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Abstract

The increasing amount of spatio-temporal data from mobile devices and individual participation

can help drive domains such as environmental monitoring, health care, and urban planning. Spatio-

temporal data can be individually-identi�able, which has lead to attempts to provide di�erential

privacy for such data. But such data breaks di�erential privacy guarantees due to its inherent

correlation. Previous works have ensured su�cient privacy through synthetic data release and

low privacy budgets. Unfortunately the lack of aggregation options for the data release approach

weakens analyst utility and protection of users and their data in the interactive query setting. We

propose acceptable error (AEs) and range count (RCs) query algorithms. RCs ensure a stronger

level of di�erential privacy than AEs, but typically use a greater privacy budget. We additionally

propose two query data access mechanisms: data access policies (DAPs) and data access degrees

(DADs) that grant or limit data access and specify the allowed amount of data leakage respectively.

We propose a privacy-preserving system that implements these aggregation options to securely

store and aggregate sensitive user trajectory data. Our goal is to incentivize users to participate in

spatio-temporal aggregations while safely providing valuable data to analysts spanning a multitude

of domains.
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1 Introduction

The increasing computation and storage capabilities of mobile devices are enabling the rise of

spatio-temporal data collection. This data provides opportunities to make sophisticated inferences

about not only people, but also their surroundings, and thus can help improve people’s health and

lives. While this data can provide immense bene�ts for users, the release of this user sensitive

data to analysts and the public is concerning from a privacy perspective. Spatio-temporal origin-

destination pairs and their associated trajectories are known to be sensitive at any granularity.

For example, only four spatio-temporal points are enough to uniquely identify a user 95% of the

times in a dataset of one and a half million users [6]. Our report setting focuses on how to safely

aggregate �ne-grained spatio-temporal trajectory data which is the most challenging to preserve

individual privacy with, but has potential to provide the most granular queries and overall bene�t.

Data privacy mechanisms are used to protect individuals from being identi�able from queries

that use their sensitive spatio-temporal data. Di�erential privacy is a recent theoretical approach

to protect individual privacy. Spatio-temporal data can be heavily correlated and breaks the data

independence assumption of di�erential privacy, leading to di�erential privacy leaking more

sensitive information than in the independent data setting. Privacy can be preserved with a low

enough privacy budget (i.e., total allowed data leakage), which makes maximizing the information

gain from a privacy budget important in this domain.

Spatio-temporal related work has largely focused on the continual publishing of private spatio-

temporal data (synthetic data release) as opposed to allowing for interactive, one at a time queries

that return noisy results from the raw data. Publishing privacy-injected data to the public safely

enables any number of queries and algorithms. But this published private data is at a �xed

granularity and typically does not support �ne-grained (street intersection level) queries. There is

also a lack of accuracy as, in terms of privacy budget, either very little is allocated for each release,

or each window of releases is bounded by a privacy budget, which breaks correlation assumptions.

The problem we address is insu�cient aggregation options to maintain both privacy and utility in

the spatio-temporal interactive query setting. The second problem approached is the absence of a

privacy-preserving query system that ensures secure user data storage and secure aggregation.
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This report proposes aggregation query operators and data access mechanisms to empower

analysts and users respectively. The query operators proposed are a relative and an absolute count

query that are named acceptable error count queries (AEs) and range count queries (RCs). AEs

return a count result within a speci�ed o�set relative to the true query answer with a speci�ed

accuracy. RCs answers whether the count result is within two speci�ed absolute counts with a

speci�ed accuracy. The analytical results in Section 3.1.3 show that RCs ensure a stronger level of

di�erential privacy, but typically use more privacy budget to ensure the same accuracy as AEs.

AEs are also shown to use privacy budget less than or equal to the privacy budget used by RCs

when wanting a scalar count (AEs are optimal in this case) and vice versa when wanting a range.

The data access mechanisms are policies (DAPs) that specify which queries are allowed to access

certain user data. Also we propose data access degrees (DADs) that specify the allowed amount of

user data leakage (e.g., privacy budget) a query has. Analysts should have the role to specify the

query, including the query operator, while users should be able to control how their personal data

is used, given a query.

In addition to proposing aggregation options for analysts and users, this report addresses

securely storing and aggregating spatio-temporal user data. A privacy-preserving query system is

implemented to deploy queries with their associated query operators and data access mechanisms.

This system relies on secure containers (enclaves) to prevent the leakage of sensitive user data

through data encryption and remote attestation. The user add protocol securely stores sensitive

user data and the aggregation protocol securely computes queries. Scalability and correctness

experiments are conducted on our implemented system. Our scalability results show that query

aggregate response time increases more with number of users than with data. Correctness

experiments are presented that con�rms that the implemented aggregation options function

as we would expect and demonstrate how these options operate in our system.
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2 Background

2.1 Privacy Mechanisms

A privacy mechanism in a query setting is a transformation to the dataset or query result that

ensures some privacy guarantees. All privacy mechanisms have trade-o� between privacy and

utility. Applying an e�ective privacy mechanism requires a loss in utility, which is known as "no

free lunch" [13]. Having maximally accurate private data is impossible. Thus, each mechanism has

di�ering privacy guarantees and utilities.

The two most common privacy models used are syntactic and semantic. Syntactic models focus

on syntactic requirements of the query without any further guarantees of any sensitive information

adversaries can learn about individuals. Syntactic privacy models, such as k-anonymity which

requires that each of the released records be indistinguishable from at least k − 1 other records

when projected on the public attributes, rely on anonymity through groups. But groups can still

leak a person’s sensitive information, if the group exhibits the same or highly correlated behaviors.

A spatio-temporal example of a k-anonymity limitation is if all k trajectories visited the same

granular place (e.g., a street block). This means that the person also traveled to that sensitive place.

We instead turn to semantic models that ensure user-level privacy, such as di�erential privacy.

Di�erential Privacy

The concept of di�erential privacy was �rst introduced by C. Dwork [7] and ensures that an

individual is not at increased risk of privacy when they participate in a statistical database that

is being queried. Essentially, a di�erentially private query result should be approximately the

same whether any participant is included or excluded from the query. The traditional di�erential

privacy setting involves a trusted aggregator adding statistical noise to the query result before

releasing it to the data analyst.

We consider ϵ-di�erential privacy. The parameter ϵ is de�ned to be a positive real number to

control the privacy level, such that larger values of ϵ will lead to larger privacy and data leakage.

Let D1 and D2 be neighboring databases that di�er by a single database row, i.e., D1 and D2 di�er
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by one user if each row represents a user. Let A denote a randomized algorithm over the databases

and Ranдe(A) denote the space of possible outputs for A. The algorithm A is said to provide

ϵ-di�erential privacy if for all datasets D1 and D2 and for all subsets S of Ranдe(A):

Pr [A(D1) ∈ S] ≤ eϵPr [A(D2) ∈ S]

Di�erential privacy in our setting ensures that a single user and the collection of their trips and

trajectories does not signi�cantly impact any query result.

However, adding statistical noise to each query result is not su�cient in ensuring di�erential

privacy if an analyst repeats a query or if the queries are di�erent but correlated. Averaging

these results will lead to a more precise query answer that will eventually reveal individual users.

Privacy budgets, the ϵ in the de�nition above, are introduced to represent the maximum privacy

data leakage. We can think of each query as a privacy expense, which incurs an incremental

privacy loss. Once the privacy budget is depleted, access to that data is blocked. Privacy budgets

and users being able to modify them is discussed in Section 3.2.

�ery Noise Procedure

The most simple and well known way to ensure ϵ-di�erential privacy is by adding statistical noise,

such as Laplace noise [2], to the �nal query result. The Laplace Distribution (centered at 0) with

scale b is the distribution with probability density function:

Lap(x |b) =
1

2b
exp(−

|x |

b
)

To ensure ϵ-di�erential privacy, the value for b is
4f
ϵ [2]. 4 f represents the global sensitivity of

the query. Global sensitivity is de�ned as the maximum query result di�erence between any two

databases that only di�er by one element (i.e., an individual being included or not included in a

database in our case). The formal de�nition of global sensitivity is:

4 f =max | | f (D1) − f (D2)| |1

where the maximum is over all pairs of datasets D1 and D2 from the space of all possible databases

di�ering by at most one element, and | | · | |1 denotes the l1 norm. For example, the global sensitivity

of a counting query is 1, as the overall query result can only change by one whether any person is

included or excluded in a query.
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Therefore ensuring ϵ-di�erential privacy involves adding Lap(
4f
ϵ ) noise to the query result

when having a trusted aggregator and independent data. Our setting ensures a trusted aggregator

through attestable system components, but it is still necessary to discuss how to handle the

spatio-temporal data correlations.

2.2 Spatio-Temporal Data Se�ing and Problem Definition

Spatio-Temporal Correlations

Most di�erentially private settings and related works have the implicit assumption about the data

is independent (i.e., no correlation between database rows). Recent studies [13] [12] [14] suggest

that traditional di�erential privacy techniques do not ensure su�cient privacy with correlated

data.

Roads leading to deterministic location are an instance of temporal correlations that degrades

expected di�erential privacy guarantees. For example, consider a straight road with no exits for 5

miles. Denote location l1 as the �rst half of this road and location l2 as the second half. Assume

a person is driving in l1 in the �rst time step t1 and is likely to be in l2 a few minutes later t2

(i.e., Pr(l2 at t2 | l1 at t1) = 1). Thus, given the count at l1 during t1, the analyst would know the

location of the individual at t2. An analyst can perform inference due to these spatio-temporal

correlations and adding Laplace(
1

ϵ ) to a count guarantees 2ϵ-DP. Extending this to a worse case

(for instance, a tra�c jam), if individuals stay in the same location for T time steps, then each

Laplace(
1

ϵ ) count will guarantee Tϵ-DP. Repeated travel patterns and similar trajectories lead to a

long correlation range (e.g., potentially making T very large) that can greatly degrade the privacy

of a user’s sensitive trip data.

Point and Trajectory Count �eries

With related works covering both spatio-temporal counts and trajectory data, it is important to

distinguish between the two by introducing some new terminology and showing how they di�er.

We introduce two di�erent location de�nitions: point and trajectory. We denote a point as a �xed

spatial polygon around a spatial point while a trajectory is de�ned to be a series of successive

points. It is important to note that trajectories are a generalization of points (i.e., a point is a

trajectory of length 1). A point count query is the total unique individual count over a point area

over a speci�ed time. A trajectory count query is the total unique count of individuals that cover

the speci�ed successive spatio-temporal points.

8



We present an example for each kind of count query. A point clout query example is how many

people were on Main Street from 3pm-5pm on November 3rd, 2018? The set of spatio-temporal

points is de�ned by the �xed location point (Main Street) and the speci�ed time (3pm-5pm on

November 3rd, 2018). Any user that satis�es any other those spatio-temporal points is counted.

A trajectory count query example is how many people on Main Street took a left on First Street

from 1pm-2pm on weekends? The set of spatio-temporal points is de�ned by the two successive

points: Main Street and First Street, and the speci�ed time (1pm-2pm on weekends). Any user that

satis�es moving from the Main Street point to the State Street point within the time is counted.

This intersection trajectory count example requires very �ne-grained spatio-temporal data and

multiple, successive points to understand how individuals travel through space and time.

Problem Definition

The problem we address is how to provide aggregation options in an interactive spatio-temporal

query setting while maintaining user level privacy. Interactive queries allows for optimizing

each query to satisfy di�erentially privacy while providing greater query accuracy. We suggest

possible count query algorithms and data access mechanisms that would increase analyst and user

utility while maintaining user-de�ned privacy. To test these options, our goal is to construct a

practical, privacy-preserving system that ensures di�erentially private queries to protect individual

user trajectories over (i) sequences of �ne-grained user successive spatio-temporal data points

(trajectories), (ii) an increasing time range, (iii) interactive, one at a time queries, (iv) multiple

query algorithms, and (v) user-de�ned data access mechanisms.

2.3 Related Work

We split related work into spatio-temporal synthetic data publishing and constructing interactive

query systems.

Spatio-temporal Synthetic Data Release

Starting with spatio-temporal interactive di�erential privacy works, Rastogi and Nath [18] introduce

a spectral approach that greatly decreases the noise error for a batch of n correlated queries from

Θ(n) to Θ(k), where k is the number of Fourier coe�cients that can (approximately) reconstruct

all the query answers, for limited temporal ranges. Cummings, et al., [5] explore interactive, one

at a time queries for growing databases, but do not address data correlations and assumes the data

is independent.

9



Spatio-temporal related work has focused on continual publishing, which injects privacy into

the data before publicly releasing it. Acs, et al., [1] publish point count queries for a limited

time range and use sampling, clustering nearby locations, and the spectral approach to minimize

noise to satisfy su�cient di�erential privacy [18]. RescueDP [22] focus on publishing point count

queries for an in�nite time range by ensuring w-event privacy which protects any event sequence

occurring within any window of w timestamps. w-event privacy assumes that only ranges of

length w are correlated, which can deteriorate privacy over a long, correlated period of time.

DP-WHERE [16], DPT [9], and DP-Star [8] focus on publishing coarse synthetic trajectories for

in�nite time ranges, with somewhat granular location areas ranging from 50m x 50m to 1000m

x 1000m and the time sampling rate ranging from 30 seconds to 5 minutes. This report’s data

contains precise lat-long pairs and frequent sampling rates of 10 seconds.

Distributed Di�erential Privacy Systems

Our privacy-preserving system aims to mimic the trusted aggregator from traditional di�erential

privacy, but with attestable system components to support any number of di�erentially private

query algorithms. Our approach shares similarities with distributed di�erentially privacy related

work. Rastogi and Nath [18] and Shi, et al., [20] propose distributed di�erentially privacy ag-

gregation protocols that are dependent on communicating directly with the users. [18] propose

the �rst di�erentially private aggregation algorithm for distributed time-series data that o�ers

good practical utility without a trusted central server and [20] propose a Di�e-Hellman-based

encryption scheme. Both schemes are limited to sum queries, which our system solves with using

attestable system components as the trusted aggregator. The schemes also su�er from insu�cient

user fault tolerance (e.g., user mobility and spotty connectivity) and data storage limitations,

as data is stored on mobile devices. Our privacy-preserving system avoids these limitations by

deploying the system and data on the cloud.

Practical Privacy-Preserving Systems

There has also been prior work in constructing practical privacy-preserving systems. PrivStats

[17] is a system for computing aggregate statistics over location data in a privacy-preserving

manner. However, PrivStats relies on the use of an anonymization network and any aggregation

functions must be able to run on homomorphically encrypted data. Sampaio, et al., propose

a data dissemination platform that supports untrusted infrastructures [19]. However, this data

dissemination system does not support persistent user data as aggregate computations are per-

formed on live streaming data from clients. In Prio [4], another privacy-preserving system for the
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collection of aggregate statistics, all queries must be performed on A�ne-Aggregatable Encodings

(AFEs). We avoid this limitation by performing all queries on plaintext values. [15] provides a new

communication e�cient and privacy-preserving data aggregation protocol but relies on the use of

a trusted third party for key setup. Chorus [10] presents the �rst di�erentially private practical

approach optimized for and only SQL queries and does not apply to �exibly structured data like in

our scenario.

2.4 Limited Aggregation Options Insight

For spatio-temporal data publishing related work, there is a lack of query operators and data

access options. As seen in this section, low �xed privacy budgets ensure su�cient privacy in

this correlated setting. Having multiple query operator options with di�erent di�erential privacy

guarantees would be bene�cial for analysts to maximize utility with the limited privacy budget.

Also users being able to specify their data access options would enable them and analysts if they

choose to increase allowed leakage. Therefore, aggregation options need to be present in the

interactive setting to ensure more usable and su�ciently private queries as motivated in this

section.

Continual private data publishing has been preferred over interactive queries due to the unlimited

query use. Ensuring privacy over an in�nite time ranges typically satis�es w-event privacy [11]

which protects any event sequence occurring within any window ofw timestamps. In other words,

the sum of privacy budgets used for each release point for any w successive timestamps cannot

exceed a speci�ed privacy budget ϵ . A �ner spatio-temporal grained setting would require more

total release points, thus leading to even smaller privacy budgets used to release data at these

points. Thus, it is di�cult for data release to support �ne grained queries (e.g., how many cars

turned left on State Street) due to unusably high noise. Interactive queries in comparison would

have a limited number of queries with potentially higher utility and query �exibility.

The privacy guarantee in our setting is to protect against an analyst from learning individual

user trajectories without the user’s consent. Recall from Chapter 1 that it is possible to uniquely

identify an individual trajectory with as little as four points with high con�dence. Protecting

the count of any spatio-temporal point, successive sequences of spatio-temporal points, and any

combination of spatio-temporal points along a trajectory are necessary in guaranteeing individual

privacy. We demonstrate below that we can apply the continual private data publishing setup and

parameters to protect individual privacy in our speci�c interactive setting.
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Definitions and Assumptions

The continual private data setup relies on ensuring w-event level privacy that ful�lls a privacy

budget ϵ . Recall that w-event level privacy ensures that the privacy budget used for any w

successive releases is bounded by a privacy budget ϵ . We assume that w is very large (i.e., close

to in�nity) as spatio-temporal data can be correlated across all of time in the worst case. Privacy

budgets in these related works are low (ϵ ≤ 1) and �xed. Thus, we assume that users would have

a low and �xed non-con�gurable privacy budget ϵ for the entire spatio-temporal space.

Another important aspect of de�ning our limited control options scenario is the database layout.

We assume a logical database with each row representing an individual and all their trips (and

trajectories) stored in their row (user level database). One main assumption made is that users and

their trips are independent from other users in the database. This assumption combined with the

user database layout with iid rows enables the use of traditional di�erential privacy to protect

users and their individual trajectories. A trip or trajectory level database alternatively could have

been used to keep each database row simple and immutable. This is not a natural format for

protecting privacy of individuals and the rows would not be iid as individual user trips are highly

correlated with each other.

Although our user level database layout helps to evade spatio-temporal correlations on a database

level, these correlations will be re�ected and present across the results of correlated queries. But

standard di�erential privacy mechanisms can preserve privacy of individual trajectories with

su�ciently low privacy budgets and through our user group de�nitions. Thus, correlated results

may be less of an issue. There are two cases in which we need to prove the preservation of privacy

for individual trajectories: su�ciently and insu�ciently large groups for individual privacy.

Group Definitions

A su�ciently large group for individual privacy (SLGIP) is a group of at least h users that visit the

same locations in the same order across the same time range. To produce a formal de�nition, it

is necessary to introduce some preliminary notation. Let U denote the set of all users, L denote

the set of all possible disjoint spatial partitioned locations, T denote the set of all discrete times

between the starting time (ts ) and the ending time (tpresent). Additionally, let S denote all the

spatio-temporal points where a spatio-temporal point is represented as sti ,lj where ti represents a

time in the time range (ti ∈ T ), lj represents a location in the set of possible locations (lj ∈ L).

A SLGIP G is de�ned by set of users UG ⊆ U , a minimum number of required users h, and

by a set of spatio-temporal points SG ⊆ S where all uk ∈ UG visit all spatio-temporal points
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sti ,lj ,∀sti ,lj ∈ SG . The minimum number of user condition is expressed as |UG | ≥ h. An example

of a SLGIP with a minimum count threshold of h = 30 is a group of 100 individuals on a train.

The de�nition of an insu�ciently large group for individual privacy (ILGIP) is the number of

users that are bounded and traveling together is less than the count threshold h. An ILGIP is the

compliment of a SLGIP. An example of a ILGIP is one individual driving to work. We assume that

both ILGIPs and SLGIPs are independent of all other groups, meaning that each group’s trajectory

can not be used to learn more about the trajectory of another group.

Protecting ILGIP Individual Trajectory Privacy

Focusing �rst on ILGIPs, traditional di�erential privacy noise mechanisms guarantee individual

privacy forh = 1. Group sizes of 1 combined with the assumption of groups traveling independently

and the user-level database layout ensure that standard di�erential privacy can adequately provide

individual privacy. In the case where h > 1 and h « n, where n denotes the number of database

rows, these mechanisms should intuitively still provide individual privacy as a very small subset

of the rows are correlated. But a formal proof of the extension of traditional di�erential privacy

to h > 1 is outside our scope. Additionally, it is important to note that the noise produced by

traditional di�erential privacy will be larger relative to the small true counts because this noise is

independent of number of people.

For individual trajectories to be revealed, an analyst must query multiple points along a trajectory

with high accuracy and high privacy budget. The most correlated spatio-temporal points are similar

to repeated queries as all spatio-temporal points rely on the same privacy budget. Protecting

against repeated queries will protect against any series of spatio-temporal points as repeated

queries inherently have maximum correlation. Thus, the safeguard against averaging repeated

queries is the privacy budget.

As an example, using ϵ = 1 for user privacy budgets allows the analyst to learn an exact count

at one spatio-temporal point with 0.63 probability (using 1 − exp(−ϵ) per query to represent the

probability of returning the actual count plus or minus one). When attempting to reconstruct

a trajectory, the probability of learning an exact count at all four spatio-temporal points when

using ϵ = 0.25 for each is 0.002. Thus, the risk of leaking individual trajectories in ILGIPs can be

protected with the proper privacy budget.

Protecting SLGIP Individual Trajectory Privacy

Querying the SLGIP repeatedly and across successive spatio-temporal points using traditional

di�erential privacy noise adding will generate correlated query count results. These correlated
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results come from the fact that at least h rows in the user level database are correlated. In theory,

although we are able to obtain more precise query answers across correlated queries, no sensitive

information can be learned about any individual as all users in the SLGIP travel predictably

together. The only hope of learning anything about individuals in this large group setting is when

considering when users enter or leave the SLGIP, formally known as a divergence point.

A divergence point is a spatio-temporal point that breaks the bounding of users in a SLGIP and

allows any number of users to leave or enter the group. Formally, at spatio-temporal point sdivpoint,

Usubset is randomly repopulated and its cardinality can change: |Usubset | = c where c ≥ 0. Using

our running example, a train station would be a divergence point for individuals in a group as

users in a group have the chance to leave the group.

In the worst case, individual privacy loss occurs when only one user diverges from the SLGIP.

An individual would need to transition into another SLGIP or an ILGIP which is proved to be safe.

To only know that an individual diverged with high con�dence, the analyst would have had to

conduct two queries with relatively high privacy budgets (one before divergence, one after).

For example, with overall ϵ = 1 as in the ILGIP section, an analyst conducts a query before a

divergence point and one after a divergence point each with high ϵ = 0.4. The analyst would have

low con�dence in obtaining the accurate counts as the probability of getting the exact count for

both queries is 0.108. The analyst has also exhausted the majority of the user’s overall privacy

budget as there is now 0.2 remaining out of 1. To learn that an individual diverged from a group,

the analyst has very little user privacy budget left and power to follow the possible branched paths.

Privacy budget ϵ was seen as a double edged sword throughout this section. Privacy is properly

enforced in this domain by setting low enough privacy budgets for each correlated range. But

privacy budgets also greatly limit the number of queries and their associated accuracies. Our goal

is to empower analysts by providing multiple ways to conduct count queries to obtain their desired

results, while simultaneously empowering users to control how their personal data is used given a

query.
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3 Proposed Aggregation Options for
Spatio-Temporal �eries

Although individual trajectories are properly protected with the Laplace count query algorithm

and small, �xed privacy budgets, an interactive query system allows for �exible aggregation

options in order to simultaneously maximize analyst and user utility. Figure 3.1 illustrates the

logical query process which begins with an analyst specifying a query and its parameters, the

users the data the query accesses, and the query result being calculated and sent to the analyst. We

�rst propose a way to parametrize an interactive spatio-temporal query and two di�erent types

of count algorithms: (i) a relative perspective that speci�es the acceptable amount of error for a

query (acceptable error) or (ii) an absolute perspective that determines whether a count is within

a speci�ed range (range count). The next section discusses possible data control methods given

the query. Lastly, analyst and user roles are explained; analysts construct the queries and choose

the query operator, while users control the data each query accesses.

�ery Parameterization

Queries can be parametrized by space, time, algorithm, and query origin. Spatio-temporal related

works parametrize queries typically by space, time and algorithm. But the query data can be the

bottleneck for the kind of algorithms run. For example, [1] only releases coarse count data, which

can limit query granularity. Related works that publish synthetic private trajectories, such as [16],

[9], and [8], can allow for more �ne query granularities. Interactive queries can support more

�ne-grained space and time ranges. The trade-o� is that continual private data publishing of counts

or trajectories enable algorithms that the data can support, while preserving privacy. Providing

interactive di�erential privacy mechanisms for spatio-temporal data has been notoriously di�cult

and is algorithm dependent.
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Figure 3.1: Logical Query Pipeline Diagram

3.1 �ery Operators

Count queries are among the simplest query types to apply di�erential privacy, as they require less

noise due to their low global sensitivity (4 f = 1). Although spatio-temporal data is correlated and

breaks di�erential privacy assumptions of data being iid, our trip group framing allows for count

queries to still provide adequate privacy as discussed in Section 2.4. The proposed algorithms

in this section o�er two di�erent count algorithm perspectives: AEs and RCs. These operators

are formally de�ned in the following two sections. The analytical comparison between AEs and

RCs show that RCs ensure a stronger level of di�erential privacy, but typically use more privacy

budget to ensure the same accuracy as AEs. AEs are also shown to use privacy budget less than or

equal to the privacy budget used by RCs when wanting a scalar count (AEs are optimal in this

case) and vice versa when wanting a range.

3.1.1 Acceptable Error Count �eries

Acceptable error count queries (AEs) represent specifying an acceptable error amount relative to

the true count. AEs are simply an alternative framing of the traditional di�erential privacy Laplace

mechanism. This is because AEs are parametrized by an accuracy, as opposed to a relatively

unintuitive privacy budget.

Acceptable Error Count Queries (AEs) De�nition: An AE is parametrized by an acceptable

o�set o (o > 0) and a con�dence level α (0 ≤ α ≤ 1). AEs return a noisy count c̃ ∈ N, where
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c̃ = c + Y such that c̃ ∈ (c − o, c + o) with probability 1 − α , where c denotes the true count and

Y ∼ Lap( 1

ϵAE
), where ϵAE denotes the privacy budget used to ensure the 1 − α accuracy.

AEs are similar to the subsequent range count queries (RCs) except that the AE range is relative

to the true count. An example of using an AE is when asking for the number of people who turned

left on State Street between 3pm and 6pm with an acceptable error of 30 people.

Privacy Budget to Ensure Accuracy

Although a query is parametrized by accuracy (1 − α ), privacy budget is still the mechanism that

restricts access to sensitive data. It is necessary to understand the relationship between accuracy

and privacy budget which is de�ned in the below de�nition:

De�nition 3.1.1. AE Privacy Budget

ϵAE =
− ln(α)

o

De�nition 3.1.1 is proved in the Appendix. Changing the privacy budget ϵ is how to achieve the

speci�ed accuracy as ϵ adjusts the distribution scale of the Laplace noise. Given o�set o, privacy

budget is the log of accuracy and increases rapidly as α decreases (accuracy increases). Thus, AEs

ensure a unique and natural mapping from accuracy to privacy budget.

3.1.2 Range Count �eries

Range Count Queries (RCs) are an absolute perspective of count queries. The rationale is that

count queries do not have to always return exact counts. Alternatively, a broad range of counts

may be su�cient for analysis purposes. Similar to AEs, RCs utilize the accuracy interface by asking

whether a noisy count lies within the given absolute count range with some probability. The

consumption of privacy budget is then derived from the accuracy perspective. Before providing

the formal RC de�nition, it is necessary to de�ne a range in this context.

Range De�nition: A range r is an exclusive interval de�ned by a start count point s ∈ N and

an ending count point e ∈ N which contains all the real numbers between s and e (∀y ∈ R s.t.

s < y < e). An example range r 1 contains 30 to 80 (exclusive range) people would have r 1s = 30

and r 1e = 80. The real numbers are considered although true counts are natural numbers, they

become real numbers once the Laplace noise is added to the true count.

Range Count Queries (RCs) De�nition: A RC is parametrized by a range r and an accuracy

level α (0 ≤ α ≤ 1). RCs return a boolean indicating whether a noisy count c̃ ∈ R is in range r
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c̃ ∈ (rs , re ) where c̃ = c + Y with probability 1 − α , where c denotes the true count and Y ∼ L(ϵRE )

where the noise L() ensures di�erential privacy with the appropriate use of and value of ϵRE that

denotes the privacy budget used to ensure the 1 − α accuracy.

RCs are similar to AEs but the count range is absolute and de�ned at the start of the query as

opposed to AEs where the count range moves with the true count. One key observation is that

RCs and AEs are similar and would use the same privacy budget when the ranges are the same

and when the true count is in the middle of this range ((c − o, c + o) == (rs , re )). For example,

assuming the same accuracy level α , if the true count c = 55, the AE o�set o = 25, and RC range is

r = (30, 80), then the privacy budget used for both queries should be the same. This observation

will be important for Section 3.1.3. The next example demonstrates a scenario where an AE and a

RC are not equivalent with the same range lengths. Consider an AE with o�set o = 5 and RC with

rs = 10 and re = 20. If the true count is at 12 for instance, the AE will return a noisy count within

the range of (c − o = 7, c + o = 17) while the RC will return that the count lies within the speci�ed

range (also known as "in range") with both queries ensuring the a result within these ranges with

probability 1 − α .

Improved utility and a reduced privacy budget can result from utilizing RCs. For instance, if an

analyst wants to know if there are 100-500 people that cross a street intersection on Mondays, and

the true count is 498, AEs would return noisy counts that are outside the speci�ed range almost

half of the time, while range count queries return a boolean of whether the count is within the

query with 1 − α probability.

RCs are intuitively more di�cult to ensure the speci�ed accuracy if the true count lies near the

starting or ending interval points. In this case, more privacy budget should be used. Increasing

privacy budget in a standard Laplace scenario will decrease the scale and thus make the distribution

more skinny to ensure that more of the area lies within the speci�ed range. Thus, the distribution

of the Laplace is determined by the data and the true count. To help verify these hypothesises, the

next sections are dedicated to deriving probability expressions in terms of privacy budget ϵ .

Privacy Budget to Ensure Accuracy (In Range)

When the true count lands in the speci�ed range, the probability that the noisy count will still be

in the range is:

De�nition 3.1.2. RC Symmetric Probability of In Range

1 − α = 1 −
1

2

[exp(−ϵ(c − rs )) + exp(−ϵ(re − c))]
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De�nition 3.1.2 is proved in the Appendix. The above expression does not have a closed-form

solution for ϵ , thus this value can be solved via an optimizer such as Newton’s method. Privacy

budget is therefore dependent not only on accuracy but also where the true count lies inside the

range. More details about privacy guarantees can be seen in Section 3.1.3.

Privacy Budget to Ensure Accuracy (Not In Range)

When the true count falls outside of the speci�ed range, the true count is either less than the start

of the interval or greater than the end of the interval. First considering the true count being less

than the range starting point, the probability of the noisy count remaining outside of the range is:

De�nition 3.1.3. RC Symmetric Probability of Not In Range

if c < rs : 1 − α = 1 −
1

2

(exp(−ϵ(rs − c)) − exp(−ϵ(re − c)))

if c > re : 1 − α = 1 −
1

2

(exp(−ϵ(c − re )) − exp(−ϵ(c − rs )))

De�nition 3.1.3 is proved in the Appendix.

Minimizing Privacy Budget Usage

For range count queries, it is necessary to modify the privacy budget used on a query-by-query

basis to achieve the speci�ed accuracy. Privacy budgets are extremely valuable and are set low

to ensure su�cient privacy (e.g., often ϵ < 1). Thus, there is incentive to see if this range count

process can be optimized to ful�ll the same privacy guarantees while decreasing the privacy budget

used.

An example is to consider when a real count lies inside the range and is very close to one of the

range endpoints. The noise distribution must decrease its scale in order to still ensure the speci�ed

accuracy that the count is in range. This is because the scale of the Laplace noise is
1

ϵ , an increase

in ϵ makes the distribution more condensed and the noisy count can still be in the range for high

accuracies. An optimization would be if the distribution could be skewed away from the closer

range endpoint. An asymmetric distribution could theoretically require less change in scaling to

achieve the same accuracy. This idea can be realized with the asymmetric Laplace distribution.

Asymmetric Laplace Distribution

The asymmetric Laplace is a generalization of the standard (symmetric) Laplace distribution. The

pdf is:
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Figure 3.2: An asymmetric laplace centered at 0 with di�erent values of κ (image from the asym-

metric laplace wikipedia page).

f (x ;m,b,κ) =
1

(κ + 1/κ)b


exp

(
1

κb (x − c)
)

if x < c

exp(−(κb (x − c)) if x ≥ c

where κ is the asymmetry parameter and represents the skew. When κ = 1, the asymmetric

distribution simpli�es to the symmetric Laplace distribution. A visualization of di�erent values of

κ can be seen in Figure 3.2.

The probability of the noisy count c̃ being in the range given that the actual count is in the

range can be seen as a generalization of the symmetric Laplace expression:

De�nition 3.1.4. RC Asymmetric Probability of In Range

Pr [c̃ ∈ r |r , c ∈ r , ϵ] = 1 − α =
1

1 + κ2
[κ2(1 − exp(−

ϵ

κ
(c − rs ))) + (1 − exp(−ϵκ(re − c)))]

This expression is solved using the same approach as De�nition 3.1.2 and is additionally de-

pendent on the value of κ. To minimize the privacy budget used, it is important to �rst �nd the

optimal value of κ that maximizes the above probability expression. Similar to ϵ , κ does not have a

closed-form solution and must be solved using an optimizer. Once the distribution is appropriately
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skewed, an optimizer can also be used to solve for the privacy budget ϵ to shape the noise to

achieve the speci�ed 1 − α accuracy.

Similarly, the probabilities that the noisy count c̃ being outside the range given that the actual

count is outside the range can also be seen as generalizations of the symmetric Laplace expressions.

De�nition 3.1.5. RC Asymmetric Probability of Not In Range

if c < rs : Pr [c̃ < r |r , c < r , ϵ] = 1 − α = 1 −
1

1 + κ2
(exp(−ϵκ(rs − c)) − exp(−ϵκ(re − c)))

if c > re : Pr [c̃ < r |r , c < r , ϵ] = 1 − α = 1 −
κ2

1 + κ2
(exp(−

ϵ

κ
(c − re )) − exp(−

ϵ

κ
(c − rs )))

This expression is solved using the same approach as De�nition 3.1.3.

3.1.3 Analytical �ery Evaluation

�ery Operators Satisfying Di�erential Privacy

Acceptable error count queries (AEs) that are parameterized by o�set o and accuracy level α use

privacy budget ϵAE (as de�ned in De�nition 3.1.1) and satisfy ϵAE-DP as they are the exact same as

the traditional Laplace mechanism with the release of scalar counts.

The di�erential privacy levels and �ndings are more interesting for RCs as symmetric and

asymmetric RCs are shown to ensure a stronger level of di�erential privacy than AEs, especially

for small range lengths and small alphas. To measure a level of di�erential privacy an algorithm

ensures, the ratio of the probabilities of neighboring databases are bounded by privacy level ϵ .

Formally, for a discrete random variable RA,Di parameterized by algorithm A and database Di ,

where D1 and D2 are neighboring databases and di�er by only one person:

Pr [RA,D1
= x]

Pr [RA,D2
= x]

≤ exp(ϵ)

Range count queries have only two possible random variable values denoted by a Boolean

indicating whether the noisy count is within the speci�ed absolute count range. Even with the

more simple symmetric Laplace probability expression, it is di�cult to �nd a closed-form bound

for di�erential privacy. We empirically solve for this bound.

The �rst step is to identify that the probabilities of being in range change the most near the

range endpoints. This is because the change in privacy budget (scale) is the largest as shown by

Figure 3.3. Figures 3.4a and 3.4b visualize the ratio of the probabilities of neighboring databases as
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Figure 3.3: Privacy budget increases the most near the range endpoints for an example of any

range with length 50 and α = 0.05.

(a)
Pr (c in range)

Pr (c+1 in range)
where c denotes the true count

when using the symmetric Laplace for a range

length of 50 when using the optimal RC privacy

budget ϵAE .

(b)
Pr (c in range)

Pr (c+1 in range)
where c denotes the true count

when using the asymmetric Laplace (skewed

away from re ) for a range length of 50 when using

the optimal RC privacy budget ϵAE .
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Figure 3.5: Maximum probability change across di�erent range lengths up to 150 compared to the

ϵAE baseline.

the true count increases over range percentile. These �gures verify that the ratio of probabilities

are the largest near the range endpoints and that the asymmetric Laplace ensures a much lower

maximum probability ratio.

Knowing that the maximum probability change is near the range endpoints, Figure 3.5 shows the

symmetric and asymmetric maximum probability ratio relationship as the range lengthT increases.

Both the symmetric and asymmetric largest probability ratios are upper bounded by the baseline

ϵAE . The symmetric curve converge to the baseline ϵAE di�erential privacy level and converges

more quickly the larger alpha is. The level of di�erential privacy of symmetric and asymmetric be-

comes stronger (ensuring a tighter bound than ϵAE ) as alpha decreases. The asymmetric Laplace al-

ways produces a lower (stronger) level of di�erential privacy (exp(ϵasym) ≤ exp(ϵsym) ≤ exp(ϵAE ))

which means that for the same privacy budget ϵAE , the asymmetric mechanism for RCs preserve

stronger individual privacy than both the symmetric RC and AE operators. Additionally the asym-

metric and symmetric have relatively large di�erential privacy improvements over the baseline

for small range lengths T which show that with the same privacy budget, the asymmetric and

symmetric RCs ensure a signi�cantly stronger level of di�erential privacy than ϵAE .

As seen in Section 3.1.3, RCs often use a privacy budget ϵRC that is greater than ϵAE to ensure

the speci�ed 1 − α accuracy. Even if ϵRC >= ϵAE with αRC = αAE and the same range lengths,

RCs leak less per privacy budget unit spent than AEs. RCs ensuring stronger di�erential privacy
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intuitively makes sense as RCs only have two possible values ("in range" and "not in range") while

AEs output scalars.

Privacy Budget Guarantees

AEs have a privacy budget independent of the true count c and is calculated given a query’s

speci�ed o�set o and accuracy level α :

ϵAE = −
loд(α)

o

RCs and their privacy budgets are, in contrast, dependent on the true count c and its position

on the speci�ed range. Because RC privacy budgets can vary, our goal is to identify lower and

upper bounds for the privacy budget.

The lower bound for both the symmetric and asymmetric case is ϵlb =
−2loд(α )
re−rs

which is

equivalent to ϵAE when o = rs−re
2

. The lower bound is achieved when the true count lands on the

center of the range the scale (
1

ϵ ) to achieve the 1− α accuracy is the lowest. When the true count c

is not in the middle of the range, The noise distribution scale has to decrease when the true count

c is not in the middle of the range. Thus, privacy budget increases in order to ensure the speci�ed

accuracy.

Solving for the upper bound is more di�cult. One very important thing to note is that the upper

bound for the "not in range" privacy budgets is the same for the "in range". We limit our analysis

to the "in range" case. Recall Figure 3.3 which shows that the maximum privacy budget used is

close to the range start and end points. Given a range r , the max privacy budget is spent when the

true counts are at either rs + 1 or re − 1. The probability expression when setting true count c as

either rs + 1 or re − 1 simpli�es to form without a closed-form ϵ expression:

De�nition 3.1.6. RC Symmetric Upper Bound Privacy Budget Expression

ln(ϵ + ln(2α)) ≤ −(re − rs − 2)ϵ

Although it is not possible to get a closed-form expression for ϵ in terms of α and r , we can

analyze this expression to still yield a tight upper bound as the two expressions are typically very

close in equality as seen through the derivation of De�nition 3.1.6 in the Appendix. Figure 3.6

shows that the intersection occurs during the steep incline of the log function. Note that the range

length in the Figure 3.6 example is 7, which is relatively small. The intersection will have an even

lower function value with larger ranges as the slope of the linear right expression will decrease

proportionally to range length and will intersect the Left (ln()) function at a lower function value.
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Figure 3.6: Graphical intersection showing the privacy upper bound of ϵ = 0.926 for the symmetric

laplace with α = 0.2 and re − rs = 7. Left represents ln(ϵ + ln(2α)) and Right represents

−(re − rs − 2)ϵ . These parameters were chosen as they displayed the intersection well.

For large range length, since we know from the domain of ln() that ϵ > − ln(2α), the intersection

function value being a somewhat large negative value means that ϵ will still approximately be

− ln(2α). Precisely for su�ciently large range lengths T in counts (T > 5) where T = re − rs the

upper bound is ϵ = − ln(2α) + δ where δ is typically very small (δ < 0.001). Otherwise when

2 ≤ T ≤ 5, ϵ ≤ 1− ln(2α) is the worst case upper bound and is achieved whenT = 2 as the natural

log on the left has to equal to 0.

The probability "in range" expression using the asymmetric laplace does not simplify to an

analyzable expression. Another way to obtain an upper bound is use empirical max privacy

budgets e and the
1

T relationship shown in Figure 3.7 to produce a linear regression approximation

using x = 1

T and y = e . The issue with unconstrained linear regression is that the line’s function

values are not guaranteed to be greater than or equal to the points. Thus a constrained linear

regression problem is solved with the additional constraint of θ1x + θ0 ≥ ex where θ1 denotes the

slope and θ0 denotes the bias. The upper bounds for both symmetric and asymmetric laplaces are

showed in Table 3.1.

Table 3.1 shows that the asymmetric laplace always has a lower upper bound for privacy budget

than the symmetric laplace when T ≥ 2 as when T increases, the bias is weighted much more and
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Figure 3.7: Left plot shows worst case asymmetric privacy budgets for increasing interval lengths.

Right plot shows the same plots when the privacy values are multiplied by T which

veri�es that the max privacy budget is proportional to
1

T .

Alpha Symmetric Upper Bound Asymmetric Upper Bound

0.01 1.415/T + 3.898 7.93/T + 0.64

0.05 1.415/T + 2.289 5.45/T + 0.331

0.1 1.415/T + 1.595 4.635/T + 0.182

0.2 1.415/T + 0.902 3.481/T + 0.081

Table 3.1: Privacy budget upper bounds dependent on range length T .

the symmetric case has much larger biases than the asymmetric ones. RCs should only use the

asymmetric as it is an optimization of the standard symmetric laplace. Any time an RC is used in

the remainder of this document, assume it uses the asymmetric laplace mechanism.

Preferring AEs over RCs for Scalar Counts

When wanting to obtain a scalar count, it is optimal (uses less privacy budget) to use AEs over RCs.

Recall that the privacy budget AEs ensure are the lower bounds for RCs and that these queries

provide the same information when the true count lies in the middle of the speci�ed range. For

the same AE and RC queries with an accuracy level α , o�set o for the AE, and range r for the RC

such that
re−rs

2
= o and true count c , if c = rs+re

2
, then both queries give the same information and

use a privacy budget ϵ = − ln(α )
o .

Running an AE and RC query with α = 0.05, c = 25,o = 10, rs = 15, re = 35 as an example will

both give information that the true count is somewhere within the 15-35 range with probability

1 − α = 0.95 and uses ϵ = 0.3.
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But a given RC with an alternative range of the same size will either not overlap with the true

count or overlapping with the true count not in the middle, which uses more privacy budget

than if the count were in the middle. Continuing with the same example as above, resetting the

range values to rs = 30 and re = 50 indicates that the true count is not in that range with 0.95

probability and uses ϵ = 0.25. Additional RCs will have to pinpoint the true count, which will use

more privacy budget. Also if we reset the range values to rs = 20 and re = 40, the privacy budget

used is ϵ = 0.33, which is greater than privacy budget used when the true count was in the middle

of the range.

AEs still use lower privacy budgets to obtain counts as opposed to using multiple ranges to

estimate counts. A realistic approach to using ranges to estimate a query count value is to start

with a large range and use binary search with ranges to hone in on the true count. For example,

resetting the range values to rs = 0 and re = 100 would use ϵ = 0.067 and two proceeding ranges

with rs = 10 and re = 40 will use ϵ = 0.2 and range rs = 60 and re = 90 will use ϵ = 0.1 which has

already exceeded the 0.3 optimal privacy budget.

Preferring RCs over AEs for Ranges

When obtaining a range of values, less privacy budget is consumed compared with using RCs over

AEs. We will argue that using AEs to learn the same information with less privacy budget than

using one RC is impossible.

Similar to preferring counts over ranges section, equivalent AEs and RCs use the same privacy

budget. If the true count is not in the center of the wanted range, the probability that the AE

noisy query result being in the range is less than if it were in the middle of the range. AEs use

a symmetric laplace mechanism and the probability of being in range given the position on the

range can be seen in Figure 3.8. Because RCs use the asymmetric mechanism, they will always

ensure a higher probability of being in the range given the same privacy budget.

3.2 Data Access Mechanisms

Once a query and its operator have been de�ned, the next stage in the logical query pipeline is

accessing user data to compute the query result. Continual private data publishing related works

release data from all users to all analysts at �xed privacy levels. An interactive query setting,

in contrast, provides room for customizable data access mechanisms that controls the data that

a query has access to. The goal is to provide data access according to the given query and its
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Figure 3.8: Probability of being in the range using the symmetric and asymmetric laplace mecha-

nism with α = 0.05, rs = 0, and re = 100.

parameters. Similarly to query operators, we propose two data access mechanisms perspectives:

data access policies and data access degrees.

Data Access Policies

Data access policies specify which queries are allowed to access to certain data.

Data Access Policies (DAPs) De�nition: If the logical database is split into n disjoint par-

titions where each partition is denoted as P , a DAP of a partition P is the subset DP ⊆ QPc

of the space of all possible query parameter combinations QPc such that any query parameter

combination qPc ∈ QPc has access to the data if qPc ∈ DP and does not otherwise. The aggregated

DAP across all n partitions is de�ned as D =
n⋃

P=1
DP .

Thus, DAPs are binary policies that indicate whether a query has data access for each database

partition. For a single partition (n = 1), the query would have access to either all or none of the

total data.

DAPs provide the ability to de�ne access for any combination of spatio-temporal range, query

origins and analysts, and algorithms. An example includes only being able to conduct count

queries over a certain spatio-temporal range to a select few analysts.
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Data Access Degrees

The main limitation of DAPs is not being able to specify how much access to the data query has.

One way to address this limitation is to provide a mechanism to set how much access queries

should have on the data. Data access degrees specify the allowed amount of data leakage (e.g.,

privacy budget) for a given query.

Data Access Degrees (DADs) De�nition: If the logical database is split into n disjoint parti-

tions where each partition is denoted as P , a DAD of a partition P is a function DADP () that maps

a query parameter combination qPc ∈ QPc to a degree access valuevqPc ∈ R. The aggregated DAD

across all n partitions is DAD(qc ) →
∑n

P=1vqPc .

Privacy budgets from di�erential privacy are a possible application of the DAD() output degree

values. An example is to set high data access values for times that are more than three years old

and restricting access for all analysts except for the government. One limitation of DADs are that

it is di�cult to set and keep track of values for the combination of possible query parameters. Our

implementation assigns one customizable privacy budget value for all query parameters as seen in

Section 4.1.

3.3 Analyst and User Roles

Aggregation options we proposed have introduced two query operators and two data access

mechanisms. Analysts should have the role of specifying the query, which includes the query

operator, while users should be able to control how their personal data is used given a query.

Analyst and user roles in the logical query lifecycle can be seen in Figure 3.1.

Analyst Specifying �eries and Operators

The analyst role is to specify a query that should include space, time, algorithm (and its associated

parameters), and query origin. Because the spatio-temporal data is �ne-grained in our setting, an

analyst should be able to specify any level of spatio-temporal granularity. Additionally, analysts

should also be able to choose their query result precision with the speci�ed accuracies and o�sets

for AEs or ranges for RCs.

Users Specifying �ery Data Access

The user role is to specify how their personal data can be used by the given query. Users should

have the ability to customize their data access settings through policies (DAPs) and/or privacy
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budgets (DADs) for each analyst. Each user would control their personal partition of the overall

dataset.

Users may want to protect themselves against malicious analysts and have the ability to consent

their data through the use of DAPs. DAPS would enable users to provide full or no access to

certain queries. For instance, controlling whether their data can be accessed by their city and

not by Russian hackers (granting access by analyst). Continuing with the previous example, a

user may only want to provide their city with only count query algorithms (granting access by

algorithm). Lastly, a user can utilize DADs to set their own privacy budget for any combination

of query parameters. For instance, a user moves to another state and chooses to increase their

privacy budget for a trusted analyst for their travel data from their previous state.
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4 Privacy Preserving �ery System
Implementation

4.1 Model Overview

Our implementation includes a privacy-preserving query system to deploy the aforementioned

spatio-temporal queries and their associated query operators and data access mechanisms. The

high level design is that users upload their spatio-temporal trip data to a secure location on

the cloud. Analysts want to conduct queries on user data, and the goal is to allow queries in a

privacy-preserving manner that will not leak this sensitive user data.

The system primarily relies on enclaves to ensure that the code interacting with the raw user

data is unhampered, while also being encrypted RAM without OS support. It is importantly noted

that enclaves are the security backbone of this system. The current implementation does not use

secure enclaves, as there are di�culties with combining existing research with remote attestation.

A downstream concern when wanting to deploy this system on a large scale is the lack of secure

enclave option support from cloud providers as enclave technology is relatively premature.

System Components

The system consists of �ve high level components: user clouds, user �le store, an aggregator,

query microservices, and the controller, and two entities interacting with the system: users and

an analyst. We discuss each component and how they contribute to the high level design of

securely storing and aggregation sensitive user data. All system components are visualized in the

aggregation protocol in Figure 4.2.

User Clouds: A user cloud is a partitioned space that manages the user’s data and policies. The

goal of a partitioned space is to ensure privacy guarantees through isolation over CPU, memory,

and runtime guarantees. These clouds can be viewed as the partitioning of machines (or cloud

instances), but at the container level rather than server consumer level (i.e., everyone having their

own servers). Speci�cally, a user cloud is implemented as a container that hosts both a server
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enclave and a database enclave. The server is in charge of uploading data and communicating with

the database component to stream data when queries are conducted. The purpose of streaming

data is to not require user clouds to have large memory. Using an enclave for the server is necessary

to prevent leakage of raw user data. The database is an application level interface that accesses the

user �le store and also needs to be a secure enclave because of the handling of sensitive user data.

The user cloud stores the unique user key that is generated when a user joins to encrypt their

data, stores the one privacy budget that covers all of their data, and implements user policies.

User File Store: A user �le store is the system component that is in charge of securely storing

user trip data. A user �le store formally is a user partitioned database that stores user trip data

encrypted at rest with the unique user key. Our implementation opted to use ECryptFS because

it is installed by default on Ubuntu and was easy to deploy with simple to use instructions. An

encrypted database was chosen as it protects user data from being leaked if the database is

compromised while also being simple to access by the user cloud.

Aggregator: The aggregator receives and sends a query while also performing the �nal aggre-

gation step with the intermediate query results. A one time use enclave is used for the aggregator

as it needs to be attestable to ensure the correct computations are run on the intermediate queries

results. The aggregator functions as the trusted aggregator in the traditional di�erential privacy

setting as its code is attestable.

QueryMicroservices: When computing a query, each user has a designated query microservice

that receives raw user data from the user cloud, computes the user speci�c intermediate query

result, and sends it to the aggregator for the �nal computation. These microservices are also

enclaves as they need to be encrypted and attestable as they are handling sensitive user data.

Controller: The controller communicates with system components to provide necessary infor-

mation to other components. A standard web server is used to implement the controller as it does

not observe user data and has no possibility of leaking this data.

Analyst: An analyst constructs a query by de�ning the time range, geo-polygon location area,

accuracy or privacy budget, and an algorithm and its associated parameters. The query is sent to

the created aggregator (i.e., the analyst proxy) that computes the query result and sends back to

the analyst.

Users: The entities that generate the trip data and specify the policy and data access settings that

their user cloud enforces such as determining the value of their privacy budget ϵ and specifying

which analysts and algorithms are allowed to access their data. Users do not directly participate in

the aggregation protocol.
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Threat Model

The system can be split into three main parts for the threat model: users (mobile devices uploading

data), analysts (clients who would like to perform aggregate queries on user data), and the online

service provider (i.e., all of the system components). We assume that a majority of distributed

users are honest and that analysts are untrusted. The online service provider we assume is also

untrusted as most system components are attestable. Overall, this is a strong threat model that

assumes trust only in a majority of users.

Aggregation Options

Aggregation options we implemented include supporting any granularity of time and location,

query operators, and data access mechanisms. The query operators are the acceptable error

queries (AEs) and range count queries (RCs) that are described in Chapter 3 with their associated

parameters. The implementation supports de�ning any query algorithm that is di�erentially

private or privacy-preserving through implementing simple interfaces in the query microservices

and aggregator (in terms of lines of code, AEs are 36 and RCs are 110). The data access mechanisms

are policies (DAPs) that are limited to �ltering by analyst and algorithm and through one �xed

privacy budget (DADs) which allows the user to specify how much of their data can be accessed.

Implementation Details

We provide a Python implementation that appends to the e-mission server code located at

https://github.com/e-mission/e-mission-server. The Bottle Python Web Framework is used to facil-

itate communication and requests between system components. The aggregator, query microser-

vices, and user clouds are Docker containers that include libraries and other system dependencies

such that the system can run on any machine despite the machine’s con�guration. More in depth

information about this system implementation will be covered in a technical report written by

Nicholas Riasanovsky that has yet to be released. The system code is open source and can be

viewed at https://github.com/njriasan/e-mission-server/tree/newArch.

4.2 User Add Data Protocol

The �rst part of the high level design goal of ensuring the secure storage of sensitive user trip data

is handled by the user add data protocol. Although this part was not part of this implementation

(generated trip data was used for our evaluations in Chapter 5), this is the protocol that users
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Figure 4.1: The user add data protocol and its various steps.

would use securely upload their data to their encrypted �le store. The protocol is visualized in

Figure 4.1 and the steps are outlined below:

• Step i) Each user sends a request to the controller to obtain their user cloud address. The

controller sends a request to the user cloud to unpause their container (if necessary).

• Step ii) If the user cloud is running and responds to the address request, the controller sends

the user the user cloud address.

• Step iii) The �nal step involves the users sending their new trip data to their user clouds,

where the data is encrypted with the unique user key and forwarded for storage in the user

�le store.

The user add data protocol ensures the secure storage of user data. Our threat model illuminates

one potential malicious consideration: the controller sending the users fake user cloud addresses.

The users con�rm that they are communicating to the correct system components via remote

attestation of the user cloud server enclave. Hence the user add data protocol is secure and ful�lls

the vision of secure storage used for privacy-preserving queries.
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Figure 4.2: The aggregation protocol and its various steps.

4.3 Aggregation Protocol

After user data is securely stored, analysts are able to safely conduct privacy-preserving queries

on user data through our system’s aggregation protocol. This protocol is the crux of our imple-

mentation and is visualized by Figure 4.2 with the steps are outlined below:

• Step i) The analyst speci�es a query q which is de�ned by a time range, geo-polygon

location area, accuracy or privacy budget, and an algorithm and its associated parameters.

The aggregator is launched for this single protocol.

• Step ii) The aggregator sends a query signal to the controller in order to get the addresses of

the user clouds and query microservices. The controller sends a signal to the user clouds to

unpause their containers if necessary.

• Step iii) The user cloud addresses are obtained through the running user clouds sending

their addresses to the controller and query microservices are created for each user by the

controller for this single protocol.
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• Step iv) This step passes the query to every other system component all the way through to

the user �le store. The aggregator �rst sends each query microservice the query q and the

associated user address, which the query microservice passes onto the associated user cloud.

If the analyst and algorithm user policy checks pass, then the user data is accessed.

• Step v) Data is streamed from the user �le store to the user clouds where the data is decrypted,

then streamed into the query microservices where intermediate query results for each user

are generated. For example, if the query algorithm is a count, then each query microservice

will return either 0 or 1. These intermediate results are then sent to the aggregator for the

�nal round of aggregation.

• Step vi) With the intermediate user results, the aggregator combines them in order to obtain

the true query answer. An additional algorithm-dependent postprocessing step is required

to generate a noisy query answer.

It is important to review why this protocol is indeed secure with the consideration of the threat

model. The aggregator and query microservices being attestable enclaves ensures that the aggrega-

tions are consistent and can not be tampered with. Remote attestation before communicating with

enclave system components helps guard against the untrusted controller attempting to provide

malicious query microservice or user cloud addresses and the user cloud sending decrypted data

to malicious destinations. Lastly, all connections between components are secure as required by

enclaves. Thus the aggregation protocol satis�es the goal of computing query results while not

leaking user data.
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5 Empirical Evaluation

We have shown that the proposed interactive system is secure by not leaking sensitive user data.

In this section, we assess the implemented system based on scalability and providing correctness

of the aforementioned query operators and data access mechanisms. We see that the overall query

aggregate response time increases more as we scale up the number of users. Unpausing the user

clouds and query microservices both depend on the number of users while only the streaming

data process relies on the amount of data.

Experimental Setup

The experiments utilize three machines from the UC Berkeley millennium cluster and Docker

Swarm to orchestrate and manage the containers across the di�erent machines. Docker Swarm

was chosen for these experiments over Kubernetes, as Swarm can deploy containers relatively

quickly and this allows faster reaction times to scale on demand. As mentioned in Section 4.1,

enclaves were not used as each container would have required its own enclave and the BETS lab

ante Intel SGX machine could only support around 20 enclaves with our setup using SCONE [3].

Utilizing SGX enclaves on this machine as a result would have been infeasible as the number of

enclaves is directly proportional to the number of users (which would only support around 10

users as each user has a user cloud and a query microservice at aggregation time).

This experiment creates fake users and generates user experiment data with the e-mission

synthetic trip generator that takes deterministic trips (routes via OpenStreetMap) between speci�ed

locations over a time range. This allows for the deterministic con�guration of users and their trip

data to ensure expected true count query results. Each trip is roughly around 700 database entries.

Many of the experimental steps are independent, which allows for parallelizing across multiple

machines. The generations of fake users and their trips, the controller preparing the query

microservices, and the aggregator sending query requests to the user query microservices are all

independent and thus multiprocessing greatly optimized the experiment runtimes.

Query microservices for these experiments are alternatively always available and not killed after

every aggregation as these experiment queries are stateless and an optimization in the setting of
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frequent aggregation protocols. Therefore pausing and unpausing the query microservices makes

more sense as our experiments can be seen as submitting batches of queries.

Further details of the system implementation and experiments can be found in Nicholas Ri-

asanovsky’s future technical report.

5.1 System Scaling and Performance

It is important to consider our implemented system’s scalability as the number of users and data

increases. Response times for multiple steps of the aggregation protocol are recorded for di�erent

combinations of number of users and number of trips (user data). The aggregation protocol steps

that contribute the signi�cant response time to the query are:

1. The controller unpausing the user clouds and sending their addresses back to the aggregator

(Step 2 and 3 in Section 4.3).

2. The controller unpausing query microservices for each user and sending their addresses to

the aggregator (Step 3 in Section 4.3).

3. The aggregator passing on the query to the query microservices that streams user data from

the user cloud and returns the intermediate query results to the aggregator (Step 4 and 5 in

Section 4.3).

Query times are recorded for di�erent combinations of number of users and number of trips

and are averaged over 40 queries as the time standard deviation is low across queries. The number

of users considered are 10, 50, and 100 and the number of trips considered are 10, 50, and 100. The

average times for each of the three signi�cant aggregation steps can be seen in Tables 5.1, 5.2, and

5.3.

10 Trips 50 Trips 100 Trips

10 Users 4.61 4.45 4.30

50 Users 23.52 23.73 23.72

100 Users 50.39 49.74 50.23

Table 5.1: Average time to unpause user

cloud containers and get user

addresses in seconds.

10 Trips 50 Trips 100 Trips

10 Users 3.19 3.11 3.22

50 Users 17.80 19.09 18.70

100 Users 37.66 39.16 39.26

Table 5.2: Average time to unpause the

query microservices in sec-

onds.

The average time to prepare the user containers and for the aggregator to receive the user cloud

addresses linearly increases with the number of users as seen in Table 5.1. Only depending on
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10 Trips 50 Trips 100 Trips

10 Users 4.14 21.79 43.74

50 Users 4.88 25.97 48.01

100 Users 6.76 31.43 57.29

Table 5.3: Average time to get the intermediate query results in seconds.

number of users make sense as there are proportionally more user clouds with the increase of

number of users. The average time to prepare the user query microservices also only depends

on the number of users and increases linearly with the number of users. This is because each

user receives their own query microservice. Receiving the intermediate query results from the

microservices increases with data as there is more data to stream and process. The time slightly

increases with the increase of users as there are more containers to stream and partition resources

to.

If enclaves were used, every signi�cant aggregation section would presumably have increased

time due to remote attestation and an overhead associated with running inside an enclave [21].

The next steps are to test scalability with many more users (users > 1000) and with enclaves which

is future work deferred to the upcoming technical report.

5.2 Verifying Aggregation Options Correctness

In addition to analyzing scalability and performance, correctness experiments test whether the

aggregation options proposed in Chapter 3 function as we expect in our implemented privacy-

preserving system. AE and RC query algorithms are �rst veri�ed to provide approximately the

given query accuracy levels. Verifying the correctness of the user data access mechanisms consists

of two experiments: testing the enforcement of user policies and privacy budget. The correctness

tests match their expected behavior and provide tangible examples of how the aggregation options

can be used in this system.

�ery Correctness

The query correctness experiment tests if AEs and RCs satisfy approximately the speci�ed accuracy

level. AEs and RCs are run across four di�erent accuracy levels (α = 0.01, 0.05, 0.1, 0.2) and are run

across 100 queries to ensure that the queries are providing approximately the expected accuracy.

This experiment neglects user policies and privacy budgets which allows for the running of

unlimited queries. 20 identical users were generated with the users satisfying the spatio-temporal
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query conditions which leads to a true query count result of 20. The �rst query q1 is an AE with

an o�set of 10 and the second query q2 is a RC that has range starting and ending points at rs = 10

and re = 30. The results in Table 5.4 demonstrate that the percentages are close to the theoretical

(1 − α)% for the 100 queries and converge will converge closer to (1 − α)% with more queries.

Figure 5.1 veri�es that lower values of α lead to more precise answers while larger values tend to

be more noisy on average.

α = 0.01 0.05 0.1 0.2

q1 100% 96% 87% 83%

q2 100% 100% 89% 79%

Table 5.4: Percentage of queries within the speci�ed

ranges.

Figure 5.1: q1 distribution of noisy

counts.

User Policy Enforcement

The �rst data access mechanism test veri�es that user policies e�ectively limits user data and

subsequently lowers the true counts and noisy counts on average. Two experiments are designed

with one testing that user data is only available to their speci�ed analysts and one testing that

data should be accessible only to speci�ed query algorithms. For an accuracy level (α = 0.05), q3

is an AE that has an o�set of 5 and q4 is a RC with starting and ending points at 15 and 25 with

the number of fake users and true query count results being 20 similar to q1 and q2. There are 100

total queries for each experiment: (i) all analysts and algorithms allowed, (ii) 50 users do not allow

any analyst, and (iii) 50 users do not allow any algorithm. As seen in Table 5.5, when half of the

users do not allow any analyst or algorithm, we get on average half of the total user count and

"not in range" responses from the RC.

Privacy Budget Enforcement

The �nal correctness experiment is to test whether privacy budgets are properly being depleted

and that user data is restricted once privacy budgets are exhausted. This experiment assigns two

di�erent privacy budgets to two groups of 20 users (40 users overall): group 1 (д1) receives ϵд1 = 2
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All Half Analyst Half Algorithm

q3 19.50 10.17 10.21

q4 92% 3% 5%

Table 5.5: Mean values of the AE q3 and RC q4 (α = 0.05).

Queries Elapsed: 1-10 11-20 21-30

q5 37.58 20.62 0.94

q6 100% 10% 0%

Table 5.6: Mean values of the AE q5 and RC q6 (α = 0.05) as privacy budgets deplete every 10

queries.

and group 2 (д2) receives ϵд2 = 4. Privacy budgets are not advised in practice to be set this high,

but we wanted to provide somewhat accurate results and run an adequate number of queries.

The privacy budget correctness queries are q5 which is an AE with an o�set value of 15 and q6

which is a RC with starting and ending range points at 25 and 55. Using α = 0.05 and De�nition

3.1.1 show that д1 has enough privacy budget for 10 queries and д2 has enough for 20 queries and

both will be depleted during the last 10 queries (30 queries overall). Table 5.6 demonstrates that

less data is becoming accessible across elapsed queries (by 20 people after every 10 queries).
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6 Conclusion and Future Work

Conclusion

In this report, we o�er an approach to constructing a privacy-preserving interactive system that

supports di�erential privacy of spatio-temporal trajectories. Namely, maintaining low privacy

budgets while proposing count query algorithms and data access mechanisms can enable analysts

to maximize their query utility while users have the ability to control how their data is used. These

options will hopefully incentivize both analyst and user participation. Relative and absolute count

queries (AEs and RCs) are proposed with RCs ensuring a stronger level of di�erential privacy than

AEs, as range length T and α decrease, but RCs typically use more privacy budget than AEs. AEs

use privacy budget less than or equal to the privacy budget used by RCs when wanting a scalar

count (AEs are optimal in this case) and vice versa when wanting a range.

The interactive query system approach we propose relies on user data being securely stored on

the cloud via an encrypted, partitioned �le system and on system components that are encrypted

and attestable (enclaves) to prevent the leakage of user data and other malicious behavior. Our

scalability results demonstrate that the overall query aggregate response time is more sensitive to

an increase of users than an data increase. Because two of the signi�cant aggregator steps depend

on interacting with system components that are directly proportional to the number of users.

Correctness experiments are presented that con�rms that the implemented aggregation options

function as we would expect and demonstrate how these options operate in our system.

Practically providing di�erentially privacy for interactive, one at a time queries is inherently a

di�cult problem due to highly correlated data and one that has not yet been adequately explored. A

privacy-preserving architecture must be thought of �rst and di�erentially private query algorithms

can then be devised such that they are compatible with the architecture. Overall we hope that

users will be more incentivized to participate in spatio-temporal aggregations and that their data

can enable analysts to make data-driven decisions and impacts.
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Future Work

There are many potential interactive di�erentially private spatio-temporal data future work

directions. Query algorithms are limited to counts in this paper, which leaves optimizing and

exploring other query algorithms, such as sums, for future work. Trajectories can also be used

to not only learn counts, but also locations. A trajectory geo-polygon query would return a

geo-polygon that would correspond to people that follow a certain trajectory. For example, where

did people start their trips when using this road? Additionally, it would be worth exploring an

incentive to prevent analysts from wanting to exhaust user privacy budgets such as an analyst

cost that is proportional to the privacy budget or di�erential privacy level.

The approach of the privacy-preserving implementation in this domain has room for optimiza-

tion. Implementing this system for a production environment would likely bene�t more from

using Kubernetes over Docker Swarm. This is because Swarm has limited functionality as per

the availability in the Docker API and limited fault tolerance, making it di�cult to deploy in

production environments. Our implementation query aggregation response times were high, even

without using enclaves. A promising avenue for future work is to tweak or redesign the system

architecture to increase scalability.
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A Appendix

Definition 3.1.1 Proof

Let f (x |µ,b) denote the pdf of a Laplacian random variable centered at mean µ = c and with scale

b = 1

ϵ . Calculating the probability of the noisy count being within the (c − o, c + o) range follows a

straight forward pdf integration.

1 − α =

∫ c+o

c−o
f (x |c,

1

ϵ
) dx

=
ϵ

2

[

∫ c

c−o
exp(−ϵ(c − x)) +

∫ c+o

c
exp(−ϵ(x − c))] dx

= ϵ

∫ c+o

c
exp(−ϵ(x − c)) dx (by symmetry)

= − exp(−ϵ(x − c))
���c+o
c

= 1 − exp(−ϵo)

which simpli�es to ϵ = − ln(α )o when solving the above equality for the privacy budget.

Definition 3.1.2 Proof

When the true count lands in the speci�ed range, the probability that the noisy count will still be

in the range is calculated by integrating the probability density function (pdf) from rs to re of a

Lap(c, 1ϵ ) distribution centered at the true query count rs < c < re with scale
1

ϵ :

1 − α =

∫ re

rs

ϵ

2

exp(−ϵ |x − c |)dx

=

∫ c

rs

ϵ

2

exp(−ϵ(c − x))dx +

∫ re

c

ϵ

2

exp(−ϵ(x − c))dx
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=
1

2

[exp(−ϵ(c − x))
���c
rs
− exp(−ϵ(x − c))

���re
c
]

=
1

2

[exp(−ϵ(c − x))
���c
rs
− exp(−ϵ(x − c))

���re
c
]

= 1 −
1

2

[exp(−ϵ(c − rs )) + exp(−ϵ(re − c))]

Definition 3.1.3 Proof

The probability of being outside the range when the true count is less than the starting range

point can be seen as the probability complement of the noisy count being inside of the range:

1 − α = 1 −

∫ re

rs

ϵ

2

exp(−ϵ(x − c))dx

= 1 −
1

2

(exp(−ϵ(rs − c)) − exp(−ϵ(re − c)))

Similarly, the probability of being outside the range when the true count is greater than the

ending interval point is:

1 − α = 1 −

∫ re

rs

ϵ

2

exp(−ϵ(c − x))dx

= 1 −
1

2

(exp(−ϵ(c − re )) − exp(−ϵ(c − rs )))

Definition 3.1.6 Proof

Substituting either rs + 1 or re − 1 as c into the symmetric Laplace in range probability (De�nition

3.1.2) yields:

1 − α = 1 −
1

2

[exp(−ϵ(1)) + exp(−ϵ(re − rs − 1))]

2α = exp(−ϵ)[1 + exp(−ϵ(re − rs − 2))]

ln(2α) = −ϵ + ln([1 + exp(−ϵ(re − rs − 2))])
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ϵ + ln(2α) = ln(1 + exp(−ϵ(re − rs − 2)))

ϵ + ln(2α) ≤ exp(−ϵ(re − rs − 2)); using the fact that ln(1 + x) ≤ x for x ≥ 0

ln(ϵ + ln(2α)) ≤ −(re − rs − 2)ϵ

This inequality is typically very close to equality and converges to equality when exp(−ϵ(re −

rs − 2)) is small from the property ln(1 + x) ≈ x when x ≈ 0.
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