Goal-Induced Inverse Reinforcement Learning

Katie Luo

=i

P]

WL REFLELL

i
']
|
!

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-81
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-81.html

May 17, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to thank my research advisor Professor Sergey Levine for the
opportunity to work in RAIL Lab and providing me the resources and
opportunities for research during my time in UC Berkeley. | would also like
to thank Professor Pieter Abbeel for getting me into machine learning. |
would especially like to thank my mentor, Justin Fu for the guidance and
support in all my research endeavours. Last, but not least, thank you to
everyone on the 4th floor of Sutardja Dai Hall for the support and humor
that decreased my research productivity as well as the tea from 7th floor
Sutardja Dai Hall which has provided me with the caffeine that restored it.

And as always, to my family.

Goal-Induced Inverse Reinforcement Learning

by Katie Z Luo

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master

of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee

o>

Professol. égrgey Levine
Research Advisor

5/16/2019

(Date)

* Kk ok ok ok ok Kk

CZe

=
Professor Pieter Abbeel
Second Reader

51719

(Date)

Pieter Abbeel
5/17/19

Goal-Induced Inverse Reinforcement Learning

Copyright 2019
by
Katie Z Luo

Abstract

Goal-Induced Inverse Reinforcement Learning
by
Katie Z Luo
Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

9

Inverse reinforcement learning holds the promise for automated reward acquisition from
demonstrations, but the rewards learn generally cannot transfer between tasks. We propose
a framework that is able to learn a reward function that is language-aware on a multi-task
setting.

This work presents Goal-Induced Inverse Reinforcement Learning, an IRL framework
that learns a transferable reward function and achieves good performance as compared to
imitation-learning algorithms. By learning the rewards in the IRL framework, our algorithm
is able to obtain a more generalizable reward function that is able to solve different tasks
by changing just the goal specification. Indeed, this work showed that the reward function
learned changes to match the task at hand, and can be toggled depending on the given
goal-instruction, mapping to the true, underlying reward function that the goal-instruction
intends. This work also shows that the learned reward is shaped, allowing for ease learning
by reinforcement learning agents. Furthermore, by training the policy and reward models
jointly, we are able to efficiently obtain a policy that can perform on par with other imitation-
learning policies. GIIRL shows comparable, if not better, results than behavioral-cloning
algorithm.

Contents

Contents
1 Introduction

2 Background and Related Works
2.1 Background
2.2 Solving Language-Aware Tasks with Reinforcement Learning
2.3 Inverse Reinforcement Learning

3 Goal-Induced Inverse Reward Learning
3.1 Learning Rewards from Structured Languages
3.2 Goal-Induced Inverse Reinforcement Learning
3.3 Architecture
3.4 Language Embeddingso

4 Experiments
4.1 Tabular Setting
4.2 Mini-World of Bits Environment

5 Conclusion and Future Work
5.1 DISCusSIOno
5.2 Future Directions of Work

Bibliography

—

s W W

NelNo JBEN e e

16
16
17

18

i

Acknowledgments

I would like to thank my research advisor Professor Sergey Levine for the opportunity to
work in RAIL Lab and providing me the resources and opportunities for research during my
time in UC Berkeley. I would also like to thank Professor Pieter Abbeel for getting me into
machine learning. I would especially like to thank my mentor, Justin Fu for the guidance
and support in all my research endeavours. Last, but not least, thank you to everyone on
the 4th floor of Sutardja Dai Hall for the support and humor that decreased my research
productivity as well as the tea from 7th floor Sutardja Dai Hall which has provided me with
the caffeine that restored it.

And as always, to my family.

Chapter 1

Introduction

Reinforcement learning is proving to be a promising framework for solving many challenging
problems, such as the strategy game Go and assisting in robot control tasks, but is often
hindered by the difficulty to specify a reward function for agents to complete tasks. This
creates a significant usability challenge, as poorly defined reward functions can produce
unintended behaviors and writing reward functions for complex observations like images is
unintuitive. On top of those challenges, the reward function engineered must be readily
optimizable. One of the classical goals of artificial intelligence is to have agents respond
to and complete tasks described by human-language. It is most natural for humans to
express goals in language; these language commands can be grounded as a reward function.
The objective is to allow users to convey goals to intelligent agents using human language-
conditioned rewards trained through inverse reinforcement learning.

We are interested in solving the problem of learning a reward function which is optimiz-
able by a reinforcement learning agent and is semantically grounded in structured language
utterances. We propose Goal-Induced Inverse Reinforcement Learning (GIIRL), which uses
a sample-based adversarial inverse reinforcement learning procedure to ground English lan-
guage as reward functions. This allows for solving continuous action problems where a
reward function may be difficult to specify. This algorithm provides the first step towards
generalizing to tasks that can be learned from the same reward function, such as a robot
putting away dishes or navigating an unknown area.

To translate language commands into reward functions, we propose to learn a reward
that is a function of a language command and the agent’s observation. This allows a natural
representation of the reward function, one that is dependent on the command and state. In
order to learn a feature representation for the language command we combine the feature-
representation of pretrained utterance embeddings along with the agent’s observations. From
this augmented observation space, we propose to learn a reward using sample-based inverse
reinforcement learning techniques. By using both the structured-language embeddings and
the observation, this work is able to leverage expert demonstrations of a tasks to learn an
underlying reward function. We show that a reward function can be learned to reproduce
both the expert demonstrations and to generalize to different tasks within the environment.

CHAPTER 1. INTRODUCTION 2

In this work, we examine the method on a simple tabular environment to show that it
can learn the true reward as well as on Internet browsing tasks to show that this method
is capable of learning to navigate a complicated environment commanded by structured
English commands. We also demonstrate that the reward function learned is optimizing
for the correct behavior in each setting in the Internet-based tasks. Learning rewards from
language commands is an important step towards improving human interfaces to intelligent
agents, so that people may accurately convey their intentions and goals. Because language
offers a more natural and intuitive means of communication for many people, non-domain
experts will be able to interact and design reward functions for reinforcement agents. This
work aims to provide a solution to this problem.

Chapter 2

Background and Related Works

2.1 Background

Reinforcement learning (RL) aims to solve problems in which an agent learns to maximize
returns by interacting with its environment. The reinforcement learning environment can be
formulated as a Markov Decision Process with states S, actions A, transitions 7', rewards
r, and discount factor v. The agent navigates the environment that has dynamics T :
S X A xS — [0,1] which takes an agent from a state s € S by action a € A to a new state
s with probability T'(s,a,s’). From the environment, the agent obtains rewards r(s,a, s")
where 7 : § x A xS — R. In RL, the problem then becomes solving for a policy m(a|s) that,
given a state, outputs the probability distribution over the next action the agent should take
to maximize its cumulative reward.

In recent years, deep reinforcement learning has removed the need to hand engineer
features for policies, and thus RL has become a powerful framework for automating problems
such as robot control tasks [Lev+15]. However, reward functions still often need to be hand
engineered for good practical performance. Furthermore, deep learning procedures are highly
sensitive to reward sparsity and magnitude, and thus engineering a good reward functions is
particularly difficult, as a poorly defined reward function can produce unintended behaviors
[Amo+16]. This work explores using natural language to communicate goal-conditioned
rewards, which can be learned via solving the inverse reinforcement learning (IRL) problem
[INROO; Rus98]. IRL refers to the problem of inferring an expert’s reward function from
demonstrations, which bypasses the need to hand engineer a reward function.

In this work, we hope to be able to ground a sparse reward, a goal-specification g, which
is given as a natural language utterance (e.g., “Go to the red square”), to a reward function
r4(s,a,s") from demonstrations of an expert completing instances of the goal g via the Inverse
Reinforcement Learning problem framework. Because goals are inherently sparse, learning
a reward function from demonstrations is preferred over having to optimize over a sparse
reward function or hand engineering a dense reward function.

This problem is challenging in many ways: IRL is an inherently ill-defined problem, with

CHAPTER 2. BACKGROUND AND RELATED WORKS 4

many optimal policies and reward functions that can explain the same set of demonstra-
tions [NROO]. Furthermore, using human utterances makes the problem more complex then
checking for a goal state. Learning a reward function ultimately amounts to grounding a
structured language goal into a general function which can be optimized by an RL agent.

2.2 Solving Language-Aware Tasks with
Reinforcement Learning

There has been previous work on solving the problem of visual question answering, and
language semantic featurization would be useful in context of learning a policy for goal-
conditioned RL problems [And+17]. However, they do not attempt to solve a control task,
and mostly rely on supervised learning.

Other previous works that accomplish linguistic direction following using reinforcement
learning framework have used policy based approaches, but these tend to not generalize well
due to the fact that policies would need to rely on zero-shot generalization on new tasks.
Work by Mei, et. al. uses recurrent networks to focus on salient sentence regions when
selecting an action [MBW15]. Another work by Misra et. al. grounds natural language to
manipulation instructions by learning an energy function that outputs sequences of actions
to complete the task [Kum+15].

A common approach for natural language following interfaces with RL is language condi-
tioned policies that map a policy 7(als, g) from a state and language goal to an action. Work
by Liu, Guu, Pasupat et. al. proposes using deep RL to solve web interface tasks with a goal
given as a human utterance [Liu+18]. Their work proposes learning a policy 7(als, g) that
conditions the policy on both the state and the goal utterance, with exploration constrained
using a high-level “workflow” on allowable actions at each time step. A similar approach
was taken in the work by Jia, et. al. where an architecture for RL-based web navigation was
designed to solve goal conditioned tasks [JKB19]. This method learns separate networks for
different action categories, which utilizes the goal condition language to parameterize the
different Q-function modules.

2.3 Inverse Reinforcement Learning

Another approach to solving language-aware tasks is to learn a navigation policy from demon-
strations, or apprenticeship learning. One example of which is Inverse Reinforcement learn-
ing, which aims to recover the reward from the demonstrations as well as imitate the expert
behavior. Many approaches of IRL learn both a optimizable reward as well as a policy that
induces the demonstration [NR0OO; ANO4]. A recent framework is the GAIL algorithm, which
uses adverserial context to learn a policy from the demonstrations using a discriminator and
a policy [HE16]. However, this in itself does not learn a reoptimizable reward.

CHAPTER 2. BACKGROUND AND RELATED WORKS 5

Other works using the adverserial framework show that an effective reward function can
be learned from demonstrations. Previous work showed that by viewing the learned policy
as a generator and the reward as a discriminator, a reward function that is disentangled from
the actions can be learned [FLL17; QY19]. There has also been previous attempts at using
an IRL framework for learning language-following tasks [Wil4-18; Mac+15]. These works
mostly relied on a formal reward specification language.

Perhaps the work most similar to ours is work by Fu et. al., as it solves for a reward
grounded in language that can successfully be reoptimized [Fu+19]. But because it uses
tabular MaxEnt inverse reinforcement learning, the model is limited to discrete state and
action spaces with known dynamics. Additionally, it has limitations including the language
structure must be in a certain specific semantic. Another work that uses goal conditioned
reward learning is by Bahdanau, et. al. where a reward function is learned from the lan-
guage goal using adversarial training [Bah+18]. This work demonstrates the usefulness of a
generative framework for learning a more robust reward function on goal conditioned tasks,
and the learned reward is able to generalize across different goals. However, because the
reward function requires the train the discriminator to classify if a state is a goal state, by
definition it offers only sparse rewards and the learned reward is difficult to optimize.

Chapter 3

Goal-Induced Inverse Reward
Learning

3.1 Learning Rewards from Structured Languages

In this work, we introduce GIIRL (“Goal-Induced Inverse Reward learning”), which is a
framework for learning a reward function for the Reinforcement Learning problem with
goal specifications. Specifically, GITRL solves the instruction-following task by optimizing
a reward function concurrent with a policy. We formulate the problem as an Generative
Adversarial problem [Goo+14], with the generator network being a goal-conditioned policy,
mo(+|s, 9).

The policy is learned from interactions with the environment by adjusting parameters 6
to maximize the maximum expected reward of a demonstration 7, E-,[>,., 7'~ ' +aH (7).
Note that this is the objective of the maximum entropy Reinforcement Learning problem
[Haa+17; Haa+18]. However, the stepwise reward 7, is not obtained from the environment,
but obtained from the discriminator network which is a learned a reward model, Dy4. The
model attempts to define a meaningful reward for the policy to train 7.

We formulate the discriminator model as solving the problem of classifying positive ex-
amples of expert task demonstration (sg,ar) given goal-instruction g; from policy expe-
riences (S,,a,) given goal-instruction g,. Expert state-action pairs (sg,ag) paired with
goal-instructions g; are sampled from a fixed dataset Dg; policy state-action pairs (s, a,)
are obtained from the policy 7y interacting with the environment, paired with the instruction
given to the policy.

Specifically, we formulate our generator network objective as learning a policy 7y that
maximizes expected return, R, () such that:

Ry (0) = Eq [Y '~ " + aH(m)), (3.1)

ter

and we formulate our discriminator network objective as learning a reward model D, that

CHAPTER 3. GOAL-INDUCED INVERSE REWARD LEARNING 7

minimizes the loss, Lp(¢) such that:

Lp(¢) = Eqx,[—1og(1 — Dy(5x, ax|gr))] + Ep,[—1log Dy(sk, arl|g:)] (3.2)

The reward used is equal to the discriminator output, i.e. 7, = Dy(s¢, a]g:). Thus, we
can view Dy as modeling the probability a given state-action pair is a positive label given
the goal-instruction.

3.2 (Goal-Induced Inverse Reinforcement Learning

A challenge of the Goal-Induced Inverse Reinforcement learning setting is that the reward
function learned must be able to generalize across different goals within the same environ-
ment. This differs from the reward function learned in standard IRL problems, which are
generally trained and evaluated on the same task and environment. Specifically, the GI-
IRL reward function must return different rewards given different goal-instructions, where
a state-action pair can have different rewards depending on what the instruction is at the
moment.

We adopt the notation, task, denoted &, to be an instance of an environment £ with
the same dynamics and state space, but with a reward function that may differ between
tasks. Each task is associated with a goal-instruction g, which is an English-language goal
specification describing the task. In order to optimize the discriminator and the policy
objectives, we sample tasks from the environment and optimize the reward function and
policy for the task at each timestep. The algorithm is briefly summarized in Algorithm 1.

Algorithm 1: Goal induced inverse reinforcement learning (GIIRL)

Input: Environment £

Populate a dataset of expert demonstrations and goal-instructions Dg;
Initialize policy my and discriminator Dy;

for step i in {1, ..., N} do

Sample task &; from &£ and corresponding goal-instruction g;,;

Collect rollout 7 = (Sox, Gox - - - ST, GT) by executing 7y on task &;
Sample expert experiences 7;5 and goal-instructions g;g from Dg;

Train D, via binary logistic regression to classify (7;g, gig) from (7ix, gix);
Update r(s, alg) « log Dy(s, alg) — log(1 — Dy(s.alg))

Train 7y with respect to r using any policy optimization method;

end

On a high level, we learn a language-aware reward function using the adversarial IRL
framework adopted for multi-task setting and rewards that are goal-language conditioned
models.

CHAPTER 3. GOAL-INDUCED INVERSE REWARD LEARNING

3.3 Architecture

Our algorithm architecture is shown below in Figure 3.1a and Figure 3.1b. The reward
model and the policy are trained as separate units alternately. The policy model learns
though interactions with the environment and trying to solve the task corresponding to the
goal-instruction. The reward model is trained as a discriminator to distinguish the policy

experiences from expert demonstrations.

Goal-Instruction

1l

Environment

(a) Training the policy network.

Goal-Instruction

Dataset

Expert (state, action, instr.)

4 l'!o 1"

Policy State Reward

Action

Environment

0/1?

(b) Training the reward network.

Figure 3.1: GIIRL flow chart for training the reward and policy networks. The policy is

trained from the goal-instruction and reward from the reward model (Figure (a)).

The

reward network is trained by learning a discriminator between the policy experience (state,
action, instruction) and the expert (state, action, instruction) from a dataset (Figure (b)).

CHAPTER 3. GOAL-INDUCED INVERSE REWARD LEARNING 9

3.4 Language Embeddings

In this work, we incorporated various elements of Natural Language Processing in order to
learn a reward function that is language-aware. For simple tasks with limited vocabulary,
we selected to use one-hot encoding by using Bag of Words features. This had the benefits
of ease of implementation.

However, for more complex language structures, we used the GloVe embeddings [PSM14].
GloVe embeddings has the feature that the cosine similarity between two word vectors pro-
vides an effective method for measuring the linguistic or semantic similarity of the corre-
sponding words. This allowed for easy featurization of the goal-instruction utterances, which
can then be used to train the reward model.

10

Chapter 4

Experiments

We evaluated our method within a tabular setting and a more complex, World-of-Bits envi-
ronment. In our experiments we aim to answer the questions:

1. Can GIIRL learn rewards that are generalizable to different goal-instructions?

2. Is GIIRL able to induce a policy that imitates the optimal behavior?

To answer 1, we evaluate the method on environments with different goal-instructions
and show that GIIRL learns a reward function that changes depending on the language
specification. To answer 2, we compared GIIRL to an imitation learning algorithm behavioral
cloning as benchmark tasks. We also show that GIIRL learns a shaped reward from the
underlying sparse true-rewards.

4.1 Tabular Setting

We begin our evaluations in a tabular setting on the Gridcraft environment shown in Figure
4.1. Each environment consists of different tasks, which is encoded as a English sentence.
Each task has its own true reward which represents the sparse goal-specification from the
task description.

CHAPTER 4. EXPERIMENTS 11

(a) “Go to Red” (b) “Go to Green. (¢) “Go to Blue” (d) “Go to Green”
Avoid Blue.”

Figure 4.1: Different environments in the LanguageGridCraft and their corresponding task
goal-instruction.

Reward Analysis

For this environment, we modeled the re-

ward function as a deep neural network. The

reward model takes in the goal-instruction concat 1x28 | Linear>Relu | 1459 i
features, the observation, and the agent ac- x2
tion. The model, shown in Figure 4.2, takes
as input the concatenation of the language
featurization and the observation, and the
one-hot representation of the action. It
passes the language-observation unit through a multi-layer perceptron (MLP), and con-
catenates with the action vector which is itself passed through a MLP. The final result is
passed through a last (MLP) which outputs the discriminator value.

After using GIIRL to learn the reward model on the tabular setting, we visualized the
average rewards obtained in each state for a LanguageGridCraft environment (Figure 4.7).
We showed that the rewards learned maps to the true, underlying sparse reward function
with the difference that it is shaped. Note from the figure, the rewards are higher closer to
the goal, with a gradient outwards. This is desirable, as a shaped reward is usually easier
for an RL agent to learn then a sparse reward. Furthermore, we showed that by changing
the goal-instruction, the reward function outputs different values for the same state. The
difference can be observed in Figure 4.3c and Figure 4.3b.

Figure 4.2: Tabular reward model.

(a) True environment. It con-
sists of Red, blue, and green
regions.

CHAPTER 4. EXPERIMENTS

(b) Heatmap of the reward
function learned on the sen-
tence “Go to Green. Avoid
Blue”.

“Go to Red. Avoid Blue. task

(¢) Heatmap of the reward
function learned on the sen-
tence “Go to Red. Avoid
Blue”.

12

Figure 4.3: Figures of the learned reward function with different goal-instructions. Notice
that the reward function learned is a more dense reward that solves the sparse goal specifi-
cation. Darker blue represents a higher reward, and darker red represents a lower reward.

Policy Evaluation

We used the Soft-Q Learning algorithm as our policy optimization module [Haa+17]. We
evaluated their performance when learning from the reward model learned using GIIRL.
We adapted the algorithm for our multi-task setting by incorporating the featurized goal-
instruction as part of the agent’s observation. The results are shown below in Figure 4.4.
We showed that the policy learned using the GIIRL framework is able to achieve optimal
true reward for all tasks when the corresponding goal-instruction is given to the policy.

R Rewards G Rewards

75 75
50 5.0
25 25

0.0 0.0

Reward
Reward

=25 =25

-5.0 -5.0

=15 =15

-10.0 -10.0

[I) 5‘0 160 15'0 260 25‘0 (I) Sb 160 15'0 260
Episode Episode
(a) True rewards obtained on task “Go to
Red. Avoid Blue”.

(b) True rewards obtained on task “Go to
Green, Avoid Blue”.

Figure 4.4: Plots of the true reward optimized from a Soft Q-Learning policy using the
learned reward model. The policy was able to reach the optimal true reward.

CHAPTER 4. EXPERIMENTS 13

4.2 Mini-World of Bits Environment

For further analysis of the method, we used the Mini-World of Bits Environment, which
emulates solving a web-based task given a language goal-specification [Shi+17]. Each task
contains a 160px-by-210px environment and a goal specified in text. The tasks return a
single sparse reward at the end of the episode: either +1 (success) or -1 (failure). The agent
has access to the environment via a Selenium web driver interface. Some of the environments
that we worked with are shown in Figure 4.5.

Click the button. Click button ONE Click on the "next" button. Enter "Marcella” into the text field
and press Submit.

Next
next

ONE .
placerat lectus arcu: Submit

cancel |eget lacinia faucibus:
Click 9

Me!

pretium nunc sed

(a) (b) () (d)

Figure 4.5: Some of the tasks in the Mini-World of Bits Environment; these are the four
tasks this method was evaluated on.

This environment was significantly more challenging because the state space of a web-
interface involves a mix of structured (e.g. HTML) and unstructured (e.g. natural language
and images) inputs. Because the state space is very large and complicated, the algorithm will
need to be flexible enough handle an infinite size state-space and learn a reasonable reward
for solving such tasks. We designed a model and showed that GIIRL is able to navigate this
complex environment.

Web Navigation Reward Model

The model that we selected for learning the policy on the Mini-World of Bits environment was
the Workflow Guided Exploration Policy (WGE) [Liu+18]. Work by Liu, Guu, Pasupat et.
al. on WGE showed that it achieved state-of-the-art results on web interface language-aware
tasks.

We created our reward model shown in Figure 4.6, which is heavily inspired by DOM-
Net proposed in the WGE paper. The rewards model is able to capture both spatial and
hierarchical structure of the DOM tree of the web-interface, as well as the goal-instruction
passed into it. Key features include the goal and DOM embedders, which are able to capture
the interactions between language and DOM elements, respectively.

CHAPTER 4. EXPERIMENTS 14

Goal embeddings

Goal —»| Goal Embedder ﬁ

Attenti Goal Context
ention + +
A State context
Concat Concat + MLP | ——— Reward
DOM context 4
Self Attention
A y Goal element
DOM element embeddings

embeddings [—' Hard Attention

DOM —— | DOM Embedder

Figure 4.6: Mini World-of-Bits reward model.

Results

We evaluated the per-

formance of GIIRL

as an imitation learn- explore_neural_avg_reward explore_neural_avg_reward
ing algorithm on four 100 -

tasks, click-test, click- 0,600

test-2, click-button, 0200 o8

0.750

and enter-text, which

are each described 0200 0650
in .Table 4.1. The () click-test (b) click-test-2
policy, when evalu-
ated on the true re- explore_neural_avg_reward explore_neural_avg_reward
wards, obtain con- .
verges to the optimal o800 0,600
policy. The results 0400 0.200
are shown in Figure 0.00 Z:ZZ
4.7. 0.400 100
Note that the GI-
IRL algorithm is able (c) click-button (d) enter-text

to learn a reward
which can solve for a
two step task, which
implies that it is
able to learn more
then a strict goal-
specification from the language of the goal-instruction.

Figure 4.7: Plots of true reward the policy achieves by learning on
the GIIRL reward verses algorithm step. GIIRL achieved optimal
true reward though optimizing learned reward model on Mini-World
of Bits Environment tasks.

CHAPTER 4. EXPERIMENTS 15

Task Description Steps | Success
click-test Click on the button 1 100
click-test-2 Click between two buttons 1 100
click-button Click on a specific button 1 99
enter-text Enter a specific text and click the submit button 2 94

Table 4.1: Description of each of the Mini-World of Bits tasks GIIRL was evaluated on, and
the success rate the method achieved.

Comparison to Behavioral Cloning

As a baseline of comparison, we evaluated the results obtained by GIIRL to an imitation-
learning algorithm Behavioral Cloning. As a metric for comparison, we used the percentages
of successes (which occurs if the task obtains a score of +1) on the Mini World of Bits tasks.
For all tasks, GIIRL was able to achieve perfect success rates on the test set. However,
Behaviorial Cloning began to overfit on the examples pretty quickly, and would result in
slightly lower success rates. As shown in Figure 4.8, for the more complex task enter-text,
Behavioral cloning was only able to succeed on average 89% of the time, whereas GIIRL
achieves 100% success rate.

25

| I I I

05 1 1 1 1

Success Rate
o

Click-Test Click-Test-2 Click-Button Enter-Text

M Behavioral Cloning GIIRL

Figure 4.8: Comparison to Behavioral Cloning method on each of the tasks. These compar-
isons were done on averaging of a large test set.

16

Chapter 5

Conclusion and Future Work

5.1 Discussion

In this work, we present Goal-Induced Inverse Reinforcement Learning, an IRL framework
that learns a transferable reward function and achieves good performance as compared to
other imitation-learning algorithms. The GIIRL framework is able to learn rewards from
a sparse, goal-specification language that is reshaped into a dense, optimizable reward. By
learning the rewards in the IRL framework, we are able to obtain a more generalizable
algorithm that is able to solve different tasks by changing just the goal specification. Indeed,
this work showed that the reward function learned changes to match the task at hand, and
can be toggled depending on the given goal-instruction. This shows that it learns a semantic
mapping to the true, underlying reward function that the language intends. Furthermore,
by training the policy and reward models jointly, we are able to efficiently obtain a policy
that can perform on par with other imitation-learning policies. In this work, we showed that
GIIRL shows comparable, if not better, results to Behavioral-Cloning algorithm, and is able
to perform well under evaluations of the true reward.

A further appeal to the GIIRL algorithm is the fact that the reward model and the
policy model are decoupled. This allows training of one to occur independently of the other,
if need be. Thus, if the features of the task environment changes, finetuning the policy while
optimizing on a frozen reward model can allow the policy to learn even for a more generalized
setting. Furthermore, this work demonstrates the viability in using IRL algorithms as GIIRL
is able to learn quickly, and when evaluated against the ground truth rewards, it is shown
that the policy converges to the optimal policy. The speed at which the policy learns can
be attributed to the fact that though general goal-specification task only contains sparse
rewards, GIIRL learns a shaped reward which eases the optimization of the policy.

Overall, GITRL proves that it is possible to learn generalizable reward functions from com-
plex task environments. This provides many new opportunities for training language-aware
agents as language annotated demonstrations are much more viable then hand engineering
and implementing reward functions. This would enable a larger audience of people to use

CHAPTER 5. CONCLUSION AND FUTURE WORK 17

the powerful tools of Reinforcement Learning.

5.2 Future Directions of Work

The tasks that IRL problems can solve still remains mostly in simulated environments, and
for language-instructed tasks specifically, there currently exists a large gap between what was
presented in this paper and what may occur in “real world” environments. However, GIIRL
proves to be a promising first step in this direction. Further work should focus on the effects
of changing the reward architecture and analyzing how using the shaped reward compares
in performance to optimizing the true, sparse reward. In addition, more experiments that
slows the training of the reward model as the policy performance improves should be taken
into consideration. A possible other direction could be to incorporate a human-in-the-loop
aspect, where the policy is continually learning from human feedback. The experiments in
this work used a static set of expert demonstrations, which can be improved by incorporating
continual feedback. The results suggest that future work in the IRL framework will be able
to incorporate this element.

18

Bibliography

[Amo+-16]

[ANO4]

[And+17]

[Bah+18]

[FLL17]

[Fu+19)]

[Goo+14]

[Haa+17]

[Haa+18]

[HE16]

Dario Amodei et al. “Concrete Problems in Al Safety”. In: CoRR abs/1606.06565
(2016). arXiv: 1606.06565. URL: http://arxiv.org/abs/1606.06565.

Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforce-
ment learning”. In: Proceedings of the twenty-first international conference on
Machine learning. ACM. 2004, p. 1.

Peter Anderson et al. “Bottom-Up and Top-Down Attention for Image Cap-
tioning and VQA”. In: CoRR abs/1707.07998 (2017). arXiv: 1707.07998. URL:
http://arxiv.org/abs/1707.07998.

Dzmitry Bahdanau et al. “Learning to Follow Language Instructions with Ad-
versarial Reward Induction”. In: CoRR abs/1806.01946 (2018). arXiv: 1806 .
01946. URL: http://arxiv.org/abs/1806.01946.

Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with Ad-
versarial Inverse Reinforcement Learning”. In: CoRR abs/1710.11248 (2017).
arXiv: 1710.11248. URL: http://arxiv.org/abs/1710.11248.

Justin Fu et al. “From Language to Goals: Inverse Reinforcement Learning for
Vision-Based Instruction Following”. In: CoRR abs/1902.07742 (2019). arXiv:
1902.07742. URL: http://arxiv.org/abs/1902.07742.

Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural
Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran Asso-
ciates, Inc., 2014, pp. 2672-2680. URL: http://papers.nips.cc/paper/5423-
generative-adversarial-nets.pdf.

Tuomas Haarnoja et al. “Reinforcement Learning with Deep Energy-Based
Policies”. In: CoRR abs/1702.08165 (2017). arXiv: 1702.08165. URL: http:
//arxiv.org/abs/1702.08165.

Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor”. In: CoRR abs/1801.01290
(2018). arXiv: 1801.01290. URL: http://arxiv.org/abs/1801.01290.

Jonathan Ho and Stefano Ermon. “Generative Adversarial Imitation Learning”.
In: CoRR abs/1606.03476 (2016). arXiv: 1606 .03476. URL: http://arxiv.
org/abs/1606.03476.

BIBLIOGRAPHY 19

[JKB19] Sheng Jia, Jamie Kiros, and Jimmy Ba. “DOM-Q-NET: Grounded RL on Struc-
tured Language”. In: CoRR abs/1902.07257 (2019). arXiv: 1902.07257. URL:
http://arxiv.org/abs/1902.07257.

[Kum+15] Dipendra Kumar Misra et al. “Tell Me Dave: Context-Sensitive Grounding of
Natural Language to Manipulation Instructions”. In: The International Journal
of Robotics Research 35 (Nov. 2015). DOI: 10.1177/0278364915602060.

[Lev+15] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In:
CoRR abs/1504.00702 (2015). arXiv: 1504.00702. URL: http://arxiv.org/
abs/1504.00702.

[Liu+18] Evan Zheran Liu et al. “Reinforcement Learning on Web Interfaces Using Workflow-
Guided Exploration”. In: CoRR abs/1802.08802 (2018). arXiv: 1802 . 08802.
URL: http://arxiv.org/abs/1802.08802.

[Mac+15] James MacGlashan et al. “Grounding English Commands to Reward Func-
tions”. In: Robotics: Science and Systems. 2015.

[MBW15] Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. “Listen, Attend, and
Walk: Neural Mapping of Navigational Instructions to Action Sequences”. In:
CoRR abs/1506.04089 (2015). arXiv: 1506.04089. URL: http://arxiv.org/
abs/1506.04089.

[INROO] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement
Learning”. In: Proceedings of the Seventeenth International Conference on Ma-
chine Learning. ICML ’00. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2000, pp. 663-670. 1SBN: 1-55860-707-2. URL: http://dl.acm.org/
citation.cfm?i1d=645529.657801.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural
Language Processing (EMNLP). 2014, pp. 1532-1543. URL: http://www.aclweb.
org/anthology/D14-1162.

[QY19] Ahmed H. Qureshi and Michael C. Yip. “Adversarial Imitation via Variational
Inverse Reinforcement Learning”. In: CoRR abs/1809.06404 (2019).

[Rus9s] Stuart Russell. “Learning Agents for Uncertain Environments (Extended Ab-
stract)”. In: Proceedings of the Eleventh Annual Conference on Computational
Learning Theory. COLT’ 98. Madison, Wisconsin, USA: ACM, 1998, pp. 101-
103. 1SBN: 1-58113-057-0. DOI: 10.1145/279943.279964. URL: http://doi.
acm.org/10.1145/279943.279964.

BIBLIOGRAPHY 20

[Shi+17]

[Wil-+18]

Tianlin Shi et al. “World of Bits: An Open-Domain Platform for Web-Based
Agents”. In: Proceedings of the 34th International Conference on Machine Learn-
ing. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Ma-
chine Learning Research. International Convention Centre, Sydney, Australia:
PMLR, June 2017, pp. 3135-3144. URL: http://proceedings .mlr . press/
v70/shil7a.html.

Edward C. Williams et al. “Learning to Parse Natural Language to Grounded
Reward Functions with Weak Supervision”. In: 2018 IEEFE International Con-
ference on Robotics and Automation (ICRA) (2018), pp. 1-7.

