
Making Edge-Computing Resilient

Yotam Harchol
Aisha Mushtaq
Vivian Fang
James McCauley
Aurojit Panda
Scott Shenker

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-9
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-9.html

April 28, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Making Edge-Computing Resilient

Abstract

The introduction of computational resources at the network edge allows us
to offload computation from clients and/or servers, thereby reducing response
latency, backbone bandwidth, and computational requirements on clients. More
fundamentally, edge-computing moves us from a client-server model to a client-
edge-server model. While this is an attractive paradigm for many applications,
it raises the question of how to design client-edge-server systems so they can
tolerate edge failures and client mobility. This is particularly challenging when
edge processing is stateful. In this paper we propose a design for meeting
this challenge called the Client-Edge-Server for Stateful Network Applications
(CESSNA).

1 Introduction

The recent introduction of compute and storage resources at the network edge1

allows service providers to offer lower latency and higher throughput by directing
clients to geographically-nearby content and computation. While edge computing
has long been used to provide content-oriented caching to support video stream-
ing and CDNs, it is now being used for new application areas such as IoT (where
the edge pre-processes sensor data to improve responsiveness and reduce upstream
bandwidth) and online games (where the edge improves client latency and allows
light-weight clients to offload computation).

Network applications have long been based on the client-server paradigm, where
a stateful server (or set of servers) provides services to multiple clients. While the
fault tolerance issues of the client-server paradigm have been thoroughly studied [27,
15, 3], their solutions do not handle the case where a stateful edge processor fails.
Addressing this gap in the fault-tolerance literature is the focus of our paper.

This gap has not received much attention because most existing edge plat-
forms either recommend or enforce that edge applications2 be effectively stateless:
Cloudlets [26] and CDNs restrict applications to keeping immutable copies of data
from a backend server [25] (we further discuss these in Section 8), and serverless

1In this work we use the term edge to describe any application-level processing node that is
placed between a client and a server. Such an edge could be placed, for example, in a branch office,
an ISP central office, or a factory floor.

2By edge application we mean application code running at the edge.

1

offerings such as AWS Lambda@Edge and Cloudflare Workers provide no inherent
recovery mechanisms, and are intended for stateless processing [1]. Statelessness
makes the edge platforms simpler, but it limits the benefits available to the appli-
cations.

Multiplayer gaming is an example of a type of application that can benefit from
stateful edges. Gaming companies have been working hard to reduce response la-
tency for their customers, while still having a centralized server synchronizing a large
number of players [20]. A stateful edge could help improve latency of multiplayer
games, as we also show in our experiments, without the need for complex custom
solutions.

A stateful edge introduces a new client-edge-server paradigm. With the original
client-server paradigm, fate sharing is assumed to exist between the client and the
server, such that if one of them dies, the session dies. While there are multiple
techniques that have been developed to improve server resilience (e.g., using repli-
cated state machines, etc.) and client resilience (e.g., using multi-homing to allow
clients to survive some types of network outages), the lifetime of a session is still
fundamentally tied to both the client and server being available.

In the new client-edge-server paradigm with a stateful edge, the session’s fate
is now shared between all three entities. This is problematic since edge failure can
terminate a session even when the client and server remain alive. Furthermore, many
of the benefits of using an edge are derived from having a client communicate with
the geographically nearest edge. Thus, session state stored at an edge complicates
client mobility, requiring that a client either access the same edge for the entire
duration of a session (leading to inefficiency) or that the edge be stateless (limiting
utility).

In this work, we aim to alleviate these concerns, and provide a mechanism
through which a session can survive both the failure of an edge, or a client mi-
grating to a new edge. We believe any solution to this problem needs to satisfy the
following four properties:

1. Survivability: Edge failure does not kill the session, as long as there exists an
edge to fail over to.

2. Correctness: In case of client movement or an edge failure, the new edge
(whether nearby the old edge or not) should send messages that are consistent
with those already sent by the previous edge. We formally define this correctness
property in Section 2.1.

3. Transparency: Client and server logic should not need to be changed to support
edge recovery. In some cases the logic at the edge might need to be aware of the
recovery mechanism.

4. Performance: The solution must not severely degrade the performance of the

2

application. Specifically, next generation edge frameworks aim at 5 − 20ms la-
tency [2], so the solution’s overhead must be orders of magnitude less than that.

Achieving correctness and survivability while maintaining performance is chal-
lenging when the edge application is stateful: edge applications may read and pro-
cess messages from multiple sources (e.g., client and server) simultaneously. Non-
deterministic events such as thread scheduling, time-based operations, and random
number generation also affect the application’s state and should be recovered cor-
rectly.

We propose a framework for client-edge-server applications called CESSNA (Client-
Edge-Server for Stateful Network Applications) that satisfies all these requirements.
CESSNA is an edge runtime environment that is not coupled with any specific ap-
plication logic and works with any client and server applications as long as they
have been adapted to use an edge.

CESSNA uses a message replay mechanism designed specifically for the client-
edge-server paradigm. Our message replay mechanism ensures that even if a session
is moved to a different edge (no matter the reason), it preserves the correctness and
transparency properties described above. Using message replay, we also ensure the
survivability property is satisfied, as messages are logged with the client and the
server and thus obey fate-sharing.

We have implemented two fully working prototypes of CESSNA, using two dif-
ferent sets of technologies: the first uses an off-the-shelf runtime platform (Docker)
and provides an API in a common programming language (Python), which makes
it easy to use. The second implementation is optimized for performance using our
own runtime and API in the Rust language. We deployed these implementations in
multiple locations worldwide, running several edge applications. We provide a for-
mal proof for the correctness guarantee, and comprehensive experimental results to
show that CESSNA provides these guarantees with minimal performance overhead.

2 Computational Model

The ability to run computation at the edge enables a range of functionality in-
cluding: (i) offloading computation from the client (reducing computational and
power requirements); (ii) offloading computation from the server (reducing resource
requirements at the server and improving application response latency); and (iii)
reducing the amount of data transferred between client and server by allowing data
to be preprocessed, e.g., compressed or aggregated. Thus, the edge can extend the
power of the client, reach of the server, and reduce the cost/penalty of communica-
tion between them. How edge capabilities are utilized depend on the application,
and as a result, one cannot think of the code deployed at the edge as merely a subset
of the client code, or merely a subset of the server code. Code running at the edge
might be formed by taking bits of both client and server functionality, or might even
implement functionality implemented by neither.

3

Our design aims to impose no restrictions on how clients or servers are built, and
in particular it does not preclude the use of application-level methods of recovering
from client and/or server failures, or the use of replication or other techniques to
increase the resiliency of the server or client. We do not explore these further
because our focus is on preserving correctness after a change in the edge. Thus, in
what follows we assume a single (logical) client and a single (logical) server.

We assume that both the client and the server can send packets to the edge, and
that the edge can send packets to both the client and the server. A client starts
a session when it first contacts an edge. All messages between this client and the
edge, and between the edge and the server that corresponds to this client session,
are part of this session.

In our model, a session can either be terminated explicitly or implicitly (i.e.,
due to client failure, server failure, or when no functional edge is reachable).

The Edge We assume that the edge is stateful on a per-session basis: that is, a
new edge process (or set of processes) is instantiated to handle each client session.
We assume that the edge state for each session depends on the data sent and received
within the session, on the order in which messages are processed at the edge, and
on non-deterministic events such as timers and thread scheduling. In particular, we
require that any sources of non-determinism at the edge are instrumented by our
framework and hence must be provided by it.

Further, we require that the edge application software (i.e., the code run at the
edge) be designed so that state updates are atomic and a single message (or packet)
is processed using only one version of the state.

Servers We place no restrictions on the behavior of the server. Similar to the
existing client-server paradigm, the server can service multiple clients and coordinate
clients among each other.

Clients Like the servers, we place no restrictions on the behavior of the clients.
We assume that clients can be mobile, and as a result they might connect to different
edges over time.

2.1 Problem Statement

We focus on the case where a client is initially connected to one edge, but then must
switch to another due to the failure of the first edge or because of client mobility.
Our goal is to ensure that the processing of messages (from either client or server)
at this new edge is consistent with what would have happened at the old edge if it
had continued functioning.

We formally define the required correctness guarantee as output message consis-
tency : a correctly recovered edge is expected, given the same sequence of messages

4

App1
Client

Local
Recovery
Service

Cache

Runtime engine

App1
Edge

App2
Edge

Edge Rack

Client

ToR switch

Client Agent

Edge Agent

Server Agent

Server Agent

Edge API

Edge API

Data packets

Control packets

Key

Conn
Hndlr

Conn
Hndlr

Conn
Hndlr

Conn
Hndlr

App1
Server

App2
Server

App2
Client Server(s)

Figure 1: The general design of our framework.

and events, to emit exactly the same sequence of messages that would have been
emitted by the original edge.

Output message consistency means that a recovered edge may not need to be
recovered to the exact same state at which the failed edge stopped. Instead, it only
needs to be recovered to the last committed state – the last time that the failed edge
had emitted a message that was received by either the client or the server. This, to
some extent, relaxes the recovery problem, and simplifies the solution for it: upon
a failure, it is easier to recover a new edge to the last committed state than it is to
the actual last processed state. We leverage this in our design.

3 CESSNA’s Design

Here we present the design of CESSNA starting with some observations about client-
edge-server applications that motivate our design.

3.1 Design Motivation

Upon movement of a host (a client or a server) to a new edge, we cannot assume that
this edge has any state relevant to the session. Nor can we assume that CESSNA has
any knowledge of the edge application logic (i.e., we must treat the edge application
largely as a black box). One way to recreate the state is to replay the messages seen
by the previous edge. However, we have three observations about relying solely on
the replay approach.

First, the edge receives messages from two different parties (the client and
server), and these parties must keep a copy of the messages they sent to the edge
at least until the edge can guarantee they are not needed anymore.

Second, the state of the edge may be dependent on the exact order in which

5

these messages and any non-deterministic inputs and events (such as random num-
ber generation and thread scheduling) interleave. Thus, for any process of state
reconstruction, we must have this ordering available, along with a record of non-
deterministic events and the messages themselves. Since the edge can fail, this
information must be stored elsewhere. One option is to send it to either the client
or the server. Another option is to use some other storage (aside from client, server,
or edge). We intermix the two options in our design as we describe later.

Third, storing all outgoing messages forever is impractical for many applications.
However, we can use periodic snapshots in order to limit the size of the required
message buffers, and reduce the time for session reconstruction.

Based on these observations our design accounts for two forms of recovery:

• Local recovery can be used when the failed edge and the new edge are physically
close to each other, for example, in the same rack. Here there may be local storage
of the relevant state.

• Remote recovery refers to the case when the old and new edges are far from each
other. In this case, the client and the server cooperate with the newly provisioned
edge to restore its state.

Our design, based on these observations, is illustrated in Figure 1, and we now
discuss the design of each component in the figure.

3.2 Edge Design

The core of CESSNA is an edge runtime environment that allows seamless local and
remote failover of edge applications.

3.2.1 Runtime Engine

Edge applications may run on top of any runtime engine that is able to take snap-
shots of running instances and to restore an instance given such a snapshot. For ex-
ample, the runtime engine can be some VM/container technology, such as Docker [9],
KVM [6], and VMware [32]. Our design is not tied to a particular runtime engine.

When using such runtime engines, edge applications have almost no restrictions,
and in particular they are not limited to specific programming languages or uncom-
mon libraries. However, these runtime engines are not optimized for fast snapshot-
ting and restore, and as we show in Section 6, they introduce latency and degrade
performance. Thus, we also propose a runtime engine optimized for fast snapshots
and recovery, but which requires the use of a specific programming language and a
specific set of libraries. This is described in Section 5.

6

Method Description

send msg to client(msg) Send a message to client
send msg to server(msg) Send a message to server

cache read(obj name, [func]) Read an object from cache
set timeout(func, time) Start a timer

random() Generate random number
now() Retrieve current time

lock acquire(lock) Acquire a lock
lock release(lock) Release a lock

Table 1: Methods provided by the Edge Application API.
3.2.2 Edge Agent

The edge agent is the control plane orchestrator of a single edge. It communicates
with agents in the clients and in the servers, and provisions an edge application
instance for each new session. The term edge here is flexible, and may refer to a
single physical machine providing edge services, a single rack of such machines, or
several racks – all of which can be managed by a single edge agent.

3.2.3 Edge Application API

We designed an edge application API that provides the methods shown in Table 1,
as well as a set of event handlers as described below.

The CESSNA edge framework needs to track the actual interleaving order in
which messages from both the client and the server are processed by an edge ap-
plication (see also Section 3.3). To do that, we provide the following event handler
methods, which are to be overridden by the application: accept connection, which
is called when a client connects, and recv client msg and recv server msg, which
are called when a message is received from the client or the server, respectively.

The underlying framework maintains connections to both the client and the
server. It runs a control loop that continually reads available data from these
connections and triggers the appropriate event handler as described above. While
doing that, it maintains the interleave log, which indicates the order in which mes-
sages were actually processed by the application, along with information on non-
deterministic events, as described below.

Based on the application configuration, the underlying framework may, after it
finishes handling an incoming message, request that the edge agent take a snapshot
of the application. The framework waits until the snapshot is taken before reading
and handling the next message.

In order to identify incoming and outgoing messages we designed the CESSNA
data plane protocol, which is a simple layer-7 encapsulation protocol. The protocol’s
header contains a sequence number and allows us to attach any updates to the
interleave log. We wrap all messages with this header, which precedes any layer-7
payload.3 When a message is received, the underlying edge framework reads its

3Header for host-¿edge messages is 12 bytes long and for edge-¿host is at least 36 bytes long
(longer if the update for the interleave log is longer than one record). We note that this is optimized

7

sequence number and adds it to the interleave log. When a message is sent (using
either the send msg to client method or the send msg to server method) it is
sequenced and any update to the interleave log is attached to it.

3.2.4 Non-deterministic Operations

CESSNA edge applications can perform non-deterministic operations as long as the
recovery process is deterministic. To allow this, our edge application API provides
methods for non-deterministic operations and stores the order of their invocation
and their returned values in the interleave log. Specifically, we introduce the random
and now methods for random number generation and retrieving the current time
respectively. During replay these do not generate new values and instead retrieve
the original value from the interleave log of the corresponding thread which enables
deterministic recovery using the algorithm shown in Section 3.3.

We allow timers via a set timeout method. When the timer expires, the
user-provided function is invoked by the main thread immediately after the cur-
rent message (if any) is finished being processed. The sequence relative to other
events/messages is stored in the interleave log. During replay, the provided function
is invoked in the proper order without delay.

3.2.5 Edge Cache

Each edge runtime has a shared content cache that can be used by multiple in-
stances of the same edge application. In order to guarantee the correctness of a
replay process, the cache is read-only for edge applications, and it is guaranteed
that every read operation to the cache returns a result. The cache is expected to
fetch missing items from the server. Note that this is typical behavior for a cache at
the edge (e.g., in CDNs and Cloudlets [25]). We assume that cached content does
not change over time. The cache read method of the edge application API can be
used synchronously or asynchronously.

A mechanism similar to the one used for timers is employed for asynchronous
cache reads.

3.2.6 Multithreading and Locks

CESSNA supports multithreaded edge applications while imposing a few limita-
tions. Threads must be created using our API, which wraps the underlying run-
time’s threading capabilities but manages thread identifiers and synchronizes thread
startup.

The event handlers for accepting connections and reading messages are only
invoked from the main thread of a CESSNA edge application (though it can then

for simplicity and not size.

8

dispatch messages to other threads). Any thread is free to invoke other API methods,
including the ones used to send messages.

If threads share data, they must use explicit locks (mutexes), for which we pro-
vide an API. These locks log every acquire operation to the interleave log, and upon
replay, the locks maintain the same order of acquisition. Special care is required
to correctly track the order in which locks are being used by different threads as
this may change upon a replay, and the edge application framework makes sure to
reproduce the exact same order in such a case. We note that our API could be
extended to include other types of concurrent data structures and synchronization
tools using the same technique we use for locks.

When an edge application is multithreaded, the interleave log also stores the ID
of the thread corresponding to each entry, and the client and the server keep track of
which thread issued which message coming from the edge (this information is added
to the CESSNA header). Upon replay, the recovery algorithm devises the order of
outgoing messages based on this information, and blocks threads when necessary to
produce the same ordering of output messages as originally.

3.3 Edge Recovery

In general, our recovery model assumes that the edge application’s state is a
function of messages received from both the client and the server, as well as non-
deterministic events.

In order to recover a failed edge application we could theoretically restart it and
replay all messages in the correct interleaving order (assuming for simplicity that
no other events were logged). However, storing the entire log of messages, and their
order, may be impractical.

Thus, we also use snapshots to capture the state of an application at regular
intervals allowing for messages processed before this time to be purged.

As mentioned above, CESSNA has two recovery modes: local and remote. Both
are built from the same building blocks (message replay, interleave log, and snap-
shots) and use the same algorithm. The key difference stems from the circumstances
under which they are used. Local recovery is used when the failed edge and its re-
placement share some relatively fast storage (e.g., when failing over to another
machine in the same rack). Remote recovery is an extension to this approach which
is used when the failed edge and its replacement are arbitrarily distant.

Both recovery modes can be enabled for an edge application, with local recovery
being preferred when possible, and remote recovery ensuring survivability. It is
the availability of both modes that allows CESSNA to satisfy the strict recovery
requirements while providing high performance.

Upon receiving a request for session recovery, the edge agent first fetches the lat-
est snapshot (if one exists) from whoever has it. This is based on the recovery model
(local or remote) and in the remote case, on who has it stored (client/server/another

9

edge). If a snapshot exists, the agent restores the snapshot. Otherwise, it just cre-
ates a fresh image or container of the application. It then starts the application in
recovery mode. The application then asks the edge agent for the message replay
and for the interleave log from both client and server. This information is provided
to the edge agent either by the client and the server, or the agent fetches it from
the local recovery service, as further explained in Section 3.3.1.

Algorithm 1 Edge application replay algorithm (main
thread)

Input:
- client order - interleave log known to client
- server order - interleave log known to server
- client msgs - client’s message replay
- server msgs - server’s message replay
- lrbs=(src, seq) - last record before snapshot
- lcrbs=(src, seq) - last record before lrbs that appears in the
interleave log known to client and server

- mrc - messages received by client
- mrs - messages received by server
- threads wait evt - an event on which all threads but the main
thread are waiting if trying to invoke an API method. Initially
this event is set (so threads wait).

1: Initialize client and server connections
2: ordering ← longest(client order, server order, lcrbs)

// Take the longest interleave log provided by both the
// client and the server, starting at lcrbs.

3: ordering[thread id] ← split(ordering)
// Per-thread interleave log

4: out ordering ← merge(mrc, mrs)
// Merge log of outgoing messages. Use this log to reorder
// outgoing messages.

5: threads wait evt.clear() // Let threads invoke API calls
6: Let lrbs idx ← index of lrbs in ordering[main thread]
7: for each idx in ordering[main thread][lrbs idx+1:] do
8: if idx is a timer event then
9: Mark timer as already executed

10: Process timer event immediately
11: else
12: Let msg be the message with index idx in either client msgs or

server msgs
13: Replay msg: if replay emits messages, suppress those seen by client

or server (based on mrc, mrs). Reorder emitted messages based on
out ordering.

14: If replay calls random or now, find result in
ordering[main thread] and return it. If not found, generate new re-
sult.

15: end if
16: end for
17: Replay all remaining messages in client msgs and server msgs, in any in-

terleave order, without output suppression. Also handle waiting events.
18: Wait for all threads to finish going over their ordering
19: Start processing new data from client and server

The CESSNA edge framework executes the recovery algorithm described in Al-
gorithm 1 on the application’s main thread. Additional threads created by the
application follow a similar process when invoking API methods during recovery.
Special care is taken to ensure additional threads cannot invoke API calls before
initialization has completed, even when the application is restored from a snapshot.

The core of the recovery process is message replay. The replay process has two

10

purposes: first, to restore the state of the application, and second, to emit messages
that would have been emitted had the application never failed. However, we would
like to avoid re-emitting all messages, suppressing ones which we know must have
been sent and received already. Note that this is only an optimization: correctness
would be maintained regardless, as any duplicates are identified and ignored. The
recovery process also takes care of non-deterministic events such as timer events and
cache reads, as recorded in the interleave log, by waiting for events when necessary
to preserve ordering of events and messages.

3.3.1 Local Recovery

In order to provide fast local failover, we introduce a local recovery service, which
is responsible for storing snapshots, message logs, and interleave logs for multiple
sessions. This service can be deployed per physical machine, or per rack of multiple
machines. The local recovery service has a direct connection to the top of rack
switch’s tap port, so that it can reconstruct the corresponding TCP sessions and
extract CESSNA data plane messages to construct its local copy of message logs
and the interleave log.4 It also receives snapshots directly from the edge agent and
stores them.

Hot Backup For applications that require very fast recovery, CESSNA provides
a hot backup mechanism in which a designated alternate edge is running adjacent
to the active edge. The alternate edge does not process any incoming messages,
but is updated with every new snapshot that is taken. In case of a failure, the
alternate edge is ready to immediately fetch the replay data from the local recovery
service and to execute the recovery algorithm, saving the time it takes to start a
new edge application instance and to restore a snapshot. As shown in Section 6,
we noticed that in some runtime platforms, the vast majority of time is spent on
snapshot restoration, while CESSNA’ replay mechanisms are usually much faster.
There is of course a tradeoff here between cost of running a hot backup and speed
of recovery process.

3.3.2 Remote Recovery and Mobility

When a client fails over or migrates to a remote edge which does not share a recovery
service with the failed (or previous) edge, we delegate the responsibility for the
recovery to the client and the server.

Upon taking a snapshot, the edge agent stores it locally at the local recovery
service, but it may also send it to the client and/or the server to allow remote
recovery. The snapshot is encrypted and signed by the edge, so the hosts cannot see

4We assume that if TLS is used, it is terminated before the ToR switch of the edge application,
as done by Google [18] and others. ToR tap port access is a requirement for enabling local recovery.

11

its content or tamper with it. Each application may have different preferences here,
based on its specific characteristics. The following aspects should be considered:

Snapshot size: The size of a snapshot is dependent on the runtime engine (e.g.,
VM snapshots are very big compared to library-based snapshots as we describe in
Section 5) and on the edge application itself. Bigger snapshots are more expensive
to transport and to store.

Client capabilities: The two aspects to consider for the client are bandwidth
from the edge and available storage at the client. For example, if clients are expected
to be thin, or have expensive or low bandwidth connections, we may prefer sending
snapshots to the server.

Server capabilities: While bandwidth may be less restricted to the server than
to the client, it is still one aspect to consider. The other is aspect is scaling. If the
server handles a large number of clients, storing snapshots them may be prohibitive
or require additional resources.

Upon failure or movement, in order to restart the session, the client and the
server send the most up-to-date snapshot they received (if any), their outgoing
message logs, and their copy of the interleave log. The newly provisioned edge is
then restored to the given snapshot, and executes the recovery algorithm.

3.4 Discovery

The client should be able to find the correct edge to connect to, based on the
application it is connecting to, its location, and other factors. In our design, the
client can use standard techniques as used today for service discovery, such as DNS
or IP anycast [13, 30].

3.5 Client / Server Design

There is a very little difference between a client and a server in our design beyond
that they may have different preferences (for example, on whether to receive snap-
shots from the edge or not). A host, either client or server, is just an application
running atop our host platform, which manages communication with the edge.

Our host platform consists of a host agent and a connection handler. The host
agent is responsible for session establishment and management, and in case of an
edge failure or client migration, it reestablishes the session through another edge.

The connection handler provides the following functionality: it encapsulates
outgoing packets to add the CESSNA data plane header, buffers these messages,
decapsulates incoming messages and stores the received interleave log.

12

s0 s1 s2 s3 s4

s5 s6

C1 C2 S2S1

S2

C2

E1 To server
Original edge transition
Recovered edge transition
Other alternative transition
Client → edge message
Server → edge message
Edge → server message

Key

Faithful replay phase

s7

S1

Figure 2: Illustration of a correct replay process. Faithful replay is required only to the last
committed state to guarantee output message consistency.

4 Formal Guarantee

4.1 Formal Problem Definition

We define an edge application instance (i.e., per session) as a state machine E =
〈S, s0,Min,Mout, δ〉, where S is the set of states, s0 ∈ S is the initial state, Min and
Mout are the sets of possible incoming and outgoing messages respectively,5 and δ
is a state transition function defined as δ : (S×Min)→ (S×Mout ∪{ε}). Note that
sets may be infinite, and that δ may cause an emission of a message from Mout.

We denote by δ∗(s, ~m) the result of consecutive applications of δ on all messages
in ~m, starting from state s ∈ S. This result is a sequence of messages ~mout and a
single state (formally: δ∗ : (S×{~m = 〈m1,m2, . . .〉|m1,m2, . . . ∈Min})→ (S×{~m′ =
〈m′1,m′2, . . .〉|m′1,m′2, . . . ∈Mout})).

We would like to prove output message consistency, i.e., show that when a
CESSNA session is moved to another edge, regardless of the reason, output mes-
sages are consistent with the ones emitted before the session was moved. CESSNA
provides input message faithful replay, so specifically we would like to prove that
this is sufficient for output message consistency.

Specifically, let E1 be an edge. Let ~C = 〈C1, C2, . . .〉 be a sequence of messages
sent from the client to the edge, and ~S = 〈S1, S2, . . .〉 be a sequence of messages
sent from the server to the edge. The edge E1 processes these messages in some
order ~m1(~C, ~S) (where ~m1 is a function of ~C and ~S, determined by E1). Formally, it
applies δ∗(s0, ~m1), ending up in some state s′, while emitting messages ~mout before
the client (and possibly the server) disconnects and attempts to continue the session
with a different edge E2, by supplying it with ~C and ~S.

We define the last committed state of E1 as the last state E1 has been to that
emitted a message to the outer world (i.e., to the client or the server). This state
could have been traversed earlier than s′, which was the last state of E1 before it

5Min may also contain nondeterministic event information, in which case instead of replaying
a message, the event is handled. We continue the formal discussion with referring to both input
messages and such events as “input messages”, but no part of this section precludes the replay of
such events instead of an input message.

13

was replaced. We denote the last committed state as sLC . We can then split ~m1

into two parts: ~m1
≤LC for messages that were processed until reaching sLC for the

last time, and ~m1
>LC for the rest of the messages (note that ~m1 = ~m1

≤LC || ~m1
>LC ,

where || is the vector concatenation operator).

Definition 1. A faithful replay process at E2 would merge messages in ~C and ~S to
create ~m2 = ~m2

≤LC || ~m2
>LC , where ~m2

≤LC is identical to ~m1
≤LC , and then apply

δ∗E2
(s0, ~m2), suppressing output for messages that were already received by the client

and the server. Since ~m2
≤LC = ~m1

≤LC , E2 will traverse the exact same state
sequence as E1 until sLC , and therefore any message it may emit from that point is
consistent with messages previously emitted by E1.

Figure 2 depicts an example of such process. The original edge (e.g., E1) pro-
cesses messages C1, S1 in this order, getting to state s2 and emitting a message E1
to the server. The original edge then continues processing of messages C2, S2, in
this order, ending up at state s4 before the session is moved to a recovered edge (e.g.,
E2). To ensure output message consistency, E2 must traverse states s0 → s1 → s2
in the exact same order as did E1, so it must process messages C1, S1 in the same
order. From s2, the order in which messages are handled is not important, and
E2 may indeed end up traversing completely different states, but the two execution
paths are both valid. Since E1 has not emitted any message after E1, any further
message emitted by E2 is consistent with what was received until then by the client
and the server.

If additional messages were sent by the client or the server after E1 stopped
processing, these should be appended to ~m2

>LC . The interleave order of these
additional messages is not important.

4.2 Correctness Proof

We further define (sE , ~mout
E) = δ∗E(s0, ~min). In other words, sE is the state of

E after starting at its initial state and processing all messages in some vector of
messages ~min, and ~mout

E is the vector of emitted messages from the same processing.
Formally, output message consistency means that a correctly recovered edge E′

is expected to emit exactly the same sequence of messages that would have been
emitted by the original edge E (had it not failed) if given the same sequence of input
messages mE

in. That is, ~mE
out == ~mE′

out.

Theorem 1. ~mout
E == ~mout

E′
if ~min

E == ~min
E′

. In words: a faithful replay of
the input messages is sufficient for output message consistency.

Proof. Since the output messages are a result of applying δ∗, which is the same
for E and E′, we want to end up at the same state after applying δ∗ on the same
input vector (sE == sE

′
). Both state machines start from the same state and are

deterministic. There must be a contradiction if given the same sequence of input

14

messages the two state machines end up in different states (and hence different
output sequence).

5 Implementation

We implemented two prototypes based on CESSNA design principles. The first is a
generic container-based implementation written in Python which can be used trans-
parently with any TCP-based application without any modification to the client or
the server. It uses an off-the-shelf Docker runtime engine for edge processing and
snapshotting/recovery. However, being based on a container engine not optimized
for our usecase, it incurs significant performance penalties, especially for recording
and restoring snapshots.

In order to reduce this overhead incurred by Docker’s runtime engine, we built
a specialized runtime engine that provides the same edge application API, but uses
the Rust programming language. The Rust runtime engine is optimized for fast
snapshotting and recovery.

We present the details of the two implementations (which we will make available
with the publication of this paper) in the following subsections. In total, the code
consists of 4556 lines of Python code and 5600 lines of Rust code for both imple-
mentations together, including sample edge applications (counted using CLOC).

5.1 Container Isolation-CESSNA

Container Isolation (CI)-CESSNA allows any application that uses TCP sockets
to run with CESSNA. Client and server applications require no modifications to
use CI-CESSNA. Edge applications are written in Python using the provided edge
application API (described in Section 3.2.3). In this section, we provide details on
key parts of this implementation of CESSNA.

5.1.1 Client Socket Interposition Layer

The socket interposition layer is used to allow unmodified client applications to use
CESSNA transparently. It is a small piece of C++ code that interposes on socket
connect() calls. The code contacts the host agent with the requested address. If
the address is associated with a CESSNA application, a new session is created and
the interposed code connects to the corresponding local connection handler.

The interposition layer is a shared library that is loaded dynamically using the
LD PRELOAD environment variable. This enables applications written in any language
to use the library with no modification. Only CESSNA applications need to preload
the interposition layer, so it does not affect other applications on the client machine.

15

5.1.2 Host Agent

Our host agent is implemented in Python. It is responsible for receiving snapshots (if
desired by a host) and for managing session lifecycles. The host agent communicates
with its corresponding edge agent out-of-band, in parallel to the application session.

In each host, the host agent is also responsible for spinning up a TCP proxy for
each session. In a client host, the client application connects to the TCP proxy, and
the TCP proxy connects to the edge on behalf of the client. In a server host, the
TCP proxy accepts connections from the edge on behalf of the server, and the TCP
proxy connects to the server.

The TCP proxies serve as the local CESSNA connection handlers, as described
in Section 3: they implement the CESSNA data plane protocol, and provide the host
agents with the outgoing message logs and interleave logs extracted from incoming
messages and which are necessary for future remote recovery.

5.1.3 Edge Platform and Agent

The edge platform is based on a Python edge agent that runs adjacent to the Docker
engine. The edge agent manages snapshots and communication with the host agents.
It may run on a different physical machine than the Docker engine, and it can
manage multiple Docker engines on multiple physical machines.

Upon receiving a new session request, the edge agent forwards it to the corre-
sponding server and waits for a response. When a response arrives, it spins up a
container that runs the application’s edge code. The agent takes care of mounting
filesystems for the process, and sets up port forwarding (so that multiple clients
can run multiple instances of the same application in parallel). The edge agent also
has an API by which an edge application can query information about the system,
request that a snapshot be taken, and so on.

Edge Application API Edge applications make use of a CESSNA edge library
which provides the API described in Section 3.2.3. It also implements the recovery
algorithm shown in Algorithm 1, and this is triggered automatically when the edge
application is started in recovery mode. The edge library also provides additional
methods for managing an application’s lifecycle (e.g., initialize, shutdown). We
believe porting this library to other programming languages will be straightforward.

Programmers can create a new edge application by subclassing the CESSNA
application class (provided by the edge library) and overriding methods for handling
edge events (e.g., recv client msg which is invoked when a message is received).

Snapshots The edge agent is responsible for taking snapshots when requested by
an application. Upon receiving a snapshot request, the edge agent invokes Docker’s
checkpoint create command which pauses the container, takes a snapshot, and
then resumes the container. We measure the latency associated with this process in

16

Section 6. When this command finishes, the edge agent verifies that the snapshot
was successfully taken, and responds to the edge application so that it can continue
its operation normally. The snapshot files are then compressed and, depending on
configuration, sent to the required remote destination(s).

5.1.4 Control Plane Protocol

The client, edge, and server agents communicate with each other using a REST API
over HTTP. Messages are encoded with JSON. The protocol is simple and contains
messages to request and approve a new session, to recover an existing session, to
initiate a snapshot, and to close a session.

5.2 Software Isolation-CESSNA

Software Isolation (SI)-CESSNA trades application generality for improved applica-
tion snapshot and recovery performance.

Edge applications that run on top of SI-CESSNA are written in Rust and use an
extended version of the CESSNA Edge library. This library is a Rust implementation
of the API presented in Section 3.2.3, with the addition of a set of data structures
with explicit support for snapshotting.

For simplicity, we decided to make this implementation specifically for appli-
cations that use gRPC [14] to communicate between the end-hosts and the edge
rather than raw TCP sockets. This shows that the CESSNA design is not bound to
a specific transport technology.

5.2.1 Edge Platform

API for Improved Snapshot and Recovery We observe that container snap-
shots save not just application state, but also library and OS structures tied to
the application. In order to reduce snapshotting and recovery overhead, we imple-
mented a framework providing a programming model similar to what is offered by
Dome [4]. This library provides a set of data structures for which we can compute
snapshots. We checkpoint applications written in this framework by serializing and
saving snapshots, and restore them by deserializing these saved snapshots. Edge
applications then must use these data structures to store any state that persists
across messages.

Application Runtime The edge platform of this implementation uses the spe-
cialized runtime engine we built in Rust. The runtime engine runs as a single process.
As Rust is a safe language, it is still able to provide memory isolation among differ-
ent applications [24, 19]. The runtime engine also provides the functionality of the
edge agent (described in Section 3.2.2).

17

0

500

1000

1500

2000

2500
Co

nt
ai

ne
r I

so
la

tio
n

0 1000 2000 3000 4000 5000
Interleave Log Size (# messages)

0

40

80

120

160

200

So
ftw

ar
e

Iso
la

tio
n

Ed
ge

 P
ro

ce
ss

in
g

Ti
m

e
(

s)

Figure 3: Processing
overhead as a function of
interleave log size.

10 20 30 40 50
Memory usage (MB)

100

200

300

400

500

600

Sn
ap

sh
ot

 o
ve

rh
ea

d
(m

s)

Container Isolation
Software Isolation

Figure 4: Snapshotting
overhead as a function of
application memory usage.

Blind
Forwarder

HTTP
Compression

BaselineWARPS BaselineWARPS0

100

200

300

400

500

600

700

Pr
oc

es
sin

g
Ti

m
e

(
s)

Client
Edge C->S

Edge S->C
Server

Figure 5: Overhead
of applications with
CI-CESSNA.

Blind Forwarder Scrabble
Baseline BaselineWARPS WARPS0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ed
ge

 P
ro

ce
ss

in
g

Ti
m

e
(m

s)

Figure 6: Median over-
head of applications with
SI-CESSNA, error bars
drawn at 5th and 95th per-
centilce latencies.

101 102

Edge Processing Time (ms)
0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Baseline
WARPS (Infrequent Chkpts)
WARPS (Frequent Chkpts)

Figure 7: CDF of SI-
CESSNA edge processing
times for video frame fil-
tering for different check-
pointing frequencies.

Local Hot
Backup

Local No
Hot Backup

Remote
 Virginia

Remote
 California

Remote
 Frankfurt

100

101

102

103

Re
co

ve
ry

 ti
m

es
 (m

s)
 [l

og
 sc

al
e]

Container Isolation Software Isolation

Figure 8: Latency over-
head of the recovery pro-
cess when the client, edge,
and server are all in Vir-
ginia and remote recovery
is done to a different edge.

Edge Application API We provide applications the same API as described in
Section 3.2.3. In addition, the API provides the interface for maintaining our snap-
shottable data structures, which are managed automatically. The recovery process
is also handled by the Edge API in case the application starts in a recovery mode.

5.2.2 Host API

We provide an API for the client and server that allows them to establish a session
and send and receive gRPC messages. The host API also includes modules to provide
the functionalities of the host agent as described in Section 3.5. This is different
than in the generic implementation, as client and server code needs to be modified
to use our API for gRPC.

6 Evaluation

We deployed CESSNA on multiple AWS nodes in different locations worldwide to
measure the benefits and overheads of the system. We deployed edge nodes in
Virginia, and servers in Virginia, Frankfurt, and Singapore. We used additional

18

machines in Oregon and Virginia as clients.

6.1 Overhead of Fail-Free Operation

In this section, we evaluate the performance overheads of our two prototype imple-
mentations of CESSNA under normal operation, without failures. There are several
factors that can affect the overhead of CESSNA under normal operation, without
failures, and we measure the effect of each one of them.

Message Log Size Our experiments showed no significant computational over-
head caused by message log growth. We measured the overhead with up to 10 k
messages stored in the log. However, it should be considered that the log resides
on both the client and server, and consumes memory with respect to message size,
which could impose additional constraints depending on the resources available to
the client or server.

Interleave Log Size The interleave log grows when the edge receives more packets
than it emits. Figure 3 shows the processing overhead that is imposed by CESSNA
in the edge, as a function of the size of the interleave log that is being attached to
each outgoing packet. Interleave log size impacts edge performance, though only
when emitting a packet after the log has grown substantially.

Snapshot Overhead Both the message log and interleave log are purged upon
taking a snapshot, so the overheads above can be capped. Figure 4 shows the latency
overhead of taking a snapshot in both implementations. In CI-CESSNA, at least
88 % of the time is spent on executing Docker’s checkpoint create command. This
percentage grows with the memory usage of the application. An additional 38–65 ms
are due to CESSNA, for verifying the snapshot and for the communication between
the edge application and the edge agent. SI-CESSNA reduces the snapshot latency
overhead by 351–365 ms. In both implementations, snapshot latency overhead grows
linearly with the memory size of the process.

6.2 Applications

We developed a range of sample applications with different characteristics and be-
haviors, atop both CI-CESSNA (Section 5.1) and SI-CESSNA (Section 5.2). SI-
CESSNA applications are written in Rust. For CI-CESSNA, the edge portion is
written in Python, but the client and server can be in any language, so these por-
tions use a mixture of C, C++, Python, and Java.

For comparison, we created a native socket/gRPC-based API for each environ-
ment, which runs without CESSNA. This native API is used as the baseline for
comparison. In CI-CESSNA, we run native applications inside Docker containers
for adequate comparison. Applications implemented in CI-CESSNA are denoted by

19

∗ and applications implemented in SI-CESSNA denoted by †. The applications we
developed are as follows:

Blind Forwarder ∗† A simple edge application that forwards every message it
receives to the other side of the edge (e.g., from client to server and vice versa).

Stateful Compression ∗ This edge application offloads compression from clients.
Data is sent uncompressed between the client and the edge, and compressed be-
tween the edge and the server. We also extended this application to support
de/compression of HTTP requests and streamed, chunked responses (similarly to
[21]), and tested it with an unmodified Apache Tomcat 7 web server and an unmod-
ified web-browser.

Figure 5 shows the latency of each hop (client, edge, and server), for the above
two applications, with and without CI-CESSNA, for a single roundtrip client-edge-
server-edge-client. CESSNA cumulative overhead for a roundtrip is below 364 µs
(comparing medians). This should be compared to the 5–20 ms latency expected
from next generation edge frameworks [2] and with link latencies in the order of
milliseconds and higher (e.g., we measured 9–30 ms latency between AWS sites in
continental US (depending on their distance) and 43–118 ms between the US and
Frankfurt/Singapore).

Multi-Player Games ∗† We implemented Battleship∗ and Scrabble† from scratch
to use the edge to provide fast responses to user actions and to offload user-related
state and computation from the server. Specifically, the edge verifies user actions
(e.g., that the user chose valid words in Scrabble, or that they hit or miss a ship
in Battleship), and synchronizes the game state with the server. Figure 6 shows
the median edge processing latency for Scrabble implemented on SI-CESSNA. SI-
CESSNA adds 150 µs of edge processing time, due to the persisting of board state
updates to disk after receiving every message. The client and server processing times
are omitted; the overhead imposed by SI-CESSNA on these components is minimal.

In addition, we created edge applications for two existing open-source multiplayer
games – Pong† and Snake∗. The edge applications we created hide game dynamics
from the clients. They receive keystrokes from the client and send back rendering
information (object positions, etc.). All rule checking and game object rendering
is done at the edge. This improves latency and reduces computation at the client.
The difference between these two games and the previous ones is that they are much
more dynamic and similar to real-life multiplayer games: players move all the time,
simultaneously, and hundreds of messages are sent between the client, the edge, and
the server each second.

Video Frame Filtering † This edge application filters out redundant video frames
by computing a perceptual hash [31] over the stream of frames sent by the client,

20

saving bandwidth from the edge to the server. Our implementation filtered out 51 %
of the frames in a video stream captured by a traffic camera. Figure 7 shows the
variation in performance that checkpointing frequency introduces. If an application
frequently requests checkpoints, the tail latencies increase due to computing state
change accounting and persisting checkpoints to disk.

6.3 Recovery

Figure 8 shows the latency overhead of the recovery process, for both local and
remote recovery.

Container Isolation-CESSNA Local recovery with a hot backup incurs a la-
tency overhead of 21 ms (median result), which is mostly due to our recovery algo-
rithm (Algorithm 1). Local recovery without a hot backup incurs 585 ms overhead.
The additional overhead is mainly due to Docker’s checkpoint restore command
(68 %), while CI-CESSNA agent incurs another 27 % for preparing the snapshot,
decompressing it, and verifying the recovered container before resuming the session.
Remote recovery adds link latencies as expected.

Software Isolation-CESSNA There is a substantial improvement in recovery:
the latency overhead for local recovery with a hot backup is reduced by 29× to
0.71 ms (median result), while the overhead for local recovery without a hot backup
is reduced by 12× to 45.95 ms when restoring a checkpoint of a similar size as used
for CI-CESSNA. Remote recovery in the same AWS region has 182.9 ms latency
overhead. The replay process in this experiment replayed 50 messages. Replaying
more messages would have linearly increased the overhead, at a rate of about 14 µs
per replayed message.

7 Discussion

7.1 Applicability

Many applications that benefit from the client-edge-server model do not have a
stateful edge, or do not have strong correctness requirements on their edge state.
For other applications, however, maintaining state correctness during cases of failure
or migration may be vital. One class of such applications, as was discussed in
Section 1, is online multiplayer games. For instance, we showed in Section 6 four
edge-based online games where the edge holds the current state of the game, from
the client’s perspective. This state is updated based on clients’ moves with low
latency response to the client, and also based on other players’ moves. These latter
ones are coordinated and sent to the edge by the server. If such an application does
not maintain this state perfectly under failover or client mobility, players would have

21

state that is inconsistent with their prior actions. This will, at the very least, put
players in a confusing situation. In the worst case, it will create fatal errors.

It is applications in this class – stateful applications which benefit from cor-
rectness during failure or migration – for which CESSNA is ideally suited. This
raises two points. First, CESSNA does not force an application to use stronger
guarantees than it needs. Many real-world client-edge-server applications may con-
tain several components, some that require correctness guarantees and some that
do not. One can choose to use CESSNA for only the portion of the application that
falls into the former class. For example, while a video conferencing application does
not require any correctness guarantees for video frames, it may require some for
the control channel that keeps the call active, so calls would not drop in case of an
edge failure (and rather just hang momentarily). Second, it is certainly possible to
write applications with seamless failover without CESSNA. However, doing this on
a per-application basis (and, in particular, getting it right) is typically nontrivial.
CESSNA factors out this aspect of the design and provides a general solution.

7.2 Handling Multiple Clients per Session

Our current design does not allow an edge application to handle more than a single
client per session. The multiple clients case is not only harder to solve, it is even
harder to define. For example, in such a case, one may ask what consistency guar-
antees should be given when a client joins in the middle of a session, or when one
of several client leaves (or fails) during a session.

Additionally, we claim that if edge state can be shared by multiple clients, at
least some of them must lose the latency benefit of using an edge, and therefore
might prefer to connect directly to a server. We formally define this problem and
prove it in Appendix A.

However, we note that our basic mechanisms are sufficient for correct recovery
from edge failures even in the case of multiple clients if we assume that all clients
(and the server) start and finish the session at the same time with none leaving or
failing during it. Under these conditions, the CESSNA design could be applied with
a few modifications.

We further note that even in the normal case where CESSNA cannot be used to
share state between clients, multi-client applications that share state at the server
can still benefit from CESSNA, for example by having a closer edge that provides
stateful compression or rendering (as we show in the gaming examples in Section 6).

8 Related Work

FTMB [28] presented a framework for rollback recovery for middleboxes. The prob-
lem of middlebox recovery is quite different than edge recovery for several reasons:
nature of state, sources of traffic, and transparency (clients and servers may not

22

know about the middleboxes, and may not cooperate with them). The main dif-
ference in our case lies in the fact that an edge in CESSNA processes one message
at a time, and we expect applications to use explicit locks for concurrent mutable
accesses to data structures. This greatly simplifies and speeds up the replay mech-
anism used in CESSNA. Furthermore, we target a different workload since we focus
on application-level functionality rather than on packet processing. While adopting
FTMB’s mechanisms directly might allow CESSNA to support a larger variety of
edge semantics, it would drastically increase the size of the replay log (which must
now include ordering information for each access), and thus render our choice to
send this log to the client and server impractical. As a result, both designs are
complimentary and apply to different settings.

Remus [7] and Colo [10] are two no-replay solutions that provide fault tolerance
for any VM-based system, either using checkpointing and output buffering, or by
running redundant VMs simultaneously. Other log-based rollback recovery protocols
have seen only little adoption in real systems due to their complexity [12]. Several
other works addressed virtual machine recovery, either for single core processors [5]
or for multiprocessors [11]. State replication requires multiple hot standby instances
to provide survivability, and the state within these must be updated before any
messages affected by the state are emitted. This additional coordination imposes
a performance penalty during failure-free operations and greatly limits where such
active standbys can be placed.

The OpenFog Reference Architecture [23] describes an architecture for fog com-
puting, which can be seen as a superset of the client-edge-server model on which
we focus. The architecture covers many deployment, management, and operational
concerns which are likely relevant to any fog/edge system, but are orthogonal to
CESSNA’ focus on providing correctness guarantees during edge failover. Similarly,
previous work [17] has evaluated the use of Docker as an enabling technology for
edge computing; while the choice to use Docker in our Container Isolation CESSNA
prototype is motivated by some of the same observations and conclusions as in that
work, our contribution is orthogonal. Another line of work [26, 25] has evaluated
using VMs for creating minimalist cloud infrastructure at the edge, but they are in-
tentionally limited to stateless applications due to the lack of recovery mechanisms.
CESSNA can be used to enable stateful applications on such frameworks.

EdgeComputing [8] was an early attempt by Akamai to provide stateful edge
computing, specifically for web applications. It uses state replication to provide fault
tolerance and to support mobility. However, despite being a commercial product,
customers failed to adopt it due to its complexity and limitations [22]. Currently,
Akamai mostly markets Cloudlets which are stateless, as EdgeComputing adoption
has been low due to customers finding them hard to program [29].

A recent workshop paper [16] was the first to define the consistency problem
solved in this paper. That paper only presented the problem and a preliminary and
limited design. It does not allow applications to use non-deterministic operations or

23

multithreading in the edge at all. That paper also did not have an implementation
or evaluation, and did not provide formal guarantees. Our paper provides all of
these, a much improved design, and two reference implementations.

9 Conclusion

This paper proposes a framework that provides strong correctness guarantees for
stateful network edge applications. Such applications allow offloading of computa-
tion from clients and servers, reduction of response latency, and reduction of back-
bone utilization. While edge computation is already a fact, its correctness under
failure and mobility is not guaranteed by current approaches.

Our proposed model is general enough for many types of applications, and yet
is feasible for actual implementation and deployment. Moreover, we provide two
reference implementations for our proposed design: one shows that our design can
be easily deployed using industry standard runtime engines, but introduces some
(reasonable) overheads; the other shows that using an optimized API and runtime
environment, the performance overheads can be significantly lowered.

Acknowledgements

This work was done in collaboration with Yotam Harchol, Vivian Fang, James
Murphy McCauley, Marc Korner, Aurojit Panda, and Scott Shenker.

I thank my advisors, Scott and Sylvia, for being supportive and helping me
reach my potential. I thank Yotam for his guidance and mentorship that has helped
me become a better researcher. I thank my husband, Asad, who has been a great
support and most likely has an equal contribution to this work as me.

24

References

[1] Amazon Web Services. AWS Lambda Programming Model, 2018. https:

//docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html.

[2] Arutperunjothi, R. Akraino edge stack, 2018. https://wiki.akraino.

org/display/AK/Akraino+Edge+Stack.

[3] Barroso, L. A., Dean, J., and Hölzle, U. Web search for a planet: The
google cluster architecture. IEEE Micro 23 (2003), 22–28.

[4] Beguelin, A., Seligman, E., and Stephan, P. Application level fault
tolerance in heterogeneous networks of workstations. Journal of Parallel and
Distributed Computing 43, 2 (1997).

[5] Bressoud, T. C., and Schneider, F. B. Hypervisor-based fault-tolerance.
In SOSP (1995).

[6] Corbet, J. Checkpoint/restart in userspace. LWN https://lwn.net/

Articles/572125/, 2013.

[7] Cully, B., Lefebvre, G., Meyer, D. T., Feeley, M., Hutchinson,
N. C., and Warfield, A. Remus: High availability via asynchronous virtual
machine replication. In NSDI (2008).

[8] Davis, A., Parikh, J., and Weihl, W. E. EdgeComputing: Extending en-
terprise applications to the edge of the internet. In WWW Alt. (2004), pp. 180–
187.

[9] Docker checkpoint and restore. https://github.com/docker/cli/blob/

master/experimental/checkpoint-restore.md, 2018.

[10] Dong, Y., Ye, W., Jiang, Y., Pratt, I., Ma, S., Li, J., and Guan, H.
COLO: coarse-grained lock-stepping virtual machines for non-stop service. In
SOCC (2013).

[11] Dunlap, G. W., Lucchetti, D. G., Fetterman, M. A., and Chen, P. M.
Execution replay of multiprocessor virtual machines. In VEE (2008).

[12] Elnozahy, E. N., Alvisi, L., Wang, Y., and Johnson, D. B. A survey of
rollback-recovery protocols in message-passing systems. ACM Comput. Surv.
34, 3 (2002).

[13] Freedman, M. J., Lakshminarayanan, K., and Mazières, D. Oasis:
Anycast for any service. In NSDI (2006).

[14] GRPC: A high performance, open-source, universal RPC framework. https:

//grpc.io, retrieved 01/21/2017.

25

[15] Guerraoui, R., and Schiper, A. Software-based replication for fault toler-
ance. IEEE Computer 30 (1997), 68–74.

[16] Harchol, Y., Mushtaq, A., McCauley, J. M., Panda, A., and
Shenker, S. CESSNA: resilient edge-computing. In MECOMM@SIGCOMM
(2018), pp. 1–6.

[17] Ismail, B. I., Goortani, E. M., Karim, M. B. A., Tat, W. M., Setapa,
S., Luke, J. Y., and Hoe, O. H. Evaluation of docker as edge computing
platform. In 2015 IEEE Conference on Open Systems (ICOS) (Aug 2015).

[18] Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang,
D., Yang, F., Kouranov, F., Swett, I., Iyengar, J., Bailey, J., Dorf-
man, J., Roskind, J., Kulik, J., Westin, P., Tenneti, R., Shade, R.,
Hamilton, R., Vasiliev, V., Chang, W.-T., and Shi, Z. The QUIC trans-
port protocol: Design and internet-scale deployment. In SIGCOMM (2017),
pp. 183–196.

[19] Levy, A., Campbell, B., Ghena, B., Giffin, D. B., Pannuto, P.,
Dutta, P., and Levis, P. Multiprogramming a 64kb computer safely and
efficiently. In SOSP (2017), pp. 234–251.

[20] Maynard-Koran, P. Fixing the internet for real time appli-
cations: Part ii, 2016. https://engineering.riotgames.com/news/

fixing-internet-real-time-applications-part-ii.

[21] NGINX Inc. Compression and decompression, 2019. https://docs.nginx.

com/nginx/admin-guide/web-server/compression/.

[22] Nygren, E., Sitaraman, R. K., and Sun, J. The akamai network: A
platform for high-performance internet applications. SIGOPS Oper. Syst. Rev.
44, 3 (Aug. 2010), 2–19.

[23] OpenFog Consortium Architecture Working Group. OpenFog
Reference Architecture for Fog Computing, Feb. 2017. https://www.

openfogconsortium.org/ra/.

[24] Panda, A., Han, S., Jang, K., Walls, M., Ratnasamy, S., and
Shenker, S. NetBricks: Taking the V out of NFV. In OSDI (2016), pp. 203–
216.

[25] Satyanarayanan, M. The emergence of edge computing. IEEE Computer
50, 1 (2017), 30–39.

[26] Satyanarayanan, M., Bahl, P., Cáceres, R., and Davies, N. The case
for vm-based cloudlets in mobile computing. IEEE Pervasive Computing 8, 4
(2009), 14–23.

26

[27] Schneider, F. B. Replication management using the state machine approach.

[28] Sherry, J., Gao, P. X., Basu, S., Panda, A., Krishnamurthy, A., Ma-
ciocco, C., Manesh, M., Martins, J., Ratnasamy, S., Rizzo, L., and
Shenker, S. Rollback-recovery for middleboxes. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, SIG-
COMM 2015, London, United Kingdom, August 17-21, 2015 (2015).

[29] Sitaraman, R. Personal communication, 2018.

[30] Wang, L., Pai, V. S., and Peterson, L. L. The effectiveness of request
redirection on cdn robustness. In OSDI (2002).

[31] Yang, B., Gu, F., and Niu, X. Block mean value based image perceptual
hashing. In Intelligent Information Hiding and Multimedia Signal Processing,
2006. IIH-MSP’06. International Conference on (2006), IEEE, pp. 167–172.

[32] Zhang, I., Denniston, T., Baskakov, Y., and Garthwaite, A. Opti-
mizing vm checkpointing for restore performance in vmware esxi. In USENIX
Annual Technical Conference (2013).

27

e1 e2

server

c1 c2

Figure 9: Example of network graph.

A On the Impossibility of Edge State Sharing by Mul-
tiple Clients

In this section we elaborate on our claim that when state can be shared by multiple
clients at the edge, at least some of the clients lose the latency benefits of having
an edge (and hence might prefer not to connect through the edge, but directly to
the server). In the rest of this section we define the problem formally and prove our
claim.

We represent the logical network of edges and clients as an undirected graph
where clients {c1, c2, . . .}, edge nodes {e1, e2, . . .}, and the server s are vertices and
logical links between them are graph edges. Each logical link (graph edge) between
nodes u and v has a latency value `(u,v) > 0. An example of such graph is shown
in Figure 9. For simplicity, we assume that for any two nodes u, v, `(u,v) = `(u,v),
but the assumptions and following proof can be easily extended to support directed
graphs in which this property does not hold.

Before formulating the main theorem, we present the following assumptions:

1. There is at least one state object that is shared for more than a single client,
and it is stored on one or more edge nodes.

2. When a client c reads or modifies the state object by communicating with an
edge e, it expects the latency to be lower or at most equal to `(c,s). Otherwise
it has no latency benefit in using that edge.

3. For any given edge node e1, there exist at least one other edge node e2 for
which the latency `(e1,e2) is greater than `(e1, s) + `(e2,s).

4. Not all clients that share the state connect to the same single edge. We assume
that because, first, it is realistic, and second, even in a non-realistic extreme
case, clients may still move between edges (as we support client mobility), so
this situation must be taken into account in any case.

5. Triangle inequality: for each client c that is connected through edge e, `(c,s) ≤
`(c,e) + `(e, s) (even if the edge is connected through faster links, the edge can
be used just for forwarding).

Theorem 2. In any configuration, for at least one client, it is impossible to satisfy
all these assumptions. Specifically, assumption 2 does not hold.

28

Proof. We prove the theorem by contradiction: we assume that assumption 2 holds
for all clients.

We focus on two clients that connect through different edges and share some state
object. Two such clients must exist due to assumption (4). We denote them c1, c2,
and we denote the edges they connect to as e1, e2, respectively. Based on assumption
(3), we assume e1 and e2 are those two edge nodes for which `(e1,e2) > `(e1, s)+`(e2,s).

The shared state may be stored solely on e1, solely on e2, or on both of them (i.e.,
using some replication technique). We consider a scenario where a write operation
that originates from one client’s request, and modifies the state, is followed by a
read operation, originated from a request of another client.

Without loss of generality, let c1 be the one to initiate the write, and c2 be the
one to initiate the read.

If the state is stored solely on e1, then the latency for c1 is `(c1,e1) (assuming
no additional latency is incurred). Next, c2 issues a request to its edge, e2, that
requires reading the shared state from e1. Thus, the latency for c2 is at least
`(c2,e2) + `(e2,s) + `(e1,s), and this is greater than `(c2,s) (also based on assumption
(5)). However, this contradicts assumption (2).

The same goes for the case when the state is stored solely on e2, by switching
the roles between c1 and c2.

If the state is replicated on both e1 and e2, then the replication must provide
strict consistency: any write to one edge must either invalidate the replication on the
other edge (thus require the next read operation to wait until a fresh copy is fetched –
reader’s latency is `(creader,ereader)+`(ereader,s)+`(ewriter,s) > `(creader,s)), or proactively
update the replication (writer’s latency is `(cwriter,ewriter) + `(ewriter,s) + `(ereader,s) >
`(cwriter,s)), both contradicting assumption (2).

29

