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University of California at Berkeley

Abstract

File sharing systems like Dropbox o�er insu�cient privacy since a compromised server can see the
�le content in the clear. �ough encryption can hide such content from the servers, metadata leakage
remains signi�cant. It is promising to develop a �le sharing system that hides such metadata—including
user identities and �le access pa�erns.

Metal is the �rst �le sharing system that hides such metadata from malicious users with a latency of
only a few seconds. �e core of Metal is a new two-server multi-user ORAM scheme, which is secure
against malicious users, together with metadata-hiding access control and �le sharing.

Compared with the state-of-the-art malicious-user �le sharing scheme PIR-MCORAM (which does
not hide user identities), Metal hides the user identities and is 500× faster (in terms of amortized latency)
or 105× faster (in terms of worst-case latency).
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1 Introduction

Storing �les on a cloud server and sharing these �les with other users (e.g., as in Dropbox) is not uncommon
today. To hide the con�dential content of �les from a compromised server, academia and industry developed
end-to-end encryption (E2EE) systems [2]–[8], in which the user encrypts the �le content, so a compromised
server only sees the encrypted form, and only the user can decrypt the �le. Unfortunately, this approach
leaves unprotected a lot of user and �le metadata. Figure 1 summarizes metadata leakage in E2EE systems,
notably, the user identities and �le access pa�erns.

♦ file content

♦ user identities:

• for an access, which file was accessed
• type of file operation (read vs. write)

end-to-end encryption (E2EE)  

♦ file access patterns:
Metal

♦
 type of operation: create account vs. file access♦
 timing: when each operation is performed + padding

• for a file access, which user made the access

• file access control lists (ACLs)

• user capabilities

Figure 1: Scope of data/metadata protected by end-to-end encryption (E2EE) and Metal; padding in time
and computation can hide even more metadata.

Such metadata is sensitive, which has become notorious in a closely related area—communication
surveillance. Former NSA General Counsel, Stewart Baker, said “Metadata absolutely tells you everything
about somebody’s life. If you have enough metadata, you don’t really need content.” [9] Former NSA Director,
Michael Hayden, owned a punchline: “We kill people based on metadata.” [10] Since knowing whom a user
calls is similar in spirit with whom a user shares a �le with, leaking �le sharing metadata is also worrisome.
To illustrate this issue, we take a look at what privacy concerns arise when medical data is stored on cloud:

�e sensitive user identities. Consider that patient Alice and her oncologist Bob share Alice’s medical
pro�le in an E2EE system. Even with encryption, the server knows that Alice and Bob share some �les
with each other. With the side information that Bob is an oncologist, likely available from a Google search
for Bob’s name, the server knows that Alice is seeing an oncologist and thus knows that she might su�er
from cancer.

�e sensitive �le access patterns. Even without user identities, �le access pa�erns alone are sensitive.
Consider that some doctors share a folder with disease handouts that consists of many �les, one for each
disease. �e server sees the access frequency of each �le and can relate it to disease incidence rates, which
can be found online [11]. Consequently, the server can infer the disease in each �le. If the server knows the
time when Alice goes to the doctor, the server can infer Alice’s disease by seeing which �le is accessed by
the doctor.

Besides, there are many general a�acks against anonymous systems leveraging social data [12]–[19] or
access pa�erns [15], [20]–[26], some of which might apply to �le sharing.

�e �rst a�empt to hide such metadata is ORAM [30]–[32], which—by default—relies on the trustwor-
thiness of a single client or a proxy to maintain the con�dentiality of the entire data storage. A recent line of
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Work File sharing Hide access patterns Hide users Server complexity Server assumption
Secret-write PANDA [27] No No No Nearly polylog 1-server, semi-honest

AnonRAM-lin [28] No Yes Yes Linear 1-server, semi-honest
AnonRAM-poly [28] No Yes Yes Polylog (linear worst-case) 2-server, semi-honest

GORAM [29] Yes No No Polylog 1-server, semi-honest
PIR-MCORAM [1] Yes Partial No Linear 1-server, semi-honest
Metal (this paper) Yes Yes Yes Polylog 2-server, semi-honest

Table 1: Comparison of multi-user ORAM when there are an unbounded number of malicious users.
�e server computation complexity here is in respect to the number of �les, assuming each �le is of a
constant size. �e comparison will be discussed in more detail in Section 9.

multi-user ORAM schemes [1], [27]–[29], shown in Table 1, is more relevant to our se�ing. �ese schemes
a�empt to retain some oblivious guarantees even when some users are compromised; for example, �le
accesses of an honest user remain hidden across all the �les accessible only by honest users. Unfortunately,
there are very few such works; those schemes that support �le sharing, PIR-MCORAM [1] and GORAM
[29], leak either user identities or �le access pa�erns, as depicted in Table 1.

�is paper presents Metal, the �rst cryptographic �le sharing system that hides both user identities and
�le access pa�erns from both the server and from malicious users. Figure 1 lists the various types of metadata
that Metal protects. �e �le sharing system with the closest security guarantees, PIR-MCORAM [1], has a
very high overhead. Although Metal is not a lightweight system either, it makes a big leap toward reaching
practicality—Metal’s access latency is ≥ 500× (for amortized latency) and ≥ 105× (for worst-case latency)
shorter than that of PIR-MCORAM, and in the concrete value, only a few seconds.

PIR-MCORAM’s very high overhead is largely due to an unfortunate lower bound that challenges this
research area: Ma�ei et al. [1] showed that, for the desired strong security guarantees, a single-server �le
sharing system must basically scan all the �les, so PIR-MCORAM scans every �le in the system for each
�le access. To avoid this impossibility result, AnonRAM-poly [28] adopts a two-server model, where at least
one server is honest. �is model is also adopted by much prior work in related se�ings for similar reasons
[33]–[36]. Metal adopts this two-server model as well.

Unfortunately, even in the two-server model, e�ciency remains a troubling challenge. Pu�ing aside the
fact that worst-case accesses in AnonORAM-poly are still linear, a signi�cant ine�ciency in AnonORAM-
poly is that each user’s access requires the user to generate a heavy zero-knowledge proof (to prove to the
servers that this user did not maliciously deviate from the protocol). Generating such a proof is already 20×
times slower than the overall access time of Metal (as described in Section 7.6). Further, AnonORAM-poly
does not support �le sharing; extending AnonRAM-poly to �le sharing is challenging because their design
makes it di�cult to hide the access pa�erns across �les with di�erent sharing permissions. Finally, given
its complexity, the authors of AnonORAM-poly have not implemented AnonRAM-poly.

With Metal, we propose a radically di�erent design than AnonORAM, which centers around �le sharing
and obviates the need for zero-knowledge proofs despite resisting malicious users. In Section 7, we evaluate
Metal extensively and show that its access time is within a few seconds for a store of 220 64 KB �les. We
now overview Metal’s techniques.

1.1 Overview of Metal’s techniques

As a �le sharing system, Metal provides users with the ability to access �les and to share permissions to
�les. When a user makes a request to Metal’s servers, Metal checks if the user has the required permission,
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then the user can fetch or share a �le. To understand how Metal performs these operations securely, we
now overview Metal’s techniques, organized by the challenges they address.

Challenge: Single-user nature of ORAM. ORAM [30]–[32], [37] can hide access pa�erns but supports
only a single client. To share ORAM with many users, prior work trusts a proxy or trusts all users [38]–[42],
which does not guarantee security in the presence of malicious clients.
Primitive Metal: Inspired by ORAM, we start with a primitive construction of Metal (Section 5.2), which
we describe as follows. �e two servers in Metal interact and run S2PC, secure two-party computation [43]–
[45], as we illustrate in Figure 2. �e reader should intuitively think that what happens inside S2PC is
“safe” (albeit expensive as we will see), and what happens outside is “unsafe”. Hence, the servers can now
run a global single-user ORAM client inside their S2PC, which ensures that neither server sees the state of
this global ORAM client, together with other components for access control and capability sharing. To
store and share �les, the users communicate with the global ORAM client in the S2PC, which accesses �les
stored in the servers’ ORAM storage on a user’s behalf.

Access Control

File AccessUser

Capability Sharing

Server 1

Server 2

S2PC User

Metal-AC

Metal-ORAM

Metal-SHAREClient Client

Figure 2: Metal’s system architecture (discussed in Section 2.1).

�is primitive scheme enables users to share �les. For the servers to implement a service in this way,
the S2PC protocol needs to be reactive [46]–[48]: the servers repeatedly take input into the S2PC, update
some internal state, and provide output.

Challenge: Ine�ciency of Primitive Metal. �ough Primitive Metal has the desired security guar-
antees, it is highly ine�cient. Our evaluation in Section 7.7 shows that the client ORAM access in S2PC
requires a huge amount of communication: ≥ 1 GB for each �le access! It takes ≥ 80 s to access one �le in
a store of 220 64 KB �les.
Metal-ORAM: In the primitive Metal, the communication is high because the trusted global ORAM client,
which runs inside S2PC, takes the �le content as input. We address this problem using our technique
called synchronized inside-outside ORAM trees (Section 5.3). Metal maintains two ORAM trees on the
servers: one containing the �le contents called DataORAM and another containing an index about the
�les’ locations called IndexORAM. DataORAM stays outside S2PC because it is large, and IndexORAM
stays inside S2PC because it is small. Metal maintains the two ORAMs synchronized: a�er locating the �le
identi�er of a �le in the IndexORAM, one can �nd the �le content in the same location in DataORAM.

To keep the two ORAMs synchronized, the S2PC must apply the maintenance operations of an ORAM
to both IndexORAM and DataORAM in the same way; these operations include path selection and stash
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eviction. However, it is unclear how to capture these operations inside S2PC and how to apply them
securely to DataORAM, which is outside S2PC.

For this problem, we develop our tracking and permutation generating technique (Section 5.6),
which works as follows. During the ORAM access in IndexORAM, our circuit inside S2PC tracks the
transformations applied to IndexORAM and converts them into a permutation. It turns out that the
transformations are not naturally a permutation, but by “resurrecting” missing blocks in a certain way,
Metal succeeds to create a permutation. �en, we use a custom S2PC protocol to apply the permutation
securely and e�ciently to DataORAM.

Altogether, in Metal, the general S2PC no longer touches the �le data but works with the position maps
and block locations, which reduces the overhead by ≈ 20×. We call this new ORAM scheme Metal-ORAM,
and we expect Metal-ORAM’s techniques to be useful for other MPC protocols.

Challenge: Performing oblivious access control in the S2PC. A natural solution for �le access
control is to obliviously verify, inside S2PC, that the user’s name appears in the �le’s access control list.
However, since a �le could involve thousands of users, checking the access control list in S2PC is expensive.
Metal-AC: Metal designs an anonymous access control based on capabilities, which we call Metal-AC
(AC refers to access control); the unit of our access control, the capability, is inspired by the classical systems
concept of a capability [49]. �e key di�erences in Metal are that, given a capability, the servers cannot tell
which �le (or user) the capability is for, and that the capability is implemented cryptographically, checked
inside S2PC by the two servers. By doing so, Metal-AC avoids the heavy handling of access control lists.
Challenge: Establishing anonymous identities. To preserve user anonymity, users must hide their
real-world identities (e.g., email address) when sharing �les. Simply choosing a pseudonym is insu�cient
because the servers or the malicious users can link these pseudonyms together. Even when a user creates
multiple accounts, the sharing of �les between these accounts can link them together.
Metal-SHARE: In Metal, users share �les via anonyms, each of which is a secret identity exclusively
shared between a pair of users. Di�erent from traditional pseudonyms, a user’s many anonyms are
unlinkable to one another, so they will not reveal a user’s identity when put together. Metal’s anonyms
also permit one-sided anonymity; e.g., an anonymous whistleblower can send a �le to a speci�c journalist.

We call this scheme Metal-SHARE. �is scheme is e�cient: even if a user creates millions of anonyms,
the user’s e�ort to receive a new �le does not increase with the number of anonyms because Metal’s client
accumulates all �les shared with a user under di�erent anonyms.

When designing Metal with these strong privacy guarantees in mind, a number of other challenges
popped up. For example, some naive solutions enable the servers to see how many �les a user has received.
Padding to the maximum number of �les for each user is very expensive. Instead, Metal instantiates
capability broadcast (Section 6.2) on the servers, which hides the per-user numbers of received �les.

We describe Metal’s security guarantee (Section 2.3) and provide security proof sketches throughout
the paper.
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2 Overview

We now describe Metal’s system architecture, threat model, and security guarantees.

2.1 System architecture

Figure 2 shows Metal’s system architecture, which consists of two servers and many users:

• �e two servers run a secure two-party computation (S2PC) procedure (green part in Figure 2). �is
procedure is a reactive S2PC protocol: it continuously receives input, updates its internal state, and
produces output.

• Each user runs a Metal client on the user’s device. �e user invokes the client’s user-facing API functions
(shown in Table 2) and receives results from the client.

• �e Metal client sends requests to the servers. �e servers convert the requests to inputs to the S2PC
procedure and run the S2PC. �e servers then send the output from the S2PC procedure to the client (on
the right of Figure 2).

Components. Metal consists of three components: Metal-AC for access control, Metal-ORAM for �le
access, and Metal-SHARE for capability sharing.

As Figure 2 shows, the client’s request arrives at the �rst component, Metal-AC, which checks whether
the user has the required permission. If so, the request is dispatched to Metal-ORAM for accessing a �le or
to Metal-SHARE for sharing.

API functions. �e Metal client provides the user with some API functions (shown in Table 2). �e client
translates user API calls to requests to the servers, processes the servers’ responses, and returns the results
to the user. In addition, the client stores and manages the user’s secret keys and capabilities in Metal.

Syntax of user-facing API functions Description
CreateAccount()→ U, {FU,1, FU,2, ..., FU,`file} A user creates a new account U and creates `file empty �les on

the server (Section 4).
ReadFile(U,F )→ fileContent A user with account U reads the �le identi�ed by F from the

servers (Section 5.3).
WriteFile(U,F, newFileContent)→⊥ A user with account U writes to the �le identi�ed by F on the

servers (Section 5.3).
NewAnonym(U)→ AU,i A user with account U generates a new anonym AU,i with index

i (Section 6.1).
SendCapability(V, FV , AU,i, permission) Another user with account V and �le FV sends a capability to

access FV (permission is read, write, or read+write) to the user
who owns anonym AU,i (Section 6).

ReceiveCapability(U)→ (FV , AU,i, permission) A user with account U receives a capability to �le FV from
another user V , sent through U ’s anonym AU,i (Section 6).

Table 2: �e list of the Metal client’s user-facing API functions.

Let us exemplify how two users Alice and Bob use Metal’s API to store and share �les. First, Alice and
Bob each create an account using the CreateAccount function. Alice can then invoke ReadFile or WriteFile
to read or write her �les. Now, consider that she wants to share a �le with Bob.
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To receive the �le from Alice, Bob uses NewAnonym to generate a new anonym ABob and sends it to
Alice via some out-of-band communication (as discussed in Section 2.2). A�er Alice receives this anonym,
she grants Bob read access to one of her �les by calling the SendCapability function, which produces and
sends a capability to Bob.

Bob then uses the ReceiveCapability function to receive the capability for that �le from the servers, in
which Bob knows the �le is sent through ABob. Since Bob can have many anonyms and Bob only gives
ABob to Alice, Bob knows that the �le is from Alice, assuming that her client is not compromised.

2.2 �reat model

Metal uses the following threat model: the a�acker can compromise any set of users in a malicious way
and one of the two servers in a semi-honest way while the other server is not compromised. We assume
that each user establishes secure connections with each server (such as TLS).

Metal makes two assumptions on communication:

• Anonymity network. Achieving anonymity requires users to hide their IP addresses. Metal assumes
that each user uses an anonymity tool to contact the servers. Many such tools exist, providing varying
degrees of anonymity, such as Tor [50], secure messaging [51]–[54], and a trusted VPN proxy.

• Out-of-band communication. Before sharing a �le, a user must �rst know the recipient’s identity (an
anonym) in Metal; otherwise, the user does not even know who should receive the �le. Exchanging the
anonym requires some out-of-band communication between the two users, which is similar to a Bitcoin
user’s telling another user its wallet address or a Signal user’s telling another user its public key. �e
users can meet in person or use anonymous messaging [51]–[58]. Metal strives to minimize the use of
such out-of-band communication: every two users only need to use this channel to exchange their Metal
anonyms once, and subsequent �le sharing activities will be performed within Metal.

2.3 Security guarantees

We now describe Metal’s security guarantees. We consider a set of malicious users MalUsers who collude
with one another and with one of the servers and consider an honest user U who can access �le F . �e
malicious users can interact with the honest users, including sharing �les with them. For �le access, Metal
provides the following guarantees:

(a) Anonymity: Neither the servers nor anyone in MalUsers can distinguish the honest user U from
other honest users.

(b) File secrecy and integrity: If user U has never granted anyone in MalUsers read or write access to
F , MalUsers learn nothing about F or cannot modify F , respectively.

(c) Read obliviousness: Neither MalUsers nor the servers know which �le was read by user U , even if
MalUsers have read/write capability to all �les. �at is, MalUsers cannot distinguish a read operation
from a completely di�erent read, by another honest user, to another �le.

(d) Write obliviousness: If U never gave anyone in MalUsers the read capability to F , neither the
servers nor anyone in MalUsers realizes that �le F has changed. If someone in MalUsers has read
capability, they legitimately learn that the �le is changed, but they do not learn who changed it if the
malicious users have shared the �le with more than one honest user.
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(e) Read/write indistinguishability: Neither the servers nor anyone in MalUsers knows whether a
honest user’s �le access request is read or write, if none of MalUsers has read capability to that accessed
�le.

For �le sharing, consider another user V who wants to share �le F with U , and U owns two anonyms
AU,1 and AU,2.

(f) Capability sharing secrecy: If user V sends a �le F ’s capability to U viaAU,1, Metal does not reveal
to the servers or other users (besides U and V ) the following: U , V , F , AU,1, or that U and V have
access to F .

(g) Anonym unlinkability: Neither servers nor anyone in MalUsers can link AU,1 and AU,2 unless U
reveals this linkage.

(h) Anonym authenticity: If user U gives anonym AU,1 to someone in MalUsers, users in MalUsers
cannot send �les to the other anonym AU,2 that these users do not know.

Proofs roadmap. Metal achieves the guarantees above based on common cryptographic assumptions.
In Appendix A, we provide a formal simulation-based security de�nition and proof for Metal-ORAM. In
Section 4 and Section 6.1, we provide security proof sketches for Metal-AC and Metal-SHARE; understanding
security for these two protocols is easier than for Metal-ORAM, so we delegate formal proofs to an extended
paper.

Non-guarantees. Metal does not hide when the user calls the API (timing) or which function the user is
calling (e.g., sharing a permission vs. reading a �le). �ese two leakages can be hidden by padding in time
and in computation, which we discuss in Section 8. Metal does not protect against denial-of-service a�acks
by a server. Metal makes strong assumptions that both servers are semi-honest and fails if either server
acts maliciously.
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3 �e layout of S2PC in Metal

In this section, we present the layout for the secure two-party computation (S2PC) that the two servers run in
Metal. Metal’s S2PC takes a speci�c form, within which we will plug in Metal’s techniques. To instantiate
the S2PC, Metal uses Yao’s protocol [43]–[45], [59]–[61] in a reactive manner.

Client sending a request. As Figure 3 illustrates, a client sends its request R (e.g., which �le to access)
to the two servers secret-shared (e.g., using XOR secret-sharing) into R(1) and R(2). In this way, no server
sees the request in the clear. Server i will receive R(i). Inside S2PC, the servers combine the two shares
R(1) and R(2) to create R.

S2PC by
Yao’s Protocol

Server 1

Server 2

Client

ORAM share

ORAM share

R(1)

R(2)
Client

O(1)

O(2)

R OR O

User User

Figure 3: Metal two servers run Yao’s protocol to take user input and access ORAM storage.

Metal’s servers also secret-share the ORAM store such that none of them know the data stored in the
ORAM, but if they want to access some parts of the ORAM, they take their local shares of those parts
as input and reconstruct those parts inside the S2PC. �e two servers then update the ORAM store by
outpu�ing the updated shares from the S2PC.

Yao’s protocol. Our S2PC is based on Yao’s garbled circuits protocol. We present Yao’s protocol as a
black box here and in the form relevant to our S2PC. Yao’s protocol enables two parties (here, the two Metal
servers) to jointly compute a function over their own secret inputs without leaking the secret inputs to
each other. Concretely, suppose that Server 1 has secret input x(1) and Server 2 has secret input x(2), they
can compute a function f(x(1), x(2))→ (y(1), y(2)) such that Server i learns only its own input x(i) and
function output y(i), and nothing else about the other party’s input or function output. To supply a random
tape for the function, each server independently samples a share of the random tape, takes it as input to
S2PC, and reconstructs the random tape by XORing the two shares inside the S2PC.

In Metal, x(i) will consist ofR(i), the ORAM share stored by Server i, and some other state. �e function
f processes the user’s request by checking the capability and running ORAM client operations or �le
sharing operations. �e result of f is y, which consists of the response O to the client (as Figure 3 shows),
an update to the ORAM, and other server state change. �e S2PC outputs O to the client in secret shares
O(1) and O(2), where each server has one share.

Client receiving a response. �e servers send the two shares to the client, who can put them together
and obtain output O.

Metal’s S2PC uses Yao’s protocol in a stateful and reactive manner like some works in S2PC [46]–[48],
[62]–[64]. �at is, it does not compute just one function f within S2PC, but instead it runs a sequence of
functions {f1, f2, ...} continuously—this sequence of functions can keep state, take new inputs, reveal some
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outputs midway, and continue processing in this manner for many steps. �is reactive property captures
the fact that the servers o�er a service, not only a one-time computation. �e stateful nature is needed to
maintain IndexORAM state.
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4 Metal-AC: Anonymous access control

Metal’s �rst component, Metal-AC, checks whether the user has permission to complete the request. Since
it is the simplest of our three components, we present it �rst as a warmup.

One natural design for Metal-AC is to store access control lists (ACLs) on the servers. However,
materializing ACLs is expensive—to access ACLs obliviously, all the ACLs must �rst be padded to the size
linear to the number of �les multiplied by the number of users, then be accessed by ORAM.

Instead, in Metal, each client on a user’s machine stores its user’s capabilities, which represent a user’s
permission to read or write a �le and are reminiscent of operating systems’ capabilities [49]. A user needs
to present a capability (in secret shares) to the servers before accessing or sharing a �le.

Metal uses authenticated encryption, which provides con�dentiality and unforgeability, to implement
capabilities. �e two servers verify a capability by jointly decrypting the capability inside the S2PC. In
Metal, a capability is a ciphertext of the access description under a key that is secret-shared between the
two servers. For example, a capability to read and write �le F has a description “File IDF : R+W”:

CR+W
F := AuthEnc(capability key, “File IDF : R+W”).

Each server stores a share of the capability key, which is used for all users’ capabilities. �e servers grant
and verify the capabilities inside the S2PC through secret shares, and thus they cannot see the capabilities
or the capability key.

Granting a capability. �e servers, in S2PC, grant a capability to a user in the following situations:
– When the user creates an account (by calling the CreateAccount function), the servers, in S2PC, reserve

a continuous range of `file �le identi�ers for this user, who obtains a multi-�le capability for reading and
writing any of these `file �les. �e user can use this capability to share the �les.

– When the user receives a �le shared with another user (by calling the ReceiveCapability function),
the user receives a capability for accessing this shared �le, where the capability is generated by the
servers during the other user’s invocation of SendCapability (described in Section 6). �e user can use
this capability to access but not to share the �le.

To grant a capability, the S2PC between the servers decides an access description (e.g., �le F with permission
PF ) and proceeds as follows: the S2PC reconstructs the capability key, computes the capability, and returns
the capability in the form of secret shares to the user’s client, as described in Figure 4.

Server 2

Client

Grant a capability Verify a capability

C
Generate

Server 1
C(1)

C(2)

C

Server 2

Client

C

Server 1

C

C(1)

C(2)
Verify

Figure 4: Metal-AC grants or veri�es a capability C using the capability key, which is secret-shared between
the two Metal servers.

Verifying a capability. Since users can be malicious, each user needs to present a capability to the servers
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before accessing some �le. To start with, the user’s client splits the capability into two secret shares and
provides one to each server. Since each time the client uses fresh randomness for secret-sharing, the servers
do not know if the same capability is used again. �en, as Figure 4 shows, the S2PC uses the capability key
to decrypt the capability.

If the access description is valid for the operation the user wants to perform, Metal-AC invokes Metal-
ORAM or Metal-SHARE as in Figure 2 and provides the access description to such component inside
S2PC.

Security proof sketch. Metal-AC uses authenticated encryption to hide the information inside the
capability against the user, which avoids the leakage of �le owner due to �le identi�ers’ being reserved in
owner-speci�c continuous ranges during the account creation, and to prevent a malicious user from forging
a capability. Metal-AC uses S2PC to distribute the access to the capability key, so that one server cannot
grant a capability or see what is inside the capability. By using secret shares to exchange the capability
between the client and the S2PC, one of the servers does not even see the capability.

In relation to the security guarantees we described in Section 2.3, Metal-AC ensures anonymity since
none of the two servers can see what the capability is, and the user does not have the capability key; later
in Metal-ORAM (Section 5.3), we can see that Metal-AC helps us achieve �le secrecy and �le integrity
by allowing only those users with the valid capability to access that �le. Metal-AC does not leak what
is inside the capability or even the capability itself, which helps achieve obliviousness and read/write
indistinguishability.
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5 Metal-ORAM: E�cient two-server multi-user ORAM for �le storage

In this section, we describe how the two Metal servers store and obliviously access user �les using Metal-
ORAM. We �rst provide some background about ORAM as well as the construction of Primitive Metal and its
limitation. �en, we describe Metal’s synchronized ORAM trees and tracking and permutation generation
techniques, which overcome this limitation. We prove the security of Metal-ORAM in Appendix A.

5.1 Background on ORAM

Metal-ORAM wants to use ORAM for this scenario: the two servers running a S2PC procedure store an
array of �les D in the S2PC state and they want to access the x-th �le D[x] inside the S2PC, without any
server knowing the secret location x. ORAM for S2PC [47], [48], [62]–[64] is a cryptographic primitive
that enables such oblivious data access in S2PC.

We identi�ed Circuit ORAM [62] to be appropriate for our se�ing: the ORAM client has a competitive
performance, which is—in the worst case—only poly-logarithmic to the number of �les, while other schemes
such as SqrtORAM [64] and Floram [63] have a linear worst-case complexity. Circuit ORAM has the bene�t
that the user waiting time remains acceptable even in the worst case as well as a competitive performance
when the number of data blocks is large.

We now provide necessary background about Circuit ORAM for the reader to understand how Metal
uses it. Circuit ORAM stores such a �le array D in a binary tree. To store N �les, Circuit ORAM uses a tree
with height h = dlog2Ne, as Figure 5 shows. Each tree node can store three �xed-size blocks. In addition
to tree nodes, a stash temporarily stores some blocks that have not been added to the tree, up to the stash
size bound.

stash

root

leaf

Index Data
The format of a block

Position Index
The format of a block

Position

(the full binary tree, inYao's protocol)

+
The format of a block

Encrypted Data

(IndexORAM inside Yao's protocol) (DataORAM  outside Yao's protocol)

synchronized

Figure 5: Metal-ORAM moves data out of Yao’s protocol (Section 5.3). �e data is too large to be processed
e�ciently in Yao’s protocol.

Each block either is empty or stores the data of a �le D[x]. Such a block consists of the index x, the
data D[x], and its position—the root-to-leaf tree path where this block resides in the binary tree. If a block
is currently bu�ered in the stash, the block stores the tree path that the block will be evicted onto.

To locate a block in this tree, Circuit ORAM keeps a position map, which maps each index x ∈
{1, 2, ..., N} to the path on which the block resides, if the block is not bu�ered in the stash. �e position of
D[x] in the position map should match the position �eld in the block that contains D[x].

Reading. To read a �le, the two servers in the S2PC �rst look up the �le’s position in the position map,
then look up the block in the stash and the path corresponding to this position. �e two servers can then
read the data in the block in S2PC. A�er reading the �le, the two servers assign a new random position to
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this block, put the block into the stash, and update the position map accordingly.

Writing. To write a �le, the two servers follow the similar steps, but when they put the block back into
the stash, the two servers replace the data with the new data from the user. Note that accesses to the
position map also need to be oblivious. Metal uses the standard recursive technique [32], [37], [65] to store
the position map in ORAM.

Stash eviction. A�er each read and write, Circuit ORAM needs to perform a stash eviction, in which
some blocks bu�ered in the stash are evicted into the tree to ensure that the stash does not over�ow. For
each eviction, Circuit ORAM chooses two paths of the tree [66] and rearranges the blocks in the stash and
the blocks on these two paths. �is rearrangement is the heaviest step and involves a lot of technical details
less relevant to describe here but included in [62].

5.2 Primitive Metal

We now have enough background to describe Metal’s primitive scheme, which serves as the foundation for
our subsequent improvements. Recall that Metal’s primitive scheme already provides the desired security
guarantees, though it is slow. First, Circuit ORAM immediately gives us a way to achieve read/write
obliviousness and read/write indistinguishability. Recall that the two servers now can run a function f
that requests �le data D[x] as input from ORAM; none of the servers knows the index x or the data D[x].
�e two servers also do not know whether the function f reads or writes the data because we pad the
computation in function f ; this padding overhead is small because reading and writing are similar in ORAM.
Second, we obtain anonymity and �le secrecy/integrity with the help of Metal-AC (Section 4).

We now outline this primitive scheme. In this scheme, all users’ �les are arranged in a �le array D
stored in the ORAM inside the S2PC and are padded to have the same size (e.g., 64 KB). A user who wants
to read or write a �le D[x] �rst presents a capability to pass Metal-AC. If the user passes the capability
veri�cation, the two servers access the ORAM on behalf of the user. �e two servers return the �le data
back to the user via secret shares, as described in Section 3. Note that if the user writes to a �le rather than
reads, the user receives dummy data in the response, as a result of padding.

However, Primitive Metal is slow: our experiments (Section 7.7) show that it takes ≥ 80 s to read a �le
in a store of 220 64 KB �les, and the total storage blowup (with ORAM’s) is ≥ 700×!
�e bottleneck of Metal’s primitive scheme. �e primitive scheme is slow due to the data-intensive
operations inside Yao’s protocol. Recall that Yao’s protocol builds on garbled circuits; processing a large
amount of data leads to many garbled gates being generated, transmi�ed, and evaluated, resulting in heavy
computation and communication. In particular, the primitive scheme is (1) reading all the blocks in the
stash and on an ORAM path and (2) rearranging all the blocks in the stash and on two ORAM paths during
stash eviction.

Metal-ORAM avoids this bo�leneck by moving all the �le data out of Yao’s protocol and processing
such data with more e�cient, customized protocols.

5.3 Moving data out of Yao’s protocol: Metal’s synchronized inside-outsideORAMtrees

To avoid the primitive’s limitation, Metal-ORAM splits the ORAM binary tree into two synchronized ORAM
stores, IndexORAM and DataORAM, as illustrated in Figure 5. IndexORAM only contains small metadata
with no �le data, which is the only data structure that will be accessed inside Yao’s protocol. DataORAM
stores the �le data outside Yao’s protocol, not accessed by Yao’s protocol.
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IndexORAM. We use the recursive technique [32], [37], [65] to store the position map inside recursively
larger ORAM trees; hence, IndexORAM is a set of trees of increasing sizes. �is set of trees enables looking
up the position in the last tree for a given �le x. However, to simplify ma�ers for clarity, we illustrate only
the last tree in Figure 5 and we will refer to a single IndexORAM tree in the rest of the protocol description,
with the understanding that Metal-ORAM is handling the logistics of the other smaller trees as well.

DataORAM. DataORAM—as Figure 5 shows—resembles IndexORAM’s last tree but only stores �le data.
DataORAM stores the data in the form of ElGamal ciphertexts [67]–[70] under a global public key; each
server has a share of the corresponding private key. Using the properties of ElGamal, the two servers can
rerandomize the ciphertexts without knowing the private keys and work together to decrypt ciphertexts as
needed, which we will leverage in the construction of our protocols. In Metal, the DataORAM tree is stored
on Server 1’s disk.

Synchronization. �ough we split the tree into two structures, we ensure that these two trees are
synchronized in that the data in DataORAM is at the same location in DataORAM as its index/position is
in IndexORAM.

We now describe how to read and write a �le with these two synchronized inside-outside ORAM trees.

Reading. To read �leD[x], the two servers �rst �nd the �le index in IndexORAM and retrieve the position
p of the �le using Metal’s primitive scheme’s approach. A�er doing so, the S2PC procedure determines
which block on the path stores the �le, i.e., the i-th block on the path p is the block for D[x]. Due to the
synchrony between IndexORAM and DataORAM, as Figure 5 points out, the encrypted data of D[x] can be
found also in the i-th block of the same path p in DataORAM.

However, we cannot simply have the two servers fetch the i-th block in DataORAM: while the servers
can see the path p due to ORAM’s guarantees, they should not see i. �e location i is related to the
block history [71], and revealing i to the servers breaks obliviousness. �erefore, Metal-ORAM combines
threshold decryption and our secret-shared doubly-oblivious transfer protocol (Section 5.4) in such a way
that the user receives the decryption of the i-th block in DataORAM, i.e., the �le data D[x], but neither
server learns i or D[x].

A�er reading a �le, the two servers need to perform the ORAM management routines: they put the
index block to the stash of IndexORAM and put the data block into the stash of DataORAM. �ese blocks
will later be evicted into the tree. We describe the reading protocol in more detail in Section 5.4.

Writing. To write a �le D[x], the two servers run the protocol in a similar manner, but we want to ensure
that (1) the user with write permission does not see the �le content (since such a user probably does not
have the read permission) and (2) the user-provided data is inserted into DataORAM.

�us, the writing protocol makes the following changes. First, instead of reading the i-th block in the
array, the protocol reads a dummy block, which contains empty �le data; therefore, a user with only write
capability does not see any �le data in this operation. Second, when the two servers insert a data block
back to the DataORAM’s stash, the two servers instead bu�er the user-provided block into the stash. �e
user-provided block is created in the following manner: the user secret-shares the �le content between the
servers, each server encrypts one share, and the servers combine the two encrypted shares.

To make reading and writing indistinguishable, we merge their computation such that the servers are
running the same protocols for reading or writing with li�le overhead, as we will show in Section 5.4
and Section 5.5. �is merged protocol still preserves �le secrecy and integrity: a user with read capability
cannot modify the �le, and a user with write capability does not see the �le data.
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Stash eviction. �e last aspect we need to take care of is stash eviction, which is needed a�er every read
or write. �e stash eviction rearranges some blocks in the tree. �e challenge is that if Metal-ORAM only
evicts the stash in IndexORAM, the synchrony between IndexORAM and DataORAM breaks.

Metal-ORAM remedies the synchrony by “somehow” capturing the rearrangement that happens to
IndexORAM and also applying it to DataORAM. We cannot simply reveal the rearrangement to the servers
since doing so breaks the ORAM obliviousness. Instead, Metal-ORAM provides a technique for tracking
and permutation generation, described in Section 5.6, to convert Circuit ORAM’s rearrangement into a
permutation. �en, Metal-ORAM employs a distributed permutation protocol to apply the rearrangement
to DataORAM, such that the two ORAM trees are re-synchronized.

5.4 Fetching blocks in DataORAM

We now describe how to fetch the data block in DataORAM without revealing the location i to the two
servers. Circuit ORAM allows the two servers to learn which path the block is assigned to, so the two
servers’ task is to fetch the data block from among the |stash| blocks in the stash and the (3× h) blocks on
the path. Let ~m be the array of N = (|stash|+ 3× h) blocks that these blocks form. �e S2PC knows the
location i; it secret-shares i between the two servers, such that Server 1 knows i(1) and Server 2 knows
i(2). Below, we describe our secret-shared doubly-oblivious transfer (SS-DOT) protocol, at the end of which
Server 2 receives the i-th (encrypted) block in the array, without any server learning what i is. �e fetched
block is encrypted with a global secret key (secret-shared between the two servers) so the two servers can
then run an existing threshold decryption [28] and return the �le content to the user in a secret-shared
form.

We then add read/write indistinguishability to this fetching operation. Recall that if a user only has
write capability, the user should not see the �le’s data. To ensure such �le secrecy as well as to make
read/write indistinguishable, the two servers add a dummy block that does not contain any �le data at the
end of the array. �e two servers now search from an array of (|stash| + 3 × h + 1) blocks. If the user
writes to a �le D[x], the S2PC secret-shares i = (|stash|+ 3× h+ 1) instead, such that the two servers
fetch the dummy block, and the user sees only dummy data. �is dummy block is unused when the user is
reading a �le; it merely stays in the array for padding.

Secret-shared doubly-oblivious transfer. To fetch the i-th block, Metal uses the following customized
protocol. Recall that each server has a share of i: i(1) and i(2), respectively. Server 1 has an array of �le data
blocks ~m = {m1,m2, . . . ,mN}. In our protocol, N = |stash|+ 3× h+ 1, as discussed above, and Server 1
needs to rerandomize the blocks read from DataORAM, using the functionality of ElGamal encryption,
before executing the SS-DOT protocol.1 �is protocol has Server 2 obtain the i-th block without either
server learning i.

Oblivious transfer (OT) [72], [73] does not su�ce for our task because in OT one server knows the index.
Doubly-oblivious transfer [74] does not su�ce either because it does not support two-party secret-sharing
and focuses on 1-out-of-2 transfer instead of 1-out-of-N .

�ere are many ways to implement this simple functionality in 2PC, so we do not claim much novelty
for this procedure. Yet what is important for us is to �nd a way that is very fast for our se�ing because this
operation runs for every �le access. We develop a simple and e�cient procedure:

1A trick to implement this rerandomization e�ciently is to observe that Server 2 only sees one of these N blocks, and thus one
can rerandomize these N blocks using the same randomness, which saves a lot of computation.
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1. �e two servers S1 and S2, inside S2PC, reconstruct i from its shares i(1) and i(2), and generate N keys
{k1, . . . , kN} such that S1 receives as output all these keys and S2 receives only ki.

2. For each j ∈ {1, ..., N}, S1 uses kj to symmetrically encrypt 0 and mj to obtain ciphertexts zj and cj ,
respectively, with authenticated encryption. S1 shu�es all the (zj , cj) pairs and sends them to S2.

3. S2 uses ki to decrypt the �rst ciphertext of each pair: only one, say zk , will decrypt to 0. It then decrypts
the corresponding ck, obtaining mi. Note that k is independent from i because of Server 1’s shu�e.

�is procedure has the advantages that the computation in S2PC is independent from the length of mi and
that the messages mi are symmetrically encrypted, which has small ciphertext expansion and e�cient
encryption/decryption.

Security proof sketch. �e security of SS-DOT, i.e., obliviousness for both parties, is a direct result of
the security of S2PC and authenticated encryption.

5.5 Putting a block into DataORAM’s stash

�e next step is to put a block into the DataORAM’s stash, which will be later evicted to the tree (Section 5.6).
Recall that if the user is reading a �le, Metal-ORAM should put back the �le’s current data block, and if the
user is writing to a �le, Metal-ORAM should insert the user-provided data block. �is distinction is crucial
for �le integrity because we want to avoid a malicious user who only has the read capability to tamper
with the �le by changing the block.

Metal-ORAM implements this operation by a permutation. Consider that we place in an array the
following: the blocks in the stash, the block read during the fetching (Section 5.4), and the user-provided
block in an array. �e array therefore has (|stash|+ 2) blocks. Suppose that the S2PC �nds that the j-th
block of the stash is vacant. If the user is reading the �le, S2PC can generate a permutation σread that
exchanges the j-th block with the (|stash| + 1)-th block. If the user is writing the �le, S2PC generates
σwrite that exchanges the j-th block with the (|stash|+ 2)-th block instead. By doing so, the correct block
is inserted into the stash (i.e., the �rst |stash| blocks of the permuted array). �e servers then discard the
last two blocks.

�e challenge is to obliviously perform this permutation: neither server should learn j because leaking
j breaks the ORAM obliviousness, and neither server should know which permutation, σread or σwrite, is
performed because we want read/write indistinguishability.

Metal-ORAM distributes this permutation in a way that hides the permutation. Inside the S2PC, Metal-
ORAM secret-shares the permutation into two permutations σ(1) and σ(2) between the two servers where
the composition of σ(1) and σ(2) equals σread or σwrite. �e two servers rerandomize the blocks and apply
the permutations in turn; the result is the same as when applying σread or σwrite directly. Formally,

1. �e two servers S1 and S2, inside S2PC, sample a random permutation σ(1) and compute σ(2) =
σ ◦ (σ(1))−1 where ◦ denotes composition of permutation and (σ)−1 denotes the inversion such that
(σ)−1 ◦ σ is the identity permutation.

2. S1 rerandomizes the (|stash|+ 2) blocks above, applies the permutation σ(1), and sends the permuted
blocks to S2.

3. S2 receives the blocks from S1, rerandomizes the blocks, applies the permutation σ(2), and sends them
back to S1.
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Before Circuit ORAM’s stash eviction:

• Recall that Circuit ORAM evicts blocks onto two paths. �e algorithm appends a number from 1
to (|stash|+ 6× h− 3) (called trackers) to each block on the two paths in IndexORAM using the
following order, as Figure 7 shows:

1. the blocks on the �rst path, from stash to leaf;
2. the unnumbered blocks on the second path, from stash to leaf.

A�er Circuit ORAM’s stash eviction:

• �e algorithm “peels o�” the tracker numbers from the two paths in order and constructs an array.
Some numbers will be missing (indicated by “---” in Figure 7).

• �e algorithm uses linear scanning to �nd numbers in {1, 2, ..., |stash|+ 6× h− 3} that have not
appeared in the array (e.g., 11 and 19 as in Figure 7).

• �e algorithm uses linear scanning to �nd the “---” slots in the array and �lls into the slots the
unused numbers (the order is unimportant, but our algorithm starts with the smaller ones).

Figure 6: Algorithms for tracking and permutation generation.
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Figure 7: Metal’s tracking and permutation generation.

4. S1 receives the blocks from S2 and stores the blocks in the corresponding locations in DataORAM.

�is method has been used in a similar manner in SqrtORAM [64] to obliviously reorganize the data blocks.

5.6 Re-synchronizing a�er eviction by tracking and permutation generation

A�er each access to the ORAM, Metal needs to evict the stash. We can run the Circuit ORAM’s stash
eviction algorithm inside S2PC to update IndexORAM, which rearranges the index blocks, but it breaks the
synchrony with DataORAM: a �le’s index block in IndexORAM is now at a new location, but the data block
in DataORAM is at the previous location.

Metal-ORAM’s solution is to extract how blocks in IndexORAM move during the stash eviction and
apply the same movement to DataORAM. �e challenge is to implement this e�ciently. Prior work Onion
ORAM [75] uses private information retrieval for this purpose, but it requires a large number of data block
operations that is quadratic to the number of blocks being moved, which is heavy.
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Metal-ORAM instead develops an algorithm to track the changes to IndexORAM inside the S2PC and
to convert them into a permutation. �en, Metal-ORAM uses the distributed permutation in Section 5.5 to
rearrange the blocks in DataORAM. 2

We provide the algorithm in Figure 6 and demonstrate the tracking and permutation generation process
in Figure 7. We now explain the algorithm at a high level.

Tracking. Before the stash eviction, as Figure 7 shows, Metal-ORAM a�aches some “trackers” to the
data blocks. Next, it performs the stash eviction per the ORAM algorithm and then observes how the
trackers moved. In Circuit ORAM’s stash eviction, some trackers disappear because the blocks that they
were a�ached to were deleted (indicated by ‘---’ in Figure 7). �us, the list of trackers directly pulled from
IndexORAM a�er the eviction is incomplete (i.e., with empty slots), as shown in Figure 7’s red area. We
give the details of tracking in Figure 6.

Permutation generation. �ese missing trackers prevent us from creating a permutation directly.
Hence, Metal-ORAM brings back those numbers to the empty slots, as Figure 7’s green area highlights.
�e resultant list of trackers becomes a permutation subsuming the changes in IndexORAM. Metal-ORAM
feeds this permutation into the distributed permutation described in Section 5.5 to apply the permutation
to DataORAM. �us, the IndexORAM and DataORAM become re-synchronized, as desired. We give the
detailed algorithm in Figure 6.

We have described how stash eviction works in our synchronized inside-outside ORAM trees. In
our implementation, Metal-ORAM combines the permutation in Section 5.5 with the re-synchronizing
permutation inside the S2PC, so every �le access only uses one distributed permutation.

2�e permutation does not explicitly remove the previous version’s data block from DataORAM: since the index of the previous
version has been deleted in IndexORAM, that data block becomes inaccessible (treated as dummy) in our construction. �e previous
version’s data block may be indirectly discarded later, as a result of a permutation process shown in Section 5.5.
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6 Metal-SHARE: Unlinkable capability sharing

We have achieved oblivious �le storage, but we have not yet shown how a user shares �les with other
users. In this section we describe Metal-SHARE, which contributes the functionality of �le sharing without
introducing metadata leakage. We �rst describe two central notions of Metal-SHARE, anonyms and
capability broadcast list, and then describe the sharing protocol.

Anonyms. Anonyms are anonymous identi�ers that a user can leverage in �le sharing. An anonym
is similar to an email address for receiving emails or a Bitcoin wallet address for receiving Bitcoin; but,
our usage of anonyms has the additional bene�t that it hides the anonym owner’s identity such that
two anonyms of the same user cannot be linked to each other. Every user in Metal can locally create an
unbounded number of anonyms without interactions with the servers. A user then gives his/her anonyms
to others in order to receive �le capabilities from them. For example, a user U who wants to receive many
�les from user V in the future can provide V with one of the anonyms, AU,i (where i is the anonym index),
as Figure 8 shows.

Capability broadcast. When a user V sends a capability to U , V puts the capability on the servers so
that the receiver U can later retrieve it from the servers. �is allows U and V to share �les even if they will
never be online at the same time.

To avoid leaking metadata through network pa�erns of a user, Metal-SHARE broadcasts the encryption
of each capability to every user. A user can only decrypt those ciphertexts destined to him/her, and the
rest of the ciphertexts are not decryptable by this user. �is is similar to a blockchain where all nodes
download the blocks, but only some of the blocks contain transactions relevant to the node. In contrast to a
blockchain, though, in Metal-SHARE, the blocks are much smaller than in a regular blockchain, and users
only need to download and organize the capabilities periodically.

To implement this broadcast list, Server 1 keeps a capability broadcast list that contains these capabilities
for users to download. Each capability will be encrypted under the receiver’s broadcast key. When a user’s
client wants to download the list, Server 1 shu�es the capabilities in the list before sending them to the
client.

A�er user V obtains the capability, V can—in the future—use this capability to access the �le, without
interacting with U . If U wants to revoke the permission, U can discard the old �le, create a new �le, and
share the new �le with other users who are supposed to retain the permission.

To prevent the broadcast list from growing monotonically, Metal-SHARE has each encrypted capability
in the list to be deleted a�er a �xed interval (e.g., three days).

Receiver U
user’s anonym key
AU,i

Owner V

AU,igenerate

CV,F anonym 
master key

AU,i ID ,i

capability key

CV,F CU,F

broadcast 
master key

CU,F Enc(BKU    ,    i ||CU,F)

Server 1

Receiver U
user’s broadcast key

decrypt

broadcast

Server 2

i,CU,F
U

decrypt decrypt/encrypt encrypt

Figure 8: Sending and receiving a �le’s capability in Metal-SHARE.

Example. We now illustrate how to share a capability. Suppose that user V owns �le F and wants to
send the read capability of �le F to another user U , as Figure 8 shows. �e procedure is:
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1. Get the receiver’s anonym. User V obtains one of U ’s anonyms from U , say AU,i, as we discussed in
Section 2.2. �is anonym can be used for all future �le sharing activities between U and V .

2. Send a �le capability. User V who owns �le F requests the servers to grant a capability for reading F
to the anonym AU,i. �e servers check V ’s capability CV,F , create a read capability CU,F for user U ,
and encrypt CU,F together with i under U ’s broadcast key, as Figure 8 shows. �e ciphertext of CU,F is
appended to the capability broadcast list.

3. Receive a �le capability. User U ’s client periodically downloads the new capability ciphertexts from
Server 1’s capability broadcast list and uses U ’s broadcast key to decrypt each ciphertext. In this manner,
it �nds capabilities that are destined to U , one of which will be capabilityCU,F together with the anonym
index i. User U can learn which anonym has been used by the sender based on i. If AU,i was only
provided to V , U knows that this �le is from V .

6.1 Unlinkable anonyms

We now focus on the le� part of Figure 8 and discuss how the user U generates a new anonym AU,i, how
the sender V uses this anonym, and how the S2PC processes the anonym.

Generating the anonym. User U has an anonym key AKU that it received from the servers (via secret
shares) during account creation. Using this key, U can generate anonym AU,i for any anonym index i.
Informally, the anonym is an encryption of the user ID, IDU , and the anonym index i.

Sending a capability to this anonym. Another user V who owns �le F receives the anonym AU,i, as
Figure 8 shows. User V has the capabiliy CV,F with full permission and wants to grant the read capability
to U . To do that, V calls the server API with the anonym and V ’s capability, asking the servers to create a
quali�ed capability (in this example, read-only) for U (request sent in secret shares as in Section 3).

Opening the anonym inside the two servers’ S2PC. �e two servers secret-share the anonym master
key (AMK), which can decrypt everyone’s anonyms. �us, the two servers can open the anonym inside
S2PC, as Figure 8 shows, and continue with the sharing protocol (Section 6.2).

Construction. Metal-SHARE implements anonyms using a special-purpose scheme that builds on Paillier
encryption [76], additive secret sharing, and message authenticated code (MAC). Our construction is in
Figure 9, and we now describe the intuition behind the construction for clarity.

First, anonyms need to achieve anonym authenticity, as de�ned in Section 2.3. If user U gave anonym
AU,i to V , V should not be able to create another anonym AU,i′ under a di�erent anonym ID i′ 6= i,
assuming that U has never leaked the anonym AU,i′ to any one in the set of colluding malicious users.
Our solution is to give user U an anonym key that is derived from the servers’ anonym master key, as the
Setup and UserKeyGen algorithms in Figure 9 show. U then needs to append a message authentication
code over the pair (IDU , i), as the AnonymGen algorithm shows, so that another malicious user cannot
forge an anonym for user U .

Second, anonyms must provide anonym unlinkability. Hence, we cannot expose IDU , i, or the MAC
to another user because such information may deanonymize U . �e natural solution is to use public-key
encryption to encrypt (IDU , i,mac) in such a way that it can only be recovered in the servers’ S2PC. For
e�ciency, we must move the public-key operations out of S2PC: the two servers will do joint decryption
outside S2PC, and inside S2PC they will merge the decryption results e�ciently. �ere are a few public-key
encryption schemes that can make this merging step e�cient: Paillier encryption [76], Goldwasser-Micali
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Anonym.Setup(1λ):
Run by the servers during setup to generate the Paillier keys and the
anonym master key.
• For j ∈ {1, 2}, Sj runs:
(skj , pkj)← Paillier.KeyGen(1λ), and publishes pkj .

• For j ∈ {1, 2}, Sj samples a secret share of anonym master key
AMK(j) ←$ {0, 1}λ and stores AMK(j).

Anonym.UserKeyGen(IDU ,AMK(1),AMK(2))
Run by the servers and userU (identi�ed by IDU ) during the account
creation to grant the anonym key AKU to user U .
• S1 and S2 run a S2PC that takes IDU ,AMK(i) as input (j ∈
{1, 2}) and computes:
– AMK := AMK(1) ⊕ AMK(2).
– AKU := PRFAMK(IDU ).

• S1 and S2 use the protocol in Section 3 to share AKU with the
user.

• �e user stores the anonym key AKU .

Anonym.AnonymGen(IDU , i, AKU , pk1, pk2)
Run by the receiver user U to create an anonym with index i, using
the anonym key AKU .
• s := IDU ‖ i ‖ MACAKU

(IDU ‖ i).
• U additively secret-shares s:

– s(1) ←$ {0, 1, ..., 2|s|+λ}.
– s(2) := s(1) + s.

• c(j) ← Paillier.Encpkj
(s(j)) for j ∈ {1, 2}.

• Outputs the anonym AU,i := (c(1), c(2)).

Anonym.AnonymRerand(AU,i, pk1, pk2)
Run by the �le owner and sender V to rerandomize the receiver’s
anonym AU,i before sending the anonym (in secret shares) to the
servers.
• Let AU,i = (c(1), c(2)).
• V rerandomizes the anonym:

– r←$ {0, 1, ..., 2|s|+2λ}.
– c

(j)
new ← Paillier.AddPlainpkj

(c(j), r), j ∈ {1, 2}.
• Outputs the anonym Arerand

U,i := (c
(1)
new, c

(2)
new).

Anonym.AnonymDecrypt(Arerand
U,i , sk1, sk2)

Run by the servers upon receiving the (rerandomized) anonym from
the �le owner V to decrypt the anonym in preparation for the capa-
bility broadcast.
• V sends Arerand

U,i = (c
(1)
new, c

(2)
new) to the two servers.

• Sj runs s(j)new := Paillier.Decskj (c
(j)
new) (j ∈ {1, 2}).

• S1 and S2 run a S2PC that takes (s(j)new,AMK(j)) as input (j ∈
{1, 2}), as follows:
– AMK := AMK(1) ⊕ AMK(2).
– S2PC reconstructs s:

∗ s := s
(2)
new − s

(1)
new .

∗ Let s be IDU ‖ i ‖ mac.
– AKU := PRFAMK(IDU ).
– If mac = MACAKU

(IDU ‖ i), valid = 1. Otherwise,
valid = 0.

– Stores valid, IDU , i in the S2PC’s state for the use of capability
broadcast (Section 6.2).

Figure 9: Algorithms of the customized encryption that instantiates anonyms; the use of Paillier encryption
follows the common Paillier encryption syntax. Without loss of generality, we assume that the message
size of the Paillier encryption set up by security parameter λ is larger than |s|+ 2λ+ 1 bits.

24



encryption [77], and Brakerski-Gentry-Vaikuntanathan encryption with Z2 slots [78]–[81]. We choose
Paillier because of smaller ciphertext, which could be useful in transmi�ing anonyms in some se�ings, e.g.,
on business cards. �e AnonymGen and AnonymDecrypt algorithms in Figure 9 show how Metal-SHARE
combines additively homomorphic secret-sharing and Paillier encryption to instantiate anonyms.

Note that the sender V also needs to refresh the ciphertext such that the two servers do not realize that
the refreshed ciphertext is from the same anonym during the joint decryption. �is step avoids the linkage
among multiple uses of AU,i. �e sender V rerandomizes the encrypted secret shares using the additive
homomorphism in Paillier encryption, as AnonymRerand in Figure 9 shows.

In this rerandomization step, we adapt a trick from [82] to rerandomize the anonym. Before the reran-
domization, the distribution of each of s(1), s(2) is statistically indistinguishable from a uniform distribution
in {0, 1, ..., 2|s|+λ} as a result of secret sharing. When we rerandomize the two shares by homomorphically
adding r←$ {0, 1, ..., 2|s|+2λ}, the distribution of each of the new s(1), s(2) is now statistically indistinguish-
able from a uniform distribution in {0, 1, ..., 2|s|+2λ} and is statistically independently from the original
value of s(1) or s(2), which gives us the following guarantee: even if a user calls SendCapability many times
using the same anonym, one of the two servers, knowing the previous rerandomized anonyms, cannot link
these anonyms together.

Security proof sketch. Anonym authenticity can be proved by reducing to the unforgeability of MAC.
Anonym unlinkability can be reduced to the security properties of Paillier encryption and additive secret
sharing. Since our secret sharing has a customized design, we detail its security as follows:

• Sharing. Recall from Figure 9 that the secret s is shared into s(1)←$ {0, 1, ..., 2|s|+λ} and s(2) = s(1)+ s
where λ is the security parameter. �e distribution of each share is statistically indistinguishable from a
uniform distribution in {0, 1, ..., 2|s|+λ}. Since the two shares are then encrypted under separate Paillier
keys, if an a�acker only has one of the private keys, the a�acker sees only one share, not s.

• Rerandomizing. As discussed above, the rerandomization algorithm homomorphically adds r to both
shares, and the distribution of each new share (inside the Paillier encryption) is statistically indistinguish-
able from a uniform distribution in {0, 1, ..., 2|s|+2λ} even with the knowledge of the original share. One
of the servers does not learn the s or the shares in the original anonym.

6.2 Capability derivation and broadcast

We now focus on the right part of Figure 8. Recall that the two servers secret-share the capability key, as
described in Section 4. �e two servers can decrypt the capability and recreate a capability with quali�ed
permission, such as read-only.

�en, the S2PC encrypts the new capability CU,F , along with the anonym index i, using the broadcast
master key in such a way that only user U ’s broadcast key can decrypt it. �e ciphertext is revealed to
Server 1, who then appends this ciphertext to the broadcast list. User U downloads the new ciphertexts
during the past intervals sinceU was last online. U usesU ’s broadcast key to try decrypting each ciphertext,
among which U can �nd CU,F and the anonym index i. With this new capability, U can read the �le F
using Metal-ORAM.

Discussion on hiding the number of incoming �les. �e broadcast in Metal-SHARE has an overhead
linear to the number of �le sharing operations in the whole system, which is not ideal. �e bene�t of this
broadcast is that it hides the number of incoming �les and avoids leaking users’ use pa�erns.
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One alternative is to use private information retrieval (PIR) like Pung [52], [53]. However, each
invocation to Pung can only retrieve a �xed number of data entries. If a user has comparably much more
�les than other users, this user has to run the Pung’s protocol multiple times, from which the a�acker can
still learn this user’s use pa�erns. Another solution is to have users send capabilities to each other via
encrypted emails (e.g., PGP [83], Autocrypt [84], and ClaimChain [85]), but it does not hide the sharing
pa�erns (the sending of emails).

One seemingly working solution to avoid the linear broadcast is to set a �xed bound N for the number
of capabilities that a user can download during an interval T , and a user downloads exactly N capabilities
every interval T . In case of insu�cient capabilities, the user pads the number to the bound N . If a
user cannot retrieve all the capabilities (more than N ), the user retrieves the rest of them the next time.
Unfortunately, this solution leaks use pa�erns, as we now discuss.

Consider the following scenario: When users receive �le capabilities, they may subsequently perform a
few noticeable operations, e.g., adding a new line to the �le. If a user has too many incoming capabilities
and many of them are deferred to be downloaded the next time in this approach, other users may notice this
user’s delayed responses to some �les and learn that more thanN �les are sent during an interval. Inevitably,
avoiding this leakage requires each user to retrieve all his/her capability ciphertexts as in Metal-SHARE.

Making broadcast e�cient. �ough the capability receiving process has to be linear, Metal-SHARE
improves the e�ciency and makes it practical for the client. In Metal-SHARE, the capabilities are encrypted
symmetrically under the user’s broadcast key (derived from the master broadcast key, which is secret-
shared between the servers). As a result, the encryption, transmission, and decryption costs become small.
Concretely, if the broadcast list has 104 capabilities, a user only needs to download 1 MB and can decrypt
all of them in ≤ 10 ms.
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7 Performance

In this section we discuss Metal’s asymptotic e�ciency and concrete e�ciency, compare Metal with PIR-
MCORAM and AnonRAM, and compare with Primitive Metal to show how Metal’s techniques improve the
performance.

7.1 Asymptotic e�ciency

We consider that the system supports Nuser users, Nfile ≥ Nuser �les in total, �le size D, and Nanonym

anonyms per user, as well as a broadcast list with Nlist entries. As follows, we use Oλ(·) to express the
complexity that hides a (�xed) polynomial of the security parameter λ, while Nuser, Nfile, D,Nanonym, Nlist

are polynomially bounded by λ. Like [62], we parameterize Circuit ORAM to have 1
Nω(1) failure probability

(in our implementation, 2−80). We discuss the cost as follows:
– CreateAccount runs in Oλ(logNuser), mainly in the creation of the new user’s capability.
– ReadFile and WriteFile run in Oλ((D+ log2Nfile) logNfile) · ω(1), mainly in accessing IndexORAM and

DataORAM; this result matches the asymptotic cost of Circuit ORAM.
– NewAnonym runs in Oλ(logNuser + logNanonym), mainly in the Paillier encryption in the anonym

generation.
– SendCapability runs in Oλ(logNuser + logNanonym + logNfile), mainly in the anonym decryption and

the capability generation.
– ReceiveCapability runs inOλ(Nlist · (logNfile +logNanonym +logNlist)), consisting of the cost to shu�e

and to send out the encrypted capabilities on the list.

7.2 Implementation

We implemented Metal in C/C++. We use Obliv-C [86] for Yao’s protocol3, Absentminded Crypto Kit [88]
for ORAM, OpenMP for parallel computation, and OpenSSL for TLS.

For Metal-AC’s authenticated encryption, we use the EAX mode [89], which we deemed to be the most
e�cient mode for our se�ing a�er an extensive search.

�e rerandomizable encryption in Metal-ORAM is implemented using ElGamal encryption over Curve25519-
Ristre�o group [67]–[69] with a constant-time encoding and a few optimizations. �is scheme is about
80× faster than standard ElGamal encryption over a Schnorr group [70] and 200× faster than standard
Paillier encryption [76] for our se�ing.

7.3 Evaluation Setup

Machine con�guration. We used two r4.2xlarge machines on Amazon EC2 as the servers, one in
Northern California, one in Oregon, each with eight CPUs and 61 GB memory. We situated them in di�erent
regions to simulate the real-world scenario that the servers are in di�erent trust domains. �e user ran in a
t2.xlarge machine in Canada with four CPUs and 16 GB memory. We allocated the user in Canada to
simulate that the user is from a remote location. In our experiment, we measured the latency from this
machine. Metal-ORAM’s DataORAM is stored on Server 1’s Amazon gp2 volume.

3�e implementation uses 128-bit labels in Obliv-C as needed for achieving a computational security su�cient for 80-bit [87].

27



Network latency. We measured the round-trip time (RTT) and bandwidth. �e inter-server RTT was
19 ms, and the client-server RTT was 70 ms. Measured under AWS’s guidelines [90], the inter-server
bandwidth per connection was ≈ 290 MB/s, and the client-server bandwidth was ≈ 17 MB/s.

7.4 Metal’s performance

To measure the latency of each operation in Metal, we use a setup with 220 64 KB �les (in total 64 GB of
data). To measure the latency of receiving a capability from the servers, we have a user download 104

capabilities from Server 1’s broadcast list.
We measured the latency of these operations with and without Tor in Table 3. As we remark in

Section 2.2, Metal can use other anonymity networks beside Tor. We evaluated on Tor [50] because it is a
popular tool. �e results without Tor more cleanly show the overhead speci�c to Metal.

API functions Time (s) Time (s)
without Tor with Tor

CreateAccount 0.416± 0.004 3.71± 0.16
ReadFile / WriteFile 3.75± 0.01 7.07± 0.17
• client preprocessing 0.056± 0.006
• server accessing IndexORAM 0.210± 0.002
• server encryption 0.007± 0.001
• server fetching 0.122± 0.001
• server eviction 1.572± 0.005
• server joint decryption 0.038± 0.001
• client postprocessing 0.009± 0.001

NewAnonym 0.03± 0.01
SendCapability 1.12± 0.05 4.01± 0.08
ReceiveCapability 1.759± 0.002 6.2± 0.4

Table 3: �e latency of user-facing API functions, measured with and without Tor, for a store of 220 64 KB
�les. �e result is the average of one hundred measurements, with the con�dence interval under two-sided
Student’s t distribution with 90% con�dence.

We show the end-to-end benchmark result in Table 3, together with a breakdown of the cryptographic
operations in our �le access API. From the table, we can see that the latency for each �le access is a few
seconds. �e latencies for creating an account and sending/receiving capabilities are also small.

We show the measurements of how the latency of a �le access depends on the �le size and the number
of �les. Figure 10 has an exponential x-axis for number of �les and a linear y-axis for time. We can see the
latency increases linearly to the �le size and grows logarithmically to the number of �les.

For large-scale measurement, we measure the setup with 220 1 MB �les (where each �le is padded to
1 MB). It takes 29.1± 0.1 s to access a �le. �ough Metal works with �xed-sized �les, larger �les can be
segmented into smaller �les of �xed size, and clients fetch �le segments instead of �les as the user needs
them. As a result, the cost to access the �le then depends on the number of segments.

Metal-ORAM does not support parallel accesses because Circuit ORAM is not parallel. �us, a user
who wants to access a �le has to wait for previous accesses to be completed. �is restriction indeed has the
bene�t of strong consistency. But, one who wants to make Metal-ORAM more parallelizable can distribute
the computation (Section 8) or extend our techniques to parallel ORAM (e.g., Circuit OPRAM [91]).

Network I/O and the size of garbled circuits. We measured the inter-server network I/O and the size
of garbled circuits (the number of AND gates) in Table 5 for di�erent ORAM implementations. We can see
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Figure 10: File access latency vs. the number of �les / �le size. �e result is the average of one hundred
measurements.

that the network I/O grows almost logarithmically to the number of �les. �e circuit size, which represents
the amount of computation in Yao’s protocol, does not grow with the �le size.

7.5 Comparison with PIR-MCORAM

As we discussed in Section 9, only PIR-MCORAM [1] simultaneously provides �le sharing and some access
pa�erns protection in the presence of malicious users. Unlike Metal, PIR-MCORAM leaks user identities,
but it has the advantage that it only uses a single server. However, this single-server se�ing results in a
latency that is at least linear to the number of �les, which becomes slow. Metal’s latency, on the other hand,
is sublinear to the number of �les.

Since PIR-MCORAM [1] is not open-source, we could not perform an end-to-end evaluation of it.
Nevertheless, the evaluation in PIR-MCORAM’s paper [1] provides measurements and discusses the linear
behavior of the results (most are about the zero-knowledge proofs). Hence, we can extrapolate the results
for amortized and worst-case time from PIR-MCORAM. We did not compare with TAO-MCORAM [1],
[41], another system in the same paper, since TAO-MCORAM uses a trusted proxy, which is not a fair
comparison with Metal.

File size Amortized time (s) Worst-case time (s)
216 �les 220 �les 216 �les 220 �les

4 KB ≈ 15 ≈ 135 ≈ 3000 ≈ 47600

16 KB ≈ 39 ≈ 519 ≈ 10900 ≈ 190200

64 KB ≈ 135 ≈ 2055 ≈ 47600 ≈ 760700

Table 4: Latencies extrapolated from PIR-MCORAM [1].

Table 4 shows the results. We can see that when the �le size and the number of �les are large, PIR-
MCORAM has a high latency, especially the worst-case time. For 220 64 KB �les, its amortized time for �le
access is ≥ 500×Metal’s latency (of 3.75 s). In addition, PIR-MCORAM leaks user identities, which Metal
hides.
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7.6 Comparison with AnonRAM-poly

AnonRAM-poly [28] is another anonymous storage system that also uses the two-server model but does
not support �le sharing among users. AnonRAM-poly [28] is not implemented. To estimate a lower bound
of its latency we implemented the zero-knowledge proofs for �le uploading used in AnonRAM-poly—which
the users generate and the servers verify for every access. We implemented them using the disjunctive
Schnorr’s protocol [92]–[94], and we evaluated its performance under the same evaluation setup as in
Section 7.3. Even with multi-threading, such zero-knowledge proofs take≥ 80 s per �le access for a store of
220 64 KB �les. In addition, AnonRAM-poly has other expensive components, such as the zero-knowledge
proofs in oblivious PRF and oblivious sorting between the two servers. AnonRAM-poly is therefore at least
≥ 20× slower than Metal.

7.7 Comparison with Primitive Metal

We described Metal’s primitive construction in Section 5.2, which directly comes from Yao’s protocol and
does not use Metal-ORAM techniques to move �le data out of Yao’s protocol. It provides the desired
functionality and security but not e�ciency. To demonstrate the poor performance of Primitive Metal, we
measured the latency of a single ORAM access of the strawman using three state-of-the-art ORAM schemes
[62]–[64] with the implementation in Absentminded Crypto Kit [88]. Note that these implementations only
support in-memory storage, which makes them prone to run out of memory but enjoy a faster I/O than
Metal, since Metal stores data on the SSD disk. Table 5 shows the measurements, which we now discuss
alongside with how Metal improves it on three dimensions:

File size
# Files Amortized Time (s) Network I/O (MB) #×106 AND gates Worst-case time (s)

212 216 220 212 216 220 212 216 220 212 216 220

(�is paper) Metal, as discussed in Section 7.4. �is is the end-to-end benchmark including time for Metal-AC’s permission check.
4 KB 1.40 1.52 1.73 21.3 31.8 45.1 1.43 2.19 3.16 ? ? ?
16 KB 1.70 1.86 2.14 27.6 39.5 54.1 1.43 2.19 3.16 ? ? ?
64 KB 2.86 3.23 3.75 60.0 74.3 95.0 1.43 2.19 3.16 ? ? ?

Metal-ORAM’s primitive scheme using Circuit ORAM [62], as discussed in Section 7.7, considering only ORAM access time.
4 KB 3.89 4.45 † 429 507 † 13.5 16.0 † ? ? ?
16 KB 14.7 19.3 † 1690 1976 † 53.1 62.2 † ? ? ?
64 KB 61.3 73.1 † 6717 7844 † 212 247 † ? ? ?

Metal-ORAM’s primitive scheme using SqrtORAM [64], as discussed in Section 7.7, considering only ORAM access time.
4 KB 3.78 15.1 † 318 1477 † 6.57 30.2 † 558 9708 †
16 KB † † † † † † † † † † † †
64 KB † † † † † † † † † † † †

Metal-ORAM’s primitive scheme using Floram [63], as discussed in Section 7.7, considering only ORAM access time.
4 KB 3.74 5.03 11.0 100 129 290 2.77 2.77 2.77 4.14 9.53 91.6
16 KB 7.21 13.1 31.7 399 514 1152 11.0 11.0 11.0 8.32 28.8 364
64 KB 21.3 33.2 † 1592 2048 † 44.1 44.1 † 25.4 108 †

Table 5: Metal-ORAM’s �le access latencies compared with Primitive Metal (? = same as amortized,
† = out-of-memory). Network I/O is measured using iftop. All results are the average of (at least) one
hundred write operations.

• Storage overhead reduction. Table 5 shows that Primitive Metal soon runs out of memory because the
implementation stores data in Yao’s protocol and has a size blowup of 128× for each bit. Instead, Metal
stores the encrypted data outside Yao’s protocol, which has a smaller blowup.

• Latency reduction. By extrapolating Table 5’s result, we estimate the �le access latency for Primitive
Metal is ≥ 80 s for 220 64 KB storage (for Circuit ORAM [62]). Metal uses tree-based ORAM, which has
a polylogarithmic worst-case complexity and signi�cantly less computation. In particular, Metal avoids
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the linear worst-case time as in SqrtORAM [64] and Floram [63].
• Network I/O reduction. Metal reduces the amortized network I/O because it no longer does data-

intensive computation in Yao’s protocol (as shown in the circuit size in Table 5) and only transfers small
amount of �le data blocks per �le access. If we extrapolate Table 5’s result, the amortized network I/O of
Primitive Metal is ≥ 1 GB accessing a 64 KB �le in 220 �les. In comparison, the network I/O for Metal is
about 95 MB, as Table 5 shows.
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8 Extensions

In this section we discuss certain extensions to Metal.

Parallel accesses. We can improve the read performance by having K pairs of Metal servers with the
same �le data but independent ORAM store. �ey can load-balance the user’s read requests and are very
likely to improve the throughput by K×. �e write performance will decrease because a user needs to
submit the write request to all K pairs of the servers. In systems where the write requests happen very
infrequently, such a design can be helpful in reducing the average latency. Note that this direction to
improve the performance has to sacri�ce the read/write indistinguishability.

Padding to hide timing and type of operation. �e leakage of timing and type of operation can be
hidden by padding in time and computation. To do so, we �rst modify Metal server API functions to support
a dummy mode that does not make any actual change but exhibits the same execution pa�erns. We will not
discuss how to implement this dummy mode, but it will mostly rely on general techniques. �en, we ask
each user’s client to routinely call each server API function; when a client is expected to call a server API
function but has nothing to do, the client simply invokes the function in the dummy mode. Nevertheless,
such padding is very expensive (e.g., the broadcast list will be lengthy).
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9 Related Work

We organize the related work in the following categories:

(1) E2EE storage systems. A line of storage systems uses end-to-end encryption. Academic works
includes DepSky [2], M-Aegi [8], Mylar [3], Plutus [4], ShadowCrypt [5], Sieve [6], and SiRiUS [7]. In
industry, there are Keybase [95], PreVeil [96], and Tresorit [97]. �ese systems have become practical, but
they leak user identities and �le access pa�erns.

(2) Anonymous storage systems. �ere has been a line of works on anonymous storage systems. Earlier
academic works include Eternity [98], Publius [99], Freenet [100], and Free Haven [101]. Some peer-to-peer
�le sharing systems have been deployed in the real world, including Napster, Gnutella, and Mojo Nation
[102].

(3) Single-user oblivious storage systems. Oblivious storage systems are designed to conceal �le access
pa�erns and provide stronger privacy. Single-user oblivious storage systems focus on the se�ing where
there is only one user [30], [31], [65], [103]–[107] or a group of trusted users that can be treated as one user’s
multiple clients [38]–[42], [108]. A number of works add the support of asynchronous access [38]–[42] and
improve the security against malicious servers [108]. Multi-cloud ORAM [48], [109] uses two non-colluding
servers to achieve a high throughput, but it does not support malicious users using the same ORAM store.

(4) Multi-user oblivious storage systems. Multi-user oblivious storage systems are more challenging
since every single user is not fully trusted. �ere are only a few works in this direction [1], [27]–[29], [110],
[111]. We discuss them as follows.

Secret-write PANDA [27] is a multi-user oblivious storage that does not support data sharing. One of
the disadvantages is that it needs to bound the number of malicious users, which is di�cult for systems
with open membership. To support an unbounded number of users, this scheme will have complexity linear
to the number of users, which is ine�cient. In addition, this scheme runs very expensive computation and
requires a trusted setup for fully homomorphic encryption,

AnonRAM-poly [28] enables many mutually distrusting users to use the same ORAM storage anony-
mously, but these users cannot share �les. Extending AnonRAM-poly with �le sharing is hard because
it reveals which level the data block is in the Goldreich-Ostrovsky ORAM (GO-ORAM) [30], [31], [112],
which involves �le access history. �is is not a problem in AnonRAM-poly because users do not share �les.
But, if we add �le sharing, a group of users sharing the same �le will now learn information about one
another’s access pa�erns. Fixing this problem requires replacing AnonRAM-poly’s use of ORAM. Moreover,
AnonRAM-poly has a linear worst-case overhead, which is undesired for practical systems [37].

GORAM [29] is a multi-user oblivious storage system with anonymity and obliviousness against servers.
Its limitation is that GORAM does not provide obliviousness against malicious users, which makes GORAM
harder to be used for open systems like Dropbox [113] where any user can sign up.

PIR-MCORAM [1] is a multi-user oblivious �le sharing system that uses a single server and hides a
very large class of metadata including �le access pa�erns, but it reveals the user identities to the server
when the user writes to a �le. Metal improves over PIR-MCORAM by avoiding the linear complexity and
hides the user identities in both reading and writing. Compared with Metal, PIR-MCORAM has the bene�t
of using only one single server.

�ere are also some multi-user ORAM schemes that focus on multiple semi-honest users sharing �les
[110], [111].
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(5) RAM-model secure computation. Primitive Metal builds on top of RAM-model secure computation
(RAM-SC) [47], [48], [62]–[64], [114]. With Primitive Metal being limited in functionality and performance,
Metal represents a comprehensive solution for �le storage.

(6) Miscellaneous. Secure messaging [51], [52], [54]–[58] also strives to hide metadata in user communi-
cation. Nevertheless, it does not store data persistently and usually requires users to stay online, which is
di�cult in practice. Metadata-hiding storage can also be constructed using hardware enclaves [115]–[117],
but it requires additional hardware assumptions.
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Cryptographic libraries and extended version

�e cryptographic libraries and the extended version of Metal will be available at https://oblivious-�le-sharin
g.github.io/.
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Appendix A Security proof of Metal-ORAM

In Section 4 and Section 6.1 we provided the security proof sketches for Metal-AC and Metal-SHARE,
which are su�cient to deduce a formal proof. In this section we prove the security of Metal-ORAM in the
following real-ideal paradigm:
– In the real world two servers run the Metal-ORAM protocol. An adversary A sees the state of one of

the servers and can control a set of users in a malicious way.
– In the ideal world an ideal functionality FMetalORAM realizes Metal-ORAM with the desired security

guarantees. �e simulator Sim forges A’s view as like in the real world.
Metal-ORAM is secure if A’s output in the real world is computationally indistinguishable from Sim’s in
the ideal world.

A.1 Ideal functionality

�e ideal functionality FMetalORAM stores the �le data in array FileData, where FileData[IDF ] stores the
�le identi�ed by IDF . FMetalORAM has the following interface:

Con�gure. Ask Sim which server to compromise, denoted by CompromisedSrvID ∈ {1, 2}.

Read. On receiving (CPFF ,NewFileData, READ) from a user in two shares, check if CPFF is valid (using
Metal-AC), check NewFileData’s format, and if both checks pass,
– obtain IDF from Metal-AC, �nd FileData[IDF ], and secret-share FileData[IDF ] into TargetData(1) and

TargetData(2); send TargetData(1) and TargetData(2) to the user.
– send Sim (NEW REQUEST,TargetData(j),NewFileData(j), C

PF ,(j)
F ) where j = CompromisedSrvID. (�is

message re�ects the communication between the user and the compromised server.)
IfCPFF is invalid orNewFileData is malformed, send the user andSim INVALID CAPABILITY or INVALID FORMAT,
respectively. For invalid formats, send which shares are malformed.

Write. On receiving (CPFF ,NewFileData, WRITE), check CPFF and NewFileData. If both checks pass,
– obtain IDF and change FileData[IDF ] to NewFileData.
– use the dummy �le data as TargetData, secret-share it into TargetData(1) and TargetData(2), and send

them to the user.
– send Sim (NEW REQUEST,TargetData(j),NewFileData(j), C

PF ,(j)
F ) where j = CompromisedSrvID.

Otherwise, send to the user and Sim INVALID CAPABILITY or INVALID FORMAT, as described above.

A.2 Simulator

�e simulator Sim learns from FMetalORAM certain information about a request and knows the system setup,
such as the number of �les supported by the servers. Sim works as follows:

Initialize. Run A and control A’s execution and network. Let A choose CompromisedSrvID and forward
it toFMetalORAM. Sample two ElGamal keys pairs, one for each server. Send both public keys and the compro-
mised server’s private key toA. Merge the public keys into one global public key. If CompromisedSrvID = 1,
instantiate DataORAM.

Initiate a �le access request. When A wants to send a request to the servers, forward the request to
FMetalORAM.
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Forge the compromised server’s view. On receiving a message from FMetalORAM, simulate the compro-
mised server’s state and provide this state to A. As follows, we describe the case when A compromises
Server 1, and we omit the case for Server 2, which is similar.
If the request is valid, parse the message as (NEW REQUEST,TargetData(1),NewFileData(1), C

PF ,(1)
F ) and

run as follows:
– invoke the simulator for Yao’s protocol for the capability check.
– simulate the state in which Server 1 checked the format of NewFileData(1) and exchanged the results of

format check with Server 2.
– invoke the simulator for Yao’s protocol for ORAM access to a random path in IndexORAM and for

sharing a fake block location (denoted by i); this step corresponds to reading the �le index in Section 5.3.
– simulate the SS-DOT to act as if Server 2 would obtain the i-th block on that path (or a dummy block), as

follows:
– invoke the simulator of Yao’s protocol for the �rst step of SS-DOT, which, within S2PC, reconstructs
i, samples N = |stash|+ 3× h+ 1 keys, and outputs these N keys to Server 1 and the i-th key to
Server 2.

– simulate the state where Server 1 read blocks from the (fake) storage, encrypted and rerandomized
the blocks as the protocol speci�es, and sent the encrypted blocks to Server 2.

– simulate the threshold decryption as follows:
– encrypt TargetData(1) with the global public key (the ciphertext is denoted by FakeReadData).
– simulate the state where Server 1 engaged in the threshold decryption of FakeReadData with Server 2,

obtained TargetData(1), and sent TargetData(1) to the user.
– simulate the joint encryption of the user-provided new �le data (in secret shares), as follows:

– encrypt NewFileData(1) provided by the user.
– simulate the state in which Server 1 received a random encrypted data block from Server 2 and

homomorphically added the ciphertext together; the resultant ciphertext is denoted by FakeNewData.
– simulate the distributed permutation as follows:

– sample a permutation σ(1) of the numbers {1, 2, ..., |stash|+ 6× h− 1}.
– invoke the simulator for Yao’s protocol for the ORAM eviction in IndexORAM and the permutation

generation inside S2PC, where Server 1 received σ(1).
– simulate the state where Server 1 constructed an array of the size |stash|+ 6× h− 1, which began

with data blocks from the two paths selected by the reverse lexicographic order and followed by
FakeReadData and FakeNewData.

– simulate the state where Server 1 rerandomized and permuted the array according to σ(1) and sent
the array to Server 2.

– sample an array of |stash|+6×h− 1 encrypted dummy data blocks, denoted by FakePermutedArray.
– simulate the state where Server 1 received from Server 2 FakePermutedArray and stored it in the

storage.
– provide Server 1’s state to A.
If the request is invalid because CPF ,(1)F is invalid, proceed as follows:
– invoke the simulator for Yao’s protocol for the capability check, which fails.
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– simulate the state where Server 1 responded to the user that the request was invalid.
– provide Server 1’s state to A.
If the request is invalid because the data format is incorrect, proceed as follows:
– invoke the simulator for Yao’s protocol for the capability check, which passes.
– simulate the state where Server 1 performed the format check of NewFileData(1).
– simulate the state where Server 1 exchanged the format check results with Server 2 and responded to

the user that the request was invalid.
– provide Server 1’s state to A.
Continue running A and output whatever A outputs.

A.3 Proof of indistinguishability

We use the following hybrids (denoted by H·) to show that the state that Sim forges is computationally
indistinguishable (denoted by ≈) from the compromised server’s view in the real world. As follows, we
focus on the case where Server 1 is compromised, and particularly, the situation when Sim receives a
NEW REQUEST message from FMetalORAM.

Consider q requests, where q is polynomially bounded by the security parameter. Our proof will replace
the simulated view of each of the q requests one by one, starting from the �rst request, with the view in
the real execution for the same q requests. We use Ht,i to denote the i-th sub-hybrid of the t-th hybrid, in
which t requests have been handled. We start with H0,0, which is the same as the simulated view in the
ideal world. For each t ∈ {0, 1, ..., q − 1}, we de�ne:
– Ht,0 is H0,0 (if t = 0) or Ht−1,7 (if t 6= 0). As follows, we focus on the handling of the (t+ 1)-th request.
– Ht,1 replaces the simulated view of capability check with the real execution’s view. Security of S2PC

implies Ht,1 ≈ Ht,0.
– Ht,2 replaces the simulated view of the ORAM access to IndexORAM with the real execution’s view.

Both views have the same distribution of RAM access pa�erns. Security of S2PC implies Ht,2 ≈ Ht,1.
– Ht,3 replaces the simulated view of the �rst step of SS-DOT with the real execution’s view where both

views generate the same N random keys. Security of S2PC implies Ht,3 ≈ Ht,2.
– Ht,4 replaces the simulated view for threshold decryption with the real execution’s view. In the simulation,

Sim encrypts TargetData(1), pretending to be from Server 2, and has Server 1 decrypt this ciphertext, in
which the view of Server 1 (receiving and decrypting) has the same distribution as in the real execution.
�us, we have Ht,4 ≈ Ht,3.

– Ht,5 replaces the simulated view for joint encryption with the real execution’s view. �e di�erence
between the two views is that, in Ht,4, Server 1 receives a random data block, while in Ht,5, Server 1
receives the ciphertext of NewFileData(2), encrypted by Server 2. Using semantic security of ElGamal
encryption, we have Ht,5 ≈ Ht,4.

– Ht,6 replaces the simulated view for ORAM eviction in IndexORAM and for permutation generation
with the real execution’s view that generates the same share of permutation σ(1) for Server 1. Security
of S2PC implies Ht,6 ≈ Ht,5.

– Ht,7 replaces the simulated view for the rest of the distributed permutation (the parts a�er S2PC) with
the real execution’s view. �e main di�erence is that Server 1 receives a random data block array instead
of the one permuted by σ(2). Because these data blocks are encrypted under randomness unknown to
Server 1, Server 1 cannot distinguish these two arrays in di�erent views. �e rest is the same, and thus
Ht,7 ≈ Ht,6.
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�e last hybrid, Hq−1,7, has the same distribution as the real world’s view. �e hybrid arguments show that
the simulated view is computationally indistinguishable from the real world’s view. �erefore, we have the
following theorem:

�eorem 1. Assuming standard cryptographic assumptions and under the random oracle model, Metal-
ORAM’s protocol satis�es the security de�nition.
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