question is negative, then k-SUM cannot be solved in
O(nk/2−ε) time for every ε > 0, k ∈ N. We remark that, if one is only willing to assume this
latter weaker lower bound of O(nk/2−ε) instead of O(ndk/2e−ε), our reduction in Chapter 6 would
give an O(nk/2−ε) running time lower bound for approximating k-DOMSET. Finally, we note that
the assumption that M = n2k can be made without loss of generality since there is a randomized
reduction from the general version of the problem (where M is, say, 2n) to this version of the
problem and it can be derandomized under a certain circuit complexity assumption [ALW14].

2.5 Nearly-Linear Size PCPs and (Sub)exponential Time
Reductions

The celebrated PCP Theorem [AS98; Aro+98], which lies at the heart of virtually all known NP-
hardness of approximation results, can be viewed as a polynomial-time reduction from 3SAT to a
gap version of 3SAT, as stated below. While this perspective is a rather narrow viewpoint of the
theorem that leaves out the fascinating relations between parameters of PCPs, it will be the most
convenient for our purpose.

Theorem 2.1 (PCP Theorem [AS98; Aro+98]). For some constant ε > 0, there exists a polynomial-
time reduction that takes a 3-CNF formula ϕ and produces a 3-CNF formula φ such that

• (Completeness) if ϕ is satisfiable, then φ is satisfiable, and,

• (Soundness) if ϕ is unsatisfiable, then val(φ) 6 1− ε.

Following the first proofs of the PCP Theorem, considerable efforts have been made to improve
the trade-offs between the parameters in the theorem. One such direction is to try to reduce the size
of the PCP, which, in the above formulation, translates to reducing the size of φ relative to ϕ. On
this front, it is known that the size of φ can be made nearly-linear in the size of ϕ [Din07; BS08;

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 22

MR10]. For our purpose, we will use Dinur’s PCP Theorem [Din07], which has a blow-up of only
polylogarithmic in the size of φ:

Theorem 2.2 (Dinur’s PCP Theorem [Din07]). For some constant ε, d, c > 0, there exists a
polynomial-time reduction that takes a 3-CNF formula ϕ with m clauses and produces another
3-CNF formula φ with m′ = O(m logcm) clauses such that

• (Completeness) if ϕ is satisfiable, then φ is satisfiable, and,

• (Soundness) if ϕ is unsatisfiable, then val(φ) 6 1− ε, and,

• (Bounded Degree) each variable of φ appears in 6 d clauses.

Note that Dinur’s PCP, combined with ETH, implies a lower bound of 2Ω(m/polylog m) on the run-
ning time of algorithms that solve the gap version of 3SAT, which is only a factor of O(polylog m)
in the exponent off from Gap-ETH. Putting it differently, Gap-ETH is closely related to the ques-
tion of whether a linear size PCP, one where the size blow-up is only constant instead of polyloga-
rithmic, exists; its existence would mean that Gap-ETH is implied by ETH.

Under the exponential time hypothesis, nearly-linear size PCPs allow us to start with an in-
stance φ of the gap version of 3SAT and reduce, in subexponential time, to another problem. As
long as the time spent in the reduction is 2o(m/ logcm), we arrive at a lower bound for the problem.
Arguably, Aaronson et al. [AIM14] popularized this method, under the name birthday repetition,
by using such a reduction of size 2Ω̃(

√
m) to prove ETH-hardness for free games and dense CSPs.

Without going into any detail now, let us mention that the name birthday repetition comes from the
use of the birthday paradox in their proof and, since its publication, their work has inspired many
inapproximability results [BKW15; Rub16; Rub17a; Rub17b; DFS16; Bra+17]. Our results in
Part I too are inspired by this line of work and, as we will see soon, part of our proof also contains
a birthday-type paradox. In fact, Chapter 3 directly deals with the exact construction of [AIM14]
and, in the process, resolves some open questions from that work.

While Dinur’s PCP Theorem (Theorem 2.2) suffices for most of our results in Part I, our proofs
in Chapter 5 require a PCP theorem with low soundness of Moshkovitz and Raz [MR10]. To state
the theorem, we first need to define the LABEL COVER problem, a central problem in the area of
hardness of approximation.

Definition 2.3 (Label Cover). A label cover instance L consists of (G,ΣU ,ΣV ,Π), where

• G = (U, V,E) is a bipartite graph between vertex sets U and V and an edge set E,

• ΣU and ΣV are sets of alphabets to be assigned to vertices in U and V , respectively, and

• Π = {Πe}e∈E is a set of constraints, where Πe ⊆ ΣU×ΣV denote the accepting assignments
for the edge e.

We said that a label cover instance L satisfies projection property (or L is a projection game) if for
every edge e = (u, v) ∈ E and every α ∈ ΣU , there is exactly one β ∈ ΣV such that (α, β) ∈ Πe.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 23

In other words, we may represent our constraints as projections πe : ΣU → ΣV , where (α, β)
satisfies the constraint iff πe(α) = β.

An assignment (aka labeling) for L is a pair σ = (σU , σV) of functions σU : U → ΣU and
σV : V → ΣV . The value of σ, denoted by valL(σ) is defined as the fraction of edges (u, v) ∈ E
such that (σu, σv) ∈ Π(u,v); these edges are called satisfied edges. The value of the instance L,
val(L), is defined as the maximum value among all assignments σ.

For convenience, we sometimes use the notation |L| to denote the size of the label cover in-
stance; in particular, |L| = |ΣU |+ |ΣV |+ |U |+ |V |.

Sometimes it will be convenient to think of a labeling σ as a function from U ∪ V to ΣU ∪ ΣV

and we use the two notions interchangeably; whenever this is the case, we always assume that
every vertex in U is mapped to ΣU whereas every vertex in V is mapped to ΣV . Furthermore, we
occasionally work with assignments that only label a subset of U ∪V but leaves the rest unlabeled.
We refer to such an assignment as a partial assignment to an instance; more specifically, for any
S ⊆ U ∪ V , an S-partial assignment (or partial assignment on S) is a function σ : S → ΣU ∪ ΣV .
For notational convenience, we also use Σ to denote ΣU ∪ ΣV and ΣS to denote the set of all
functions from S to Σ.

We also often work with multiple graphs in our reductions/proofs. To avoid confusion, we
might refer to the graph G as the super-graph and the vertices of G as the super-nodes.

The PCP Theorem by Moshkovitz and Raz [MR10] is a reduction from 3SAT to the gap version
of Label Cover that preserves the size to be almost linear and (importantly) achieves low soundness:

Theorem 2.4 (Moshkovitz-Raz PCP [MR10]). For every ν = ν(m) > 0, there exists a polynomial-
time reduction that takes a 3-CNF formula ϕ with m clauses and produces a bi-regular projection
game L with |U |, |V |, |E| = m1+o(1)poly(1/ν) and |ΣU |, |ΣV | 6 2poly(1/ν) such that

• (Completeness) if ϕ is satisfiable, then L is satisfiable, and,

• (Soundness) if ϕ is unsatisfiable, then val(L) 6 ν.

2.6 Parameterized Complexity
Over the years, many approaches have been devised to cope with NP-hardness of fundamental
computational problems. Prominent among them is the area of parameterized complexity. In
parameterized problems, part of the input is designated as the parameter, and the notion of “efficient
algorithm” is relaxed to the notion of fixed-parameter (FPT) algorithms, which are algorithms with
running time T (k) · poly(n) where k is the parameter, n is the size of the input and T can be any
computable function. For instance, an algorithm with running time 2k · poly(n) or 22k · poly(n) is
considered FPT. The problems that admit FPT algorithms are said to be fixed-parameter tractable;
the class of such problems is also denoted by FPT.

The area has led to numerous algorithmic tools and techniques that allow one to tackle NP-
hard problems, especially when the parameter is chosen appropriately. Since we are only dealing
with intractability here, we will not discuss algorithmic techniques any further. Interested readers

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 24

may refer to the many books in the field; for instance, Cygan et al.’s book [Cyg+15] provides a
relatively up-to-date review of basic principles used in parameterized algorithms.

For convenience, unless stated otherwise, we use “k” to denote the parameter throughout this
thesis. Moreover, we often refer to the parameterized variant of a problem Π as k-Π.

2.6.1 The W Hierarchy
Unsurprisingly, many parameterized problems remain intractable even in the FPT notion. Over
the years, there have been many parameterized complexity classes defined to capture such an in-
tractability phenomenon. Arguably, the most widely used hierarchy today is the W hierarchy, and
this will be the only class we discuss in this section. For interested readers, the book [FG06] of
Flum and Grohe provides a rather comprehensive look on the different complexity classes/hierar-
chies (including para-NP and the A hierarchy) and how they relate to each other.

We now turn our focus back to the W hierarchy. The complexity classes of the hierarchy is
defined based on the following notion of reduction: a parameterized reduction (aka FPT reduction)
from a parameterized problem A to another parameterized problem B is an algorithm that takes in
an instance (x, k) of A , runs in f(k) ·poly(|x|) time for some function k and produces an instance
(x′, k′) where k′ 6 g(k) for some function g. As usual, it must be that if (x, k) is a YES (resp.
NO) instance of A , then (x′, k′) is a YES (resp. NO) instance of B. (It is simple to see that, if A
parameterized reduces to B and B is in FPT, then A is also in FPT.)

With the notion of parameterized reduction in mind, the class W[t] for any positive integer
t ∈ N is defined as all problems that can be reduced to the following problem: given a circuit
of weft (at most) t, is there an assignment with Hamming weight k to the input that satisfies the
circuit? Here weft refers to the number of unbounded fan-in gates from any input to output path.

A reason that makes the hierarchy popular is that many fundamental combinatorial problems
turn out to be complete for the classes in the hierarchy. Specifically, k-CLIQUE and k-DOMSET

are complete for the classes W[1] and W[2] respectively. In this dissertation, we in fact rarely use
the W hierarchy; our only result that relies on the hierarchy is the W[1]-hardness of approximation
k-DOMSET (Theorem 6.1). To state this result in a consistent manner with other results in the
respective chapter, we may view the W[1]-hardness as being conditional on the assumption that
W[1] does not collapse to FPT:

Hypothesis 6 (W[1] 6= FPT). For any computable function T : N → N, no algorithm can solve
k-CLIQUE in T (k) · poly(n) time where n denotes the number of vertices in the input graph.

2.6.2 FPT Approximation and Total Inapproximability
As this dissertation deals with FPT approximation algorithms, we have to define several notations
regarding FPT approximation algorithms and inapproximability results.

To do so, let us start by formalizing the the notation of optimization problems; here we follow
the notation due to Chen et al. [CGG06]. An optimization problem Π is defined by three com-
ponents: (1) for each input instance I of Π, a set of valid solutions of I denoted by SOLΠ(I),

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 25

(2) for each instance I of Π and each y ∈ SOLΠ(I), the cost of y with respect to I denoted by
CΠ(I, y), and (3) the goal of the problem GOALΠ ∈ {min,max} which specifies whether Π is a
minimization or maximization problem. Throughout this work, we will assume that CΠ(I, y) can
be computed in time |I|O(1). Finally, we denote by OPTΠ(I) the optimal value of each instance I ,
i.e., OPTΠ(I) = GOALΠ C(I, y) where y is taken over SOLΠ(I).

We often (but not always) parametrize by the solution size. In this case, the most convenient
definition is to consider the following “gap” version of these problems. It is rather straightforward
to check that this notion is weaker (i.e. easier) than the other notion where the OPTΠ(I) is itself
a parameter. That is, our impossibility results for gap versions translate to those versions as well.
For a formal statements relating the two, please refer to Propositions 2.3 and 2.4 in [Cha+17].

Definition 2.5 (FPT gap approximation). For any optimization problem Π and any computable
function f : N → [1,∞), an algorithm A, which takes as input an instance I of Π and a positive
integer k, is said to be an f -FPT-approximation algorithm for Π if the following conditions hold
on every input (I, k):

• A runs in time t(k) · |I|O(1) for some computable function t : N→ N.

• If GOALΠ = max, A must output 1 if OPTΠ(I) > k and output 0 if OPTΠ(I) < k/f(k).

If GOALΠ = min, A must output 1 if OPTΠ(I) 6 k and output 0 if OPTΠ(I) > k · f(k).

Π is said to be f -FPT-approximable if there is an f -FPT-approximation algorithm for Π.

Next, we formalize the concept of totally FPT inapproximable, which encapsulates the non-
existence of non-trivial FPT approximations alluded to earlier in the introduction.

Definition 2.6. A minimization problem Π is said to be totally FPT inapproximable if, for every
computable function f : N→ [1,∞), Π is not f -FPT-approximable.

A maximization problem Π is said to be totally FPT inapproximable if, for every computable
function f : N → [1,∞) such that f(k) = o(k) (i.e., limk→∞ k/f(k) = ∞), Π is not f -FPT-
approximable.

As stated earlier, we do not always parametrize by the optimum. The exceptions are DENSEST

k-SUBGRAPH (in Chapter 8), PARAMETERIZED 2-CSP and DIRECTED STEINER NETWORK (in
Chapter 9). For these results, we will state more explicitly what our results rule out. Another
point we note is that, in Chapter 6, we show that k-DOMSET is totally FPT inapproximable (under
W[1] 6= FPT), but we choose to state the results slightly differently (see Theorem 6.1), so that the
results from different assumptions are more consistent.

2.6.3 FPT Inapproximability via Inherently Enumerative
Another notion that will be useful in proving FPT inapproximability is the concept of inherently
enumerative problems, which will be formalized shortly.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 26

To motivate the concept, note that many problems Π considered in this thesis admit exact algo-
rithms that run in time O?(|I|OPTΠ(I)). For instance, to find a clique of size k in G, one can enu-
merate all

(
|V (G)|
k

)
= |V (G)|O(k) possibilities3. For many W[1]-hard problems, this running time

is nearly the best possible assuming ETH: Any algorithm that finds a k-clique in time |V (G)|o(k)

would break ETH. In the light of such result, it is natural to ask the following question.

Assume that say CLIQUE(G) > 22k , can we find a clique of size k in time |V (G)|o(k)?

In other words, can we exploit a prior knowledge that there is a clique of size much larger than
k to help us find a k-clique faster? Roughly speaking, we will show later that, assuming Gap-ETH,
the answer of this question is also negative, even when 22k is replaced by any constant independent
of k. This is encapsulated in the concept of inherently enumerative as defined below.

Definition 2.7 (Inherently Enumerative). A problem Π is said to be inherently enumerative if there
exist constants δ, r0 > 0 such that, for any integers q > r > r0, no algorithm can decide, on every
input instance I of Π, whether (i) OPTΠ(I) < r or (ii) OPTΠ(I) > q in time4 Oq,r(|I|δr).

While we will show that CLIQUE and DOMSET are inherently enumerative, we cannot do
the same for some other problems, such as BICLIQUE. Even for the exact version of BICLIQUE,
the best running time lower bound known is only |V (G)|Ω(

√
k) [Lin15] assuming ETH. In order

to succinctly categorize such lower bounds, we define a similar but weaker notation of weakly
inherently enumerative:

Definition 2.8 (Weakly Inherently Enumerative). For any function β = ω(1) (i.e., limr→∞ β(r) =
∞), a problem Π is said to be β-weakly inherently enumerative if there exists a constant r0 > 0
such that, for any integers q > r > r0, no algorithm can decide, on every input instance I of Π,
whether (i) OPTΠ(I) < r or (ii) OPTΠ(I) > q in time Oq,r(|I|β(r)).

Π is said to be weakly inherently enumerative if it is β-weakly inherently enumerative for some
β = ω(1).

It follows from the definitions that any inherently enumerative problem is also weakly inher-
ently enumerative. As stated earlier, we will prove total FPT inapproximability through inherently
enumerative; the proposition below formally establishes a connection between the two.

Proposition 2.9. If Π is weakly inherently enumerative, then Π is totally FPT inapproximable.

An important tool in almost any branch of complexity theory, including parameterized com-
plexity, is a notion of reductions. For the purpose of facilitating proofs of totally FPT inapprox-
imability, we define the following reduction, which we call FPT gap reductions.

Definition 2.10 (FPT gap reduction). For any functions f, g = ω(1), a problem Π0 is said to be
(f, g)-FPT gap reducible to a problem Π1 if there exists an algorithm A which takes in an instance
I0 of Π0 and integers q, r and produce an instance I1 of Π1 such that the following conditions hold.

3A faster algorithm runs in time |V (G)|ωk/3 can be done by a reduction to matrix multiplication.
4Oq,r(·) here and in Definition 2.8 hides any multiplicative term that is a function of q and r.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 27

• A runs in time t(q, r) · |I0|O(1) for some computable function t : N× N→ N.

• For every positive integer q, if OPTΠ0(I0) > q, then OPTΠ1(I1) > f(q).

• For every positive integer r, if OPTΠ0(I0) < g(r), then OPTΠ1(I1) < r.

It is not hard to see that FPT gap reduction indeed preserves totally FPT inapproximability, as
formalized in Proposition 2.11 below.

Proposition 2.11. If a problem Π0 is (i) (f, g)-FPT gap reducible to Π1 for some computable non-
decreasing functions f, g = ω(1), and (ii) totally FPT inapproximable, then Π1 is also totally FPT
inapproximable.

As stated earlier, we sometimes work with inherently enumerative concepts instead of working
directly with totally FPT inapproximability; fortunately, FPT gap reductions can also be used for
(weakly) inherently enumerativeness, as stated below.

Proposition 2.12. If a problem Π0 is (i) (f, g)-FPT gap reducible to Π1 and (ii) β-weakly inher-
ently enumerative for some f, g, β = ω(1), then Π1 is Ω(β ◦ g)-weakly inherently enumerative.

The (straightforward) proofs of Propositions 2.9, 2.11 and 2.12 can be found in [Cha+17]. As a
final remark, we note that our results in Chapter 6 for k-DOMSET, specifically Theorem 6.2, imply
that it is inherently enumerative assuming ETH; however, we choose not to state it in this term, to
highlight the dependency of approximation ratio on n.

2.7 Error-Correcting Codes
An error-correcting code (ECC) is a map C : Σm → Σd here m and d are positive integers which
are referred to as the message length and block length of C respectively. Intuitively, the function
C encodes an original message of length m to an encoded message of length d. Since we will
also deal with communication protocols, for which “message length” has another meaning, we
will sometimes refer to the message length of codes as code message length whenever there is
an ambiguity. The rate of a code ρ(C) is defined as the ratio between its message length and
its block length, i.e., ρ(C) = m/d. The distance of a code, denoted by ∆(C), is defined as

min
x 6=y∈Σm

‖C(x) − C(y)‖0. (Recall here that ‖ · ‖0 is used to the denote the hamming weight.) Its

relative distance is defined as δ(C) := ∆(C)/d.
For an ECC C, we use the caligraphic letter C to denote the set of corresponding codewords,

i.e., C := {C(a) | a ∈ Σm}. We sometimes use C in place of C for the above notations, e.g. ∆(C).
When Σ = Fq is a finite field, we said that the ECC C is linear iff C : Fmq → Fdq is a linear

function, i.e., there exists a matrix C ∈ Fd×mq such that C(a) = Ca for all a ∈ Fmq . We often use
the notion [d,m,∆]q to denote a linear code of block length d, message length m, and distance ∆
over alphabet Fq. Note also that, for a linear code C, ∆(C) is equal to the minimum weight of

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 28

a non-zero codeword in C. Finally, for any code C, we use Aw(C) := |{c ∈ C | ∆(c) = w}| to
denote the number of codewords of weight w.

In each of Chapters 6, 10 and 11, we will need different error-correcting codes with properties
that are tailored towards the applications at hand. Due to this, we will not define these codes here,
but rather at the respective chapters when they are needed.

2.8 Zarankiewicz Problem and Related Bounds
The Zarankiewicz problem [Zar51] is an old but yet unsolved problem in extremal combinatorics,
which asks: what is the maximum number of edges can an N -vertex Kt,t-free graph5 has? This
question is similar to another classic problem which asks the exact same question, except Kt,t-
free is replaced with Kt-free. Unlike the Zarankiewicz problem, the latter problem is completely
understood: the N -vertex Kt-free graph with maximum number of edges is the graph whose N
vertices are partitioned into t − 1 groups each of size either d N

t−1e or b N
t−1c, and two vertices are

connected by an edge if and only if they are from different groups. This result is typically referred
to as Turán’s theorem [Tur41], and such a graph as a Turán’s graph. Observe that, for any t > 2,
the Turán’s graph has Ω(N2) edges.

While the Zarankiewicz problem is not yet fully resolved, several upper bounds and lower
bounds are known. We will use the following well-known upper bound on the number of edges:

Theorem 2.13 (Kővári-Sós-Turán (KST) Theorem [KST54]). For every positive integer N and
t 6 N , every Kt,t-free graph on N vertices has at most O(N2−1/t) edges (i.e., density O(N−1/t)).

We remark here that KST Theorem demonstrates the stark contrast betweenKt-free graphs and
Kt,t-free graphs. As stated above, in the former, one can still have very dense graph (of density
Ω(1)); however, for the latter, the density can be at most O(N−1/t).

In fact, Alon [Alo02] shows that the assumption that the graph is Kt,t-free can be relaxed: to
conclude that a graph is sparse, it suffices for the graph to have few labelled copies of Kt,t, as
stated below.

Lemma 2.14 ([Alo02, Lemma 2.1]6). For every positive integer N > 2 and t 6 N and α ∈ R+,
any graph G on N vertices that has at most (α/2)t2N2t labelled copies of Kt,t has density at most
α.

It will also be convenient for us to use a bipartite version of Alon’s lemma, stated below. We
provide the proof here for completeness; the proof is essentially the same as Alon’s original proof
but just in the context of bipartite graph.

5Some versions of the problem consider bipartite graphs. However, it will be more convenient for us to consider
general graphs. Note that it is simple to see that the bounds in both cases are within a constant factor of each other.

6The lemma is stated slightly differently in [Alo02]. Namely, it was stated there that any graph G with > εN2

edges contains at least (2ε)t2N2t labelled copies of Kt,t. The formulation here follows from the fact that α-dense
graph on N > 2 vertices contains at least (α/4)N2 edges.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 29

Lemma 2.15. For every positive integer N,M > 2 and s 6 N, t 6 M and any positive real
number α, any bipartite graph G = (A,B,E) with |A| = N, |B| = M that contains at most
αstN sM t labelled copies of Ks,t has at most αNM edges.

Proof. We will prove the contrapositive; suppose that G = (A,B,E) has |A| = N, |B| = M and
|E| > αNM . Observe that the number of labelled copies of K1,t is exactly

∑
a∈A deg(a)t. From

power-mean inequality, this is at least N
(

1
N

∑
a∈A deg(a)

)t
> N(αtM t).

Next, let us partition the labelled copies of K1,t based on the t-tuple of right vertices. More
precisely, for every R ∈ Bt, let K1,t(R) = {({a}, R) | ∀b ∈ B, (a, b) ∈ E}. Observe that the
number of labelled copies of Ks,t is exactly

∑
R∈Bt

|K(1,t)(R)|s >M t

 1
M t

∑
R∈Bt

|K(1,t)(R)|
s > αstN sM t,

where the first inequality is from power-mean inequality and the second follows from the number
of labelled copies of K1,t is more than N(αtM t).

KST Theorem and Alon’s lemmas allow us to prove that a graph is sparse by showing that it is
Kt,t-free, or it contains few labelled copies of Kt,t. This will become useful in Chapters 3, 4 and 8.

2.9 Well-Behaved Subsets
Throughout this thesis, we often want to construct subsets that “behave like random subsets” of
a specific size. While we can of course just take the random subsets, they are not preferred as
we would rather have deterministic constructions. Nonetheless, the parameter regimes for which
we are interested in are the “easy” regimes where we can deterministically construct these subsets
pretty simply. Here we provide such a construction; we start with the following definition:

Definition 2.16. For any k, q ∈ N, let Ti = {x ∈ [q]k | xi = 1} for all i ∈ [k].

From now on, we use α := 1/q to denote the fraction of total elements from [q]k contained in
each subset Ti. A simple but crucial observation regarding the constructed sets is that the indicator
variables are independent random variables with mean α, as stated more formally below.

Observation 2.17. Let k, q, T1, . . . , Tk be as in the above definition. Let X1, . . . , Xk be boolean
random variables on the uniform distribution over [q]k such that Xi = 1 on atom x iff x ∈ Ti.
Then, X1, . . . , Xk are independent random variables with Pr[Xi = 1] = α.

Using the observation above, it is now easy to argue that these sets “behave like random sets”.
To be more precise, we need two types of properties as stated below.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 30

2.9.1 Uniformity
The first property is what we call uniformity. Intuitively, it says that, if we pick some subcollection
T̃ ⊆ {T1, . . . , Tk} that is “not too small”, then most of the elements still appear in “many subsets”
T ∈ T̃ . The formal definition is stated below.

Definition 2.18 (Uniformity). For any universe U , a collection S̃ of subsets of U is (γ, µ)-uniform
if, for at least (1− µ) fraction of elements u ∈ U , u appears in at least γ fraction of the subsets in
S̃. In other words, S̃ is (γ, µ)-uniform if and only if |{u ∈ U | Pr

S∼S̃ [u ∈ S] > γ}| > (1− µ)|U|.

We can now compute the relation between parameters for the subsets in Definition 2.16:

Proposition 2.19. For any µ > 0, any subcollection T̃ ⊆ {T1, . . . , Tk} of size at least d8 ln(1/µ)/αe
is (α/2, µ)-uniform (with respect to the universe [q]k).

Proof. Consider a subcollection T̃ = {Ti1 , . . . , Tih} where h > d8 ln(1/µ)/αe. Notice that the
condition Pr

T∼T̃ [u ∈ T] > α/2 is exactly equivalent to Xi1 + · · · + Xih > (α/2)h. Since
Xi1 , . . . , Xih are i.i.d. boolean r.v.s with mean α, we can apply Chernoff bound, which gives:

Pr[Xi1 + · · ·Xih > (α/2)h] > 1− e−αh8 > 1− µ,

as desired.

2.9.2 Dispersers and Intersection Dispersers
We also need the definition of dispersers. Recall that7, roughly speaking, a collection of subsets
is a disperser if, when we pick “sufficiently many” subsets, then their union is almost the entire
universe. This is formalized below.

Definition 2.20 (Disperser). For any universe U , a collection S of subsets of U is an (r, η)-disperser
if, for any r distinct subsets S1, . . . , Sr ⊆ S, we have∣∣∣∣∣

r⋃
i=1

Si
∣∣∣∣∣ > (1− η)|U|.

In Chapter 9, we will in fact need a stronger property that, when we pick “sufficiently many”
subcollections, then the union of the intersection of each subcollection is almost the entire universe.
This is encapsulated in the definition of what we call an intersection disperser:

Definition 2.21 (Intersection Disperser). For any universe U , a collection S of subsets of U is an
(r, `, η)-intersection disperser if, for any r disjoint subcollections S1, . . . ,Sr ⊆ S each of size at
most `, we have ∣∣∣∣∣∣

r⋃
i=1

 ⋂
S∈Si

S

∣∣∣∣∣∣ > (1− η)|U|.

7Even though dispersers are often described in terms of graphs or distributions in literatures (see, e.g., [Vad12]),
it is more convenient for us to describe it in terms of subsets.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 31

When ` = 1, the definition of intersection dispersers is exactly the same as that of dispersers.
Note also that in Definition 2.21 we require S1, . . . ,Sr to be disjoint. This is necessary because
otherwise we can include a common set S ∈ S into all the subcollections. In this case, the union
will be contained in S and hence will not cover almost all the universe.

For the subsets in Definition 2.16, we get the following parameters for intersection dispersers:

Proposition 2.22. For any η > 0 and ` ∈ N, the collection {T1, . . . , Tk} is a (dln(1/η)/α`e, `, η)-
intersection disperser (with respect to the universe [q]k).

Proof. Consider any subcollections T 1, · · · , T r each of size `, where r = dln(1/η)/α`e. For
every i ∈ [r], let Yi denote the indicator variable whether u belongs to

⋂
T∈T i T Notice that, since

T 1, . . . , T r are disjoint `-size subcollections, Y1, . . . , Yr are i.i.d. with mean α`. Observe also that
u belongs to

⋃r
i=1 (⋂T∈T i T) iff Y1 + · · ·+ Yr > 1. Hence, we have

Pr[Y1 + · · ·+ Yr > 1] = 1− Pr[Y1 = 0, . . . , Yr = 0] = 1− (1− α`)r > 1− e−α`·r > 1− η.

As a result, we have |⋃ri=1 (⋂T∈T i T) | > (1− η)qk as desired.

2.10 Two Variants of Label Covers
While a standard version of label cover is to find an assignment with maximum value (as specified
in Definition 2.3), other objectives will also be useful for us in order to prove hardness of approxi-
mation of various problems. In particular, we will be working with two additional versions of label
cover: the Max-Cover variant and the Min-Label variant. For both problems, the input is still the
usual label cover instance, but the objectives are different, as defined below.

Max-Cover Problem. Here we use similar notations as in Definition 2.3.
We say that a labeling σ covers a vertex u if every edge incident to u is satisfied by σ. Let

MAXCOV(L) denote the maximum number of vertices in U that can be covered by a labeling, i.e.,

MAXCOV(L) := max
σU :U→ΣU ,σV :V→ΣV

|{u ∈ U | (σU , σV) covers u}|.

The goal of the Max-Cover problem is to compute MAXCOV(L).

Min-Label Problem. A multi-labeling of L, is a pair of mappings σU : U → ΣU and σ̂V : V →
P(ΣV). We say that an edge (u, v) is satisfied by (σU , σ̂V), if there exists β ∈ σ̂V (v) such that
(σ(u), β) ∈ Πuv. Similar to before, We say that (σU , σ̂V) covers a vertex u if it satisfies every edge
incident to u. For any label cover instance L, let MINLAB(L) denote the minimum number of
labels needed to assign to vertices in V in order to cover all vertices in U , i.e.,

MINLAB(L) := min
σU :U→ΣU ,σV :V→ΣV

∑
v∈V
|σ̂V (v)|

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 32

where the minimization is over multi-labelings (σU , σ̂V) that covers every u ∈ U . For brevity, we
sometimes refer to

∑
v∈V |σ̂V (v)| as the size of the multi-labeling (σU , σ̂V)

In other words, the different between MAXCOV and MINLAB is that, for MAXCOV we are
allowed to only pick one label for each vertex v ∈ V and would like to cover any many vertices
u ∈ U as possible, whereas for MINLAB we have to cover every u ∈ U but we would like to
minimize the total number of labels assigned to the vertices in V .

Let us end this section by stating two facts that relate the different objectives of a label cover
instance. The first is a relationship between MAXCOV(L) and MINLAB(L):

Lemma 2.23. Let L = (G = (U, V,E),ΣU ,ΣV ,Π) be any label cover instance. Then, we have

• If MAXCOV(L) = |U |, then MINLAB(L) = |V |.

• If MAXCOV(L) 6 ε|U | for some ε > 0, then MINLAB(L) > (1/ε)1/|V | · |V |.

• If MAXCOV(L) 6 ε|U | for some ε > 0 and (U, V,E) is a bi-regular with left degree dU ,
then MINLAB(L) > (1/ε)1/dU · |V |.

Proof. • Suppose MAXCOV(L) = |U |, i.e., that some labeling (σU , σV) covers every node in
U . Hence, (σU , σV) is also a multi-labeling that covers every node in U , which implies that
MINLAB(L) = |V |.

• We prove by contrapositive. Assume that MINLAB(L) < (1/ε)1/|V ||V |. Then there exists a
multi-labeling (σU , σ̂V) of size less than (1/ε)1/|V ||V | that covers every node in |U |. Let us
construct a labeling (σU , σV) by uniformly and independently choosing one label from each
σ̂V (v) at random, for each v ∈ V .

Thus, the expected number of left nodes covered by (σU , σV) is

EσV [|{u ∈ U : (σU , σV) covers u}|] >
∑
u∈U

∏
v∈NG(u)

|σ̂V (v)|−1

>
∑
u∈U

∏
v∈V
|σ̂V (v)|−1

(By AM-GM inequality) >
∑
u∈U

(
1
|V |

∑
v∈V
|σ̂V (v)|

)−|V |

> |U | ·
(

1
|V |
·
((1

ε

)1/|V |
|V |

))−|V |
= |U | · ε

Hence, there is a labeling that covers > ε|U | nodes in U , i.e., MAXCOV(L) > ε|U |.

• Similar to the previous item, we assume contrapositively that MINLAB(L) < (1/ε)1/dU |V |.
Let dV denote the right degree of (U, V,E). Again, let (σU , σ̂V) be a multi-labeling of size
less than (1/ε)1/dU |V | that covers every node in |U |, and let (σU , σV) denote a labeling

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 33

where σV (v) is chosen uniformly at random from σ̂V (v). The expected number of left nodes
covered by (σU , σV) is

EσV [|{u ∈ U : (σU , σV) covers u}|] >
∑
u∈U

∏
v∈NG(u)

|σ̂V (v)|−1

(By AM-GM inequality) >
∑
u∈U

 1
dU

∑
v∈NG(u)

|σ̂V (v)|
−dU

(By Power Mean inequality) > |U | ·

 1
|U |

∑
u∈U

 1
dU

∑
v∈NG(u)

|σ̂V (v)|
−1

dU

(By Cauchy-Schwarz inequality) > |U | ·

 |U |∑
u∈U

(
1
dU

∑
v∈NG(u) |σ̂V (v)|

)
dU

(By bi-regularity of (U, V,E)) = |U | ·
 |U |

dV
dU

∑
v∈V |σ̂V (v)|

dU

> |U | ·

 |U |
dV
dU
· (1/ε)1/dU |V |

dU

(Since dU · |U | = |E| = dV · |V |) = |U | ·
(
ε1/dU

)dU
= |U | · ε

Hence, MAXCOV(L) > ε|U | as desired.

The other fact is a simple observation relating MAXCOV(L) and val(L).

Observation 2.24. Let L = (G = (U, V,E),ΣU ,ΣV ,Π) be any label cover instance. Then, we
have

• If val(L) = 1, then MAXCOV(L) = |U |.

• If val(L) 6 1− ε for some ε > 0 and that G is left-regular, then MAXCOV(L) 6 1− ε.

Proof. • Suppose that val(L) = 1; there exists a labeling (σU , σV) that satisfies all the edges,
and hence covers all left vertices. Hence, MAXCOV(L) = |U |.

• Suppose that val(L) 6 1 − ε and G is left-regular. Since val(L) 6 1 − ε, any labeling
(σU , σV) satisfies at most 1 − ε fraction of edges in E. Moreover, because the graph G is
left-regular, the unsatisfied edges must be adjacent to at least ε|U | left vertices; these vertices
are not covered by (σU , σV). Hence, we have MAXCOV(L) 6 (1− ε)|U | as desired.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 34

2.11 Feige’s Reduction From Label Cover to Set Cover
In [Fei98], Feige shows the hardness of approximating SET COVER and MAXIMUM k-COVERAGE,
by reductions from label cover instances. Here we observe that his reduction for MAXIMUM k-
COVERAGE in fact gives a reduction from MINLAB to SET COVER, as stated below.

Lemma 2.25 (Reduction from MINLAB to SETCOV). There is an algorithm that, given a label
cover instance L = (U, V,E,ΣU ,ΣV , {Πe}e∈E), outputs a SETCOV instance (U ,S, k = |V |)
where

• MINLABEL(L) = SETCOV(U ,S).

• |S| = |V | · |ΣV |.

• |U| 6 |U | · |V ||ΣU |.

• The reduction runs in time O (|S| · |U|).

Proof. Our construction is based on a standard hypercube set system, as used by Feige [Fei98] in
proving the hardness of the k-Maximum Coverage problem. We explain it here for completeness.

Hypercube set system: Let z, k ∈ N be parameters. The hypercube set system H(z, k) is a set
system (U ,S) with the ground set U = [z]k. We view each element of U as a length-k vector
x where each coordinate assumes a value in [z]. There is a collection of canonical sets S =
{Xi,a}i∈[z],a∈[k] defined as

Xi,a = {x : xa = i}

In other words, each set Xi,a contains the vectors whose ath coordinate is i. A nice property of this
set system is that, it can only be covered completely if all canonical sets corresponding to some ath

coordinate are chosen.

Proposition 2.26. Consider any sub-collection S ′ ⊆ S. We have
⋃S ′ = U if and only if there is a

value a ∈ [k] for which X1,a, X2,a, . . . , Xz,a ∈ S ′.

Proof. The if part is obvious. For the “only if” part, assume that for each a ∈ [k], there is a value
ia ∈ [z] for which Xia,a is not in S ′. Define vector x by xa = ia. Notice that x does not belong to
any set in S ′ (By definition, if Xi′,a′ contains x, then it must be the case that xa′ = i′ = ia′ .) y

The construction: We start from the MINLAB instance L = (U, V,E,ΣU ,ΣV ,Π). We will cre-
ate the set system I = (U ,S). We make |U | different copies of the hypercube set system: For each
vertex u ∈ U , we have the hypercube set system (Uu,Su) = H(NG(u),ΣU), i.e., the ground set Uu
is a copy of NG(u)ΣU and Su contains |NG(u)||ΣU | “virtual” sets, that we call {Suv,a}v∈NG(u),a∈ΣU
where each such set corresponds to a canonical set of the hypercube. We remark that these virtual

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 35

sets are not the eligible sets in our instance I. For each vertex v ∈ V , for each label b ∈ ΣV , we
define a set

Sv,b =
⋃

u∈NG(v),(a,b)∈Πuv
Suv,a

The set system (U ,S) in our instance is simply:

U =
⋃
u∈U
Uu and S = {Sv,b : v ∈ V, b ∈ ΣV }

Notice that the number of sets is |V ||ΣV | and the number of elements in the ground set is
|U| 6 |U ||V ||ΣU |. This completes the description of our instance.

Analysis: We argue that the optimal value of L is equal to the optimal of (U ,S).
First, we will show that MINLAB(L) 6 SETCOV(U ,S). Let (σU , σ̂V) be a feasible MINLAB

cover for L (recall that σ̂V is a multi-labeling, while σU is a labeling.) For each v ∈ V , the
SETCOV solution chooses the set Sv,b for all b ∈ σ̂V (v). Denote this solution by S ′ ⊆ S. The
total number of sets chosen is exactly

∑
v |σ̂(v)|, exactly matching the cost of MINLAB(L). We

argue that this is a feasible set cover: For each u, the fact that u is covered by (σU , σ̂V) implies
that, for all v ∈ NG(u), there is a label bv ∈ σ̂V (v) such that (σU(u), bv) ∈ Πuv. Notice that
Suv,σU (u) ⊆ Sv,bv ∈ S ′ for every v ∈ NG(u), so we have

⋃
S∈S′

S ⊇
⋃

v∈NG(u)
Sv,bv ⊇

⋃
v∈NG(u)

Suv,σU (u) = Uu

where the last equality comes from Chapter 2.26. In other words, S ′ covers all elements in Uu.
Hence, S ′ is indeed a valid SETCOV solution for (U ,S).

To prove the converse, consider a collection of sets {Sv,b}(v,b)∈Λ that covers the whole universe
U . We define the (multi-)labeling σ̂V : V → 2ΣV where σ̂V (v) = {b : (v, b) ∈ Λ} for each
v ∈ V . Clearly,

∑
v∈V |σ̂V (v)| = |Λ|, so the cost of σ̂V as a solution for MINLAB is exactly the

cost of SETCOV. We verify that all left vertices u ∈ U of L are covered (and along the way will
define σU(u) for all u ∈ U .) Consider each vertex u ∈ U . The fact that the ground elements
in Uu are covered implies that (from Proposition 2.26) there is a label au ∈ ΣU where all virtual
sets {Suv,au}v∈NG(u) are included in the solution. Therefore, for each v ∈ NG(u), there must be a
label bv ∈ σ̂V (v) such that aubv ∈ Πuv. We simply define σU(u) = au. Therefore, the vertex u is
covered by the assignment (σU , σ̂V).

It will also be convenient to also state the reduction in terms of MAXCOV instead of MINLAB.
In particular, by combining Lemma 2.25 and Lemma 2.23, we have the following:

Lemma 2.27 (Reduction from MAXCOV to SETCOV). There is an algorithm that, given a label
cover instance L = (U, V,E,ΣU ,ΣV , {Πe}e∈E), outputs a SETCOV instance (U ,S, k = |V |)
where

• If MAXCOV(L) = |U |, then SETCOV(U ,S) = k.

CHAPTER 2. NOTATION, PRELIMINARIES AND TOOLS 36

• If MAXCOV(L) 6 ε · |U |, then SETCOV(U ,S) > (1/ε)1/k · k.

• |S| = |V | · |ΣV |.

• |U| 6 |U | · |V ||ΣU |.

• The reduction runs in time O (|S| · |U|).

Finally, we note that it is a well-known fact that we can reduce SETCOV to DOMSET by
constructing a graph whose vertices are U ∪S; there are edges between every pairs of subsets, and
there is an edge between S ∈ S to u ∈ U iff u belongs to S. It is obvious to see that the optimum
of the DOMSET instance is exactly the same as that of the original SETCOV instance.

37

Part I

Problems Between P and NP

38

Chapter 3

A Birthday Repetition Theorem and Its
Applications

Polynomial-time reductions between computational problems are among the central tools in com-
plexity theory. The rich and vast theory of hardness of approximation emerged out of the celebrated
PCP Theorem [Aro+98; AS98] and the intricate web of polynomial-time reductions developed over
the past two decades. During this period, an extensive set of reduction techniques such as parallel
repetition and long-codes have been proposed and a variety of mathematical tools including dis-
crete harmonic analysis, information theory and Gaussian isoperimetry have been applied towards
analyzing these reductions. These developments have led to an almost complete understanding of
the approximability of many fundamental combinatorial optimization problems like SET COVER

and MAX 3SAT. Yet, there are a few central problems such as computing approximate Nash
equlibria, the DENSEST k-SUBGRAPH problem and the SMALL SET EXPANSION problem, that
remain out of reach of the web of polynomial-time reductions.

A promising new line of work proposes to understand the complexity of these problems through
the lens of sub-exponential time reductions. Specifically, the idea is to construct a sub-exponential
time reduction from 3SAT to the problem at hand, say, the Approximate Nash Equilibrium prob-
lem. Assuming that 3SAT does not admit sub-exponential time algorithms (also known as the
Exponential Time Hypothesis (ETH) [IP01; IPZ01]), this would rule out polynomial time algo-
rithms for the Approximate Nash Equilibrium problem.

At the heart of this line of works, lies the so-called birthday repetition of two-prover games.
To elaborate on this, we begin by formally defining the notion of two-prover games1.

Definition 3.1. (Two-prover game) A two prover game G consists of

• A finite set of questions X, Y and corresponding answer sets ΣX ,ΣY .

• A distribution Q over pairs of questions X × Y .
1The definition of two-prover games is in fact equivalent to that of Label Cover in Definition 2.3. However, for

the purpose of describing parallel and birthday repetitions, two-prover game interpretation is more natural.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 39

• A verification function P : X × Y × ΣX × ΣY → {0, 1}.

The value of the game is the maximum over all strategies φ : X ∪ Y → ΣX ∪ ΣY of the output of
the verification function, i.e., val(G) = maxφ:X∪Y→ΣX∪ΣY E(x,y)∼Q[P (x, y, φ(x), φ(y))].

Two prover games earn their name from the following interpretation of the above definition:
The game G is played between a verifier V and two cooperating provers Merlin1 and Merlin2
who have agreed upon a common strategy, but cannot communicate with each other during the
game. The verifier samples two questions (x, y) ∼ Q and sends x to Merlin1 and y to Merlin2.
The provers respond with answers φ(x) and φ(y), which the verifier accepts or rejects based on the
value of the verifiaction function P (x, y, φ(x), φ(y)).

Two-prover games and, more specifically, a special class of two-prover games known as the
LABEL COVER problem are the starting points for reductions in a large body of hardness of ap-
proximation results. The PCP theorem implies that for some absolute constant ε0, approximating
the value of a two prover game to within an additive ε0 is NP-hard. However, this hardness result
on its own is inadequate to construct reductions to other combinatorial optimization problems. To
this end, this hardness result can be strengthened to imply that it is NP-hard to approximate the
value of two-prover games to any constant factor, using the parallel repetition theorem.

For an integer k, the k-wise parallel repetition G⊗k of a game G can be described as follows.
The question and answer sets in G⊗k consist of k-tuples of questions and answers from G. The
distribution over questions in G⊗k is given by the product distribution Qk. The verifier for G⊗k
accepts the answers if and only if the verifier for G accepts each of the k individual answers.

Roughly speaking, the parallel repetition theorem asserts that the value of the repeated game
Gk decays exponentially in k. Parallel repetition theorems form a key ingredient in obtaining
tight hardness of approximation results, and have aptly received considerable attention in litera-
ture [Raz98; Hol09; Rao11; DS14; Mos14; BG15].

Birthday repetition, introduced by Aaronson et al. [AIM14], is an alternate transformation on
two-prover games defined as follows.

Definition 3.2. (Birthday Repetition) The (k × `)-birthday repetition of a two-prover game G
consists of

• The set of questions in Gk×` are
(
X
k

)
and

(
Y
`

)
respectively, i.e., each question is a subset

S ⊆ X of size k and subset T ⊆ Y of size `.

• The distribution over questions is the uniform product distribution over
(
X
k

)
×
(
Y
`

)
.

• The verifier accepts only if, for every pair of (x, y) ∈ S × T such that (x, y) form a valid
pair of questions in G, i.e., (x, y) ∈ supp(Q), the answers to x and y are accepted in the
original game G.

The basic idea of birthday repetition can be traced back to the work of Aaronson et al. [Aar+09]
on quantum multiprover proof systems QMA(k) for 3SAT. Subsequent work by Aaronson et al. [AIM14]

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 40

on the classical analogue of QMA(k), namely AM(k), formally defined birthday repetition for
two-prover games, and set the stage for applications in hardness of approximation.

Unlike parallel repetition, birthday repetition is only effective for large values of k and `. In
particular, if k, ` < o(

√
|X|+ |Y |), then, for most pairs of S and T , there is no pair of questions

(x, y) ∈ S × T such that (x, y) belongs to the support of the questions in the original game.
However, if we pick k = ` = ω(

√
n) where n = |X| + |Y |, then by the birthday paradox,

with high probability the sets S, T contain an edge (x, y) from the original game G. Hence, for
this choice of k and `, the game played by the provers is seemingly at least as difficult to succeed,
as the original game G. Aaronson et al. [AIM14] confirmed this intuition by proving the following
theorem.

Theorem 3.3. [AIM14] For any two-prover game G such that Q is uniform over its support, if the
bipartite graph induced by (X, Y, supp(Q)) is biregular, then val(Gk×`) 6 val(G) +O(

√
n
k`

).

On the one hand, birthday repetition is ineffective in that it has to incur a blowup of 2
√
n in the

size, to even simulate the original game G. The distinct advantage of birthday repetition is that the
resulting game Gk,` has a distinct structure – in that it is a free game.

Definition 3.4. (Free game) A free game is a two-player game G = (X, Y,Q,ΣX ,ΣY , P) such
that Q is the uniform distribution over X × Y .

The birthday repetition theorem of Aaronson et al. [AIM14] immediately implies a hardness
of approximation for the value of free games. Specifically, they show that it is ETH-hard to ap-
proximate free games to some constant ratio in almost quasi-polynomial time. Interestingly, this
lower bound is nearly tight in that free games admit a quasipolynomial time approximation scheme
(QPTAS) [Bar+11; AIM14].

Following Aaronson et al.’s work, birthday repetition has received numerous applications,
which can be broadly classified in to two main themes. On the one hand, there are problems such as
computing approximate Nash equilibria [BKW15; BPR16], approximating free games [AIM14],
and approximate symmetric signaling in zero sum games [Rub17b], where the underlying prob-
lems admit quasipolynomial-time algorithms [Dug14; LMM03; FS97] and birthday repetition can
be used to show that such a running time is necessary, assuming ETH. On the other hand, there
are computational problems like Densest k-Subgraph [Bra+17], injective tensor norms [Aar+09;
HM13; Bar+12], 2-to-4-norms [Aar+09; HM13; Bar+12] wherein an NP-hardness of approxima-
tion result seems out of reach of current techniques. But the framework of birthday repetition can
be employed to show a quasi-polynomial hardness assuming ETH2.

Unlike the parallel repetition theorem, the birthday repetition theorem of [AIM14] does not
achieve any reduction in the value of the game. It is thus natural to ask whether birthday repetition
can be used to decrease the value of a game, just like parallel repetition. Aaronson et al. conjectured
not only that the value of the game deteriorates with birthday repetition, but also that it decreases

2Although the hardness results for injective tensor norms and 2-to-4-norms build over quantum multiprover proof
systems, the basic idea of birthday repetition [Aar+09] lies at the heart of these reductions.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 41

exponentially in Ω(k`/n). Notice that the expected number of edges between S and T in birthday
repetition is Θ(k`/n).

The main technical contribution of this chapter is that we resolve the conjecture positively by
showing the following theorem.

Theorem 3.5. (Birthday Repetition Theorem (informal); See Theorem 3.15) Let G = (X, Y,Q,ΣX ,ΣY , P)
be a two-prover game such that Q is uniform over its support, (X, Y, supp(Q)) is biregular. If
val(G) 6 1− ε for some ε > 1/n, then

val(Gk×`) 6 (1− ε/2)Ω(k`
n log(1/ε)).

Our theorem is, in fact, more general than stated above and can handle non-biregular graphs as
well as the case ε < 1/n, albeit with some loss in parameters (see Theorem 3.15).

We remark that Theorem 3.15 contains quantitative improvements over the corresponding the-
orem in the conference version of this work [MR17a]. In particular, the birthday repetition theorem
of [MR17a] has a factor of ε5 in the exponent instead of 1/ log(1/ε) in Theorem 3.15. To achieve
this improvement, we use a completely different technique compared to that in [MR17a] based on
counting number of bicliques and Alon’s lemmas (Lemmas 2.14 and 2.15).

We also note that quantitatively Theorem 3.15 matches that of a follow-up work of Ko [Ko18],
with an advantage that Theorem 3.15 applies to any two-prover games whereas Ko’s technique
only applies to projection games.

By definition, the birthday repetition theorem almost immediately implies a hardness of ap-
proximation result for the value of a free game.

Corollary 3.6. Unless ETH is false, no polynomial time algorithm can approximate the value of a
free game to within a factor of 2Ω̃(log(nq)) where n is the number of questions and q is the alphabet
(answer set) size.

The above hardness result improves upon polylog(nq) ratio achieved in [AIM14] and is tight
up to a factor of polyloglog(nq) in the exponent since there exists a polynomial-time algorithm
that achieves O(qε) approximation for every constant ε > 0 [AIM14; MM15].

Dense CSPs
A free game can be considered an instance of 2-ary constraint satisfaction problems. From this
perspective, free games are dense, in that there are constraints between a constant fraction of all
pairs of variables. As an application of our birthday repetition theorem, we will show almost-tight
hardness of approximation results for dense CSPs. To this end, we begin by defining MAX k-CSP
and its density.

Definition 3.7. (MAX k-CSP) A MAX k-CSP instance G consists of

• A finite set of variables V and a finite alphabet set Σ.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 42

• A distribution Q over k-size subsets of variables
(
V
k

)
.

• A predicate P :
(
V
k

)
× Σk → [0, 1].

The value of the instance is the maximum over all assignments φ : V → Σ of the expected output
of the predicate, i.e., val(G) = maxφ:V→Σ ES∼Q[P (S, φ|S)] where φ|S is the restriction of φ to S.

Finally, an instance is called ∆-dense if ∆ · Q(S) 6
(
|V |
k

)
for every S ∈

(
V
k

)
. Fully-dense

instances are defined to be simply the 1-dense instances.

There has been a long line of works on approximating dense CSPs. Arora, Karger and Karpin-
ski were first to devise a polynomial-time approximation scheme for the problem when alphabet
size is constant [AKK95]. Since then, numerous algorithms have been invented for approximat-
ing dense CSPs; these algorithms use wide ranges of techniques such as combinatorial algorithms
with exhaustive sampling [AKK95; Veg+05; MS08; Yar14; MM15; FLP16], subsampling of in-
stances [Alo+03; Bar+11], regularity lemmas [FK96; CCF10] and linear and semidefinite program
hierarchies [VK07; BRS11; GS11; YZ14]. Among the known algorithms, the fastest is that of
Yaroslavtsev [Yar14] that achieves approximation ratio (1 + ε) in qOk(log q/ε2) + (nq)O(1) time3

where n and q denote the number of variables and alphabet size respectively.
Unfortunately, when q is (almost-)polynomial in n, none of the mentioned algorithms run in

polynomial time. CSPs in such regime of parameters have long been studied in hardness of approx-
imation (e.g. [Bel+93; RS97; AS03; Din+11; MR10; Mos12]) and have recently received more
attention from the approximation algorithm standpoint, both in the general case [Pel07; CHK11;
MM17] and the dense case [MM15]. The approximabilities of these two cases are vastly different.
In the general case, it is known that, for some constant k > 0, approximating MAX k-CSP to
within a factor of 2log1−ε(nq) is NP-hard for any constant ε > 0 [Din+11]. Moreover, the long-
standing Sliding Scale Conjecture of Bellare et al. [Bel+93] states there are constants k, ε > 0
such that it is NP-hard to approximate MAX k-CSP to within a factor of (nq)ε. On the other
hand, aforementioned algorithms for dense CSPs rule out such hardnesses for the dense case.

While the gap between known approximation algorithms and inapproximability results in the
general case is tiny (2logε(nq) for any constant ε > 0), the story is different for the dense case, espe-
cially when we restrict ourselves to polynomial-time algorithms. Aaronson et al.’s result only rules
out, assuming ETH, polylog(nq) factor approximation for such algorithms [AIM14]. However, for
k > 2, no non-trivial polynomial time algorithm for dense MAX k-CSP on large alphabet is even
known. We settle down the complexity of approximating dense MAX k-CSP almost completely
by answering the following fine-grained question: “for each i ∈ N, what is the best approximation
for dense MAX k-CSP, achievable by algorithms running in time (nq)i?”.

Manurangsi and Moshkovitz developed an algorithm for dense MAX 2-CSP that, when the
instance has value 1 − ε, can approximate the value to within a factor of O(q1/i/(1 − ε)i) in

3[Yar14] states that the algorithm takes qOk(1/ε2) + (nq)O(1) time but it in fact takes qOk(log q/ε2) + (nq)O(1)

time [Yar16].

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 43

(nq)O(i) time [MM15]4. Due to the algorithm’s combinatorial nature, it is unclear whether the
algorithm can be extended to handle dense MAX k-CSPs when k > 2.

Using a conditioning-based rounding technique developed in [BRS11; RT12; YZ14], we show
that the Sherali-Adams relaxation exhibits a similar approximation even when k > 2, as stated
below.

Theorem 3.8. (Informal; See Theorem 3.29) For every i > 0 and any dense MAX k-CSP instance
of value 1−ε, anOk,ε(i/∆)-level of the Sherali-Adams relaxation yields anO(q1/i)-approximation
for the instance.

Using our birthday repetition theorem, we show that it is impossible to improve the above
tradeoff between run-time and approximation ratio using the sum-of-squares SDP hierarchy (aka
the Lasserre SDP hierarchy). Specifically, we use birthday repetition on the Ω(n)-level Lasserre
integrality gap for MAX 3XOR by Schoenebeck [Sch08] to show the following.

Lemma 3.9. (Informal; See Lemma 3.23) For every sufficiently large i > 0, there is a fully-dense
MAX 2-CSP instance of value 1/(nq)1/i such that the value of Ω̃(i)-level Lasserre relaxation is
one.

Instead, if we assume that there exists a constant ε > 0 so that MAX 3SAT cannot be ap-
proximated to 1 − ε in sub-exponential time (which we call the Exponential Time Hypothesis for
Approximating MAX 3SAT (Gap-ETH)), then we can arrive at the following hardness result.

Lemma 3.10. (Informal; See Lemma 3.22) Assuming Gap-ETH, for every sufficiently large i > 0,
no (nq)Õ(i)-time algorithm can approximate fully-dense MAX 2-CSP to within a factor of (nq)1/i.

Thus, assuming Gap-ETH, our hardness result and algorithm resolve complexity of approx-
imating dense CSPs up to a factor of polylog(i) and a dependency on k in the exponent of the
running time.

Almost Optimal AM(2) Protocol for 3SAT
Another interpretation of our improved hardness of approximation of free games is as an improved
AM(2) protocol for 3SAT. The Arthur-Merlin (AM) protocol [Bab85] is a protocol where Arthur
(verifier) tosses some random coins and sends the results to Merlin (prover). The prover sends back
a proof to Arthur who then decides whether to accept it. Motivated by quantum complexity class
QMA(k), Aaronson et al. [AIM14] proposes a multi-prover version of AM called AM(k) where
there are k non-communicating Merlins5. Authur sends an independent random challenge to each
Merlin who then sends an answer back to Arthur. Finally, Arthur decides to accept or reject based
on the received answers. The protocol is formally defined below.

4Note that it is unclear whether Aaronson, Impagliazzo and Moshkovitz’s algorithm [AIM14] that achieves a
similar guarantee for free games can be extended to handle dense MAX 2-CSP.

5AM(k) is not to be confused with AM[k] defined in [Bab85]. In AM[k], there is only one Merlin but Arthur and
Merlin are allowed to engage in k rounds of communication.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 44

Definition 3.11. [AIM14] An AM(k) protocol for a language L ⊆ {0, 1}∗ of length p(n) = kq(n),
completeness c(n), and soundness s(n) consists of a probabilistic polynomial-time verifier V such
that

• (Completeness) For every x ∈ L, there exists functions m1, . . . ,mk : {0, 1}q(n) → {0, 1}q(n)

such that Pry1,...,yk∼{0,1}q(n) [V (x, y1, . . . , yk,m(y1), . . . ,m(yk))] > c(n), and,

• (Soundness) For every x /∈ L and for every function m1, . . . ,mk : {0, 1}q(n) → {0, 1}q(n),
we have Pry1,...,yk∼{0,1}q(n) [V (x, y1, . . . , yk,m(y1), . . . ,m(yk))] 6 s(n)

The complexity class AMp(n)(k) is a set of all languages L such that there exists an AM(k)
protocol of length p(n), completeness 1/3, and soundness 2/3. Finally, the class AM(k) is defined
as
⋃
c∈N AMnc(k).

Similar to the interpretation of a two-prover game as a two-prover protocol, a free game can
be viewed as an AM(2) protocol. Under this view, inapproximabilities of free games translate to
AM(2) protocols whereas approximation algorithms for free games translate to lower bounds on
the lengths of AM(2) protocols.

With this viewpoint, Aaronson et al. constructed, via birthday repetition, an AM(2) protocol of
length n1/2+o(1)poly(1/δ) for 3SAT with completeness 1 and soundness δ for every δ > 0. They
also showed a lower bound of Ω(

√
n log(1/δ)) on the length of such protocol. Equipped with our

birthday repetition theorem, we construct an AM(2) protocol whose length is optimal up to a factor
of polylogn.

Lemma 3.12. For any δ > 0, there is an AM(2) protocol for 3SAT of length Õ(
√
n log(1/δ)) with

completeness 1 and soundness δ.

We note that, by picking δ = 1/3, Lemma 3.12 immediately imply 3SAT ∈ AM
Õ(
√
n)(2).

Since every problem in NTIME(n) is reducible to a quasi-linear size 3SAT instance [Coo88],
we arrive at the following corollary, resolving the first open question posted in [AIM14].

Corollary 3.13. NTIME(n) ⊆ AM
Õ(
√
n)(2).

Organization of this chapter
The rest of the chapter is organized as follows. In the following section, we provide preliminaries
and state notations that we use in this chapter. Then, in Section 3.2, we prove our main theorems.
Next, Section 3.3 demonstrates applications of our birthday repetition theorem, including new
hardnesses of approximation and Lasserre integrality gap for dense CSPs, and an almost optimal
AM(2) protocol for 3SAT. The algorithm for dense MAX k-CSP is described and its approxima-
tion guarantee is proved in Section 3.4. Finally, we conclude by proposing open questions and
future research directions in Section 3.5.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 45

3.1 Additional Preliminaries and Notations
In this section, we define notations and state some well-known facts that will be subsequently used.

3.1.1 Information Theory
Let us define some information theoretic notions that will be useful in the analysis of our algo-
rithm. The informational divergence (aka Kullback-Leibler divergence) between two probabil-
ity distributions X and Y is DKL(X‖Y) = ∑

θ∈supp(X)X (θ) log(X (θ)/Y(θ)). Note that, when
supp(Y) 6⊆ supp(X), we let DKL(X‖Y) = ∞. It is well-known that DKL(X‖Y) > 0 for any
distributions X and Y .

The entropy of a random variable x ∼ X is defined as H(x) = −∑θ∈supp(X)X (θ) logX (θ).
For jointly distributed random variables x1, . . . , xn, the entropy of x1, . . . , xn is defined similarly
as H(x1, . . . , xn) = −∑(θ1,...,θn)∈supp(X1,...,n)X1,...,n(θ) logX1,...,n(θ) where X1,...,n is the joint dis-
tribution of x1, . . . , xn.

The conditional entropy H(x1, . . . , xn−1|xn) is defined as Eθ∼supp(Xn)[H(x1, . . . , xn−1)|xn =
θ] where Xn is the marginal distribution of xn.

Last information theoretic measure we will use is the total correlation defined asC(x1; . . . ;xn) =
DKL(X1,...,n‖X1×· · ·×Xn) whereX1,...,n is the joint distribution of x1, . . . , xn whereasX1, . . . ,Xn
are the marginal distributions of x1, . . . , xn respectively. We note that the total correlation defined
here is always non-negative whereas the mutual information can be negative.

The total correlation is related to entropies and mutual information as follows.

Lemma 3.14. For any random variables x1, . . . , xn,C(x1; . . . ;xn) = ∑
i∈[n] H(xi)−H(x1; . . . ;xn).

Finally, similar to conditional entropy and conditional mutual information, we define the con-
ditional total correlation as C(x1; . . . ;xn−1|xn) = Eθ∼supp(Xn)[C(x1; . . . ;xn−1)|xn = θ].

3.1.2 Two-prover Game, Free Game and MAX k-CSP
Two-prover games, free games, and MAX k-CSP are defined in similar manners as in the intro-
duction. However, for convenience, we write the predicates as PS(φ|S) instead of P (S, φ|S), and,
whenQ is the uniform distribution on Θ, we sometimes write the instance as (V,Θ, {PS}) instead
of (V,Q, {PS}). Moreover, for an assignment φ of a MAX k-CSP instance G = (V,W , {PS}),
we define its value as valG(φ) = ES∼W [PS(φ|S)]. When it is clear from the context, we will drop
G and write it simply as val(φ). Note that val(G) is the maximum of valG(φ) among all possible
assignments φ’s. We say that G is satisfiable if its value is one.

We use n to denote the number of variables |V |, q to denote the alphabet size |Σ| and N
to denote the instance size | supp(W)|qk, the number of bits needed to encode the input if each
predicate is a boolean function. Note that, when the instance is fully dense, N is simply (nq)k.
Similar notations are also used for two-prover games and free games.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 46

3.1.3 Sherali-Adams and Lasserre Hierarchies
We also consider two hierarchies of linear and semidefinite program relaxations of MAX k-CSP.
For compactness, we only write down the relaxations of MAX k-CSP but do not describe the
hierarchies in full details. For interested readers, we refer to Chlamtác and Tulsiani’s survey on the
topic [CT12].

The first hierarchy we consider is the Sherali-Adams (SA) hierarchy, introduced in [SA90]. An
r-level SA solution of a MAX k-CSP instance G = (V,W , {PS}) is a collection µ = {XS}|S|6t
of distributions XS on ΣS for every subset S of V of size at most r such that, for every S, T ⊆ V
of size at most r, the marginal probability of XS and XT on ΣS∩T agrees. The value of an r-level
SA solution µ for r > k is defined to be valSA(µ) = ES∼W [ExS∼µ[PS(xS)]] where ExS∼µ[PS(xS)]
is a shorthand for EφS∼X{i1,...,ik} [PS(φS)] when S = (xi1 , . . . , xik). The optimal of the r-level SA
relaxation of G, optrSA(G), is defined as the maximum value among all the r-level SA solutions. It
is easy to see that finding optrSA(G) can be formulated as a linear program with at most (nq)O(r)

variables and inequalities and, thus, can be solved in (nq)O(r) time.
Another hierarchy we consider is the Lasserre hierarchy [Las00]. Before stating the Lasserre

relaxation for MAX k-CSP, we define additional notations regarding assignments. Two assign-
ments φ1 ∈ ΣS1 , φ2 ∈ ΣS2 are said to be consistent if φ1(x) = φ2(x) for all x ∈ S1 ∩ S2. The two
assignments are said to be inconsistent otherwise. More than two assignments are consistent if ev-
ery pair of the assignments is consistent; otherwise, they are said to be inconsistent. Moreover, for
two consistent assignments φ1 ∈ ΣS1 , φ2 ∈ ΣS2 , we define φ1◦φ2 ∈ ΣS1∩S2 by φ1◦φ2(x) = φ1(x)
if x ∈ S1 and φ1 ◦ φ2(x) = φ2(x) otherwise.

An r-level Lasserre solution of an instance G = (V,W , {PS}) is a collection {U(S,φS)}|S|6r,φS∈ΣS

of vectors U(S,φS) for all S ⊆ V of size at most r and assignments φS of S satisfying the following
constraints.

〈U(S1,φ1), U(S2,φ2)〉 > 0 ∀S1, S2, φ1φ2

〈U(S1,φ1), U(S2,φ2)〉 = 〈U(S3,φ3), U(S4,φ4)〉 ∀S1 ∪ S2 = S3 ∪ S4 and φ1 ◦ φ2 = φ3 ◦ φ4

〈U(S1,φ1), U(S2,φ2)〉 = 0 ∀S1, S2, φ1φ2 s.t. φ1, φ2 are inconsistent∑
σ∈Σ
‖U(x,σ)‖2 = 1 ∀x ∈ V

‖U(∅,∅)‖ = 1

where S1, S2, S3, S4 are over all subset of V of size at most r and φ1, φ2, φ3, φ4 are over all assign-
ments of S1, S2, S3, S4 respectively. The value of an r-level Lasserre solution {U(S,φS)} is defined
as valLas({U(S,φS)}) = ES∼W [∑φS∈ΣS ‖U(S,φS)‖2PS(φS)]. A Lasserre solution is called complete
if its value is one.

Note that we abuse the notation here as S in {U(S,φS)} is a set whereas S inW is a tuple. Here
and elsewhere in this chapter, when we write U(S,φS) for some tuple S = (xi1 , . . . , xim), this simply
refers to U{xi1 ,...,xim},φS if the assignment φS does not assign the same variable to different values
and the all zero vector otherwise. Finally, we use optrLas(G) to denote the maximum value among
all r-level Lasserre solutions {U(S,φS)}.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 47

It is not hard to see that finding optrLas(G) can be formulated as SDP with (nq)O(r) variables
and, hence, can be approximated up to arbitrarily small error within (nq)O(r) time. Moreover, it
is known that the r-level Lasserre relaxation is stronger than the r-level SA relaxation [Lau03].
In the case of MAX k-CSP, this can be easily seen since we can define an r-level SA solution
µ = {XS}|S|6t from an r-level Lasserre solution {U(S,φS)} by XS(φS) = ‖U(S,φS)‖2.

3.2 Birthday Repetition Theorem and Its Proof
In this section, we prove our birthday repetition theorem, stated formally below.

Theorem 3.15. Let G = (X, Y,E,ΣX ,ΣY , {P(x,y)}) be any two-prover game. Suppose further
that (X, Y,E) is τ -almost-biregular. If val(G) = 1− ε, then for all 0 6 k 6 |X|, 0 6 ` 6 |Y |, we
have

val(Gk×`) 6
(

1− ε

2τ

)Ω(k`
log(τ/ε)(n+τ/ε))

.

To prove Theorem 3.15, we have to show that any strategy ψ of Gk×` is accepted with prob-

ability at most
(
1− ε

2τ

)Ω(k`
log(τ/ε)(n+τ/ε)). Equivalently, we would like to show that the graph

GSAT
ψ :=

((
X
k

)
,
(
Y
`

)
, ESAT

ψ

)
, where ESAT

ψ denote the set of all accepted pairs of questions, is sparse.
Let us recall Alon’s lemmas (Lemmas 2.14 and 2.15), which roughly states that, if a graph

contains few labelled copies of biclique Ks,t, then it must be sparse. Hence, to show that GSAT
ψ is

sparse, it suffices to bound the number of labelled copies of Ks,t in GSAT
ψ for appropriately chosen

s, t (which will be specified later), and invoke Alon’s lemmas. To do so, we first define additional
notations.

• Let AX :
(
X
k

)s
→ P(X) denote a “flattening” operation that, on input L ∈

(
X
k

)s
, outputs

the sets of all elements that appears in at least one of the sets in L; more formally,AX(L) :=
∪u∈Lu. We define AY :

(
Y
`

)t
→P(Y) similarly by AY (R) := ∪v∈Rv.

• Let Ks,t denote the set of labelled copies of Ks,t in the graph GSAT
ψ , i.e.,

Ks,t :=
{

(L,R) ∈
(
X
k

)s
×
(
Y
`

)t∣∣∣ ∀u ∈ L, ∀v ∈ R, u 6= v ∧ (u, v) ∈ ESAT
ψ

}
.

• For every A ⊆ X,B ⊆ Y , letK⊆s,t(A,B) denote the set of labelled copies of Ks,t whose flat-
tenings are contained inA,B, i.e.,K⊆s,t(A,B) := {(L,R) ∈ Ks,t | AX(L) ⊆ A ∧ AY (R) ⊆ B}.
We remark here that Ks,t is equal to Ks,t(X, Y).

Now, the birthday repetition theorem can be proved via two simple observations. The first
observation is that, any labelled copy (L,R) of Ks,t cannot have flattenings that are both large.
This is because (L,R) in fact induces a (partial) strategy for the original game that is accepted
for all edges whose endpoints are in AX(L) and AY (R). Hence, if both AX(L) and AY (R) are

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 48

already large, then this strategy would violate the assumption that val(G) = 1− ε. A more precise
version of the statement is proved below.

Observation 3.16. Let (L,R) ∈
(
X
k

)s
×
(
Y
`

)t
be any labelled Ks,t of GSAT

ψ . Then, |AX(L)| 6(
1− ε

2τ

)
|X| or |AY (R)| 6

(
1− ε

2τ

)
|Y |.

Proof. Suppose for the sake of contradiction that there exists a labelled Ks,t copy (L,R) of GSAT
ψ

such that |AX(L)| >
(
1− ε

2τ

)
|X| and |AY (R)| >

(
1− ε

2τ

)
|Y |. Let f : AX(L) ∪ AY (R) →

ΣX ∪ ΣY be a partial strategy to G defined as follows.

• For every x ∈ AX(L), let f(x) = ψ(u)x for u ∈ L that contains x (when there are multiple
such u’s, pick one arbitrarily).

• Similarly, for every y ∈ AY (R), let f(y) = ψ(v)y for v ∈ R that contains x.

Consider any edge (x, y) ∈ E ∩ (AX(L)×AY (R)). Let u ∈ L, v ∈ R be such that x ∈ u, y ∈
v, f(x) = ψ(u)x and f(y) = ψ(v)y. Since u ∈ L, v ∈ R and (L,R) is a labelled copy of a biclique
of GSAT

ψ , we must have (u, v) ∈ ESAT
ψ ; equivalently, (ψ(u), ψ(v)) is an accepting answer of the

birthday repetition game for the edge (u, v). This implies that the verifier of the original game G
accepts (ψ(u)x, ψ(v)y) = (f(x), f(y)) for the edge (x, y).

As a result, the verifier of the original game G accepts all edges in E ∩ (AX(L)×AY (R)) for
partial strategy f . In other words, the number of edges it does not accept is at most

∑
x/∈AX(L)

degG(x) +
∑

y/∈AY (R)
degG(y) 6

∑
x/∈AX(L)

(
τ · min

x′∈X
degG(x′)

)
+

∑
y/∈AY (R)

(
τ ·min

y′∈Y
degG(y′)

)

6 τ |E| ·
(
|X| − |AX(L)|

|X|

)
+ τ |E| ·

(
|Y | − |AY (R)|

|Y |

)
< ε|E|,

where the first inequality comes from the τ -almost-biregularity of G and the last inequality comes
from our assumptions on the size ofAX(L),AY (R). This contradicts the assumption that val(G) =
1− ε, which concludes our proof.

Another observation is that, if we fix A ⊆ X,B ⊆ Y such that either A or B is small and count
the number of labelled copies of Ks,t whose flattenings are contained in A,B (i.e. |Ks,t(A,B)|),
then this number will be much smaller than

(
|X|
k

)s(|Y |
`

)t
. Intuitively, this is just because we must

choose every left vertex from
(
A
k

)
instead of

(
X
k

)
and every right vertex from

(
B
`

)
instead of

(
Y
`

)
.

This is formalized below.

Observation 3.17. For everyA ⊆ X,B ⊆ Y , we have |K⊆s,t(A,B)| 6
(
|A|
|X|

)sk (|B|
|Y |

)t` (|X|
k

)s(|Y |
`

)t
.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 49

Proof. Consider any (L,R) ∈ K⊆s,t(A,B). SinceAX(L) ⊆ A andAY (R) ⊆ B, we have L ∈
(
A
k

)s
and R ∈

(
B
`

)t
. This implies that K⊆s,t(A,B) ⊆

(
A
k

)s
×
(
B
`

)t
. Hence,

|K⊆s,t(A,B)| 6
(
|A|
k

)s(|B|
`

)t
6

(
|A|
|X|

)sk (|B|
|Y |

)t` (|X|
k

)s(|Y |
`

)t
,

as desired.

With these two observations ready, the proof of the birthday repetition theorem is straightfor-
ward: we simply sum the bounds in Observation 3.17 over an appropriate range of (A,B) which
is given by Observation 3.16.

Proof of Theorem 3.15. Let m = 100(n + τ/ε) log(100τ/ε). Pick s := dm/ke and t := dm/`e.
From Observation 3.16, we have

Ks,t ⊆

 ⋃
A⊆X,|A|=b(1− ε

2τ)|X|c
K⊆s,t(A, Y)

 ∪
 ⋃
B⊆Y,|B|=b(1− ε

2τ)|Y |c
K⊆s,t(X,B)

 . (3.1)

As a result, we can bound |Ks,t| by

|Ks,t| 6

 ∑
A⊆X,|A|=b(1− ε

2τ)|X|c
|K⊆s,t(A, Y)|

+

 ∑
B⊆Y,|B|=b(1− ε

2τ)|Y |c
|K⊆s,t(X,B)|

(Observation 3.17) 6

 ∑
A⊆X,|A|=b(1− ε

2τ)|X|c

(
1− ε

2τ

)sk (|X|
k

)s(|Y |
`

)t+

 ∑
B⊆Y,|B|=b(1− ε

2τ)|Y |c

(
1− ε

2τ

)t` (|X|
k

)s(|Y |
`

)t
=
((
|X|
d ε|X|2τ e

)(
1− ε

2τ

)sk
+
(
|Y |
d ε|Y |2τ e

)(
1− ε

2τ

)t`)(|X|
k

)s(|Y |
`

)t

(From our choice of s, t) 6
((
|X|
d ε|X|2τ e

)
+
(
|Y |
d ε|Y |2τ e

))(
1− ε

2τ

)m (|X|
k

)s(|Y |
`

)t

6
(

(2eτ/ε)d
ε|X|
2τ e + (2eτ/ε)d

ε|Y |
2τ e

)(
1− ε

2τ

)m (|X|
k

)s(|Y |
`

)t

6 (2eτ/ε)2+ εn
2τ

(
1− ε

2τ

)m (|X|
k

)s(|Y |
`

)t

(From our choice of m) 6 20.1mε/τ
(

1− ε

2τ

)m (|X|
k

)s(|Y |
`

)t

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 50

6
(

1− ε

2τ

)0.5m
(
|X|
k

)s(|Y |
`

)t
.

Now, Lemma 2.15 implies that

|ESAT
ψ | 6

((
1− ε

2τ

)0.5m
)1/(st) (|X|

k

)(
|Y |
`

)
=
(

1− ε

2τ

)Ω(k`
log(τ/ε)(n+τ/ε))

(
|X|
k

)(
|Y |
`

)
.

In other words, every strategy ψ is accepted with probability at most
(
1− ε

2τ

)Ω(k`
log(τ/ε)(n+τ/ε)).

Hence, we have val(Gk×`) 6
(
1− ε

2τ

)Ω(k`
log(τ/ε)(n+τ/ε)) as desired.

3.3 Applications of the Birthday Repetition Theorem
We next provide several implications of our birthday repetition theorem, including hardness of
approximation results and integrality gaps for dense CSPs and improved AM(2) protocol for 3SAT.

3.3.1 Lower Bounds for Fully-Dense CSPs
We start with inapproximability and integrality gaps for fully dense MAX 2-CSP. Note that these
bounds also carry over to fully dense MAX k-CSP for any k > 2, since we can always construct
an instance of the latter from the former by making each predicate ignore the last k − 2 variables.

As the birthday repetition theorem is stated in terms of free games, it will be convenient to first
show the connection from free games to dense CSPs. Specifically, given a free games, one can
easily creates a “symmetrized” version of the game that is a fully-dense MAX 2-CSP and has the
same value of the original game:

Lemma 3.18 (Symmetrization of Free Games). Given a free game G = (X, Y,ΣX ,ΣY , P), we
can, in polynomial time, create a MAX 2-CSP instance Gsym with alphabet ΣX × ΣY such that (i)
val(Gsym) 6 val(G) and (ii) if val(G) = 1, then val(Gsym) = 1.

Proof. We define an instance Gsym = (X × Y,ΣX × ΣY , P
′) where the variables are X × Y , the

alphabet is ΣX × ΣY and P ′{(x1,y1),(x2,y2)}((σx1 , σy1), (σx2 , σy2)) = ∏
i,j∈{1,2} P(xi,yj)(σxi , σyj).

Now, we will show that val(Gsym) 6 val(G). Let φ be an optimal assignment of Gsym, i.e.,
where val(φ) = val(Gsym). Let f be a strategy for G defined randomly as follows: for every
x ∈ X , randomly select y ∈ Y and set f(x) = φ(x, y)1, and, for every y ∈ Y , randomly select
x ∈ X and set f(x) = φ(x, y)2. We have

Ef [val(f)] = Ef,(x,y)∼(X×Y)[P(x,y)(f(x), f(y))]
= E(x,y),(x′,y′)∼(X×Y)[P(x,y)(φ((x, y′))1, φ((x′, y))2)]

= 1
|X||Y |

E(x,y)∼(X×Y)[P(x,y)(φ(x, y)1, φ(x, y)2)]+

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 51

(
1− 1
|X||Y |

)
E(x,y),(x′,y′)∼(X×Y)[P(x,y)(φ(x, y′)1, φ(x′, y)2) | (x, y) 6= (x′, y′)] (3.2)

We can bound the first term by

E(x,y)∼(X×Y)[P(x,y)(φ(x, y)1, φ(x, y)2)]
= E(x,y),(x′,y′)∼(X×Y)[P(x,y)(φ(x, y)1, φ(x, y)2) | (x′, y′) 6= (x, y)]
6 E(x,y),(x′,y′)∼(X×Y)[P ′{(x,y),(x′,y′)}(φ(x, y), φ(x′, y′)) | (x′, y′) 6= (x, y)]
= val(φ).

The second term can be bounded similarly:

E(x,y),(x′,y′)∼(X×Y)[P(x,y)(φ(x, y′)1, φ(x′, y)2) | (x, y) 6= (x′, y′)]
6 E(x,y),(x′,y′)∼(X×Y)[P ′{(x′,y),(x,y′)}(φ(x′, y), φ(x, y′)) | (x, y) 6= (x′, y′)]
= val(φ).

Plugging both back to (3.2), we get Ef [val(f)] > val(φ). Hence, we have val(G) > val(φ) =
val(Gsym), concluding the first part of the claim.

Finally, suppose that val(G) = 1; let f be an optimal strategy for G. The let φ be the assignment
of Gsym defined by φ(x, y) := (f(x), f(y)). It is obvious that φ satisfies all constraints.

ETH-Based Hardness of Approximation of Fully-Dense MAX 2-CSP

The first application of the birthday repetition theorem we present is an ETH-based almost-polynomial
ratio hardness for fully-dense MAX k-CSP, as stated formally below.

Lemma 3.19. Assuming ETH, for any k > 2, no polynomial-time algorithm can, given any fully-
dense MAX k-CSP instance G of size N , distinguish val(G) = 1 from val(G) 6 2−Ω̃(logN).

We prove this by essentially applying the birthday repetition theorem with k = ` = Ω̃(n) to
a two-prover game produced by Dinur’s PCP Theorem [Din07] (Theorem 2.2). Note, however,
that Theorem 2.2 produces a Gap-3SAT instance instead of a two-prover game. Nevertheless,
reductions between the two are standard. Here we use the so-called clause/variable reduction.
This reduction is well-known and has appeared in literatures before (in e.g. [AIM14]). It is stated
formally below.

Definition 3.20. (Clause/variable game) For any MAX k-CSP instance G = (V,E, {PS}), its
clause/variable game is a projection game G ′ = (X ′, Y ′,Σ′X ,Σ′Y , E ′, {P ′(x,y)}) defined as follows.
X ′ is the set of constraints of G, i.e., X ′ = E. Y ′ is V , the set of variables of G. Σ′X is Σk; for each
constraint S, Σ′X is identified with the assignments of S in G. Σ′Y is simply Σ. Finally, E ′ contains
all (S, x) such that x ∈ S and P(S,x)(φ, σ) = 1 iff PS(φ) = 1 and φ(x) = σ.

It is easy to see that, when val(G) is bounded away from one, then so is val(G ′):

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 52

Proposition 3.21. Let G and G ′ be as in Definition 3.20. If val(G) 6 1−ε, then val(G ′) 6 1−ε/k.

Proof. Suppose for contrapositively that there is an assignment φ′ of G ′ with val(φ′) > 1 − ε/k.
Define φ : V → Σ by φ(x) := φ′(x) for every x ∈ V . Since less than ε/k fraction of the edges are
not satisfied by φ′ in G ′ and each S ∈ X ′ has degree k, more than 1− ε fraction of S ∈ X ′ touches
only satisfied edges. These clauses are satisfied by φ in G. Hence, val(φ) > 1− ε.

We can now prove Lemma 3.19.

Proof of Lemma 3.19. Given 3SAT instance φ of m clauses. We first use Dinur’s PCP Theorem
(Theorem 2.2) to reduce φ to φ′ with m′ = m logcm clauses. Let G be the clause-variable game
of φ′. Consider the fully-dense MAX 2-CSP instance Gk×`sym which is the symmetrization of the
(k × `)-birthday repetition game, where k = ` = m/ log2m.

Let ñ and q̃ be the number of variables and the alphabet size of Gk×`sym . We have ñ 6
(
m′

k

)2
6

2(m′)2k 6 2O(m
logm) and q̃ 6 2O(k) 6 2O(m

logm). Hence, the size of Gk×`sym is Ñ = (ñq̃)O(1) 6
2O(m/ logm). We next analyze the completeness and soundness of the reduction.

When val(φ) = 1, from the PCP theorem, we have val(φ′) = 1. It is also obvious from the
reduction that val(Gk×`sym) is one. On the other hand, when val(φ) < 1, we have val(φ′) 6 1 − ε,
meaning that val(G) 6 1− ε/3. Hence, by Theorem 3.15 and Lemma 3.18, we have

val(Gk×`sym) 6 (1− Ω(ε))Ω
(
k2
m′2

)
6 2−Ω̃(m) = 2−Ω̃(log Ñ).

Thus, if a algorithm can distinguish val(Gk×`sym) = 1 from val(Gk×`sym) 6 2−Ω̃(log Ñ) in time poly-
nomial in Ñ , then it can also solve 3SAT in time 2O(n/ logn) time, violating ETH.

Improved Hardness of Approximation Result Based on Gap-ETH

The polyloglogN loss in the exponent of Lemma 3.19 is due to the quasi-linear size of the PCP
and can be eliminated if we instead assume the stronger Gap-ETH:

Lemma 3.22. Assuming Gap-ETH, for any sufficiently large i, no algorithm can, given any fully-
dense MAX 2-CSP G of size N , distinguish val(G) = 1 from val(G) 6 N−1/i in time N Õ(i).

The proof is essentially the same as that of Lemma 3.19 except that, since the size of our starting
game is linear, we can now use birthday repetition for k = ` = Θi(n) instead of n/polylog(n).

Proof of Lemma 3.22. Given Gap-3SAT instance φ of m variables. Let G be its clause/variable
game. Observe that G has m′ = O(m) variables, O(1) alphabet size and maximum degree O(1).
Consider Gk×`sym , the symmetrized (k×`)-birthday repetition with k = ` = βn log i

i
where β is a small

constant which to be chosen later.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 53

Let ñ and q̃ be the number of variables and the alphabet size of Gk×`sym . We have q̃ 6 2O(k) 6

2O(βn log i
i). Moreover, when β is sufficiently small, we have

ñ 6

(
m′

k

)2

6

(
em′

k

)2k

=
(
O

(
i

β log i

))2l

6 2O
(
βm log2 i log(1/β)

i

)
6 2O

(√
βm log2 i

i

)
.

As for the completeness and soundness of the reduction, first, it is obvious that val(φ) = 1
implies val(Gk×`sym) = 1. Otherwise, from Proposition 3.21, if val(φ) 6 1−ε, then val(G) 6 1−ε/3.
By by Theorem 3.15 and Lemma 3.18, we have

val(Gk×`sym) 6 (1− Ω(ε))Ω
(
k2
m′

)
6 2−Ω(β2n log2 i/i2) 6 (ñq̃)−Ω(β2/i) = Ñ−Ω(β2/i)

where Ñ = (ñq̃)O(1) 6 2O(
√
βn log2 i/i) is the size of Gk×`sym .

Pick β to be sufficiently small so that Ñ 6 O(2δm log2 i/i) where δ is the constant from Gap-
ETH. If an algorithm distinguishes val(Gk×`sym) = 1 from val(Gk×`sym) 6 (Ñ)−Ω(1/i) inO(Ñ

i
log2 i) time,

it also distinguishes val(φ) = 1 from val(φ) 6 1− ε in time O(2δm), violating Gap-ETH.

Lasserre Integrality Gap for Fully-Dense MAX 2-CSP

We will now show how to get a polynomial integrality gap for the Lasserre relaxation for dense
CSPs. In particular, even for Ω̃(i)-level of Lasserre hierarchy, the integrality gap remains N1/i for
fully-dense MAX 2-CSP, as stated formally below.

Lemma 3.23. For any sufficiently large N and any sufficiently large i, there exists a fully-dense

MAX 2-CSP instance G of size N such that optΩ̃(i)
Las (G) = 1 and val(G) 6 N−1/i.

One way to interpret Lemma 3.23 is as a lower bound for SDP or LP hierarchies algorithm
for dense MAX 2-CSP. From this perspective, our result indicates that one cannot hope to use
Õ(i)-level Lasserre relaxation to approximate fully-dense MAX 2-CSP to within a factor of N1/i.
Since the Lasserre hierarchy is stronger than the SA and the Lovász-Schrijver hierarchies [Lau03],
such lower bound holds for those hierarchies as well. Interestingly, this lower bound essentially
matches, up to a factor of polylog(i) in the number of levels, our algorithmic result presented in
the next section, justifying the running time of our algorithm.

On the other hand, Lemma 3.23 can be viewed as an unconditional analogue of Lemma 3.22.
In this sense, we get rid of Gap-ETH assumption at the expense of restricting our computational
model to only Lasserre relaxation. Other than those differences, the two lemmas are essentially
the same. In fact, to prove Lemma 3.23, we use an unconditional analogue of Gap-ETH under the
Lasserre hierarchy model, which is stated below.

Lemma 3.24. For sufficiently largeN , there exists a projection game G of sizeN with the following
properties.

• (Vector Completeness) optΩ(N)
Las = 1.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 54

• (Soundness) val(G) = 1− ε for some constant ε > 0.

• (Bounded Degree) Each variable has constant degree.

• (Bounded Alphabet Size) The alphabet size is constant.

Results similar to Lemma 3.24 have been proven before in [Bha+12] and [Man15] by applying
the clause/variable reduction to integrality gap instances of MAX k-CSP from [Sch08; Tul09]. For
a detailed proof of Lemma 3.24, please refer to Appendix D.2 in the full version of [MR17a].

With the help of Lemma 3.24, the proof of Lemma 3.23 proceeds in a similar fashion as that
of Lemma 3.22. However, while the soundness argument remains unchanged, we need to ar-
gue completeness for Lasserre solution instead. On this front, several works (including [Sch08;
Tul09; Bha+12; Man15]) have argued similar statements before. Roughly speaking, it holds that,
if the reduction produces each new constraint by a “composition of at most t constraints”, then
the Lasserre solution carries over to the new instance, albeit at the multiplicative loss of t in the
number of levels. In the context of birthday repetition games, this implies the following.

Observation 3.25. For any two-prover game G, if optrLas(G) = 1 for some r > 2(k + `), then

opt
r
k+`
Las (Gk×`sym) = 1.

We will now prove the above observation in this dissertation; interested readers can refer to
Appendix D.1 in the full version of [MR17a], which contains a full proof of the statement.

We now move on to prove Lemma 3.23.

Proof of Lemma 3.23. We start with a projection game G from Lemma 3.24 of size N with n 6 N
variables, q = O(1) alphabet size and maximum degree d = O(1). Consider the fully-dense MAX

k-CSP Gk×`sym , the symmetrized (k × `)-birthday repetition of G, with k = ` = n log i
i

.
Let ñ and q̃ be the number of variables and the alphabet size of Gk×`sym . We have q̃ 6 q2l 6

2O(N log i
i). Moreover, we have ñ 6

(
n
l

)2
6 2O

(
N log2 i

i

)
.

Furthermore, from Observation 3.25 and from opt
Ω(N)
Las (G) = 1, we have optΩ(N/k)

Las (Gk×`sym) =
opt

Ω̃(i)
Las (Gk×`sym) = 1. Finally, by Theorem 3.15 and Lemma 3.18, we have val(Gk×`sym) 6 (1 −

Ω(ε))Ω(k2/n) 6 (ñq̃)−Ω(1/i) = (Ñ)−Ω(1/i) where Ñ = (ñq̃)O(1) is the size of Gk×`sym . This com-
pletes our proof.

3.3.2 Almost Optimal AM(2) Protocol for 3SAT

In [AIM14], Aaronson et al. provided an AM(2) protocol of length Õ(
√
n) for 3SAT with com-

pleteness 1 and soundness δ for some constant δ < 1. However, since they did not prove that
birthday repetition can amplify soundness, they could not get a similar result for arbitrarily small
δ. In that case, they invoke Moshkovitz-Raz PCP [MR10], which, incontrast to Dinur’s PCP,

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 55

gives arbitrarily small soundness. However, due to the length of Moshkovitz-Raz PCP, their pro-
tocol length is n1/2+o(1)poly(1/δ). Since we have proved that the birthday repetition amplifies the
soundness, we overcome this obstacle and we can prove Lemma 3.12 easily as follows.

Proof of Lemma 3.12. Given a 3SAT instance φ of n clauses, the protocol works as follows.
Arthur uses Dinur’s PCP Theorem and the clause/variable reduction to reduce φ to G with n′ =
n logc n variables, constant alphabet size and constant maximum degree. He then produces a
free game Gk×` = (X, Y,X × Y,ΣX ,ΣY , {P(x,y)}), the (k × `)-birthday repetition of G, with
k = ` = d(logc/2 n)

√
n log(1/δ) for some large constant d to be chosen later.

Arthur then sends independent random questions to the Merlins where the questions for first
and second Merlins are drawn from X and Y respectively. The proof of each Merlin is an assign-
ment to the variable he is given. Finally, if the two Merlins receive questions x ∈ X, y ∈ Y , Arthur
uses the predicate P(x,y) to check whether the assignments he received satisfy the predicate. If so,
Arthur accepts. Otherwise, he rejects.

It is obvious that, when φ ∈ 3SAT, i.e., φ is satisfiable, Gk×` is satisfiable and Arthur always
accepts if Merlins answer according to a satisfying assignment of Gk×`. On the other hand, if φ /∈
3SAT, val(Gk×`) 6 (1 − Ω(ε))Ω(k2/n′), which is at most δ for sufficiently large d. Hence, the
soundness of the protocol is at most δ. Finally, observe that the protocol has length 2k log n =
Õ(
√
n log(1/δ)) as desired.

3.4 Improved Approximation Algorithm for Dense CSPs
Before describing our algorithm, we first explain ingredients central in conditioning-based algo-
rithms: a conditioning operator and a rounding procedure.

Conditioning Sherali-Adams Solution. Let µ = {XS} be a solution of an r-level SA relax-
ation of a MAX k-CSP instance. For any set T ⊆ V of size at most r − k and for any φT ⊆ ΣT

such that XT (φT) > 0, µ conditioned on φT is µ|φT = {X̃S}|S|6r−|T | defined as

X̃S(φS) =

XS∪T (φS ◦ φT)/XT (φT) if φS is consistent with φT ,
0 otherwise.

It is not hard to see that µ|φT is an (r − |T |)-level SA solution.
(Derandomized) Independent Rounding. A naive way to arrive at an actual solution to

the MAX k-CSP instance from a SA relaxation solution {XS}|S|6r is to independently sample
each variable x based on the distribution Xx. Observe that the rounded solution expected value is
ES={xi1 ,...,xik}∼W

[
EφS∼Xi1×···×Xik [PS(φS)]

]
. Note that such rounding can be easily derandomized

via a standard conditional expectation argument.
Without going into too much detail, conditioning-based algorithms typically proceed as fol-

lows. First, solve a LP/SDP relaxation of the problem. As long as the solution has large “total
correlation”, try conditioning it on an assignment to a random variable. Once the solution has
small total correlation, use independent rounding on the solution to get the desired assignment.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 56

The intuition behind such algorithms is that, if the solution has large total correlation, conditioning
on one variable substantially reduces the total correlation. Hence, after a certain number of rounds
of conditioning, the total correlation becomes small. At this point, the solution is quite independent
and independent rounding gives a good approximation.

Our algorithm will also follow this framework. In fact, our algorithm remains largely un-
changed from [YZ14] with the exception that we will use a stronger relaxation to reduce our
work in arguing about the value of conditioned solutions. However, our main contribution lies
in the analysis: we will show that independent rounding does well even when the total corre-
lation is large (super-constant). This is in contrast to the previously known conditioning-based
algorithms [BRS11; RT12; YZ14], all of which require their measures of correlation to be small
constants to get any meaningful result.

The new relaxation that we will used is the following. For convenience, we call this the r-level
relaxation Sherali-Adams with Conditioning (SAC) relaxation of MAX k-CSP.

maximize λ
subject to {XS}|S|6r is a valid r-level SA solution

ES∼W [EφS∼(µ|φT)[PS(φS)]] > λ ∀T, φT s.t. |T | 6 r − k,XT (φT) > 0.

At a glance, the program above may not look like a linear program. Fortunately for us,
ES∼W [EφS∼(µ|φT)[PS(φS)]] > λ can be written as ES∼W [∑φS∈ΣS XS∪T (φS ◦φT)PS∪T (φS ◦φT)] >
λXT (φT), which is linear when λ is a constant rather than a variable. As a result, we can solve
the optimization problem above by binary search on λ: for a fixed λ, we can check whether the
inequalities is feasible using a typical polynomial-time algorithm for LP. Hence, we can approxi-
mate λ to within arbitrarily small additive error in polynomial time. To compute λ exactly, observe
thatW is part of the input and is expressible in polynomial number of bits. This means that there
are only exponentially many choices for λ; in particular, if all probabilities inW has only b digits
after decimal point, then so does λ. Hence, the described binary search can find λ in (nq)O(r) time.

We now state our algorithm. In summary, we first solve an O(k2i
∆ + k)-level SAC relaxation

for the instance. We then try every possible conditioning (i.e., on every set T ⊆ V of size at most
k2i/∆ and every assignment to T). For each conditioned solution, we use independent rounding
to arrive at an assignment. Finally, output the best such assignment. The pseudo-code for the full
algorithm is shown below in Figure 3.1.

The rest of the section is organized as follows. In Subsection 3.4.1, we formally define total
correlation and state a bound from [YZ14; MR17a; JKR19] on the total correlation of conditioned
solutions. Next, in Subsection 3.4.2, we state and prove our main contribution of this section, i.e.,
that even when the total correlation is super-constant, we can still get a non-trivial approxima-
tion from independent rouding. Finally, in Subsection 3.4.3, we put these together and prove the
approximation guarantee for our algorithm.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 57

Algorithm 1 Approximation Algorithm for Dense CSPs
Input: a ∆-dense MAX k-CSP instance G = (V,W , {PS}), an
integer i
Output: An assignment φ : V → Σ
r ← (k2i/∆ + k)
do

r ← r + 1
µ← solution of r-level of SAC relaxation for G.
λ← value of µ

while (r − k)λ < k2i/∆ and r < n
φ← ∅
for T ⊆ V of size at most r − k do

for φT ∈ ΣT do
φ′ ← independent rounding of µ|φT
if val(φ′) > val(φ) then

φ← φ′.
return φ

Figure 3.1: Pseudo-code of Our Approximation Algorithm for Dense CSPs. The only difference
between this pseudo-code and the above summary of our algorithm is that we need to iteratively
increase the number of levels of the hierarchy. This is due to the fact that, as we will see in
Lemma 3.28, the number of levels needed depends on the value of the solution. More specifically,
we want r > k2i/(∆λ) + k

3.4.1 Total Correlation of Conditioned Sherali-Adams Relaxation Solution
We start by defining the total correlation of a SA solution. For a k-level SA solution µ = {XS} and
for a k-size set S = {xi1 , . . . , xik} ∈

(
V
k

)
, the total correlation among xi1 , . . . , xij is Cµ(xS) :=

C(σi1 ; . . . ;σik) where σi1 , . . . , σik are jointly sampled from X{xi1 ,...,xik}. The total correlation of µ
is then defined as C(µ) = ES∼W [Cµ(xS)]. We call µ a κ-independent solution if C(µ) 6 κ.

Yoshida and Zhou [YZ14] show that, for any l > 0 and any (l + k)-level SA solution µ, there
exists a subset T of size at most l and an assignment φT ∈ ΣT such that the total correlation
of (µ|φT) is at most 3k log q

l∆ where ∆ is the density of the instance. In [MR17a], this bound was
improved to k2 log q

l∆ via a slightly sharper analysis. Minor mistakes in those proofs were later found
and corrected in [JKR19]; we state the corrected version of the statement below.

Lemma 3.26 ([YZ14; MR17a; JKR19]). Let µ be any r-level SA solution of a ∆-dense MAX k-
CSP instance G = (V,W , {PS}) with alphabet size q. Then, for any 0 < l 6 r − k, there exists
t 6 l and φT ∈ Σt such that ET∼(Vt)[C(µ|φT)] 6 k2 log q

l∆ .

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 58

3.4.2 New Bound on Rounding κ-independent Solution
In this subsection, we prove our main lemma for this section. For the known conditioning-based
algorithms, once the solution is fairly independent, it is easy to show that independent rounding
gives a good solution. In particular, Raghavendra-Tan [RT12] and Yoshida-Zhou[YZ14] proofs,
whose measures of correlation are the same as ours6, conclude this step by using the Pinsker’s
inequality, which states that, for any distributions X and Y , DKL(X‖Y) > (2 log 2)‖X − Y‖2

1
where ‖X −Y‖1 = ∑

θ∈Θ |X (θ)−Y(θ)| is the L1-distance between X and Y . Roughly speaking,
X is going to be the distribution in the LP solution whereas Y is the distribution resulting from
independent rounding. Hence, when they bound DKL(X‖Y) to be at most a small constant ε, it
follows immediately that any predicate f with domain supp(X) in [0, 1] satisfies |Ex∼X [f(x)] −
Ey∼Y [f(y)]| 6

√
ε/(2 log 2). Thus, if Ex∼X [f(x)], the value of the LP solution, is large, then

Ey∼Y [f(y)], the expected value of a solution from independent rouding, is also large.
While this works great for small constant ε, it does not yield any meaningful bound when ε is

larger than a certain constant. A natural question is whether one can prove any non-trivial bound
for super-constant ε. In this regard, we prove the following lemma, which positively answers the
question. For convenience, 00 is defined to be 1 throughout this and next subsections and, whenever
we write the expression (δδe−κ)

1
1−δ (1− δ) with δ = 1, we define it to be 0.

Lemma 3.27. Let X and Y be any two probability distributions over a finite domain Θ such
that DKL(X‖Y) 6 κ and let f : Θ → [0, 1] be any function. If Ex∼X [f(x)] = 1 − δ, then

Ey∼Y [f(y)] >
(
δδe−κ

) 1
1−δ (1− δ).

Proof of Lemma 3.27. We assume without loss of generality that δ /∈ {0, 1} since, when δ = 0, we
can modify f infinitesimally small and take the limit of the bound and, when δ = 1, the bound is
trivial.

Let Z and T be two probability distributions on Θ such that Z(θ) = X (θ)f(θ)
1−δ and T (θ) =

X (θ)(1−f(θ))
δ

. Observe that Z and T are indeed valid distributions on Θ since Eθ∼X [f(θ)] = 1 −
δ. Observe that supp(Z), supp(T) ⊆ supp(X), which is in turn contained in supp(Y) since
DKL(X‖Y) 6=∞.

From Weighted A.M.-G.M. inequality, we have

Ey∼Y [f(y)] =
∑
θ∈Θ
Y(θ)f(θ) >

∑
θ∈supp(Z)

Z(θ)
(
Y(θ)f(θ)
Z(θ)

)

(Weighted A.M.-G.M. inequality) >
∏

θ∈supp(Z)

(
Y(θ)f(θ)
Z(θ)

)Z(θ)

= (1− δ)
 ∏
θ∈supp(Z)

(
Y(θ)
X (θ)

)X (θ)f(θ)
 1

1−δ

.

6In [RT12], only 2-CSPs were studied and they measure correlation by mutual information of the variables in the
constraints.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 59

We will next bound
∏
θ∈supp(Z)

(
Y(θ)
X (θ)

)X (θ)f(θ)
by writing it in term of DKL(X‖Y) and a small

term which will be bounded later.

∏
θ∈supp(Z)

(
Y(θ)
X (θ)

)X (θ)f(θ)

=
 ∏
θ∈supp(X)

(
Y(θ)
X (θ)

)X (θ)
 ∏

θ∈supp(T)

(
X (θ)
Y(θ)

)X (θ)(1−f(θ))

= 1
eDKL(X‖Y)

 ∏
θ∈supp(T)

(
X (θ)
Y(θ)

)X (θ)(1−f(θ))

(Since DKL(X‖Y) 6 κ) > e−κ

 ∏
θ∈supp(T)

(
X (θ)
Y(θ)

)X (θ)(1−f(θ))

Intuitively, the term
∏
θ∈supp(T)

(
X (θ)
Y(θ)

)X (θ)(1−f(θ))
should not be much smaller than one since

the sum of the exponent is just
∑
θ∈supp(T)X (θ)(1 − f(θ)) = δ. Indeed, this term is small as we

can bound it as follows:

∏
θ∈supp(T)

(
X (θ)
Y(θ)

)X (θ)(1−f(θ))

=
 ∏
θ∈supp(T)

(
δ

1− f(θ) ·
T (θ)
Y(θ)

)T (θ)
δ

>

 ∏
θ∈supp(T)

(
δ · T (θ)
Y(θ)

)T (θ)
δ

= δδ
(
eDKL(T ‖Y)

)δ
> δδ

The last inequality comes from the fact that the informational divergence of any two distributions
is no less than zero.

Combining the three inequalities, we have Eθ∼Y [f(θ)] > (1− δ)
(
e−κδδ

) 1
1−δ , as desired.

Now, we will use Lemma 3.27 to give a new bound for the value of the output from independent
rounding on a k-level κ-independent solution of the Sherali-Adams Hierarchy.

Lemma 3.28. If {XS} is a k-level κ-independent SA solution of value 1 − δ for a MAX k-CSP
instance (V,W , {PS}), independent rounding gives an assignment of value > (δδe−κ)

1
1−δ (1− δ).

Proof. Again, we assume without loss of generality that δ /∈ {0, 1}.
For each k-size set S = {xi1 , . . . , xik}, let κS = DKL(XS‖Xi1 × · · · × Xik) and δS = 1 −

EφS∼XS [PS(φS)]. Recall that the value of {XS} in the SA relaxation is ES∼W [EφS∼XS [PS(φS)]] =
(1 − δ). Hence, we have ES∼W [δS] = δ. Moreover, since {XS} is κ-independent, we have
ES∼W [κS] 6 κ.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 60

As stated earlier, the independent rounding algorithm gives an assignment of expected value

ES={xi1 ,...,xik}∼W
[
EφS∼Xi1×···×Xik [PS(φS)]

]
.

From Lemma 3.27, we have EφS∼Xi1×···×Xik [PS(φS)] > (δδSS e−κS)
1

1−δS (1− δS). Thus, the assign-

ment from the rounding procedure has value at least ES∼W [(δδSS e−κS)
1

1−δS (1− δS)].
Next, let Y and Z be distributions on

(
V
k

)
defined by Y(S) = W(S)(1−δS)

(1−δ) and Z(S) = W(S)δS
δ

.
Y and Z are valid distributions since ES∼W [δS] = δ.

We can now bound ES∼W [(δδSS e−κS)
1

1−δS (1− δS)] as follows:

ES∼W [(δδSS e−κS)
1

1−δS (1− δS)] =
∑

S∈(Vk)
W(S)(δδSS e−κS)

1
1−δS (1− δS)

= (1− δ)
∑

S∈supp(Y)
Y(S)(δδSS e−κS)

1
1−δS

(Weighted A.M.-G.M. inequality) > (1− δ)
∏

S∈supp(Y)

(
δδSS e

−κS
) Y(S)

1−δS

= (1− δ)
 ∏
S∈supp(Y)

(
δδSS e

−κS
)W(S)

 1
1−δ

(Since ES∼W [κS] = κ and supp(Y) ⊆ supp(W)) > (1− δ)
e−κ ∏

S∈supp(Y)
δ
W(S)δS
S

 1
1−δ

= (1− δ)
e−κ ∏

S∈supp(Z)
δ
W(S)δS
S

 1
1−δ

The last equality is true because δS = 1 for every S ∈ supp(Z) − supp(Y) and δS = 0 for every
S ∈ supp(Y)− supp(Z).

We can now write
∏
S∈supp(Z) δ

W(S)δS
S as

∏
S∈supp(Z)

δ
W(S)δS
S =

 ∏
S∈supp(Z)

(
δ · Z(S)
W(S)

)Z(S)
δ

= δδ(eDKL(Z‖X))δ

(Since DKL(Z‖X) > 0) > δδ.

Combining the two inequality yields ES∼W [(δδSS e−κS)
1

1−δS (1−δS)] > (1−δ)(e−κδδ)
1

1−δ , which
completes the proof of the lemma.

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 61

3.4.3 New Approximation Guarantee for the Algorithm
With Lemma 3.26 and Lemma 3.28 set up, we now prove the algorithmic guarantee for Algo-
rithm 1.

Theorem 3.29. For any MAX k-CSP instance G of value 1−δ > 0 and density ∆ > 0, Algorithm 1
runs in time NO(ki

(1−δ)∆) and outputs an assignment of value at least (1− δ)δ
δ

1−δ /q1/i.

Proof. Observe that the running time is (nq)O(r) where r is the maximum level of the SAC relax-
ation solved by the algorithm. Since the program is a relaxation of MAX k-CSP, λ is always at
least 1 − δ. By the condition of the loop, r is at most 1 + k + k2i

(1−δ)∆ . Hence, the running time of

the algorithm is NO(ki
(1−δ)∆).

Next, we will argue about the value of the output assignment. From Lemma 3.26, there exists
a set T ⊆ V of size at most k2i

λ∆ and an assignment φT ∈ ΣT such that µ|φT is an (λ log q/i)-
independent solution. Moreover, from how SAC program is defined, we know that valSA(µ|φT) >
λ. As a result, from Lemma 3.28, independent rounding on µ|φT gives an assignment of value at
least

((1− λ)1−λe−λ log q/i) 1
λλ = λ(1− λ)

1−λ
λ /q1/i.

Finally, since |T | 6 k2i
λ∆ 6 r − k, it is considered in the conditioning step of the algorithm. Thus,

the output assignment is of value at least λ(1− λ) 1−λ
λ /q1/i > (1− δ)δ

δ
1−δ /q1/i.

Observe that, when the instance is satisfiable, δ = 0 and the value of the output assignment is at
least 1/q1/i. By taking i to be large enough, one arrives at a quasi-polynomial time approximation
scheme (QPTAS) for dense MAX k-CSP, as stated below. We note that our algorithm unfortu-
nately does not give a QPTAS for the nonsatisfiable case since we also lose an additional factor of
δ

δ
1−δ in the value of the output solution.

Corollary 3.30. There is an algorithm that, given a satisfiable ∆-dense MAX k-CSP instance G
and any 1/2 > ε > 0, runs inNO(k log q

ε∆) time and output an assignment to G of value at least 1−ε.

Proof. Run Algorithm 1 with i = log q/ log(1 + ε). From Theorem 3.29, the output assignment
has value at least q1/i = 1/(1 + ε) > 1 − ε while the running time is NO(ki∆). Finally, we
conclude by observing that i = log q/ log(1+ε) 6 O(log q/ε), which follows from the Bernoulli’s
inequality.

3.5 Discussion and Open Problems
We prove that birthday repetition can amplify gap in hardness of approximation. This has several
interesting consequences to the approximability of dense MAX k-CSP. First, we prove almost-
polynomial ratio polynomial-time ETH-hardness for the problem. Second, we show, assuming the
stronger Gap-ETH, that it is impossible to approximate dense MAX 2-CSP to within factor N1/i

CHAPTER 3. A BIRTHDAY REPETITION THEOREM AND ITS APPLICATIONS 62

in time N Õ(i). Third, we prove a similar integrality gap for Lasserre relaxation of the problem.
Moreover, we provide an approximation algorithm that almost matches our lower bound based on
Gap-ETH and the Lasserre integrality gap.

While our results settle down the approximability of dense MAX k-CSP up to the dependency
on k and a factor of polylogi in the exponent, our work also raises many interesting questions,
which we list below.

• What is the right dependency on ε in the birthday repetition theorem? It is unclear whether
the dependency of 1/ log(1/ε) is needed in the exponent. We remark here that, in the case
thatQ is uniform over a regular graph, Ko [Ko18] gives a lower bound that is tight up to the
factor of 1/ log(1/ε) in the exponent.

• Can our approximation algorithm for dense k-CSP be made to run in qOk(i)+NO(1) time? As
stated earlier, Yaroslavtev’s algorithm [Yar14] runs in qOk(log q/ε2) +NO(1) time and provides
an ε additive approximation to the problem. As for our algorithm, we can, in fact, turn
the condioning step into a randomized algorithm where we just randomly pick a set and
an assignment to condition7, which takes only linear time. The bottleneck, however, is
solving the linear program (SAC relaxation), which takes NΩ(r) time where r is the number
of rounds. Related to this, Barak et al. [BRS11] showed that their Lasserre hierarchy-based
algorithm runs in 2rNO(1) instead of NO(r) time8. It is an interesting question to ask whether
our algorithm can also be sped up using their technique.

• Can Lemma 3.27 be used to prove new approximation guarantees for other problems?
Lemma 3.27 is a generic bound on the (multiplicative) difference of expectations of a func-
tion on two distributions based on their informational divergence. Hence, it may yield new
approximation guarantees for other correlation-based algorithms as well.

• Is it possible to prove a result similar to Lemma 3.28 without losing a constant factor?
Lemma 3.28 at the heart of our approximatin algorithm has one drawback: when δ is not
zero, we always lose a factor of δ

δ
1−δ . While the loss here is only constant (since it is min-

imized when δ → 1 which gives δ
δ

1−δ > 0.367), it prevents us from getting a QPTAS for
non-satisfiable dense MAX k-CSP. If this factor can be removed, we can establish the num-
ber of levels needed for any approximation ratio from as large as polynomial in q to as small
as any constant.

7This is because the bound in Lemma 3.26 on total correlation of conditioned solution actually holds (in expecta-
tion) for random T and φT sampled according to the marginal distribution XT .

8Note here that the number of rounds r used in Barak et al.’s algorithm is polynomial in the alphabet size q.

63

Chapter 4

Densest k-Subgraph with Perfect
Completeness

In the DENSEST k-SUBGRAPH (DkS) problem, we are given an undirected graph G on n vertices
and a positive integer k 6 n. The goal is to find a set S of k vertices such that the induced subgraph
on S has maximum number of edges. Since the size of S is fixed, the problem can be equivalently
stated as finding a k-subgraph (i.e. subgraph on k vertices) with maximum density.

DENSEST k-SUBGRAPH, a natural generalization of k-CLIQUE [Kar72], was first formulated
and studied by Kortsarz and Peleg [KP93] in the early 90s. Since then, it has been the subject
of intense study in the context of approximation algorithm and hardness of approximation [FS97;
SW98; FL01; FKP01; AHI02; Fei02; Kho06; GL09; RS10; Bha+10; Alo+11; Bha+12; Bar15;
Bra+17]. Despite this, its approximability still remains wide open and is considered by some to be
an important open question in approximation algorithms [Bha+10; Bha+12; Bra+17].

On the algorithmic front, Kortsarz and Peleg [KP93], in the same work that introduced the prob-
lem, gave a polynomial-time Õ(n0.3885)-approximation algorithm for DkS. Feige, Kortsarz and
Peleg [FKP01] later provided an O(n1/3−δ)-approximation for the problem for some constant δ ≈
1/60. This approximation ratio was the best known for almost a decade 1 until Bhaskara et al. [Bha+10]
invented a log-density based approach which yielded anO(n1/4+ε)-approximation for any constant
ε > 0. This remains the state-of-the-art approximation algorithm for DkS.

While the above algorithms demonstrate the main progresses of approximations of DkS in
general case over the years, many special cases have also been studied. Most relevant to our
work is the case where the optimal k-subgraph has high density (e.g. is a k-Clique), in which
better approximations are known [FS97; ST08; MM15; Bar15]. The first and most representative
algorithm of this kind is that of Feige and Seltser [FS97], which provides the following guarantee:
when the input graph contains a k-clique, the algorithm can find an (1 − ε)-dense k-subgraph in
nO(logn/ε) time. We will refer to this problem of finding densest k-subgraph when the input graph is
promised to have a k-clique DENSEST k-SUBGRAPH with perfect completeness. DkS with perfect

1Around the same time as Bhaskara et al.’s work [Bha+10], Goldstein and Langberg [GL09] presented an algo-
rithm with approximation ratio O(n0.3159), which is slightly better than [FKP01] but is worse than [Bha+10].

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 64

completeness should of course reminds us of dense CSPs from the previous section, as both have
quasi-polynomial time algorithm and hence are unlikely to be NP-hard to approximate. Moreover,
Feige and Seltser’s algorithm [FS97] can2 achieve approximation ratio nε in time nO(1/ε), further
suggesting the similarity between dense CSPs and DkS with perfect completeness.

Although many algorithms have been devised for DkS, relatively little is known regarding its
hardness of approximation. While it is commonly believed that the problem is hard to approximate
to within some polynomial ratio [Alo+11; Bha+12], not even a constant factor NP-hardness of ap-
proximation is known. To circumvent this, Feige [Fei02] came up with a hypothesis that a random
3SAT formula is hard to refute in polynomial time and proved that, assuming this hypothesis, DkS
is hard to approximate to within some constant factor.

Alon et al. [Alo+11] later used a similar conjecture regarding random k-AND to rule out
polynomial-time algorithms for DkS with any constant approximation ratio. Moreover, they
proved hardnesses of approximation of DkS under the following Planted Clique Hypothesis [Jer92;
Kuč95]: there is no polynomial-time algorithm that can distinguish between a typical Erdős-Rényi
random graph G(n, 1/2) and one in which a clique of size polynomial in n (e.g. n1/3) is planted.
Assuming this hypothesis, Alon et al. proved that no polynomial-time algorithm approximates
DkS to within any constant factor. They also showed that, when the hypothesis is strengthened
to rule out not only polynomial-time but also super-polynomial time algorithms for the Planted
Clique problem, their inapproximability guarantee for DkS can be improved. In particular, if no
nO(

√
logn)-time algorithm solves the Planted Clique problem, then 2O(log2/3 n)-approximation for

DkS cannot be achieved in polynomial time.
There are also several inapproximability results of DkS based on worst-case assumptions.

Khot [Kho06] showed, assuming NP 6⊆BPTIME(2nε) for some constant ε > 0, that no polynomial-
time algorithm can approximate DkS to within (1 + δ) factor where δ > 0 is a constant depending
only on ε; the proof is based on a construction of a “quasi-random” PCP, which is then used in
place of a random 3SAT in a reduction similar to that from [Fei02].

While no inapproximability of DkS is known under the Unique Games Conjecture, Raghaven-
dra and Steurer [RS10] showed that a strengthened version of it, in which the constraint graph is
required to satisfy a “small-set expansion” property, implies that DkS is hard to approximate to
within any constant ratio.

Recently, Braverman et al. [Bra+17], showed, assuming ETH, that, for some constant ε > 0,
no nÕ(logn)-time algorithm can approximate DENSEST k-SUBGRAPH with perfect completeness
to within (1 + ε) factor. Their result matches almost exactly with the previously mentioned Feige-
Seltser algorithm [FS97]. In fact, their construction uses the “label-extended graph” of the birthday
repetition game described in the previous section.

Since none of these inapproximability results achieve a polynomial ratio, there have been ef-
forts to prove better lower bounds for restricted classes of algorithms. For example, Bhaskara
et al. [Bha+12] provided polynomial ratio lower bounds against SDP relaxations of DkS. Specif-
ically, for the Sum-of-Squares hierarchy, they showed integrality gaps of n2/53−ε and nε against

2This guarantee was not stated explicitly in [FS97] but it can be easily achieved by changing the degree threshold
in their algorithm DenseSubgraph from (1− ε)n to nε.

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 65

nΩ(ε) and n1−O(ε) levels of the hierarchy respectively. (See also [Man15; Chl+17b] in which 2/53
in the exponent was improved to 1/14.) Unfortunately, it is unlikely that these lower bounds can be
translated to inapproximability results and the question of whether any polynomial-time algorithm
can achieve subpolynomial approximation ratio for DkS remains an intriguing open question.

Our Results
We rule out, under the exponential time hypothesis (Hypothesis 1), polynomial-time approximation
algorithms for DkS (even with perfect completeness) with slightly subpolynomial ratio:

Theorem 4.1. There exists c > 0 such that, assuming ETH, no polynomial-time algorithm can,
given a graph G on n vertices and a positive integer k 6 n, distinguish between the following two
cases:

• There exist k vertices of G that induce a k-clique.

• Every k-subgraph of G has density at most n−1/(log logn)c .

If we assume the stronger gap exponential time hypothesis (Hypothesis 3), the ratio can be
improved to ng(n) for any 3 g ∈ o(1). In fact, we can get an even finer-grained trade-off: to achieve
nε-approximation, the running time of the algorithm has to be nΩ̃(1/ε1/3), as formalized below.

Theorem 4.2. For any ν > 0, assuming Gap-ETH, there is no algorithm that, given any graph

G and any ε > 0, runs in n
O

(
1

ε1/3·log4/3+ν (1/ε)

)
time and can distinguish between the following two

cases:

• There exist k vertices of G that induce a k-clique.

• Every k-subgraph of G has density at most n−ε.

Recall that, for DkS with perfect completeness, the aforementioned Feige-Seltser algorithm
achieves an nε-approximation in time nO(1/ε) for every ε > 0 [FS97]. Our above lower bound
indeed confirms that, to get better approximation ratio, more running time is needed. Nonetheless,
it does not yet resolve the correct trade-off between these parameters, and it remains an interesting
open question to bridge the gap of the running time between nO(1/ε) in the upper bound of [FS97]
and nΩ̃(1/ε1/3) in our above lower bound.

Comparison to Previous Results. In terms of inapproximability ratios, the ratios ruled out
in this work are almost polynomial and provides a vast improvement over previous results. Prior
to our result, the best known ratio ruled out under any worst case assumption is only any con-
stant [RS10] and the best ratio ruled out under any average case assumption is only 2O(log2/3 n) [Alo+11].
In addition, our results also have perfect completeness, which was only achieved in [Bra+17] under
ETH and in [Alo+11] under the Planted Clique Hypothesis but not in [Kho06; Fei02; RS10].

3Recall that g ∈ o(1) if and only if limn→∞ g(n) = 0.

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 66

Regarding the assumptions our results are based upon, the average case assumptions used
in [Fei02; Alo+11] are incomparable to ours. The assumption NP 6⊆BPTIME(2nε) used in [Kho06]
is also incomparable to ours since, while not stated explicitly, ETH and Gap-ETH by default
focus only on deterministic algorithms and our reductions are also deterministic. The strength-
ened Unique Games Conjecture used in [RS10] is again incomparable to ours as it is a statement
that a specific problem is NP-hard. Finally, although Braverman et al.’s result [Bra+17] also re-
lies on ETH, its relation to our results is more subtle. Specifically, their reduction time is only
2Θ̃(
√
m) where m is the number of clauses, meaning that they only need to assume that 3SAT /∈

DTIME(2Θ̃(
√
m)) to rule out a constant ratio polynomial-time approximation for DkS. However, as

we will see in Theorem 4.4, even to achieve a constant gap, our reduction time is 2Ω̃(m3/4). Hence,
if 3SAT somehow ends up in DTIME(2Θ̃(m3/4)) but outside of DTIME(2Θ̃(

√
m)), their result will

still hold whereas ours will not even imply constant ratio inapproximability for DkS.
Implications of Our Results. One of the reasons that DkS has received significant atten-

tion in the approximation algorithm community is due to its connections to many other problems.
Most relevant to our work are the problems to which there are reductions from DkS that preserve
approximation ratios to within some polynomial4. These problems include DENSEST AT-MOST-
k-SUBGRAPH [AC09], SMALLEST m-EDGE SUBGRAPH [CDK12], STEINER k-FOREST [HJ06]
and QUADRATIC KNAPSACK [Pis07]. For brevity, we do not define these problems here. We refer
interested readers to cited sources for their definitions and reductions from DkS to respective prob-
lems. We also note that this list is by no means exhaustive and there are indeed numerous other
problems with similar known connections to DkS (see e.g. [Haj+06; KS07; Kor+11; CHK11;
HIM11; LNV14; Che+15a; CL15; CZ15; SFL15; TV15; Chl+16; Chu+15; Lee16]). Our results
also imply hardness of approximation results with similar ratios to DkS for such problems:

Corollary 4.3. For some c > 0, assuming ETH, there is no polynomial-time n1/(log logn)c-approximation
algorithm for DENSEST AT-MOST-k-SUBGRAPH, SMALLEST m-EDGE SUBGRAPH, STEINER k-
FOREST, QUADRATIC KNAPSACK. Moreover, for any function f ∈ o(1), there is no polynomial-
time nf(n)-approximation algorithm for any of these problems, unless Gap-ETH is false.

4.1 The Reduction and Proofs of The Main Theorems
The reduction from Gap-3SAT to DkS is simple. Given a 3SAT formula φ on n variables x1, . . . , xn
and an integer 1 6 ` 6 n, we construct a graph5 Gφ,` = (Vφ,`, Eφ,`) as follows:

4These are problems whose O(ρ)-approximation gives an O(ρc)-approximation for DkS for some constant c.
5For interested readers, we note that our graph is not the same as the FGLSS graph [Fei+91] of the PCP in which

the verifier reads ` random variables and accepts if no clause is violated; while this graph has the same vertex set as
ours, the edges are different since we check that no clause between the two vertices is violated, which is not checked
in the FGLSS graph. It is possible to modify our proof to make it work for this FGLSS graph. However, the soundness
guarantee for the FGLSS graph is worse.

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 67

• Its vertex set Vφ,` contains all partial assignments to ` variables. That is, each vertex is
{(xi1 , bi1), . . . , (xi` , bi`)} where xi1 , . . . , xi` are ` distinct variables and bi1 , . . . , bi` ∈ {0, 1}
are the bits assigned to them.

• We connect two vertices {(xi1 , bi1), . . . , (xi` , bi`)} and {(xi′1 , bi′1), . . . , (xi′
`
, bi′

`
)} by an edge

iff the two partial assignments are consistent (i.e. no variable is assigned 0 in one vertex and
1 in another), and, every clause in φ all of whose variables are from xi1 , . . . , xi` , xi′1 , . . . , xi′`
is satisfied by the partial assignment induced by the two vertices.

Clearly, if val(φ) = 1, the
(
n
`

)
vertices corresponding to a satisfying assignment induce a

clique. Our main technical contribution is proving that, when val(φ) 6 1− ε, every
(
n
`

)
-subgraph

is sparse:

Theorem 4.4. For any d, ε > 0, there exists τ > 0 such that, for any 3SAT formula φ on n
variables such that val(φ) 6 1 − ε and each variable appears in at most d clauses and for any
integer ` ∈ [n3/4/τ, n/2], any

(
n
`

)
-subgraph of Gφ,` has density 6 2−τ`4/n3

.

We remark that there is nothing special about 3SAT; we can start with any boolean CSP and end
up with a similar result, albeit the soundness deteriorates as the arity of the CSP grows. However,
it is crucial that the variables are boolean; in fact, Braverman et al. [Bra+17] considered a graph
similar to ours for 2CSPs but they were unable to achieve subconstant soundness since their vari-
ables were not boolean6. Specifically, there is a non-boolean 2CSP with low value which results
in the graph having a biclique of size >

(
n
`

)
(see Appendix A of [Man17a]), i.e., one cannot get an

inapproximability ratio more than two starting from a non-boolean CSP.
Once we have Theorem 4.4, the inapproximability results of DkS (Theorem 4.1 and 4.2) can

be easily proved by applying the theorem with appropriate choices of `. We defer these proofs
to Subsection 4.1.2. For now, let us turn our attention to the proof of Theorem 4.4. Recall that
Alon’s lemma [Alo02] (Lemma 2.14) states that every dense graph contains many labelled copies
of bicliques. Equipped with this lemma, our proof strategy is to bound the number of labelled
copies of Kt,t in Gφ,` where t is to be chosen later.

Before we proceed with the proof, we note here that, while the overall proof strategy is similar
to that of the previous chapter, here we have to bound the number of copies of bicliques in the
constructed graph whereas we previously only had to bound the number of copies of bicliques in
the constraint graph.

To bound the number of labelled copies ofKt,t inGφ,`, we will need some additional notations:

• First, let Aφ := {(x1, 0), (x1, 1), . . . , (xn, 0), (xn, 1)} be the set of all single-variable partial
assignments. Observe that Vφ,` ⊆

(
Aφ
`

)
, i.e., each u ∈ Vφ,` is a subset of Aφ of size `.

• Let A : (Vφ,`)t → P(Aφ) be a “flattening” function that, on input T ∈ (Vφ,`)t, outputs the
set of all single-variable partial assignments that appear in at least one vertex in T . In other
words, when each vertex u is viewed as a subset ofAφ, we can writeA(T) simply as

⋃
u∈T u.

6Any satisfiable boolean 2CSP is solvable in polynomial time so one cannot start with a boolean 2CSP either.

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 68

• Let Kt,t := {(L,R) ∈ (Vφ,`)t × (Vφ,`)t | ∀u ∈ L, ∀v ∈ R, u 6= v ∧ (u, v) ∈ Eφ,`} denote
the set of all labelled copies of Kt,t in Gφ,` and, for each A,B ⊆ Aφ, let Kt,t(A,B) :=
{(L,R) ∈ Kt,t | A(L) = A,A(R) = B} denote the set of all (L,R) ∈ Kt,t with A(L) = A
and A(R) = B.

The number of labelled copies of Kt,t in Gφ,` can be written as

|Kt,t| =
∑

A,B⊆Aφ
|Kt,t(A,B)|. (4.1)

To bound |Kt,t|, we will prove the following bound on |Kt,t(A,B)|.

Lemma 4.5. Let φ, n, `, d and ε be as in Theorem 4.4. There exists λ > 0 depending only on d and
ε such that, for any t ∈ N and any A,B ⊆ Aφ, |Kt,t(A,B)| 6

(
2−λ`2/n

(
n
`

))2t
.

Before we prove the above lemma, let us see how Lemma 2.14 and Lemma 4.5 imply Theo-
rem 4.4.

Proof of Theorem 4.4. Assume w.l.o.g. that λ 6 1. Pick τ = λ2/8 and t = (4/λ)(n2/`2). From
Lemma 4.5 and (4.1), we have

|Kt,t| 6 24n ·
(

2−λ`2/n
(
n

`

))2t

6 (2−λ`2/n)t ·
(
n

`

)2t

where the second inequality comes from our choice of t; note that t is chosen so that the 24n factor
is consumed by 2−λ`2/n from Lemma 4.5. Finally, consider any

(
n
`

)
-subgraph of Gφ,`. By the

above bound, it contains at most (2−λ`2/n)t ·
(
n
`

)2t
labelled copies of Kt,t. Thus, from Lemma 2.14

and from ` > n3/4/δ, its density is at most 2 · 2−λ`2/(nt) = 2 · 2−2τ`4/n3
6 2−τ`4/n3 as desired.

We now move on to the proof of Lemma 4.5.

Proof of Lemma 4.5. First, notice that if (x, b) appears in A and (x,¬b) appears in B for some
variable x and bit b, then Kt,t(A,B) = ∅; this is because, for any L with A(L) = A and R with
A(R) = B, there exist u ∈ L and v ∈ R that contain (x, b) and (x,¬b) respectively, meaning that
there is no edge between u and v and, thus, (L,R) /∈ Kt,t(A,B). Hence, from now on, we can
assume that, if (x, b) appears in one of A,B, then the other does not contain (x,¬b). Observe that
this implies that, for each variable x, its assignments can appear in A and B at most two times7 in
total. This in turn implies that |A|+ |B| 6 2n.

Let us now argue that |Kt,t(A,B)| 6
(
n
`

)2t
; while this is not the bound we are looking for yet,

it will serve as a basis for our argument later. For every (L,R) ∈ Kt,t(A,B), observe that, since
7This is where we use the fact that the variables are boolean. For non-boolean CSPs, each variable x can appear

more than two times in one of A or B alone, which can indeed be problematic (see Appendix A of [Man17a]).

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 69

A(L) = A and A(R) = B, we have L ∈
(
A
`

)t
and R ∈

(
B
`

)t
. This implies that Kt,t(A,B) ⊆(

A
`

)t
×
(
B
`

)t
. Hence,

|Kt,t(A,B)| 6
(
|A|
`

)t(|B|
`

)t
. (4.2)

Moreover,
(
|A|
`

)(
|B|
`

)
can be further bounded as

(
|A|
`

)(
|B|
`

)
= 1

(`!)2

`−1∏
i=0

(|A| − i)(|B| − i) 6 1
(`!)2

`−1∏
i=0

(
|A|+ |B|

2 − i
)2

6

(
n

`

)2

(4.3)

where the inequalities come from the AM-GM Inequality and from |A| + |B| 6 2n respectively.
Combining (4.2) and (4.3) indeed yields |Kt,t(A,B)| 6

(
n
`

)2t
.

Inequality (4.2) is very crude; we include all elements of
(
A
`

)
and

(
B
`

)
as candidates for vertices

in L and R respectively. However, as we will see soon, only tiny fraction of elements of
(
A
`

)
,
(
B
`

)
can actually appear in L,R when (L,R) ∈ Kt,t(A,B). To argue this, let us categorize the variables
into three groups:

• x is terrible iff its assignments appear at most once in total inA andB (i.e. |{(x, 0), (x, 1)}∩
A|+ |{(x, 0), (x, 1)} ∩B| 6 1).

• x is good iff, for some b ∈ {0, 1}, (x, b) ∈ A∩B. Note that this implies that (x,¬b) /∈ A∪B.

• x is bad iff either {(x, 0), (x, 1)} ⊆ A or {(x, 0), (x, 1)} ⊆ B.

The next and last step of the proof is where birthday-type paradoxes come in. Before we
continue, let us briefly demonstrate the ideas behind this step by considering the following extreme
cases:

• If all variables are terrible, then |A|+ |B| 6 n and (4.3) can be immediately tightened.

• If all variables are bad, assume w.l.o.g. that, for at least half of variables x’s, {(x, 0), (x, 1)} ⊆
A. Consider a random element u of

(
A
`

)
. Since u is a set of random ` distinct elements of

A, there will, in expectation, be Ω(`2/n) variables x’s with (x, 0), (x, 1) ∈ u. However,
the presence of such x’s means that u is not a valid vertex. Moreover, it is not hard to turn
this into the following probabilistic statement: with probability at most 2−Ω(`2/n), u contains
at most one of (x, 0), (x, 1) for every variable x. In other words, only 2−Ω(`2/n) fraction of
elements of

(
A
`

)
are valid vertices, which yields the desired bound on |Kt,t(A,B)|.

• If all variables are good, then A = B is simply an assignment to all the variables. Since
val(φ) 6 1 − ε, at least εm clauses are unsatisfied by this assignment. As we will argue
below, every element of

(
A
`

)
that contains two variables from some unsatisfied clause cannot

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 70

be in L for any (L,R) ∈ Kt,t(A,B). This means that there are Θε(m) > Ωε(n) prohibited
pairs of variables that cannot appear together. Again, similar to the previous case, it is not
hard to argue that only 2−Ωε,d(`2/n) fraction of elements of

(
A
`

)
can be candidates for vertices

of L.

To turn this intuition into a bound on |Kt,t(A,B)|, we need the following inequality. Its proof
is straightforward and is deferred to Subsection 4.1.1.

Proposition 4.6. Let U be any set and P ⊆
(
U
2

)
be any set of pairs of elements of U such that each

element of U appears in at most q pairs. For any positive integer 2 6 r 6 |U |, the probability that
a random element of

(
U
r

)
does not contain both elements of any pair in P is at most exp

(
− |P |r

2

4q|U |2
)
.

We are now ready to formalize the above intuition and finish the proof of Lemma 4.5. For
the sake of convenience, denote the sets of good, bad and terrible variables by Xg, Xb and Xt

respectively. Moreover, let β := ε/(100d) and pick λ = min{− log(1 − β/2), β/64, ε/(384d)}.
To refine the bound on the size of Kt,t(A,B), consider the following three cases:

1. |Xt| > βn. Since each x ∈ Xt contributes at most one to |A| + |B|, |A| + |B| 6 (1 −
β/2)(2n). Hence, we can improve (4.3) to

(
|A|
`

)(
|B|
`

)
6
(

(1−β/2)n
`

)2
. Thus, we have

|Kt,t(A,B)|
(4.2)
6

(
|A|
`

)t(|B|
`

)t
6

(
(1− β/2)n

`

)2t

6

(
(1− β/2)`

(
n

`

))2t

6

(
2−λ`2/n

(
n

`

))2t

where the last inequality comes from λ 6 − log(1− β/2) and ` > `2/n.

2. |Xb| > βn. Since each x ∈ Xb appears either in A or B, one of A and B must contain
assignments to at least (β/2)n variables inXb. Assume w.l.o.g. thatA satisfies this property.
Let XL

b be the set of all x ∈ Xb whose assignments appear in A. Note that |XL
b | > (β/2)n.

Observe that an element u ∈
(
A
`

)
is not a valid vertex if it contains both (x, 0) and (x, 1)

for some x ∈ XL
b . We invoke Proposition 4.6 with U = A, P = {{(x, 0), (x, 1)} | x ∈

XL
b }, q = 1 and r = `, which implies that a random element of

(
A
`

)
does not contain any

prohibited pairs in P with probability at most exp
(
− |X

L
b |`

2

4|A|2

)
6 exp

(
− (β/2)n`2

4(2n)2

)
, which is

at most 2−2λ`2/n because λ 6 β/64. In other words, at most 2−2λ`2/n fraction of elements of(
A
`

)
are valid vertices. This gives us the following bound:

|Kt,t(A,B)| 6
(

2−2λ`2/n ·
(
|A|
`

))t
·
(
|B|
`

)t (4.3)
6

(
2−λ`2/n

(
n

`

))2t

.

3. |Xt| < βn and |Xb| < βn. In this case, |Xg| > (1 − 2β)n. Let S denote the set of
clauses whose variables all lie in Xg. Since each variable appears in at most d clauses,
|S| > m− (2βn)d > (1− ε/2)m where the second inequality comes from our choice of β
and from m > n/3.

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 71

Consider the partial assignment f : Xg → {0, 1} induced by A and B, i.e., f(x) = b iff
(x, b) ∈ A,B. Since val(φ) 6 1 − ε, the number of clauses in S satisfied by f is at most
(1 − ε)m. Hence, at least εm/2 clauses in S are unsatisfied by f . Denote the set of such
clauses by SUNSAT.

Fix a clause C ∈ SUNSAT and let x, y be two different variables in C. We claim that x, y
cannot appear together in any vertex of L for any (L,R) ∈ Kt,t(A,B). Suppose for the
sake of contradiction that (x, f(x)) and (y, f(y)) both appear in u ∈ L for some (L,R) ∈
Kt,t(A,B). Let z ∈ Xg be another variable8 in C. Since (z, f(z)) ∈ B, some vertex v ∈ R
contains (z, f(z)). Thus, there is no edge between u and v in Gφ,`, which contradicts with
(L,R) ∈ Kt,t.
We can now appeal to Proposition 4.6 with U = A, q = 2d, r = ` and P be the pro-
hibited pairs described above. This implies that with probability at most exp

(
− |P |`

2

8d|A|2
)
6

exp
(
− ε`2

192dn

)
, a random element of

(
A
`

)
contains no prohibited pair from P . In other words,

at most exp
(
− ε`2

192dn

)
fraction of elements of

(
A
`

)
can be candidates for each element of L

for (L,R) ∈ Kt,t(A,B). This gives the following bound:

|Kt,t(A,B)| 6
(

exp
(
− ε`2

192dn

)
·
(
|A|
`

))t
·
(
|B|
`

)t (4.3)
6

(
2−ε`2/(384dn) ·

(
n

`

))2t

.

Since we picked λ 6 ε/(384d), |Kt,t(A,B)| is once again bounded above by
(
2−λ`2/n

(
n
`

))2t
.

In all three cases, we have |Kt,t(A,B)| 6
(
2−λ`2/n

(
n
`

))2t
, completing the proof of Lemma 4.5.

4.1.1 Proof of Proposition 4.6
Proof of Proposition 4.6. We first construct P ′ ⊆ P such that each element of U appears in at
most one pair in P ′ as follows. Start out by marking every pair in P as active and, as long as there
are active pairs left, include one in P ′ and mark every pair that shares an element of U with this
pair as inactive. Since each element of U appears in at most q pairs in P , we mark at most 2q pairs
as inactive per each inclusion. This implies that |P ′| > |P |/(2q).

Suppose that P ′ = {{a1, b1}, . . . , {a|P ′|, b|P ′|}} where a1, b1, . . . , a|P ′|, b|P ′| are distinct ele-
ments of U . Let u be a random element of

(
U
r

)
. For each i = 1, . . . , |P ′|, we have

Pr[{ai, bi} 6⊆ u] = 1−

(
|U |−2
r−2

)
(
|U |
r

)
= 1− r(r − 1)

|U |(|U | − 1)
8If C contains two variables, let z = x. Note that we can assume w.l.o.g. that C contains at least two variables.

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 72

(Since r − 1 > r/2 for all r > 2) 6 1− r2

2|U |2

(Since 1− z 6 exp(−z) for all z ∈ R) 6 exp
(
− r2

2|U |2

)
.

If u does not contain both elements of any pairs in P , it does not contain both elements of any
pairs in P ′. The probability of the latter can be written as

Pr
|P ′|∧
i=1
{ai, bi} 6⊆ u

 =
|P ′|∏
i=1

Pr
{ai, bi} 6⊆ u

∣∣∣∣∣∣
i−1∧
j=1
{aj, bj} 6⊆ u

 .
In addition, since a1, b1, . . . , a|P ′|, b|P ′| are distinct, it is not hard to see that Pr[{ai, bi} 6⊆ u] >

Pr
[
{ai, bi} 6⊆ u

∣∣∣ ∧i−1
j=1{aj, bj} 6⊆ u

]
. Hence, we have

Pr
|P ′|∧
i=1
{ai, bi} 6⊆ u

 =
|P ′|∏
i=1

Pr[{ai, bi} 6⊆ u] 6
(

exp
(
− r2

2|U |2

))|P ′|
= exp

(
−|P

′|r2

2|U |2

)

6 exp
(
− |P |r

2

4q|U |2

)
,

completing the proof of Proposition 4.6.

4.1.2 Proofs of Inapproximability Results of DkS
In this subsection, we prove Theorem 4.1 and 4.2. The proof of Theorem 4.1 is simply by combin-
ing Dinur’s PCP Theorem and Theorem 4.4 with ` = m/polylogm, as stated below.

Proof of Theorem 4.1. For any 3SAT formula ϕ with m clauses, use Theorem 2.2 to produce φ
with m′ = O(mpolylogm) clauses such that each variable appears in at most d clauses. Let ζ be
a constant such that m′ = O(m logζm) and let ` = m/ log2m. Let us consider the graph Gφ,`

with k =
(
n
`

)
where n is the number of variables of φ. Let N be the number of vertices of Gφ,`.

Observe that N = 2`
(
n
`

)
6 n2` 6 (m′)O(`) = 2O(` logm′) = 2o(m).

If ϕ is satisfiable, φ is also satisfiable and it is obvious that Gφ,` contains an induced k-
clique. Otherwise, If ϕ is unsatisfiable, val(φ) 6 1 − ε. From Theorem 4.4, any k-subgraph
of Gφ,` has density at most 2−Ω(`4/n3) 6 2−Ω(m/ log3ζ+8 m) = N−Ω(1/(log logN)3ζ+8), which is at most
N−1/(log logN)3ζ+9 when m is sufficiently large. Hence, if there is a polynomial-time algorithm that
can distinguish between the two cases in Theorem 4.1 when c = 3ζ + 9, then there also exists an
algorithm that solves 3SAT in time 2o(m), contradicting with ETH.

The proof of Theorem 4.2 is even simpler since, under Gap-ETH, we have the gap version of
3SAT to begin with. Hence, we can directly apply Theorem 4.4 without going through Dinur’s
PCP:

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 73

Proof of Theorem 4.2. Let φ be any 3SAT formula with m clauses such that each variable appears
in O(1) clauses. For any constant 1 > γ, ν > 0, let ` = m

(
γ1/3 · log1/3+ν/2(1/γ)

)
and consider

the graph Gφ,` with k =
(
n
`

)
where n is the number of variables of φ. The number of vertices N of

Gφ,` is 2`
(
n
`

)
6 2`

(
en
`

)`
6 2O(` log(m/`)) = 2O(m(γ1/3·log4/3+ν/2(1/γ))).

The completeness is again obvious. For the soundness, if val(φ) 6 1 − ε, from Theo-
rem 4.4, any k-subgraph of Gφ,` has density at most 2−Ω(`4/n3) 6 2−Ω(mγ4/3 log4/3+2ν(1/γ)) 6
N−Ω(γ·log3ν/2(1/γ)), which is at most N−γ when γ is sufficiently small. Now suppose contrapos-
itively that, for some ν > 0, there is an algorithm that, given a graph G and γ, runs in time

N
O

(
1

γ1/3 log4/3+ν (γ)

)
and can distinguish between the two cases in Theorem 4.2. By running this

algorithm on Gφ,`, we can solve Gap-3SAT in time 2O
(

m

logν/2(1/γ)

)
; by picking a sufficiently small

γ, this contradicts with Gap-ETH.

4.2 Discussion and Open Questions
In this chapter, we provide a subexponential time reduction from the gap version of 3SAT to DkS
and prove that it establishes an almost-polynomial ratio hardness of approximation of the latter
under ETH and Gap-ETH. Even with our results, however, approximability of DkS still remains
wide open. Namely, it is still not known whether it is NP-hard to approximate DkS to within some
constant factor, and, no polynomial ratio hardness of approximation is yet known.

Although our results appear to almost resolve the second question, it still seems out of reach
with our current knowledge of hardness of approximation. In particular, to achieve a polynomial
ratio hardness for DkS, it is plausible that one has to prove a long-standing conjecture called the
sliding scale conjecture (SSC) [Bel+93]. In short, SSC essentially states that LABEL COVER is NP-
hard to approximate to within some polynomial ratio. Note here that polynomial ratio hardness for
LABEL COVER is not even known under stronger assumptions such as ETH or Gap-ETH; we refer
the readers to [Din16] and Chapter 9 for more detailed discussions on the topic.

There is in fact an approximation preserving reduction from DkS to LABEL COVER [CHK11]
but it does not provide perfect completeness, which is required in SSC; this leaves a possibility
that a polynomial ratio hardness of approximation of DkS can be achieved without resolving SSC.

Apart from the approximability of DkS, our results also prompt the following natural ques-
tion: since previous techniques, such as Feige’s Random 3SAT Hypothesis [Fei02], Khot’s Quasi-
Random PCP [Kho06], Unique Games with Small Set Expansion Conjecture [RS10] and the
Planted Clique Hypothesis [Jer92; Kuč95], that were successful in showing inapproximability
of DkS also gave rise to hardnesses of approximation of many problems that are not known to
be APX-hard including SPARSEST CUT, MIN BISECTION, BALANCED SEPARATOR, MINIMUM

LINEAR ARRANGEMENT and 2-CATALOG SEGMENTATION [AMS07; Sak10; RST12], is it possi-
ble to modify our construction to prove inapproximability for these problems as well? An evidence
suggesting that this may be possible is the case of ε-approximate Nash Equilibrium with ε-optimal
welfare, which was first proved to be hard under the Planted Clique Hypothesis by Hazan and

CHAPTER 4. DENSEST k-SUBGRAPH WITH PERFECT COMPLETENESS 74

Krauthgamer [HK11] before Braverman, Ko and Weinstein proved that the problem was also hard
under ETH using the birthday repetition framework [BKW15].

75

Chapter 5

VC Dimension and Littlestone’s Dimension

A common and essential assumption in learning theory is that the concepts we want to learn come
from a nice, simple concept class, or (in the agnostic case) they can at least be approximated by a
concept from a simple class. When the concept class is sufficiently simple, there is hope for good
(i.e. sample-efficient and low-error) learning algorithms.

There are many different ways to measure the simplicity of a concept class. The most influential
measure of simplicity is the VC Dimension, which captures learning in the PAC model. We also
consider Littlestone’s Dimension [Lit88], which corresponds to minimizing mistakes in online
learning (see Section 5.2 for definitions). When either dimension is small, there are algorithms
that exploit the simplicity of the class, to obtain good learning guarantees.

We consider the most optimistic setting where the entire universe and concept class are given
as explicit input (a binary matrix whose (x,C)-th entry is 1 iff element x belongs to concept
C). In this setting, both VC Dimension and Littlestone’s Dimension can be computed (exactly1)
in nO(logn) time2. Hence, similar to problems considered earlier in this thesis, the problem of
computing these dimensions are unlikely to be NP-hard.

Nonetheless, two decades ago, it was shown (under appropriate computational complexity as-
sumptions) that neither dimension can be computed in polynomial time [PY96; FL98]. Under
ETH, their reduction also yields a tight running time lower bound of nΩ(logn) to compute the two
dimensions. Such computational intractability of computing the (VC, Littlestone’s) dimension of
a concept class suggests that even in cases where a simple structure exists, it may be inaccessible
to computationally bounded algorithms (see Discussion below).

We prove a (almost) tight running time lower bound, similar to those implied by [PY96; FL98],
that hold even against approximation algorithms, as stated below.

Theorem 5.1 (Hardness of Approximating VC Dimension). Assuming Randomized ETH, approx-
imating VC Dimension to within a (1/2 + o(1))-factor requires nlog1−o(1) n time.

1As discussed in Section 1.1.3, this is unlike dense CSPs and DkS with perfect completeness, for which the exact
versions are NP-hard but QPTASs exist.

2For VC Dimension, this is because the dimension itself is at most logn and hence we can simply enumerate all
sets S ⊆ U or size at most logn and check whether it is shattered. For Littlestone’s Dimension, there is a simple
divide-and-conquer algorithm for it (see Section 5.4.4).

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 76

Theorem 5.2 (Hardness of Approximating Littlestone’s Dimension). There exists an absolute con-
stant ε > 0 such that, assuming Randomized ETH, approximating Littlestone’s Dimension to
within a (1− ε)-factor requires nlog1−o(1) n time.

5.1 Interpretation of the Results
As we mentioned before, the computational intractability of computing the (VC, Littlestone’s)
dimension of a concept class suggests that even in cases where a simple structure exists, it may be
inaccessible to computationally bounded algorithms. We note however that it is not at all clear that
any particular algorithmic applications are immediately intractable as a consequence of our results.

Consider for example the adversarial online learning zero-sum game corresponding to Lit-
tlestone’s Dimension: At each iteration, Nature presents the learner with an element from the
universe; the learner attempts to classify the element, and loses a point for every wrong classifi-
cation; at the end of the iteration, the correct (binary) classification is revealed. The Littlestone’s
Dimension is equal to the worst case loss of the Learner before learning the exact concept. (see
Section 5.2 for a more detailed definition.)

What can we learn from the fact that the Littlestone’s Dimension is hard to compute? The
first observation is that there is no efficient learner that can commit to a concrete mistake bound.
But this does not rule out a computationally-efficient learner that plays optimal strategy and makes
at most as many mistakes as the unbounded learner. We can, however, conclude that Nature’s
task is computationally intractable! Otherwise, we could efficiently construct an entire worst-case
mistake tree (for a concept class C, any mistake tree has at most |C| leaves, requiring |C|− 1 oracle
calls to Nature).

On a philosophical level, we think it is interesting to understand the implications of an in-
tractable, adversarial Nature. Perhaps this is another evidence that the mistake bound model is too
pessimistic?

Also, the only algorithm we know for computing the optimal learner’s decision requires com-
puting the Littlestone’s Dimension. We think that it is an interesting open question whether an
approximately optimal computationally-efficient learner exists.

In addition, let us note that in the other direction, computing Littlestone’s Dimension exactly
implies an exactly optimal learner. However, since the learner has to compute Littlestone’s Dimen-
sion many times, we have no evidence that an approximation algorithm for Littlestone’s Dimension
would imply any guarantee for the learner.

Finally, we remark that for either problem (VC or Littlestone’s Dimension), we are not aware
of any non-trivial approximation algorithms.

5.1.1 Techniques
As with our previous two chapters, we once again follow the “birthday repetition” framework.
However, there are multiple unique challenges we have to overcome for both VC Dimension and
Littlestone’s Dimension, as described below.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 77

VC Dimension The first challenge we have to overcome in order to adapt this framework to
hardness of approximation of VC Dimension is that the number of concepts involved in shattering
a subset S is 2|S|. Therefore any inapproximability factor we prove on the size of the shattered
set of elements, “goes in the exponent” of the size of the shattering set of concepts. Even a small
constant factor gap in the VC Dimension requires proving a polynomial factor gap in the number
of shattering concepts (obtaining polynomial gaps via “birthday repetition” for simpler problems
is an interesting open problem [MR17a; Man17a]). Fortunately, having a large number of concepts
is also an advantage: we use each concept to test a different set of label cover constraints chosen
independently at random; if the original instance is far from satisfied, the probability of passing
all 2Θ(|S|) tests should now be doubly-exponentially small (2−2Θ(|S|))! More concretely, we think of
half of the elements in the shattered set as encoding an assignment, and the other half as encoding
which tests to run on the assignments.

Littlestone’s Dimension Our starting point is the reduction for VC Dimension outlined in the
previous paragraph. While we haven’t yet formally introduced Littlestone’s Dimension, recall
that it corresponds to an online learning model. If the test-selection elements arrive before the
assignment-encoding elements, the adversary can adaptively tailor his assignment to pass the spe-
cific test selected in the previous steps. To overcome this obstacle, we introduce a special gadget
that forces the assignment-encoding elements to arrive first; this makes the reduction to Little-
stone’s Dimension somewhat more involved. Note that there is a reduction by [FL98] from VC
Dimension to Littlestone’s Dimension. Unfortunately, their reduction is not (approximately) gap-
preserving, so we cannot use it directly to obtain Theorem 5.2 from Theorem 5.1.

5.1.2 Related Work
The study of the computational complexity of the VC Dimension was initiated by Linial, Mansour,
and Rivest [LMR91], who observed that it can be computed in quasi-polynomial time. [PY96]
proved that it is complete for the class LOGNP which they define in the same paper. [FL98] reduced
the problem of computing the VC dimension to that of computing Littlestone’s Dimension, hence
the latter is also LOGNP-hard. (It follows as a corollary of our Theorem 5.1 that, assuming ETH,
solving any LOGNP-hard problem requires quasi-polynomial time.)

Both problems were also studied in an implicit model, where the concept class is given in the
form of a Boolean circuit that takes as input an element x and a concept c and returns 1 iff x ∈ c.
Observe that in this model even computing whether either dimension is 0 or not is already NP-hard.
Schafer proved that the VC Dimension is ΣP

3 -complete [Sch99], while the Littlestone’s Dimension
is PSPACE-complete [Sch00]. [MU02] proved that VC Dimension is ΣP

3 -hard to approximate to
within a factor of almost 2; can be approximated to within a factor slightly better than 2 in AM;
and is AM-hard to approximate to within n1−ε.

Another line of related work in the implicit model proves computational intractability of PAC
learning (which corresponds to the VC Dimension). Such intractability has been proved either from
cryptographic assumptions, e.g. [KV94; Kha93; Kha95; Fel+06; Kal+08; KS09; Kli16] or from
average case assumptions, e.g. [DS16; Dan16]. [Blu94] showed a “computational” separation

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 78

between PAC learning and online mistake bound (which correspond to the VC Dimension and
Littlestone’s Dimension, respectively): if one-way function exist, then there is a concept class that
can be learned by a computationally-bounded learner in the PAC model, but not in the mistake-
bound model.

Recently, [BFS16] introduced a generalization of VC Dimension which they call Partial VC
Dimension, and proved that it is NP-hard to approximate (even when given an explicit description
of the universe and concept class).

5.2 Additional Notations and Preliminaries
For a universe (or ground set) U , a concept C is simply a subset of U and a concept class C is a
collection of concepts. For convenience, we sometimes relax the definition and allow the concepts
to not be subsets of U ; all definitions here extend naturally to this case.

The VC and Littlestone’s Dimensions can be defined as follows.

Definition 5.3 (VC Dimension [VC71]). A subset S ⊆ U is said to be shattered by a concept class
C if, for every T ⊆ S, there exists a concept C ∈ C such that T = S ∩ C.

The VC Dimension VC-dim(C,U) of a concept class C with respect to the universe U is the
largest d such that there exists a subset S ⊆ U of size d that is shattered by C.

Definition 5.4 (Mistake Tree and Littlestone’s Dimension [Lit88]). A depth-d instance-labeled tree
of U is a full binary tree of depth d such that every internal node of the tree is assigned an element
of U . For convenience, we will identify each node in the tree canonically by a binary string s of
length at most d.

A depth-d mistake tree (aka shattered tree [BPS09]) for a universe U and a concept class C
is a depth-d instance-labeled tree of U such that, if we let vs ∈ U denote the element assigned to
the vertex s for every s ∈ {0, 1}<d, then, for every leaf ` ∈ {0, 1}d, there exists a concept C ∈ C
that agrees with the path from root to it, i.e., that, for every i < d, v`6i ∈ C iff `i+1 = 1 where `6i
denote the prefix of ` of length i.

The Littlestone’s Dimension L-dim(C,U) of a concept class C with respect to the universe U is
defined as the maximum d such that there exists a depth-d mistake tree for U , C.

An equivalent formulation of Littlestone’s Dimension is through mistakes made in online learn-
ing, as stated below. This interpretation will be useful in our proof.

Definition 5.5 (Mistake Bound). An online algorithm A is an algorithm that, at time step i, is
given an element xi ∈ U and the algorithm outputs a prediction pi ∈ {0, 1} whether x is in the
class. After the prediction, the algorithm is told the correct answer hi ∈ {0, 1}. For a sequence
(x1, h1), . . . , (xn, hn), prediction mistake of A is defined as the number of incorect predictions,
i.e.,

∑
i∈n 1[pi 6= hi]. The mistake bound ofA for a concept class C is defined as the maximum pre-

diction mistake of A over all the sequences (x1, h1), . . . , (xn, hn) which corresponds to a concept
C ∈ C (i.e. hi = 1[xi ∈ C] for all i ∈ [n]).

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 79

Theorem 5.6 ([Lit88]). For any universe U and any concept class C, L-dim(C,U) is equal to the
minimum mistake bound of C,U over all online algorithms.

The following facts are well-know and follow easily from the above definitions.

Fact 5.7. For any universe U and concept class C, we have

VC-dim(C,U) 6 L-dim(C,U) 6 log |C|.

Fact 5.8. For any two universes U1,U2 and any concept class C,

L-dim(C,U1 ∪ U2) 6 L-dim(C,U1) + L-dim(C,U2).

5.2.1 Useful Lemmata
We end this section by listing a couple of lemmata that will be useful in our proofs.

Lemma 5.9 (Chernoff Bound). LetX1, . . . , Xn be i.i.d. random variables taking value from {0, 1}
and let p be the probability that Xi = 1, then, for any δ > 0, we have

Pr
[
n∑
i=1

Xi > (1 + δ)np
]
6

2−δ2np/3 if δ < 1,
2−δnp/3 otherwise.

Lemma 5.10 (Partitioning Lemma [Rub17a, Lemma 2.5]). For any bi-regular bipartite graph
G = (A,B,E), let n = |A| + |B| and r =

√
n/ log n. When n is sufficiently large, there exists a

partition of A ∪B into U1, . . . , Ur such that

∀i ∈ [r], n2r 6 |Ui| 6
2n
r

and

∀i, j ∈ [r], |E|2r2 6 |(Ui × Uj) ∩ E|, |(Uj × Ui) ∩ E| 6
2|E|
r2 .

Moreover, such partition can be found in randomized linear time (alternatively, deterministic
nO(logn) time).

5.3 VC Dimension
In this section, we present our reduction from Label Cover to VC Dimension, stated more formally
below. We note that this reduction, together with Moshkovitz-Raz PCP (Theorem 2.4), with pa-
rameter δ = 1/ log n gives a reduction from 3SAT on n variables to VC Dimension of size 2n1/2+o(1)

with gap 1/2 + o(1), which immediately implies Theorem 5.1.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 80

Theorem 5.11. For every δ > 0, there exists a randomized reduction from a bi-regular Label
Cover instance L = (A,B,E,Σ, {πe}e∈E) such that |Σ| = Oδ(1) to a ground set U and a concept
class C such that, if n := |A| + |B| and r :=

√
n/ log n, then the following conditions hold for

every sufficiently large n.

• (Size) The reduction runs in time |Σ|O(|E|poly(1/δ)/r) and |C|, |U| 6 |Σ|O(|E|poly(1/δ)/r).

• (Completeness) If L is satisfiable, then VC-dim(C,U) > 2r.

• (Soundness) If val(L) 6 δ2/100, then VC-dim(C,U) 6 (1 + δ)r with high probability.

In fact, the above properties hold with high probability even when δ and |Σ| are not constants, as
long as δ > log(1000n log |Σ|)/r.

We remark here that when δ = 1/ log n, Moshkovitz-Raz PCP produces a Label Cover instance
with |A| = n1+o(1), |B| = n1+o(1) and |Σ| = 2polylog(n). For such parameters, the condition δ >
log(1000n log |Σ|)/r holds for every sufficiently large n.

5.3.1 A Candidate Reduction (and Why It Fails)
To best understand the intuition behind our reduction, we first describe a simpler candidate reduc-
tion and explain why it fails, which will lead us to the eventual construction. In this candidate
reduction, we start by evoking Lemma 5.10 to partition the vertices A ∪ B of the Label Cover
instance L = (A,B,E,Σ, {πe}e∈E) into U1, . . . , Ur where r =

√
n/ log n. We then create the

universe U and the concept class C as follows:

• We make each element in U correspond to a partial assignment to Ui for some i ∈ [r], i.e.,
we let U = {xi,σi | i ∈ [r], σi ∈ ΣUi}. In the completeness case, we expect to shatter
the set of size r that corresponds to a satisfying assignment σ∗ ∈ ΣA∪B of the Label Cover
instance L, i.e., {xi,σ∗|Ui | i ∈ [r]}. As for the soundness, our hope is that, if a large set
S ⊆ U gets shattered, then we will be able to decode an assignment for L that satisfies
many constraints, which contradicts with our assumption that val(L) is small. Note that the
number of elements of U in this candidate reduction is at most r · |Σ|O(|E|poly(1/δ)r) = 2Õ(

√
n)

as desired.

• As stated above, the intended solution for the completeness case is {xi,σ∗|Ui | i ∈ [r]},
meaning that we must have at least one concept corresponding to each subset I ⊆ [r]. We
will try to make our concepts “test” the assignment; for each I ⊆ [r], we will choose a set
TI ⊆ A ∪ B of Õ(

√
n) vertices and “test” all the constraints within TI . Before we specify

how TI is picked, let us elaborate what “test” means: for each TI-partial assignment φI that
does not violate any constraints within TI , we create a concept CI,φI . This concept contains
xi,σi if and only if i ∈ I and σi agrees with φI (i.e. φI |TI∩Ui = σi|TI∩Ui). Recall that, if a
set S ⊆ U is shattered, then each S̃ ⊆ S is an intersection between S and CI,φI for some

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 81

I, φI . We hope that the I’s are different for different S̃ so that many different tests have been
performed on S.

Finally, let us specify how we pick TI . Assume without loss of generality that r is even. We
randomly pick a perfect matching between r, i.e., we pick a random permutation πI : [r]→
[r] and let

(
πI(1), πI(2)

)
, . . . ,

(
πI(r − 1), πI(r)

)
be the chosen matching. We pick TI

such that all the constraints in the matchings, i.e., constraints between UπI(2i−1) and UπI(2i)
for every i ∈ [r/2], are included. More specifically, for every i ∈ [r], we include each
vertex v ∈ UπI(2i−1) if at least one of its neighbors lie in UπI(2i) and we include each vertex
u ∈ UπI(2i) if at least one of its neighbors lie in UπI(2i−1). By Lemma 5.10, for every pair in
the matching the size of the intersection is at most 2|E|

r2 , so each concept contains assignments

to at most 2|E|
r

variables; so the total size of the concept class is at most 2r · |Σ|
2|E|
r .

Even though the above reduction has the desired size and completeness, it unfortunately fails
in the soundness. Let us now sketch a counterexample. For simplicity, let us assume that each
vertex in T[r] has a unique neighbor in T[r]. Note that, since T[r] has quite small size (only Õ(

√
n)),

almost all the vertices in T[r] satisfy this property w.h.p., but assuming that all of them satisfy this
property makes our life easier.

Pick an assignment σ̃ ∈ ΣV such that none of the constraints in T[r] is violated. From our
unique neighbor assumption, there is always such an assignment. Now, we claim that the set
Sσ̃ := {xi,σ̃|Ui | i ∈ [r]} gets shattered. This is because, for every subset I ⊆ [r], we can pick
another assignment σ′ such that σ′ does not violate any constraint in T[r] and σ′|Ui = σ̃|Ui if and
only if i ∈ I . This implies that {xi,σ̃|Ui | i ∈ I} = S ∩ C[r],σ′ as desired. Note here that such
σ′ exists because, for every i /∈ I , if there is a constraint from a vertex a ∈ Ui ∩ A to another
vertex b ∈ T[r] ∩B, then we can change the assignment to a in such a way that the constraint is not
violated3; by doing this for every i /∈ I , we have created the desired σ′. As a result, VC-dim(C,U)
can still be as large as r even when the value of L is small.

5.3.2 The Final Reduction
In this subsection, we will describe the actual reduction. To do so, let us first take a closer look at
the issue with the above candidate reduction. In the candidate reduction, we can view each I ⊆ [r]
as being a seed used to pick a matching. Our hope was that many seeds participate in shattering
some set S, and that this means that S corresponds to an assignment of high value. However,
the counterexample showed that in fact only one seed (I = [r]) is enough to shatter a set. To
circumvent this issue, we will not use the subset I as our seed anymore. Instead, we create r new
elements y1, . . . , yr, which we will call test selection elements to act as seeds; namely, each subset
H ⊆ Y will now be a seed. The benefit of this is that, if S ⊆ Y is shattered and contains test
selection elements yi1 , . . . , yit , then at least 2t seeds must participate in the shattering of S. This

3Here we assume that |π−1
(a,b)(σ̃(b))| > 1; note that this always holds for Label Cover instances produced by

Moshkovitz-Raz construction.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 82

is because, for each H ⊆ Y , the intersection of S with any concept corresponding to H , when
restricted to Y , is always H ∩ {yi1 , . . . , yit}. Hence, each subset of {yi1 , . . . , yit} must come a
from different seed.

The only other change from the candidate reduction is that each H will test multiple matchings
rather than one matching. This is due to a technical reason: we need the number of matchings, `,
to be large in order get the approximation ratio down to 1/2 + o(1); in our proof, if ` = 1, then we
can only achieve a factor of 1 − ε to some ε > 0. The full details of the reduction are shown in
Figure 5.1.

Before we proceed to the proof, let us define some additional notation that will be used through-
out.

• Every assignment element of the form xi,σi is called an i-assignment element; we denote the
set of all i-assignment elements by Xi, i.e., Xi = {xi,σi | σi ∈ ΣUi}. Let X denote all the
assignment elements, i.e., X = ⋃

i Xi.

• For every S ⊆ U , let I(S) denote the set of all i ∈ [r] such that S contains an i-assignment
element, i.e., I(S) = {i ∈ [r] | S ∩ Xi 6= ∅}.

• We call a set S ⊆ X non-repetitive if, for each i ∈ [r], S contains at most one i-assignment
element, i.e., |S∩Xi| 6 1. Each non-repetitive set S canonically induces a partial assignment
φ(S) : ⋃i∈I(S) Ui → Σ. This is the unique partial assignment that satisfies φ(S)|Ui = σi for
every xi,σi ∈ S

• Even though we define each concept as CI,H,σH where σH is a partial assignment to a subset
TH ⊆ A∪B, it will be more convenient to view each concept as CI,H,σ where σ ∈ ΣV is the
assignment to the entire Label Cover instance. This is just a notational change: the actual
definition of the concept does not depend on the assignment outside TH .

• For each I ⊆ [r], let UI denote
⋃
i∈I Ui. For each σI ∈ ΣUI , we say that (I, σI) passes

H ⊆ Y if σI does not violate any constraint within TH . Denote the collection of H’s that
(I, σI) passes byH(I, σI).

• Finally, for any non-repetitive set S ⊆ X and any H ⊆ Y , we say that S passes H if
(I(S), φ(S)) passes H . We writeH(S) as a shorthand forH(I(S), φ(S)).

The output size of the reduction and the completeness follow almost immediately from defini-
tion.

Output Size of the Reduction. Clearly, the size of U is
∑
i∈[r] |Σ||Ui| 6 r·|Σ|n/r 6 |Σ|O(|E|poly(1/δ)/r).

As for |C|, note first that the number of choices for I and H are both 2r. For fixed I and H ,
Lemma 5.10 implies that, for each matching π(t)

H , the number of vertices from each Ui with at least
one constraint to the matched partition in π(t)

H is at most O(|E|/r2). Since there are ` matchings,
the number of vertices in TH = N1(MH(1)) ∪ · · · ∪ Nr(MH(r)) is at most O(|E|`/r). Hence,
the number of choices for the partial assignment σH is at most |Σ|O(|E|poly(1/δ)/r). In total, we can
conclude that C contains at most |Σ|O(|E|poly(1/δ)/r) concepts.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 83

Input: A bi-regular Label Cover instance L = (A,B,E,Σ, {πe}e∈E) and a parameter δ > 0.
Output: A ground set U and a concept class C.
The procedure to generate (U , C) works as follows:

• Let r be
√
n/ log n where n = |A| + |B|. Use Lemma 5.10 to partition A ∪ B into r

blocks U1, . . . , Ur.

• For convenience, we assume that r is even. Moreover, for i 6= j ∈ [r], let Ni(j) ⊆ Ui
denote the set of all vertices in Ui with at least one neighbor in Uj (w.r.t. the graph
(A,B,E)). We also extend this notation naturally to a set of j’s; for J ⊆ [r], Ni(J)
denotes

⋃
j∈J Ni(j).

• The universe U consists of two types of elements, as described below.

– Assignment elements: for every i ∈ [r] and every partial assignment σi ∈ ΣUi , there
is an assignment element xi,σi corresponding to it. Let X denote all the assignment
elements, i.e., X = {xi,σi | i ∈ [r], σi ∈ ΣUi}.

– Test selection elements: there are r test selection elements, which we will call
y1, . . . , yr. Let Y denote the set of all test selection elements.

• The concepts in C are defined by the following procedure.

– Let ` := 80/δ3 be the number of matchings to be tested.

– For each H ⊆ Y , we randomly select ` permutations π(1)
H , . . . , π

(`)
H : [r] → [r];

this gives us ` matchings (i.e. the t-th matching is
(
π

(t)
H (1), π(t)

H (2)
)
, . . . ,

(
π

(t)
H (r−

1), π(t)
H (r)

)
). For brevity, let us denote the set of (up to `) elements that i is matched

with in the matchings by MH(i). Let TH = ⋃
iNi(MH(i))

– For every I ⊆ [r], H ⊆ Y and for every partial assignment σH ∈ ΣTH that does
not violate any constraints, we create a concept CI,H,σH such that each xi,σi ∈
X is included in CI,H,σH if and only if i ∈ I and σi is consistent with σH , i.e.,
σi|Ni(MH(i)) = σH |Ni(MH(i)) whereas yi ∈ Y in included in CI,H,σH if and only if
y ∈ H .

Figure 5.1: Reduction from Label Cover to VC Dimension

Completeness. If L has a satisfying assignment σ∗ ∈ ΣV , then the set Sσ∗ = {xi,σ∗|Ui |
i ∈ [r]} ∪ Y is shattered because, for any S ⊆ Sσ∗ , we have S = Sσ∗ ∩ CI(S),S∩Y,σ∗ . Hence,
VC-dim(C,U) > 2r.

The rest of this section is devoted to the soundness analysis.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 84

5.3.3 Soundness
In this subsection, we will prove the following lemma, which, combined with the completeness
and output size arguments above, imply Theorem 5.11.

Lemma 5.12. Let (C,U) be the output from the reduction in Figure 5.1 on input L. If val(L) 6
δ2/100 and δ > log(1000n log |Σ|)/r, then VC-dim(C,U) 6 (1 + δ)r w.h.p.

At a high level, the proof of Lemma 5.12 has two steps:

1. Given a shattered set S ⊆ U , we extract a maximal non-repetitive set SNO-REP ⊆ S such that
SNO-REP passes many (> 2|S|−|SNO-REP|) H’s. If |SNO-REP| is small, the trivial upper bound of 2r
on the number of different H’s implies that |S| is also small. As a result, we are left to deal
with the case that |SNO-REP| is large.

2. When |SNO-REP| is large, SNO-REP induces a partial assignment on a large fraction of vertices
of L. Since we assume that val(L) is small, this partial assignment must violate many
constraints. We will use this fact to argue that, with high probability, SNO-REP only passes
very few H’s, which implies that |S| must be small.

The two parts of the proof are presented in Subsection 5.3.3 and 5.3.3 respectively. We then
combine them in Subsection 5.3.3 to prove Lemma 5.12.

Part I: Finding a Non-Repetitive Set That Passes Many Tests

The goal of this subsection is to prove the following lemma, which allows us to, given a shattered
set S ⊆ U , find a non-repetitive set SNO-REP that passes many H’s.

Lemma 5.13. For any shattered S ⊆ U , there is a non-repetitive set SNO-REP of size |I(S)|
s.t. |H(SNO-REP)| > 2|S|−|I(S)|.

We will start by proving the following lemma, which will be a basis for the proof of Lemma 5.13.

Lemma 5.14. Let C,C ′ ∈ C correspond to the same H (i.e. C = CI,H,σ and C ′ = CI′,H,σ′ for
some H ⊆ Y , I, I ′ ⊆ [r], σ, σ′ ∈ ΣV).

For any subset S ⊆ U and any maximal non-repetitive subset SNO-REP ⊆ S, if SNO-REP ⊆ C and
SNO-REP ⊆ C ′, then S ∩ C = S ∩ C ′.

The most intuitive interpretation of this lemma is as follows. Recall that if S is shattered, then,
for each S̃ ⊆ S, there must be a concept CI

S̃
,H
S̃
,σ
S̃

such that S̃ = S ∩CI
S̃
,H
S̃
,σ
S̃
. The above lemma

implies that, for each S̃ ⊇ SNO-REP, H
S̃

must be different. This means that at least 2|S|−|SNO-REP|

different H’s must be involved in shattering S. Indeed, this will be the argument we use when we
prove Lemma 5.13.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 85

Proof of Lemma 5.14. Let S, SNO-REP be as in the lemma statement. Suppose for the sake of con-
tradiction that there exists H ⊆ Y , I, I ′ ⊆ [r], σ, σ′ ∈ ΣV such that SNO-REP ⊆ CI,H,σ, S

NO-REP ⊆
CI′,H,σ′ and S ∩ CI,H,σ 6= S ∩ CI′,H,σ′ .

First, note that S ∩ CI,H,σ ∩ Y = S ∩ H ∩ Y = S ∩ CI′,H,σ′ ∩ Y . Since S ∩ CI,H,σ 6=
S ∩ CI′,H,σ′ , we must have S ∩ CI,H,σ ∩ X 6= S ∩ CI′,H,σ′ ∩ X. Assume w.l.o.g. that there exists
xi,σi ∈ (S ∩ CI,H,σ) \ (S ∩ CI′,H,σ′).

Note that i ∈ I(S) = I(SNO-REP) (where the equality follows from maximality of SNO-REP).
Thus there exists σ′i ∈ ΣUi such that xi,σ′i ∈ SNO-REP ⊆ CI,H,σ ∩ CI′,H,σ′ . Since xi,σ′i is in both
CI,H,σ and CI′,H,σ′ , we have i ∈ I ∩ I ′ and

σ|Ni(MH(i)) = σ′i|Ni(MH(i)) = σ′|Ni(MH(i)). (5.1)

However, since xi,σi ∈ (S ∩CI,H,σ) \ (S ∩CI′,H,σ′), we have xi,σi ∈ CI,H,σ \CI′,H,σ′ . This implies
that

σ|Ni(MH(i)) = σi|Ni(MH(i)) 6= σ′|Ni(MH(i)),

which contradicts to (5.1).

In addition to the above lemma, we will also need the following observation, which states
that, if a non-repetitive SNO-REP is contained in a concept CI,H,σH , then SNO-REP must pass H . This
observation follows definitions.

Observation 5.15. If a non-repetitive set SNO-REP is a subset of some concept CI,H,σH , then H ∈
H(SNO-REP).

With Lemma 5.14 and Observation 5.15 ready, it is now easy to prove Lemma 5.13.

Proof of Lemma 5.13. Pick SNO-REP to be any maximal non-repetitive subset of S. Clearly, |SNO-REP| =
|I(S)|. To see that |H(SNO-REP)| > 2|S|−|I(S)|, consider any S̃ such that SNO-REP ⊆ S̃ ⊆ S. Since
S is shattered, there exists I

S̃
, H

S̃
, σ

S̃
such that S ∩ CI

S̃
,H
S̃
,σ
S̃

= S̃. Since S̃ ⊇ SNO-REP, Observa-

tion 5.15 implies that H
S̃
∈ H(SNO-REP). Moreover, from Lemma 5.14, H

S̃
is distinct for every S̃.

As a result, |H(SNO-REP)| > 2|S|−|I(S)| as desired.

Part II: No Large Non-Repetitive Set Passes Many Tests

The goal of this subsection is to show that, if val(L) is small, then w.h.p. (over the randomness
in the construction) every large non-repetitive set passes only few H’s. This is formalized as
Lemma 5.16 below.

Lemma 5.16. If val(L) 6 δ2/100 and δ > 8/r, then, with high probability, for every non-repetitive
set SNO-REP of size at least δr, |H(SNO-REP)| 6 100n log |Σ|.

Note that the mapping SNO-REP 7→ (I(SNO-REP), φ(SNO-REP)) is a bijection from the collection of
all non-repetitive sets to {(I, σI) | I ⊆ [r], σI ∈ ΣUI}. Hence, the above lemma is equivalent to
the following.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 86

Lemma 5.17. If val(L) 6 δ2/100 and δ > 8/r, then, with high probability, for every I ⊆ [r] of
size at least δr and every σI ∈ ΣUI , |H(I, σI)| 6 100n log |Σ|.

Here we use the language in Lemma 5.17 instead of Lemma 5.16 as it will be easier for us
to reuse this lemma later. To prove the lemma, we first need to bound the probability that each
assignment σI does not violate any constraint induced by a random matching. More precisely, we
will prove the following lemma.

Lemma 5.18. For any I ⊆ [r] of size at least δr and any σI ∈ ΣUI , if π : [r] → [r] is a random
permutation of [r], then the probability that σI does not violate any constraint in

⋃
i∈[r]Ni(M(i))

is at most (1 − 0.1δ2)δr/8 where M(i) denote the index that i is matched with in the matching(
π(1), π(2)

)
, . . . ,

(
π(r − 1), π(r)

)
.

Proof. Let p be any positive odd integer such that p 6 δr/2 and let i1, . . . , ip−1 ∈ [r] be any p− 1
distinct elements of [r]. We will first show that conditioned on π(1) = i1, . . . , π(p − 1) = ip−1,
the probability that σI violates a constraint induced by π(p), π(p + 1) (i.e. in Nπ(p)(π(p + 1)) ∪
Nπ(p+1)(π(p))) is at least 0.1δ2.

To see that this is true, let I>p = I\{i1, . . . , ip−1}. Since |I| > δr, we have |I>p| = |I|−p+1 >
δr/2 + 1. Consider the partial assignment σ>p = σI |UI>p . Since val(L) 6 0.01δ2, σ>p can satisfy
at most 0.01δ2|E| constraints. From Lemma 5.10, we have, for every i 6= j ∈ I>p, the number
of constraints between Ui and Uj are at least |E|/r2. Hence, there are at most 0.01δ2r2 pairs of
i < j ∈ I>p such that σ>p does not violate any constraint between Ui and Uj . In other words, there
are at least

(
|I>p|

2

)
− 0.01δ2r2 > 0.1δ2r2 pairs i < j ∈ I>p such that σ>p violates some constraints

between Ui and Uj . Now, if π(p) = i and π(p + 1) = j for some such pair i, j, then φ(SNO-REP)
violates a constraint induced by π(p), π(p+ 1). Thus, we have

Pr
σI does not violate a constraint induced by π(p), π(p+ 1)

∣∣∣∣∣∣
p−1∧
t=1

π(t) = it

 6 1− 0.1δ2.

(5.2)

Let Ep denote the event that σI does not violate any constraints induced by π(p) and π(p+ 1).
We can now bound the desired probability as follows.

Pr
σI does not violate any constraint in

⋃
i∈[r]
Ni(M(i))

 6 Pr
 ∧

odd p∈[δr/2+1]
Ep

=

∏
odd p∈[δr/2+1]

Pr
Ep

∣∣∣∣∣∣
∧

odd t∈[p−1]
Et

(From (5.2)) 6

∏
odd p∈[δr/2+1]

(1− 0.1δ2)

6 (1− 0.1δ2)δr/4−1,

which is at most (1− 0.1δ2)δr/8 since δ > 8/r.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 87

We can now prove our main lemma.

Proof of Lemma 5.17. For a fixed I ⊆ [r] of size at least δr and a fixed σI ∈ ΣUI , Lemma 5.18
tells us that the probability that σI does not violate any constraint induced by a single matching is
at most (1 − 0.1δ2)δr/8. Since for each H ⊆ Y the construction picks ` matchings at random, the
probability that (I, σI) passes each H is at most (1 − 0.1δ2)δ`r/8. Recall that we pick ` = 80/δ3;
this gives the following upper bound on the probability:

Pr[(I, σI) passes H] 6 (1− 0.1δ2)δ`r/8 = (1− 0.1δ2)10r/δ2
6
(1

1 + 0.1δ2

)10r/δ2

6 2−r (5.3)

where the last inequality comes from Bernoulli’s inequality.
Inequality (5.3) implies that the expected number ofH’s that (I, σI) passes is less than 1. Since

the matchings MH are independent for all H’s, we can apply Chernoff bound which implies that

Pr[|H(I, σI)| > 100n log |Σ|] 6 2−10n log |Σ| = |Σ|−10n.

Finally, note that there are at most 2r|Σ|n different (I, σI)’s. By union bound, we have

Pr
[
∃I ⊆ [r], σI ∈ ΣUI s.t. |I| > δr AND |H(I, σI)| > 100n log |Σ|

]
6 (2r|Σ|n)

(
|Σ|−10n

)
6 |Σ|−8n,

which concludes the proof.

Putting Things Together

Proof of Lemma 5.12. From Lemma 5.16, every non-repetitive set SNO-REP of size at least δr,
|H(SNO-REP)| 6 100n log |Σ|. Conditioned on this event happening, we will show that VC-dim(U , C) 6
(1 + δ)r.

Consider any shattered set S ⊆ U . Lemma 5.13 implies that there is a non-repetitive set SNO-REP

of size |I(S)| such that |H(SNO-REP)| > 2|S|−|I(S)|. Let us consider two cases:

1. |I(S)| 6 δr. Since H(SNO-REP) ⊆ P(Y), we have |S| − |I(S)| 6 |Y| = r. This implies that
|S| 6 (1 + δ)r.

2. |I(S)| > δr. From our assumption, |H(SNO-REP)| 6 100n log |Σ|. Thus, |S| 6 |I(S)| +
log(100n log |Σ|) 6 (1 + δ)r where the second inequality comes from our assumption that
δ > log(1000n log |Σ|)/r.

Hence, VC-dim(U , C) 6 (1 + δ)r with high probability.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 88

5.4 Littlestone’s Dimension
We next proceed to Littlestone’s Dimension. The main theorem of this section is stated below.
Again, note that this theorem and Theorem 2.4 implies Theorem 5.2.

Theorem 5.19. There exists ε > 0 such that there is a randomized reduction from any bi-regular
Label Cover instance L = (A,B,E,Σ, {πe}e∈E) with |Σ| = O(1) to a ground set U and a concept
classes C such that, if n := |A| + |B|, r :=

√
n/ log n and k := 1010|E| log |Σ|/r2, then the

following conditions hold for every sufficiently large n.

• (Size) The reduction runs in time 2rk · |Σ|O(|E|/r) and |C|, |U| 6 2rk · |Σ|O(|E|/r).

• (Completeness) If L is satisfiable, then L-dim(C,U) > 2rk.

• (Soundness) If val(L) 6 0.001, then L-dim(C,U) 6 (2− ε)rk with high probability.

5.4.1 Why the VC Dimension Reduction Fails for Littlestone’s Dimension
It is tempting to think that, since our reduction from the previous section works for VC Dimension,
it may also work for Littlestone’s Dimension. In fact, thanks to Fact 5.7, completeness for that
reduction even translates for free to Littlestone’s Dimension. Alas, the soundness property does
not hold. To see this, let us build a depth-2r mistake tree for C,U , even when val(L) is small, as
follows.

• We assign the test-selection elements to the first r levels of the tree, one element per level.
More specifically, for each s ∈ {0, 1}<r, we assign y|s|+1 to s.

• For every string s ∈ {0, 1}r, the previous step of the construction gives us a subset of Y
corresponding to the path from root to s; this subset is simply Hs = {yi ∈ Y | si = 1}. Let
THs denote the set of vertices tested by this seed Hs. Let φs ∈ ΣV denote an assignment that
satisfies all the constraints in THs . Note that, since THs is of small size (only Õ(

√
n)), even

if val(L) is small, φs is still likely to exist (and we can decide whether it exists or not in time
2Õ(
√
n)).

We then construct the subtree rooted at s that corresponds to φs by assigning each level of
the subtree xi,φs|Ui . Specifically, for each t ∈ {0, 1}>r, we assign x|t|−r+1,φt6r |U|t|−r+1

to node
t of the tree.

It is not hard to see that the constructed tree is indeed a valid mistake tree. This is because the
path from root to each leaf l ∈ {0, 1}2r agrees with CI(l),Hl6r ,φl6r (where I(l) = {i ∈ [r] | li = 1}).

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 89

5.4.2 The Final Reduction
The above counterexample demonstrates the main difference between the two dimensions: order
does not matter in VC Dimension, but it does in Littlestone’s Dimension. By moving the test-
selection elements up the tree, the tests are chosen before the assignments, which allows an adver-
sary to “cheat” by picking different assignments for different tests. We would like to prevent this,
i.e., we would like to make sure that, in the mistake tree, the upper levels of the tree are occupied
with the assignment elements whereas the lower levels are assigned test-selection elements. As in
the VC Dimension argument, our hope here is that, given such a tree, we should be able to decode
an assignment that passes tests on many different tests. Indeed we will tailor our construction to
achieve such property.

Recall that, if we use the same reduction as VC Dimension, then, in the completeness case, we
can construct a mistake tree in which the first r layers consist solely of assignment elements and the
rest of the layers consist of only test-selection elements. Observe that there is no need for different
nodes on the r-th layer to have subtrees composed of the same set of elements; the tree would still
be valid if we make each test-selection element only work with a specific s ∈ {0, 1}r and create
concepts accordingly. In other words, we can modify our construction so that our test-selection
elements are Y = {yI,i | I ⊆ [r], i ∈ [r]} and the concept class is {CI,H,σH | I ⊆ [r], H ⊆
Y , σH ∈ ΣTH} where the condition that an assignment element lies in CI,H,σH is the same as in
the VC Dimension reduction, whereas for yI′,i to be in CI,H,σH , we require not only that i ∈ H
but also that I = I ′. Intuitively, this should help us, since each yI,i is now only in a small fraction
(6 2−r) of concepts; hence, one would hope that any subtree rooted at any yI,i cannot be too deep,
which would indeed implies that the test-selection elements cannot appear in the first few layers of
the tree.

Alas, for this modified reduction, it is not true that a subtree rooted at any yI,i has small depth;
specifically, we can bound the depth of a subtree yI,i by the log of the number of concepts con-
taining yI,i plus one (for the first layer). Now, note that yI,i ∈ CI′,H,σH means that I ′ = I and
i ∈ H , but there can be still as many as 2r−1 · |Σ||TH | = |Σ|O(|E|/r) such concepts. This gives
an upper bound of r + O(|E| log |Σ|/r) on the depth of the subtree rooted at yI,i. However,
|E| log |Σ|/r = Θ(

√
n log n) = ω(r); this bound is meaningless here since, even in the com-

pleteness case, the depth of the mistake tree is only 2r.
Fortunately, this bound is not useless after all: if we can keep this bound but make the intended

tree depth much larger than |E| log |Σ|/r, then the bound will indeed imply that no yI,i-rooted tree
is deep. To this end, our reduction will have one more parameter k = Θ(|E| log |Σ|/r) where
Θ(·) hides a large constant and the intended tree will have depth 2rk in the completeness case;
the top half of the tree (first rk layers) will again consist of assignment elements and the rest of
the tree composes of the test-selection elements. The rough idea is to make k “copies” of each
element: the assignment elements will now be {xi,σi,j | i ∈ [r], σi ∈ ΣUi , j ∈ [k]} and the test-
selection elements will be {yI,i,j | I ⊆ [r] × [k], j ∈ [k]}. The concept class can then be defined
as {CI,H,σH | I ⊆ [r]× [k], H ⊆ [r]× [k], σH ∈ ΣTH} naturally, i.e., H is used as the seed to pick
the test set TH , yI′,i,j ∈ CI,H,σH iff I ′ = I and (i, j) ∈ H whereas xi,σi,j ∈ CI,H,σH iff (i, j) ∈ I
and σi|(I,σI) = σH |(I,σI). For this concept class, we can again bound the depth of yI,i-rooted tree to

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 90

be rk + O(|E| log |Σ|/r); this time, however, rk is much larger than |E| log |Σ|/r, so this bound
is no more than, say, 1.001rk. This is indeed the desired bound, since this means that, for any
depth-1.999rk mistake tree, the first 0.998rk layers must consist solely of assignment elements.

Unfortunately, the introduction of copies in turn introduces another technical challenge: it is not
true any more that a partial assignment to a large set only passes a few tests w.h.p. (i.e. an analogue
of Lemma 5.17 does not hold). By Inequality (5.3), each H is passed with probability at most 2−r,
but now we want to take a union bound there are 2rk � 2r different H’s. To circumvent this, we
will define a map τ : P([r]× [k])→ P([r]) and use τ(H) to select the test instead of H itself. The
map τ we use in the construction is the threshold projection where i is included in H if and only
if, for at least half of j ∈ [k], H contains (i, j). To motivate our choice of τ , recall that our overall
proof approach is to first find a node that corresponds to an assignment to a large subset of the
Label Cover instance; then argue that it can pass only a few tests, which we hope would imply that
the subtree rooted there cannot be too deep. For this implication to be true, we need the following
to also hold: for any small subsetH ⊆ P([r]) of τ(H)’s, we have that L-dim(τ−1(H), [r]× [k]) is
small. This property indeed holds for our choice of τ (see Lemma 5.27).

With all the moving parts explained, we state the full reduction formally in Figure 5.2.
Similar to our VC Dimension proof, we will use the following notation:

• For every i ∈ [r], let Xi := {xi,σi,j | σi ∈ ΣUi , j ∈ [k]}; we refer to these elements as the
i-assignment elements. Moreover, for every (i, j) ∈ [r]× [k], let Xi,j := {xi,σi,j | σi ∈ ΣUi};
we refer to these elements as the (i, j)-assignment elements.

• For every S ⊆ U , let I(S) = {i ∈ [r] | S ∩ Xi 6= ∅} and IJ(S) = {(i, j) ∈ [r] × [k] |
S ∩ Xi,j 6= ∅}.

• A set S ⊆ X is non-repetitive if |S ∩ Xi,j| 6 1 for all (i, j) ∈ [r]× [k].

• We say that S passes H̃ if the following two conditions hold:

– For every i ∈ [r] such that S ∩ Xi 6= ∅, all i-assignment elements of S are consistent
on T

H̃
|Ui , i.e., for every (i, σi, j), (i, σ′i, j′) ∈ S, we have σi|Ui = σ′i|Ui .

– The canonically induced assignment on T
H̃

does not violate any constraint (note that
the previous condition implies that such assignment is unique).

We useH(S) to denote the collection of all seeds H̃ ⊆ [r] that S passes.

We also use the following notation for mistake trees:

• For any subset S ⊆ U and any function ρ : S → {0, 1}, let C[ρ] := {C ∈ C | ∀a ∈ S, a ∈
C ⇔ ρ(a) = 1} be the collections of all concept that agree with ρ on S. We sometimes
abuse the notation and write C[S] to denote the collection of all the concepts that contain S,
i.e., C[S] = {C ∈ C | S ⊆ C}.

• For any binary string s, let pre(s) := {∅, s61, . . . , s6|s|−1} denote the set of all proper pre-
fixes of s.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 91

Input: A bi-regular Label Cover instance L = (A,B,E,Σ, {πe}e∈E).
Output: A ground set U and a concept class C.
The procedure to generate (U , C) works as follows:

• Let r, U1, . . . , Ur,N be defined in the same manner as in Reduction 5.1 and let k :=
1010|E| log |Σ|/r2.

• The universe U consists of two types of elements, as described below.

– Assignment elements: for every i ∈ [r], every partial assignment σi ∈ ΣUi and
every j ∈ [k], there is an assignment element xi,σi,j corresponding to it. Let X
denote all the assignment elements, i.e., X = {xi,σi,j | i ∈ [r], σi ∈ ΣUi , j ∈ [k]}.

– Test-selection elements: there are rk(2rk) test-selection elements, which we will
call yI,i,j for every i ∈ [r], j ∈ [k], I ⊆ [r] × [k]. Let Y denote the set of all
test-selection elements. Let Yi denote {yI,i,j | I ⊆ [r] × [k], j ∈ [k]}. We call the
elements of Yi i-test-selection elements.

• The concepts in C are defined by the following procedure.

– Let ` := 1000 be the number of matchings to be tested.

– For each H̃ ⊆ [r], we randomly select ` permutations π(1)
H̃
, . . . , π

(`)
H̃

: [r] → [r];

this gives us ` matchings (i.e. the t-th matching is
(
π

(t)
H̃

(1), π(t)
H̃

(2)
)
, . . . ,

(
π

(t)
H̃

(r−

1), π(t)
H̃

(r)
)

). Denote the set of elements that i is matched with in the matchings by

M
H̃

(i). Let T
H̃

= ⋃
iNi(MH̃

(i))
– Let τ : P([r] × [k]) → P([r]) denote the threshold projection operation where

each i ∈ [r] is included in τ(H) if and only if H contains at least half of the
i-test-selection elements, i.e., τ(H) = {i ∈ [r] | |H ∩ Yi| > k/2}.

– For every I ⊆ [r] × [k], H ⊆ [r] × [k] and for every partial assignment στ(H) ∈
ΣTτ(H) that does not violate any constraints, we create a conceptCI,H,στ(H) such that
each xi,σi,j ∈ X is included in CI,H,στ(H) if and only if (i, j) ∈ I and σi is consistent
with στ(H), i.e., σi|Ni(Mτ(H)(i)) = στ(H)|Ni(Mτ(H)(i)) whereas each yI′,i,j ∈ Y in
included in CI,H,στ(H) if and only if (i, j) ∈ H and I ′ = I .

Figure 5.2: Reduction from Label Cover to Littlestone’s Dimension

• For any depth-d mistake tree T , let vT ,s denote the element assigned to the node s ∈
{0, 1}6d, and let PT ,s := {vT ,s′ | s′ ∈ pre(s)} denote the set of all elements appearing
from the path from root to s (excluding s itself). Moreover, let ρT ,s : PT ,s → {0, 1} be

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 92

the function corresponding to the path from root to s, i.e., ρT ,s(vT ,s′) = s|s′|+1 for every
s′ ∈ pre(s).

Output Size of the Reduction The output size of the reduction follows immediately from a
similar argument as in the VC Dimension reduction. The only different here is that there are 2rk
choices for I and H , instead of 2r choices as in the previous construction.

Completeness. If L has a satisfying assignment σ∗ ∈ ΣV , we can construct a depth-rk mistake
tree T as follows. For i ∈ [r], j ∈ [k], we assign xi,σ∗|Ui ,j to every node in the ((i − 1)k + j)-th
layer of T . Note that we have so far assigned every node in the first rk layers. For the rest of the
vertices s’s, if s lies in layer rk+ (i− 1)k+ j, then we assign yI(ρ−1

T ,s(1)),i,j to it. It is clear that, for

a leaf s ∈ {0, 1}rk, the concept CI(ρ−1
T ,s(1)),HT ,s,σ∗ agrees with the path from root to s where HT ,s is

defined as {(i, j) ∈ [r]× [k] | yI(ρ−1
T ,s(1)),i,j ∈ ρ

−1
T ,s(1)}. Hence, L-dim(C,U) > 2rk.

5.4.3 Soundness
Next, we will prove the soundness of our reduction, stated more precisely below. For brevity, we
will assume throughout this subsection that r is sufficiently large, and leave it out of the lemmas’
statements. Note that this lemma, together with completeness and output size properties we argue
above, implies Theorem 5.19 with ε = 0.001.

Lemma 5.20. Let (C,U) be the output from the reduction in Figure 5.2 on input L. If val(L) 6
0.001, then L-dim(C,U) 6 1.999rk with high probability.

Roughly speaking, the overall strategy of our proof of Lemma 5.20 is as follows:

1. First, we will argue that any subtree rooted at any test-selection element must be shallow (of
depth 6 1.001rk). This means that, if we have a depth-1.999rk mistake tree, then the first
0.998rk levels must be assigned solely assignment elements.

2. We then argue that, in this 0.998rk-level mistake tree of assignment elements, we can always
extract a leaf s such that the path from root to s indicates inclusion of a large non-repetitive
set. In other words, the path to s can be decoded into a (partial) assignment for the Label
Cover instance L.

3. Let the leaf from the previous step be s and the non-repetitive set be SNO-REP. Our goal now
is to show that the subtree rooted as s must have small depth. We start working towards this
by showing that, with high probability, there are few tests that agree with SNO-REP. This is
analogous to Part II of the VC Dimension proof.

4. With the previous steps in mind, we only need to argue that, when |H(SNO-REP)| is small, the
Littlestone’s dimension of all the concepts that contains SNO-REP (i.e. L-dim(C[SNO-REP],U)) is
small. Thanks to Fact 5.8, it is enough for us to bound L-dim(C[SNO-REP],X) and L-dim(C[SNO-REP],Y)
separately. For the former, our technique from the second step also gives us the desired

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 93

bound; for the latter, we prove that L-dim(C[SNO-REP],Y) is small by designing an algorithm
that provides correct predictions on a constant fraction of the elements in Y .

Let us now proceed to the details of the proofs.

Part I: Subtree of a Test-Selection Assignment is Shallow

Lemma 5.21. For any yI,i,j ∈ Y , L-dim(C[{yI,i,j}],U) 6 rk + (4|E|`/r) log |Σ| 6 1.001rk.

Note that the above lemma implies that, in any mistake tree, the depth of the subtree rooted at
any vertex s assigned to some yI,i,j ∈ Y is at most 1 + 1.001rk. This is because every concept that
agrees with the path from the root to s must be in C[{yI,i,j}], which has depth at most 1.001rk.

Proof of Lemma 5.21. Consider any CI′,H,στ(H) ∈ C[{yI,i,j}],U). Since yI,i,j ∈ CI′,H,στ(H) , we
have I = I ′. Moreover, from Lemma 5.10, we know that

∣∣∣Ni (Mτ(H)(i)
)∣∣∣ 6 4|E|`/r2, which

implies that |Tτ(H)| 6 4|E|`/r. This means that there are only at most |Σ|4|E|`/r choices of στ(H).
Combined with the fact that there are only 2rk choices of H , we have |C[{yI,i,j}]| 6 2rk · |Σ|4|E|`/r.
Fact 5.7 then implies the lemma.

Part II: Deep Mistake Tree Contains a Large Non-Repetitive Set

The goal of this part of the proof is to show that, for mistake tree of X, C of depth slightly less than
rk, there exists a leaf s such that the corresponding path from root to s indicates an inclusion of
a large non-repetitive set; in our notation, this means that we would like to identify a leaf s such
that IJ(ρ−1

T ,s(1)) is large. Since we will also need a similar bound later in the proof, we will prove
the following lemma, which is a generalization of the stated goal that works even for the concept
class C[SNO-REP] for any non-repetitive SNO-REP. To get back the desired bound, we can simply set
SNO-REP = ∅.

Lemma 5.22. For any non-repetitive set SNO-REP and any depth-d mistake tree T of X, C[SNO-REP],
there exists a leaf s ∈ {0, 1}d such that |IJ(ρ−1

T ,s(1)) \ IJ(SNO-REP)| > d− r.

The proof of this lemma is a double counting argument where we count a specific class of
leaves in two ways, which ultimately leads to the above bound. The leaves that we focus on are
the leaves s ∈ {0, 1}d such that, for every (i, j) such that an (i, j)-assignment element appears
in the path from root to s but not in SNO-REP, the first appearance of (i, j)-assignment element
in the path is included. In other words, for every (i, j) ∈ IJ(PT ,s) \ IJ(SNO-REP), if we define
ui,j := inf

s′∈pre(s),vT ,s′∈Xi,j
|s′|, then sui,j+1 must be equal to 1. We call these leaves the good leaves.

Denote the set of good leaves of T by GT ,SNO-REP .
Our first way of counting is the following lemma. Informally, it asserts that different good

leaves agree with different sets H̃ ⊆ [r]. This can be thought of as an analogue of Lemma 5.14
in our proof for VC Dimension. Note that this lemma immediately gives an upper bound of 2r on
|GT ,SNO-REP |.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 94

Lemma 5.23. For any depth-d mistake tree T of X, C[SNO-REP] and any different good leaves
s1, s2 ∈ GT ,SNO-REP , ifCI1,H1,σ1 agrees with s1 andCI2,H2,σ2 agrees with s2 for some I1, I2, H1, H2, σ1, σ2,
then τ(H1) 6= τ(H2).

Proof. Suppose for the sake of contradiction that there exist s1 6= s2 ∈ GT ,SNO-REP ,H1, H2, I1, I2, σ1, σ2
such that CI1,H1,σ1 and CI2,H2,σ2 agree with s1 and s2 respectively, and τ(H1) = τ(H2). Let s be
the common ancestor of s1, s2, i.e., s is the longest string in pre(s1) ∩ pre(s2). Assume w.l.o.g.
that (s1)|s|+1 = 0 and (s2)|s|+1 = 1. Consider the node vT ,s in tree T where the paths to s1, s2 split;
suppose that this is xi,σi,j . Therefore xi,σi,j ∈ CI2,H2,σ2 \ CI1,H1,σ1 .

We now argue that there is some xi,σ′i,j (with the same i, j but a different assignment σ′i) that is
in both concepts, i.e. xi,σ′i,j ∈ CI2,H2,σ2 ∩ CI1,H1,σ1 . We do this by considering two cases:

• If (i, j) ∈ IJ(SNO-REP), then there is xi,σ′i,j ∈ SNO-REP ⊆ CI1,H1,σ1 , CI2,H2,σ2 for some σ′i ∈
ΣUi .

• Suppose that (i, j) /∈ IJ(SNO-REP). Since s1 is a good leaf, there is some t ∈ pre(s) such
that vT ,t = xi,σ′i,j for some σ′i ∈ ΣUi and t is included by the path (i.e. s|t|+1 = 1). This also
implies that xi,σ′i,j is in both CI1,H1,σ1 and CI2,H2,σ2 .

Now, since both xi,σi,j and xi,σ′i,j are in the concept CI2,H2,σ2 , we have (i, j) ∈ I2 and

σi|Ni(Mτ(H1)) = σ2|Ni(Mτ(H1)) = σ′i|Ni(Mτ(H1)). (5.4)

On the other hand, since CI1,H1,σ1 contains xi,σ′i,j but not xi,σi,j , we have (i, j) ∈ I1 and

σi|Ni(Mτ(H2)) 6= σ1|Ni(Mτ(H2)) = σ′i|Ni(Mτ(H2)). (5.5)

which contradicts (5.4) since τ(H1) = τ(H2).

Next, we will present another counting argument which gives a lower bound on the number of
good leaves, which, together with Lemma 5.23, yields the desired bound.

Proof of Lemma 5.22. For any depth-d mistake tree T of C[SNO-REP],X, let us consider the follow-
ing procedure which recursively assigns a weight λs to each node s in the tree. At the end of the
procedure, all the weight will be propagated from the root to good leaves.

1. For every non-root node s ∈ {0, 1}>1, set λs ← 0. For root s = ∅, let λ∅ ← 2d.

2. While there is an internal node s ∈ {0, 1}<d such that λs > 0, do the following:

a) Suppose that vs = xi,σi,j for some i ∈ [r], σi ∈ ΣUi and j ∈ [k].
b) If so far no (i, j)-element has appeared in the path or in SNO-REP, i.e., (i, j) /∈ IJ(PT ,s)∪

IJ(SNO-REP), then λs1 ← λs. Otherwise, set λs0 = λs1 = λs/2.

c) Set λs ← 0.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 95

The following observations are immediate from the construction:

• The total of λ’s over all the tree,
∑
s∈{0,1}6d λd always remain 2d.

• At the end of the procedure, for every s ∈ {0, 1}6d, λs 6= 0 if and only if s ∈ GT ,SNO-REP .

• If s ∈ GT ,SNO-REP , then λs = 2|IJ(ρ−1
T ,s(1))\IJ(SNO-REP)| at the end of the execution.

Note that the last observation comes from the fact that λ always get divides in half when moving
down one level of the tree unless we encounter an (i, j)-assignment element for some i, j that never
appears in the path or in SNO-REP before. For any good leaf s, the set of such (i, j) is exactly the set
IJ(ρ−1

T ,s(1)) \ IJ(SNO-REP).

As a result, we have 2d = ∑
s∈GT ,SNO-REP

2|IJ(ρ−1
T ,s(1))\IJ(SNO-REP)|. Since Lemma 5.23 implies

that |GT ,SNO-REP | 6 2r, we can conclude that there exists s ∈ GT ,SNO-REP such that |IJ(ρ−1
T ,s(1)) \

IJ(SNO-REP)| > d− r as desired.

Part III: No Large Non-Repetitive Set Passes Many Test

The main lemma of this subsection is the following, which is analogous to Lemma 5.16

Lemma 5.24. If val(L) 6 0.001, then, with high probability, for every non-repetitive set SNO-REP

of size at least 0.99rk, |H(SNO-REP)| 6 100n log |Σ|.

Proof. For every I ⊆ [r], let UI := ⋃
i∈I Ui. For every σI ∈ ΣUI and every H̃ ⊆ Y , we say that

(I, σI) passes H̃ if σI does not violate any constraint in T
H̃

. Note that this definition and the way
the test is generated in the reduction is the same as that of the VC Dimension reduction. Hence,
we can apply Lemma 5.17 with δ = 0.99, which implies the following: with high probability, for
every I ⊆ [r] of size at least 0.99r and every σI ∈ ΣUI , |H(I, σI)| 6 100n log |Σ| whereH(I, σI)
denote the set of all H’s passed by (I, σI). Conditioned on this event happening, we will show
that, for every non-repetitive set SNO-REP of size at least 0.99rk, |H(SNO-REP)| 6 100n log |Σ|.

Consider any non-repetitive set SNO-REP of size 0.99rk. Let σI(SNO-REP) be an assignment on
UI(SNO-REP) such that, for each i ∈ I(SNO-REP), we pick one xi,σi,j ∈ SNO-REP (if there are more than
one such x’s, pick one arbitrarily) and let σI(SNO-REP)|Ui = σi. It is obvious that H(SNO-REP) ⊆
H(I(SNO-REP), σI(SNO-REP)). Since SNO-REP is non-repetitive and of size at least 0.99rk, we have
|I(SNO-REP)| > 0.99r, which means that |H(I(SNO-REP), σI(SNO-REP))| 6 100n log |Σ| as desired.

Part IV: A Subtree Containing SNO-REP Must be Shallow

In this part, we will show that, if we restrict ourselves to only concepts that contain some non-
repetitive set SNO-REP that passes few tests, then the Littlestone’s Dimension of this restrictied
concept class is small. Therefore when we build a tree for the whole concept class C, if a path
from root to some node indicates an inclusion of a non-repetitive set that passes few tests, then the
subtree rooted at this node must be shallow.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 96

Lemma 5.25. For every non-repetitive set SNO-REP,

L-dim(C[SNO-REP],U) 6 1.75rk − |SNO-REP|+ r + 1000k
√
r log(|H(SNO-REP)|+ 1).

We prove the above lemma by bounding L-dim(C[SNO-REP],X) and L-dim(C[SNO-REP],Y) sep-
arately, and combining them via Fact 5.8. First, we can bound L-dim(C[SNO-REP],X) easily by
applying Lemma 5.22 coupled with the fact that |IJ(SNO-REP)| = |SNO-REP| for every non-repetitive
SNO-REP. This immediately gives the following corollary.

Corollary 5.26. For every non-repetitive set SNO-REP,

L-dim(C[SNO-REP],X) 6 rk − |SNO-REP|+ r.

We will next prove the following bound on L-dim(C[SNO-REP],Y). Note that Corollary 5.26,
Lemma 5.27, and Fact 5.8 immediately imply Lemma 5.25.

Lemma 5.27. For every non-repetitive set SNO-REP,

L-dim(C[SNO-REP],Y) 6 0.75rk + 500k
√
r log(|H(SNO-REP)|+ 1).

The overall outline of the proof of Lemma 5.27 is that we will design a prediction algorithm
whose mistake bound is at most 0.75rk + 1000k

√
r log |H(SNO-REP)|. Once we design this algo-

rithm, Lemma 5.6 immediately implies Lemma 5.27. To define our algorithm, we will need the
following lemma, which is a general statement that says that, for a small collection of H’s, there is
a some H̃∗ ⊆ [r] that agrees with almost half of every H in the collection.

Lemma 5.28. Let H ⊆ P([r]) be any collections of subsets of [r], there exists H̃∗ ⊆ [r] such
that, for every H̃ ∈ H, |H̃∗∆H̃| 6 0.5r + 1000

√
r log(|H| + 1) where ∆ denotes the symmetric

difference between two sets.

Proof. We use a simple probabilistic method to prove this lemma. Let H̃r be a random subset
of [r] (i.e. each i ∈ [r] is included independently with probability 0.5). We will show that, with
non-zero probability, |H̃r∆H̃| 6 0.5r + 1000

√
r log(|H|+ 1) for all H̃ ∈ H, which immediately

implies that a desired H̃∗ exists.
Fix H̃ ∈ H. Observe that |H̃r∆H̃| can be written as

∑
i∈[r] 1[i ∈ (H̃r∆H̃)]. For each i,

1[i ∈ (H̃r∆H̃)] is a 0, 1 random variable with mean 0.5 independent of other i′ ∈ [r]. Applying
Chernoff bound here yields

Pr[|H̃r∆H̃| > 0.5r + 1000
√
r log(|H|+ 1)] 6 2− log2(|H|+1) 6

1
|H|+ 1 .

Hence, by union bound, we have

Pr[∃H̃ ∈ H, |H̃r∆H̃| > 0.5r + 1000
√
r log(|H|+ 1)] 6 |H|

|H|+ 1 < 1.

In other words, |H̃r∆H̃| 6 0.5r + 1000
√
r log(|H|+ 1) for all H̃ ∈ H with non-zero probability

as desired.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 97

We also need the following observation, which is an analogue of Observation 5.15 in the VC
Dimension proof; it follows immediately from definition ofH(S).

Observation 5.29. If a non-repetitive set SNO-REP is a subset of some concept CI,H,στ(H) , then
τ(H) ∈ H(SNO-REP).

With Lemma 5.28 and Observation 5.29 in place, we are now ready to prove Lemma 5.27.

Proof of Lemma 5.27. Let H̃∗ ⊆ [r] be the set guaranteed by applying Lemma 5.28 with H =
H(SNO-REP). Let H∗ := H̃∗ × [k].

Our prediction algorithm will be very simple: it always predicts according to H∗; i.e., on an
input4 y ∈ Y , it outputs 1[y ∈ H∗]. Consider any sequence (y1, h1), . . . , (yw, hw) that agrees
with a concept CI,H,στ(H) ∈ C[SNO-REP]. Observe that the number of incorrect predictions of our
algorithm is at most |H∗∆H|.

Since CI,H,στ(H) ∈ C[SNO-REP], Observation 5.29 implies that τ(H) ∈ H(SNO-REP). This means
that |τ(H)∆H̃∗| 6 0.5r + 1000

√
r log(|H|+ 1). Now, let us consider each i ∈ [r] \ (τ(H)∆H̃∗).

Suppose that i ∈ τ(H) ∩ H̃∗. Since i ∈ τ(H), at least k/2 elements of Yi are in H and, since
i ∈ H̃∗, we have Yi ⊆ H∗. This implies that |(H∗∆H) ∩ Yi| 6 k/2. A similar bound can also be
derived when i /∈ τ(H) ∩ H̃∗. As a result, we have

|H∗∆H| =
∑
i∈[r]
|(H∗∆H) ∩ Yi|

=
∑

i∈τ(H)∆H̃∗
|(H∗∆H) ∩ Yi|+

∑
i∈[r]\(τ(H)∆H̃∗)

|(H∗∆H) ∩ Yi|

6 (|τ(H)∆H̃∗|)(k) + (r − |τ(H)∆H̃∗|)(k/2)
6 0.75rk + 500k

√
r log(|H|+ 1),

concluding our proof of Lemma 5.27.

Putting Things Together

Proof of Lemma 5.20. Assume that val(L) 6 0.001. From Lemma 5.24, we know that, with high
probability, |H(SNO-REP)| 6 100n log |Σ| for every non-repetitive set SNO-REP of size at least 0.99rk.
Conditioned on this event, we will show that L-dim(C,U) 6 1.999rk.

Suppose for the sake of contradiction that L-dim(C,U) > 1.999rk. Consider any depth-
1.999rk mistake tree T of C,U . From Lemma 5.21, no test-selection element is assigned to any
node in the first 1.999rk − 1.001rk − 1 > 0.997rk levels. In other words, the tree induced by the
first 0.997rk levels is simply a mistake tree of C,X. By Lemma 5.22 with SNO-REP = ∅, there exists
s ∈ {0, 1}0.997rk such that |IJ(ρ−1

T ,s(1))| > 0.997rk − r > 0.996rk.
4We assume w.l.o.g. that input elements are distinct; if an element appears multiple times, we know the correct

answer from its first appearance and can always correctly predict it afterwards.

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 98

Since |IJ(ρ−1
T ,s(1))| > 0.996rk, there exists a non-repetitive set SNO-REP ⊆ ρ−1

T ,s(1) of size
0.996rk. Consider the subtree rooted at s. This is a mistake tree of C[ρT ,s],U of depth 1.002rk.
Since SNO-REP ⊆ ρ−1

T ,s(1), we have C[ρT ,s] ⊆ C[SNO-REP]. However, this implies

1.002rk 6 L-dim(C[ρT ,s],U)
6 L-dim(C[SNO-REP],U)

(From Lemma 5.25) 6 1.75rk − 0.996rk + r + 100k
√
r log(|H(SNO-REP)|+ 1)

(From Lemma 5.24) 6 0.754rk + r + 100k
√
r log(100n log |Σ|+ 1)

= 0.754rk + o(rk),

which is a contradiction when r is sufficiently large.

5.4.4 Quasi-polynomial Algorithm for Littlestone’s Dimension
In this section, we provides the following algorithm which decides whether L-dim(C,U) 6 d in
time O(|C| · (2|U|)d). Since we know that L-dim(C,U) 6 log |C|, we can run this algorithm for all
d 6 log |C| and compute Littlestone’s Dimension of C,U in quasi-polynomial time.

Theorem 5.30 (Quasi-polynomial Time Algorithm for Littlestone’s Dimension). There is an al-
gorithm that, given a universe U , a concept class C and a non-negative integer d, decides whether
L-dim(C,U) 6 d in time O(|C| · (2|U|)d).

Proof. Our algorithm is based on a simple observation: if an element x belongs to at least one
concept and does not belong to at least one concept, the maximum depth of mistake trees rooted at
x is exactly 1 + min {L-dim(C[x→ 0],U),L-dim(C[x→ 1],U)}. Recall from Section 5.4.2 that
C[x → 0] and C[x → 1] denote the collection of concepts that exclude x and the collection of
concepts that include x respectively.

This yields the following natural recursive algorithm. For each x ∈ U such that C[x →
0], C[x→ 1] 6= ∅, recursively run the algorithm on (C[x→ 0],U , d− 1) and (C[x→ 1],U , d− 1).
If both executions return NO for some x, then output NO. Otherwise, output YES. When d = 0,
there is no need for recursion as we can just check whether |C| 6 1.

Finally, we note that the running time can be easily proved by induction on d.

5.5 Discussion and Open Questions
In this work, we prove inapproximability results for VC Dimension and Littlestone’s Dimension
based on the randomized exponential time hypothesis. Our results provide an almost matching
running time lower bound of nlog1−o(1) n for both problems while ruling out approximation ratios of
1/2 + o(1) and 1− ε for some ε > 0 for VC Dimension and Littlestone’s Dimension respectively.
Even though our results help us gain more insights on approximability of both problems, it is
not yet completely resolved. More specifically, we are not aware of any constant factor no(logn)-
time approximation algorithm for either problem; it is an intriguing open question whether such

CHAPTER 5. VC DIMENSION AND LITTLESTONE’S DIMENSION 99

algorithm exists and, if not, whether our reduction can be extended to rule out such algorithm.
Another potentially interesting research direction is to derandomize our construction; note that the
only place in the proof in which the randomness is used is in Lemma 5.17.

A related question which remains open, originally posed by Ben-David and Eiron [BE98], is
that of computing the self-directed learning5 mistake bound. Similarly, it may be interesting to un-
derstand the complexity of computing (approximating) the recursive teaching dimension [Dol+14;
Mor+15].

5Roughly, self-directed learning is similar to the online learning model corresponding to Littlestone’s dimension,
but where the learner chooses the order elements; see [BE98] for details.

100

Part II

Parameterized Problems

101

Chapter 6

Inapproximability of k-Dominating Set

In the dominating set problem (DOMSET), we are given an undirected graph G on n vertices and
an integer k, and the goal is to decide whether there is a subset of vertices S ⊆ V (G) of size k such
that every vertex outside S has a neighbor in S (i.e., S dominates every vertex in G and is thus
called a dominating set). Often regarded as one of the classical problems in computational com-
plexity, DOMSET was first shown to be NP-complete in the seminal work of Karp [Kar72]1. Thus,
its optimization variant, namely the minimum dominating set, where the goal is to find a dominat-
ing set of smallest possible size, is also NP-hard. To circumvent this apparent intractability of the
problem, the study of an approximate version was initiated. The quality of an approximation algo-
rithm is measured by the approximation ratio, which is the ratio between the size of the solution
output by an algorithm and the size of the minimum dominating set. A simple greedy heuristic
for the problem, which has by now become one of the first approximation algorithms taught in
undergraduate and graduate algorithm courses, was intensively studied and was shown to yield
a (lnn − ln lnn + Θ(1))-approximation for the problem [Joh74; Chv79; Lov75; Sri95; Sla96].
On the opposite side, a long line of works in hardness of approximation [LY94; RS97; Fei98;
AMS06; Mos12] culminated in the work of Dinur and Steurer [DS14], who showed that obtaining
a (1 − ε) lnn-approximation for the problem is NP-hard for every ε > 0. This essentially settles
the approximability of the problem.

The parameterized version of DOMSET, which we will refer to simply as k-DOMSET, turns
out to also be intractable: in the same work that introduced the W-hierarchy, Downey and Fel-
lows [DF95b] showed that k-DOMSET is complete for the class W[2], which is generally be-
lieved to not be contained in FPT. In the ensuing years, stronger running time lower bounds have
been shown for k-DOMSET under strengthened assumptions. Specifically, Chen et al. [Che+06]
ruled out T (k) · no(k)-time algorithm for k-DOMSET assuming ETH. Furthermore, Pătrascu and
Williams [PW10] proved, for every k > 2, that, under SETH, not even O(nk−ε) algorithm exists
for k-DOMSET for any ε > 0. Note that the trivial algorithm that enumerates through every k-size
subset and checks whether it forms a dominating set runs in O(nk+1) time. It is possible to speed
up this running time using fast matrix multiplication [EG04; PW10]. In particular, Pătrascu and

1To be precise, Karp showed NP-completeness of Set Cover, which is well-known to be equivalent to DOMSET.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 102

Williams [PW10] themselves also gave an nk+o(1)-time algorithm for every k > 7, painting an
almost complete picture of the complexity of the problem.

Given the strong negative results for k-DOMSET discussed in the previous paragraph, it is
natural to ask whether we can somehow incorporate the ideas from the area of approximation
algorithms to come up with an FPT approximation algorithm for k-DOMSET. This brings us to
the main question addressed in this chapter: Is there an F (k)-FPT-approximation algorithm for
k-DOMSET for some computable function F? This question, which dates back to late 1990s (see,
e.g., [DFM06]), has attracted significant attention in literature [DFM06; CGG06; Dow+08; CH10;
DF13; HKK13; CHK13; Bon+15; CL16; Cha+17]. In fact, it is even listed in the seminal textbook
of Downey and Fellows [DF13] as one of the six “most infamous” open questions2 in the area
of Parameterized Complexity. While earlier attempts fell short of ruling out either F (k) that is
super constant or all FPT algorithms (see Section 6 for more details), the last couple of years have
seen significant progresses on the problem. In a remarkable result of Chen and Lin [CL16], it was
shown that no FPT-approximation for k-DOMSET exists for any constant ratio unless W[1] = FPT.
They also proved that, assuming ETH, the inapproximability ratio can be improved to log1/4−ε k
for any constant ε > 0. Very recently, Chalermsook et al. [Cha+17] proved, under GAP-ETH,
that k-DOMSET is totally FPT inapproximable, i.e., that no F (k)-approximation algorithm for
k-DOMSET exists for any computable function F .

Although Chalermsook et al.’s result on the surface seems to settle the parameterized com-
plexity of approximating dominating set, several aspects of the result are somewhat unsatisfactory.
First, while GAP-ETH may be plausible, it is quite strong and, in a sense, does much of the work
in the proof. Specifically, GAP-ETH itself already gives the gap in hardness of approximation;
once there is such a gap, it is not hard3 to build on it and prove other inapproximability results. As
an example, in the analogous situation in NP-hardness of approximation, once one inapproxima-
bility result can be shown, others follow via relatively simple gap-preserving reductions (see, e.g.,
[PY91]). On the other hand, creating a gap in the first place requires the PCP Theorem [AS98;
Aro+98], which involves several new technical ideas such as local checkability of codes and proof
composition4. Hence, it is desirable to bypass GAP-ETH and prove total FPT inapproximability
under assumptions that do not involve hardness of approximation in the first place. Drawing a
parallel to the theory of NP-hardness of approximation once again, it is imaginable that a success
in bypassing GAP-ETH may also reveal a “PCP-like Theorem” for parameterized complexity.

An additional reason one may wish to bypass GAP-ETH for the total FPT inapproximabil-
ity of k-DOMSET is that the latter is a statement purely about parameterized complexity, so one
expects it to hold under a standard parameterized complexity assumption. Given that Chen and

2Since its publication, two of the questions, the parameterized complexity of k-BICLIQUE [Lin15] and that of
k-EVEN SET (Chapter 10 and [Bon+18]) have been resolved.

3One issue grossed over in this discussion is that of gap amplification. While GAP-ETH gives some constant gap,
Chalermsook et al. still needed to amplify the gap to arrive at total FPT inapproximability. Fortunately, unlike the
NP-hardness regime that requires Raz’s parallel repetition theorem [Raz98], the gap amplification step in [Cha+17],
while non-trivial, only involved relatively simple combinatorial arguments. (See [Cha+17, Theorem 4.3].)

4Even in the “combinatorial proof” of the PCP Theorem [Din07], many of these tools still remain in use, specifi-
cally in the alphabet reduction step of the proof.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 103

Lin [CL16] proved W[1]-hardness of approximating k-DOMSET to within any constant factor, a
concrete question here is whether we can show W[1]-hardness of approximation for every function
F (k):

Research Question 1. Can we base the total FPT inapproximability of k-DOMSET on W[1] 6=
FPT?

Another issue not completely resolved by [Cha+17] is the running time lower bound. While
the work gives a quite strong running time lower bound that rules out any T (k) · no(k)-time F (k)-
approximation algorithm for any computable functions T and F , it is still possible that, say,
an O(n0.5k)-time algorithm can provide a very good (even constant ratio) approximation for k-
DOMSET. Given the aforementioned O(nk−ε) running time lower bound for exact algorithms of
k-DOMSET by Pătrascu and Williams [PW10], it seems reasonable to ask whether such a lower
bound can also be established for approximation algorithms:

Research Question 2. Is it hard to approximate k-DOMSET in O(nk−ε)-time?

This question has perplexed researchers, as even with the running time of, say, O(nk−0.1), no
F (k)-approximation algorithm is known for k-DOMSET for any computable function F .

Our Contributions
Our contributions are twofold. Firstly, at a higher level, we prove parameterized inapproximabilty
results for k-DOMSET, answering the two aforementioned open questions (and more). Secondly, at
a lower level, we demonstrate a connection between communication complexity and parameterized
inapproximability, allowing us to translate running time lower bounds for parameterized problems
into parameterized hardness of approximation. This latter part of the contribution extends ideas
from a recent breakthrough of Abboud et al. [ARW17a], who discovered similar connections and
used them to establish inapproximability for problems in P. In this subsection, we only focus on
the first part of our contributions. The second part will be discussed in detail in Section 6.1.

Parameterized Inapproximability of Dominating Set

Our first batch of results are the inapproximability results for k-DOMSET under various stan-
dard assumptions in parameterized complexity and fine-grained complexity: W[1] 6= FPT, ETH,
SETH and the k-SUM Hypothesis. First, we show total inapproximability of k-DOMSET under
W[1] 6= FPT. In fact, we show an even stronger5 inapproximation ratio of (log n)1/poly(k):

5Note that the factor of the form (logn)1/poly(k) is stronger than that of the form F (k). To see this, assume that we
have an F (k)-FPT-approximation algorithm for some computable function F . We can turn this into a (logn)1/poly(k)-
approximation algorithm by first checking which of the two ratios is smaller. If F (k) is smaller, then just run the
F (k)-FPT-approximation algorithm. Otherwise, use brute force search to solve the problem. Since the latter case can
only occur when n 6 exp(F (k)poly(k)), we have that the running time remains FPT.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 104

Theorem 6.1. Assuming W[1] 6= FPT, no FPT time algorithm can approximate k-DOMSET to
within a factor of (log n)1/poly(k).

Our result above improves upon the constant factor inapproximability result of Chen and
Lin [CL16] and resolves the question of whether we can base total FPT inapproximability of k-
DOMSET on a purely parameterized complexity assumption. Furthermore, if we are willing to
assume the stronger ETH, we can even rule out all T (k) · no(k)-time algorithms:

Theorem 6.2. Assuming ETH, no T (k) · no(k)-time algorithm can approximate k-DOMSET to
within a factor of (log n)1/poly(k).

Note that the running time lower bound and approximation ratio ruled out by the above theorem
are exactly the same as those of Charlermsook et al.’s result based on GAP-ETH [Cha+17]. In
other words, we successfully bypass GAP-ETH from their result completely. Prior to this, the best
known ETH-based inapproximability result for k-DOMSET due to Chen and Lin [CL16] ruled out
only (log1/4+ε k)-approximation for T (k) · no(

√
k)-time algorithms.

Assuming the even stronger hypothesis, SETH, we can rule out O(nk−ε)-time approximation
algorithms for k-DOMSET, matching the running time lower bound from [PW10] while excluding
not only exact but also approximation algorithms. We note, however, that the approximation ratio
we get in this case is not (log n)1/poly(k) anymore, but rather (log n)1/poly(k,e(ε)) for some function e,
which arises from SETH and the Sparsification Lemma [IPZ01].

Theorem 6.3. There is a function e : R+ → N such that, assuming SETH, for every integer k > 2
and for every ε > 0, no O(nk−ε)-time algorithm can approximate k-DOMSET to within a factor of
(log n)1/poly(k,e(ε)).

Finally, to demonstrate the flexibility of our proof techniques (which will be discussed at length
in the next section), we apply the framework to the k-SUM Hypothesis (Hypothesis 5) which
yields an ndk/2e−ε running time lower bound for approximating k-DOMSET as stated below.

Theorem 6.4. Assuming the k-SUM Hypothesis, for every integer k > 3 and for every ε > 0, no
O(ndk/2e−ε)-time algorithm can approximate k-DOMSET to within a factor of (log n)1/poly(k).

We remark here that the k-SUM problem is known to be W[1]-hard [DF95b; ALW14] and
our proof of Theorem 6.4 indeed yields an alternative proof of W[1]-hardness of approximating
k-DOMSET (Theorem 6.1). Nevertheless, we provide a different self-contained W[1]-hardness
reduction directly from CLIQUE since the ideas there are also useful for our ETH-hardness result
(Theorem 6.2).

The summary of our results and those from previous works are shown in Table 6.1.

Comparison to Previous Works
In addition to the lower bounds previously mentioned, the parameterized inapproximability of k-
DOMSET has also been investigated in several other works [Dow+08; CHK13; HKK13; Bon+15].

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 105

Summary of Previous Works and The Results in This Chapter

Complexity Assumption Inapproximability Ratio Running Time Lower Bound Reference

W[1] 6= FPT
Any constant T (k) · poly(n) [CL16]

(log n)1/poly(k) T (k) · poly(n) This chapter

ETH
(log k)1/4+ε T (k) · no(

√
k) [CL16]

(log n)1/poly(k) T (k) · no(k) This chapter

GAP-ETH (log n)1/poly(k) T (k) · no(k) [Cha+17]

SETH
Exact O(nk−ε) [PW10]

(log n)1/poly(k,e(ε)) O(nk−ε) This chapter

k-SUM Hypothesis (log n)1/poly(k) O(ndk/2e−ε) This chapter

Table 6.1: Summary of our and previous results on k-DOMSET. We only show those whose
inapproximability ratios are at least some constant greater than one (i.e., we exclude additive in-
approximability results). Here e : R+ → N is some function, T : N → N can be any computable
function and ε can be any positive constant.

Specifically, Downey et al. [Dow+08] showed that obtaining an additive constant approximation
for k-DOMSET is W[2]-hard. On the other hand, in [HKK13; CHK13], the authors ruled out
(log k)1+ε-approximation in time exp(exp((log k)1+ε)) · poly(n) for some fixed constant ε >
0 by assuming ETH and the projection game conjecture proposed in [Mos12]. Further, Bon-
net et al. [Bon+15] ruled out (1 + ε)-FPT-approximation, for some fixed constant ε > 0, assuming
GAP-ETH6. We note that, with the exception of W[2]-hardness results [DF95b; Dow+08], our
results subsume all other aforementioned lower bounds regarding k-DOMSET, both for approxi-
mation [CHK13; HKK13; Bon+15; CL16; Cha+17] and exact algorithms [Che+06; PW10].

While our techniques will be discussed at a much greater length in the next section (in particu-
lar we compare our technique with [ARW17a] in Section 6.1.2), we note that our general approach
is to first show inapproximability of a parameterized variant of MAXCOV and then reduce MAX-
COV to k-DOMSET. The first step employs the connection between communication complexity
and inapproximability of MAXCOV, whereas the second step follows directly from the reduction
in [Cha+17] (which is in turn based on [Fei98]). While MAXCOV was not explicitly defined un-
til [Cha+17], its connection to k-DOMSET had been implicitly used both in the work of Pătrascu
and Williams [PW10] and that of Chen and Lin [CL16].

From this perspective, the main difference between our work and [PW10; CL16; Cha+17] is
6The authors assume the same statement as GAP-ETH (albeit, with imperfect completeness) but have an additional

assertion that it is implied by ETH (see Hypothesis 1 in [Bon+15]). It is not hard to see that their assumption can be
replaced by GAP-ETH.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 106

the source of hardness for MAXCOV. Recall that Pătrascu and Williams [PW10] ruled out only
exact algorithms; in this case, a relatively simple reduction gave hardness for the exact version of
MAXCOV. On the other hand, both Chalermsook et al. [Cha+17] and Chen and Lin [CL16] ruled
out approximation algorithms, meaning that they needed gaps in their hardness results for MAX-
COV. Chalermsook et al. obtained their initial gap from their assumption (GAP-ETH), after which
they amplified it to arrive at an arbitrarily large gap for MAXCOV. On the other hand, [CL16] de-
rived their gap from the hardness of approximating Maximum k-Intersection shown in Lin’s earlier
breakthrough work [Lin15]. Lin’s proof [Lin15] made use of certain combinatorial objects called
threshold graphs to prove inapproximability of Maximum k-Intersection. Unfortunately, this con-
struction was not very flexible, in the sense that it produced MAXCOV instances with parameters
that were not sufficient for proving total-FPT inapproximability for k-DOMSET. Moreover, his
technique (i.e., threshold graphs) was limited to reductions from k-CLIQUE and was unable to pro-
vide a tight running time lower bound under ETH. By resorting to the connection between MAX-
COV and communication complexity, we can generate MAXCOV instances with wider ranges of
parameters from much more general assumptions, allowing us to overcome the aforementioned
barriers.

Comparison to subsequent work of Lin. In [Lin19], the author provides a one-step reduction
from an instance of k-set cover7 on a universe of size O(log n) (where n is the number of subsets
given in the collection) to an instance of k-set cover on a universe of size poly(n) with a gap of(

logn
log logn

)1/k
. The author then uses this gap producing self-reduction to provide running time lower

bounds (under different time hypotheses) for approximating k-set cover to a factor of (1− o(1)) ·(
logn

log logn

)1/k
, improving on the results in Table 6.1 with a better dependence on k in the exponent.

At a high level, the NP-hardness of gap set cover, proceeds by combining the gap label cover
instance generated from the PCP theorem with the hypercube partition gadget (described in Sec-
tion 2.11). In this article, we proceed in a similar way by combining the gap MAXCOV instance
generated from the (generalized) Distributed PCP framework (see Figure 6.1), with the hypercube
partition gadget. In [Lin19], the author seems to first combine the hypercube partition gadget with
a derandomizing combinatorial object called universal set, to obtain a gap gadget, and then com-
bines the gap gadget with the input k-set cover instance (on small universe but with no gap) to
obtain a gap k-set cover instance.

Finally, we remark that unlike our proof framework, Lin’s technique seems to be specifically
tailored for the parameterized set cover problem; case in point, his technique does not give the
inapproximability of the MAXCOV problem, which we believe to be a canonical parameterized
gap problem.

Organization. In the next section, we give an overview of our lower level contributions; for read-
ers interested in the general ideas without too much notational overhead, this section covers most

7Recall that there is a pair of polynomial-time L-reductions between the minimum dominating set problem and
the set cover problem [Kan92].

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 107

of the main ideas from this chapter through a proof sketch of our W[1]-hardness of approximation
result (Theorem 6.1). After that, in Section 6.2, we define additional notations and preliminar-
ies needed to formalize our proofs. Section 6.3 provides a definition for Product Space Problems
(PSP) and rewrites the hypotheses in these terms. Next, in Section 6.4, we establish a general the-
orem converting communication protocols to a reduction from PSP to MAXCOV. Sections 6.5, 6.6
and 6.7 provide communication protocols for our problems of interest: Set Disjointness, MULTI-
EQUALITY and SUM-ZERO. Section 6.8 highlights the relation between parameterizd perspective
of the distributed PCP framework and the hardness in P. Finally, in Section 6.9, we conclude with
a few open questions and research directions.

6.1 Connecting Communication Complexity and
Parameterized Inapproximability: An Overview

This section is devoted to presenting our connection between communication complexity and pa-
rameterized inapproximability (which is one of our main contributions as discussed in the intro-
duction) and serves as an overview for all the proofs in this chapter. As mentioned previously, our
discovery of this connection is inspired by the work of Abboud et al. [ARW17a] who showed the
connection between the communication protocols and hardness of approximation for problems in
P. More specifically, they showed how a Merlin-Arthur protocol for Set Disjointness with certain
parameters implies the SETH-hardness of approximation for a problem called PCP-Vectors and
used it as the starting point to prove inapproximability of other problems in P. We extend this
idea by identifying a communication problem associated with each of the complexity assumptions
(W[1] 6= FPT, ETH, SETH and k-SUM Hypothesis) and then prove a generic theorem that trans-
lates communication protocols for these problems to conditional hardness of approximation for a
parameterized variant of the Label Cover problem called MAXCOV [Cha+17]. Since the hardness
of MAXCOV is known to imply the hardness of k-DOMSET [Cha+17] (see Section 2.11), we have
arrived at our inapproximability results for k-DOMSET. As the latter part is not the contribution of
this chapter, we will focus on explaining the connection between communication complexity and
the hardness of approximating MAXCOV.

For concreteness, we focus on the W[1]-hardness result (Theorem 6.1); at the end of this sec-
tion, we will discuss how this fits into a larger framework that encapsulates other hypotheses too.

For the purpose of our current discussion, it suffices to think of MAXCOV as being parameter-
ized by |V |, the number of right super-nodes; from this viewpoint, we would like to show that it
is W[1]-hard to approximate MAXCOV to within (log n)1/poly(h) factor. For simplicity, we shall be
somewhat imprecise in our overview below, all proofs will be formalized later in the chapter.

We reduce from the k-CLIQUE problem, which is well-known to be W[1]-hard [DF95b]. The
input to k-CLIQUE is an integer k and a graph which we will call G′ = (V ′, E ′) to avoid confusion
with the label cover graph. The goal is to determine whether G′ contains a clique of size k.
Recall that, to prove the desired W[1]-hardness, it suffices to provide an FPT-reduction from any
k-CLIQUE instance (G′, k) to approximate MAXCOV instance L = (U, V,E,ΣU ,ΣV , {Πe}e∈E);

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 108

this is an FPT-time reduction such that the new parameter |V | is bounded by a function of the
original parameter k. Furthermore, since we want a hardness of approximation result for the latter,
we will also show that, when (G′, k) is a YES instance of k-CLIQUE, there is a labeling of G that
covers all the left super-nodes. On the other hand, when (G′, k) is a NO instance of k-CLIQUE, we
wish to show that every labeling of G will cover at most 1/(log n)1/poly(h) fraction of the left super-
nodes. If we had such a reduction, then we would have arrived at the total FPT-inapproximability
of MAXCOV under W[1] 6= FPT. But, how would we come up with such a reduction? We will do
this by devising a specific kind of protocol for a communication problem!

6.1.1 A Communication Problem for k-CLIQUE

The communication problem related to k-CLIQUE we consider is a multi-party problem where
there are h =

(
k
2

)
players, each associated with a two-element subset {i, j} of [k]. The players

cannot communicate with each other. Rather, there is a referee that they can send messages to.
Each player {i, j} is given two vertices u{i,j}i and u{i,j}j such that {u{i,j}i , u

{i,j}
j } forms an edge in

G′. The vertices u{i,j}i and u{i,j}j are allegedly the i-th and j-th vertices of a clique respectively.
The goal is to determine whether there is indeed a k-clique in G′ such that, for every {i, j} ⊆ [k],
u
{i,j}
i and u{i,j}j are the i-th and j-th vertices of the clique.

The communication protocol that we are looking for is a one-round protocol with public ran-
domness and by the end of which the referee is the one who outputs the answer. Specifically, the
protocol proceeds as follows. First, the players and the referee together toss r random coins. Then,
each player sends an `-bit message to the referee. Finally, the referee decides, based on the mes-
sages received and the randomness, either to accept or reject. The protocol is said to have perfect
completeness and soundness s if (1) when there is a desired clique, the referee always accepts
and (2) when there is no such clique, the referee accepts with probability at most s. The model de-
scribed here is referred to in the literature as the multi-party Simultaneous Message Passing (SMP)
model [Yao79; Bab+03; FOZ16]. We refer to a protocol in the SMP model as an SMP protocol.

From Communication Protocol to MAXCOV. Before providing a protocol for the previously
described communication problem, let us describe how to turn the protocol into a label cover
instance L = (U, V,E,ΣU ,ΣV , {Πe}e∈E).

• Throughout this chapter, the super graph (U, V,E) is always a complete bipartite graph, i.e.,
E = U × V . From this point on, we will drop E from the notation for convenience.

• Let h =
(
k
2

)
. Again, we associate elements in [h] with two-element subsets of [k]. Each right

super-node represents Player {i, j}, i.e., V =
(

[k]
2

)
. We view each alphabet for super-node

{i, j} as a possible input to the player, i.e., an edge {u, v} ∈ E ′ in the graph G′. Assume
w.l.o.g. that i < j and u < v. This label represents player {i, j} receiving u and v as the
alleged i-th and j-th vertices of the clique respectively.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 109

• Let U = {0, 1}r; that is, we associate left super-node with an r-bit string. For each
γ ∈ {0, 1}r, we view each label for the left super-node γ as an accepting configuration
on randomness γ, i.e., an h-tuple of `-bit strings (m{1,2}, . . . ,m{k−1,k}) ∈ ({0, 1}`)h such
that the referee accepts on randomness γ and message m{1,2}, . . . ,m{k−1,k}.

• The constraint Πe where e = (γ, {i, j}) is defined as follows. Recall that each label a of the
right super-node {i, j} corresponds to an input that the player {i, j} receives in the protocol.
For each γ ∈ {0, 1}r, suppose that the message produced on this randomness by the {i, j}-
th player on the input corresponding to a is ma,γ . We include in Πe the pair between a and
every accepting configuration on randomness γ that agrees with the message ma,γ . More
specifically, ((m{1,2}, . . . ,m{k−1,k}), a) ∈ Πe iff m{i,j} = ma,γ .

Consider any right labeling σV . It is not hard to see that, if we run the protocol where the {i, j}-th
player is given the edge corresponding σV ({i, j}) as an input, then the referee accepts a random
string γ ∈ {0, 1}r if and only if the left super-node γ is covered by the labeling S. In other words,
the fraction of the left super-nodes covered by S is exactly equal to the acceptance probability of
the protocol. This means that if (G′, k) is a YES-instance of k-CLIQUE, then we can select σV
corresponding to the edges of a k-clique and every left super-node will be covered. On the other
hand, if (G′, k) is a NO-instance of k-CLIQUE, there is no labeling σV that corresponds to a valid
k-clique, meaning that every labeling σV covers at most s fraction of the edges. Hence, we have
indeed arrived at hardness of approximation for MAXCOV. Before we move on to describe the
protocol, let us note that the running time of the reduction is poly(2r+`h, |E ′|), which also gives an
upper bound on the size of the label cover instance.

SMP Protocol. Observe first that the trivial protocol, one where every player sends the whole
input to the referee, does not suffice for us; this is because the message length ` is Ω(log n),
meaning that the running time of the reduction is nΩ(h) = nΩ(k2) which is not FPT time.

Nevertheless, there still is a simple protocol that does the job. Notice that the input vertices
u
{i,j}
i and u{i,j}j given to Player {i, j} are already promised to form an edge. Hence, the only thing

the referee needs to check is whether each alleged vertex of the clique sent to different players are
the same; namely, he only needs to verify that, for every i ∈ [k], we have u{i,1}i = u

{i,2}
i = · · · =

u
{i,i−1}
i = u

{i,i+1}
i = · · · = u

{i,k}
i . In other words, he only needs to check equalities for each of

the k unknowns. The equality problem and its variants are extensively studied in communication
complexity (see, e.g., [Yao79; KN97]). In our case, the protocol can be easily derived using any
error-correcting code. Specifically, for an outcome γ ∈ {0, 1}r of the random coin tosses, every
Player {i, j} encodes each of his input (u{i,j}i and u{i,j}j) using a binary error-correcting code and
sends only the γ-th bit of each encoded word to the referee. The referee then checks whether, for
every i ∈ [k], the received γ-th bits of the encodings of u{i,1}i , u

{i,2}
i , . . . , u

{i,k}
i are equal.

In the protocol described above, the message length ` is now only two bits (one bit per vertex),
the randomness r used is logarithmic in the block length of the code, the soundness s is one minus
the relative distance of the code. If we use a binary code with constant rate and constant relative
distance (aka good codes), then r will be simply O(log log n); this means that the running time of

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 110

the reduction is poly(n, exp(O(k2))) as desired. While the soundness in this case will just be some
constant less than one, we can amplify the soundness by repeating the protocol multiple times
independently; this increases the randomness and message length, but it is still not hard to see that,
with the right number of repetitions, all parameters lie within the desired ranges. With this, we
have completed our sketch for the proof of W[1]-hardness of approximating MAXCOV.

6.1.2 A Framework for Parameterized Hardness of Approximation
The W[1]-hardness proof sketched above is an example of a much more general connection be-
tween communication protocol and the hardness of approximating MAXCOV. To gain insight on
this, consider any function f : X1×· · ·×Xk → {0, 1}. This function naturally induces both a com-
munication problem and a computational problem. The communication problem for f is one where
there are k players, each player i receives an input ai ∈ Xi, and they together wish to compute
f(a1, . . . , ak). The computational problem for f , which we call the Product Space Problem8 of f
(abbreviated as PSP(f)), is one where the input consists of subsetsA1 ⊆ X1, . . . , Ak ⊆ Xk and the
goal is to determine whether there exists (a1, . . . , ak) ∈ A1×· · ·×Ak such that f(a1, . . . , ak) = 1.
The sketch reduction to MAXCOV above in fact not only applies to the specific communication
problem of k-CLIQUE: the analogous construction is a generic way to translate any SMP protocol
for the communication problem of any function f to a reduction from PSP(f) to MAXCOV. To
phrase it somewhat differently, if we have an SMP protocol for f with certain parameters and
PSP(f) is hard to solve, then MAXCOV is hard to approximate.

This brings us to the framework we use in this chapter. It consists of only two steps. First,
we rewrite the problem in the hypotheses as Product Space Problems of some family of functions
F . This gives us the conditional hardness for solving PSP(F). Second, we devise an SMP pro-
tocol for every function f ∈ F . Given the connection outlined in the previous paragraph, this
automatically yields the parameterized hardness of approximating MAXCOV.

To gain more intuition into the framework, note that in the case of k-CLIQUE above, the
function f ∈ F we consider is just the function f : X{1,2} × · · · × X{k,k−1} where each of
X{1,2}, · · · , X{k,k−1} is a copy of the edge set. The function f “checks” that the edges selected
form a clique, i.e., that, for every i ∈ [k], the alleged i-th vertex of the clique specified in the
{i, j}-coordinate is equal for every j 6= i. Since this is a generalization of the equality function,
we call such a class of functions “multi-equality”. It turns out that 3-SAT can also be written as
PSP of multi-equality; eachXi contains assignments to 1/k fraction of the clauses and the function
f checks that each variable is assigned the same value across all Xi’s they appear in. A protocol
essentially the same as the one given above also works in this setting and immediately gives our
ETH-hardness result (Theorem 6.2)! Unfortunately, this does not suffice for our SETH-hardness.
In that case, the function used is the k-way set disjointness; this interpretation of SETH is well-
known (see, e.g., [Wil05]) and is also used in [ARW17a]. Lastly, the k-SUM problem is already
written in PSP form where f is just the SUM-ZERO function that checks whether the sum of k
specified numbers equals to zero.

8The naming comes from the product structure of the domain of f .

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 111

Let us note that in the actual proof, we have to be more careful about the parameters than in
the above sketch. Specifically, the reduction from MAXCOV to k-DOMSET from [Fei98; Cha+17]
incurs a blow-up in size that is exponential in terms of the number of vertices in each left super-
node (i.e., exponential in |Uγ|). This means that we need |U1|, . . . , |Ur| = o(log n). In the context
of communication protocol, this translates to keeping the message length O(log log n) where O(·)
hides a sufficiently small constant. Nevertheless, for the protocol for k-CLIQUE reduction (and
more generally for multi-equality), this does not pose a problem for us since the message length
before repetitions is O(1) bits; we can make sure that we apply only O(log log n) repetitions to the
protocol.

For SUM-ZERO, known protocols either violate the above requirement on message length [Nis94]
or use too much randomness [Vio15]. Nonetheless, a simple observation allows us to compose
Nisan’s protocol [Nis94] and Viola’s protocol [Vio15] and arrive at a protocol with the best of both
parameters. This new protocol may also be of independent interest beyond the scope of our work.

On the other hand, well-known communication complexity lower bounds on set disjointness [Raz92;
KS92; Bar+04] rule out the existence of protocols with parameters we wish to have! [ARW17a]
also ran into this issue; in our language, they got around this problem by allowing the referee to
receive an advice. This will also be the route we take. Even with advice, however, devising a
protocol with the desired parameters is a technically challenging issue. In particular, until very re-
cently, no protocol for set disjointness with O(log log n) message length (and o(n) advice length)
was known. This was overcome in the work of Rubinstein [Rub18] who used algebraic geometric
codes to give such a protocol for the two-player case. We extend his protocol in a straightforward
manner to the k-player case; this extension was also suggested to us by Rubinstein [Rub17a].

A diagram illustrating the overview of our approach can be found in Figure 6.1.

Comparison to Abboud et al. The main result of Abboud et al. [ARW17a] is their SETH-
hardness of the gap label cover problem which they refer to as the PCP-Vectors problem. In fact,
PCP-Vectors is equivalent to MAXCOV when h = 2 (i.e., the number of right super nodes is two).
However, formulating the label cover problem as MAXCOV instead of PCP-Vectors is beneficial
for us, as our goal it to reduce to graph problems.

In their work, they merge the roles of the referee and the first player as it is necessary to achieve
the goal of proving hardness of approximation for important problems in P (which are usually
defined on one or two sets of vectors). However, by doing this the details of the proof become
a little convoluted. On the contrary, our framework with the SMP model is arguably a cleaner
framework to work with and it works well for our goal of proving hardness of approximation for
parameterized problems.

Finally, we note that our observation that the hardness of approximating MAXCOV can be
obtained from any arbitrary hypothesis as long as there is an underlying product structure (as
formalized via PSPs) is a new contribution of this chapter.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 112

W[1] 6= FPT

ETH

SETH

k-Sum Hyp.

PSP(MULTEQ)

PSP(DISJ)

PSP(SUMZERO)

MAXCOV k-DOMSET

Rewriting Hypotheses
in PSP form
(Section 6.3)

Connection between SMP
Protocol and MAXCOV

(Section 6.4)

Protocol for MULTEQ
(Section 6.6)

Protocol for DISJ
(Section 6.5)

Protocol for SUMZERO
(Section 6.7)

Reduction from
[Fei98; Cha+17]
(Section 2.11)

Figure 6.1: Overview of Our Framework. The first step is to reformulate each hypothesis in terms
of hardness of a PSP problem, which is done in Section 6.3. Using the connection between SMP
protocols and MAXCOV outlined earlier (and formalized in Section 6.4), our task is now to devise
SMP protocols with certain parameters for the corresponding communication problems; these are
taken care of in Sections 6.5, 6.6 and 6.7. For completeness, the final reduction from MAXCOV to
k-DOMSET which was shown in [Cha+17] is included in Section 2.11.

6.2 Additional Preliminaries
We need error-correcting codes with specific properties, which are described below.

6.2.1 Good Codes
In the construction of our communication protocol in Section 6.6, we require our codes to have
constant rate and constant relative distance (referred to as good codes). It is not hard to see that
random codes, ones where each codeword C(x) is randomly selected from Σd independently from
each other, satisfy these properties. For binary codes (i.e., |Σ| = 2), one can explicitly con-
struct such codes using expander graphs (so called Expander Codes [SS96]); alternatively Juste-
sen Code [Jus72] also have the same property (see Appendix E.1.2.5 from [Gol08] for an excellent
exposition).

Fact 6.5. For some absolute constant δ, ρ > 0, there exists a family of codes C := {Cm :
{0, 1}m → {0, 1}d(m)}m∈N such that for every m ∈ N the rate of Cm is at least ρ and the relative
distance of Cm is at least δ. Moreover, any codeword of Cm can be computed in time poly(m).

6.2.2 Algebraic Geometric Codes
In the construction of our communication protocol in Section 6.5, we require our codes to have
some special algebraic properties which have been shown to be present in algebraic geometric

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 113

codes [GS96]. First, we will introduce a couple of additional definitions.

Definition 6.6 (Systematicity). Given s ∈ N, a code C : Σm → Σd is s-systematic if there exists
a size-s subset of [d], which for convenience we identify with [s], such that for every x ∈ Σs there
exists w ∈ Σm in which x = C(w) |[s].

Definition 6.7 (Degree-t Closure). Let Σ be a finite field. Given two codes C : Σm → Σd, C ′ :
Σm′ → Σd and positive integer t, we say thatC ′ is a degree-t closure ofC if, for everyw1, . . . , wr ∈
Σm and P ∈ F[X1, . . . , Xr] of total degree at most t, it holds that ω := P (C(w1), . . . , C(wr)) is in
the range ofC ′, where ω ∈ Σd is defined coordinate-wise by the equation ωi := P (C(w1)i, . . . , C(wr)i).

Below we provide a self-contained statement of the result we rely on in Section 6.5; it follows
from Theorem 7 of [Shu+01], which gives an efficient construction of the algebraic geometric
codes based on [GS96]’s explicit towers of function fields.

Theorem 6.8 ([GS96; Shu+01]). There are two polynomial functions r̂, q̂ : N → N such that for
every k ∈ N and any prime q > q̂(k), there are two code families A = {An}n∈N, B = {Bn}n∈N
such that the following holds for all n ∈ N,

• An and Bn are n-systematic code with alphabet Fq2 ,

• An and Bn have block length less than n · r̂(k).

• Bn has relative distance > 1/2,

• Bn is a degree-k closure of An, and,

• Any codeword in An or Bn can be computed in poly(n) time .

We remark here that variants of the above theorem have previously found applications in the
construction of special kinds of PCPs [Ben+16a; Ben+16b]. In these works, the theorems are also
stated in a language similar to Theorem 6.8 above.

6.3 Product Space Problems and Popular Hypotheses
In this section, we define a class of computational problems called Product Space Problems (PSP).
As the name suggests, a problem in this class is defined on a class of functions whose domain
is a k-ary Cartesian Product, i.e., f : X1 × · · · × Xk → {0, 1}. The input of the problem are
subsets9 A1 ⊆ X1, . . . , Ak ⊆ Xk, and the goal is to determine whether there exists (a1, . . . , ak) ∈
A1 × · · · ×Ak such that f(a1, . . . , ak) = 1. The size of the problem is determined by max

i∈[k]
|Ai|. A

formal definition of PSP can be found below.
9Each Ai will be explicitly given as part of the input through the elements that it contains.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 114

Definition 6.9 (Product Space Problem). Let m : N × N → N be any function and F :=
{fN,k : {0, 1}m(N,k)×k → {0, 1}}N,k∈N be a family of Boolean functions indexed by N and k.
For each k ∈ N, the product space problem PSP(k,F) of order N is defined as follows: given k
subsets A1, . . . , Ak of {0, 1}m(N,k) each of cardinality at most N as input, determine if there exists
(a1, . . . , ak) ∈ A1 × · · · × Ak such that fN,k(a1, . . . , ak) = 1. We use the following shorthand
PSP(k,F , N) to describe PSP(k,F) of order N .

In all the PSPs considered in this chapter, the input length m(N, k) is always at most poly(k) ·
logN and fN,k is always computable in time poly(m(N, k)). In such a case, there is a trivial
Nk+ok(1)-time algorithm to solve PSP(k,F , N): enumerating all (a1, . . . , ak) ∈ A1 × · · · × Ak
and check whether fN,k(a1, . . . , ak) = 1. The rest of this section is devoted to rephrasing the
hypotheses (SETH, ETH, W[1] 6= FPT and the k-SUM Hypothesis) in terms of lower bounds for
PSPs. The function families F’s, and running time lower bounds will depend on the hypotheses.
For example, SETH will corresponds to set disjointness whereas W[1] 6= FPT will correspond
to a generalization of equality called “multi-equality”; the former will give an Nk(1−o(1)) running
time lower bound whereas the latter only rules out FPT time algorithms.

We would like to remark that the class of problems called ‘locally-characterizable sets’ in-
troduced by Goldreich and Rothblum [GR18] are closely related to PSPs. Elaborating, we may
interpret locally-characterizable sets as the negation of PSPs, i.e., for any PSP(k,F , N), we may
define the corresponding locally-characterizable set S as follows:

S = {(A1, . . . , Ak) | for all (a1, . . . , ak) ∈ A1 × · · · × Ak we have fN,k(a1, . . . , ak) = 0}.

Finally, we note that the class of problems called ‘counting local patterns’ introduced in [GR18]
are the counting counterpart of PSPs, i.e., for any instance (A1, . . . , Ak) of PSP(k,F , N), we may
define the corresponding counting local pattern solution to be the number of distinct (a1, . . . , ak) ∈
A1 × · · · × Ak such that fN,k(a1, . . . , ak) = 1.

6.3.1 k-SUM Hypothesis
To familiarize the readers with our notations, we will start with the k-SUM Hypothesis, which is
readily in the PSP form. Namely, the functions in the family are the SUM-ZERO functions that
checks if the sum of k integers is zero:

Definition 6.10 (SUM-ZERO). Let k,m ∈ N. SUMZEROm,k : ({0, 1}m)k → {0, 1} is defined by

SUMZEROm,k(x1, . . . , xk) =

1 if

∑
i∈[k]

xi = 0,

0 otherwise,

where we think of each xi as a number in [−2m−1, 2m−1 − 1], and the addition is over Z.

The function family F SUMZERO can now be defined as follows.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 115

Definition 6.11 (Sum-Zero Function Family). Let m : N × N → N be a function defined by
m(N, k) = 2kdlogNe. F SUMZERO is defined as {SUMZEROm(N,k),k}N∈N,k∈N .

The following proposition is immediate from the definition of the k-SUM Hypothesis.

Proposition 6.12. Assuming the k-SUM Hypothesis, for every integer k > 3 and every ε > 0, no
O(N dk/2e−ε)-time algorithm can solve PSP(k,F SUMZERO, N) for all N ∈ N.

6.3.2 Set Disjointness and SETH
We recall the k-way disjointness function, which has been studied extensively in literature (see,
e.g., [LS09] and references therein).

Definition 6.13 (Set Disjointness). Let k,m ∈ N. DISJm,k : ({0, 1}m)k → {0, 1} is defined by

DISJm,k(x1, . . . , xk) = ¬
 ∨
i∈[m]

 ∧
j∈[k]

(xj)i

 .
The function family FDISJ

c can now be defined as follows.

Definition 6.14 (Set Disjointness Function Family). For every c ∈ N, let mc : N × N → N be a
function defined by mc(N, k) = cdk logNe. FDISJ

c is defined as {DISJmc(N,k),k}N∈N,k∈N .

We have the following proposition which follows easily from the definition of SETH and its
well-known connection to the Orthogonal Vectors Hypothesis [Wil05].

Proposition 6.15. Let k ∈ N such that k > 1. Assuming SETH, for every ε > 0 there exists
c := cε ∈ N such that no O(Nk(1−ε))-time algorithm can solve PSP(k,FDISJ

c , N) for all N ∈ N.

Proof. Fix ε > 0 and k > 1. By SETH, there exists w := w(ε) ∈ N and c := c(ε) ∈ N such that
no algorithm can solve w-SAT in O(2(1−ε)n) time where n is the number of variables and m 6 cn
is the number of clauses. For every w-SAT formula φ, we will build Aφ1 , . . . , A

φ
k ⊆ {0, 1}m

each of cardinality N := 2n/k such that there exists (a1, . . . , ak) ∈ Aφ1 × · · · × Aφk such that
DISJm,k(a1, . . . , ak) = 1 if and only if φ is satisfiable. Thus, if there was an O(Nk(1−ε))-time
algorithm that can solve PSP(k,FDISJ

c , N) for all N ∈ N, then it would violate SETH.
All that remains is to show the construction of Aφ1 , . . . , A

φ
k from φ. Fix i ∈ [k]. For every

partial assignment σ to the variables x(i−1)∗(n/k)+1, . . . , xi∗(n/k) we build an m-bit vector aσ ∈ Aφi
as follows: ∀j ∈ [m], we have aσ(j) = 0 is σ satisfies the j th clause, and aσ(j) = 1 otherwise (i.e.,
the clause is not satisfied, or its satisfiability is indeterminate). It is easy to verify that there exists
(a1, . . . , ak) ∈ Aφ1 × · · · ×Aφk such that DISJm,k(a1, . . . , ak) = 1 if and only if φ is satisfiable.

We remark that we can prove a similar statement as that of Proposition 6.15 for ETH: assuming
ETH, there exists k0 such that for every k > k0 there exists c := ck0 ∈ N such that no O(N o(k))-
time algorithm can solve PSP(k,FDISJ

c , N) for all N ∈ N. However, instead of associating ETH

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 116

with DISJ, we will associate with the Boolean function MULTEQ (which will be defined in the next
subsection) and its corresponding PSP. This is because, associating ETH with MULTEQ provides
a more elementary proof of Theorem 6.2 (in particular we will not need to use algebraic geometric
codes – which are essentially inevitable if we associate ETH with DISJ).

6.3.3 W[1] 6= FPT Hypothesis and ETH
Again, we recall the k-way EQUALITY function which has been studied extensively in literature
(see, e.g., [AMS12; ABC09; CRR14; CMY08; LV11; PVZ12] and references therein).

Definition 6.16 (EQUALITY). Let k,m ∈ N. EQm,k : ({0, 1}m)k → {0, 1} is defined by

EQm,k(x1, . . . , xk) =
∧

i,j∈[k]
(xi = xj)

where xi = xj is a shorthand for
∧

p∈[m]
(xi)p = (xj)p.

Unfortunately, the PSP associated with EQ is in fact not hard: given sets A1, . . . , Ak, it is
easy to find whether they share an element by just sorting the combined list of A1 ∪ · · · ∪ Ak.
Hence, we will need a generalization of the equality function to state our hard problem. Before
we do so, let us first state an intermediate helper function, which is a variant of the usual equality
function where some of the k inputs may be designed as “null” and the function only checks
the equality over the non-null inputs. We call this function the SELECTIVE-EQUALITY (SELEQ)
function. For notational convenience, in the definition below, each of the k inputs is now viewed
as (xi, yi) ∈ {0, 1}m−1 × {⊥,>}; if yi = ⊥, then (xi, yi) represents the “null” input.

Definition 6.17 (SELECTIVE-EQUALITY). Let k,m ∈ N. SELEQm,k : ({0, 1}m−1 × {⊥,>})k →
{0, 1} is defined by

SELEQm,k((x1, y1), . . . , (xk, yk)) =
∧

i,j∈[k]
((yi = ⊥) ∨ (yj = ⊥) ∨ (xi = xj)) .

Next, we introduce the variant of EQ whose associated PSP is hard under W[1] 6= FPT and
ETH. In the settings of both EQUALITY and SELECTIVE-EQUALITY defined above, there is only
one unknown that is given in each of the k inputs a1 ∈ A1, . . . , ak ∈ Ak and the functions check
whether they are equal. The following function, which we name MULTI-EQUALITY, is the t-
unknown version of SELECTIVE-EQUALITY. Specifically, the ith part of the input is now a tuple
((xi,1, yi,1), . . . , (xi,t, yi,t)) where xi,1, . . . , xi,t are bit strings representing the supposed values of
the t unknowns while, similar to SELECTIVE-EQUALITY, each yi,q ∈ {⊥,>} is a symbol indicat-
ing whether (xi,q, yi,q) is the “null” input. Below is the formal definition of MULTEQ; note that for
convenience, we use (xi,q, yi,q)q∈[t] as a shorthand for ((xi,1, yi,1), . . . , (xi,t, yi,t)), i.e., the ith part
of the input.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 117

Definition 6.18 (MULTI-EQUALITY). Let k, t ∈ N and let m ∈ N be any positive integer such
that m is divisible by t. Let m′ = m/t. MULTEQm,k,t : (({0, 1}m′−1 × {⊥,>})t)k → {0, 1} is
defined by

MULTEQm,k,t((x1,q, y1,q)q∈[t], . . . , (xk,q, yk,q)q∈[t]) =
∧
q∈[t]

SELEQm′,k((x1,q, y1,q), . . . , (xk,q, yk,q)).

Next, we define the family FMULTEQ; note that in the definition below, we simply choose t(k),
the number of unknowns, to be k+

(
k
2

)
+
(
k
3

)
. As we will see later, this is needed for ETH-hardness.

For W[1]-hardness, it suffices to use a smaller number of variables. However, we choose to define
t(k) in such a way so that we can conveniently use one family for both ETH and W[1]-hardness.

Definition 6.19. Let t : N → N be defined by t(k) = k +
(
k
2

)
+
(
k
3

)
. Let m : N × N → N be

defined by m(N, k) = t(k) (1 + kdlogNe). We define FMULTEQ as {MULTEQm(N,k),k,t(k)}N∈N,k∈N.

We next show a reduction from k-CLIQUE to PSP(k′,FMULTEQ) where k′ =
(
k
2

)
. The overall

idea of the reduction is simple. First, we associate the integers in [k′] naturally with the elements
of
(

[k]
2

)
. We then create the sets

(
A{i,j}

)
{i,j}⊆[k],i 6=j

in such a way that each element of the set A{i,j}
corresponds to picking an edge between the i-th and the j-th vertices in the supposed k-clique.
Then, MULTEQ is used to check that these edges are consistent, i.e., that, for every i ∈ [k], a{i,j}
and a{i,j′} pick the same vertex to be the ith vertex in the clique for all j, j′ ∈ [k] \ {i}. This idea is
formalized in the following proposition and its proof.

Proposition 6.20. Let k ∈ N and k′ =
(
k
2

)
. There exists a poly(N, k)-time reduction from any

instance (G, k) of CLIQUE to an instance (A1, . . . , Ak′) of the PSP(k′,FMULTEQ, N ′) where N
denotes the number of vertices of G and N ′ =

(
N
2

)
.

Proof. Given a CLIQUE instance10 (G, k), the reduction proceeds as follows. For convenience, we
assume that the vertex set V (G) is [N]. Furthermore, we associate the elements of [k′] naturally
with the elements of

(
[k]
2

)
. For the sake of conciseness, we sometimes abuse notation and think

of {i, j} as an ordered pair (i, j) where i < j. For every {i, j} ∈
(

[k]
2

)
such that i < j, the set

A{i,j} contains one element a{u,v}{i,j} =
(
a
{u,v}
{i,j},1, . . . , a

{u,v}
{i,j},t(k′)

)
for each edge {u, v} ∈ E(G) such

that u < v, where

a
{u,v}
{i,j},q =

(u,>) if q = i,

(v,>) if q = j,

(0,⊥) otherwise.

Note that in the definition above, we view u, v and 0 as (m(N ′,k′)/t(k′)− 1)-bit strings, where m :
N × N → N is as in Definition 6.19. Also note that each set A{i,j} has size at most

(
N
2

)
= N ′,

10We assume without loss of generality that G does not contain any self-loop.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 118

meaning that (A{i,j}){i,j}⊆[k] is indeed a valid instance of PSP(k′,FMULTEQ, N ′). For brevity, below
we will use f as a shorthand for MULTEQm(N ′,k′),k′,t(k′).

(⇒) Suppose that (G, k) is a YES instance for CLIQUE, i.e., there exists a k-clique {u1, . . . , uk}
in G. Assume without loss of generality that u1 < · · · < uk. We claim that,

f
((
a
{ui,uj}
{i,j}

)
i,j∈[k],i<j

)
= 1.

To see that this is the case, observe that for every q ∈ [t(k′)] and for every {i, j} ⊆ [k] such that i <

j, we have either a{ui,uj}{i,j},q = (0,⊥) or a{ui,uj}{i,j},q = (uq,>). This means that, SELEQ

((
a
{ui,uj}
{i,j},q

)
i,j∈[k],i<j

)
=

1 for every q ∈ [t(k′)].
(⇐) Suppose that (A{i,j}){i,j}⊆[k] is a YES instance for PSP(k′,FMULTEQ, N ′), i.e., there exists

a∗{i,j} ∈ A{i,j} for every {i, j} ⊆ [k] such that f((a∗{i,j}){i,j}⊆[k]) = 1. Suppose that a∗{i,j} =
(x∗{i,j},1, y∗{i,j},1, . . . , x∗{i,j},t(k′), y∗{i,j},t(k′)). From this solution {a∗{i,j}}{i,j}⊆[k], we can recover the
k-clique as follows. For each i ∈ [k], pick an arbitrary j(i) ∈ [k] that is not equal to i. Let ui
be x∗{i,j},i. We claim that u1, . . . , uk forms a k-clique in G. To show this, it suffices to argue that,
for every distinct i, i′ ∈ [k], there is an edge between ui and ui′ in G. To see that this holds,
consider a∗{i,i′}. Since y∗{i,i′},i = y∗{i,j(i)},i = >, we have x∗{i,i′},i = x∗{i,j(i)},i = ui. Similarly,
we have x∗{i,i′},i′ = ui′ . Since a∗{i,i′} ∈ A{i,i′} and from how the set A{i,i′} is defined, we have
{ui, ui′} ∈ E(G), which concludes our proof.

Lemma 6.21. Assuming W[1] 6= FPT, for any computable function T : N → N, there is no
T (k) · poly(N) time algorithm that can solve PSP(k,FMULTEQ, N) for every N, k ∈ N.

Proof. Suppose for the sake of contradiction that, for some computable function T : N→ N, there
is a T (k) · poly(N) time algorithm A that can solve PSP(k,FMULTEQ, N) for every N, k ∈ N. We
will show that this algorithm can also be used to solve k-CLIQUE parameterized by k in FPT time.

Given an instance (G, k) of k-CLIQUE, we first run the reduction from Proposition 6.20 to pro-
duce an instance (A1, . . . , Ak′) of PSP(k′,FMULTEQ, N ′) in poly(N, k) time whereN = |V (G)|, N ′ =(
N
2

)
and k′ =

(
k
2

)
. We then runA on (A1, . . . , Ak′), which takes time T (k′) ·poly(N ′). This means

that we can also solve our k-CLIQUE instance (G, k) in time poly(N, k) + T (k′) · poly(N ′) =
poly(N, k) + T

((
k
2

))
· poly(N), which is FPT time. Since k-CLIQUE is W[1]-complete, this

contradicts with W[1] 6= FPT.

Next, we will prove ETH-hardness of PSP(k,FMULTEQ). Specifically, we will reduce a 3-SAT
instance φwhere each variable appears in at most three clauses to an instance of PSP(k,FMULTEQ, N)
where N = 2O(n/k) and n denotes the number of variables in φ. The overall idea is to partition the
set of clauses into k parts of equal size and use each element inAj to represent a partial assignment
that satisfies all the clauses in the j th partition. This indeed means that each group has size 2O(n/k)

as intended. However, choosing the unknowns are not as straightforward as in the reduction from
k-CLIQUE above; in particular, if we view each variable by itself as an unknown, then we would
have n unknowns, which is much more than the designated t(k) = k +

(
k
2

)
+
(
k
3

)
unknowns! This

is where we use the fact that each variable appears in at most three clauses: we group the variables

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 119

of φ together based on which partitions they appear in and view each group as a single variable.
Since each variable appears in at most three clauses, the number of ways they can appear in the k
partitions is k +

(
k
2

)
+
(
k
3

)
which is indeed equal to t(k). The ideas are formalized below.

Proposition 6.22. Let k ∈ N. There exists a poly(N, k)-time reduction from any instance φ of
3-SAT such that each variable appears in at most three clauses in an instance (A1, . . . , Ak) of the
PSP(k,FMULTEQ, N) where N = 23dm/ke and m denotes the number of clauses in φ.

Proof. Given a 3-SAT formula φ such that each variable appears in at most three clauses. Let
the variable set of φ be Z = {z1, . . . , zn} and the clauses of φ be C = {C1, . . . , Cm}. Then for
every k ∈ N, we produce an instance (A1, . . . , Ak) of PSP(k,FMULTEQ, N) where N = 23dm/ke as
follows.

First, we partition the clause set C into k parts C1, . . . , Ck each of size at most dm/ke. For
each variable zi, let Si denote {j ∈ [k] | ∃Ch ∈ Cj such that zi ∈ Ch or zi ∈ Ch}. Since every
zi appears in at most three clauses, we have Si ∈

(
[k]
63

)
. For each S ∈

(
[k]
63

)
, let ν(S) denote

the set of all variables zi’s such that Si = S (i.e. S is exactly equal to the set of all partitions
that zi appears in). The general idea of the reduction is that we will view a partial assignment to
the variables in ν(S) as an unknown for MULTEQ; let us call this unknown XS (hence there are
k +

(
k
2

)
+
(
k
3

)
= t(k) unknowns). For each j ∈ [k], Aj contains one element for each partial

assignment to the variables that appear in the clauses in Cj and that satisfies all the clauses in Cj .
Such a partial assignment specifies

(
1 + k +

(
k
2

))
unknowns: all the XS such that j ∈ S. The

MULTEQ function is then used to check the consistency between the partial assignments to the
variables from different Aj’s.

To formalize this intuition, we first define more notations. Let m̃ = 3kdm/ke. For every
subsets T ⊆ T ′ ⊆ Z and every partial assignment α : T ′ → {0, 1}, the restriction of α to
T , denoted by α|T is the function from T to {0, 1} where α|T (z) = α(z) for every z ∈ T .
Furthermore, we define the operator ext(α), which “extends” α to m̃ bits, i.e., the i-th bit of
ext(α) is α(zi) if zi ∈ T and is zero otherwise. Finally, we use var(Cj) to denote the set of all
variables that appear in at least one of the clauses from Cj , i.e., var(Cj) = ⋃

C∈Cj var(C) where
var(C) denotes {zi ∈ Z | zi ∈ C or zi ∈ C}.

Now, since our t(k) is exactly
∣∣∣([k]

63

)∣∣∣, we can associate each element of [t] with a subset S ∈(
[k]
63

)
. Specifically, for each partial assignment α : var(Cj) → {0, 1} such that α satisfies all the

clauses in Cj , the set Aj contains an element aαj = (aαj,S)
S∈([k]

63) where, for every S ∈
(

[k]
63

)
,

aαj,S =

(
ext

(
α|ν(S)

)
,>
)

if j ∈ S,
(0m̃,⊥) otherwise.

Fix S ∈
(

[k]
63

)
. For every j ∈ S, observe that ν(S) ⊆ var(Cj). Moreover, since each Cj contains

at most dm/ke clauses, there are at most 3dm/ke variables in var(Cj). This means that Aj has
size at most 23dm/ke. Hence, (A1, . . . , Ak) is indeed a valid instance of PSP (k,FMULTEQ, N) where
N = 23dm/ke. For brevity, below we will use f as a shorthand for MULTEQm(N,k),k,t(k).

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 120

(⇒) Suppose that φ is satisfiable. Let α : C → {0, 1} be an assignment that satisfies all the

clauses. Let a∗j = a
α|var(Cj)
j ∈ Aj for every j ∈ [k]. Observe that, for every S ∈

(
[k]
63

)
and every

j ∈ [k], we either have a∗j,S = (0m̃,⊥) or a∗j,S = (ext(α|ν(S)),>). This indeed implies that
f(a∗1, . . . , a∗k) = 1.

(⇐) Suppose that there exists (aα1
1 , . . . , a

αk
k) ∈ A1 × · · · × Ak such that f(aα1

1 , . . . , a
αk
k) = 1.

We construct an assignment α : Z → {0, 1} as follows. For each i ∈ [n], pick an arbitrary
j(i) ∈ [k] such that zi ∈ var(Cj(i)) and let α(zi) = αj(i)(zi). We claim that α satisfies every clause.
To see this, consider any clause C ∈ C. Suppose that C is in the partition Cj . It is easy to check
that f(aα1

1 , . . . , a
αk
k) = 1 implies that α|var(C) = αj|var(C). Since αj is a partial assignment that

satisfies C, α must also satisfy C. In other words, α satisfies all clauses of φ.

Lemma 6.23. Assuming ETH, for any computable function T : N → N, there is no T (k) · N o(k)

time algorithm that can solve PSP(k,FMULTEQ, N) for every N, k ∈ N.

Proof. Let δ > 0 be the constant in the running time lower bound in ETH. Suppose for the sake
of contradiction that ETH holds but, for some function T , there is a T (k) · N o(k) time algorithm
A that can solve PSP(k,FMULTEQ, N) for every N, k ∈ N. Thus, there exists a sufficiently large
k such that the running time of A for solving PSP(k,FMULTEQ, N) is at most O(N δk/10) for every
N ∈ N.

Given a 3-CNF formula φ such that each variable appears in at most three clauses. Let n,m
denote the number of variables and the number of clauses of φ, respectively. We first run the
reduction from Proposition 6.22 on φ with this value of k. This produces an instance (A1, . . . , Ak)
of PSP (k,FMULTEQ, N) where N = 23dm/ke. Since each variable appears in at most three clauses,
we have m 6 3n, meaning that N = O(29n/k). By running A on this instance, we can decide
whether φ is satisfiable in time O(N δk/10) = O(20.9δn), contradicting ETH.

6.4 Communication Protocols and Reduction to MAXCOV

In this section, we first introduce a communication model for multiparty communication known in
literature as the Simultaneous Message Passing model. Then, we introduce a notion of “efficient”
communication protocols, and connect the existence of such protocols to a reduction from PSP to
a gap version of MAXCOV.

6.4.1 Efficient Protocols in Simultaneous Message Passing Model
The two-player Simultaneous Message Passing (SMP) model was introduced by Yao [Yao79] and
has been extensively studied in literature [KN97]. In the multiparty setting, the SMP model is
considered popularly with the number-on-forehead model, where each player can see the input of
all the other players but not his own [CFL83; Bab+03]. In this chapter, we consider the multiparty
SMP model where the inputs are given as in the number-in-hand model (like in [FOZ16; WW15]).

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 121

Simultaneous Message Passing Model. Let f : {0, 1}m×k → {0, 1}. In the k-player simulta-
neous message passing communication model, we have k players each with an input xi ∈ {0, 1}m
and a referee who is given an advice µ ∈ {0, 1}∗ (at the same time when the players are given the
input). The communication task is for the referee to determine if f(x1, . . . , xk) = 1. The players
are allowed to only send messages to the referee. In the randomized setting, we allow the players
and the referee to jointly toss some random coins before sending messages, i.e., we allow public
randomness.

Next, we introduce the notion of efficient protocols, which are in a nutshell one-round random-
ized protocols where the players and the referee are in a computationally bounded setting.

Efficient Protocols. Let π be a communication protocol for a problem in the SMP model. We
say that π is a (w, r, `, s)-efficient protocol if the following holds:

• The referee receives w bits of advice.

• The protocol is one-round with public randomness, i.e., the following actions happen se-
quentially:

1. The players receive their inputs and the referee receives his advice.
2. The players and the referee jointly toss r random coins.
3. Each player on seeing the randomness (i.e. results of r coin tosses) deterministically

sends an `-bit message to the referee.
4. Based on the advice, the randomness, and the total ` · k bits sent from the players, the

referee outputs accept or reject.

• The protocol has completeness 1 and soundness s, i.e.,

– If f(x1, . . . , xk) = 1, then there exists an advice on which the referee always accepts.
– If f(x1, . . . , xk) = 0, then, on any advice, the referee accepts with probability at most
s.

• The players and the referee are computationally bounded, i.e., all of them perform all their
computations in poly(m)-time.

The following proposition follows immediately from the definition of an efficient protocol and
will be very useful in later sections for gap amplification.

Proposition 6.24. Let z ∈ N and π be a communication protocol for a problem in the SMP model.
Suppose π is a (w, r, `, s)-efficient protocol. Then there exists a (w, z · r, z · `, sz)-efficient protocol
for the same problem.

Proof. The proof follows by a simple repetition argument. More precisely, we repeat steps 2-4
in the protocol z times, each time using fresh randomness, but note that the z steps of drawing
random coins can be clubbed into one step, and the decision by the referee can be reserved till
the end of the entire protocol, wherein he accepts if and only if he would accept in each of the
individual repetitions.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 122

6.4.2 Lower Bounds on Gap-MAXCOV

The following theorem is the main conceptual contribution of the chapter: we show below that the
existence of efficient protocols can translate (exact) hardness of PSPs to hardness of approximating
MAXCOV.

Theorem 6.25. Let m : N × N → N be any function. Let F := {fN,k : {0, 1}m(N,k)×k →
{0, 1}}N,k∈N be a family of Boolean functions indexed by N, k. Suppose there exists a (w, r, `, s)-
efficient protocol11 for fN,k in the k-player SMP model for every N, k ∈ N. Then, there is a re-
duction from any instance (A1, . . . , Ak) of PSP(k,F , N) to 2w label cover instances {Lµ}µ∈{0,1}w
such that

• The running time of the reduction is 2w+r+`kpoly(m(N, k)).

• Each Lµ = (Uµ, V µ,Σµ
U ,Σ

µ
V , {Πµ

e}) has the following parameters:

– Lµ has k right super nodes, i.e., |V µ| = k,

– Lµ has 2r left super nodes, i.e., |Uµ| = 2r,
– Lµ’s right alphabet size is at most N right nodes, i.e., |Σµ

V | 6 N ,

– Lµ’s left alphabet size is at most 2`k, i.e., |Σµ
U | 6 2`k.

• If (A1, . . . , Ak) is a YES instance of PSP(k,F , N), then MAXCOV(Lµ) = 2r for some
µ ∈ {0, 1}w.

• If (A1, . . . , Ak) is a NO instance of PSP(k,F , N), then MAXCOV(Lµ) 6 s · 2r for every
µ ∈ {0, 1}w.

Proof. Given a (w, r, `, s)-efficient protocol π of fN,k and an instance (A1, . . . , Ak) of PSP(k,F , N),
we will generate 2w instances of MAXCOV. Specifically, for each µ ∈ {0, 1}w, we construct an
instance Lµ = (Uµ, V µ,Σµ

U ,Σ
µ
V , {Πµ

e}) of MAXCOV as follows.

• Let V µ = [k].

• Let Σµ
V be of size N , and, for each j ∈ [h], we associate each xj ∈ Aj with a label in Σµ

V .

• Let Uµ = {0, 1}r.

• Let Σµ
U be of size 2`k. For each left super-node γ ∈ {0, 1}r, we associate each accepting

messages from the k players (i.e. (m1, . . . ,mk) ∈ ({0, 1}`)k where in the protocol π the
referee, on an advice µ and a random string γ, accepts if the messages he received from the
k players are m1, . . . ,mk) with a label in Σµ

U .

• For each e = (j, γ), we add an (xj, (m1, . . . ,mk)) to Πe iff mj is equal to the message that
j sends on an input xj and a random string γ in the protocol π.

11w, r, ` and s can depend on N and k.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 123

Note here that, since |Aj|’s may not be equal, some label in Σµ
V might not be associated with any

element in Aj for some left super-node j. In this case, we might ignore such a label for the super-
node j since it never appears in the constraints. Similar statement holds for the right super-nodes.
From this viewpoint, there is a bijection between “valid” right labelings of Lµ and elements of
A1 × · · · × Ak, where “valid” means that these labels are not used.

Now consider a right labeling σV µ of Lµ and the corresponding (x1, . . . , xk) ∈ A1 × · · · ×Ak.
For each random string γ ∈ {0, 1}r, observe that the referee accepts on an input (x1, . . . , xk), an
advice µ, and a random string γ if and only if there is a label (m1, . . . ,mk) of the left super-node
γ that is consistent with all of x1, . . . , xk. Therefore, the acceptance probability of the protocol
on advice µ is the same as the fraction of left super-nodes covered by σV µ . The completeness and
soundness then easily follows:

Completeness. If there exists (x1, . . . , xk) ∈ A1 × · · · × Ak such that fN,k(x1, . . . , xk) = 1,
then there is an advice µ ∈ {0, 1}w on which the referee always accepts for this input (x1, . . . , xk),
meaning that the corresponding labeling covers every left super-node of Lµ, i.e., MAXCOV(Lµ) =
2r.

Soundness. If fN,k(x1, . . . , xk) = 0 for every (x1, . . . , xk) ∈ A1 × · · · × Ak, then, for any
advice µ ∈ {0, 1}w, the referee accepts with probability at most s on every input (x1, . . . , xk) ∈
A1 × · · · × Ak. This means that, for any µ ∈ {0, 1}w, no labeling covers more than s fraction of
left the super-nodes. In other words, MAXCOV(Lµ) 6 s · 2r for all µ ∈ {0, 1}w.

For the rest of this subsection, we will use the following shorthand. LetL = (U, V,ΣU ,ΣV , {Πe})
be a label cover instance, and we use the shorthand L(N, k, r, `) to say that the label cover instance
has the following parameters:

• L has k right super nodes, i.e., |V | = k,

• L has 2r left super nodes, i.e., |U | = 2r,

• L has right alphabet size of at most N , i.e., |ΣV | 6 N ,

• L has left alphabet size of at most 2`k, i.e., |ΣU | 6 2`k.

The rest of this section is devoted to combining Theorem 6.25 with the results in Section 6.3
to obtain conditional hardness for the gap-MAXCOV problem, assuming that we have efficient
protocols with certain parameters. These protocols will be devised in the three subsequent sections.

Understanding the Parameters. Before we state the exact dependency of parameters, let us
first discuss some intuition behind it. First of all, if we start with an instance of PSP(k,F , N),
Theorem 6.25 will produce 2w instances of L(N, k, r, `). Roughly speaking, since we want the
lower bounds from PSP to translate to MAXCOV, we would like the number of instances to be
N o(1), meaning that we want w = o(logN). Recall that in all function families we consider
m = Θk(logN). Hence, this requirement is the same as w = ok(m). Moreover, we would like the
instance size of L(N, k, r, `) to also be Ok(N), meaning that |U ||ΣU | 6 2r+`k has to be Ok(N).
Thus, it suffices to have a protocol where r + `k = ok(m).

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 124

If we additionally want the hardness to translate also to k-DOMSET, the parameter dependen-
cies become more subtle. Specifically, applying Theorem 2.27 to the MAXCOV instances results in
a blow-up of |U ||V ||ΣU | 6 2r · k2`k = 2r+(log k)·2`k . We also want this to be at most N o(1), meaning
that we need r+ (log k) · 2`k = o(logN) = ok(m). In other words, it suffices for us to require that
`k < (logm)/β for some constant β > 1. The exact parameter dependencies are formalized below.

SETH

Corollary 6.26. For any c ∈ N, let FDISJ
c be the family of Boolean functions as defined in Defini-

tion 6.14. For every δ > 0, suppose there exists a (w, r, `, s)-efficient protocol for DISJm,k in the
k-player SMP model for every k ∈ N and every m ∈ N, such that w 6 δm and r + `k = ok(m).
Then, assuming SETH, for every ε > 0 and integer k > 1, no O(Nk(1−ε))-time algorithm can
distinguish between MAXCOV(L) = 2r and MAXCOV(L) 6 s · 2r for any label cover instance
L(N, k, r, `) for all N ∈ N. Moreover, if ` < (logm)/β·k for some constant β > 1, then assuming
SETH, for every ε > 0 and integer k > 1, no O(Nk(1−ε))-time algorithm can distinguish between

DOMSET(G) = k and DOMSET(G) >
(

1
s

) 1
k · k for any graph G with at most Ok(N) vertices, for

all N ∈ N.

Proof. The proof of the first part of the theorem statement is by contradiction. Suppose there is
an O(Nk(1−ε))-time algorithm A for some fixed constant ε > 0 and integer k > 1 which can
distinguish between MAXCOV(L) = 2r and MAXCOV(L) 6 s · 2r for any label cover instance
L(N, k, r, `) for all N ∈ N. From Proposition 6.15, we have that there exists cε ∈ N such that
no O(Nk(1−ε/2))-time algorithm can solve PSP(k,FDISJ

cε , N) for all N ∈ N. Fix δ = ε/3cε. Next,
by considering Theorem 6.25 for the case of (w, r, `, s)-efficient protocols, we have that there
are 2w label cover instances {Lµ}µ∈{0,1}w which can be constructed in 2δm(1+ok(1)) time. Note
that 2δm(1+ok(1)) = N kε/3(1+ok(1)) by our choice of δ. Thus, we can run A on each Lµ and solve
PSP(k,FDISJ

c , N) for all N, k ∈ N in time less than Nk(1−ε/2). This contradicts Proposition 6.15.
To prove the second part of the theorem statement, we apply the reduction described in Theo-

rem 2.27 and note that 2r = N o(1) and k2`k = 2(log2 k)·(m(N,k))1/β = N o(1).

The proof of Theorem 6.3 follows by plugging in the parameters of the protocol described in
Corollary 6.31 to the above corollary.

ETH

Corollary 6.27. Let FMULTEQ be the family of Boolean functions as defined in Definition 6.19.
Suppose there exists a (w, r, `, s)-efficient protocol for MULTEQm,k,t in the k-player SMP model
for every k, t,m ∈ N such that w + r + `k = ok(m). Then, assuming ETH, for any com-
putable function T : N→ N, there is no T (k) ·N o(k) time algorithm that can distinguish between
MAXCOV(L) = 2r and MAXCOV(L) 6 s · 2r for any label cover instance L(N, k, r, `) for all
N, k ∈ N. Moreover, if ` < (logm)/β·k for some constant β > 1, then assuming ETH, for any com-
putable function T : N→ N, there is no T (k) ·N o(k) time algorithm that can distinguish between

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 125

DOMSET(G) = k and DOMSET(G) >
(

1
s

) 1
k · k for any graph G with at most Ok(N) vertices, for

all N, k ∈ N.

Proof. The proof of the first part of the theorem statement is by contradiction. Suppose there is
an algorithm A running in time T̃ (k) · N o(k) for some computable function T̃ : N → N that can
distinguish between MAXCOV(L) = 2r and MAXCOV(L) 6 s · 2r for any label cover instance
L(N, k, r, `) for all N, k ∈ N. From Lemma 6.23, we have that for any computable function
T : N → N, there is no T (k) · N o(k) time algorithm that can solve PSP(k,FMULTEQ, N) for every
N, k ∈ N. Next, by considering Theorem 6.25 for the case of (w, r, `, s)-efficient protocols, we
have that there are 2w label cover instances {Lµ}µ∈{0,1}w which can be constructed in 2ok(m) time.
Note that 2ok(m) = Ok(N o(1)) by the choice of m(N, k) in Definition 6.19. Thus, we can run A
on each Lµ and solve PSP(k,FMULTEQ, N) for all N, k ∈ N in time T̃ (k) ·N o(k). This contradicts
Lemma 6.23.

To prove the second part of the theorem statement, we apply the reduction described in Theo-
rem 2.27 and note that 2r = N o(1) and k2`k = 2(m(N,k))1/β ·log2 k = N o(1).

The proof of Theorem 6.2 follows by plugging in the parameters of the protocol described in
Corollary 6.33 to the above corollary.

W[1] 6= FPT

Corollary 6.28. Let FMULTEQ be the family of Boolean functions as defined in Definition 6.19.
Suppose there exists a (w, r, `, s)-efficient protocol for MULTEQm,k,t in the k-player SMP model
for every k, t,m ∈ N such that w + r + `k < m/tk. Then, assuming W[1] 6= FPT, for any
computable function T : N → N, there is no T (k) · poly(N)-time algorithm that can distinguish
between MAXCOV(L) = 2r and MAXCOV(L) 6 s · 2r for any label cover instance L(N, k, r, `)
for all N, k ∈ N. Moreover, if r < m/2tk and ` < (logm)/β·k for some constant β > 1, then assuming
W[1] 6= FPT, for any computable function T : N→ N, there is no T (k) · poly(N)-time algorithm

that can distinguish between DOMSET(G) = k and DOMSET(G) >
(

1
s

) 1
k · k for any graph G

with at most Ok(N) vertices, for all N, k ∈ N.

Proof. The proof of the first part of the theorem statement is by contradiction. Suppose there is an
algorithm A running in time T̃ (k) · poly(N) for some computable function T̃ : N → N that can
distinguish between MAXCOV(L) = 2r and MAXCOV(L) 6 s · 2r for any label cover instance
L(N, k, r, `) for all N, k ∈ N. From Lemma 6.21, we have that for any computable function
T : N→ N, there is no T (k)·poly(N) time algorithm that can solve PSP(k,FMULTEQ, N) for every
N, k ∈ N. Next, by considering Theorem 6.25 for the case of (w, r, `, s)-efficient protocols, we
have that there are 2w label cover instances {Lµ}µ∈{0,1}w which can be constructed in 2m(N,k)/k·t(k) ·
poly(m(N, k)) time. Note that 2m(N,k)/k·t(k) = O(N) and poly(m(N, k)) = N o(1) by the choice of
m(N, k) in Definition 6.19. Thus, we can run A on each Lµ and solve PSP(k,FMULTEQ, N) for all
N, k ∈ N in time less than T̃ (k) · poly(N). This contradicts Lemma 6.21.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 126

To prove the second part of the theorem statement, we apply the reduction described in Theo-
rem 2.27 and note that 2r = O(

√
N) and k2`k = 2(m(N,k))1/β ·log2 k = N o(1).

The proof of Theorem 6.1 follows by plugging in the parameters of the protocol described in
Corollary 6.33 to the above corollary.

k-SUM Hypothesis

Corollary 6.29. Let F SUMZERO be the family of Boolean functions as defined in Definition 6.11.
Suppose there exists a (w, r, `, s)-efficient protocol for SUMZEROm,k in the k-player SMP model
for every m, k ∈ N, such that w + r + `k = ok(m). Then assuming the k-SUM Hypothesis,
for every integer k > 3 and every ε > 0, no O(N dk/2e−ε)-time algorithm can distinguish between
MAXCOV(L) = 2r and MAXCOV(L) 6 s·2r for any label cover instanceL(N, k, r, `) for allN ∈
N. Moreover, if ` < (logm)/β·k for some constant β > 1, then assuming the k-SUM Hypothesis,
for every ε > 0 no O(N dk/2e−ε)-time algorithm can distinguish between DOMSET(G) = k and

DOMSET(G) >
(

1
s

) 1
k · k for any graph G with at most Ok(N) vertices for all N ∈ N.

Proof. The proof of the first part of the theorem statement is by contradiction. Suppose there is an
algorithm A running in time O(N dk/2e−ε) for some fixed constant ε > 0 and some integer k > 3
that can distinguish between MAXCOV(L) = 2r and MAXCOV(L) 6 s · 2r for any label cover in-
stance L(N, k, r, `) for all N ∈ N. From Proposition 6.12, we have that no O(N dk/2e−ε/2)-time al-
gorithm can solve PSP(k,F SUMZERO, N) for all N ∈ N. Next, by considering Theorem 6.25 for the
case of (w, r, `, s)-efficient protocols, we have that there are 2w label cover instances {Lµ}µ∈{0,1}w
which can be constructed in 2ok(m) time. Note that 2ok(m) = Ok(N o(1)) by the choice of m(N, k)
in Definition 6.11. Thus, we can run A on each Lµ and solve PSP(k,F SUMZERO, N) for all N ∈ N
in time O(N dk/2e−ε). This contradicts Proposition 6.12.

To prove the second part of the theorem statement, we apply the reduction described in Theo-
rem 2.27 and note that 2r = N o(1) and k2`k = 2(m(N,k))1/β ·log2 k = N o(1).

The proof of Theorem 6.4 follows by plugging in the parameters of the protocol described in
Corollary 6.39 to the above corollary.

6.5 An Efficient Protocol for Set Disjointness
Set Disjointness has been extensively studied primarily in the two-player setting (i.e., k = 2).
In that setting, we know that the randomized communication complexity is Ω(m) [KS92; Raz92;
Bar+04], where m is the input size of each player. Surprisingly, [AW09] showed that the MA-
complexity of two-player set disjointness is Õ(

√
m). Their protocol was indeed an (Õ(

√
m), O(logm), Õ(

√
m), 1/2)-

efficient protocol for the case when k = 2. Recently, [ARW17a] improved (in terms of the
message size) the protocol to be an (m/logm, O(logm), O((logm)3), 1/2)-efficient protocol for the
case when k = 2. Both these results can be extended naturally for all k > 1, to give an

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 127

(mk/logm, Ok(logm), Ok((logm)3), 1/2)-efficient protocol. However, this does not suffice for prov-
ing Theorem 6.3 since we need a (w, r, `, s)-efficient protocol with w = o(m) and ` = o(logm).
Fortunately, Rubinstein [Rub18] recently showed that the exact framework of the MA-protocols
as in [AW09; ARW17a] but with the use of algebraic geometric codes instead of Reed Muller
or Reed Solomon codes gives the desired parameters in the two-player case. Below we naturally
extend Rubinstein’s protocol to the k-player setting. This extension was suggested to us by Rubin-
stein [Rub17a].

Theorem 6.30. There is a polynomial function ˆ̀ : N × N → [1,∞) such that for every k ∈
N and every α ∈ N, there is a protocol for k-player DISJm,k in the SMP model which is an
(m/α, log2m,

ˆ̀(k, α), 1/2)-efficient protocol, where each player is given m bits as input, and the
referee is given at most m/α bits of advice.

Proof. Fix k,m, α ∈ N. Let q be the smallest prime greater than q̂(k) such that q > (2αr̂(k))2,
where the functions r̂ and q̂ are as defined in Theorem 6.8. Let G = Fq2 . Let T = 2αr̂(k) log2 q.

We associate [m] with [T] × [m/T] and write the input xj ∈ {0, 1}m as vectors x1
j , . . . ,xTj

where xtj ∈ {0, 1}m/T . For every j ∈ [k], Player j computes Am/T (xtj) for every t ∈ [T]. We
denote the block length of Am/T by d. From the systematicity guaranteed by Theorem 6.8 we have
that Am/T (xtj) |[m/T]= xtj . Also, notice that for all t ∈ [T], we have ∧

j∈[k]
xtj = 0m/T if and only if∏

j∈[k] Am/T (xtj) = 0m/T .
With the above observation in mind, we define the marginal sum Γ ∈ Gd as follows:

∀i ∈ [d], Γi =
∑
t∈[T]

∏
j∈[k]

Am/T (xtj)i.

Again, notice that for all t ∈ [T], we have ∧
j∈[k]

xtj = 0m/T if and only if Γi = 0 for all i ∈ [m/T].
This follows from the following:

• For all i ∈ [m/T], we have Am/T (xtj)i ∈ {0, 1} and thus
∏
j∈[k]

Am/T (xtj)i ∈ {0, 1}.

• The characteristic of G being greater than (2αr̂(k)) · √q > (2αr̂(k)) · log2 q = T .

More importantly, we remark that Γ is a codeword12 in Bm/T . This follows because Bm/T

is a degree k closure code of Am/T . To see this, in Definition 6.7, set t = k, r = k · T , and
P [x1,1, . . . , xk,T] = ∑

i∈[T]
∏
j∈[k] xi,j .

The protocol

1. Merlin sends the referee Φ which is allegedly equal to the marginal sums codeword Γ defined
above.

12We would like to remark that we use the multiplicity of Algebraic Geometric codes to find a non-trivial advice.
On a related note, Meir [Mei13] had previously shown that error correcting codes with the multiplicity property suffice
to show the IP theorem (i.e., the IP=PSPACE result).

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 128

2. All players jointly draw r ∈ [d] uniformly at random.

3. For every j ∈ {1, . . . , k}, Player j sends to the referee Am/T (xtj)r, ∀t ∈ [T].

4. The referee accepts if and only if both of the following hold:

∀i ∈ [m/T], Φi = 0 (6.1)

Φr =
∑
t∈[T]

∏
j∈[k]

Am/T (xtj)r. (6.2)

Analysis

Advice Length. To send the advice, Merlin only needs to send a codeword in Bm/T to the verifier.
This means that the advice length (in bits) is no more than log2 q

2 times the block length, which
is d 6 (m/T) r̂(k) = m/2α log2 q where the equality comes from our choice of T and the inequality
from Theorem 6.8.

Message Length. Each player sends T elements of G. Hence, the message length is T log2 q
2 6

αr̂(k)(2 log2 q)2. Recall that q can be upper bounded by a polynomial in k and α. Hence, the mes-
sage length is upper bounded entirely as a polynomial in k and α as desired.

Randomness. The number of coin tosses is log2(d) 6 log2 (mr̂(k)/T) = log2 (m/2α log2 q) <
log2m.

Completeness. If the k sets are disjoint, Merlin can send the true Γ, and the verifier always
accepts.

Soundness. If the k sets are not disjoint and Φ is actually Γ, then (6.1) is false and the verifier
always rejects. On the other hand, if Φ 6= Γ, then, since both are codewords of Bm/T , from
Theorem 6.8 their relative distance must be at least 1/2. As a result, with probability at least 1/2,
Φr 6= Γr. Since the right hand side of (6.2) is simply Γr, the verifier will reject for such r. Hence,
the rejection probability is at least 1/2.

The following corollary follows immediately by applying Proposition 6.24 with z = (log2 m)/2k·`(k,α)

to the above theorem.

Corollary 6.31. There is a polynomial function ŝ : N × N → [1,∞) such that for every k ∈
N and every α ∈ N there is a protocol for k-player DISJm,k in the SMP model which is an(
m/α, O ((log2m)2) , (log2 m)/2k, (1/m)1/ŝ(k,α)

)
-efficient protocol, where each player is given m bits

as input, and the referee is given at most m/α bits of advice.

6.6 An Efficient Protocol for MULTI-EQUALITY

EQUALITY has been extensively studied, primarily in the two-player setting (i.e., k = 2). In that
setting, when public randomness is allowed, we know that the randomized communication com-
plexity is O(1) [Yao79; KN97], and the protocols can be naturally extended to the k-player SMP
model that yields a randomized communication complexity of O(k). There are many protocols

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 129

which achieve this complexity bound but for the purposes of proving Theorems 6.1 and 6.2, we
will use the protocol where the players encode their input using a fixed good binary code and then
send a jointly agreed random location of the encoded input to the referee who checks if all the
messages he received are equal. Below we extend that protocol for MULTI-EQUALITY.

Theorem 6.32. For some absolute constant δ > 0, for every t, k ∈ N and every m ∈ N such that
m is divisible by t, there is a (0, logm+O(1), 2t, 1− δ)-efficient protocol for MULTEQm,k,t in the
k-player SMP model.

Proof. Let C = {Cm : {0, 1}m → {0, 1}d(m)}m∈N be the family of good codes with rate at least
ρ and relative distance at least δ as guaranteed by Fact 6.5. Fix m, k, t ∈ N as in the theorem
statement. Let m′ := m/t.

The protocol

1. All players jointly draw i? ∈ [d(m′)] uniformly at random.

2. If player j’s input is xj = (xj,1, yj,1, . . . , xj,t, yj,t), then he sends (C(xj,1)i∗ , yj,1, . . . , C(xj,t)i∗ , yj,t)
to the referee.

3. The referee accepts if and only if the following holds:

MULTEQ2t,k,t((C(x1,1)i∗ , y1,1, . . . , C(x1,t)i∗ , y1,t), . . . , (C(xk,1)i∗ , yk,1, . . . , C(xk,t)i∗ , yk,t)) = 1.

Analysis

Parameters of the Protocol. In the first step of the protocol all the players jointly draw i? ∈
[d(m′)] uniformly, which requires dlog d(m′)e 6 logm′ + log(1/ρ) 6 logm+O(1) random bits.
Then, for every j ∈ [k], player j sends the referee 2t bits. Finally, since the code Cm′ is efficient,
it is easy to see that the players and referee run in poly(m)-time.

Completeness. If MULTEQm,k,t(x1, . . . , xk) = 1, then, for every q ∈ [t] and i, j ∈ [k], we
have (yi,q = ⊥) ∨ (yj,q = ⊥) ∨ (xi,q = xj,q) = 1. This implies that, for every q ∈ [t], i, j ∈ [k]
and i∗ ∈ [d(m)], we have (yi,q = ⊥) ∨ (yj,q = ⊥) ∨ (C(xi,q)i∗ = C(xj,q)i∗). In other words,
MULTEQ2t,k((C(x1,1)i∗ , y1,1, . . . , C(x1,t)i∗ , y1,t), . . . , (C(xk,1)i∗ , yk,1, . . . , C(xk,t)i∗ , yk,t)) = 1 for
every i∗ ∈ [d(m)], meaning that the referee always accepts.

Soundness. Suppose that MULTEQm,k,t(x1, . . . , xk) = 0. Then, there exists some q ∈ [t] and
i, j ∈ [k] such that yi,q = >, yj,q = > and xi,q 6= xj,q. Since the codeC has relative distance at least
δ, C(xi,q) and C(xj,q) must differ on at least δ fraction of the coordinates. When the randomly se-
lected i∗ is such a coordinate, we have that MULTEQ2t,k((C(x1,1)i∗ , y1,1, . . . , C(x1,t)i∗ , y1,t), . . . , (C(xk,1)i∗ , yk,1, . . . , C(xk,t)i∗ , yk,t)) =
0, i.e., the referee rejects. Hence, the referee rejects with probability at least δ.

The following corollary follows immediately by applying Proposition 6.24 to the above theo-
rem with z = log2 m/4kt.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 130

Corollary 6.33. For every t, k ∈ N and every m ∈ N such that m is divisible by t, there is a
(0, O((logm)2), (log2 m)/2k, (1/m)1/O(kt))-efficient protocol for MULTEQm,k,t in the k-player SMP
model.

6.7 An Efficient Protocol for SUM-ZERO

The SUM-ZERO problem has been studied in the SMP model and efficient protocols with the
following parameters have been obtained.

Theorem 6.34 ([Nis94]). For every k ∈ N andm ∈ N there is a (0, O(log(m+log k)), O(log(m+
log k)), 1/2)-efficient protocol for SUMZEROm,k in the k-player SMP model.

The above protocol is based on a simple (yet powerful) idea of picking a small random prime
p and checking if the numbers sum to zero modulo p. Viola put forth a protocol with better
parameters than the above protocol (i.e., smaller message length) using specialized hash functions
and obtained the following:

Theorem 6.35 ([Vio15]). For every k ∈ N and m ∈ N there is a (0, O(m), O(log k), 1/2)-efficient
protocol for SUMZEROm,k in the k-player SMP model.

In order to prove Theorem 6.4, we need a protocol with o(m) randomness and o(logm) mes-
sage length, and both the protocols described above do not meet these conditions. We show below
that the above two results can be composed to get a protocol with O(log k) communication com-
plexity and Ok(logm) randomness. In fact, we will use a slightly different protocol from [Vio15]:
namely, the protocol for the SUM-ZERO(Zp) problem as stated below.

Definition 6.36 (SUM-ZERO(Zp) Problem). Let k,m, p ∈ N. Zp-SUMZEROm,k : ({0, 1}m)k →
{0, 1} is defined by

Zp-SUMZEROm,k(x1, . . . , xk) =

1 if
∑
i∈[k] xi = 0 mod p,

0 otherwise,

where we think of each xi as a number in [−2m−1, 2m−1 − 1].

Theorem 6.37 ([Vio15]). For every p, k ∈ N and m ∈ N, there is a (0, O(log p), O(log k), 1/2)-
efficient protocol13 for Zp-SUMZEROm,k in the k-player SMP model.

Below is our theorem which essentially combines Theorem 6.34 and Theorem 6.37.

Theorem 6.38. For every k ∈ N and m ∈ N there is a (0, O(log(m + log k)), O(log k), 3/4)-
efficient protocol for SUMZEROm,k in the k-player SMP model.

Proof. Let π∗ be the protocol of Viola from Theorem 6.37.
13As written in [Vio15], the protocol has the following steps. First, the players send some messages to the referee.

Then the players and the referee jointly draw some random coins, and finally the players send some more messages to
the referee. However, we note that the first and second steps of the protocol can be swapped in [Vio15] to obtain an
efficient protocol as the drawing of randomness do not depend on the messages sent by the players to the referee.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 131

The protocol

Let t = 2(m− 1 + log k). Let p1, . . . , pt be the first t primes.

1. All players jointly draw i? ∈ [t] uniformly at random.

2. The players and the referee run π? where each player now has input yi = xi mod pi? , and
the referee accepts if and only if

∑
i∈[k] yi = 0 mod pi? .

Notice that the above protocol is still an efficient protocol as the first step of the above protocol
can be combined with the draw of random coins in the first step of π? to form a single step in which
the players and the referee jointly draw random coins from the public randomness.

Analysis

Randomness. In the first step of the protocol all the players jointly draw i? ∈ [t] uniformly, which
requires dlog2 te random bits. Then, the players draw O(log pi?) additional random coins for π?.
The bound on the randomness follows by noting that pi? 6 pt = O(t log t) .

Message Length. For every j ∈ [k], Player j sends the referee O(log k) bits as per π?.
Completeness. If the k numbers sum to zero, then for any p ∈ N, they sum to zero mod p and

thus the referee always accepts.
Soundness. If the k numbers do not sum to zero, then let s(π?) be the soundness of π? and let

S be the subset of the first t primes defined as follows:

S =

pi
∣∣∣∣∣∣i ∈ [t],

∑
j∈[k]

xj = 0 mod pi

It is clear that the referee rejects with probability at least (1− |S|/t) · (1 − s(π?)). Therefore, it
suffices to show that |S| < t/2 as s(π?) 6 1/2. Let x := ∑

j∈[k] xj . We have that x ∈ [−k · 2m−1, k ·

2m−1] and that, for every p ∈ S, p divides x. Since x 6= 0, we know that |x| > ∏
p∈S

p >
|S|∏
i=1

pi > 2|S|.

Since |x| 6 k · 2m−1, we have that |S| < m− 1 + log k = t, and the proof follows.

The following corollary follows immediately by applying Proposition 6.24 with z = log2m/2k·c log k

to the above theorem, where c is some constant such that the message length of the protocol in The-
orem 6.38 is at most c log k.

Corollary 6.39. For every k,m ∈ N there is a
(
0, O((log(m+ log k))2), (log2 m)/2k, (1/m)1/O(k log k)

)
-

efficient protocol for SUMZEROm,k in the k-player SMP model.

6.8 Connection to Fine-Grained Complexity
In this section, we will demonstrate the conditional hardness of problems in P by basing them on
the conditional hardness of PSP. First, we define the problem in P of interest to this section.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 132

Definition 6.40 (k-linear form inner product). Let k,m ∈ N. Given x1, . . . , xk ∈ Rm, we define
the inner product of these k vectors as follows:

〈x1, . . . , xk〉 =
∑
i∈[m]

∏
j∈[k]

xi(j),

where xi(j) denotes the j th coordinate of the vector xi.

Definition 6.41 (k-chromatic Maximum Inner Product). Let k ∈ N. Given k collectionsA1, A2, . . . , Ak
each of N vectors in {0, 1}D, where D = N o(1), and an integer s, the k-chromatic Maximum
Inner Product (MIP) problem is to determine if there exists ai ∈ Ai for all i ∈ [k] such that
〈a1, . . . , ak〉 > s.

We continue to use the shorthand L(N, k, r, `) introduced in Section 6.4.2. We define UNIQUE

MAXCOV to be the MAXCOV problem with the following additional structure: for every labeling
σV and any left super-node u ∈ U , there is at most one label in ΣU which satisfies all the constraints
{Π(u,v)}v∈V . We remark that the reduction in Theorem 6.25 already produces instances of Unique
MAXCOV. This follows from the proof of Theorem 6.25 by noting that on every random string,
each player sends a message to the referee in a deterministic way. Finally, we have the following
connection between unique MAXCOV and MIP.

Theorem 6.42. Let N, k, r, ` ∈ N. There is a reduction from any UNIQUE MAXCOV instance
L(N, k, r, `) to k-chromatic MIP instance (A1, . . . , Ak, s) such that

• For all i ∈ [k], |Ai| 6 N , s = 2r, and D 6 2r+`k.

• The running time of the reduction is O(Nk · 2r+`k).

• For any integer s∗, there exists (a1, . . . , ak) ∈ A1 × · · · × Ak such that 〈a1, . . . , ak〉 > s∗ if
and only if MAXCOV(L) > s∗.

Proof. For every i ∈ [k], we associate each Ai with the i-th right super-node vi ∈ V . Each pair
(vi, β) where β ∈ ΣV corresponds to a vector in Ai; the corresponding vector a(vi,β) ∈ Ai is
constructed as follows. There are |U | · |ΣU | coordinates, each corresponding to (u, α) ∈ U × ΣU .
Let the (u, α)th coordinate of a(vi,β) be 1 if (α, β) ∈ Π(u,vi); otherwise, it is set to 0. It is easy to
see that |Ai| 6 N and D 6 2r+`k, and the running time of the reduction is O(Nk · 2r+`k). It is
also easy to see that if MAXCOV(L) > s∗ then the vectors a(vi,σV (vi)) corresponding to the right
labeling σV resulting in the maximum cover, have inner product at least s∗.

Now, suppose that there exist a(vi,βi) ∈ Ai for all i ∈ [k] such that 〈a(v1,β1), . . . , a(vk,βk)〉 > s∗.
Let σV be the right labeling where σV (vi) = βi. For each coordinate (u, α) at which all the vectors
a(v1,β1), . . . , a(vk,βk) are one, this means that the labeling σV covers u; moreover, since from the
uniqueness property, no left super-node u is double counted. As a result, we have that:

MAXCOV(L) > |{i ∈ [2r] | Ui is covered by S}| = 〈a1, . . . , ak〉 > s∗.

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 133

The results for hardness of approximation for problems in P is obtained by simply fixing the
value of k in the above theorem to some universal constant (such as k = 2). For example, by
fixing k = 2 and applying the above reduction to Corollary 6.26, we recover the main result of
[ARW17a] on bichromatic MIP. This is not surprising as under SETH, our framework is just a
generalization of the distributed PCP framework of [ARW17a].

Furthermore, we demonstrate the flexibility of our framework by fixing k = 3 and applying the
above reduction to Corollary 6.29, to establish a hardness of approximation result of trichromatic
MIP under the 3-SUM Hypothesis as stated below. We note here that the running time lower
bound is only N2−o(1), which is likely not tight since the lower bound from SETH is N3−o(1).

Theorem 6.43. Assuming the 3-SUM Hypothesis, for every ε > 0, no O(N2−ε) time algorithm
can, given three collections A,B, and C each of N vectors in {0, 1}D, where D = N o(1), and an
integer s, distinguish between the following two cases:

Completeness. There exists a ∈ A, b ∈ B, c ∈ C such that 〈a, b, c〉 > s.

Soundness. For every a ∈ A, b ∈ B, c ∈ C, 〈a, b, c〉 6 s/2(logN)1−o(1)
.

Proof. We apply Proposition 6.24 with z = m/(log2 m)2 and k = 3 to Theorem 6.38, to obtain a(
0, O(m/logm), O(m/(logm)2), (1/2)m

1−o(1)
)

-efficient protocol for SUMZEROm,3 in the 3-player SMP

model. By plugging in the parameters of the above protocol to Corollary 6.29, we obtain that
assuming the 3-SUM hypothesis, for every ε > 0, no O(N2−ε)-time algorithm can distinguish
between MAXCOV(L) = 2r and MAXCOV(L) 6 (1/2)(logN)1−o(1)

· 2r for any label cover instance
L(N, 3, r, `) for all N ∈ N. The proof of the theorem concludes by applying Theorem 6.42 to the
above hardness of MAXCOV (Note that Theorem 6.25 provides a reduction from PSP(k,F , N) to
Unique MAXCOV).

6.9 Discussion and Open Questions
We showed the parameterized inapproximability results for k-DOMSET under W[1] 6= FPT, ETH,
SETH and k-SUM Hypothesis, which almost resolve the complexity status of approximating
parameterized k-DOMSET. Although we showed the W[1]-hardness of the problem, the exact
version of k-DOMSET is W[2]-complete. Thus, a remaining question is whether approximating
k-DOMSET is W[2]-hard:

Open Question 1. Can we base total inapproximability of k-DOMSET on W[2] 6= FPT?

We note that even 1.01-approximation of k-DOMSET is not known to be W[2]-hard.
Another direction is to look beyond parameterized complexity questions. As mentioned earlier,

Abboud et al. [ARW17a; Rub18] used the hardness of approximating of PCP-Vectors as a starting
point of their inapproximability results of problems in P. Since MAXCOV is equivalent to PCP-
Vectors when the number of right super-nodes is two, it may be possible that MAXCOV for larger

CHAPTER 6. INAPPROXIMABILITY OF k-DOMINATING SET 134

number of right super-nodes can also be used to prove hardness of problems in P as well. At
the moment, however, we do not have any natural candidate in this direction (see Section 6.8 for
further discussions).

135

Chapter 7

Inapproximability from Gap-ETH I:
k-Clique and k-Induced Subgraph with
Hereditary Property

In the CLIQUE problem, we are given a graph G and an integer k, and the goal is to determine
whether G contains a k-clique as a subgraph. Along with DOMSET, CLIQUE is one of problems in
Karp’s list of NP-complete problems [Kar72]. Hence, the focus has been shifted to its optimization
version, called MAXIMUM CLIQUE, where the goal is to find a maximum-size clique in G. The
obvious algorithm which outputs a single vertex achieves an approximation ratio of n, where n is
the number of vertices of G. There are several algorithm that slightly beats this trivial algorithm,
with the best approximation ratio known being n·polyloglog(n)

log3 n
[Fei04].

On the other hand, MAXIMUM CLIQUE is arguably the first natural combinatorial optimization
problem studied in the context of hardness of approximation; in a seminal work of Feige, Gold-
wasser, Lovász, Safra and Szegedy (henceforth FGLSS) [Fei+91], a connection was made between
interactive proofs and hardness of approximating CLIQUE. This connection paves the way for later
works on CLIQUE and other developments in the field of hardness of approximations; indeed, the
FGLSS reduction will serve as part of our proof as well. The FGLSS reduction, together with
the PCP theorem [AS98; Aro+98] and gap amplification via randomized graph products [BS92],
immediately implies nε ratio inapproximability of CLIQUE for some constant ε > 0 under the
assumption that NP⊆ BPP. Following Feige et al.’s work, there had been a long line of research
on approximability of CLIQUE [Bel+93; FK00; BGS98; BS94], which culminated in Håstad’s
work [Hås96]. In [Hås96], it was shown that CLIQUE cannot be approximated to within a factor
of n1−ε in polynomial time unless NP⊆ ZPP; this was later derandomized by Zuckerman who
showed a similar hardness under the assumption NP* P [Zuc07]. Since then, better inapproxima-
bility ratios are known [EH00; Kho01; KP06], with the best ratio being n/2(logn)3/4+ε for every
ε > 0 (assuming NP* BPTIME(2(logn)O(1))) due to Khot and Ponnuswami [KP06].

The parameterized variant of the problem, denoted by k-CLIQUE, is known to be complete
for the class W[1], rendering the problem intractable even in the parameterized version. Chen

CHAPTER 7. INAPPROXIMABILITY FROM GAP-ETH I: k-CLIQUE AND k-INDUCED
SUBGRAPH WITH HEREDITARY PROPERTY 136

et al.shows a nearly tight running time lower bound, which rules out any T (k)·no(k)-time algorithm
for k-CLIQUE for any function T [Che+04; Che+06]. This matches the trivial nO(k) algorithm to
within a constant factor in the exponent.

Given that each of the two techniques alone does not seem to make the problem tractable, it
has been asked whether it is possible to combine approximation and parameterization to achieve
some non-trivial algorithm for the problem. We note here that, unlike k-DOMSET, the trivial
algorithm for k-CLIQUE already gives k-approximation. Hence, we consider the problem totally
FPT inapproximable if there is no o(k)-approximation algorithm that runs in FPT time. (See
Section 2.6.2.)

Research Question 3. Is k-CLIQUE totally FPT inapproximable?

The only known hardness prior to our work is that of Bonnet et al. [Bon+15] who showed that
k-CLIQUE is hard to approximate to within any constant factor under Gap-ETH. There had also
been an attempt to prove hardness of approximation of k-CLIQUE under a different assumption in
parameterized complexity [KS16], although this assumption turned out to be false [Kay14].

Another problem consider in this chapter is the problem of finding maximum induced subgraph
with hereditary property. Recall that a property Π is said to be hereditary if, for all G ∈ Π, all
induced subgraphs of G also belong to Π. For instance, Π could be “planarity” or “3-colorability”.
In the MAXIMUM INDUCED SUBGRAPH WITH PROPERTY Π problem, we are given a graph G
and we would like to find a largest set of vertices S ⊆ V (G) such that the induced subgraph G[S]
belongs to Π. Note that this problem contains MAXIMUM CLIQUE as a special case, since we can
simply set Π to be the set of all cliques.

The complexity of finding and approximating maximum subgraph with hereditary properties
have also been studied since the 1980s [LY80; LY93; FK05]; specifically, Feige and Kogan showed
that, for every non-trivial property Π (i.e., Π such that infinite many subgraphs satisfy Π and
infinitely many subgraphs do not satisfy Π), the problem is hard to approximate to within n1−ε

factor for every ε > 0 unless NP⊆ ZPP [FK05]. We also note that non-trivial approximation
algorithms for the problem are known; for instance, when the property fails for some clique or some
independent set, a polynomial time O

(
n(log logn)2

(logn)2

)
-approximation algorithm is known [Hal00].

The parameterized variant of the problem, denoted by k-INDUCED SUBGRAPH WITH HERED-
ITARY PROPERTY, was studied by Khot and Raman [KR00] who proved the following dichotomy
theorem. If Π contains all independent sets but not all cliques or if Π contains all cliques but not
all independent sets, then the problem is W[1]-hard. Otherwise, the problem is in FPT.

Once again, similar to k-CLIQUE, we can also ask whether k-INDUCED SUBGRAPH WITH

HEREDITARY PROPERTY is totally FPT inapproximability for these “hard” properties Π; or in-
versely, whether there are better than o(k)-FPTapproximation algorithms for the problem.

Our Results
The main result of this chapter is that k-CLIQUE is totally FPT inapproximable. Furthermore,
we show an even stronger result that it is inherently enumerative. Recall from Section 2.6.3 that

CHAPTER 7. INAPPROXIMABILITY FROM GAP-ETH I: k-CLIQUE AND k-INDUCED
SUBGRAPH WITH HEREDITARY PROPERTY 137

inherently enumerative states that the problem the trivial enumeration algorithm is essentially the
best possible (up to a constant factor in the exponent), even in the approximation (i.e. gap) setting.

Our result in k-CLIQUE and all subsequent FPT inapproximability results in this part will be
based on Gap-ETH. The (obvious) benefit of starting with Gap-ETH is that, unlike in the previous
chapter, we now begin with gap in hardness of approximation. Hence, our tasks now amount to
only retaining or amplifying this gap.

Similar to the previous chapter, the hardness is shown via a reduction from MAXCOV, except
that this time our MAXCOV instance satisfies the projection property, which allows us to reduce to
CLIQUE. The Gap-ETH-hardness of MAXCOV is proved in Section 7.1. Then, in Section 7.2, we
show the inherently enumerativeness of MAXIMUM CLIQUE using the reduction from [Fei+91].
Finally, in Section 7.3, we argue why this also implies total FPT inapproximability of the problem
of finding maximum induced subgraph with hereditary property (for similar “hard” properties Π
as in [KR00]). Note here that, unlike for MAXIMUM CLIQUE, we only get weakly inherently
enumerativeness for the latter problem, i.e., the running time lower bound achieved is not yet tight.

7.1 Hardness of Approximation from MAXCOV with
Projection Property

One straightforward algorithm for MAXCOV is to enumerate all the possible right labeling σV ,
which takes O?(|ΣV ||V |) time, for which our hardness in the previous section matches. The other
natural straightforward algorithm to determine whether MAXCOV(L) < r is to enumerate all
possible subsets S ⊆ U of size r and the possible S-labeling σS : S → ΣU ; this runs in O?((|U | ·
|ΣU |)r) time. We will show that this algorithm is also essentially the best possible, as stated below.
This will serve as the starting point of all hardness results in this section.

Theorem 7.1 (MAXCOV with Projection Property). Assuming Gap-ETH, there exist constants
δ, ρ > 0 such that, for any positive integers k > r > ρ, no algorithm can take a label cover
instance L with |U | = k and distinguish between the following cases in Ok,r(|L|δr) time:

• MAXCOV(L) = k and

• MAXCOV(L) < r.

This holds even when |ΣV | = O(1) and Π has the projection property.

We also note here that the label cover instances above has the projection property, unlike the
ones from the previous section. As we will see soon, this projection property is crucial in the
reduction from MAXCOV to Maximum Clique.

Towards proving Theorem 7.1, first observe that, by applying the clause-variable reduction
(Definition 3.20), ETH can be restated as the following hardness of MAXCOV for small alphabet:

CHAPTER 7. INAPPROXIMABILITY FROM GAP-ETH I: k-CLIQUE AND k-INDUCED
SUBGRAPH WITH HEREDITARY PROPERTY 138

Observation 7.2. Assuming Gap-ETH (Hypothesis 3), there exist constants ε, δ > 0 such that no
algorithm can take a label cover instance Γ and can distinguish between the following cases in
O(2δ|U |) time:

• MAXCOV(Γ) = |U |, and

• MAXCOV(Γ) < (1− ε)|U |.

This holds even when |ΣU |, |ΣV | = O(1), |U | = Θ(|V |) and Π has the projection property.

The proof of Theorem 7.1 proceeds by compressing the left vertex set U of a label cover in-
stance from Observation 7.2. More specifically, each new left vertex will be a subset of left vertices
in the original instance. One could think of these subsets as random subsets where each vertex is
included with probability Θ(1/k); however, the only property of random subsets we will need is
that they form a disperser, as defined in Definition 2.20.

The idea of using dispersers to amplify gap in hardness of approximation bears a strong resem-
blance to the classical randomized graph product technique [BS92]. Indeed, similar approaches
have been used before, both implicitly [BGS98] and explicitly [Zuc96b; Zuc96a; Zuc07]. In fact,
even the reduction we use below has been studied before by Zuckerman [Zuc96b; Zuc96a]!

What differentiates our proof from previous works is the setting of parameters. Since the
reduction size (specifically, the left alphabet size |ΣU |) blows up exponentially in the subset size
and previous results aim to prove NP-hardness of approximating CLIQUE, the subset sizes are
chosen to be small (i.e. O(log |U |)). On the other hand, we will choose it to be Θε(|U |/r) since we
would like to only prove a running time lower bound of the form |L|Ω(r). Interestingly, dispersers
for our regime of parameters are easier to construct deterministically by slightly modifying the
sets from Section 2.9. The exact dependency of parameters can be found in the claim below.
Throughout the proof, k, r should be thought of as constants where k � r; these are the same k, r
as the ones in Theorem 7.1.

Claim 7.3 (Deterministic Construction of Dispersers). For any k, q ∈ N and any integerm > qk+1,
let U be any m-element set. Then, there is a collection I = {I1, . . . , Ik} of k subsets of U with the
following properties with α := 1/q.

• (Size) Each of I1, . . . , Ik has size at most 2αm.

• (Disperser) For any η > 0, I is a (dln(1/η)/αe, η)-disperser.

Moreover, such a collection T can be deterministically constructed in time O(m · qk).

Proof. Let z = bm/qkc. To define the sets, we first partition U into two parts U0,U1, where
U0 is of size qk · z and U1 is of size m − |U0| < qk. We associate the elements of U0 with
[q]k × [z]. Let T1, . . . , Tk be the sets as in Definition 2.16. We define the set I1, . . . , Ik ⊆ U
by Ii = (Ti × [z]) ∪ U1. The disperser property of I = {I1, . . . , Ik} follows immediately from
Proposition 2.22 (with ` = 1). Finally, each set is of size at most qk−1 · z + qk 6 2αm, where the
inequality comes from our assumption that m > qk+1.

CHAPTER 7. INAPPROXIMABILITY FROM GAP-ETH I: k-CLIQUE AND k-INDUCED
SUBGRAPH WITH HEREDITARY PROPERTY 139

With the above claim ready, we move on to prove Theorem 7.1.

Proof of Theorem 7.1. First, we take a label cover instance L̃ = (G̃ = (Ũ , Ṽ , Ẽ),Σ
Ũ
,Σ

Ṽ
, Π̃)

from Observation 7.2, where |Σ
Ũ
|, |Σ

Ṽ
| = O(1) and |Ũ | = Θ(|Ṽ |). Moreover, let us rename the

vertices in Ũ and Ṽ so that Ũ = [m] and Ṽ = [n]. Note that it might be useful for the readers to
think of L̃ as a 3-SAT instance where Ũ is the set of clauses and Ṽ is the set of variables.

We recall the parameter ε from Observation 7.2 and the parameters k, r from the statement of
Theorem 7.1. We also introduce a new parameter q = bk/ ln(1/ε)c, and let α = 1/q.

The new label cover instance L = (G = (U, V,E),ΣU ,ΣV ,Π) is defined as follows.

• The right vertices and right alphabet set remain unchanged, i.e., V = Ṽ and ΣV = Σ
Ṽ

.

• There will be k vertices in U , each corresponding to a set Ii as constructed1 by Claim 7.3
with q as specified above and universe U = [m].

• The left alphabet set ΣU is Σd2αme
Ũ

. For each I ∈ U , we view each label α ∈ ΣU as a tuple

(αu)u∈I ∈ (Σ
Ũ

)I ; this is a partial assignment to all vertices u ∈ I in the original instance Γ̃.

• We create an edge between I ∈ U and v ∈ V in E if and only if there exists u ∈ I such that
uv ∈ Ẽ. More formally, E = {(I, v) | I ∩N

G̃
(v) 6= ∅}.

• Finally, we define the constraint Π(I,v) for each (I, v) ∈ E. As stated above, we view each
α ∈ ΣU as a partial assignment (αu)u∈I for I ⊆ Ũ . The constraint Π(I,v) then contains all
(α, β) such that (αu, β) satisfies the constraint Π̃uv for every u ∈ I that has an edge to v in
Γ̃. More precisely, Π(I,v) = {(α, β) = ((αu)u∈I , β) | ∀u ∈ I ∩N

G̃
(v), (αu, β) ∈ Π̃(u,v)}.

Readers who prefer the 3-SAT/CSP viewpoint of label cover may think of each Ii as a collec-
tion of clauses in the 3-SAT instance that are joined by an operator AND, i.e., the assignment must
satisfy all the clauses in Ii simultaneously in order to satisfy Ii.

We remark that, if Π̃ has the projection property, Π also has projection property.

Completeness. Suppose there is a labeling (σ
Ũ
, σ

Ṽ
) of L̃ that covers all |Ũ | left-vertices. We take

σV = σ
Ṽ

and construct σU by setting σU(I) = (σ
Ũ

(u))u∈I for each I ∈ U . Since (σ
Ũ
, σ

Ṽ
) covers

all the vertices of Ũ , (σU , σV) also covers all the vertices of U . Therefore, MAXCOV(Γ) = |U |.

Soundness. To analyze the soundness of the reduction, observe that Claim 7.3 implies that
{I1, . . . , Ik} is an (r, ε)-disperser. Conditioned on this event happening, we will prove the sound-
ness property, i.e., that if MAXCOV(L̃) < (1− ε)|Ũ |, then MAXCOV(L) < r.

We will prove this by contrapositive. Assume that there is a labeling (σU , σV) that covers at
least r left vertices Ii1 , · · · , Iir ∈ U . We construct a labeling (σ

Ũ
, σ

Ṽ
) as follows. First, σ

Ṽ
is

simply set to σV . Moreover, for each u ∈ Ii1 ∪ · · · ∪ Iir , let σ
Ũ

(u) = (σU(Iij))u where j ∈ [r]
is an index such that u ∈ Iij ; if there are multiple such j’s, just pick an arbitrary one. Finally, for
u ∈ U \ (Ii1 ∪ · · · ∪ Iir), we set σ

Ũ
(u) arbitrarily.

1The assumption m > qk+1 can be assumed w.l.o.g. since both q, k are constrants in our setting.

CHAPTER 7. INAPPROXIMABILITY FROM GAP-ETH I: k-CLIQUE AND k-INDUCED
SUBGRAPH WITH HEREDITARY PROPERTY 140

We claim that, every u ∈ Ii1∪· · ·∪Iir is covered by (σ
Ũ
, σ

Ṽ
) in the original instance L̃. To see

that this is the case, recall that σ
Ũ

(u) = (σU(Iij))u for some j ∈ [r] such that u ∈ Iij . For every
v ∈ V , if (u, v) ∈ E, then, from how the constraint Π(Iij ,v) is defined, we have (σ

Ũ
(u), σ

Ṽ
(v)) =

(σU(Iij)u, σV (v)) ∈ Π̃uv. In other words, u is indeed covered by (σ
Ũ
, σ

Ṽ
).

Hence, (σ
Ũ
, σ

Ṽ
) covers at least |Ii1 ∪ · · · ∪ Iir | > (1− ε)m, where the inequality comes from

the definition of dispersers. Thus, MAXCOV(Γ̃) > (1− ε)|Ũ |, completing the soundness proof.

Running Time Lower Bound. Our construction gives a MAXCOV instance L with |U | = k
and |ΣU | = |Σ

Ũ
|d2αme = 2Θ(m ln(1/ε)/r), whereas |V | and |ΣV | remain n and O(1) respectively.

Assume that Gap-ETH holds and let δ0 be the constant in the running time lower bound in Ob-
servation 7.2. Let δ be any constant such that 0 < δ < δ0

c ln(1/ε) where c is the constant such that
|ΣU | 6 2cm ln(1/ε)/r.

Suppose for the sake of contradiction that, for some k > r > 1/δ, there is an algorithm that
distinguishes whether MAXCOV(L) = k or MAXCOV(L) < r in Ok,r(|L|δr) time. Observe that,
in our reduction, |U |, |V |, |ΣV | = |ΣU |o(1). Hence, the running time of the algorithm on input Γ is
at most Ok,r(|ΣU |δr(1+o(1))) 6 Ok,r(|ΣU |δ0εr/c) 6 O(2δ0m) where the first inequality comes from
our choice of δ and the second comes from |ΣU | 6 2cm ln(1/ε)/r. Thanks to the completeness and
soundness of the reduction, this algorithm can also distinguish whether MAXCOV(L̃) = |Ũ | or
MAXCOV(Γ̃) < (1− ε)|Ũ | in time O(2δ0m). From Observation 7.2, this is a contradiction.

7.2 Maximum Clique
We will next prove our hardness for parameterized Maximum Clique. Observe that we can check
if there is a clique of size r by checking if any subset of r vertices forms a clique, and there are(
|V (G)|
r

)
= O(|V (G)|r) possible such subsets. We show that this is essentially the best we can do

even when we are given a promise that a clique of size q � r exists:

Theorem 7.4. Assuming Gap-ETH, there exist constants δ, r0 > 0 such that, for any positive
integers q > r > r0, no algorithm can take a graph G = (V,E) and distinguish between the
following cases in Oq,r(|V |δr) time:

• CLIQUE(G) > q and

• CLIQUE(G) < r.

The above theorem simply follows from plugging the FGLSS reduction below to Theorem 7.1.

Theorem 7.5 ([Fei+91]). Given a label cover instance L = (G = (U, V,E),ΣU ,ΣV ,Π) with
projection property, there is a reduction that produces a graph HL = (VL, EL) such that |VL| =
|U ||ΣU | and CLIQUE(HL) = MAXCOV(L). The reduction takes O(|VL|2 · |V |) time.

CHAPTER 7. INAPPROXIMABILITY FROM GAP-ETH I: k-CLIQUE AND k-INDUCED
SUBGRAPH WITH HEREDITARY PROPERTY 141

For clarity, we would like to note that, while the original graph defined in [Fei+91] is for multi-
prover interactive proof, analogous graphs can be constructed for CSPs and label cover instances
as well. In particular, in our case, the graph HL = (VL, EL) can be defined as follows:

• The vertex set VL is simply U × ΣU .

• There is an edge between two vertices (u, α), (u′, α′) ∈ VL if and only if, Π(u,v)(α) =
Π(u′,v)(α′) (i.e., recall that we have a projection constraint, so we can represent the constraint
Π(u,v) as a function Π(u,v) : ΣU → ΣV .)

Proof of Theorem 7.4. Assume that Gap-ETH holds and let δ, ρ be the constants from Theorem 7.1.
Let r0 = max{ρ, 2/δ}. Suppose for the sake of contradiction that, for some q > r > r0, there is an
algorithm A that distinguishes between CLIQUE(G) > q and CLIQUE(G) < r in Oq,r(|V (G)|δr)
time.

Given a label cover instance L with projection property, we can use A to distinguish whether
MAXCOV(L) > q or MAXCOV(L) < r as follows. First, we run the FGLSS reduction to produce
a graph HL and we then use A to decide whether CLIQUE(HL) > q or CLIQUE(HL) < r. From
CLIQUE(HL) = MAXCOV(L), this indeed correctly distinguishes between MAXCOV(L) > q and
MAXCOV(L) < r; moreover, the running time of the algorithm is Oq,r(|VL|δr) +O(|VL|2 · |L|) 6
Oq,r(|L|δr) where the term O(|VL|2 · |L|) comes from the running time used to produce HL. From
Theorem 7.1, this is a contradiction, which concludes our proof.

As a corollary of Theorem 7.4, we immediately arrive at FPT inapproximability of k-CLIQUE:

Corollary 7.6 (Clique is inherently enumerative). Assuming Gap-ETH, MAXIMUM CLIQUE is
inherently enumerative and thus totally FPT inapproximable.

7.3 Maximum Induced Subgraph with Hereditary Properties
In this section, we prove the hardness of maximum induced subgraphs with hereditary property.
Let Π be a graph property. We say that a subset S ⊆ V (G) has property Π if G[S] ∈ Π. Denote
by AΠ(G) the maximum cardinality of a set S that has property Π.

Recall that Khot and Raman [KR00] proved a dichotomy theorem for the problem: if Π con-
tains all independent sets but not all cliques or if Π contains all cliques but not all independent
sets, then the problem is W[1]-hard. For all other Π’s, the problem is in FPT. We extend Khot and
Raman’s dichotomy theorem to hold even for FPT approximation as stated more precisely below.

Theorem 7.7. Let Π be any hereditary property.

• If Π contains all independent sets but not all cliques or vice versa, then computing AΠ(G) is
weakly inherently enumerative (and therefore totally FPT inapproximable).

• Otherwise, AΠ(G) can be computed exactly in FPT.

CHAPTER 7. INAPPROXIMABILITY FROM GAP-ETH I: k-CLIQUE AND k-INDUCED
SUBGRAPH WITH HEREDITARY PROPERTY 142

Surprisingly, the fact that there is a gap in the optimum of our starting point helps make our re-
duction simpler than that of Khot and Raman. For convenience, let us focus only on properties Π’s
which contain all independent sets but not all cliques. The other case can be proved analogously.
The main technical result is summarized in the following lemma.

Theorem 7.8. Let Π be any graph property that contains all independent sets but not all cliques.
Then there is a function gΠ = ω(1) such that the following holds:

• If α(G) > q, then AΠ(G) > q.

• If AΠ(G) > r, then α(G) > gΠ(r).

Proof. Since Π contains all independent set, when α(G) > q, we always have AΠ(G) > q.
Now, to prove the converse, let gΠ(r) denote maxH∈Π,|V (H)|=r α(H). If AΠ(G) = r, then there

exists a subset S ⊆ V (G) of size r that has property Π; from the definition of gΠ, α(H) > gΠ(r),
which implies that α(G) > gΠ(r) as well. Hence, we are only left to show that gΠ = ω(1).

To show that this is the case, recall the Ramsey theorem.

Theorem 7.9 (Ramsey’s Theorem). For any s, t > 1, there is an integer R(s, t) s.t. every graph
on R(s, t) vertices contains either a s-clique or a t-independent set. Moreover, R(s, t) 6

(
s+t−2
s−1

)
.

From our assumption of Π, there exists a fixed integer sΠ such that Π does not contain an
sΠ-clique. Hence, from Ramsey’s Theorem, gΠ(r) > max{t | R(sΠ, t) 6 r}. In particular, this
implies that gΠ(r) > ΩsΠ(r1/(sΠ−1)). Hence, limr∞ gΠ(r) =∞ (i.e. gΠ = ω(1)) as desired.

In other words, the identical transformation G 7→ G is a (q, gΠ(r))-FPT gap reduction from
CLIQUE to Maximum Induced Subgraph with property Π. Hence, by applying Proposition 2.12,
we immediately arrive at the following corollary.

Corollary 7.10. Assuming Gap-ETH, for any property Π that contains all independent sets but not
all cliques (or vice versa), MAXIMUM INDUCED SUBGRAPH WITH PROPERTY Π is Ω(gΠ)-weakly
inherently enumerative where gΠ is the function from Theorem 7.8.

We remark here that, for some properties, gΠ can be much larger than the bound given by
the Ramsey’s Theorem; for instance, if Π is planarity, then the Ramsey’s Theorem only gives
gΠ(r) = Ω(r1/5) but it is easy to see that, for planar graphs, there always exist an independent set
of linear size and gΠ(r) is hence as large as Ω(r).

7.4 Discussion and Open Questions
In this chapter, we prove total FPT inapproximability of MAXIMUM CLIQUE and the problem
of finding maximum subgraph with hereditary properties (for the “hard” properties). Since these
results (and all subsequent results in this part) are based on Gap-ETH, the obvious question is
whether we can relax the assumption to ETH or even W[1] 6= FPT. We refrain from discussing
this issue here, but rather provide a more complete view in Chapter 12. (See Directions 3 and 4.)

CHAPTER 7. INAPPROXIMABILITY FROM GAP-ETH I: k-CLIQUE AND k-INDUCED
SUBGRAPH WITH HEREDITARY PROPERTY 143

Another interesting question, which is slightly beyond parameterized complexity, is how far
we can push q in Theorem 7.4 in terms of n = |V |. Of course, this is not the usual settings
in parameterized complexity since we typically view q as either a constant or another parameter
independet of n. However, it is not hard to check that our reduction in fact gives a lower bound
even when q = nγ for some (small) constant γ > 0 that depends on the parameter in Gap-ETH.

Furthermore, recall that, in the NP-hardness regime, strong NP-hardness of approximation
with factor n1−ε is known for any ε > 0 [Hås96; Zuc07]. These results implies that, there is no
polynomial time algorithm that, given a graphG, can distinguish between CLIQUE(G) > n1−ε and
CLIQUE(G) 6 nε. As a result, we could ask, in the “parameterized” setting, whether we can push
q all the way to n1−ε. In other words, the question here can be phrased as follows:

Open Question 2. Let ε > 0 be any constant. Is there an FPT (in k) time algorithm that can
distinguish between CLIQUE(G) > n1−ε and CLIQUE(G) < k?

If the answer to this question is negative, then the proof might involve combining the technique
in this chapter with the aforementioned NP-hardness results. The latter involves constructing PCP
with small free bits (see [BGS98; Hås96] for definition); however, such constructions require the
starting hardness of label cover to have a large gap. It is unclear how to get such a large gap from
Gap-ETH without using parallel repetition [Raz98]; however, doing so results in a label cover
instance of size N > Ω(n2) and hence the running time lower bound is of the form 2Ω(

√
N), which

breaks down the reductions in this chapter.

144

Chapter 8

Inapproximability from Gap-ETH II:
k-Biclique, k-Induced Matching on
Bipartite Graphs and Densest k-Subgraph

We continue our study of parameterized approximability. In this chapter, we consider the follow-
ing three problems: MAXIMUM BALANCED BICLIQUE, MAXIMUM INDUCED MATCHING on
bipartite graphs and DENSEST k-SUBGRAPH.

Maximum Balanced Biclique. In the MAXIMUM BALANCED BICLIQUE problem, we are given
a bipartite graph G and would like to find the largest k such that the k-biclique Kk,k is a subgraph
of G. NP-hardness for the exact version of the problem was stated as (without proof) in [GJ79,
page 196]; several proofs of this exist such as one provided in [Joh87]. While this problem bears
a strong resemblance to the MAXIMUM CLIQUE Problem, inapproximability of the latter cannot
be directly translated to that of the former; in fact, despite numerous attempts, not even con-
stant factor NP-hardness of approximation of the Maximum Balanced Biclique problem is known.
Fortunately, under stronger assumptions, hardness of approximation for the problem is known:
nε-factor hardness of approximation is known under Feige’s random 3SAT hypothesis [Fei02]
or NP* ⋂

ε>0BPTIME(2nε) [Kho06], and n1−ε-factor hardness of approximation is known under
strengthening of the Unique Games Conjecture [Bha+16a; Man17b]. To the best of our knowledge,
no non-trivial approximation algorithm for the problem is known.

The parameterized version of the problem, denoted by k-BICLIQUE, had been a well-known
open problem in the field of parameterized complexity [DF13]. It was not until a few years ago that
the exact version of the problem is shown to be W[1]-hard in the breakthrough work of Lin [Lin15].
Lin’s proof also implies that, assuming the randomized ETH, the problem does not admit T (k) ·
no(
√
k)-time (exact) algorithm.

Maximum Induced Matching on Bipartite Graphs. In the MAXIMUM INDUCED MATCHING

problem, we are given a graph G and the goal is to find a maximum number of vertices that

CHAPTER 8. INAPPROXIMABILITY FROM GAP-ETH II: k-BICLIQUE, k-INDUCED
MATCHING ON BIPARTITE GRAPHS AND DENSEST k-SUBGRAPH 145

induce a matching in G. The problem was proved to be NP-hard independently by Stockmeyer
and Vazirani [SV82] and Cameron [Cam89]. The approximability of the problem was first studied
by Duckworth et al. [DMZ05] who showed that the problem is APX-hard, even on bipartite graphs
of degree three. Elbassioni et al. [Elb+09] then showed that the problem is hard to approximate
to within n1/3−ε factor for every ε > 0, unless NP⊆ ZPP. Chalermsook et al. [CLN13] later
improved the ratio to n1−ε for every ε > 0.

The parameterized version of the problem, denoted by k-INDUCED MATCHING, has also been
studied. In particular, the problem was shown to be W[1] to solve exactly in [MT09], and that
this remains true even when restricted to bipartite input graphs [MS09]. In fact, the reduction
in [MT09] is from k-CLIQUE, and the produced graph always have maximum induced matching
of size exactly two times the size of the maximum clique in the original graph. Hence, our result
in the previous chapter immediately implies that the problem is totally FPT inapproximable on
general graphs. As a result, we will focus on the FPT approximability of k-INDUCED MATCHING

on bipartite graphs, for which the reduction in [MT09] does not trivially yield such a hardness.

Densest k-Subgraph. Chapter 4 provides a rather comprehensive literature review on the (non-
parameterized) DENSEST k-SUBGRAPH (DkS), and hence we do not repeat it here. The param-
eterized version of DkS (where k is the parameter) is clearly W[1]-hard to solve exactly, since it
generalizes k-CLIQUE. On the other hand, to the best of our knowledge, no parameterized hardness
of approximation was known before.

We also note here that there is a rather straightforward k-approximation algorithm for the prob-
lem: pick a vertex with highest degree and select k − 1 of its neighbor. (If it has less than k − 1
neighbors, then just put all its neighbors in the set.) While the algorithm is very simple, there is no
known FPT algorithm that gives o(k)-approximation for DkS.

Our Results
In this chapter, we show, assuming Gap-ETH, that both k-BICLIQUE and k-INDUCED MATCHING

on bipartite graphs are totally FPT inapproximable, by showing that their corresponding optimiza-
tion problems are weakly inherently enumerative. Note here that, unlike MAX CLIQUE in the pre-
vious chapter, the running time lower bounds for these problems that we achieve are not yet tight.
In particular, we prove Ω(

√
r)-weakly inherently enumerativeness for the problems, while it could

still be possible that the problems are in fact inherently enumerative (or equivalently Ω(r)-weakly
inherently enumerative). Nonetheless, our results already implies, for instance, that approximat-
ing k-BICLIQUE to within any constant factor requires nΩ(k) time, which matches the best known
running time lower bound even for the exact version of the problem from [Lin15].

We also observe that the total FPT inapproximability almost immediately implies hardness of
approximation for DkS to within a factor of ko(1) that holds even against FPT algorithms. Note
that, unlike all of our previous FPT hardness of approximation results, the inapproximability ratio
here is not yet tight, as the best known algorithm achieves only O(k)-approximation.

CHAPTER 8. INAPPROXIMABILITY FROM GAP-ETH II: k-BICLIQUE, k-INDUCED
MATCHING ON BIPARTITE GRAPHS AND DENSEST k-SUBGRAPH 146

Unlike the previous two chapters, we will not reduce from any label cover problem; the start-
ing point for the results here will instead be the reduction from Chapter 4. By interpreting this
construction in a different perspective, we can modify it in such a way that we arrive at a stronger
form of inherently enumerative hardness for CLIQUE. This is done in Section 8.1. In Section 8.2,
we argue why this gives the weakly inherently enumerativeness for MAXIMUM BALANCED BI-
CLIQUE. Then, we show how to reduce to MAXIMUM INDUCED MATCHING on bipartite graphs
in Section 8.2.1. Finally, in Section 8.3, we show prove FPT hardness of approximation of DkS.

8.1 Rephrasing the Reduction from Chapter 4 as a
Parameterized Inapproximability of Clique-vs-Biclique

The main theorem of this section is the following theorem, which is a stronger form of Theorem 7.4
in that the soundness not only rules out cliques, but also rules out bicliques as well.

Theorem 8.1. Assuming randomized Gap-ETH, there exist constants δ, ρ > 0 such that, for any
positive integers q > r > ρ, no algorithm can take a graph G and distinguish between the follow-
ing cases in Oq,r(|V (G)|δ

√
r) time:

• CLIQUE(G) > q.

• BICLIQUE(G) < r.

The weakly inherently enumerativeness (and therefore totally FPT inapproximability) of MAX-
IMUM BALANCED BICLIQUE and MAXIMUM INDUCED MATCHING on bipartite graphs follows
easily from Theorem 8.1. We will show these results in the subsequent sections; for now, let us
turn our attention to the proof of the theorem.

The theorem is again shown via a reduction from Gap-3SAT. The properties and parameters of
the reduction is stated below in Theorem 8.2. It is obvious to see Theorem 8.2 implies Theorem 8.1.

Theorem 8.2. For any d, ε > 0, there is a constant γ = γ(d, ε) > 0 such that there exists a
randomized reduction that takes in a parameter r and a 3-SAT instance φ with n variables and
m clauses where each variable appears in at most d constraints and produces a graph Gφ,r =
(Vφ,r, Eφ,r) such that, for any sufficiently large r (depending only on d, ε but not n), the following
properties hold with high probability:

• (Size) N := |Ṽφ,r| 6 2Od,ε(n/
√
r).

• (Completeness) if φ is satisfiable, then CLIQUE(G̃φ,r) > Nγ/
√
r.

• (Soundness) if val(φ) 6 1− ε, then BICLIQUE(G̃φ,r) < r.

As mentioned earlier, our result builds upon an intermediate lemma used to prove the hardness
of approximating DENSEST k-SUBGRAPH in Chapter 4. Due to this, it will be easier to describe
the new reduction in terms of the original reduction from Chapter 4; in this regard, our reduction

CHAPTER 8. INAPPROXIMABILITY FROM GAP-ETH II: k-BICLIQUE, k-INDUCED
MATCHING ON BIPARTITE GRAPHS AND DENSEST k-SUBGRAPH 147

can be viewed as vertex subsampling (with appropriate probability p) of the graph produced by the
reduction from Chapter 4. Recall that, the main soundness result (Theorem 4.4) in Chapter 4 is
there are few bicliques in the graph constructed there. As a result, if we select p appropriately, we
should be able to make sure that these few bicliques do not remain in the subsampled graph.

Proof of Theorem 8.2. Let λ < 1 be the constant from Theorem 4.4. We select ` = 4n√
λr

and

p = 2λ`2
2n /

(
n
`

)
. Let Gφ,` = (Vφ,`, Eφ,`) be the graph constructed in Section 4.1. Our graph G̃φ,r =

(Ṽφ,r, Ẽφ,r) is the induced subgraph of Gφ,`, where each vertex is kept in Ṽφ,r with probability p
independent of each other.

Size. Since each vertex in Vφ,` is included that Ṽφ,r independently w.p. p, we have E[|Ṽφ,r|] =
p|Vφ,`| = 2`+λ`2

2n 6 22`. Hence, from Chernoff bound, |Ṽφ,r| 6 210` = 2Ωd,ε(n/
√
r) w.h.p.

Completeness. Suppose that φ is satisfiable. Then, there exists a clique C of size
(
n
`

)
in Gφ,`.

From how G̃φ,r is defined,C∩Ṽφ,r induces a clique in G̃φ,r. Moreover, E[|C∩Ṽφ,r|] = p|C| = 2λ`2
2n .

Again, from Chernoff bound, CLIQUE(G̃φ,r) > 2λ`2
4n w.h.p. Combined with the above bound on

N , CLIQUE(G̃φ,r) > Nγ/
√
r w.h.p. for γ :=

√
λ/40 = Od,ε(1).

Soundness. Suppose that val(φ) 6 1−ε. Consider any subsets S, T ⊆ Vφ,` that is a copy of Kr,r

in Gφ,`. From how G̃φ,r is defined, BICLIQUE(G̃φ,r) > r if and only if, for at least one such pair
(S, T), S ∪ T ⊆ Ṽφ,r. The probability of this event occurring is bounded above by

∑
S,T⊆Vφ,`

S,T is a copy ofKr,r inGφ,`

Pr[S, T ⊆ Ṽφ,r] 6 24n
(

2−λ`2/n
(
n

`

))2r

· p2r = 24n
(

2−λ`
2

2n

)2r
= o(1),

where the first inequality is from Theorem 4.4 and each vertex is included independently w.p. p.
As a result, the subsampled graph G̃φ,r is Kr,r-free with high probability as desired.

8.2 Maximum Balanced Biclique
We now give a simple reduction from the “CLIQUE vs BICLIQUE” problem (from Chapter 8.1) to
Maximum Balanced Biclique, which yields FPT inapproximability of the latter.

Lemma 8.3. For any graphG = (V,E), letBe[G] = (VBe[G], EBe[G]) be the bipartite graph whose
vertex set is VBe[G] := V × [2] and two vertices (u, i), (v, j) are connected by an edge if and only
if (u, v) ∈ E or u = v, and i 6= j. Then the following properties hold for any graph G.

• BICLIQUE(Be[G]) > CLIQUE(G).

• BICLIQUE(Be[G]) 6 2BICLIQUE(G) + 1.

CHAPTER 8. INAPPROXIMABILITY FROM GAP-ETH II: k-BICLIQUE, k-INDUCED
MATCHING ON BIPARTITE GRAPHS AND DENSEST k-SUBGRAPH 148

Proof. It is easy to see that BICLIQUE(Be[G]) > CLIQUE(G) since, for any C ⊆ V that induces a
clique in G, C × [2] ⊆ VBe[G] induces a |C|-biclique in Be[G].

To see that BICLIQUE(Be[G]) 6 2BICLIQUE(G) + 1, consider any S ⊆ VBe[G] that induces a
k-biclique inBe[G]. Note that S can be partitioned into S1 = S∩(V ×{1}) and S2 = S∩(V ×{2}).

Now consider the projections of S1 and S2 into V (G), i.e., T1 = {v : (v, 1) ∈ S} and T2 =
{v : (v, 2) ∈ S}. Note that |T1| = |T2| = k. Since S1 ∪ S2 induces a biclique in Be[G], we have,
for every u ∈ T1 and v ∈ T2, either u = v or (u, v) ∈ E. Observe that if there were no former
case (i.e., T1 ∩ T2 = ∅), then we would have a k-biclique in G. Even if T1 ∩ T2 6= ∅, we can still
get back a bk/2c-biclique of G by uncrossing the sets T1 and T2 in a natural way by assigning half
of the intersection to T1 and the other half to T2. To be formal, we partition T1 ∩ T2 into roughly
equal sets U1 and U2 (i.e., ||U1| − |U2|| 6 1), and we then define new sets T ′1 and T ′2 by

T ′1 = (T1 \ T2) ∪ U1 and T ′2 = (T2 \ T1) ∪ U2.

It is not hard to see that G has an edge between every pair of vertices between T ′1, T
′
2 and that

|T ′1|, |T ′2| > bk/2c. Thus, BICLIQUE(G) > bk/2c > (k − 1)/2. Therefore, BICLIQUE(Be[G]) 6
2BICLIQUE(G) + 1 as desired.

Thanks to the above lemma, we can conclude that the reduction G 7→ Be[G] is a (2q, (r +
1)/2)-FPT gap reduction from the “CLIQUE vs BICLIQUE” problem to MAXIMUM BALANCED

BICLIQUE, although the former is not a well-defined optimization problem. Nevertheless, it is
easy to check that a proof along the line of Proposition 2.12 still works and it gives the following
result:

Corollary 8.4. Assuming randomized Gap-ETH, MAXIMUM BALANCED BICLIQUE are Ω(
√
r)-

weakly inherently enumerative and thus totally FPT inapproximable.

It is worth noting here that the Maximum Edge Biclique problem, a well-studied variant of the
Maximum Balanced Biclique problem where the goal is instead to find a (not necessarily balanced)
complete bipartite subgraph of a given bipartite graph that contains as many edges as possible, is in
FPT; this is because the optimum is at least the maximum degree, but, when the degree is bounded
above by r, all bicliques can be enumerated in 2O(r)poly(n) time.

8.2.1 Maximum Induced Matching on Bipartite Graphs
Next, we prove the FPT inapproximability for the Maximum Induced Matching problem on bipar-
tite graphs. Again, the proof will be a simple reduction from Theorem 8.1. The argument below is
similar to that used in Lemma IV.4 of [CLN13]. We include it here for completeness. (Here, we
use IM(G) to denote the number of edges in the maximum induced matching in G.)

Lemma 8.5. For any graphG = (V,E), letBe[G] = (VBe[G], EBe[G]) be the bipartite graph whose
vertex is VBe[G] := V × [2] and two vertices (u, i), (v, j) are connected by an edge if and only if
(u, v) /∈ E or u = v, and i 6= j. Then, the following properties hold for any graph G.

CHAPTER 8. INAPPROXIMABILITY FROM GAP-ETH II: k-BICLIQUE, k-INDUCED
MATCHING ON BIPARTITE GRAPHS AND DENSEST k-SUBGRAPH 149

• IM(Be[G]) > CLIQUE(G).

• IM(Be[G]) 6 2BICLIQUE(G) + 1.

Proof. Consider any S ⊆ V that induces a clique in G. It is obvious that S × [2] ⊆ VBe[G] induces
a matching in Be[G].

Next, consider any induced matching matching {(u1, v1), . . . , (um, vm)} of size m. Assume
w.l.o.g. that u1, . . . , um ∈ V × {1} and v1, . . . , vm ∈ V × {2}. Define π1 : V × [2] → V to be a
projection operator that projects on to the first coordinate.

Let S1 = π1({u1, . . . , ubm/2c}) and S2 = π1({vdm/2e+1, . . . , vm}). From the definition ofBe[G]
and from the fact that there is no edge between (S1 × {1}) and (S2 × {2}), it is easy to check that
S1∩S2 = ∅ and, for every u ∈ S1 and v ∈ S2, (u, v) ∈ E. In other words, (S1, S2) is an occurrence
of bm/2c in G. Hence, we can conclude that IM(Be[G]) 6 2BICLIQUE(G) + 1.

Similar to BICLIQUE, it is easy to see that the above reduction implies the following FPT
inapproximability for Maximum Induced Matching on Bipartite Graphs.

Corollary 8.6. Assuming randomized Gap-ETH, MAXIMUM INDUCED MATCHING on bipartite
graphs are Ω(

√
r)-weakly inherently enumerative and thus totally FPT inapproximable.

8.3 Densest k-Subgraph
Finally, we will show FPT inapproximability result for Densest k-Subgraph. Alas, we are not
able to show o(k)-ratio FPT inapproximability, which would have been optimal since the trivial
algorithm gives anO(k)-approximation for the problem. Nonetheless, we will show an ko(1)-factor
FPT inapproximability for the problem. We note here that below we will state the result as if k
is the parameter; this is the same as using the optimum as the parameter, since (in the non-trivial
case) the optimum is always between bk/2c and

(
k
2

)
(inclusive).

To prove the hardness, recall the Kővári-Sós-Turán (KST) Theorem (Theorem 2.13), which
basically states that if a graph does not contain small bicliques, then it is sparse. By applying KST
Theorem to our hardness for BICLIQUE (Theorem 8.1), we immediately arrive at the following.

Theorem 8.7. Assuming Gap-ETH, there exist a constant δ > 0 and an integer ρ > 0 such that,
for any integer q > r > ρ, no algorithm can take a graph G = (V,E) and distinguish between the
following cases in Oq,r(|V |δ

√
r) time:

• G contains a q-clique.

• Every q-subgraph of G has density at most O(q−1/r).

From the above theorem, it is easy to show the ko(1)-factor FPT inapproximability of Densest
k-Subgraph (with perfect completeness) as formalized below.

CHAPTER 8. INAPPROXIMABILITY FROM GAP-ETH II: k-BICLIQUE, k-INDUCED
MATCHING ON BIPARTITE GRAPHS AND DENSEST k-SUBGRAPH 150

Lemma 8.8. Assuming randomized Gap-ETH, for every function f = o(1) and every function t,
there is no t(k) · nO(1)-time algorithm such that, given an integer k and any n-vertex graph G that
contains a k-clique, always output S ⊆ V of size k such that G[S] has density at least k−f(k).

Proof. Suppose for the sake of contradiction that there is a t(k) · |V |D-time algorithm A that, given
an integer k and any graph G = (V,E) that contains a k-clique, always outputs S ⊆ V of size k
with density at least k−f(k) for some function f = o(1), some function t and some constant D > 0.

Let r = max{dρe, d(D/δ)2e} where ρ is the constant from Chapter 8.7. Note that O(q−1/r) =
qO(1)/ log q−1/r. Now, since limq→∞ f(q) + O(1)/ log q = 0, there exists a sufficiently large q such
that the term O(q−1/r) is less than q−f(q). In other words, A can distinguish between the two cases
in Chapter 8.7 in time t(q) · nD = Oq,r(|V |δ

√
r), which would break Gap-ETH.

8.4 Discussion and Open Questions
In this chapter, we show total FPT inapproximability of k-BICLIQUE and k-INDUCED MATCHING

on bipartite graphs. We further show ko(1) factor FPT hardness of approximation for DkS.
There are still many open questions remained. First, as discussed earlier before, the running

time lower bound we get for k-BICLIQUE and k-INDUCED MATCHING are not yet tight, and they
might actually be inherently enumerative. We remark here that, even for the exact version of
k-BICLIQUE, an algorithm with running time no(k) has not yet been rule out (even under say Gap-
ETH). This presents us with the following question, which we have to answer first, before moving
to tight running time lower bounds for approximation algorithms:

Open Question 3. Is there a T (k) · no(k)-time algorithm for (exact) k-BICLIQUE?

In Chapter 11, we discuss slightly how techniques introduced in that chapter might help with
the above question. However, there are still many steps needed to be done. For instance, we still
do not know how to prove tight running time lower bound even for the ONE-SIDED k-BICLIQUE

problem, which is discussed in more details in Section 11.8.
It should also be noted that, while we did not explicitly state the running time lower bounds

for DkS, it was quite poor. For instance, even if we are only looking for some constant factor
inapproximability result, the running time we can rule out is at most T (k)·no(log k). The log k comes
because, in order for KST Theorem to produce a constant gap, we must consider r = O(log k) size
bicliques in the soundness. However, we can determine whether our graph contains such a biclique
(and even list all of them) in nO(r) = nO(log k) time. Notice that this barrier holds, even when we
get the tight lower bound for k-BICLIQUE. As a result, we are left with the following question;
the answer of which likely requires an approach that does not involves using the KST Theorem to
argue about the density.

Open Question 4. Is there an O(1)-approximation T (k) · no(k)-time algorithm for DkS?

Apart from the running time lower bound, the inapproximability factor for DkS itself is still
not tight. As mentioned earlier, whereas our hardness of approximation factor is ko(1), there is no
known FPT time algorithm that achieves o(k) approximation ratio. Hence, it is natural to ask:

CHAPTER 8. INAPPROXIMABILITY FROM GAP-ETH II: k-BICLIQUE, k-INDUCED
MATCHING ON BIPARTITE GRAPHS AND DENSEST k-SUBGRAPH 151

Open Question 5. Is there a o(k)-approximation FPT time algorithm for DkS?

Next chapter can be considered an attempt to make a progress to the above question. In partic-
ular, we consider the PARAMETERIZED 2-CSP problem. While it will be convenient to state in a
slightly different form in the next chapter, it can actually be stated as a colorful version of DkS,
where, in addition to the graph G, each vertex is colored by one out of k colors, and we are now
allowed to pick only one vertex of each color. There, we show that this problem is hard to approx-
imate to within k1−o(1) factor. Nonetheless, it is currently unclear how the techniques developed
there could help in improving hardness of approximation for DkS.

Finally, the reductions in this section is randomized, where the randomization comes from the
vertex subsampling step. It is unclear to us how to derandomize the reductions, and we leave that
as an open question as well.

152

Chapter 9

Inapproximability from Gap-ETH III:
Parameterized 2-CSPs, Directed Steiner
Network, k-Unique Set Cover

In this chapter, we study the 2-ary constraint satisfaction problems (2-CSPs). Recall from Chap-
ter 3 that the 2-CSP problem can be stated as follows: given a constraint graph G = (V,E), an
alphabet set Σ and, for each edge {u, v} ∈ E, a constraint Cuv ⊆ Σ × Σ, the goal is to find an
assignment σ : V → Σ that satisfies as many constraints as possible, where a constraint Cuv is said
to be satisfied by σ if (σ(u), σ(v)) ∈ Cuv. Throughout the chapter, we use k to denote the number
of variables |V |, n to denote the the alphabet size |Σ|, and N to denote the instance size nk.

Constraint satisfaction problems and their inapproximability have been studied extensively
since the proof of the PCP theorem in the early 90’s [AS98; Aro+98]. Most of the effort has
been directed towards understanding the approximability of CSPs with constant arity and constant
alphabet size, leading to a reasonable if yet incomplete understanding of the landscape [Hås01;
Kho02; Kho+07; Rag08; AM09; Cha16]. When the alphabet size grows, the sliding scale conjec-
ture of [Bel+93] predicts that the hardness of approximation ratio will grow as well, and be at least
polynomial in the alphabet size n. This has been confirmed for values of n up to 2(logN)1−δ , see
[RS97; AS03; Din+11]. Proving the same for n that is polynomial inN is the so-called polynomial
sliding scale conjecture and is still quite open. Before we proceed, let us note that the aforemen-
tioned results of [RS97; AS03; Din+11] work only for arity strictly larger than two and, hence,
do not imply inapproximability for 2-CSPs. We will discuss the special case of 2-CSPs in details
below.

The polynomial sliding scale conjecture has been approached from different angles. In [DHK15]
the authors try to find the smallest arity and alphabet size such that the hardness factor is polyno-
mial in n, and in [Din16] the conjecture is shown to follow (in some weaker sense) from Gap-ETH,
which we discuss in more details later. In this chapter, we focus on yet another angle, which is
to separate n and k and ask whether it is hard to approximate constant arity CSPs to within a
factor that is polynomial in k (but possibly not polynomial in n). Observe here that obtaining NP-
hardness of poly(k) factor is likely to be as hard as obtaining one with poly(N); this is because

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 153

CSPs can be solved exactly in time nO(k), which means that, unless NP is contained in subexpo-
nential time (i.e. NP * ⋂

ε>0 DTIME(2nε)), NP-hard instances of CSPs must have k = poly(N).
This motivates us to look for hardness of approximation from assumptions stronger than P 6=

NP. Specifically, our results will be based on ETH and Gap-ETH. Firstly, we show that, unless
ETH fails, no polynomial time algorithm can approximate 2-CSPs to within an almost linear ratio
in k, as stated below. This is almost optimal since there is a straightforward (k/2)-approximation
for any 2-CSP, by simply satisfying all constraints that touch the variable with highest degree.

Theorem 9.1 (Main Theorem). Assuming ETH, for any constant ρ > 0, no algorithm can, given
a 2-CSP instance Γ with alphabet size n and k variables such that the constraint graph is the
complete graph on the k variables, distinguish between the following two cases in polynomial
time:

• (Completeness) val(Γ) = 1, and,

• (Soundness) val(Γ) < 2(log k)1/2+ρ
/k.

To paint a full picture of how our result stands in comparison to previous results, let us state
what is know about the approximability of 2-CSPs; due to the vast literature regarding 2-CSPs, we
will focus only the regime of large alphabets which is most relevant to our setting. In terms of NP-
hardness, the best known inapproximability ratio is (logN)c for every constant c > 0; this follows
from Moshkovitz-Raz PCP [MR10] and the Parallel Repetition Theorem for the low soundness
regime [DS14]. Assuming a slightly weaker assumption that NP is not contained in quasipolyno-
mial time (i.e. NP * ⋃

c>0 DTIME(n(logn)c)), 2-CSP is hard to approximate to within a factor of
2(logN)1−δ for every constant δ > 0; this can be proved by applying Raz’s original Parallel Repe-
tition Theorem [Raz98] to the PCP Theorem. In [Din16], the author observed that running time
for parallel repetition can be reduced by looking at unordered sets instead of ordered tuples. This
observation implies that1, assuming ETH, no polynomial time N1/(log log logN)c-approximation al-
gorithm exists for 2-CSPs for some constant c > 0. Moreover, under Gap-ETH, it was shown that,
for every sufficiently small ε > 0, an N ε-approximation algorithm must run in time NΩ(exp(1/ε)).
Note that, while this latest result comes close to the polynomial sliding scale conjecture, it does not
quite resolve the conjecture yet. In particular, even the weak form of the conjecture postulates that
there exists δ > 0 for which no polynomial time algorithm can approximate 2-CSPs to within N δ

factor of the optimum. This statement does not follow from the result of [Din16]. Nevertheless, the
Gap-ETH-hardness of [Din16] does imply that, for any f = o(1), no polynomial time algorithm
can approximate 2-CSPs to within a factor of N f(N).

In all hardness results mentioned above, the constructions give 2-CSP instances in which the
alphabet size n is smaller than the number of variables k. In other words, even if we aim for an
inapproximability ratio in terms of k instead of N , we still get the same ratios as stated above.
Thus, our result is the first hardness of approximation for 2-CSPs with poly(k) factor. Note again
that our result rules out any polynomial time algorithm and not just NO(exp(1/ε))-time algorithm

1In [Din16], only the Gap-ETH-hardness result is stated. However, the ETH-hardness result follows rather easily.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 154

ruled out by [Din16]. Moreover, our ratio is almost linear in k whereas the result of [Din16] only
holds for ε that is sufficiently small depending on the parameters of the Gap-ETH Hypothesis.

An interesting feature of our reduction is that it produces 2-CSP instances with the alphabet
size n that is much larger than k. Of course, this should remind us of the setting of 2-CSPs
parameterized by the number of variables k! We show that, even in this parameterized setting, the
trivial algorithm is still essentially optimal (up to lower order terms), assuming Gap-ETH:

Theorem 9.2. Assuming Gap-ETH, for any constant ρ > 0 and any function g, no algorithm can,
given a 2-CSP instance Γ with alphabet size n and k variables such that the constraint graph is the
complete graph on the k variables, distinguish between the following two cases in g(k) · (nk)O(1)

time:

• (Completeness) val(Γ) = 1, and,

• (Soundness) val(Γ) < 2(log k)1/2+ρ
/k.

To the best of our knowledge, the only previous inapproximability result for parameterized 2-
CSPs is from [CFM18]. There the authors showed that, assuming Gap-ETH, no ko(1)-approximation
g(k) · (nk)O(1)-time algorithm exists; this is shown via a simple reduction from parameterized in-
approximbability of DENSEST-k SUBGRAPH from the previous chapter. Our result is a direct
improvement over this result.

We end our discussion on 2-CSPs by noting that several approximation algorithms have also
been devised for 2-CSPs with large alphabets [Pel07; CHK11; KKT16; MM17; Chl+17b]. In
particular, while our results suggest that the trivial algorithm achieves an essentially optimal ratio
in terms of k, non-trivial approximation is possible when we measure the ratio in terms ofN instead
of k: specifically, a polynomial time O(N1/3)-approximation algorithm is known [CHK11].

Direct Steiner Network. As a corollary of our hardness of approximation results for 2-CSPs, we
obtain an inapproximability result for DIRECTED STEINER NETWORK (DSN) with polynomial
ratio in terms of the number of demand pairs. In DSN (sometimes referred to as DIRECTED

STEINER FOREST [FKN12; Chl+17a]), we are given an edge-weighed directed graph G and a set
D of k demand pairs (s1, t1), . . . , (sk, tk) ∈ V × V and the goal is to find a subgraph H of G with
minimum weight such that there is a path inH from si to ti for every i ∈ [k]. DSN was first studied
in the approximation algorithms context by Charikar et al. [Cha+99] who gave a polynomial time
Õ(k2/3)-approximation algorithm for the problem. This ratio was later improved to O(k1/2+ε) for
every ε > 0 by Chekuri et al. [Che+11]. Later, a different approximation algorithm with similar
approximation ratio was proposed by Feldman et al. [FKN12].

Algorithms with approximation ratios in terms of the number of vertices n have also been de-
vised [FKN12; Ber+13; Chl+17a; AB17]. In this case, the best known algorithm is that of Berman
et al. [Ber+13], which yields an O(n2/3+ε)-approximation for every constant ε > 0 in polyno-
mial time. Moreover, when the graph is unweighted (i.e. each edge costs the same), Abboud and
Bodwin recently gave an improved O(n0.5778)-approximation algorithm for the problem [AB17].

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 155

On the hardness side, there exists a known reduction from 2-CSP to DSN that preserves ap-
proximation ratio to within polynomial factor2 [DK99]. Hence, known hardness of approximation
of 2-CSPs translate immediately to that of DSN: it is NP-hard to approximate to within any poly-
logarithmic ratio [MR10; DS14], it is hard to approximate to within 2log1−ε n factor for every ε > 0
unless NP ⊆ QP [Raz98], and it is Gap-ETH-hard to approximate to within no(1) factor [Din16].
Note that, since k is always bounded above by n2, all these hardness results also hold when n is
replaced by k in the ratios. Recently, this reduction was also used by Chitnis et al. [CFM18] to rule
out ko(1)-FPT-approximation algorithm for DSN parameterized by k assuming Gap-ETH. Alas,
none of these hardness results achieve ratios that are polynomial in either n or k and it remains
open whether DSN is hard to approximate to within a factor that is polynomial in n or in k.

By plugging our hardness result for 2-CSPs into the reduction, we immediately get ETH-
hardness and Gap-ETH-hardness of approximating DSN to within a factor of k1/4−o(1) as stated
below.

Corollary 9.3. Assuming ETH, for any constant ρ′ > 0, there is no polynomial time k1/4

2(log k)1/2+ρ′ -
approximation algorithm for DSN.

Corollary 9.4. Assuming Gap-ETH, for any constant ρ′ > 0 and any function g, there is no
g(k) · (nk)O(1)-time k1/4

2(log k)1/2+ρ′ -approximation algorithm for DSN.

In other words, if one wants a polynomial time approximation algorithm with ratio depending
only on k and not on n, then the algorithms of Chekuri et al. [Che+11] and Feldman et al. [FKN12]
are roughly within a square of the optimal algorithm. To the best of our knowledge, these are
the first inapproximability results of DSN whose ratios are polynomial in terms of k. Again,
Corollary 9.4 is a direct improvement over the FPT inapproximability result from [CFM18] which,
under the same assumption, rules out only ko(1)-factor FPT-approximation algorithm.

Unique Set Cover. Another consequence of our hardness of 2-CSP is an inapproximability result
for the (parameterized) k-UNIQUE SET COVER. This problem can be most easily thought of
as a promise problem where we are given a set system (U ,S) with a promise that there exist
S1, . . . , Sk ∈ S that uniquely covers3 U , and the goal is to find minimum number of subsets from S
that covers U (not necessarily uniquely). Interestingly, the NP-hardness of approximation for SET

COVER of [Fei98] (and subsequent works [Mos12; DS14]) immediately implies the NP-hardness
of approximating UNIQUE SET COVER; that is, the solutions in the completeness case of their
instances uniquely cover the universe. However, our construction from Chapter 6 does not achieve
this.

On a technical level, this stems from the fact that the starting label cover instance in Chap-
ter 6 does not have a desired “right-to-left projection property” (see Section 9.7 for more details).
Nonetheless, here we observe that we can rephrase our 2-CSP hardness of approximation in terms

2That is, for any non-decreasing function ρ , if DSN admits ρ(nk)-approximation in polynomial time, then 2-CSP
also admits ρ(nk)c-approximation polynomial time for some absolute constant c.

3That is, each element u ∈ U appears in exactly one of the subsets.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 156

of a hardness of MAXCOV where the instance has this desired projection property. In doing so, we
manage to prove an FPT inapproximability result for k-UNIQUE SET COVER with factor k1/2−o(1):

Theorem 9.5. Assuming Gap-ETH, for any function g, no algorithm can, given a SET COVER

instance (U ,S, k), distinguish between the following two cases in g(k) · (nk)O(1) time:

• (Completeness) There exists S1, . . . , Sk ∈ S that covers each element of U exactly once, and,

• (Soundness) No k3/2−o(1) sets from S covers U .

We remark here that, similar to k-DOMSET, there is in fact no known f(k)-FPT-approximation
algorithm for k-UNIQUE SET COVER, which means that there is still a possibility that this problem
is totally FPT inapproximable. Unfortunately, this seems out of reach of the current techniques;
please refer to Section 9.8 for additional discussion regarding this.

Agreement tests

Our main result is proved through an agreement testing argument. In agreement testing there is a
universe U , a collection of subsets S1, . . . , Sk ⊆ U , and for each subset Si we are given a local
function fSi : Si → {0, 1}. A pair of subsets are said to agree if their local functions agree on
every element in the intersection. The goal is, given a non-negligible fraction of agreeing pairs,
to deduce the existence of a global function g : U → {0, 1} that (approximately) coincides with
many of the local functions. For a more complete description see [DK17].

Agreement tests capture a natural local to global statement and are present in essentially all
PCPs, for example they appear explicitly in the line vs. line and plane vs. plane low degree tests
[RS96; AS03; RS97]. Note that these tests impose algebraic structures on the functions f ’s (e.g. to
be low degree). On the other hand, our agreement theorem is “combinatorial”, in that fS1 , . . . , fSk
are allowed to be any function. This more closely resembles the so-called direct product testing,
which has exactly the same setting as us, except that typically the sets S1, . . . , Sk are taken as all `-
size subsets of [n] [Imp+10; IJK09; DG08; DN17; IKW12]. However, the number of sets k =

(
n
`

)
is large compare to our setting where k is very small (i.e. independent of n).

Previous works have studied the regime of “small k” as well, which corresponds to what is
called derandomized direct product tests in literature [Imp+10; IKW12; GK18]. Nevertheless, the
existing results require the fraction of agreeing pairs to be relatively large compared to ours.

More specifically, our agreement theorem works when the universe is [n] and the subsets
S1, . . . , Sk have Ω(n) elements each and are “in general position”, namely they behave like subsets
chosen independently at random. A convenient feature about this setting is, for instance, that every
pair of subsets intersect.

Since we are aiming for a large gap, the agreement test must work (i.e., yield a global function)
with a very small fraction of agreeing pairs, which in our case is close to 1/k. In this small
agreement regime the idea, as pioneered in the work of Raz-Safra [RS97], is to zero in on a sub-
collection of subsets that is (almost) perfectly consistent. From this sub-collection it is easy to
recover a global function and show that it coincides almost perfectly with the local functions in the

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 157

sub-collection. A major difference between our combinatorial setting and the algebraic setting of
Raz-Safra is the lack of “distance” in our case: we can not assume that two distinct local functions
differ on many points (in contrast, this is a key feature of low degree polynomials). We overcome
this by considering different “strengths” of agreement, depending on the fraction of points on
which the two subsets agree. This notion too is present in several previous works on combinatorial
agreement tests [IKW12; DN17].

Organization of the Chapter. In the next section, we describe our reduction and give an overview
of the proof. Then, in Section 9.2, we define additional notions and state some preliminaries. We
proceed to provide the full proof of our main agreement theorem in Section 9.3. Using this agree-
ment theorem, we deduce the soundness of our reduction in Section 9.4. We then plug in the
parameters and prove the inapproximability results for 2-CSPs in Section 9.5. In Section 9.6, we
show how the hardness of approximation result for 2-CSPs imply inapproximability for DSN as
well. Section 9.7 contains the hardness of approximation proof of k-UNIQUE SET COVER. Finally,
we conclude our work with some discussions and open questions in Section 6.9.

9.1 Proof Overview
Like other (Gap-)ETH-hardness of approximation results, our proof is based on a subexponen-
tial time reduction from the gap version of 3-SAT to our problem of interest, 2-CSPs. Before
we describe our reduction, let us define more notations for 2-CSPs and 3-SAT, to facilitate our
explanation.

2-CSPs. For notational convenience, we will modify the definition of 2-CSPs slightly so that
each variable is allowed to have different alphabets; this definition is clearly equivalent to the
more common definition used above. Specifically, an instance Γ of 2-CSP now consists of (1) a
constraint graph G = (V,E), (2) for each vertex (or variable) v ∈ V , an alphabet set Σv, and, (3)
for each edge {u, v} ∈ E, a constraint Cuv ⊆ Σu × Σv. Additionally, to avoid confusion with
3-SAT, we refrain from using the word assignment for 2-CSPs and instead use labeling, i.e., a
labeling of Γ is a tuple σ = (σv)v∈V such that σv ∈ Σv for all v ∈ V . An edge {u, v} ∈ E is said
to be satisfied by a labeling σ if (σu, σv) ∈ Σu × Σv. Similar to before, the value of a labeling σ,
denoted by val(σ), is defined as the fraction of edges that it satisfies, i.e., |{{u, v} ∈ E | (σu, σv) ∈
Cuv}|/|E|. The goal of 2-CSPs is to find σ with maximum value; we denote the such optimal value
by val(Γ), i.e., val(Γ) = maxσ val(σ).

3-SAT. An instance Φ of 3-SAT consists of a variable set X and a clause set C where each clause
is a disjunction of at most three literals. For any assignment ψ : X → {0, 1}, val(ψ) denotes the
fraction of clauses satisfied by ψ. The goal is to find an assignment ψ that satisfies as many clauses
as possible; let val(Φ) = maxψ val(ψ) denote the fraction of clauses satisfied by such assignment.
For each C ∈ C, we use var(C) to denote the set of variables whose literals appear in C. We
extend this notation naturally to sets of clauses, i.e., for every T ⊆ C, var(T) = ⋃

C∈T var(C).

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 158

Our Construction
Before we state our reduction, let us again reiterate the objective of our reduction. Roughly speak-
ing, given a 3-SAT stance Φ = (X, C), we would like to produce a 2-CSP instance ΓΦ such that

• (Completeness) If val(Φ) = 1, then val(ΓΦ) = 1,

• (Soundness) If val(Φ) < 1 − ε, then val(ΓΦ) < ko(1)/k where k is number of variables of
ΓΦ,

• (Reduction Time) The time it takes to produce ΓΦ should be 2o(m) where m = |C|,

where ε > 0 is some absolute constant.
Observe that, when plugging a reduction with these properties to Gap-ETH, we directly arrive

at the claimed k1−o(1) inapproximability for 2-CSPs. However, for ETH, since we start with a
decision version of 3-SAT without any gap, we have to first invoke the PCP theorem to produce
an instance of the gap version of 3-SAT before we can apply our reduction. Since the shortest
known PCP has a polylogarithmic blow-up in the size (see Theorem 2.2), the running time lower
bound for gap 3-SAT will not be exponential anymore, rather it will be of the form 2Ω(m/polylogm)

instead. Hence, our reduction will need to produce ΓΦ in 2o(m/polylogm) time. As we shall see later
in Section 9.5, this will also be possible with appropriate settings of parameters.

With the desired properties in place, we now move on to state our reduction. In addition to
a 3-CNF formula Φ, the reduction also takes in a collection T of subsets of clauses of Φ. For
now, the readers should think of the subsets in T as random subsets of C where each element is
included in each subset independently at random with probability α, which will be specified later.
As we will see below, we only need two simple properties that the subsets in T are “well-behaved”
enough and we will later give a deterministic construction of such well-behaved subsets. With this
in mind, our reduction can be formally described as follows.

Definition 9.6 (The Reduction). Given a 3-CNF formula Φ = (X, C) and a collection T of subsets
of C, we define a 2-CSP instance ΓΦ,T = (G = (V,E),Σ, {Cuv}{u,v}∈E) as follows:

• The graph G is the complete graph where the vertex set is T , i.e., V = T and E =
(
T
2

)
.

• For each T ∈ T , the alphabet set ΣT is the set of all partial assignments to var(T) that
satisfies every clause in T , i.e., ΣT = {ψT : var(T)→ {0, 1} | ∀C ∈ T, ψT satisfies C}.

• For every T1 6= T2 ∈ T , (ψT1 , ψT2) is included in CT1T2 if and only if they are consistent, i.e.,
CT1T2 = {(ψT1 , ψT2) ∈ ΣT1 × ΣT2 | ∀x ∈ var(T1) ∩ var(T2), ψT1(x) = ψT2(x)}.

Let us now examine the properties of the reduction. The number of vertices in ΓΦ,T is k = |T |.
For the purpose of the proof overview, α should be thought of as 1/polylogm whereas k should be
thought of as much larger than 1/α (e.g. k = exp(1/α)). For such value of k, all random sets in
T will have size O(αm) w.h.p., meaning that the reduction time is 2m/polylogm as desired.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 159

Moreover, when Φ is satisfiable, it is not hard to see that val(ΓΦ,T) = 1; more specifically, if
ψ : X → {0, 1} is the assignment that satisfies every clause of Φ, then we can label each vertex
T ∈ T of ΓΦ,T by ψ|var(T), the restriction of ψ on var(T). Since ψ satisfies all the clauses, ψ|var(T)
satisfies all clauses in T , meaning that this is a valid labeling. Moreover, since these are restrictions
of the same global assignment ψ, they are all consistent and every edge is satisfied.

Hence, we are only left to show that, if val(Φ) < 1 − ε, then val(ΓΦ,T) < ko(1)/k; this
is indeed our main technical contribution. We will show this by contrapositive: assuming that
val(ΓΦ,T) > ko(1)/k, we will “decode” back an assignment to Φ that satisfies 1 − ε fraction of
clauses.

9.1.1 Soundness Analysis as an Agreement Theorem
Our task at hand can be viewed as agreement testing. Informally, in agreement testing, the input
is a collection {fS}S∈S of local functions fS : S → {0, 1} where S is a collection of subsets of
some universe U such that, for many pairs S1 and S2, fS1 and fS2 agree, i.e., fS1(x) = fS2(x) for
all x ∈ S1 ∩ S2. An agreement theorem says that there must be a global function g : U → {0, 1}
that coincides (exactly or approximately) with many of the local functions, and thus explains the
pairwise “local” agreements. In our case, a labeling σ = {σT}T∈T with high value is exactly a
collection of functions σT : var(T) → {0, 1} such that, for many pairs of T1 and T2, σT1 and σT2

agrees. The heart of our soundness proof is an agreement theorem that recovers a global function
ψ : X → {0, 1} that approximately coincides with many of the local functions σT ’s and thus
satisfies 1 − ε fraction of clauses of Φ. To discuss the agreement theorem in more details, let us
define several additional notations, starting with those for (approximate) agreements of a pair of
functions:

Definition 9.7. For any universe U , let fS1 : S1 → {0, 1} and fS2 : S2 → {0, 1} be any two func-
tions whose domains S1, S2 are subsets of U . We use the following notations for (dis)agreements
of these two functions:

• Let disagr(fS1 , fS2) denote the number of x ∈ S1 ∩ S2 that fS1 and fS2 disagree on, i.e.,
disagr(fS1 , fS2) = |{x ∈ S1 ∩ S2 | fS1(x) 6= fS2(x)}|.

• For any ζ > 0, we say that fS1 and fS2 are ζ-consistent if disagr(fS1 , fS2) 6 ζ|U|, and
we say that the two functions are ζ-inconsistent otherwise. For ζ = 0, we sometimes drop
0 and refer to these simply as consistent and inconsistent (instead of 0-consistent and 0-
inconsistent).

• We use fS1

ζ
≈ fS2 and fS1

ζ

6≈ fS2 as shorthands for ζ-consistency and ζ-inconsistency re-
spectively. Again, for ζ = 0, we may drop 0 from the notations and simply use fS1 ≈ fS2

and fS1 6≈ fS2 .

Next, we define the notion of agreement probability for any collection of functions:

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 160

Definition 9.8. For any ζ > 0 and any collection F = {fS}S∈S of functions, the ζ-agreement
probability, denoted by agrζ(F) is the probability that fS is ζ-consistent with fS′ where S and S ′

are chosen independently uniformly at random from S, i.e., agrζ(F) = PrS,S′∈S [fS
ζ
≈ fS′]. When

ζ = 0, we will drop 0 from the notation and simply use agr(F).

Our main agreement theorem, which works when each S ∈ S is a large “random” subset,
says that, if agr(F) is noticeably large, then there exists a global function that is approximately
consistent with many of the local functions inF . This is stated more precisely (but still informally)
below.

Theorem 9.9 (Informal; See Theorem 9.17). Let S be a collection of k independent random αn-
element subsets of [n]. The following holds with high probability: for any β > 0 and any collection
of functions F = {fS}S∈S such that δ := agr(F) > koβ,α(1)/k, there exist a function g : [n] →
{0, 1} and a subcollection S ′ of size δk1−oβ,α(1) such that g

β
≈ fS′ for all S ′ ∈ S ′.

To see that Theorem 9.9 implies our soundness, let us view a labeling σ = {σT}T∈T as a
collection F = {fS}S∈S where S = {var(T) | T ∈ T } and fvar(T) is simply σT . Now, when
val(σ) is large, agr(F) is large as well. Moreover, while the sets S ∈ S are not random subsets
of variables but rather variable sets of random subsets of clauses, it turns out that these sets are
“well-behaved” enough for us to apply Theorem 9.9. This yields a global function ψ : X →
{0, 1} that are β-consistent with many σT ’s. Note that, if instead of β-consistency we had exact
consistency, then we would have been done because ψ must satisfy all clauses that appear in any
T such that ψ is consistent with σT ; since there are many such T ’s and these are random sets, ψ
indeed satisfies almost all clauses. A simple counting argument shows that this remains true even
with approximate consistency, provided that most clauses appear in at least a certain fraction of
such T ’s (an assumption which holds for random subsets). Hence, the soundness of our reduction
follows from Theorem 9.9, and we devote the rest of this section to outline an overview of its proof.

Optimality of the parameters of Theorem 9.9. Before we proceed to the overview, we would
like to note that the size of the subcollection S ′ in Theorem 9.9 is nearly optimal. This is because,
we can partition S into 1/δ subcollections S1, . . . ,S1/δ each of size δk and, for each i ∈ [1/δ],
randomly select a global function gi : [n]→ {0, 1} and let each fS be the restriction of gi to S for
each S ∈ Si. In this way, we have agr(F) > δk and any global function can be (approximately)
consistent with at most δk local functions. This means that S ′ can be of size at most δk in this case
and, up to a koβ,α(1) multiplicative factor, Theorem 9.9 yields almost a largest possible S ′.

9.1.2 A Simplified Proof: δ > ko(1)/k1/2 Regime
We now sketch the proof of Theorem 9.9. Before we describe how we can find g when δ >
koβ,α(1)/k, let us sketch the proof assuming a stronger assumption that δ > Θα,β(1)/k1/2. Note that
this simplified proof already implies a k1/2−o(1) factor ETH-hardness of approximating 2-CSPs. In
the next subsection, we will then proceed to refine the arguments to handle smaller values of δ.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 161

Let us consider the consistency graph of F . This is the graph GF whose vertex set is S and
there is an edge between S1 and S2 if and only if fS1 and fS2 are consistent. Note that the number
of edges in GF is equal to k2δ−k

2 , where the subtraction of k comes from the fact that δ = agr(F)
includes the agreement of each set and itself (whereas GF does not).

Previous works on agreement testers exploit particular structures of the consistency graph to
decode a global function. One such property that is relevant to our proof is the notion of almost
transitivity defined by Raz and Safra in the analysis of their test [RS97]. More specifically, a
graph G = (V,E) is said to be q-transitive for some q > 0 if, for every non-edge {u, v} (i.e.
{u, v} ∈

(
V
2

)
\ E), u and v can share at most q common neighbors4. Raz and Safra showed

that their consistency graph is (k1−Ω(1))-transitive where k denotes the number of vertices of the
graph. They then proved a generic theorem regarding (k1−Ω(1))-transitive graphs that, for any such
graph, its vertex set can be partitioned so that the subgraph induced by each partition is a clique
and that the number of edges between different partitions is small. Since a sufficiently large clique
corresponds to a global function in their setting, they can then immediately deduce that their result.

Observe that, in our setting, a large clique also corresponds to a global function that is consis-
tent with many local functions. In particular, suppose that there exists S ′ ⊆ S of size sufficiently
large such that S induces a clique in GF . Since fS′’s are perfectly consistent with each other for
all S ′ ∈ S ′, there is a global function g : [n] → {0, 1} that is consistent with all such fS′’s.
Hence, if we could show that our consistency graph GF is (k1−Ω(1))-transitive, then we could use
the same argument as Raz and Safra’s to deduce our desired result. Alas, our graph GF does not
necessarily satisfy this transitivity property; for instance, consider any two sets S1, S2 ∈ S and
let fS1 , fS2 be such that they disagree on only one variable, i.e., there is a unique x ∈ S1 ∩ S2
such that fS1(x) 6= fS2(x). It is possible that, for every S ∈ S that does not contain x, fS agrees
with both fS1 and fS2; in other words, every such S can be a common neighbor of S1 and S2.
Since each variable x appears roughly in only Θ(α) fraction of the sets, there can be as many as
(1−Θ(α))k = (1− o(1))k common neighbors of S1 and S2 even when there is no edge between
S1 and S2!

Fortunately for us, a weaker statement holds: if fS1 and fS2 disagree on more than ζn variables
(instead of just one variable as above), then S1 and S2 have at most O(ln(1/ζ)/α) common neigh-
bors in GF . Here ζ should be thought of as β2 times a small constant which will be specified later.
To see why this statement holds, observe that, since every S ∈ S is a random subset that includes
each clause x ∈ [n] with probability α, Chernoff bound implies that, for every subcollection S̃ ⊆ S
of size Ω(ln(1/ζ)/α),

⋃
S∈S̃ S contains all but O(ζ) fraction of variables. Let S̃S1,S2 ⊆ S denote

the set of common neighbors of S1 and S2. It is easy to see that S1 and S2 can only disagree on
variables that do not appear in

⋃
S∈S̃S1,S2

S. If S̃S1,S2 is of size Ω(ln(1/ζ)/α), then
⋃
S∈S̃S1,S2

S

contains all but O(ζ) fraction of variables, which means that S1 and S2 disagrees only on O(ζ)
fraction of variables. By selecting the constant appropriately inside O(·), we arrive at the claim
statement.

4In [RS97], the transitivity parameter q is used to denote the fraction of vertices that are neighbors of both u and
v rather than the number of such vertices as defined here. However, the latter notion will be more convenient for us.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 162

In other words, while the transitive property does not hold for every edge, it holds for the edges
{S1, S2} where fS1 and fS2 are ζ-inconsistent. This motivates us to define a two-level consistency
graph, where the edges with ζ-inconsistent are referred to as the red edges whereas the original
edges in GF is now referred to as the blue edges. We define this formally below.

Definition 9.10 (Red/blue Graph). A red-blue graph is an undirected graphG = (V,E = Er∪Eb)
where its edge set E is partitioned into two sets Er, the set of red edges, and Eb, the set of blue
edges. We use the prefixes “blue-” and “red-” to refer to the quantities of the graph (V,Eb) and
(V,Er) respectively; for instance, u is said to be a blue-neighbor of v if {u, v} ∈ Eb.

Definition 9.11 (Two-Level Consistency Graph). Given a collection of functions F = {fS}S∈S
and a real number 0 6 ζ 6 1, the two-level consistency graph GF ,ζ = (V F ,ζ , EF ,ζr ∪ EF ,ζb) is a
red-blue graph defined as follows.

• The vertex set V F ,ζ is simply S.

• The blue edges are the consistent pairs {S1, S2}, i.e., Eb = {{S1, S2} ∈
(
S
2

)
| fS1 ≈ fS2}.

• The red edges are the ζ-inconsistent pairs {S1, S2}, i.e.,Er = {{S1, S2} ∈
(
S
2

)
| fS1

ζ

6≈ fS2}.

Note that S1, S2 constitute neither a blue nor a red edge when 0 < disagr(fS1 , fS2) 6 ζn.
Now, the transitivity property we argue above can be stated as follows: for every red-edge

{S1, S2} of GF ,ζ , there are at most O(ln(1/ζ)/α) different S’s such that both {S, S1} and {S, S2}
are blue edges. For brevity, let us call any red-blue graph G = (V,Er ∪ Eb) q-red/blue-transitive
if, for every red edge {u, v} ∈ Er, u and v have at most q common blue-neighbors. We will now
argue that in any q-red/blue-transitive of average blue-degree d, there exists a subset U ⊆ V of
size Ω(d) such that only O(qk/d2) fraction of pairs of vertices in U are red edges.

Before we prove this, let us state why this is useful for decoding the desired global function
g. Observe that such a subset U of vertices in the two-level consistency graph translates to a
subcollection S ′ ⊆ S such that, for all but O(qk/d2) fraction of pairs of sets S1, S2 ⊆ S ′, {S1, S2}
does not form a red edge. Recall from definition of red edges that, for such S1, S2, fS1 and fS2

disagrees on at most ζn variables. In other words, S ′ is similar to a clique in the (not two-level)
consistency graph, except that (1) O(qk/d2) fraction of pairs {S1, S2} are allowed to disagree on
as many variables as they like, and (2) even for the rest of pairs, the guarantee now is that they
agree on all but at most ζn variables, instead of total agreement as in the previous case of clique.
Fortunately, this still suffices to find g that is O(

√
qk/d2 + ζ)-consistent with Ω(d) functions. One

way construct such a global function is to simply assign each g(x) according to the majority of
fS(x) for all S ∈ S ′ such that x ∈ S. (This is formalized in Section 9.3.3.) Note that in our
case q = O(ln(1/ζ)/α) and d = Ω(δk). Hence, if we pick ζ � β2 and δ � (q1/2/β)/k1/2 =
Oβ,α(1)/k1/2, we indeed get a global function g that is β-consistent with Ω(δk) local functions.

We now move on to sketch how one can find such an “almost non-red subgraph”. For simplicity,
let us assume that every vertex has the same blue-degree (i.e. (V,Eb) is d-regular). Let us count
the number of red-blue-blue triangle (or rbb triangle), which is a 3-tuple (u, v, w) of vertices in

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 163

V such that {u, v}, {v, w} are blue edges whereas {u,w} is a red edge. An illustration of a rbb
triangle can be found in Figure 9.1a. The red/blue transitivity can be used to bound the number
of rbb triangles as follows. For each (u∗, w∗) ∈ V 2, since the graph is q-red/blue-transitive there
are at most q rbb triangle with u = u∗ and w = w∗. Hence, in total, there can be at most qk2 rbb
triangles. As a result, there exists v∗ ∈ V such that the number of rbb triangles (u, v, w) such that
v = v∗ is at most qk. Let us now consider the set U = Nb(v∗) that consists of all blue-neighbors
of v∗. There can be at most qk red edges with both endpoints in Nb(v∗) because each such edge
corresponds to a rbb triangle with v = v∗. From our assumption that every vertex has blue degree
d, we indeed have that |U | = d and that the fraction of pairs of vertices in U that are linked by red
edges is O(qk/d2) as desired. This completes our overview for the case δ > Θβ,α(1)/k1/2.

u

v

w

(a) a red-blue-blue triangle

v1

v2

v3

v4

v5

(b) a red-filled 4-walk

u w

v2

v3

v4 v′2

v′3
v′4

(c) disjoint red-filled 4-walks

Figure 9.1: Illustrations of red-filled walks. The red edges are represented by red dashed lines
whereas the blue edges are represented by blue solid lines. Figure 9.1a and Figure 9.1b demonstrate
a red-filled 2 walk (aka rbb triangle) and a red-filled 4-walk respectively. Figure 9.1c shows two
disjoint red-filled 4-walks.

9.1.3 Towards δ = ko(1)/k Regime
To handle smaller δ, we need to first understand why the approach above fails to work for δ 6
1/k1/2. To do so, note that the above proof sketch can be summarized into three main steps:

(1) Show that the two-level consistency graph GF is q-red/blue-transitive for some q = ko(1).

(2) Use red/blue transitivity to find a large subgraph of GF with few induced red edges.

(3) Decode a global function from such an “almost non-red subgraph”.

The reason that we need δ � 1/k1/2, or equivalently d � k1/2, lies in Step 2. Although not
stated as such earlier, our argument in this step can be described as follows. We consider all length-
2 blue-walks, i.e., all (u, v, w) ∈ V 3 such that {u, v} and {v, w} are both blue edges, and, using the
red/blue transitivity of the graph, we argue that, for almost of all these walks, {u,w} is not a red

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 164

edge (i.e. (u, v, w) is not a rbb triangle), which then allows us to find an almost non-red subgraph.
For this argument to work, we need the number of length-2 blue-walks to far exceed the number of
rbb triangles. The former is kd2 whereas the latter is bounded above by k2q in q-red/blue-transitive
graphs. This means that we need kd2 � k2q, which implies that d� k1/2.

To overcome this limitation, we instead consider all length-` blue-walks for ` > 2 and we will
define a “rbb-triangle-like” structure on these walks. Our goal is again to show that this structure
appears rarely in random length-` blue-walks and we will then use this to find a subgraph that
allows us to decode a good assignment for Φ. Observe that the number of length-` blue walks is
kd`. We also hope that the number of “rbb-triangle-like” structures is still small; in particular, we
will still get a similar bound k2+o(1) for such generalized structure, similar to our previous bound
for the red-blue-blue triangles. When this is the case, we need kd` > k2+o(1), meaning that when
` = ω(1) it suffices to select d = ko(1), which yields k1−o(1) factor inapproximability as desired.
To facilitate our discussion, let us define notations for `-walks here.

Definition 9.12 (`-Walks). For any red/blue graph G = (V,Er ∪ Eb) and any integer ` > 2, an
`-blue-walk in G is an (` + 1)-tuple of vertices (v1, v2, . . . , v`+1) ∈ V `+1 such that every pair of
consecutive vertices are joined by a blue edge, i.e., {vi, vi+1} ∈ Eb for every i ∈ [`]. For brevity,
we sometimes refer to `-blue walks simply as `-walks. We useWG

` to denote the set of all `-walks
in G.

Note here that a vertex can appears multiple times in a single `-walk.
One detail we have yet to specify in the proof is the structure that generalizes the rbb triangle for

`-walks where ` > 2. Like before, this structure will enforce the two end points of the walk to be
joined by a red edge, i.e., {v1, v`+1} ∈ Er. Additionally, we require every pair of non-consecutive
vertices to be joined by a red edge. We call such a walk a red-filled `-walk (see Figure 9.1b):

Definition 9.13 (Red-Filled `-Walks). For any red/blue graph G = (V,Er ∪ Eb), a red-filled `-
walk is an `-walk (v1, v2, . . . , v`+1) such that every pair of non-consecutive vertices is joined by a
red edge, i.e., {vi, vj} ∈ Er for every i, j ∈ [`+1] such that j > i+1. Let ŴG

` denote the set of all
red-filled `-walks in G. Moreover, for every u, v ∈ V , let ŴG

` (u, v) denote the set of all red-filled
`-walks from u to v, i.e.,WG

` (u, v) = {(v1, . . . , v`+1) ∈ ŴG
` | v1 = u ∧ v`+1 = v}.

As mentioned earlier, we will need a generalized transitivity property that works not only
for rbb triangles but also for our new structure, i.e. the red-filled `-walks. This can be defined
analogously to q-red/blue transitivity as follows.

Definition 9.14 ((q, `)-Red/Blue Transitivity). For any positive integers q, ` ∈ N, a red/blue graph
G = (V,Er ∪ Eb) is said to be (q, `)-red/blue-transitive if, for every pair of vertices u, v ∈ V that
are joined by a red edge, there exists at most q red-filled `-walks starting at u and ending at v, i.e.,
|ŴG

` (u, v)| 6 q.

Using a similar argument to before, we can show that, when S consists of random subsets where
each element is included in a subset with probability α, the two-level agreement graph is (q, `)-
red/blue transitive for some parameter q that is a function of only α and `. When 1/α and ` are
small enough in terms of k, q can made to be ko(1). (The full proof can be found in Section 9.3.1.)

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 165

Once this is proved, it is not hard (using a similar argument as before) to show that, when
d� (kq)1/`, most `-walks are not red-filled, i.e., |WG

` | � |ŴG
` |. Even with this, it is still unclear

how we can get back a “clique-like” subgraph; in the case of ` = 2 above, this implies that a
blue-neighborhood induces few red edges, but the argument does not seem to generalize to larger
`. Fortunately, it is still quite easy to find a large subgraph that a non-trivial fraction of pairs of
vertices do not form red edges; specifically, we will find two subsets U1, U2 ⊆ V each of size d
such that for at least 1/`2 fraction of (u1, u2) ∈ U1 × U2, {u1, u2} is not a red edge. To find such
sets, observe that, if |WG

` | > 2|ŴG
` |, then for a random (v1, . . . , v`+1) ∈ WG

` the probability that
there exists non-consecutive vertex vi, vj in the walk that are joined by a red edge is at least 1/2.
Since there are less than `2/2 such i, j, union bound implies that there must be non-consecutive
i∗, j∗ such that the probability that vi∗ , vj∗ are not joined by a red edge is at least 1/`2. Let us
assume without loss of generality that i∗ < j∗; since they are not consecutive, we have i∗+1 < j∗.

Let us consider vi∗+1, vj∗−1. By a simple averaging argument, there must be u∗ and w∗ such
that, conditioning on vi∗+1 = u∗ and vj∗+1 = w∗, the probability that {vi∗ , vj∗} /∈ Er is at least
1/`2. However, this conditional probability is exactly equal to fraction of (u1, u2) ∈ Nb(u∗) ×
Nb(w∗) that u1 and u2 are not joined by a red edge. Recall again that Nb(v) is used to denote the
set of all blue-neighbors of v. Thus, U1 = Nb(u∗) and U2 = Nb(w∗) are the sets with desired
property.

We are still not done yet since we have to use these sets to decode back the global function g.
This is still not obvious: the guarantee we have for our sets U1, U2 is rather weak since we only
know that at least 1/`2 of the pairs of vertices from the two sets do not form red edges. This is in
contrast to the ` = 2 case where we have a subgraph such that almost all induced edges are not
red.

To see how to overcome this barrier, recall that a pair S1, S2 that does not form a red edge

corresponds to fS1

ζ
≈ fS2 . As a thought experiment, let us think of the following scenario: if

instead of just ζ-consistency, these pairs satisfy (exact) consistency, then we can consider the
collection F̃ = {fS}S∈Ũ where Ũ = U1∪U2. This is a collection of Θ(d) local functions such that
agr(F̃) > Ω(1/`2). Thus, when d � `4, we are in the regime where agr(F̃) � 1/d1/2, meaning
that we can apply our earlier argument (for the δ > ko(1)/k1/2 regime) to recover g!

The approach in the previous paragraph of course does not work directly because we only know
that Ω(1/`2) fraction of the pairs {S1, S2} ⊆ Ũ are ζ-consistent, not exactly consistent. However,
we can still try to mimic the proof in the regime δ > ko(1)/k1/2 and define a red/blue graph in
such a way that such ζ-consistent pairs are now blue edges. Naturally, the red edges will now be
the ζ ′-inconsistent pairs for some ζ ′ > ζ . In other words, we consider the generalized two-level
consistency graph defined as follows.

Definition 9.15 (Generalized Two-Level Consistency Graph). Given a collection of functions F =
{fS}S∈S and two real numbers 0 6 ζ 6 ζ ′ 6 1, the generalized two-level consistency graph
GF ,ζ,ζ

′ = (V F ,ζ,ζ′ , EF ,ζ,ζ′r ∪ EF ,ζ,ζ
′

b) is a red/blue graph defined as follows.

• The vertex set V F ,ζ,ζ
′

is simply S.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 166

• The blue edges are the ζ-consistent pairs {S1, S2}, i.e., EF ,ζ,ζ
′

b = {{S1, S2} ∈
(
S
2

)
| fS1

ζ
≈

fS2}.

• The red edges are the ζ ′-inconsistent pairs {S1, S2}, i.e., EF ,ζ,ζ
′

r = {{S1, S2} ∈
(
S
2

)
| fS1

ζ′

6≈
fS2}.

As its name suggests, the generalized two-level consistency graph is a generalization of the
two-level consistency graph from Definition 9.11; namely GF ,0,ζ in the more general definition
coincides with GF ,ζ in the original definition.

Now, it is not hard to show that when ζ ′ � ζ/α, the graph GF ,ζ,ζ′ is again q-red/blue transitive
for some q that depends only on α and ζ . This means that we can apply our argument from the
δ > 1/k1/2−o(1) regime on the graphGF̃ ,ζ,ζ′ , which yields a subset U ⊆ Ũ such that almost all pairs
{S1, S2} ⊆ U are ζ ′-consistent. By selecting the parameters appropriately, such an almost non-red
subgraph once again gives us the desired global function. This wraps up our proof overview.

9.2 Additional Preliminaries

9.2.1 Parameters of Well-Behaved Subsets
We next recall two properties of collections of subsets, which will be needed in our soundness
analysis. First, recall that, in our proof overview for the weaker k1/2−o(1) factor hardness, we need
the following to show the red/blue transitivity of the consistency graph: for any r subsets from the
collection, their union must contain almost all clauses. Here r is a positive integer that effects the
red/blue transitivity parameter. This coincides with the definition of dispersers (Definition 2.20).
For walks with larger length, we need a stronger property that any union of r intersections of `
subsets are large. Recall that this is exactly the notion of intersection dispersers in Definition 2.21.

Another property we need is that any sufficiently large subcollection S̃ of S is “sufficiently
uniform” in the sense of Definition 2.18. More specifically, recall that the uniformity condition
requires that almost all clauses appear in not too small number of subsets in S̃. This is used when
we decode a good assignment from an almost non-red subgraph.

Using standard concentration bounds, it is not hard to show that, when m is sufficiently large,
a collection of random subsets where each element is included in each subset independently
with probability α is an (1/O(α`), `, O(1))-disperser and every subcollection of size Ω(1/α) is
(α,O(1)) uniform. This can be easily derandomized using the construction from Section 2.9, as
stated formally below.

Lemma 9.16 (Deterministic Construction of Well-Behaved Subsets). For any k, `, q ∈ N and any
integer m > qk+1, let U be any m-element set. Then, there is a collection T of k subsets of U with
the following properties with α := 1/q.

• (Size) Every subset in T has size at most 2αm.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 167

• (Intersection Disperser) For any η > 0, T is a (dln(1/η)/α`e, `, η)-intersection disperser.

• (Uniformity) For any µ > 0, any subcollection T̃ ⊆ T of size d8 ln(1/µ)/αe is (α/2, µ)-
uniform.

Moreover, such a collection T can be deterministically constructed in time O(m · qk).

Proof. Let z = bm/qkc. To define the sets, we first partition U into two parts U0,U1, where U0 is
of size qk · z and U1 is of size m − |U0| < qk. We associate the elements of U0 with [q]k × [z].
Let T1, . . . , Tk be the sets as in Definition 2.16 with t = 1. We define the set T ′1, . . . , T

′
k ⊆ U by

T ′i = (Ti × [z]) ∪ U1. The intersection disperser property and uniformity of T = {T ′1, . . . , T ′k}
follows immediately from Propositions 2.22 and 2.19 respectively. Finally, each set is of size at
most qk−1 · z + qk 6 2αm, where the inequality comes from our assumption that m > qk+1.

Let us turn our focus back to our main technical contribution: the agreement testing theorem.

9.3 The Main Agreement Theorem
The main goal of this section is to prove the following agreement theorem, which is the formal
version of Theorem 9.9 and is also the main technical contribution of this chapter.

Theorem 9.17. For any 0 < η, ζ, γ, µ < 1 and r, `, k, h, n, d ∈ N such that ` > 2, let S be any
collection of k subsets of [n] such that S is (r, `, ζ)-intersection disperser and every subcollection
S̃ ⊆ S of size h is (γ, µ)-uniform, and let F = {fS}S∈S be any collection of functions. If
δ := agr(F) > 10+64(r`)2k1/`

k
, then there exists a subcollection S ′ ⊆ S of size at least δk

256`2

and a function g : [n]→ {0, 1} such that g
β
≈ fS for all S ∈ S ′ where

β = 2
√

65536h`6

δk
+ µ+ 2ζ/γ.

While the parameters of the theorem can be confusing, when each subset in S is a random
αn-size subset of [n], the parameters we are interested in are as follows: µ and η both go to 0 as
n goes to infinity, h and γ depend only on α, and, r is O(1/α`). Since we want the requirement
on soundness as weak as possible, we want to minimize (r`)2k1/` = 2Oα(`+(log k)/`). Hence, our
best choice is to let ` =

√
log k, which indeed yields the k/2(log k)1/2+ρ ratio inapproximability for

2-CSPs.
To prove this theorem, we follow the general outline as stated in the proof overview section. In

particular, the proof contains five main steps, as elaborated below.

(1) First, we will show that when S is an intersection disperser with appropriate parameters, then
the two-level consistency graph GF ,ζ satisfies (q, `)-red/blue transitivity for certain q, `.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 168

(2) Second, we argue that, for any red/blue transitive graphs that contains sufficiently many blue
edges, we can find a large subset Ũ of vertices such that a reasonably large fraction of pairs
{S1, S2} ⊆ Ũ are non-red. This is done by counting red-filled `-walks for an appropriate `.

(3) We then focus on F̃ = {fS}Ũ and show, using a uniformity condition of S, that the generalized
two-level consistency graph GF̃ ,ζ,ζ′ is red/blue transitive with certain parameters.

(4) Next, counting rbb triangles reveals a large “almost non-red subgraph” in the graph GF̃ ,ζ,ζ′ .

(5) Finally, we decode a global function from this almost non-red subgraph.

This section is organized as follows. In Subsection 9.3.1, we show transitivity properties of
the two-level and generalized two-level consistency graphs, i.e., Steps 1 and 3. Subsection 9.3.2
contains a structural lemma regarding an existence of a large subgraph with certain non-red density
in red/blue transitive graphs; this lemma is at the heart of Steps 2 and 4. Next, in Subsection 9.3.3,
we prove Step 5. Finally, in Subsection 9.3.4, we put these parts together and prove Theorem 9.17.

9.3.1 Red/Blue-Transitivity of (Generalized) Two-Level Consistency Graph
Red/Blue-Transitivity from Intersection Disperser

The first step in our proof is to show that the two-level consistency graphGF ,ζ is red/blue-transitive,
assuming that S is an intersection disperser. Specifically, our main lemma is the following:

Lemma 9.18. If S is an (r, `, ζ)-intersection disperser, then, for any F = {fS}S∈S , GF ,ζ is
((r`)2(`−1), `)-red/blue-transitive.

We note here that both in Lemma 9.18 and Claim 9.19 below, the transitivity property holds not
only for `-walks as specified in the statements, but also for (`+ 1)-walks. However, since the latter
does not yield any improvement to our main results, we work with only `-walks, which makes the
calculations cleaner.

In other words, we would like to show that, for every S1, S2 ∈ S that are joined by a red edge in
GF ,ζ , there are at most (r`)2(`−1) red-filled `-walks from S1 to S2. The intersection disperser does
not immediately imply such a bound, due to the requirement in the definition that the subcollections
are disjoint. Rather, it only directly implies a bound on number of disjoint `-walks from S1 to S2,
where two ` walks from S1 to S2, (T1 = S1, . . . , T`+1 = S2), (T ′1 = S1, . . . , T

′
`+1 = S2) ∈

WGF,ζ
` (S1, S2), are said to be disjoint if they do not share any vertex except the starting and ending

vertices, i.e., {T2, . . . , T`}∩{T ′2, . . . , T ′`} = ∅. Note that multiple walks sharing starting and ending
vertices are said to be disjoint if they are mutually disjoint. The following claim follows almost
immediately from definition of intersection dispersers:

Claim 9.19. If S is an (r, `, ζ)-intersection disperser, then, for any F = {fS}S∈S , any integer
2 6 p 6 ` and any {S1, S2} ∈ EF ,ζr , there are less than r disjoint p-walks from S1 to S2 in GF ,ζ .

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 169

Proof. Suppose for the sake of contradiction that S is an (r, `, ζ)-intersection disperser but there
exist F = {fS}S∈S , 2 6 p 6 ` and {S1, S2} ∈ EF ,ζr such that there are at least r disjoint p-
walks from S1 to S2. Let these walks be (T1,1 = S1, T1,2, . . . , T1,p, T1,p+1 = S2), . . . , (Tr,1 =
S1, Tr,2, . . . , Tr,p, Tr,p+1 = S2) ∈ WGF,ζ

p (S1, S2).
For each i ∈ [r], consider any x ∈ ⋂p+1

j=1 Ti,j . Apriori this intersection may be empty but since
S is an intersection disperser this usually does not occur. Since {Ti,j, Ti,j+1} ∈ EF ,ζb for every
j ∈ [p], we have

fS1(x) = fTi,1(x) = fTi,2(x) = · · · = fTi,p(x) = fTi,p+1(x) = fS2(x).

Hence, for every x ∈ ⋃r
i=1

(⋂p+1
j=1 Tq,j

)
, fS1(x) = fS2(x). Let T ∗ denote

⋃r
i=1

(⋂p
j=2 Tq,j

)
.

Since Ti,1 = S1 and Ti,p+1 = S2 for all i ∈ [r], we have

r⋃
i=1

p+1⋂
j=1

Tq,j

 = (S1 ∩ S2) ∩ T ∗.

In other words, fS1 and fS2 can only disagree on variables outside of T ∗. However, since S is
an (r, `, ζ)-intersection disperser, we have |T ∗| > (1 − ζ)n. Hence, disagr(S1, S2) 6 ζn, which
contradicts with {S1, S2} ∈ EF ,ζr .

Since all 2-walks from S1 to S2 are disjoint, the above claim immediately gives a bound on
the number of red-filled 2-walks from S1 to S2. To bound the number of red-filled walks of larger
lengths, we will use induction on the length of the walks. Suppose that we have bounded the
number of red-filled i-walks sharing starting and ending vertices for i 6 z− 1. The key idea in the
proof is that we can use this inductive hypothesis to show that, for any S1, S2, S ∈ S, few z-walks
from S1 to S2 contain a given S. Here we say that a z-walk (T1 = S1, . . . , Tz = S2) from S1 to S2
contains S if S ∈ {T2, . . . , Tz}. This implies that for a given z-walk from S1 to S2 there are only
few walks that are not disjoint from it. This allows us to show that, if there are too many z-walks,
then there must also be many disjoint z-walks as well, which would violate Claim 9.19. A formal
proof of Lemma 9.18 based on this intuition is given below.

Proof of Lemma 9.18. For every integer i such that 2 6 i 6 `, let P (i) denote the following
statement: for every S1, S2 ∈ S, |ŴGF,ζ

i (S1, S2)| 6 (ri)2(i−1). For convenience, letBi = (ri)2(i−1)

for every 2 6 i 6 `.
Base Case. Since every different 2-walks from S1 to S2 are disjoint, Claim 9.19 immediately

implies that the number of 2-walks from S1 to S2 is at most r 6 B2.
Inductive Step.
Suppose that, for some integer z such that 3 6 z 6 `, P (3), . . . , P (z − 1) are true. We will

show that P (z) is true. To do so, let us first prove that, for any fixed starting and ending vertices,
any vertex cannot appears in too many red-filled z-walks, as stated in the following claim.

Claim 9.20. For all S1, S2, S ∈ S , the number of red-filled z-walks from S1 to S2 containing S in
GF ,ζ is at most Bz/(zr).

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 170

Proof. First, observe that the number of red-filled z-walks from S1 to S2 containing S is at most
the sum over all positions 2 6 j 6 z of the number of z-walks from S1 to S2 such that the j-th
vertex in the walk is S. More formally, the number of red-filled z-walks from S1 to S2 containing
S is

|{(T1, . . . , Tz+1) ∈ ŴGF,ζ

z (S1, S2) | ∃2 6 j 6 z, Tj = Sj}| 6
z∑
j=2
|{(T1, . . . , Tz+1) ∈ ŴGF,ζ

z (S1, S2) | Tj = S}|.

Now, for each 2 6 j 6 z, to bound the number of red-filled z-walks from S1 to S2 whose j-th
vertex is S, let us consider the following three cases based on the value of j:

1. 3 6 j 6 z − 1. Observe that, for any such walk (T1 = S1, T2, . . . , Tj = S, . . . , Tz, Tz+1 =
S2), the subwalk (T1 = S1, . . . , Tj = S) and (Tj = S, . . . , Tz+1 = S2) must be red-filled
walks as well. Since the numbers of red-filled (j − 1)-walks from S1 to S and red-filled
(z + 1 − j)-walks from S to S2 are bounded by Bj−1 and Bz+1−j respectively (from the
inductive hypothesis), there are at most Bj−1 choices of (T1 = S1, . . . , Tj = S) and Bz+1−j
choices of (Tj = S, . . . , Tz−1, Tz = S2). Hence, there are at most Bj−1Bz+1−j red-filled
z-walks from S1 to S2 whose j-th vertex is S.

2. j = 2. In this case, the subwalk (Tj = S, . . . , Tz+1 = S2) must be a red-filled (z − 1)-walk
from S to S2. Hence, the number of red-filled z-walks from S1 to S2 where Tj = S is
bounded above by Bz−1.

3. j = z. Similar to the previous case, we also have the bound of Bz−1.

For convenience, let B1 = 1. The above argument gives us the following bound for every 2 6 j 6
z:

|{(T1, . . . , Tz+1) ∈ ŴGF,ζ

z (S1, S2) | Tj = S}| 6 Bj−1Bz+1−j.

Summing this over j, we have the following upper bound on the number of red-filled z-walks
from S1 to S2 containing S:

z∑
j=2

Bj−1Bz+1−j =
z∑
j=2

(r(j − 1))2(j−2)(r(z + 1− j))2(z−j) 6
z∑
j=2

(rz)2(z−2) 6 Bz/(zr),

which concludes the proof of the claim. y

Having proved the above claim, it is now easy to show that P (z) is true. Suppose for the sake of
contradiction that there exists S1, S2 ∈ S such that |ŴGF,ζ

z (S1, S2)| > Bz. Consider the following
procedure of selecting disjoint walks from ŴGF,ζ

z (S1, S2). First, initialize U = ŴGF,ζ
z (S1, S2) and

repeat the following process as long as U 6= ∅: select any (T1, . . . , Tz+1) ∈ U and remove every
(T ′1, . . . , T ′z+1) that is not disjoint with (T1, . . . , Tz+1) from U . Observe that, each time a walk
(T1, . . . , Tz+1) is selected, the number of walks removed from U is at most Bz/r; this is because
each removed walk must contain at least one of T2, . . . , Tz, but, from the above claim, each of

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 171

these vertices are contained in at most Bz/(zr) walks. Since we start with more than Bz walks, at
least r walks are picked. These walks are disjoint z-walks starting from S1 and S2, which, due to
Claim 9.19, is a contradiction. Thus, P (z) is true as desired.

Hence, P (`) is true, which, by definition, implies that GF is ((r`)2(`−1), `)-red/blue-transitive.

Red/Blue-Transitivity from Uniformity

In Step 3 of our proof, we need to show red/blue-transitivity of the generalized two-level consis-
tency graph GF ,ζ,ζ′ . This is encapsulated in the following lemma.

Lemma 9.21. If every subcollection S̃ ⊆ S of size r is (γ, µ)-uniform, then, for any ζ > 0,
ζ ′ > µ+2ζ/γ and F = {fS}S∈S , the generalized two-level consistency graphGF ,ζ,ζ

′
is r-red/blue

transitive.

The proof of the lemma is quite simple. The key observation is that, if S1 and S2 are joined
by a red edge and T is a common blue-neighbor in the graph GF ,ζ,ζ′ , then it means that T only
hits a small number (i.e. 2ζn) of the variables on which fS1 and fS2 disagree. In other words,
such variables appear less frequently in common blue-neighbors of S1 and S2. If the common-blue
neighbor set is of size r, this contradicts the fact that the set is (γ, µ)-uniform. This intuition is
formalized below.

Proof of Lemma 9.21. Suppose for the sake of contradiction thatGF ,ζ,ζ′ is not r-red/blue transitive.
That is, there exist S1, S2 ∈ S that are joined by a red edge such that there are r red-filled 2-walks
(i.e. rbb triangle) from S1 to S2. Suppose that these walks are (S1, T1, S2), (S1, T2, S2), · · · , (S1, Tr, S2).

For every i ∈ [r], since (S1, Ti, S2) is a 2-walk, {S1, Ti} and {S2, Ti} are blue edges. This
implies that

disagr(fS1 , fTi), disagr(fS2 , fTi) 6 ζn. (9.1)

On the other hand, we can lower bound Ei∈[r][disagr(fS1 , fTi) + disagr(fS2 , fTi)] as follows.
First, let let Xdisagr denote the set of all x ∈ S1 ∩ S2 such that fS1(x) 6= fS2(x); since {S1, S2} is a
red edge, we have |Xdisagr| > ζ ′n. We can rearrange Ei∈[r][disagr(fS1 , fTi) + disagr(fS2 , fTi)] as

Ei∈[r][disagr(fS1 , fTi) + disagr(fS2 , fTi)]

=
∑
x∈[n]

(
Pr
i∈[r]

[x ∈ (S1 ∩ Ti) ∧ fS1(x) 6= fTi(x)] + Pr
i∈[r]

[x ∈ (S2 ∩ Ti) ∧ fS2(x) 6= fTi(x)]
)

>
∑

x∈Xdisagr

(
Pr
i∈[r]

[x ∈ Ti ∧ fS1(x) 6= fTi(x)] + Pr
i∈[r]

[x ∈ Ti ∧ fS2(x) 6= fTi(x)]
)

>
∑

x∈Xdisagr

(
Pr
i∈[r]

[x ∈ Ti ∧ (fS1(x) 6= fTi(x) ∨ fS2(x) 6= fTi(x))]
)

=
∑

x∈Xdisagr

Pr
i∈[r]

[x ∈ Ti] (9.2)

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 172

We remark here that the second inequality comes from union bound, whereas the last equality
follows from the fact that (fS1(x) 6= fTi(x)) ∨ (fS2(x) 6= fTi(x)) is always true when fS1(x) 6=
fS2(x).

Recall that {T1, . . . , Tr} ⊆ S is a subcollection of size r and is thus (γ, µ)-uniform. Let X>γ be
the set of all x ∈ [n] that appears in at least γ fraction of Ti’s. The (γ, µ)-uniformity of {T1, . . . , Tr}
implies that |X>γ| > (1 − µ)n. From this and from |Xdisagr| > ζ ′n, we can lower bound the right
hand side of (9.2) further as follows:∑
x∈Xdisagr

Pr
Ti∈T

[x ∈ Ti] >
∑

x∈Xdisagr∩X>γ

Pr
Ti∈T

[x ∈ Ti] > γ|Xdisagr ∩ X>γ| > γ(ζ ′ − µ)n > 2ζn (9.3)

where the last inequality comes from our assumption that ζ ′ > µ+ 2ζ/γ.
Finally, combining (9.1), (9.2) and (9.3) yields the desired contradiction.

9.3.2 Finding Almost Non-Red Subgraph in Red/Blue-Transitive Graph
Recall that in two steps of our proofs, we need to utilize the red/blue transitivity of the (generalized)
two-level consistency graph to find a large subgraph with certain number of non-red pairs:

• Specifically, in Step 2, we would like to show that, for appropriate values of q and `, any
(q, `)-red/blue transitive graph with sufficiently many blue edges must contain a sufficiently
large subgraph whose significant (i.e. 1/`2) fraction of pairs of vertices are non-red.

• Additionally, in Step 4, we need to show that any o(d2/k)-red/blue transitive graph with
sufficiently many blue edges must contain a sufficiently large subgraph such that almost all
pairs of its vertices are non-red.

It turns out that a single lemma stated below suffices for both steps. In particular, the lemma below
returns a subgraph such that roughly 1/

(
`0
2

)
fraction of pairs of its vertices are non-red. Plugging

in `0 = ` recovers our former objective whereas setting `0 = 2 satisfies the latter.

Lemma 9.22. For every k0, q0, `0, d0 ∈ N such that `0 > 2 and every k0-vertex (q0, `0)-red/blue-
transitive graph G = (V,Er ∪Eb) such that |Eb| > 2k0d0, there exist subsets of vertices U1, U2 ⊆
V each of size at least d0 such that |{(u, v) ∈ U1 × U2 | {u, v} /∈ Er}| > |U1||U2|(1− q0k0

d
`0
0

)/
(
`0
2

)
.

Moreover, when `0 = 2, the previous statement remains true even with an additional requirement
that U1 = U2.

The proof of Lemma 9.22 below is exactly as sketched earlier in Subsection 9.1.

Proof of Lemma 9.22. We start by preprocessing the graph so that every vertex has blue-degree at
least d0. In particular, as long as there exists a vertex v whose blue-degree is at most d0, we remove
v from G. Let G′ = (V ′, E ′r∪E ′b) be the graph at the end of this process. Note that we remove less
than k0d0 blue edges in total. Since at the beginning |Eb| > 2k0d0, we have |E ′b| > k0d0. Observe
also that G′ remains (q0, `0)-red/blue-transitive.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 173

Since V ′ is (q0, `0)-red/blue-transitive, we can bound the number of red-filled `0-walk as fol-
lows.

|ŴG′

`0 | =
∑

u,v∈V ′
{u,v}∈E′r

|ŴG′

`0 (u, v)| 6
∑

u,v∈V ′
{u,v}∈E′r

q0 6 q0k
2
0.

Moreover, notice that |WG′
`0 | > (k0d0) · d`0−1

0 = k0d
`0
0 ; this is simply because there are at least

k0d0 choices for (v1, v2) (i.e. all blue edges) and, for any (v1, . . . , vi−1), there are at least d0 choices
for vi.

Hence, we have |ŴG′
`0 |/|W

G′
`0 | 6 q0k0/d

`0
0 . This implies that 1−q0k0/d

`0
0 6 Pr(v1,...,v`0+1)∈WG′

`0
[(v1, . . . , v`0+1) /∈

ŴG′
`0]. This probability can be further rearranged as follows.

Pr
(v1,...,v`0+1)∈WG′

`0

[(v1, . . . , v`0+1) /∈ ŴG′

`0] = Pr
(v1,...,v`0+1)∈WG′

`0

[∃i, j ∈ [`0 + 1] such that j > i+ 1, {vi, vj} /∈ E ′r]

(Union Bound) 6
∑

i,j∈[`0+1]
j>i+1

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E ′r].

Now, note that the number of pairs of i, j ∈ [`0+1] such that j > i+1 is
(
`0+1

2

)
−`0 =

(
`0
2

)
. This

implies that there exists one such i, j such that Pr(v1,...,v`0+1)∈WG′
`0

[{vi, vj} /∈ E ′r] > (1− q0k0

d
`0
0

)/
(
`0
2

)
.

The probability Pr(v1,...,v`0+1)∈WG′
`0

[{vi, vj} /∈ E ′r] can now be bounded as follows.

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E ′r]

=
∑
u,v

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E ′r | vi+1 = u ∧ vj−1 = v] Pr
(v1,...,v`0+1)∈WG′

`0

[vi+1 = u ∧ vj−1 = v]

6

max
u,v

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E ′r | vi+1 = u ∧ vj−1 = v]
∑

u,v

Pr
(v1,...,v`0+1)∈WG′

`0

[vi+1 = u ∧ vj−1 = v]

= max
u,v

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E ′r | vi+1 = u ∧ vj−1 = v]

where the summation and maximization is taken over all u, v ∈ V ′ such that Pr(v1,...,v`0+1)∈WG′
`0

[vi+1 =
u ∧ vj−1 = v] is non-zero. Hence, we can conclude that there exists u∗, v∗ ∈ V ′ such that

Pr
(v1,...,v`0+1)∈WG′

`0

[{vi, vj} /∈ E ′r | vi+1 = u∗ ∧ vj−1 = v∗] > (1− q0k0

d`00
)/
(
`0

2

)
.

The expression on the left is exactly |{(u, v) ∈ Nb(u∗) × Nb(v∗) | {u, v} /∈ E ′r}|/(|Nb(u∗)| ·
|Nb(v∗)|). From this and from every vertex in G′ has blue-degree at least d0, U1 = Nb(u∗), U2 =
Nb(v∗) are the desired sets. Finally, observe that, when ` = 2, we must have i = 1 and j = 3,
resulting in vi+1 = vj−1; this implies that u∗ = v∗ and we have U1 = U2.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 174

9.3.3 Majority Decoding of an Almost Non-Red Subgraph
In the last step of our proof, we will decode a global function g from a sufficiently large almost non-
red subgraph in the two-level consistency graph GF ,ζ,ζ′ . Recall that an almost non-red subgraph in
GF ,ζ,ζ

′ simply corresponds to a subcollection S ′ such that, for almost all pairs (S1, S2) ∈ S ′ × S ′,
fS1 is ζ ′-consistent with fS2 . The main result of this subsection is that, given such S ′, we can find
a global function g that approximately agrees with most of the local functions in the subcollection.
This is stated more precisely below.

Lemma 9.23. Let F = {fS}S∈S′ be a collection of functions such that agrζ′(F) > 1 − κ. Then,
the function g : [n]→ {0, 1} defined by g(x) = MajorityS∈S′

x∈S
(fS(x)) satisfies

ES∈S′ [disagr(g, fS)] 6 n
√
κ+ ζ ′.

Proof. Recall that agrζ′(F) > 1−κ is equivalent to PrS1,S2∈S′

[
fS1(x)

ζ′

≈ fS2(x)
]
> 1−κ. Hence,

ES1,S2∈S′ [disagr(fS1 , fS2)] 6 Pr
S1,S2∈S′

[fS1

ζ′

6≈ fS2] · n+ Pr
S1,S2∈S′

[fS1

ζ′

≈ fS2] · (ζ ′n) 6 (κ+ ζ ′)n.

(9.4)

We can then lower bound the expression on the left hand side as follows.

ES1,S2∈S′ [disagr(fS1 , fS2)] =
∑
x∈[n]

Pr
S1,S2∈S′

[x ∈ S1 ∧ x ∈ S2 ∧ fS1(x) 6= fS2(x)]

>
∑
x∈[n]

Pr
S1,S2∈S′

[x ∈ S1 ∧ x ∈ S2 ∧ fS1(x) 6= g(x) ∧ fS2(x) = g(x)]

=
∑
x∈[n]

Pr
S1∈S′

[x ∈ S1 ∧ fS1(x) 6= g(x)] Pr
S2∈S′

[x ∈ S2 ∧ fS2(x) = g(x)]

(Since g(x) = Majority
S∈S′
x∈S

(fS(x))) >
∑
x∈[n]

Pr
S1∈S′

[x ∈ S1 ∧ fS1(x) 6= g(x)] Pr
S2∈S′

[x ∈ S2 ∧ fS2(x) 6= g(x)]

=
∑
x∈[n]

(
Pr
S∈S′

[x ∈ S ∧ fS(x) 6= g(x)]
)2

(Power Mean Inequality) > 1
n

∑
x∈[n]

Pr
S∈S′

[x ∈ S ∧ fS(x) 6= g(x)]
2

= 1
n

(ES∈S′ [disagr(g, fS)])2 . (9.5)

Combining (9.4) and (9.5) gives the desired bound.

9.3.4 Putting Things Together: Proof of Theorem 9.17
Finally, we put all five steps together as outlined at the beginning of this section. This is formalized
below. Note that Theorem 9.17 follows from the theorem below simply by Markov inequality.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 175

Theorem 9.24. For any 0 < η, ζ, γ, µ < 1 and r, `, k, h, n, d ∈ N such that ` > 2, let S be any
collection of k subsets of [n] such that S is (r, `, ζ)-intersection disperser and every subcollection
S̃ ⊆ S of size h is (γ, µ)-uniform, and let F = {fS}S∈S be any collection of functions. If
δ := agr(F) > 10+64(r`)2k1/`

k
, then there exists a subcollection S ′ ⊆ S of size at least δk

128`2
and a function g : [n]→ {0, 1} such that

ES∈S′ [disagr(g, fS)] 6 n

√
65536h`6

δk
+ µ+ 2ζ/γ.

Proof. Observe that agr(F) directly corresponds to the number of blue edges |EF ,ζb | in the two-
level consistency graph GF ,ζ . In particular, agr(F) = δ means that the number of blue edges
is (δk2 − k)/2. Since S is a (r, `, ζ)-intersection disperser, Lemma 9.18 implies that GF ,ζ is
((r`)2(`−1), `)-red/blue-transitive. Let d = b |E

F,ζ |
2k c = b δk−1

4 c; since δ > 10+64(r`)2k1/`

k
, we have

d > (r`)2k1/`.
Applying Lemma 9.22 with G = GF ,ζ , k0 = k, `0 = `, q0 = (r`)2(`−1) and d0 = d, we can

conclude that there exist subsets U1, U2 ⊆ V F ,ζ each of size at least d such that

|{(u, v) ∈ U1 × U2 | {u, v} /∈ EF ,ζr }|
|U1||U2|

>
1− (r`)2(`−1)k/d`(

`
2

) >
1
`2

where the last inequality follows from our aforementioned lower bound on d and from ` > 2.
Next, observe that, if we let U ′1 and U ′2 be random subsets of U1, U2 of size d, then we have

EU ′1,U ′2

[
|{(u′, v′) ∈ U ′1 × U ′2 | {u′, v′} /∈ EF ,ζr }

d2

]
= |{(u, v) ∈ U1 × U2 | {u, v} /∈ EF ,ζr }|

|U1||U2|
.

As a result, there exists Ũ1, Ũ2 each of size exactly d such that

|{(ũ, ṽ) ∈ Ũ1 × Ũ2 | {ũ, ṽ} /∈ EF ,ζr }|
d2 >

1
`2 . (9.6)

Now, let Ũ = Ũ1 ∪ Ũ2. (9.6) implies that the number of {ũ, ṽ} ⊆ Ũ such that {ũ, ṽ} /∈ EF ,ζr

is at least d2/(2`2) − d where the factor of 2 comes from the fact that each pair {ũ, ṽ} is double
counted in the left hand side of (9.6) and the subtraction of d comes from the fact that the left hand
side of (9.6) also count the case where ũ = ṽ.

Now, let F̃ = {fS}S∈Ũ , ζ ′ = µ + 2ζ/γ and consider the two-level consistency graph GF̃ ,ζ,ζ′ .

Observe that {ũ, ṽ} is a blue edge in this new graph GF̃ ,ζ,ζ′ if and only if it is not a red edge in the
original graph GF ,ζ . Hence, the bound derived in the previous paragraph implies that

|EF̃ ,ζ,ζ
′

b | > d2

2`2 − d.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 176

Let d′ = |EF̃ ,ζ,ζ
′

b |/(2|Ũ |) > |EF̃ ,ζ,ζ
′

b |/(4d) = d/(8`2) − 1/4. Recall that d = b(δk − 1)/4c;
from δ > (10 + 64(r`)2)/k, we have d > 8`2 and d > δk/8. Hence, we have d′ > d/(16`2) >
δk/(128`2).

Furthermore, by Lemma 9.21 and from our assumption that every subcollection of S of size
h is (γ, µ)-uniform, the graph GF ,ζ,ζ′ is h-red/blue transitive. Applying Lemma 9.22 with G =
GF ,ζ,ζ

′
, k0 = |Ũ | 6 2d, `0 = 2, q0 = h and d0 = d′, there must be a set U ′ ⊆ Ũ of size at least d′

such that
|{(u′, v′) ∈ U ′ × U ′ | {u′, v′} /∈ EF ,ζ,ζ′r }|

|U ′|2
> 1− 2hd

(d′)2 > 1− 512h`4

d
> 1− 65536h`6

δk
(9.7)

where the last two inequalities follow from d′ > d/(16`2) and d′ > δk/(128`2) respectively.
Let F ′ = {fS}S∈U ′ . Observe that the expression on the left hand side of (9.7) is simply

agrζ′(F ′). Hence, by Lemma 9.23, there exists a function g : [n]→ {0, 1} such that

ES∈U ′ [disagr(g, fS)] 6 n

√
65536h`6

δk
+ ζ ′ = n

√
65536h`6

δk
+ µ+ 2ζ/γ.

In other words, U ′ is the desired subcollection, which completes our proof.

9.4 Soundness Analysis of the Reduction
We will next use our agreement theorem to analyze the soundness of our reduction. The soundness
of our reduction can be stated more precisely as follows:

Theorem 9.25. For any ∆ ∈ N, let Φ be any 3-CNF formula with variable set X and clause set
C such that each variable appears in at most ∆ clauses. Moreover, for any 0 < η, ζ, γ, µ < 1
and r, `, k, h, d ∈ N such that ` > 2, let T be any collection of k subsets of C such that T
is (r, `, ζ)-intersection disperser and every subcollection T̃ ⊆ T of size h is (γ, µ)-uniform. If
val(Φ) < 1− µ− (3∆/γ)

√
4∆µ+ 6∆ζ/γ, then

val(ΓΦ,T) < 10 + 64(r`)2k1/` + 65536h`2/µ

k
.

Again, we will prove the contrapositive that if val(ΓΦ,T) is large, then val(Φ) is also large.
Recall that val(ΓΦ,T) being large implies that there exists a labeling σ = {σT}T∈T with high
agreement probability. We would like to apply our agreement testing theorem. Note however
that Theorem 9.24 only applies when the subsets of variables are “well-behaved” (i.e. satisfies
uniformity and is an intersection disperser). However, in our construction, the subset of variables
are not random, rather they are variable set of random subsets of clauses. Hence, we will first need
to translate the “well-behavedness” from subsets of clauses to their corresponding variable sets;
this is shown in Section 9.4.1. Once this is in place, we can apply Theorem 9.24, which gives us a
global assignment that approximately agrees with many σT ’s. We show in Section 9.4.2 that such
assignment satisfies most of the constraint, which implies that val(Φ) must be large as desired. The
full proof of Theorem 9.25 can then be found in Section 9.4.3.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 177

9.4.1 Well-Behave Subsets of Clauses vs Well-Behave Subsets of Variables
For convenient, let us define an additional notation:

Definition 9.26. Let Φ be any 3-CNF formula and T be any subset of clauses of Φ. We use SΦ,T
to denote the collection {var(T)}T∈T of subsets of variables.

Note that the subsets in SΦ,T are indeed the variable sets of our labeling σ = {σT}T∈T . More-
over, it is rather straightforward to see that both uniformity and intersection disperser conditions
translate from T to SΦ,T with little loss in parameters, provided that each variable appears in
bounded number of clauses. These observations are formalized and proved below.

Lemma 9.27. Suppose that every variable in Φ appears in at least one and at most ∆ clauses. If
T is (γ, µ)-uniform, then SΦ,T is (γ, 3∆µ)-uniform.

Proof. First, observe that, since each variable appears in at most ∆ clauses, we have n > m/∆.
Now, let C>γ = {C ∈ C | PrT∈T [C ∈ T] > γ} and X>γ = {x ∈ X | PrS∈SΦ,T [x ∈ S] > γ}.
Recall that (γ, µ)-uniformity of T implies that |C>γ| > (1− µ)m. Observe that any x ∈ var(C>γ)
must also be contained in X>γ . Since every variable appears in at least one clauses, we have that
every variable x /∈ X>γ must be in var(C \ C>γ). As a result, |X \ X>γ| 6 3µm. From this and
from n > m/∆, we arrive at the desired conclusion.

Lemma 9.28. Suppose that every variable in Φ appears in at least one and at most ∆ clauses. If
T is an (r, `, η)-intersection disperser, then SΦ,T is (r, `, 3∆η)-intersection disperser.

Proof. Consider any r disjoint subcollections S1 = {S1,1, . . . , S1,p1}, · · · ,Sr = {Sr,1, . . . , Sr,pr} ⊆
SΦ,T each of size at most `. From our definition of SΦ,T , there is an r disjoint subcollections
T 1 = {T1,1, . . . , T1,p1}, . . . , T r = {Tr,1, . . . , Tr,pr} ⊆ T such that Si,j = var(Ti,j) for all i ∈ [r]
and j ∈ [pi]. Observe that

r⋃
i=1

 ⋂
S∈Si

S

 ⊇ var
 r⋃
i=1

 ⋂
T∈T i

T

 .
Moreover, since T is an (r, `, η)-intersection disperser, we have |⋃ri=1 (⋂T∈T i T) | > (1 − η)m.
As a result, since each variable appears in at least one clause, we indeed have |⋃ri=1 (⋂S∈Si S) | >
n− 3ηm > (1− 3∆η)n as desired.

9.4.2 Global Function with Many Agreements is a Good Assignment
In this subsection, we show that any global assignment that are approximately consistent with a
collection of labels {σT}T∈T ∗ must satisfy most of the constraints, assuming that T ∗ is sufficiently
uniform, which is stated more precisely below.

Lemma 9.29. Let T ∗ be any (γ, µ)-uniform collection of subsets of clauses and σ be any labeling
of T ∗. If there exists ψ : X → {0, 1} such that ET∈T ∗ [disagr(ψ, σT)] 6 νn, then val(ψ) >
1− µ− 3 ν∆/γ.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 178

The key to proving that ψ violates few clauses is that, if a clause C is violated, then, for each
T ∈ T ∗ that contains T , σT and ψ must disagree on at least one of var(C) because σT satisfies
C but ψ violates it. Hence, if C appears often in T , then it contributes to many disagreements
between σT and ψ; the uniformity condition helps us ensure that most C indeed appear often in
T . Comparing this lower bound against the assumed upper bound on the expected disagreements
gives us the desired result. This intuition is formalized below.

Proof. Let C>γ denote the set of all clauses that appear in at least γ fraction of T ∈ T ∗, i.e.,
C>γ = {C ∈ C | PrT∈T ∗ [C ∈ T] > γ}. Since T ∗ is (γ, µ)-uniform, we have |C>γ| > (1− µ)m.

Since each variable x appears in at most ∆ clauses, we can obtain the following bound:

ET∈T ∗ [disagr(ψ, σT)] =
∑
x∈X

Pr
T∈T ∗

[x ∈ var(T) ∧ σT (x) 6= ψ(x)]

>
1
∆

∑
C∈C>γ

∑
x∈var(C)

Pr
T∈T ∗

[x ∈ var(T) ∧ σT (x) 6= ψ(x)]

>
1
∆

∑
C∈C>γ

∑
x∈var(C)

Pr
T∈T ∗

[C ∈ T ∧ σT (x) 6= ψ(x)]

(Union Bound) > 1
∆

∑
C∈C>γ

Pr
T∈T ∗

C ∈ T ∧
 ∨
x∈var(C)

σT (x) 6= ψ(x)

>
γ

∆
∑

C∈C>γ
Pr
T∈T ∗

 ∨
x∈var(C)

σT (x) 6= ψ(x)

∣∣∣∣∣∣ C ∈ T
 (9.8)

Note here that we use the fact that each variable appears in at most ∆ clauses in the first inequality
and that the last inequality follows from the fact that each C ∈ C>γ appears in at least γ fraction of
T ∈ T ∗. The rest of the inequalities are trivial.

Let CUNSAT denote the set of clauses violated by ψ. Observe that, for any C ∈ CUNSAT and any
T ∈ T ∗ such that C ∈ T , σT must disagree with ψ on at least one of x ∈ var(C); this is simply
because C is satisfied by σT but violated by ψ. In other words, for every C ∈ CUNSAT, we have

Pr
T∈T ∗

 ∨
x∈var(C)

σT (x) 6= ψ(x)

∣∣∣∣∣∣ C ∈ T
 = 1. (9.9)

(9.8), (9.9) and the assumption that ET∈T ∗ [disagr(ψ, σT)] 6 νn imply that

ν∆n/γ > |C>γ ∩ CUNSAT|.

Since C>γ > m(1 − µ) and n 6 3m (from every variable appears in at least one clause), we can
conclude that |CUNSAT| 6 µm+ 3ν∆m/γ. As a result, val(ψ) > 1− µ− 3ν∆/γ as desired.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 179

9.4.3 Putting Things Together: Proof of Theorem 9.25
Proof of Theorem 9.25. We may assume w.l.o.g. that each variable appears in at least one clause.

We will prove the theorem by contrapositive. Suppose that val(ΓΦ,T) > 10+64(r`)2k1/`+65536h`2/µ
k

.
This means that there exists a labeling σ = {σT}T∈T such that val(σ) > 10+64(r`)2k1/`+65536h`2/µ

k
;

this also means that, if we view σ as a collection of functions F = {fS}S∈SΦ,T where fvar(T) = σT ,

then agr(F) > 10+64(r`)2k1/`+65536h`2/µ
k

. Let δ = agr(F).
Furthermore, Lemmas 9.28 and 9.27 imply that SΦ,T is an (r, `, 3∆ζ)-intersection disperser

and every subcollection of SΦ,T of size h is (γ, 3∆µ)-uniform respectively. This enables us to
apply Theorem 9.24 on F , which yields a subcollection S ′ ⊆ SΦ,T of size at least δk

128`2 > h and
g : X→ {0, 1} such that

ES∈S′ [disagr(g, fS)] 6 n

√
65536h`6

δk
+ 3∆µ+ 6∆ζ/γ 6 n

√
4∆µ+ 6∆ζ/γ

where the second inequality follows from δk > 65536h`2/µ.
Let S∗ be the subcollection of S ′ of size h that minimizes ES∈S∗ [disagr(g, fS)]. Observe

that ES∈S∗ [disagr(g, fS)] 6 ES∈S′ [disagr(g, fS)] 6 n
√

4∆µ+ 6∆ζ/γ. This is equivalent to
saying that there exists a subcollection T ∗ ⊆ T of size h such that ET∈T ∗ [disagr(g, σT)] 6

n
√

4∆µ+ 6∆ζ/γ.
Since every subcollection of T of size h is (γ, µ)-uniform, we can apply Lemma 9.29 to infer

that val(Φ) > 1− µ− (3∆/γ)
√

4∆µ+ 6∆ζ/γ as desired.

9.5 Proof of Inapproximability Results of 2-CSPs
The inapproximability results for 2-CSPs can be shown simply by plugging in appropriate param-
eters to Theorem 9.25. More specifically, for ETH-hardness, since there is a polylogm loss in the
PCP Theorem (Theorem 2.2), we need to select our α = 1/polylogm so that the size (and running
time) of the reduction is 2o(m). Now, observe that the parameter r in Theorem 9.25 for the inter-
section disperser property grows with (1/α)` (see Lemma 9.16). Since the soundness guarantee
in Theorem 9.25 is of the form kO(1/`)(r`)O(1)/k = kO(1/`)(1/α)O(`)/k, it is minimized when `
is roughly

√
log k, which yields the soundness of 2(log k)1/2+o(1)

/k. Other parameters are chosen
accordingly.

Proof of Theorem 9.1. Let c, ε,∆ be constants from Theorem 2.2.
For any 3-CNF formula Φ̃ with m clauses, let us first apply the nearly-linear size PCP from

Theorem 2.2 to produce a 3-CNF formula Φ with m′ = O(m logcm) clauses. Let us also define
the following parameters:

• q = blogmcc+1 and α = 1
q

= 1
blogmcc+1 ,

• γ = α
2 = 1

2blogmcc+1 ,

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 180

• µ = ε2γ2

288∆3 = Θε,∆
(

1
(logm)2c+2

)
,

• ζ = ε2γ3

432∆3 = Θε,∆
(

1
(logm)3c+3

)
,

• ` = (logm)1/4,

• r = d ln(2/ζ)
α`
e = 2Θε,∆,c((logm)1/4 log logm),

• h = d8 ln(2/µ)/αe = Θε,∆,c((logm)c+1),

• k = 2`2 = 2
√

logm.

We then use Lemma 9.16 with the above parameters q, α, µ, ζ, k, ` to construct a collection S of
subsets of clauses of Φ such that the following conditions hold.

• Every subset in S has size at most 2αm′ = o(m).

• S is a (r, `, ζ)-disperser.

• Any subcollection S̃ ⊆ S of size h is (α/2, µ)-uniform.

Note that, for our choices of parameter, qk+1 is 22O(
√

logm)
; this means that, for sufficiently large m,

we indeed have m′ > m > qk+1 and the running time needed to produce S is O(m · qk) = O(m2).
Note that we assume without loss of generality here that m′ > m; if this is not the case, we can
simply copy the formula Φ dm/m′e times using new variables each time, which does not change
the value of the formula.

We now consider the 2-CSP instance ΓΦ,S . Observe that the running time used to create ΓΦ,S

(and hence also the size of ΓΦ,S) is no more than poly(k)·2o(αm′) = 2o(m). Moreover, if val(Φ̃) = 1,
then val(Φ) = 1 and it is easy to see that val(ΓΦ,S) = 1 as well.

On the other hand, if val(Φ̃) < 1, then val(Φ) < 1 − ε. Due to our choice of parameters, we
can apply Theorem 9.25, which implies that

val(ΓΦ,S) < O((r`)2k1/` + h`2/µ)
k

= 2Oε,∆,c((logm)1/4 log logm)/k = 2Oε,∆,c(
√

log k log log k)/k.

For sufficiently large m (depending only on c, ε,∆, ρ), this term is at most 2(log k)1/2+ρ
/k. Hence, if

there exists a polynomial time that can distinguish the two cases in the theorem statement, we can
run this algorithm on ΓΦ,S to decide whether Φ̃ is satisfiable in 2o(m) time, contradicting ETH.

For Gap-ETH-hardness, we do not incur a loss of polylogm from the PCP Theorem anymore.
Thus, it suffices to chose α to be any function that converges to zero as k goes to ∞ (e.g. α =
1/ log log k), and k can now be independent of m. The rest of the analysis remains unchanged.

Proof of Theorem 9.2. Let δ, ε,∆ be the constants from Theorem 9.2. For any positive integer k,
define the parameters as follows:

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 181

• q = blog log kc and α = 1
q

= 1
blog log kc ,

• γ = α
2 = 1

2blog log kc ,

• µ = ε2γ2

288∆3 = Θε,∆
(

1
(log log k)2

)
,

• ζ = ε2γ3

432∆3 = Θε,∆
(

1
(log log k)3

)
,

• ` =
√

log k,

• r = d ln(2/ζ)
α`
e = 2Θε,∆,c(

√
log k log log log k),

• h = d8 ln(2/µ)/αe = Θε,∆,c(log log k).

Consider any 3-CNF formula Φ with m clauses such that each variable appears in at most ∆
clauses. We then use Lemma 9.16 with the above parameters q, α, µ, η, k, ` to construct a collection
S of subsets of clauses of Φ such that the following conditions hold.

• Every subset in S has size at most 2αm.

• S is a (r, `, η)-disperser.

• Any subcollection S̃ ⊆ S of size h is (α/2, µ)-uniform.

Note that, for our choices of parameter, the parameter qk+1 is a function of k; this means that, for
sufficiently large m (which depends on k), we indeed have m > qk+1 and the running time needed
to produce S is Ok(m).

We now consider the 2-CSP instance ΓΦ,S . Observe that the running time used to create ΓΦ,S
(and hence also the size of ΓΦ,S) is no more than poly(k) · 2O(αm) = 2O(m/ log log k). Moreover, if
val(Φ) = 1, it is easy to see that val(ΓΦ,S) = 1 as well.

Suppose that val(Φ) < 1 − ε. Due to our choice of parameters, we can apply Theorem 9.25,
which implies that

val(ΓΦ,S) < O(k1/`(r`)2) + h`2/µ

k
= 2Oε,∆(log log k/

√
log k)/k.

For sufficiently large k (depending on ε,∆, ρ), this term is at most 2(log k)1/2+ρ
/k.

If there exists a g(k) · (nk)D-time algorithm that can distinguish the two cases in the theorem
statement for some constant D, then pick sufficiently large k such that the time needed to produce
ΓΦ,S is O(2δm) and its size is at most 2δm/D, and that val(ΓΦ,S) < 21/(log k)1/2+ρ

/k whenever
val(Φ) < 1 − ε. When we run this algorithm on ΓΦ,S for such k, the algorithm can distinguish
between val(Φ) = 1 and val(Φ) < 1− ε in O(2δm) time, which contradicts Gap-ETH.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 182

9.6 Inapproximability of Directed Steiner Network
We now move on to prove hardness of approximation of DSN by simply plugging in the our main
theorems to known reductions from 2-CSPs to DSN. The properties of the reduction are stated in
the lemma below. Note that, while the reduction is attributed to Dodis and Khanna [DK99], the
lemma below is extracted from [CFM18] since, in [DK99], the full description and its properties
are left out due to space constraint.

Lemma 9.30 ([CFM18, Lemma 27]). There exists a polynomial time reduction that, given a 2-
CSP instance5 Γ with the constraint graph being a complete graph on k variables, produces an
edge-weighted directed graph G = (V,E) and a set of demand pairs D = {(s1, t1), . . . , (sk′ , tk′)}
such that

• (Completeness) If val(Γ) = 1, then there exists a subgraph H of cost 1 that satisfies all
demands.

• (Soundness) If val(Γ) < γ, every subgraph satisfying all demand pairs has cost more than√
2/γ.

• (Parameter Dependency) k′ = k2 − k.

Note that the exponent 1/4 in the hardness of approximating DSN comes from two places: we
lose a square factor in the parameter (i.e. k′ = Θ(k2)) and another square factor in the gap.

Proof of Corollary 9.3. Suppose for the sake of contradiction that, for some constant ρ′ > 0, there
exists a polynomial time 2(log k′)1/2+ρ′

/(k′)1/4-approximation algorithm where k′ is the number of
demand pairs; let us call this algorithm A. Moreover, let ρ be any constant smaller than ρ′.

Given a 2-CSP instance Γ with complete constraint graph on k variables, we invoke Lemma 9.30
to produce a DSN instance (G,D) where |D| = k′ = k2 − k. From the completeness of the con-
struction, we have that, if val(Γ) = 1, then the optimum of (G,D) is also 1. On the other hand, if
val(Γ) < 2(log k)1/2+ρ

/k, then the optimum of (G,D) must be more than
√

2k/2(log k)1/2+ρ , which is

at least (k′)1/4/2(log k′)1/2+ρ′ when k is sufficiently large. Hence, by running algorithm A, we can
distinguish these two cases of Γ in polynomial time. From Theorem 9.1, this contradicts ETH.

Proof of Corollary 9.4. Suppose for the sake of contradiction that, for some constant ρ′ > 0 and for
some function g, there exists a g(k′) · (nk′)O(1)-time 2(log k′)1/2+ρ′

/(k′)1/4-approximation algorithm
where k′ is the number of demand pairs; let us call this algorithm A. Moreover, let ρ be any
constant smaller than ρ′.

Given a 2-CSP instance Γ with complete constraint graph on k variables, we invoke Lemma 9.30
to produce a DSN instance (G,D) where |D| = k′ = k2 − k. From the completeness of
the construction, if val(Γ) = 1, then the optimum of (G,D) is also 1. On the other hand, if

5Lemma 27 of [CFM18] states this reduction in terms of Maximum Colored Subgraph Isomorphism. However, it
is easy to see that the reduction also works with 2-CSPs as well.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 183

val(Γ) < 2(log k)1/2+ρ
/k, then the optimum of (G,D) must be more than

√
2k/2(log k)1/2+ρ , which is

at least (k′)1/4/2(log k′)1/2+ρ′ when k is sufficiently large. Hence, by running algorithm A, we can
distinguish these two cases of Γ in time t(k) · |Γ|O(1) where t(k) = g(k2 − k). From Theorem 9.2,
this contradicts Gap-ETH.

9.7 Inapproximability of Unique Set Cover
We now proceed to our final result of this section: the hardness of UNIQUE SET COVER (Theo-
rem 9.5). The proof proceeds in three steps; first, we rephrase our 2-CSP result into MAXCOV

hardness in Section 9.7.1. Second, we provide a simple way to reduce the left alphabet in Sec-
tion 9.7.2 so that it is small enough that we can apply Feige’s reduction from Section 2.11, which
we do so in Section 9.7.3. The key point here is that the label cover instance we construct from our
2-CSP has a projection property but from right to left, which is the reverse of the usual projection
direction in other sections; this right-to-left projection property indeed provides the uniqueness
guarantee in the completeness.

9.7.1 Rephrasing 2-CSP as MAXCOV

The first step in the reduction is to reframe our hardness in terms of MAXCOV with projection
property. To do so, recall that our 2-CSP instance ΓΦ,T (as in Definition 9.6) is an instance of the
form: ΣT is a subset of {0, 1}var(T) and the constraint between two vertices T1, T2 just checks that
ψT1 |T1∩T2 = ψT2|T1∩T2 where ψT1 , ψT2 are the labels assigned to T1, T2 respectively. This naturally
corresponds to a label cover instance L = (U, V,ΣU ,ΣV , E, {Πe}e∈E) as follows:

• Each vertex in ΓΦ,T is a right vertex in the L, i.e., V = T .

• For each T ∈ V , the right alphabet for T is ΣT .

• Each constraint in ΓΦ,T becomes a left vertex in L, i.e., U =
(
T
2

)
.

• For each {T1, T2} ∈ U , the left alphabet for {T1, T2} is {0, 1}T1∩T2 .

• There is an edge from every {T1, T2} to T1 and T2, and the constraint belonging to such
edge checks whether the right label projected on T1 ∩ T2 is the same as the left label; that is,
Π({T1,T2},Ti) = {(ψ, ψTi) | ψTi|T1∩T2 = ψ} for i ∈ [2].

Note that this label cover has a projection property, in the sense that, for every edge e ∈ E and
every fix β ∈ ΣV , there is at most one α ∈ ΣU such that (α, β) satisfies Πe. This is unlike other
label cover instances in this thesis where the projections goes from left to right. As a result, we will
refer to this new property as right-to-left projection property. Indeed, the right-to-left projection
property is crucial here, as it will give us the uniqueness in the completeness of SET COVER.
Similar to the left-to-right projection situation, it will be convenient to think of each constraint Πe

as a function πe : ΣV → ΣU ; we will use this convention for the rest of this section.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 184

Next, observe that any labeling σV of V simply corresponds to an assignment in the original
2-CSP instance ΓΦ,T and the left node {T1, T2} ∈ U is covered iff the corresponding constraint is
satisfied in ΓΦ,T . As a result, the following corollary is immediate from our main lemma from our
main theorem (Theorem 9.2).

Corollary 9.31. Assuming Gap-ETH, for any constant ρ > 0 and any function g, no algorithm can,
given a label cover instance L = (U, V,ΣU ,ΣV , {πe}e∈E) with right-to-left propjection property
of size n and with k right supernodes, distinguish between the following two cases in g(k)·(nk)O(1)

time:

• (Completeness) L is satisfiable (i.e. MAXCOV(L) = |U |), and,

• (Soundness) MAXCOV(L) < (2(log k)1/2+ρ
/k) · |U |.

9.7.2 Left Alphabet Reduction
Now, we would ideally like to plug our label cover instance from Corollary 9.31 to the reduction
from Section 2.11 and arrive at the desired hardness for SET COVER. At the moment, however, we
cannot quite to this yet, since our left alphabet |ΣU | can be as large as n and, since the blow-up in
the reduction is exponential in |ΣU |, this could result in an exponential time reduction. Nonethe-
less, this is not a hard issue to overcome, since it is simple to reduce the alphabet size of label cover
instances with right-to-left projection property, as stated below.

Lemma 9.32. For any parameter δ > 0, there is a polynomial time algorithm that, given a label
cover instance L = (U, V,E,ΣU ,ΣV , {πe}e∈E) of size n, produces another label cover instance
L′ = (U ′, V, E,ΣU ′ ,ΣV , {π′e}e∈E′) with the same right supernodes and alphabets such that

• (Completeness) If L is satisfiable (i.e. MAXCOV(L) = |U |), then L′ is also satisfiable (i.e.
MAXCOV(L′) = |U ′|).

• (Soundness) MAXCOV(L′)
|U ′| 6 MAXCOV(L)

|U | + δ.

• (Left Alphabet Size) |ΣU ′ | = O(1/δ).

The proof proceeds by replacing each left alphabet with an error correcting code with distance
1− δ; the point here is that, if a labeling σV does not cover u ∈ U , then at least two of u neighbors
v1, v2 “disagree”, i.e., π(v,u)(σV (v1)) 6= π(v,u)(σV (v2)). Since we are replacing ΣU with an error
correcting code with distance 1− δ, they will still disagree on all but δ fraction of the coordinates.
This indeed ensures the soundness of the reduction. (In other words, we “compose” the communi-
cation protocol for equality with the original constraint.) Below we use the Hadamard codes only
because the relationship between their alphabet sizes and distances are simple. In general, one
could use any code such that the relative distance is 1− Ω(1/q) where q is the alphabet size.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 185

Proof of Lemma 9.32. We may assume w.l.o.g. that δ > 1/n, as otherwise the alphabet size al-
ready satisfies |ΣU | = O(1/δ) and there is no need to modify the instance L at all.

Let q be the smallest prime such that q > 1/δ and t = dlogq |ΣU |e. Consider the Hadamard
code C : Ftq → Fqtq with alphabet size q, message length t, block length qt and relative distance
1 − 1/q. We may associate each label in ΣU with an element of Fqtq . With this in mind, we can
define our new label cover instance L′ as follows:

• Let U ′ = U × [qt] and ΣU ′ = Fq.

• We add edges in E ′ between each (u, j) ∈ U × [qt] to all neighbors v ∈ V of u.

• We define the constraint π(v,(u,j)) by

π(v,(u,j))(β) := C(π(v,u)(β))j.

(In other words, we take the j coordinate of the codeword for π(v,u)(β).)

It is obvious that the completeness and alphabet size properties are satisfied. We now argue
the soundness property. Let us consider any right labeling σV : V → ΣV . From definition of
MAXCOV, at most MAXCOV(L)

|U | fraction of vertices in U are covered by σV in the original instance
L. Let us now consider any vertex u not covered by σV in L; this implies that there exists two
neighbors v1, v2 of u such that π(v,u)(σV (v1)) 6= π(v,u)(σV (v2)).

Now, for each j ∈ [qt], if σV covers (u, j) in the new instanceL′, it must be thatC(π(v,u)(σV (v1)))j
and C(π(v,u)(σV (v2)))j are equal. However, since C has relative distance 1 − 1/q, this equality
can only hold for 1/q 6 δ fraction of indices j. In other words, at most δ fraction of vertices of
the form (u, ?) can be covered by σV , for all u that is not covered in the original instance L. As a
result, we indeed have that the fraction of vertices in U ′ that can be covered by σV in L′ is at most
MAXCOV(L)
|U | + δ as desired. This indeed implies that MAXCOV(L′)

|U ′| 6 MAXCOV(L)
|U | + δ.

By applying the above transformation to Corollary 9.31 with δ = 1/k, we have at the following:

Corollary 9.33. Assuming Gap-ETH, for any constant ρ > 0 and any function g, no algorithm can,
given a label cover instance L = (U, V,ΣU ,ΣV , {πe}e∈E) with right-to-left projection property of
size n and with k right supernodes, distinguish between the following two cases in g(k) · (nk)O(1)

time:

• (Completeness) L is satisfiable (i.e. MAXCOV(L) = |U |), and,

• (Soundness) MAXCOV(L) < (2(log k)1/2+ρ
/k) · |U |.

Moreover, this holds even when the left alphabet size L is O(k).

Finally, observe that in our reduction the instance L is bi-regular with left degree two, as a
result, by applying Lemma 2.23, we get the following hardness for MINLAB.

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 186

Corollary 9.34. Assuming Gap-ETH, for any constant ρ > 0 and any function g, no algorithm
can, given a label cover instance L with right-to-left propjection property of size n and with k
right supernodes, distinguish between the following two cases in g(k) · (nk)O(1) time:

• (Completeness) L is satisfiable (i.e. MINLAB(L) = k), and,

• (Soundness) MINLAB(L) > (
√
k/2(log k)1/2+ρ) · k.

Moreover, this holds even when the left alphabet size L is O(k).

9.7.3 Putting Things Together
We can prove our hardness of approximation for UNIQUE SET COVER by simply plugging in the
label cover from Corollary 9.34 to the reduction from Section 2.11.

Proof of Theorem 9.5. Let L = (U, V,ΣU ,ΣV , {πe}e∈E) be any label cover instance of size n with
right-to-left projection property such that |V | = k and the left alphabet ΣU is of size at most O(k).
We use the reduction from Section 2.11 to produce a set system U ,S. Notice that the size of |U| is
at most O(n · k|ΣU |) = O(n · kk). Hence, the reduction is an FPT reduction as desired.

(Completeness) Suppose that there exists a labeling (σU , σV). Recall that, as argued in the
proof of Lemma 2.25, we can select the subsets Sv,σV (v) for all v ∈ V to cover U . Observe further
that, when L has the right-to-left projection property, these k subsets in fact covers each element
exactly once: x of Uu where x ∈ NG(u)ΣU is covered by the set SxσU (u),σV (xσU (u)) only.

(Soundness) If MINLAB(L) > (
√
k/2(log k)1/2+ρ) · k, then, from Lemma 2.25, we have that

SETCOV(U ,S) > MINLAB(L) > (
√
k/2(log k)1/2+ρ) · k = k3/2−o(1).

As a result, if there exists an FPT algorithm that can distinguish the two cases in Theorem 9.5,
it can distinguish the two cases in Corollary 9.34 in FPT time, which would violate Gap-ETH.

9.8 Discussion and Open Questions
In this chapter, we show that 2-CSP is ETH-hard to approximate to within a factor of k1−o(1) where
k denotes the number of variables. This ratio is nearly optimal since a trivial algorithm yields an
O(k)-approximation for the problem. Under Gap-ETH, we strengthen our result by improving the
lower order term in the inapproximability factor and ruling out not only polynomial time algorithm
but FPT algorithms parameterized by k.

Of course the polynomial sliding scale conjecture still remains open after our work and, as
touched upon in the introduction, resolving the conjecture will help advance our understanding
of approximability of many problems. Even without fully resolving the conjecture, it may still be
good to further study the interaction between the number of variables k and the alphabet size n. For
instance, while we show the inapproximability result with ratio almost linear in k, the dependency
between n and k is quite bad; in particular, in our ETH-hardness reduction, n is 22(log k)d for some
constant d > 0. Would it be possible to improve this dependency (say, to n = kpolylogk)?

CHAPTER 9. INAPPROXIMABILITY FROM GAP-ETH III: PARAMETERIZED 2-CSPS,
DIRECTED STEINER NETWORK, k-UNIQUE SET COVER 187

Note that, in the parameterized setting, k must be independent of n and hence the question
above does not apply to this regime.

As touched upon briefly earlier, for k-UNIQUE SET COVER, there is no known g(k)-FPT-
approximation algorithm for any g. However, our hardness only rules out a factor of k1/2−o(1).
Hence, it remains open whether the problem is totally FPT inapproximable:

Open Question 6. Is k-UNIQUE SET COVER totally FPT inapproximable?

On this front, let us also note a natural barrier if we are to use the approach of reducing from
MINLAB with right-to-left projection property as in this chapter (and previous works). We claim
that this will not give a hardness of approximation with factor more than 2k. The reason is that we
may merge two left vertices in a label cover instance with the same set of neighbors. The right-
to-left projection property implies that such merging will never blow up the left alphabet size to
more than the original right alphabet size |ΣV |. Summarizing, we can always assume that there are
at most 2k left super-nodes. For each left super-node, we can always pick at most k labels on the
right to cover this node. As a result, we may select at most k · 2k labels on the right, which is the
limit even in the soundness case. Hence, the gap we can hope to get is at most 2k. In other words,
to answer Question 6 in the positive, one has to deviate from this general approach.

Another interesting research direction is to try to prove similar hardness results for other prob-
lems. As mentioned in the previous chapter, DkS is one obvious candidate in this direction. How-
ever, as discussed in Chapter 4, it is typically quite challenging to transfer hardness from CSPs to
DkS; for instance, in the NP-hardness regime, CSP is quite well understood, whereas not even a
constant factor NP-hardness for DkS is known.

188

Chapter 10

Inapproximability from Gap-ETH IV: Even
Set and Shortest Vector Problems

The study of error-correcting codes gives rise to many interesting computational problems. One of
the most fundamental among these is the problem of computing the distance of a linear code. In
this problem, which is commonly referred to as the Minimum Distance Problem (MDP), we are
given as input a generator matrix A ∈ Fn×m2 of a binary1 linear code and an integer k. The goal is
to determine whether the code has distance at most k. Recall that the distance of a linear code is

min
0 6=x∈Fm2

‖Ax‖0 where ‖ · ‖0 denote the the Hamming norm.

The study of this problem dates back to at least 1978 when Berlekamp et al. [BMT78] con-
jectured that it is NP-hard. This conjecture remained open for almost two decades until it was
positively resolved by Vardy [Var97a; Var97b]. Later, Dumer et al. [DMS03] strengthened this by
showed that, even approximately computing the minimum distance of the code is hard. Specifi-
cally, they showed that, unless NP = RP, no polynomial time algorithm can distinguish between
a code with distance at most k and one whose distance is greater than γ · k for any constant
γ > 1. Furthermore, under stronger assumptions, the ratio can be improved to superconstants and
even almost polynomial. Dumer et al.’s result has been subsequently derandomized by Cheng and
Wan [CW12a] and further simplified by Austrin and Khot [AK14] and Micciancio [Mic14].

While the aforementioned intractability results rule out not only efficient algorithms but also
efficient approximation algorithms for MDP, it does not yet rule out FPT algorithms with the
natural parameter k. Note that k-MDP can be solved in (mn)O(k) time, as we can enumerate
through all vectors y with Hamming norm at most k and try to solve Ax = y. In Parameterized
Complexity language, this means that k-MDP belongs to the class XP.

The parameterized complexity of k-MDP was first questioned by Downey et al. [Dow+99],
who showed that parameterized variants of several other coding-theoretic problems, including the
Nearest Codeword Problem and the Nearest Vector Problem2 which we will discuss in more de-
tails in Section 10, are W[1]-hard. Thereby, assuming the widely believed W[1] 6= FPT hypoth-

1Note that MDP can be defined over larger fields as well; we discuss more about this in Section 10.5.
2The Nearest Vector Problem is also referred to in the literature as the Closest Vector Problem.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 189

esis, these problems are rendered intractable from the parameterized perspective. Unfortunately,
Downey et al. fell short of proving such hardness for k-MDP and left it as an open problem:

Research Question 4. Is k-MDP fixed parameter tractable?

Although almost two decades have passed, the above question remains unresolved to this day,
despite receiving significant attention from the community. In particular, the problem was listed
as an open question in the seminal 1999 book of Downey and Fellows [DF99] and has been reiter-
ated numerous times over the years [Dem+07; Fel+12; GKS12; FM12; DF13; Cyg+14; Cyg+15;
Bha+16c; Cyg+17; Maj17]. This problem is one of the few questions that remained open from the
original list of Downey and Fellows [DF99]. In fact, in their second book [DF13], Downey and
Fellows even include this problem as one of the six3 “most infamous” open questions in the area
of Parameterized Complexity.

Another question posted in Downey et al.’s work [Dow+99] that remains open is the parame-
terized Shortest Vector Problem (k-SVP) in lattices. The input of k-SVP (in the `p norm) is an
integer k ∈ N and a matrix A ∈ Zn×m representing the basis of a lattice, and we want to determine
whether the shortest (non-zero) vector in the lattice has length at most k, i.e., min

0 6=x∈Zm
‖Ax‖p 6 k.

Again, k is the parameter of the problem. It should be noted here that, similar to [Dow+99], we
require the basis of the lattice to be integer-value, which is sometimes not enforced in literature
(e.g. [Emd81; Ajt98]). This is because, if A is allowed to be any matrix in Rn×m, then parameter-
ization is meaningless because we can simply scale A down by a large multiplicative factor.

The (non-parameterized) Shortest Vector Problem (SVP) has been intensively studied, moti-
vated partly due to the fact that both algorithms and hardness results for the problem have nu-
merous applications. Specifically, the celebrated LLL algorithm for SVP [LLL82] can be used to
factor rational polynomials, and to solve integer programming (parameterized by the number of
unknowns) [Len83] and many other computational number-theoretic problems (see e.g. [NV10]).
Furthermore, the hardness of (approximating) SVP has been used as the basis of several crypto-
graphic constructions [Ajt98; AD97; Reg03; Reg05]. Since these topics are out of scope of our
thesis, we refer the interested readers to the following surveys: [Reg06; MR09; NV10; Reg10].

On the computational hardness side of the problem, van Emde-Boas [Emd81] was the first to
show that SVP is NP-hard for the `∞ norm, but left open the question of whether SVP on the `p
norm for 1 6 p < ∞ is NP-hard. It was not until a decade and a half later that Ajtai [Ajt96]
showed, under a randomized reduction, that SVP for the `2 norm is also NP-hard; in fact, Ajtai’s
hardness result holds not only for exact algorithms but also for (1+o(1))-approximation algorithms
as well. The o(1) term in the inapproximability ratio was then improved in a subsequent work of
Cai and Nerurkar [CN99]. Finally, Micciancio [Mic00] managed to achieve a factor that is bounded
away from one. Specifically, Micciancio [Mic00] showed (again under randomized reductions)
that SVP on the `p norm is NP-hard to approximate to within a factor of p

√
2 for every 1 6

p < ∞. Khot [Kho05] later improved the ratio to any constant, and even to 2log1/2−ε(nm) under a
stronger assumption. Haviv and Regev [HR07] subsequently simplified the gap amplification step

3So far, two of the six problems have been resolved: that of parameterized complexity of k-Biclique [Lin15] and
that of parameterized approximability of k-Dominating Set (Section 6).

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 190

of Khot and, in the process, improved the ratio to almost polynomial. We note that both Khot’s
and Haviv-Regev reductions are also randomized and it is still open to find a deterministic NP-
hardness reduction for SVP in the `p norms for 1 6 p <∞ (see [Mic12]); we emphasize here that
such a reduction is not known even for the exact (not approximate) version of the problem. For
the `∞ norm, the following stronger result due to Dinur is known [Din02]: SVP in the `∞ norm is
NP-hard to approximate to within nΩ(1/ log logn) factor (under a deterministic reduction).

Very recently, fine-grained studies of SVP have been initiated [BGS17; AS18]. The authors
of [BGS17; AS18] showed that SVP for any `p norm cannot be solved (or even approximated to
some constant strictly greater than one) in subexponential time assuming the existence of a certain
family of lattices4 and the (randomized) Gap-ETH.

As with MDP, Downey et al. [Dow+99] were the first to question the parameterized tractability
of k-SVP (for the `2 norm). Once again, Downey and Fellows included k-SVP as one of the open
problems in both of their books [DF99; DF13]. As with Open Question 4, this question remains
unresolved to this day:

Research Question 5. Is k-SVP fixed parameter tractable?

We remark here that, similar to k-MDP, k-SVP also belongs to XP, as we can enumerate over
all vectors with norm at most k and check whether it belongs to the given lattice. There are only
(mn)O(kp) such vectors, and the lattice membership of a given vector can be decided in polynomial
time. Hence, this is an (nm)O(kp)-time algorithm for k-SVP.

Our Results
The main result of this chapter is a resolution to the previously mentioned Open Questions 4 and 5:
more specifically, we prove that k-MDP and k-SVP (on `p norm for any p > 1) are intractable
assuming randomized Gap-ETH. In fact, our result is stronger than stated here as we rule out not
only exact FPT algorithms but also FPT approximation algorithms as well.

With this in mind, we can state our results starting with the parameterized intractability of
k-MDP, more concretely (but still informally), as follows:

Theorem 10.1. Assuming randomized Gap-ETH, there is no γ-FPT-approximation algorithm for
k-MDP for any constant γ > 1.

Notice that our above result rules out FPT approximation algorithms with any constant ap-
proximation ratio for k-MDP. In contrast, we can only prove FPT inapproximability with some
constant ratio for k-SVP in `p norm for p > 1. These are stated more precisely below.

Theorem 10.2. For any p > 1, there exists γp > 1 such that the following holds. Assuming
randomized Gap-ETH, there is no γp-FPT-approximation algorithm for k-SVP in `p norm.

4This additional assumption is only needed for 1 6 p 6 2. For p > 2, their hardness is conditional only on the
deterministic Gap-ETH.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 191

We remark that our result does not yield hardness for SVP in the `1 norm and this remains an
interesting open question. Section 10.5 contains discussion on this problem. We also note that, for
Theorem 10.2 and onwards, we are only concerned with p 6= ∞; this is because, for p = ∞, the
problem is NP-hard to approximate even when k = 1 [Emd81]!

Nearest Codeword Problem and Nearest Vector Problem

Similar to the NP-hardness of approximation proofs of MDP and SVP, our proofs proceed by
first showing FPT hardness of approximation of the non-homogeneous variants of k-MDP and
k-SVP called the k-Nearest Codeword Problem (k-NCP) and the k-Nearest Vector Problem (k-
NVP) respectively. For both k-NCP and k-NVP, we are given a target vector y (in Fn2 and Zn,
respectively) in addition to (A, k), and the goal is to find whether there is any x (in Fm2 and Zm,
respectively) such that the (Hamming and `p, respectively) norm of Ax− y is at most k.

As an intermediate step of our proof, we show that the k-NCP and k-NVP problems are hard
to approximate5 (see Theorem 10.4 and Theorem 10.5 respectively). This should be compared
to Downey et al. [Dow+99], in which the authors show that both problems are W[1]-hard to solve
exactly. Therefore our inapproximability result significantly improves on their work to rule out
even k1/2−o(1) factor FPT-approximation algorithm, albeit we need the stronger Gap-ETH assump-
tion (in comparison to W[1] 6= FPT from [Dow+99]).

We end this section by remarking that the computational complexity of both (non-parameterized)
NCP and NVP are also thoroughly studied (see e.g. [Mic01; Din+03; Ste93; Aro+97; Gol+99] in
addition to the references for MDP and SVP), and indeed the inapproximability results of these
two problems form the basis of hardness of approximation for MDP and SVP. We would like to
emphasize that while W[1]-hardness results were known for k-NCP and k-NVP, it does not seem
possible to transfer them to W[1]-hardness results for k-MDP and k-SVP; we really need param-
eterized inapproximability results for k-NCP and k-NVP to be able to transfer them to (slightly
weaker) inapproximability results for k-MDP and k-SVP.

Subsequent Work. After the publication of the conference version of the work on which this
chapter is based [Bha+18], Bonnet et al. [Bon+18] showed W[1]-hardness of approximation results
for k-NCP and k-NVP. When combined with our reductions (Lemmas 10.6 and 10.10) to k-
MDP and k-SVP respectively, one arrives at W[1]-hardness of approximation (via randomized
reductions) for both problems, thereby resolving the complexity of both problems up to whether
the reductions can be derandomized.

5While our k-MDP result only applies for F2, it is not hard to see that our intermediate reduction for k-NCP
actually applies for any finite field Fq too.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 192

10.1 Additional Preliminaries
Before we prove our results, we need a few results from error-correcting codes. First, we say that
an error-correcting code C : Σm → Σh is systematic6 if C(x)|[h] = C(x) for all x ∈ Σm.

10.1.1 BCH Codes
Throughout this chapter, the BCH codes are crucial in constructing the gadgets. Their parameters
are stated more precisely below.

Theorem 10.3 (BCH Code [Hoc59; BR60]). For any choice of h, d ∈ N such that h + 1 is a
power of two and that d 6 h, there exists a linear code over F2 with block length h, message
length h −

⌈
d−1

2

⌉
· log(h + 1) and distance d. Moreover, the generator matrix of this code can be

computed in poly(h) time.

10.1.2 Tensor Product of Codes
Finally, we define the tensor product of codes which will be used to amplify the gap in hardness
of approximation of k-MDP. Consider two linear codes C1 ⊆ Fm2 (generated by G1 ∈ Fm×m′2) and
C2 ⊆ Fn2 (generated by G2 ∈ Fn×n′2). Then the tensor product of the two codes C1 ⊗ C2 ⊆ Fm×n2 is
defined as

C1 ⊗ C2 = {G1XG>2 |X ∈ Fm′×n′2 }.

We will only need two properties of tensor product codes. First, the generator matrix of the tensor
products of two linear codes C1, C2 with generator matrices G1,G2 can be computed in polynomial
time in the size of G1,G2. Second, the distance of C1 ⊗ C2 is exactly the product of the distances
of the two codes, i.e.,

∆(C1 ⊗ C2) = ∆(C1)∆(C2).

10.2 Inapproximability of MLD and NVP
We now proceed to prove our results, starting with k-NCP and k-NVP. For both, we show, assum-
ing Gap-ETH, that no k1/2−o(1)-factor FPT approximation exists for both problems. We do this
by a (simple) reduction from UNIQUE SET COVER from the previous section. This reduction is
due to Arora et al. [Aro+97] who use the reduction to prove NP-hardness of approximation for the
(non-parameterized) NCP. The hardness of approximation for k-NCP is stated and proved below;
notice that in the YES (completeness) case, we actually have a stronger property than usual that
the “solution” vector x is also sparse. While this is not needed for inapproximability of k-NCP, it
will be used for the subsequent proof of inapproximability of k-MDP.

6Note that this definition is different than s-systematic used in Chapter 6.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 193

Theorem 10.4. Assuming Gap-ETH, no FPT time algorithm can, given a matrix A ∈ Fn×m2 , a
vector y ∈ Fn2 and a positive integer k ∈ N, distinguish between the following two cases:

• (Completeness) There exists x ∈ Bm(0, k) such that ‖Ax− y‖0 = k.

• (Soundness) For any x ∈ Fm2 , ‖Ax− y‖0 > k3/2−o(1).

Proof. We reduce from UNIQUE SET COVER; let (U ,S, k) be any instance of UNIQUE SET

COVER. Label elements in the universe by u1, . . . , um, and the subsets by S1, . . . , SM . First,
we construct a matrix B ∈ FN×M2 where Bij is the indicator whether ui belongs to Sj .

We now define A ∈ Fn×m2 where n = dk3/2eN +M and m = M by

A =

k ⊗B

IdM

 ,
and let y = 1dk3/2eN ⊗ 0m be the vector whose last m coordinates are zeros and the rest are ones.
This completes the description of our reduction. It is clear that this is an FPT reduction.

(Completeness) Suppose that there exists a subset Si1 , . . . , Sik that uniquely covers U . Let
x ∈ Fm2 be such that xi1 , . . . , xik are ones, and the remaining coordinates are zeros. Clearly,
x ∈ Bm(0, k). It is also simple to see that Bx = 1N , which means that ‖Ax− y‖0 = ‖x‖0 = k.

(Soundness) We claim that, for any x ∈ Fm2 , we have ‖Ax−y‖0 > min{k3/2, SETCOV(U ,S)}.
To see that this is the case, consider any x ∈ Fm2 . If Bx 6= 1m, then we immediately have
‖Ax − y‖0 > k3/2‖Bx − 1m‖0 > k3/2 as desired. On the other hand, if Bx = 1m, then let
i1, . . . , i` be the coordinates of x that are ones. Observe that Si1 , . . . , Si` must cover the universe
U , as otherwise the coordinate corresponding to the uncovered element of Bx would be zero. As
a result, we have ` > SETCOV(U ,S); in other words, we have ‖x‖0 > SETCOV(U ,S). Hence, in
this case, we also have ‖Ax− y‖0 > ‖x‖0 > SETCOV(U ,S).

Hence, if there is an FPT time algorithm that can distinguish the two cases in Theorem 10.4,
then it can also distinguish the two cases in Theorem 9.5, which would break Gap-ETH.

Note here that if we repeat the proof above but with operations in Z instead of F2 and with
‖ · ‖pp in place of ‖ · ‖0, then we arrive at the hardness for NVP, as formalized below. Due to this
similarity, we shall not duplicate the whole proof again.

Theorem 10.5. Let p > 1 be any constant. Assuming Gap-ETH, no FPT time algorithm can,
given a matrix A ∈ Zn×m, a vector y ∈ Zn and a positive integer k ∈ N, distinguish between the
following two cases:

• (Completeness) There exists x ∈ Z such that ‖Ax− y‖pp = k.

• (Soundness) For any x ∈ Zm, ‖Ax− y‖pp > k3/2−o(1).

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 194

10.3 Inapproximability of k-MDP
In this section, we prove our main theorem regarding k-MDP (Theorem 10.1). As stated in the in-
troduction, this is shown via a reduction from inapproximability of NCP; the main properties of the
reduction is stated below. (Here we omit the dimensions to avoid unnecessary cumbersomeness.)

Lemma 10.6. For any constants γ′ > 4 and γ > 1 such that γ < 2γ′
4+γ′ , there is a polynomial-time

reduction that takes in an NCP instance (B,y, t) and produces an MDP instance (A, k) such that

• (Completeness) If there exists x ∈ B(0, t) such that ‖Bx − y‖0 6 t, then, with probability
t−O(t), there exists z 6= 0 such that ‖Az‖0 6 k.

• (Soundness) If ‖Bx− y‖ > γ′ · t for all x, then ‖Az‖0 > γ · k for all z.

• (Bounded Parameter) k = O(t).

Before we prove Lemma 10.6, let us first argue why it implies our main theorem. Notice that, if
we have an algorithm that can solve the gap problem for MDP with gap γ, then the above reduction
implies that we can solve the gap problem for NCP with gap γ′ (with high probability) as well,
since we can run the reduction tO(t) times and run the algorithm for MDP for each of the produced
instance. If the algorithm says YES in any of the instance, we output YES. Otherwise, output NO.
Recall that, from Theorem 10.4, the gap version of NCP is hard for any γ′ > 1 (and in fact even
for γ′ = t1/2−o(1)). As a result, we have the following:

Lemma 10.7. Let 1 6 γ < 2 be a constant. Assuming randomized Gap-ETH, there is no γ-FPT-
approximation algorithm for k-MDP.

Gap Amplification. Finally, the gap γ can be boosted to any constant using the now standard
technique of tensoring the code (c.f. [DMS03],[AK14]). Recall from Section 10.1.2 that if we take
an error-correcting code C and tensor with itself, then we arrive at the code C ⊗ C with distance
equal to ∆(C)2. Hence, if there is an γ2-FPT-approximation algorithm for k-MDP, then we can
run this on C ⊗ C and get a γ-approximation for ∆(C). In other words, by repeatedly tensoring the
instance in Lemma 10.7, we can amplify the gap to be any constant, which implies Theorem 10.1.

Reduction Overview. Now that we have argued why the reduction in Lemma 10.6 implies our
main theorem, we turn our attention back to the proof of Lemma 10.6. Our reduction is inspired by
the reduction of Dumer, Micciancio and Sudan (henceforth DMS) [DMS03]. There, the authors
define the notions of Locally Dense Codes (LDC) and use it in their reduction. To make the
reduction works in the parameterized regime, we define a new notion called Locally Suffix Dense
Codes (LSDC) and show their existence in the next subsection (using BCH codes). Finally, we
show how to use them in the reduction in Subsection 10.3.2.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 195

10.3.1 Locally Suffix Dense Codes
Before we formalize the notion of Locally Suffix Dense Codes (LSDC), let is give an intuitive
explanation of LSDC: informally, LSDC is a linear code C ⊆ Fh2 where, given any short prefix
x ∈ Fq2 where q � h and a random suffix s ∈ Fh−q2 , we can, with non-negligible probability, find
a code that shares the prefix x and has a suffix that is “close” in Hamming distance to s (i.e. one
should think of r below as roughly d/2). More formally, LSDC can be defined as follows.

Definition 10.8. A Locally Suffix Dense Code (LSDC) over F2 with parameters7 (m, q, d, r, δ) an
m-dimensional systematic linear code with minimum distance (at least) d given by its generator
matrix L ∈ Fh×m2 such that for any x ∈ Fq2, the following holds:

Pr
s∼Fh−q2

∃z ∈ Bh−q(s, r) : (x ◦ z) ∈ L(Fm2)
 > δ. (10.1)

We note that our notion of Locally Suffix Dense Codes is closely related and inspired by the
notion of Locally Dense Codes (LDC) of Dumer et al. [DMS03]. Essentially speaking, the key
differences in the two definitions are that (i) Locally Dense Codes are for the case of q = 0, i.e.,
there is no prefix involved, and (ii) s in LDC is not chosen at random from Fq2 but rather from
Bq(0, r). Note that, apart from these, there are other subtle additional requirements in Locally
Dense Codes that we do not need in our reduction, such as the requirements that the “center” s is
close to not just one but many codewords; however, these are not important and we will not discuss
them further.

Unfortunately, the proof of Dumer et al. does not directly give us the desired LSDC; the main
issue is that, when there is no prefix, the set of codewords is a linear subspace, and their proof relies
heavily on the linear structure of the set (which is also why s is randomly chosen from Bq(0, r)
instead of Fq2). However, the set of our interest is

{
z ∈ Fh−q

∣∣∣∣x ◦ z ∈ L(Fm2)
}

, which is not

a linear subspace but rather an affine subspace; Dumer et al.’s argument (specifically Lemma 13
in [DMS03]) does not apply in the affine subspace case.

Below, we provide a different proof than Dumer et al. for the construction of LSDC. Our
bound is more related to the Sphere Packing (aka Hamming) bound for codes. In particular, we
show below that BCH codes, which “near” the Sphere Packing bound gives us LSDC with certain
parameters. It should be noted however that the probability guarantee δ that we have is quite poor,
i.e. δ > d−Θ(d), but this works for us since d is bounded by a function of the parameter of our
problem. On the other hand, this would not work in NP-hardness reductions of [DMS03] (and, on
top of this, our codes may not satisfy other additional properties required in LDC).

Lemma 10.9. For any q, d ∈ N such that d is an odd number larger than one, there exist h,m ∈ N
and L ∈ Fh×m2 which is a LSDC with parameters

(
m, q, d, d−1

2 , 1
dd/2

)
. Additionally, the following

holds:

• h,m 6 poly(q, d) and m > q,
7We remark that the parameter h is implicit in specifying LSDC.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 196

• L can be computed in poly(q, d) time.

Proof. Let h be the smallest integer such that h+1 is a power of two and that h > max{2q, 10d log d},
and let m = h−

(
d−1

2

)
log(h+ 1). Clearly, h and m satisfy the first condition.

Let L be the generator matrix of the [h,m, d]2 linear code as given by Theorem 10.3. With-
out loss of generality, we assume that the code is systematic on the first m coordinates. From
Theorem 10.3, L can be computed in poly(h) = poly(q, d) time.

It remains to show that for our choice of L, (10.1) holds for any fixed choice of x ∈ Fq2. Fix a

vector x ∈ Fq2 and define the set C =
{

z ∈ Fh−q2

∣∣∣∣x ◦ z ∈ L(Fm2)
}

. Since the code generated by L
is systematic on the first m > q coordinates, we have that |C| > 2m−q.

Moreover, since the code generated by L has distance d, every distinct z1, z2 ∈ C are at least
d-far from each other (i.e. ‖z1 − z2‖0 > d). Therefore, for any distinct pair of vectors z1, z2 ∈ C,
the sets Bh−q(z1,

d−1
2) and Bh−q(z2,

d−1
2) are disjoint. Hence the number of vectors in the union of(

d−1
2

)
-radius Hamming balls around every z ∈ C is at least

2m−q
∣∣∣∣∣Bh−q

(
0,
d− 1

2

)∣∣∣∣∣ > 2m−q
(
h− q
d−1

2

)
> 2m−q

(
h/2
d−1

2

)
> 2m−q

(
h

d− 1

) d−1
2

On the other hand, |Fh−q2 | = 2h−q = 2m−q(h+1) d−1
2 . Hence, with probability at least

(
h

(d−1)(h+1)

) d−1
2 >

1
dd/2

, a vector s sampled uniformly from Fh−q2 lies in Bh−q
(
z, d−1

2

)
for some vector z ∈ C. This is

indeed the desired condition in (10.1), which completes our proof.

10.3.2 The Reduction
In this subsection, we prove the FPT reduction from the inapproximability of k-NCP problem to
that of k-MDP (Lemma 10.6). It follows a general outline of the reduction from [DMS03], which
is then modified (and simplified) to work in combination with LSDC instead of LDC.

Proof of Lemma 10.6. Let (B,y, t) be the input for NCP where B ∈ Fn×q2 , y ∈ Fn2 , and t is the
parameter. We may assume without loss of generality that t > γ

2γ′−γ(4+γ′) . Let d be the smallest
odd integer greater than γ′t. Let h,m ∈ N,L ∈ Fh×m2 be as in Lemma 10.9.

We produce an instance (A, k) for MDP by first sampling a random s ∼ Fh−q2 . Then, we set
k = 2t+ (d− 1)/2, s′ = 0q ◦ −s and

A =

B 0n×(m−q) y

L s′

 ∈ F(n+h)×(m+1)
2 .

Note that the zeros are padded to the right of B so that the number of rows is the same as that of L.
Since k = 2t + (d − 1)/2 = Oγ′(t) and the reduction clearly runs in polynomial time, we are

only left to argue that it appropriately maps completeness and soundness cases.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 197

(Completeness) Suppose that there exists x ∈ Bq(0, t) such that ‖Bx − y‖0 6 t. From
Lemma 10.9, with probability at least 1/dd/2, there exists u ∈ Bh−q

(
s, d−1

2

)
such that x ◦ u ∈

L(Fm2). From this and from systematicity of L, there exists z′ ∈ Fm−q2 such that L(x ◦ z′) = x ◦u.
Conditioned on this, we can pick z = x ◦ z′ ◦ 1 ∈ Fm+1

2 , which yields

‖Az‖0 = ‖Bx− y‖0 + ‖x‖0 + ‖u− s‖0 6 2t+ d− 1
2 = k.

(Soundness) Suppose that ‖Bx−y‖0 > γ′t for all x ∈ Fq2. We will show that ‖Az‖0 > γ′t for
all non-zero z; with our choices of k, d and assumption on t, it is simple to check that γ′t > γk.

To show that ‖Az‖0 > γ′t for all z ∈ Fm+1
2 \ {0}, let us consider two cases, based on the last

coordinate z[m+ 1] of z. Let us write z as x ◦ z′ ◦ z[m+ 1], where x ∈ Fq2 and z′ ∈ Fm−q2 .
If z[m + 1] = 0, then ‖Az‖0 = ‖Bx‖0 + ‖L(x ◦ z′)‖0 > ‖L(x ◦ z′)‖0 > d, where the last

inequality comes from the fact that L is a generator matrix of a code of distance d (and that z 6= 0).
Finally, recall that we select d > γ′t, which yields the desired result for this case.

On the other hand, if zm+1 = 1, then ‖Az‖0 > ‖Bx− y‖0 > γ′t.
In conclusion, ‖Az‖0 > γ′t in all cases considered, which completes our proof.

10.4 Inapproximability of k-SVP: Following Khot’s
Reduction

We will now prove the parameterized inapproximability of SVP, by reducing from the inapprox-
imability of NVP (Theorem 10.5). This step is almost the same as that of Khot [Kho05], with small
changes in parameter selection. Despite this, we repeat the whole argument here (with appropriate
adjustments) for completeness.

The main properties of the (randomized) FPT reduction is summarized below. For succinctness,
we define a couple of additional notation: let L(A) denote the lattice generated by the matrix
A ∈ Zn×m, i.e., L(A) = {Ax | x ∈ Zm}, and let λp(L) denote the length (in the `p norm) of
the shortest vector of the lattice L, i.e., λp(L) = min

0 6=z∈L
‖z‖p. Furthermore, for y ∈ Zn, we define

λp(L,y) as the `p-distance from y to the closest vector in L, i.e., λp(L,y) = min
z∈L
‖z− y‖p.

Lemma 10.10. Fix p > 1, and let η > 1 be such that 1
2 + 1

2p + (2p+1)
η

< 1. There is a randomized
polynomial time algorithm that takes in a NVP instance (B,y, t) and produces an SVP instance
(Bsvp, γ

−1
p l) such that

• (Completeness) If λp(L(B),y)p 6 t, then with probability 0.8, λp(L(Bsvp))p 6 γ−1
p l.

• (Soundness) If λp(L(B),y)p > η · t, then with probability 0.9, λp(L(Bsvp))p > l.

• (Bounded Parameter) l = η · t.

Here γp := 1
1
2 +(2p+1)/η+1/2p is strictly greater than 1 by our choice of η.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 198

Combining the above lemma with Theorem 10.5 gives us Theorem 10.2.
We devote the rest of this subsection to describing the reduction (which is similar to that

from [Kho05]) and proving Lemma 10.10. In Section 10.4.1, we define the BCH lattice, which
is the key gadget used in the reduction. Using the BCH lattice and the NVP instance, we con-
struct the intermediate lattice Bint in Section 10.4.2. The intermediate lattice serves to blow up
the number of “good vectors” for the completeness case, while controlling the number of “bad
vectors” for the soundness case. In particular, this step ensures that the number of good vectors
in the completeness case (Lemma 10.12) far outnumber the number of bad vectors in the sound-
ness case (Lemma 10.13). Finally, in Section 10.4.3 we compose the intermediate lattice with a
random homogeneous constraint (sampled from an appropriate distribution), to give the final SVP
instance. The additional random constraint is used to annihilate all bad vectors in the soundness
case, while retaining at least one good vector in the completeness case.

For the rest of the section, we fix (B,y, t) to be a NVP instance, and set l := η · t and
r :=

(
1
2 + 1

2p + 1
η

)
l. For simplicity of calculations, we will assume that both l and r are integers,

and that l is even. Furthermore, we say that a vector u is good (for the completeness case) if
‖u‖pp 6 γ−1

p l, and we say that u is bad (for the soundness case) if ‖u‖pp 6 l.

10.4.1 The BCH Lattice gadget
We begin by defining the BCH lattices which is the key gadget used in the reduction. Given
parameters l, h ∈ N where h+1 is a power of 2 and l < h. Let g = (l/2)·log(h+1). Theorem 10.3
guarantees that there exists a BCH code with block length h, message length h − g and distance
l + 1. Let PBCH ∈ {0, 1}g×h be the parity check matrix of such code. The BCH lattice is defined
by

BBCH =

 Idh 0h×g
l ·PBCH 2l · Idg

 ∈ Z(h+g)×(h+g).

The following lemma, which is simply a restatement8 of Lemma 4.3 in [Kho05], summarizes the
key properties of BCH lattices, as defined above.

Lemma 10.11 ([Kho05]). Let BBCH ∈ Z(h+g)×(h+g) be as above. There exists a randomized
polynomial time algorithm that, with probability at least 0.99, returns a vector s ∈ Zh+g such that
the following holds: there are at least 1

1002−g
(
h
r

)
distinct vectors z ∈ Zh+g such that ‖BBCHz −

s
∥∥∥p
p

= r.

10.4.2 The Intermediate Lattice
We now define the intermediate lattice. Let (B,y, t) be an instance of NVP, where B ∈ Zn×q.
The intermediate lattice Bint is constructed as follows. Let l = ηt. Let h be the smallest power of

8In fact, Lemma 10.11 is even weaker than Khot’s lemma, since we do not impose a bound on ‖z‖p.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 199

2 such that h > max{2n, (1010l)2η}, and let BBCH be constructed as above. Then

Bint =

 2B 0n×(h+g) 2y

0(h+g)×q BBCH s

 ∈ Z(n+h+g)×(q+h+g+1).

where s ∈ Zh+g is the vector given by Lemma 10.11.

Bounding Good Vectors in Completeness Case. We now prove a lower bound on the number
of good vectors in the completeness case.

Lemma 10.12. If λp(L(B),y)p 6 t, then, with probability at least 0.99, there are at least hr
(

200hl/2ll
)−1

good non-zero vectors in L(Bint).

Proof. Since λp(L(B),y)p 6 t, there exists x̃ ∈ Zq such that ‖Bx̃ − y‖pp 6 t. From Lemma
10.11, with probability at least 0.99, there exist at least 2−g

(
h
r

)
/100 distinct vectors z ∈ Zh+g

such that ‖BBCHz − s‖pp = r. For each such z, consider the vector x = x̃ ◦ z ◦ −1. It follows
that Bintx = (2Bx̃ − 2y) ◦ (BBCHz − s) is a non-zero vector and ‖Bintx‖pp = 2p‖Bx̃ − y‖pp +
‖BBCHz − s‖pp 6 2pt + r = γ−1

p l. Since the number of such vectors x is at least the number of
distinct coefficient vectors z, it can be lower bounded by

1
100 · 2

−g
(
h

r

)
>

1
100 · 2

− l
2 log(h+1)

(
h

r

)
>

1
100 ·

hr

rr(h+ 1)l/2 >
1

200 ·
hr

llhl/2
,

where the last inequality follows from r 6 l and l < h. Finally, observe that each z produces
different BBCHz and hence all Bintx’s are distinct.

Bounding Bad Vectors in Soundness Case. We next bound the number of bad vectors in the
soundness case:

Lemma 10.13. If λp(L(B),y)p > η · t, then the number of bad vectors in L(Bint) is at most

10−5hr
(

200hl/2ll
)−1

.

At the heart of the proof is the claim that every bad vector must have even coordinates:

Claim 10.14. If λp(L(B),y)p > η · t, then all coordinates of every bad u ∈ L(Bint) must be even.

Proof. Let u be any bad vector in L(Bint) and let x ∈ Zq+h+g+1 be such that Bintx = u. We
write x as x1 ◦ x2 ◦ x where x1 ∈ Zq, x2 ∈ Zm+h and x ∈ Z. Using this, we can express u as
Bintx = (2Bx1 − 2x · y) ◦ (BBCHx2 − x · s). Recall that u is bad means that ‖u‖pp 6 l, which
implies that ‖Bx1 − x · y‖pp 6 l = η · t. Since λp(L(B),y)p > η · t, it must be that x = 0.

Note that we now have u = (2Bx1) ◦ (BBCHx2). Let us assume for the sake of contradiction
that u has at least one odd coordinate; it must be that (BBCHx2) has at least one odd coordinate.

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 200

Let us further write x2 as x2 = w1 ◦ w2 where w1 ∈ Zm and w2 ∈ Zh. Notice that BBCHx2 =
w1 ◦ (l(PBCHw1 − 2w2)). Since every coordinate of BBCHx2 must be less than l in magnitude,
it must be the case that PBCHw1 − 2w2 = 0. In other words, (w1 mod 2) is a codeword of the
BCH code. However, since the code has distance l + 1, this means that, if w1 has at least one odd
coordinate, it must have at least l+ 1 odd (non-zero) coordinates, which contradicts ‖u‖pp 6 l.

Having proved Claim 10.14, we can now prove Lemma 10.13 by a simple counting argument.

Proof of Lemma 10.13. From Claim 10.14, all coordinates of u must be even. Therefore, u must
have at most l/2p non-zero coordinates, all of which have magnitude at most bl1/pc 6 l−1. Hence,
we can upper bound the total number of such vectors by

(
2(l − 1) + 1

)l/2p(n+ h+ g

b l2p c

)
6 (2l)l(n+ h+ g)l/2p 6 (2l)l(2lh)l/2p 6 (2l)2lhl/2

p

where the second-to-last step holds since g 6 l
2 log(h + 1) 6 lh/2 and n 6 h/2. On the other

hand,

hr

hl/2ll
= h

(
1
2 + 1

η
+ 1

2p

)
l

hl/2ll
= hl/2

p(h/lη)l/η > 108
(
(2l)2lhl/2

p
)
,

which follows from h > (1010l)2η. Combining the two bounds completes the proof.

10.4.3 The Final SVP Instance and Proof of The Main Lemma
Finally, we construct Bsvp from Bint by adding a random homogeneous constraint similar to
[Kho05]. For convenience, let Ng denote the lower bound on the number of distinct coefficient
vectors guaranteed by Lemma 10.12 in the completeness case. Similarly, let Na denote the upper
bound on the number of annoying vectors as given in Lemma 10.13. Combining the two lemmas
we have Ng > 105Na, which will be used crucially in the construction and analysis of the final
lattice.

Construction of the Final Lattice : Let ρ be any prime number in9
[
10−4Ng, 10−2Ng

]
. Further-

more, let r unif∼ [0, ρ− 1]n+h+g be a uniformly sampled lattice point. We construct Bsvp as

Bsvp =

 Bint 0

l · rTBint l · ρ

 ∈ Z(n+h+g+1)×(q+h+g+2).

This can be thought of as adding a random linear constraint to the intermediate lattice. The choice
of parameters ensures that with good probability, in the completeness case, at least one of the good

9Note that the density of primes in this range is at least 1/ logNg = 1/r log h. Therefore, a random sample
of size O(r log h) in this range contains a prime with high probability. Since we can test primality for any ρ ∈[
10−4Ng, 10−2Ng

]
in FPT time, this gives us an FPT algorithm to sample such a prime number efficiently .

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 201

vectors x ∈ Zq+h+g+1 evaluates to 0 modulo ρ on the random constraint, and therefore we can
pick u ∈ Z such that Bsvp(x ◦ u) = (Bintx) ◦ 0 still has small `p norm. On the other hand, since
Na � Ng, with good probability, all of bad vectors in the soundness case evaluate to non-zeros,
and hence will contribute a coordinate of magnitude l. This intuition is formalized below.

Proof of Lemma 10.10. Let Bsvp be the corresponding final lattice of (B,y, t) as described above.
Observe that given the NVP instance (B,y, t), we can construct Bsvp in poly(n, q, t)-time.

Moreover, observe that L(Bsvp) is simply {u ◦ (l · w) | u ∈ L(Bint), w ≡ rTu mod ρ}.
(Completeness) Suppose that λp(L(B),y)p 6 t. We will show that, with probability at least

0.8, λp(L(Bsvp))p 6 γ−1
p l. To do this, we first condition on the event that there exists at least Ng

good vectors as guaranteed by Lemma 10.12. Consider any two good vectors u1 6= u2. Since
each entry of u1 and u2 is of magnitude at most (γ−1

p l)1/p, they are pairwise independent modulo
ρ > 2l. Therefore, instantiating Lemma 5.8 from [Kho05] with the lower bound on the number
of good vectors Ng, and our choice of ρ, it follows that with probability at least 0.9, there exists
a good vector u such that rTu ≡ 0 mod ρ, i.e., u ◦ 0 belongs to L(Bsvp). Therefore, by union
bound, with probability at least 0.8 (over the randomness of Lemma 10.12 and the choice of r),
there exists a good u ∈ L(Bint) such that u ◦ 0 remains in L(Bsvp).

(Soundness) Suppose that λp(L(B),y)p > η · t. Consider any u ◦ (l · w) ∈ L(Bsvp). If
‖u ◦ (l · w)‖pp 6 l, it must be that ‖u‖pp 6 l and w = 0; the latter is equivalent to rTu ≡ 0
mod ρ. However, from Lemma 10.13, there are only Na bad vectors u in L(Bint). For each such
non-zero u, the probability that rTu ≡ 0 mod ρ is exactly 1/ρ. As a result, by taking union
bound over all such u 6= 0, we can conclude that, with probability at least 1 − Na/ρ > 0.9, we
have λp(L(Bsvp))p > l. This concludes our proof.

10.5 Discussion and Open Questions
In this chapter, we have shown the parameterized inapproximability of k-Minimum Distance Prob-
lem (k-MDP) and k-Shortest Vector Problem (k-SVP) in the `p norm for every p > 1 and their
non-homogeneous counterpart k-NCP and k-NVP, assuming (randomized) Gap-ETH.

An immediate open question is whether k-SVP in the `1 norm is in FPT:

Open Question 7. Is k-SVP in the `1 metric fixed-parameter tractable?

Khot’s reduction unfortunately does not work for `1; indeed, in the work of Haviv and Regev [HR07],
they arrive at the hardness of approximating SVP in the `1 norm by embedding SVP instances in
`2 to instances in `1 using an earlier result of Regev and Rosen [RR06]. The Regev-Rosen em-
bedding inherently does not work in the FPT regime either, as it produces non-integral lattices.
Similar issue applies to an earlier hardness result for SVP on `1 of [Mic00], whose reduction
produces irrational bases.

An additional question regarding k-SVP is whether we can prove hardness of approxima-
tion for every constant factor. In the conference version of the work that this chapter is based
on [Bha+18], this is shown for p = 2; however, the question remains open for p 6= 2. Please

CHAPTER 10. INAPPROXIMABILITY FROM GAP-ETH IV: EVEN SET AND SHORTEST
VECTOR PROBLEMS 202

refer to [Bha+18] for a more detailed discussion regarding the barrier to apply gap amplification
techniques of [Kho05; HR07], which yields NP-hardness of large factor for approximating SVP.

Furthermore, the Minimum Distance Problem can be defined for linear codes in Fp for any
larger field of size p > 2 as well. It turns out that our result does not rule out FPT algorithms for k-
MDP over Fp with p > 2. The issue here is that, in our proof of existence of LSDC (Lemma 10.9),
we need the co-dimension of the code to be small compared to its distance. In particular, the co-
dimension h −m has to be at most (d/2 + O(1)) logp h where d is the distance. While the BCH
code over binary alphabet satisfies this property, we are not aware of any linear codes that satisfy
this for larger fields. It is an intriguing open question to determine whether such codes exist, or
whether the reduction can be made to work without existence of such codes.

Since the current reductions for both k-MDP and k-SVP are randomized, it remains open
whether we can find deterministic reductions for these problems. As stated in the introduction,
even in the non-parameterized setting, NP-hardness of SVP through deterministic reductions is
not known. On the other hand, MDP is known to be NP-hard even to approximate under determin-
istic reductions; in fact, even the Dumer et al.’s reduction [DMS03] that we employ can be deran-
domized, as long as one has a deterministic construction for Locally Suffix Dense Codes [CW12a;
Mic14]. In our settings, if one can deterministically construct Sparse Covering Codes (i.e. deran-
domize Lemma 10.9), then we would also get a deterministic reduction for k-MDP.

Finally, to the best of our knowledge, there is no g(k)-FPT-approximation algorithm for any
function g for any of the four problems consider in this chapter. Hence, similar to k-UNIQUE SET

COVER, it remains open whether these problems are totally FPT inapproximable:

Open Question 8. Are k-NCP, k-NVP, k-MDP and k-SVP totally FPT inapproximable?

Of course, due to the reduction in 10.2, if we can show that k-UNIQUE SET COVER is totally
FPT inapproximable, then the total FPT inapproximability of k-NCP and k-NVP follow immedi-
ately. On the other hand, k-MDP and k-SVP seems to be much more challenging; all NP-hardness
of approximation proofs for the two problems proceed by showing a small factor inapproximabil-
ity, and then amplify the gap if possible. Such an approach is unlikely to even achieve a polynomial
ratio, let alone total inapproximability.

203

Part III

Problems in P

204

Chapter 11

Inapproximability in P: Closest Pair and
Maximum Inner Product

The Closest Pair of Points problem or Closest Pair problem (CP) is a fundamental problem in com-
putational geometry: given n points in a d-dimensional metric space, find a pair of distinct points
with the smallest distance between them. The Closest Pair problem for points in the Euclidean
plane [SH75; BS76] stands at the origins of the systematic study of the computational complex-
ity of geometric problems [PS85; Man89; KT05; Cor+09]. Since then, this problem has found
abundant applications in geographic information systems [Hen06], clustering [Zah71; Alp10], and
numerous matching problems (such as stable marriage [Won+07]).

The trivial algorithm for CP examines every pair of points in the point-set and runs in time
O(n2d). Over the decades, there have been a series of developments on CP in low dimensional
space for the Euclidean metric [Ben80; HNS88; KM95; SH75; BS76], leading to a determinis-
tic O(2O(d)n log n)-time algorithm [BS76] and a randomized O(2O(d)n)-time algorithm [Rab76;
KM95]. For low (i.e., constant) dimensions, these algorithms are tight as a matching lower bound
of Ω(n log n) was shown by Ben-Or [Ben83] and Yao [Yao91] in the algebraic decision tree model,
thus settling the complexity of CP in low dimensions. On other hand, for very high dimensions
(for example, when d = n) there are subcubic algorithms [GS17; Ind+04] in the `1, `2, and `∞-
metrics1 using fast matrix multiplication algorithms [Gal14]. However, CP in medium dimensions,
i.e., d = polylog(n), and in various `p-metrics, have been a focus of study in machine learning and
analysis of Big Data [Kle97], and it is surprising that, even with the tools and techniques that have
been developed over many decades, when d = ω(log n), there is no known subquadratic-time (i.e.,
O(2o(d)n2−ε)-time) algorithm, for CP in any standard distance measure [Ind00; AC09; Ind+04] .
The absence of such algorithms was explicitly observed as early as the late nineties by Cohen and
Lewis [CL99] but there was not any explanation until recently.

David, Karthik, and Laekhanukit [DKL18] showed that for all p > 2, assuming the Orthogonal
Vectors Hypothesis (OVH), for every ε > 0, no algorithm running in n2−ε time can solve CP in the
`p-metric, even when d = ω(log n). Their conditional lower bound was based on the conditional

1In fact, when d = n there are subcubic algorithms for every `p-metric, where p is even [Ind+04].

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 205

lower bound (again assuming OVH) of Alman and Williams [AW15] for the Bichromatic Closest
Pair problem2 (BCP) where we are given two sets of n points in a d-dimensional metric space,
and the goal is to find a pair of points, one from each set, with the smallest distance between
them. Alman and Williams showed that for all p ∈ R>1 ∪ {0}, assuming OVH, for every ε > 0,
no algorithm running in n2−ε time can solve BCP in the ω(log n)-dimensional `p-metric space.
Given that [AW15] show their lower bound on BCP for all `p-metrics, the lower bound on CP of
[DKL18] feels unsatisfactory, since the `2-metric is arguably the most interesting metric to study
CP on. On the other hand, the answer to the complexity of CP in the Euclidean metric might be
on the positive side, i.e., there might exist an algorithm that performs well in the `2-metric because
there are more tools available, e.g., Johnson-Lindenstrauss’ dimension reduction [JL84]. Thus we
have the following question:

Open Question 9 ([ARW17a]3[Wil18a; DKL18]). Is there an algorithm running in time n2−ε

for some ε > 0 which can solve CP in the Euclidean metric when the points are in ω(log n)
dimensions?

Even if the answer to the above question is negative, this does not rule out strong approximation
algorithms for CP in the Euclidean metric, which might suffice for all applications. Indeed, we do
know of subquadratic approximation algorithms for CP. For example, LSH based techniques can
solve (1 + δ)-CP (i.e., (1 + δ) factor approximate CP) in n2−Θ(δ) time [IM98], but cannot do much
better [MNP07; OWZ14]. In a recent breakthrough, Valiant [Val15] obtained an approximation
algorithm for (1 + δ)-CP with runtime of n2−Θ(√δ). The state of the art is an n2−Θ̃(δ1/3)-time
algorithm by Alman, Chan, and Williams [ACW16]. Can the dependence on δ be improved indef-
initely? For the case of (1 + δ)-BCP, assuming OVH, Rubinstein [Rub18] answered the question
in the negative. Does (1 + δ)-CP also admit the same negative answer?

Open Question 10. Is there an algorithm running in time n2−ε for some ε > 0 which can solve
(1 + δ)-CP in the Euclidean metric when the points are in ω(log n) dimensions for every δ > 0?

Another important geometric problem is the Maximum Inner Product problem (MIP): given
n points in the d-dimensional Euclidean space, find a pair of distinct points with the largest inner
product. This problem along with its bichromatic variant (Bichromatic Maximum Inner Prod-
uct problem, denoted BMIP) is extensively studied in literature (see [ARW17a] and references
therein). Abboud, Rubinstein, and Williams [ARW17a] showed that assuming OVH, for ev-
ery ε > 0, no 2(logn)1−o(1)-approximation algorithm running in n2−ε time can solve BMIP when
d = no(1). It is a natural question to ask if their inapproximability result can be extended to MIP:

Research Question 6. Is there an algorithm running in time n2−ε for some ε > 0 which can solve
γ-MIP in no(1) dimensions for even γ = 2(logn)1−o(1)

?
2We remark that BCP is of independent interest as it’s equivalent to finding the Minimum Spanning Tree in

`p-metric [Aga+91; KLN99]. Moreover, understanding the fine-grained complexity of BCP has lead to better un-
derstanding of the query time needed for Approximate Nearest Neighbor search problem (see Razenshteyn’s thesis
[Raz17] for a survey about the problem) with polynomial preprocessing time [Rub18].

3Please see the erratum in [ARW17b].

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 206

Our Results
In this chapter we address all three previously mentioned open questions. First, we almost com-
pletely resolve Open Question 9. In particular, we show the following.

Theorem 11.1 (Subquadratic Hardness of CP; Informal, See Theorem 11.20). Let p ∈ R>1 ∪{0}.
Assuming OVH, for every ε > 0, no algorithm running in n2−ε time can solve CP in the `p-metric,
even when d = (log n)Ωε(1).

In particular we would like to emphasize that the dimension for which we show the lower
bound on CP depends on ε. We would also like to remark that our lower bound holds even when
the input point-set of CP is a subset of {0, 1}d. Finally, we note that the centerpiece of the proof
of the above theorem (and also the proofs of the other results that will be subsequently mentioned)
is the construction of a dense bipartite graph with low contact dimension, i.e., we construct a
balanced bipartite graph on n vertices with n2−ε edges whose vertices can be realized as points in a
(log n)Ωε(1)-dimensional `p-metric space such that every pair of vertices which have an edge in the
graph are at distance exactly 1 and every other pair of vertices are at distance greater than 1. This
graph construction is inspired by the construction of locally dense codes introduced by Dumer,
Miccancio, and Sudan [DMS03] and uses special density properties of Reed Solomon codes. A
detailed proof overview is given in Section 11.1.1.

Next, we improve our result in Theorem 11.1 in some aspects by showing 1 + o(1) factor
inapproximability of CP even in Oε(log n) dimensions, but can only rule out algorithms running
in n1.5−ε time (as opposed to Theorem 11.1 which rules out exact algorithms for CP running in
n2−ε time). More precisely, we show the following.

Theorem 11.2 (Subquadratic Hardness of gap-CP). Let p ∈ R>1∪{0}. Assuming OVH, for every
ε > 0, there exists δ(ε) > 0 and c(ε) > 1 such that no algorithm running in n1.5−ε time that can
solve (1 + δ)-CP in the `p-metric, even when d = c log n.

We remark that the n1.5−ε lower bound on approximate CP is an artifact of our proof strategy
and that a different approach or an improvement in the state-of-the-art bound on the number of
minimum weight codewords in algebraic geometric codes (which are used in our proof), will lead
to the complete resolution of Open Question 10.

It should also be noted that the approximate version of CP and the dimension are closely
related. Namely, using standard dimensionality reduction techniques [JL84]4 for (1 + δ)-CP, one
can always assume that d = Oδ(log n). In other words, hardness of (1 + δ)-CP immediately yields
logarithmic dimensionality bound as a byproduct.

Finally, we completely answer Open Question 6 by showing the following inapproximability
result for MIP, matching the hardness for BMIP from [ARW17a].

Theorem 11.3 (Subquadratic Hardness of gap-MIP). Assuming OVH, for every ε > 0, no algo-
rithm running in n2−ε time can solve γ-MIP for any γ 6 2(logn)1−o(1)

, even when d = no(1).
4In fact, since our results apply to {0, 1}-vectors, simply subsampling coordinates would also work.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 207

Recently, there have been a lot of results connecting BCP or (1+o(1))-BCP to other problems
(see [Rub18; Che18a; Che18b; CW19]). Now such connections can be extended to CP as well.
For example, the following conditional lower bound follows from [Rub18] for gap-CP in the edit
distance metric and for completeness a proof is given in Appendix 11.7.

Theorem 11.4 (Subquadratic Hardness of gap-CP in edit distance metric). Assuming OVH, for
every ε > 0, there exists δ(ε) > 0 and c(ε) > 1 such that no algorithm running in n1.5−ε time can
solve (1 + δ)-CP in the edit distance metric, even when d = c log n log log n.

11.1 Proof Overview
In this section, we provide an overview of our proofs. For ease of presentation, we will sometimes
be informal here; all notions and proofs are formalized in subsequent sections. Our overview
is organized as follows. First, in Subsection 11.1.1, we outline our proof of running time lower
bounds for exact CP (Theorem 11.1). Then, in Subsection 11.1.2, we abstract part of our reduction
using error-correcting codes, and relate them back to the works on locally dense codes [DMS03;
CW12b; Mic14] that inspire our constructions. Finally, in Subsection 11.1.3, we briefly discuss
how to modify the base construction (i.e. code properties) to give conditional lower bounds for
approximate CP and MIP (Theorems 11.2 and 11.3).

11.1.1 Conditional Lower Bound on Exact Closest Pair
In this subsection, we provide a proof overview of a slightly weaker version of Theorem 11.1, i.e.,
we show that assuming SETH, for every p ∈ R>1∪{0}, no subquadratic time algorithm can solve
CP in the `p-metric when d = (log n)ω(1). We prove such a result by reducing BCP in dimension
d to CP in dimension d + (log n)ω(1), and the subquadratic hardness for CP follows from the
subquadratic hardness of BCP established by [AW15]. Note that the results in this chapter remain
interesting even if SETH is false, as our reduction shows that BCP and CP are computationally
equivalent5 (up to no(1) factor in the running time) when d = (log n)ω(1). The conditional lower
bound on CP is merely a consequence of this computational equivalence. Finally, we note that a
similar equivalence also holds between MIP and BMIP.

Understanding an obstacle of [DKL18]. Our proof builds on the ideas of [DKL18] who showed
that assuming SETH, for every p > 2, no subquadratic time algorithm can solve CP in the `p-
metric when d = ω(log n). They did so by connecting the complexity of CP and BCP via the
contact dimension of the balanced complete bipartite graph (biclique), denoted by Kn,n. We elab-
orate on this below.

5We can reduce an instance of CP to an instance of BCP by randomly partitioning the input set of CP instance
into two, and the optimal closest pair of points will be in different sets with probability 1/2 (and this reduction can be
made deterministic).

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 208

To motivate the idea behind [DKL18], let us first consider the trivial reduction from BCP to
CP: given an instance A,B of BCP, we simply output A∪B as an instance of CP. This reduction
fails because there is no guarantee on the distances of a pair of points both in A (or both in B).
That is, there could be two points a, a′ ∈ A such that ‖a− a′‖p is much smaller than the optimum
of BCP on A,B. If we simply solve CP on A ∪ B, we might find such a, a′ as the optimal pair
but this does not give the answer to the original BCP problem. In order to circumvent this issue,
one needs a gadget that “stretch” pairs of points both in A or both in B further apart while keeping
the pairs of points across A and B close (and preserving the optimum of BCP on A,B). It turns
out that this notion corresponds exactly to the contact dimension of the biclique, which we define
below.

Definition 11.5 (Contact Dimension [Pac80]). For any graph G = (V,E), a mapping τ : V → Rd

is said to realize G (in the `p-metric) if for some β > 0, the following holds for every distinct
vertices u, v:

‖τ(u)− τ(v)‖p = β if {u, v} ∈ E, and, (11.1)
‖τ(u)− τ(v)‖p > β otherwise. (11.2)

The contact dimension (in the `p-metric) of G, denoted by cdp(G), is the minimum d ∈ N such that
there exists τ : V → Rd realizing G in the `p-metric.

In this chapter, we will be mainly interested in the contact dimension of bipartite graphs.
Specifically, [DKL18] only consider the contact dimension of the biclique Kn,n. Notice that a
realization of biclique ensures that vertices on the same side are far from each other while vertices
on different sides are close to each other preserving the optimum of BCP; these are exactly the
desired properties of a gadget outlined above. Using this, [DKL18] give a reduction from BCP
to CP which shows that the two are computationally equivalent whenever d = Ω(cdp(Kn,n)), as
follows.

Let A,B ⊆ Rd each of cardinality n be an instance of BCP and let τ : A∪̇B → Rcdp(Kn,n) be
a map realizing the biclique (A∪̇B,A × B) in the `p-metric; we may assume w.l.o.g. that β = 1.
Let δ be the distance between any point in A and any point in B (i.e., δ is an upper bound on the
optimum of BCP). Let ρ > 0 be such that ‖τ(a)− τ(b)‖p > 1 + ρ for all a ∈ A,b ∈ B (and this
is guaranteed to exist by (11.2)). Moreover, let k > δ/ρ be any sufficiently large number. Consider
the point-sets Ã, B̃ ⊆ Rd+cdp(Kn,n) of cardinality n each defined as

Ã = {a ◦ (k · τ(a)) | a ∈ A}, B̃ = {b ◦ (k · τ(b)) | b ∈ B},

where ◦ denotes the concatenation between two vectors and k · x denotes the usual scalar-vector
multiplication (i.e. scaling x up by a factor of k). For brevity, we write ã and b̃ to denote a ◦ (k ·
τ(a)) and b ◦ (k · τ(b)) respectively.

We now argue that, if we can find the closest pair of points in Ã∪ B̃, then we also immediately
solve BCP for (A,B). More precisely, we claim that (a∗,b∗) ∈ A × B is a bichromatic closest
pair of (A,B) if and only if (ã∗, b̃∗) is a closest pair of Ã ∪ B̃.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 209

To see that this is the case, observe that, for cross pairs (ã, b̃) ∈ Ã× B̃, (11.1) implies that the
distance ‖ã− b̃‖p is exactly (kp+‖a−b‖pp)1/p; hence, among these pairs, (ã∗, b̃∗) is a closest pair
iff (a∗,b∗) is a bichromatic closest pair inA,B. Notice also that, since the bichromatic closest pair
inA,B is of distance at most δ, the closest pair in Ã∪B̃ is of distance at most (kp+δp)1/p 6 k+δ.

On the other hand, for pairs both from Ã or both from B̃, the distance must be at least k(1+ρ),
which is more than k + δ from our choice of k. As a result, these pairs cannot be a closest pair in
Ã ∪ B̃, and this concludes the sketch of the proof.

There are a couple of details that we have glossed over here: one is that the gap ρ cannot be
too small (e.g., ρ cannot be as small as 1/2n) and the other is that we should be able to construct τ
efficiently. Nevertheless, these are typically not an issue.

[DKL18] show that cdp(Kn,n) = Θ(log n) when p > 2 and that the realization can be con-
structed efficiently and with sufficiently large ρ. This implies the subquadratic hardness of CP (by
reduction from BCP) in the `p-metric for all p > 2 and d = ω(log n). However, it was known that
cd2(Kn,n) = Θ(n) [FM88]. Thus, they could not extend their conditional lower bound to CP in
the Euclidean metric6 even when d = o(n). In fact, this is a serious obstacle as it rules out many
natural approaches to reduce BCP to CP in a black-box manner. Elaborating, the lower bound on
cd2(Kn,n) rules out local gadget reductions which would replace each point with a composition
of that point and a gadget with a small increase in the number of dimensions, as such gadgets
can be used to construct a realization of Kn,n in the Euclidean metric in a low dimensional space,
contradicting the lower bound on cd2(Kn,n).

Overcoming the Obstacle: Beyond Biclique. We overcome the above obstacle by considering
dense bipartite graphs, instead of the biclique. More precisely, we show that there exists a balanced
bipartite graph G∗ = (A∗∪̇B∗, E∗) on 2n vertices such that |E∗| > n2−o(1) and cdp(G∗) is small
(i.e. cdp(G∗) 6 (log n)ω(1)). We give a construction of such a graph below but before we do so, let
us briefly argue why this suffices to show that BCP and CP are computationally equivalent (up to
no(1) multiplicative overhead in the running time) for dimension d = Ω(cdp(G∗)).

Let us consider the same reduction which produces Ã, B̃ as before, but instead of using a
realization of the biclique, we use a realization τ of G∗. This reduction is of course incorrect: if
(a∗,b∗) is not an edge in G∗, then ‖τ(a∗) − τ(b∗)‖p could be large and, thus the corresponding
pair of points (ã∗, b̃∗) ∈ Ã × B̃, may not be the closest pair. Nevertheless, we are not totally
hopeless: if (a∗,b∗) is an edge, then we are in good shape and the reduction is correct.

With the above observation in mind, consider picking a random permutation π of A ∪ B such
that π(A) = A and π(B) = B and then initiate the above reduction with the map (τ ◦ π) instead
of τ . Note that τ ◦ π is simply a realization of an appropriate permutation G′ of G∗ (i.e., G′ is
isomorphic to G∗). Due to this, the probability that we are “lucky” and (a∗,b∗) is an edge in G′

is p := |E|/n2; when this is the case, solving CP on the resulting instance would give the correct
6Note that plugging in the bound on cd2(Kn,n) in the result of [DKL18] yields that assuming SETH, no sub-

quadratic in n running time algorithm can solve CP when d = Ω(n). This is not a meaningful lower bound as just the
input size of CP when d = Ω(n) is Ω(n2).

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 210

answer for the original BCP instance. If we repeat this log n/p = no(1) times, we would find the
optimum of the original BCP instance with high probability.

To recap, even when G∗ is not a biclique, we can still use it to give a reduction from BCP to
CP, except that the reduction produces multiple (i.e. Õ(n2/|E∗|)) instances of CP. We remark
here that the reduction can be derandomized: we can deterministically (and efficiently) pick the
permutations so that the permuted graphs covers Kn,n (see Lemma 11.8). As a minor digression,
we would like to draw a parallel here with a recent work of Abboud, Rubinstein, and Williams
[ARW17a]. The obstacle raised in [DKL18] is about the impossibility of certain kinds of many-
one gadget reductions. We overcame it by designing a reduction from BCP to CP which not only
increased the number of dimensions but also the number of points (by creating multiple instances
of CP). This technique is also utilized in [ARW17a] where they showed the impossibility of Deter-
ministic Distributed PCPs (Theorem I.2 in [ARW17a]) but then overcame that obstacle by using an
advice (which is then enumerated over resulting in multiple instances) to build Non-deterministic
Distributed PCPs.

Constructing a dense bipartite graph with low contact dimension. We now proceed to con-
struct the desired graph G∗ = (A∗ ∪ B∗, E∗). Note that any construction of a dense bipartite
graph with contact dimension no(1) is non-trivial. This is because it is known that a random graph
has contact dimension Ω(n) in the Euclidean metric with high probability [RRS89; BL05], and
therefore our graph construction must be significantly better than a random graph.

Our realization τ ∗ of G∗ will map into a subset of {0, 1}(logn)ω(1) . As a result, we can fix p = 0,
since a realization of a graph with entries in {0, 1} in the Hamming-metric also realizes the same
graph in every `p-metric for any p 6=∞.

Fix g = ω(1). We associate [n] with Fhq where q = Θ ((log n)g) is a prime and
h = Θ

(
logn

g·log logn

)
. Let P be the set of all univariate polynomials (in x) over Fq of degree at

most h− 1. We have that |P| = qh = n and associate P with A∗. LetQ be the set of all univariate
monic polynomials (in x) over Fq of degree h, i.e.,

Q = {xh + p(x) | p(x) ∈ P}.

We associate the polynomials in Q with the vertices in B∗ (note that |Q| = n). In fact, we view
the vertices in A∗ and B∗ as being uniquely labeled by polynomials in P and Q respectively. For
notational clarity, we write pa (resp. pb) to denote the polynomial in P (resp. Q) that is associated
to a ∈ A∗ (resp. b ∈ B∗).

For every a ∈ A∗ and b ∈ B∗, we include (a, b) as an edge in E∗ if and only if the polynomial
pb−pa (which is of degree h) has h distinct roots. This completes the construction of G∗. We have
to now show the following two claims about G∗: (i) |E∗| = n2−O(1/g) = n2−o(1) and (ii) there is
τ : A∗∪̇B∗ → {0, 1}(logn)O(g) = {0, 1}(logn)ω(1) that realizes G∗.

To show (i), let R be the set of all monic polynomials of degree h with h distinct roots. We
have that |R| =

(
q
h

)
. Fix a vertex a ∈ A∗. Its degree in G∗ is exactly |R| =

(
q
h

)
. This is because,

for every polynomial r ∈ R, r + a belongs to Q, and therefore (a, r + a) ∈ E∗. This implies the

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 211

following bound on |E∗|:

|E∗| = qh ·
(
q

h

)
> qh · q

h

hh
>

n2

(log n)Θ((logn)/(g·log logn)) = n2−O(1/g).

Next, to show (ii), we construct a realization τ ∗ : A∗∪̇B∗ → Fqq of G∗. We note that, it is
simple to translate the entries to {0, 1} instead of Fq, by replacing i ∈ Fq with the i-th standard
basis ei ∈ {0, 1}q. This would result in a realization τ ∗ : A∗∪̇B∗ → {0, 1}q2 of G∗; notice that the
dimension of τ ∗ is q2 = Θ((log n)2g) as claimed.

We define τ ∗ as follows.

• For every a ∈ A∗, τ ∗(a) is simply the vector of evaluation of pa on every element in Fq.
More precisely, for every j ∈ [q], the j-th coordinate of τ ∗(a) is pa(j − 1).

• Similarly, for every b ∈ B∗ and j ∈ [q], the j-th coordinate of τ ∗(b) is pb(j − 1).

We now show that τ ∗ is indeed a realization of G∗; specifically, we show that τ ∗ satisfies (11.1)
and (11.2) with β = q − h.

Consider any edge (a, b) ∈ E∗. Notice that ‖τ ∗(a) − τ ∗(b)‖0 is the number of x ∈ Fq such
that pb(x)− pa(x) 6= 0. By definition of E∗, pb − pa is a polynomial with h distinct roots over Fq.
Thus, ‖τ ∗(a)− τ ∗(b)‖0 = q − h = β as desired.

Next, consider a non-edge (a, b) ∈ (A∗ × B∗) \ E∗ . Then, we know that pb − pa has at most
h − 1 distinct roots over Fq. Therefore, the polynomial pb − pa is non-zero on at least q − h + 1
coordinates. This implies that ‖τ ∗(a)− τ ∗(b)‖0 > q − h+ 1 > β.

Finally, for any distinct a, a′ ∈ A∗, we have ‖τ ∗(a) − τ ∗(a′)‖0 > q − h + 1 because pa − pa′
is a non-zero polynomial of degree at most h − 1 and thus can be zero over Fq in at most h − 1
locations. Similarly, ‖τ ∗(b)− τ ∗(b′)‖0 > q − h+ 1 for any distinct b, b′ ∈ B∗.

This completes the proof sketch for both the claims about G∗ and yields Theorem 11.1 for
d = (log n)ω(1). Finally we remark that in the actual proof of Theorem 11.1, we will set the
parameters in the above construction more carefully and achieve the bound cdp(G∗) = (log n)Oε(1).

11.1.2 Abstracting the Construction via Error-Correcting Codes
Before we move on to discuss the proofs of Theorems 11.3 and 11.2, let us give an abstraction of
the construction in the previous subsection. This will allow us to easily generalize the construction
for the aforemention theorems, and also to explain where our motivation behind the construction
comes from in the first place.

For notational convenient, we use “code” or “error-correcting code” to refer to a set of code-
words C rather than the mapping C throughout this chapter.

Dense Bipartite Graph with Low Contact Dimension from Codes. In order to construct a
balanced bipartite graph G∗ on 2n vertices with n2−o(1) edges such that cdp(G∗) 6 d∗, it suffices
to have a code C∗ with the following properties (for code-related definitions, see Section 2.7):

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 212

• C∗ ⊆ F`q of cardinality n is a linear code with block length `, and distance ∆ over alphabet
Fq.

• There exists a center s∗ ∈ F`q and r∗ < ∆ such that |C∗|1−o(1) codewords are at Hamming
distance exactly r∗ from s∗ and no codeword is at distance less than r∗ from s∗.

• q · ` = d∗.

We also require that C∗ and s∗ can be constructed in poly(n) time; such a requirement holds for all
the codes we use, and we shall ignore this requirement for the ease of exposition.

We describe below how to construct G∗ from C∗, but first note that the construction of G∗ we
saw in the previous subsubsection was just showing that Reed Solomon codes [RS60] of block
length q = Θ((log n)g) and message length h = Θ

(
logn

g·log logn

)
over alphabet Fq with distance

q − h + 1 has the above properties. The center s∗ in that construction was the evaluation of the
polynomial xh over Fq, and r∗ was q − h.

In general, to constructG∗ from C∗, we first define a subset S∗ ⊆ F`q of cardinality n as follows:

S∗ = {s∗ + c | c ∈ C∗}.

We associate the vertices in A∗ with the codewords of C∗ and vertices in B∗ with the strings in
S∗. For any (a,b) ∈ A∗ × B∗, let (a,b) ∈ E∗ if and only if ‖b − a‖0 = r∗. This completes the
construction of G∗. We have to now show the following claims about G∗: (i) |E∗| = n2−o(1) and
(ii) there is τ : A∗∪̇B∗ → {0, 1}q·` that realizes G∗.

Item (i) follows rather easily from the properties of C∗ and s∗. Let T ∗ be the subset of C∗ of
all codewords which are at distance exactly equal to r∗ from s∗. From the definition of s∗, we
have |T ∗| = |C∗|1−o(1). Fix a ∈ A∗. Its degree in G∗ is |T ∗| = |C∗|1−o(1). This is because for
every codeword t ∈ T ∗ we have that t− a is a codeword in C∗ (from the linearity of C∗) and thus
s∗ − t + a is in S∗, and therefore (a, s∗ − t + a) ∈ E∗.

For item (ii), consider the identity mapping τ ∗ : A∗∪̇B∗ → F`q that maps each string to itself.
It is simple to check that τ ∗ realizes G∗ in the Hamming metric (with β = r∗).

Recall from the previous subsection that given τ ∗ : A∗∪̇B∗ → F`q that realizes G∗ in the
Hamming metric, it is easy to construct τ : A∗∪̇B∗ → {0, 1}q·` that realizes G∗ in the Hamming
metric with a q multiplicative factor blow-up in the dimension. This completes the proof of both
the claims about G∗ and gives a general way to prove Theorem 11.1 given the construction of C∗
and s∗.

Finding Center from Another Code. One thing that might not be clear so far is: where does
the center s∗ come from? Here we provide a systematic way to produce such an s∗, by looking
at another code that contains C∗. More precisely, let C∗ ⊆ C̃∗ ⊆ F`q be two linear codes with the
same block length and alphabet. Suppose that the distance of C∗ is ∆, the distance of C̃∗ is r∗ and
that r∗ < ∆. It is easy to see that, by taking s∗ to be any element of C̃∗ \ C∗, it holds that every
codeword in C∗ is at distance at least r∗ from s∗, simply because s∗ and any codeword of C∗ are
two distinct codewords of C̃∗.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 213

Hence, we are only left to argue that there are many codewords of C∗ that is of distance exactly
r∗ from s∗. While this is not true in general, we can show by an averaging argument that this is
true (for some s∗ ∈ C̃∗) if a large fraction (e.g. |C∗|−o(1) fraction) of codewords of C̃∗ has Hamming
weight exactly r∗ (see Lemma 11.21).

Indeed, viewing in this light, our previous choice of center for Reed-Solomon code (i.e. evalu-
ation of xh) is not coincidental: we simply take C̃∗ to be another Reed-Solomon code with message
length h+ 1 (whereas the base code C∗ is of message length h).

Comparison to Locally Dense Codes. We end this subsection by remarking that the codes that
we seek are very similar to locally dense codes [DMS03; CW12b; Mic14], which is indeed our
inspiration. A locally dense code is a linear code of block length ` and large minimum distance ∆,
admitting a ball centered at s of radius7 r < ∆ and containing a large (i.e. exp(poly(`))) number
of codewords8. Such codes are non-trivial to construct and in particular all known constructions of
locally dense codes are using codes that beat the Gilbert-Varshamov (GV) bound [Gil52; Var57];
in other words we need to do better than random codes to construct them. This is because (as noted
in [DMS03]), for a random code C ⊆ F`q (or any code that does not beat the GV bound), a random
point in F`q acting as the center contains in expectation less than one codeword in a ball of radius
∆. Of course, this is simply an intuition and not a formal proof that a locally dense code needs to
beat the GV bound, since there may be more sophisticated ways to pick a center.

Although the codes we require are similar to locally dense codes, there are differences between
the two. Below we list four such differences: the first two makes it harder for us to construct our
codes whereas the latter two makes it easier for us.

• We seek a center s∗ so that no codewords in C∗ lies at distance less than r∗, as opposed to
locally dense codes which allows codewords to be close to s∗. This is indeed where our
idea of using another code C̃∗ ⊇ C∗ comes in, as picking s∗ from C̃∗ \ C∗ ensures us that no
codeword of C∗ is too close to s∗.

• Another difference is that we need the number of codewords at distance r∗ from s∗ to be
very large, i.e., |C∗|1−o(1), whereas locally dense codes allow for much smaller number of
codewords. Indeed, the deterministic constructions from [CW12b; Mic14] only yield the
bound of 2O(

√
log |C∗|). Hence, these do not directly work for us.

• Locally dense codes requires r to be at most (1− ε)∆ for some constant ε > 0, whereas we
are fine with any r∗ < ∆. In fact, our Reed-Solomon code based construction above only
yields r∗ = ∆ − 1 which would not suffice for locally dense codes. Nevertheless, as we
will see later for inapproximability of CP, we will also need the ratio r∗/∆ to be a constant

7Clearly, for the ball to contain more than a single codeword, it must be r > ∆/2. Here we are interested in balls
with radius not much bigger than that, say r < γ ·∆ for some constant 1/2 < γ < 1.

8Strictly speaking, a locally dense code also requires an auxiliary matrix T used to index these codewords. How-
ever, in previous works, finding T is typically not hard given the center s. Hence, we ignore T in our discussion here
for the ease of exposition.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 214

bounded away from 1 as well and, since we need a code with these extraordinary properties,
they are very hard to find. Indeed, in this case we only manage to prove a weaker lower
bound on gap-CP.

• Finally, we remark that locally dense codes are required to be efficiently constructed in
poly(log |C∗|) time, which is part of why it is hard to find. Specifically, while [DMS03]
shows that an averaging argument works for a random center, derandomizing this is a big
issue and a few subsequent works are dedicated solely to this issue [CW12b; Mic14]. On
the other hand, brute force search (over all codewords in C̃∗) suffices to find a center for us,
as we are allowed construction time of poly(|C∗|).

11.1.3 Inapproximability of Closest Pair and Maximum Inner Product
In this subsection, we sketch our inapproximability results for MIP and CP. Both these results
use the same reduction that we had from BCP to CP, except that we now need stronger properties
from the gadget, i.e., the previously used notions of contact dimension does not suffice anymore.
Below we sketch the required strengthening of the gadget properties and explain how to achieve
them.

Approximate Maximum Inner Product

Observe that the gadget we construct for CP in Subsection 11.1.2 can also be written in terms
of inner product as follows: there exists a dense balanced bipartite graph G∗ = (A∗∪̇B∗, E∗), a
mapping τ : A∗∪̇B∗ → {0, 1}q·` such that the following holds.

(i) For all edges (a, b) ∈ E∗, 〈τ(a), τ(b)〉 = `− r∗.

(ii) For all edges (a, b) ∈ (A∗ ×B∗) \ E∗, 〈τ(a), τ(b)〉 < `− r∗.

(iii) For all distinct a, b both from A∗ or both from B∗, 〈τ(a), τ(b)〉 6 `−∆.

Notice that we wrote the conditions above in a slightly different way than in previous subsections;
previously in the contact dimension notation, (ii) and (iii) would be simply written together as:
for all non-edge (a, b), 〈τ(a), τ(b)〉 < ` − r∗. This change is intentional, since, to get gap in our
reductions, we only need a gap between the bounds in (i) and (iii) (but not in (ii)). In particular, to
get hardness of approximating MIP, we require `−r∗

`−∆ to be at least (1 + ε) for some ε > 0.
From our Reed-Solomon construction above, `−∆ and `− r∗ are exactly the message length

of C∗ minus one and the message length of C̃∗ minus one respectively. Previously, we selected
these two to be h and h + 1. Now to obtain the desired gap, we simply take the larger code C̃∗ to
be a Reed-Solomon code with larger (i.e. (1 + ε)h) message length9.

9This approach can in fact give not just (1 + ε) but arbitrarily large constant gap between the two cases. In the
actual reduction, we take this gap to be 3 (Theorem 11.31), which makes some computations simpler.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 215

Finally, we note that even with the above gadget, the reduction only gives a small (i.e. 1+o(1))
factor hardness of approximating MIP (Theorem 11.31). To boost the gap to near polynomial, we
simply tensor the vectors with themselves (see Section 11.5).

Approximate Closest Pair

Once again, recall that we have the following gadget from Subsection 11.1.2: there exists a dense
balanced bipartite graph G∗ = (A∗∪̇B∗, E∗), a mapping τ : A∗∪̇B∗ → {0, 1}q·` such that the
following holds.

(i) For all edges (a, b) ∈ E∗, ‖τ(a)− τ(b)‖0 = r∗.

(ii) For all edges (a, b) ∈ (A∗ ×B∗) \ E∗, ‖τ(a)− τ(b)‖0 > r∗.

(iii) For all distinct a, b both from A∗ or both from B∗, ‖τ(a)− τ(b)‖0 > ∆.

Once again, we need an (1 + ε) gap between the bounds in (iii) and (i), i.e., ∆
r∗

. Unfortunately,
we cannot construct such codes using any of the Reed-Solomon code families. We turn to another
type of codes that beat the Gilbert-Varshamov bound: Algebraic- Geometric (AG) codes. Similar
to the Reed-Solomon code based construction, we take C∗ as an AG code and C̃∗ to be a “higher
degree” AG code; getting the desired gap simply means that the distance of C∗ must be at least
(1 + ε) times the distance of C̃∗.

Recall from Subsection 11.1.2 also that, to bound the density of G∗, we need a lower bound
on the number of minimum weight codewords of C̃∗. Such bounds for AG codes are non-trivial
and we turn to the bounds from [ABV01; Vlă18]. Unfortunately, this only gives G∗ with density
|C∗|−1/2−o(1), instead of |C∗|−o(1) as before. This is indeed the reason that our running time lower
bound for approximate CP is only n1.5−ε.

11.2 Additional Preliminaries

11.2.1 Singleton Bound
We will use the following standard bound from coding theory called the Singleton bound:

Theorem 11.6 (Singleton bound [Sin64]). For any linear [N,K,D]q code, K +D 6 N + 1.

11.2.2 Miscellaneous Tools
Covering Biclique by Isomorphic Graphs. A useful fact we use to derandomize our reductions
is that the biclique can be covered by any dense bipartite graph G with only a few graphs that are
isomorphic to G. To state this more formally, let us first define a few notions.

Definition 11.7. For any graph G = (VG, EG) and any permutation π : VG → VG, we use Gπ to
denote the graph (VGπ , EGπ) where the vertex set VGπ is equal to VG and EGπ = {(π(a), π(b)) |
(a, b) ∈ EG}.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 216

For brevity, we say that a permutation π : A∪̇B → A∪̇B of vertices of a bipartite graph
G = (A∪̇B,EG) is side-preserving if π(A) = A and π(B) = B.

We can now state the result as follows.

Lemma 11.8. For any bipartite graph G(A∪̇B,EG) where |A| = |B| = n and EG 6= ∅, there
exist side-preserving permutations π1, . . . , πk : A ∪B → A ∪B where k 6 2n2 lnn

|EG|
+ 1 such that

∪
i∈[k]

EGπi = EKn,n

Moreover, such permutations can be found in time O(n6 log n).

The proof strategy for Lemma 11.8 is similar to how the greedy approximation algorithms for
the set cover problem are analyzed: we show that at each step, we can pick a graph isomorphic
to G that covers at least |EG|/n2 fraction of the remaining edges of the biclique. By doing so,
we guarantee that the process ends in O(log n) · n2/|EG| steps. Note however that, there are
exponential number of isomorphisms and thus we cannot simply enumerate all isomorphisms to
find one that covers the desired fraction of uncovered edges. Nevertheless, it is not hard to see
that we can use the method of conditional expectation to find one such isomorphism in polynomial
time. This is formalized below.

Lemma 11.9. For any two bipartite graphs G = (A∪̇B,EG) and H = (A∪̇B,EH), there exists a
side-preserving permutation π : A∪̇B → A∪̇B such that

|EH ∩ EGπ | >
|EG| · |EH |
|A| · |B|

.

Moreover, such a permutation π can be found (deterministically) in O((|A|+ |B|)4) time.

Proof. Notice that, if we pick π|A and π|B randomly among all permutations of A and B respec-
tively, then, for a fixed (a, b) ∈ EH , the probability that (a, b) belongs to EGπ is |EG|

|A|·|B| . Thus,

Eπ [|EH ∩ EGπ |] = |EG| · |EH |
|A| · |B|

.

This proves the existence part of the claim. To deterministically find such a π, we use the method
of conditional expectation. Suppose A∪̇B = {1, . . . , n}. The algorithm works as follows:

1. Let Vassigned ← ∅.

2. For i = 1, . . . , n:

a) If i ∈ A, let Vcandidate = A \ Vassigned. Otherwise, if i ∈ B, let Vcandidate = B \ Vassigned.
b) For each k ∈ Vcandidate, compute the conditional expectation:

Eπ

|EH ∩ EGπ |
∣∣∣∣∣∣ π(i) = k ∧

i−1∧
j=1

π(j) = π∗(j)
 .

Let k∗ be the maximizer for the above conditional expectation. We set π∗(i) = k∗.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 217

3. Output π∗.

It is simple to see that the conditional expectation never decreases as we fill in the permutation.
As a result, we must have |EH ∩ EGπ | >

|EG|·|EH |
|A|·|B| as desired. Moreover, it is easy to see that the

conditional expectation can be computed in time O(|A| · |B|) because, for each edge (a, b) ∈ EH ,
we can compute the probability that (a, b) ∈ EGπ in O(1) time. As a result, the overall running
time of the algorithm is O((|A|+ |B|)4).

Finally using Lemma 11.9, we prove Lemma 11.8 using the strategy outlined earlier in this
section.

Proof of Lemma 11.8. We describe below an algorithm for finding π1, . . . , πk. It works as follows.

1. Let k ← 0.

2. While EH := EKn,n \ ∪
i∈[k]

EGπi is non-empty, do the following:

a) Let k ← k + 1.

b) Let H = (A∪̇B,EH).

c) Use the algorithm from Lemma 11.9 to find πk such that |EH ∩ EGπk | > |EH | ·
|EG|
n2 .

3. Output π1, . . . , πk.

It is obvious that the permutations are all side-preserving permutations and that the union of EGπi
over i ∈ [k] is equal to EKn,n . To see that k 6 2n2 lnn

|EG|
+ 1, observe that due to the guarantee of

Lemma 11.9, |EH | decreases by a multiplicative factor of (at most) (1− |EG|/n2) 6 e−|EG|/n
2 for

each permutation picked. Since the set EH remains non-empty after k−1 permutations are picked,
we have e−(k−1)·|EG|/n2 · n2 > 1, which implies that k 6 2n2 lnn/|EG|+ 1 as desired. Finally, the
bottleneck in the running time is Step 2c; we execute this step k times and each execution takes
O(n4) time. Thus, the total running time is O(nk) = O(n6 log n).

Translating Finite Fields Vectors to {0, 1}-Vectors. Another simple fact which was already
mentioned in the proof overview (Section 11.1) is that, we can embed Hamming metric on alphabet
of size q to Hamming metric on Boolean alphabet, with only q multiplicative factor blow-up in the
dimension:

Proposition 11.10. For any q,N ∈ N, and alphabet Σ such that |Σ| = q, there exists a mapping
ψ : ΣN → {0, 1}q·N such that, for all v1,v2 ∈ ΣN , we have ‖ψ(v1) − ψ(v2)‖0 = 2 · ∆(v1,v2)
and 〈ψ(v1), ψ(v2)〉 = N −∆(v1,v2).

Proof. The mapping ψ simply replaces each coordinate that is equal to j ∈ Σ by the j-th standard
basis in the q-dimensional space. More precisely, for v = (v1, . . . , vN) ∈ Fq, we define

ψ(v) = ev1 ◦ ev2 ◦ · · · ◦ evN ,

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 218

where ◦ denotes concatenation of vectors and ej denote the j-th standard basis in Rq, i.e., the vector
whose j-th coordinate is one and the remaining coordinates are zeroes.

It is simple to check that this satisfies the two requirements.

11.2.3 OVH-hardness of Exact Bichromatic Closest Pair
Alman and Williams [AW15] showed the conditional hardness (under OVH) of exact BCP in every
`p-metric even when the point-sets are over {0, 1} via a Turing reduction from OV. David, Karthik,
and Laekhanukit [DKL18] gave an alternate proof of the same result where point-sets were over R
via a many-one reduction from OV. For independent interest, below we give an alternative proof,
which is both a many-one reduction and the point-sets are over {0, 1}.

Theorem 11.11. Assuming OVH, for every ε > 0, no algorithm running in time n2−ε can solve
BCP, even when the point-sets A,B are subsets of {0, 1}d and d = cε log n, for some constant
cε > 1 (only depending on ε).

Proof. Let A,B ⊆ {0, 1}d where |A| = |B| = n be the input to an OV instance. We build an
instance (A′, B′, α) of BCP where A′, B′ ⊆ {0, 1}5d, |A| = |B| = n, and α = 2d, using functions
TA and TB guaranteed by the following claim.

Claim 11.12. There are functions TA, TB : {0, 1} → {0, 1}5 such that for every x, y ∈ {0, 1} we
have:

• x · y = 0 implies ‖TA(x)− TB(y)‖0 = 2.

• x · y = 1 implies ‖TA(x)− TB(y)‖0 = 4.

For every i ∈ [n], the ith point ofA′, say a′ is constructed from the ith point ofA, say a by simply
applying TA pointwise on each coordinate of a, i.e., a′ = (TA(a1), . . . , TA(ad)). Similarly we apply
TB pointwise on each coordinate of points in B. It is easy to see that there exists (a′i, b′j) ∈ A′×B′
such that ‖a′i − b′j‖0 = 2d if and only if 〈ai, bj〉 = 0, and otherwise every pair of points in A′ ×B′
is at Hamming distance at least 2d+ 2.

Proof of Claim 11.12. We define for all x, y ∈ {0, 1}, TA(x) = (TA(x)0,0, TA(x)0,1, TA(x)1,0, x, 0)
and TB(y) = (TB(y)0,0, TB(y)0,1, TB(y)1,0, 0, y), where for all i, j ∈ {0, 1} such that i · j = 0, we
have TA(x)i,j = 1 if and only if x = i and TB(y)i,j = 1 if and only if y = j. More succinctly, TA
and TB are described below as strings and the claim follows by a straight-forward calculation.

TA(0) = 11000 TA(1) = 00110TB(0) = 10100 TB(1) = 01001

11.2.4 Contact Dimension of a Graph
The central gadget in our reduction from BCP to CP is based on the contact dimension of a graph.
Below we reproduce its definition from the proof overview (i.e. Definition 11.5) for convenience.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 219

Definition 11.13 (Contact Dimension [Pac80]). For any graph G = (V,E), a mapping τ : V →
Rd is said to realize G (in the `p-metric) if for some β > 0, the following holds:

(i) For all (u, v) ∈ E, ‖τ(u)− τ(v)‖p = β.

(ii) For all (u, v) /∈ E, ‖τ(u)− τ(v)‖p > β.

The contact dimension (in the `p-metric) of G, denoted by cdp(G), is the minimum d ∈ N such that
there exists τ : V → Rd realizing G in the `p-metric.

We may also say that τ β-realizes G if we wishes to emphasize the value of β.
Note here that we may view points in τ(V) as centers of spheres of radius β/2. No two spheres

overlap but they may touch, and G has an edge (u, v) if and only if the spheres centered at τ(u)
and τ(v) touches.

For a summary of the bounds on cd(G) for various graphs in the Euclidean metric see [Mae85;
FM86; FM88; Mae91] and for a summary of the bounds on cd(Kn,n) in various metrics see
[DKL18]. For this chapter, the following bounds are relevant.

Theorem 11.14 (Frankl-Maehara [FM88]). (1.286)n− 1 < cd2(Kn,n) < (1.5)n.

Theorem 11.15 (David-Karthik-Laekhanukit [DKL18]). cd0(Kn,n) = n.

In particular, the above two theorems are the obstacles of the approach of [DKL18] for the `2
and Hamming metrics respectively. As discussed in the proof overview, we will overcome these
barriers by constructing dense bipartite graphs with low contact dimensions in every `p metrics.

As discussed in Section 11.1.3, we need a generalization of contact dimension in order to show
inapproximability for CP. This is formally defined below; it should be noted that the definition only
makes sense for bipartite graphs, whereas the original contact dimension is well-defined for any
graphs. Moreover, when λ = 1, the notion of gap contact dimension coincides with the (non-gap)
contact dimension in bipartite graphs.

Definition 11.16 (Gap Contact Dimension). For any bipartite graph G = (A∪̇B,E) and λ > 1, a
mapping τ : V → Rd is said to λ-gap-realize G (in the `p-metric) if for some β > 0, the following
holds:

(i) For all (u, v) ∈ E, ‖τ(u)− τ(v)‖p = β.

(ii) For all (u, v) ∈ (A×B) \ E, ‖τ(u)− τ(v)‖p > β.

(iii) For all distinct u, v both from A or both from B, ‖τ(u)− τ(v)‖p > λ · β.

The λ-gap contact dimension (in the `p-metric) of G, denoted by λ-cdp(G), is the minimum d ∈ N
such that there exists τ : V → Rd λ-gap-realizing G in the `p-metric.

Again, we may say that τ (β, λ)-gap-realizes G to emphasize the value of β.
Finally, we define an analogous notion for inner product:

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 220

Definition 11.17 (Gap Inner Product Dimension). For any bipartite graph G = (A∪̇B,E) and
λ > 1, a mapping τ : V → Rd is said to λ-gap-IP-realize G if for some β > 0, the following
holds:

(i) For all (u, v) ∈ E, 〈τ(u), τ(v)〉 = β.

(ii) For all (u, v) ∈ (A×B) \ E, 〈τ(u), τ(v)〉 < β.

(iii) For all distinct u, v both from A or both from B, 〈τ(u), τ(v)〉 < β/λ.

The λ-gap inner product dimension of G, denoted by λ-ipd(G), is the minimum d ∈ N such that
there exists τ : V → Rd λ-gap-IP-realizing G.

We may say that τ (β, λ)-gap-IP-realizes G to emphasize the value of β.

11.3 Lower Bound on (Exact) Closest Pair under OVH
In this section, we prove the subquadratic hardness for CP (assuming OVH) using the efficient
construction of a realization of a dense bipartite graph. The construction will be be formally stated
below and the details will be given in Section 11.4.2. First, we define the notion of a log-dense
sequence of integers:

Definition 11.18. A sequence (ni)i∈N of increasing positive integers is said to be log-dense if there
exists a constant C > 1 such that log ni+1 6 C · log ni for all i ∈ N.

As outlined in Section 11.1.1 , we use Reed-Solomon codes to construct a family of dense
bipartite graphs with low contact dimensions. While the construction does not yield a graph for
every number of vertices n, it does yield a graph for a log-dense sequence of numbers of vertices,
which turns out to be sufficient for the purpose of the reduction. More formally, we will prove the
following in Section 11.4.2.

Theorem 11.19. For every 0 < δ < 1, there exists a log-dense sequence (ni)i∈N such that, for
every i ∈ N, there is a bipartite graph Gi = (Ai∪̇Bi, Ei) where |Ai| = |Bi| = ni and |Ei| >
Ω(n2−δ

i), such that cd(Gi) = (log ni)O(1/δ). Moreover, for all i ∈ N, a realization τ : Ai∪̇Bi →
{0, 1}(logni)O(1/δ)

of Gi can be constructed in time n2+o(1)
i .

Notice that we did not specify any `p-metric in the notion of contact dimension above. This
is intentional, because our point sets τ(Ai∪̇Bi) have coordinate entries in {0, 1}, for which the
distances in the Hamming metric are equivalent (up to power of p) to distances in any `p-metric
(p 6=∞). We also adopt this notational convenience below. Specifically, we will prove the follow-
ing theorem which states that CP is hard even when the points are from {0, 1}d; clearly, this also
implies Theorem 11.1 due to the aforementioned equivalence to other `p-metrics.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 221

Theorem 11.20 (Subquadratic Hardness of {0, 1}-CP). Assuming OVH, for every ε > 0, there
exists sε > 0 such that no algorithm running in O(n2−ε) time can solve CP in the Hamming metric
even when d = (log n)sε and all points have {0, 1} entries.

Proof. For any ε > 0, let Cexp be the constant such that the dimension guarantee for τ in Theo-
rem 11.19 is at most (log ni)Cexp/ε for δ = ε/2. We define sε as 2 · Cexp/ε+ 2.

Assume that there exists ε > 0 and an algorithm A that can solve CP in time n2−ε in the
Hamming metric for any input of n points in {0, 1}(logn)sε . We will construct an algorithm A′ that
solves any instance of BCP in time n2−ε′ for some constant ε′ > 0 (to be specified below), on n
points in dimension d := cε′ · log nwith coordinate entries in {0, 1}. Together with Theorem 11.11,
this implies that OVH is false, arriving at a contradiction.

Let Cε denote the log-density constant (i.e. sup
i

logni+1
logni) of the sequence from Theorem 11.19

for δ = ε/2, and let ε′ be 0.01 · ε/Cε. The algorithm A′ on input (A,B, α) where A,B ⊆ {0, 1}d,
with |A| = |B| = n, and α ∈ [d], works as follows:

1. Let n′ be the largest number in the sequence from Theorem 11.19 with δ = ε/2 s.t. n′ 6 n0.1.

2. Let G′ = (A′∪̇B′, E ′) be the graph from Theorem 11.19 with |A′| = |B′| = n′, |E ′| >
Ω((n′)2−δ), and τ : A′∪̇B′ → {0, 1}(logn′)Cexp/ε be a β-realization of G′ where β ∈ N.

3. We use the algorithm from Lemma 11.8 to find π1, . . . , πk where k = O((n′)δ log n′) such
that the union of EG′π1

, . . . , EG′πk is EKn′,n′ .

4. We assume w.l.o.g.10 that n is divisible by n′. Partition A and B into A1, . . . , An/n′ and
B1, . . . , Bn/n′ each of size n′. For each i, j ∈ [n/n′], t ∈ [k], do the following:

a) Let τt be an appropriate permutation of τ that β-realizes G′πt . Label the vertices of G′πt
with the points in Ai∪̇Bj .

b) Let α′ = α + (d+ 1) · β, and define Ati, B
t
j as

Ati = {a ◦ (1d+1 ⊗ τt(a)) | a ∈ Ai}, Bt
j = {b ◦ (1d+1 ⊗ τt(b)) | b ∈ Bj}

where 1d+1 ⊗ v simply denotes v ◦ v ◦ · · · ◦ v, i.e., the concatenation of d + 1 copies
of v.

c) Run A on (Ati∪̇Bt
j, α

′). If A outputs YES, then output YES and terminate.

5. If none of the executions of A returns YES, then output NO.

Observe that the bottleneck in the running time of the algorithm is in the executions of A. The
number of executions is (n/n′)2 · k and each execution takes O((n′)2−ε) time. Hence, in total the

10This is without loss of generality, since if n is not divisible by n′, we can use brute force for the remainder points.
This requires only O(n · n′ · logn) = O(n1.1 logn) which does not affect the overall asymptotic running time of the
algorithm.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 222

running time of the algorithm A′ is O((n/n′)2 · k · (n′)2−ε) 6 O(n2 log n · (n′)−ε/2). Now, from
the log-density of the sequence from Theorem 11.19, we have n′ > n0.1/Cε = n10ε′/ε. As a result,
the running time of A is at most O(n2−5ε′ log n) 6 O(n2−ε′) as desired.

To see the correctness of the algorithm, first observe that the dimensions of vectors in Ati, B
t
j

are at most d + (d + 1) · (log n′)Cexp/ε which is at most (log n)sε for any sufficiently large n; that
is, the calls to A are valid. Next, observe that, if (A,B, α) is a YES instance of BCP, there must
be i, j ∈ [n/n′] and a∗ ∈ Ai,b∗ ∈ Bj such that ‖a∗ − b∗‖0 is at most α. Since G′π1 , . . . , G

′
πk

covers Kn′,n′ , there must be t ∈ [k] such that ‖τt(a∗)− τt(b∗)‖0 = β. As a result, ‖(a∗ ◦ (1d+1 ⊗
τt(a∗)))− (b∗ ◦ (1d+1⊗ τt(b∗)))‖0 6 α+ (d+ 1) · β = α′. Thus, (Ati ∪Bt

j, α
′) is a YES instance

for CP and A′ outputs YES as desired.
Finally, assume that (A,B, α) is a NO instance of BCP. Consider any i, j ∈ [n/n′] and t ∈ [k].

To argue that (Ati∪Bt
j, α

′) is a NO instance for CP, we have to show that any two points inAti∪Bt
j

have distance more than α′. To see this, let us consider two cases.

1. Both points are either from Ati or from Bt
j . Assume w.l.o.g. that the two points are from Ati;

let them be a ◦ (1d+1 ⊗ τt(a)) and a′ ◦ (1d+1 ⊗ τt(a′)). Recall that, from the definition of
β-realization, ‖τt(a) − τt(a′)‖0 > β. Since ‖τt(a) − τt(a′)‖0 is an integer, we must have
‖τt(a) − τt(a′)‖0 > β + 1. As a result, the Hamming distance between the two points is at
least (d+ 1) · (β + 1) > d+ (d+ 1) · β = α′.

2. One of the point is from Ati and the other from Bt
j . Let them be a ◦ (1d+1 ⊗ τt(a)) and

b ◦ (1d+1 ⊗ τt(b)). Since (A,B, α) is a NO instance of BCP, ‖a − b‖0 > α. Furthermore,
from definition of β-realization, we must have ‖τt(a) − τt(b)‖0 > β. Combining the two
implies that the Hamming distance between a ◦ (1d+1 ⊗ τt(a)) and b ◦ (1d+1 ⊗ τt(b)) is
more than α′.

Hence, (Ati∪̇Bt
j, α

′) must be a NO instance for CP for every t ∈ [k] and i, j ∈ [n/n′]. Thus, A′
outputs NO as desired.

11.4 Gadget Constructions
In this section, we construct all the gadgets that are used in our reductions, including the basic
gadget (Theorem 11.19) and more advanced gadgets used for MIP and approximate version of
CP.

11.4.1 Finding a Center of a Code via Another Code
At the heart of all our gadgets is the task of finding a code C1 and a center s such that there are
|C1|1−o(1) many codewords at Hamming distance exactly equal to r (for some r > 0) from s but
there is no codeword in C1 at distance less than r from s. The below lemma is useful in finding
such an s.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 223

Lemma 11.21. Let C1 ⊆ C2 ⊆ FNq be two linear codes with the same block length N and alphabet
Fq such that ∆(C2) < ∆(C1). Then, there exists a center s ∈ FNq such that (1) ∆(s, C1) > ∆(C2)
and (2) |B(s,∆(C2))∩C1|/|C1| > A∆(C2)(C2)/|C2|. Moreover, given C1, C2, such an s can be found
in O(|C1| · |C2| · qN) time.

Proof. We show that there exists s ∈ C2 \ C1 such that (2) holds. Note that (1) immediately holds,
because s− c must be a non-zero codeword of C2 which implies that ∆(s, c) > ∆(C2).

To show that there exists s ∈ C2 \ C1 such that |B(s,∆(C2)) ∩ C1| > |C1| · A∆(C2)/|C2|. We
will in fact show a stronger statement: for a random s ∈ C2 \ C1, we have E[|B(s,∆(C2)) ∩ C1|] >
|C1| · A∆(C2)/|C2|. Consider Es∈C2\C1 [|B(s,∆(C2)) ∩ C1|]. Due to linearity of expectation, we have

Es∈C2\C1 [|B(s,∆(C2)) ∩ C1|] =
∑
c∈C1

Pr
s∈C2\C1

[c ∈ B(s,∆(C2))]

=
∑
c∈C1

Pr
s∈C2\C1

[∆(s− c) 6 ∆(C2)]

=
∑
c∈C1

Pr
s∈C2\C1

[∆(s) 6 ∆(C2)]

= |C1| ·
|(C2 \ C1) ∩ B(0,∆(C2))|

|C2 \ C1|
.

Now, since ∆(C1) > ∆(C2), we have C1∩B(0,∆(C2)) = {0}. That is, |(C2 \C1)∩B(0,∆(C2))| =
|(C2 \ {0}) ∩ B(0,∆(C2))| = A∆(C2)(C2). Plugging this back into the above equality, we have

Es∈C2\C1 [|B(s,∆(C2)) ∩ C1|] = |C1| ·
A∆(C2)(C2)
|C2 \ C1|

> |C1| ·
A∆(C2)(C2)
|C2|

.

Thus, there must exist a center s ∈ C2 \ C1 that satisfies (2) (and also (1)) as desired.
Finally, note that s can be found by a brute force algorithm that tries every s ∈ C2 and check

whether (2) is satisfied; this algorithm takes O(|C1| · |C2| · qN) time.

11.4.2 Gadgets based on Reed-Solomon Codes
In this subsection, we construct gadgets based on the Reed Solomon codes, which are defined
below.

Theorem 11.22 (Reed-Solomon Codes). For every prime power q, and every K 6 N 6 q, there
exists a [N,K,N − K + 1]q linear code, denoted by RSq[N,K]. The generator matrix of this
code can be computed in time poly(N,K, q). Moreover, for every q > N > K2 > K1, we have
RSq[N,K1] ⊆ RSq[N,K2].

In order to find a good center s, we use the following (well-known) bound on the number of
minimum weight codewords of Reed Solomon codes (and more generally MDS codes). For a
reference of this bound, see e.g. [MS77, Ch. 11, Theorem 6].

Lemma 11.23. Let C be any linear [N,K,D]q code that is MDS. Then, AD(C) =
(

N
K−1

)
· (q − 1).

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 224

The Basic Gadget: Dense Bipartite Graphs with Low Contact Dimensions

Now we construct a dense bipartite graph with low contact dimension. A proof sketch of this
construction was provided in Section 11.1.1 and was formally stated as Theorem 11.19.

Proof of Theorem 11.19. Let qi be the i-th prime number and let ni = (qi)(bqδi c); it is simple to
see that the sequence (ni)i∈N is log-dense. For q = qi, consider the Reed-Solomon codes C1 =
RSq[q,K1] and C2 = RSq[q,K2] where K1 = bqδc and K2 = K1 + 1. Applying Lemma 11.21 with
(C1, C2) implies that there exists a center s ∈ C2 such that

|B(s,∆(C2)) ∩ C1|
|C1|

>
A∆(C2)

|C2|

(By Lemma 11.23) =

(
q

K2−1

)
· (q − 1)
qK2

>

(
q

K2−1

)K2−1
· (q − 1)

qK2

= q − 1
q
·
(1
K2 − 1

)K2−1

= q − 1
q
· 1
KK1

1

>
1
2 ·

1
qδK1

= Ω(|C1|−δ),

where the last equality follows from the fact that |C1| = qK1 .
We construct the graph Gi = (Ai, Bi, Ei) and a realization τ as follows. Let Ai = C1, Bi =

{s + c | c ∈ C1} and Ei = {(a,b) ∈ Ai × Bi | ∆(a,b) = ∆(C2)}. Gi can be easily realized
by applying the mapping ψ : Fqq → {0, 1}q

2 from Proposition 11.10. More precisely, let τ be
the restriction of ψ on Ai ∪ Bi. Below we argue about the density of Gi and that τ is a 2∆(C2)-
realization of Gi.

• First, notice that |Ei| is exactly |C1| · |B(s,∆(C2)) ∩ C1| > Ω(|C1|2−δ) = Ω(n2−δ
i).

• Second, notice that, for every v1,v2 both from Ai or both from Bi, we have v1 − v2 ∈
C1 \ {0}. This implies that ‖τ(v1)− τ(v2)‖0 = 2∆(v1,v2) > 2∆(C1) > 2∆(C2).

• Third, for every a ∈ Ai and b ∈ Bi, we have a − b ∈ C2 \ {0}. Thus, ∆(a,b) > ∆(C2).
Hence, ‖τ(a) − τ(b)‖0 = 2∆(a,b) > 2∆(C2). Moreover, the inequality is an equality if
and only if ∆(a,b) = ∆(C2), i.e., (a,b) ∈ Ei as desired.

• Finally, observe that the dimension is q2 = (log ni)O(1/δ).

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 225

As for the running time of constructingGi and τ , observe that the bottleneck is the running time
needed to find the center s; according to Lemma 11.21, s can be computed in O(|C1| · |C2| · q2) =
O(n2

i · q2), which is n2+o(1)
i as desired.

A Gadget for Maximum Inner Product

Now, we build gadgets (stated below) which will be used for proving the inapproximability of
MIP.

Theorem 11.24. For every 0 < δ < 1, there exists a log-dense sequence (ni)i∈N such that, for
every i ∈ N, there is a bipartite graph Gi = (Ai∪̇Bi, Ei) where |Ai| = |Bi| = ni and |Ei| >
Ω(n2−δ

i), such that 3-ipd(G) = (log ni)O(1/δ). Moreover, for all i ∈ N, a 3-gap-IP-realization
τ : Ai∪̇Bi → {0, 1}(logni)O(1/δ)

of Gi can be constructed in time n4+o(1)
i .

Proof. The proof here is exactly the same as the proof of Theorem 11.19, except that we will not
pick K2 = K1 + 1, but rather pick K2 > 3K1 (and ni accordingly).

More precisely, let qi be the i-th prime number and let ni = (qi)(bq0.3δ
i /3c); it is simple to

see that the sequence (ni)i∈N is log-dense. For q = qi, consider the Reed-Solomon codes C1 =
RSq[q,K1] and C2 = RSq[q,K2] where K1 = bq0.3δ/3c and K2 = 3K1 + 1. Similar to the proof of
Theorem 11.19, applying Lemma 11.21 with (C1, C2) implies that there exists s ∈ C2 \ C1 such that

|B(s,∆(C2)) ∩ C1|
|C1|

>
q − 1
q
·
(1
K2 − 1

)K2−1
= q − 1

q
· 1

(3K1)(3K1) >
1
2 ·

1
qδK1

= Ω(|C1|−δ).

We construct the graph Gi = (Ai, Bi, Ei) and a realization τ as follows. Let Ai = C1, Bi =
{s + c | c ∈ C1} and Ei = {(a,b) ∈ Ai × Bi | ∆(a,b) = ∆(C2)}. Gi can be easily 3-gap-
IP-realized by applying the mapping ψ : Fqq → {0, 1}q

2 from Proposition 11.10. More precisely,
let τ be the restriction of ψ on Ai ∪ Bi. Below we argue about the density of Gi and that τ is a
(K2 − 1, 3)-gap-IP-realization of Gi.

• First, notice that |Ei| is exactly |C1| · |B(s,∆(C2)) ∩ C1| > Ω(|C1|2−δ) = Ω(n2−δ
i).

• Second, for every v1,v2 both from Ai or both from Bi, we have v1 − v2 ∈ C1 \ {0}. Thus,
〈τ(v1), τ(v2)〉 = q −∆(v1,v2) 6 q −∆(C1) = K1 − 1 < (K2 − 1)/3.

• Third, for every a ∈ Ai and b ∈ Bi, we have a − b ∈ C2 \ {0}. Thus, ∆(a,b) > ∆(C2).
Hence, 〈τ(a), τ(b)〉 = q −∆(a,b) 6 q −∆(C2) = K2 − 1. Moreover, the inequality is an
equality if and only if ∆(a,b) = ∆(C2), i.e., (a,b) ∈ Ei as desired.

• Finally, observe that the dimension is q2 = (log ni)O(1/δ).

Once again, the running time of the construction is O(|C1| · |C2| · q2) 6 n
4+o(1)
i .

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 226

11.4.3 Gadgets based on AG Codes
In this subsection, we construct gadgets based on algebraic geometric (AG) codes. The definitions
of AG Codes are well beyond the scope of this work and we refer the readers to [Sti08; VNT07]
for more thorough introductions.

Once again to find a good center, we need a bound on the number of minimum weight code-
words. On this front, we use the following bound11 from [Vlă18]. Throughout this subsection, we
follow the notations from [Vlă18].

Theorem 11.25 (Theorem 4.3 of [Vlă18]). Let q be a prime power, X be a curve of genus g over
Fq, let S ⊆ X(Fq) such that |S| = N , and let a ∈ N with 1 6 a 6 N − 1. Then, there exists an
Fq-positive divisor D > 0, deg(D) = a, such that the corresponding AG Code C = C(X,D, S)
has minimum distance N − a and

AN−a(C) >

(
N
a

)
(√q + 1)2g .

We also need the following well-known (central) fact about the parameters of AG codes.

Theorem 11.26. Let q be a prime power,X be a curve of genus g over Fq, let S ⊆ X(Fq) such that
|S| = N , and let a ∈ N with 1 6 a 6 N−1. Then, the corresponding AG CodeC = C(X,D, S) is
a linear code over Fq with block lengthN , distance at leastN−a and message length k > a−g+1.

Recall also the tower of functions of Garcia and Stichtenoth [GS96], whose parameters ap-
proach the TVZ bound. We note here that, it suffices for us to have the genus approaching
Ω(N/√q) and there are also other curves that satisfy this.

Theorem 11.27 ([GS96]). For any ζ > 0 and any square of prime q, there exists a dense se-
quence12 (Ni)i∈N such that there exists a curve Xi with genus at most Ni√

q−1 + ζ where |Xi(Fq)| >
Ni.

Plugging the bound from [Vlă18] into the above family of curves immediately yields the fol-
lowing:

Lemma 11.28. For any ζ > 0 and any square of prime q, there exists a dense sequence (Ni)i∈N
such that the following holds. For any i ∈ N and any a1, a2 ∈ N such that 1 6 a1 < a2 6 Ni − 1,
there exist linear codes C1 ⊆ C2 ⊆ FNiq such that the following holds, where gi = Ni√

q−1 + ζ:

• C1 has message length at least a1 − gi + 1 and distance at least Ni − a1.
11Note that most of the proof of this bound was from [ABV01]; [Vlă18] simply makes the bound more explicit,

which is more convenience for us.
12A sequence (Ni)i∈N of increasing positive integers is said to be dense if there exists a constant C > 1 such that

Ni+1 6 C ·Ni for all i ∈ N.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 227

• C2 has message length at least a2 − gi + 1 and distance exactly Ni − a2 and

ANi−a2(C2) >

(
Ni
a2

)
(√q + 1)2gi

. (11.3)

Moreover, the generator matrices of C1, C2 can be computed inO
((

N+a2−1
a2

)
· |C2| · poly(Ni)

)
time.

Proof. Let (Ni)i∈N be a dense sequence as in Theorem 11.27. From Theorem 11.25, there exists an
Fq-positive divisor D2 of degree a2 such that the corresponding code C2 = C(Xi, D2, Si) (where
S ⊆ Xi(Fq) of size Ni) satisfies (11.3) and that its distance is Ni − a2; from Theorem 11.26, its
message length must also be at least a2 − gi + 1. Next, let D1 be any Fq-positive divisor of degree
a1 such that D2 − D1 > 0. Let C1 = C(Xi, D1, Si) be the corresponding AG code; once again,
Theorem 11.26 yields the desired bounds on its message length and distance. Finally, observe that
D2 −D1 > 0 implies that C1 ⊆ C2 as desired.

The main bottleneck to algorithmically construct such codes lies in finding D2. Nevertheless,
the total number of degree-a2 Fq-positive divisor is only

(
Ni+a2−1

a2

)
. We can use brute force to

enumerate all of them and check whether the corresponding code satisfies (11.3), which further
takes |C2| time. This results in the claimed running time.

Finally, we can now construct our gadgets, by an appropriate setting of parameters. In particu-
lar, a1 and a2 will be selected to be close to each other and to both be slightly larger than N/

√
q.

This results in the graphs whose degrees are roughly square root of the number of vertices.

Theorem 11.29. For every 0 < δ < 1, there exist µ > 0 and a log-dense sequence (ni)i∈N such
that, for every i ∈ N, there is a bipartite graph Gi = (Ai∪̇Bi, Ei) where |Ai| = |Bi| = ni and
|Ei| > Ω(n1.5−δ

i), such that (1 + µ)-cd(G) = O(log ni). Moreover, for all i ∈ N, a (β, 1 + µ)-
gap-realization τ : Ai∪̇Bi → {0, 1}O(logni) of Gi can be constructed in time O(n3

i) for some
β = Θ(log ni).

Proof. Once again, the proof here is similar to those of Theorems 11.19 and 11.24, except that we
use the (pairs of) AG codes from Lemma 11.28 instead of Reed-Solomon codes.

Let q > 49 be any sufficiently large square of prime and ζ > 0 be any sufficiently small positive
real number (both to be precisely specified later).

Let (Ni)i∈N be the sequence guaranteed by Lemma 11.28. Let a1 = Ni ·
(

1
q0.5(1−δ) − 1

q

)
and

a2 = Ni
q0.5(1−δ) . For convenience, we assume that a1 and a2 are integers13. Let C1, C2 be the codes

given by Lemma 11.28. The sequence (ni)i∈N is defined as ni = |C1|.
Applying Lemma 11.21 to (C1, C2) implies that there exists s ∈ C2 \ C1 such that

|B(s,∆(C2)) ∩ C1|
|C1|

>
A∆(C2)(C2)
|C2|

13Note that, for sufficiently largeNi, one can take the ceilings (or floors) of the specified values to get integers with
negligible affect to the calculations.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 228

(From Lemma 11.28) >

(
Ni
a2

)
(√q + 1)2gi · |C2|

(Singleton Bound) >

(
Ni
a2

)
(√q + 1)2gi · qa2+1

>
(Ni/a2)a2

(√q + 1)2gi · qa2+1

= q0.5(1−δ)a2

(√q + 1)2gi · qa2+1

= 1
(√q + 1)2gi · q(0.5+0.5δ)a2+1

= 1
q(0.5+0.5δ+o(1))a2

= 1
q(0.5+0.5δ+o(1))(a1+o(1))

= 1
|C1|(0.5+0.5δ+o(1))

> Ω(|C1|−0.5−0.5δ−o(1)) (11.4)

where o(1) terms above denote the terms that go to zero as q → ∞ and ζ → 0. As a result, by
picking q sufficiently large and ζ sufficiently small, the term in (11.4) is at least Ω(|C1|−0.5−δ).

We construct the graph Gi = (Ai, Bi, Ei) and a realization τ as follows. Let Ai = C1, Bi =
{s + c | c ∈ C1} and Ei = {(a,b) ∈ Ai × Bi | ∆(a,b) = ∆(C2)}. Gi can be easily realized by
applying the mapping ψ : FNiq → {0, 1}Ni·q from Proposition 11.10. More precisely, let τ be the
restriction of ψ on Ai∪Bi. Below we argue about the density ofGi and that τ is a (2∆(C2), 1+µ)-
gap-realization of Gi where µ = ∆(C1)−1

∆(C2) − 1. Note that

µ >
a2 − a1 − 1
Ni − a2

= Ω(1/q).

Let us now check that Gi and τ satisfy all the claimed properties:

• First, notice that |Ei| is exactly |C1| · |B(s,∆(C2)) ∩ C1| > Ω(|C1|1.5−δ) = Ω(n1.5−δ
i).

• For any v1 = ψ(c1),v2 = ψ(c2) both from Xi or both from Yi, we have c1− c2 ∈ C1 \ {0}.
Hence, ‖v1 − v2‖0 = 2 ·∆(v1,v2) > 2 ·∆(C1) > (1 + µ) · (2∆(C2)).

• Next, for every a ∈ Ai and b ∈ Bi, we have a − b ∈ C2 \ {0}. Thus, ∆(a,b) > ∆(C2).
Hence, ‖τ(a) − τ(b)‖0 = 2∆(a,b) > 2∆(C2). Moreover, the inequality is an equality if
and only if ∆(a,b) = ∆(C2), i.e., (a,b) ∈ Ei as desired.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 229

Given C1, C2, the running time of constructing (Xi, Yi) is O(|C1| · |C2| · q2) = O(n3
i). Moreover,

the running time to construct C1 and C2, as given by Lemma 11.28, is

O

((
N + a2 − 1

a2

)
· |C2| · poly(Ni)

)
6 O ((e(N + a2)/a2)a2 · |C2| · poly(Ni))

6 O ((2e√q)a2 · |C2| · poly(Ni))
6 O (|C1| · |C2| · poly(Ni))
6 O(n3

i),

where the last two inequalities are true for any sufficiently large q.

11.5 Inapproximability of Maximum Inner Product
In this section, we prove the hardness of approximating MIP. Once again, we show a stronger
version (than Theorem 11.3) where every point has Boolean coordinates, as stated below.

Theorem 11.30. Assuming OVH, for every ε > 0, there is no algorithm running in O(n2−ε) time
for γ-MIP even for points in {0, 1}no(1)

, for any γ 6 2(logn)1−o(1)
.

The proof proceeds in two steps: first, we show hardness of approximating MIP in low dimen-
sion but with a small (1 + o(1)) approximation factor. Second, we use tensor product operation to
amplify the gap to be almost polynomial, as stated in Theorem 11.30. More specifically, in the first
step, we prove the following:

Theorem 11.31. Assuming OVH, for every ε > 0, there exists sε > 0 such that no algorithm
running in O(n2−ε) time can solve

(
1 + 1

log logn

)
-MIP even for points in {0, 1}(logn)sε .

Note that the factor 1
log logn is not significant, and this can be replaced by any o(1) factor; we use

this just to make the calculations more concrete. Before we move on to the proof of Theorem 11.31,
let us first show how it implies Theorem 11.30.

Proof of Theorem 11.30 from Theorem 11.31. Let (P, α) be an instance of
(
1 + 1

log logn

)
-MIP where

P ⊆ {0, 1}(logn)sε . For t = logn
(log logn)2 , define P ′ = {x⊗t | x ∈ P}, α′ = αt and γ =(

1 + 1
log logn

)t
= 2(logn)1−o(1) . The dimension of points in P ′ is (log n)sε·t = no(1). Moreover,

it is easy to check, based on the identity 〈x⊗t,y⊗t〉 = 〈x,y〉t, that (P ′, α′) is a YES (resp. NO)
instance of γ-MIP iff (P, α) is a YES (resp. NO) instance of

(
1 + 1

log logn

)
-MIP.

In other words, if there is an O(n2−ε) time algorithm for γ-MIP in no(1) dimension, then there
also exists an O(n2−ε) subquadratic time algorithm for

(
1 + 1

log logn

)
-MIP in (log n)sε dimension.

Thus, Theorem 11.30 follows from Theorem 11.31.

The rest of this section is devoted to proving Theorem 11.31. To do so, we consider the gap-
Additive-BMIP problem.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 230

Definition 11.32 (γ-Additive-BMIP problem). Let γ > 0. In the γ-Additive-BMIP problem we are
given two sets A,B each of n points in {0, 1}d and an integer α ∈ [d] as input, and the goal is to
distinguish between the following two cases.

• Completeness. There exists (a, b) ∈ A×B such that 〈a, b〉 > α.

• Soundness. For every (a, b) ∈ A×B we have 〈a, b〉 < α− γ.

We need the below hardness result from [Rub18]. Note that the result is stated differently
in [Rub18]; for how the result in [Rub18] implies the one below, see Section 3.2 of [Che18a].

Theorem 11.33 ([Rub18]). Assuming OVH, for every ε > 0, there is no algorithm running in
O(n2−ε) time for the γ-Additive-BMIP problem, for any d = ω(log n) and γ = o(d).

Proof of Theorem 11.31. For any ε > 0, let Cexp be the constant such that the dimension of τ in
Theorem 11.24 is at most (log ni)Cexp/ε for δ = ε/2. We define sε as 2 · Cexp/ε+ 2.

Suppose contrapositively that there exists ε > 0 and an algorithmA that can solve
(
1 + 1

log logn

)
-

MIP of dimension (log n)sε in time n2−ε. We will construct an algorithm A′ that solves (log n)-
Additive-BMIP in time n2−ε′ for some constant ε′ > 0 (to be specified below) for d = (log n

√
log log n)

dimensions. Together with Theorem 11.33, this implies that OVH is false, as desired.
Let Cε denote the constant of the log-dense sequence from Theorem 11.24 for δ = ε/2, and let

ε′ be 0.01 · ε/Cε. The algorithm A′ on input (A,B, α) where A,B ⊆ {0, 1}d, α ∈ [d] works as
follows:

1. Let n′ be the largest number in the sequence from Theorem 11.24 with δ = ε/2 s.t. n′ 6 n0.1.

2. Let G′ = (A′∪̇B′, E ′) be the graph from Theorem 11.24 with |A′| = |B′| = n′, |E ′| >
Ω((n′)2−δ), and τ : A′∪̇B′ → {0, 1}(logn′)Cexp/ε be a (β, 3)-gap-IP-relization of G′ where
β ∈ N.

3. We use the algorithm from Lemma 11.8 to find π1, . . . , πk where k = O((n′)δ log n′) such
that the union of EG′π1

, . . . , EG′πk is EKn′,n′

4. We assume w.l.o.g. that n is divisible by n′. Partition A and B into A1, . . . , An/n′ and
B1, . . . , Bn/n′ each of size n′. For each i, j ∈ [n/n′], t ∈ [k], do the following:

a) Let τt be an appropriate permutation of τ that (β, 3)-gap-IP-realizes G′πt .

b) Let α′ = β · α + 3d · β, and define Ati, B
t
j as

Ati = {(1β ⊗ a) ◦ (13d ⊗ τt(a)) | a ∈ Ai}, Bt
j = {(1β ⊗ b) ◦ (13d ⊗ τt(b)) | b ∈ Bj}.

c) Run A on (Ati∪̇Bt
j, α

′). If A outputs YES, then output YES and terminate.

5. If none of the executions of A returns with YES, then output NO.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 231

Observe that the bottleneck in the running time of the algorithm is in the executions of A. The
number of executions is (n/n′)2 · k and each execution takes O((n′)2−ε) time. Hence, in total the
running time of the algorithm A′ is O((n/n′)2 · k · (n′)2−ε) 6 O(n2 log n · (n′)−ε/2). Now, from
the log-density of the sequence from Theorem 11.24, we have n′ > n0.1/Cε = n10ε′/ε. As a result,
the running time of A is at most O(n2−5ε′ log n) 6 O(n2−ε′) as desired.

To see the correctness of the algorithm, first observe that the dimensions of vectors in Ati, B
t
j

are at most β · d + 3d · (log n′)Cexp/ε which is at most (log n)sε for any sufficiently large n; that is,
the calls to A are valid. Next, observe that, if (A,B, α) is a YES instance of Additive-BMIP,
there must be i, j ∈ [n/n′] and a∗ ∈ Ai,b∗ ∈ Bj such that 〈a∗,b∗〉 is at least α. Since
G′π1 , . . . , G

′
πk

covers Kn′,n′ , there must be t ∈ [k] such that 〈τt(a∗), τt(b∗)〉 > β. As a result,
〈(1β ⊗ a∗) ◦ (13d ⊗ τt(a∗), (1β ⊗ b∗) ◦ (13d ⊗ τt(b∗))〉 > β ·α+ 3d ·β = α′. Thus, (Ati ∪Bt

j, α
′)

is a YES instance for MIP and A′ outputs YES as desired.
Finally, let us assume that (A,B, α) is a NO instance of (log n)-Additive-BMIP. Consider any

i, j ∈ [n/n′] and t ∈ [k]. To argue that (Ati ∪ Bt
j, α

′) is a NO instance for
(
1 + 1

log logn′
)
-MIP, we

have to show that any two points in Ati ∪Bt
j have inner product less than α′/

(
1 + 1

log logn′
)
. To see

this, let us consider two cases.

1. The two points are either both from Ati or both from Bt
j . Assume w.l.o.g. that the two points

are from Ati; let them be (1β ⊗ a) ◦ (13d⊗ τt(a)) and (1β ⊗ a′) ◦ (13d⊗ τt(a′)). Recall that,
from Theorem 11.24, we must have 〈τt(a), τt(a′)〉 < β/3. Moreover, since a, a′ ∈ {0, 1}d,
we have 〈a, a′〉 6 d. Thus, we can conclude that

〈(1β ⊗ a) ◦ (13d ⊗ τt(a)), (1β ⊗ a′) ◦ (13d ⊗ τt(a′))〉 < β · d+ 3d · (β/3)
< (2/3) · α′,

which is less than α′/
(
1 + 1

log logn′
)

for any sufficiently large n.

2. One of the point is from Ati and the other from Bt
j . Let them be (1β ⊗ a) ◦ (13d⊗ τt(a)) and

(1β⊗b)◦(13d⊗τt(b)). Since (A,B, α) is a NO instance of (log n)-Additive-BMIP, we must
have 〈a,b〉 < α− log n. Furthermore, from Theorem 11.24, we must have 〈τt(a), τt(b)〉 6
β. Combining the two implies that

〈(1β ⊗ a) ◦ (13d ⊗ τt(a)), (1β ⊗ b) ◦ (13d ⊗ τt(v))〉 < β · (α− log n) + 3d · β
= α′ − β · (log n)

(Since α′ 6 4dβ) 6 α′
(

1− 1
4
√

log log n

)

6 α′
(

1− 1
log log n′

)

6 α′/

(
1 + 1

log log n′

)
,

where the second-to-last inequality holds for any sufficiently large n.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 232

Hence, (Ati∪̇Bt
j, α

′) must be a NO instance for
(
1 + 1

log logn′
)
-MIP for every t ∈ [k] and i, j ∈

[n/n′]. Thus, A′ outputs NO as desired.

11.6 Inapproximability of Closest Pair
In this section, we prove the hardness of approximating CP (Theorem 11.2). As usual, we reduce
from the bichromatic version of the problem, and the lower bound for the bichromatic version is
stated below:

Theorem 11.34 (Rubinstein [Rub18]). Assuming OVH, for every ε > 0 there exists κ > 0 such
that there is no algorithm running in n2−ε time for (1+κ)-BCP in the Hamming metric. Moreover,
this holds even for instances (A,B, α) of (1 + κ)-BCP when d = Θε(log n), α = Θε(log n) and
A,B ⊆ {0, 1}d.

Again, we prove below the inapproximability of the gap-CP problem for Boolean vectors.
Clearly, this immediately implies Theorem 11.2.

Theorem 11.35. Assuming OVH, for every ε > 0, there exists θ > 0 and c > 0 such that there
is no algorithm running in n1.5−ε time for (1 + θ)-CP in the Hamming metric for point-set in
{0, 1}c·logn.

Proof. Assume towards a contradiction that there exists an ε > 0 and an algorithm A that, for
every θ > 0 solves (1 + θ)-CP of dimension c · log n in time O(n1.5−ε), where c := c(ε) is a
constant that will be specified later. Let ε′ > 0 be a small constant (depending on ε) that we will
specify below and let κ = κ(ε′) be as in Theorem 11.34. We construct below an algorithm A′ that
solves (1 + κ)-BCP in time O(n2−ε′) for any instance (A,B, α) such that A,B ⊆ {0, 1}O(logn)

and α = Θ(log n). Together with Theorem 11.34, this implies that OVH is false, as desired.
Let Cε denote the constant of the log-dense sequence from Theorem 11.29 for δ = ε/2, and let

ε′ be 0.01 · ε/Cε. Let µ be the constant from Theorem 11.29. Select θ > 0 be a sufficiently small
constant such that µ−θ1+θ >

θ
κ−θ .

The algorithm A′ on (A,B, α) where A,B ⊆ {0, 1}O(logn), α = Θ(log n) works as follows:

1. Let n′ be the largest number in the sequence from Theorem 11.29 with δ = ε/2 s.t. n′ 6 n0.1.

2. Let G′ = (A′∪̇B′, E ′) be the graph from Theorem 11.29 with |A′| = |B′| = n′, |E ′| >
Ω((n′)1.5−δ), and τ : A′∪̇B′ → {0, 1}O(logn′) be a (β, 1 + µ)-gap-relization of G′ where
β ∈ N and β = Θ(log n′).

3. We use the algorithm from Lemma 11.8 to find π1, . . . , πk where k = O((n′)0.5+δ log n′)
such that the union of EG′π1

, . . . , EG′πk is EKn′,n′

4. We assume w.l.o.g. that n is divisible by n′. Partition A and B into A1, . . . , An/n′ and
B1, . . . , Bn/n′ each of size n′. For each i, j ∈ [n/n′], t ∈ [k], do the following:

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 233

a) Let τt be an appropriate permutation of τ that (β, 1 + µ)-gap-realizes G′πt .
b) Pick r1, r2 such that

θ

κ− θ
· β
α

6
r1

r2
6
µ− θ
1 + θ

· β
α
. (11.5)

Notice that the upper and lower bounds are Θ(1) and they are also Θ(1) apart. Hence,
we can pick these r1, r2 so that r1, r2 = Θ(1).

c) Let α′ = r1 · α + r2 · β and define Ati, B
t
j as

Ati = {(1r1 ⊗ a) ◦ (1r2 ⊗ τt(a)) | a ∈ Ai}, Bt
j = {(1r1 ⊗ b) ◦ (1r2 ⊗ τt(b)) | b ∈ Bj}.

d) Run A on (Ati ∪Bt
j, α

′). If A outputs YES, then output YES and terminate.

5. If none of the executions of A returns with YES, then output NO.

Observe that the bottleneck in the running time of the algorithm is in the executions of A. The
number of executions is (n/n′)2 · k and each execution takes O((n′)1.5−ε) time. Hence, in total the
running time of the algorithm A′ is O((n/n′)2 · k · (n′)1.5−ε) 6 O(n2 log n · (n′)−ε/2). Now, from
the log-density of the sequence from Theorem 11.29, we have n′ > n0.1/Cε = n10ε′/ε. As a result,
the running time of A is at most O(n2−5ε′ log n) 6 O(n2−ε) as desired.

To see the correctness of the algorithm, first observe that the dimensions of vectors in Ati, B
t
j

are at most r1 · α + r2 · β which is O(log n′); that is, the calls to A are valid. Next, observe that,
if (A,B, α) is a YES instance of BCP, there must be i, j ∈ [n/n′] and a∗ ∈ Ai,b∗ ∈ Bj such
that ‖a∗ − b∗‖0 is at most α. Since G′π1 , . . . , G

′
πk

covers Kn′,n′ , there must be t ∈ [k] such that
‖τt(a∗)−τt(b∗)‖0 6 β. As a result, ‖((1r1⊗a∗)◦(1r2⊗τt(a∗))−((1r1⊗b∗)◦(1r2⊗τt(b∗)))‖0 6
r1 · α+ r2 · β = α′. Thus, (Ati ∪Bt

j, α
′) is a YES instance for CP and A′ outputs YES as desired.

Finally, let us assume that (A,B, α) is a NO instance of (1+κ)-BCP. Consider any i, j ∈ [n/n′]
and t ∈ [k]. To argue that (Ati ∪Bt

j, α
′) is a NO instance for (1 + θ)-CP, we have to show that any

two points in Ati ∪Bt
j have distance more than α′. To see this, let us consider two cases.

1. Both points are either from Ati or from Bt
j . Assume w.l.o.g. that they are from Ati; let them

be (1r1 ⊗a) ◦ (1r2 ⊗ τt(a)) and (1r1 ⊗a′) ◦ (1r2 ⊗ τt(a′)). Recall that, from the definition of
X ′t and Theorem 11.29, we must have ‖τt(a)− τt(a′)‖0 > (1 + µ) · β. Thus, the Hamming
distance between the two points is more than r2 ·(1+µ)·β > (1+θ)·α′, where the inequality
comes from our choice of r1, r2.

2. One of the point is from Ati and the other from Bt
j . Let them be (1r1 ⊗a) ◦ (1r2 ⊗ τt(a)) and

(1r1 ⊗ b) ◦ (1r2 ⊗ τt(b)). Since (A,B, α) is a NO instance of (1 + κ)-BCP, ‖a − b‖0 >
(1 +κ) ·α. Moreover, from definition of τt, we must have ‖τt(a)− τt(b)‖0 > β. Combining
the two implies that the distance between (1r1⊗a)◦(1r2⊗τt(a)) and (1r1⊗b)◦(1r2⊗τt(b))
is more than r1 · (1 + κ) · α + r2 · β > (1 + θ) · α′, where the inequality is once again from
our choice of r1, r2.

Hence, (Ati∪̇Bt
j, α

′) must be a NO instance for (1 + θ)-CP for every t ∈ [k] and i, j ∈ [n/n′].
Thus, A′ outputs NO as desired.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 234

11.7 Inapproximability of Closest Pair in Edit Distance Metric
In this section we prove Theorem 11.4. The proof is almost identical to Rubinstein’s [Rub18] proof
for the OVH-hardness of gap-BCP in the edit distance metric and uses the following technical tool
established in [Rub18].

Lemma 11.36 (Rubinstein [Rub18]). For large enough d ∈ N, there is a function ζ : {0, 1}d →
{0, 1}d′ , where d′ = O(d log d), such that for all a, b ∈ {0, 1}d the following holds for some
constant λ > 0:

|ed(ζ(a), ζ(b))− λ · log d · ‖a− b‖0| = o(d′).
Moreover, for any a ∈ {0, 1}d, ζ(a) can be computed in 2o(d) time.

At a high level, ζ picks a randomO(log d)-bit string si,x uniformly and independently for every
(i, x) ∈ [d] × {0, 1}, and for every vector u ∈ {0, 1}d, replaces the ith coordinate ui by si,ui . The
claims in the lemma statement follow by the known concentration bounds on the edit distance of
random strings [McD89; Lue09]. This construction is further efficiently derandomized by using
log d-wise independent strings [Kop13].

Proof of Theorem 11.4. We show that if there exists an algorithm A running in time O(n1.5−ε) for
some ε > 0 that can solve (1 + δ)-CP in the edit distance metric for some δ > 0 over point-sets in
{0, 1}d′ , then A can be used to solve (1 + δ − o(1))-CP in the Hamming metric in time O(n1.5−ε)
over point-sets in {0, 1}d, where d′ = O(d log d). Together with Theorem 11.35, this implies that
OVH is false, as desired.

Let (P, α) be an instance of (1 + δ)-CP in the Hamming metric over point-sets in {0, 1}d. It is
clear14 from the proofs of Theorem 11.34 and Theorem 11.35 that α = Ω(d). We now define an
instance of (P ′, α′ := (1 + o(1)) · λ log d · α) of (1 + δ − o(1))-CP in the edit distance metric as
follows. Recall the function ζ from Lemma 11.36 and define the set P ′ = {ζ(p) | p ∈ P}. Notice
that for every pair of distinct points p, q ∈ P , we have |ed(ζ(p), ζ(q)) = λ · log d · ‖p− q‖0| =
o(d′). In other words if we had a pair of distinct points p, q in P such that ‖p − q‖0 6 α then,
ed(ζ(p), ζ(q)) 6 λ log d · α + o(d′) = (1 + o(1)) · λ log d · α and suppose for all pairs of distinct
points p, q ∈ P we had ‖p− q‖0 > (1 + δ) ·α then ed(ζ(p), ζ(q)) > λ log d · (1 + δ) ·α− o(d′) >
(1 + δ − o(1))λ log d · α, since α = Ω(d). This completes the analysis of the completeness and
soundness cases, and we can conclude that running A on input (P ′, α′) solves the instance (P, α)
of (1 + δ)-CP in the Hamming metric.

11.8 Discussion and Open Questions
It remains open to completely resolve Open Questions 9 and 10. It is still possible that our frame-
work can be used to resolve these problems: we just need to construct gadgets with better pa-
rameters! In particular, to resolve Question 9, we have to improve the dimension bound in Theo-

14In fact, one can design a 2α · n logn time algorithm for CP in the Hamming metric, and therefore to assume
OVH, we require α = Ω(d).

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 235

rem 11.19 to Oδ(log ni). For Question 10, we just have to improve the bound in Theorem 11.29,
i.e., improve the bound on the number of pairs in (3) of Lemma 11.28 to Ω(n2−δ

i). Following
our observation from Lemma 11.21, this motivates us to ask the following purely coding theoretic
question, which would imply the desired hardness (if the codes can be constructed in poly(|C1|)
time):

Open Question 11. For every 0 < δ < 1, are there linear codes C1 ⊆ C2 ⊆ FNq both of block
length N over alphabet Fq such that the following holds:

• ∆(C1) > (1 + f(δ)) ·∆(C2), for some f : (0, 1)→ (0, 1).

• |A∆(C2)(C2)|/|C2| > |C1|−δ.

Apart from the aforementioned questions, Rubinstein [Rub18] pointed out an interesting ob-
stacle, aptly dubbed the “triangle inequality barrier”, to obtain fine-grained lower bounds against
3-approximation algorithms for BCP (see Open Question 3 in [Rub18]). In the case of CP, this
barrier turns out to be against 2-approximation algorithms as noted in [DKL18]. We reiterate this
below as an open problem to be resolved:

Open Question 12. Can we show that assuming SETH, for some constant ε > 0, no algorithm
running in time n1+ε can solve 2-CP in any metric when the points are in ω(log n) dimensions?

Another interesting direction is to extend the hardness of MIP to the k-vector generalization of
the problem, called k-MIP. In k-MIP, we are given a set of n points P ⊆ Rd and we would like
to select k distinct points a1, . . . , ak ∈ P that maximizes

〈a1, . . . , ak〉 :=
∑
j∈[d]

(a1)j · · · (ak)j.

Recall that, in Section 6.8, we showed that the k-chromatic variant of k-MIP is hard to ap-
proximate but this is not known to be true for k-MIP itself. Our approach seems quite compatible
to tackling this problem as well; in particular, if we can construct a certain (natural) generaliza-
tion of our gadget for MIP, then we would immediately arrive at the inapproximability of k-MIP
even for {0, 1}-entries vectors. The issue in constructing this gadget is that we are now concerned
about agreements of more than two vectors, which does not correspond to error-correcting codes
anymore and some additional tools are needed to argue for this more general case.

It should be noted that the hardness of approximating k-MIP for {0, 1}-entry vectors is equiv-
alent to the one-sided k-biclique problem [Lin15], in which a bipartite graph is given and the goal
is to select k vertices on the right that maximize the number of their common neighbors. The
equivalence can be easily seen by viewing the coordinates as the left-hand-side vertices and the
vectors as the right-hand-side vertices. The one-sided k-biclique is shown to be W[1] 6= FPT-hard
to approximate by Lin [Lin15] who also showed a lower bound of nΩ(

√
k) for the problem assuming

ETH. If the generalization of our gadget for k-MIP works as intended, then this lower bound can
be improved to nΩ(k) under ETH and even nk−o(1) under SETH.

CHAPTER 11. INAPPROXIMABILITY IN P: CLOSEST PAIR AND MAXIMUM INNER
PRODUCT 236

The one-sided k-biclique is closely related to the (two-sided) k-biclique problem, where we
are given a bipartite graph and we wish to decide whether it contains Kk,k as a subgraph. The k-
biclique problem was consider a major open problem in parameterized complexity (see e.g., [DF13])
until it was shown by Lin to be W[1] 6= FPT-hard [Lin15]. Nevertheless, the running time lower
bound known is still not tight: currently, the best lower bound known for this problem is nΩ(

√
k)

both for the exact version (under ETH) [Lin15] and its approximate variant (under GAP-ETH;
see Chapter 8). It remains an interesting open question to close the gap between the above lower
bounds and the trivial upper bound of nO(k). Progresses on the one-sided k-biclique problem could
lead to improved lower bounds for k-biclique problem too, although several additional steps have
to be taken care of.

237

Chapter 12

Discussion and Future Directions

Although this dissertation, together with many other recent works, has advanced our understanding
of approximation and hardness between P and NP, the area is still very much in its infancy. To
conclude this thesis, we provide several directions that we think are interesting for future research.

Direction 1. Prove Quasi-Polynomial Hardness for Problems with “Complicated” Algorithms

As touched upon slightly in Section 1.1.3, the birthday repetition technique has so far been
mostly applied upon problems with “simple” algorithms: either it is a bilinear optimization prob-
lem of the form maxu,v u>Av for which it suffices to enumerate over all sparse v, or it is a problem
which has a brute-force algorithm (e.g. VC Dimension). However, there are many other problems
which admit quasi-polynomial time algorithms that are far more complicated than these two types
of algorithms. These problems include (Approximate) Graph Isomorphism [Bab16; AFK02]1, Di-
rected Steiner Tree [Cha+99], Max-Min Allocation [CCK09] and Maximum Independent Set of
Rectangles [AW13; CE16]. It is a natural, yet challenging, direction to apply birthday repetition
techniques to these problems, and eventually map down the complexity and approximability of
quasi-polynomial time algorithms.

Direction 2. Toward Completeness Results for Quasi-Polynomial Hardness of Approximation?

Despite the success of the birthday repetition framework, it has a slight weakness: it does not
show that these gap/approximate problems are complete for any complexity class. In contrast, the
exact versions of problems such as VC Dimension and dominating set on tournaments are in fact
complete for the classes LOGNP and LOGSNP respectively [PY96]. The lack of completeness
in the body of works related to birthday repetition is undesirable for a variety of reasons. First,
although these gap/approximation problems are proved to be hard under ETH, it is unclear how
these problems related to each other. (The only relation known is the obvious fact that Dense
CSPs is harder than DENSEST k-SUBGRAPH with perfect completeness.) Second, it could be
troublesome if ETH turns out to be false; since all hardness of approximation results in this line of

1To be clear, the QPTAS for an approximate version of graph isomorphism from [AFK02] is also similar to the
bilinear optimization algorithm described earlier. However, Babai’s algorithm for graph isomorphism is not.

CHAPTER 12. DISCUSSION AND FUTURE DIRECTIONS 238

work are based on ETH, it would not be clear anymore what we can even say about these problems.
Note that it is totally possible that ETH turns out to be false, while LOGNP and LOGSNP are still
not contained in P. As a result, it would be much more desirable if we can establish completeness
results for hardness of approximation as well; at this point, however, it is not even clear which
class these problems should be based on, and more works need to be done to achieve this goal.

Direction 3. Prove Gap-ETH (assuming ETH)

Given the applications of Gap-ETH in fine-grained hardness of approximation (as partly pre-
sented in this dissertation), an obvious open question is to determine whether Gap-ETH holds or
not. A specific question here is whether we can prove Gap-ETH, if we assume ETH. As discussed
earlier in Section 2.3, this would hold if a linear-size PCP exists, a well-known open problem in the
area of PCP. We would like to stress here that this might not be the only way to prove Gap-ETH.
For instance, the reduction could take exponential time and it could be (even adaptive) Turing
reduction, which might be useful.

On the other hand, if one were to attempt to disprove Gap-ETH, we encourage one to disprove
the following stronger conjecture, which we call Gap-SETH, first.

Conjecture 12.1 (Gap-SETH). For every ε > 0, there exists k = k(ε) ∈ N and δ = δ(ε) > 0 such
that no algorithm can distinguish between a satisfiable k-SAT formula and one that is not (1− δ)
satisfiable in O(2(1−ε)n) time where n is the number of variables.

To the best of our knowledge, such a conjecture had never been studied before and it is hence
unclear whether it should be true. In fact, it could also be that there is a simple algorithm that
refutes the conjecture. However, we are not aware of such an algorithm either. It should be noted
here that, if Gap-SETH holds, then it would immediately imply all the results that have so far been
achieved via the Distributed PCP framework.

Direction 4. Prove a “Parameterized Version of PCP Theorem”

We next move on to the questions more specifically about parameterized complexity/approx-
imability. On this front, the most obvious question is whether one can prove a “PCP-like Theorem”
for parameterized complexity. Before we go forward, let us first point out that the distributed PCP
framework is much different than the standard PCP (and this is the reason why we state it in terms
of communication complexity instead of using the terminology from [ARW17a]). In fact, if one
thinks about the framework in the PCP terminology, then the verifier can read the whole proof, un-
like the traditional PCP where the verifier can only query a few bits/positions of the proof. The only
restriction for distributed PCP however is that the accepting configuration for each randomness is
small (i.e. “small left alphabet” of MAXCOV). Alternatively, one could think about distributed
PCP as a PCP where the verifier query a few positions, similar to the typical PCP formulation,
but when there are multiple provers and these provers are honest; this is indeed the original view-
point in [ARW17a]. On the other hand, there is only one prover who is (possibly) cheating in the
standard PCP Theorem, which is the whole point of the PCP Theorem. Both of these viewpoints
demonstrate that distributed PCP is fundamentally different from the (standard) PCP Theorem.

CHAPTER 12. DISCUSSION AND FUTURE DIRECTIONS 239

So what should be the “parameterized PCP Theorem”? First, if we think of the PCP Theorem
as a characterization of NP, then one might hope for a PCP characterization of some fundamental
class in the area of parameterized complexity. In this case, W[1] is a natural candidate and, similar
to the PCP characterization of NP, the characterization would be that every parameterized language
in W[1] has a PCP verifier that uses a constant number of queries, f(k) randomness (for some
function f that can depends on the language), has completeness one and soundness 1/2. We
remark here that the verifier is now allowed to run in FPT time, and the alphabet size is allowed to
be as large as g(k) · poly(n) for any function g.

Note here that, due to the clause-variable game transformation (see Definition 3.20) and parallel
repetition [Raz98], we may assume without loss of generality that the number of queries is two. It
is also simple to observe that all languages with such PCPs lie in W[1]. As a result, in the PCP
language (cf. [MR10]), such a characterization would translate to the following:

Conjecture 12.2. W[1] = PCP1,1/2[f(k), 2]g(k)·poly(n) (where the prover is allowed to run in FPT
time).

In terms of hardness of approximation, the above conjecture translates to the hardness of ap-
proximating 2CSP where the parameter is the number of variables, the exact same setting as in
Chapter 9 except that here the gap is only some constant. (It should be noted, once again, that the
gap can then be amplify to any constant factor via parallel repetition [Raz98]; however, this does
not get super constant factor as in Chapter 9.) Such a conjecture was made before in by Lokshtanov
et al. [Lok+17] under the name Parameterized Inapproximability Hypothesis (PIH):

Conjecture 12.3 (Parameterized Inapproximability Hypothesis (PIH) [Lok+17]). For some ε > 0,
it is W[1]-hard to distinguish a satisfiable instance of parameterized 2-CSP from one which is not
even (1− ε)-satisfiable.

Indeed, the hypothesis above can sometimes be used in place of Gap-ETH to obtain inapprox-
imability results, but often fails to yield as stronger inapproximability factor as that from Gap-ETH.
For instance, it is simple to see that PIH implies that k-Clique is hard to approximate to some con-
stant factor, and this factor can be amplify to any constant factor. However, it is not known whether
the inverse is true; that is, it is not known whether hardness of approximating k-Clique (to within
some constant factor) implies PIH. This leaves us with another conjecture that is not known to be
equivalent to PIH:

Conjecture 12.4. For some ε > 0, it is W[1]-hard to approximate k-Clique to within a factor of
(1− ε).

It is now a good point to also note that, when taking the hardness of approximation perspective,
the PCP Theorem is about NP-completeness of gap problems (e.g. Gap-3SAT). In this regards,
Conjectures 12.3 and 12.4 can both be viewed as this form of “parameterized PCP Theorems”.

For other parameterized complexity classes, such as W[t] for t > 2, it is not clear what their
PCP characterization should be (in the sense of Conjecture 12.2 for W[1]); in fact, even machine-
based definition for these classes are pretty complicated (see [CFG05] and references therein).

CHAPTER 12. DISCUSSION AND FUTURE DIRECTIONS 240

Nevertheless, if one takes the hardness of approximation perspective, then one can attempt to
generalize conjectures similar to Conjectures 12.3, 12.4 to higher classes in the W hierarchy. Still,
we have to be slightly careful here, since the “canonical” problems used to defined these classes are
the weighted circuit satisfiability for weft-t circuits. However, when the circuits are not monotone
or anti-monotone, it is not even clear at all what approximation even means.

When the circuits are monotone (resp. anti-monotone), we have a well-defined optimization
problem: find an assignment with minimum (resp. maximum) weight that satisfies the circuit.
Let WEIGHTED t-MONOTONE SATISFIABILITY (resp. WEIGHTED t-ANTIMONOTONE SATISFI-
ABILITY) be this problem. The following is known for the exact version of the problem [DF95b;
DF95a]. For even t > 2, WEIGHTED t-MONOTONE SATISFIABILITY and WEIGHTED (t + 1)-
MONOTONE SATISFIABILITY are W[t]-complete. For odd t > 3, WEIGHTED t-ANTIMONOTONE

SATISFIABILITY and WEIGHTED (t + 1)-ANTIMONOTONE SATISFIABILITY are W[t]-complete.
Moreover, the variants of the problems with no bound on the weft, which are simply called
WEIGHTED MONOTONE SATISFIABILITY and WEIGHTED ANTIMONOTONE SATISFIABILITY,
are known to be W[P]-complete.

We can then ask for the approximability of these problems. This has been studied before
in literature [AR08; EGG08; Mar13]. In particular, Marx [Mar13] showed that both WEIGHTED

MONOTONE SATISFIABILITY and WEIGHTED ANTIMONOTONE SATISFIABILITY are totally FPT
inapproximable, assuming W[P] 6= FPT and W[1] 6= FPT respectively. In fact, for the monotone
case, he show a finer-grained result that, for even t > 2, WEIGHTED (t + 2)-MONOTONE SATIS-
FIABILITY and WEIGHTED (t + 3)-MONOTONE SATISFIABILITY are W[t]-hard to approximate
to within f(k) ration for any function f . However, this does not give completeness result yet as
the weft is “off” by additive factor of 2, and hence we can try to ask the following questions:

Open Question 13. For even t > 2, are WEIGHTED t-MONOTONE SATISFIABILITY and WEIGHTED

(t+ 1)-MONOTONE SATISFIABILITY W[t]-hard to approximate to within f(k) ratio for any f?
For odd t > 3, are WEIGHTED t-ANTIMONOTONE SATISFIABILITY and WEIGHTED (t+ 1)-

ANTIMONOTONE SATISFIABILITY W[t]-hard to approximate to within f(k) ratio for any f =
o(k)?

Note that, if the above question is positively resolved for t = 2, then it would imply the total
inapproximability of k-DOMSET under W[2] 6= FPT (i.e. answer Question 1).

Direction 5. Toward Tight Hardness of Approximation for Parameterized Problems?

A recurring feature of the hardness of approximation results for parameterized problems through-
out this thesis is that the problems we consider are so hard, that even parameterization and approx-
imation together can hardly help beyond some straightforward algorithm. While one might view
these as satisfactory “tight” results, they prompt the obvious question: what happens to the prob-
lems that parameterization does help achieve better approximation?

To be more precise, let us focus on the problems for which (i) are hard to solve exactly in
FPT time, (ii) admit a “considerably better” approximation ratio in FPT time, but (iii) are not
known to admit an FPT approximation scheme. Note that (i) and (iii) are here so that there is at

CHAPTER 12. DISCUSSION AND FUTURE DIRECTIONS 241

least something to prove in terms of hardness of approximation. As for (ii), it not only serves to
ensure that these are the problems with “non-trivial” parameterized approximation algorithms, but
also helps to force us to think differently if we are to prove hardness of approximation for these
problems. The latter is a technical motivation for this research direction, because so far2 many
of the parameterized hardness of approximation proofs borrow a lot of ideas from the theory of
NP-hardness of approximation (with the exception of distributed PCP). It would be much more
interesting if we can also develop some additional techniques that are completely different from
those in the NP-hardness regime.

To the best of our knowledge, there are not too many such candidate problems that fit into these
restrictions. Nonetheless, there are already interesting examples. In fact, Lokshtanov et al. [Lok+17]
proposed the PIH conjecture partially to tackle one such problem: the DIRECTED ODD CYCLE

TRANSVERSAL (DOCT) problem. In the non-parameterized regime, DOCT is UGC-hard to
approximation to within any constant factor. However, Lokshtanov et al. gives an FPT time 2-
approximation algorithm for the problem. Furthermore, they show that, for some ε > 0, no FPT
algorithm achieves an approximation ratio of (1 + ε), assuming PIH. Since then, several more
problems of this kind are known. For instance, in [CFM18], Chitnis, Feldman and the author point
out two additional problems with these properties: the STRONGLY CONNECTED STEINER SUB-
GRAPH (SCSS) and the DIRECTED STEINER NETWORK ON BIDIRECTED GRAPHS (BI-DSN).

Obtaining tight hardness of approximation results for such problems (i.e. (2 − δ)-factor hard-
ness for DOCT) is an interesting question. Drawing parallel to the theory of NP-hardness of
approximation, the quest to obtain optimal hardness of approximation has led to many fascinat-
ing development, including the innovative use of long codes and fourier analysis (e.g. [BGS98;
Hås01; ST00]) and later the unique games conjecture and its implications (e.g. [Kho02; Kho+07;
MOO05; Rag08]). It is thus interesting to understand whether there is a similar depth to the theory
of parameterized hardness of approximation in this sense. For instance, a crucial notion to obtain
optimal inapproximability results in the NP regime is the notion of dictatorship test/gadget (see
e.g. [Kho+07; Rag08]). Is there a similar notion in the parameterized regime that can be used to
prove optimal parameterized hardness of approximation?

We end by remarking that, for one of the aforementioned problems (SCSS), a tight hardness
of approximation was shown [CFM18]. However, the gadget seems to be ad-hoc and it is unclear
how to generalize this to work for other problems.

Direction 6. Prove Hardness of Approximation in P Beyond “PSP-Style” Problems

Finally, as described in Chapter 6, the distributed PCP framework, which is currently the main
method to prove hardness of approximation in P, naturally starts with a PSP problem and produces
MAXCOV instance. The latter can also be viewed as a PSP problem, with the distinction that
now the predicate f is not boolean, but rather returns the number of left super-nodes covered by
the selected labeling instead. The last direction we suggest is to try to come up with a different

2For instance, in this thesis, we have seen that the parameterized inapproximability for Dominating Set, Clique,
Even Set and Shortest Vector Problem borrow ideas (to some degree) from their NP-hardness of approximation coun-
terpart [Fei98; Fei+91; DMS03; Kho05].

CHAPTER 12. DISCUSSION AND FUTURE DIRECTIONS 242

gap-producing technique for problems in P that either (i) does not start with a PSP problem or (ii)
does not produce a “PSP-style” problem. The hope for (i) would be to apply the techniques to
other fine-grained complexity hypotheses that are not of the PSP form, such as the APSP hypoth-
esis [WW18]. The goal for (ii) is of course to prove hardness of approximation for problems in P
that are not of the PSP forms; for instance, there are many problems with dynamic programming
algorithms for which tight running time lower bounds (in P) are known, and these problems are not
of the PSP form. Perhaps the most prominent such example is the Longest Common Subsequent
(LCS) problem, for which, despite a considerable amount of afford [AB17; AR18], no hardness of
approximation is yet known under “standard” fine-grained complexity assumptions.

243

Bibliography

[Aar+09] Scott Aaronson, Salman Beigi, Andrew Drucker, Bill Fefferman, and Peter W. Shor.
“The Power of Unentanglement”. In: Theory of Computing 5.1 (2009), pp. 1–42.

[AB17] Amir Abboud and Arturs Backurs. “Towards Hardness of Approximation for Poly-
nomial Time Problems”. In: ITCS. 2017, 11:1–11:26.

[ABC09] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. “Functional Monitor-
ing without Monotonicity”. In: ICALP. 2009, pp. 95–106.

[ABV01] Alexei E. Ashikhmin, Alexander Barg, and Serge G. Vladut. “Linear Codes with
Exponentially Many Light Vectors”. In: J. Comb. Theory, Ser. A 96.2 (2001), pp. 396–
399.

[AC09] Reid Andersen and Kumar Chellapilla. “Finding Dense Subgraphs with Size Bounds”.
In: WAW. 2009, pp. 25–37.

[ACW16] Josh Alman, Timothy M. Chan, and R. Ryan Williams. “Polynomial Representations
of Threshold Functions and Algorithmic Applications”. In: FOCS. 2016, pp. 467–
476.

[AD97] Miklós Ajtai and Cynthia Dwork. “A Public-Key Cryptosystem with Worst-Case/Average-
Case Equivalence”. In: STOC. 1997, pp. 284–293.

[AFK02] Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. “A new rounding procedure for
the assignment problem with applications to dense graph arrangement problems”. In:
Math. Program. 92.1 (2002), pp. 1–36.

[Aga+91] Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl.
“Euclidean Minimum Spanning Trees and Bichromatic Closest Pairs”. In: Discrete
& Computational Geometry 6 (1991), pp. 407–422.

[AHI02] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. “Complexity of finding dense sub-
graphs”. In: Discrete Applied Mathematics 121.1–3 (2002), pp. 15–26.

[AIM14] Scott Aaronson, Russell Impagliazzo, and Dana Moshkovitz. “AM with Multiple
Merlins”. In: CCC. 2014, pp. 44–55.

[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended Abstract)”.
In: STOC. 1996, pp. 99–108.

BIBLIOGRAPHY 244

[Ajt98] Miklós Ajtai. “The Shortest Vector Problem in `2 is NP-hard for Randomized Reduc-
tions (Extended Abstract)”. In: STOC. 1998, pp. 10–19.

[AK14] Per Austrin and Subhash Khot. “A Simple Deterministic Reduction for the Gap Min-
imum Distance of Code Problem”. In: IEEE Trans. Information Theory 60.10 (2014),
pp. 6636–6645.

[AKK95] Sanjeev Arora, David Karger, and Marek Karpinski. “Polynomial Time Approxi-
mation Schemes for Dense Instances of NP-hard Problems”. In: STOC. Las Vegas,
Nevada, USA: ACM, 1995, pp. 284–293.

[AL13] Amir Abboud and Kevin Lewi. “Exact Weight Subgraphs and the k-Sum Conjec-
ture”. In: ICALP. 2013, pp. 1–12.

[Alo+03] Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski.
“Random Sampling and Approximation of MAX-CSPs”. In: J. Comput. Syst. Sci.
67.2 (Sept. 2003), pp. 212–243.

[Alo+11] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri We-
instein. “Inapproximabilty of Densest k-Subgraph from Average Case Hardness”.
Unpublished Manuscript. 2011.

[Alo02] Noga Alon. “Testing subgraphs in large graphs”. In: Random Struct. Algorithms 21.3-
4 (2002), pp. 359–370.

[Alp10] Ethem Alpaydin. Introduction to Machine Learning. 2nd. The MIT Press, 2010.

[ALW14] Amir Abboud, Kevin Lewi, and Ryan Williams. “Losing Weight by Gaining Edges”.
In: ESA. 2014, pp. 1–12.

[AM09] Per Austrin and Elchanan Mossel. “Approximation Resistant Predicates from Pair-
wise Independence”. In: Computational Complexity 18.2 (2009), pp. 249–271.

[AMM17] Haris Angelidakis, Yury Makarychev, and Pasin Manurangsi. “An Improved Integral-
ity Gap for the Călinescu-Karloff-Rabani Relaxation for Multiway Cut”. In: IPCO.
2017, pp. 39–50.

[AMS06] Noga Alon, Dana Moshkovitz, and Shmuel Safra. “Algorithmic construction of sets
for k-restrictions”. In: ACM Trans. Algorithms 2.2 (2006), pp. 153–177.

[AMS07] Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. “Inapproximability Re-
sults for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained
Scheduling”. In: FOCS. Oct. 2007, pp. 329–337.

[AMS12] Noga Alon, Ankur Moitra, and Benny Sudakov. “Nearly complete graphs decompos-
able into large induced matchings and their applications”. In: STOC. 2012, pp. 1079–
1090.

[AOW15] Sarah R. Allen, Ryan O’Donnell, and David Witmer. “How to Refute a Random
CSP”. In: FOCS. 2015, pp. 689–708.

BIBLIOGRAPHY 245

[App17] Benny Applebaum. “Exponentially-Hard gap-CSP and local PRG via Local Hardcore
Functions”. In: ECCC 24 (2017), p. 63.

[AR08] Michael Alekhnovich and Alexander A. Razborov. “Resolution Is Not Automatizable
Unless W[P] Is Tractable”. In: SIAM J. Comput. 38.4 (2008), pp. 1347–1363.

[AR18] Amir Abboud and Aviad Rubinstein. “Fast and Deterministic Constant Factor Ap-
proximation Algorithms for LCS Imply New Circuit Lower Bounds”. In: ITCS. 2018,
35:1–35:14.

[Aro+12] Sanjeev Arora, Rong Ge, Sushant Sachdeva, and Grant Schoenebeck. “Finding over-
lapping communities in social networks: toward a rigorous approach”. In: EC. 2012,
pp. 37–54.

[Aro+97] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. “The Hardness of Ap-
proximate Optima in Lattices, Codes, and Systems of Linear Equations”. In: J. Com-
put. Syst. Sci. 54.2 (1997), pp. 317–331.

[Aro+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof Verification and the Hardness of Approximation Problems”. In: J. ACM 45.3
(May 1998), pp. 501–555.

[ARW17a] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. “Distributed PCP Theorems
for Hardness of Approximation in P”. In: FOCS. 2017, pp. 25–36.

[ARW17b] Amir Abboud, Aviad Rubinstein, and Ryan Williams. “Distributed PCP Theorems
for Hardness of Approximation in P”. In: CoRR abs/1706.06407 (2017). arXiv: 1706.
06407.

[AS03] Sanjeev Arora and Madhu Sudan. “Improved Low-Degree Testing and its Applica-
tions”. In: Combinatorica 23.3 (2003), pp. 365–426.

[AS18] Divesh Aggarwal and Noah Stephens-Davidowitz. “(Gap/S)ETH hardness of SVP”.
In: STOC. 2018, pp. 228–238.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs: A New Charac-
terization of NP”. In: J. ACM 45.1 (Jan. 1998), pp. 70–122.

[AW09] Scott Aaronson and Avi Wigderson. “Algebrization: A New Barrier in Complexity
Theory”. In: TOCT 1.1 (2009), 2:1–2:54.

[AW13] Anna Adamaszek and Andreas Wiese. “Approximation Schemes for Maximum Weight
Independent Set of Rectangles”. In: FOCS. 2013, pp. 400–409.

[AW15] Josh Alman and Ryan Williams. “Probabilistic Polynomials and Hamming Nearest
Neighbors”. In: FOCS. 2015, pp. 136–150.

[Bab+03] László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. “Commu-
nication Complexity of Simultaneous Messages”. In: SIAM J. Comput. 33.1 (2003),
pp. 137–166.

https://arxiv.org/abs/1706.06407
https://arxiv.org/abs/1706.06407

BIBLIOGRAPHY 246

[Bab16] László Babai. “Graph isomorphism in quasipolynomial time [extended abstract]”. In:
STOC. 2016, pp. 684–697.

[Bab85] László Babai. “Trading Group Theory for Randomness”. In: STOC. Providence, Rhode
Island, USA: ACM, 1985, pp. 421–429.

[Bar+04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. “An information statis-
tics approach to data stream and communication complexity”. In: J. Comput. Syst.
Sci. 68.4 (2004), pp. 702–732.

[Bar+11] Boaz Barak, Moritz Hardt, Thomas Holenstein, and David Steurer. “Subsampling
Mathematical Relaxations and Average-case Complexity”. In: SODA. SODA ’11.
San Francisco, California: SIAM, 2011, pp. 512–531.

[Bar+12] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner,
David Steurer, and Yuan Zhou. “Hypercontractivity, sum-of-squares proofs, and their
applications”. In: STOC. 2012, pp. 307–326.

[Bar15] Siddharth Barman. “Approximating Nash Equilibria and Dense Bipartite Subgraphs
via an Approximate Version of Caratheodory’s Theorem”. In: STOC. Portland, Ore-
gon, USA: ACM, 2015, pp. 361–369.

[BE98] Shai Ben-David and Nadav Eiron. “Self-Directed Learning and Its Relation to the
VC-Dimension and to Teacher-Directed Learning”. In: Machine Learning 33.1 (1998),
pp. 87–104.

[Bec+18] Luca Becchetti, Andrea E. F. Clementi, Pasin Manurangsi, Emanuele Natale, Francesco
Pasquale, Prasad Raghavendra, and Luca Trevisan. “Average Whenever You Meet:
Opportunistic Protocols for Community Detection”. In: ESA. 2018, 7:1–7:13.

[Bei+19] Xiaohui Bei, Xinhang Lu, Pasin Manurangsi, and Warut Suksompong. “The Price of
Fairness for Indivisible Goods”. In: IJCAI. To appear. 2019.

[Bel+93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. “Efficient
probabilistically checkable proofs and applications to approximations”. In: STOC.
1993, pp. 294–304.

[Ben+16a] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. “Short Interactive Oracle Proofs with Constant Query Complexity, via Com-
position and Sumcheck”. In: ECCC 23 (2016), p. 46.

[Ben+16b] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth.
“Constant Rate PCPs for Circuit-SAT with Sublinear Query Complexity”. In: J. ACM
63.4 (2016), 32:1–32:57.

[Ben80] Jon Louis Bentley. “Multidimensional Divide-and-Conquer”. In: Commun. ACM 23.4
(1980), pp. 214–229.

[Ben83] Michael Ben-Or. “Lower Bounds for Algebraic Computation Trees (Preliminary Re-
port)”. In: STOC. 1983, pp. 80–86.

BIBLIOGRAPHY 247

[Ber+13] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova,
and Grigory Yaroslavtsev. “Approximation algorithms for spanner problems and Di-
rected Steiner Forest”. In: Inf. Comput. 222 (2013), pp. 93–107.

[BFS16] Cristina Bazgan, Florent Foucaud, and Florian Sikora. “On the Approximability of
Partial VC Dimension”. In: COCOA. 2016, pp. 92–106.

[BG15] Mark Braverman and Ankit Garg. “Small Value Parallel Repetition for General Games”.
In: STOC. Portland, Oregon, USA: ACM, 2015, pp. 335–340.

[BGS17] Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. “On the Quan-
titative Hardness of CVP”. In: FOCS. 2017, pp. 13–24.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. “Free Bits, PCPs, and Nonapproximability-
Towards Tight Results”. In: SIAM J. Comput. 27.3 (1998), pp. 804–915.

[Bha+10] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vi-
jayaraghavan. “Detecting high log-densities: an O(n1/4) approximation for densest
k-subgraph”. In: STOC. 2010, pp. 201–210.

[Bha+12] Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Guruswami,
and Yuan Zhou. “Polynomial Integrality Gaps for Strong SDP Relaxations of Densest
k-subgraph”. In: SODA. 2012, pp. 388–405.

[Bha+16a] Amey Bhangale, Rajiv Gandhi, Mohammad Taghi Hajiaghayi, Rohit Khandekar, and
Guy Kortsarz. “Bicovering: Covering Edges With Two Small Subsets of Vertices”.
In: ICALP. 2016, 6:1–6:12.

[Bha+16b] Umang Bhaskar, Yu Cheng, Young Kun Ko, and Chaitanya Swamy. “Hardness Re-
sults for Signaling in Bayesian Zero-Sum and Network Routing Games”. In: EC.
Maastricht, The Netherlands: ACM, 2016, pp. 479–496.

[Bha+16c] Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket. “On the
Hardness of Learning Sparse Parities”. In: ESA. 2016, 11:1–11:17.

[Bha+18] Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., and Pasin Manurangsi. “Pa-
rameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH”.
In: ICALP. 2018, 17:1–17:15.

[BKW15] Mark Braverman, Young Kun-Ko, and Omri Weinstein. “Approximating the best
Nash Equilibrium in no(logn)-time breaks the Exponential Time Hypothesis”. In:
SODA. 2015, pp. 970–982.

[BL05] Yonatan Bilu and Nathan Linial. “Monotone maps, sphericity and bounded second
eigenvalue”. In: J. Comb. Theory, Ser. B 95.2 (2005), pp. 283–299.

[Blu94] Avrim Blum. “Separating Distribution-Free and Mistake-Bound Learning Models
over the Boolean Domain”. In: SIAM J. Comput. 23.5 (1994), pp. 990–1000.

[BMT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. “On the inher-
ent intractability of certain coding problems (Corresp.)” In: IEEE Trans. Information
Theory 24.3 (1978), pp. 384–386.

BIBLIOGRAPHY 248

[Bon+15] Edouard Bonnet, Bruno Escoffier, Eun Jung Kim, and Vangelis Th. Paschos. “On
Subexponential and FPT-Time Inapproximability”. In: Algorithmica 71.3 (2015),
pp. 541–565.

[Bon+18] Édouard Bonnet, László Egri, Bingkai Lin, and Dániel Marx. “Fixed-parameter ap-
proximability of Boolean MinCSPs”. In: arXiv preprint arXiv:1601.04935 (2018).

[BPR16] Yakov Babichenko, Christos H. Papadimitriou, and Aviad Rubinstein. “Can Almost
Everybody be Almost Happy?” In: ITCS. 2016, pp. 1–9.

[BPS09] Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. “Agnostic Online Learning”.
In: COLT. 2009.

[BR60] R. C. Bose and Dwijendra K. Ray-Chaudhuri. “On A Class of Error Correcting Bi-
nary Group Codes”. In: Information and Control 3.1 (1960), pp. 68–79.

[Bra+17] Mark Braverman, Young Kun-Ko, Aviad Rubinstein, and Omri Weinstein. “ETH
Hardness for Densest-k-Subgraph with Perfect Completeness”. In: SODA. 2017, pp. 1326–
1341.

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. “Rounding Semidefinite Pro-
gramming Hierarchies via Global Correlation”. In: FOCS. 2011, pp. 472–481.

[BS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”.
In: SIAM J. Comput. 38.2 (2008), pp. 551–607.

[BS76] Jon Louis Bentley and Michael Ian Shamos. “Divide-and-Conquer in Multidimen-
sional Space”. In: STOC. 1976, pp. 220–230.

[BS92] Piotr Berman and Georg Schnitger. “On the Complexity of Approximating the Inde-
pendent Set Problem”. In: Inf. Comput. 96.1 (1992), pp. 77–94.

[BS94] Mihir Bellare and Madhu Sudan. “Improved non-approximability results”. In: STOC.
1994, pp. 184–193.

[Cam89] Kathie Cameron. “Induced matchings”. In: Discrete Applied Mathematics 24.1-3
(1989), pp. 97–102.

[CCF10] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. “An Efficient Sparse Regularity
Concept”. In: SIAM J. Discrete Math. 23.4 (2010), pp. 2000–2034.

[CCK09] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. “On Allocating Goods
to Maximize Fairness”. In: FOCS. 2009, pp. 107–116.

[CDK12] Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. “Everywhere-Sparse Span-
ners via Dense Subgraphs”. In: FOCS. 2012, pp. 758–767.

[CE16] Julia Chuzhoy and Alina Ene. “On Approximating Maximum Independent Set of
Rectangles”. In: FOCS. 2016, pp. 820–829.

[CFG05] Yijia Chen, Jörg Flum, and Martin Grohe. “Machine-based methods in parameterized
complexity theory”. In: Theor. Comput. Sci. 339.2-3 (2005), pp. 167–199.

BIBLIOGRAPHY 249

[CFL83] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. “Multi-Party Protocols”.
In: STOC. 1983, pp. 94–99.

[CFM18] Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. “Parameterized Ap-
proximation Algorithms for Bidirected Steiner Network Problems”. In: ESA. 2018,
20:1–20:16.

[CGG06] Yijia Chen, Martin Grohe, and Magdalena Grüber. “On Parameterized Approxima-
bility”. In: IWPEC. 2006, pp. 109–120.

[CH10] Liming Cai and Xiuzhen Huang. “Fixed-Parameter Approximation: Conceptual Frame-
work and Approximability Results”. In: Algorithmica 57.2 (2010), pp. 398–412.

[Cha+17] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Ma-
nurangsi, Danupon Nanongkai, and Luca Trevisan. “From Gap-ETH to FPT-Inapproximability:
Clique, Dominating Set, and More”. In: FOCS. 2017, pp. 743–754.

[Cha+99] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto
Guha, and Ming Li. “Approximation Algorithms for Directed Steiner Problems”. In:
J. Algorithms 33.1 (1999), pp. 73–91.

[Cha16] Siu On Chan. “Approximation Resistance from Pairwise-Independent Subgroups”.
In: J. ACM 63.3 (2016), 27:1–27:32.

[Che+04] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. “Linear FPT reductions and
computational lower bounds”. In: STOC. 2004, pp. 212–221.

[Che+06] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. “Strong computational
lower bounds via parameterized complexity”. In: J. Comput. Syst. Sci. 72.8 (2006),
pp. 1346–1367.

[Che+11] Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. “Set connectivity
problems in undirected graphs and the directed steiner network problem”. In: ACM
Trans. Algorithms 7.2 (2011), 18:1–18:17.

[Che+15a] Wei Chen, Fu Li, Tian Lin, and Aviad Rubinstein. “Combining Traditional Marketing
and Viral Marketing with Amphibious Influence Maximization”. In: EC. Portland,
Oregon, USA: ACM, 2015, pp. 779–796.

[Che+15b] Yu Cheng, Ho Yee Cheung, Shaddin Dughmi, Ehsan Emamjomeh-Zadeh, Li Han,
and Shang-Hua Teng. “Mixture Selection, Mechanism Design, and Signaling”. In:
FOCS. 2015, pp. 1426–1445.

[Che18a] Lijie Chen. “On The Hardness of Approximate and Exact (Bichromatic) Maximum
Inner Product”. In: CCC. 2018, 14:1–14:45.

[Che18b] Lijie Chen. “Toward Super-Polynomial Size Lower Bounds for Depth-Two Thresh-
old Circuits”. In: CoRR abs/1805.10698 (2018). arXiv: 1805.10698.

[CHK11] Moses Charikar, MohammadTaghi Hajiaghayi, and Howard J. Karloff. “Improved
Approximation Algorithms for Label Cover Problems”. In: Algorithmica 61.1 (2011),
pp. 190–206.

https://arxiv.org/abs/1805.10698

BIBLIOGRAPHY 250

[CHK13] Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Guy Kortsarz. “Fixed-
Parameter and Approximation Algorithms: A New Look”. In: IPEC. 2013, pp. 110–
122.

[Chl+16] Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Ra-
banca. “The Densest k-Subhypergraph Problem”. In: APPROX/RANDOM. 2016, 6:1–
6:19.

[Chl+17a] Eden Chlamtác, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. “Approxi-
mating Spanners and Directed Steiner Forest: Upper and Lower Bounds”. In: SODA.
2017, pp. 534–553.

[Chl+17b] Eden Chlamtác, Pasin Manurangsi, Dana Moshkovitz, and Aravindan Vijayaragha-
van. “Approximation Algorithms for Label Cover and The Log-Density Threshold”.
In: SODA. 2017, pp. 900–919.

[Chu+15] Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou. “Ap-
proximation Algorithms and Hardness of the k-Route Cut Problem”. In: ACM Trans.
Algorithms 12.1 (Dec. 2015), 2:1–2:40.

[Chv79] Vasek Chvátal. “A Greedy Heuristic for the Set-Covering Problem”. In: Math. Oper.
Res. 4.3 (1979), pp. 233–235.

[CL15] Chandra Chekuri and Shi Li. “A note on the hardness of approximating the k-WAY

HYPERGRAPH CUT problem”. Unpublished Manuscript. 2015.

[CL16] Yijia Chen and Bingkai Lin. “The Constant Inapproximability of the Parameterized
Dominating Set Problem”. In: FOCS. 2016, pp. 505–514.

[CL99] Edith Cohen and David D. Lewis. “Approximating Matrix Multiplication for Pattern
Recognition Tasks”. In: J. Algorithms 30.2 (1999), pp. 211–252.

[CLN13] Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. “Independent
Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time)
Approximation Hardnesses”. In: FOCS. 2013, pp. 370–379.

[CM18] Eden Chlamtác and Pasin Manurangsi. “Sherali-Adams Integrality Gaps Matching
the Log-Density Threshold”. In: APPROX. 2018, 10:1–10:19.

[CMY08] Graham Cormode, S. Muthukrishnan, and Ke Yi. “Algorithms for distributed func-
tional monitoring”. In: SODA. 2008, pp. 1076–1085.

[CN99] Jin-yi Cai and Ajay Nerurkar. “Approximating the SVP to within a Factor (1 +
1/dimξ) Is NP-Hard under Randomized Reductions”. In: J. Comput. Syst. Sci. 59.2
(1999), pp. 221–239.

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: STOC.
1971, pp. 151–158.

[Coo88] Stephen A. Cook. “Short Propositional Formulas Represent Nondeterministic Com-
putations”. In: Inf. Process. Lett. 26.5 (Jan. 1988), pp. 269–270.

BIBLIOGRAPHY 251

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. 3rd. The MIT Press, 2009.

[CRR14] Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. “Topology Mat-
ters in Communication”. In: FOCS. 2014, pp. 631–640.

[CT12] Eden Chlamtác and Madhur Tulsiani. “Handbook on Semidefinite, Conic and Poly-
nomial Optimization”. In: ed. by F. Miguel Anjos and B. Jean Lasserre. Boston, MA:
Springer US, 2012. Chap. Convex Relaxations and Integrality Gaps, pp. 139–169.

[CW12a] Qi Cheng and Daqing Wan. “A Deterministic Reduction for the Gap Minimum Dis-
tance Problem”. In: IEEE Trans. Information Theory 58.11 (2012), pp. 6935–6941.

[CW12b] Qi Cheng and Daqing Wan. “A Deterministic Reduction for the Gap Minimum Dis-
tance Problem”. In: IEEE Trans. Information Theory 58.11 (2012), pp. 6935–6941.

[CW19] Lijie Chen and Ryan Williams. “An Equivalence Class for Orthogonal Vectors”. In:
SODA. 2019, pp. 21–40.

[Cyg+14] Marek Cygan, Fedor Fomin, Bart MP Jansen, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, and Saket Saurabh. “Open problems for fpt school
2014”. 2014.

[Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[Cyg+17] Marek Cygan, Fedor V. Fomin, Danny Hermelin, and Magnus Wahlström. “Ran-
domization in Parameterized Complexity (Dagstuhl Seminar 17041)”. In: Dagstuhl
Reports 7.1 (2017), pp. 103–128.

[CZ15] Stephen R. Chestnut and Rico Zenklusen. “Hardness and Approximation for Network
Flow Interdiction”. In: CoRR abs/1511.02486 (2015).

[Dan16] Amit Daniely. “Complexity theoretic limitations on learning halfspaces”. In: STOC.
2016, pp. 105–117.

[Dem+07] Erik D. Demaine, Gregory Gutin, Dániel Marx, and Ulrike Stege. “07281 Open
Problems – Structure Theory and FPT Algorithmcs for Graphs, Digraphs and Hy-
pergraphs”. In: Structure Theory and FPT Algorithmics for Graphs, Digraphs and
Hypergraphs, 08.07. - 13.07.2007. 2007.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013.

[DF95a] Rodney G. Downey and Michael R. Fellows. “Fixed-Parameter Tractability and Com-
pleteness I: Basic Results”. In: SIAM J. Comput. 24.4 (1995), pp. 873–921.

[DF95b] Rodney G. Downey and Michael R. Fellows. “Fixed-Parameter Tractability and Com-
pleteness II: On Completeness for W[1]”. In: Theor. Comput. Sci. 141.1&2 (1995),
pp. 109–131.

BIBLIOGRAPHY 252

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer, 1999.

[DFM06] Rodney G. Downey, Michael R. Fellows, and Catherine McCartin. “Parameterized
Approximation Problems”. In: IWPEC. 2006, pp. 121–129.

[DFS16] Argyrios Deligkas, John Fearnley, and Rahul Savani. “Inapproximability Results for
Approximate Nash Equilibria”. In: WINE. 2016, pp. 29–43.

[DG08] Irit Dinur and Elazar Goldenberg. “Locally Testing Direct Product in the Low Error
Range”. In: FOCS. 2008, pp. 613–622.

[DHK15] Irit Dinur, Prahladh Harsha, and Guy Kindler. “Polynomially Low Error PCPs with
polyloglog n Queries via Modular Composition”. In: STOC. 2015, pp. 267–276.

[Din+03] Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. “Approximating CVP to Within
Almost-Polynomial Factors is NP-Hard”. In: Combinatorica 23.2 (2003), pp. 205–
243.

[Din+11] Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz, and Shmuel Safra. “PCP Character-
izations of NP: Toward a Polynomially-Small Error-Probability”. In: Computational
Complexity 20.3 (2011), pp. 413–504.

[Din02] Irit Dinur. “Approximating SVP∞ to within almost-polynomial factors is NP-hard”.
In: Theor. Comput. Sci. 285.1 (2002), pp. 55–71.

[Din07] Irit Dinur. “The PCP theorem by gap amplification”. In: J. ACM 54.3 (2007), p. 12.

[Din16] Irit Dinur. “Mildly exponential reduction from gap 3SAT to polynomial-gap label-
cover”. In: ECCC 23 (2016), p. 128.

[DK17] Irit Dinur and Tali Kaufman. “High dimensional expanders imply agreement ex-
panders”. In: ECCC 24 (2017), p. 89.

[DK99] Yevgeniy Dodis and Sanjeev Khanna. “Design Networks with Bounded Pairwise Dis-
tance”. In: STOC. 1999, pp. 750–759.

[DKL18] Roee David, Karthik C. S., and Bundit Laekhanukit. “On the Complexity of Closest
Pair via Polar-Pair of Point-Sets”. In: SoCG. 2018, 28:1–28:15.

[DM18] Irit Dinur and Pasin Manurangsi. “ETH-Hardness of Approximating 2-CSPs and Di-
rected Steiner Network”. In: ITCS. 2018, 36:1–36:20.

[DMS03] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. “Hardness of approximating
the minimum distance of a linear code”. In: IEEE Trans. Information Theory 49.1
(2003), pp. 22–37.

[DMZ05] William Duckworth, David Manlove, and Michele Zito. “On the approximability of
the maximum induced matching problem”. In: J. Discrete Algorithms 3.1 (2005),
pp. 79–91.

[DN17] Irit Dinur and Inbal Livni Navon. “Exponentially Small Soundness for the Direct
Product Z-Test”. In: CCC. 2017, 29:1–29:50.

BIBLIOGRAPHY 253

[Dol+14] Thorsten Doliwa, Gaojian Fan, Hans Ulrich Simon, and Sandra Zilles. “Recursive
teaching dimension, VC-dimension and sample compression”. In: Journal of Ma-
chine Learning Research 15.1 (2014), pp. 3107–3131.

[Dow+08] Rodney G. Downey, Michael R. Fellows, Catherine McCartin, and Frances A. Rosa-
mond. “Parameterized approximation of dominating set problems”. In: Inf. Process.
Lett. 109.1 (2008), pp. 68–70.

[Dow+99] Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. “The
Parametrized Complexity of Some Fundamental Problems in Coding Theory”. In:
SIAM J. Comput. 29.2 (1999), pp. 545–570.

[DS14] Irit Dinur and David Steurer. “Analytical approach to parallel repetition”. In: STOC.
2014, pp. 624–633.

[DS16] Amit Daniely and Shai Shalev-Shwartz. “Complexity Theoretic Limitations on Learn-
ing DNF’s”. In: COLT. 2016, pp. 815–830.

[Dug14] Shaddin Dughmi. “On the Hardness of Signaling”. In: FOCS. 2014, pp. 354–363.

[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. “On the complexity of fixed parameter
clique and dominating set”. In: Theor. Comput. Sci. 326.1-3 (2004), pp. 57–67.

[EGG08] Kord Eickmeyer, Martin Grohe, and Magdalena Grüber. “Approximation of Natural
W[P]-Complete Minimisation Problems Is Hard”. In: CCC. 2008, pp. 8–18.

[EH00] Lars Engebretsen and Jonas Holmerin. “Clique Is Hard to Approximate within n1−o(1)”.
In: ICALP. 2000, pp. 2–12.

[Elb+09] Khaled M. Elbassioni, Rajiv Raman, Saurabh Ray, and René Sitters. “On the ap-
proximability of the maximum feasible subsystem problem with 0/1-coefficients”.
In: SODA. 2009, pp. 1210–1219.

[Emd81] Peter van Emde-Boas. Another NP-complete partition problem and the complexity of
computing short vectors in a lattice. Report. Department of Mathematics. University
of Amsterdam. Department, Univ., 1981.

[Fei+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
“Approximating Clique is Almost NP-complete (Preliminary Version)”. In: SFCS.
San Juan, Puerto Rico: IEEE Computer Society, 1991, pp. 2–12.

[Fei02] Uriel Feige. “Relations Between Average Case Complexity and Approximation Com-
plexity”. In: STOC. Montreal, Quebec, Canada, 2002, pp. 534–543.

[Fei04] Uriel Feige. “Approximating Maximum Clique by Removing Subgraphs”. In: SIAM
J. Discrete Math. 18.2 (2004), pp. 219–225.

[Fei98] Uriel Feige. “A Threshold of ln n for Approximating Set Cover”. In: J. ACM 45.4
(1998), pp. 634–652.

[Fel+06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.
“New Results for Learning Noisy Parities and Halfspaces”. In: FOCS. 2006, pp. 563–
574.

BIBLIOGRAPHY 254

[Fel+12] Michael R. Fellows, Jiong Guo, Dániel Marx, and Saket Saurabh. “Data Reduction
and Problem Kernels (Dagstuhl Seminar 12241)”. In: Dagstuhl Reports 2.6 (2012),
pp. 26–50.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[FK00] Uriel Feige and Joe Kilian. “Two-Prover Protocols - Low Error at Affordable Rates”.
In: SIAM J. Comput. 30.1 (2000), pp. 324–346.

[FK05] Uriel Feige and Shimon Kogan. “The hardness of approximating hereditary proper-
ties”. Technical Report. 2005.

[FK96] Alan M. Frieze and Ravi Kannan. “The Regularity Lemma and Approximation Schemes
for Dense Problems”. In: FOCS. 1996, pp. 12–20.

[FKN12] Moran Feldman, Guy Kortsarz, and Zeev Nutov. “Improved approximation algo-
rithms for Directed Steiner Forest”. In: J. Comput. Syst. Sci. 78.1 (2012), pp. 279–
292.

[FKP01] Uriel Feige, Guy Kortsarz, and David Peleg. “The Dense k-Subgraph Problem”. In:
Algorithmica 29.3 (2001), pp. 410–421.

[FL01] Uriel Feige and Michael Langberg. “Approximation Algorithms for Maximization
Problems Arising in Graph Partitioning”. In: J. Algorithms 41.2 (Nov. 2001), pp. 174–
211.

[FL98] Moti Frances and Ami Litman. “Optimal Mistake Bound Learning is Hard”. In: Inf.
Comput. 144.1 (1998), pp. 66–82.

[FLP16] Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. “Sub-exponential Ap-
proximation Schemes for CSPs: From Dense to Almost Sparse”. In: STACS. 2016,
37:1–37:14.

[FM12] Fedor V. Fomin and Dániel Marx. “FPT Suspects and Tough Customers: Open Prob-
lems of Downey and Fellows”. In: The Multivariate Algorithmic Revolution and Be-
yond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birth-
day. Ed. by Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx.
Vol. 7370. Lecture Notes in Computer Science. Springer, 2012, pp. 457–468.

[FM86] Peter Frankl and Hiroshi Maehara. “Embedding the n-cube in Lower Dimensions”.
In: Eur. J. Comb. 7.3 (1986), pp. 221–225.

[FM88] Peter Frankl and Hiroshi Maehara. “On the Contact Dimensions of Graphs”. In: Dis-
crete & Computational Geometry 3 (1988), pp. 89–96.

[FOZ16] Orr Fischer, Rotem Oshman, and Uri Zwick. “Public vs. Private Randomness in Si-
multaneous Multi-party Communication Complexity”. In: SIROCCO. 2016, pp. 60–
74.

[FS97] Uriel Feige and Michael Seltser. On the densest k-subgraph problem. Tech. rep.
Weizmann Institute of Science, Rehovot, Israel, 1997.

BIBLIOGRAPHY 255

[FSM19] Piotr Faliszewski, Krzysztof Sornat, and Pasin Manurangsi. “Approximation and
Hardness of Shift-Bribery”. In: AAAI. To appear. 2019.

[Gal14] François Le Gall. “Powers of tensors and fast matrix multiplication”. In: ISSAC.
2014, pp. 296–303.

[Gil52] E. N. Gilbert. “A comparison of signalling alphabets”. In: Bell System Technical
Journal 31 (1952), pp. 504–522.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[GK18] Elazar Goldenberg and Karthik C. S. “Towards a General Direct Product Testing
Theorem”. In: FSTTCS. 2018, 11:1–11:17.

[GKS12] Petr A. Golovach, Jan Kratochvíl, and Ondrej Suchý. “Parameterized complexity of
generalized domination problems”. In: Discrete Applied Mathematics 160.6 (2012),
pp. 780–792.

[GL09] Doron Goldstein and Michael Langberg. “The Dense k Subgraph problem”. In: CoRR
abs/0912.5327 (2009).

[GO95] Anka Gajentaan and Mark H. Overmars. “On a Class of O(n2) Problems in Compu-
tational Geometry”. In: Comput. Geom. 5 (1995), pp. 165–185.

[Gol+99] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. “Ap-
proximating Shortest Lattice Vectors is not Harder than Approximating Closest Lat-
tice Vectors”. In: Inf. Process. Lett. 71.2 (1999), pp. 55–61.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[GR18] Oded Goldreich and Guy N. Rothblum. “Simple Doubly-Efficient Interactive Proof
Systems for Locally-Characterizable Sets”. In: ITCS. 2018, 18:1–18:19.

[Gri01] Dima Grigoriev. “Linear lower bound on degrees of Positivstellensatz calculus proofs
for the parity”. In: Theor. Comput. Sci. 259.1-2 (2001), pp. 613–622.

[GS11] Venkatesan Guruswami and Ali Kemal Sinop. “Lasserre Hierarchy, Higher Eigenval-
ues, and Approximation Schemes for Graph Partitioning and Quadratic Integer Pro-
gramming with PSD Objectives”. In: FOCS. IEEE Computer Society, 2011, pp. 482–
491.

[GS17] Omer Gold and Micha Sharir. “Dominance Product and High-Dimensional Closest
Pair under L_infty”. In: ISAAC. 2017, 39:1–39:12.

[GS96] Arnaldo Garcia and Henning Stichtenoth. “On the Asymptotic Behaviour of Some
Towers of Function Fields over Finite Fields”. In: Journal of Number Theory 61.2
(1996), pp. 248–273.

[Gup+19] Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Michal Wlodar-
czyk. “Losing Treewidth by Separating Subsets”. In: SODA. 2019, pp. 1731–1749.

BIBLIOGRAPHY 256

[Haj+06] Mohammad Taghi Hajiaghayi, Kamal Jain, Lap Chi Lau, Ion I. Mandoiu, Alexan-
der Russell, and Vijay V. Vazirani. “Minimum Multicolored Subgraph Problem in
Multiplex PCR Primer Set Selection and Population Haplotyping”. In: ICCS. 2006,
pp. 758–766.

[Hal00] Magnús M. Halldórsson. “Approximations of Weighted Independent Set and Hered-
itary Subset Problems”. In: J. Graph Algorithms Appl. 4.1 (2000).

[Hås01] Johan Håstad. “Some optimal inapproximability results”. In: J. ACM 48.4 (2001),
pp. 798–859.

[Hås96] Johan Håstad. “Clique is Hard to Approximate Within n1−ε”. In: FOCS. 1996, pp. 627–
636.

[Hen06] Tomislav Hengl. “Finding the right pixel size”. In: Computers & Geosciences 32.9
(2006), pp. 1283–1298.

[HIM11] Koki Hamada, Kazuo Iwama, and Shuichi Miyazaki. “The Hospitals/Residents Prob-
lem with Quota Lower Bounds”. In: ESA. 2011, pp. 180–191.

[HJ06] Mohammad Taghi Hajiaghayi and Kamal Jain. “The Prize-collecting Generalized
Steiner Tree Problem via a New Approach of Primal-dual Schema”. In: SODA. Mi-
ami, Florida: Society for Industrial and Applied Mathematics, 2006, pp. 631–640.

[HK11] Elad Hazan and Robert Krauthgamer. “How Hard Is It to Approximate the Best Nash
Equilibrium?” In: SIAM Journal on Computing 40.1 (2011), pp. 79–91.

[HKK13] Mohammad Taghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. “The Founda-
tions of Fixed Parameter Inapproximability”. In: CoRR abs/1310.2711 (2013).

[HM13] Aram W. Harrow and Ashley Montanaro. “Testing Product States, Quantum Merlin-
Arthur Games and Tensor Optimization”. In: J. ACM 60.1 (Feb. 2013), 3:1–3:43.

[HNS88] Klaus H. Hinrichs, Jürg Nievergelt, and Peter Schorn. “Plane-Sweep Solves the Clos-
est Pair Problem Elegantly”. In: Inf. Process. Lett. 26.5 (1988), pp. 255–261.

[Hoc59] Alexis Hocquenghem. “Codes correcteurs d’erreurs”. In: Chiffres 2 (Sept. 1959),
pp. 147–156.

[Hol09] Thomas Holenstein. “Parallel Repetition: Simplification and the No-Signaling Case”.
In: Theory of Computing 5.1 (2009), pp. 141–172.

[HR07] Ishay Haviv and Oded Regev. “Tensor-based hardness of the shortest vector problem
to within almost polynomial factors”. In: STOC. 2007, pp. 469–477.

[IJK09] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. “Approximate List-
Decoding of Direct Product Codes and Uniform Hardness Amplification”. In: SIAM
J. Comput. 39.2 (2009), pp. 564–605.

[IKW12] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “New Direct-Product
Testers and 2-Query PCPs”. In: SIAM J. Comput. 41.6 (2012), pp. 1722–1768.

BIBLIOGRAPHY 257

[IM98] Piotr Indyk and Rajeev Motwani. “Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality”. In: STOC. 1998, pp. 604–613.

[Imp+10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. “Uni-
form Direct Product Theorems: Simplified, Optimized, and Derandomized”. In: SIAM
J. Comput. 39.4 (2010), pp. 1637–1665.

[Ind+04] Piotr Indyk, Moshe Lewenstein, Ohad Lipsky, and Ely Porat. “Closest Pair Problems
in Very High Dimensions”. In: ICALP. 2004, pp. 782–792.

[Ind00] Piotr Indyk. “Dimensionality reduction techniques for proximity problems”. In: SODA.
2000, pp. 371–378.

[IP01] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of k-SAT”. In: J.
Comput. Syst. Sci. 62.2 (2001), pp. 367–375.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which Problems Have
Strongly Exponential Complexity?” In: J. Comput. Syst. Sci. 63.4 (2001), pp. 512–
530.

[Jer92] Mark Jerrum. “Large Cliques Elude the Metropolis Process”. In: Random Structures
& Algorithms 3.4 (1992), pp. 347–359.

[JKR19] Vishesh Jain, Frederic Koehler, and Andrej Risteski. “Mean-field approximation,
convex hierarchies, and the optimality of correlation rounding: a unified perspec-
tive”. In: STOC. to appear. 2019.

[JL84] William Johnson and Joram Lindenstrauss. “Extensions of Lipschitz mappings into
a Hilbert space”. In: Conference in modern analysis and probability (New Haven,
Conn., 1982). Vol. 26. Contemporary Mathematics. American Mathematical Society,
1984, pp. 189–206.

[Joh74] David S. Johnson. “Approximation Algorithms for Combinatorial Problems”. In: J.
Comput. Syst. Sci. 9.3 (1974), pp. 256–278.

[Joh87] David S. Johnson. “The NP-completeness Column: An Ongoing Guide”. In: J. Algo-
rithms 8.5 (Sept. 1987), pp. 438–448.

[Jus72] Jørn Justesen. “Class of constructive asymptotically good algebraic codes”. In: IEEE
Trans. Information Theory 18.5 (1972), pp. 652–656.

[Kal+08] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
“Agnostically Learning Halfspaces”. In: SIAM J. Comput. 37.6 (2008), pp. 1777–
1805.

[Kan92] Viggo Kann. “On the Approximability of NP-complete Optimization Problems”.
PhD thesis. Royal Institute of Technology, 1992.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings
of a symposium on the Complexity of Computer Computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
1972, pp. 85–103.

BIBLIOGRAPHY 258

[Kay14] Neeraj Kayal. Solvability of Systems of Polynomial Equations over Finite Fields. A
talk given by Neeraj Kayal at the Simons Institute for the Theory of Computing,
Berkeley, CA [Accessed: 2017/20/7]. Oct. 2014.

[Kha93] Michael Kharitonov. “Cryptographic hardness of distribution-specific learning”. In:
STOC. 1993, pp. 372–381.

[Kha95] Michael Kharitonov. “Cryptographic Lower Bounds for Learnability of Boolean Func-
tions on the Uniform Distribution”. In: J. Comput. Syst. Sci. 50.3 (1995), pp. 600–
610.

[Kho+07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. “Optimal In-
approximability Results for MAX-CUT and Other 2-Variable CSPs?” In: SIAM J.
Comput. 37.1 (2007), pp. 319–357.

[Kho01] Subhash Khot. “Improved Inaproximability Results for MaxClique, Chromatic Num-
ber and Approximate Graph Coloring”. In: FOCS. 2001, pp. 600–609.

[Kho02] Subhash Khot. “On the power of unique 2-prover 1-round games”. In: STOC. 2002,
pp. 767–775.

[Kho05] Subhash Khot. “Hardness of approximating the shortest vector problem in lattices”.
In: J. ACM 52.5 (2005), pp. 789–808.

[Kho06] Subhash Khot. “Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and
Bipartite Clique”. In: SIAM J. Comput. 36.4 (2006), pp. 1025–1071.

[KKT16] Guy Kindler, Alexandra Kolla, and Luca Trevisan. “Approximation of non-boolean
2CSP”. In: SODA. 2016, pp. 1705–1714.

[Kle97] Jon M. Kleinberg. “Two Algorithms for Nearest-Neighbor Search in High Dimen-
sions”. In: STOC. 1997, pp. 599–608.

[Kli16] Adam R. Klivans. “Cryptographic Hardness of Learning”. In: Encyclopedia of Algo-
rithms. 2016, pp. 475–477.

[KLM18] Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. “On the parameterized
complexity of approximating dominating set”. In: STOC. 2018, pp. 1283–1296.

[KLN99] Drago Krznaric, Christos Levcopoulos, and Bengt J. Nilsson. “Minimum Spanning
Trees in d Dimensions”. In: Nord. J. Comput. 6.4 (1999), pp. 446–461.

[KM19] Karthik C. S. and Pasin Manurangsi. “On Closest Pair in Euclidean Metric: Monochro-
matic is as Hard as Bichromatic”. In: ITCS. 2019, 17:1–17:16.

[KM95] Samir Khuller and Yossi Matias. “A Simple Randomized Sieve Algorithm for the
Closest-Pair Problem”. In: Inf. Comput. 118.1 (1995), pp. 34–37.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. New York, NY, USA:
Cambridge University Press, 1997.

[Ko18] Young Kun Ko. “On Symmetric Parallel Repetition : Towards Equivalence of MAX-
CUT and UG”. In: ECCC 25 (2018), p. 34.

BIBLIOGRAPHY 259

[Kop13] Swastik Kopparty. Lecture 5: k-wise independent hashing and applications. Lecture
notes for Topics in Complexity Theory and Pseudorandomness. Rutgers University,
2013.

[Kor+11] Guy Kortsarz, Vahab S. Mirrokni, Zeev Nutov, and Elena Tsanko. “Approximating
Minimum-Power Degree and Connectivity Problems”. In: Algorithmica 60.4 (2011),
pp. 735–742.

[KP06] Subhash Khot and Ashok Kumar Ponnuswami. “Better Inapproximability Results for
MaxClique, Chromatic Number and Min-3Lin-Deletion”. In: ICALP. 2006, pp. 226–
237.

[KP93] Guy Kortsarz and David Peleg. “On Choosing a Dense Subgraph (Extended Ab-
stract)”. In: FOCS. 1993, pp. 692–701.

[KR00] Subhash Khot and Venkatesh Raman. “Parameterized Complexity of Finding Sub-
graphs with Hereditary Properties”. In: COCOON. 2000, pp. 137–147.

[KS07] Stavros G. Kolliopoulos and George Steiner. “Partially ordered knapsack and appli-
cations to scheduling”. In: Discrete Applied Mathematics 155.8 (2007), pp. 889–897.

[KS09] Adam R. Klivans and Alexander A. Sherstov. “Cryptographic hardness for learning
intersections of halfspaces”. In: J. Comput. Syst. Sci. 75.1 (2009), pp. 2–12.

[KS16] Subhash Khot and Igor Shinkar. “On Hardness of Approximating the Parameterized
Clique Problem”. In: ITCS. 2016, pp. 37–45.

[KS92] Bala Kalyanasundaram and Georg Schnitger. “The Probabilistic Communication Com-
plexity of Set Intersection”. In: SIAM J. Discrete Math. 5.4 (1992), pp. 545–557.

[KST54] Tamás Kővári, Vera T. Sós, and Pál Turán. “On a problem of K. Zarankiewicz”. eng.
In: Colloquium Mathematicae 3.1 (1954), pp. 50–57.

[KT05] Jon Kleinberg and Éva Tardos. Algorithm Design. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2005.

[Kuč95] Luděk Kučera. “Expected Complexity of Graph Partitioning Problems”. In: Discrete
Appl. Math. 57.2-3 (Feb. 1995), pp. 193–212.

[KV94] Michael J. Kearns and Leslie G. Valiant. “Cryptographic Limitations on Learning
Boolean Formulae and Finite Automata”. In: J. ACM 41.1 (1994), pp. 67–95.

[Las00] Jean B. Lasserre. “Global Optimization with Polynomials and the Problem of Mo-
ments”. In: SIAM J. on Optimization 11.3 (Mar. 2000), pp. 796–817.

[Lau03] Monique Laurent. “A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
Relaxations for 0–1 Programming”. In: Math. Oper. Res. 28.3 (July 2003), pp. 470–
496.

[Lee16] Euiwoong Lee. “Partitioning a Graph into Small Pieces with Applications to Path
Transversal”. In: CoRR abs/1607.05122 (2016).

BIBLIOGRAPHY 260

[Len83] Hendrik Willem Lenstra. “Integer Programming with a Fixed Number of Variables”.
In: Math. Oper. Res. 8.4 (1983), pp. 538–548.

[Leo73] Leonid A. Levin. “Universal Sequential Search Problems”. In: Probl. Peredachi Inf.
9.3 (1973), pp. 115–116.

[Lin15] Bingkai Lin. “The Parameterized Complexity of k-Biclique”. In: SODA. 2015, pp. 605–
615.

[Lin19] Bingkai Lin. “A Simple Gap-producing Reduction for the Parameterized Set Cover
Problem”. In: CoRR abs/1902.03702 (2019). arXiv: 1902.03702.

[Lit88] Nick Littlestone. “Learning Quickly When Irrelevant Attributes Abound: A New
Linear-Threshold Algorithm”. In: Mach. Learn. 2.4 (Apr. 1988), pp. 285–318.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. “Factoring poly-
nomials with rational coefficients”. In: Mathematische Annalen 261.4 (1982), pp. 515–
534.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. “Playing large games
using simple strategies”. In: EC. 2003, pp. 36–41.

[LMR91] Nathan Linial, Yishay Mansour, and Ronald L. Rivest. “Results on Learnability and
the Vapnik-Chervonenkis Dimension”. In: Inf. Comput. 90.1 (1991), pp. 33–49.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. “Lower bounds based on the
Exponential Time Hypothesis”. In: Bulletin of the EATCS 105 (2011), pp. 41–72.

[LNV14] Zhentao Li, Manikandan Narayanan, and Adrian Vetta. “The Complexity of the Si-
multaneous Cluster Problem”. In: Journal of Graph Algorithms and Applications
18.1 (2014), pp. 1–34.

[Lok+17] Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. “Param-
eterized Complexity and Approximability of Directed Odd Cycle Transversal”. In:
CoRR abs/1704.04249 (2017). arXiv: 1704.04249.

[Lov75] L. Lovász. “On the ratio of optimal integral and fractional covers”. In: Discrete Math-
ematics 13.4 (1975), pp. 383–390.

[LRS15] James R. Lee, Prasad Raghavendra, and David Steurer. “Lower Bounds on the Size
of Semidefinite Programming Relaxations”. In: STOC. 2015, pp. 567–576.

[LS09] Troy Lee and Adi Shraibman. “Lower Bounds in Communication Complexity”. In:
Foundations and Trends in Theoretical Computer Science 3.4 (2009), pp. 263–398.

[Lue09] George S. Lueker. “Improved bounds on the average length of longest common sub-
sequences”. In: J. ACM 56.3 (2009), 17:1–17:38.

[LV11] Guanfeng Liang and Nitin H. Vaidya. “Multiparty Equality Function Computation in
Networks with Point-to-Point Links”. In: SIROCCO. 2011, pp. 258–269.

[LY80] John M. Lewis and Mihalis Yannakakis. “The Node-Deletion Problem for Hereditary
Properties is NP-Complete”. In: J. Comput. Syst. Sci. 20.2 (1980), pp. 219–230.

https://arxiv.org/abs/1902.03702
https://arxiv.org/abs/1704.04249

BIBLIOGRAPHY 261

[LY93] Carsten Lund and Mihalis Yannakakis. “The Approximation of Maximum Subgraph
Problems”. In: ICALP. 1993, pp. 40–51.

[LY94] Carsten Lund and Mihalis Yannakakis. “On the Hardness of Approximating Mini-
mization Problems”. In: J. ACM 41.5 (1994), pp. 960–981.

[Mae85] Hiroshi Maehara. “Contact patterns of equal nonoverlapping spheres”. In: Graphs
and Combinatorics 1.1 (1985), pp. 271–282.

[Mae91] Hiroshi Maehara. “Dispersed Points and Geometric Embedding of Complete Bipar-
tite Graphs”. In: Discrete & Computational Geometry 6 (1991), pp. 57–67.

[Maj17] Ruhollah Majdoddin. “Parameterized Complexity of CSP for Infinite Constraint Lan-
guages”. In: CoRR abs/1706.10153 (2017).

[Man15] Pasin Manurangsi. “On Approximating Projection Games”. MA thesis. Massachusetts
Institute of Technology, Jan. 2015.

[Man17a] Pasin Manurangsi. “Almost-polynomial ratio ETH-hardness of approximating dens-
est k-subgraph”. In: STOC. 2017, pp. 954–961.

[Man17b] Pasin Manurangsi. “Inapproximability of Maximum Edge Biclique, Maximum Bal-
anced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis”. In:
ICALP. 2017, 79:1–79:14.

[Man19a] Pasin Manurangsi. “A note on degree vs gap of Min-Rep Label Cover and improved
inapproximability for connectivity problems”. In: Inf. Process. Lett. 145 (2019), pp. 24–
29.

[Man19b] Pasin Manurangsi. “A Note on Max k-Vertex Cover: Faster FPT-AS, Smaller Ap-
proximate Kernel and Improved Approximation”. In: SOSA. 2019, 15:1–15:21.

[Man89] Udi Manber. Introduction to Algorithms: A Creative Approach. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1989.

[Mar13] Dániel Marx. “Completely inapproximable monotone and antimonotone parameter-
ized problems”. In: J. Comput. Syst. Sci. 79.1 (2013), pp. 144–151.

[McD89] Colin McDiarmid. On the method of bounded differences. Ed. by J.Editor Siemons.
London Mathematical Society Lecture Note Series. Surveys in Combinatorics: In-
vited Papers at the Twelfth British Combinatorial Conference, Cambridge University
Press, 1989, pp. 148–188.

[Mei13] Or Meir. “IP = PSPACE Using Error-Correcting Codes”. In: SIAM J. Comput. 42.1
(2013), pp. 380–403.

[Mic00] Daniele Micciancio. “The Shortest Vector in a Lattice is Hard to Approximate to
within Some Constant”. In: SIAM J. Comput. 30.6 (2000), pp. 2008–2035.

[Mic01] Daniele Micciancio. “The hardness of the closest vector problem with preprocess-
ing”. In: IEEE Trans. Information Theory 47.3 (2001), pp. 1212–1215.

BIBLIOGRAPHY 262

[Mic12] Daniele Micciancio. “Inapproximability of the Shortest Vector Problem: Toward a
Deterministic Reduction”. In: Theory of Computing 8.1 (2012), pp. 487–512.

[Mic14] Daniele Micciancio. “Locally Dense Codes”. In: CCC. 2014, pp. 90–97.

[MM15] Pasin Manurangsi and Dana Moshkovitz. “Approximating Dense Max 2-CSPs”. In:
APPROX. 2015, pp. 396–415.

[MM17] Pasin Manurangsi and Dana Moshkovitz. “Improved Approximation Algorithms for
Projection Games”. In: Algorithmica 77.2 (2017), pp. 555–594.

[MNP07] Rajeev Motwani, Assaf Naor, and Rina Panigrahy. “Lower Bounds on Locality Sen-
sitive Hashing”. In: SIAM J. Discrete Math. 21.4 (2007), pp. 930–935.

[MNT16] Pasin Manurangsi, Preetum Nakkiran, and Luca Trevisan. “Near-Optimal UGC-hardness
of Approximating Max k-CSP_R”. In: APPROX. 2016, 15:1–15:28.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. “Noise stability of
functions with low influences invariance and optimality”. In: FOCS. 2005, pp. 21–
30.

[Mor+15] Shay Moran, Amir Shpilka, Avi Wigderson, and Amir Yehudayoff. “Compressing
and Teaching for Low VC-Dimension”. In: FOCS. 2015, pp. 40–51.

[Mos12] Dana Moshkovitz. “The Projection Games Conjecture and The NP-Hardness of lnn-
Approximating Set-Cover”. In: APPROX. Vol. 7408. 2012, pp. 276–287.

[Mos14] Dana Moshkovitz. “Parallel Repetition from Fortification”. In: FOCS. 2014, pp. 414–
423.

[MR09] Daniele Micciancio and Oded Regev. “Lattice-based cryptography”. In: Post-quantum
cryptography. Springer, 2009, pp. 147–191.

[MR10] Dana Moshkovitz and Ran Raz. “Two-query PCP with subconstant error”. In: J. ACM
57.5 (2010), 29:1–29:29.

[MR17a] Pasin Manurangsi and Prasad Raghavendra. “A Birthday Repetition Theorem and
Complexity of Approximating Dense CSPs”. In: ICALP. 2017, 78:1–78:15.

[MR17b] Pasin Manurangsi and Aviad Rubinstein. “Inapproximability of VC Dimension and
Littlestone’s Dimension”. In: COLT. 2017, pp. 1432–1460.

[MS08] Claire Mathieu and Warren Schudy. “Yet another algorithm for dense max cut: go
greedy”. In: SODA. 2008, pp. 176–182.

[MS09] Hannes Moser and Somnath Sikdar. “The parameterized complexity of the induced
matching problem”. In: Discrete Applied Mathematics 157.4 (2009), pp. 715–727.

[MS17a] Pasin Manurangsi and Warut Suksompong. “Asymptotic existence of fair divisions
for groups”. In: Mathematical Social Sciences 89 (2017), pp. 100–108.

[MS17b] Pasin Manurangsi and Warut Suksompong. “Computing an Approximately Optimal
Agreeable Set of Items”. In: IJCAI. 2017, pp. 338–344.

BIBLIOGRAPHY 263

[MS19a] Pasin Manurangsi and Warut Suksompong. “Computing a small agreeable set of in-
divisible items”. In: Artif. Intell. 268 (2019), pp. 96–114.

[MS19b] Pasin Manurangsi and Warut Suksompong. “When does Envy-free Allocation Ex-
ists?” In: AAAI. To appear. 2019.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. North-
Holland mathematical library: v. 16. Amsterdam ; New York : North-Holland Pub.
Co. ; New York : sole distributors for the U.S.A. and Canada, Elsevier/North Holland,
1977., 1977.

[MT09] Hannes Moser and Dimitrios M. Thilikos. “Parameterized complexity of finding reg-
ular induced subgraphs”. In: J. Discrete Algorithms 7.2 (2009), pp. 181–190.

[MT18] Pasin Manurangsi and Luca Trevisan. “Mildly Exponential Time Approximation Al-
gorithms for Vertex Cover, Balanced Separator and Uniform Sparsest Cut”. In: AP-
PROX. 2018, 20:1–20:17.

[MU02] Elchanan Mossel and Christopher Umans. “On the complexity of approximating the
VC dimension”. In: J. Comput. Syst. Sci. 65.4 (2002), pp. 660–671.

[Nis94] Noam Nisan. “The Communication Complexity of Threshold Gates”. In: Proceed-
ings of “Combinatorics, Paul Erdos is Eighty. 1994, pp. 301–315.

[NV10] Phong Q. Nguyen and Brigitte Vallée, eds. The LLL Algorithm - Survey and Applica-
tions. Information Security and Cryptography. Springer, 2010.

[OWZ14] Ryan O’Donnell, Yi Wu, and Yuan Zhou. “Optimal Lower Bounds for Locality-
Sensitive Hashing (Except When q is Tiny)”. In: TOCT 6.1 (2014), 5:1–5:13.

[Pac80] Janos Pach. “Decomposition of multiple packing and covering”. In: Diskrete Geome-
trie 2 Kolloq. Math. Inst. Univ. Salzburg (1980), pp. 169–178.

[Pat10] Mihai Patrascu. “Towards polynomial lower bounds for dynamic problems”. In: STOC.
2010, pp. 603–610.

[Pel07] David Peleg. “Approximation algorithms for the Label-CoverMAX and Red-Blue
Set Cover problems”. In: J. Discrete Algorithms 5.1 (2007), pp. 55–64.

[Pis07] David Pisinger. “The quadratic knapsack problem—a survey”. In: Discrete Applied
Mathematics 155.5 (2007), pp. 623–648.

[PS85] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduc-
tion. New York, NY, USA: Springer-Verlag New York, Inc., 1985.

[PVZ12] Jeff M. Phillips, Elad Verbin, and Qin Zhang. “Lower bounds for number-in-hand
multiparty communication complexity, made easy”. In: SODA. 2012, pp. 486–501.

[PW10] Mihai Patrascu and Ryan Williams. “On the Possibility of Faster SAT Algorithms”.
In: SODA. 2010, pp. 1065–1075.

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. “Optimization, Approximation,
and Complexity Classes”. In: J. Comput. Syst. Sci. 43.3 (1991), pp. 425–440.

BIBLIOGRAPHY 264

[PY96] Christos H. Papadimitriou and Mihalis Yannakakis. “On Limited Nondeterminism
and the Complexity of the V-C Dimension”. In: J. Comput. Syst. Sci. 53.2 (1996),
pp. 161–170.

[Rab76] Michael O. Rabin. “Probabilistic Algorithms”. In: Proceedings of a Symposium on
New Directions and Recent Results in Algorithms and Complexity, Computer Science
Department, Carnegie-Mellon University, April 7-9, 1976. 1976, pp. 21–39.

[Rag08] Prasad Raghavendra. “Optimal algorithms and inapproximability results for every
CSP?” In: STOC. 2008, pp. 245–254.

[Rao11] Anup Rao. “Parallel Repetition in Projection Games and a Concentration Bound”.
In: SIAM J. Comput. 40.6 (2011), pp. 1871–1891.

[Raz17] Ilya Razenshteyn. “High-Dimensional Similarity Search and Sketching: Algorithms
and Hardness”. In: PhD Thesis, MIT (2017).

[Raz92] Alexander A. Razborov. “On the Distributional Complexity of Disjointness”. In:
Theor. Comput. Sci. 106.2 (1992), pp. 385–390.

[Raz98] Ran Raz. “A Parallel Repetition Theorem”. In: SIAM J. Comput. 27.3 (1998), pp. 763–
803.

[Reg03] Oded Regev. “New lattice based cryptographic constructions”. In: STOC. 2003, pp. 407–
416.

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptogra-
phy”. In: STOC. 2005, pp. 84–93.

[Reg06] Oded Regev. “Lattice-Based Cryptography”. In: CRYPTO. 2006, pp. 131–141.

[Reg10] Oded Regev. “The Learning with Errors Problem (Invited Survey)”. In: CCC. 2010,
pp. 191–204.

[RR06] Oded Regev and Ricky Rosen. “Lattice problems and norm embeddings”. In: STOC.
2006, pp. 447–456.

[RRS89] Jan Reiterman, Vojtech Rödl, and Edita Sinajová. “Embeddings of Graphs in Eu-
clidean Spaces”. In: Discrete & Computational Geometry 4 (1989), pp. 349–364.

[RS10] Prasad Raghavendra and David Steurer. “Graph Expansion and the Unique Games
Conjecture”. In: STOC. Cambridge, Massachusetts, USA, 2010, pp. 755–764.

[RS60] Irving S. Reed and Gustave Solomon. “Polynomial Codes over Certain Finite Fields”.
In: Journal of the Society for Industrial and Applied Mathematics (SIAM) 8.2 (1960),
pp. 300–304.

[RS96] Ronitt Rubinfeld and Madhu Sudan. “Robust Characterizations of Polynomials with
Applications to Program Testing”. In: SIAM J. Comput. 25.2 (1996), pp. 252–271.

[RS97] Ran Raz and Shmuel Safra. “A Sub-constant Error-probability Low-degree Test, and
a Sub-constant Error-probability PCP Characterization of NP”. In: STOC. El Paso,
Texas, USA: ACM, 1997, pp. 475–484.

BIBLIOGRAPHY 265

[RST12] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. “Reductions between Ex-
pansion Problems”. In: CCC. 2012, pp. 64–73.

[RT12] Prasad Raghavendra and Ning Tan. “Approximating CSPs with Global Cardinality
Constraints Using SDP Hierarchies”. In: SODA. Kyoto, Japan: SIAM, 2012, pp. 373–
387.

[Rub16] Aviad Rubinstein. “Settling the Complexity of Computing Approximate Two-Player
Nash Equilibria”. In: FOCS. 2016, pp. 258–265.

[Rub17a] Aviad Rubinstein. “Detecting communities is Hard (And Counting Them is Even
Harder)”. In: ITCS. 2017, 42:1–42:13.

[Rub17b] Aviad Rubinstein. “Honest Signaling in Zero-Sum Games Is Hard, and Lying Is Even
Harder”. In: ICALP. 2017, 77:1–77:13.

[Rub18] Aviad Rubinstein. “Hardness of approximate nearest neighbor search”. In: STOC.
2018, pp. 1260–1268.

[SA90] Hanif D. Sherali and Warren P. Adams. “A Hierarchy of Relaxation Between the
Continuous and Convex Hull Representations”. In: SIAM J. Discret. Math. 3.3 (May
1990), pp. 411–430.

[Sak10] Rishi Saket. “Quasi-Random PCP and Hardness of 2-Catalog Segmentation”. In:
FSTTCS. 2010, pp. 447–458.

[Sch00] Marcus Schaefer. “Deciding the K-Dimension is PSPACE-Complete”. In: CCC. 2000,
pp. 198–203.

[Sch08] Grant Schoenebeck. “Linear Level Lasserre Lower Bounds for Certain k-CSPs”. In:
FOCS. 2008, pp. 593–602.

[Sch99] Marcus Schaefer. “Deciding the Vapnik-Cervonenkis Dimension in ΣP
3 -Complete”.

In: J. Comput. Syst. Sci. 58.1 (1999), pp. 177–182.

[SFL15] Piotr Skowron, Piotr Faliszewski, and Jerome Lang. “Finding a Collective Set of
Items: From Proportional Multirepresentation to Group Recommendation”. In: AAAI.
Austin, Texas: AAAI Press, 2015, pp. 2131–2137.

[SH75] Michael Ian Shamos and Dan Hoey. “Closest-Point Problems”. In: FOCS. 1975,
pp. 151–162.

[Shu+01] Kenneth W. Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth, and Vinay
Deolalikar. “A low-complexity algorithm for the construction of algebraic-geometric
codes better than the Gilbert-Varshamov bound”. In: IEEE Trans. Information Theory
47.6 (2001), pp. 2225–2241.

[Sin64] Richard C. Singleton. “Maximum distance q -nary codes”. In: IEEE Trans. Informa-
tion Theory 10.2 (1964), pp. 116–118.

[Sla96] Petr Slavík. “A Tight Analysis of the Greedy Algorithm for Set Cover”. In: STOC.
1996, pp. 435–441.

BIBLIOGRAPHY 266

[Sri95] Aravind Srinivasan. “Improved approximations of packing and covering problems”.
In: STOC. 1995, pp. 268–276.

[SS96] Michael Sipser and Daniel A. Spielman. “Expander codes”. In: IEEE Trans. Infor-
mation Theory 42.6 (1996), pp. 1710–1722.

[ST00] Alex Samorodnitsky and Luca Trevisan. “A PCP characterization of NP with optimal
amortized query complexity”. In: STOC. 2000, pp. 191–199.

[ST08] Akiko Suzuki and Takeshi Tokuyama. “Dense Subgraph Problems with Output-density
Conditions”. In: ACM Trans. Algorithms 4.4 (Aug. 2008), 43:1–43:18.

[Ste93] Jacques Stern. “Approximating the Number of Error Locations within a Constant
Ratio is NP-complete”. In: AAECC. 1993, pp. 325–331.

[Sti08] Henning Stichtenoth. Algebraic Function Fields and Codes. 2nd. Springer Publishing
Company, Incorporated, 2008.

[SV82] Larry J. Stockmeyer and Vijay V. Vazirani. “NP-Completeness of Some Generaliza-
tions of the Maximum Matching Problem”. In: Inf. Process. Lett. 15.1 (1982), pp. 14–
19.

[SW98] Anand Srivastav and Katja Wolf. “Finding Dense Subgraphs with Semidefinite Pro-
gramming”. In: APPROX. London, UK, UK: Springer-Verlag, 1998, pp. 181–191.

[Tov84] Craig A. Tovey. “A simplified NP-complete satisfiability problem”. In: Discrete Ap-
plied Mathematics 8.1 (1984), pp. 85–89.

[Tre01] Luca Trevisan. “Non-approximability results for optimization problems on bounded
degree instances”. In: STOC. 2001, pp. 453–461.

[Tul09] Madhur Tulsiani. “CSP gaps and reductions in the lasserre hierarchy”. In: STOC.
2009, pp. 303–312.

[Tur41] Pál Turán. “On an extremal problem in graph theory (in Hungarian)”. In: Matematikai
és Fizikai Lapok 48 (1941), pp. 436–452.

[TV15] Sumedh Tirodkar and Sundar Vishwanathan. “On the Approximability of the Min-
imum Rainbow Subgraph Problem and Other Related Problems”. In: ISAAC. 2015,
pp. 106–115.

[Vad12] Salil P. Vadhan. “Pseudorandomness”. In: Foundations and Trends in Theoretical
Computer Science 7.1-3 (2012), pp. 1–336.

[Val15] Gregory Valiant. “Finding Correlations in Subquadratic Time, with Applications to
Learning Parities and the Closest Pair Problem”. In: J. ACM 62.2 (2015), 13:1–13:45.

[Var57] R. R. Varshamov. “Estimate of the number of signals in error correcting codes”. In:
Dokl. Akad. Nauk SSSR 117 (1957), pp. 739–741.

[Var97a] Alexander Vardy. “Algorithmic Complexity in Coding Theory and the Minimum Dis-
tance Problem”. In: STOC. 1997, pp. 92–109.

BIBLIOGRAPHY 267

[Var97b] Alexander Vardy. “The intractability of computing the minimum distance of a code”.
In: IEEE Trans. Information Theory 43.6 (1997), pp. 1757–1766.

[VC71] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. “On the Uniform Convergence of
Relative Frequencies of Events to Their Probabilities”. In: Theory of Probability &
Its Applications 16.2 (1971), pp. 264–280.

[Veg+05] Wenceslas Fernandez de la Vega, Marek Karpinski, Ravi Kannan, and Santosh Vem-
pala. “Tensor Decomposition and Approximation Schemes for Constraint Satisfac-
tion Problems”. In: STOC. Baltimore, MD, USA: ACM, 2005, pp. 747–754.

[Vio15] Emanuele Viola. “The communication complexity of addition”. In: Combinatorica
35.6 (2015), pp. 703–747.

[VK07] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. “Linear Programming
Relaxations of Maxcut”. In: SODA. New Orleans, Louisiana: Society for Industrial
and Applied Mathematics, 2007, pp. 53–61.

[Vlă18] Serge Vlăduţ. “Lattices with exponentially large kissing numbers”. In: arXiv preprint
arXiv:1802.00886 (2018).

[VNT07] Serge Vladut, Dmitry Nogin, and Michael Tsfasman. Algebraic Geometric Codes:
Basic Notions. Boston, MA, USA: American Mathematical Society, 2007.

[Wil05] Ryan Williams. “A new algorithm for optimal 2-constraint satisfaction and its impli-
cations”. In: Theor. Comput. Sci. 348.2-3 (2005), pp. 357–365.

[Wil18a] Ryan Williams. “On the Difference Between Closest, Furthest, and Orthogonal Pairs:
Nearly-Linear vs Barely-Subquadratic Complexity”. In: SODA. 2018, pp. 1207–1215.

[Wil18b] Virginia Vassilevska Williams. “ON SOME FINE-GRAINED QUESTIONS IN AL-
GORITHMS AND COMPLEXITY”. In: Proc. Int. Cong. of Math. Vol. 3. 2018,
pp. 3431–3472.

[Won+07] Raymond Chi-Wing Wong, Yufei Tao, Ada Wai-Chee Fu, and Xiaokui Xiao. “On
Efficient Spatial Matching”. In: VLDB. 2007, pp. 579–590.

[WW15] Omri Weinstein and David P. Woodruff. “The Simultaneous Communication of Dis-
jointness with Applications to Data Streams”. In: ICALP. 2015, pp. 1082–1093.

[WW18] Virginia Vassilevska Williams and R. Ryan Williams. “Subcubic Equivalences Be-
tween Path, Matrix, and Triangle Problems”. In: J. ACM 65.5 (2018), 27:1–27:38.

[Yao79] Andrew Chi-Chih Yao. “Some Complexity Questions Related to Distributive Com-
puting (Preliminary Report)”. In: STOC. 1979, pp. 209–213.

[Yao91] Andrew Chi-Chih Yao. “Lower Bounds for Algebraic Computation Trees with Inte-
ger Inputs”. In: SIAM J. Comput. 20.4 (1991), pp. 655–668.

[Yar14] Grigory Yaroslavtsev. “Going for Speed: Sublinear Algorithms for Dense r-CSPs”.
In: CoRR abs/1407.7887 (2014).

[Yar16] Grigory Yaroslavtsev. personal communication. Mar. 2016.

BIBLIOGRAPHY 268

[YZ14] Yuichi Yoshida and Yuan Zhou. “Approximation schemes via Sherali-Adams hier-
archy for dense constraint satisfaction problems and assignment problems”. In: In-
novations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January
12-14, 2014. 2014, pp. 423–438.

[Zah71] Charles T. Zahn. “Graph-Theoretical Methods for Detecting and Describing Gestalt
Clusters”. In: IEEE Trans. Computers 20.1 (1971), pp. 68–86.

[Zar51] Kazimierz Zarankiewicz. “Problem P101 (in French)”. In: Colloquium Mathematicum
2 (1951), p. 301.

[Zuc07] David Zuckerman. “Linear Degree Extractors and the Inapproximability of Max
Clique and Chromatic Number”. In: Theory of Computing 3.1 (2007), pp. 103–128.

[Zuc96a] David Zuckerman. “On Unapproximable Versions of NP-Complete Problems”. In:
SIAM J. Comput. 25.6 (1996), pp. 1293–1304.

[Zuc96b] David Zuckerman. “Simulating BPP Using a General Weak Random Source”. In:
Algorithmica 16.4/5 (1996), pp. 367–391.

	Contents
	Introduction and Overview
	Part I: Problems Between P and NP
	Part II: Parameterized Problems
	Part III: Problems in P
	Discussion and Future Directions
	Bibliographic Notes

	Notation, Preliminaries and Tools
	Notation
	Problem Definitions
	Exponential Time Hypotheses
	Fine-Grained Complexity Assumptions
	Nearly-Linear Size PCPs and (Sub)exponential Time Reductions
	Parameterized Complexity
	Error-Correcting Codes
	Zarankiewicz Problem and Related Bounds
	Well-Behaved Subsets
	Two Variants of Label Covers
	Feige's Reduction From Label Cover to Set Cover

	Problems Between P and NP
	A Birthday Repetition Theorem and Its Applications
	Additional Preliminaries and Notations
	Birthday Repetition Theorem and Its Proof
	Applications of the Birthday Repetition Theorem
	Improved Approximation Algorithm for Dense CSPs
	Discussion and Open Problems

	Densest k-Subgraph with Perfect Completeness
	The Reduction and Proofs of The Main Theorems
	Discussion and Open Questions

	VC Dimension and Littlestone's Dimension
	Interpretation of the Results
	Additional Notations and Preliminaries
	VC Dimension
	Littlestone's Dimension
	Discussion and Open Questions

	Parameterized Problems
	Inapproximability of k-Dominating Set
	Connecting Communication Complexity and Parameterized Inapproximability: An Overview
	Additional Preliminaries
	Product Space Problems and Popular Hypotheses
	Communication Protocols and Reduction to MaxCov
	An Efficient Protocol for Set Disjointness
	An Efficient Protocol for Multi-Equality
	An Efficient Protocol for Sum-Zero
	Connection to Fine-Grained Complexity
	Discussion and Open Questions

	Inapproximability from Gap-ETH I: k-Clique and k-Induced Subgraph with Hereditary Property
	Hardness of Approximation from MaxCov with Projection Property
	Maximum Clique
	Maximum Induced Subgraph with Hereditary Properties
	Discussion and Open Questions

	Inapproximability from Gap-ETH II: k-Biclique, k-Induced Matching on Bipartite Graphs and Densest k-Subgraph
	Rephrasing the Reduction from Chapter 4 as a Parameterized Inapproximability of Clique-vs-Biclique
	Maximum Balanced Biclique
	Densest k-Subgraph
	Discussion and Open Questions

	Inapproximability from Gap-ETH III: Parameterized 2-CSPs, Directed Steiner Network, k-Unique Set Cover
	Proof Overview
	Additional Preliminaries
	The Main Agreement Theorem
	Soundness Analysis of the Reduction
	Proof of Inapproximability Results of 2-CSPs
	Inapproximability of Directed Steiner Network
	Inapproximability of Unique Set Cover
	Discussion and Open Questions

	Inapproximability from Gap-ETH IV: Even Set and Shortest Vector Problems
	Additional Preliminaries
	Inapproximability of MLD and NVP
	Inapproximability of k-MDP
	Inapproximability of k-SVP: Following Khot's Reduction
	Discussion and Open Questions

	Problems in P
	Inapproximability in P: Closest Pair and Maximum Inner Product
	Proof Overview
	Additional Preliminaries
	Lower Bound on (Exact) Closest Pair under OVH
	Gadget Constructions
	Inapproximability of Maximum Inner Product
	Inapproximability of Closest Pair
	Inapproximability of Closest Pair in Edit Distance Metric
	Discussion and Open Questions

	Discussion and Future Directions
	Bibliography

