Practical Volume-Based Attacks on Encrypted Databases

Stephanie Wang
Rishabh Poddar
Jianan Lu

Raluca Ada Popa

..
1

hl--

& i

A .I. II i W | % l: ..II. : -l
i, .“ij1lullll' ! h
i (e, St u

e
!

Electrical Engineering and Computer Sciences
University of California at Berkeley

18

Technical Report No. UCB/EECS-2019-50
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-50.html

May 16, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Practical Volume-Based Attacks on Encrypted
Databases

by Jianan Lu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Ry

Professor Raluca Ada Popa
Research Advisor

May 16, 2019
(Date)

K sk ok ok sk sk ok

=

Professor Alessandro Chiesa
Second Reader

2019.05.14
(Date)

2019.05.14

May 16, 2019

Abstract

Databases are the key component of most computer systems today. Because of the valuable and
sensitive data they store and process, these database systems have become the primary target of
digital attacks. For example, confidential information (e.g., social security number, home address)
of over 140 million people is leaked in 2017 from Equifax, one of US’s largest credit reporting
companies.

This prevalence of database breaches spurs more interests towards building secure databases
in both academia and industry. There have been a set of proposed works that can protect data
using advanced encryption schemes or hide query access patterns, albeit at some performance
cost. However, recent work has also shown that volume leakage is a significant vulnerability that
can be exploited to reconstruct the entire database even when using state-of-the-art designs with
strongest security guarantees.

In this work, we present new attacks for recovering the content of individual user queries,
assuming no leakage from the system except the number of results. Unlike previous volume-based
attacks that rely on assumptions either too stringent or unrealistic for many real-world systems,
our attacks directly leverage real application semantics running on top of these database systems.
The key insight is that, by exploiting the behavior of specific applications, one can immediately
have an attack without making further assumptions like prior work does about the underlying
system.

CONTENTS

Contents

1 Introduction

2 Related Work

2.1 Cryptographic schemes and systems
2.2 Related attacks

3 Attack model
3.1 System Model
3.2 Application model

3.2.1 File injection

3.2.2 Query replay

4 Our Attack

4.1 Overview

4.2 Attack Algorithm

5 Evaluation

5.1 Simulation Using Encrypted Email Databases
5.1.1 Setup

5.1.2 Evaluation

5.2 Case Study of Gmail Inbox Search
5.2.1 Setup

5.2.2 Key Characteristics

5.2.3 End-to-end Attack

5.24 Other Applications

6 Mitigations

6.1 Disable File Injection

6.2 Prevent File Measurement

6.3 Block Query Replay

7 Conclusion

References

X 0 NN N

10
10
10
12
12
12
15
15
15
15
17
17
18
18
19
20
20
20
20
21
22

Acknowledgements

I am really thankful to my advisor, Professor Raluca Ada Popa, for guiding me through this
project and teaching me how to conduct research in system security. I have learned a lot from her,
to name a few, as how to think of security problems, to tackle technical challenges, to position one’s
work in a convincing way, and to give good deliverable. Without her great advice and support,
I would not be able to make this work or continue to pursue my academic interest in graduate
school!

I am also super grateful to my collaborators, Rishabh Poddar and Stephanie Wang. When I first
joined this project, I had little knowledge of computer networks and no experience in launching
attacks against real systems. They helped me to design my experiments in a step-by-step manner,
taught me a lot of technical skills, and answered a lot, if not too many, of my questions.

I am also very thankful to Wen Zhang who taught me how to use various network attack tools.
His assistance directly helps me make positive progress in this work.

Finally, a big thank-you to Professor Alessandro Chiesa for generously giving me great feedback
on this report!

1 INTRODUCTION

In recent years, the interest towards building databases with stronger security guarantees has
increased drastically. One powerful technique is to add a layer of encryption that can permit the
querying of encrypted data. Even when attackers break in and compromise the database server, they
cannot steal the data or read its content without having access to the correct decryption keys. A
number of practical encrypted database systems are proposed [3, 10, 12, 17, 19, 28, 40, 47, 50, 58] and
some have already been integrated into existing infrastructures. For example, Microsoft deployed a
new feature, called Always Encrypted [40], for Azure SQL Database or SQL Server databases in
2017. This service gives data owners the freedom to encrypt sensitive columns of their own data
such that unauthorized parties who no more have direct access to the data can still run services on
it.

The majority of these schemes reply on property-preserving encryption [6, 7, 33, 37, 46] or
searchable encryption [8, 10, 11, 13, 27, 31, 34, 36, 43, 44, 54, 55]. However, most of them leak query
access patterns. At a high level, given a query, the query access pattern is the set of records that
satisfy the query condition. Consider the example of an email application: a user issues a search
query for a keyword over their emails. The mail server typically stores an inverted index (also
called a secondary index) for each user’s mailbox, which maps a keyword to a list of emails. When
fetching the results of a queried keyword, most of these schemes leak to the attacker the set of
email identifiers that match the keyword (i.e., the access patterns of the query), even though the
email bodies remain encrypted. A set of recent works [2, 9, 14, 21, 26, 29, 30, 32, 35, 38, 49, 60]
has shown that such access patterns leak significant information to a compromised server. In the
context of the email example, they were able to reconstruct the keyword that the user searches for,
as well as email contents.

Many of these works discuss oblivious protocols, such as ORAM (Oblivious RAM) [24, 57] or
PIR (Private Information Retrieval) [20], as a solution to this leakage. These schemes hide access
patterns: even an attacker eavesdropping at the database server does not learn which records are
accessed and hence cannot infer the queried keywords. These schemes are often regarded as giving
a very strong security guarantee, the main downside largely being their slow performance.

However, in seminal work, Kellaris et al. [32] showed that even strongest schemes today, the
ones that enable encryption and provably conceal access patterns, still leak result count of queries.
The attacker neither knows the content of individual queries (which are encrypted), nor does it
learn which documents were returned in response (i.e., access patterns remain hidden). Instead,
it only observes the total number of returned records, or the volume of query results. This can
allow attackers to reconstruct the database counts, i.e., the number of documents in the database
containing each particular value. The primary contribution of Kellaris et al. was to show that
volume-based attacks were possible. Because their methods depend on certain assumptions about
the queries (e.g., amount, type, distribution), their attacks are limited in scope, if not yet practical.

In this project, we improve upon the state-of-the-art and show that volume-based attacks are
more likely to be practical. Unlike Kellaris et al. and other literature on volume-based attacks, our
work targets at the application layer without making any assumptions about user queries or the
underlying data. In particular, we focus on real applications that allow users to search for keywords
over a secondary index, a common data structure in database systems that maps keys to a set of
matching records. In the encrypted database literature, this corresponds to the model of searchable
encryption schemes [8, 10, 11, 13, 27, 31, 34, 36, 43, 44, 54, 55]. Our aim is to recover the content of
individual queries that search for a specific keyword in the database.

Our key insight is that, by directly leveraging real application semantics, one can immediately
have an attack without making any further assumption about the underlying database system.
Furthermore, it allows our attack to be more efficient and thus eminently practical.

By and large, real-world applications today leak far more information than just the volume of
results. However, privacy-conscious services have begun deploying sophisticated schemes to plug
traditional sources of leakage, including access patterns (e.g., the Signal messaging service [1, 39]).
The takeaway of our work is that as practitioners take steps for enhancing the privacy guarantees
of their applications in future, they must also account for the leakage of result volumes. Application-
specific behavior that facilitates easy exploitation of this leakage (as demonstrated by our attacks)
must be patched.

In §2, we discuss important works related to encrypted database systems and volume-leakage
attacks. §3 describes our threat model in more detail. We survey 11 representative applications and
identify two key characteristics that can be exploited by attackers—(i) file injection, and (ii) automatic
query replay. In particular, Gmail inbox search fits our setting seamlessly, and satisfies both the
aforementioned properties. Given these attacker abilities, we present an attack algorithm that is
able to reconstruct user queries with 100% confidence on secondary indices in §4. Subsequently, we
evaluate our attacks on an encrypted database using the Enron email dataset in Section 5.1. We
also perform an end-to-end attack on the Gmail web client by simulating a server-side adversary in
Section 5.2. Our attack on Gmail completes within a matter of minutes, demonstrating the feasibility
of our techniques. Finally, we introduce potential mitigations in §6, and end this report in §7.

2 RELATED WORK

To access or compute on encrypted data, the community has developed a rich set of cryptographic
schemes and protocols, as well as encrypted database systems. Each of these schemes and systems
makes various tradeoffs between information revealed to the server, supported functionality, and
performance. A recent set of attack papers study the information an attacker can obtain from these
schemes and systems, referred to as leakage-abuse attacks by Cash et al. [11]. Most of the attacks in
this category leverage leakage from data relations or access patterns, and very few works target at
these systems relying only on volume leakage, as our work does.

2.1 Cryptographic schemes and systems

There are a multitude of ways to access or compute on encrypted data, such as property-preserving
or property-revealing encryption [6, 7, 33, 37, 46] or searchable encryption [8, 10, 11, 13, 27, 31, 34, 36,
43, 44, 54, 55]. For a comprehensive survey, see [53]. We take ORAM and PIR as two representative
examples below and will discuss them in more detail in Section 3.1. It is important to note that our
work directly applies to all these systems that leak the volume of results, not limited to ORAM or
PIR.

Oblivious RAM techniques [24, 57] and Private Information Retrieval (PIR) [20] schemes enable
a client to access data items stored at the server without the server knowing the query requested.
These two types of schemes consider different models and employ different techniques, but ulti-
mately, the goal of both is to hide the query from the server.

Many works leverage ORAM for different purposes. For example, ObliviStore [56] and CURI-
OUS [5] show how to use ORAM for cloud storage. TaoStore [52] shows how to support asyn-
chronicity in multi-user cases. These systems leak the volume of results to the server. Roche et
al. [51] propose an ORAM scheme (called vVORAM) that supports variable-sized data blocks by
including them within an ORAM node (or bucket) on the same path. While such a scheme confers
some degree of hiding, it limits the amount of data that can be included on a path in this way,
say L files, and the attacker sees how many ORAM paths are fetched. Hence, the attacker can
estimate the number of results with an error margin of L. In the database setting, this error margin
can be made relatively small, because the database fetches the rows that match the keyword (not
just the row identifiers), and these cannot all be stored on the same path. Moreover, Naveed [42]
demonstrates that, in general, extending ORAM schemes to hide the number of query results is
(for a large fraction of queries) slower than streaming the database through the client.

Some works [4, 45, 59] build SQL databases or keyword indices on top of PIR. For example, to
perform an index search for a keyword k, the client performs PIR retrievals to traverse the index
and select every value in the index. The server does not know which data items were fetched, but
it still sees the number of results.

2.2 Related attacks

When considering the amount of leakage that attacks exploit, there are at least three categories:
attacks exploiting data relations, attacks exploiting access patterns, and attacks exploiting result
set size but not access patterns or data relations. The last category is the most challenging because
the attacker needs to work with the least amount of information. At the same time, this category is
also the least studied. Our attack is in this last category, and we now discuss other volume-based
attacks.

Cash et al. [10] point out that if an attacker knows the exact number of times a keyword appears
in a victim’s documents, and if that result size is unique to this keyword, the attacker can identify
the keyword when seeing the result size. In comparison, our attack does not assume the attacker

knows the frequency of each keyword in a victim’s index—indeed, when attacking a specific user
in the email application, the attacker often does not have access to the victim’s mailbox and does
not know these counts. Moreover, many keywords don’t have unique counts (e.g., 99% words in
the Enron dataset, Section 5.1), making this attack not work for these keywords. Our attack can
recover 100% queries in a dictionary in realistic scenarios without access pattern information.

Kellaris et al. [32] also show how an attacker can reconstruct contents of a field in the database
given only the result size, but their attack differs from ours in assumptions and target. First, Kellaris
et al. assume that (1) the user makes range queries that are uniformly distributed on that column,
a property on which their algorithm relies crucially; and (2) the user makes O(N* log N) queries
where N is the size of the domain. Such a large number of queries is infeasible for the attacker to
observe in many settings. Very recently, Grubbs et al. [25] improved upon the results of Kellaris et
al. by demonstrating attacks that do not make assumptions on the distribution of queries, as long
as all possible range queries are issued. For queries drawn from a uniform distribution, their attack
requires O(N? log N) queries.

In contrast, our attack requires only a single query to be issued by the user, followed by O(log |D|)
replays, which is often less than 10 in number (§5). Our attack also makes no assumptions about
the query distribution—assuming a uniform range query distribution is not realistic for many
applications. On the other hand, unlike the aforementioned works, our attack requires the ability to
inject and replay queries. We validate that this can be achieved in realistic scenarios in (Section 3.2).
A second difference is that the aforementioned attacks reconstruct the database (out of range
queries), but not individual query keywords; we reconstruct queries, but do not target the overall
database. However, we note that a similar reconstruction follows as a direct consequence of our
attack, where the original counts for each keyword could be determined if queries for all possible
keywords are issued.

3 ATTACK MODEL

In this section, we discuss the generic system model (Section 3.1) and the application model (Sec-
tion 3.2) that is vulnerable to our attacks. We present the three key attack assumptions: (1) that the
system leaks volume, (2) that the application allows data injection, and (3) that the applications
automatically replays queries under certain conditions. We then demonstrate the validity of our
assumptions by studying a number of concrete instances for both the system and application
models. In particular, we examine 11 popular web applications that allow users to issue keyword
search queries over an inverted index—we find that (i) all 11 applications allow attackers to inject
data into the victim user’s index; and (ii) 5 of the 11 applications also replay queries automatically
without user intervention.

3.1 System Model

We consider systems in which an untrusted server (the adversary in our setting) maintains a
secondary index in an encrypted database. The index maps a keyword to a list of documents or
database rows (referred to as files, henceforth) that the keyword appears in and is stored on the
server for query efficiency. Whenever the application proxy or the client queries the index for a
keyword, the user receives the corresponding list of files containing the keyword. We assume that
the query’s execution reveals no information to the adversary except the number of results. That is,
there is only volume leakage.

More formally, similar to Kellaris et al. [32], we define a database D as a set of records that
associate keywords with the files from a collection # that the keywords appear in:

D={(wf):we f.feF}

A query for word w is a function g,, (where w is private) that maps D to a list of matching files

in F:
qw(D) ={f : (w,f) € D}.

An implementation of such a database may internally use one layer of indirection, so that the
first query returns a list of file pointers, or indices into ¥, and the subsequent queries are used to
fetch the file contents from .

The adversary’s goal is to identify the private keyword w using only the size of the result set

|gw (D).
Examples. We now illustrate the relevance of volume-based attacks by discussing concrete
examples of cryptographic systems that only leak the volume of results to attackers. In particular,
we consider a client-server model where the database stored at the server is encrypted using
sophisticated techniques that also hide access patterns, and the server maintains a secondary index
over the encrypted data.

ORAM-based systems. In the ORAM model (Figure 1, left), the server stores the secondary index
in an ORAM instance, with a trusted proxy containing the ORAM key. An (optional) application
server lies in front of the proxy, and clients access the system via the application server. As is the
case in many database-backed applications, the application server also implements access control
over the data. Now we consider the case where a database administrator backs the database with
ORAM, which hides access patterns from the server in addition to the result contents. However,
even with a guarantee of this strength, volume leakage is possible for a passive attacker because
the size of the result contents is not hidden. In addition, even if a layer of indirection is used, so that
the first query only returns a list of file pointers, the number of files returned can still be measured
by recording the number of subsequent queries made.

Clients App. ORAM Server Server

server proxy Client

el [

\ 4

\ 4

e

Fig. 1. (Left) ORAM-based system model; both the server and a subset of the clients are untrusted (shaded).
(Right) PIR-based model; the server is untrusted (shaded).

PIR-based systems. In the PIR model (Figure 1, right), an untrusted server owns the database
and maintains a secondary index on it for fast access. In this case, the server sees all the data, as its
role is to maintain and serve publicly available data. There can be multiple clients here too, but
each client has an independent interaction with the server so it suffices to focus on a single client.
The untrusted server answers user queries in which the requested is private [20]. However, since
the data is publicly available, the untrusted server can easily learn the size of the query results.

It is important to note that any sophisticated cryptographic schemes that leak volume are
vulnerable to our attacks. ORAM and PIR are just two examples of them. The takeaway is that
content encryption is not sufficient to prevent volume leakage, as we’ve seen in these examples.

10

Application Type of queries File injection strategy No. of
replays ob-
served in 10
minutes

Gmail Email keywords Send emails to victim 6

Facebook Names, post keywords Create posts in a group page 4

Dropbox File keywords Upload files to a shared folder 1

Google Doc File keywords Upload files to a shared folder 1

iCloud Mail Email keywords Send emails to victim 1

Twitter Hashtags Post tweets with hashtags 0

Piazza Post keywords Create posts in a class 0

Slack Names, message keywords | Send messages to a group channel | 0

Skype Names, message keywords | Send messages to victim 0

Yahoo Mail Email keywords Send emails to victim 0

Outlook Mail (Hot- | Email keywords Send emails to victim 0

mail)

Fig. 2. An empirical assessment of 11 popular web applications. In each case, we list the type of query made
by the user, how the attacker can influence the result of this query by application-specific injection, and
the number of replays observed. To measure replay, all server responses are dropped for 10 minutes, and we
report the number of duplicate queries made within 10 minutes.

3.2 Application model

We assume an application model based on the behavior of actual applications that rely on a
secondary index. The model consists of two key assumptions: the ability to inject data into a user’s
index and the ability to replay a user query without the involvement of the user. We argue that
these two assumptions are in fact often inherent to the application. As evidence, we survey a variety
of popular web applications that rely on a secondary index and validate both assumptions in 5 out
of the 11 surveyed. As an example, Gmail inbox search fits our setting seamlessly, and satisfies
both the aforementioned properties. The user can search for all emails that contain a keyword, an
attacker can inject data by simply sending the user an email with a specific keyword, and queries
are automatically replayed by the application when the server’s response is delayed. Finally, we
describe how these assumptions together make it difficult to detect our attack.

3.2.1 File injection. First, we find that many applications inherently allow other users to inject
application data into a victim user’s index. This property of applications has also been noted in
prior work [10, 38, 60]. In our setting, it allows the attacker to potentially influence the volume of
results returned by a query. For example, to inject into Gmail inbox search, the attacker sends the
victim user an email. Injection is especially easy if there is a secondary index that is shared. To
inject an entry for a hashtag in Twitter, the attacker uploads a post with that hashtag; in Slack,
the attacker simply sends a message. The ability of the attacker to inject in such applications is
fundamental because they are inherently designed for multiple users to interact and share data.

3.22 Query replay. Second, we assume that the attacker can replay a user’s query a finite number
of times. While this assumption is certainly not universal across applications that rely on a sec-
ondary index, we find that it is surprisingly common, with many applications replaying queries
automatically in the background without user intervention. This is because many applications are
written to handle transient errors transparently, to put as little burden on the user as possible. In

11

particular, an application that wants to provide a seamless experience when network connectiv-
ity is spotty may retry a query automatically if the response is too slow. Indeed, the HTTP/1.1
RFC [18] specifies that “When an inbound connection is closed prematurely, a client MAY open a
new connection and automatically retransmit an aborted sequence of [idempotent] requests.” A
compromised server can force this behavior by simply dropping its HTTPS responses, triggering
an automatic replay.

Examples. To show that these assumptions are realistic, we surveyed 11 applications, including
Gmail, Twitter, and Facebook, and tested for the ability to inject data and replay queries for a
target user (Figure 2). To test for injection, we examined the application functionality to determine
whether the attacker could inject data into an index searchable by the user. To measure the number
of query replays, we drop responses from the server without disturbing the original connection,
record all network traffic from the application client, and count the number of duplicate queries
that appear within 10 minutes. We find that for all applications, injection is possible, although
sometimes only if the attacker and the user share some index (e.g., they are both members of a
public Facebook group). We also find that 5 of these applications have query replay.

Upon further investigation of these 5 applications, we find that all retry queries automatically,
though the rate of retries varies. Two applications, Gmail and Facebook, retry the query repeatedly.
The remaining three, Dropbox, Google Drive, and iCloud Mail, retry the query once. The number
of retries is important because the greater the number of retries, the easier it is for the attacker to
identify the query. Nevertheless, as we show in Section 5.1.2, even a single replay is sufficient for
significantly pruning the space of query possibilities, and, in many cases, for mounting the attack
feasibly.

Avoiding detection. Because the attack relies on injection visible to the user, one practical
concern in launching the attack is avoiding detection. Fortunately, in many settings, our attack is
difficult to detect before it completes. The reason is that once the user issues a query, the attacker
can continue to block the responses from the server, causing the web application to retry queries
until the attack completes.

We verified this behavior with Gmail: no results are returned to the user during the attack, and
to the user it simply appears that he has a bad network connection. That is, once the user initiates
the query, the attack will complete without further actions from the victim user.

It is possible that the user later sees the injected emails and realizes from the synthetic content
that he is under attack, but this happens only after the attack completes. Further, we note that
although services like Gmail may strip suspicious HTML elements during email preprocessing, we
can still use style formatting to avoid showing the injected content to the user, to reduce suspicion.
The rest of the email could show content that is more user-friendly, e.g., an ad. It is further unlikely
for spam filters to detect the injected emails, since the attack targets a specific user. This is just one
example, but it illustrates the numerous ways that an attacker could inject data in a way that is
difficult to detect before the query is reconstructed.

12

4 OUR ATTACK

Given the attacker abilities discussed in Section 3.2 in concert with volume leakage, we present
and analyze a file-injection attack to recover a user’s query on a secondary index. We show that
this attack can be launched on the generic encrypted database systems described in Section 3.1, as
long as the attacker can view the number of results returned.

4.1 Overview

At a high level, our attack works by searching on the keyword universe through multiple rounds of
user query replay. By recording the result counts between rounds, the attacker can narrow down
the keyword search space by a constant factor per round.

The attacker uses file injection to influence the result count between rounds. During each round,
the attacker constructs files from the keyword search space and injects the files into the user’s
index. The response for each round will then contain some number of injected files. The attacker
can use the new result count to determine the number of files injected after the previous round. In
this way, the attacker can determine which subset of the search space contains the user’s query.

The setup of the attack is as follows: A user queries g,, on a database 9, as defined in Section 3.1.
The response is the set of matching file contents, g,,(D) = {fi, .. ., fn}- The goal of the attack is to
recover w, using only n = |q,,(9D)|, the number of files returned.

4.2 Attack Algorithm

Algorithm 1 provides pseudocode for our attack RECOVERQUERY. In more detail, the attacker first
records the user query’s q,, and the number of files returned, ng. ng is the number of files that
already matched to w prior to the attack. This enables the attacker to differentiate user-uploaded
files from injected ones.

Next, the attacker proceeds in rounds to reduce the keyword search space. He chooses an initial
dictionary Dy, a set of words that might contain w, and a parameter k. During each round j, the
attacker divides Dj, the current dictionary during round j, into k equal partitions. He injects k
files into the server and distributes the words among them as follows: If a word appears in the i-th
partition, he adds the word to exactly i out of the k files. Hence, if a word appears in the k-th partition,
the attacker adds this word to all k files.

The attacker then replays the user’s query q,, on the updated database and records the number
of files returned, n;. Assuming that the attacker can block updates to the secondary index, the
number of files injected since the previous round is then i* = n; — n;_;. Thus, w must have been
assigned to the i*-th partition during round j. The attacker repeats this in rounds, each time using
the i*-th partition as the new dictionary, until |D| = 1.

This attack converges in a bounded number of rounds since each round is guaranteed to reduce
the dictionary size. Furthermore, for a high enough k and a small enough D, the number of rounds,
i.e., the number of times the attacker has to replay the user’s query, is quite low. We formalize this
in the following claim:

CramM 1. For any dictionary D and for any word w € D, let q,, be a private query for w, and k be
the number of partitions. Then, RECOVERQUERY(q,,, k) returns w after {logk |D|] rounds.

Proor. Consider the j-th round of the attack, which searches a dictionary D; that contains w. w
is guaranteed to match to a partition of the dictionary that has size < |D;|/k. Thus, round j + 1
of the attack will search a dictionary of size at most |D;|/k that also contains w. The algorithm
repeats until the dictionary has size one. At this point, RECOVERQUERY returns the only word in
the dictionary, w. Thus, it takes [logk |D|] rounds to complete the attack, where D is the initial
dictionary. O

13

Algorithm 1 Pseudocode for the base attack. q,, is a private query for a word w on a database D.
Each round of the attack partitions the search space by k.

1: procedure RECOVERQUERY(qyy, k)
2 D « the initial database

3 D « keyword universe

£ nelgu(D)

5: while |[D| > 1 do

6 foriin|[1,...,k] do

7 F; « an empty file

8 D; < an empty dictionary
9

: end for
10: for index in [1,...,|D|] do
11: w <« Dlindex]
12: i | e
13: Append w to i unique files in F
14: Add w to dictionary D;
15: end for
16: D « INJecTFILES(D, F)
17: n — |qw(D)|
18: i—n'—-n
19: D « D;
20: nen’
21: end while

22: return D[0]
23: end procedure

The attacker must also inject a significant number of files. We show that the number of files,
along with the file size, measured in number of words, is not too large.

CraM 2. For any dictionary D and for any word w € D, let q,, be a private query for w and k be the
number of partitions. Then, the total number of files injected by RECOVERQUERY(gs,, k) is k [log,. |DI]-

Proor. During a single round of the attack, the words in the i-th partition of the dictionary must
be distributed among i unique files, so that the number of results for the query g,, during the next
round will be increased by i if w was in that partition. The maximum value for i is k, the number
of partitions. Therefore, each round requires injecting at least k files. There are [logk |D|] rounds
according to Claim 1, so we require a total of k [logk |D|-| file injections. O

Cram 3. For any dictionary D and for any word w € D, let q,, be a private query for w and k
be the number of partitions. Then, the total number of words injected by RECOVERQUERY(qy,, k) is
O(k|D)).

Proor. A dictionary D; is searched during round j of the attack. Each word in partition i of the
dictionary appears i times during round j. Each partition has size %. Therefore, the total file size
injected during this round is % (I+2+---+k)=O(k|Dj|).

Each round reduces the size of the dictionary searched by a factor of k, so |[Dj1| = %. According
to Claim 1, there are [logk |D|] many rounds. Then, if the initial dictionary has size |D|, the total

14

Notation | Definition

D The database, a secondary index mapping
words to the files they are associated with.
qw A query for the word w, where w is hidden.
D The dictionary, a set of words probed by the
attacker.
k The number of partitions to search during

each round. A higher k means more files in-
jected per round, but fewer rounds total.

nj [gw(D)|, or the number of file results for the
query on round j. For j = 0, this is the user’s
initial query dictionary.

m A parameter for the single-round attack.
A higher m means more files injected, but
higher expected accuracy.

s A parameter for the noisy data attack. A
higher s means more files injected, but a
greater possible amount of noise tolerated.

Fig. 3. A table of notation for the attacks described.

file size injected across all rounds is:
|D| D] |D|
k|D| +k(7 +k = +-+k Fog, 10T

1 1
<k|D|(1+E+ﬁ+'”): O(k|D|)

]

By leveraging the three assumptions presented in §3, our attack can recover a user’s query on a
generic secondary index with perfect accuracy. The number of results returned is indeed the only
information we assume. Moreover, we do not require any knowledge of the distribution of queries,
file contents and other metadata.

15

5 EVALUATION

In this section, we evaluate the overheads and accuracy for our attack by simulating an encrypted
email database in Section 5.1. We also present a case study on Gmail to evaluate the feasibility of the
attacker’s capabilities in a real-world application in Section 5.2. We find that a Gmail attacker can
perform the necessary injection, replay and file count measurement. In addition, we demonstrate
successful attacks on Gmail for a variety of dictionary sizes that complete within a matter of
minutes.

5.1 Simulation Using Encrypted Email Databases

5.1.1 Setup. In the following experiments, we use the entire corpus of emails from the Enron
email dataset [16] as the queried documents, consisting of ~500K emails belonging to 151 users
and ~2.5GB in size. We extracted keywords from this dataset by first stemming the words [48],
and then removing 675 stopwords. We next filtered out any words that contained non-alphabetic
characters, or were > 20 or < 3 characters long. This gave us a total of ~259K keywords. In our
experiments, we only used the top ~123K keywords (i.e., those that appeared in > 3 documents) in
order to remove noise from the dataset.

Since an attacker’s dictionary may contain words that do not exist in the queried documents, we
supplemented the Enron keywords with a corpus of English words [15]. Preprocessing the English
words in a similar manner yielded a total of ~257K keywords. The union of both datasets resulted
in a universe of ~342K keywords.

5.1.2 Evaluation. Assuming that the queried word is in the initial dictionary chosen by the attacker,
our attack achieves perfect query recovery, with strict bounds on the overheads necessary in number
of query replays and data injected. Our simulation of the attack in Figures 4 and 5 confirms the
theoretical guarantees in Claim 1 and Claim 2.

In this experiment, we build the attacker’s dictionary D by randomly sampling keywords from
the keyword universe. We pick the keyword queried by the user at random from D in order to
stress test the effort required by the attacker—a keyword not in the D would be trivially detected at
the end of a single round without requiring further replays. We then report the number of rounds
required to guess the keyword with 100% accuracy for different choices of k in Figure 4, and the
total number of files injected across rounds in Figure 5. Recall from Section 4.2 that any instance of
the attack converges after exactly [logk |D|-| replays and k |—logk |D|-| files injected, where k is an
integer chosen by the attacker. Thus, with a dictionary of fixed size |D|, the parameter k represents
a tradeoff between the number of query replays required vs. the number of file injections required.
The attacker’s choice of k then depends on the attacker’s ability to replay the query and the rate at
which files can be injected for the target application.

We explore this tradeoff with fixed-size dictionaries in Figure 6, which demonstrates how the
average number of bytes injected per round increases with k (while the number of rounds decreases).
In the worst case where the dictionary comprises the entire keyword universe and k = 24, the
bytes injected per round is still less than 10MB, demonstrating the feasibility of the attack. We
also show the maximum number of bytes injected across any round in Figure 6, equivalent to the
number of bytes injected during the first round. The number of bytes that the attacker can inject
during a single round must be at least as large as this number. We find that even in the worst case,
this is approximately 50MB.

Takeaway. The attack can be mounted easily even when queries are replayed at most once,
i.e., the attacker can recover the keyword in merely two rounds without having to inject more
than several tens of MBs of data. As an example, Gmail limits the size of emails to a comfortable

16

Hor D =100
g 8 120 p_yp00 = = -
3 @ 100 [D=10K === y
e = L D =340K
5 9 80 .
— [}
2 =
Q -_—
€ g
2 °
Choice of k Choice of k

Fig. 4. Number of rounds Fig.5. Total number of files in-
required to identify a keyword jected with varying choices of
with varying choices of k, k, across different dictionary

across different dictionary sizes.
sizes.

Max bytes injected

2 4 8 16 32 2 4 8 16 32
Choice of k Choice of k

Fig. 6. Number of bytes injected with vary-
ing choices of k, across different dictionary
sizes: (left) average bytes per round; (right)
maximum bytes across rounds.

25MB [23], and the attacker only needs to send 3-4 emails to the victim’s inbox in order to identify

the query.

17

A Simulated Malicious Gmail Server

Gmail Server

Gmail Client
D MITM | |

\ =

Fig. 7. (Gmail) Network setup: The MITM proxy and the real Gmail server together simulates a malicious
Gmail server (shaded) who can only learn the result counts of user queries issued by the Gmail client.

5.2 Case Study of Gmail Inbox Search

So far, we have experimentally validated the theoretical performance of our attacks across various
parameter choices. In this section, we demonstrate the practical feasibility of our attack in real-world
applications by attacking Gmail’s inbox search feature.

We attack Gmail by simulating a server-side adversary using a man-in-the-middle proxy (Figure 7),
and we assume that the volume of results is leaked to it by the server. We first show that the attacker
can indeed meet the two key requirements of file injection and automatic query replay.

Subsequently, we perform an exhaustive experiment across a wide range of dictionary sizes (10
to 100K) to determine the minimum amount of time required to mount a successful attack on Gmail.
The parameters of our attack are governed by the following constraints: (i) the periodicity of replays
in the Gmail client; (ii) the time it takes to inject files into a user’s inbox; and (iii) the pagination
limit in Gmail (which upper bounds the total number of injections). Despite these constraints, we
show that our attack completes within a matter of minutes for the Gmail application. We find that
for a small dictionary of size 10, a successful attack can be mounted within 1 minute from start to
end; for a large dictionary with 100K words, an attack completes successfully in around 7 minutes
(see Figure 9). We now describe our methodology in more detail.

5.2.1 Setup. Since we don’t have control over Gmail servers, we simulate a server-side adversary
using a man-in-the-middle (MITM) HTTPS proxy [41]. Specifically, we launch the Gmail web client
on a browser within a guest virtual machine, and launch the MITM proxy on the host. We reroute
all host network traffic through the MITM proxy. Subsequently, we install the proxy’s certificate
at the client browser in order to simulate a server-side adversary. At this point, all TLS network
traffic to and from the client browser passes through the MITM proxy, which it can then examine
and manipulate. Though the proxy can now read all plaintext data on the HT TP layer, we make
sure that during attack it can only process header information unrelated to the private keywords,
e.g.,, HTTP method, Origin and Referer fields.

Note that our implementation does not modify any code running on the real Gmail client or the
Gmail server. The MITM proxy is the entity who can see the number of matched emails returned
from the server, construct and inject special emails, and drop server responses to trigger client
replays. Now the proxy and the actual Gmail server together comprises a untrusted Gmail server
(the highlighted grey area in Figure 7) who only learns about the volume of keyword search results,
similar to our model described in §3.

18

50
40
30
20
10

0 1 i i i i i
10 20 30 40 50 60 70

Time since injection (seconds)

Number of files injected

Fig. 8. (Gmail) CDF measuring the time it takes for files to be injected into the index for Gmail.

5.2.2 Key Characteristics. We then study Gmail’s inbox search features to demonstrate the practical
feasibility of our attack.

Query replay. Once a user issues a query, we use the MITM proxy to trigger automatic query
replay by simply dropping the HTTP responses returned by the server. After a period of time, the
Gmail web client retries the query automatically, without user intervention. Specifically, we find
that the client replays the query every 1-3 minutes in the absence of a response. To the user, it
simply appears as if the client has a bad network connection.

File injection. File injection in Gmail is simple; the attacker requires a separate Gmail account to
send emails to the victim. The attacker must send k emails in each round and also be sure that they
are all indexed by the next replay (i.e., at least 60s). We determined the rate at which emails could
be injected (Figure 8) to show that it is feasible to index a sufficient number of emails. We found
that after injecting 40 emails of size 10KB each, 36 were visible in the user’s mailbox 60 seconds
later, shown in Figure 8. Thus, within a time window of 60s, the attacker can pick any value less
than 36 as a safe option for k.

Volume leakage. In this experiment we assume that the proxy directly obtains the exact result
set size from the server, since we simulate a server-side adversary. However, we find that Gmail
has a maximum pagination limit of 100, i.e., the server returns at most 100 results in response to a
query. The pagination limit constrains the parameter regime of our attack, in that it upper bounds
the total number of files that can be injected by the attacker over the duration of the attack.

5.2.3 End-to-end Attack. The aim of the experiment is to minimize the time it takes to launch a
successful attack. However, the constraints discussed above—the periodicity of replays, the time it
takes to inject files, and the pagination limit—restrict the parameter regime within which an attacker
can operate. Therefore, we start by computing the optimal parameters required for mounting a
successful attack within the space of possible parameters. Next, we attack Gmail using the computed
parameters and report the end-to-end duration of our attack.

Since the Gmail application has a fixed periodicity of replays, the attack duration is directly
governed by the number of replays required for the attack. Hence, given a dictionary size |D|, our
aim is to minimize log, |D|, where k refers to the number of files that need to be injected per round.
However, given the pagination limit of £ = 100, we require that the total number of injected files
k xlog, |D| be less than ¢. At the same time, k should be less than 36 given the time it takes to
inject files.

19

We therefore solve the following optimization problem:
minimize log |D|
subject to k x log, |D| < 100

and k <36
|D| k No. of replays No. of replays Total injected Attack duration
(theoretical) (actual) emails

10 10 1 1 10 1 min

100 10 2 2 20 2 min 5s

1K 32 2 2 63-64 2 min 5s

10K 22 3 3 64 5 min 6s
100K 18 4 5 71 7 min 10s

Fig. 9. (Gmail) Attack parameters and duration for Gmail across various dictionary sizes.

Figure 9 summarizes our findings for varying sizes of the attacker’s dictionary, 10 to 100K. Note
that the total number of injected emails is sometimes marginally less than k X log, |D|. This is
because log, |D| is not always an integer, and therefore files of interest across subsequent rounds
may sometimes contain less than k keywords. Additionally, for |D| = 100K, our attack requires an
extra round of replay because the size of the injected files in the first round were large, increasing
the time it took for files to get sent by the client and indexed by the server.

Overall, our experiment demonstrates the feasibility of volume-based attacks on Gmail, which
can be successfully completed within a matter of minutes depending on the size of the attacker’s
dictionary.

In addition, the attack is difficult to detect because during the course of the attack, the user only
sees a suspended connection. The user only makes a single query, and the Gmail client automatically
replays the query in the background. During this time, emails injected by the attacker are also not
delivered to the user’s web client, and only modify the server-side index. The user may later see
the injected emails, but only after the attack successfully completes.

5.2.4 Other Applications. Besides Gmail, we also use the same setup in Section 5.2.1 to evaluate
our attacks on 4 other popular applications: Facebook, Dropbox, Google Doc, and iCloud Mail.
Take Facebook as an example, we consider a large group channel, e.g.,, free & for sale or course
advices, where both the attacker and the user have joined. When the user makes a search within
the group, i.e., buying some necessity, the attacker can inject specially-crafted posts to the group to
infer what keywords the user searches for. This is problematic because the reconstructed keywords
can help the attacker to learn sensitive information about users such as what items they need at the
moment or what kinds of academic advices they are seeking for. After conducting a case study on
Facebook (similar to the methodology used in Section 5.2.2), we find that Facebook replays group
search queries every 1- 4 minutes if not hearing back from the server. Subsequently, we launch our
attack with dictionary size D of 10 and partition number k of 10 to demonstrate its practicality. The
attack completes in 4 minutes.

20

6 MITIGATIONS

In this section, we discuss mitigations of our attack. Overall, injection is often fundamental to appli-
cation functionality, padding is too expensive, and replay could be a legitimate user or application
action, as discussed in Section 3.2. Nevertheless, based on our evaluation in §5, we believe that the
mitigations proposed below could reduce the extent of our attack by limiting the attacker’s abilities
(Section 3.2) or making it too expensive to mount.

Note while these methods can mitigate the attack, the vulnerability from result count leakage is
difficult to eradicate from a system completely because it relies on very little from the system model
and on features inherent to the application model. Rather than trying to reduce system leakage,
we believe that the most effective mitigation is actually on the application side, although these
techniques too may be burdensome because they interfere with application-specific functionality
(e.g., disallowing users from sending email).

6.1 Disable File Injection

File injection is arguably the most difficult to defend against, since it is often a part of the target
application’s functionality. For example, an email inbox search feature is not much use if it could
only search from emails that were sent by the user, not to the user. Thus, we believe that the main
defense here is rate-limiting and detection. In the email application (Section 3.1), this would require
the server to actively filter out suspicious emails. As we found in Section 5.2, applications such as
Gmail already rate-limit emails; however, this was not enough to defeat the attack.

6.2 Prevent File Measurement

Reducing the attacker’s ability to measure the number of files contained in a response is far more
effective. However, padding query responses, while effective in hiding the response size, leads to
unacceptable bandwidth overheads for the application. We believe that to varying degrees, this is a
property of all padding schemes.

A more effective way to hinder the attacker is to inject some noise in the query responses. This
requires little overhead in server-client bandwidth compared to the attacker’s overhead: an additive
factor of k per query compared to a multiplicative factor of k per attack. This countermeasure is
also simple to implement; simply add a random number of dummy files to every response and have
the client filter them out.

Another method is to limit the number of results that can be fetched at a time. The user must
explicitly request further results if needed. This lowers the feasible dictionary size for the attack, at
the cost of user convenience.

6.3 Block Query Replay

The most effective way to prevent our attack is to block query replays. Query replays are an
important feature of applications such as Gmail that produce the illusion of a seamless connection
during limited network connectivity (Section 5.2). A possible countermeasure is to include a unique
query ID for each request, so that the server can detect and filter out duplicate requests.

The main disadvantage of such an approach is that the server would then have to record and
replay past responses in order to both prevent the attack and keep the application available. Long-
running user sessions would have to be garbage-collected, potentially sacrificing correctness. More
crucially, web servers are often replicated for performance and fault tolerance. Ensuring consistency
for duplicate queries in such settings is well-known to be expensive, if even possible [22].

21

7 CONCLUSION

In this work, we proposed a novel generic attack on encrypted databases that only leverages result
size leakage. We demonstrated that our attack can reconstruct queries with 100% confidence for a
range of realistic settings, jeopardizing the security guarantees of these systems. We showed the
effectiveness of our attack via both theoretical bounds and an empirical evaluation, including a
demonstration on the Gmail web application.

22

REFERENCES

(1]
(2]

[3

[t

[4

—
w
—_

[11

—

[12
[13

=

[14]
[15]

[16]
[17]

[18]
[19]

[20]
[21]
[22]
[23]

[24]
[25]

[26]

[27]

[28]

Signal. https://signal.org.

M. A. Abdelraheem, T. Andersson, and C. Gehrmann. Inference and Record-Injection Attacks on Searchable
Encrypted Relational Databases. Cryptology ePrint Archive, Report 2017/024, 2017. http://eprint.iacr.org/2017/024.
A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and R. Venkatesan. A secure coprocessor for database
applications. In FPL, 2013.

D. Asonov. Querying Databases Privately. In ISBN 3-540-22441-6 Springer-Verlag Berlin Heidelberg, 2003.

V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang. Practicing Oblivious Access on Cloud Storage: The Gap,
the Fallacy, and the New Way Forward. In Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS), Denver, CO, 2015.

A. Boldyreva, N. Chenette, Y. Lee, and A. O'Neill. Order-Preserving Symmetric Encryption. In Proceedings of the 28th
Annual International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt), Cologne,
Germany, 2009.

A. Boldyreva, N. Chenette, and A. O’Neill. Order-Preserving Encryption Revisited: Improved Security Analysis and
Alternative Solutions. In Proceedings of the 31st International Cryptology Conference (CRYPTO), Santa Barbara, CA,
2011.

R. Bost. Zogog: Forward Secure Searchable Encryption. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, 2016.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-Abuse Attacks Against Searchable Encryption. In Proceedings
of the 22nd ACM Conference on Computer and Communications Security (CCS), Denver, CO, 2015.

D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Dynamic Searchable Encryption in
Very-Large Databases: Data Structures and Implementation. In Proceedings of the 21st Network and Distributed System
Security Symposium (NDSS), San Diego, CA, 2014.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-Scalable Searchable Symmetric Encryption
with Support for Boolean Queries. In Proceedings of the 33rd International Cryptology Conference (CRYPTO), Santa
Barbara, CA, 2013.

CipherCloud: Cloud Data Protection Solution, 2017. http://www.ciphercloud.com.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: improved definitions and
efficient constructions. In Proceedings of the 13th ACM Conference on Computer and Communications Security (CCS),
Alexandria, VA, 2006.

J. L. Dautrich, Jr. and C. V. Ravishankar. Compromising Privacy in Precise Query Protocols. In International Conference
on Extending Database Technology, 2013.

English keywords dataset, 2017. https://github.com/dwyl/english-words.

Enron email dataset, 2017. https://www.cs.cmu.edu/~./enron/.

S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich Queries on Encrypted Data: Beyond Exact
Matches. In Proceedings of the 20th European Symposium on Research in Computer Security (ESORICS), Vienna, Austria,
2015.

R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. RFC 7230, 2014.
B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay, J. D. Mitchell, and R. K. Cunningham.
SoK: Cryptographically Protected Database Search. In Proceedings of the 38th IEEE Symposium on Security and Privacy
(IEEE S&P), 2017.

W. Gasarch. A survey on private information retrieval. In The Computational Complexity Column, 2007.

M. Giaruad, A. Anzala-Yamajako, O. Bernard, and P. Lafourcase. Practical Passive Leakage-Abuse Attacks Against
Symmetric Searchable Encryption. Cryptology ePrint Archive, Report 2017/046, 2017. http://eprint.iacr.org/2017/046.
S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services.
ACM SIGACT News, 33(2):51-59, 2002.

Gmail size limits, 2017. https://support.google.com/mail/answer/6584.

O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs. J. ACM, pages 431-473, 1996.
P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson. Pump up the volume: Practical database reconstruction
from volume leakage on range queries. In Proceedings of the 25th ACM Conference on Computer and Communications
Security (CCS), 2018.

P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov. Breaking Web Applications Built On Top of
Encrypted Data. In Proceedings of the 23rd ACM Conference on Computer and Communications Security (CCS), Vienna,
Austria, 2016.

W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song. ShadowCrypt: Encrypted Web Applications for Everyone. In
Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS), Scottsdale, AZ, 2014.
iQrypt: Encrypt and query your database, 2017. http://iqrypt.com/.

https://signal.org
http://eprint.iacr.org/2017/024
http://www.ciphercloud.com
https://github.com/dwyl/english-words
https://www.cs.cmu.edu/~./enron/
http://eprint.iacr.org/2017/046
https://support.google.com/mail/answer/6584
http://iqrypt.com/

[29]

[30]

[31]
[32]
[33]
[34]
[35]

[36]

[37]
[38]
[39]

[40

[t

[41]
[42]

[43]
[44]
[45]
[46]
[47]

[48]
[49]

[50]
[51]
[52]

[53]
[54]

[55]

[56]

23

M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access Pattern Disclosure on Searchable Encryption: Ramification, Attack
and Mitigation. In Proceedings of the 19th Network and Distributed System Security Symposium (NDSS), San Diego, CA,
2012.

M. S. Islam, M. Kuzu, and M. Kantarcioglu. Inference Attack Against Encrypted Range Queries on Outsourced
Databases. In Proceedings of the 4th ACM Conference on Data and Application Security and Privacy, San Antonio, TX,
2014.

S. Kamara, C. Papamanthou, and T. Roeder. Dynamic Searchable Symmetric Encryption. In Proceedings of the 19th
ACM Conference on Computer and Communications Security (CCS), Raleigh, NC, 2012.

G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic Attacks on Secure Outsourced Databases. In Proceedings of
the 23rd ACM Conference on Computer and Communications Security (CCS), Vienna, Austria, 2016.

F. Kerschbaum and A. Schropfer. Optimal Average-Complexity Ideal-Security Order-Preserving Encryption. In
Proceedings of the 21st ACM Conference on Computer and Communications Security (CCS), Scottsdale, AZ, 2014.

K. Kurosawa. Garbled searchable symmetric encryption. In Proceedings of the 18th International Conference on
Financial Cryptography, 2014.

M.-S. Lacharité, B. Minaud, and K. G. Paterson. Improved reconstruction attacks on encrypted data using range query
leakage. In Proceedings of the 39th IEEE Symposium on Security and Privacy (IEEE S&P), 2018.

B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and A. Boldyreva. Mimesis Aegis: A Mimicry Privacy Shield - A System’s
Approach to Data Privacy on Public Cloud. In Proceedings of the 23rd USENIX Security Symposium, San Diego, CA,
2014.

K. Lewi and D. J. Wu. Order-Revealing Encryption: New Constructions, Applications, and Lower Bounds. In
Proceedings of the 23rd ACM Conference on Computer and Communications Security (CCS), Vienna, Austria, 2016.

C. Liu, L. Zhu, M. Wang, and Y.-A. Tan. Search pattern leakage in searchable encryption: Attacks and new
construction. Inf. Sci., 265:176-188, 2014.

M. Marlinspike. Technology preview: Private contact discovery for signal.
https://signal.org/blog/private-contact-discovery/, 2017.

Microsoft SQL Server: Always Encrypted Database Engine, 2017.
https://msdn.microsoft.com/en-us/library/mt163865.aspx.

MITM Proxy, 2018. http://mitmproxy.org/.

M. Naveed. The Fallacy of Composition of Oblivious RAM and Searchable Encryption. Cryptology ePrint Archive,
Report 2015/668, 2015. http://eprint.iacr.org/2015/668.

M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic Searchable Encryption via Blind Storage. In Proceedings of the
35th IEEE Symposium on Security and Privacy (IEEE S&P), 2014.

W. Ogata, K. Koiwa, A. Kanaoka, and S. Matsuo. Toward Practical Searchable Symmetric Encryption. In Proceedings of
the 8th International Workshop on Security, 2013.

F. Olumofin and I. Goldberg. Privacy-preserving queries over relational databases. In Proceedings of the 10th Privacy
Enhancing Technologies Symposium (PETS), Berlin, Germany, 2010.

R. A. Popa, F. H. Li, and N. Zeldovich. An Ideal-Security Protocol for Order-Preserving Encoding. In Proceedings of the
34th IEEE Symposium on Security and Privacy (IEEE S&P), San Francisco, CA, 2013.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: Protecting Confidentiality with Encrypted
Query Processing. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP), Cascatis,
Portugal, 2011.

M. F. Porter. An Algorithm for Suffix Stripping. Readings in Information Retrieval, pages 313-316, 1997.

D. Pouliot and C. V. Wright. The Shadow Nemesis: Inference Attacks on Efficiently Deployable, Efficiently Searchable
Encryption. In Proceedings of the 23rd ACM Conference on Computer and Communications Security (CCS), Vienna,
Austria, 2016.

Cloud Threat Intelligence, Skyhigh Cloud Security labs, Skyhigh Networks, 2017. https://www.skyhighnetworks.com/.
D. S. Roche, A. J. Aviv, and S. G. Choi. A Practical Oblivious Map Data Structure with Secure Deletion and History
Independence. In Proceedings of the 37th IEEE Symposium on Security and Privacy (IEEE S&P), 2016.

C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro. TaoStore: Overcoming Asynchronicity in Oblivious Data
Storage. In Proceedings of the 37th IEEE Symposium on Security and Privacy (IEEE S&P), 2016.

N. P. Smart (Editor). Future Directions in Computing on Encrypted Data. In ECRYPT report, 2015.

D. X. Song, D. Wagner, and A. Perrig. Practical Techniques for Searches on Encrypted Data. In Proceedings of the 21st
IEEE Symposium on Security and Privacy (IEEE S&P), Oakland, CA, 2000.

E. Stefanov, C. Papamanthou, and E. Shi. Practical Dynamic Searchable Encryption with Small Leakage. In Proceedings
of the 21st Network and Distributed System Security Symposium (NDSS), San Diego, CA, 2014.

E. Stefanov and E. Shi. ObliviStore: High Performance Oblivious Cloud Storage. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (IEEE S&P), 2015.

https://signal.org/blog/private-contact-discovery/
https://msdn.microsoft.com/en-us/library/mt163865.aspx
http://mitmproxy.org/
http://eprint.iacr.org/2015/668
https://www.skyhighnetworks.com/

24

[57] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. In Proceedings of the 20th ACM Conference on Computer and Communications Security (CCS),
Berlin, German, 2013.

[58] S.Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing Analytical Queries over Encrypted Data. In
Proceedings of the 39th International Conference on Very Large Data Bases (VLDB), Riva del Garda, Italy, 2013.

[59] S. Wang, D. Agrawal, and A. E. Abbadi. Generalizing PIR for Practical Private Retrieval of Public Data. In Lecture
Notes in Computer Science, volume 6166, 2010.

[60] Y. Zhang, J. Katz, and C. Papamanthou. All Your Queries Are Belong to Us: The Power of File-Injection Attacks on
Searchable Encryption. In Proceedings of the 25th USENIX Security Symposium, Austin, TX, 2016.

	Contents
	1 Introduction
	2 Related Work
	2.1 Cryptographic schemes and systems
	2.2 Related attacks

	3 Attack model
	3.1 System Model
	3.2 Application model

	4 Our Attack
	4.1 Overview
	4.2 Attack Algorithm

	5 Evaluation
	5.1 Simulation Using Encrypted Email Databases
	5.2 Case Study of Gmail Inbox Search

	6 Mitigations
	6.1 Disable File Injection
	6.2 Prevent File Measurement
	6.3 Block Query Replay

	7 Conclusion
	References

