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Abstract1

Smartphones have revolutionized transportation for2

travelers by providing mapping services that tell users3

how to get to a specific destination as well as ride-4

hailing services that help them get there. However,5

the data collected from these services are limited in6

temporal, spatial, or categorical scope. For a vari-7

ety of solutions in urban planning, transportation,8

or healthcare, collecting rich and granular data of9

human mobility is critical. Yet, there are few end-10

to-end, open-source platforms that allow the devel-11

opment of human mobility systems (HMS) to collect,12

access, and leverage these data in a seamless and cus-13

tomized fashion.14

We present a novel platform for HMS studies and15

outline an architecture for such platforms generally.16

The open-source, extensible data collection platform17

can be customized to address a wide variety of disci-18

plines. It is validated by usage patterns from three19

use cases from applied projects. The platform archi-20

tecture defines the structure of the platform, identi-21

fies the key modules and classifies them as core or22

extensible.23

Our use cases used an average of 64% of the fea-24

tures of the platform, with approximately 3-4 months25

of part-time CS undergraduate time for each new26

case. Every use case contributed at least one exten-27

sion, primarily client-related, back to the platform.28

We hope that the reusability of the platform, com-29

bined with the rigor of the architecture will propel30

the field of human mobility systems (HMS).31

keywords: system architecture, human centered,32

mobility, extensibility, usability33

1 Introduction34

It is human nature to inquire about the whereabouts35

of others, asking, “Where did you go?”, “Which route36

did you take?”, or “How long did it take you?”. The 37

origins and destinations of travelers, the time it takes 38

to travel, the cost and purpose, and other trip char- 39

acteristics have historically been collected through 40

travel surveys, which form the practice standard for 41

mobility data [Jean Wolf et al., 2014]. Few entities, 42

even in the era of big data, have the ability to track 43

all of these parameters in detail - Uber includes only 44

ride-hailed trips, Waze focuses on personal car trips, 45

and Facebook gathers only geotags from posts. City 46

planners, transport engineers, healthcare advocates, 47

and gaming gurus, among many others, desire to de- 48

velop applications based on individual travel diaries, 49

but they currently do not have the capability to do 50

so. There exists neither a comprehensive platform to 51

collect data nor transparent access to the data once 52

collected. 53

This lack of completeness and transparency in hu- 54

man travel diary collection, despite the bevy of poten- 55

tial applications, has become a major hindrance for 56

comprehensive mobility solutions given the rapidly 57

changing nature of transportation. We believe that 58

this oversight is attributable to the builder-deployer 59

gap in this domain. Deployers(e.g. mobility re- 60

searchers) use these systems as tools in their work, 61

focusing on the application, while builders(e.g. com- 62

puting experts) focus on building the systems them- 63

selves. We propose an interdisciplinary approach that 64

combines system-building rigor with the concerns of 65

deployers, under the field of human mobility systems 66

(HMS). 67

This paper includes two main contributions. 68

• It describes a platform generalized from three 69

canonical, real-world use cases. The platform 70

includes novel design features to encourage ex- 71

tensibility and reuse. To our knowledge, this is 72

the first such HMS platform in which the appli- 73

cations were developed by groups other than the 74

primary platform builder, and installed by end 75
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users on their personal devices. It is also the76

first such platform evaluated using quantitative77

metrics.78

• It outlines a architecture for this class of plat-79

forms. The platform architecture is complete,80

detailed, and end-to-end. It identifies the tiers81

that typically constitute such platforms, breaks82

them up into individual modules, determines the83

design tradeoffs for each module, and classifies84

the modules as core and extensible.85

Why is it so important to include a platform ar-86

chitecture? It is essentially a theoretical description87

of the range of structures underlying particular plat-88

forms for HMS. An architecture shifts focus from the89

superiority of specific implementations to the general90

concepts that underlie a class of systems, and the de-91

sign tradeoffs associated with each (Figure 1). This92

generalization can be useful to both deployers and93

builders. Deployers can now have a shared vocabu-94

lary to compare different systems in this class, and95

determine the one that is most appropriate for their96

needs. Similarly, builders can now have a set of small,97

well-defined modules that they can focus on develop-98

ing or improving, and a skeleton to put new modules99

that they develop in context.100

The novelty of this architecture lies in its complete-101

ness, and provenance. Since the architecture needs102

to engage both deployers and builders, the particu-103

lar tiers and modules that comprise the architecture104

are intentionally not novel. The goal is to use con-105

cepts that are so conventional that deployers can use106

Internet resources aimed at a lay audience to build107

familiarity. The field of HMS can leverage this plat-108

form architecture for future platforms.109

We recognize that the architecture for HMS pre-110

sented here may not be the final word, as it is gen-111

eralized from a small, but diverse, set of use cases.112

Our main goal is to use our interdisciplinary back-113

ground to start a discussion around generalizing and114

evaluating human mobility systems.115

In Section 2, we describe the taxonomy of soft-116

ware complexity and generalization. In Section 3, we117

present some suggestions for continuing and deepen-118

ing the framework discussion. In Section 4, we ex-119

amine prior work from both the deployer and builder120

communities, with a particular focus on their pub-121

lished architectures. In Sections 5, 6 and 7, we122

outline the platform architecture of the client, server123

and analysis tiers, respectively. Finally, in Section 8124

we evaluate the platform and framework against the125

Figure 1: High-level components of the system and
their primary challenges. Such systems receive in-
puts(black arrows) from sensors (e.g. travel trajecto-
ries) and from end-users (e.g. how they felt during
the trip). They can also provides outputs(gray ar-
rows) of personalized information to individual users
and of aggregate metrics to the public. The aggregate
metrics can be used for both short-term (traffic signal
control; congestion pricing) or long-term (new roads;
new transit line) modifications to the environment.

three canonical use cases - (i) a classic travel study, 126

(ii) a crowdsourcing initiative for accessibility met- 127

rics, and (iii) a behavioral study on incentivizing sus- 128

tainable transportation, before concluding with Sec- 129

tion 9. 130

2 Software generalization 131

After we published our previous paper on anonymie1 132

and its usage2, we noticed that practitioners who 133

were interested in using it would invariably refer to 134

it as “the app” - e.g. I think that your app is nice 135

but would really benefit from a better user interface. 136

Since anonymie is actually a platform, we thought 137

that it would be useful to delve deeper into under- 138

standing the distinction. In this section, we briefly 139

explore the taxonomy of software complexity (Fig. 2) 140

and generality. The purpose of this breakdown is 141

to understand the differences among existing human 142

mobility data collection solutions and the necessity 143

to position novel concepts into higher layers of the 144

platform. 145

1name changed for double blind review
2citation redacted for double blind review
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Figure 2: Taxonomy of software solutions wrt com-
plexity and generality

2.1 app146

An app-only solution involves software that runs lo-147

cally on the client phone. The app must store data148

and perform all computation locally. Benefits of an149

app-only approach include: (i) simplicity, (ii) privacy,150

and (iii) no/low data usage.151

However, the app-only approach is also very limited152

because the data are only local, which restricts acces-153

sibility and aggregate analysis. Data accessibility is154

so critical that even“GPS loggers” developed for per-155

sonal use (e.g. GPS Logger for android [GPS, 2018],156

myTracks [myT, 2018]) support emailing the data or157

uploading to iCloud/Google Drive.158

2.2 system159

An end-to-end system includes both client and server160

components, in which data are collected locally by a161

client device but stored and processed remotely on a162

server. As a result, a system provides a comprehen-163

sive solution for one particular application. An ex-164

ample would be a one-off or customized solution for165

conducting a travel survey [Carrel et al., 2016] or mo-166

tivating behavior change [Jariyasunant et al., 2015].167

While most phone applications are commonly re-168

ferred to as apps, they are actually systems with169

data transmitted and stored on a shared server. The170

lack of reuse, however, can potentially lead to wasted171

work. If there are multiple applications that use the172

same core functionality, it is useful to generalize them 173

into a platform. 174

2.3 platform 175

A platform contains core functionality that is ab- 176

stracted out from multiple systems and used to de- 177

liver a range of systems. End-users of the systems 178

are typically not aware that they are built on top 179

of a platform. Building a platform requires identi- 180

fying core and extensible components that can be 181

composed into systems. Indeed, builders focus on 182

refining and maintaining the core functionality of the 183

platform, while deployers extend it to create multiple 184

distinct systems. Platforms are typically motivated 185

by a broad set of use cases. An example platform is 186

anonymie, which is a generalization of systems that 187

combine background sensed and surveyed data to in- 188

strument human mobility data. 189

2.4 platform architecture 190

A platform architecture is a structural representation 191

of the modules of the platform. It identifies the core 192

components of a class of platforms, describes how 193

they are linked, and determines the various possible 194

design choices for each component. Having a well- 195

defined architecture allows platforms to be better un- 196

derstood and extended. 197

This paper encompasses the platform and architec- 198

ture levels of HMS. It first outlines a high-level plat- 199

form architecture for platforms that combine sens- 200

ing and surveys for collecting human data. Then, it 201

outlines the design decisions made by the anonymie 202

platform for each of the modules in the system ar- 203

chitecture, with a particular focus on novel design 204

aspects that aid extensibility and reproducibility. 205

3 Discussion 206

This paper focuses on a platform for human mobility 207

data, and a platform architecture that describes it. 208

Introducing a platform architecture in addition to a 209

platform shifts the focus from the features associated 210

with one particular platform, to the general concepts 211

that underlie this class of platforms. 212

However, this is an early version of the architec- 213

ture, not the last. The platform and architecture are 214

derived from a diverse set of use cases, but the initial 215

set size is small. There are surely other modules that 216

will need to be introduced as other applications are 217
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considered. The classification of modules into core218

and extensible may shift as we consider other plat-219

forms with different design choices. This paper seeks220

to open an interdisciplinary discussion with the even-221

tual goal of reusing, understanding, and evaluating222

HMSes. In this section, we provide some concrete223

examples of how such a discussion might continue.224

3.1 Using the platform225

The platform architecture and platform were driven226

by three canonical HMS applications. Other poten-227

tial applications include:228

Health: Long been studied by aca-229

demics [Doherty and Oh, 2012], monitoring health230

has reached the market of smartphones and watches.231

Such health monitoring platforms can link the type232

of activities, contextual factors, if autonomously233

sensed, to health indicators [Dobkin, 2013].234

Logistics: The area of supply chain and logistics235

has requirements similar to HMS. Researchers have236

explored the use of location/activity sensing plat-237

forms to observe the operation of their freight com-238

pany employees, vehicles [Wang et al., 2014], and/or239

packages [Morgul et al., 2013]. Customizable geolo-240

cation monitoring systems can be used improve the241

efficiency of freight routing algorithms.242

Offline decision making: Tracking human mo-243

bility provides physical analogues to online tracking.244

Economists and marketers can observe the real world245

browsing and selection behavior of shoppers, similar246

to Amazon. Urban planners can observe the mobility247

choices of citizens, similar to social media likes. Sys-248

tems can use personalized options to direct users to-249

ward optimized alternatives for various metrics such250

as price and sustainability.251

3.2 Integrations252

anonymie is an open platform for collecting auto-253

matically sensed and surveyed human mobility data.254

It can also be combined with other platforms to255

provide services to end-users. For example, it can256

be integrated with (i) an open source gamification257

platform (e.g. habitica [hab, 2018]) to use sophis-258

ticated motivation techniques, (ii) open source trip259

planners (e.g. Open Trip Planner [otp, 2018], Digi-260

Transit [dig, 2018]) in order to provide personalized261

directions, and (iii) social networks (e.g. Twitter,262

Facebook, Yelp) in order to share human mobility in- 263

formation effectively. It can also infer activities by 264

consuming information from existing platforms that 265

collect incidental geotagged information (e.g. tweets, 266

posts), although this may require significant text pro- 267

cessing [Rashidi et al., 2017]. 268

3.3 Comparing platforms 269

The community can use its architecture and evalua- 270

tion metrics to compare multiple existing platforms 271

to one another. One potential process by which this 272

might happen is: 273

1. The community nominates HMS platforms for 274

consideration. 275

2. The platform maintainers evaluate their individ- 276

ual platforms against the architecture. 277

3. Maintainers submit a self-evaluation (e.g. Ta- 278

ble 3). Each entry could include a simple X/×, 279

or a short note on the design decision. If open 280

source, it could also include a link to the relevant 281

code repository, which would allow peer review 282

of the evaluation. 283

4. In addition, if maintainers identify missing mod- 284

ules, they submit them for inclusion into the ar- 285

chitecture. 286

5. The community collectively determines which 287

modules to include in the architecture. 288

6. Survey papers are published that includes both 289

peer reviewed and self-reported evaluations for 290

existing platforms, and an updated architecture. 291

7. Future platform papers would evaluate them- 292

selves against the architecture at the time of 293

publication. Perhaps a central document is up- 294

dated with new platforms as the related papers 295

are published. 296

Similarly, as new applications (Section 3.1) use 297

platforms, in addition to citing the platform that they 298

used, they can report the development time for their 299

customization and the changes needed. This report- 300

ing can help with a more comprehensive evaluation 301

of the utility metric. 302
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3.4 App-specific metrics303

Geolocation data monitoring survey instruments typ-304

ically have low response rates, as fine-grained con-305

tinuous tracking raises privacy concerns while drain-306

ing battery. It is common practice in the literature307

to provide > $15 to participate in a data collection308

project for a week or so, when an unbiased sample309

representing the population is targeted. To reduce310

the cash incentives offered, the User Interface (UI)311

may provide other benefits such as trip planning,312

health monitoring and market vouchers. Such user in-313

terfaces involve multiple possible design choices, and314

it is not clear which will be most engaging. Research315

communities in various application domains can com-316

pare design choices through targeted user studies, and317

establish best practices specific to their application.318

4 Related Work319

Human mobility systems form the foundation for320

multiple different applications. Thus, there is an321

abundance of systems that are relevant to human mo-322

bility. A full listing of these systems is outside the323

scope of this paper. Instead, we identify axes that324

define the HMS platform design space and select a325

sample of the related work that spans it. The related326

work includes examples of applications corresponding327

to the individual use cases for our platform (Table 1)328

and examples of ones that deal with survey data or329

sensed data or both (Table 2). In the rest of this sec-330

tion, we extract some patterns from these examples,331

delve deeper into differences from the most closely332

related platforms, and discuss the choice of projects333

and features for comparison.334

4.1 Related work selection335

The methodology used to select projects and compar-336

ison features for the related work is chosen to find a337

small, but representative spanning set.338

4.1.1 Project choice339

Our use cases span popular application domains, so340

the related work is large. We picked a set of curated341

papers providing a flavor of the space, using the cri-342

teria of openness and novelty.343

1. We chose systems from academia since they344

are more likely to be open. This necessar-345

ily excluded proprietary projects such as346

rMove [Flake et al., 2017, Greene et al., 2016], 347

Google Location History [goo, 2018] or 348

Strava [str, 2018]. 349

2. We chose systems that were novel and varied 350

from other systems in the same group in at 351

least one feature. This avoided overwhelming 352

the analysis with almost identical entries. 353

4.1.2 Comparison features 354

In order to quickly compare the projects in the related 355

work to one other, we extracted very simple features 356

that are relevant to the the construction of systems 357

and architectures for HMS. These features are: 358

sense: Indicates whether the project supports 359

background sensing 360

survey: Indicates whether the project supports 361

human-reported information using surveys 362

creator: Indicates whether the project was cre- 363

ated by Builders or Deployers, 364

architecture: Indicates the level of detail at 365

which the architecture is described. At the highest 366

level, it only shows the relationship between Tiers, 367

but it can also show the details for the Client, Server, 368

Analysis tiers, 369

OS: Indicates the phone OSes supported; android- 370

only or iOS-only or Both 371

open source: Indicates whether the project is 372

open source and the code is actually accessible 373

4.2 Observations 374

While looking at prior systems (Table 1), it is clear 375

that deployers have constraints that builders are of- 376

ten able to ignore. One obvious example is the set of 377

mobile OSes supported - deployers almost always sup- 378

port both android and iOS because they care about 379

the coverage and representativeness. The one de- 380

ployer project (SFTQS) that was android-only in- 381

cluded an explicit argument that the bias in its data 382

was small. But this constraint also restricts deployer 383

effort to a fairly small set of use cases - most de- 384

ployer effort is concentrated in travel diary creation. 385

Builders have the luxury of experimenting with new 386

and innovative use cases, but typically stop with a 387

proof of concept on either android or iOS. Further, 388

most systems, even by builders, are one-off projects 389
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Project sense survey creator
(B/D)

arch.
(T/C/
S/A)

OS
(a/i/B)

open
source

notes

Classic travel diaries
FMS
[Cottrill et al., 2013]

X X D T B × Data must be uploaded manually. Survey on website

SFTQS
[Carrel et al., 2016]

X X D × a × Fairly complex app-based surveys for travel satisfaction.
Requires surveys on 5 days of 6 week study. Based on
ODK

DataMobile
[Patterson and Fitzsimmons, 2016]

X × D T B X Only pre and post-study surveys are listed. System is
open source, but only one application is described

Crowdsourcing applications
Biketastic
[reddy et al., 2010]

X * B T a × sensed data used to derive traffic, and roughness. routes
could be tagged with media. System was deployed but
only for 12 users, so will categorize as created by builders

CycleTracks
[Hood et al., 2011]

X * D × B X open source single mode travel. Manual start/stop of
trip. open source, extended by other MTAs, e.g. Atlanta
to record infrastructure issues. Unclear if this is done
through surveys [Poznanski, 2013]

Tiramisu
[Zimmerman et al., 2011]

X X B T i × single mode collection. manual start/stop of trip. pro-
vides a service (real-time bus and fullness information)
to users.

Behavior change
Matkahupi
[Jylhä et al., 2013]

X × B × a × allows users to set their own goals, and presents chal-
lenges based on travel patterns.

PEACOX
[Bothos et al., 2014,
Schrammel et al., ]

X × B A a × clear choice architecture with multiple theory-based ap-
proaches for persuasive change. provides service (trip
planner).

QT
[Jariyasunant et al., 2015]

X * D T B × reports travel along cost, CO2, time. Correction of au-
tomatically sensed mode by logging in to a website. No
other ongoing survey information.

Table 1: Related applications, grouped along multiple axes. All the applications are published as standalone
systems. Explanations: (i) * in a column implies that the answer is not clear, details are in the notes, (ii)
column descriptions, including the abbreviations, are at Section 4.1.2

and are not open source. The CycleTracks app sug-390

gests that deployers do reuse open source projects if391

they meet a significant need.392

Most prior platforms (Table 2) were developed by393

builders, as expected. However, few appear to ad-394

dress large-scale deployment concerns. In particu-395

lar, except for ohmage, they only support either an-396

droid or iOS - mostly android - which severely limits397

their use in deployer applications. Platforms tend to398

be open source much more often than applications,399

which is expected, since writing extensible software400

without making it open source requires significantly401

greater engineering design. However, the details are402

complicated - sometimes, part of the platform is not403

open source (ParticiPACT), or the code is not linked404

anywhere (Vita).405

4.3 Most closely related406

The most closely related platform is ohmage407

+ lifestreams [Tangmunarunkit et al., 2015,408

Hsieh et al., 2013], and to a lesser extent,409

ParticiPACT + MSF [Cardone et al., 2014, 410

Cardone et al., 2013]. While there are some 411

key limitations as outlined below, it would be 412

interesting to have both of them included in any 413

future comparison of platforms (Section 3.3). 414

No true multi-method Although it supports 415

both sensing and surveys, ohmage is primarily survey 416

focused. Two of their studies (Mobilize, PREEMPT) 417

are purely survey-based. It also does not appear to 418

support combined passive sensing and self-reporting 419

- the third study (moms) involved applicants using 420

two separate apps, for self-reporting (survey) and mo- 421

bility (sensing). In contrast, MSF, participACT’s 422

sensing architecture paper [Cardone et al., 2013] is 423

focused on passive sensing, with a clear event archi- 424

tecture for combining various sensors, and for sensor 425

based survey triggers. Unfortunately, it works only 426

on android and does not address the limitations on 427

background processing in iOS (Location State Ma- 428

chine in Section 5.1) 429

android+iOS support? While ohmage self- 430
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Project sense survey creator
(B/D)

arch.
(T/C/
S/A)

OS
(a/i/B)

open
source

notes

Survey-only or sensing-only platforms
Sensr
[Kim et al., 2013]

× X B T i × allows authoring of web-based survey tools; each survey
response can be tagged with locations/photo/text, but
no background sensing

ODK
[Hartung et al., 2010,
Brunette et al., 2013]

× X B +
D

T* a X survey responses can include sensed data; both single
locations and tracks, manually triggered; SFTQS app
extended it for background tracking. ODK 2.0 architec-
ture is much more complete

DIMMER
[Krylovskiy et al., 2015]

X × B S * * platform proposes micro-services architecture for the
server, unlike SOA of prior work; no details on “mobile
applications”; funded by EU SMARTCITIES project,
but no claim to open source

BOSS
[Dawson-Haggerty et al., 2013]

X × B C +
S

* X services for smart building applications. only mobile
component is web interface that supports personalized
climate control. analysis (model training) is assumed to
be part of the application

Survey + Sensing platforms
AndWellness
[Hicks et al., 2010]

X X B C +
S

a * similar to ODK but incorporates continuous location
and activity sensing; shared server; architecture does
not include analysis; extensibility is in future work; ori-
ented toward ESM; visualization is standard, gamifica-
tion would be hard; deployment options unclear

ohmage
[Tangmunarunkit et al., 2015,
Hsieh et al., 2013]

X X B C +
S +
A

B X from the same group at UCLA as AndWellness; follow-
up project?; client architecture is scattered; most
projects are survey-based; app was extended for PRE-
EMPT, but unsure how much effort needed; analysis
module was used for one project and hasn’t been up-
dated since 2014

ParticipACT
[Cardone et al., 2014,
Cardone et al., 2013]

X X B C +
S

a * Client is open source; server is not. client architec-
ture is extremely detailed but android-specific; deploy-
ment only reported on pre-installed phones; extension
by other groups unclear

Vita
[Hu et al., 2013b,
Hu et al., 2013a]

X X B C +
S

a * Extremely detailed SOA for both client and server com-
ponents for mobile crowdsourcing; architecture split
across two papers; Smart City applications developed
by research team; unsure if ever deployed; “open source
mobile CPS”, code location unknown

Table 2: Related platforms, grouped along multiple axes. Explanations: (i) * in a column implies that the
answer is not clear, details are in the notes, (ii) column descriptions, including the abbreviations, are at
Section 4.1.2

reporting apps are available for both android and431

iOS, it is not clear that the passive sensing ones are.432

Passive sensing frequencies are listed at 1 minute or433

5 minutes ( [Tangmunarunkit et al., 2015], Section434

3.2.2); iOS does not allow time-based configuration435

of sensor frequencies. MSF works only on android.436

Unclear analysis architecture In partici-437

pACT, the server and analysis architecture is438

unclear. How is the data analyzed? Is there a439

pipeline? How can others reproduce the analysis?440

How can they extend it? This obscurity extends441

to the actual source code. Although participACT442

is open source, their server code is only available443

“upon request,”. The ohmage analysis architecture444

is remarkably similar to anonymie’s (Section 7) 445

which provides additional validation for our design 446

choices. It is more feature rich in terms of change 447

detection and prediction, but it is unclear whether 448

the design supports reproducibility. In particular, 449

it does not appear that any of the ohmage studies 450

collected data on their own server instances or ran 451

the analysis on their own data. 452

App installation For ohmage, in two of their 453

three studies, participants were provided with phones 454

with the app pre-installed. In the third (Mobilize, 455

2013), all participants were also developers, so it is 456

unclear how representative the deployment process 457

was. For participACT, all participants were pro- 458
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vided with smartphones, presumably with the app459

pre-installed.460

Finally, DataMobile [Patterson and Fitzsimmons, 2016]461

is a system, but the authors have solicited partners462

to use it for data collection. There is no user inter-463

action beyond an initial survey, and it is not clear464

that the app is extensible enough to be modified in465

other ways. It also only connects to servers at the466

author’s lab. However, it does represent a re-usable467

system, and it would be interesting to include it in468

the platform comparison (Section 3.3). It appears to469

be under active development, and it may still evolve470

into a full platform in the future.471

5 Client architecture472

Figure 3: Client architecture, including modules for
configurable sensing, robust communication and cus-
tomizable UI

As we have seen from Section 4, most prior HMS473

projects have focused on the smartphone app and474

its ability to sense location and accelerometer data.475

However, most focus purely on the sensing and ig-476

nore the human interaction component. We develop477

a more complex architecture outlined in Figure 3 ad-478

dressing this gap.479

The core modules include configurable sensing, ro-480

bust communication, and context-sensitive prompts.481

The novel component primarily involves the user in-482

terface and customization.483

The three canonical use cases that we consider pri- 484

marily modified the UI. They not only changed the 485

user visible screens, but also configured the local end 486

of trip detection module notifier to display different 487

prompts, and configured the communication to send 488

data to their own server instance. 489

5.1 Sensing 490

The sensing module is conceptually simple - it reads 491

and stores sensor values, automatically, in the back- 492

ground. However, power and latency considerations 493

are important while choosing a particular point in the 494

design space. 495

Local buffering The primary storage tradeoff re- 496

lates to the frequency at which the data is uploaded 497

to the server. While it may seem intuitive to use 498

the server directly as storage by uploading the data 499

as it is read, the radio draws significant power when 500

turned on, so data should be buffered locally as much 501

as possible. In the case of primarily passive data col- 502

lection, such as for HMS, it is sufficient to upload 503

data after a trip is complete. 504

Buffering also reduces data loss due to poor connec- 505

tivity, and decreases the latency of computations on 506

locally sensed data. However, it increases the latency 507

of aggregate operations computed on the server, such 508

as traffic speeds or counts for particular segments. 509

Local processing The primary processing trade- 510

off involves latency versus flexibility and complexity. 511

Local processing on buffered data has the lowest la- 512

tency but the least flexibility, since it has to be im- 513

plemented in native code for each mobile OS (e.g. 514

android, iOS, . . . ) that the platform supports. Lo- 515

cal processing is also useful if the data volume of the 516

sensor overwhelms the buffer. 517

anonymie uses local processing for: (i) low la- 518

tency, basic filtering of location points for use in the 519

location state machine, and (ii) large data volume, 520

accelerometer-based gesture detection for shakes or 521

bumps. 522

Location state machine iOS supports a limited 523

set of background modes 3, restricting the sensors (i.e. 524

sound, location and bluetooth) that can be accessed 525

in the background. The sensor must be relevant to 526

3https://developer.apple.com/library/

archive/documentation/iPhone/Conceptual/

iPhoneOSProgrammingGuide/BackgroundExecution/

BackgroundExecution.html
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the published app functionality (e.g. the VoIP back-527

ground mode can only be used by VoIP apps, not528

mapping apps), the user must permit the app to ac-529

cess these sensors, and then explicitly permit them to530

be accessed in the background. This means that all531

other sensors (e.g. accelerometer) have to piggyback532

on one of the supported sensors for their operation.533

Further, the sensor APIs disallow periodic sampling,534

probably to prevent them from being used as periodic535

timers - e.g. the location sensor has a distance filter536

instead of a time filter.537

These requirements imply that the primary trade-538

off is between continuous sensing, which increases539

power consumption, and turning off tracking while540

at rest, which loses the first few minutes of a trip.541

If we do turn off tracking while at rest,542

we need to have a state machine for loca-543

tion sensing that automatically transitions between544

WAITING_FOR_TRIP_START and ONGOING_TRIP.545

Consent Most mobile OSes already require ex-546

plicit consent for access to privacy-sensitive sensors547

such as location. However, additional regulations548

such as the European General Data Protection Reg-549

ulations (GDPR) or academic Institutional Review550

Boards (IRB)s may require deployers to obtain more551

explicit consent that covers not just which data is col-552

lected, but also how it is processed and stored. All553

sensing should be stopped until explicit consent is554

received, and the consent should be documented for555

future reference.556

5.2 Communication557

The communication module deals with automatic up-558

load of collected data and download of recently com-559

puted data for improved performance. This mod-560

ule needs to handle all aspects of communication, in-561

cluding establishing connections, authentication, and562

dealing with errors.563

Auth All API calls to the server that transmit or564

receive personal data should be authenticated. The565

most basic form of authentication is to send a stored566

password, entered by the user, from the app to the567

server. While this is intuitive and easy to use, it568

should be combined with verification to avoid email569

hijacking.570

For short studies with significant researcher inter-571

action, an alternative is to pre-generate a list of ran-572

dom tokens and hand them out to participants. The573

researcher then does not need to know the users’ 574

email and can just use the unique token for all in- 575

dexing. 576

For longer studies, the OAuth standard specifies 577

the generation of encrypted tokens (JWT) with con- 578

figurable expiry times. OAuth JWT tokens can be 579

generated using open source auth servers such as Key- 580

stone, or by integrating with third party sign-in pro- 581

vides such as Google or Facebook. 582

bi-directional sync The main consideration for 583

the bi-directional to/from data transfer is the 584

Durability component of ACID transactions. Since 585

any data transfer can be unreliable, the transfer 586

should handle both poor connectivity and potential 587

server errors without losing data. 588

One technique to accomplish this is to delete 589

buffered data only after a push call fully succeeds. 590

This may result in duplicate data from partial re- 591

transmissions but will not lose data. iOS allows apps 592

to run in the background for no more than 30 seconds, 593

so this code path should use parallel, async calls and 594

rate limiting to speed up execution. 595

protocol client The HTTP REST protocol is a 596

popular choice for client-server communication in 597

prior HMS. However, pub/sub protocols such as 598

MQTT, are popular for iOT systems. The resulting 599

tradeoffs are closely related to those for 5.1. REST 600

is better for batched intermittent connections, where 601

connection setup and teardown do not cause signifi- 602

cant overhead. MQTT works better for data that is 603

continuously streamed to the server since the persis- 604

tent connection reduces overhead. Again, for primar- 605

ily passive data collection, REST is sufficient. 606

5.3 Interrupt handler 607

The interrupt handler deals with external triggers. 608

Two current examples are: 609

Coarse timer We need to have a timer interrupt 610

fire periodically to perform regular maintenance and 611

recover gracefully from unexpected situations. For 612

example, we may want to: (i) push any pending data 613

that was retained in the buffer from previous partial 614

retransmissions, or (ii) reset the location state ma- 615

chine if it is an inconsistent state. 616

This may appear to be trivial, since most standard 617

OSes include a timer interrupt. However, in order to 618

reduce power drain, many mobile OSes have limits 619

on background operation for non-system services. If 620
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the limits are too strict (e.g. on iOS), we may need621

server intervention (e.g. silent push notifications) for622

reliable operation.623

Event notifier The module also needs to deal624

with context-specific user notifications. While vari-625

ous events can be detected by the local processing626

module, deployers should be able to choose the mes-627

sage and actions in the displayed notification. Since628

the event is detected in the background, when the629

configurable UI is suspended, there needs to be a630

native code module to listen to the transitions and631

display the user-visible message.632

5.4 User Interface (UI)633

The primary tradeoff for the UI is performance ver-634

sus effort. Native UIs have better performance, but635

more effort. This increased effort is intrinsic - na-636

tive UIs will require a different implementation for637

each mobile OS that needs to be supported. Us-638

ing a hybrid app approach, (e.g. PhoneGap, Apache639

Cordova), allows the core modules to be in native640

code while the UIs use standard web technologies641

(HTML+CSS+Javascript). This approach allows a642

single, consistent UI to be reused across multiple mo-643

bile OSes, while channel specific UIs can be dynami-644

cally downloaded on demand.645

While the UI can be completely customized to meet646

the needs of the application, all of the three canonical647

use cases have used these three core components.648

Setup An onboarding process introduces the app,649

acquires consent, and authenticates the user. This650

process can also include other initial steps, such as651

choosing a username or collecting demographic infor-652

mation.653

UI update There needs to be a mechanism (trig-654

gered on app launch, or by the coarse timer interrupt,655

Section 5.3) that periodically checks for updates to656

the UI channel and applies them, potentially asking657

the user for confirmation.658

Notifications The app needs to register for event659

notifications - both for context-specific user notifica-660

tions and, due to OS restrictions (Section 5.3) for661

coarse timer interrupts.662

5.5 User Interface (UI) channels663

Each deployer who uses the platform should be able664

to configure it accordingly. Since the user interacts665

primarily with the UI, we expect that deployers might 666

want to change the information displayed, the qual- 667

itative input solicited and the controls visible to the 668

end user. 669

In order to provide maximum flexibility, platforms 670

might want to support separate UI channels that the 671

end-user can switch to. Each UI channel can have 672

a completely different look and feel and can spec- 673

ify completely different configurations for the various 674

modules. 675

Supporting dynamic UI channels also includes sev- 676

eral other benefits: 677

Randomized trials It is easy to conduct ran- 678

domized behavior trials by randomly directing end- 679

users to different channels as they install the app. 680

Custom server support Since modules can be 681

configured by the UI, installs using different channels 682

can send their data to different servers. This allows 683

deployers to have complete control over the collected 684

data. 685

Standardization Particular deployer communi- 686

ties (e.g. travel survey groups) can develop canonical 687

user interfaces for their particular use cases. This 688

makes it easier to launch new examples of that use 689

case, and also shortens the methods section of the 690

resulting papers. 691

Reproducibility Such standardization would be 692

difficult for behavioral studies, in which the goal is to 693

innovate new methods of interaction. However, once 694

the new interaction method has been embodied in a 695

published channel, the study can be generalized or 696

reproduced by recruiting new users and asking them 697

to use the channel. 698

6 Server architecture 699

Although sensing (Section 5) is typically the focus 700

of the related work, most deployers will also want 701

to upload the data to a server for long-term stor- 702

age, shared access, and complex analysis. The ar- 703

chitecture of this server software is typically elided 704

from platform descriptions. For example, a review of 705

Experience Sampling Software( [Pejovic et al., 2015], 706

Table 1) indicates that only ohmage includes a server 707

component. The key modules for this tier are stor- 708

age, data communication, and analysis. This section 709

describes such an architecture in greater detail. 710
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Figure 4: Server architecture, including modules for
storage, communication and integration.

6.1 Storage711

Storage is the key component of the server archi-712

tecture. However, the actual storage instance or713

database product chosen depends on multiple factors714

like the number of users, the response time expected,715

and the resources available for the data collection. So716

we instead focus on the types of data collected and717

the broad storage category for each data type. These718

broad types are listed below.719

Input timeseries The input data received from720

the smartphone app is stored in a timeseries database.721

Our data model and analysis pipeline (Section 7)722

treat this data as read-only.723

The data can be conceptually viewed as separate724

user databases, each with multiple streams of data725

(e.g. location, transition). Most processing will726

work on one user at a time, multi-user queries will be727

aggregated across user databases. This formulation728

is compatible with privacy sensitive implementations.729

Note that we actually have intermittent timeseries 730

data because the sensors on the phone are not typ- 731

ically guaranteed to be periodic. And even if they 732

were, if we use the state machine for lower power 733

drain, there will be no data for long stretches of time. 734

However, we still consider it to be a timeseries, since 735

the primary querying method will be for a time range, 736

and the primary index should be the timestamp as- 737

sociated with each data point. 738

Analysis timeseries Analysis results generated 739

after processing the input data are stored in a sep- 740

arate timeseries database. While the volume of this 741

data is not likely to be as high as the raw data, it is 742

also time-indexed, and using the familiar timeseries 743

interface allows us to stack analysis results (Section 7) 744

in a consistent fashion. 745

K-V store Modifiable objects (e.g. profile, 746

config) are conceptually modifiable objects associ- 747

ated with a particular user by a key. If the deploy- 748

ers would like versioning, and don’t want to install 749

two separate database packages, this data can also 750

be stored in the timeseries database - the entry with 751

the most recent timestamp is valid. However, these 752

data will be looked up by key and not by time range, 753

unless somebody requests an audit. So it does not 754

need to be indexed on the timestamp. 755

Incoming buffer Since the background opera- 756

tion on iOS is time-bound (Section 5.2) we want the 757

data received from the phone to be stored as quickly 758

as possible. As server and database loads grow, di- 759

rectly storing incoming data into a potentially dis- 760

tributed timeseries database could introduce high la- 761

tency. Instead, we can dump the incoming data into 762

a separate, potentially local buffer, and move it into 763

the timeseries before processing. This additional step 764

also allows us to run pre-processing steps that unify 765

the data model before inserting into the timeseries. 766

6.2 Other components 767

The analysis component of the server architecture is 768

fairly complex, and is described in detail in Section 7. 769

The other components of the server architecture are 770

fairly straightforward and their novel features are de- 771

scribed in brief in this section. 772

Webapp The webapp layer defines the API routes 773

used by all clients, including the smartphone app, 774

and any browser-based UIs. The webapp layer also 775

authenticates all user-specific API calls, and needs to 776
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support the same set of authentication methods as777

the smartphone app (Section 5.2).778

Push Notifications This module integrates with779

push notification services to send both targeted sur-780

veys, which send a link to a survey based on user781

mobility patterns, and silent notifications, which are782

used as coarse timer interrupts on the smartphone783

(Section 5.3).784

Integrations This module handles external inte-785

grations. Current examples include OpenStreetMap,786

for GIS lookups, and Habitica, for gamification.787

7 Analysis architecture788

HMSes typically include aggregate analysis (e.g.789

modeling or dashboards) on the collected data. The790

raw sensor data needs to be cleaned and post-791

processed to provide the inferred data that is aggre-792

gated. These inference algorithms need to be trans-793

parent and reproducible so that they can be under-794

stood and improved by the research community. We795

meet these goals by defining a data model and al-796

gorithm structure for reproducible analysis. In the797

travel diary use, the data was collected on a server798

without any analysis. The analyst was then able to799

download the raw data and run the analysis pipeline800

on her laptop.801

7.1 Pipeline802

The analysis component is structured as a progres-803

sive system in which the only permanent state is the804

input data received from the smartphone app. The805

algorithm is structured as a pipeline with a set of806

stages, and the input to each stage is the output from807

the previous stage. Since each stage only modifies its808

output, the stages are idempotent. This implies that,809

given the same inputs and the same algorithm stages,810

the results will be the same.811

This has several important implications.812

Reproducibility Analysts can reproduce results813

from any version of the algorithm simply by run-814

ning the code on a fresh set of inputs. If the code815

is versioned properly in a source control system (e.g.816

github), then reproducing results at a previous time817

t is as simple as: (i) downloading the raw data,818

(ii) checking out the version v of the source code at819

time t, (iii) running v on the raw data. This allows820

Figure 5: Analysis architecture, including modules
for processing the data in idempotent stages, a data
model that supports such an algorithm, and aggre-
gate queries.

analysts to reproduce prior results even as the code- 821

base has evolved beyond the time that the data was 822

collected. 823

Extensibility If a researcher develops a new al- 824

gorithm for a particular stage, she can run both the 825

current state of the art and the new algorithm against 826

the same input data and compare the results. If 827

she chooses to publish the algorithm implementation, 828

other researchers can reproduce her results by run- 829

ning the published algorithm against the raw data. 830

7.2 Data model 831

This algorithm design needs a data model that does 832

not require modifying any fields. This can be accom- 833

plished in at least two possible ways: 834

Carry forward The data from the previous step 835

is carried forward to the next step. For example, ev- 836

ery trip can store the location points associated with 837

it. Unfortunately, as the number of inferred objects 838

increases, this can get increasingly unwieldy. For ex- 839

ample: 840
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1. since each multi-modal trip can be split into841

multiple sections, should every section also store842

the location points associated with it? This843

will cause duplication of location points between844

trips and sections.845

2. How can we store ground truth for a trip as it846

ends, potentially before the pipeline has run and847

generated a trip object?848

Time association The newly created objects for849

each step are associated with start and end time in-850

formation. We can then associate raw or processed851

inputs with any object by querying for entries within852

that time range. This addresses most of the concerns853

with the Carry forward method. For example:854

1. each section and each trip will have start and855

end timestamps. The set of points associated856

with a particular section or trip is then just857

the set of points between the start and end858

timestamps. This general query structure makes859

it easier for researchers to experiment with al-860

ternate algorithm implementations - each algo-861

rithm segments the raw data differently but does862

not duplicate it.863

2. Since ground truth is a user input, it should not864

contain a reference to inferred data. Instead, the865

ground truth object also contains the time range866

that the user has confirmed (e.g with mode or867

purpose). The confirmed value for an inferred868

trip is represented by the the confirm object869

that overlaps with the inferred time range. This870

approach can be used for both trips and sections,871

depending on how much editing power the de-872

ployer wishes to provide to the end-user.873

7.3 Aggregate metrics874

The user provides a time range and a grouping,875

and gets back mode-specific aggregates. Some non-876

obvious details to note are:877

Geo queries Analysts may want to restrict data878

retrieval to a particular region. This implies that all879

aggregate queries should support an (optional) geo-880

region, and the underlying timeseries should support881

geo-queries as well.882

Time selections Most timeseries will support883

range queries where the range is specified in UTC.884

However, deployers may actually want to query by885

time slices instead - e.g. studying commute time886

travel patterns might involve accessing data from887

2pm - 5pm for the month of April. Storing expanded 888

times in the local time can support such disjoint time 889

ranges. 890

8 Evaluation 891

In this section, we evaluate our architecture under the 892

context of bridging the builder-deployer gap. Our 893

evaluation is based on its use in three separate use 894

cases (or “apps”) from deployer projects. We show 895

that although the use cases initially appear different, 896

they re-use several common modules without modifi- 897

cation, and are able to extend other modules to meet 898

their needs. We also show that the development time 899

for the projects is much shorter than building one- 900

off apps from scratch. Finally, these projects show 901

the ability to overcome the social challenges associ- 902

ated with inter-disciplinary platform building. How- 903

ever, in the absence of a rigorous user study, we have 904

no knowledge of negative cases (e.g. deployers who 905

are unconvinced by platforms). Further, although 906

the platform enhancements have reduced as the plat- 907

form matures, requests for documentation, partic- 908

ularly from non-developer deployers, are increasing 909

with adoption. Therefore, the long-term viability of 910

such platforms is still an open question. 911

8.1 Metrics 912

When presenting the idea of a platform to deployers, 913

there was skepticism about the benefits of a platform. 914

Some of the questions that have been raised, and the 915

metrics that we use to answer them, are: 916

Q: Is there enough common functionality that it 917

can be abstracted out? 918

extensibility: We examine the platform compo- 919

nents identified by the architecture, and see how they 920

are used by the systems instantiated from it. For ex- 921

ample, does the architecture ensure that that com- 922

mon functionality is reused and all customization is 923

restricted to customizable modules? 924

Q: What is the difference between an app and a 925

platform? What is wrong with a one-off project? 926

How much time will using a platform actually save? 927

utility: We compare the time required to create 928

a one-off app from scratch with the time required to 929

customize a platform. 930
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Q: Will non-developer communities embrace open931

source platforms? Why not continue to use consul-932

tants instead?933

adoption: We measure external contributions to934

both core modules and customizations, especially if935

the customizations were re-used by other projects.936

Q: What about application-specific metrics such937

as survey responses or app launches?938

application specific metrics: We do not in-939

clude these because the platform does not control940

application-specific settings, and the metrics suitable941

for one application may not be suitable for others.942

8.2 Use cases943

Abstracting a set of specific systems into a platform944

involves striking a delicate balance between breadth945

and compactness. The platform should be broadly946

applicable to a wide variety of applications, or other-947

wise deployers will continue to build one-off systems.948

However, if the platform is too broad, it loses the949

clear structure that makes it useful. Striking that950

balance is more an art than a science, and the bal-951

ance can shift over time. Most platform builders use952

a small (n ≈ 3) set of canonical use cases to define953

the platform. The anonymie platform uses three954

such canonical use cases - a classic travel diary, an955

infrastructure crowdsourcing project, and a behavior956

change study (Figure 6).957

All of the projects provisioned their own server958

and collected their own data. All of them used a959

UI channel on top of the anonymie base app. The960

use cases typically used 16 out of 25 features (64%),961

although the exact set varied according to the use962

case. In all three cases, the actual customization963

was done by undergraduates with computer science964

(CS) backgrounds; the undergraduates were from965

three different universities. The undergraduate who966

worked on the cci-berkeley project had worked967

with anonymie the prior summer; the others had968

no prior direct experience.969

classic travel survey, cci-berkeley The Cen-970

ter for Community Innovation (CCI) is instrumenting971

mobility patterns of low-income households in order972

to study the effects of gentrification on overall Vehicle973

Miles Travelled (VMT).974

They use a classic travel survey with a stripped975

down UI that only includes the travel diary. They976

also removed several of the controls from the pro- 977

file, notably, the option for “Medium accuracy”, and 978

the entire Developer Zone. Since they had graduate 979

students recruit participants in person, they chose to 980

hand out a unique, randomly generated token for au- 981

thentication instead of having users sign in with an 982

email ID. 983

They added the ability for users to specify mode 984

and purpose ground truth from the diary screen, in- 985

cluding a rich set of modes such as carpool, shared 986

ride, etc. 987

They initially used the event notifier to pop-up a 988

survey at the end of every trip, but turned it off after 989

negative feedback during the pilot. They also added 990

a survey that would link the user token to the user 991

UUID, but ended up not using it when they switched 992

to token-based authentication. 993

They did not run the analysis pipeline on the data 994

collection server. Instead, the data analysts pull sub- 995

sections of the data onto their own laptops and run 996

the analysis on an ad-hoc basis. 997

crowdsourced infrastructure, opentoall The 998

Taskar Center for Accessible Technology (TCAT) 999

is documenting barriers to accessibility - bumpy or 1000

non-existent sidewalks, blocked routes, etc. 1001

While they include the classic trip diary, they 1002

prompt the user at the end of every trip for their ex- 1003

perience of the trip, including any barriers that they 1004

encountered that are not already in the opentoall 1005

dataset. They use OpenID connect, linked to their 1006

own keystone server for authentication. This allows 1007

them to associate trips taken by any user with trips 1008

recommended by the opentoall trip planner. 1009

They are interested in gamification to prompt 1010

crowdsourcing of barriers, as well as adding local pro- 1011

cessing for bumpy sidewalk detection using the ac- 1012

celerometer. 1013

behavior change, tripaware A group of under- 1014

graduates participating in a research apprentice pro- 1015

gram studied the difference between emotion (moody 1016

polar bear) and information (suggestions for alternate 1017

modes) in motivating sustainable behavior. 1018

They conducted a Randomized Controlled Trial 1019

(RCT); participants were randomly assigned to the 1020

emotion, information or control channels, and auto- 1021

matically downloaded the appropriate UI for their 1022

group. 1023
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Figure 6: Screenshots of the three different use cases (L-R: cci-berkeley, opentoall, tripaware)
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Feature cci-berkeley opentoall tripaware

C
li

en
t

Local buffering X X X
Local processing X X X
Location state machine X X X
Consent X X X
Auth Pre-created token

↑
OpenID connect ↑ Google auth

bi-directional sync X X X
protocol client X X X
Coarse timer × × X
Event notifier Removed after pi-

lot
X ×

Setup X X X
UI update X ?? X
Push notify × × X
UI channel X X X

S
er

ve
r

Input timeseries X X X
Analysis timeseries Offline, on laptop X X
K-V store X X Added leaderboard

tier position ↑
Incoming buffer X X X
Webapp X X New API endpoint

for suggestions ↑
Push notify × × X
Integrations GIS for mode GIS for mode,

opentoall trip
planner

GIS for mode

A
n

al
y
si

s Pipeline usage Analyst runs of-
fline X

X New stage for tiers,
happiness

Reproducibility Multiple analysts
work with subsets
of data X

× Investigate errors
in mode inference
X

Algorithm Extensions × × ×
New data model objects mode_confirm ↑ survey result ↑ ×
Aggregate metrics × × ×

Table 3: Three projects and their usage of various components of the architecture. Usage key - X: used
without modification, × not used, ↑ enhancement contributed by this project
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They retained the classic trip diary for the control1024

group. For other groups, they added a leaderboard,1025

and modified the summary dashboard based on in-1026

tervention. For the information group, they provided1027

summary statistics and a set of suggestions for alter-1028

natives. For the emotion group, they showed a polar1029

bear that grew or shrank, and was compared to the1030

others in your leaderboard tier.1031

8.3 Extensibility + adoption1032

The community involvement metrics (Figure 7) indi-1033

cate strong interest and a significant contributor base.1034

Digging deeper, the usage matrix (Table 3) indicates1035

that most of the components were used without mod-1036

ification in a majority of the projects. Most changes1037

were to customizable modules. The only external en-1038

hancement to the core modules was the addition of a1039

new auth by the opentoall project. Further, many1040

of the contributions to customizable modules can re-1041

used by other projects. For example, the enhance-1042

ment that allowed users to specify mode and purpose,1043

introduced as part of the cci-berkeley project was1044

adapted for use in the opentoall project.1045

Notable exceptions to these general results include:1046

Auth Every project used a different authentica-1047

tion mechanism. Having a configurable authentica-1048

tion mechanism allows deployers to easily switch be-1049

tween mechanisms, as well as allowing projects to1050

contribute auth plugins that they needed for later1051

re-use.1052

Coarse timer/Push notify 2 out of 3 projects1053

did not turn on the silent push notification based1054

coarse timer on iOS. Since the data can also be up-1055

loaded at trip end, the data collection still worked1056

since both projects were based in the United States,1057

which has reasonable connectivity. They also did not1058

use targeted push notifications.1059

Algorithm extensions No group has yet con-1060

tributed algorithm extensions. The CCI group is ac-1061

tively analysing their collected data and might con-1062

tribute improvements if they develop any. Since the1063

architecture and data model are now clearly docu-1064

mented, we hope that researchers who work on infer-1065

ence algorithms in the future will contribute them to1066

the platform.1067

Aggregate metrics Since all the projects so far1068

have been focused on small-scale data collection, they1069

have not explored the aggregate analyses possible.1070

The opentoall crowdsourced dataset could be an in- 1071

stance of such analysis once the study is complete. 1072

8.4 Utility 1073

The utility metric is difficult to assess because one- 1074

off deployer projects that did not publish source 1075

code do not publish their development time either. 1076

The commercial rMove app [Greene et al., 2016] took 1077

five months to develop, but the development team 1078

size is unknown. The one-off Quantified Traveler 1079

project [Jariyasunant et al., 2015] involved a devel- 1080

opment team of five in addition to the authors, but 1081

the details of contribution and time taken are unclear. 1082

DataMobile [Patterson and Fitzsimmons, 2016] is 1083

open source, but it only recently (June 2018) created 1084

github repositories through code bulk upload, so we 1085

are unable to see the commit history. 1086

As shown below, all of the anonymie changes so 1087

far have taken < 3 months with CS undergraduates 1088

working part-time. Less ambitious changes are possi- 1089

ble with one undergraduate, RCTs with multiple UIs 1090

need a larger team. 1091

cci-berkeley ≈ 6 weeks of full-time work by one 1092

CS undergraduate with prior anonymie experience 1093

+ ≈ 2 weeks of part-time work by another CS under- 1094

graduate to change text and colors. 1095

opentoall ≈ 1 month of full-time work by one CS 1096

undergraduate for extending auth + ≈ 3 months of 1097

extremely part-time effort for UI changes + integra- 1098

tion. 1099

tripaware ≈ 3 months of 6-10 hrs/wk by 6 CS 1100

undergraduates to design 3 custom UIs for RCT + 1101

server changes for leaderboard and polar bear 1102

An advanced UI is planned to be developed for Syd- 1103

ney area to be completed in one month time by a 1104

professional programmer and a research student, to 1105

collect the travel diary of Sydney residents for two 1106

weeks. Further, the platform is being used for col- 1107

lecting information about the route choice behavior 1108

of pedestrians in dense urban area of Sydney CBD. 1109

Note that this estimate only accounts for deployer, 1110

not builder effort. While the pace of platform en- 1111

hancements has slowed as it has matured, requests 1112

for clarification and documentation are increasing. 1113

These requests are particularly numerous when non- 1114

CS deployers are involved - for example, although 1115

cci-berkeley UI changes took only ≈ 2 months, it 1116

took another month and a half for the CCI group 1117
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Figure 7: Basic community involvement statistics
from github for the server (top) and phone (bottom)
repositories

to perform routine non-platform-specific system ad-1118

ministrative tasks. Integrating with ongoing software1119

carpentry4 efforts may result in documentation that1120

meets the needs of non-CS audiences without over-1121

whelming platform builders, especially in resource-1122

constrained research environments.1123

8.5 Application specific metrics1124

The evaluation does not include application specific1125

metrics. This is mainly because:1126

no control: The metrics are influenced by a mix1127

of factors, few of which the platform controls. For1128

example, app retention is likely to be influenced by1129

monetary incentives, app functionality and power1130

drain. The platform does not control either of the1131

first two options, and the third is configurable by1132

the app. So it is possible for applications with simi-1133

lar functionality, built on the same platform, to have1134

drastically different retention rates. Thus, retention1135

rate is not an appropriate metric for evaluating the1136

platform.1137

application dependent concerns: Other met-1138

rics might be heavily application-dependent. For ex-1139

ample, metrics for HMSes could include the num-1140

ber of questions for each trip, and the response rate.1141

These metrics are not meaningful for gamification,1142

where users are typically not surveyed about trips,1143

and might even be prevented from providing addi-1144

tional information in order to avoid cheating. Likely1145

gamification metrics are number of app opens and the1146

length of time on each screen.1147

Of course, applications could establish their own1148

metrics, compare implementations and establish best1149

4https://software-carpentry.org/

practices(Section 3.4) 1150

9 Conclusion 1151

Human Mobility Systems (HMS) can form the basis 1152

for applications in domains ranging from travel be- 1153

havior studies to crowdsourcing initiatives to identify 1154

structural barriers to transportation. We generalize 1155

an open-source platform, anonymie5 from use cases 1156

in these domains. Deployers can use this platform 1157

to instantiate customized systems for their own do- 1158

mains. In order to bridge the gap between deployers 1159

and builders of such systems, we also outline a clear 1160

platform architecture that describes the client, server 1161

and architecture tiers, and the components in each 1162

tier. 1163

Our evaluation shows that the architecture is: 1164

(i) extensible, since all customization was to non-core 1165

modules; all module extensions could be performed 1166

without rewriting other modules, and (ii) useful, since 1167

the time taken to create a custom “app” for a new 1168

project was < 3 months of part-time undergraduate 1169

time. 1170

However, the evaluation also reveals several open 1171

questions. (i) All the extensions thus far have been 1172

to the UI, and none of the projects has contributed 1173

incremental improvements to the core algorithms. 1174

(ii) In the absence of a comprehensive user study, it 1175

is unclear whether the deployer community will em- 1176

brace extensible platforms, and contribute meaning- 1177

fully to them. (iii) All deployments thus far have 1178

required substantial builder assistance to create doc- 1179

umentation and clarify concepts. It is unclear how 1180

best to balance builder and non-CS deployer effort to 1181

improve usability, especially in resource-constrained 1182

research environments. 1183

We anticipate gaining more clarity around 1184

these questions as the anonymie platform us- 1185

age expands, and other similar platforms for hu- 1186

man sensing (e.g. [Patterson and Fitzsimmons, 2016, 1187

Tangmunarunkit et al., 2015]) are developed and 1188

used. 1189
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