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Abstract

Challenges and Tradeoffs in Trajectory Prediction for Autonomous Driving

by

Alvin Kao

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph Gonzalez

Trajectory prediction is a necessary component of an autonomous driving pipeline because it
is essential for safe and comfortable planning. However, most existing work in prediction only
measures prediction performance in isolation on static datasets, as opposed to performance
when used in conjunction with the rest of the autonomous driving pipeline. We show that
commonly used prediction evaluation metrics on static datasets do not capture the full range
of challenges faced by trajectory prediction algorithms in dynamic scenarios, and that no
single prediction method works best for all situations. To do this, we implement and bench-
mark a variety of state-of-the-art prediction approaches, and evaluate their performance in
conjunction with planning in simulated driving scenarios.
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Chapter 1

Introduction

Autonomous vehicles (AVs) have the potential to revolutionize transportation by increasing
safety, reducing traffic congestion and the resulting carbon emissions, providing mobility
to people with disabilities, and enabling rapid, low-cost shipping. The National Highway
Traffic Safety Administration expects AVs to (i) remove human error from traffic accidents,
which made up 94% of the 37,133 motor-vehicle related deaths in the U.S. in 2017 [28], (ii)
increase traffic flow, which could potentially free up as much as 50 minutes per person per
day [24], and (iii) provide new employment opportunities to approximately 2 million people
with disabilities [10].

In spite of all the perceived benefits, fully autonomous vehicles are still far from reality.
Table 1.1 shows that production vehicles have collectively driven an order-of-magnitude less
than the 291 million fatality-free miles needed to claim that autonomous vehicles are as safe
as human drivers with 95% confidence [16, 34].

Company Miles Miles between
driven disengagements

Pony.AI 174,845 6,475.8
GM Cruise 831,040 12,221.2
Waymo 1,454,137 13,219.4
Baidu Apollo 108,300 18,050.0

Table 1.1: Average self-driven miles between disengagements for companies that have driven
over 100k miles in 2019 [34].

Current deployments of AVs require frequent human intervention (i.e., disengagements)
to safely operate in challenging scenarios, as shown in Table 1.1. Disengagements occur when
either: (i) individual components of the driving pipeline provide low accuracy outputs, (ii)
the AV is unable to reach a timely decision due to variability in the runtimes of the algorithms
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or other failures in the underlying system, or (iii) components of the pipeline fail to properly
work together.

Most autonomous driving research addresses (i) – the accuracy of the algorithms used
for each part of the driving pipeline in isolated contexts. However, (ii) and (iii) are arguably
equally as important for the success of autonomous driving. This is especially true in the
case of trajectory prediction, i.e. estimation of how other vehicles and pedestrians in the
environment might move.

Why is trajectory prediction necessary? As a motivational scenario, consider the following
image, taken from the view of the ego-vehicle (our autonomous vehicle) at an intersection:

Figure 1.1: The ego-vehicle needs trajectory prediction for accurate planning.

Without knowledge about the past history of the other red vehicle and reliable trajectory
prediction, the ego-vehicle cannot tell from this image alone whether or not it is safe to enter
the T-intersection.

As we can see, the main purpose of trajectory prediction is to provide useful information
to the vehicle’s planning module about other agents in the environment, in order to come
up with a safe and efficient route for the vehicle to follow. However, most existing work in
prediction only considers prediction performance in isolation on static datasets, as opposed
to evaluating their methods in actual driving scenarios with the rest of the AV pipeline.

In this work, we analyze the behavior of prediction methods in dynamic scenarios. Chap-
ter 2 gives an overview of the autonomous driving pipeline as well as of ERDOS and Pylot
[13], systems we built that allow us to evaluate specific AV components in scenarios as part
of a full driving pipeline. In chapter 3, we discuss classes of approaches used for trajectory
prediction, as well as the metrics used to evaluate them. In chapter 4, we identify various as-
pects of trajectory prediction not captured by these traditional metrics, and run exploratory
experiments to demonstrate the tradeoffs there. Chapter 5 discusses future areas of research.
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Chapter 2

Background

2.1 Autonomous Driving Pipeline

A typical autonomous driving pipeline [2, 4, 15] includes four main modules, as depicted
in Figure 2.1: perception, prediction, planning, and control. Although this work mainly
focuses on the prediction module, we briefly describe each of these modules below to give
some relevant context for our later evaluation of the pipeline in driving scenarios.

Figure 2.1: A typical autonomous driving pipeline.
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• Perception uses data from sensors such as cameras, LIDAR, and radar to detect
objects in the scene and make inferences about their properties, such as location,
orientation, and velocity. This can include submodules such as object detection, object
tracking, and localization.

The most relevant part of perception for the prediction module is the object tracker,
which outputs the past tracks of other agents over time. Object trackers estimate
locations of agents over time (between consecutive object detections), as well as main-
tain consistent identifiers for each agent. Both non-neural network based and neural
network based examples of object trackers have been tried. An example of a classical
object tracker is SORT [6], which uses Kalman filtering for maintaining bounding boxes
and the Hungarian algorithm (with bounding box overlap as a metric) for maintaining
ids. DeepSORT extends SORT by incorporating image information using CNNs for
the tracking of each object.

• Prediction uses the past tracks of other agents in the environment outputted by
perception, along with other scene information such as maps or LIDAR, to predict the
future behavior of other agents. We will further discuss different prediction methods
in Chapter 3.

• Planning outputs a sequence of future waypoints that the vehicle should follow, using
the trajectories outputted by the prediction module and information about the vehicle’s
surroundings. A typical planner consists of three levels, a route planner, behavior
planner, and motion planner, that deal with increasing levels of granularity.

Route planning operates at the highest level, treating the road network as a graph with
vertices at intersections (and perhaps additional intermediate vertices in the middle
of roads), and running shortest path algorithms such as A* or Dijkstra’s algorithm to
determine a high-level route to a goal. The behavior planner chooses high-level actions
(e.g. keep in the same lane), given the route from the route planner. [3] The motion
planner then chooses a sequence of waypoints that is consistent with the higher-level
planners. A wide range of motion planning techniques exist [30]; however, in this work
we will focus on using the Frenet Optimal Trajectory planner [37], which works in the
Frenet frame (referenced to the road center line).

• Control provides throttle and steering commands for the vehicle that allow it to closely
follow the planner’s outputted waypoints, while maintaining a specified target speed
and providing a smooth ride for the passenger. In this work, we use a standard PID
(proportional-integral-derivative) controller, which is sufficient for our purposes.

Another line of work (e.g. [11]) treats autonomous driving as a single end-to-end problem,
predicting control outputs from raw sensor data. These approaches avoid the need to address
how to propagate error or uncertainty between modules, but are often less interpretable, so
we do not discuss them in depth.
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2.2 ERDOS and Pylot

For this work, we utilize the CARLA simulator [12], an open-source driving simulator that
provides realistic maps, environments, and agents for evaluating autonomous driving algo-
rithms.

The prediction algorithms and scenarios we implement are included as part of Pylot, an
open-source autonomous driving pipeline that can interface with simulators such as CARLA
but also with real-world AVs. Pylot was developed in conjunction with Ionel Gog, Sukrit
Kalra, Peter Schafhalter, Aman Dhar, and Edward Fang. It is built on top of ERDOS, a
streaming dataflow system designed for self-driving and robotics applications that guarantees
enforcement of dynamic end-to-end deadlines and deterministic execution.

Using ERDOS, individual components of the driving pipeline can be represented as op-
erators that are connected by data streams. In addition, an advantage of using CARLA
with Pylot is that we can get ground-truth information from simulation for each component,
allowing developers to focus on specific parts of the pipeline while still being able to run
end-to-end tests. Because of these properties, Pylot allows for rapid innovation and testing
of individual driving components. Figure 2.2 shows an example of the object detection,
semantic segmentation, prediction, and planning modules of Pylot when running with the
CARLA simulator. (Note that this is just a sample and does not represent all functionality
in Pylot).

Figure 2.2: Different modules of Pylot when running with the CARLA simulator.
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Chapter 3

Overview of Trajectory Prediction

We now focus on trajectory prediction, specifically for other vehicles in the environment.
Pedestrian trajectory prediction is an equally important problem, but the two are often
considered separately because pedestrians and vehicles have very different dynamics. Fur-
thermore, it is easier to obtain high-quality, realistic data for vehicle trajectories than it is
for pedestrian trajectories.

Predicting future state is a common problem across many fields such as computer vision,
so what makes vehicle trajectory prediction different from other types of prediction? We
can incorporate knowledge about physical constraints on vehicle dynamics, but there is still
an extremely wide range of potential scenarios we may encounter. Classical approaches to
the prediction problem include physics-based models such as Kalman and switching Kalman
filters [27], hidden Markov models, and Gaussian process prediction. Albrecht et al. [1] also
provide a comprehensive overview of non neural network-based methods, focusing on various
modeling assumptions and modeling methods (e.g. policy reconstruction, graphical models).

However, like many other aspects of autonomous driving, trajectory prediction algorithms
must deal with a long tail of unlikely but possible scenarios, so the ability to generalize from
an incomprehensive dataset is key. This is one of the reasons why people have begun using
neural network-based approaches for the problem.

Applying this class of techniques to the trajectory prediction problem is fairly new. To the
best of our knowledge, Mozzafari et al. [26] provide the only survey of deep-learning based
approaches for vehicle trajectory prediction. The authors structure their overview based on
the input representations (e.g. grid of the surrounding world from a bird’s eye view vs. raw
sensor data) and output representations (intention-based, unimodal, multimodal predictions)
that are common in the literature. They also discuss the prevalent network architectures
existing approaches have tried, such as RNNs, CNNs, and Graph Neural Networks. In the
next section, we give a higher level overview of the state-of-the art approaches, with some
discussion of benefits and drawbacks of each category.
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3.1 Classification of Trajectory Prediction

Approaches

• Intention prediction models treat prediction as a classification problem of high-level
actions (intentions). For example, Luo et al. [8, 21] use end-to-end networks to jointly
predict agent intention with other aspects of the driving pipeline such as detection and
tracking. Hu et al. [19] consider the highway lane-changing problem with intents for
different insertion areas.

While these methods allow for easily interpretable predictions, one drawback is that
they require data to be manually labeled with intentions, which can be expensive and
time-consuming. In addition, intention prediction models do not output explicit tra-
jectories by themselves, making it harder to incorporate their output into planning
without some other auxiliary network or functionality. Today, many intention predic-
tion models will do a combination of estimating the likelihood of each intention and
getting the most likely trajectory conditioned on that intention, or what Mozzafari et
al. call “intention-based trajectory” predictions.

• Occupancy grid prediction methods [18, 17, 33, 25] assume we have a top-down dis-
cretized grid map with occupancy probabilities for each location, and predict a similar
grid of probabilities for each future time step up to some fixed horizon. Unlike intention
prediction, the output occupancy grids can directly be used for planning. However,
these methods are significantly more memory-intensive, and don’t directly take advan-
tage of the fact that we have distinct agents with physically-constrained dynamics.

• Game theoretic methods [14, 23, 22, 20] try to explicitly model interactions and col-
laboration between multiple agents, e.g. by modeling the utility function of each agent
(which can depend on other agents), then optimizing over possible actions. These
methods tend to become computationally intensive as the number of agents increase,
because they consider the problem in its full generality. Therefore, they often still have
to make concessions with regards to modeling power.

For example, [14] decomposes the problem into two levels of planners: (i) a strategic
high-level planner that addresses fully coupled interaction using the Stackleberg leader-
follower dynamic game, but with simplified dynamics, and (ii) a tactical planner that
considers accurate dynamics but with simplified interaction model, planning over a
shorter (e.g. 1 s) duration and incorporating input from the high-level planner in the
utility function.

• Graphical models influencing neural network design [9, 31, 32, 36]: These methods
typically assume the perception module is able to provide an accurate bird’s eye view
of its surroundings, along with perfect past trajectories of other agents. They then
use various independence assumptions to tame the complexity of the problem, at the
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loss of some expressivity. We will discuss in more detail and evaluate three of these
networks in the next chapter.

3.2 Existing Metrics

Typically, trajectory prediction algorithms are evaluated on a static dataset of trajectories as
opposed to in conjunction with a planning algorithm. In this static setting, a wide range of
other metrics have been proposed to evaluate the quality of trajectory prediction algorithms
when applied to a static dataset of collected trajectories [5]. Two of the most commonly
used metrics for algorithms that predict a single trajectory are average displacement
error (ADE) and final displacement error (FDE).

Formally, given a sequence of past agent locations {x−t, . . . , x0} and some scene con-
text φ, a trajectory prediction algorithm will output a sequence of predicted future states
{x1, . . . , xT}. Denote the true agent trajectory by {x̂1, . . . , x̂T}. Then, average displacement
error is the Euclidean distance between the predicted and ground truth trajectory averaged
over time, i.e. 1

T

∑T
i=1 ‖xi− x̂i‖2. Final displacement error is the Euclidean distance between

only the predicted and ground truth trajectory at time T , i.e. ‖xT − x̂T‖2.

The issue with ADE and FDE is that depending on the agent’s (hidden) goal, there could
be several reasonable trajectories it can take. For example, at an intersection, we’d expect
there to be some non-zero probability that a vehicle could turn left, go straight, or turn right.
ADE and FDE would both heavily penalize any single-trajectory predictor that happened
to choose the wrong mode, even if the predicted trajectory is reasonable given the intent.

Therefore, recent works [9, 32, 36] have used multimodal predictions in an attempt to
capture the inherent multimodality of the desired output. Consequently, these approaches
are evaluated by taking the minimum ADE or minimum mean squared distance (minMSD)
over a fixed number of joint predicted trajectories. As another example, the ongoing INTER-
PRET prediction challenge, based off of the INTERACTION [38] dataset, uses this metric
along with ADE and FDE.

Finally, for models whose output defines a probability distribution over possible trajec-
tories, another metric typically used is to evaluate the likelihood of the ground-truth future
trajectory under this distribution. This metric captures how well the predicted distribution
covers all of the modes of the true distribution, but doesn’t penalize a model that assigns
high likelihood to trajectories that are in reality unlikely.
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Chapter 4

Experiments

4.1 Simulation Setup and Algorithms

We consider four different trajectory prediction models, a baseline linear regression model
and three neural-network based trajectory prediction models that fall under the last category
described in the previous chapter (graphical models influencing neural network design). We
first describe the defining attributes of each method.

1. Linear prediction assumes each agent will travel at a constant velocity, and uses linear
regression on past agent locations to predict its future locations.

2. R2P2 [31] is a state-of-the-art single-agent trajectory forecasting model. It learns a
distribution over potential future trajectories that is parameterized by a one-step policy
using a gated recurrent unit (GRU), and attempts to optimize for both quality and
diversity of samples.

To extend R2P2 to the multi-agent setting, we run R2P2 on every agent within a
specified prediction radius, rotating the scene context and past trajectories of other
agents to the coordinate frame of the agent we are making predictions for. We refer
to this version of R2P2 as R2P2-MA (R2P2-MultiAgent). The computations for each
agent are independent and can therefore be batched.

3. Multipath [9] predicts a mixture of Gaussians distribution for agent locations at each
time step. First, K anchor trajectories are derived from the training data, either
through K-means clustering with Euclidean distance or by sampling fixed trajectories.
The number of anchors K can vary depending on the problem. Then, the state distri-
bution at each time step is conditionally Gaussian with learned mean and covariance,
and independent of the distribution at other time steps given an anchor trajectory.

For its network architecture, Multipath first uses a lightweight scene-level network (in
our implementation, we used a depth-wise thinned out version of Resnet-18) to obtain
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a useful feature representation of the scene. Then, it applies a smaller network on
the relevant features for each agent that outputs predictions, represented as deviations
from each anchor trajectory, as well as a probability distribution over anchors. Because
the same network is used for each agent, per-agent computation can also be batched
and both stages of the network are fairly fast.

4. Multiple Futures Prediction (MFP) [36] includes an attention-based mechanism to
jointly model agent behavior, in addition to the initial feature processing stages that
are fairly similar to those in the other works. The network architecture also gives
the flexibility of varying the number of discrete latent modes used for the outputted
prediction distribution.

With the exception of linear prediction, which doesn’t require any training, all models
described were trained on the PRECOG dataset. This dataset consists of roughly 60000
training samples of driving behavior in Town01 of the CARLA simulator, with each sample
consisting of the ego-vehicle’s current LIDAR observation, as well as two seconds of past
trajectory history and four seconds of future trajectory for each agent.

We chose these models in order to represent some of the major classes of neural-network
based approaches for trajectory prediction. Linear prediction is an extremely fast baseline,
which while clearly not applicable in all contexts, has its use cases in niche contexts. R2P2
was chosen as a representative of taking a single-agent forecasting model and näıvely extend-
ing it to the multiagent setting. Multipath was chosen as a multi-agent forecasting model
that is very fast because of the independence assumptions and lightweight architecture that it
uses. Finally, MFP was chosen because it is the current state-of-the art in vehicle trajectory
prediction.

We simulated the scenarios using CARLA 0.9.8’s scenario runner module [7]. CARLA
provides two modes of execution: (i) Synchronous, where the simulator allows instantaneous
application of control commands by pausing the simulator time after sending sensor inputs to
the client, and (ii) Asynchronous, where the simulator keeps moving time forward and applies
the control command when the client finishes execution. While CARLA’s asynchronous mode
allows us to observe the effects of the runtime of Pylot, it does not provide us with the ability
to apply a control command at a specific simulation time.

To better control the effects of runtime on the simulation, we run CARLA in synchronous
mode with a high frequency of 200Hz, and attach a synchronizer operator between the control
module and the simulator. This synchronizer tracks the runtime of the pipeline for each
sensor input, and buffers the generated control command until the simulation time is greater
than or equal to the sum of the sensor input time and the runtime of the pipeline. This
allows us to simulate running the pipeline asynchronously, but with the ability to manage
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when control commands are applied that CARLA’s asynchronous mode does not provide.
We call this mode of execution pseudo-asynchronous mode.

4.2 Factors Affecting Prediction Quality

Algorithm Runtime

Table 4.1 shows the minMSD metrics on the Town01 test portion of the PRECOG dataset
for the above approaches. The minMSD was taken over 12 sets of sampled joint trajectories
(this metric becomes just the MSD for the linear predictor because it gives a deterministic
output). MFP-4 represents running MFP with four latent modes.

Approach minMSD12

Linear 1.10
R2P2-MA 0.77
MultiPath 0.68

MFP-4 0.28

Table 4.1: minMSD values for several prediction networks.

From this table, our initial impression might be that we should always run MFP-4,
because it gives us the best minMSD. However, we need to take into account the runtimes
of each method. To see why, consider a scenario in which a vehicle approaches a four way
intersection at the same time as our autonomous vehicle. We may initially believe that
the vehicle is going straight. However, a slight turn or signal would indicate to a human
driver that the vehicle is about to turn. Taking too long to run prediction may mean that
our autonomous vehicle misses this signal, and continues thinking the other vehicle will go
straight.

In addition, if we take too long to perform prediction (especially at high speeds) the
environment will have already changed drastically by the time we receive those predictions.
In this case, we might as well get new sensor readings and use those instead of running
prediction on old data.

We confirm this intuition in a four-way intersection scenario using the CARLA scenario
runner. As depicted in Figure 4.1, our autonomous vehicle approaches a four-way intersection
at the same time as a vehicle on the road perpendicular to us. However, the other vehicle
fails to stop and speeds through the intersection, so we must either emergency brake or
swerve to avoid an accident. Note that prediction is necessary for this scenario, as we need
to know sufficiently early that the other vehicle is going too fast and that we may need to
slow down.
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Figure 4.1: Four-way intersection collision avoidance scenario from a bird’s-eye view. Dark
green dots represent past trajectories, and light green dots represent predictions. The ego-
vehicle is the bottom one.

Figure 4.2: Due to our sampling strategy, R2P2 can sometimes be unstable, but this did not
affect driving performance as the ego-vehicle has to emergency stop at that distance.
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For simplicity, we provide the autonomous vehicle with access to perfect past tracks of
the other vehicle once it comes in view, as well as LIDAR readings. In addition, for each
of the neural network-based planners, we sample from the predicted distribution of future
trajectories and use that as our prediction. Although this does not take into account the full
trajectory distribution, this näıve sampling suffices for all predictors for the purposes of our
scenario. This was somewhat unstable in the case of R2P2-MA as shown in Figure 4.2, as we
would predict going straight at some time steps and predict turns at subsequent time steps,
but this behavior did not interfere with our results. As stated earlier, we run this scenario
in pseudo-asynchronous mode.

We use an implementation of the Frenet planner, as it performs consistently and is able
to swerve for obstacle avoidance, although it does require a relatively long runtime. In
this situation, the linear predictor is able to avoid the collision by swerving slightly to buy
time and then continuing along its path, but using R2P2 can sometimes result in collisions
because of the increased runtime (depending on runtime variability in both R2P2 and the
Frenet planner).

Figure 4.3: Average runtimes of our four models in the scenario. All runtimes are measured
with a batch size of 1; we can’t batch predictions in the auto-driving setting, as data comes
in an online fashion.

These results make sense given the runtime of our four models as shown in Figure 4.3.
We observe that there is roughly a 150 ms difference between the slowest and fastest models,
which means that when traveling at 16 m/s as in our scenario, there is roughly a 0.15∗16 = 2.4
meter difference between when the planner is able to react when using the different predictors.
This is a relatively small but still significant distance, and we suspect that when coupled
with runtime differences incurred when switching components in other parts of the pipeline,
this phenomenon will only be exacerbated.

We also experimented with using a simple waypoint planner, which follows a list of
waypoints given to it and emergency brakes when an obstacle impedes its path (rather than
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swerving). After searching over a range of speeds and distances for both vehicles, we did
not find a configuration for which both using the waypoint planner with the linear predictor
worked, and using the waypoint planner with R2P2-MA caused a collision. This is because
without swerving or other forms of obstacle avoidance, there was no speed that was high
enough to create a significant distance difference between the different predictors, yet low
enough such that we could brake in time to avoid the collision. However, one could argue
that using the linear predictor is still better because it lessens the speed at collision time,
making the ride safer.

Of course, a linear predictor is not sufficient in all scenarios. We can consider the same
scenario as above, except that the other vehicle comes from the left side of the intersection
and decides to turn right. In this case, the behavior of the other vehicle should not affect
our plan. However, the linear predictor is overcautious and predicts the other vehicle may
go straight through the intersection or even drive straight towards us as it begins to turn,
leading to unneccessary braking and an uncomfortable ride.

Finally, when is MFP preferred over R2P2-MA and Multipath? MFP has the ability to
model interactions in more complex driving scenarios. In contrast, because R2P2-MA and
MultiPath generate predictions on a per-agent basis independently, they would not suffice
for these scenarios, and the minMSD metrics are indicative of this phenomenon. MFP would
be especially effective in these crowded scenes when we are driving at slower speeds and have
more time to react.

Environment Complexity

Having established that runtime should be considered when evaluating prediction models,
we now discuss the effects of different aspects of the environment on each models’ runtime.
First, we note that linear regression is extremely fast (no more than a few milliseconds) for
any reasonable prediction horizon and environment that we would encounter.

Many prediction networks, including R2P2-MA and MFP, utilize recurrent neural net-
works in their architecture, which perform inherently sequential computation. Consequently,
in situations such as highway driving which involve faster speeds and longer braking distances
for which we need longer prediction horizons, these models have increased runtime. Figure
Figure 4.4 shows the runtime of R2P2-MA and MFP-1 with different prediction horizons
and one other agent in the scene.

In contrast, the runtime of Multipath has little dependence on the prediction horizon.
This is because the second stage of the network architecture is fully convolutional, so batching
allows runtimes to stay roughly the same.

With regards to the number of agents we perform predictions for, we found that only
MFP’s runtime scales with the number of agents. For both R2P2-MA and Multipath, the
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Figure 4.4: Prediction runtime can increase as prediction horizon increases.

per-agent computation can be performed independently and batched. However, because of
the attention mechanism of MFP, we found that with an increased number of agents its
runtime also increased.

Perhaps surprisingly, none of these methods are affected by the number of static obstacles
in the scene, as they take in scene context as a LIDAR point cloud (or potentially an image
of fixed size) and apply some form of a convolutional feature extractor.

Frequency of Predictions

A typical AV is equipped with a dozen cameras, several LIDARs, and radars, which collec-
tively generate 1–2 GB/s of data. This data must be processed by the pipeline to reach a
control decision, which needs to be made faster than the typical human reaction time. With
so many components in the pipeline and relatively insufficient computation power on today’s
autonomous vehicles [29], prioritization of computation resources is essential.

In addition to switching between components along the runtime-accuracy tradeoff curve
as in the previous section, in some situations we could run certain components less often if
they are not as vital to the end-to-end performance of the pipeline in the current context.

For example, it is not always necessary to run neural network based prediction for every
frame. To see this, we consider the following experiment setup, as shown in Figure 4.5. The
ego-agent is driving down a straight road, with a static pedestrian at the end of it. We have
a simple module that tells us whether or not any agents could feasibly affect our trajectory.
For example, if the object tracker tells us that all nearby vehicles are oriented away from us,
and physical constraints mean that they have very little chance to impact our ego-vehicle’s
plan, we don’t need to run prediction until we receive a new tracked object from the object
tracking module.
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Figure 4.5: The ego-vehicle can choose not to run prediction if no vehicles are physically
able to collide with it in the near future, and allocate more time to object detection.

We saw in Figure 4.3 that not running one of the computationally expensive prediction
modules could save us roughly 150 ms of runtime per frame. We can invest this freed-up
time into improving the accuracy of other modules in our pipeline, such as object detection.
Table 4.2 shows the runtimes of various EfficientDet models [35], as well as what distance
we can be at while still detecting a static pedestrian using each version of EfficientDet in
the CARLA scenario runner. EfficientDet is a family of state-of-the-art single-stage object
detectors that give us nice tradeoffs in runtime and accuracy, which is why we discuss it
here. The extra time gained from not having to run prediction allows us to use a higher-
accuracy EfficientDet model while having comparable response times (e.g. switch from using
EfficientDet-d2 to EfficientDet-d6), allowing us to detect the obstacle earlier and stop in time.
In addition, not outputting predictions at every time step has the added advantage of giving
more realistic and stable predictions [36].

EfficientDet Model Distance Detected (m) Runtime(ms)
d1 7.31 12
d2 12.42 16
d3 16.93 23
d4 22.97 37
d5 37.00 65
d6 48.39 128
d7 49.05 232

Table 4.2: Detection distances and runtimes for different EfficientDet models.
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Probabilities assigned to each predicted trajectory

We saw in Section 3.2 that metrics such as minMSD and minADE were introduced to take
into account the fact that predictions should inherently be multimodal. However, these
metrics don’t take into account the probabilities assigned to each sampled trajectory.

For example, in Figure 4.6, we can consider two predictors which output the same three
paths (turning left, slowing down, turning right), but with different probability distributions,
e.g. [0.8, 0.1, 0.1] and [0.1, 0.8, 0.1]. If the ground-truth path is one of these three paths, both
predictors would have a minMSD and minADE of zero. However, it makes a big difference
to the planning module if we know whether this vehicle is more likely to turn left or slow
down.

Figure 4.6: Predicting correct paths must also come with predicting correct probabilities.

Therefore, metrics such as minMSD and minADE can be more useful than single-trajectory
MSD and ADE, but they do not necessarily correlate with good planning performance.
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Chapter 5

Conclusion and Future Work

Currently, trajectory prediction is one of the major hurdles remaining in order to achieve safe
and reliable autonomous driving. There have been many proposed metrics for evaluating
the quality of predictions on static datasets. However, trajectory prediction for autonomous
driving inherently must run in real-time, in conjunction with other components of the driv-
ing pipeline such as planning. We have discussed why factors such as algorithm runtime,
environment complexity, and frequency of predictions should also be taken into account
when evaluating a prediction algorithm. To do this, we implemented several state-of-the-art
prediction models and evaluated their behavior in a realistic simulation.

Future work could involve considering trajectory prediction for pedestrians as well. One
additional challenge for pedestrians is that they have less consistent dynamics models, as
well as different physical constraints on the set of feasible paths. We could also incorporate
real data on vehicle signalling lights and horns, as human drivers depend a lot on these
cues for making predictions. Also, it would be useful to evaluate algorithms which jointly
perform planning and prediction. In reality, the two modules cannot be considered separately,
as the decision of the ego-vehicle matters for the predicted trajectories of other vehicles.
For example, at a four-way intersection, nudging forward can signal to other cars at the
intersection that you plan to cross, so they are more likely to cede the right of way. This is
another aspect of prediction quality that cannot be evaluated by a static dataset.

Another natural extension to this work would be to consider planners that leverage the
inherent uncertainty of the predictions, taking into account the full distribution of trajectories
produced by the model. A näıve approach would be to sample multiple trajectories from the
predicted distribution and consider all of the corresponding locations as being occupied, but
we found that this led to an overcautious agent, an example of the freezing robot problem.
We could also consider probabilistic planners, which treat the prediction problem as a Markov
Decision Process (MDP). These planners account for action and environment uncertainty,
and they would allow for tighter integration between the planning and prediction modules.
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