
Algorithms for Multi-task Reinforcement Learning

Alexander Li
Pieter Abbeel, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-110
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-110.html

May 29, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Algorithms for Multi-task Reinforcement Learning

by

Alexander C. Li

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Sergey Levine

Spring 2020



The thesis of Alexander C. Li, titled Algorithms for Multi-task Reinforcement Learning, is
approved:

Chair Date

Date

University of California, Berkeley

May 29, 2020

Pieter Abbeel
29 - MAY - 2020



Algorithms for Multi-task Reinforcement Learning

Copyright 2020
by

Alexander C. Li



1

Abstract

Algorithms for Multi-task Reinforcement Learning

by

Alexander C. Li

Master of Science in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Machine learning has made great strides on a variety of tasks, including image classifica-
tion, natural language understanding, robotic control, and game-playing. However, much
less progress has been made on e�cient multi-task learning: generalist algorithms that can
leverage experience on previous tasks to quickly excel at new ones. Such algorithms are
necessary in order to e�ciently perform new tasks when data, compute, time, or energy is
limited. In this thesis, we develop two novel algorithms for multi-task reinforcement learning.

First, we examine the potential for improving cross-task generalization in hierarchical rein-
forcement learning. We derive a new hierarchical policy gradient with an unbiased latent-
dependent baseline, and we introduce Hierarchical Proximal Policy Optimization (HiPPO),
an on-policy method to e�ciently train all levels of the hierarchy jointly. This allows us
to discover robust and transferable skills, and quickly learn how to perform a new task by
finetuning skills learned on similar environments.

Second, we introduce Generalized Hindsight, which is based on the insight that unsuccessful
attempts to solve one task are often a rich source of information for other tasks. Generalized
Hindsight is an approximate inverse reinforcement learning technique that matches gener-
ated behaviors with the tasks they are best suited for, before being used by an o↵-policy
RL optimizer. Generalized Hindsight is substantially more sample-e�cient than standard
relabeling techniques, which we empirically demonstrate on a suite of multi-task navigation
and manipulation tasks.
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Chapter 1

Introduction

1.1 Motivation

Model-free reinforcement learning (RL) combined with powerful function approximators has
achieved remarkable success in games like Atari [54] and Go [84], and control tasks like
walking [27] and flying [39]. However, a key limitation to these methods is their sample
complexity. They often require millions of samples to learn simple locomotion skills, and
sometimes even billions of samples to learn more complex game strategies. Creating gen-
eral purpose agents will necessitate learning multiple such skills or strategies, which further
exacerbates the ine�ciency of these algorithms. On the other hand, humans (or biological
agents) are not only able to learn a multitude of di↵erent skills, but from orders of magni-
tude fewer samples [38]. So, how do we endow RL agents with this ability to learn e�ciently
across multiple tasks?

1.2 Hierarchical Policies for Multi-task Learning

Hierarchical RL is one approach towards distilling knowledge across tasks. Hierarchical
methods decompose a task into a sequence of smaller goals to be achieved. A higher-level
reasoning module, which can just be a deep neural network, chooses these goals in an online
manner, while a lower-level module handles the mechanics of actually carrying out each
instruction. Previous works frequently solely focus on how hierarchical RL can accelerate
learning on a single task. In Chapter 2, we explore how exactly hierarchical RL can improve
multi-task learning. We develop a novel algorithm called HiPPO that learns skills end-to-
end; we show that these skills are easily transferable and robust to a variety of changes
to the reward functions and dynamics. We also show that finetuning skills with HiPPO
substantially improves learning e�ciency and final performance on a target task.
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1.3 Sharing Data Across Tasks

Multi-task learning ability can also improve by directly sharing data across tasks. After all,
a policy simply distills the data into a functional representation. In standard multi-task RL
settings, low-reward data collected while trying to solve one task provides little to no signal
for solving that particular task and is hence e↵ectively wasted. In Chapter 3, we argue that
this data, which is uninformative for one task, is likely a rich source of information for other
tasks. To leverage this insight and e�ciently reuse data, we present Generalized Hindsight:
an approximate inverse reinforcement learning technique for relabeling behaviors with the
right tasks. Intuitively, given a behavior generated under one task, Generalized Hindsight
returns a di↵erent task that the behavior is better suited for. Then, the behavior is relabeled
with this new task before being used by an o↵-policy RL optimizer. Compared to standard
relabeling techniques, Generalized Hindsight is up to 5⇥ more sample-e�cient, which we
empirically demonstrate on a suite of multi-task navigation and manipulation tasks.
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Chapter 2

Sub-policy Adaptation for
Hierarchical Reinforcement Learning

2.1 Acknowledgements

The work in this section was conducted, written up, and published at the International
Conference on Learning Representations (ICLR) 2020 by the author, Carlos Florensa, Ignasi
Clavera, and Pieter Abbeel [48]. Both the author and Carlos Florensa contributed equally.

2.2 Introduction

Reinforcement learning (RL) has made great progress in a variety of domains, from playing
games such as Pong and Go [54, 86] to automating robotic locomotion [80, 30], dexterous
manipulation [20, 61], and perception [58, 21]. Yet, most work in RL is still learning from
scratch when faced with a new problem. This is particularly ine�cient when tackling multiple
related tasks that are hard to solve due to sparse rewards or long horizons.

A promising technique to overcome this limitation is hierarchical reinforcement learning
(HRL) [90]. In this paradigm, policies have several modules of abstraction, allowing to
reuse subsets of the modules. The most common case consists of temporal hierarchies [70,
13], where a higher-level policy (manager) takes actions at a lower frequency, and its actions
condition the behavior of some lower level skills or sub-policies. When transferring knowledge
to a new task, most prior works fix the skills and train a new manager on top. Despite
having a clear benefit in kick-starting the learning in the new task, having fixed skills can
considerably cap the final performance on the new task [19]. Little work has been done on
adapting pre-trained sub-policies to be optimal for a new task.

In this work, we develop a new framework for simultaneously adapting all levels of tempo-
ral hierarchies. First, we derive an e�cient approximated hierarchical policy gradient. The
key insight is that, despite the decisions of the manager being unobserved latent variables
from the point of view of the Markovian environment, from the perspective of the sub-policies
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Figure 2.1: Temporal hierarchy studied in this paper. A latent code zt is sampled from the
manager policy ⇡✓h(zt|st) every p time-steps, using the current observation skp. The actions
at are sampled from the sub-policy ⇡✓l(at|st, zkp) conditioned on the same latent code from
t = kp to (k + 1)p� 1

they can be considered as part of the observation. We show that this provides a decoupling
of the manager and sub-policy gradients, which greatly simplifies the computation in a prin-
cipled way. It also theoretically justifies a technique used in other prior works [22]. Second,
we introduce a sub-policy specific baseline for our hierarchical policy gradient. We prove
that this baseline is unbiased, and our experiments reveal faster convergence, suggesting
e�cient gradient variance reduction. Then, we introduce a more stable way of using this
gradient, Hierarchical Proximal Policy Optimization (HiPPO). This method helps us take
more conservative steps in our policy space [79], critical in hierarchies because of the inter-
dependence of each layer. Results show that HiPPO is highly e�cient both when learning
from scratch, i.e. adapting randomly initialized skills, and when adapting pretrained skills
on a new task. Finally, we evaluate the benefit of randomizing the time-commitment of the
sub-policies, and show it helps both in terms of final performance and zero-shot adaptation
on similar tasks.

2.3 Preliminaries

We define a discrete-time finite-horizon discounted Markov decision process (MDP) by a tuple
M = (S,A,P , r, ⇢0, �, H), where S is a state set, A is an action set, P : S ⇥ A ⇥ S ! R+

is the transition probability distribution, � 2 [0, 1] is a discount factor, and H the horizon.
Our objective is to find a stochastic policy ⇡✓ that maximizes the expected discounted return
within the MDP, ⌘(⇡✓) = E⌧ [

PH
t=0 �

tr(st, at)]. We use ⌧ = (s0, a0, ..., ) to denote the entire
state-action trajectory, where s0 ⇠ ⇢0(s0), at ⇠ ⇡✓(at|st), and st+1 ⇠ P(st+1|st, at).

In this work, we propose a method to learn a hierarchical policy and e�ciently adapt all
the levels in the hierarchy to perform a new task. We study hierarchical policies composed
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of a higher level, or manager ⇡✓h(zt|st), and a lower level, or sub-policy ⇡✓l(at0 |zt, st0). The
higher level does not take actions in the environment directly, but rather outputs a command,
or latent variable zt 2 Z, that conditions the behavior of the lower level. We focus on the
common case where Z = Zn making the manager choose among n sub-policies, or skills, to
execute. The manager typically operates at a lower frequency than the sub-policies, only
observing the environment every p time-steps. When the manager receives a new observation,
it decides which low level policy to commit to for p environment steps by the means of a
latent code z. Figure 2.1 depicts this framework where the high level frequency p is a random
variable, which is one of the contribution of this paper as described in Section 2.5. Note
that the class of hierarchical policies we work with is more restrictive than others like the
options framework, where the time-commitment is also decided by the policy. Nevertheless,
we show that this loss in policy expressivity acts as a regularizer and does not prevent our
algorithm from surpassing other state-of-the art methods.

2.4 Related Work

There has been growing interest in HRL for the past few decades [90, 70], but only recently
has it been applied to high-dimensional continuous domains as we do in this work [42, 12]. To
obtain the lower level policies, or skills, most methods exploit some additional assumptions,
like access to demonstrations [43, 52, 72, 82], policy sketches [2], or task decomposition into
sub-tasks [23, 88]. Other methods use a di↵erent reward for the lower level, often constraining
it to be a “goal reacher” policy, where the signal from the higher level is the goal to reach
[56, 45, 98]. These methods are very promising for state-reaching tasks, but might require
access to goal-reaching reward systems not defined in the original MDP, and are more limited
when training on tasks beyond state-reaching. Our method does not require any additional
supervision, and the obtained skills are not constrained to be goal-reaching.

When transferring skills to a new environment, most HRL methods keep them fixed and
simply train a new higher-level on top [29, 31]. Other work allows for building on previous
skills by constantly supplementing the set of skills with new ones [83], but they require a
hand-defined curriculum of tasks, and the previous skills are never fine-tuned. Our algorithm
allows for seamless adaptation of the skills, showing no trade-o↵ between leveraging the power
of the hierarchy and the final performance in a new task. Other methods use invertible
functions as skills [26], and therefore a fixed skill can be fully overwritten when a new layer
of hierarchy is added on top. This kind of “fine-tuning” is promising, although similar to
other works [64], they do not apply it to temporally extended skills as we do here.

One of the most general frameworks to define temporally extended hierarchies is the
options framework [90], and it has recently been applied to continuous state spaces [5].
One of the most delicate parts of this formulation is the termination policy, and it requires
several regularizers to avoid skill collapse [28, 99]. This modification of the objective may
be di�cult to tune and a↵ects the final performance. Instead of adding such penalties, we
propose to have skills of a random length, not controlled by the agent during training of
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the skills. The benefit is two-fold: no termination policy to train, and more stable skills
that transfer better. Furthermore, these works only used discrete action MDPs. We lift
this assumption, and show good performance of our algorithm in complex locomotion tasks.
There are other algorithms recently proposed that go in the same direction, but we found
them more complex, less principled (their per-action marginalization cannot capture well
the temporal correlation within each option), and without available code or evidence of
outperforming non-hierarchical methods [87].

The closest work to ours in terms of final algorithm structure is the one proposed by Frans
et al. [22]. Their method can be included in our framework, and hence benefits from our new
theoretical insights. We introduce a modification that is shown to be highly beneficial: the
random time-commitment mentioned above, and find that our method can learn in di�cult
environments without their complicated training scheme.

2.5 E�cient Hierarchical Policy Gradients

When using a hierarchical policy, the intermediate decision taken by the higher level is not
directly applied in the environment. Therefore, technically it should not be incorporated
into the trajectory description as an observed variable, like the actions. This makes the
policy gradient considerably harder to compute. In this section we first prove that, under
mild assumptions, the hierarchical policy gradient can be accurately approximated without
needing to marginalize over this latent variable. Then, we derive an unbiased baseline for
the policy gradient that can reduce the variance of its estimate. Finally, with these findings,
we present our method, Hierarchical Proximal Policy Optimization (HiPPO), an on-policy
algorithm for hierarchical policies, allowing learning at all levels of the policy jointly and
preventing sub-policy collapse.

Approximate Hierarchical Policy Gradient

Policy gradient algorithms are based on the likelihood ratio trick [101] to estimate the gra-
dient of returns with respect to the policy parameters as

r✓⌘(⇡✓) = E⌧

⇥
r✓ logP (⌧)R(⌧)

⇤
⇡

1

N

nX

i=1

r✓ logP (⌧i)R(⌧i) (2.1)

=
1

N

nX

i=1

1

H

HX

t=1

r✓ log ⇡✓(at|st)R(⌧i) (2.2)

In a temporal hierarchy, a hierarchical policy with a manager ⇡✓h(zt|st) selects every p time-
steps one of n sub-policies to execute. These sub-policies, indexed by z 2 Zn, can be
represented as a single conditional probability distribution over actions ⇡✓l(at|zt, st). This
allows us to not only use a given set of sub-policies, but also leverage skills learned with
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Stochastic Neural Networks (SNNs) [19]. Under this framework, the probability of a trajec-
tory ⌧ = (s0, a0, s1, . . . , sH) can be written as

P (⌧) =

✓H/pY

k=0

h nX

j=1

⇡✓h(zj|skp)
(k+1)p�1Y

t=kp

⇡✓l(at|st, zj)
i◆

P (s0)
HY

t=1

P (st+1|st, at)

�
. (2.3)

The mixture action distribution, which presents itself as an additional summation over skills,
prevents additive factorization when taking the logarithm, as from Eq. 2.1 to 2.2. This can
yield numerical instabilities due to the product of the p sub-policy probabilities. For instance,
in the case where all the skills are distinguishable all the sub-policies’ probabilities but one
will have small values, resulting in an exponentially small value. In the following Lemma,
we derive an approximation of the policy gradient, whose error tends to zero as the skills
become more diverse, and draw insights on the interplay of the manager actions.

Lemma 1. If the skills are su�ciently di↵erentiated, then the latent variable can be treated as
part of the observation to compute the gradient of the trajectory probability. Let ⇡✓h(z|s) and
⇡✓l(a|s, z) be Lipschitz functions w.r.t. their parameters, and assume that 0 < ⇡✓l(a|s, zj) <
✏ 8j 6= kp, then

r✓ logP (⌧) =
H/pX

k=0

r✓ log ⇡✓h(zkp|skp) +
HX

t=0

r✓ log ⇡✓l(at|st, zkp) +O(nH✏p�1) (2.4)

Our assumption can be seen as having diverse skills. Namely, for each action there is
just one sub-policy that gives it high probability. In this case, the latent variable can be
treated as part of the observation to compute the gradient of the trajectory probability.
Many algorithms to extract lower-level skills are based on promoting diversity among the
skills [19, 17], therefore usually satisfying our assumption. We further analyze how well this
assumption holds in our experiments section and Table 2.2.

Proof. From the point of view of the MDP, a trajectory is a sequence ⌧ = (s0, a0, s1, a1, . . . , aH�1, sH).
Let’s assume we use the hierarchical policy introduced above, with a higher-level policy mod-
eled as a parameterized discrete distribution with n possible outcomes ⇡✓h(z|s) = Categorical✓h(n).
We can expand P (⌧) into the product of policy and environment dynamics terms, with zj
denoting the jth possible value out of the n choices,

P (⌧) =

✓H/pY

k=0

h nX

j=1

⇡✓h(zj|skp)
(k+1)p�1Y

t=kp

⇡✓l(at|st, zj)
i◆

P (s0)
HY

t=1

P (st+1|st, at)

�



CHAPTER 2. SUB-POLICY ADAPTATION FOR HIERARCHICAL
REINFORCEMENT LEARNING 8

Taking the gradient of logP (⌧) with respect to the policy parameters ✓ = [✓h, ✓l], the dy-
namics terms disappear, leaving:

r✓ logP (⌧) =
H/pX

k=0

r✓ log
⇣ nX

j=1

⇡✓l(zj|skp)
(k+1)p�1Y

t=kp

⇡s,✓(at|st, zj)
⌘

=
H/pX

k=0

1
Pn

j=1 ⇡✓h(zj|skp)
Q(k+1)p�1

t=kp ⇡✓l(at|st, zj)

nX

j=1

r✓

⇣
⇡✓h(zj|skp)

(k+1)p�1Y

t=kp

⇡✓l(at|st, zj)
⌘

The sum over possible values of z prevents the logarithm from splitting the product over
the p-step sub-trajectories. This term is problematic, as this product quickly approaches
0 as p increases, and su↵ers from considerable numerical instabilities. Instead, we want to
approximate this sum of products by a single one of the terms, which can then be decomposed
into a sum of logs. For this we study each of the terms in the sum: the gradient of a sub-

trajectory probability under a specific latent r✓

⇣
⇡✓h(zj|skp)

Q(k+1)p�1
t=kp ⇡✓l(at|st, zj)

⌘
. Now we

can use the assumption that the skills are easy to distinguish, 0 < ⇡✓l(at|st, zj) < ✏ 8j 6= kp.
Therefore, the probability of the sub-trajectory under a latent di↵erent than the one that
was originally sampled zj 6= zkp, is upper bounded by ✏p. Taking the gradient, applying the
product rule, and the Lipschitz continuity of the policies, we obtain that for all zj 6= zkp,

r✓

⇣
⇡✓h(zj|skp)

(k+1)p�1Y

t=kp

⇡✓l(at|st, zj)
⌘
= r✓⇡✓h(zj|skp)

(k+1)p�1Y

t=kp

⇡✓l(at|st, zj)+

(k+1)p�1X

t=kp

⇡✓h(zj|skp)
�
r✓⇡✓l(at|st, zj)

� (k+1)p�1Y

t=kp
t0 6=t

⇡✓l(at0 |st0 , zj)

= O(p✏p�1)

Thus, we can replace the summation over latents by the single term corresponding to the
latent that was sampled at that time.

r✓ logP (⌧) =
H/pX

k=0

1

⇡✓h(zkp|skp)
Q(k+1)p�1

t=kp ⇡✓l(at|st, zkp)
r✓

⇣
P (zkp|skp)

(k+1)p�1Y

t=kp

⇡✓l(at|st, zkp)
⌘
+

nH

p
O(p✏p�1)

=
H/pX

k=0

r✓ log
⇣
⇡✓h(zkp|skp)

(k+1)p�1Y

t=kp

⇡✓l(at|st, zkp)
⌘
+O(nH✏p�1)

= E⌧

⇣ H/pX

k=0

r✓ log ⇡✓h(zkp|skp) +
HX

t=1

r✓ log ⇡✓l(at|st, zkp)
⌘�

+O(nH✏p�1)
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Interestingly, this is exactly r✓P (s0, z0, a0, s1, . . . ). In other words, it’s the gradient of
the probability of that trajectory, where the trajectory now includes the variables z as if
they were observed.

Unbiased Sub-Policy Baseline

The policy gradient estimate obtained when applying the log-likelihood ratio trick as derived
above is known to have large variance. A very common approach to mitigate this issue
without biasing the estimate is to subtract a baseline from the returns [65]. It is well known
that such baselines can be made state-dependent without incurring any bias. However, it
is still unclear how to formulate a baseline for all the levels in a hierarchical policy, since
an action dependent baseline does introduce bias in the gradient [97]. It has been recently
proposed to use latent-conditioned baselines [100]. Here we go further and prove that, under
the assumptions of Lemma 1, we can formulate an unbiased latent dependent baseline for
the approximate gradient (Eq. 2.4).

Lemma 2. For any functions bh : S ! R and bl : S ⇥ Z ! R we have:

E⌧ [
H/pX

k=0

r✓ logP (zkp|skp)bh(skp)] = 0 and E⌧ [
HX

t=0

r✓ log ⇡✓l(at|st, zkp)bl(st, zkp)] = 0

Proof. We can use the tower property as well as the fact that the interior expression only
depends on skp and zkp:

E⌧ [
H/pX

k=0

r✓ logP (zkp|skp)b(skp)] =
H/pX

k=0

Eskp,zkp [E⌧\skp,zkp [r✓ logP (zkp|skp)b(skp)]]

=
H/pX

k=0

Eskp,zkp [r✓ logP (zkp|skp)b(skp)]

Then, we can write out the definition of the expectation and undo the gradient-log trick to
prove that the baseline is unbiased.

E⌧ [
H/pX

k=0

r✓ log ⇡✓h(zkp|skp)b(skp)] =
H/pX

k=0

Z

skp

P (skp)b(skp)

Z

zkp

⇡✓h(zkp|skp)r✓ log ⇡✓h(zkp|skp)dzkpdskp

=
H/pX

k=0

Z

skp

P (skp)b(skp)r✓

Z

zkp

⇡✓h(zkp|skp)dzkpdskp

=
H/pX

k=0

Z

skp

P (skp)b(skp)r✓1dskp

= 0
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Proof. We’ll follow the same strategy to prove the second equality: apply the tower property,
express the expectation as an integral, and undo the gradient-log trick.

E⌧ [
HX

t=0

r✓ log ⇡✓l(at|st, zkp)b(st, zkp)]

=
HX

t=0

Est,at,zkp [E⌧\st,at,zkp [r✓ log ⇡✓m(at|st, zkp)b(st, zkp)]]

=
HX

t=0

Est,at,zkp [r✓ log ⇡✓l(at|st, zkp)b(skp, zkp)]

=
HX

t=0

Z

(st,zkp)

P (st, zkp)b(st, zkp)

Z

at

⇡✓l(at|st, zkp)r✓ log ⇡✓l(at|st, zkp)datdzkpdst

=
HX

t=0

Z

(st,zkp)

P (st, zkp)b(st, zkp)r✓1dzkpdst

= 0

Now we apply Lemma 1 and Lemma 2 to Eq. 2.1. By using the corresponding value
functions as the function baseline, the return can be replaced by the Advantage function
A(skp, zkp) (see details in Schulman et al. [78]), and we obtain the following approximate
policy gradient expression:

ĝ = E⌧

h
(
H/pX

k=0

r✓ log ⇡✓h(zkp|skp)A(skp, zkp)) + (
HX

t=0

r✓ log ⇡✓l(at|st, zkp)A(st, at, zkp))
i

This hierarchical policy gradient estimate can have lower variance than without baselines, but
using it for policy optimization through stochastic gradient descent still yields an unstable
algorithm. In the next section, we further improve the stability and sample e�ciency of the
policy optimization by incorporating techniques from Proximal Policy Optimization [79].

Hierarchical Proximal Policy Optimization

Using an appropriate step size in policy space is critical for stable policy learning. Modifying
the policy parameters in some directions may have a minimal impact on the distribution over
actions, whereas small changes in other directions might change its behavior drastically and
hurt training e�ciency [36]. Trust region policy optimization (TRPO) uses a constraint on
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Algorithm 1 HiPPO Rollout

1: Input: skills ⇡✓l(a|s, z), manager ⇡✓h(z|s), time-
commitment bounds Pmin and Pmax, horizon H

2: Reset environment: s0 ⇠ ⇢0, t = 0.
3: while t < H do
4: Sample time-commitment p ⇠ Cat([Pmin, Pmax])
5: Sample skill zt ⇠ ⇡✓h(·|st)
6: for t0 = t . . . (t+ p) do
7: Sample action at0 ⇠ ⇡✓l(·|st0 , zt)
8: Observe new state st0+1 and reward rt0
9: end for

10: t t+ p
11: end while
12: Output: (s0, z0, a0, s1, a1, . . . , sH , zH , aH , sH+1)

Algorithm 2 HiPPO

1: Input: skills ⇡✓l(a|s, z), man-
ager ⇡✓h(z|s), horizon H,
learning rate ↵

2: while not done do
3: for actor = 1, 2, ..., N do
4: Obtain trajectory with

HiPPO Rollout
5: Estimate advantages

Â(at0 , st0 , zt) and Â(zt, st)
6: end for
7: ✓  ✓ + ↵r✓LCLIP

HiPPO(✓)
8: end while

the KL-divergence between the old policy and the new policy to prevent this issue [80]. Un-
fortunately, hierarchical policies are generally represented by complex distributions without
closed form expressions for the KL-divergence. Therefore, to improve the stability of our hi-
erarchical policy gradient we turn towards Proximal Policy Optimization (PPO) [79]. PPO is
a more flexible and compute-e�cient algorithm. In a nutshell, it replaces the KL-divergence
constraint with a cost function that achieves the same trust region benefits, but only requires
the computation of the likelihood. Letting wt(✓) =

⇡✓(at|st)
⇡✓old

(at|st) , the PPO objective is:

LCLIP (✓) = Et min
�
wt(✓)At, clip(wt(✓), 1� ✏, 1 + ✏)At

 

We can adapt our approximated hierarchical policy gradient with the same approach by

letting wh,kp(✓) =
⇡✓h

(zkp|skp)
⇡✓h,old

(zkp|skp)
and wl,t(✓) =

⇡✓l
(at|st,zkp)

⇡✓l,old
(at|st,zkp)

, and using the super-index clip

to denote the clipped objective version, we obtain the new surrogate objective:

LCLIP
HiPPO(✓) = E⌧

h H/pX

k=0

min
�
wh,kp(✓)A(skp, zkp), w

clip
h,kp (✓)A(skp, zkp)

 

+
HX

t=0

min
�
wl,t(✓)A(st, at, zkp), w

clip
l,t (✓)A(st, at, zkp)

 i

We call this algorithm Hierarchical Proximal Policy Optimization (HiPPO). Next, we
introduce a critical additions: a switching of the time-commitment between skills.
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(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 2.2: Environments used to evaluate the performance of our method. Every episode
has a di↵erent configuration: wall heights for (a)-(b) and ball positions for (c)-(d)

Varying Time-commitment

Most hierarchical methods either consider a fixed time-commitment to the lower level skills
[19, 22], or implement the complex options framework [70, 5]. In this work we propose an
in-between, where the time-commitment to the skills is a random variable sampled from a
fixed distribution Categorical(Tmin, Tmax) just before the manager takes a decision. This
modification does not hinder final performance, and we show it improves zero-shot adaptation
to a new task. This approach to sampling rollouts is detailed in Algorithm 1. The full
algorithm is detailed in Algorithm 2.

2.6 Experiments

We designed our experiments to answer the following questions:

1. How does HiPPO compare against a flat policy when learning from scratch?

2. Does it lead to policies more robust to environment changes?

3. How well does it adapt already learned skills?

4. Does our skill diversity assumption hold in practice?

Tasks

We evaluate our approach on a variety of robotic locomotion and navigation tasks. The Block
environments, depicted in Fig. 2.2a-2.2b, have walls of random heights at regular intervals,
and the objective is to learn a gait for the Hopper and Half-Cheetah robots to jump over
them. The agents observe the height of the wall ahead and their proprioceptive information
(joint positions and velocities), receiving a reward of +1 for each wall cleared. Hopper is
a 3-link robot with a 14-dimensional observation space and a 3-dimensional action space.
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(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 2.3: Analysis of di↵erent time-commitment strategies on learning from scratch.

Half-Cheetah has a 20-dimensional observation space and a 6-dimensional action space. We
evaluate both of these agents on a sparse block hopping task. In addition to observing their
own joint angles and positions, they observe the height and length of the next wall, the
x-position of the next wall, and the distance to the wall from the agent. We also provide the
same wall observations for the previous wall, which the agent can still interact with.

The Gather environments, described by Duan et al. [16], require agents to collect apples
(green balls, +1 reward) while avoiding bombs (red balls, -1 reward). The only available per-
ception beyond proprioception is through a LIDAR-type sensor indicating at what distance
are the objects in di↵erent directions, and their type, as depicted in the bottom left corner
of Fig. 2.2c-2.2d. This is challenging hierarchical task with sparse rewards that requires si-
multaneously learning perception, locomotion, and higher-level planning capabilities. Snake
is a 5-link robot with a 17-dimensional observation space and a 4-dimensional action space.
Ant is a quadrupedal robot with a 27-dimensional observation space and a 8-dimensional
action space. Both Ant and Snake can move and rotate in all directions, and Ant faces the
added challenge of avoiding falling over irrecoverably. In the Gather environment, agents
also receive 2 sets of 10-dimensional lidar observations, whcih correspond to separate ap-
ple and bomb observations. The observation displays the distance to the nearest apple or
bomb in each 36� bin, respectively. All environments are simulated with the physics engine
MuJoCo [95].

Learning from Scratch and Time-Commitment

In this section, we study the benefit of using our HiPPO algorithm instead of standard
PPO on a flat policy [79]. The results, reported in Figure 2.3, demonstrate that training
from scratch with HiPPO leads to faster learning and better performance than flat PPO.
Furthermore, we show that the benefit of HiPPO does not just come from having temporally
correlated exploration: PPO with action repeat converges at a lower performance than our
method. HiPPO leverages the time-commitment more e�ciently, as suggested by the poor
performance of the ablation where we set p = 1, when the manager takes an action every
environment step as well. Finally, Figure 2.4 shows the e↵ectiveness of using the presented
skill-dependent baseline.
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(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 2.4: Using a skill-conditioned baseline, as defined in Section 2.5, generally improves
performance of HiPPO when learning from scratch.

(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 2.5: Comparison of HiPPO and HierVPG to prior hierarchical methods on learning
from scratch.

Comparison to Other Methods

We compare HiPPO to current state-of-the-art hierarchical methods. First, we evaluate
HIRO [56], an o↵-policy RL method based on training a goal-reaching lower level policy.
Fig. 2.5 shows that HIRO achieves poor performance on our tasks. As further detailed in
Appendix 2.6, this algorithm is sensitive to access to ground-truth information, like the exact
(x, y) position of the robot in Gather. In contrast, our method is able to perform well directly
from the raw sensory inputs described in Section 2.6. We evaluate Option-Critic [5], a variant
of the options framework [90] that can be used for continuous action-spaces. It fails to learn,
and we hypothesize that their algorithm provides less time-correlated exploration and learns
less diverse skills. We also compare against MLSH [22], which repeatedly samples new
environment configurations to learn primitive skills. We take these hyperparameters from
their Ant Twowalk experiment: resetting the environment configuration every 60 iterations,
a warmup period of 20 during which only the manager is trained, and a joint training period
of 40 during which both manager and skills are trained. Our results show that such a
training scheme does not provide any benefits. Finally, we provide a comparison to a direct
application of our Hierarchical Vanilla Policy Gradient (HierVPG) algorithm, and we see
that the algorithm is unstable without PPO’s trust-region-like technique.
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Robustness to Dynamics Perturbations

We investigate the robustness of HiPPO to changes in the dynamics of the environment.
We perform several modifications to the base Snake Gather and Ant Gather environments.
One at a time, we change the body mass, dampening of the joints, body inertia, and fric-
tion characteristics of both robots. The results, presented in Table 2.1, show that HiPPO
with randomized period Categorical([Tmin, Tmax]) is able to better handle these dynamics
changes. In terms of the drop in policy performance between the training environment and
test environment, it outperforms HiPPO with fixed period on 6 out of 8 related tasks. These
results suggest that the randomized period exposes the policy to a wide range of scenarios,
which makes it easier to adapt when the environment changes.

Gather Algorithm Initial Mass Dampening Inertia Friction

Snake
Flat PPO 2.72 3.16 (+16%) 2.75 (+1%) 2.11 (-22%) 2.75 (+1%)
HiPPO, p = 10 4.38 3.28 (-25%) 3.27 (-25%) 3.03 (-31%) 3.27 (-25%)
HiPPO random p 5.11 4.09 (-20%) 4.03 (-21%) 3.21 (-37%) 4.03 (-21%)

Ant
Flat PPO 2.25 2.53 (+12%) 2.13 (-5%) 2.36 (+5%) 1.96 (-13%)
HiPPO, p = 10 3.84 3.31 (-14%) 3.37 (-12%) 2.88 (-25%) 3.07 (-20%)
HiPPO random p 3.22 3.37 (+5%) 2.57 (-20%) 3.36 (+4%) 2.84 (-12%)

Table 2.1: Zero-shot transfer performance. The final return in the initial environment is
shown, as well as the average return over 25 rollouts in each new modified environment.

Adaptation of Pre-Trained Skills

For the Block task, we use DIAYN [17] to train 6 di↵erentiated subpolicies in an environ-
ment without any walls. Here, we see if these diverse skills can improve performance on a
downstream task that’s out of the training distribution. For Gather, we take 6 pretrained
subpolicies encoded by a Stochastic Neural Network [92] that was trained in a diversity-
promoting environment [19]. We fine-tune them with HiPPO on the Gather environment,
but with an extra penalty on the velocity of the Center of Mass. This can be understood
as a preference for cautious behavior. This requires adjustment of the sub-policies, which
were trained with a proxy reward encouraging them to move as far as possible (and hence
quickly). Fig. 2.6 shows that using HiPPO to simultaneously train a manager and fine-tune
the skills achieves higher final performance than fixing the sub-policies and only training a
manager with PPO. The two initially learn at the same rate, but HiPPO’s ability to adjust
to the new dynamics allows it to reach a higher final performance. Fig. 2.6 also shows that
HiPPO can fine-tune the same given skills better than Option-Critic [5], MLSH [22], and
HIRO [56].
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(a) Block Hopper (b) Block Half Chee-
tah

(c) Snake Gather (d) Ant Gather

Figure 2.6: Benefit of adapting some given skills when the preferences of the environment are
di↵erent from those of the environment where the skills were originally trained. Adapting
skills with HiPPO has better learning performance than leaving the skills fixed or learning
from scratch.

Skill Diversity Assumption

In Lemma 1, we derived a more e�cient and numerically stable gradient by assuming that
the sub-policies are diverse. In this section, we empirically test the validity of our assumption
and the quality of our approximation. We run the HiPPO algorithm on Ant Gather and
Snake Gather both from scratch and with given pretrained skills, as done in the previous
section. In Table 2.2, we report the average maximum probability under other sub-policies,
corresponding to ✏ from the assumption. In all settings, this is on the order of magnitude of
0.1. Therefore, under the p ⇡ 10 that we use in our experiments, the term we neglect has a
factor ✏p�1 = 10�10. It is not surprising then that the average cosine similarity between the
full gradient and our approximation is almost 1, as reported in Table 2.2.

Gather Algorithm Cosine Sim. maxz0 6=zkp ⇡✓l(at|st, z
0) ⇡✓l(at|st, zkp)

Snake
HiPPO on given skills 0.98± 0.01 0.09± 0.04 0.44± 0.03
HiPPO on random skills 0.97± 0.03 0.12± 0.03 0.32± 0.04

Ant
HiPPO on given skills 0.96± 0.04 0.11± 0.05 0.40± 0.08
HiPPO on random skills 0.94± 0.03 0.13± 0.05 0.31± 0.09

Table 2.2: Empirical evaluation of Lemma 1. In the middle and right columns, we evaluate
the quality of our assumption by computing the largest probability of a certain action under
other skills (✏), and the action probability under the actual latent. We also report the cosine
similarity between our approximate gradient and the exact gradient from Eq. 2.3. The mean
and standard deviation of these values are computed over the full batch collected at iteration
10.
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Figure 2.7: HIRO performance on Ant Gather with and without access to the ground truth
(x, y), which it needs to communicate useful goals.

HIRO Sensitivity to Observation Space

In this section, we discuss why HIRO [56] performs poorly under our environments. As
explained in our related work section, HIRO belongs to the general category of algorithms
that train goal-reaching policies as lower levels of the hierarchy [98, 44]. These methods rely
on having a goal-space that is meaningful for the task at hand. For example, in navigation
tasks they require having access to the (x, y) position of the agent such that deltas in that
space can be given as meaningful goals to move in the environment. Unfortunately, in many
cases the only readily available information (if there’s no GPS signal or other positioning
system installed) are raw sensory inputs, like cameras or the LIDAR sensors we mimic in
our environments. In such cases, our method still performs well because it doesn’t rely on
the goal-reaching extra supervision that is leveraged (and detrimental in this case) in HIRO
and similar methods. In Figure 2.7, we show that knowing the ground truth location is
critical for its success. We have reproduced the HIRO results in Fig. 2.7 using the published
codebase, so we are convinced that our results showcase a failure mode of HIRO.

2.7 Conclusions and Future Work

In this work, we examined how to e↵ectively adapt temporal hierarchies. We began by
deriving a hierarchical policy gradient and its approximation. We then proposed a new
method, HiPPO, that can stably train multiple layers of a hierarchy jointly. The adaptation
experiments suggest that we can optimize pretrained skills for downstream environments,
and learn emergent skills without any unsupervised pre-training. We also demonstrate that
HiPPO with randomized period can learn from scratch on sparse-reward and long time
horizon tasks, while outperforming non-hierarchical methods on zero-shot transfer.
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Chapter 3

Generalized Hindsight for
Reinforcement Learning

3.1 Acknowledgements
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3.2 Introduction

One key hallmark of biological learning is the ability to learn from mistakes. In RL, mistakes
made while solving a task are only used to guide the learning of that particular task. But data
seen while making these mistakes often contain a lot more information. In fact, extracting
and re-using this information lies at the heart of most e�cient RL algorithms. Model-based
RL re-uses this information to learn a dynamics model of the environment. However for
several domains, learning a robust model is often more di�cult than directly learning the
policy [16], and addressing this challenge continues to remain an active area of research [57].
Another way to re-use low-reward data is o↵-policy RL, where in contrast to on-policy RL,
data collected from an older policy is re-used while optimizing the new policy. But in the
context of multi-task learning, this is still ine�cient (Section 3.5) since data generated from
one task cannot e↵ectively inform a di↵erent task. Towards solving this problem, recent
work [3] focus on extracting even more information through hindsight.

In goal-conditioned settings, where tasks are defined by a sparse goal, HER [3] relabels
the desired goal, for which a trajectory was generated, to a state seen in that trajectory.
Therefore, if the goal-conditioned policy erroneously reaches an incorrect goal instead of the
desired goal, we can re-use this data to teach it how to reach this incorrect goal. Hence,
a low-reward trajectory under one desired goal is converted to a high-reward trajectory
for the unintended goal. This new relabelling provides a strong supervision and produces
significantly faster learning. However, a key assumption made in this framework is that
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Hindsight
Relabelling

of tasks

Task A Task B

Figure 3.1: A rollout can often provide very little information about how to perform a
task A. In the trajectory-following task on the left, the trajectory (green) sees almost no
reward signal (areas in red). However, in the multi-task setting where each target trajectory
represents a di↵erent task, we can find another task B for which our trajectory is a “pseudo-
demonstration.” This hindsight relabeling provides high reward signal and enables sample-
e�cient learning.

goals are a sparse set of states that need to be reached. This allows for e�cient relabeling
by simply setting the relabeled goals to the states visited by the policy. But for several real
world problems like energy-e�cient transport, or robotic trajectory tracking, rewards are
often complex combinations of desirables rather than sparse objectives. So how do we use
hindsight for general families of reward functions?

In this paper, we build on the ideas of goal-conditioned hindsight and propose Gener-
alized Hindsight. Here, instead of performing hindsight on a task-family of sparse goals,
we perform hindsight on a task-family of reward functions. Since dense reward functions
can capture a richer task specification, GH allows for better re-utilization of data. Note
that this is done along with solving the task distribution induced by the family of reward
functions. However for relabeling, instead of simply setting visited states as goals, we now
need to compute the reward functions that best explain the generated data. To do this, we
draw connections from Inverse Reinforcement Learning (IRL), and propose an approximate
IRL relabeling algorithm we call AIR. Concretely, AIR takes a new trajectory and com-
pares it to K randomly sampled tasks from our distribution. It selects the task for which
the trajectory is a “pseudo-demonstration,” i.e. the trajectory achieves higher performance
on that task than any of our previous trajectories. This “pseudo-demonstration” can then
be used to quickly learn how to perform that new task. We go into detail on good selec-
tion algorithms in Section 3.5, and show an illustrative example of the relabeling process in
Figure 3.1. We test our algorithm on several multi-task control tasks, and find that AIR
consistently achieves higher asymptotic performance using as few as 20% of the environment
interactions as our baselines. We also introduce a computationally more e�cient version
that also achieves higher asymptotic performance than our baselines.

In summary, we present three key contributions in this paper: (a) we extend the ideas of
hindsight to the generalized reward family setting; (b) we propose AIR, a relabeling algorithm
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Hindsight Relabeling

Figure 3.2: Trajectories ⌧(zi), collected trying to maximize r(·|zi), may contain very little
reward signal about how to solve their original tasks. Generalized Hindsight checks against
randomly sampled “candidate tasks” {vi}Ki=1 to find di↵erent tasks z0i for which these trajec-
tories are “pseudo-demonstrations.” Using o↵-policy RL, we can obtain more reward signal
from these relabeled trajectories.

using insights from IRL; and (c) we demonstrate significant improvements in multi-task RL
on a suite of multi-task navigation and manipulation tasks.

3.3 Background

Before discussing our method, we briefly introduce some background and formalism for the
RL algorithms used. A more comprehensive introduction to RL can be found in Kaelbling,
Littman, and Moore [35] and Sutton and Barto [89].

Reinforcement Learning

In this work we deal with continuous space Markov Decision Processes M that can be
represented as the tuple M ⌘ (S,A,P , r, �, S), where S is a set of continuous states and
A is a set of continuous actions, P : S ⇥A ⇥ S ! R is the transition probability function,
r : S ⇥ A ! R is the reward function, � is the discount factor, and S is the initial state
distribution.

An episode for the agent begins with sampling s0 from the initial state distribution S.
At every timestep t, the agent takes an action at = ⇡(st) according to a policy ⇡ : S ! A.
At every timestep t, the agent gets a reward rt = r(st, at), and the state transitions to
st+1, which is sampled according to probabilities P(st+1|st, at). The goal of the agent is
to maximize the expected return ES[R0|S], where the return is the discounted sum of the
future rewards Rt =

P1
i=t �

i�tri. The Q-function is defined as Q⇡(st, at) = E[Rt|st, at].
In the partial observability case, the agent takes actions based on the partial observation,
at = ⇡(ot), where ot is the observation corresponding to the full state st.
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O↵ Policy RL using Soft Actor Critic

Generalized Hindsight requires an o↵-policy RL algorithm to perform relabeling. One pop-
ular o↵-policy algorithm for learning deterministic continuous action policies is Deep De-
terministic Policy Gradients (DDPG) [50]. The algorithm maintains two neural networks:
the policy (also called the actor) ⇡✓ : S ! A (with neural network parameters ✓) and a
Q-function approximator (also called the critic) Q⇡

� : S ⇥ A ! R (with neural network
parameters �).

During training, episodes are generated using a noisy version of the policy (called be-
haviour policy), e.g. ⇡b(s) = ⇡(s) +N (0, 1), where N is the Normal distribution noise. The
transition tuples (st, at, rt, st+1) encountered during training are stored in a replay bu↵er [53].
Training examples sampled from the replay bu↵er are used to optimize the critic. By min-
imizing the Bellman error loss Lc = (Q(st, at)� yt)2, where yt = rt + �Q(st+1, ⇡(st+1)), the
critic is optimized to approximate the Q-function. The actor is optimized by minimizing the
loss La = �Es[Q(s, ⇡(s))]. The gradient of La with respect to the actor parameters is called
the deterministic policy gradient [85] and can be computed by backpropagating through the
combined critic and actor networks. To stabilize the training, the targets for the actor and
the critic yt are computed on separate versions of the actor and critic networks, which change
at a slower rate than the main networks. A common practice is to use a Polyak averaged [69]
version of the main network. Soft Actor Critic (SAC) [27] builds on DDPG by adding an
entropy maximization term in the reward. Since this encourages exploration and empirically
performs better than most actor-critic algorithms, we use SAC for our experiments, although
Generalized Hindsight is compatible with any o↵-policy RL algorithm.

Multi-Task RL

The goal in multi-task RL is to not just solve a single MDP M, but to solve to solve a
distribution of MDPs M(z), where z is the task-specification drawn from the task distri-
bution z ⇠ T . Although z can parameterize di↵erent aspects of the MDP, we are spe-
cially interested in the di↵erent reward functions. Hence, our distribution of MDPs is now
M(z) ⌘ (S,A,P , r(·|z), �, S). Thus, a di↵erent z implies a di↵erent reward function under
the same dynamics P and start state s0. One may view this representation as a gener-
alization of the goal-conditioned RL setting [77], where the reward family is restricted to
r(s, a|z = g) = �d(s, z = g). Here d represents the distance between the current state s
and the desired goal g. In sparse goal-conditioned RL, where hindsight has previously been
applied [3], the reward family is further restricted to r(s, a|z = g) = [d(s, z = g) < ✏]. Here
the agent gets a positive reward only when s is within ✏ of the desired goal g.

Hindsight Experience Replay (HER)

HER [3] is a simple method of manipulating the replay bu↵er used in o↵-policy RL algorithms
that allows it to learn state-reaching policies more e�ciently with sparse rewards. After
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experiencing some episode s0, s1, ..., sT , every transition st ! st+1 along with the goal for
this episode is usually stored in the replay bu↵er. However with HER, the experienced
transitions are also stored in the replay bu↵er with di↵erent goals. These additional goals
are states that were achieved later in the episode. Since the goal being pursued does not
influence the environment dynamics, one can replay each trajectory using arbitrary goals,
assuming we use an o↵-policy RL algorithm to optimize [71].

Inverse Reinforcement Learning (IRL)

In IRL [59], given an expert policy ⇡E or more practically, access to demonstrations ⌧E from
⇡E, we want to recover the underlying reward function r⇤ that best explains the expert
behaviour. Although there are several methods that tackle this problem [73, 1, 104], the
basic principle is to find r⇤ such that:

E[
T�1X

t=0

�r⇤(st)|⇡E] � E[
T�1X

t=0

�r⇤(st)|⇡] 8⇡ (3.1)

We use the framework of IRL to guide our Approximate IRL relabeling strategy for Gener-
alized Hindsight.

3.4 Generalized Hindsight

Overview

Given a multi-task RL setup, i.e. a distribution of reward functions r(.|z), our goal is to
maximize the expected reward across the task distribution z ⇠ T through optimizing our
policy ⇡:

E
z⇠T

[R(⇡|z)] (3.2)

Here, R(⇡|z) =
PT�1

t=0 �tr(st, at ⇠ ⇡(st|z)|z) represents the cumulative discounted reward
under the reward parameterization z and the conditional policy ⇡(.|z). One approach to
solving this problem would be the straightforward application of RL to train the z� condi-
tional policy using the rewards from r(.|z). However, this fails to re-use the data collected
under one task parameter z (st, at) ⇠ ⇡(.|z) to a di↵erent parameter z0. In order to better use
and share this data, we propose to use hindsight relabeling, which is detailed in Algorithm
3.

The core idea of hindsight relabeling is to convert the data generated from the policy
under one task z to a di↵erent task. Given the relabeled task z0 = relabel(⌧(⇡(.|z))),
where ⌧ represents the trajectory induced by the policy ⇡(.|z), the state transition tuple
(st, at, rt(.|z), st+1) is converted to the relabeled tuple (st, at, rt(.|z0), st+1). This relabeled
tuple is then added to the replay bu↵er of an o↵-policy RL algorithm and trained as if the
data generated from z was generated from z0. If relabeling is done e�ciently, it will allow
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for data that is sub-optimal under one reward specification z, to be used for the better
relabeled specification z0. In the context of sparse goal-conditioned RL, where z corresponds
to a goal g that needs to be achieved, HER [3] relabels the goal to states seen in the
trajectory, i.e. g0 ⇠ ⌧(⇡(.|z = g)). This labeling strategy, however, only works in sparse goal
conditioned tasks. In the following section, we describe two relabeling strategies that allow
for a generalized application of hindsight.

Algorithm 3 Generalized Hindsight

1: Input: O↵-policy RL algorithm A, strategy S for choosing suitable task variables to
relabel with, reward function r : S ⇥A⇥ Z ! R

2: for episode = 1 to M do
3: Sample a task variable z and an initial state s0
4: Roll out policy on z for T steps, yielding trajectory ⌧
5: Find set of new tasks to relabel with: Z := S(⌧)
6: Store original transitions in replay bu↵er:

(st, at, r(st, at, z), st+1, z)
7: for z0 2 Z do
8: Store relabeled transitions in replay bu↵er:

(st, at, r(st, at, z0), st+1, z0)
9: end for

10: Perform n steps of policy optimization with A
11: end for

Approximate IRL Relabeling (AIR)

Algorithm 4 SIRL: Approximate IRL

1: Input: Trajectory ⌧ = (s0, a0, ..., sT ), cached trajectories D = {(s0, a0, ..., sT )}Ni=1, re-
ward function r : S⇥A⇥Z ! R, number of candidate task variables to try: K, number
of task variables to return: m

2: Sample set of candidate tasks Z = {vj}Kj=1, where vj ⇠ T

Approximate IRL Strategy:
3: for vj 2 Z do
4: Calculate trajectory reward for ⌧ and the trajectories in D: R(⌧ |vj) :=PT

t=0 �
tr(st, at, vj)

5: Calculate percentile estimate:
P̂ (⌧, vj) =

1
n

PN
i=1 {R(⌧ |vj) � R(⌧i|vj)}

6: end for
7: return m tasks vj with highest percentiles P̂ (⌧, vj)
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The goal of computing the optimal reward parameter, given a trajectory is closely tied
to the Inverse Reinforcement Learning (IRL) setting. In IRL, given demonstrations from an
expert, we can retrieve the reward function the expert was optimized for. At the heart of
these IRL algorithms, a reward specification parameter z0 is optimized such that

R(⌧E|z
0) � R(⌧ 0|z0) 8 ⌧ 0 (3.3)

where ⌧E is an expert trajectory. Inspired by the IRL framework, we propose theApproximate
IRL relabeling seen in Algorithm 4. We can use a bu↵er of past trajectories to find the task
z0 on which our current trajectory does better than the older ones. Intuitively this can be
seen as an approximation of the right hand side of Eq. 3.3. Concretely, we want to relabel
a new trajectory ⌧ , and have N previously sampled trajectories along with K randomly
sampled candidate tasks vk. Then, the relabeled task for trajectory ⌧ is computed as:

z0 = argmax
k

1

N

NX

j=1

{R(⌧ |vk) � R(⌧j|vk)} (3.4)

The relabeled z0 for ⌧ maximizes its percentile among the N most recent trajectories collected
with our policy. One can also see this as an approximation of max-margin IRL [73]. One
potential challenge with large K is that many vk will have the same percentile. To choose
between these potential task relabelings, we add tiebreaking based on the advantage estimate

Â(⌧, z) = R(⌧ |z)� V ⇡(s0, z) (3.5)

Among candidate tasks vk with the same percentile, we take the tasks that have higher
advantage estimate. From here on, we will refer to Generalized Hindsight with Approximate
IRL Relabeling as AIR.

Advantage Relabeling

One potential problem with AIR is that it requires O(NT ) time to compute the relabeled
task variable for each new trajectory, where N is the number of past trajectories compared
to, and T is the horizon. A relaxed version of AIR could significantly reduce computation
time, while maintaining relatively high-accuracy relabeling. One way to do this is to use the
Maximum-Reward relabeling objective. Instead of choosing from our K candidate tasks vk ⇠
T by selecting for high percentile (Equation 3.3), we could relabel based on the cumulative
trajectory reward:

z0 = argmax
vk

{R(⌧ |vk)} (3.6)

However, one challenge with simply taking the Maximum-Reward relabel is that di↵erent
reward parameterizations may have di↵erent scales which will bias the relabels to a specific
z. Say for instance there exists a task in the reward family vj such that r(.|vj) = 1 +
maxi 6=j r(.|vi). Then, vj will always be the relabeled reward parameter irrespective of the
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(b) PointReacher (c) Fetch (d) HalfCheetah-
MultiObj

(e) AntDirection

Figure 3.3: Environments we report comparisons on. PointTrajectory requires a 2D point-
mass to follow a target trajectory; PointReacher requires moving the pointmass to a goal
location, while avoiding an obstacle and modulating its energy usage. In (b), the red circle
indicates the goal location, while the blue triangle indicates an imagined obstacle to avoid.
Fetch has the same reward formulation as PointReacher, but requires controlling the noisy
Fetch robot in 3 dimensions. HalfCheetah requires learning running in both directions, flip-
ping, jumping, and moving e�ciently. AntDirection requires moving in a target direction as
fast as possible.

trajectory ⌧ . Hence, we should not only care about the vk that maximizes reward, but select
vk such that ⌧ ’s likelihood under the trajectory distribution drawn from the optimal ⇡⇤(.|vk)
is high. To do this, we can simply select z0 based on the advantage term that we used to
tiebreak for AIR.

z0i = argmax
k

R(⌧ |vk)� V ⇡(s0, vk) (3.7)

We call this Advantage relabeling (Algorithm 5), a more e�cient, albeit less accurate, version
of AIR. Empirically, Advantage relabeling often performs as well as AIR, but requires the
value function V ⇡ to be more accurate than it has to be in AIR. We reuse the twinQ-networks
from SAC as our value function.

V ⇡(s, z) = min(Q1(s, ⇡(s|z), z), Q2(s, ⇡(s|z), z)) (3.8)

3.5 Experimental Evaluation

In this section, we describe our environment settings along with a discussion of our central
hypothesis: Does relabeling improve performance?

Environments

Multi-task RL with a generalized family of reward parameterizations does not have existing
benchmark environments. However, since sparse goal-conditioned RL has benchmark envi-
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Algorithm 5 SA: Trajectory Advantage

1: Repeat steps 1 & 2 from Algorithm 4
Advantage Relabeling Strategy:

2: for vj 2 Z do
3: Calculate trajectory reward:

R(⌧ |vj) :=
PT

t=0 �
tr(st, at, vj)

4: Calculate advantage estimate of the trajectory:
Â(⌧, vj) = R(⌧ |vj)� V ⇡(s0, vj)

5: end for
6: return m tasks zj with highest advantages Â(⌧, zj)

ronments [68], we build on their robotic manipulation framework to make our environments.
The key di↵erence in the environment setting between ours and Plappert et al. [68] is that
in addition to goal reaching, we have a dense reward parameterization for practical aspects
of manipulation like energy consumption [51] and safety [10]. These environments will be
released for open-source access. The five environments we use are as follows:

1. PointTrajectory: 2D pointmass with (x, y) observations and (dx, dy) position control
for actions. The goal is to follow a target trajectory parameterized by z 2 Z ✓ R3.
Figure 3.3a depicts an example trajectory in green, overlaid on the reward heatmap
defined by some specific task z.

2. PointReacher: 2D pointmass with (x, y) observations and (dx, dy) position control
for actions. This environment has high reward around the goal position (xg, yg) and
low reward around an obstacle location (xobst, yobst). The 6-dimensional task vector
is z = (xg, yg, xobst, yobst, u, v), where u and v control the weighting between the goal
rewards, obstacle rewards, and action magnitude penalty.

3. Fetch: Here we adapt the Fetch environment from OpenAI Gym [8], with (x, y, z)
end-e↵ector position as observations and noisy position control for actions. We use
the same parameterized reward function as in PointReacher that includes energy and
safety specifications.

4. HalfCheetahMultiObjective: HalfCheetah-V2 from OpenAI Gym, with 17-dimensional
observations and 6-dimensional actions for torque control. The task variable z =
(wvel, wrot, wheight, wenergy) 2 Z = S3 controls the weights on the forward velocity,
rotation speed, height, and energy rewards.

5. AntDirection: Ant-V2 from OpenAI gym, with 111-dimensional observations and
8-dimensional actions for torque control. The task variable z 2 [�180�,+180�] param-
eterizes the target direction. The reward function is:

r(·|z) = ||velocity||2 ⇥ {velocity angle within 15 degrees of z}
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(a) PointTrajectory (b) PointReacher (c) Fetch

(d) HalfCheetahMultiObjective (e) AntDirection

Figure 3.4: Learning curves comparing Generalized Hindsight algorithms to baseline meth-
ods. For environments with a goal-reaching component, we also compare to HER. In (a),
AIR learning curve obscures the Advantage learning curve. In (d) and (e), where we use N
= 500 for AIR, AIR takes much longer to run than the other methods. 10 seeds were used
for all runs.

Does Relabeling Help?

To understand the e↵ects of relabeling, we compare our technique with the following standard
baseline methods:

• No relabeling (None): as done in [103], we train with standard SAC without any
relabeling step.

• Intentional-Unintentional Agent (IU) [9]: when there is only a finite number of tasks,
IU relabels a trajectory with every task variable. Since our space of tasks is continuous,
we relabel with random z0 ⇠ T . This allows for information to be shared across tasks,
albeit in a more diluted form.

• HER: for goal-conditioned tasks, we use HER to relabel the goal portion of the latent
with the future relabeling strategy.

We compare the learning performance for AIR and Advantage Relabeling with these baselines
on our suite of environments in Figure 3.4. On all tasks, AIR and Advantage Relabeling out-
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(a) Stationary (b) Forward (c) Back (d) Frontflip

(e) Left (f) Right (g) Top Right (h) Top Left

Figure 3.5: The agents e�ciently learn a wide range of behaviors. On HalfCheetahMulti-
Objective, the robot can stay still to conserve energy, run quickly forwards and backwards,
and do a frontflip. On AntDirection, the robot can run quickly in any given direction.

perform the baselines in both sample-e�ciency and asymptotic performance. Both of our
relabeling strategies outperform the Intentional-Unintentional Agent, implying that selec-
tively relabeling trajectories with a few carefully chosen z0 is more e↵ective than relabeling
with many random tasks. Collectively, these results show that AIR can greatly improve
learning performance, even on highly dense environments such as HalfCheetahMultiObjec-
tive, where learning signal is readily available.

How does generalized relabeling compare to HER?

HER is, by design, limited to goal-reaching environments. For environments such as HalfChee-
tahMultiObjective, HER cannot be applied to relabel the weights on velocity, rotation,
height, and energy. However, we can compare AIR with HER on the partially goal-reaching
environments PointReacher and Fetch. Figure 3.4 shows that AIR achieves higher asymp-
totic performance than HER on both these environments. Figure 3.6 demonstrates on
PointReacher how AIR can better choose the non-goal-conditioned parts of the task. Both
HER and AIR understand to place the relabeled goal around the terminus of the trajectory.
However, only AIR understands that the imagined obstacle should be placed above the goal,
since this trajectory becomes an optimal example of how to reach the new goal while avoiding



CHAPTER 3. GENERALIZED HINDSIGHT FOR REINFORCEMENT LEARNING 29

Original Task Relabeled Task

Po
in

tT
ra

je
ct

or
y

Po
in

tR
ea

ch
er

Figure 3.6: Red denotes areas of high reward, for following a target trajectory (top) or
reaching a goal (bottom). Blue indicates areas of negative reward, where an obstacle may
be placed. On both environments, relabeling finds tasks on which our trajectory has high
reward signal. On PointReacher, AIR does not place the obstacle arbitrarily far. It places
the relabeled obstacle within the curve of the trajectory, since this is the only way that the
curved path would be better than a straight-line path (that would come close to the relabeled
obstacle).

the obstacle. HER (as well as the Intentional-Unintentional Agent) o↵er no such specificity,
either leaving the obstacle in place or randomly placing it.

Analysis of Relabeling Fidelity

Approximate IRL, advantage relabeling, and reward relabeling are all approximate methods
for finding the optimal task z⇤ that a trajectory is (close to) optimal for. As a result, an
important characteristic is their fidelity, i.e. how close the z0 they choose is to the true z⇤.
In Figure 3.7, we compare the fidelities of these three algorithms. Approximate IRL comes
fairly close to reproducing the true z⇤, albeit a bit noisily because it relies on the comparison
to N past trajectories. Advantage relabeling is slightly more precise, but fails for large energy
weights, likely because the value function is not precise enough to di↵erentiate between these
tasks. Finally, reward relabeling does poorly, since it naively assigns z0 solely based on the
trajectory reward, not how close the trajectory reward is to being optimal.
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(b) Advantage Relabeling
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(c) Reward Relabeling

Figure 3.7: Comparison of relabeling fidelity on optimal trajectories for approximate IRL,
advantage relabeling, and reward relabeling. We train a multi-task policy to convergence
on the PointReacher environment. We roll out our policy on 1000 randomly sampled tasks
z, and apply each relabeling method to select from K = 100 randomly sampled tasks v.
For approximate IRL, we compare against N = 10 prior trajectories. The x-axis shows the
weight on energy for the task z used for the rollout, while the y-axis shows the weight on
energy for the relabeled task z0. Note that goal location, obstacle location, and weights on
their rewards/penalties are varying as well, but are not shown. Closer to to the line y = x
indicates higher fidelity, since it implies z0 ⇡ z⇤.

3.6 Related Work

Multi-task and Transfer Learning

Learning models that can share information across tasks has been concretely studied in the
context multi-task learning [11], where models for multiple tasks are simultaneously learned.
More recently, Kokkinos [40] and Doersch and Zisserman [15] looks at shared learning across
visual tasks, while Devin et al. [14] and Pinto and Gupta [66] looks at shared learning across
robotic tasks.

Transfer learning [62, 96] focuses on transferring knowledge from one domain to another.
One of the simplest forms of transfer is finetuning [24], where instead of learning a task from
scratch it is initialized on a di↵erent task. Several other works look at more complex forms
of transfer [102, 33, 4, 76, 41, 18, 25, 34].

In the context of RL, transfer learning [93] research has focused on learning transferable
features across tasks [63, 6, 60]. Another line of work by [74, 37, 14] has focused on network
architectures that improves transfer of RL policies. Another way of getting generalizable
policies is through domain randomization [75, 94], i.e. train an unconditional policy across
all of the domains in the multi-task learning setting. Although this works for task distribu-
tions over the dynamics and observation space [67], it cannot handle distributions of reward
functions as seen in our experiments. The techniques of domain randomization are however
complementary to our method, where it can provide generalizability to dynamics and ob-
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servation space while Generalized Hindsight can provide generalizability to di↵erent reward
functions.

Hierarchical reinforcement learning [55, 7] is another framework amenable for multitask
learning. Here the key idea is to have a hierarchy of controllers. One such setup is the
Options framework [91] where the higher level controllers breaks down a task into sub-
tasks and chooses a low-level controller to complete that sub-task. Unsupervised learning of
these low-level controllers has been a focus of recent research [19, 17, 81]. Variants of the
Options framework [22, 47] have examined how to train hierarchies in a multi-task setting,
but information re-use across tasks remains restricted to learning transferable primitives.
Generalized Hindsight could be used to train these hierarchical policies more e�ciently.

Hindsight in RL

Hindsight methods have been used for improving learning across as variety of applications.
Andrychowicz et al. [3] uses hindsight to e�ciently learn on sparse, goal-conditioned tasks.
Nair et al. [58] approaches goal-reaching with visual input by learning a latent space encoding
for images, and using hindsight relabeling within that latent space. Several hierarchical
methods [44, 56] train a low-level policy to achieve subgoals and a higher-level controller
to propose those subgoals. These methods use hindsight relabeling to help the higher-level
learn, even when the low-level policy fails to achieve the desired subgoals. Generalized
Hindsight could be used to allow for richer low-level reward functions, potentially allowing
for more expressive hierarchical policies.

Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) has had a rich history of solving challenging robotics
problems [1, 59]. More recently, powerful function approximators have enabled more general
purpose IRL. For instance, Ho and Ermon [32] use an adversarial framework to approximate
the reward function. Li, Song, and Ermon [49] build on top of this idea by learning reward
functions on demonstrations from a mixture of experts. Although, our relabeling strategies
currently build on top of max-margin based IRL [73], our central idea is orthogonal to the
choice of IRL techniques and can be combined with more complex function approximators.

3.7 Conclusions

In this work, we have presented Generalized Hindsight, an approximate IRL based task rela-
belling algorithm for multi-task RL. We demonstrate how e�cient relabeling strategies can
significantly improve performance on simulated navigation and manipulation tasks. Through
these first steps, we believe that this technique can be extended to other domains like real
world robotics, where a balance between di↵erent specifications, such as energy use or safety,
is important.
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Chapter 4

Conclusion

The methods we have introduced over the past two chapters represent small steps toward pro-
ducing autonomous generalists that can quickly pick up and excel at new tasks. In Chapter
2, our exploration of modular policies led us to propose HiPPO, a novel on-policy hierarchical
reinforcement learning algorithm. Supported by several theoretical results, HiPPO learns
robust, transferable skills, and can quickly learn a new task by finetuning skills learned in
other environments. In Chapter 3, we introduced generalized hindsight, which uses approxi-
mate inverse reinforcement learning to accelerate multi-task training. Generalized hindsight
matches generated behaviors with the tasks they are best suited for, allowing for substantially
faster learning from environment interaction.

Learning each problem individually “from scratch” remains as a common practice in re-
search and industry. In a world where data, compute, time, and energy are limited resources,
many useful applications remain out of reach if we stick to the single-task paradigm. Much
work remains to be done before machine learning algorithms can learn as e�ciently as hu-
mans can – when doing something new takes a handful of tries, not thousands. We hope
that the methods presented in this work may serve as inspiration for future research that
marches towards this frontier.
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