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Abstract

Addressing and Understanding Shortcomings in Vision and Language

by

Kaylee Burns

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Aligning vision and language is an important step in many applications; whether it’s
enabling the visually impaired to navigate the world through natural language or providing
a familiar interface to otherwise opaque computational systems, the field is ripe with promise.
Some of the largest roadblocks to realizing integrated vision and language systems, such as
image captioning, are prediction artifacts from the training process and data. This report
will discuss two weaknesses of captioning systems: the exaggeration of dataset bias related
to gender presentation and the “hallucination” of objects that are not visually present in the
scene.

The first chapter focuses on correcting the salient issue of gender bias in image captioning
models. By introducing loss terms that encourage equal gender probability when gender
evidence is occluded in a scene and confident predictions when gender evidence is present,
we can enforce that the predictions are not only less error prone, but also more grounded in
the image input.

In the second chapter, we broaden the lens of our analysis by developing a new image rel-
evance metric to investigate “hallucinations”. With this tool, we will analyze how captioning
model architectures and learning objectives contribute to object hallucination, explore when
hallucination is likely due to image misclassification or language priors, and assess how well
current sentence metrics capture object hallucination.
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Chapter 1

Introduction

Aligning vision and language is an important step in many applications; whether it’s enabling
the visually impaired to navigate the world through natural language or providing a familiar
interface to otherwise opaque computational systems, the field is ripe with promise. Some
of the largest roadblocks to realizing integrated vision and language systems, such as image
captioning, are prediction artifacts from the training process and data. In the next two
chapters we will discuss two weaknesses of captioning systems: the exaggeration of dataset
bias related to gender presentation and the “hallucination” of objects that are not visually
present in the scene. The first chapter will focus on a solution to the issue of bias related to
gender presentation and the second will analyze possible causes of “hallucinations”.

Both of the following chapters were joint works with Lisa Anne Hendricks, Anna Rohrbach,
Kate Saenko, and Trevor Darrell [23, 45].
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Chapter 2

Overcoming Bias in Captioning
Models

Most machine learning methods are known to capture and exploit biases of the training
data. While some biases are beneficial for learning, others are harmful. Specifically, image
captioning models tend to exaggerate biases present in training data (e.g., if a word is present
in 60% of training sentences, it might be predicted in 70% of sentences at test time). This can
lead to incorrect captions in domains where unbiased captions are desired, or required, due to
over-reliance on the learned prior and image context. In this work we investigate generation
of gender-specific caption words (e.g. man, woman) based on the person’s appearance or the
image context. We introduce a new Equalizer model that encourages equal gender probability
when gender evidence is occluded in a scene and confident predictions when gender evidence
is present. The resulting model is forced to look at a person rather than use contextual cues
to make a gender-specific prediction. The losses that comprise our model, the Appearance
Confusion Loss and the Confident Loss, are general, and can be added to any description
model in order to mitigate impacts of unwanted bias in a description dataset. Our proposed
model has lower error than prior work when describing images with people and mentioning
their gender and more closely matches the ground truth ratio of sentences including women
to sentences including men. Finally, we show that our model more often looks at people
when predicting their gender. 1

1This chapter is based on joint work with Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, and Anna
Rohrbach presented at ECCV 2018 [23]. Lisa Anne Hendricks also led the paper. https://people.eecs.
berkeley.edu/~lisa_anne/snowboard.html

https://people.eecs.berkeley.edu/~lisa_anne/snowboard.html
https://people.eecs.berkeley.edu/~lisa_anne/snowboard.html
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Baseline:
A man sitting at a desk with a 
laptop computer.

Our Model:
A woman sitting in front of a 
laptop computer.

Baseline:
A man holding a tennis racquet 
on a tennis court.

Our Model:
A man holding a tennis racquet 
on a tennis court.

Wrong Right for the Wrong 
Reasons

Right for the Right 
Reasons

Right for the Right 
Reasons

Figure 2.1: Examples where our proposed model (Equalizer) corrects bias in image captions.
The overlaid heatmap indicates which image regions are most important for predicting the
gender word. On the left, the baseline predicts gender incorrectly, presumably because it
looks at the laptop (not the person). On the right, the baseline predicts the gender word
correctly but it does not look at the person when predicting gender and is thus not acceptable.
In contrast, our model predicts the correct gender word and correctly considers the person
when predicting gender.

2.1 Motivation

Exploiting contextual cues can frequently lead to better performance on computer vision
tasks [55, 54, 17]. For example, in the visual description task, predicting a “mouse” might
be easier given that a computer is also in the image. However, in some cases making decisions
based on context can lead to incorrect, and perhaps even o↵ensive, predictions. In this work,
we consider one such scenario: generating captions about men and women. We posit that
when description models predict gendered words such as “man” or “woman”, they should
consider visual evidence associated with the described person, and not contextual cues like
location (e.g., “kitchen”) or other objects in a scene (e.g., “snowboard”). Not only is it
important for description systems to avoid egregious errors (e.g., always predicting the word
“man” in snowboarding scenes), but it is also important for predictions to be right for the
right reason. For example, Figure 2.1 (left) shows a case where prior work predicts the
incorrect gender, while our model accurately predicts the gender presentation by considering
the correct gender evidence. Figure 2.1 (right) shows an example where both models predict
the correct gender, but prior work does not look at the person when describing the image
(it is right for the wrong reasons).

Bias in image captioning is particularly challenging to overcome because of the multi-
modal nature of the task; predicted words are not only influenced by an image, but also
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biased by the learned language model. Though [68] studied bias for structured prediction
tasks (e.g., semantic role labeling), they did not consider the task of image captioning. Fur-
thermore, the solution proposed in [68] requires access to the entire test set in order to
rebalance gender predictions to reflect the distribution in the training set. Consequently,
[68] relies on the assumption that the distribution of genders is the same at training and test
time. We make no such assumptions; we consider a more realistic scenario in which captions
are generated for images independent of other test images.

In order to encourage description models to generate less biased captions, we introduce
the Equalizer Model. Our model includes two complementary loss terms: the Appearance
Confusion Loss (ACL) and the Confident Loss (Conf). The Appearance Confusion Loss is
based on the intuition that, given an image in which evidence of gender is absent, description
models should be unable to accurately predict a gendered word. However, it is not enough
to confuse the model when gender evidence is absent; we must also encourage the model to
consider gender evidence when it is present. Our Confident Loss helps to increase the model’s
confidence when gender is in the image. These complementary losses allow the Equalizer
model to be cautious in the absence of gender information and discriminative in its presence.

Our proposed Equalizer model leads to less biased captions: not only does it lead to
lower error when predicting gendered words, but it also performs well when the distribution
of gender presentation in the test set is not aligned with the training set. Additionally,
we observe that Equalizer generates gender neutral words (like “person”) when it is not
confident of the gender. Furthermore, we demonstrate that Equalizer focuses on humans
when predicting gender words, as opposed to focusing on other image context.
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2.2 Related Work

Unwanted Dataset Bias.

Unwanted dataset biases (e.g., gender, ethnic biases) have been studied across a wide variety
of AI domains [48, 51, 6, 7, 5, 38]. One common theme is the notion of bias amplification, in
which bias is not only learned, but amplified [68, 6, 51]. For example, in the image captioning
scenario, if 70% of images with umbrellas include a woman and 30% include a man, at test
time the model might amplify this bias to 85% and 15%. Eliminating bias amplification
is not as simple as balancing across attributes for a specific category. [51] study bias
in classification and find that even though white and black people appear in “basketball”
images with similar frequency, models learn to classify images as “basketball” based on the
presence of a black person. One explanation is that though the data is balanced in regard
to the class “basketball”, there are many more white people in the dataset. Consequently,
to perfectly balance a dataset, one would have to balance across all possible co-occurrences
which is infeasible.

Natural language data is subject to reporting bias [6, 18, 37, 36] in which people over-
report less common co-occurrences, such as “male nurse” [6] or “green banana” [37]. [36] also
discuss how visual descriptions reflect cultural biases (e.g., assuming a woman with a child is
a mother, even though this cannot be confirmed in an image). We observe that annotators
specify gender even when gender cannot be confirmed in an image (e.g., a snowboarder might
be labeled as “man” even if gender evidence is occluded).

Our work is most similar to [68] who consider bias in semantic role labeling and multilabel
classification (as opposed to image captioning). To avoid bias amplification, [68] rebalance
the test time predictions to more accurately reflect the training time word ratios. This
solution is unsatisfactory because (i) it requires access to the entire test set and (ii) it
assumes that the distribution of objects at test time is the same as at training time. We
consider a more realistic scenario in our experiments, and show that the ratio of woman to
man in our predicted sentences closely resembles the ratio in ground truth sentences, even
when the test distribution is di↵erent from the training distribution.

Fairness.

Building AI systems which treat protected attributes (e.g., age, gender, sexual orientation) in
a fair manner is increasingly important [20, 13, 64, 40]. In the machine learning literature,
“fairness” generally requires that systems do not use information such as gender or age in a
way that disadvantages one group over another. We consider is di↵erent scenario as we are
trying to predict protected attributes.

Distribution matching has been used to build fair systems [40] by encouraging the dis-
tribution of decisions to be similar across di↵erent protected classes, as well as for other
applications such as domain adaption [56, 67] and transduction learning [39]. Our Appear-
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ance Confusion Loss is similar as it encourages the distribution of predictions to be similar
for man and woman classes when gender information is not available.

Right for the Right Reasons.

Assuring models are “right for the right reasons,” or consider similar evidence as humans
when making decisions, helps researchers understand how models will perform in real world
applications (e.g., when predicting outcomes for pneumonia patients in [9]) or discover un-
derlying dataset bias [53]. We hypothesize that models which look at appropriate gender
evidence will perform better in new scenarios, specifically when the gender distribution at
test and training time are di↵erent.

Recently, [47] develop a loss function which compares explanations for a decision to
ground truth explanations. However, [47] generating explanations for visual decisions is a
di�cult and active area of research [41, 49, 15, 43, 69, 63]. Instead of relying on our model
to accurately explain itself during training, we verify that our formulation encourages models
to be right for the right reason at test time.

Visual Description.

Most visual description work (e.g., [58, 12, 25, 60, 1]) focuses on improving overall sentence
quality, without regard to captured biases. Though we pay special attention to gender in this
work, all captioning models trained on visual description data (MSCOCO [32], Flickr30k [62],
MSR-VTT [59] to name a few) implicitly learn to classify gender. However current captioning
models do not discuss gender the way humans do, but amplify gender bias; our intent is to
generate descriptions which more accurately reflect human descriptions when discussing this
important category.

Gender Classification.

Gender classification models frequently focus on facial features [30, 66, 14]. In contrast, we
are mainly concerned about whether contextual clues in complex scenes bias the production
of gendered words during sentence generation. Gender classification has also been studied
in natural language processing ([3, 61], [8]).

Ethical Considerations.

Frequently, gender classification is seen as a binary task: data points are labeled as ei-
ther “man” or “woman”. However, AI practitioners, both in industrial2 and academic3

settings, are increasingly concerned that gender classification systems should be inclusive.

2https://clarifai.com/blog/socially-responsible-pixels-a-look-inside-clarifais-new-demographics-recognition-

model
3https://www.media.mit.edu/projects/gender-shades/faq
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Our captioning model predicts three gender categories: male, female, and gender neutral
(e.g., person) based on visual appearance. When designing gender classification systems, it
is important to understand where labels are sourced from [28]. We determine gender labels
using a previously collected, publicly released dataset in which annotators describe images
[32]. Importantly, people in the images are not asked to identify their gender. Thus, we
emphasize that we are not classifying biological sex or gender identity, but rather gender
expression.
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CNN A

man

<EOS>

Caption Correctness 
Loss

Confident Loss

CNN A

?

<EOS>

Caption Correctness 
Loss

Appearance Confusion 
Loss

I = 

I’ = 

Figure 2.2: Equalizer includes two novel loss terms: the Confident Loss on images with men
or women (top) and the Appearance Confusion Loss on images where men and women are
occluded (bottom). Together these losses encourage our model to make correct predictions
when evidence of gender is present, and be cautious in its absence. We also include the
Caption Correctness Loss (cross entropy loss) for both image types.

2.3 Equalizer: Overcoming Bias in Description
Models

Equalizer is based on the following intuitions: if evidence to support a specific gender decision
is not present in an image, the model should be confused about which gender to predict
(enforced by an Appearance Confusion Loss term), and if evidence to support a gender
decision is in an image, the model should be confident in its prediction (enforced by a
Confident Loss term). To train our model we require not only pairs of images, I, and
sentences, S, but also annotation masks M which indicate which evidence in an image is
appropriate for determining gender. Though we use [58] as our base network, Equalizer is
general and can be integrated into any deep description frameworks.

Background: Description Framework

To generate a description, high level image features are first extracted from the InceptionV3
[52] model. The image features are then used to initialize an LSTM hidden state. To begin
sentence generation, a start of sentence token is input into the LSTM. For each subsequent
time step during training, the ground truth word wt is input into the LSTM. At test time,
the previously predicted word wt�1 is input into the LSTM at each time step. Generation
concludes when an end of sequence token is generated. Like [58], we include the standard
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cross entropy loss (LCE) during training:

LCE = � 1

N

NX

n=0

TX

t=0

log(p(wt|w0:t�1, I)), (2.1)

where N is the batch size, T is the number of words in the sentence, wt is a ground truth
word at time t, and I is an image.

Appearance Confusion Loss

Our Appearance Confusion Loss encourages the underlying description model to be confused
when making gender decisions if the input image does not contain appropriate evidence for
the decision. To optimize the Appearance Confusion Loss, we require ground truth rationales
indicating which evidence is appropriate for a particular gender decision. We expect the
resulting rationales to be masks, M , which are 1 for pixels which should not contribute to a
gender decision and 0 for pixels which are appropriate to consider when determining gender.
The Hadamard product of the mask and the original image, I �M , yields a new image, I 0,
with gender information that the implementer deems appropriate for classification removed.
Intuitively, for an image devoid of gender information, the probability of predicting man or
woman should be equal. The Appearance Confusion Loss enforces a fair prior by asserting
that this is the case.

To define our Appearance Confusion Loss, we first define a confusion function (C) which
operates over the predicted distribution of words p(w̃t), a set of woman gender words (Gw),
and a set of man gender words (Gm):

C(w̃t, I
0) = |

X

gw2Gw

p(w̃t = gw|w0:t�1, I
0)�

X

gm2Gm

p(w̃t = gm|w0:t�1, I
0)|. (2.2)

In practice, the Gw consists only of the word “woman” and, likewise, the Gm consists only
of the word “man”. These are by far the most commonly used gender words in the datasets
we consider and we find that using these “sets” results in similar performance as using more
complete sets.

We can now define our Appearance Confusion Loss (LAC) as:

LAC =
1

N

NX

n=0

TX

t=0

(wt 2 Gw [ Gm)C(w̃t, I
0), (2.3)

where is an indicator variable that denotes whether or not wt is a gendered word.
For the remaining non-gendered words that correspond to images I 0, we apply the stan-

dard cross entropy loss to encourage the model to discuss objects which are still visible in
I 0. In addition to encouraging sentences to be image relevant even when the gender infor-
mation has been removed, this also encourages the model to learn representations of words
like “dog” and “frisbee” that are not reliant on gender information.
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Confident Loss

In addition to being unsure when gender evidence is occluded, we also encourage our model
to be confident when gender evidence is present. Thus, we introduce the Confident Loss
term, which encourages the model to predict gender words correctly.

Our Confident Loss encourages the probabilities for predicted gender words to be high
on images I in which gender information is present. Given functions FW and FM which
measure how confidently the model predicts woman and man words respectively, we can
write the Confident Loss as:

LCon =
1

N

NX

n=0

TX

t=0

( (wt 2 Gw)FW (w̃t, I) + (wt 2 Gm)FM(w̃t, I)). (2.4)

To measure the confidence of predicted gender words, we consider the quotient between
predicted probabilities for man and gender words (FM is of the same form):

FW (w̃t, I) =

P
gm2Gm

p(w̃t = gm|w0:t�1, I)

(
P

gw2Gw
p(w̃t = gw|w0:t�1, I)) + ✏

(2.5)

where ✏ is a small epsilon value added for numerical stability.
When the model is confident of a gender prediction (e.g., for the word “woman”), the

probability of the word “woman” should be considerably higher than the probability of the
word “man”, which will result in a small value for FW and thus a small loss. One nice
property of considering the quotient between predicted probabilities is that we encourage
the model to distinguish between gendered words without forcing the model to predict a
gendered word. For example, if the model predicts a probability of 0.2 for “man”, 0.5
for “woman”, and 0.3 for “person” on a “woman” image, our confidence loss will be low.
However, the model is still able to predict gender neutral words, like “person” with relatively
high probability. This is distinct from other possible losses, like placing a larger weight on
gender words in the cross entropy loss, which forces the model to predict “man”/“woman”
words and penalizes the gender neutral words.

The Equalizer Model

Our final model is a linear combination of all aforementioned losses:

L = ↵LCE + �LAC + µLCon, (2.6)

where ↵, �, and µ are hyperparameters chosen on a validation set (↵, µ = 1, � = 10 in our
experiments).

Our Equalizer method is general and our base captioning framework can be substituted
with any other deep captioning framework. By combining all of these terms, the Equalizer
model can not only generate image relevant sentences, but also make confident gender pre-
dictions under su�cient evidence. We find that both the Appearance Confusion Loss and
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the Confident Loss are important in creating a confident yet cautious model. Interestingly,
the Equalizer model achieves the lowest misclassification rate only when these two losses are
combined, highlighting the complementary nature of these two loss terms.
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2.4 Experiments

Datasets

MSCOCO-Bias.

To evaluate our method, we consider the dataset used by [68] for evaluating bias amplification
in structured prediction problems. This dataset consists of images from MSCOCO [32]
which are labeled as “man” or “woman”. Though “person” is an MSCOCO class, “man”
and “woman” are not, so [68] employ ground truth captions to determine if images contain
a man or a woman. Images are labeled as “man” if at least one description includes the
word “man” and no descriptions include the word “woman”. Likewise, images are labeled as
“woman” if at least one description includes the word “woman” and no descriptions include
the word “man”. Images are discarded if both “man” and “woman” are mentioned. We
refer to this dataset as MSCOCO-Bias.

MSCOCO-Balanced.

We also evaluate on a set where we purposely change the gender ratio. We believe this
is representative of real world scenarios in which di↵erent distributions of men and women
might be present at test time. The MSCOCO-Bias set has a roughly 1:3 woman to man ratio
where as this set, called MSCOCO-Balanced, has a 1:1 woman to man ratio. We randomly
select 500 images from MSCOCO-Bias set which include the word “woman” and 500 which
include “man”.

Person Masks.

To train Equalizer, we need ground truth human rationales for why a person should be
predicted as a man or a woman. We use the person segmentation masks from the MSCOCO
dataset. Once the masked image is created, we fill the segmentation mask with the average
pixel value in the image. We use the masks both at training time to compute Appearance
Confusion Loss and during evaluation to ensure that models are predicting gender words by
looking at the person. While for MSCOCO the person annotations are readily available, for
other datasets e.g. a person detector could be used.

Metrics

To evaluate our methods, we rely on the following metrics.
Error. Due to the sensitive nature of prediction for protected classes (gender words in

our scenario), we emphasize the importance of a low error. The error rate is the number
of man/woman misclassifications, while gender neutral terms are not considered errors. We
expect that the best model would rather predict gender neutral words in cases where gender
is not obvious.
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Gender Ratio. Second, we consider the ratio of sentences which belong to a “woman”
set to sentences which belong to a “man” set. We consider a sentence to fall in a “woman”
set if it predicts any word from a precompiled list of female gendered words, and respectively
fall in a “man” set if it predicts any word from a precompiled list of male gendered words.

Right for the Right Reasons. Finally, to measure if a model is “right for the right
reasons” we consider the pointing game [65] evaluation. We first create visual explanations
for “woman”/“man” using the Grad-CAM approach [49] as well as saliency maps created by
occluding image regions in a sliding window fashion. To measure if our models are right for
the right reason, we verify whether the point with the highest activation in the explanation
heat map falls in the person segmentation mask.

Training Details

All models are initialized from the Show and Tell model [58] pre-trained on all of MSCOCO
for 1 million iterations (without fine-tuning through the visual representation). Models are
trained for additional 500,000 iterations on the MSCOCO-Bias set, fine-tuning through the
visual representation (Inception v3 [52]) for 500,000 iterations.

Baselines and Ablations

Baseline-FT.

The simplest baseline is fine-tuning the Show and Tell model through the LSTM and convo-
lutional networks using the standard cross-entropy loss on our target dataset, the MSCOCO-
Bias dataset.

Balanced.

We train a Balanced baseline in which we re-balance the data distribution at training time
to account for the larger number of men instances in the training data. Even though we
cannot know the correct distribution of our data at test time, we can enforce our belief
that predicting a woman or man should be equally likely. At training time, we re-sample
the images of women so that the number of training examples of women is the same as the
number of training examples of men.

UpWeight.

We also experiment with upweighting the loss value for gender words in the standard cross
entropy loss to increase the penalty for a misclassification. For each time step where the
ground truth caption says the word “man” or “woman”, we multiply that term in the loss by
a constant value (10 in reported experiments). Intuitively, upweighting should encourage the
models to accurately predict gender words. However, unlike our Confident Loss, upweighting
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MSCOCO-Bias MSCOCO-Balanced
Model Error Ratio � Error Ratio �

Baseline-FT 12.83 0.15 19.30 0.51
Balanced 12.85 0.14 18.30 0.47
UpWeight 13.56 0.08 16.30 0.35

Equalizer w/o ACL 7.57 0.04 10.10 0.26
Equalizer w/o Conf 9.62 0.09 13.90 0.40
Equalizer 7.02 -0.03 8.10 0.13

Table 2.1: Evaluation of predicted gender words based on error rate and ratio of generated
sentences which include the “woman” words to sentences which include the “man” words.
Equalizer achieves the lowest error rate and predicts sentences with a gender ratio most
similar to the corresponding ground truth captions (Ratio �), even when the test set has a
di↵erent distribution of gender words than the training set, as is the case for the MSCOCO-
Balanced dataset.

drives the model to make either “man” or “woman” predictions without the opportunity to
place a high probability on gender neutral words.

Ablations.

To isolate the impact of the two loss terms in Equalizer, we report results with only the
Appearance Confusion Loss (Equalizer w/o Conf) and only the Confidence Loss (Equalizer
w/o ACL). We then report results of our full Equalizer model.

Results

Error.

Table 2.1 reports the error rates when describing men and women on the MSCOCO-Bias
and MSCOCO-Balanced test sets. Comparing to baselines, Equalizer shows consistent im-
provements. Importantly, our full model consistently improves upon Equalizer w/o ACL
and Equalizer w/o Conf. When comparing Equalizer to baselines, we see a larger perfor-
mance gain on the MSCOCO-Balanced dataset. As discussed later, this is in part because
our model does a particularly good job of decreasing error on the minority class (woman).
Unlike baseline models, our model has a similar error rate on each set. This indicates that
the error rate of our model is not as sensitive to shifts in the gender distribution at test time.

Interestingly, the results of the Baseline-FT model and Balanced model are not substan-
tially di↵erent. One possibility is that the co-occurrences across words are not balanced
(e.g., if there is gender imbalance specifically for images with “umbrella” just balancing the
dataset based on gender word counts is not su�cient to balance the dataset). We empha-
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Women Men Outcome Divergence
Model Correct Incorrect Other Correct Incorrect Other between Genders

Baseline-FT 46.28 34.11 19.61 75.05 4.23 20.72 0.121
Balanced 47.67 33.80 18.54 75.89 4.38 19.72 0.116
UpWeight 60.59 29.82 9.58 87.84 6.98 5.17 0.078

Equalizer w/o ACL 56.18 16.02 27.81 67.58 4.15 28.26 0.031
Equalizer w/o Conf 46.03 24.84 29.13 61.11 3.47 35.42 0.075
Equalizer (Ours) 57.38 12.99 29.63 59.02 4.61 36.37 0.018

Table 2.2: Accuracy per class for MSCOCO-Bias dataset. Though UpWeight achieves the
highest recall for both men and women images, it also has a high error, especially for
women. One criterion of a “fair” system is that it has similar outcomes across classes.
We measure outcome similarity by computing the Jensen-Shannon divergence between Cor-
rect/Incorrect/Other sentences for men and women images (lower is better) and observe that
Equalizer performs best on this metric.

size that balancing across all co-occurring words is di�cult in large-scale settings with large
vocabularies.

Gender Ratio

We also consider the ratio of captions which include only female words to captions which
include only male words. In Table 2.1 we report the di↵erence between the ground truth
ratio and the ratio produced by each captioning model. Again, the ACL and Confident losses
are complementary and Equalizer has the best overall performance.

Performance for Each Gender.

Images with females comprise a much smaller portion of MSCOCO than images with males.
Therefore the overall performance across classes (i.e. man, woman) can be misleading be-
cause it downplays the errors in the minority class. Additionally, unlike [68] who consider
a classification scenario in which the model is forced to predict a gender, our description
models can also discuss gender neutral terms such as “person” or “player”. In Table 2.2 for
each gender, we report the percentage of sentences in which gender is predicted correctly or
incorrectly and when no gender specific word is generated on the MSCOCO-Bias set.

Across all models, the error for Men is quite low. However, our model significantly
improves the error for the minority class, Women. Interestingly, we observe that Equalizer
has a similar recall (Correct), error (Incorrect), and Other rate across both genders. A
caption model could be considered more “fair” if, for each gender, the possible outcomes
(correct gender mentioned, incorrect gender mentioned, gender neutral) are similar. This
resembles the notion of equalized odds in fairness literature [20], which requires a system to
have similar false positive and false negative rates across groups. To formalize this notion of
fairness in our captioning systems, we report the outcome type divergence between genders by
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Figure 2.3: Accuracy across man, woman, and gender neutral terms for di↵erent models
as a function of annotator confidence. When only one annotator describes an image with a
gendered word, Equalizer has a low accuracy as it more likely predicts gender neutral words
but when more annotations mention gendered words, Equalizer has higher accuracy than
other models.

measuring the Jensen-Shannon [31] divergence between Correct/Incorrect/Other outcomes
for Men and Women. Lower divergence indicates that Women and Men classes result in a
similar distribution of outcomes, and thus the model can be considered more “fair”. Equalizer
has the lowest divergence (0.018).

Annotator Confidence.

As described above, gender labels are mined from captions provided in the MSCOCO dataset.
Each image corresponds to five captions, but not all captions for a single image include a
gendered word. Counting the number of sentences which include a gendered word provides
a rough estimate of how apparent gender is in an image and how important it is to mention
when describing the scene.

To understand how well our model captures the way annotators describe people, instead
of labeling images as either “man” or “woman”, we label images as “man”, “woman”, or
“gender neutral” based on how many annotators mentioned gender in their description. For
a specific threshold value T , we consider an image to belong to the “man” or “woman”
class if T or more annotators mention the gender in their description, and “gender neutral”
otherwise. We can then measure accuracy over these three classes. Whereas a naive solution
which restricts vocabulary to include no gender words would have low error as defined in
Table 2.1, it would not capture the way humans use gender words when describing images.
Indeed, the MSCOCO training set includes over 200,000 instances of words which describe
people. Over half of all words used to describe people are gendered. By considering accuracy
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across three classes, we can better measure how well models capture the way humans describe
gender.

Figure 2.3 plots the accuracy of each model with respect to the confidence threshold T .
At low threshold values, Equalizer performs worse as it tends to more frequently output
gender neutral terms, and the UpWeight model, which almost always predicts gendered
words, performs best. However, as the threshold value increases, Equalizer performs better
than other models, including at a threshold value of 3 which corresponds to classifying images
based o↵ the majority vote. This indicates that Equalizer naturally captures when humans
describe images with gendered or gender neutral words.

Object Gender Co-Occurrence.

We analyze how gender prediction influences prediction of other words on the MSCOCO-
Bias test set. Specifically, we consider the 80 MSCOCO categories, excluding the category
“person”. We adopt the bias amplification metric proposed in [68], and compute the following
ratios: count(man&object)

count(person&object) and count(woman&object)
count(person&object) , where man refers to all male words, woman

refers to all female words, and person refers to all male, female, or gender neutral words.
Ideally, these ratios should be similar for generated captions and ground truth captions.
However, e.g. for man and motorcycle, the ground truth ratio is 0.40 and for the Baseline-
FT and Equalizer, the ratio is 0.81 and 0.65, respectively. Though Equalizer over-predicts
this pair, the ratio is closer to the ground truth than when comparing Baseline-FT to the
ground truth. Likewise, for woman and umbrella, the ground truth ratio is 0.40, Baseline-FT
ratio is 0.64, and Equalizer ratio is 0.56. As a more holistic metric, we average the di↵erence
of ratios between ground truth and generated captions across objects (lower is better). For
male words, Equalizer is substantially better than the Baseline-FT (0.147 vs. 0.193) and
similar for female words (0.096 vs. 0.99).

Caption Quality.

Qualitatively, the sentences from all of our models are linguistically fluent (indeed, comparing
sentences in Figure 2.4 we note that usually only the word referring to the person changes).
However, we do notice a small drop in performance on standard description metrics (25.2
to 24.3 on METEOR [29] when comparing Baseline-FT to our full Equalizer) on MSCOCO-
Bias. One possibility is that our model is overly cautious and is penalized for producing
gender neutral terms for sentences that humans describe with gendered terms.

Right for the Right Reasons.

We hypothesize that many misclassification errors occur due to the model looking at the
wrong visual evidence, e.g. conditioning gender prediction on context rather than on the
person’s appearance. We quantitatively confirm this hypothesis and show that our proposed
model improves this behavior by looking at the appropriate evidence, i.e. is being “right for
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Accuracy Woman Man All
Random 22.6 19.5 21.0

Baseline-FT 39.8 34.3 37.0
Balanced 37.6 34.1 35.8
UpWeight 43.3 36.4 39.9

Equalizer w/o ACL 48.1 39.6 43.8
Equalizer w/o Conf 43.9 36.8 40.4
Equalizer (Ours) 49.9 45.2 47.5

Accuracy Woman Man All

Random 25.1 17.5 21.3

Baseline-FT 45.3 40.4 42.8
Balanced 48.5 42.2 45.3
UpWeight 54.1 45.5 49.8

Equalizer w/o ACL 54.7 47.5 51.1
Equalizer w/o Conf 48.9 46.7 47.8
Equalizer (Ours) 56.3 51.1 53.7

(a) Visual explanation is a Grad-CAM map. (b) Visual explanation is a saliency map.

Table 2.3: Pointing game evaluation that measures whether the visual explanations for
“man” / “woman” words fall in the person segmentation ground-truth. Evaluation is done
for ground-truth captions on the MSCOCO-Balanced.

the right reasons”. To evaluate this we rely on two visual explanation techniques: Grad-CAM
[49] and saliency maps generated by occluding image regions in a sliding window fashion.

Unlike [49] who apply Grad-CAM to an entire caption, we visualize the evidence for
generating specific words, i.e. “man” and “woman”. Specifically, we apply Grad-CAM to
the last convolutional layer of our image processing network, InceptionV3 [52], we obtain
8x8 weight matrices. To obtain saliency maps, we resize an input image to 299 ⇥ 299 and
uniformly divide it into 32⇥32 pixel regions, obtaining a 10⇥10 grid (the bottom/rightmost
cells being smaller). Next, for every cell in the grid, we zero out the respective pixels and
feed the obtained “partially blocked out” image through the captioning network (similar to
as was done in the occlusion sensitivity experiments in [63]). Then, for the ground-truth
caption, we compute the “information loss”, i.e. the decrease in predicting the words “man”
and “woman” as �log(p(wt = gm)) and �log(p(wt = gw)), respectively. This is similar to
the top-down saliency approach of [41], who zero-out all the intermediate feature descriptors
but one.

To evaluate whether the visual explanation for the predicted word is focused on a person,
we rely on person masks, obtained from MSCOCO ground-truth person segmentations. We
use the pointing game evaluation [65]. We upscale visual explanations to the original image
size. We define a “hit” to be when the point with the highest weight is contained in the
person mask. The accuracy is computed as #hits

#hits+#misses .
Results on the MSCOCO-Balanced set are presented in Table 2.3 (a) and (b), for the

Grad-CAM and saliency maps, respectively. For a fair comparison we provide all models
with ground-truth captions. For completeness we also report the random baseline, where the
point with the highest weight is selected randomly. We see that Equalizer obtains the best
accuracy, significantly improving over the Baseline-FT and all model variants. A similar
evaluation on the actual generated captions shows the same trends.
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A man walking a dog on a 
leash.

A person walking a dog on a 
leash.

A man and a dog are in the 
snow.

A man riding a snowboard down 
a snow covered slope.

A woman walking down a 
street holding an umbrella.

A man walking down a street 
holding an umbrella.

A woman walking down a street 
holding an umbrella.

A man walking down a street 
holding an umbrella.

Baseline-FT Equalizer w/o ACLUpWeight Equalizer

A man standing in a 
kitchen preparing food.

A man standing in a 
kitchen preparing food.

A man standing in a 
kitchen preparing food.

A man standing in a 
kitchen preparing food.

Figure 2.4: Qualitative comparison of multiple baselines and our model. In the top example,
being conservative (“person”) is better than being wrong (“man”) as the gender is not
obvious. In the bottom example the baselines are looking at the wrong visual evidence.

Looking at objects.

Using our pointing technique, we can also analyze which MSCOCO objects models are “look-
ing” at when they do not point at the person while predicting “man”/“woman”. Specifically,
we count a hit if the highest activation is on an object in question. We compute the fol-
lowing ratio for each gender: number of images where an object is pointed at to the true
number of images with that object. We find that there are di↵erences across genders, e.g.
“umbrella”, “bench”, “suitcase” are more often pointed at when discussing women, while
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e.g. “truck”, “couch”, “pizza” when discussing men. Our model reduces the overall “delta”
between genders for ground truth sentences from an average 0.12 to 0.08, compared to the
Baseline-FT. E.g. for “dining table” Equalizer decreases the delta from 0.07 to 0.03.

Performance breakdown for biased words.

We additionally analyze objects which co-occur with one gender more than the other. For
a careful analysis, we choose five words that are biased to co-occur with women (umbrella,
kitchen, cell phone, table, and food) and five words which frequently co-occur with men
(skateboard, baseball, tie, motorcycle, and snowboard). To choose biased words, we com-
pute bias as is done in [68] Section 3 for the most commonly occurring nouns (> 250 times)
in the MSCOCO-Bias training set. We compute the error rate and the di↵erence between
the ground truth ratio of women to men and the ratio produced by each captioning model,
for images containing the above objects (Table 2.4). We observe similar trends to our obser-
vations in the main paper. Equalizer and Equalizer w/o ACL have the lowest errors, with
Equalizer w/o ACL performing slightly better, suggesting the confidence term is important
for low error rate. Considering distance to the ground truth gender ratio, the Equalizer
model consistently outperforms other models. One particularly interesting case study is the
word “kitchen” in which the ground truth woman to man gender ratio is 0.946 (recall that
the dataset contains a roughly 1:3 woman to man gender ratio, so a gender ratio close to
1.0 for a specific object suggests that a higher proportion of “woman” images include a
“kitchen” than “man” images). The Equalizer model predicts a gender ratio of 1.0 (delta
0.054) whereas the next best model (Equalizer w/o ACL) predicts a gender ratio of 0.806
(delta 0.14). The Baseline-FT model predicts a ratio of 0.586 (delta 0.361).

Masked Images.

We also consider the gender ratio when predicting sentences for masked images (images in
the test set are masked in the same way as was done to train the Appearance Confusion
Loss term). Ideally, the ratio of predicted gender words should be close to 1.0 on the masked
images as gender information is obscured. The man to woman gender ratios for the Equalizer
w/o ACL, Equalizer w/o Conf, and Equalizer are 3.45, 2.87, and 1.98 respectively (all other
models have larger ratios than Equalizer w/o ACL). This suggests that again both our ACL
loss and Conf loss are important for predicting a fair gender ratio when gender information
is not present in the image. Again, we achieve the best performance with our full Equalizer
model.

Qualitative Results.

Figure 2.4 compares Grad-CAM visualizations for predicted gender words from our model
to the Baseline-FT, UpWeight, and Equalizer w/o ACL. We consistently see that our model
looks at the person when describing gendered words. In Figure 2.4 (top), all other models
look at the dog rather than the person and predict the gender “man” (ground truth label is
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Baseline-FT 0.303 0.277 0.172 0.200 0.154 0.028 0.072 0.017 0.083 0.073
Equalizer w/o ACL 0.210 0.157 0.145 0.100 0.085 0.020 0.085 0.021 0.054 0.031
Equalizer w/o Conf 0.250 0.269 0.158 0.189 0.166 0.028 0.038 0.017 0.107 0.100
Equalizer 0.176 0.181 0.119 0.119 0.128 0.031 0.113 0.011 0.064 0.081

� Ratio (Women:Men)

Baseline-FT 1.074 0.358 0.278 0.351 0.213 0.011 0.004 0.013 0.103 0.094
Equalizer w/o ACL 1.274 0.137 0.028 0.151 0.092 0.009 0.018 0.002 0.086 0.051
Equalizer w/o Conf 1.931 0.291 0.212 0.275 0.127 0.008 0.023 0.015 0.084 0.081
Equalizer 2.335 0.057 0.009 0.131 0.031 0.001 0.046 0.008 0.077 0.033

Table 2.4: Breakdown of error rate and di↵erence to ground-truth woman:man ratio over
images with specific biased words. We see that the full Equalizer generally outperforms the
Baseline-FT. On error, Equalizer w/o ACL performs best, followed by Equalizer. Equalizer
performs best when considering predicted gender ratio.

“woman”). In this particular example, the gender is somewhat ambiguous, and our model
conservatively predicts “person” rather than misclassify the gender. In Figure 2.4 (middle),
the Baseline-FT and UpWeight example both incorrectly predict the word “woman” and do
not look at the person (women occur more frequently with umbrellas). In contrast, both the
Equalizer w/o ACL and the Equalizer look at the person and predict the correct gender.
Finally, in Figure 2.4 (bottom), all models predict the correct gender (man), but our model
is the only model which looks at the person and is thus “right for the right reasons.”

In Figure 2.5 we provide multiple examples of images where our model Equalizer predicts
“person” rather than “woman” or “man”. In many cases this occurs when the gender
evidence is challenging (e.g. first example where only the person’s hands and arms are visible
and second example where the person’s face is occluded by the gira↵e) or the person’s pose
is unusual (third example). However, we also observe cases like the one at the bottom,
where Equalizer predicts “person” despite looking at the clear/correct gender evidence. We
attribute this to the Confident Loss term, which allows for neutral words generation when
the model is uncertain about gender.

Figure 2.6 presents more qualitative examples for the baselines and our model. At the
top we show success cases where our model predicts the right gender for the right reasons.
At the bottom we show failure cases with incorrectly predicted gender and the wrong gender
evidence.
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A man sitting on a couch with 
a laptop computer.

A person laying on a bed with 
a laptop.

A man laying in bed with a 
laptop computer.

A person laying on a bed in a 
room.

A person laying on a bed in a 
room.

A man laying on a bed in a 
room.

Baseline-FT UpWeight Equalizer

A man riding a wave on 
top of a surfboard.

A person on a surfboard in 
the water.

A man riding a wave on 
top of a surfboard.

A woman is feeding a 
giraffe in a zoo.

A person feeding a giraffe 
through a fence.

A woman is feeding a 
giraffe at a zoo.

Figure 2.5: Qualitative comparison of baselines and our model when our model predicts
“person” rather than “woman” or “man”.
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A man sitting at a table in 
front of a cake.

A woman holding a cake with 
a candle on it.

A woman sitting at a table 
with a cake.

A woman is holding a birthday 
cake with candles.

A woman holding a cat in her 
arms.

A man is holding a black and 
white cat.

A man sitting on a couch with a 
dog.

A man holding a cat in his 
arms.

Baseline-FT Equalizer w/o ACL Equalizer w/o Conf Equalizer

A man taking a picture of 
himself in a bathroom 
mirror.

A woman taking a picture 
of herself in a bathroom 
mirror.

A woman taking a picture 
of herself in a mirror.

A man taking a picture of 
himself in a bathroom 
mirror.

A man riding a 
motorcycle down a street.

A woman riding a 
motorcycle down a street.

A woman riding a 
motorcycle down a street.

A person riding a 
motorcycle on a city 
street.

A man sitting on a bench 
talking on a cell phone.

A woman sitting on a 
bench talking on a cell 
phone.

A woman sitting on a 
bench reading a book.

A woman sitting on a 
bench talking on a cell 
phone.

Figure 2.6: Qualitative comparison of baselines and our model. At the top we show success
cases where our model predicts the right gender for the right reasons. At the bottom we
show failure cases with incorrectly predicted gender and the wrong gender evidence.
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2.5 Discussion

We present the Equalizer model which includes an Appearance Confusion Loss to encourage
predictions to be confused when predicting gender if evidence is obscured and the Confident
Loss which encourages predictions to be confident when gender evidence is present. Our
Appearance Confusion Loss, requires human rationales about what is visual evidence is ap-
propriate to consider when predicting gender. We stress the importance of human judgment
when designing models which include protected classes. For example, our model can use
information about clothing type (e.g., dresses) to predict a gender which may not be appro-
priate for all applications. Though we concentrate on gender in this work, we believe the
generality of our framework could be applied when describing other protected attributes, e.g.,
race/ethnicity and believe our results suggest Equalizer can be a valuable tool for overcoming
bias in captioning models.
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2.6 Continuing the Conversation

As research on the impact of gender bias in machine learning progresses, researchers must
confront an important ethical question: why do we need gendered words in image captioning?

Aspects of gender appear in captioning datasets in two ways: human annotators embed
judgments based on appearance in their descriptions and the individuals in photographs,
through their gender expression, provide visual artifacts of gender norms. In this chapter,
we discussed how to leverage appearance judgments to balance predictions for female pre-
senting and male presenting individuals and ground predictions about people appropriately
in the image. However, classifying gender based on visual appearance can negatively im-
pact vulnerable groups [19]. Indeed, [16] discusses how simply equalizing the probability of
predicting “man” and “woman” codifies a cis-gender understanding of human sexuality.

These conversations raise two important questions for future work: does removing judg-
ments about gender from annotations remove bias related to gender expression? if not, how
can we develop captioning solutions that are not biased with respect to gender expression
without having to make assumptions about gender identity from appearance?
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Chapter 3

Object Hallucination in Image
Captioning

Despite continuously improving performance, contemporary image captioning models are
prone to “hallucinating” objects that are not actually in a scene. One problem is that stan-
dard metrics only measure similarity to ground truth captions and may not fully capture
image relevance. In this work, we propose a new image relevance metric to evaluate current
models with veridical visual labels and assess their rate of object hallucination. We analyze
how captioning model architectures and learning objectives contribute to object hallucina-
tion, explore when hallucination is likely due to image misclassification or language priors,
and assess how well current sentence metrics capture object hallucination. We investigate
these questions on the standard image captioning benchmark, MSCOCO, using a diverse set
of models. Our analysis yields several interesting findings, including that models which score
best on standard sentence metrics do not always have lower hallucination and that models
which hallucinate more tend to make errors driven by language priors. 1

1This chapter is based on joint work with Anna Rohrbach, Lisa Anne Hendricks, Trevor Darrell, and
Kate Saenko presented at EMNLP 2018 [45]. Anna Rohrbach and Lisa Anne Hendricks led the paper.
https://people.eecs.berkeley.edu/~lisa_anne/snowboard.html

https://people.eecs.berkeley.edu/~lisa_anne/snowboard.html
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NBT: A woman talking on a cell phone while sitting on a bench.
CIDEr: 0.87, METEOR: 0.23, SPICE: 0.22, CHs: 1.00, CHi: 0.33

TopDown: A woman is talking on a cell phone.
CIDEr: 0.54, METEOR: 0.26, SPICE: 0.13, CHs: 0.00, CHi: 0.00

Figure 3.1: Image captioning models often “hallucinate” objects that may appear in a
given context, like e.g. a bench here. Moreover, the sentence metrics do not always appro-
priately penalize such hallucination. Our proposed metrics (CHAIRs and CHAIRi) reflect
hallucination. For CHAIR lower is better.

3.1 Motivation

Image captioning performance has dramatically improved over the past decade. Despite such
impressive results, it is unclear to what extent captioning models actually rely on image
content: as we show, existing metrics fall short of fully capturing the captions’ relevance to
the image. In Figure 3.1 we show an example where a competitive captioning model, Neural
Baby Talk (NBT) [33], incorrectly generates the object “bench.” We refer to this issue as
object hallucination.

While missing salient objects is also a failure mode, captions are summaries and thus
generally not expected to describe all objects in the scene. On the other hand, describing
objects that are not present in the image has been shown to be less preferable to humans.
For example, the LSMDC challenge [46] documents that correctness is more important to
human judges than specificity. In another study, [35] analyzed how visually impaired people
react to automatic image captions. They found that people vary in their preference of either
coverage or correctness. For many visually impaired who value correctness over coverage,
hallucination is an obvious concern.

Besides being poorly received by humans, object hallucination reveals an internal issue
of a captioning model, such as not learning a very good representation of the visual scene or
overfitting to its loss function.

In this paper we assess the phenomenon of object hallucination in contemporary cap-
tioning models, and consider several key questions. The first question we aim to answer is:
Which models are more prone to hallucination? We analyze this question on a diverse set of
captioning models, spanning di↵erent architectures and learning objectives. To measure ob-
ject hallucination, we propose a new metric, CHAIR (Caption Hallucination Assessment with
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Image Relevance), which captures image relevance of the generated captions. Specifically, we
consider both ground truth object annotations (MSCOCO Object segmentation [32]) and
ground truth sentence annotations (MSCOCO Captions [10]). Interestingly, we find that
models which score best on standard sentence metrics do not always hallucinate less.

The second question we raise is: What are the likely causes of hallucination? While hal-
lucination may occur due to a number of reasons, we believe the top factors include visual
misclassification and over-reliance on language priors. The latter may result in memorizing
which words “go together” regardless of image content, which may lead to poor generaliza-
tion, once the test distribution is changed. We propose image and language model consistency
scores to investigate this issue, and find that models which hallucinate more tend to make
mistakes consistent with a language model.

Finally, we ask: How well do the standard metrics capture hallucination? It is a com-
mon practice to rely on automatic sentence metrics, e.g. CIDEr [57], to evaluate captioning
performance during development, and few employ human evaluation to measure the final
performance of their models. As we largely rely on these metrics, it is important to under-
stand how well they capture the hallucination phenomenon. In Figure 3.1 we show how two
sentences, from NBT with hallucination and from TopDown model [1] – without, are scored
by the standard metrics. As we see, hallucination is not always appropriately penalized. We
find that by using additional ground truth data about the image in the form of object labels,
our metric CHAIR allows us to catch discrepancies that the standard captioning metrics
cannot fully capture. We then investigate ways to assess object hallucination risk with the
standard metrics. Finally, we show that CHAIR is complementary to the standard metrics
in terms of capturing human preference.
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3.2 Method: Caption Hallucination Assessment

We first introduce our image relevance metric, CHAIR, which assesses captions w.r.t. objects
that are actually in an image. It is used as a main tool in our evaluation. Next we discuss the
notions of image and language model consistency, which we use to reason about the causes
of hallucination.

The CHAIR Metric

To measure object hallucination, we propose the CHAIR (Caption Hallucination Assessment
with Image Relevance) metric, which calculates what proportion of words generated are
actually in the image according to the ground truth sentences and object segmentations. This
metric has two variants: per-instance, or what fraction of object instances are hallucinated
(denoted as CHAIRi), and per-sentence, or what fraction of sentences include a hallucinated
object (denoted as CHAIRs):

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}|

CHAIRs =
|{sentences with hallucinated object}|

|{ all sentences}|
For easier analysis, we restrict our study to the 80 MSCOCO objects which appear in

the MSCOCO segmentation challenge. To determine whether a generated sentence contains
hallucinated objects, we first tokenize each sentence and then singularize each word. We then
use a list of synonyms for MSCOCO objects (based on the list from [33]) to map words (e.g.,
“player”) to MSCOCO objects (e.g., “person”). Additionally, for sentences which include
two word compounds (e.g., “hot dog”) we take care that other MSCOCO objects (in this
case “dog”) are not incorrectly assigned to the list of MSCOCO objects in the sentence.
For each ground truth sentence, we determine a list of MSCOCO objects in the same way.
The MSCOCO segmentation annotations are used by simply relying on the provided object
labels.

We find that considering both sources of annotation is important. For example, MSCOCO
contains an object “dining table” annotated with segmentation maps. However, humans
refer to many di↵erent kinds of objects as “table” (e.g., “co↵ee table” or “side table”),
though these objects are not annotated as they are not specifically “dining table”. By
using sentence annotations to scrape ground truth objects, we account for variation in how
human annotators refer to di↵erent objects. Inversely, we find that frequently humans will
not mention all objects in a scene. Qualitatively, we observe that both annotations are
important to capture hallucination. Empirically, we verify that using only segmentation
labels or only reference captions leads to higher hallucination (and practically incorrect)
rates.
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Generated caption: A plate of food with broccoli and a fork.

Image Model predictions: 
bowl, broccoli, carrot, dining table

Language Model predictions for 
the last word: 
fork, spoon, bowl

Figure 3.2: Example of image and language consistency. The hallucination error (“fork”) is
more consistent with the Language Model.

Image Consistency

We define a notion of image consistency, or how consistent errors from the captioning model
are with a model which predicts objects based on an image alone. To measure image con-
sistency for a particular generated word, we train an image model and record P (w|I) or the
probability of predicting the word given only the image. To score the image consistency of
a caption we use the average of P (w|I) for all MSCOCO objects, where higher values mean
that errors are more consistent with the image model. Our image model is a multi-label
classification model with labels corresponding to MSCOCO objects (labels determined the
same way as is done for CHAIR) which shares the visual features with the caption models.

Language Consistency

We also introduce a notion of language consistency, i.e. how consistent errors from the
captioning model are with a model which predicts words based only on previously generated
words. We train an LSTM [24] based language model which predicts a word wt given previous
words w0:t�1 on MSCOCO data. We report language consistency as 1/R(wt) where R(wt)
is the rank of the predicted word in the language model. Again, for a caption we report
average rank across all MSCOCO objects in the sentence and higher language consistency
implies that errors are more consistent with the language model.

We illustrate image and language consistency in Figure 3.2, i.e. the hallucination error
(“fork”) is more consistent with the Language Model predictions than with the Image Model
predictions. We use these consistency measures in Section 3.3 to help us investigate the
causes of hallucination.
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3.3 Exploring Caption Hallucination Results

In this section we present the findings of our study, where we aim to answer the questions
posed in Section 3.1: Which models are more prone to hallucination? What are the likely
causes of hallucination? How well do the standard metrics capture hallucination?

Baseline Captioning Models

We compare object hallucination across a wide range of models. We define two axes for
comparison: model architecture and learning objective.

Model architecture. Regarding model architecture, we consider models both with and
without attention mechanisms. In this work, we use “attention” to refer to any mechanism
which learns to focus on di↵erent image regions, whether image regions be determined by a
high level feature map, or by object proposals from a trained detector. All models are end-
to-end trainable and use a recurrent neural network (LSTM [24] in our case) to output text.
For non-attention based methods we consider the FC model from [42] which incorporates
visual information by initializing the LSTM hidden state with high level image features. We
also consider LRCN [12] which considers visual information at each time step, as opposed
to just initializing the LSTM hidden state with extracted features.

For attention based models, we consider Att2In [42], which is similar to the original
attention based model proposed by [60], except the image feature is only input into the
cell gate as this was shown to lead to better performance. We then consider the attention
model proposed by [1] which proposes a specific “top-down attention” LSTM as well as a
“language” LSTM. Generally attention mechanisms operate over high level convolutional
layers. The attention mechanism from [1] can be used on such feature maps, but Anderson
et al. also consider feature maps corresponding to object proposals from a detection model.
We consider both models, denoted as TopDown (feature map extracted from high level
convolutional layer) and TopDown-BB (feature map extracted from object proposals from
a detection model). Finally, we consider the recently proposed Neural Baby Talk (NBT)
model [33] which explicitly uses object detections (as opposed to just bounding boxes) for
sentence generation.

Learning objective. All of the above models are trained with the standard cross entropy
(CE) loss as well as the self-critical (SC) loss proposed by [42] (with an exception of NBT,
where only the CE version is included). The SC loss directly optimizes the CIDEr metric
with a reinforcement learning technique. We additionally consider a model trained with a
GAN loss [50] (denoted GAN), which applies adversarial training to obtain more diverse
and “human-like” captions, and their respective non-GAN baseline with the CE loss.

TopDown deconstruction. To better evaluate how each component of a model might
influence hallucination, we “deconstruct” the TopDown model by gradually removing com-
ponents until it is equivalent to the FC model. The intermediate networks are NoAttention,
in which the attention mechanism is replaced by mean pooling, NoConv in which spatial
feature maps are not input into the network (the model is provided with fully connected
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Cross Entropy Self Critical
Model Att. S M C CHs CHi S M C CHs CHi
LRCN* 17.0 23.9 90.8 17.7 12.6 16.9 23.5 93.0 17.7 12.9
FC* 17.9 24.9 95.8 15.4 11.0 18.4 25.0 103.9 14.4 10.1
Att2In* X 18.9 25.8 102.0 10.8 7.9 19.0 25.7 106.7 12.2 8.4
TopDown* X 19.9 26.7 107.6 8.4 6.1 20.4 27.0 117.2 13.6 8.8

TopDown-BB † X 20.4 27.1 113.7 8.3 5.9 21.4 27.7 120.6 10.4 6.9
NBT † X 19.4 26.2 105.1 7.4 5.4 - - - -

Cross Entropy GAN
GAN ‡ 18.7 25.7 100.4 10.7 7.7 16.6 22.7 79.3 8.2 6.5

Table 3.1: Hallucination analysis on the Karpathy Test set: Spice (S), CIDEr (C) and METEOR
(M) scores across di↵erent image captioning models as well as CHAIRs (sentence level, CHs) and
CHAIRi (instance level, CHi). All models are generated with beam search (beam size=5). * are
trained/evaluated within the same implementation [34], † are trained/evaluated with implementa-
tion publicly released with corresponding papers, and ‡ sentences obtained directly from the author.
For discussion see Section 3.3.

feature maps), SingleLayer in which only one LSTM is included in the model, and finally,
instead of inputting visual features at each time step, visual features are used to initialize
the LSTM embedding as is done in the FC model. By deconstructing the TopDown model in
this way, we ensure that model design choices and hyperparameters do not confound results.

Implementation details. All the baseline models employ features extracted from the fourth
layer of ResNet-101 [21], except for the GAN model which employs ResNet-152. Models
without attention traditionally use fully connected layers as opposed to convolutional layers.
However, as ResNet-101 does not have intermediate fully connected layers, it is standard to
average pool convolutional activations and input these features into non-attention based de-
scription models. Note that this means the di↵erence between the NoAttention and NoConv
model is that the NoAttention model learns a visual embedding of spatial feature maps as
opposed to relying on pre-pooled feature maps. All models except for TopDown-BB, NBT,
and GAN are implemented in the same open source framework from [34].2

Training/Test splits. We evaluate the captioning models on two MSCOCO splits. First,
we consider the split from Karpathy et al. [25], specifically in that case the models are trained
on the respective Karpathy Training set, tuned on Karpathy Validation set and the reported
numbers are on the Karpathy Test set. We also consider the Robust split, introduced in [33],
which provides a compositional split for MSCOCO. Specifically, it is ensured that the object
pairs present in the training, validation and test captions do not overlap. In this case the
captioning models are trained on the Robust Training set, tuned on the Robust Validation
set and the reported numbers are on the Robust Test set.

2https://github.com/ruotianluo/self-critical.pytorch

https://github.com/ruotianluo/self-critical.pytorch
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Which Models Are More Prone To Hallucination?

We first present how well competitive models perform on our proposed CHAIR metric (Ta-
ble 3.1). We report CHAIR at sentence-level and at instance-level (CHs and CHi in the
table). In general, we see that models which perform better on standard evaluation metrics,
perform better on CHAIR, though this is not always true. In particular, models which opti-
mize for CIDEr frequently hallucinate more. Out of all generated captions on the Karpathy
Test set, anywhere between 7.4% and 17.7% include a hallucinated object. When shifting to
more di�cult training scenarios in which new combinations of objects are seen at test time,
hallucination consistently increases (Table 3.2).

Karpathy Test set. Table 3.1 presents object hallucination on the Karpathy Test set. All
sentences are generated using beam search and a beam size of 5. We note a few important
trends. First, models with attention tend to perform better on the CHAIR metric than
models without attention. As we explore later, this is likely because they have a better
understanding of the image. In particular, methods that incorporate bounding box attention
(as opposed to relying on coarse feature maps), consistently have lower hallucination as
measured by our CHAIR metric. Note that the NBT model does not perform as well on
standard captioning metrics as the TopDown-BB model but has lower hallucination. This is
perhaps because bounding box proposals come from the MSCOCO detection task and are
thus “in-domain” as opposed to the TopDown-BB model which relies on proposals learned
from the Visual Genome [27] dataset. Second, frequently training models with the self-
critical loss actually increases the amount of hallucination. One hypothesis is that CIDEr
does not penalize object hallucination su�ciently, leading to both increased CIDEr and
increased hallucination. Finally, the LRCN model has a higher hallucination rate than the
FC model, indicating that inputting the visual features only at the first step, instead of at
every step, leads to more image relevant captions.

We also consider a GAN based model [50] in our analysis. We include a baseline model
(trained with CE) as well as a model trained with the GAN loss.3 Unlike other models,
the GAN model uses a stronger visual network (ResNet-152) which could explain the lower
hallucination rate for both the baseline and the GAN model. Interestingly, when comparing
the baseline and the GAN model (both trained with ResNet-152), standard metrics decrease
substantially, even though human evaluations from [50] demonstrate that sentences are of
comparable quality. On the other hand, hallucination decreases, implying that the GAN loss
actually helps decrease hallucination. Unlike the self critical loss, the GAN loss encourages
sentences to be human-like as opposed to optimizing a metric. Human-like sentences are
not likely to hallucinate objects, and a hallucinated object is likely a strong signal to the
discriminator that a sentence is generated, and is not from a human.

We also assess the e↵ect of beam size on CHAIR. We find that generally beam search
decreases hallucination. We use beam size of 5, and for all models trained with cross entropy,
it outperforms lower beam sizes on CHAIR. However, when training models with the self-
critical loss, beam size sometimes leads to worse performance on CHAIR. For example, on

3Sentences were procured directly from the authors.
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TopDown: A pile of luggage sitting on top of a table.
NBT: Several pieces of luggage sitting on a table.

TopDown: A group of people sitting around a 
table with laptops.
NBT: A group of people sitting around a table 
with laptop.

TopDown:  A couple of cats laying on top of a bed.
NBT: A couple of cats laying on top of a bed.

TopDown: A kitchen with a stove and a sink.
NBT: A kitchen with a stove and a sink.

TopDown: Aa man and a woman are playing 
with a frisbee.
NBT: A man riding a skateboard down a street.

TopDown:  A cat sitting on top of a laptop 
computer.
NBT: A cat sitting on a table next to a computer.

TopDown: A brown dog sitting on top of a chair.
NBT: A brown and white dog sitting under an 
umbrella.

TopDown: A man standing on a beach holding a 
surfboard.
NBT: A man standing on top of a sandy beach.

Figure 3.3: Examples of object hallucination from two state-of-the-art captioning models, Top-
Down and NBT, see Section 3.3.

Att S M C CHs CHi

FC* 15.5 22.7 76.2 21.3 15.3
Att2In* X 16.9 24.0 85.8 14.1 10.1
TopDown* X 17.7 24.7 89.8 11.3 7.9
NBT † X 18.2 24.9 93.5 6.2 4.2

Table 3.2: Hallucination Analysis on the Robust Test set: Spice (S), CIDEr (C) and METEOR
(M) scores across di↵erent image captioning models as well as CHAIRs (sentence level, CHs) and
CHAIRi (instance level, CHi). * are trained/evaluated within the same implementation [34], † are
trained/evaluated with implementation publicly released with corresponding papers. All models
trained with cross-entropy loss. See Section 3.3.

the Att2In model trained with SC loss, a beam size of 5 leads to 12.2 on CHAIRs and 8.4
on CHAIRi, while a beam size of 1 leads to 10.8 on CHAIRs and 8.1 on CHAIRi.

Robust Test set. Next we review the hallucination behavior on the Robust Test set
(Table 3.2). For almost all models the hallucination increases on the Robust split (e.g. for
TopDown from 8.4% to 11.3% of sentences), indicating that the issue of hallucination is more
critical in scenarios where test examples can not be assumed to have the same distribution as
train examples. We again note that attention is helpful for decreasing hallucination. We note
that the NBTmodel actually has lower hallucination scores on the robust split. This is in part
because when generating sentences we use the detector outputs provided by [33]. Separate
detectors on the Karpathy test and robust split are not available and the detector has access
to images in the robust split during training. Consequently, the comparison between NBT
and other models is not completely fair, but we include the number for completeness.

In addition to the Robust Test set, we also consider a set of MSCOCO in which certain
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Figure 3.4: Image and Language model consistency (IM, LM) and CHAIRi (instance-level, CHi)
on deconstructed TopDown models. Images with less hallucination tend to make errors consistent
with the image model, whereas models with more hallucination tend to make errors consistent with
the language model, see Section 3.3.

objects are held out, which we call the Novel Object split [22]. We train on the training set
outlined in [22] and test on the Karpathy test split, which includes objects unseen during
training. Similarly to the Robust Test set, we see hallucination increase substantially on this
split. For example, for the TopDown model hallucination increases from 8.4% to 12.1% for
CHAIRs and 6.0% to 9.1% for CHAIRi.

We find no obvious correlation between the average length of the generated captions
and the hallucination rate. Moreover, vocabulary size does not correlate with hallucination
either, i.e. models with more diverse descriptions may actually hallucinate less. We notice
that hallucinated objects tend to be mentioned towards the end of the sentence (on average
at position 6, with average sentence length 9), suggesting that some of the preceding words
may have triggered hallucination. We investigate this below.

Which objects are hallucinated and in what context? Here we analyze which MSCOCO
objects tend to be hallucinated more often and what are the common preceding words and
image context. Across all models the super-category Furniture is hallucinated most often,
accounting for 20 � 50% of all hallucinated objects. Other common super-categories are
Outdoor objects, Sports and Kitchenware. On the Robust Test set, Animals are often hallu-
cinated. The dining table is the most frequently hallucinated object across all models (with
an exception of GAN, where person is the most hallucinated object). We find that often
words like “sitting” and “top” precede the “dining table” hallucination, implying the two
common scenarios: a person “sitting at the table” and an object “sitting on top of the ta-
ble” (Figure 3.3, row 1, examples 1, 2). Similar observations can be made for other objects,
e.g. word “kitchen” often precedes “sink” hallucination (Figure 3.3, row 1, example 3) and
“laying” precedes “bed” (Figure 3.3, row 1, example 4). At the same time, if we look at
which objects are actually present in the image (based on MSCOCO object annotations),
we can similarly identify that presence of a “cat” co-occurs with hallucinating a “laptop”
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Karpathy Split S M C CHs CHi

TD 19.5 26.1 103.4 10.8 7.5
No Attention 18.8 25.6 99.7 14.2 9.5
No Conv 15.7 22.9 81.3 25.7 17.8
Single Layer 15.5 22.7 80.2 25.7 18.2
FC 16.4 23.3 85.1 23.6 15.8

Table 3.3: Hallucination analysis on deconstructed TopDown models with sentence metrics SPICE
(S), METEOR (M), and CIDEr (C), CHAIRs (sentence level, CHs) and CHAIRi (instance level,
CHi). See Section 3.3.

(Figure 3.3, row 2, example 1), a “dog” – with a “chair” (Figure 3.3, row 2, example 2) etc.
In most cases we observe that the hallucinated objects appear in the relevant scenes (e.g.
“surfboard” on a beach), but there are cases where objects are hallucinated out of context
(e.g. “bed” in the bathroom, Figure 3.3, row 1, example 4).

What Are The Likely Causes Of Hallucination?

In this section we investigate the likely causes of object hallucination. We have earlier
described how we deconstruct the TopDown model to enable a controlled experimental setup.
We rely on the deconstructed TopDown models to analyze the impact of model components
on hallucination.

First, we summarize the hallucination analysis on the deconstructed TopDown models
(Table 3.3). Interestingly, the NoAttention model does not do substantially worse than the
full model (w.r.t. sentence metrics and CHAIR). However, removing Conv input (NoConv
model) and relying only on FC features, decreases the performance dramatically. This sug-
gests that much of the gain in attention based models is primarily due to access to feature
maps with spatial locality, not the actual attention mechanism. Also, similar to LRCN vs.
FC in Table 3.1, initializing the LSTM hidden state with image features, as opposed to
inputting image features at each time step, leads to lower hallucination (Single Layer vs.
FC ). This is somewhat surprising, as a model which has access to image information at each
time step should be less likely to “forget” image content and hallucinate objects. However,
it is possible that models which include image inputs at each time step with no access to
spatial features overfit to the visual features.

Now we investigate what causes hallucination using the deconstructed TopDown models
and the image consistency and language consistency scores, introduced in Sections 3.2 and
3.2 which capture how consistent the hallucinations errors are with image- / language-only
models.

Figure 3.4 shows the CHAIR metric, image consistency and language consistency for the
deconstructed TopDown models on the Karpathy Test set (left) and the Robust Test set
(right). We note that models with less hallucination tend to make errors consistent with
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TD: A cat is sitting on a 
bed in a room.
S: 12.1  M: 23.8   C: 69.7
TD Restrict: A bed with a 
blanket and a pillow on it. 
S: 23.5  M: 25.4   C: 52.5

TD: A cat laying on the ground 
with a frisbee.
S: 8.0   M: 13.1   C: 37.0
 TD Restrict: A black and white 
animal laying on the ground. 
S: 7.7   M: 15.9   C: 17.4

Figure 3.5: Examples of how TopDown (TD) sentences change when we enforce that objects
cannot be hallucinated: SPICE (S), Meteor (M), CIDEr (C), see Section 3.3.

the image model, whereas models with more hallucination tend to make errors consistent
with the language model. This implies that models with less hallucination are better at
integrating knowledge from an image into the sentence generation process. When looking
at the Robust Test set, Figure 3.4 (right), which is more challenging, as we have shown
earlier, we see that image consistency decreases when comparing to the same models on
the Karpathy split, whereas language consistency is similar across all models trained on the
Robust split. This is perhaps because the Robust split contains novel compositions of objects
at test time, and all of the models are heavily biased by language.

Finally, we measure image and language consistency during training for the FC model and
note that at the beginning of training errors are more consistent with the language model,
whereas towards the end of training, errors are more consistent with the image model. This
suggests that models first learn to produce fluent language before learning to incorporate
visual information.

How Well Do The Standard Metrics Capture Hallucination?

In this section we analyze how well SPICE [2], METEOR [4], and CIDEr [57] capture
hallucination. All three metrics do penalize sentences for mentioning incorrect words, either
via an F score (METEOR and SPICE) or cosine distance (CIDEr). However, if a caption
mentions enough words correctly, it can have a high METEOR, SPICE, or CIDEr score
while still hallucinating specific objects.

Our first analysis tool is the TD-Restrict model. This is a modification of the TopDown
model, where we enforce that MSCOCO objects which are not present in an image are not
generated in the caption. We determine which words refer to objects absent in an image
following our approach in Section 3.2. We then set the log probability for such words to
a very low value. We generate sentences with the TopDown and TD-Restrict model with
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CIDEr METEOR SPICE

FC 0.258 0.240 0.318
Att2In 0.228 0.210 0.284
TopDown 0.185 0.168 0.215

Table 3.4: Pearson correlation coe�cients between 1-CHs and CIDEr, METEOR, and SPICE
scores, see Section 3.3.

Difference in % Sentences with Hallucination
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Figure 3.6: Di↵erence in percentage of sentences with no hallucination for TopDown and FC
models when SPICE scores fall into specific ranges. For sentences with low SPICE scores, the
hallucination is generally larger for the FC model, even though the SPICE scores are similar, see
Section 3.3.

beam search of size 1, meaning all words produced by both models are the same, until the
TopDown model produces a hallucinated word.

We compare which scores are assigned to such captions in Figure 3.5. TD-Restrict gener-
ates captions that do not contain hallucinated objects, while TD hallucinates a “cat” in both
cases. In Figure 3.5 (left) we see that CIDEr scores the more correct caption much lower. In
Figure 3.5 (right), the TopDown model incorrectly calls the animal a “cat.” Interestingly, it
then correctly identifies the “frisbee,” which the TD-Restrict model fails to mention, leading
to lower SPICE and CIDEr.

In Table 3.4 we compute Pearson correlation coe�cient between individual sentence scores
and the absence of hallucination, i.e. 1�CHAIRs; we find that SPICE consistently correlates
higher with 1�CHAIRs. E.g., for the FC model the correlation for SPICE is 0.32, while for
METEOR and CIDEr – around 0.25.

We further analyze the metrics in terms of their predictiveness of hallucination risk.
Predictiveness means that a certain score should imply a certain percentage of hallucination.
Here we show the results for SPICE and the captioning models FC and TopDown. For
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Metric Metric Metric
+(1-CHs) +(1-CHi)

METEOR 0.269 0.299 0.304
CIDEr 0.282 0.321 0.322
SPICE 0.248 0.277 0.281

Table 3.5: Pearson correlation coe�cients between individual/combined metrics and human scores.
See Section 3.3.

each model and a score interval (e.g. 10 � 20) we compute the percentage of captions
without hallucination (1�CHAIRs). We plot the di↵erence between the percentages from
both models (TopDown - FC) in Figure 3.6. Comparing the models, we note that even
when scores are similar (e.g., all sentences with SPICE score in the range of 10 � 20), the
TopDown model has fewer sentences with hallucinated objects. We see similar trends across
other metrics. Consequently, object hallucination can not be always predicted based on the
traditional sentence metrics.

Is CHAIR complementary to standard metrics? In order to measure usefulness of
our proposed metrics, we have conducted the following human evaluation (via the Amazon
Mechanical Turk). We have randomly selected 500 test images and respective captions from
5 models: non-GAN baseline, GAN, NBT, TopDown and TopDown - Self Critical. The
AMT workers were asked to score the presented captions w.r.t. the given image based on
their preference. They could score each caption from 5 (very good) to 1 (very bad). We did
not use ranking, i.e. di↵erent captions could get the same score; each image was scored by
three annotators, and the average score is used as the final human score. For each image we
consider the 5 captions from all models and their corresponding sentence scores (METEOR,
CIDEr, SPICE). We then compute Pearson correlation between the human scores and sen-
tence scores; we also consider a simple combination of sentence metrics and 1-CHAIRs or
1-CHAIRi by summation. The final correlation is computed by averaging across all 500 im-
ages. The results are presented in Table 3.5. Our findings indicate that a simple combination
of CHAIRs or CHAIRi with the sentence metrics leads to an increased correlation with the
human scores, showing the usefulness and complementarity of our proposed metrics.

Does hallucination impact generation of other words? Hallucinating objects im-
pacts sentence quality not only because an object is predicted incorrectly, but also because
the hallucinated word impacts generation of other words in the sentence. Comparing the
sentences generated by TopDown and TD-Restrict allows us to analyze this phenomenon.
We find that after the hallucinated word is generated, the following words in the sentence
are di↵erent 47.3% of the time. This implies that hallucination impacts sentence quality
beyond simply naming an incorrect object. We observe that one hallucination may lead to
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another, e.g. hallucinating a “cat” leading to hallucinating a “chair”, hallucinating a “dog”
– to a “frisbee”.
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3.4 Discussion

In this work we closely analyze hallucination in object captioning models. Our work is similar
to other works which attempt to characterize flaws of di↵erent evaluation metrics [26], though
we focus specifically on hallucination. Likewise, our work is related to other work which aims
to build better evaluation tools ([57], [2], [11]). However, we focus on carefully quantifying
and characterizing one important type of error: object hallucination.

A significant number of objects are hallucinated in current captioning models (between
5.5% and 13.1% of MSCOCO objects). Furthermore, hallucination does not always agree
with the output of standard captioning metrics. For instance, the popular self critical loss
increases CIDEr score, but also the amount of hallucination. Additionally, we find that given
two sentences with similar CIDEr, SPICE, or METEOR scores from two di↵erent models,
the number of hallucinated objects might be quite di↵erent. This is especially apparent when
standard metrics assign a low score to a generated sentence. Thus, for challenging caption
tasks on which standard metrics are currently poor (e.g., the LSMDC dataset [44]), the
CHAIR metric might be helpful to tease apart the most favorable model. Our results indicate
that CHAIR complements the standard sentence metrics in capturing human preference.

Additionally, attention lowers hallucination, but it appears that much of the gain from
attention models is due to access to the underlying convolutional features as opposed the
attention mechanism itself. Furthermore, we see that models with stronger image consistency
frequently hallucinate fewer objects, suggesting that strong visual processing is important
for avoiding hallucination.

Based on our results, we argue that the design and training of captioning models should
be guided not only by cross-entropy loss or standard sentence metrics, but also by image
relevance. Our CHAIR metric gives a way to evaluate the phenomenon of hallucination,
but other image relevance metrics e.g. those that incorporate missed salient objects, should
also be investigated. We believe that incorporating visual information in the form of ground
truth objects in a scene (as opposed to only reference captions) helps us better understand
the performance of captioning models.
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