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Abstract

Novel Computing Paradigms using Oscillators

by

Tianshi Wang

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jaijeet Roychowdhury, Chair

This dissertation is concerned with new ways of using oscillators to perform compu-
tational tasks. Specifically, it introduces methods for building finite state machines (for
general-purpose Boolean computation) as well as Ising machines (for solving combinatorial
optimization problems) using coupled oscillator networks.

But firstly, why oscillators? Why use them for computation?

An important reason is simply that oscillators are fascinating. Coupled oscillator systems
often display intriguing synchronization phenomena where spontaneous patterns arise. From
the synchronous flashing of fireflies to Huygens’ clocks ticking in unison, from the molecular
mechanism of circadian rhythms to the phase patterns in oscillatory neural circuits, the
observation and study of synchronization in coupled oscillators has a long and rich history.
Engineers across many disciplines have also taken inspiration from these phenomena, e.g., to
design high-performance radio frequency communication circuits and optical lasers. To be
able to contribute to the study of coupled oscillators and leverage them in novel paradigms
of computing is without question an interesting and fulfilling quest in and of itself.

Moreover, as Moore’s Law nears its limits, new computing paradigms that are different
from mere conventional complementary metal–oxide–semiconductor (CMOS) scaling have
become an important area of exploration. One broad direction aims to improve CMOS
performance using device technology such as fin field-effect transistors (FinFET) and gate-
all-around (GAA) FETs. Other new computing schemes are based on non-CMOS material
and device technology, e.g., graphene, carbon nanotubes, memristive devices, optical devices,
etc.. Another growing trend in both academia and industry is to build digital application-
specific integrated circuits (ASIC) suitable for speeding up certain computational tasks, often
leveraging the parallel nature of unconventional non-von Neumann architectures. These
schemes seek to circumvent the limitations posed at the device level through innovations at
the system/architecture level.
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Our work on oscillator-based computation represents a direction that is different from the
above and features several points of novelty and attractiveness. Firstly, it makes meaningful
use of nonlinear dynamical phenomena to tackle well-defined computational tasks that span
analog and digital domains. It also differs from conventional computational systems at the
fundamental logic encoding level, using timing/phase of oscillation as opposed to voltage
levels to represent logic values. These differences bring about several advantages. The
change of logic encoding scheme has several device- and system-level benefits related to
noise immunity and interference resistance. The use of nonlinear oscillator dynamics allows
our systems to address problems difficult for conventional digital computation. Furthermore,
our schemes are amenable to realizations using almost all types of oscillators, allowing
a wide variety of devices from multiple physical domains to serve as the substrate for
computing. This ability to leverage emerging multiphysics devices need not put off the
realization of our ideas far into the future. Instead, implementations using well-established
circuit technology are already both practical and attractive.

This work also differs from all past work on oscillator-based computing, which mostly fo-
cuses on specialized image preprocessing tasks, such as edge detection, image segmentation
and pattern recognition. Perhaps its most unique feature is that our systems use transitions
between analog and digital modes of operation — unlike other existing schemes that simply
couple oscillators and let their phases settle to a continuum of values, we use a special
type of injection locking to make each oscillator settle to one of the several well-defined
multistable phase-locked states, which we use to encode logic values for computation. Our
schemes of oscillator-based Boolean and Ising computation are built upon this digitization
of phase; they expand the scope of oscillator-based computing significantly.

Our ideas are built on years of past research in the modelling, simulation and analysis of
oscillators. While there is a considerable amount of literature (arguably since Christiaan
Huygens wrote about his observation of synchronized pendulum clocks in the 17th century)
analyzing the synchronization phenomenon from different perspectives at different levels,
we have been able to further develop the theory of injection locking, connecting the dots
to find a path of analysis that starts from the low-level differential equations of individual
oscillators and arrives at phase-based models and energy landscapes of coupled oscillator
systems. This theoretical scaffolding is able not only to explain the operation of oscillator-
based systems, but also to serve as the basis for simulation and design tools. Building on this,
we explore the practical design of our proposed systems, demonstrate working prototypes,
as well as develop the techniques, tools and methodologies essential for the process.
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Chapter 1

Introduction

1.1 Computing beyond Moore’s Law

In 1997, IBM’s supercomputer Deep Blue defeated world champion Garry Kasparov in
several chess games. Its mainly brute-force algorithm relied on a computing power of 11
GFLOPS (giga floating point operations per second). About two decades later, today’s cell
phones can generally perform more than 100 GFLOPS despite having a much smaller, more
power-efficient package; mobile applications run on them are capable of beating most chess
grandmasters.

Today’s top supercomputers generally have peta-FLOPS of computing power, 1 million
times of that of Deep Blue. How can we achieve this computing power in a hand-held device
in another two decades?

Conventional wisdom says we will achieve it through semiconductor scaling. Roughly,
by scaling down a transistor’s dimensions (length and width) by half, its speed increases by
a factor of two; all its voltages drop by half; power and area are both reduced by a factor of
four. Indeed, transistor dimensions have been scaling down exponentially for decades — the
number of transistors that can be integrated on a chip are doubled every 18 to 24 months,
driving the rapid growth of computing power. This is Moore’s law [4]. Our society has
come to expect and rely on the benefits it provides.

However, Moore’s law is slowing down in recent years [5]. With serious technological
barriers ahead, the scaling of semiconductor transistors is coming to an end; alternative
computing paradigms have to be explored. We will not provide a comprehensive survey of
these approaches; instead, we provide a brief overview, organizing a few broad directions of
exploration based on their time frames. This will serve as a broad background for our work.

To sustain the progress of computing in the near term, emphasis has been mainly placed
on improvements to conventional CMOS transistors [6] and digital computing architectures
[7]. At the individual device level, planar CMOS transistors are being replaced by multigate
transistors that extend into the vertical dimension, e.g., foundries today use fin field-effect
transistors (FinFETs) [8], and are heavily invested in gate-all-around (GAA) FETs [9].
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3D integration of such devices, and denser packaging, are also directions being actively
pursued. At the system design level, parallelism in all its forms at all levels (e.g., instruction-
level, thread-level) has been utilized to speed up digital computation [7]. Specialization
is another trend for digital hardware. From designing central processing units (CPUs) as
single chips suitable for all needs, to having dedicated graphics processing units (GPUs)
and digital signal processors (DSPs), specialization has been and will keep providing both
speed and energy improvements. Field-programmable gate arrays (FPGAs) facilitate the
implementation of custom logic operations and have also been on the rise recently. More and
more application-specific integrated circuits (ASICs) are being designed and deployed for
specific computational tasks, e.g., machine learning [10], bio-molecular simulation [11], etc.,
achieving more and more computing power without relying on the scaling of semiconductor
transistors.

In the medium term, new device technologies that can be integrated with CMOS will
come into play. As an example, optical interconnects using silicon photonics stacked with
conventional CMOS [12] have been shown to hold promise in overcoming the memory bot-
tleneck. Micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems
(NEMS) can complement CMOS circuits and provide high-quality integrated components
such as clocks, sensors and actuators. New memory technology such as magnetoresistive
random access memory (MRAM) [13] will also enhance digital computational systems.

In the longer term, device technologies based on new materials and processes may
eventually have an impact on computing. Such technologies including graphene [14], carbon
nanotubes [15–17], spintronic devices [18, 19], negative capacitance FETs (NC-FETs) [20],
and various memristive devices such as resistive random access memory (RRAM) [21],
phase change memory (PCM) [22, 23], conductive bridge random access memory (CBRAM)
[24, 25], etc.. The use of these novel device and material technologies has some potential
for improving the speed of computation as well as reducing the power consumption. Even
though several technologies have already been shown to work with CMOS, their practical
large-scale deployment is still far in the future.

New computing paradigms are also essential in the longer term. Quantum computing can
provide an exponential speed-up over digital computation on certain tasks [26]. Neuromor-
phic computing (aka neuro-inspired or brain-inspired computing) is another broad class of
computational schemes that has attracted much research interest recently. They are analog
systems designed to mimic neuro-biological architectures, and commonly rely on the novel
device technologies mentioned above, e.g., memristive devices [27], spintronic devices [27],
etc.. Their exact applications are not well defined; their practical realization and deployment
still await future development of emerging material and device technologies.

The oscillator-based computing schemes [28–31] we present in this dissertation are
also a new computing paradigm. Our ideas on Boolean computation using oscillators
(Chapter 3) change the fundamental way logic values are represented in computational
systems; oscillator-based Ising machines (Chapter 4) implement a physical computation
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paradigm with many advantages over digital computation for solving discrete optimization
problems. But unlike the paradigms mentioned above, the realization of our schemes is
not limited to the long-term future. Indeed, even with CMOS circuits, we can validate
their mechanisms and principles, as well as demonstrate working prototypes. In the near
term, their CMOS implementations already show potential advantages over conventional
digital computational systems. Nano-device embodiments of our schemes in the future, e.g.,
using spin-torque nano-oscillators, optical lasers and resonators, memristive-device-based
nano-oscillators, bio-chemical networks, etc., also offer exciting new research opportunities.

1.2 Oscillator-based Computation

In the recent years, there has been growing interest in using coupled oscillator networks
to compute. A prevailing theme is to use oscillators to implement associative memory arrays
— computational models capable of performing certain image processing tasks efficiently
[32, 33]. Their oscillator-based incarnations are generally believed to be faster and more
energy efficient than emulating them using digital circuits. Moreover, the recent discovery
and development of various types of nano-oscillators, together with their projected scaling
trends, are also motivating factors behind the growing research interest.

Associative memory is a type of (physiological or computational) memory system that
enables the retrieval of data using only a partial sample of itself [32]. As such, it is naturally
suitable for the pattern recognition tasks in image processing. A wide variety of proposals for
oscillator-based associative memory array exist today. In almost all of them, oscillators are
interconnected into a grid-like structure, coupled to their nearest neighbors; each oscillator
represents a pixel in an image. Choices of oscillators include CMOS ring oscillators [34, 35],
LC oscillators [36, 37], optical lasers [38], phase-locked loop (PLL) circuits [39, 40], spin-
torque nano-oscillators [41–44], and oxide-based oscillators [45–49]. Depending on the
oscillators of choice, the coupling between them can be resistive, capacitive, magnetic,
optical, or based on active circuits using controlled sources, amplifiers, comparators, etc..

There are broadly two types of such oscillator-based associative memory arrays, differing
in the information encoding scheme and the system’s operation. One type uses phase-based
encoding [36, 39, 47]. Oscillators in these system are assumed to have the same frequency,
but different coupling coefficients between them. The couplings are set based on the images
or patterns to be stored. When oscillators synchronize, their relative phases represent
the information retrieved.1 The other type uses frequency-based encoding [41, 43, 45].
The coupling coefficients between oscillators are set to be the same, but each oscillator’s
natural frequency is set based on the stored pattern. Because different oscillators have
different frequencies, they do not synchronize all together, but generate groups synchronized
at different frequencies. The pattern of the group that contains the partial sample then
represents the retrieved information.

1When the patterns to store consist of binary pixel values, the oscillator phases are commonly binarized in
post-processing, using comparators or analog-to-digital converters.



CHAPTER 1. INTRODUCTION 4

Besides pattern recognition, coupled oscillators have also been shown to be suitable for
some other computational tasks, such as edge detection of images [43, 50–52]. and image
segmentation [53, 54]. Most related research, however, remains in the computational study
stage.

1.3 Overview of this Dissertation

The central mechanism for all oscillator-based computing schemes is injection locking. It
is a phenomenon observed in all coupled oscillator systems, in nature or man made. The
study of injection locking has a long history, attracting researchers from many disciplines
including biology, neuroscience, mechanical and electrical engineering. The increasing
demand in communication circuits in the last several decades has greatly advanced state of
the art in the modelling and simulation of oscillators and injection locking. In Chapter 2, we
first go through the study of injection locking, presenting results on the phase-macromodels
of oscillators, the generalized Adler’s equations for analyzing injection locking, and the
generalized Kuramoto model of synchronization in coupled oscillators. These analyses are
the theoretical foundation of the oscillator-based computing paradigms in this dissertation.

Chapter 2 also introduces a special type of injection locking, known as sub-harmonic
injection locking (SHIL), with interesting and useful features. Under SHIL, an oscillator
can develop multiple stable phase-locked states. Building on this, we can encode and store
phase-based logic values in oscillators, turning virtually any oscillator into a functional
logic latch. In Chapter 3, we detail our ideas on using oscillators for general-purpose
Boolean computation following the von Neumann architecture. But unlike the conventional
implementations of digital logic circuits, our systems use oscillators as the underlying
devices, and uses phase-based logic encoding. We show the feasibility of our schemes
through the design, simulation and demonstration of proof-of-concept hardware prototypes,
and analyze their potentials for noise immunity and energy efficiency.

The nonlinear dynamics found in coupled oscillator systems make them suitable for
many computing schemes beyond the digital domain. A promising direction is to physically
realize Ising machines using oscillators. The concept of Ising machines originates from
the Ising model for studying ferromagnetism. The Ising model describes a network of
coupled binary spins minimizing an energy function, known as the Ising Hamiltonian. As it
turns out, many real-world discrete optimization problems can also be mapped to finding
binary configurations that minimize the Ising Hamiltonian. Therefore, as a physical solver
for this class of minimization problems, Ising machines become attractive for their high
speed and energy efficiency. While existing proposal for the realization of Ising machines
relies on novel device technologies (including quantum ones), we show that oscillators are
very suitable for implementing the Ising spins physically. To do so, we first build upon the
generalized Kuramoto model and show that a modified version of coupled oscillator system
that incorporates the effects of SHIL can modify the Lyapunov function of the system such
that it naturally tends to minimize the Ising Hamiltonian. We derive the principles of the
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operation of oscillator-based Ising machines, study their performance by applying them
to solve benchmark optimization problems, and show their feasibility and practicality by
demonstrating multiple hardware prototypes built using standard CMOS technologies in
Chapter 4.

The design and analyses of oscillator-based computing systems, or any novel computa-
tional paradigms, cannot be achieved without design tools for modelling and simulation.
However, existing simulation platforms are not suitable for this purpose. Specifically, it
is generally very difficult to add new device compact models and simulation algorithms
to them. In Chapter 5, we introduce a new platform that overcomes these limitations —
the Berkeley Model and Algorithm Prototyping Platform (MAPP). We explain its modular
design and its use in developing new models and algorithms, providing relevant examples.
In particular, we show that it is an enabling tool in the design and analysis of oscillator-based
computing paradigms.

Finally, we summarize the contributions of this dissertation and discuss future work in
Chapter 6.
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Chapter 2

Injection Locking in Oscillators: Theory and
Analysis

This chapter introduces phase-macromodels of oscillators and the various analyses based
on them. It is the foundation of the oscillator-based computing schemes we present in the
dissertation.

2.1 Phase Macromodels of Oscillators

A single nonlinear self-sustaining oscillator is an autonomous dynamical system, usually
modelled using Differential Algebraic Equations (DAEs) [55] in the following form.

d
dt
�q(�x(t))+�f (�x(t)) =�0, (2.1)

where �x(t) ∈ Rn represents the unknowns in the system; �q(.) and �f (.) are : Rn → Rn

functions, representing the differential and algebraic parts of the DAE respectively.

A self-sustaining oscillator has a nonconstant periodic solution. That is to say, there exists
a scalar time period T0 and a time-varying vector�x∗s (t) ∈ Rn, such that

�x∗s (t +T0) =�x∗s (t). (2.2)

When this oscillator is under a time-varying perturbation modelled as�b(t) ∈ Rn, its DAE
can be rewritten as follows.

d
dt
�q(�x(t))+�f (�x(t))+�b(t) =�0. (2.3)

Suppose the solution to this DAE is�x∗(t). When the perturbation is small, the oscillator’s
perturbed response can be approximated well [56] using the following formula.

�x∗(t) =�x∗s (t +α(t)), (2.4)
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where α(t) is a time-varying scalar representing the phase shift caused by the external input,
and is governed by the following differential equation [56].

d
dt

α(t) = �pT (t +α(t)) ·�b(t), (2.5)

where the time-varying vector �p(t) is known as the Perturbation Projection Vector (PPV)
[56] of the oscillator. It is T0-periodic, and is a property intrinsic to the oscillator that
captures its phase response to small external inputs. �p(t) can be derived analytically [57] or
calculated numerically [58, 59] from the oscillator’s DAE without knowing any information
about the input�b(t). Thus, (2.2) and (2.5) are a phase-based macromodel of an oscillator.

2.2 Injection Locking and the Generalized Adler’s Equation

When the external perturbation �b(t) is also periodic, and it has a frequency close to
the oscillator’s natural frequency ω0 = 2π/T0

1, injection locking can happen, and the
oscillator can change its frequency to match that of the perturbation. Injection locking is the
mechanism behind the synchronization phenomena in oscillators.

Injection locking can be captured using the phase-macromodel in (2.2) and (2.5) too.
In this scenario, the external input is periodic or quasi-periodic. To derive the phase-
macromodel in this case, we consider the input�b(t) to have a period of T ∗ (or equivalently
a frequency of ω∗ = 2π f ∗ = 2π/T ∗), and a phase that is either constant or slowly varying
with time, represented by φin(t). This is to say,�b(t) has the following form.

�b(t) =�b(2π)(ω∗ · t +φin(t)), (2.6)

where�b(2π) is 2π-periodic function. In most analyses, the perturbation’s phase is a constant,
in which case�b(t) is strictly periodic. The derivation in this chapter applies to time-varying
φin(t) as well.

To derive the oscillator’s response under this periodic perturbation, we first rewrite the
response in (2.2) as

�x∗(t) =�x∗s(2π)(ω0 · t +ω0 ·α(t)), (2.7)

where�x∗s(2π) is a 2π-periodic function with the same shape as�x∗s (t), i.e.,�x∗s(2π)(ω · t) =�x∗s (t).

With the external input defined in (2.6), the differential equation for α(t) (2.5) can be
rewritten as follows.

d
dt

α(t) = �pT (t +α(t)) ·�b(2π)(ω∗ · t +φin(t)). (2.8)

1Injection locking can also happen when the perturbation’s frequency is close to integer multiples of the
oscillator’s natural frequency.
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α(t) modulates the oscillator’s response to the perturbation (as in (2.7)). Without loss of
generality, we can simply rewrite it using another phase variable φ(t) with the following
formula.

α(t) =
(ω∗ −ω0) · t +φ(t)

ω0
, (2.9)

or equivalently, we are defining the variable φ(t) as

φ(t) = (ω0 −ω∗) · t +ω0 ·α(t). (2.10)

With the help of φ(t), the oscillator response in (2.7) now takes a similar form as the
perturbation�b(t).

�x∗(t) =�x∗s(2π)(ω
∗ · t +φ(t)). (2.11)

As shown in (2.9) and (2.10), there is a one-to-one correspondence between α(t) and φ(t)
— the transformation from to is a simple rewrite and does not rely on any assumptions. But it
is useful for analyzing injection locking behaviors. For instance, if φ(t) settles to a constant,
the oscillator’s response�x∗(t) becomes strictly periodic at ω∗, matching the frequency of
the external input; the value it settles to also represents the phase of the oscillator waveform
under injection locking.

With the oscillator’s response rewritten using φ(t), we can also rewrite the phase dynamics
by deriving the differential equation governing the time evolution of φ(t).

d
dt

φ(t) = ω0 −ω∗+ω0 ·�pT
(2π)(ω

∗ · t +φ(t)) ·�b(2π)(ω∗ · t +φin(t)), (2.12)

where �p(2π) is the 2π-periodic version of the PPV, i.e., �p(2π)(ω0 · t) = �p(t).

To study the dynamics of (2.12), we use a concept known as the Multi-time Partial
Differential Equation (MPDE) [60]. Any DAE can be formulated as a MPDE; sometimes
the transformation can make it easier to solve for the DAE solutions exactly or approximately.
Take the generic DAE in (2.1) as an example. Consider a related partial differential equation
below.

∂
∂ t1

�q(x̂(t1, t2))+
∂

∂ t2
�q(x̂(t1, t2))+�f (x̂(t1, t2)) =�0, (2.13)

where �q(.) and �f (.) are the same functions as in (2.1). x̂(t1, t2) ∈ Rn are the unknowns in
the system. (2.13) is a partial differential equation that asks us to solve for x̂(t1, t2) — a
quantity (n-dimensional vector) that spans both t1 and t2.

Suppose we solve (2.13) and have its solution x̂∗(., .). The theory of MPDE [60] states
that the solution to the original single-time differential equation (2.1) can be written as

�x∗(t) = x̂∗(t, t). (2.14)
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Now we apply the MPDE theory to the phase macromodel in (2.12). Assuming that the
oscillation at ω∗ happens in the fast time t2 whereas the phases evolve in the slow time t1,
the MPDE for (2.12) can be written as

∂ φ̂(t1, t2)
∂ t1

+
∂ φ̂(t1, t2)

∂ t2
= ω0 −ω∗

+ω0 ·�pT
(2π)(ω

∗ · t2 + φ̂(t1, t2)) ·�b(2π)(ω∗ · t2 +φin(t1)). (2.15)

Again, if we solve the PDE in (2.15) and acquire the two-dimensional PDE solution
φ̂∗(., .), the single-dimensional solution to the original ordinary differential equation (ODE)
(2.12) can be written as

φ∗(t) = φ̂∗(t, t). (2.16)

Because t2 represents the fast time corresponding to the oscillation, the two-dimensional
solution φ̂∗(., .) is periodic along the t2 dimension [60]. We can approximate the MPDE by
averaging it along the t2 dimension — replacing the t2-varying solution with a constant for
every t1. This is usually a valid approximation that does not degrade the accuracy by much,
as the phase of oscillation is changing much more slowly than the oscillation itself. In this
case, we approximate the two-dimensional solution φ̂(t1, t2) with φ̄(t1). (2.15) becomes

dφ̄(t1)
dt1

+0 = ω0 −ω∗

+ω0 ·
� 2π

0
�pT
(2π)(ω

∗ · t2 + φ̄(t1)) ·�b(2π)(ω∗ · t2 +φin(t1)) dt2 (2.17)

= ω0 −ω∗

+ω0 ·
� 2π

0
�pT
(2π)(ω

∗ · t2 + φ̄(t1)−φin(t1)) ·�b(2π)(ω∗ · t2) dt2. (2.18)

To help simplify the equation, we define

c(t) =
� 2π

0
�pT
(2π)(t + τ) ·�b(2π)(τ) dτ. (2.19)

c(t) is a 2π-periodic function. It is the cross-correlation2 of the two functions �p(2π)(.)

and�b(2π)(.).

The one-dimensional solution φ̄(t1) to (2.17) can then be used as an approximation for
the solution of φ(t). Put in other words, we can rewrite the differential equation (2.12)
governing the phase dynamics as

d
dt

φ(t) = ω0 −ω∗+ω0 · c(φ(t)−φin(t)). (2.20)

2It is also known as the sliding dot product or sliding inner product.



CHAPTER 2. INJECTION LOCKING IN OSCILLATORS 10

We call equation (2.20) the Generalized Adler’s Equation (GAE). Given a periodic
perturbation with an input phase φin(t), the GAE governs the dynamics of φ(t), which
(from (2.2)) is a quantity telling us how much the oscillator’s response deviates from a strict
periodic oscillation at the perturbation’s frequency ω∗. Put in other words, φ(t) is the phase
difference from the injection-locked state.

When injection locking happens with an external periodic perturbation with a constant
phase φ∗

in, the injection-locked phase φ(t) should also become a constant. And it can be
predicted by the equilibrium of (2.20). In this case, d

dt φ(t)≡ 0. Therefore,

ω∗ −ω0

ω0
= c(φ −φ∗

in). (2.21)

The solution of (2.21) φ∗ represents the locked phase of the oscillator.

In the case of a common LC oscillator, both its waveform and PPV are sinusoidal. If it is
perturbed by a voltage source through a resistive connection to an oscillating node, its PPV
�p(2π)(.) is proportional to cos(t) [61]. When the perturbation is the same as the oscillator’s
waveform, i.e.,�b(2π)(t) =V · sin(t), the resulting c(.) function is proportional to sin(.).

d
dt

φ(t) = ω0 −ω∗+ω0 ·A · sin(φ(t)−φin(t)), (2.22)

where the coupling strength A is determined mainly by the Q factor of the LC oscillator.

Its equilibrium equation can also be be used to predict if injection locking occurs or not
with a given periodic perturbation.

ω∗ −ω0

ω0
= A · sin(φ −φ∗

in). (2.23)

Equation (2.23) is known as the Adler’s equation for LC oscillators [61]. From the above
analysis, it can be easily rederived from the PPV-based phase-macromodels of LC oscillators.
And it is just a special case of the GAE. Beyond the analysis of LC oscillators, the GAE
has many use cases; we detail them in the context of Boolean and Ising computation in
Chapter 3 and Chapter 4.

One key feature of the GAE is that it can be used to analyze a special type of injection
locking — sub-harmonic injection locking, or SHIL. When�b(t) is a second-order perturba-
tion, i.e., it is oscillating at 2ω∗. We can define another 2π-periodic function�b(2)2π (t), such

that�b2π(t) =�b(2)2π (2t). If we further assume that the PPV is also oscillating at twice its

natural frequency, i.e., �p2π(t) = �p(2)2π (2t), it can be proven that c(t) is also a second-order
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oscillation.

c(t) =
� 2π

0
�p(2)T
(2π)(2t +2τ) ·�b(2)

(2π)(2τ) dτ (2.24)

=
1
2

� 4π

0
�p(2)T
(2π)(2t + τ) ·�b(2)

(2π)(τ) dτ (2.25)

=
� 2π

0
�p(2)
(2π)T (2t + τ) ·�b(2)

(2π)(τ) dτ (2.26)

� c(2)(2t), (2.27)

where c(2)(.) is a 2π-periodic function, making c(.) is π-periodic.

In this special case, the phase dynamics (2.20) can then be written as

d
dt

φ(t) = ω0 −ω∗+ω0 · c(2)(2(φ(t)−φin(t))). (2.28)

with its equilibrium equation written as

ω∗ −ω0

ω0
= c(2)(2(φ −φ∗

in)). (2.29)

If we again assume c(2)(.) is sinusoidal, now between 0 and 2π , there can be two solutions
of φ , representing the bistable phase-locked states under second-order SHIL. As c(2)(.) is
2π-periodic, it can be easily proven that if one solution exists, the other one separated by π
is also a solution. Suppose one solution is φ∗

1 , satisfying

ω∗ −ω0

ω0
= c(2)(2(φ∗

1 −φ∗
in)). (2.30)

Then for φ∗
2 = φ∗

1 +π ,

ω∗ −ω0

ω0
= c(2)(2(φ∗

1 −φ∗
in)) (2.31)

= c(2)(2(φ∗
1 −φ∗

in)+2π) (2.32)

= c(2)(2((φ∗
1 +π)−φ∗

in)) (2.33)

= c(2)(2(φ∗
2 −φ∗

in)). (2.34)

Therefore, φ∗
2 is also a solution. The two solutions are separated by π , or 180◦.

2.3 Models of Coupled Oscillators

The Kuramoto model is commonly used to study the synchronization of coupled oscillators
[62].

d
dt

φi(t) = ωi +
K
n

n

∑
j=1, j �=i

sin(φ j(t)−φi(t)), (2.35)
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where φi is each oscillator’s phase; ωi is each oscillator’s intrinsic natural frequency; n is the
number oscillators; K represents the strength of coupling.

It was first proposed by Yoshiki Kuramoto [63]. It was based on inspiration from
biological and chemical oscillator systems [62], and Kuramoto was surprised [64] that the
model turned out to be able to capture the behavior of many other oscillator systems, such
as synchronized neurons [65] and coupled arrays of Josephson junctions [66]. The model
describes an all-to-all connectivity between oscillators. Later variants can support arbitrary
connectivity and coupling coefficients [67].

Many oscillator-based computing schemes and neuroscience studies start with the Ku-
ramoto model and its variants. As they are all high-level mathematical models of the
synchronization phenomenon in general, they were not derived from or connected with
lower-level oscillator models. Our PPV-based phase-macromodels (Sec. 2.1) and the GAE
model (Sec. 2.2) can immediately and naturally fill this gap. Based on them, we show how
this mathematical model of synchronization is connected to the differential equations of
individual oscillators, particularly how the phase interference function (i.e. the sin(.)in the
Kuramoto model) is derived from oscillator equations. The result is a more general version
of the Kuramoto model derived from the ground up.

In a coupled oscillator system, the perturbation to an oscillator comes from its connections
to the other oscillators. We can write the phase dynamics of the ith oscillator as

d
dt

φi(t) = ωi −ω∗+ωi ·
n

∑
j=1, j �=i

�
�pT

i j(ω
∗ · t +φi(t)) ·�b j(ω∗ · t +φ j(t))

�
. (2.36)

In equation (2.36), ωi is the frequency of this oscillator, ω∗ is the central frequency for
the coupled oscillators when they synchronize. �pi j(.) represent the entries (or sub-vector) of
the 2π-periodic PPV of the ith oscillator, with perturbation from the jth oscillator,�b j(.) is
the 2π-periodic perturbation from the jth oscillator.

We can apply the same Adlerization technique as in Sec. 2.2, and define

ci j(t) =
� 2π

0
�pT

i j(t + τ) ·�b j(τ) dτ. (2.37)

Then from the MPDE theory, (2.36) can be approximated well by

d
dt

φi(t) = ωi −ω∗+ωi ·
n

∑
j=1, j �=i

ci j(φi(t)−φ j(t)). (2.38)

We call (2.38) the Generalized Kuramoto model. The original Kuramoto is just a special
case with ci j(.) =−sin(.). The Generalized Kuramoto model can be applied to any type
of nonlinear oscillators — we can start with the oscillator’s DAE, extract its PPV-based
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phase-macromodel, combine it with the type of coupling to derive the GAE model for an
individual oscillator or the Generalized Kuramoto model for coupled oscillator systems.
We use this procedure repeatedly in our study in Chapter 3 and Chapter 4, and discuss
the numerical implementation of this analysis flow and the corresponding design tools in
Chapter 5.

Furthermore, under certain circumstances explained below, the phase dynamics described
by the Generalized Kuramoto model are governed by a global Lyapunov function.

E(�φ(t)) =−∑
i�= j

Ci j(φi(t)−φ j(t))−2
n

∑
i=1

ωi −ω∗

ωi
φi(t), (2.39)

where Ci j(t) is defined as follows.

Ci j(t) =
� t

0
ci j(τ) dτ +C0i j, (2.40)

with C0i j being an arbitrary constant.

A Lyapunov function is a scalar function used to study the stability of an equilibrium of a
dynamical system. A global Lyapunov function applies to all the system’s equilibria [68]; it
is a quantity the system always tends to minimize.

To show that (2.39) is a global Lyapunov function of the generalized Kuramoto model,
we differentiate E with respect to �φ . We observe that E is the sum of (n2 −n) number of
Ci j() terms. Among them, for any given index k, variable φk appears a total of 2 · (n−1)
times. It appears (n−1) times as the subtrahend inside Ci j(), and the other (n−1) times as
the minuend inside Ci j(). So when we differentiate E with respect to φk, we have

∂E(�φ(t))
∂φk(t)

=−
n

∑
l=1, l �=k

∂
∂φk(t)

�
Ci j(φk(t)−φl(t))

�

−
n

∑
l=1, l �=k

∂
∂φk(t)

�
Ci j(φl(t)−φk(t))

�

− ∂
∂φk(t)

�
2

ωk −ω∗

ωk
φk(t)

�
(2.41)

=−
�

n

∑
l=1, l �=k

ci j(φk(t)−φl(t))−
n

∑
l=1, l �=k

ci j(φl(t)−φk(t))

�

−2
ωk −ω∗

ωk
(2.42)

=−2
n

∑
l=1, l �=k

ci j(φk(t)−φl(t))−2
ωk −ω∗

ωk
(2.43)

=− 2
ωk

· dφk(t)
dt

. (2.44)
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The derivation assumes ci j(.) is an odd function symmetric with respect to the origin, i.e.,
ci j(−x) =−ci j(x). Base on the derivation,

∂E(�φ(t))
∂ t

=
n

∑
k=1

�
∂E(�φ(t))

∂φk(t)
· dφk(t)

dt

�
(2.45)

=− 2
ωk

·
n

∑
k=1

�
dφk(t)

dt

�2

≤ 0. (2.46)

E(�φ(t)) is non-increasing over time; (2.39) is indeed a global Lyapunov function of the
system.
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Chapter 3

Boolean Computation using Oscillators

In this chapter, we present our approach of implementing general-purpose Boolean
computational systems using oscillators with phase-based logic encoding.

Phase-based or temporal-based logic encoding, although rarely discussed in the context
of computation, is not a novel idea by itself. It is widely used in communication systems
and is commonly preferred over level-based logic encoding, e.g., phase modulation (PM)
in radio is often considered advantageous compared with amplitude modulation (AM) for
transmitting signals through noisy channels. Using it in computation is a natural direction to
explore.

Indeed, the notion of computation with phase logic is almost as old as digital computation
itself. In the 1950s, Eiichi Goto and John von Neumann each filed patents describing their
ideas of using resonant circuits to realize phase-encoded computation. Compared with the
vacuum tube technology then used in computing, their circuits were cheap and reliable, and
were thus very attractive. Goto’s phase-encoded computers were momentarily popular and
commercially successful in Japan. But these implementations were quickly overshadowed
by the rise of transistors and the level-based logic computing systems built with them — the
duo have been dominating computation ever since. Sec. 3.1 provides a brief overview of
this history of phase-encoded logic computation, explaining Goto’s and von Neumann’s
proposals, and examining the historical circumstances for their rise and fall.

Then we take a fresh look at their ideas and present improvements that can overcome
the major limitations of their previous implementations. Instead of using their devices
based on passive filters, we show that DC-powered self-sustaining nonlinear oscillators can
be the substrate for phase-encoded Boolean computation. Specifically, we show how the
analyses in Chapter 2 enable the use of any oscillator — including electronic, spintronic,
biological, optical and mechanical ones — to serve as a logic latch. Pairing these latches
with phase-based logic gates, we can realize oscillator-based finite state machines, which
are the core of general-purpose digital computers.

We detail our approach in Sec. 3.2, design and demonstrate such computing systems
using various oscillators in Sec. 3.3, then discuss the noise immunity and potential energy
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efficiency advantages of our scheme in Sec. 3.4.

3.1 History of Phase-encoded Computation

In 1954, John von Neumann and Eiichi Goto each filed a patent describing their ideas on
phase-encoded computation. Here in this section, we provide a brief sketch of of them, with
an emphasis on von Neumann’s proposal.

(a) AC-powered subharmonic generator features multiple phase-shifted stable states [69,
Fig. 2].

(b) Multistability beyond a critical pump amplitude,
Vc [69, Fig. 4].

(c) Example: discriminating between subharmonic
steady states [69, Fig. 6].

Fig. 3.1: von Neumann’s basic phase-based latch: a nonlinear AC-pumped circuit with multiple subharmonic
steady states.

In his patent [69–71], von Neumann started with a key observation: the circuit in
Fig. 3.1(a) can feature two (or more) distinct oscillating steady states, which can be used to
store two (or more) logical states stably. The circuit features a lossless, nonlinear, charge-
controlled capacitor (shown towards the left of Fig. 3.1(a)), together with bandpass filters
used to isolate an AC power source or pump (Vg), and an output load (RL), from the several
frequencies simultaneously present in the capacitor’s terminal voltage. When the amplitude
of the AC pump voltage waveform, assumed sinusoidal at frequency f1, is larger than a
critical threshold Vc (Fig. 3.1(b)), the voltage waveform across the capacitor can feature
components that are integer sub-multiples of f1, i.e., a sine wave at f0 = f1/n which is a
sub-harmonic of the f1 AC pump. Furthermore, as depicted in Fig. 3.1(c), a generated sub-
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harmonic can be in one of several distinct phase relationships with respect to the waveform
of the AC pump. Each distinct phase relationship can be used to encode a logic state. The
circuit functions, effectively, as a latch that can store a logic value. The sub-harmonic and
multi-stability properties of the circuit in Fig. 3.1(a) can be inferred from an elegant formula,
the Manley-Rowe relationships [69, 70, 72].

(a) Amplitude modulation of the AC pump to cap-
ture an input logic value [69, Fig. 7].

(b) A ring of latches can retain a phase-logic state
permanently [69, Fig. 11].

(c) Phase-shifted amplitude modulation waveforms driving the ring
of latches [69, Fig. 11].

Fig. 3.2: von Neumann’s scheme for setting a latch to an input state and retaining it.

Building on this principle, von Neumann’s explained the key mechanisms for his phase-
encoded logic latch and computational system.

Setting a phase-encoded latch to an input logic state: Having devised a latch circuit capa-
ble of storing logical values encoded in phase, von Neumann considered the question of
setting a latch to a desired logic state supplied as input. He proposed a scheme based on
modulating the amplitude of the AC pump slowly with a waveform similar to the uppermost
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graph of Fig. 3.2(a). When this modulation waveform is low, the latch is, effectively, turned
off; as the modulation increases and magnitude of the AC pump crosses the critical threshold
Vc, the latch turns on and settles to one of the possible logic states. von Neumann suggested
that if a desired logic value (encoded in phase) were to be introduced as an input to the latch
just as it was turning on, the latch would settle to (the sub-harmonic phase corresponding to)
the same logic value. This is depicted in the middle and bottom graphs of Fig. 3.2(a).

Holding on to the logic state: A problem with the above input-latching scheme is, of course,
that the latch is turned off periodically, thereby losing its stored state. von Neumann’s
solution was a ring of latches (Fig. 3.2(b)), with each latch’s AC pump modulated by a
phase shifted version of its predecessor’s AC modulation (Fig. 3.2(c)). The ring operates in
merry-go-round fashion, with each succeeding latch turning on, capturing its predecessor’s
logic state and retaining it as the predecessor subsequently turns off. At any given time, one
latch is always on, hence the logic state is never lost.

(a) Pump modulation timing defines latch-ring classes [69, Fig. 13].

(b) NOT: through connection between opposite latch-ring
classes [69, Fig. 13].

(c) MAJORITY: add phase-encoded
waveforms [69, Fig. 14].

Fig. 3.3: von Neumann’s scheme for combinatorial logic in phase.

Combinatorial operations for phase-encoded logic: Next, von Neumann turned to the prob-
lem of realizing arbitrary Boolean operations using phase-encoded logic. Noting that
two operations, NOT and MAJORITY, constitute a logically complete set 1, he provided
especially elegant means of realizing them [69]. NOT is obtained simply by a through
connection between latches with different pump modulation phases while MAJORITY is
obtained simply by adding the waveforms of the three inputs together (Fig. 3.3(c)).

1i.e., any Boolean function can be realized using compositions of functions in this set.
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Having devised phase-based realizations of the latch-ring and the logically complete
combinatorial function set NOT and MAJORITY, together with a consistent timing scheme
provided by the phase shifted pump modulation waveforms, von Neumann had developed all
the basic components needed to make state machines and general computing architectures.

Around the same time von Neumann patented his idea on phase-encoded computation,
Eiichi Goto, then a graduate student in the laboratory of Takahasi Hidetosi at the University
of Tokyo, filed a patent in Japan [73] describing a similar invention. It is unclear to us who
came up with the idea first; there is no known connection between the two patents either.
Goto’s resonant circuit is known as the parametron. As shown in Fig. 3.4(a), a parametron
consists of an inductor-capacitor tank; the inductance is modulated by an external AC
pump at twice the frequency of the tank’s resonant frequency. The AC pump can excite
a parametric oscillation state with a bistable phase in which a binary logic value can be
encoded and stored. Parametrons can also be used to implement logic gates with phase-
based negation and majority functionalities, and can be interconnected to perform any
Boolean logic operation. Fig. 3.4(b) shows a prototype of an adder made of parametrons
(the parametron module is shown in Fig. 3.4(c)). In 1958, a parametron-based computer
named PC-1 was prototyped in the University of Tokyo. Later versions of parametron-based
computers were in fact popular in Japan in the 1950s and 1960s due to their simplicity and
reliability [73–77].

(a) Circuit schematic of Parametron,
from [78].

(b) Photo of the first
parametron adder, from [79].

(c) Parametrons used in the adder,
from [79].

Fig. 3.4: Goto’s design of parametrons and parametron-based computing systems.

However, the advent of transistors and integrated circuits quickly led to the demise of
Goto and von Neumann’s computers, as the devices and circuits their proposals relied on
could not compete with the level-based logic computational systems using transistors. A
key reason for their lack of competitiveness was size and miniaturizability. Specifically,
the filters in both Fig. 3.1(a) and Fig. 3.4(a) require inductors, which are large and bulky
compared with semiconductor transistors, particularly today’s nanoscale MOS devices.2

Capacitances much larger than pF also take far more chip area than transistors do. Another

2Indeed, only over the last two decades or so have inductors been integrated on chip at all, and even so,
they consume much area, suffer from low Q (high loss), and contribute disproportionately to chip design and
fabrication cost.
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related reason was lower operating speed, stemming not only from larger component sizes,
but also from inherent features of von Neumann’s scheme (e.g., periodic turn-on transients
and delays in NOT that made phase-based logic slower than transistorized level-based logic.
Later attempts (from the 1980s to the present) used superconducting Josephson junction
devices [80], which are fast, but still limited in terms of miniaturizability and practical
deployment at room temperature.

Because physical implementations have not, to date, been miniaturizable or large-scale
integrable, issues of noise immunity and energy efficiency for phase-based logic did not
come to the fore. Yet, as we show in Sec. 3.4, these constitute significant competitive
advantages of phase-based logic 3. With the extensions described in Sec. 3.2, the limitations
of large size and lack of integrability in Goto and von Neumann’s circuits (Fig. 3.1(a) and
Fig. 3.4(a)) are removed, making phase logic a serious and promising alternative computing
scheme.

3.2 PHLOGON: PHase-based LOGic using Oscillatory Nano-systems

In Chapter 2 we have introduced sub-harmonic injection locking (SHIL) and the multiple
stable phase-locked states it induces in oscillators. These states can be used to store phase-
based logic values, essentially making any self-sustaining nonlinear oscillator suitable as
a logic latch. We explain the operation of oscillator latches in Sec. 3.2.1, then discuss the
implementation of phase-based logic gates and the system-level design of phase-encoded
Boolean systems in Sec. 3.2.2. Then in Sec. 3.2.3, we discuss our approach’s differences
from the other oscillator-based computing schemes mentioned in Sec. 1.2, and its differences
from Goto/von Neumann’s original designs. Our schemes of oscillator-based Boolean
computation are collectively termed PHLOGON — PHase-based LOGic using Oscillatory
Nano-systems.

3.2.1 Oscillator Latches with Phase Logic

The suitability of oscillators for use as phase-based logic latches depends critically on
their ability to 1) feature multiple stable states, and 2) be set to, and hold on to, a desired
logical state. Both can be achieved through injection locking (IL) and sub-harmonic injection
locking (SHIL).

While Chapter 2 introduces IL and SHIL mathematically, here we recapitulate their
concepts in a more intuitive way. When an oscillator with a natural frequency of f0 =
ω0/(2π) is perturbed by an external input at f1 ≈ f0, through IL, the oscillator’s response
can lock on to that of the input in both frequency (shown in Fig. 3.5(a)) and phase (show in
Fig. 3.5(b)). The analysis in Sec. 2.2 also states that, when the input frequency changes to
f1 ≈ 2 f0, SHIL can happen. Under SHIL, an oscillator locks to a sub-harmonic of the input,

3Indeed, the reliability of phase-based logic was noted early in Japan
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(a) Frequency lock under injection lock-
ing.

(b) IL also features phase lock.

Fig. 3.5: Illustration of frequency and phase lock of injection locking.

and can develop bistable phase-locked states.4 In other words, our analysis in Chapter 2
shows that the oscillator response will be exactly half the frequency of the input if SHIL
occurs, and the two phase-locked responses will be separated by 180◦, as illustrated in
Fig. 3.6(a) and Fig. 3.6(b). The two phase-locked oscillation states are suitable for encoding
and storing a phase-based binary logic value. And in our scheme, we call the second-order
input signal (at f1 ≈ 2 f0) responsible for inducing this bistability a synchronization signal,
or SYNC.

(a) Under SHIL, the oscillator’s frequency
locks to the sub-harmonic of the input.

(b) Under SHIL, phase lock features multistability.
When f1 ≈ 2 f0, the two stable states have a 180◦ phase
difference.

Fig. 3.6: Illustration of frequency and phase lock of sub-harmonic injection locking.

An oscillator can be influenced by both first-order IL (at the fundamental frequency) and
SHIL simultaneously. Chapter 2 has shown how to use the Generalized Adler Equation
(GAE) to gain insights into IL and SHIL properties. In this case, the GAE equilibrium
equation can be written as follows.

f1 −2 f0

2 f0
= A · sin(2φ)+B · sin(φ −φin). (3.1)

Under this combination of IL and SHIL, the oscillator is frequency locked at a fundamental
frequency of f1

2 . In (3.1), A and B describe the strength of phase perturbation at this

4We have shown that when SYNC is at f1 � m f0, the phase of the oscillator may feature m distinct stable
states and the analysis performed here is still applicable[81, 82]. We will henceforth take m = 2 (binary
encoding) to illustrate all the main ideas.
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fundamental frequency and its second harmonic f1; they can be calculated based on the PPV
of the oscillator and the magnitude of the perturbations (Chapter 2). Solutions of φ of (3.1),
if they exist, are the possible phase shifts of the oscillator latch’s waveforms under both IL
and SHIL. Considerable insight into the number, nature and behaviour of these solutions can
be obtained graphically, by plotting the left- and right-hand-sides of the GAE equilibrium
equation separately and looking for intersection points.

)

va
lu
es

(a) (3.1) has 2 stable solutions in the absence of a
(logic) fundamental frequency input.

B

B

B

va
lu
es

(b) Acquisition of input phase: phase bistability of
(3.1) vanishes.

Fig. 3.7: GAE equilibrium equation (3.1) establishes multistability and input phase acquisition properties of
oscillator latches.

Fig. 3.7(a) plots the left- and right-hand-sides (flat red and sinusoidal blue traces, re-
spectively) of (3.1) when B = 0, i.e., no (logic) fundamental frequency input is present
for the oscillator. There are 4 intersections between the two traces, corresponding to 4
solutions of (3.1). Of these, the first and third intersections (from the left) can be shown to
be dynamically unstable5; but the second and fourth intersections correspond to two distinct
stable oscillations, sub-harmonically locked with phases separated by 180◦. The oscillator
features bistability for storing a binary logic bit.

Fig. 3.7(b) plots the same left-hand-side (flat red trace), but overlays several traces for
the right-hand-side of (3.1), corresponding to B values 0, 0.035 and 0.1, with the latter
two values representing two different strengths of an incoming signal at the fundamental
frequency f1

2 with φin = 0 — a signal representing a reference phase-based logic value 0 or
1. As can be seen, the first stable intersection remains relatively unaffected as the strength of
the incoming input changes, but the second intersection vanishes, structurally, for B value
0.1. This implies that the oscillator acquires the input’s logic state. After acquisition, as B
is reduced to zero, the GAE can be used to analyze the dynamics of φ and show that the
acquired logic state is held, even though the second stable intersection is restored.

5i.e., they are physically unrealizable in the presence of perturbations, noise or variability.
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Fig. 3.8: A general FSM. SYNC is used to develop multi-stability for encoding phase logic; NOT/MAJORITY
gates are for combinational logic operations.

From above, the SHIL phenomenon enables the oscillator to develop multiple, well-
defined, stable states that can be used to encode and store logic. It also shows how the
oscillator latch can acquire phase and switch between logic states according to external logic
inputs.

Again, it is worth mentioning that the mechanisms and analyses above are not specific
to any particular type of oscillators. As we show through PHLOGON examples using
various oscillator technologies in Sec. 3.3, the mechanism is general and allows virtually all
nonlinear oscillators to be used as practical logic latches. Moreover, an important property
of injection-locked oscillators is that they feature excellent variability and noise resistance
properties. Our use of self-sustaining oscillators and injection locking to realize phase logic
can take advantage of this property to achieve low-level noise, interference and variability
resistance; such potentials are discussed in Sec. 3.4.

3.2.2 General-purpose Computing with Phase Logic

The central unit of a general-purpose computer is a finite-state machine (FSM) [71]. As
is shown in Fig. 3.8, latches and combinational logic blocks are the key components of an
FSM. Here, we first describe how to build combinational logic blocks using phase logic.

We realize combinational logic operations in a manner almost identical to Goto/von
Neumann’s technique, using NOT and MAJORITY operations. Phase logic enables elegant
implementation of these two operations: NOT is simply inversion and MAJORITY can
be implemented by addition. These can be explained using phasors, as is demonstrated in
Fig. 3.9. Note that the phasor explanation only demonstrates the validity of using inversion
and addition for NOT and MAJORITY operations, the actual implementation of the logic
gates is flexible and dependent on the type of oscillator that is used. The possibility of
utilizing nano-scale devices that can naturally perform phase NOT/MAJORITY operation
needs exploration for different physical domains. Also, to take these implementation ideas
one step further, we can use oscillator latches and SYNC signal at the output stage of logic
gates to prevent variability at the inputs from accumulating and propagating. This approach
also makes it possible to construct robust large-scale combinational logic blocks.

As for the latches and registers in FSMs, we have already discussed the principles of
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(a) Inverting input signal performs NOT
operation in phase logic.

(b) A three-input MAJORITY gate uses addition to perform
MAJORITY operation of input signals in phase logic.

Fig. 3.9: Phase-domain plots illustrating NOT and MAJORITY operations.

their operation in Sec. 3.2.1, showing how a phase-based logic bit can be stored through the
mechanism of SHIL and how the bit can be set or flipped through first-order (fundamental
frequency) IL. But to use them inside practical computing systems, we need latches with
well-defined input/output logic behaviors, such as D latches or SR latches. Building on the
principles in Sec. 3.2.1, a phase-based D latch can be implemented in multiple ways.

The simplest way is to gate the input signal (D) with a switch (e.g. a transmission gate).
In this case, when the switch is off and input is isolated, the latch holds on to its stored
logic value; when it is on, the latch acquires the logic value of the input. The switch can
be controlled by an enable signal (EN), which can simply be a high/low voltage. In state
machines, EN is normally the same as clock (CLK); it can be the only voltage-level-based
signal in the system whereas others can all be encoded in phase.

(a) Level-based D latch derives from
bistable level-latching device.

(b) Phase-based D latch derives from bistable phase-based
bit storage device (e.g. CMOS ring oscillator).
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(c) Simulation results of phase-based D latch implemented as a CMOS ring oscillator.

Fig. 3.10: Design and implementation of phase-based D latch.

Another approach can encode EN and CLK using phase-based logic as well. With the help
of phase-based logic gates, it is not hard to implement logic operations that are equivalent to
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the EN switch discussed above. Fig. 3.10(b) shows a diagram of a D latch based on a CMOS
ring oscillator, implemented entirely using phase-based logic; the same design making use
of majority gates is applicable to other types of oscillators as well. The design is inspired by
the way extra logic gates are used to turn a back-to-back inverter system that can store a bit
into a level-based D latch that can be controlled by D and EN signals (Fig. 3.10(a)). It is the
equivalent design using phase-based logic encoding. Fig. 3.10(c) shows waveforms from
SPICE-level simulation of this D latch. By analyzing the waveforms of Q, D, EN with REF,
we see that the system achieves the functionality of a transparent D latch in phase logic.
Tying two such transparent D latches together results in an edge-triggered master-slave D
flip-flop — a key component in a FSM.

With oscillator latches and flip-flops to store phase-based bits, together with logic gates to
perform combinational operations, we now have all the components to build general-purpose
computing systems. Without loss of generality, here we use CMOS ring oscillators as an
example to show how such computing systems can be built.

Fig. 3.11 shows a one-bit FSM (with its state transition graph shown in Fig. 3.12) — a
serial adder made of the D flip-flop and a MAJORITY/NOT-based full adder. Simulation
results are shown in Fig. 3.13, where we add a = 101 with b = 101 sequentially during
three clock cycles. From Fig. 3.13 we can see cin is held stable every time CLK level is low
(translates to having opposite phase as REF). During this time cout = 101 and sum = 010
can be read out sequentially. In the full system design their values can then be latched
using other registers and connected to following stages in the system, or transformed to
level-based logic if the system needs to be connected to conventional computation systems
or display blocks.

Fig. 3.11: Serial adder. Fig. 3.12: State transition diagram of a serial adder.

Even though our scheme differs from conventional digital computers in the fundamental
way logic is encoded, the system-level design concepts and procedures are similar. As a
result, all the logic synthesis and timing analysis theories and tools can potentially still be
used with only minor modifications, immediately enabling complex, large-scale system
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Fig. 3.13: Waveforms from adding a = b = 101 with serial adder in Fig. 3.11 implemented using ring
oscillators.

design based on phase logic.

3.2.3 Differences from Previous Work

3.2.3.1 Comparison between PHLOGON and Other Oscillator-based Computation
Schemes

In comparison with other computing systems based on coupled oscillator networks [34–
54] outlined in Sec. 1.2, we note that PHLOGON systems have several important differences
and advantages:

◦ First, PHLOGON is suitable for general-purpose computation while others are only
applicable to some image processing tasks, mainly including pattern recognition, image
segmentation and edge detection.

◦ Second, PHLOGON implements Boolean computation, unlike the other ideas. Comparing
PHLOGON systems with coupled-oscillator-based associative memory arrays is analogous
to the comparison between digital and analog computers. Just like in digital computers,
the Boolean operations in PHLOGON can tolerate considerable amount of noise and
variability without resulting in any error, while the error rate in oscillator-based associative
memory arrays rises markedly in the presence of noise [43]. Also, digital operations in
PHLOGON systems can be coordinated with clock signals. In comparison, because of
the lack of coordination, coupled-oscillator-based analog computers can reveal chaotic
and unpredictable behaviors more readily. Therefore, just like regular digital computers,
PHLOGON systems can more easily achieve high accuracy and reliability.

◦ PHLOGON allows flexible and complex system designs. It changes the signal encoding
scheme and the underlying devices/circuits, but does not change the higher-level design,
hence can leverage decades of design knowledge and fit easily into existing digital
design flows. In comparison, available system structures for the other oscillator-based
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computation schemes are much more limited.

◦ Non-Boolean associative computation schemes only use oscillators as one layer in the
computation system. At both the input and output of this layer, it is unavoidable to convert
between voltage levels and oscillation-related properties such as phase and frequency. For
this purpose, controlled sources, amplifiers, comparators and even PLLs are added to each
or every several oscillator cells [34, 35, 43, 45]. As nano-oscillators scale to smaller sizes,
these I/O circuitries quickly dominate both area and power consumption. In PHLOGON
systems, computation can proceed entirely in phase-based logic; conversion to voltage
levels is not needed unless communicating to external modules 6. We can thus reduce the
I/O circuitries and take full advantage of the scalability of nano-oscillators. Indeed, the
Boolean computation capability provided by PHLOGON can be used to redesign the I/O
circuitries around non-Boolean associative memory layers for data processing. All these
differences and possibilities have made PHLOGON a promising alternative computation
scheme to investigate.

3.2.3.2 Comparison of PHLOGON with Goto/von Neumann’s AC-pumped Schemes

The oscillator-latch-based phase logic encoding and computing scheme described above
retains the positive features of Goto’s and von Neumann’s original schemes. However, it
also features a number of significant advantages over them:

◦ One of the biggest advantages of using oscillators is that it opens the door to a very wide
variety of devices and systems for use as phase logic elements. Amongst molecular-sized
nano-devices, spin-torque [83, 84] and tunnelling phase logic (TPL) devices [85–88]
are obvious candidates. Oscillators in traditional circuit technologies are also prime
candidates, given the combination of an extensive, well-established design infrastructure
that already exists, and the noise immunity (Sec. 3.4.1) and energy efficiency (Sec. 3.4.2)
advantages that phase based logic offers over traditional level-based logic. A wide variety
of such circuit oscillators is available, including LC oscillators, ring oscillators and
relaxation oscillators; their differing characteristics can potentially be mixed and matched
to realize system-level advantages. Other promising oscillator candidates include electro-
mechanical ones involving MEMS/NEMS elements [89]; optical oscillators (lasers),
particularly miniaturizable ones such as VCSELs and Si-integrated lasers; and synthetic
biological oscillators such as Elowitz’s repressilator [90]. The wide variety of oscillator
substrates available to implement the basic oscillator latch provides many possibilities
for circumventing the disadvantages that have hindered practical adoption of phase-based
logic to date.

◦ Unlike the circuits proposed by Goto and von Neumann (Fig. 3.4(a) and Fig. 3.1(a)),
latches based on self-sustaining oscillator do not need an AC pump for power, which can

6Even in this scenario, we argue that we may not need to convert phase logic to voltage levels if Phase-shift
Keying (PSK) is used in communication.
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lead to significant system-level power/energy advantages, as discussed further in Sec. 3.4.2.
Note that supplying DC power to the oscillators does not suffer from parasitic-related
losses, and that the SYNC signal does not supply operating power and can be very weak,
thanks to the inherent robustness of injection locking. Moreover, even unintended parasitic
coupling of the SYNC signal works in favour of the scheme, since SYNC is a global
signal that needs to be transmitted to every oscillator latch.

◦ Every member of von Neumann’s latch-rings (Fig. 3.2(b)) is turned off periodically,
thereby dissipating all the energy built up when it turns on. This waste of energy is
avoided completely when using oscillator latches, which remain on. Oscillators can
run continuously while dissipating very little energy, as described further in Sec. 3.4.2.
Futhermore, having to turn von Neumann’s latch-rings on periodically slows down the
speed of logical operations significantly, since the circuits undergo turn-on transients that
take many cycles to stabilize oscillatory waveforms. In contrast, the oscillator latches,
being always on, do not need to undergo periodic turn-on transients and — thanks to
the fast dynamics of injection locking — can respond very quickly to acquire phase and
switch logic state.

◦ von Neumann’s latch-ring (Fig. 3.2(b)), the basic unit for storing a logical value, requires
more than one copy of the AC-pumped circuit in Fig. 3.1(a). In contrast, only one
oscillator is needed for an oscillator latch — in principle, it can be as small as a single
molecular-sized nano-device.

3.3 System Designs and Prototypes

Practically implementing PHLOGON systems relies on the modelling and simulation
of oscillators, phase-macromodel-based analyses (particularly those based on GAE for
predicting injection locking properties), and circuit/system-level design. We illustrate these
principles and procedures with examples, using CMOS ring oscillators (Sec. 3.3.1), CMOS
LC oscillators (Sec. 3.3.2), and mechanical metronomes (Sec. 3.3.3).

As mentioned above in Sec. 3.2.2, practical latches (e.g. a D latch) can be implemented in
two ways, differing in the way the logic input (e.g. the D input) is controlled:

1. Switch-gated D latch, with the help of a voltage-level-controlled transmission gate;

2. Phase-controlled D latch, with the help of phase-based MAJORITY gates.

We illustrate both designs using ring oscillators in Sec. 3.3.1. Both have the same underlying
mechanism and rely on the GAE analysis shown in Fig. 3.7.

Similarly, there are multiple ways phase-based logic gates can be designed:
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1. Amplifier-based logic gates. Just as digital level-based logic gates are special amplifier
circuits designed to accept and generate voltage levels based on inputs, an amplifier-
based inverter can implement phase-based NOT operation whereas an amplifier-based
three-input adder can implement phase-based MAJORITY operation. Such designs
are straightforward; we illustrate them in Sec. 3.3.1.

2. Oscillator-based logic gates. Sub-harmonically injection locked oscillators can be
used not just as latches, but also logic gates. We discuss this design and its merits
using LC oscillators in Sec. 3.3.2.

Both schemes follow our illustration shown in Fig. 3.9 discussed in Sec. 3.2.2; they are
different incarnations of the same mechanism.

3.3.1 PHLOGON Systems with CMOS Ring Oscillators

n1 n2 n3

Fig. 3.14: Circuit schematic of a 3-stage ring oscillator. Fig. 3.15: Photo of a 3-stage ring oscillator
on breadboard.

Fig. 3.16: Results seen from an oscilloscope. Fig. 3.17: Simulation results from ngspice and MAPP.

A simple ring oscillator can be made using 3 stages of CMOS inverters, each having one
NMOS device and one PMOS device. Fig. 3.14 shows the circuit schematic; Fig. 3.15 shows
the 3-stage ring oscillator implemented on a breadboard, with ALD1106 IC for providing the
NMOS devices, ALD1107 for the PMOS. We also attach a capacitor (C1, C1, C1 in Fig. 3.14)
of 4.7nF, to slow the oscillator down for easier measurement. With a single-ended DC
supply of 3V, the oscillator’s response is measured in an oscilloscope in Fig. 3.16 Using both
ngspice (a widely used open-source circuit simulator) and MAPP (the design tools we have
developed, detailed in Chapter 5), we are able to simulate the oscillator’s transient reponse



CHAPTER 3. BOOLEAN COMPUTATION USING OSCILLATORS 30

accurately (shown in Fig. 3.17). The fact that the responses from breadboard, ngspice and
MAPP match well is the foundation for the following analyses and designs.

3.3.1.1 Different Designs of Ring-Oscillator-based Latches

Ring oscillator D Latch with phase logic D and level logic EN

To turn a 3-stage CMOS ring oscillator into a phase-based logic latch, we need to add
several inputs to it. The first one is the SYNC signal for inducing bistability in phase,
which is current source attached to one of the oscillator’s stages, e.g., n1. Then we add a
fundamental frequency input signal D, connected input the same port n1 through a voltage-
controlled switch (VCS). The VCS is controlled by the enable signal EN. The diagram for
this oscillator latch is shown in Fig. 3.18. In this straightforward design, the logic value
of EN controls the on-off state of the switch, which determines if signal D will have an
influence on the logic value held in the oscillator latch or not.

n1n1 n2 n3

SYNCD

EN

Fig. 3.18: Diagram of D latch made from a 3-stage ring oscillator.

For the design to achieve the functionality of a D latch, the magnitudes of signals D and
SYNC need to be chosen properly. To do so, we need our design tools to extract the PPV of
the oscillator, analyze its SHIL and IL properties, then determine design parameters.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0
1
2
3

time (s)

V
o
lt

a
g
es

 (
V

) SYNC’s magnitude: 20uA

 

 

out

ref

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0
1
2
3

time (s)

V
o
lt

a
g
es

 (
V

) SYNC’s magnitude: 50uA

 

 

out

ref

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0
1
2
3

time (s)

V
o
lt

a
g
es

 (
V

) SYNC’s magnitude: 100uA

 

 

out

ref

Fig. 3.19: Transient responses of the 3-stage ring oscillator with different SYNC magnitudes: 20µA, 50µA,
100µA.

But before that, we would like to show what designers would traditionally do for the
design. For example, to determine the amount of current needed for SYNC, brute-force
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transient simulations can be used. Typical results gained from these simulations are shown
in Fig. 3.19; the three subplots show the transient responses of the ring oscillator with a
sinusoidal SYNC with magnitudes 20µA, 50µA, and 100µA.

From the transient results, we observe that with a 20µA SYNC signal, SHIL doesn’t
happen; with 50µA and 100µA, it seems that SHIL occurs, but long simulations and careful
detection (eyeballing or post-simulation processing) are needed before we can come to any
conclusion. To determine the values of more than one such parameters, such trial-and-error
method can be computationally expensive and time consuming. Moreover, the method itself
doesn’t provide much insight into the design or improvement of the circuit.

Fig. 3.20: First entry�v1(t) of the PPV of the 3-stage ring oscillator with SYNC.

Instead, we apply the phase-macromodel-based analysis and first extract the PPV of
the free-running 3-stage ring oscillator using MAPP. Fig. 3.20 shows the shape and the
frequency-domain components of the PPV entry corresponding to the current input at node
n1. It directly shows several quantities of the oscillator: the natural frequency is about
f0 = 9.504kHz; period is about T0 = 105.2µs; the frequency component of the PPV entry
at the fundamental frequency is about 57dB; the component at the second harmonic is about
45dB.

When EN=0, we would like SYNC to be large enough to induce SHIL reliably. Suppose
we operate the system at f ∗ = 9.6kHz. That means SYNC should be at f1 = 2 f ∗ = 19.2kHz,
In this case, the left-hand side of the GAE equilibrium equation (3.1) is

f1 −2 f0

2 f0
≈ 0.0104. (3.2)

It is the frequency detuning factor; the correlation function of the PPV and the SYNC signal
needs to have a magnitude larger than 0.0104 for SHIL to occur. As the second harmonic
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component of the PPV is ∼ 45dB, we can calculate the requried magnitude of SYNC to
be 0.0104/10(45/20) ≈ 58µA. This threshold value is very consistent with our observations
from multiple transient simulations in Fig. 3.19. For SHIL to happen reliably, we choose a
value above this threshold; the magnitude of SYNC is chosen to be 150µA for this design.
And this SYNC signal provides an equivalent value of 10(45/20)×150×10−6 ≈ 0.0267 for
the A term in (3.1).

When EN=1, we would like signal D to overcome the bistability provided by SYNC
and reliably set the logic value of the latch. We choose a B term as large as A. Based on
the PPV’s fundamental frequency component in Fig. 3.20 at ∼ 58dB, we can calculate the
corresponding magnitude of a sinusoidal D singal as 0.0267/10(58/20) ≈ 34µA. Therefore,
in the design, we can choose a D signal of 50µA.
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Fig. 3.21: Transient simulation results showing the operation of the D latch in Fig. 3.18.

From above, we have determined the design parameters: f ∗ = 9.6kHz; SYNC signal with
a magnitude of 150µA; D signal with a magnitude of 50µA. Note that the choices are made
entirely based on phase-domain analyses; expensive transient simulations are avoided.

We test the design in two ways: 1) running transient simulation for the full system and
operate the designed oscillator latch with different input D/EN combinations; 2) actually
building the latch on a breadboard, demonstrating its operation in hardware.

Fig. 3.21 shows the transient simulation results. From Fig. 3.21 we conclude that the
operations of bit storage and flipping are achieved with this D latch. The top subplot shows
the inputs: EN is a voltage-level; the D signal is an oscillatory signal whose phase is plotted
instead for better visualization. We operate the latch for two EN cycles, turning it on and off
in each one. In the first one, when EN=1, we use D to set the phase logic value of the latch
to be 1; when EN=0, the latch’s value stays at 1, even though the phase of D has switched to
represent 0. Similarly, in the next cycle, when EN=1, the oscillator latches to the value of
D=0; when EN=0, it holds on to 0, even though D has not shifted to 1. The four subplots
are zoomed-in views of the transient waveforms. They confirm the above description and
verifies that the parameters we have chosen indeed make the oscillator circuit in Fig. 3.18
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Fig. 3.22: Breadboard implementation of the D latch in Fig. 3.18. (a) breadboard photo; (b) waveforms
showing the two logic states (yellow) in the D latch when EN=0. REF is blue; SYNC is pink.

function properly as a D latch.

Next, we build the latch on breadboard (Fig. 3.22 (a)) and observe its operation. The
swith in Fig. 3.18 is implemented using a manually controlled on-off switch. From testing
the implementation, we observe that the phase of the latch’s output will follow D when
the switch is on; it will retain its logic value when switch is off, no matter how D changes
in the meanwhile. Fig. 3.22 (b) shows the two stable stored phases when the switch is
off and the change of signal D has virtually no impact to the stored phases. With more
testing, we conclude that the implementation as in Fig. 3.22 (a) realizes the functionality of
a phase-based logic transparent D latch.

Completely Phase-based Ring Oscillator SR and D Latches

(a) Phase logic SR latch. (b) Phase logic D latch.

Fig. 3.23: Diagrams of phase-based logic latches.

Here, we show designs of ring-oscillator-based logic latches where all signals are oscilla-
tory voltages with logic values encoded in their phases.
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We start with a three-stage ring oscillator and design a latch with two logic inputs SIG1
and SIG2 (Fig. 3.23(a)); the latch has the functionality similar to a standard SR latch. Only
when SIG1 and SIG2 have the same phase-based logic value do they have an influence
on the logic value stored in the latch. Building on the SR latch, we design a D latch as in
Fig. 3.23(b).

The circuit schematic of the SR latch is shown in Fig. 3.24. The main parameters to be
determined are the input and feedback resistances of the majority gate, such as R1, R2, R3,
R0 and Rf in Fig. 3.24. As a start, we choose R1=R2=R3=330kΩ, Rf=2×R0=200kΩ.
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Fig. 3.24: Circuit schematic of the phase logic latch in
Fig. 3.23(a).

Fig. 3.25: Breadboard implementation of the
phase logic latch in Fig. 3.24.

With the input ports and parameters determined, again, we extract the oscillator’s PPVs
corresponding to these ports. We look at the PPV entries at the KCL of n1 and KVL for
source Vin1 and plot them in Fig. 3.26(a) and Fig. 3.26(b) respectively, as they are the
entries that are multiplied with SIG1 and SYNC in�b(t).

From Fig. 3.26(a) and Fig. 3.26(b) we observe that the second-order Fourier component at
the KCL n1 entry is approximately 46.7dB; the first-order Fourier component at KVL Vin1
entry is around -10.4dB. Their ratio is about 51.7dB. This indicates that if SYNC has an
magnitude of 100µA, its effect in injection locking the oscillator can be thought of as
equivalent to SIG1 with magnitude of 70mV. Since SIG1 and SIG2 are symmetric in the
design, this indicates when both of them have the same phase logic, once their magnitudes
add up to 70mV, they will flip the bit stored in the latch; on the other hand, if they encode 1
and 0 separately and the bit should not be flipped, once they mismatch each other by 70mV
at the fundamental frequency, the bit is not latched reliably any more.

With this insight from PPV analysis, we can adjust the design parameters such that the
threshold for SIG1/ SIG2 to injection lock the oscillator is higher, enabling better resistance
to variability and first-order perturbation. In particular, we adjust input resistors of SIG1
and SIG2 from 330kΩ to 3.3MΩ. After the adjustment, the threshold increases from 70mV
to approximately 700mV with the same 100µA SYNC.
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(a) Entry of PPV that corresponds to input SYNC. (b) Entry of PPV that corresponds to input SIG1.

Fig. 3.26: Entries of PPV for SYNC and SIG1 inputs of the oscillator latch in Fig. 3.24.

Similarly, we build the D latch as in Fig. 3.23(b) and verify its operation with various
inputs and show measurements from an oscilloscope in Fig. 3.27: when EN=1, output
follows D’s phase logic 0 (first figure); then EN switches to 0, the phase logic 0 is stored
even when D has changed to 1 (second figure); when EN=1 again, output follows D’s phase
logic 1 (third figure); then EN switches to 0 again, 1 is stored even when D changes to 0
(last figure). Therefore, the phase logic latch performs bit storage and bit flipping properly
and achieves the functionality of a D latch.

Fig. 3.27: Test results of the phase logic D latch seen from an oscilloscope.

3.3.1.2 Serial Adder: a Phase-encoded FSM Hardware Prototype

In this section, we build on the implementations of the latches to demonsrate a proof-of-
concept oscillator-based FSM. We prototype a serial adder, which is a 1-bit FSM. Based
on the diagram shown in Fig. 3.11, we implement the circuit on breadboard, as is shown in
Fig. 3.28.
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The logic gates are based on operational amplifiers (op-amps) with resistive feedback,
implementing inversion for NOT gates, and addition for MAJORITY gates. Each gate uses
an op-amp, provided by AD8301/AD8302 op-amp ICs. The full adder (the combinational
logic block for the serial adder) consists of three MAJORITY gates and two NOT gates (as
shown in the diagram Fig. 3.11). All of them are in the yellow block in Fig. 3.28. The two
green blocks in Fig. 3.28 show the two D latches; they use the same design as in diagram
Fig. 3.23(b).

Fig. 3.28: Breadboard implementation of the serial adder in Fig. 3.11. The green blocks highlight the flip-flop
made from two D latches; the yellow block is the combinational logic block that has the functionality
of a full adder.

We first test the functionality of the D flip-flop, which is the 1-bit register in the FSM.
With the input to the D flip-flop encoding different logic values, we switch CLK’s phase
logic value between 0 and 1 and observe the flip-flop’s outputs at the two stages using
an oscilloscope. The measured responses are show in Fig. 3.29. In the first subfigure,
CLK=1, the master latch holds its phase logic value 0 even though input D encodes phase
logic 1. Meanwhile, the slave latch follows the master with their signals overlapping on
the oscilloscope; then CLK is switched to 0, the master latch’s value follows input into 1
while the slave latch holds it previous value 0; then CLK is switched to 1, the slave follows
the master into 1; then D is changed to 0 and another CLK cycle passed. Similarly, the
master flips to 0 with the falling edge of CLK’s phase, while the slave follows to 0 with the
following rising edge. The results confirm the logic function of the master-slave D flip-flop.

Then we connect the D flip-flop with the combinational logic block implemented with
majority and not gates. We test the operation of the resulting serial adder with various
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Fig. 3.29: Test results of the master-slave D flip-flop as shown in the green block of Fig. 3.28. REF, output of
master, output of slave are displayed with blue, green, yellow respectively.

input sequences and confirm that the circuit is indeed a finite state machine with 1-bit
state operating completely using phase-based logic. Selective results observed from the
oscilloscope are shown in Fig. 3.30. In the two subfigures in Fig. 3.30 the inputs a, b are the
same: a=0 and b=1. The left subfigure shows sum=1, cout=0 when the state machine is at
carry=0 state; the right one shows sum=0, cout=1 when the state machine is at carry=1 state.

Fig. 3.30: Selected test results of the serial adder as in Fig. 3.28. REF, sum, cout are displayed with blue,
green, yellow respectively.

3.3.2 PHLOGON Systems with CMOS LC Oscillators

In this section, we explore the use of CMOS LC oscillators for PHLOGON systems.
Fig. 3.31 shows the schematic of a cross-coupled CMOS LC oscillator. It is a natural choice
for implementing a binary phase-based latch as its PPV has an entry consisting almost
entirely of second harmonic component (Fig. 3.32).

Similar to our exploration with ring oscillators, we have built these LC oscillators on
breadboards, using ALD1106/ALD1107 CMOS devices, 10m inductors, 6.8nF capacitors
for a central frequency around 10kHz. With a SYNC input at 20kHz, we observe that
such cross-coupled LC oscillators feature SHIL prominently. Unlike the design with ring
oscillators, the signal SYNC does not have to be a current any more; it is a voltage directly
applied at the gate of the source NMOS, as is shown in Fig. 3.31. This simplifies the system
layout significantly. Also, the waveforms are sinusoidal with little distortion, indicating good
energy efficiency in sustaining the oscillation. When SYNC is attached, there is virtually
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Fig. 3.31: Schematic of a complementary
cross-coupled LC oscillator.

Fig. 3.32: PPV entry of the cross-coupled LC
oscillator for the SYNC input.

no change in the waveform; it is mainly used to stabilize and binarize the phase instead of
supplying power.

(a) Waveform from ring oscillator under SHIL. (b) Waveform from LC oscillator under SHIL.

Fig. 3.33: Comparison between waveforms from ring-oscillator- and LC-oscillator-based PHLOGON systems.
SYNC is in pink; REF is in blue; signals from oscillator latches are in yellow.

The design of the logic gates have also been mosified with the help of the LC oscillators.
Since cross-coupled LC oscillators are differential, one latch can supply both the stored bit
and its inverse, i.e., Q and Q. Such an differential oscillator can not only be used as a latch,
it is also directly a NOT gate. Similarly, MAJORITY gates can also be implemented using
oscillators, simply by letting three inputs perturb the oscillator at the same time. When
the oscillator is injection locked by the inputs and settle to a stable phase, it will pick the
majority of the input phases. In this way, both latches and logic gates are implemented using
oscillators; the resulting PHLOGON system is akin to coupled oscillator network.
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Such an oscillator-based realization of phase-encoded logic gates has several advantages
compared with the op-amp-based implementation.

Fig. 3.34: Photo of breadboard circuit of an LC-oscillator-based PHLOGON system.

◦ The outputs from the gates are less distorted, and the magnitude of output is corrected
naturally without the use of voltage limiter (which introduces distortion) or Automatic
Gain Control (AGC) circuits.

◦ The system consists of a group of self-sustaining oscillators without op-amps. It is
conceptually cleaner. This feature is very attractive for the practical implementation
of PHLOGON in physical domains other than electronics (e.g., coupled spin-torque
oscillators or lasers) where constructs equivalent to the op-amp-based circuitry may not
be available.

◦ The phase error caused by the delay from the gate can be “corrected”. In this case, SYNC
can be attached to both the oscillator latches and the oscillator logic gates; it will try to
pull the output phase to align with logic 1 or 0 in both scenarios. This is analogous to
level-based logic gates in CMOS, where imperfect inputs are corrected to be Vdd or gnd
at output.

Based on the new design, we have prototyped another full adder using cross-coupled
CMOS LC oscillators on a breadboard (Fig. 3.34). We are able to verify its operation as a
FSM through measurements on a oscilloscope.

3.3.3 Achieving SHIL and Bit Storage in Mechanical Metronomes

The mechanism for oscillators to be used as the substrate for Boolean computation is not
specific to electrical CMOS oscillators. Indeed, as mentioned above in this chapter, a wide
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range of oscillators from multiple physical domains are suitable for PHLOGON. In this
section, we use a common type of mechanical oscillators — metronomes as an example,
and use them to make phase-based logic latches [91, 92].

The synchronization of metronomes is perhaps the most famous example of injection
locking in oscillators. As illustrated in Fig. 3.35, when several metronomes are placed
on a platform that can roll horizontally, each of them receives a small perturbation from
their neighbours through the common platform. They may have slightly different central
frequencies and may be started with random phases. But given some time, through the
mechanism of injection locking, all of them will eventually lock to the same frequency with
the same phase. This synchronization phenomenon is reproducible, easy to see and hear. As
such, it is often used to illustrate or teach the subject of injection locking.

Fig. 3.35: Metronomes standing on a rolling board end up ticking in unison.

But to our knowledge, SHIL has never been demonstrated in mechanical metronomes.
The basic idea of such a demonstration is simple: just like in the scenario of regular
injection locking, or IL, two metronomes are placed on a rolling board — one oscillates at
approximately the 1/2 sub-harmonic of the other. If SHIL happens, their swing patterns will
synchronize. To complete this demonstration, they should also be decoupled by stopping
the rolling board, in which case the synchronization ceases. Such a demonstration can show
that SHIL is not limited to electrical oscillators discussed in Sec. 3.3.1 and Sec. 3.3.2 — it
is almost as universal as regular IL. It can also serve as an eye-catching illustration when
teaching the subject of SHIL in classes.

The lack of such a demonstration is not because of lack of trying. In fact, we have been
attempting to demonstrate it in our group for years. But simply tuning two metronomes to
1Hz and 2Hz7 and putting them on a rolling board does not result in synchronization. The
coupling seems to have little effect and the detuning in their frequencies remains, separating
their phases apart. The metronomes we use8 oscillate for approximately 17 min at 2Hz;
clear and secure synchronization appears impossible to achieve within this time frame. This
observation leaves us an impression that metronomes are very immune to perturbation close
to the second harmonic of its natural oscillation (aka, second-order perturbation). This
intuition, however, needs more concrete analysis and justification.

In this section, we adopt a more rigorous approach, similar to our analyses in Sec. 3.3.1
7Frequencies used in this section are the frequencies of metronomes’ oscillation. One cycle of metronome

oscillation generates two ticks. So 1Hz and 2Hz metronomes generate 120 and 240 beats per minute
respectively.

8Wittner Taktell Super-Mini Metronome
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and Sec. 3.3.2 for the two types of electrical oscillators. We start with deriving physical
compact models of metronomes that that can run in open-source and commercial simulators.
Metronomes are normally modelled as lossless double-weighted pendulums [93, 94]. But the
“lossiness” of an oscillator actually plays an important role in its injection locking behavior.
An accurate metronome model needs to include friction damping and also a mechanism
known as escapement that compensates the energy lost every cycle due to friction. The
implementations of the several existing metronome models with these mechanisms are not
openly available. Neither are they formulated to be compatible with main-stream simulators.
Moreover, friction and the escapement mechanism are often modelled in these models using
non-smooth functions, making them not suitable for simulation. In our model, we use
smooth functions to alleviate the difficulty of convergence in simulation, and also increase
the models’ physical fidelity.

Then we perform phase-based analysis on the model and explain why SHIL is hard to
achieve. To our knowledge, this is the first time metronomes are analyzed using phase-
macromodel-based techniques. The analysis also allows us to tweak the metronome and
adjust its PPV such that SHIL can happen more easily. Building on the analysis and
adjustment, we validate the occurrence of SHIL — both frequency and phase locks in
metronomes by experiments and measurements. The result is a phase-based logic latch
based on a mechanical oscillator.

The techniques we present in this section on the modelling and analysis of metronomes,
especially the use of phase-macromodels to predict, analyze and achieve desirable IL
properties, are applicable to and useful for the design of almost any oscillator. The easily
reproducible results demonstrate the generality of SHIL in oscillators. Just as metronomes
are often used in teaching the subject of IL, our experiments in this section can also be used
for teaching the subjects of SHIL, oscillator modelling and design, as well as oscillator-based
Boolean computation in classrooms.

3.3.3.1 Modelling Metronomes

The dynamics of a metronome are mainly governed by the equation of a double-weighted
pendulum. The equation is written using the angle θ and angular velocity θ̇ = d

dt θ of the
pendulum9:

d
dt

θ̇ =− 1
m1h2

1 +m2h2
2
· (m1gsin(θ) ·h1 −m2gsin(θ) ·h2) , (3.3)

where m1 is the mass of the weight at the bottom of the pendulum, h1 is the distance from it
to the axis of rotation; m2 and h2 are the mass and distance for the weight on the top of the
pendulum; g is the gravitational constant.

9The angle is defined between the pendulum and the vertical position. Changing the definition to use the
other direction does not change any equation.
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Next, we add several terms to this pendulum equation — friction, the escapement mecha-
nism, and the external perturbation.

Frictional forces in this system come from several sources: air friction, the axle bearing,
and the contact between the tooth of the escapement wheel and the circular plate of the
actuating member attached to the axle. The first one — air friction is often modelled as a
viscous friction that grows linearly with velocity. The latter two are in the form of surface
friction, which is often considered as a constant force in the opposite direction of the relative
movement. They are much larger than the air friction in a metronome. Therefore, we write
the formula for friction as

f (θ̇) =− f0 · smoothsign(θ̇), (3.4)

where f0 is a fitting parameter representing the constant amplitude of friction.

A double-weighted pendulum with only frictional forces will have damped oscillation. To
sustain the oscillation, a metronome has a spring box inside that drives an escapement wheel
through gears. The wheel has sloped teeth. At almost any time, one of the teeth is pushing
against a circular plate attached to the axle of the pendulum. As the pendulum swings to
certain angles where the circular plate is designed to have a gap, the wheel “escapes” through
the plate and moves one tooth forward. In the meanwhile, the movement of the tooth pushes
the circular plate, making the pendulum swing faster. At the same time, a sound of a tick
is generated. This escapement happens twice during a cycle of oscillation, one when the
pendulum is swing left and the other right. The angles at which the escapement occurs at
left and right are normally symmetric. The pushing force on the pendulum generated by
escapement is modelled as a g(θ , θ̇) function in our model, which is non-zero only at small
windows of θ , with direction aligned with the sign of θ̇ .

g(θ , θ̇) =+g0 · (smoothstep(θ −θR)− smoothstep(θ −θR −Δθ)) · smoothstep(θ̇)
−g0 · (smoothstep(θ −θL +Δθ)− smoothstep(θ −θL)) · smoothstep(−θ̇).

(3.5)

The formula in (3.5) sets g(θ , θ̇) to be about g0 when θR < θ < θR +Δθ and θ̇ > 0;
g(θ , θ̇) is about −g0 when θL −Δθ < θ < θL and θ̇ < 0.

Furthermore, the external force applied to a metronome can be written as a horizontal
acceleration a of the axle of the pendulum.

Putting together all the components discussed above, we have a metronome model as
follows.

d
dt

θ̇ =− 1
m1h2

1 +m2h2
2
· (m1gsin(θ) ·h1 −m2gsin(θ) ·h2

+ f (θ̇)+g(θ , θ̇)+m1 ·a · cos(θ) ·h1 −m2 ·a · cos(θ) ·h2
�
.

(3.6)
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Among the parameters used in this model, m1, m2, h1 and h2 can be directly measured
using a scale and a ruler; values for θR, θL and Δθ can be obtained by measuring the gap in
the circular plate using a protractor. f0 is the nominal value of friction. We can estimate
it by letting the pendulum swing within small angles, such that the escapement does not
happen. In this case, the metronome begins damped oscillation due to friction. We can tweak
the value of parameter f0 until the simulated response matches observation in the speed of
damping. g0 is the force the escapement wheel applies to the pendulum during each tick.
When all the other parameters are fixed, g0 determines the swing of the metronome. We
can estimate this parameter by matching the magnitude of oscillation in simulation with the
actual swing of the metronome. From above, we have been able to systematically determine
all the parameters in the metronome model (3.6), either directly or indirectly.
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Fig. 3.36: Transient simulation results of θ and θ̇ .
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Fig. 3.37: Transient simulation results of g(θ , θ̇).

Note that in the model equations for friction (3.4) and escapement mechanism (3.5), we
use the smooth versions of sign and step functions [95, 96]. This is not just for improving
the convergence of numerical simulation. The use of smooth functions also makes the
model represent the physical system more truthfully. For example, when the tooth of the
escapement wheel starts to push the circular plate, the force is not instantaneous because the
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surface at the edge of the gap is still smooth. Similarly, representing friction using smooth
functions also increases the model’s physical fidelity [97].

Results from transient analysis in Fig. 3.36 show that the model reproduces the self-
sustaining oscillation observed in metronomes. Note that the waveforms of θ and θ̇ are not
perfectly sinusoidal, θ̇ actually has two small notches every cycle — they are where the
escapement wheel moves forward one tooth. Plot of g(θ , θ̇) function in Fig. 3.37 demon-
strates this mechanism more clearly; unlike a spring-mass system or a single pendulum, a
metronome is indeed a nonlinear oscillator with highly non-smooth dynamics.

3.3.3.2 Tweaking Metronomes based on Phase Domain Analysis
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Fig. 3.38: Input PPV of metronome.
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Fig. 3.40: Phase portrait of a metronome’s oscillation before and after modification.

Fig. 3.38 and Fig. 3.39 show the time- and frequency-domain PPV of a metronome. The
metronome model has only one input variable a, which is the horizontal external input
acceleration; the PPV becomes a time-varying scaler that describes the phase’s sensitivity to
this input. From Fig. 3.39 we see that the PPV has a large coefficient at the fundamental
frequency, indicating that a metronome is prone to regular first-order IL. But the second
harmonic of the PPV is around 10−12, in the order of numerical noise. In fact, all even
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harmonics are practically zero, because both the waveforms and PPV of a metronome are
designed to be odd symmetric. It would be easier to SHIL the metronome with a periodic
input u(t) at 3 f1, but if we insist on using 2 f1, the metronome needs to be modified.

The phase portrait in Fig. 3.40 (a) illustrates the oscillation of a metronome; it is another
way of visualizing the θ and θ̇ waveforms in Fig. 3.36. The two small kinks in the loop result
from the escapement mechanism, which accelerates θ̇ for a short time. They are symmetric
about the origin. If we open up the metronome, use pliers to rotate the circular plate, we
can adjust the values of θR and θL in (3.5), thus making the phase portrait asymmetric,
as illustrated in Fig. 3.40 (b). After this modification, the two ticks generated in each
cycle are not equally separated anymore. But interestingly, the duration of the metronome
oscillation does not change; the modification does not seem to affect the metronome’s energy
consumption.
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Fig. 3.41: Input PPV of modified metronome.
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metronome’s PPV.

Fig. 3.41 and Fig. 3.42 show the PPV of the metronome after modification. Compared
against Fig. 3.38 and Fig. 3.39, the second harmonic of the PPV increases from zero to
0.028, which is now about 43% of the coefficient at fundamental frequency. The observation
of SHIL should now becomes considerably easier; it should be almost as reproducible as
regular IL in metronomes.

3.3.3.3 SHIL in Metronomes

In the experiment for SHIL, we placed two metronomes on a rolling board — one tuned
to around 1Hz, the other around 2Hz. The 1Hz metronome was modified according to the
previous section, to increase its susceptibility to second-order perturbation. A red sticker
was taped to the rod of the 1Hz metronome; a blue one to the 2Hz metronome. With a tripod,
we recorded their oscillation with a 30Hz frame rate. The video was imported frame by
frame into MATLAB R�; an simple algorithm was used to extract the locations of red and
blue stickers from the video. For every frame, we determined the centers of the two stickers
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by selecting fixed numbers of red-most and blue-most pixels and averaging their locations
respectively. Fig. 3.43 (d) shows the oscillation in the two stickers’ x coordinates within a
time frame of about 20 seconds.

Fig. 3.43: (a) Two metronomes placed on a stationary board; (b) corresponding waveforms of the tips of their
pendulum rods; (c) two metronomes on a rolling board; (d) their corresponding waveforms.

Similarly, without retuning the metronomes, we placed them on a stationary board instead,
processed the video and plotted the oscillation in Fig. 3.43 (b). Throughout the plot, the
peaks of the red waveform are almost aligned to every other valleys of the blue waveform.
However, at the beginning of the plot, the red peak is on the right of the blue valley, but
towards the end of the plot, it has clearly drifted to the left of the corresponding blue valley.
This is an indication that the two metronomes are not synchronized, whereas in Fig. 3.43 (d),
the two waveforms are aligned within the same duration, indicating the occurrence of SHIL.

The curves in Fig. 3.44 (b) and (d) are known as the Lissajous curves — they plot the x
coordinates of the red dot wrt those of the blue dot. On a rolling board, Lissajous curves in
Fig. 3.44 (d) clearly show a pattern, indicating that the two metronomes synchronize. In the
case of the stationary board, because of detuning, the Lissajous curves span the whole plane
within the swings of oscillation.

We can also identify all the peaks in Fig. 3.43 (b) and (d) with the help of a
MATLAB R�command findpeaks(). Based on the locations of the peaks, we can plot the
phase difference between the two metronomes in Fig. 3.45. When the two metronomes are
free running on a stationary board, the phase difference keeps increasing. Specifically, the
1Hz metronome lags the 2Hz one by approximately 10 cycles after 600 seconds. But when
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(a) (b)

Fig. 3.44: (a) Lissajous curves Fig. 3.43 (b), showing that no synchronization happens; (b) Lissajous curves
Fig. 3.43 (d), with the pattern demonstrating SHIL.

they are on the rolling board, the phase difference stays constant around zero for the same
duration. Put in other words, every 2 cycles of the 2Hz metronome align almost perfectly
with 1 cycle of the 1Hz one. The measurements are not perfectly flat mainly because the
spring box does not generate a constant force, and a metronome’s frequency changes slightly
as the spring unrolls. Also, as the two metronomes oscillate beyond 10 minutes towards
the end of their oscillation, their frequencies drift more and more, and SHIL is eventually
broken.
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Fig. 3.45: Phase difference between the 2Hz and 1Hz metronomes. The difference is measured by the number
of cycles of the 1Hz metronome. Positive values mean that the 1Hz metronome is leading the 2Hz
one.

Furthermore, from the locations of the peaks, we can calculate the frequencies of the two
metronomes. From the stationary board to the rolling board, the 2Hz metronome maintains
the same frequency at 2 f1 = 1.978, but the 1Hz one changes its frequency by about 1%,
from f0 = 0.998 to f1 = 0.989. This indicates that it is the slower metronome that moves its
frequency from f0 to f1, same as our expectation.
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3.3.3.4 Bit Storage in Metronomes

SHIL features not only frequency lock (Fig. 3.44), but also phase lock. The 1Hz oscillator
in Fig. 3.43 should develop a bistable phase, allowing it to operate as a binary logic latch.
However, this is not possible to observe through a setup like Fig. 3.43, as logic encoding
based on phase requires a reference, e.g., another metronome tuned to approximately 1Hz.
In other words, we need two 1Hz metronomes, both injection locked by the same 2Hz
metronome, such that their phase difference can then be used to store a logic bit.

The main difficulty with this scheme is that the 2Hz metronome needs to injection lock the
two 1Hz ones “independently”, i.e., the two 1Hz ones should not injection lock each other.
To do so, we design a metronome placement scheme different from the conventional one in
Fig. 3.35. The two 1Hz metronomes are placed with a 90◦ angle, such that the directions
in which they swing are perpendicular. To truly decouple them, the platform now needs to
be able to roll freely in the horizontal plane. So instead of using cylinders as in Fig. 3.35,
we use balls to support the platform on the table. The third metronome, which is tuned to
2Hz, is then placed in between the two 1Hz ones, with a 45◦ angle from both of them. In
this way, its swing injection locks them simultaneously. The setup is illustrated in Fig. 3.46.

45o
45o

Fig. 3.46: Illustration of the experimental setup,
where two 1Hz metronomes (with
red and green tapes) oscillate in per-
pendicular directions, and one 2Hz
metronome is placed between them
with a 45◦ angle.

Fig. 3.47: Photo of the experimental setup.

There are many everyday objects that can be used as the platform and balls in Fig. 3.46.
In practice, we would like to minimize the total mass of the setup in order to maximize the
injection between metronomes. Therefore, we use a small foam board instead of a wooden
one, and four ping-pong balls beneath it. Such details can make a difference in the reliability
of the setup and the reproducibility of the results.

As shown in the photo of the actual setup in Fig. 3.47, the two 1Hz metronomes are
taped with red and green markers, the 2Hz one is taped with a blue marker. We start
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the two 1Hz metronomes first and confirm that their ticking are not synchronized due to
frequency detuning. Then we start the 2Hz one. Through the mechanism of SHIL, the
two 1Hz metronomes are both frequency locked to the 2Hz one, and they develop a stable
phase difference, which stores one logic value. We can manually stop one of the 1Hz
metronomes for half a cycle then let it resume its oscillation. After the two 1Hz metronomes
are synchronized by the 2Hz one again, their stable phase difference is changed from before
by 180◦, representing the other binary logic value. We record the whole process using a
cell phone with a 60Hz frame rate. The video is imported frame by frame into MATLAB R�.
Then a simple algorithm is used to extract the locations of markers in each frame. Fig. 3.48
shows the oscillation of the coordinates of the markers through the whole experiment of
about 270 seconds.

start SYNC stop SYNC start SYNC
ip green

metronome 
perturb green
metronome 

Fig. 3.48: X or Y coordinates of the tips of the three metronomes in Fig. 3.47 during the experiment.

In Fig. 3.49, we show some excerpts from Fig. 3.48. The first excerpt in Fig. 3.49 (a)
shows the oscillation of the two 1Hz metronomes from 10s to 30s, during which time the
2Hz one has not been started. Careful observation indicates that the green and red waveforms
are not synchronized — the red peak is aligned with the green valley at the beginning of
the time slot but has apparently become misaligned towards the end. The corresponding
Lissajous curves more clearly show that the phase difference drifts with time. In comparison,
the second excerpt (Fig. 3.49 (c)) is taken between time 65s and 85s, when SHIL is present.
We observe that the green and red peaks are well aligned, as can be confirmed by the
corresponding Lissajous curves in Fig. 3.49 (d). Similarly, after the green metronome’s
phase is flipped, from time 130s to 150s, the red peaks are aligned with the green valleys
(Fig. 3.49 (e)). This other stable phase difference represents the other phase-encoded logic
value. In these two stable states, the corresponding Lissajous curves in Fig. 3.49 (d) and (f)
both form a line, but the two lines are perpendicular to each other.

To explore the stability of the stored bit, we perturb the green metronome at about 155s in
the experiment, as is shown in Fig. 3.48. Unlike bit flipping, we touch the metronome to
slightly delay its oscillation. As a result, the two 1Hz metronomes do not settle to the new
phase difference; their previous stable phase difference is restored within ten cycles. This
further validates that the setup is a bistable system storing a phase-encoded bit.
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Fig. 3.49: Excerpts from Fig. 3.48 and their corresponding Lissajous curves.
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From above, in this section we have shown the generality of the key mechanism
of oscillator-based Boolean computation by demonstrating bit storage in mechanical
metronomes. Through a creative setup, two sub-harmonically injection-locked metronomes
have been shown to develop a bistable phase difference of either 0 or 180◦, achieving
a phase-encoded one-bit mechanical memory. As injection locking is a ubiquitous phe-
nomenon in all types of oscillators, this demonstration has the potential of inspiring more
implementations of phase-encoded logic latches using oscillator technologies from various
physical domains.

3.4 Discussion on Oscillator-based Boolean Computation

3.4.1 Inherent Noise Immunity of Phase-based Logic

One of the key attractions of encoding logic in the phase of oscillatory signals is that,
compared to level-based schemes, phase encoding provides inherent resistance to errors
caused by additive noise and interference. There are two aspects to phase encoding that
provide intrinsic resistance to additive noise/interference: 1) the effective SNR10 for phase
is increased by a factor of π

2 over SNR for level-based encodings, and 2) the oscillatory
nature of the signal whose phase encodes the information makes much of the additive
noise/interference average out, leading to smaller bit error rates than for the level-based case.
These mechanisms are explained below.

(a) 1st mechanism: vector addition increases
noise immunity in the phase domain.
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Fig. 3.50: Mechanisms enhancing the noise resistance of phase-encoded logic.

Fig. 3.50(a) depicts an oscillatory signal as a phasor [98] �S, superimposed upon which is
a noise (or interference) component, �N. The impact of this noise on the phase of the signal
is shown by the phase error φ =∠(�S+�N). Given fixed amplitudes11 S = |�S| and N = |�N|, φ

10Signal to noise ratio.
11For illustrative simplicity, we consider noise of only a fixed magnitude. In reality, of course, the magnitude

of �N has a probability distribution, e.g., a Gaussian one.
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depends on the relative angle θ between �S and �N, i.e., φ = g(θ , N
S )

12. For N < S and fixed
N/S, there is a maximum phase error over all θ , i.e., φmax = sin−1(N/S), as depicted in
Fig. 3.50(a). The “phase SNR” is given by SNRφ =

π
2

φmax
; it is the fraction, in angular terms,

of the first quadrant taken up by the maximum phase error. This is to be compared against
S/N, the SNR for level-based logic (for which, in Fig. 3.50(a), �N is collinear with �S). As
can be seen from Fig. 3.50(b), 1

SNRφ
is always smaller than 1

SNR, i.e., the “phase SNR” is
always improved over the standard level-based SNR. For small S/N (i.e., a large level-based
SNR), this improvement is a factor of π

2 � 1.6. This is the first mechanism by which phase
encoding improves noise immunity.

A second mechanism, conferring additional noise immunity, stems from that the phasors
�S and �N are not necessarily always at the same frequency (as assumed implicitly in the
analysis of the first mechanism, above), but can rotate at different speeds13. Consider now
the case where the rotation speeds are very different. The rapid relative change in the angle
θ between �S and �N suggests that the worst-case phase error φmax, from the first mechanism
above, is unduly pessimistic; and that, instead, the phase error averaged over all values of θ
is the appropriate measure. More precisely, the standard deviation σφ that results from, e.g.,
uniformly distributed θ , is an appropriate measure of the phase error. This quantity can be
substantially smaller than the worst-case phase error φmax, implying considerable additional
immunity to noise.

Indeed, this second mechanism makes phase encoding useful even when the noise magni-
tude is greater than that of the signal, a situation where level-based logic encoding becomes
largely useless. This situation is illustrated in Fig. 3.50(c). Observe that for most values of
θ , the phase error is less than π

2 , the threshold for a bit error. The probability of logical error

in the case of phase encoding is θc
π = cos−1(S/N)

π , which can be very small if N is only slightly
greater than S (as depicted); and reaches its maximum, 50%, only as the noise increases to
infinity. In contrast, the probability of logical error for level-based encoding is always 50%
when N > S, since a logical error always results when the noise subtracts from the signal
(rather than adding to it).

These noise immunity features of phase encoding do not come as a surprise; the superior
noise properties of phase and frequency modulation (PM and FM), over those of amplitude
modulation (AM), have long been known [100] and exploited in practice, e.g., in radio
communications. However, the authors are not aware of their prior realization, or application,
in the context of logic encoding for general-purpose computing.

12For example, g(0, ·) = g(π.·) = 0 and g( pi
2 ,

N
S ) = tan−1(N

S ).
13The phasor �N can be thought of as one component, at frequency f , of a spectral expansion [99] of a

stochastic process.
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3.4.2 Potential Power/energy Advantages of PHLOGON

PHLOGON offers significant energy-efficiency benefits over von Neumann’s original
scheme. It uses continuously-running oscillators, which can be much more energy-efficient
than von Neumann’s latch-rings. Moreover, neither distribution nor modulation of AC power
is involved for running a PHLOGON architecture14. This reduces parasitic-related losses
especially for large, intricately-routed systems, resulting in significant power savings over
von Neumann’s scheme.

Compared with level-based CMOS computation architecture, the circuits and nanodevice
embodiments of PHLOGON can potentially still be considerably more energy efficient.
Dynamic (capacitive charging/discharging) and continuous (sub-threshold leakage) power
consumption in level-based CMOS are both strongly determined by the supply voltage. The
lowest practical supply voltage today for level-based CMOS is about 0.8V; this number
is unlikely to drop significantly in future years, due to threshold voltage, variability and
noise barriers [101, 102]. In contrast, ring oscillators in standard CMOS technologies
operate in sub-threshold mode at supply voltages as low as 80mV [103–105]; while in III-V
technologies, ring oscillators running at 0.23V were demonstrated almost 30 years ago [106].
10× lower supply voltage translates to 100× lower dynamic (CV 2) power, and more than
20,000× lower leakage power (exponential in supply voltage). We emphasize that these
power savings result simply by moving from level-based to phase-based logic architectures,
without any change in the underlying CMOS technology.

Such large power savings can result even with ring oscillators, which dissipate most
or all of their energy every cycle. When harmonic oscillators, with Q factors appreciably
greater than 1, are used, further energy savings15 can be realized. On-chip CMOS LC
oscillators with spiral inductors, though considerably larger in area than ring oscillators,
are available today with Q factors greater than 10, making them an interesting candidate to
explore for additional power efficiency. Integrated MEMS resonators, though even larger
in area, feature Q factors of 104-105 [89], potentially making them extremely attractive for
low power computation with easily available and well-developed conventional technologies.
Resonant Body Transistor (RBT), a silicon-based resonator compatible with standard CMOS
process, has been demonstrated to achieve >10GHz frequency with Q factor of 1830 [107],
making it another promising candidate. Spin-torque nano-oscillators (STNOs) feature Q
factors of more than 104 at frequencies of 25GHz [108–110]; as such, they offer very
exciting power, as well as speed, possibilities.

14Note that SYNC and CLK can be weak, dissipating negligible power.
15i.e., an energy advantage of roughly Q over ring oscillators using the same technology and supply voltage.
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3.4.3 Power-speed Trade-offs in PHLOGON Systems

3.4.3.1 Power-speed Trade-offs in Oscillator Latches

In oscillator-based computing, the speed in which on oscillator arrives at the injection-
locked state directly determines how fast bits can flip, a key property in computing. In
Sec. 3.3.1, when demonstrating the operation of phase-based state machine using CMOS
rings oscillators, we noted that for ring oscillators, the phase of the oscillator can be flipped
within one cycle of oscillation. For better energy efficiency, we are also interested in using
LC oscillators for PHLOGON. Therefore, the speed in which LC oscillators injection lock
requires more in-depth investigation; it is the key question to answer for studying the speed
of oscillator latches.

Intuitively, high-Q LC oscillators are slower in response. Which is to say that its amplitude
is often more stable and settles more slowly to its steady state. But is it also true for its
phase? With a periodic injection, will a high-Q oscillator’s phase shift more slowly to its
injection-locked state than one with a lower-Q?

To answer this question, we first have to define the Q factor of oscillators. Then we
simulate a simple negative-resistance LC oscillator with an adjustable Q factor and analyze
the results.

Rigorous Q factor definition

When we refer to an oscillator as having a high Q factor, what we are often trying to say
is that it has a stable frequency and amplitude. These properties often translate to better
energy efficiency and lower phase noise, so the “quality” Q is higher. However, once we try
to write down an exact formula for the Q factor of an oscillator, several confusions arise.

Firstly, Q factor is often defined under the context of (usually second-order) linear res-
onators, which are systems with damped oscillatory behaviors. There are several definitions.
One is the frequency-to-bandwidth ratio of the resonator:

Q def
=

fr

Δ f
=

ωr

Δω
. (3.7)

The formula implies that there is a Bode plot of the system with a resonance frequency,
thus is only meaningful for stable linear systems with well-defined inputs and outputs. It
is not directly applicable to oscillators which are by-definition autonomous and usually
nonlinear. Another definition for Q factor is from the energy perspective:

Q def
= 2π × Energy Stored

Energy Dissipated per Cycle
. (3.8)

This assumes that there is damping in the oscillation, which is not true for self-sustaining
oscillators. There are other definitions that directly map Q to a parameter in the transfer
function, but they are limited to linear resonators as well.
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Another common confusion is that people often simply assume an oscillator to have the
same Q factor as the resonator it is using inside. For example, an LC-type oscillator is often
said to have the same Q as the RLC circuit in it. However, this is not true either. An obvious
conterexample is that the use of a high-Q resonator in a nonlinear oscillator doesn’t always
result in a high-Q oscillator.

Therefore, in this section, we first have to define the Q factor of an oscillator. We define
it also from the energy perspective. Consider perturbing an amplitude-stable oscillator
with a small amount of extra energy. The oscillator will settle back to its amplitude-stable
oscillatory state, dissipating (or restoring) some small amount of energy every cycle. Then
we define the ratio between the extra energy applied and the energy dissipated (or restored)
every cycle as the Q factor of the oscillator:

Q def
= 2π × Extra Energy Applied

Extra Energy Dissipated per Cycle
. (3.9)

(a) linear resonator

(b) nonlinear oscillator

Fig. 3.51: Illustration of the definition of Q factor for nonlinear oscillators.

The definition is illustrated in Fig. 3.51 with both the time-domain waveforms and phase
plane plots. Q can be conveniently measured from either transient simulations or experiment
measurements, without analyzing circuit topology or open-loop block diagrams. The higher
the Q factor, the more slowly its amplitude responds to perturbations, and the more stable
the limit cycle. These observations fit intuition.

As also illustrated in Fig. 3.51, the Q definition for oscillators is analogous to that of
the linear resonator. In the case of linear systems, the stable state is the zero state. And
the energy-based Q formulation as in (3.8) is indeed just a special case of our definition
in (3.9), with the amplitude-stable state being the zero state. It is provable that for linear
systems, the frequency-domain Q definition in (3.7) is equivalent to (3.8) 16. Therefore, our
Q formulation can be considered as a direct generalization from the two well-defined Q
factor formula for linear resonators.

16The two definitions in (3.7) and (3.8) have a fixed ratio for linear systems.
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Note that because the oscillator is nonlinear, when we are measuring the Q in the way
shown in Fig. 3.51, the size of the extra amplitude introduced will affect the measurement.
But as the extra amplitude gets smaller and smaller, the Q factor defined in (3.9) should
converge. We can then define the Q factor more rigorously using this limit. The limit can be
analyzed using techniques developed for Linear Period Time Varying (LPTV) systems. It
can be estimated both analytically and numerically given the oscillator’s equations [111].
Therefore, the Q factor in (3.9) not only fits intuition, it is also a quantity that can be
conveniently characterized and analyzed.

Does It Take Longer to Injection Lock a High-Q Oscillator?

Fig. 3.52: A simple negative-resistance LC oscillator. Different choice of f(v) will result in different Q factor
of the oscillator.

Fig. 3.53: Simulation results of amplitude (a1-3) and phase shifting (b1-3) of high-Q and low-Q oscillators.
In (b3), we plot the zero-crossing differences between the v signals and injection signals in (b1) and
(b2).

By definition, a high-Q oscillator settles more slowly in amplitude. But is it also true for
its phase? To rephrase the question: as Q factor becomes higher, does it also take longer to
injection lock the oscillator’s phase?

To study this question, we consider a simple negative-resistance LC oscillator shown in
Fig. 3.52 [112]. Different nonlinearities in f (v) result in different Q factors. Intuitively, as
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f (v)+ 1
R gets “flatter”, the oscillator will appear more like an LC tank with no resistance,

thus the Q gets higher.

We simulate the LC oscillator with L = 0.5nH, C = 0.5nF , f (v) = K · (v− tanh(1.01 ·v)).
We choose K values as 1 and 20, the former results in a high-Q oscillator, the latter low-Q.
The simulation results in Fig. 3.53 show that the high-Q one settles much more slowly
in amplitude. Then we apply a small injection current I(t) = 1mA · cos(ω0t +π/2∗u(t −
100ns)) at the only non-ground node of the circuit, where ω0 =

1√
LC

, u(t) is the step function.
In this way the injection signal shifts its phase to 90◦ after 100ns. The oscillator’s phase will
follow this change by shifting gradually through the mechanism of injection locking. The
results in Fig. 3.53 indicate that the difference in the phase shifting behavior between the
high-Q and low-Q oscillators is marginal.

Therefore, at least in this preliminary experiment using LC oscillators, the shifting speeds
of amplitude and phase seem to be decoupled. This result is intriguing as the speed in the
phase shift doesn’t seem to be sacrificed as we use more energy-efficient oscillators. This
property is very appealing in the design of PHLOGON systems.

3.4.3.2 Power-speed trade-off for Logic Gates

Fig. 3.54 depicts an example of a phase-based MAJORITY gate. We study the speed-
power trade-off by setting up a series of simulations where we push the limit of this circuit
in low-power or high-speed operations. The computational study here is done using the
EKV MOSFET model in Spectre with EPFL 90nm model card. EKV model is well known
for its accuracy in low-power applications.

I

A B C

VDD

MAJ(A,B,C)

Fig. 3.54: A 3-input averager used as MAJORITY gate in phase-encoded logic computation.

With a fixed Vdd, as we reduce Is from the current source in the averager, power consump-
tion decreases. In the meanwhile, we need to increase the load resistance to maintain output
offset and gain. We keep gain fixed at its minimum at 1 to leverage the maximum bandwidth
of the devices. Simulations show a clear speed-power trade-off, where the 3dB bandwidth
is approximately proportional to Is. With transistors of 100nm length and 100nm width,
40nA Is results in 4GHz bandwidth; 10nA has 1GHz; 1nA has 0.1GHz; 10pA has 1MegHz.
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Although in simulation we can reduce Is almost arbitrarily to cut energy consumption, the
bandwidth of this circuit will quickly become too narrow for it to be useful as a logic gate.

Because of this speed-power trade-off, reducing power consumption requires either
decreasing device sizes or reducing the supply voltage. Both options will worsen the
signal-to-noise ratio, which brings about the trade-off with noise. As phase encoding has
intrinsic immunity to noise, it is possible that the speed-power trade-off is better than
that in conventional digital circuits. Combining the analysis on noise, energy, speed, and
investigating PHLOGON systems in the full design space is still a direction for future
research.
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Chapter 4

Oscillator-based Ising Machines

In this chapter, we show that networks of coupled self-sustaining nonlinear oscillators
can physically implement Ising machines, which are analog hardware suitable for solving
many hard combinatorial optimization problems. Our scheme is soundly rooted in a novel
theoretical result based on the phase-based analyses in Chapter 2 that connects the phase
dynamics of coupled oscillator systems with the Ising Hamiltonian. Compared with exist-
ing Ising machine implementation proposals relying on futuristic (often quantum) device
technologies, our scheme is amenable to realization using many kinds of oscillators from
different physical domains, and is particularly well suited for CMOS, in which it offers
significant practical advantages in scalability and miniaturizability.

The Ising model [113, 114] takes any weighted graph and uses it to define a scalar function
called the Ising Hamiltonian. Each vertex in the graph is associated with a spin, i.e., a
binary variable taking values ±1. The Ising problem is to find an assignment of spins that
minimises the Ising Hamiltonian (which depends on the spins and on the graph’s weights).
Solving the Ising problem in general has been shown to be very difficult [115], but devices
that can solve it quickly using specialized hardware have been proposed in recent years
[1, 116–120]. Such Ising machines have attracted much interest because many classically
difficult combinatorial optimization problems (including all 21 of Karp’s well-known list of
NP-complete problems [121]) can be mapped to Ising problems [122]. Hence, as Moore’s
Law nears its limits, a physical implementation of coupled spins that can directly perform
the minimization, namely an Ising machine, therefore becomes very attractive for potential
speed and power advantages over conventional algorithms run on CPUs.

There are three types of existing Ising machine approaches. One is the D-WAVE quantum
Ising machine [118, 119]. It uses superconducting loops as spins and requires a temperature
below 80mK (−273.07◦C) to operate [118]. As a result, it needs a large footprint to
accommodate the necessary cooling system. A second category of Ising machine proposals
use novel non-quantum devices as Ising spins to achieve room-temperature operation. Most
notable among them is a scheme known as CIM (Coherent Ising Machine), which uses
laser pulses traveling on a multiple-kilometer-long optical fiber to represent Ising spins
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[116, 117]. The coupling between these pulses is implemented digitally by measurement
and feedback using multiple FPGAs. While CIM can potentially be more compact than
D-WAVE’s machines, it is unclear how it can be miniaturized and integrated due to the
use of long fibers. Other researchers propose the use of several other novel devices as
Ising spins, including MEMS resonators [123] and nanomagnets from Spintronics [124].
Physical realization of these machines still awaits future development of these emerging
device technologies.

The third type of approaches build Ising model emulators using digital circuits [120, 125].
They are digital hardware implementations of the simulated annealing algorithm, and are
thus not directly comparable to the other Ising machine implementations discussed above,
which all attempt to use interesting intrinsic physics to minimize the Ising Hamiltonian for
achieving large speedups.

Our work on oscillator-based Ising machine (OIM) [29, 126, 127] shows that almost
all types of nonlinear self-sustaining oscillators are suitable to implement Ising machines
physically. As many tried-and-tested types of such oscillators already exist, this scheme
offers the advantages of scalability to large numbers of spins, high-speed and low-power
operation, and straightforward design and fabrication using standard CMOS technology,
unlike CIM and D-WAVE, which are large, expensive and ill-suited to low-cost mass
production. Even though these advantages of CMOS also apply, of course, to hardware
simulated annealing engines [120, 125], our scheme has additional attractive features. One
key advantage relates to variability, a significant problem in nanoscale CMOS. For oscillator
networks, variability impacts the system by causing a spread in the natural frequencies of
the oscillators. Unlike other schemes, where performance deteriorates due to variability
[120], we can essentially eliminate variability by means of simple VCO-based calibration
to bring all the oscillators to the same frequency. Moreover, as we show in this chapter,
our scheme is inherently resistant to variability even without such calibration. Another key
potential advantage stems from the continuous/analog nature of our scheme (as opposed to
purely digital simulated annealing schemes). Computational experiments indicate that the
time our scheme takes to find good solutions of the Ising problem grows only very slowly
with respect to the number of spins, offering significant potential advantages over simulated
annealing schemes [125] as hardware sizes scale up to large numbers of spins.

In the remainder of this chapter, we first provide a brief summary of the Ising problem
and existing Ising machine schemes in Sec. 4.1. We then present our oscillator-based Ising
machine scheme (dubbed OIM, for Oscillator Ising Machine) in Sec. 4.2, explaining the
theory that enables it to work. Then in Sec. 4.3, we present both computational and hard-
ware examples showing the effectiveness of our scheme for solving several combinatorial
optimization problems.
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4.1 The Ising problem and Existing Ising Machine Approaches

The Ising model is named after the German physicist Ernest Ising. It was first studied in
the 1920s as a mathematical model for explaining domain formation in ferromagnets [113].
It comprises a group of discrete variables {si}, aka spins, each taking a binary value ±1,
such that an associated “energy function”, known as the Ising Hamiltonian, is minimized:

min H �− ∑
1≤i< j≤n

Ji jsis j −
n

∑
i=1

hisi, such that si ∈ {−1, +1}, (4.1)

where n is the number of spins; {Ji j} and {hi}1 are real coefficients.

The Ising model is often simplified by dropping the {hi} terms. Under this simplification,
the Ising Hamiltonian becomes

H =− ∑
i, j, i< j

Ji jsis j. (4.2)

What makes the Ising model particularly interesting is that many hard optimization
problems can be shown to be equivalent to it [128]. In fact, all of Karp’s 21 NP-complete
problems can be mapped to it by assigning appropriate values to the coefficients [122].
Physical systems that can directly minimize the Ising Hamiltonian, namely Ising machines,
thus become very attractive for outperforming conventional algorithms run on CPUs for
these problems.

Several schemes have been proposed recently for realizing Ising machines in hardware:

◦ Quantum annealers. Best-known examples of this kind are built by D-Wave Systems
[118, 119]. Their quantum Ising machines use superconducting loops as spins and connect
them using Josephson junction devices [129]. Their state of the art is a Ising machine with
2000 spins. As the machines require a temperature below 80mK (−273.07◦C) to operate
[118], they all have a large footprint to accommodate the necessary cooling system. While
many question their advantages over simulated annealing run on classical computers [130],
proponents believe that through a mechanism known as quantum tunnelling, they can
offer large speedups on problems with certain energy landscapes [131].

◦ Optical Coherent Ising Machines (CIM)

Another approach to Ising machine implementation uses optical laser pulses as spins.
When a photonic crystal2 is pumped by a laser source, it can develop parametric oscillation
at a subharmonic of the laser frequency. The resulting subharmonic pulse is known as an
optical parametric oscillator (OPO). A sequence of such pulsed OPOs generated by the
same laser source will each randomly assume one of two possible phase values separated

1{hi} coefficients are also known as self terms in the Ising Hamiltonian.
2Periodically Poled Lithium Niobate (PPLN) nonlinear crystals are used in such systems.
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by 180◦, constituting a stream of binary random numbers. Using mirrors and delays, these
OPOs can be coupled to each other, as is shown in Fig. 4.1. In this coupled system, OPOs
with certain phase configurations require a lower laser pumping power to excite — they
represent the ground states in the Ising machine. To find them, the laser power can be
slowly increased, and the first sequence of OPOs observed is expected to encode good
solutions.3

Fig. 4.1: Schematic for size-4 OPO-based Ising machine (Fig. 2 in [1]).

Implementations of OPO-based Ising machines have been growing in size over the recent
years, from 4 spins [1], to 16 [132], 100 [116] and 2000 spins [117]. These systems
require complex manual fabrication and assembly processes, especially compared to
CMOS implementations. For example, miniaturization is difficult on account of the need
for kilometer-long optical fibres.

◦ Other non-quantum Ising machine proposals. Recent studies have also proposed the use
of several novel nanodevices as Ising spins, such as MEMS (Micro-Electro-Mechanical
Systems) resonators [123]. Stochastic nanomagnets with low energy barriers are another
candidate for implementing Ising spins [133]. In recent computational studies, they have
been given the name “p-bits”, and have been shown to minimize Ising Hamiltonians
[124]. Such nanomagnets are conventionally used in magnetic random access memories
(MRAMs). Hence, the proposed nanomagnet scheme resembles the aforementioned
CMOS Ising chip using SRAMs. Since nanomagnet Ising machines do not appear to
actually have been built (published results are based on simulations/emulations), it is
unclear if the scheme suffers from variability issues that afflict CMOS Ising machines.
Physical realization of these machines still awaits future development of these emerging
device technologies.

◦ Ising machines implemented as CMOS digital circuits

3Alternatively, the Ising machine can also be operated with a fixed laser power while the coupling strength
is ramped up.
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Another broad direction is to build Ising model emulators using digital circuits. A recent
implementation [120] uses CMOS SRAM cells as spins, and couples them using digital
logic gates. The authors point out, however, that “the efficacy in achieving a global energy
minimum is limited” [120] due to variability. The speed-up and accuracy reported by
[120] are instead based on deterministic on-chip computation paired with an external
random number generator — a digital hardware implementation of the simulated annealing
algorithm. More recently, similar digital accelerators have also been tried on FPGAs
[134]. These implementations are not directly comparable to the other Ising machine
implementations discussed above, which attempt to use interesting intrinsic physics to
minimize the Ising Hamiltonian for achieving large speedups.

4.2 Mechanism of Oscillator-based Ising Machines

In this section, we show that a network of coupled self-sustaining oscillators can function
as an Ising machine and physically minimize the Ising Hamiltonian. The essence of the
scheme is to interconnect oscillators with bistable phases induced by SHIL. A network of
such binarized oscillators prefer certain binary configurations over others; we show that they
correspond to the local minima of the Ising Hamiltonian (Fig. 4.2). Two simple additional
steps (i.e., adding noise, and turning SHIL on and off) enable the network to find excellent
solutions of Ising problems.
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oscillator's response at f1
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Fig. 4.2: Illustration of the basic mechanism of oscillator-based Ising machines: (a) oscillator shifts its natural
frequency from f0 to f1 under external perturbation; (b) oscillator’s phase becomes stably locked
to the perturbation; (c) when the perturbation is at 2 f1, the oscillator locks to its subharmonic at
f1; (d) bistable phase locks under subharmonic injection locking; (e) coupled subharmonically
injection-locked oscillators settle with binary phases representing an optimal spin configuration for
an Ising problem.
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To understand the mechanism of such Ising machines, we need to answer the question:
what does a coupled oscillator network minimize? In Sec. 2.3, we have already introduced
the global Lyapunov function of coupled oscillator networks, which is a scalar “energy like”
quantity that is naturally minimized by the system. Here we further show its connection to
the Ising Hamiltonian in Sec. 4.2.1. Then in Sec. 4.2.2, we introduce SHIL into the system
to binarize the phases of oscillators, and derive a new Lyapunov function that the system
with SHIL minimizes. By examining this function’s equivalence to the Ising Hamiltonian,
we show that such a coupled oscillator network under SHIL indeed physically implements
an Ising machine. In Sec. 4.2.3, we study the network’s behavior in the presence of noise.
Finally, in Sec. 4.2.4, we consider the effect of variability on the system’s operation. We
show that a spread in the natural frequencies of the oscillators contributes a linear term in
the global Lyapunov function, and does affect Ising machine performance by much if the
variability is not extreme.

4.2.1 Global Lyapunov Function of Coupled Oscillators

Recall the generalized Kuramoto model (2.38) for coupled oscillators

d
dt

φi(t) = ωi −ω∗+ωi ·
n

∑
j=1, j �=i

ci j(φi(t)−φ j(t)). (2.38)

Again, {φi} represents the phases of n oscillators; ωi is the frequency of the oscillator
whereas ω∗ is the central frequency of the network. ci j(.) is a 2π-periodic function for the
coupling between oscillators i and j.

To simplify exposition, we now assume that the ci j functions are sinusoidal.4 We further
assume zero spread in the natural frequencies of oscillators, i.e., ωi ≡ ω∗, and discuss the
effect of frequency variability later in Sec. 4.2.4. With these simplifications, (2.38) can be
written as

d
dt

φi(t) =−K ·
n

∑
j=1, j �=i

Ji j · sin(φi(t)−φ j(t)). (4.3)

Here, we are using the coefficients {Ji j}5 from the Ising model (4.1) to set the connectivity
of the network, i.e., the coupling strength between oscillators i and j is proportional to Ji j.
The parameter K modulates the overall coupling strength of the network.

There is a global Lyapunov function associated with (4.3) [135]:

E(�φ(t)) =−K · ∑
i, j, i�= j

Ji j · cos(φi(t)−φ j(t)), (4.4)

4This need not be the case for the analysis to hold true, as shown in Sec. 2.3. More generally, ci js can be
any 2π-periodic odd functions, which are better suited to practical oscillators.

5In the Ising Hamiltonian (4.1), Ji j is only defined when i < j; here we assume that Ji j = Jji for all i, j.
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where �φ(t) = [φ1(t), · · · ,φn(t)]T . Being a global Lyapunov function, it is an objective
function the coupled oscillator system always tends to minimize as it evolves over time [68].

If we look at the values of this continuous function E(�φ(t)) at some discrete points, we
notice that it shares some similarities with the Ising Hamiltonian. At points where every φi
is equal to either 0 or π ,6 if we map φi = 0 to si =+1 and φi = π to si =−1, we have

E(�φ(t)) =−K · ∑
i, j, i�= j

Ji j · cos(φi(t)−φ j(t)) =−K · ∑
i, j, i�= j

Ji jsis j =−2K · ∑
i, j, i< j

Ji jsis j.

(4.5)

If we choose K = 1/2, the global Lyapunov function in (4.4) exactly matches the Ising
Hamiltonian in (4.2) at these discrete points. But this does not mean that coupled oscillators
are naturally minimizing the Ising Hamiltonian, as there is no guarantee at all that the phases
{φi(t)} are settling to these discrete points. In fact, networks with more than two oscillators
almost always synchronize with analog phases, i.e., {φi(t)} commonly settle to continuous
values spread out in the phase domain as opposed to converging towards 0 and π . As an
example, Fig. 4.3 (a) shows the phase responses of 20 oscillators connected in a random
graph. As phases do not settle to the discrete points discussed above, the Lyapunov function
they minimize becomes irrelevant to the Ising Hamiltonian, rendering the system ineffective
for solving Ising problems. While one may think that the analog phases can still serve as
solutions when rounded to the nearest discrete points, experiments in Sec. 4.3.2 show that
the quality of these solutions is very poor compared with our scheme of Ising machines
proposed here.

(a) (b)

Fig. 4.3: Phases of 20 oscillators with random {Ji j} generated by rudy -rnd graph 20 50 10001:
(a) without SYNC; (b) with Ks = 1.

4.2.2 Coupled Oscillators under SHIL and the Global Lyapunov Function

In our scheme, a common SYNC signal at 2ω∗ is injected to every oscillator in the
network. Through the mechanism of SHIL, the oscillator phases are binarized. The example

6More generally, we can use {2kπ | k ∈ Z} and {2kπ +π | k ∈ Z} to represent the two states for each
oscillator’s phase.
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shown in Fig. 4.3 (b) confirms that this is indeed the case: under SHIL, the phases of 20
oscillators connected in the same random graph now settle very close to discrete points. To
write the model for such a system, we recall from Sec. 2.2 that a 2ω∗ perturbation introduces
a π-periodic coupling term (e.g., sin(2φ)) in the phase dynamics. Therefore, here we can
directly write the model as follows.

d
dt

φi(t) =−K ·
n

∑
j=1, j �=i

Ji j · sin(φi(t)−φ j(t))−Ks · sin(2φi(t)), (4.6)

where Ks represents the strength of coupling from SYNC.

Remarkably, there is a global Lyapunov function for this new type of coupled oscillator
system. It can be written as

E(�φ(t)) =−K · ∑
i, j, i�= j

Ji j · cos(φi(t)−φ j(t))−Ks ·
n

∑
i=1

cos(2φi(t)) . (4.7)

Now, we show that E in (4.7) is indeed a global Lyapunov function. To do so, we again
differentiate E with respect to �φ .

∂E(�φ(t))
∂φk(t)

=−K ·
n

∑
l=1, l �=k

Jkl
∂

∂φk(t)
[cos(φk(t)−φl(t))]−K ·

n

∑
l=1, l �=k

Jlk
∂

∂φk(t)
[cos(φl(t)−φk(t))]

−Ks ·
∂

∂φk(t)
cos(2φk(t)) (4.8)

=K ·
n

∑
l=1, l �=k

Jkl sin(φk(t)−φl(t))−K ·
n

∑
l=1, l �=k

Jlk sin(φl(t)−φk(t))+Ks ·2 · sin(2φk(t))

(4.9)

=K ·
n

∑
l=1, l �=k

Jkl ·2 · sin(φk(t)−φl(t))+Ks ·2 · sin(2φk(t)) (4.10)

=−2 · dφk(t)
dt

. (4.11)

Therefore,

∂E(�φ(t))
∂ t

=
n

∑
k=1

�
∂E(�φ(t))

∂φk(t)
· dφk(t)

dt

�
(4.12)

=−2 ·
n

∑
k=1

�
dφk(t)

dt

�2

≤ 0. (4.13)

Thus, we have proved that (4.7) is indeed a global Lyapunov function the coupled
oscillators under SHIL naturally minimize over time.
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At the discrete points (phase values of 0/π), because cos(2φi)≡ 1, (4.7) reduces to

E(�φ(t))≈−K · ∑
i, j, i�= j

Ji j · cos(φi(t)−φ j(t))−n ·Ks, (4.14)

where n ·Ks is a constant. By choosing K = 1/2, we can then make (4.14) equivalent to the
Ising Hamiltonian in (4.2) with a constant offset.

Note that the introduction of SYNC does not change the relative E levels between the
discrete points, but modifies them by the same amount. However, with SYNC, all phases
can be forced to eventually take values near either 0 or π — the system now tries to reach
a binary state that minimizes the Ising Hamiltonian, thus functioning as an Ising machine.
We emphasize that this is not equivalent to running the system without SHIL and then
rounding the analog phase solutions to discrete values as a post-processing step. Instead,
the introduction of SHIL modifies the energy landscape of E, changes the dynamics of
the coupled oscillator system, and as we show in Sec. 4.3, results in greatly improved
minimization of the Ising Hamiltonian.

It is worth noting, also, that the Lyapunov function in (4.7) will, in general, have many
local minima and there is no guarantee the oscillator-based Ising machine will settle at or
near any global optimal state. However, as we show in Sec. 4.2.3, when judicious amounts
of noise are introduced via a noise level parameter Kn, it becomes more likely to settle to
lower minima. Indeed, the several parameters in the Ising machine — K, Ks and Kn — all
play an important role in its operation and should be given suitable values. Furthermore,
K, Ks, Kn can also be time varying, creating various “annealing schedules”. As we show
in Sec. 4.3, this feature gives us considerable flexibility in operating oscillator-based Ising
machines for good performance.

4.2.3 Stochastic Model of Oscillator-based Ising Machines

Noise in the phases of oscillators is commonly modelled by adding white noise sources to
the oscillator frequencies:

d
dt

φi(t) =−K ·
n

∑
j=1, j �=i

Ji j · sin(φi(t)−φ j(t))−Ks · sin(2φi(t))+Kn ·ξi(t), (4.15)

where variable ξi(t) represents Gaussian white noise with a zero mean and a correlator
�ξi(t), ξi(τ)�= δ (t − τ); scaler Kn represents the magnitude of noise.

(4.15) can be rewritten as a stochastic differential equation (SDE).

dφit =

�
−K ·

n

∑
j=1, j �=i

Ji j · sin(φit −φ jt)−Ks · sin(2φit)

�
dt +Kn ·dWt , (4.16)

and can then be simulated with standard SDE solvers.
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To analyse the steady states of this SDE, we can apply the Boltzmann law from statistical
mechanics [136]. For a system with discrete states�si, i = 1, · · · ,M, if each state is associated
with an energy Ei,7 the probability Pi for the system to be at each state can be written as
follows.

Pi =
e−Ei/kT

∑M
j=1 e−E j/kT

, (4.17)

where k is the Boltzmann constant, T is the thermodynamic temperature of the system.
While k and T are concepts specific to statistical mechanics, in this context the product kT
corresponds to the noise level Kn.

Given two spin configurations�s1 and�s2, the ratio between their probabilities is known as
the Boltzmann factor:

P2

P1
= e

E1−E2
kT . (4.18)

According to the energy function (4.14) associated with oscillator-based Ising machines,
the energy difference that determines this factor is proportional to the coupling strength.

E1 −E2 ∝ K. (4.19)

If �s1 is the higher energy state, i.e., E1 > E2, as the coupling strength K increases, it
becomes less and less likely for the system to stay at �s1. The system prefers the lowest
energy state in the presence of noise.

4.2.4 Coupled Oscillator Networks with Frequency Variations

A major obstacle to the practical implementation of large-scale Ising machines is vari-
ability. While few analyses exist for assessing the effects of variability for previous Ising
machine technologies, the effect of variability on our oscillator-based Ising machine scheme
is easy to analyze, predicting that performance degrades gracefully.

One very attractive feature of oscillators is that variability, regardless of the nature and
number of elemental physical sources, eventually manifests itself essentially in only one
parameter, namely the oscillator’s natural frequency. As a result, the effect of variability in
an oscillator network is that there is a spread in the natural frequencies of the oscillators.
Taking this into consideration, our model can be revised as

d
dt

φi(t) = ωi −ω∗ −ωi ·K ·
n

∑
j=1, j �=i

Ji j · sin(φi(t)−φ j(t))−ωi ·Ks · sin(2φi(t)). (4.20)

As it turns out, there is also a global Lyapunov function associated with this system.

E(�φ(t)) =−K · ∑
i, j, i�= j

Ji j ·cos(φi(t)−φ j(t))−Ks ·
n

∑
i=1

cos(2φi(t))−2
n

∑
i=1

ωi −ω∗

ωi
φi. (4.21)

7It is provable that a global Lyapunov function, if it exists, can be used instead of a physical energy to
derive the same Boltzmann law [137].
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This can be proven as follows.

∂E(�φ(t))
∂φk(t)

=K ·
n

∑
l=1, l �=k

Jkl ·2 · sin(φk(t)−φl(t))+Ks ·2 · sin(2φk(t))−2
ωk −ω∗

ωk
(4.22)

=− 2
ωk

· dφk(t)
dt

. (4.23)

Therefore,
dE(�φ(t))

dt
=−

n

∑
k=1

2
ωk

�
dφk(t)

dt

�2

≤ 0. (4.24)

Note that (4.21) differs from (4.7) only by a weighted sum of φi — it represents essentially
the same energy landscape but tilted linearly with the optimization variables. While it can
still change the locations and values of the solutions, its effects are easy to analyse given
a specific combinatorial optimization problem. Also, as the coupling coefficient K gets
larger, the effect of variability can be reduced. Small amounts of variability merely perturb
the locations of minima a little, i.e., the overall performance of the Ising machine remains
essentially unaffected. Very large amounts of variability can, of course, eliminate minima
that would exist if there were no variability. However, another great advantage of using
oscillators is that even in the presence of large variability, the frequency oscillators can be
calibrated (e.g., using a voltage-controlled oscillator (VCO) scheme) prior to each run of the
machine. As a result, the spread in frequencies can be essentially eliminated in a practical
and easy-to-implement way.

4.3 Examples

In this section, we demonstrate the feasibility and efficacy of our oscillator-based Ising
machine scheme through examples in both simulation and hardware.

4.3.1 Small MAX-CUT Problems

Given an undirected graph, the MAX-CUT problem [138, 139] asks us to find a subset
of vertices such that the total weights of the cut set between this subset and the remaining
vertices are maximized. As an example, Fig. 4.4 shows a size-8 cubic graph, where each
vertex is connected to three others — neighbours on both sides and the opposing vertex. As
shown in Fig. 4.4, dividing the 8 vertices randomly yields a cut size of 5; grouping even
and odd vertices, which one may think is the best strategy, results in a cut size of 8; the
maximum cut is actually 10, with one of the solutions shown in the illustration. Changing
the edge weights to non-unit values can change the maximum cut and also make the solution
look less regular, often making the problem more difficult to solve. While the problem may
not seem challenging at size 8, it quickly becomes intractable as the size of the graph grows.
In fact, MAX-CUT is one of Karp’s 21 NP-complete problems [121].
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Fig. 4.4: Illustration of different cut sizes in a 8-vertex cubic graph with unit edge weights, and another one
with random weights (rightmost).

The MAX-CUT problem has a direct mapping to the Ising model [121], by choosing Ji j to
be the opposite of the weight of the edge between vertices i and j, i.e., Ji j =−wi j. To explain
this mapping scheme, we can divide the vertices into two sets — V1 and V2. Accordingly, all
the edges in the graph are separated into three groups — those that connect vertices within
V1, those within V2, and the cut set containing edges across V1 and V2. The sums of the
weights in these three sets are denoted by S1, S2 and Scut . Together, they constitute the total
edge weights of the graph, which is also the negation of the sum of all the Ji js:

S1 +S2 +Scut = ∑
i, j, i< j

wi j =− ∑
i, j, i< j

Ji j. (4.25)

We then map this division of vertices to the values of Ising spins, assigning +1 to a spin i
if vertex vi ∈V1, and −1 if the vertex is in V2. The Ising Hamiltonian in (4.2) can then be
calculated as

H = ∑
i, j, i< j

Ji jsis j

= ∑
i< j, vi,v j∈V1

Ji j(+1)(+1)+ ∑
i< j, vi,v j∈V2

Ji j(−1)(−1)+ ∑
i< j, vi∈V1,v j∈V2

Ji j(+1)(−1)

= ∑
i< j, vi,v j∈V1

Ji j + ∑
i< j, vi,v j∈V2

Ji j − ∑
i< j, vi∈V1, j∈V2

Ji j

=− (S1 +S2 −Scut) = ∑
i, j, i< j

Ji j −2 ·Scut . (4.26)

Therefore, when the Ising Hamiltonian is minimized, the cut size is maximized.

To show that an oscillator-based Ising machine can indeed be used to solve MAX-CUT
problems, we simulated the Kuramoto model in (4.6) while making the Ji js represent
the unit-weight cubic graph in Fig. 4.4. The magnitude of SYNC is fixed at Ks = 3,
while we ramp up the coupling strength K from 0 to 5. Results from the deterministic
model (Kn = 0) and the stochastic model (Kn = 0.1) are shown in Fig. 4.5 and Fig. 4.6
respectively. In the simulations, oscillators started with random phases between 0 and π;
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after a while, they all settled to one of the two phase-locked states separated by π . These
two groups of oscillators represent the two subsets of vertices in the solution. The results
for the 8 spins shown in Fig. 4.5 and Fig. 4.6 are {+1,−1,+1,−1,−1,+1,−1,+1} and
{−1,+1,+1,−1,+1,−1,−1,+1} respectively; both are global optimal solutions.
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Fig. 4.5: Phases of oscillators solving a size-8
MAX-CUT problem without noise.
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Fig. 4.6: Phases of oscillators solving a size-8
MAX-CUT problem with noise.

Fig. 4.7: Simulation results from ngspice on 8 coupled oscillators.

We have also directly simulated coupled oscillators at the SPICE level to confirm the
results obtained on phase macromodels. Such simulations are at a lower lever than phase
macromodels and are less efficient. But they are closer to physical reality and are useful for
circuit design. In the simulations, 8 cross-coupled LC oscillators are tuned to a frequency of
5MHz. They are coupled through resistors, with conductances proportional to the coupling
coefficients; in this case, we use Ji j · 1/100kΩ. Results from transient simulation using
ngspice-28 are shown in Fig. 4.7. The 8 oscillators’ phases settle into the two groups
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{1,4,6,7} and {2,3,5,8}, representing one of the optimal solutions for the MAX-CUT
problem. They synchronize within 20µs after oscillation starts, which is about 100 cycles.
We have tried this computational experiment with different random initial conditions; like
phase-macromodels, the SPICE-level simulations of these coupled oscillators reliably return
optimal solutions for this size-8 MAX-CUT problem.

Fig. 4.8: A simple oscillator-based Ising machine solving size-8 cubic graph MAX-CUT problems: (a)
breadboard implementation with 8 CMOS LC oscillators; (b) illustration of the connections; (c)
oscilloscope measurements showing waveforms of oscillator 1∼4.

We have also implemented these 8 coupled LC oscillators on a breadboard; a photo of it is
shown in Fig. 4.8. The inductance of the LC oscillators is provided by fixed inductors of size
33µH. The capacitance is provided by trimmer capacitors with a maximum value of 50pF; we
have tuned them to around 30pF such that the natural frequencies of all oscillators are about
5MHz. The nonlinearity for sustaining the LC oscillation is implemented by cross-coupled
CMOS inverters on TI SN74HC04N chips. SYNC is supplied through the GND pins of these
chips. The results have been observed using two four-channel oscilloscopes; a screenshot
of one of them is shown in Fig. 4.8. Through experiments with various sets of edge
weights, we have validated that this is indeed a proof-of-concept hardware implementation
of oscillator-based Ising machines for size-8 cubic-graph MAX-CUT problems.

Using the same type of oscillators, we have built hardware Ising machines of larger sizes.
Fig. 4.9 shows a size-32 example implementing a type of connectivity known as the Chimera
graph, much like the quantum Ising machines manufactured by D-Wave Systems. In this
graph, oscillators are organized into groups of 8, with denser connections within the groups
and sparse ones in between. The hardware is on perfboards, with components soldered on
the boards so that the setup is more permanent than those on breadboards. Connections are
implemented using rotary potentiometers. Next to each potentiometer we have designed
male pin connectors soldered on the board such that the polarity of each connection can
be controlled by shorting different pins using female jumper caps. When encoding Ising
problems, we have also color-coded the jumper caps to make debugging easier, as can be
seen in the photo as red and green dots next to the four arrays of white round potentiometers.
To read the phases of the oscillators, instead of using multichannel oscilloscopes, we have
soldered TI SN74HC86N Exclusive-OR (XOR) gate chips on board. The XOR operation of
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Fig. 4.9: A size-32 oscillator-based Ising machine: (a) photo of the implementation on perfboards; (b)
illustration of the connectivity ; (c) a typical histogram of the energy values achieved in 200 runs on
a random size-32 Ising problem; the lowest energy level is -88 and is achieved once in this case.

an oscillator’s response and a reference signal converts the oscillating waveform into a high
or low voltage level, indicating if the oscillator’s phase is aligned with or opposite to the
reference phase. The voltage level can then be picked up by a multichannel logic analyzer.
The entire setup is powered by two Digilent Analog Discovery 2 devices, which are portable
USB devices that integrate power supplies, logic analyzers and function generators. We
have tried random Ising problems by programming each connection with a random polarity
using the jumper caps. A typical histogram of the Ising Hamiltonians achieved is shown in
Fig. 4.9 (c). Note that because Ji js have random polarities, a random solution would have an
average energy level of zero. In comparison, the results measured from the hardware are
always below 0, and sometimes achieve the global minimum. While such a hand-soldered
system is nontrivial to assemble and operate, and its size of 32 cannot be characterized as
large scale, it is a useful proof of concept for implementing oscillator-based Ising machines
using standard CMOS technologies, and serves as a very solid basis for our future plans to
scale the implementations with custom PCBs and custom ICs.

4.3.2 MAX-CUT Benchmark Problems

In this section, we demonstrate the efficacy of oscillator-based Ising machines for solving
larger-scale MAX-CUT problems. Specifically, we have run simulations on all the problems
in a widely used set of MAX-CUT benchmarks known as the G-set [2].8 Problem sizes
range from 800 to 3000.9 In the experiments, we operated the Ising machine for all

8The G-set problems are available for download as set1 at http://www.optsicom.es/maxcut.
9G1∼21 are of size 800; G22∼42 are of size 2000; G43∼47, G51∼54 are of size 1000; G48∼50 are of

size 3000.



CHAPTER 4. OSCILLATOR-BASED ISING MACHINES 74

the problems with a single annealing schedule, i.e., we did not tune our Ising machine
parameters individually for different problems. Each problem was simulated with 200
random instances. In Tab. 4.1, we list the results and runtime alongside those from several
heuristic algorithms developed for MAX-CUT — Scatter Search (SS) [140], CirCut [141],
and Variable Neighbourhood Search with Path Relinking (VNSPR) [139].10 We also list the
performances of simulated annealing from a recent study [138], the only one we were able
to find that contains results for all the G-set problems.

From Tab. 4.1, we observe that our oscillator-based Ising machine is indeed effective —
it finds best-known cut values for 38 out of the 54 problems, 17 of which are even better
than those reported in the above literature. Moreover, in the 200 random instances, the best
cut is often reached more than once — in average we achieve the maximum 20 times out of
200. The results can in fact be improved further if we tailor the annealing schedule for each
problem. But to show the effectiveness and generality of our scheme, we have chosen to use
the same annealing schedule for all the problems.

In the annealing schedule we used, the coupling strength K increases linearly, the noise
level Kn steps up from 0 to 1, while SYNC’s amplitude Ks ramps up and down multiple
times. Such a schedule was chosen empirically and appears to work well for most G-set
problems. Fig. 4.10 shows the behavior of oscillator phases and the instantaneous cut values
under this schedule for solving benchmark problem G1 to its best-known cut size.

Fig. 4.10: Coupled oscillators solving MAX-CUT benchmark problem G1 [2] to its best-known cut size 11624.

The fact that we were using a fixed schedule also indicates that the actual hardware time
for the Ising machine to solve all these benchmarks is the same, regardless of problem
size and connectivity. Note that in Fig. 4.10, the end time 20 means 20 oscillation cycles,
but this end time is predicated on a coupling strength of K ∼ 1. The actual value of K
for each oscillator depends on the PPV function as well as the amplitude of perturbation
from other oscillators. As an example, for the LC oscillators we use in Sec. 4.3.1 with

10Their results and runtime are available for download at http://www.optsicom.es/maxcut in the “Computa-
tional Experiences” section.
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Benchmark SS Time CirCut Time VNSPR Time SA Time OIM Time
G1 11624 139 11624 352 11621 22732 11621 295 11624 52.6
G2 11620 167 11617 283 11615 22719 11612 327 11620 52.7
G3 11622 180 11622 330 11622 23890 11618 295 11622 52.4
G4 11646 194 11641 524 11600 24050 11644 294 11646 52.7
G5 11631 205 11627 1128 11598 23134 11628 300 11631 52.6
G6 2165 176 2178 947 2102 18215 2178 247 2178 52.8
G7 1982 176 2003 867 1906 17716 2006 205 2000 52.9
G8 1986 195 2003 931 1908 19334 2005 206 2004 52.8
G9 2040 158 2048 943 1998 15225 2054 206 2054 52.6

G10 1993 210 1994 881 1910 16269 1999 205 2000 52.9
G11 562 172 560 74 564 10084 564 189 564 6.7
G12 552 242 552 58 556 10852 554 189 556 6.3
G13 578 228 574 62 580 10749 580 195 582 6.4
G14 3060 187 3058 128 3055 16734 3063 252 3061 14.6
G15 3049 143 3049 155 3043 17184 3049 220 3049 16.1
G16 3045 162 3045 142 3043 16562 3050 219 3052 14.5
G17 3043 313 3037 366 3030 18555 3045 219 3046 14.6
G18 988 174 978 497 916 12578 990 235 990 14.7
G19 903 128 888 507 836 14546 904 196 906 14.5
G20 941 191 941 503 900 13326 941 195 941 14.7
G21 930 233 931 524 902 12885 927 195 931 14.6
G22 13346 1336 13346 493 13295 197654 13158 295 13356 58.7
G23 13317 1022 13317 457 13290 193707 13116 288 13333 58.6
G24 13303 1191 13314 521 13276 195749 13125 289 13329 59.0
G25 13320 1299 13326 1600 12298 212563 13119 316 13326 58.7
G26 13294 1415 13314 1569 12290 228969 13098 289 13313 58.9
G27 3318 1438 3306 1456 3296 35652 3341 214 3323 59.0
G28 3285 1314 3260 1543 3220 38655 3298 252 3285 61.2
G29 3389 1266 3376 1512 3303 33695 3394 214 3396 58.9
G30 3403 1196 3385 1463 3320 34458 3412 215 3402 59.0
G31 3288 1336 3285 1448 3202 36658 3309 214 3296 59.1
G32 1398 901 1390 221 1396 82345 1410 194 1402 17.5
G33 1362 926 1360 198 1376 76282 1376 194 1374 15.9
G34 1364 950 1368 237 1372 79406 1382 194 1374 15.9
G35 7668 1258 7670 440 7635 167221 7485 263 7675 37.1
G36 7660 1392 7660 400 7632 167203 7473 265 7663 37.6
G37 7664 1387 7666 382 7643 170786 7484 288 7679 37.8
G38 7681 1012 7646 1189 7602 178570 7479 264 7679 37.7
G39 2393 1311 2395 852 2303 42584 2405 209 2404 37.2
G40 2374 1166 2387 901 2302 39549 2378 208 2389 38.1
G41 2386 1017 2398 942 2298 40025 2405 208 2401 37.8
G42 2457 1458 2469 875 2390 41255 2465 210 2469 37.3
G43 6656 406 6656 213 6659 35324 6658 245 6660 29.1
G44 6648 356 6643 192 6642 34519 6646 241 6648 29.2
G45 6642 354 6652 210 6646 34179 6652 241 6653 29.1
G46 6634 498 6645 639 6630 38854 6647 245 6649 29.1
G47 6649 359 6656 633 6640 36587 6652 242 6656 29.1
G48 6000 20 6000 119 6000 64713 6000 210 6000 23.2
G49 6000 35 6000 134 6000 64749 6000 210 6000 23.2
G50 5880 27 5880 231 5880 147132 5858 211 5874 25.6
G51 3846 513 3837 497 3808 89966 3841 234 3846 18.4
G52 3849 551 3833 507 3816 95985 3845 228 3848 18.4
G53 3846 424 3842 503 3802 92459 3845 230 3846 18.4
G54 3846 429 3842 524 3820 98458 3845 228 3850 18.5

Table 4.1: Results of oscillator-based Ising machines run on MAX-CUT benchmarks in the G-set, compared
with several heuristic algorithms. Time reported in this table is for a single run.
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100k resistive coupling, K ≈ 0.02. This indicates that it takes less than 100 cycles for the
oscillators to synchronize in phase, which is consistent with measurements. For such a
coupled LC oscillator network, a hardware time of 20 in Fig. 4.10 represents approximately
2000 cycles of oscillation; for 5MHz oscillators that takes 0.4ms. If we use GHz nano-
oscillators, the computation time can be well within a microsecond. In comparison, the
runtime of the several heuristic algorithms listed in Tab. 4.1, even with faster CPUs and
parallel implementations in the future, is unlikely to ever drop to this range.

As the hardware time is fixed, the runtime we report in Tab. 4.1 for our Ising machines
is the time for simulating the SDEs of coupled oscillators on CPUs. While we list runtime
results for each algorithm in Tab. 4.1, note that they come from different sources and are
measured on different platforms. Results for SS, CirCut and VNSPR were obtained from
Dual Intel Xeon at 3.06GHz with 3.2GB of RAM; SA was run on Intel Xeon E3-1245v2
at 3.4GHz with 32GB of RAM [138]. To make the results generally comparable, we ran
our simulations on a modest personal desktop with Intel Xeon E5-1603v3 at 2.8GHz with
16GB of RAM. Even so, it came as a nice surprise to us that even by simulating SDEs we
were able to solve the benchmarks efficiently. Another notable feature of our method is that
unlike other algorithms, SDE simulation does not know about the Ising Hamiltonian or cut
value — it never needs to evaluate the energy function or relative energy changes, which are
implicit in the dynamics of differential equations, yet it proves effective and fast.
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Fig. 4.11: Histograms of the cut values achieved by several variants of the Ising machine, compared with the
baseline results used in Tab. 4.1.

We also ran more computational experiments on the G-set benchmarks in order to study
the mechanism of oscillator-based Ising machines. We created several variants of the Ising
machine used above by removing different components in its operation. For each variant,
we re-ran 200 random instances for each of the 54 benchmarks, generating 10800 cut values.
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In Fig. 4.11, we compare the quality of these cut values with results from the unaltered Ising
machine by plotting histograms of the distances of the cut values to their respective maxima.
In the first variant, we removed noise from the model by setting Kn ≡ 0. The solutions
become considerably worse, confirming that noise helps the coupled oscillator system settle
to lower energy states.

In the next variant, we removed SYNC by setting Ks ≡ 0. Without SYNC, the system
becomes a simple coupled oscillator system with phases that take a continuum of values, as
discussed in Sec. 4.2.1. The settled analog values of the phases that were then thresholded to
0 or π to correspond to Ising spins. As shown in Fig. 4.11, the results become significantly
worse; indeed, none of the best-known results were reached. This indicates that the SYNC
signal and the mechanism of SHIL we introduce to the coupled oscillator networks are
indeed essential for them to operate as Ising machines.

Our baseline Ising machine actually uses a smoothed square function tanh(sin(.)) for the
coupling, as opposed to the sin(.) used in the original Kuramoto model. This changes the
cos(.) term in the energy function (4.7) to a triangle function. Such a change appears to give
better results than the original, as shown in Fig. 4.11 (c). The change requires designing
oscillators with special PPV shapes and waveforms such that their cross-correlation is a
square wave, which is not difficult in practice based on our derivation in Sec. 2.2. As an
example, rotary traveling wave oscillators naturally have square PPVs. Ring oscillators can
also be designed with various PPVs and waveforms by sizing each stage individually. We
cannot say definitively that the square function we have used is optimal for Ising solution
performance, but the significant improvement over sinusoidal coupling functions indicates
that a fruitful direction for further exploration may be to look beyond the original Kuramoto
model for oscillator-based computing.

The last variant we report here added variability to the natural frequencies of the oscillators,
as in (4.20). We assigned Gaussian random variables to ωis with ω∗ as the mean, and 0.01
(1%) and 0.05 (5%), respectively, as the standard deviations for two separate runs. From
Fig. 4.11 (d), we observe that even with such non-trivial spread in the natural frequencies of
oscillators, the performance is affected very little.

Finally, we conducted a preliminary study of the scaling of the time taken by the Ising
machine to reach good solutions as problem sizes increase. As the G-set benchmarks have
only a few sizes (800, 1000, 2000 and 3000), we used the program (named rudy) that
generated them to create more problems of various sizes. All generated problems used
random graphs with 10% connectivity and ±1 coupling coefficients. We simulated all of
them, each for 200 instances, with fixed parameters K = 1, Ks = 0.1, Kn = 0.01, and show
all their Ising Hamiltonians over time in Fig. 4.12. Much to our surprise, the speed in
which the values settle appears almost constant, regardless of the problem size. While this
does not necessarily mean they all converge to the global optima within the same time, this
preliminary study is encouraging as it confirms the massively parallel nature of the system.
For larger Ising problems, our Ising machine only needs to scale linearly in hardware size
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Fig. 4.12: Speed of energy minimization for problems of different sizes.

with the number of spins, but does not necessarily require much more time to reach a
solution.

4.3.3 A Graph Coloring Example

As mentioned in Sec. 4.1, many problems other than MAX-CUT can be mapped to the
Ising model [122] and solved by an oscillator-based Ising machine. Here we show an
example of a graph coloring problem — assigning four colors to the 51 states (including a
federal district) of America such that no two adjacent states have the same color.

Each state is represented as a vertex in the graph. When two states are adjacent, there is
an edge in the graph that connects the corresponding vertices. For every vertex i, we assign
four spins — siR, siG, siB and siY to represent its coloring scheme; when only one of them is
+1, the vertex is successfully colored as either red, green, blue or yellow. Then we write an
energy function H associated with these 4×51 = 204 spins as follows:

H =
n

∑
i
(2+ siR + siG + siB + siY )

2

+
nE

∑
(i, j)∈E

�
(1+ siR)(1+ s jR)+(1+ siG)(1+ s jG)+(1+ siB)(1+ s jB)+(1+ siY )(1+ s jY )

�
,

(4.27)

where n = 51 is the number of vertices, E represents the edge set, nE is the number of edges
and in this case equal to 220.11

The first term of H is a sum of squares never less than zero; it reaches zero only when
{siR, siG, siB, siY} contains three −1s and one +1 for every i, i.e., each state has a unique
color. The latter term is also a sum that is always greater than or equal to zero, as each
spin can only take a value in {−1, + 1}; it is zero when siX = s jX = +1 never occurs

11Hawaii and Alaska are considered adjacent such that their colors will be different in the map.
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for any edge connecting i and j, and for any color X ∈ {R, G, B, Y}, i.e., adjacent states
do not share the same color. Therefore, when H reaches its minimum value 0, the spin
configuration represents a valid coloring scheme — following the indices of the +1 spins
{i, X | siX =+1}, we can then assign color X to state i.

Fig. 4.13: Coupled oscillators coloring the states in the US map: (a) phases of oscillators evolve over time; (b)
energy function (4.27) decreases during the process; (c) the resulting US map coloring scheme.

Note that when expanding the sum of squares in (4.27), we can use the fact s2
iX ≡ 1 to

eliminate the square terms. This means H contains only products of two spins — modelled
by Ji js, and self terms — modelled by hi. These Ising coefficients can then be used to
determine the couplings in an oscillator-based Ising machine.

We simulated these 204 coupled oscillators and show the results in Fig. 4.13. In the
simulation, we kept K and Kn constant while ramping Ks up and down 5 times. We found
the Ising machine to be effective with this schedule as it could color the map successfully in
more than 50% of the random trials and return many different valid coloring schemes.

4.3.4 Hardware Prototypes

In Sec. 4.3.1 we have presented two hardware prototypes: a size-8 oscillator-based Ising
machine on a breadboard (OIM8) and a size-32 one on interconnected perfboards (OIM32)
in the context of solving small-sized MAX-CUT problems Here in this section we present
two more: OIM64 (Fig. 4.14) and OIM240 (Fig. 4.14).

Other than the differences in system size (number of oscillator spins), they have a few key
differences from OIM8 and OIM32.

◦ OIM64 and OIM240 are built on printed circuit broads (PCBs) as opposed to breadboards
or perfboards.
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Fig. 4.14: OIM64 Prototype. (a) photo; (b) diagram of connectivity.

◦ Instead of using fixed resistors or rotary potentiometers that require a lot of manual opera-
tion, Both OIM64 and OIM240 use digital potentiometers implemented using AD5206
ICs. Each IC supplies 6 channels of potentiometers, each with a 8-bit accuracy and can be
programmed using serial peripheral interface (SPI) communication to the IC.

◦ Because AD5206 ICs (and almost all other digital potentiometers) are designed primar-
ily for audio processing and do not have multi-MHz bandwidth, we reduced oscillator
frequency from 5MHz to 1MHz.

Fig. 4.15: OIM240 Prototype. (a) photo; (b) diagram of connectivity.

OIM64 connects 64 oscillators in a 8-by-8 2-D toroidal grid, and has 192 potentiometers
as couplings. Each coupling consists of one channel of AD5206 for setting its resistance,
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benchmark seed energy cut
J64 01.rud 8001 -88 40
J64 02.rud 8002 -82 42
J64 03.rud 8003 -92 46
J64 04.rud 8004 -98 40
J64 05.rud 8005 -82 44
J64 06.rud 8006 -90 52
J64 07.rud 8007 -84 48
J64 08.rud 8008 -94 56
J64 09.rud 8009 -88 48
J64 10.rud 8010 -86 44

Table 4.2: Best results measured from OIM64 on size-64 rudy-generated benchmarks. Example rudy com-
mand: rudy -toroidal grid 2D 8 8 -random 0 1 8001 -times 2 -plus -1
> J64 01.rud.

and a single pole double throw (SPDT) on-off-on switch for setting its polarity.12 Even
though it turned out rather inconvenient to “program” OIM64 to encode problems due to the
use of physical switches, we tried it on 10 randomly generated toroidal Ising grid instances,
achieving the global optimum for each one within the first 100 samples of solutions. As the
benchmarks are generated by rudy, they are readily reproducible. Tab. 4.2 lists the results
measured from OIM64, and the command that generates the benchmarks.

Fig. 4.16: Results from OIM240: (a) energy levels of 1000 measured solutions from OIM240, on a random
instance of size-240 Ising problem; (b) energy levels for 20 such random instances (showing the
distances to their respective global minimum).

In OIM240, we have improved the design to use the position of the potentiometer wiper
to switch polarity, thus eliminating the use of switches and making the coupling truly
programmable. On each PCB, we implemented 12 oscillators with a denser connectivity; 20
such PCBs were plugged into a motherboard through edge connectors, and interconnected
in a 4-by-5 toroidal grid, implementing a total of 240 oscillators with 1200 couplings.

12When the switch is in the middle “off” state, the resistor is disconnected and the coupling coefficient
becomes zero.
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The motherboard also distributes CLK, data lines, address lines for programming the 200
AD5206 ICs and for reading oscillator states, all controlled by an Arduino module on the
motherboard that communicates with a PC through USB. When operating OIM240, we
flip on the supply digitally, wait 1ms for oscillators to synchronize, then read back the
solution. Even with all the overhead from serial reading, solutions can be read back every
5ms. OIM240’s operation consumes ∼5W of power for all the oscillators and peripheral
circuitry, excluding only the LEDs.

We have tested OIM240 with many randomly generated Ising problems (with each of
the 1200 couplings randomly chosen from 0, -1, +1). As rudy does not support OIM240’s
chimera connectivity, we wrote our own random graph generator for the test cases. A typical
histogram for the energy levels of the measured solutions is shown in Fig. 4.16 (a). Note
that a random (trivial) solution has an energy around 0, whereas the best polynomial-time
algorithm (based on semidefinite programming SDP) guarantees to achieve 87.8% of the
global optimum. In comparison, results from OIM240 center around a very low energy,
and achieve the global optimum multiple times. We performed the same measurements for
20 different random Ising problems, with the distances of solutions from their respective
global optima13 shown in Fig. 4.16 (b). The fact that OIM240 is finding highly non-trivial
solutions indicates that it indeed physically implements a working Ising machine.

13We ran simulated annealing for a long time (1min) and for multiple times, then treated the best results as
global optima.
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Chapter 5

Design Tools: Berkeley Model and Algorithm
Prototyping Platform

Novel computing paradigms call for modern design tools. To use any new materials/de-
vices or circuits/systems for computing (such as those listed in Sec. 1.1), we need accurate
device models and advanced simulation algorithms. Good design tools should allow us to
prototype both of them easily and quickly.

But as we show in Sec. 5.1, existing simulation platforms are generally not suited for this
purpose. This situation has motivated us to develop our own design tools — MAPP: the
Berkeley Model and Algorithm Prototyping Platform [142, 143]. Sec. 5.2 introduces the
design and features of MAPP. Then in Sec. 5.3 and Sec. 5.4, we use examples to illustrate
MAPP’s capability for prototyping device models and simulation algorithms respectively.

In particular, MAPP has greatly facilitated our work in device modelling. With MAPP’s
flexible device development flow and its powerful circuit/system analyses, we are able
to develop robust models and valuable modelling methodologies. Prominent examples
include the models for devices with hysteresis (memristors, ESD protection devices, etc.)
[95, 96, 144] and devices from multiple physical domains (optical, spintronic, mechanical,
etc.) [145, 146]. These examples are illustrated in Sec. 5.3.

MAPP has been an enabling tool for our work on oscillator-based computing systems
[147]. The study and design of such systems (Chapter 3 and Chapter 4) rely on accurate
models for multi-domain oscillators (e.g., the electrical and mechanical ones used in Sec. 3.3)
and advanced algorithms for circuit/oscillator analysis (e.g., PPV extraction, Adlerization,
coupled oscillator simulation, etc. have been used throughout this dissertation). In Sec. 5.5,
we discuss in more detail how we have used MAPP in our work on oscillators, and how it can
continue facilitating the research and deployment of oscillator-based computing paradigms
in the future.
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5.1 Existing Open-source Simulators and Motivation for MAPP

Perhaps the most famous open-source simulator is the Berkeley SPICE [148, 149]. SPICE
and its derivatives, e.g., ngspice [150], are widely used and have long been the standard
platforms for modelling and simulation. But they are not well suited for quick and convenient
prototyping, primarily because of the outdated code structuring. In particular, simulation
algorithms in Berkeley SPICE are implemented in, and specialized for, every device model.
Such structuring makes it difficult to insert new devices or algorithms.

As an example, an excerpt from SPICE3’s implementation of a diode model is shown in
Fig. 5.1. The code shown has almost no direct relation to the diode’s equations; it relates
to the implementations of sensitivity AC, transient, etc., analyses written inside the device
model. In SPICE3, the complete diode implementation involves 27 different files, with 2704
lines of code in all. To add a new device model into SPICE and its derivatives, the model
developer needs to implement many analyses (such as DC operating point, DC sweep, AC,
transient (including time step control and convergence aids)), and tailor them based on the
device equations. This requires expert-level knowledge not only on the various analyses, but
also on the internal code structuring of SPICE. On the other hand, writing a new simulation
algorithm requires deep knowledge on the device equations too; a researcher prototyping a
new analysis will need to implement it in and tailor it for all the devices.

Fig. 5.1: Excerpt from SPICE3’s dioload.c, illustrating how every device contains code for every analysis.

While modern open-source post-SPICE circuit simulators, e.g., Gnucap [151] and Qucs
[152], have many advantages over SPICE and its derivatives, especially in code readability
and documentation, they continue to implement algorithms in devices, hence adding either
remains challenging. Xyce [153], a modern open source simulator, allows device models
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to be nearly independent of analysis types, alleviating the difficulty of developing models
and algorithms to a great extent. However, code development in Xyce requires considerable
facility with C++ programming.

This situation has long hindered research in modelling and simulation — the barrier to
entry for incorporating new devices or analyses is so high that few researchers are capable
of performing these tasks effectively. New ideas are often dropped simply because they
cannot be prototyped in a reasonable time using available open source simulators. This
long-standing barrier has been the main motivation behind our work on MAPP.

Another motivation for MAPP is to model and simulate multiphysics devices and systems,
for which standard electronic simulators available today are not suitable. SPICE and its
derivatives were designed primitively for electronics. Specifically, the circuit equations
are constructed in each device through “stamping”, based on hard-coded Modified Nodal
Analysis (MNA) [55] and current right-hand-side (RHS) formulation [154]. Post-SPICE
circuit simulators, such as Gnucap, Qucs, and Xyce, still carry with them many of the same
circuit modelling conventions, such as MNA, making them ill-equipped for multiphysics.

As a result, much research effort has been devoted to adapting open-source SPICE-like
simulators to support non-electronic systems, for MEMS [155], chemical reactions [156],
neural systems [157], river networks [158], etc.. These techniques essentially implement
“wrappers” around electronic simulators for other physical domains, and only support the
domain for which they are designed. Similarly, for commercial simulators, Verilog-A
provides an industry standard “wrapper” for modelling non-electronic systems. However,
although Verilog-A models can be written with variables from different “natures” and
disciplines [159], these variables have to be either potentials or flows, corresponding to
voltages and currents in the underlying circuit formulation in simulators, which still internally
use hard-coded MNA and circuit laws (KCLs/KVLs). For systems that don’t obey circuit
laws, e.g., optoelectronic [160] and spintronic [3] systems, models are often not intuitive to
write and require cumbersome connections in netlists. This difficulty is another motivation
behind MAPP.

5.2 Features of MAPP

From above, the primary goal of MAPP is to ease the process of developing new device
models and simulation algorithms, especially for those who do not have an extensive
background in compact modelling or experience coding algorithms in simulators. Towards
this end, we have chosen to implement MAPP entirely in MATLAB R�.1 MATLAB R� is
widely used today in scientific and engineering communities; its simple, mathematics-based
syntax makes programming accessible to a broad range of users. In addition, MATLAB R�

is interactive, as well as interpreted (i.e., there is no need for compilation), which makes it
1Later developments on MAPP have led to its reimplementation in python and C++. We intend to release

their implementations to be public too. In this section, we focus on our MATLAB R�-based implementation of
MAPP.
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well suited for quick prototyping and debugging. It has built-in support for vectors/matrices
(including sparse matrices) and comes with an exceptionally rich set of mathematical objects
and functions in linear algebra, statistics, Fourier analysis, optimization, bioinformatics,
etc., all useful for compact modelling and simulation. MATLAB R� also offers flexible,
easy-to-use graphics/visualization facilities which are valuable when exploring new devices
and analyses.

Another feature of MAPP is its code structuring [142, 161], which differs markedly
from that of SPICE. The modular code structure is what makes prototyping models and
algorithms fast and easy. As shown in Fig. 5.2, the structure of MAPP centers around a
mathematical abstraction — the Differential Algebraic Equation (DAE) [55]. DAE is well
suited for describing virtually any continuous-time dynamical systems; we have been using
it throughout this dissertation in the modelling of oscillators. The use of DAEs also enables
MAPP to model and simulate devices and systems from domains beyond just the electrical
in a natural way. Device equations are specified in a MATLAB R�-based format (ModSpec
[162]). With the DAE concept separating device equations and analysis algorithms, MAPP’s
ModSpec device models are unaware of what simulation algorithms there are that may use
them. This simplifies and speeds up the task of device model prototyping in MAPP.

Fig. 5.2: Components of MAPP.

DAEs are set up by equation engines, a concept unique to MAPP. An equation engine
combines network connectivity information (e.g., from a circuit netlist) with device model
equations in ModSpec to produce system-level DAEs. MAPP’s simulation algorithms are
aware only of DAE objects; they work by calling DAE accessor functions (collectively
called DAEAPI). This structuring enables developers to add new algorithms knowing only
the generic format of DAEs, without having to look into the details of device implementation
or equation formulation.

For several years before its public release, MAPP has been used internally in our group
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and has greatly facilitated our own research. For instance, we developed, implemented and
validated a new algorithm for distortion computation [163] using MAPP; this was done by
a fresh graduate student, new to the field, in about three weeks. By way of comparison,
the much more limited distortion capability in Berkeley SPICE3 [149] had taken over a
year to implement — by a graduate student already familiar with coding within SPICE3.
Implementing our new algorithm would have involved making so many changes to SPICE3,
and taken so much time and effort, that we would not even have tried; the idea would have
been lost. Not only has MAPP been useful for trying new ideas, it has also served as a key
vehicle for meaningful collaboration with other research groups. Furthermore, it has been
helpful for teaching simulation and modelling concepts, with preliminary versions used in
classes over several years.

MAPP has been released publicly in open source form [164], primarily under the GNU
Public License, with alternative licensing models also supported. The current release of
MAPP contains common electrical devices and standard simulation algorithms, including
DC, AC and transient analyses. Many more capabilities, including multi-physics device
and system modelling features, and additional analyses such as shooting, harmonic balance,
homotopy, stationary noise analysis, parameter sensitivity analysis, per-element distortion
analysis, model order reduction based on moment matching and Krylov subspace methods,
etc. [55], have already been prototyped in MAPP and will also be made available under
MAPP’s open source license. MAPP comes with a suite of examples at the device, system
and analysis levels. It leverages MATLAB R�’s help system to help new users get started,
and to provide more advanced users information about internal structuring and available
functions. It also includes an automatic testing system, designed to facilitate development
by quickly detecting problems as code is written or changed. All these features help make
MAPP ideal for rapid prototyping of device models and simulation algorithms.

5.3 Compact Modelling in MAPP

Fig. 5.3 depicts the device model prototyping flow in MAPP. We use a tunnel diode
example below to explain the steps that constitute this flow, illustrating its advantages and
novelties along the way.

Step 1.1: Writing the model in ModSpec:

Writing a model will normally start by specifying model equations in the ModSpec format
[162], which we illustrate using a tunnel diode model. Tunnel diodes [165] are a type of
two-terminal semiconductor device with I/V characteristics similar to the blue curve in
Fig. 5.5. We name the model’s two terminals p and n, as shown in Fig. 5.4. Associated with
these terminals are two electrical I/O properties: a branch voltage vpn and a branch current
ipn. In their simplest form, their relationship can be written as [165]

ipn =
d
dt

(C · vpn)+ Idiode + Itunnel + Iexcess, (5.1)
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Fig. 5.3: Device model prototyping flow in MAPP.

where C · vpn models the charge between the terminals. Idiode, Itunnel and Iexcess are the
regular diode current, tunnelling current and additional parasitic tunnelling current terms,
respectively:

Idiode = Is · exp(
vpn

Vt
−1), (5.2)

Itunnel =
Ip

Vp
· vpn · exp(−vpn −Vp

Vp
), (5.3)

Iexcess =
Iv

Vv
· vpn · exp(vpn −Vv). (5.4)

Fig. 5.4: Tunnel diode
schematic.

Fig. 5.5: Tunnel diode I/V curve.

The above equations involve the model parameters C, Is, Vt , Vp, Iv and Vv, which determine
the shape of the tunnel diode’s characteristic curve and its dynamics. (5.1) is a nonlinear
differential equation, with one of its I/Os, namely ipn, expressed explicitly – such differential
equations are at the core of all device compact models. ModSpec supports the following
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general system of equations for devices [162]:

�z =
d
dt
�qe(�x,�y)+�f e(�x,�y,�u), (5.5)

0 =
d
dt
�qi(�x,�y)+�f i(�x,�y,�u). (5.6)

The vector quantities�x and�z contain the device’s terminal I/Os:�z comprises those I/Os that
can be expressed explicitly (ipn for our tunnel diode example), while�x comprises those that
cannot (vpn for the tunnel diode). �y contains the model’s internal unknowns (e.g., internal
nodes), while�u provides a mechanism for specifying time-varying inputs within the device
(e.g., as in independent voltage or current sources). (Our tunnel diode example has no entries
in �y and �u.) The functions �qe, �f e, �qi and �f i define the differential and algebraic parts of
the model’s explicit and implicit equations. The tunnel diode (5.1) can be expressed in
ModSpec as

�f e(�x,�y,�u) = Idiode(�x)+ Itunnel(�x)+ Iexcess(�x),
�qe(�x,�y) =C ·�x,
�f i(�x,�y,�u) = [], �qi(�x,�y) = [],

(5.7)

with �x = [vpn], �y = [], �z = [ipn], �u = []. Issuing the command “help
ModSpec concepts” within MAPP provides more detailed explanations of these con-
cepts.

ModSpec objects in MAPP are simply MATLAB R� structures that contain a number
of datum and function-handle fields. “help ModSpecAPI” in MAPP provides detailed
documentation of these fields. Writing a ModSpec device model involves providing basic
model information (e.g., the number of terminals, internal nodes, which I/Os are explicitly
available, parameter names/values, etc.) as data fields, and writing the model functions�qe,
�f e,�qi, �f i using standard MATLAB R� syntax. For example, the tunnel diode model above is
described with the following ModSpec code:

1 function MOD = Tunnel_Diode_ModSpec()
2 MOD = ee_model();
3 MOD = add_to_ee_model(MOD,’terminals’, {’p’, ’n’});
4 MOD = add_to_ee_model(MOD,’explicit_outs’, {’ipn’});
5 MOD = add_to_ee_model(MOD,’parm’,{’Is’,1e-12,’Vt’,0.025});
6 MOD = add_to_ee_model(MOD,’parm’,{’Ip’,3e-5,’Vp’,0.05});
7 MOD = add_to_ee_model(MOD,’parm’,{’Iv’,3e-6,’Vv’,0.3});
8 MOD = add_to_ee_model(MOD,’parm’,{’C’, 1e-15});
9 MOD = add_to_ee_model(MOD,’fe’, @fe);

10 MOD = add_to_ee_model(MOD,’qe’, @qe);
11 MOD = finish_ee_model(MOD);
12 end
13

14 function out = fe(S)
15 v2struct(S);
16 I_diode = Is*(exp(vpn/Vt)-1);
17 I_tunnel = (Ip/Vp) * vpn * exp(-1/Vp * (vpn - Vp));
18 I_excess = (Iv/Vv) * vpn * exp(vpn - Vv);
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19 out = I_diode + I_tunnel + I_excess;
20 end
21

22 function out = qe(S)
23 v2struct(S);
24 out = C*vpn;
25 end

In Fig. 5.1, we have shown an excerpt from SPICE3’s implementation of a regular diode
model. Again, the whole model contains multiple files with every circuit analysis supported
by SPICE3 coded inside. In contrast, the 25 lines of ModSpec code above describe the
entire tunnel diode model; it works in every analysis in MAPP.

Although the tunnel diode example here is a simple two-terminal device, the ModSpec
format supports more general devices, with multiple terminals, internal nodes, etc., through
its vector equations (5.5) and (5.6). ModSpec also supports specifying parameters, noise
sources and other features (such as device-specific limiting and initialization) [55, 162].
Since the format itself makes modellers explicitly aware of important mathematical features
of the model (such as the numbers of equations and unknowns involved, which equations
are purely algebraic and which involve differential terms, etc.), many common modelling
errors are eliminated.

Another implication of the differential equation format (5.5) and (5.6) is that ModSpec
devices are not limited to any specific physical domain. Domain-specific attributes (e.g.,
voltage/current concepts for electrical devices, together with related constraints such as KCL
and KVL [55]) are layered on through a Network Interface Layer (NIL), an add-on structure
within ModSpec. Specifying several NILs for a single ModSpec device makes it easy to
model multi-physics devices, as illustrated in Fig. 5.6. Perhaps most importantly, writing a
device model in ModSpec enables immediate, standalone testing and model debugging in
MATLAB R�, without necessarily relying on any of MAPP’s analyses.

Fig. 5.6: ModSpec supports multiple physical domains in the same device through the concept of the Network
Interface Layer (NIL).
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Step 1.2: Testing the model standalone: The ModSpec format is a MATLAB R� structure and
contains executable function fields. It allows modellers to evaluate and visualize the model’s
functions right after it is coded in MAPP, without incorporation within a circuit. This is
useful for checking equation correctness and catching simple bugs at an early stage of the
model development flow. The functions tested at this point are the same ones called during
circuit simulation; since no translation or interpretation is involved, model development and
deployment more transparent and reliable. Existing Verilog-A based model development
flows and tools do not provide a standalone check capability, since they necessarily involve
translation/interpretation implemented in each simulator; the only way such a model can be
exercised by the user is by writing test circuits and running them in the simulator.

Continuing with the tunnel diode example, by evaluating �f e with different input voltages
�x = vpn, we can plot the I/V curve of the tunnel diode (shown in Fig. 5.7) without putting it
in a circuit. The ModSpec model also contains automatically-generated functions for the
derivatives of�qe, �f e,�qi, �f i, etc.; the derivatives are computed by MAPP’s automatic differ-
entiation package vecvalder [162] (“help MAPPautodiff” in MAPP). By evaluating
∂�f e/∂�x, we can calculate conductances and plot the G/V curve shown in Fig. 5.8.

Fig. 5.7: I/V curve generated from the tunnel diode
ModSpec model.

Fig. 5.8: G/V curve generated from the tunnel diode
ModSpec model.

Furthermore, MAPP provides a Model Exerciser feature that allows users to plot curves
like the ones in Fig. 5.7 and Fig. 5.8 with only a few lines of code. For example, we can
initiate the model exerciser, then plot the I/V and G/V curves conveniently with the following
MAPP code:

1 MEO = model_exerciser(Tunnel_Diode_ModSpec());
2 MEO.display(MEO); % displays available function names
3 % and their usage, including ’ipn’ and ’dipn_dvpn’
4 MEO.plot(’ipn’, 0:0.01:0.42, MEO);
5 MEO.plot(’dipn_dvpn’, 0:0.01:0.42, MEO);
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Step 1.3: Running the model within small circuits in MAPP: Once the model has been ex-
amined standalone, it can be tested further in small circuits that are simulated in MAPP.

Frequently, this step reveals many problems (e.g., bad numerics, unphysical results,
connectivity issues, etc.) in newly-written models, especially those with equations that
attempt to capture new physics. MAPP makes it easier to detect and address these problems
than any other modelling/simulation framework we are aware of. MAPP’s use of MATLAB R�

allows developers to debug their models effectively in an interactive coding environment.
Also, MAPP’s algorithm implementations are available to users as open source. They are
object-oriented, mathematically-based, with functions inside clearly documented. They are
meant to be easily accessible even by non-programmers. Thus debugging is more transparent
to users. By running a new model within the DC, AC and transient algorithms within MAPP,
most problems caused by the model for simulation can be detected.

For example, Fig. 5.9 shows a simple circuit where our previously introduced tunnel diode
model is biassed within its negative resistance region by a voltage source, and connected with
an RLC tank. With proper choice of parameters, the circuit becomes a negative-resistance
LC oscillator. The circuit (“netlist”) can itself be described in MAPP using MATLAB R�

commands (“help MAPPcktnetlists” for details). Running transient simulation in
MAPP (“help dot transient”) demonstrates self-sustaining oscillation in the circuit,
as illustrated in Fig. 5.10. From the standpoint of a device modeller, this provides important
verification that the model can run in transient simulation. If transient fails, or if its results
seem incorrect, the modeller gets to know immediately; the compact model’s equations
and/or their implementation can then be re-examined and corrected.

Fig. 5.9: Circuit schematic of an oscillator
made with a tunnel diode. Fig. 5.10: Transient simulation results from the tunnel diode

oscillator in Fig. 5.9.

Step 2: Deploying the model: Beyond providing facilities for testing models standalone
and in small circuits, MAPP offers convenient and versatile tools to help prepare them for
deployment. Most often, developers will wish to convert the ModSpec model into Verilog-A,
the current industry standard for compact modelling [166], for public release. The fact that
the model has already been tested and debugged on small circuits makes it far more likely
that a Verilog-A version, if written properly, will work well in simulation.
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The most likely cause for Verilog-A model problems at this step are discrepancies between
the Verilog-A model and its ModSpec version, which are not hard to introduce, even for
experienced compact modellers. To aid debugging, MAPP comes with a translator, VAPP
(the Berkeley Verilog-A Parser and Processor), that can translate Verilog-A to ModSpec.
Since ModSpec is an executable format, the translated ModSpec model can be conveniently
compared against the original one, both by evaluating model functions and by running
circuit simulations. If the two ModSpec models, one original, the other auto-translated from
Verilog-A, are found to be consistent, considerable confidence is generated that the released
Verilog-A model is correctly implemented. If not, debugging the auto-translated ModSpec
model in the interactive environment of MAPP makes it easy, typically, to locate problems
in the Verilog-A version.

Thus, not only does MAPP incorporate Verilog-A within its compact modelling flow, it
also adds convenient visualization, testing and debugging features that can speed develop-
ment and improve the quality of Verilog-A versions of a compact model.

In parallel with Verilog-A release, model developers can also directly release their Mod-
Spec models in MATLAB R�. Moreover, a C++ version of ModSpec is also available, using
which models can be compiled standalone to generate dynamically-loadable libraries that
conform to a C++ version of the ModSpec API.

Step 3: Simulating the model: Once the Verilog-A model is ready, it can be used by any
simulator that supports compact model descriptions in Verilog-A. For example, the circuit
in Fig. 5.9 was simulated in both Spectre and HSPICE. A snapshot of Spectre’s results is
shown in Fig. 5.11, while results from the HSPICE engine are plotted by MATLAB R� in
Fig. 5.12.

Furthermore, the C++ version of the ModSpec model can be simulated by any simulator
that supports the C++ ModSpec API. We have implemented such support in the simulator
Xyce [153] by writing a ModSpec interface within Xyce. This Xyce-ModSpec interface
consists of less than 1000 lines of C++ code, and can dynamically link any C++ ModSpec
model into Xyce. Fig. 5.12 overlays a Xyce simulation of the tunnel diode oscillator; a
C++ ModSpec version of the tunnel diode model was incorporated into Xyce using the
Xyce-ModSpec interface. We stress that results from the model, prototyped with MAPP,
are identical in all simulators we have tried (Fig. 5.12 and Fig. 5.11), with Verilog-A and
ModSpec deployments being consistent. The MAPP-based development flow we have
outlined makes it far easier and faster to achieve such consistency than previous flows.

The ModSpec model format, being relatively new, is not widely supported in simulators
yet. Nevertheless, its adoption can confer a number of advantages. Implementing a C++
ModSpec interface in a simulator is typically much easier than implementing Verilog-A
support; once the former is done, any ModSpec model can be immediately used by the
simulator by linking in its shared library dynamically. Supplying a model that conforms to
the open and full-featured ModSpec API improves compatibility across different simulators;
proprietary models can be deployed as pre-compiled dynamically-loadable binary libraries
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Fig. 5.11: Screenshot from Cadence�

Virtuoso�, showing Spectre
transient simulation results of the
circuit in Fig. 5.9.

Fig. 5.12: Transient results from HSPICE and Xyce of the
circuit in Fig. 5.9.

to help protect intellectual property (IP). Since ModSpec API functions can be called
directly, without relying on any particular simulator or analysis, deployed models can
tested standalone – another important features. These merits make ModSpec-based model
deployment a useful complement to Verilog-A releases.

The ModSpec format and MAPP’s model development flow are very useful in the study
of device modelling. The remainder of this section provides two examples — its use in
correctly modelling a type of nonlinear devices traditionally hard to model (Sec. 5.3.1), and
MAPP’s capability in modelling multiphysics devices/systems (Sec. 5.3.2).

5.3.1 Modelling Nonlinear Devices with Hysteresis

Many devices feature multiple stable equilibrium points. For example, in ESD protection
devices, a phenomenon known as “snapback” in the I–V characteristic curves allows the
devices to draw different amounts of current at the same input voltage, depending on the
occurrence of impact ionization [167]. Similarly, recently developed memristive devices
can be in either high- or low-resistance state when powered off, depending on the voltages
that have been applied to them before [168, 169]. In such devices with multistability,
sweeping their inputs up and down often generates hysteresis, i.e., a looping behavior in the
input–output (I–O) graph.

These device properties are often difficult to model properly, or understand intuitively.
In fact, compact model developers are often befuddled by them, resulting in a plethora of
problematic models. Fig. 5.13 shows a very simple example; similar code with if-else
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  1 real i;
  2 analog begin
  3     if V(br) < -1
  4         i = -1;
  5     if V(br) > +1
  6         i = +1;
  7     I(br) <+ i;
  8 end

V(br)

I(br)

+1-1 0

+1

-1

Fig. 5.13: Example of problematic Verilog-A code for modelling I–V hysteresis.

statements and memory states2 for modelling hysteresis can be found as part of several
published compact models for ESD clamps [172] and memristors [173, 174].

We argue that the tools and platforms model developers use contribute substantially to this
difficulty and confusion. Specifically, the way device models are implemented in SPICE-
like simulators encourages developers to modify simulation algorithms inside devices for
incorporating hysteresis. Similarly, although Verilog-A models are not written into the
simulators, the language provides many confusing constructs developers can use to modify
simulator behaviors [171, 175–177], enabling problematic code such as in Fig. 5.13. In
comparison, MAPP and ModSpec enforce the use of the correct DAE format for device
modelling; we show this correct way for modelling multistability and hysteresis in the
remainder of this example section. But first, we would like to clarify several common
confusions about these devices.

Firstly, although multistability normally implies that there will be a sudden jump in a
device’s response when sweeping its input, it does not mean there has to be discontinuity
in the model equations. It doesn’t justify the use of if-else statements either. In fact,
continuous and smooth model equations can also create abrupt changes in device responses;
designing such smooth equations is the key in modelling multistability and hysteresis
properly.

Moreover, although hysteresis implies time dependence between inputs and outputs, it
does not mean the device has to know the absolute time. Neither does it need to access the
input at which it was evaluated at the last time point. In fact, a properly written compact
model should not be specific to time-dependent simulation algorithms; it should run in
other analyses, such as DC, small signal AC, Harmonic Balance, etc., as well. Several
existing compact models [173, 178] incorporate I–V hysteresis by accessing $abstime
and implementing time integration inside; their use is limited to only transient simulation.
There are also Verilog-A models that use memory states for storing and accessing the input

2A memory state, or hidden state [170], in Verilog-A is a variable used without assigning a value. They
should be avoided in compact models [171].
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value in the previous device evaluation, limiting their robustness in PSS simulations [170].

Another misconception is that a model needs to be an analog behavior model [179] to
have hysteresis. This leads to the use of many simulator directives, e.g., @initial step,
analysis(), @cross(), $bound step(), etc., whereas these constructs are in fact
unnecessary for modelling hysteresis, and should be avoided [171, 177].

Multistability does not mean ill-posedness [180] — it does not mean there has to be a
region in the state space with zero derivatives to keep the device output from moving. While
some models [178, 181] use such “flat” regions for modelling multistability, this approach
results in singular circuit Jacobian matrices and undefined model behaviors in these regions.

In fact, the basic requirements on a device model with multistability and hysteresis are no
different from those on general compact models — the model should still be formulated
in the DAE format; it should use continuous/smooth functions and should be well posed
[95, 180, 182]. In Sec. 5.3.1.1, we show how this can be done in general by considering
a simple two-terminal device with hystersis. We show that by including an internal state
variable and designing its dynamics properly, I–V hysteresis can be included in the model.
Specifically, we show how a key property of the model — a single continuous/smooth
curve in the state space that contains all the steady state solutions, is connected to the
well-posedness of the model, and how a negative-sloped fold in the curve results in the
abrupt transitions observed in device responses. In the meanwhile, we also demonstrate
the usefulness of the homotopy analysis [183], which was originally developed mainly to
aid DC convergence, in characterizing and analyzing hysteretic devices. Then we write
this example model both in the ModSpec format in MAPP, and in the Verilog-A language.
For the Verilog-A implementation, we use the most consistently supported features of the
language, such that the model will run in all main-stream simulators, including Spectre R�,
HSPICE and Xyce.

Then in Sec. 5.3.1.2 and Sec. 5.3.1.3, we apply the insights gained from studying the
generic hysteretic model in Sec. 5.3.1.1 to more concrete device examples — ESD clamps
and memristive devices.

We would like to note that the models developed and studied in this section all consist
of relatively simple equations; the purpose is to illustrate the modelling methodology for
devices with multistability and hysteresis. More complex versions of them, with more
physical effects taken into consideration, are part of the future work.

5.3.1.1 How to Model Hysteresis Properly

The equation of a general two-terminal device without memory can be written as

I(t) = f (V (t)), (5.8)

where V (t) is the voltage across the device, I(t) the current through it. For example,
f (V (t)) = V (t)

R describes a simple linear resistor.
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For devices with I–V hysteresis, I(t) and V (t) cannot have a simple algebraic mapping like
(5.8). Instead, we introduce a state variable s(t) into (5.8) and rewrite the I–V relationship
as

I(t) = f1(V (t), s(t)). (5.9)

The dynamics of the internal state variable s(t) is governed by a differential equation:

d
dt

s(t) = f2(V (t), s(t)). (5.10)

In this formulation, we cannot directly calculate the current based on the voltage applied
to the device at a single time t; I(t) also depends on the value of s(t). On the other hand, at
time t, the value of s(t) is determined by the history of V (t) according to (5.10). Therefore,
we can think of the device as having internal “memory” of the history of its input. If we
choose the formula for f1 and f2 in (5.9) and (5.10) properly, as we sweep the input voltage,
hysteresis in the current becomes possible.

In the rest of this section, (5.9) and (5.10) serve as a model template for devices with
I–V hysteresis. To illustrate its use, we design a device example, namely “hys example”,
with functions f1 and f2 defined as follows.

f1(V (t), s(t)) =
V (t)

R
·0.5 · (s(t)+1). (5.11)

f2(V (t), s(t)) =
1
τ
(tanh(K · (V (t)+2 · s(t)))− s(t)) . (5.12)

The choice of f1 is easy to understand. If we assume s(t) is within (−1,1), incorporating
0.5 · (s(t)+1) as a factor modulates the conductance of the device between 0 and 1/R. The
choice of f2 determines the dynamics of s(t). And when f2 = 0, the corresponding (V , s)
pairs will show up as part of the DC solutions of circuits containing this device. Therefore, if
we visualize the values of f2 in a contour plot, such as in Fig. 5.14 (a), the curve representing
f2 = 0 is especially important. In (5.12), through the use of the tanh function plus a linear
term in s, we design the f2 = 0 curve to fold back in the middle, crossing the V = 0 axis
three times. In this way, when V is around 0, there are three possible values s can settle on,
all satisfying d

dt s(t) = f2 = 0. This multiple stability in state variable s is the foundation of
hysteresis found in the DC sweeps on the device.

Fig. 5.14 (b) illustrates how hysteresis takes place in DC sweeps. In Fig. 5.14 (b), we
divide the f2 = 0 curve into three parts: curve A and B have positive slopes while C has
a negative one. When we sweep V towards the right at a very slow speed to approximate
DC conditions, starting from a negative value left of V−, at the beginning, there is only
one possible DC solution of s. As we increase V , the (V , s) pair will move along curve A,
until A ends when V reaches V+. If V increases slightly beyond V+, multiple stability in s
disappears. (V , s) reaches the f2 > 0 region and s will grow until it reaches the B part of
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Fig. 5.14: Contour plot of f2 function in (5.12) and predicted s-V hysteresis curve based on the sign of f2.

the f2 = 0 curve. This shows up in the DC solutions as a sudden jump of s towards curve B.
Similarly, when we sweep V in the other direction starting from the right of V+, the (V , s)
pair will follow curve B, then have a sudden shift to A at V−. Because V+>V−, hysteresis
occurs in s when sweeping V , as illustrated in Fig. 5.14 (b). Since s modulates the device’s
conductance, there will also be hysteresis in the I–V relationship.

Note that the analysis of the origin of hysteresis does not involve absolute time. It is
the fold in the DC solution curve defined by f2(v, s) = 0 that generates multiple stable
equilibriums in the device, which then result in abrupt changes and hysteresis when sweeping
the device’s input. As mentioned earlier, s can be thought of as encoding the memory of
V from the past. Its multiple equilibriums reflect the different possible sets of history of V .
And the separation between V+ and V− in the DC curves ensures that no matter at what
speed we sweep V , there will always be hysteresis in the s–V relationship.

Model equations for hys example defined in (5.11) and (5.12) can be written as a
compact model into the MAPP using the ModSpec format. For hys example,

�f e(�x,�y,�u) =
�x
R
· (tanh(�y)+1), �qe(�x,�y) = 0,

�f i(�x,�y,�u) = tanh(K · (�x+2 ·�y))−�y, �qi(�x,�y) =−τ ·�y,
(5.13)

with�x = [V ],�y = [s],�z = [I],�u = [].

1 function MOD = hys_ModSpec()
2 MOD = ee_model();
3 MOD = add_to_ee_model(MOD, ’name’, ’hys’);
4 MOD = add_to_ee_model(MOD, ’terminals’, {’p’, ’n’});
5 MOD = add_to_ee_model(MOD, ’explicit_outs’, {’ipn’});
6 MOD = add_to_ee_model(MOD, ’internal_unks’, {’s’});
7 MOD = add_to_ee_model(MOD, ’implicit_eqn_names’, {’ds’});
8 MOD = add_to_ee_model(MOD, ’parms’, {’R’, 1e3, ...
9 ’K’, 1, ’tau’, 1e-3});

10 MOD = add_to_ee_model(MOD, ’fqei’, {@fe, @qe, @fi, @qi});
11 MOD = finish_ee_model(MOD);
12 end % hys_ModSpec
13

14 function out = fe(S)
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15 v2struct(S); % populates workspace with vpn/R/K/tau
16 out = vpn/R * 0.5 * (1+s); % ipn
17 end % fe
18

19 function out = qe(S)
20 out = 0; % ipn
21 end % qe
22

23 function out = fi(S)
24 v2struct(S);
25 out = tanh(K*(vpn + 2*s)) - s;
26 end % fi
27

28 function out = qi(S)
29 v2struct(S);
30 out = - tau * s;
31 end % qi

Listing 5.1: hys example ModSpec.m

We can enter the model information in (5.13) into MAPP by constructing a ModSpec ob-
ject MOD. The code in Listing 5.1 shows how to create this device model for hys example
entirely using MATLAB R� in MAPP.

We can then simulate the model specified with Listing 5.1 using MAPP in various circuit
analyses. Fig. 5.15 shows the results from DC sweep and transient simulation with input
voltage sweeping up and down. It confirms that hysteresis takes place in both I–V and s–V
relationships of the device.

(b) (c)

+
−

(a)

Fig. 5.15: Results from DC sweep and transient simulation in MAPP, showing hysteresis in both s and i1 when
sweeping the input voltage, in either type of the analyses.

When we sweep V back and forth, curve C, the one with a negative slope in Fig. 5.14
(b) never shows up in solutions. The reason is that, although it also consists of solutions
of f2 = 0, these solutions are not stable. With a little perturbation, whether from physical
noise or numerical error, a (V , s) point on curve C will move to either A or B. These unstable
solutions can be captured using the homotopy analysis [183]. Homotopy analysis can track
the DC solution curve in the state space. Results from homotopy analysis are shown in
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Fig. 5.16. We note that all the circuit’s DC solutions indeed form a smooth curve in the
state space. The side view of the 3-D plot displays curve C we have designed in our model
equation (5.12). The corresponding curve in the top view connects the two discontinuous
DC sweep curves in Fig. 5.15; it consists of all the unstable solutions in the I–V relationship.
These results from homotopy analysis provide us with important insights into the model.
They reveal that there is a single smooth and continuous DC solution curve in the state
space, which is an indicator of the well-posedness of the model. They also illustrate that it
is the fold in the smooth DC solution curve that has created the discontinuities in DC sweep
results. These insights are important for the proper modelling of hysteresis.

(a) (b) (c)

Fig. 5.16: Results from homotopy analysis in MAPP: (a) 3-D view of all the DC solutions; (b) top view of the
DC solutions shows the folding in the I–V characteristic curve, explaining the I–V hysteresis from
DC and transient voltage sweeps in Fig. 5.15; (c) side view of the DC solutions.

Moreover, the top view explains the use of internal state s for modelling hysteresis from
another angle. Without the internal state, it would be difficult if not impossible to write a
single equation describing the I–V relationship shown in Fig. 5.16 (b). With the help of s,
we can easily choose two simple model equations as (5.11) and (5.12), and the complex I–V
relationship forms naturally.

1 ‘include "disciplines.vams"
2 module hys(p, n);
3 inout p, n;
4 electrical p, n, ns;
5 parameter real R = 1e3 from (0:inf);
6 parameter real K = 1 from (0:inf);
7 parameter real tau = 1e-3 from (0:inf);
8 real s;
9

10 analog begin
11 s = V(ns, n);
12 I(p, n) <+ V(p, n)/R * 0.5 * (1+s);
13 I(ns, n) <+ tanh(K*(V(p, n) + 2*s)) - s;
14 I(ns, n) <+ ddt(-tau*s);
15 end
16 endmodule

Listing 5.2: hys example.va
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hys example can also be implemented in the Verilog-A language. Apart from the
differences in syntax, Verilog-A differs from ModSpec in one key aspect — the way
of handling internal unknowns and implicit equations. Verilog-A models a device with
an internal circuit topology, i.e., with internal nodes and branches defined just like in a
subcircuit. The variables in a Verilog-A model, the “sources” and “probes”, are potentials
and flows specified based on this topology. Coming from this subcircuit perspective, the
language doesn’t provide a straightforward way of dealing with general internal unknowns
and implicit equations inside the model, e.g., the state variable s and the equation (5.10) in
hys example.

As a result, an internal unknown is often declared as a general variable using the real
statement. idt(), $abstime and hard-coded time integration methods are often used for
describing implicit differential equations. These approaches should be avoided in modelling
[95, 171]. Instead, in this section, we show how to properly model both the state variable
s by considering it as a voltage, and the implicit equation by treating it as the KCL at an
internal node. As in Listing 5.2, we declare an internal branch, whose voltage represents
s. One end of the branch is an internal node that doesn’t connect to any other branches. In
this way, by contributing tanh(K · (V +2 · s))− s and ddt(-tau * s) both to this same
branch, the KCL at the internal node will enforce the implicit differential equation in (5.12).

Declaring s as a voltage is not the only way to model hys example in Verilog-A.
Depending on the physical nature of s, one can also use Verilog-A’s multiphysics support
and model it as a potential in other desciplines. One can also switch potential and flow by
defining s as a flow instead. The essence of our approach is to recognize that state variable s
is a circuit unknown, and thus should be modelled as a potential or flow in Verilog-A, for
the consistent support from different simulators in various circuit analyses.

5.3.1.2 Modelling ESD Snapback

ESD protection devices feature a phenomenon known as snapback — the current through
a device does not monotonically grow with the input voltage, but folds back within a certain
voltage range. This fold in the I–V graph can be observed in Transmission Line Pulse (TLP)
measurements. It physically means that, when the device is put in a circuit, as its input
voltage increases beyond a certain trigger point, namely Vt1, impact ionization begins to
happen and the amount of current through the device suddenly jumps. And the high current
can sustain itself when the voltage is swept back to Vt1; the device will turn “off” only at a
lower voltage when the current drops below a hold current IH , corresponding to a voltage
VIH normally smaller than Vt1. In between VIH and Vt1, the device can have different currents
depending on whether it is in the “on” or “off” state.

To incorporate such devices in circuit simulation, some specialized algorithms have been
developed [184, 185]. As for compact models, some physics-based ones leverage existing
models for BJTs and MOS devices and design subcircuits around them for approximating the
device structure and characteristics [186–188]. In comparison, behavioral models for ESD
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clamps [167, 189, 190] have much lower model complexity, which simplifies parameter
extraction significantly and provides more intuitions into the operation of the devices.
Among the available behavioral models, [167] is the first to be able to capture the time
dependence in the on/off transition in ESD protection devices. The model discussed in this
section is based on it.

From the discussion in Sec. 5.3.1.1, we note the similarity between the ESD snapback
behavior and the model template we have developed for a general hysteretic device. This
indicates that the multistability observed in ESD protection devices can also be modelled by
introducing a state variable s, and designing a fold in the steady state curve of its dynamics.
Adapted from [167], we model the I–V relationship as

I = Io f f + s · Ion, (5.14)

where Ion and Io f f are empirical equations for on-state and off-state currents:

Ion = Gon · (V −VH) , (5.15)

Io f f = IS · e−V/VT ·
�

1+
max(V,0)

VD
. (5.16)

Here, s is a state variable between 0 and 1; it is an indicator of whether impact ionization
is present. It should grow to 1 when V >Vt1, and fall back to 0 when V <VIH ; in between,
it can have multiple steady state values.

The dynamics of this state variable can be modelled in similar ways as discussed in
Sec. 5.3.1.1. In the formulation of the growth of s in (5.12), the steady state of s is naturally
limited to (−1, 1); we convert it to (0, 1) by using s∗ = 2 · (s− 0.5) in (5.12) instead.
Similarly, in (5.12), when the voltage across the device is swept up and down, the transition
voltage thresholds are around ±1; we bring these thresholds to Vt1 and VIH by first convert
V to V ∗ before putting it in (5.12).

V ∗ =
2

Vt1 −VIH

· (V −0.5 ·Vt1 −0.5 ·VIH ). (5.17)

Then the dynamic of the internal ionization indicator state is modelled as follows.

τ · d
dt

s = tanh(K · (V ∗+2 · s∗))− s∗. (5.18)

1 function MOD = ESD_snapback_ModSpec()
2 MOD = ee_model();
3 MOD = add_to_ee_model(MOD, ’name’, ’ESD snapback’);
4 MOD = add_to_ee_model(MOD, ’terminals’, {’p’, ’n’});
5 MOD = add_to_ee_model(MOD, ’explicit_outs’, {’ipn’});
6 MOD = add_to_ee_model(MOD, ’internal_unks’, {’s’});
7 MOD = add_to_ee_model(MOD, ’implicit_eqn_names’, {’ds’});
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8 MOD = add_to_ee_model(MOD, ’parms’, {’Gon’, 0.01,...
9 ’VH’, 16, ’VT1’, 48, ’VIH’, 26, ’Is’, 1e-12,...

10 ’VT’, 0.026, ’VD’, 0.7, ’K’, 1, ’tau’, 1e-9,...
11 ’C’, 1e-13, ’maxslope’, 1e15, ’smoothing’, 1e-10});
12 MOD = add_to_ee_model(MOD, ’fqei’, {@fe, @qe, @fi, @qi});
13 MOD = finish_ee_model(MOD);
14 end
15

16 function out = fe(S)
17 v2struct(S);
18 Ion = smoothclip(Gon*(vpn - VH), smoothing)...
19 - smoothclip(-Gon*VH, smoothing);
20 Ioff = Is * (1 - safeexp(-vpn/VT, maxslope))...
21 * sqrt(1 + max(vpn, 0)/VD);
22 out = Ioff + s * Ion; % ipn
23 end
24

25 function out = qe(S)
26 v2struct(S);
27 out = C * vpn;
28 end
29

30 function out = fi(S)
31 v2struct(S);
32 Vstar = 2*(vpn-0.5*VT1-0.5*VIH)/(VT1-VIH);
33 sstar = 2*(s-0.5);
34 out = tanh(K*(Vstar + 2*sstar)) - sstar;
35 end
36

37 function out = qi(S)
38 v2struct(S);
39 out = -tau*s;
40 end

Listing 5.3: ESD snapback ModSpec.m

1 ‘include "disciplines.vams"
2 module ESDsnapback(p, n);
3 inout p, n;
4 electrical p, n, ns;
5

6 parameter real Gon = 0.1 from (0:inf);
7 parameter real VH = 16 from (0:inf);
8 parameter real VT1 = 48 from (0:inf);
9 parameter real VIH = 26 from (0:inf);

10 parameter real Is = 1e-12 from (0:inf);
11 parameter real VT = 0.026 from (0:inf);
12 parameter real VD = 0.7 from (0:inf);
13 parameter real K = 1 from (0:inf);
14 parameter real C = 1e-13 from [0:inf);
15 parameter real tau = 1e-9 from (0:inf);
16 parameter real maxslope = 1e15 from (0:inf);
17 parameter real smoothing = 1e-10 from (0:inf);
18 real s, Ion, Ioff, Vstar, sstar;
19

20 analog function real smoothclip;
21 input x, smoothing;
22 real x, smoothing;
23 begin
24 smoothclip = 0.5*(sqrt(x*x + smoothing) + x);
25 end
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26 endfunction // smoothclip
27

28 analog begin
29 s = V(ns, n);
30 Ion = smoothclip(Gon*(V(p, n)-VH), smoothing)
31 - smoothclip(-Gon*VH, smoothing);
32 Ioff = Is * (1 - limexp(-V(p, n)/VT))
33 * sqrt(1 + max(V(p, n), 0)/VD);
34 Vstar = 2*(V(p, n)-0.5*VT1-0.5*VIH)/(VT1-VIH);
35 sstar = 2*(s-0.5);
36 I(p, n) <+ Ioff + s * Ion;
37 I(p, n) <+ ddt(C * V(p, n));
38 I(ns, n) <+ tanh(K*(Vstar + 2*sstar)) - sstar;
39 I(ns, n) <+ ddt(-tau*s);
40 end
41 endmodule

Listing 5.4: ESD snapback.va

This is essentially the same f2 function in the model template from Sec. 5.3.1.1, with its
steady state solutions forming a similar curve as in Fig. 5.14 with a similar negative-sloped
fold in the middle. The fold explains the multiple stable currents within (VIH , Vt1), as well
as the I–V hysteresis in the device. Equations (5.14) and (5.18) then constitute a behavioral
model for ESD protection devices.

(a) (b)V (V) V (V)

I (
A)

I (
A)

Fig. 5.17: Forward/backward DC, transient voltage sweep responses, and homotopy analysis results from the
ESD clamp model in Listing 5.3.

The code implementation in ModSpec and Verilog-A are shown in Listing 5.3 and
Listing 5.4 respectively. Fig. 5.17 shows simulation results from MAPP. Results from DC
and transient voltage sweeps are overlaid, demonstrating the hysteresis in the I–V graph;
homotopy results are plotted in Fig. 5.17 (b), confirming the fold we have designed in the
model’s steady state curve. Transient results in Fig. 5.17 (a) also show that ionization does
not happen instantaneously; same as [167], our model captures the time dependence of
impact ionization. Moreover, on top of [167], our model also captures the I–V hysteresis
in DC sweeps. And it does so without sacrificing the model’s smoothness or its robustness
in simulation. The model works well in various circuits. As an illustration, we simulate
an ESD clamp with the HBM configuration in Fig. 5.18. Transient results confirm that it
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Fig. 5.18: HBM test bench for an ESD clamp and transient simulation results for the voltage across the clamp.

implements a clamp at VIH ≈ 30V . Note that there is certain arbitrariness in the choice of
the equation for the dynamics of the internal state; we are simply reusing the equation in
(5.12) to illustrate the idea of modelling ESD snapback with a fold in the model’s steady
state solution curve. The transition points in (5.12) are not exactly ±1, and the exact value
of d/dt s is mainly controlled by the order of the time constant parameter τ . This choice is
partly due to the fact that there are currently no well-established formulae for the growth
rate of impact ionization. Making the ionization dynamics more physical is part of the future
research in the development of simulation-ready ESD clamp models.

5.3.1.3 RRAM and Memristor Models

Existing models for memristive devices (RRAMs and other memristors) all suffer from
issues related to mathematical ill-posedness. In particular, as noted in [95], they don’t
generate correct DC responses. Here, we show that the reason for the DC failure is indeed
the lack of a single DC solution curve in steady state. Guided by the model template, we
propose well-posed models for memristors. They preserve the accuracy and physics in
existing models, while fixing their model problems. The result is a collection of models
for various types of memristors, all working in all the common circuit analyses in major
simulators.

An RRAM consists of two metal electrodes and a thin oxide film separating them.
Depending on whether a conductive filament in the film connects the electrodes, the device
can be in either low- or high-resistance state. Therefore, the internal state variable for
RRAM models can be defined as the gap between the tip of the filament and the opposing
electrode. By filling in the model template in Sec. 5.3.1.1 and designing the f1 equation
for current calculation and f2 for gap dynamics, we will have compact models for RRAM
devices.

Among the existing models for RRAMs and other memristive devices, the formula for f1
are mostly consistent [21, 173, 174, 181]. In this section, we choose to use the f1 function
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in [173, 174]:

f1(V, gap) = I0 · exp(−gap
g0

) · sinh(
V
V0

), (5.19)

where I0, g0, V0 are fitting parameters.

For f2, we can adapt the gap growth formulation in [173, 174] and write it as

f2(V, gap) =−v0 · exp(−Ea

VT
) · sinh(

V · γ ·a0

tox ·VT
), (5.20)

where v0, Ea, a0 are fitting parameters, tox is the thickness of the oxide film, VT = k ·T/q is
the thermal voltage, and γ is the local field enhancement factor [191].

While there are small differences among the f2 functions in models developed by various
groups [21, 173, 174, 181], they differ mainly in the definitions of fitting parameters. A
property they all share is that the sign of f2 is the same as that of (−sinh(vtb)). Put in
other words, gap begins to decrease whenever vtb is positive, and vice versa, as illustrated
in Fig. 5.19 (a). While there is some physical truth to this statement, considering that an
RRAM device will eventually be destroyed if applied a constant voltage for an indefinite
amount of time, for the model to work in numerical simulation, the state variable gap has to
be bounded.
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Fig. 5.19: Illustration of several choices of f2 in RRAM model.

Ensuring that the upper and lower bounds for gap are always respected in simulation is
one major challenge for the compact modelling of RRAM devices. To address this challenge,
several approaches have been attempted in the existing RRAM compact models. Some
models [173, 174] directly use if-then-else statements on gap. They declare gap as
a real variable in Verilog-A, then directly enforce “if (gap < 0) gap = 0;”. This
practice excludes the model from the differential equation framework; they are not suitable
for simulation analyses. Another category of models multiply the f2 in (5.20) with a window
function [21, 178, 181] that sets d

dt gap = f2 = 0 when gap = maxGap and gap = minGap.
Such a window function is constructed either by directly using step() functions [21], or
by adapting from some smooth windows, such as Joglekar [192], Biolek and Prodromakis
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windows [193]. However, there are subtle and deeper problems with this approach. The
problems can be illustrated by analyzing the sign and zero-crossings of function f2 shown
in Fig. 5.19 (b). The f2 = 0 curves consist of three lines: the maxGap and minGap lines,
and the V = 0 line, with two intersections. Some parts of these lines, such as the ones
for (gap > maxGap), (V > 0, gap ≈ maxGap) and (V < 0, gap ≈ minGap), are model
artifacts rather than physical steady state solutions. The existence of multiple DC curves
can result in unphysical results in DC and transient simulations, and also cause convergence
issues for homotopy analysis [95].

In our model, we try to bound variable gap while keeping the DC solutions in a single
continuous curve, illustrated as the f2 = 0 curve in Fig. 5.19 (c). This is inspired by studying
the model template hys example in Sec. 5.3.1.1. The sign and zero-crossing of f2 for our
RRAM model are closely related to those of the f2 function for hys example. To construct
the desired f2 = 0 solution curve, we modify the original f2 in (5.20) by adding clipping
terms to it that are smooth and continuous. The clipping terms can also leave the values
from the original f2 function in (5.20) almost intact when minGap < gap < maxGap. The
code implementations in ModSpec and Verilog-A are shown in Listing 5.5 and Listing 5.6
respectively. Simulations in various simulators confirm that the models work robustly; some
transient simulation results from MAPP are provided in Fig. 5.20.

1 function MOD = RRAM_ModSpec()
2 MOD = ee_model();
3 MOD = add_to_ee_model(MOD, ’name’, ’RRAM’);
4 MOD = add_to_ee_model(MOD, ’terminals’, {’t’, ’b’});
5 MOD = add_to_ee_model(MOD, ’explicit_outs’, {’itb’});
6 MOD = add_to_ee_model(MOD, ’internal_unks’, {’Gap’});
7 MOD = add_to_ee_model(MOD, ’implicit_eqn_names’,...
8 {’dGap’});
9 MOD = add_to_ee_model(MOD, ’parms’, {’g0’, 0.25,...

10 ’V0’, 0.25, ’I0’, 1e-3, ’Vel0’, 10,...
11 ’Beta’, 0.8, ’gamma0’, 16, ’Ea’, 0.6,...
12 ’a0’, 0.25, ’tox’, 12});
13 MOD = add_to_ee_model(MOD, ’parms’, {’maxGap’, 1.7,...
14 ’minGap’, 0, ’maxslope’, 1e15,...
15 ’smoothing’, 1e-8, ’Kclip’, 50, ’GMIN’, 1e-12});
16 MOD = add_to_ee_model(MOD, ’fqei’, {@fe,@qe,@fi,@qi});
17 MOD = finish_ee_model(MOD);
18 end
19

20 function out = fe(S)
21 v2struct(S);
22 out = I0*safeexp(-Gap/g0, maxslope) ...
23 * safesinh(vtb/V0, maxslope) + GMIN*vtb;
24 end
25

26 function out = qe(S)
27 out = 0; % itb
28 end
29

30 function out = fi(S)
31 v2struct(S);
32 T = 300;
33 k = 1.3806226e-23; % Boltzmann’s Constant
34 q = 1.6021918e-19; % Electron Charge
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35 Gamma = gamma0 - Beta * Gapˆ3;
36 ddt_Gap = - Vel0 * exp(- q*Ea/k/T) ...
37 * safesinh(vtb*Gamma*a0/tox*q/k/T, maxslope);
38 Fw1 = smoothstep(minGap-Gap, smoothing);
39 Fw2 = smoothstep(Gap-maxGap, smoothing);
40 clip_minGap = (safeexp(Kclip*(minGap-Gap), maxslope) ...
41 - ddt_Gap) * Fw1;
42 clip_maxGap = (-safeexp(Kclip*(Gap-maxGap), maxslope) ...
43 - ddt_Gap) * Fw2;
44 out = ddt_Gap + clip_minGap + clip_maxGap;
45 end
46

47 function out = qi(S)
48 v2struct(S);
49 out = - 1e-9 * Gap;
50 end

Listing 5.5: RRAM ModSpec.m

1 ‘include "disciplines.vams"
2 ‘include "constants.vams"
3 module RRAM(t, b);
4 inout t, b;
5 electrical t, b, nGap;
6 parameter real g0 = 0.25 from (0:inf);
7 parameter real V0 = 0.25 from (0:inf);
8 parameter real Vel0 = 10 from (0:inf);
9 parameter real I0 = 1e-3 from (0:inf);

10 parameter real Beta = 0.8 from (0:inf);
11 parameter real gamma0 = 16 from (0:inf);
12 parameter real Ea = 0.6 from (0:inf);
13 parameter real a0 = 0.25 from (0:inf);
14 parameter real tox = 12 from (0:inf);
15

16 parameter real maxGap = 1.7 from (0:inf);
17 parameter real minGap = 0.0 from (0:inf);
18

19 parameter real smoothing = 1e-8 from (0:inf);
20 parameter real GMIN = 1e-12 from (0:inf);
21 parameter real Kclip = 50 from (0:inf);
22

23 real Gap, ddt_gap, Gamma, Fw1, Fw2;
24 real clip_minGap, clip_maxGap;
25

26 analog function real smoothstep;
27 input x, smoothing;
28 real x, smoothing;
29 begin
30 smoothstep = 0.5*(x/sqrt(x*x + smoothing)+1);
31 end
32 endfunction // smoothstep
33

34 analog begin
35 Gap = V(nGap, b);
36 I(t, b) <+ I0 * limexp(-Gap/g0) * sinh(V(t, b)/V0)
37 + GMIN*V(t, b);
38

39 Gamma = gamma0 - Beta * pow(Gap, 3);
40 ddt_gap = -Vel0 * exp(-Ea/$vt) * sinh(V(t, b)
41 * Gamma*a0/tox/$vt);
42
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43 Fw1 = smoothstep(minGap-Gap, smoothing);
44 Fw2 = smoothstep(Gap-maxGap, smoothing);
45 clip_minGap = (limexp(Kclip*(minGap-Gap))
46 - ddt_gap) * Fw1;
47 clip_maxGap = (-limexp(Kclip*(Gap-maxGap))
48 - ddt_gap) * Fw2;
49

50 I(nGap, b) <+ ddt_gap + clip_minGap + clip_maxGap;
51 I(nGap, b) <+ ddt(-1e-9*Gap);
52 end
53 endmodule

Listing 5.6: RRAM.va

(a) (b)

Fig. 5.20: Transient results on the circuit (same as in Fig. 5.15) with a voltage source connected to an RRAM
device.

While the intention of adding the clipping terms is to set up bounds for variable gap and
to construct DC solution curve in Fig. 5.19 (c), there is also some physical justification
to our approach. As a physical quantity, gap is indeed bounded by definition. Therefore,
d
dt gap = f2 cannot look like Fig. 5.19 (a) or (b) in reality. The f2 = 0 curves must have
the A and B parts labelled in Fig. 5.19 (c). One can think of the clipping terms as infinite
amount of resisting “force” to keep gap from decreasing below minGap, or increasing
beyond maxGap. The analogy is the modelling of MEMS switches, where the switching
beam’s position is often used as an internal state variable. This variable reaches its bound
when the switching beam hits the opposing electrode (often the substrate). The position
does not move further. The beam cannot move into the electrode because of the huge force
resisting it from causing any shape change in the structures. Similarly, in RRAM modelling,
if the variable gap represents it physical meaning accurately, one can expect such “forces” to
exist to make it a bounded quantity. This physics intuition matches well with our proposed
numerical technique of using fast growing exponential components to enforce the bounds.

Note that the DC curve for the RRAM model in Fig. 5.19 (c) does not bend with an
opposite slope in the middle; the model is at the “cusp” of hysteresis and multistability. This



CHAPTER 5. DESIGN TOOLS 110

(a)

-
-

-
+

+
+

+
+

-
+

+
+

+

+

++

++
-

(b)

-- -
-

+

+
+

+
+

-
+

+
+

+

- - --
-

++
+

+
+

++

A

B

C

-
--
--

-

- - -

+ +-
-

-
-

-

- -
-

- -
- -

+

Fig. 5.21: f2 function in VTEAM memristor model contains a flat region around V = 0 for the modelling of
DC hysteresis. The proper way is to design a single solution curve of f2 = 0 that folds back around
V = 0.

matches physical reality, since RRAMs are considered non-volatile memories only within a
certain data retention time. Apart from RRAMs, several compact models are designed for
other memristive devices, including those with true DC hysteresis. As mentioned above as
one of the confusions developers have for modelling hysteresis, they [178, 181] use regions
with flat f2 functions for modelling the multistability, resulting in the zeros-crossings of f2
forming an area shown in Fig. 5.21 (a). From the discussion in this section, to model the
same effect in these memristive devices while respecting the well-posedness of the model,
the steady state curve should resemble the one shown in Fig. 5.21 (b) instead. Once we have
this understanding, it becomes easy to design the f2 functions in more memristor models
[95] to bring about the desired DC solution curve as in Fig. 5.21 (b).

Thus, we have shown how the ModSpec format and MAPP enable us to come up with the
proper way of modelling multistability and hysteresis. The results are not just simulation-
ready well-posed models for ESD clamps and memristive devices, but also the general
modelling methodology that applies to a wide class of nonlinear devices.

5.3.2 Modelling Multiphysics Devices and Systems

MAPP is designed from the ground up to support multiphysics modelling and simulation.
Developers can write compact models for not only electronic devices, but also those from
optoelectronics, spintronics, microelectromechanical systems (MEMS), etc.. They can
also connect these device models into systems using multiphysics netlists and run various
simulation algorithms on them. In this section, we explain the key concepts and techniques
behind these modules, and illustrate the usage of them through examples.

The key enabling feature is, again, the use of DAE for modelling devices and systems.
DAEs are mathematical concepts describing the relations between unknowns using equations
and are thus not limited to electronics. As described in Sec. 5.2, ModSpec devices are
DAEs; device connectivity is specified using a flexible MATLAB R�-structure-based netlist;
an equation engine processes both of them to construct the system DAEs. As a result,
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MNA is implemented as only one of the equation engines. Sparse Tableu [55] analysis can
be applied by swapping just the equation engine part while keeping devices and netlists
unchanged [143].

From above, the support for multiphysics in MAPP consists of three parts: ModSpec
models for multiphysics devices, circuit/system netlist with multi-domain connections, and
an equation engine to process them.

At the device level, a ModSpec model includes an array of NILs for encoding I/O
information from multiple physical domains within a single device model.

ModSpec Core

Equations: 

I/Os:         , 
                  , 

eeNIL

thermalNIL

I/O name       I/O type          I/O nodes
current
voltage

I/O name       I/O type          I/O nodes
power flow

temperature

Fig. 5.22: Thermistor model with both electrical and thermal nodes. eeNIL and thermalNIL associate the I/Os
in the ModSpec equations with their physical meanings.

+

− +

−

R1V1
Rth

VambCth

(a) (b)

Fig. 5.23: Multiphysics circuit with a thermistor and its transient simulation results

As an example, Fig. 5.22 illustrates a thermistor model, where the core model spec-
ifies equations using variables vpn, ipn, temp t and pwr t. Two NILs, eeNIL and
thermalNIL, are attached to this model to inform the equation engines of the physi-
cal meanings of these variables — branch voltage, current, temperature and power flow.

Such a model can be connected to a system such as the one in Fig. 5.23 by specifying a
multiphysics netlist, e.g., Fig. 5.24, completely using the MATLAB R�language.

To support these multiphysics devices and netlists in MAPP, the key technique, as illus-
trated in Fig. 5.25, is to separate the components that are dependent on physical domains
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Fig. 5.24: Code for constructing a multiphysics netlist for system in Fig. 5.23.

from those that are not. Specifically, we design a master equation engine to handle all the
structures not associated with physical domains, e.g., parameters, all the non-I/O unknowns,
implicit equations, etc.. Then it uses components named NIL interfaces to handle the
domain-specific parts of the devices, i.e., the I/Os. More specifically, NIL interfaces set
up the relations between device’s I/Os and system-level unknowns. Each NIL interface is
an add-on component to the master equation engine, designed to handle the NIL in one
physical domain. In this way, MAPP can be conveniently extended to support new physical
disciplines, simply by adding new types of NILs at the device level, and the corresponding
NIL interfaces for the master equation engine, without changing the device’s ModSpec
format or simulation algorithms.

eeNIL

ModSpec model

Master Equation Engine

opticalNIL

thermalNIL

N
et

lis
t

eeNIL
opticalNIL

thermalNIL

ModSpec model
eeNIL_interface

opticalNIL_interface

thermalNIL_interface

Fig. 5.25: MAPP uses a master equation engine with multiple NIL interfaces to construct system-level DAEs
from device models and netlist structure.

With the help of the master equation engine and NIL interfaces, MAPP now supports
all the “natures” defined in Verilog-A’s standard disciplines.vams file, including
disciplines labelled as electrical, magnetic, thermal, kinematic, etc.. All these disciplines are
modelled with potentials and flows.

MAPP’s multiphysics modelling and simulation capabilities are considerably more general
and flexible than those of Verilog-A. Specifically, systems unknowns do not have to be
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+

−

NM-FM

FM-NM

Fig. 5.26: DC sweep on a spin valve system in MAPP. The network contains both electrical and spintronic
connections (blue wires). Device diagram is adapted from [3].

domain NILs I/Os network connectivity

optical NIL incoming/outgoing waves (vector
of complex numbers)

two optical ports are connected at each node, the incoming
waves on one side are equal to the outgoing waves on the
other, and vice-versa.

spin NIL spin voltages and currents (size-3
vectors) spin “KCLs” and “KVLs” in vector form

chemical NIL concentrations (C) and reaction
rates (R) (scalars)

node connections represent concentrations of reactants; the
sum of reaction rates at a node is equal to the change in cor-
responding concentration, i.e., ∑R =− d

dt C.

Table 5.1: NIL descriptions of some selected physical domains supported in MAPP.

potentials or flows. Through the use of Network Interface Layers (NILs) [162] in ModSpec,
we allow users to define physical quantities that are suitable and intuitive in their underlying
physical domains, especially where circuit laws are not applicable. By writing NIL interfaces
for a master equation engine, users can also define system connections, i.e., they specify the
multiphysics equivalents of circuit laws by controlling how DAEs are constructed. These
interfaces can be easily written by implementing a few API functions that specify how to
link NIL quantities to system-level DAE unknowns and equations; they are not limited to
using only MNA. Moreover, we leverage MATLAB R�’s support for complex numbers and
vectors in MAPP, simplifying system connections significantly compared with Verilog-A
implementations [3, 160].

Tab. 5.1 summarizes MAPP’s formulations for some selected physical domains. Among
them, optical connections are modelled with incoming/outgoing waves, which can be
thought of as time-varying phasors capturing the modulated envelopes of light. Variables
at each optical ports consist of vectors of complex numbers representing these phasors
at all simulation frequencies. There is no direct circuit analogy to this formulation. In
chemical reaction networks, each node represents the concentration of a reactant. “KCL”
at a node involves both the summation of reaction rates and a differential term for the
node concentration. Using our infrastructure, such “differential-KCLs” can be defined in
MAPP conveniently. To illustrate the simulation capabilities of MAPP on these multiphysics
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Fig. 5.27: Diagrams of a 2-to-1 chemical reaction, a network containing three of such reactions. Transient
simulations with different initial concentrations (plotted in 3-D) show that the reaction network
constitutes a chemical oscillator.

systems, we run DC and transient analyses on a spin valve and a chemical oscillator in
MAPP, and show the results in Fig. 5.26 and Fig. 5.27 respectively.

5.4 Prototyping Simulation Algorithms in MAPP

MAPP comes with features that also make prototyping simulation algorithms quick and
convenient:

◦ Simulation algorithms in MAPP rely only on the API of MAPP’s DAE objects, as noted
earlier; this API does not expose any details of device models or network formulations.
This makes it possible, and easy, to write powerful algorithms that apply immediately
to any system or device. Device models and Equation Engine code do not need to be
modified, or even consulted, when algorithms are written or updated. Various ad-hoc
concepts used in traditional circuit simulators, such as SPICE’s Norton-Theorem-based
RHS [154], companion equivalent circuits, etc., are eliminated, making algorithms much
more simple and elegant.

◦ All simulation algorithms in MAPP are object-oriented. The encapsulation induced by
such object-oriented implementations enforces modularity, improves code readability
and simplifies code documentation. It also enables inheritance between analyses, i.e.,
developers of higher-level algorithms can easily leverage more basic ones using only a
few lines of code. Fig. 5.28 depicts how MAPP’s simulation algorithms are structured —
starting from the basic numerical routines shown on the top of Fig. 5.28, many algorithms,
from the standard DC, AC, transient analyses to more advanced ones, build on others
hierarchically. This feature greatly reduces the time and trouble it takes to develop or
prototype advanced new algorithms, allowing MAPP to easily support more of them
than most other simulators. Over the years, we have prototyped and reproduced many
simulation algorithms in our group [163, 194–196].

To illustrate these features of MAPP, we use the shooting algorithm as an example. The
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Fig. 5.28: Structuring of MAPP’s simulation algorithms.

shooting method (henceforth just “shooting”) [197] is a numerical algorithm for finding
Periodic Steady-State (PSS) responses of systems. Shooting poses the problem of finding a
periodic response as that of finding an (initially unknown) initial condition that evolves to
itself after one period. In other words, denoting the initial condition by�x0, shooting can be
written as

�g(�x0)��x(T )−�x0 =�0, (5.21)

where�x(t) is the solution of the system DAE with initial condition�x0, i.e.,�x(t) satisfies

d
dt
�q(�x(t))+�f (�x(t),�u(t)) =�0, (5.22)

and �x(0) =�x0. (5.23)

�g(�x0) is an algebraic function of�x0; as such, it can be solved using numerical algorithms
for nonlinear algebraic systems, such as the Newton-Raphson (NR) method [55]. Since
evaluating�g(·) at each NR step involves running a transient simulation, shooting, in essence,
reduces the PSS problem (a boundary value problem) to a few initial value problems.

Algorithm 1, showing pseudo-code for MAPP’s implementation of shooting, further
highlights how algorithm prototyping is quick and convenient in MAPP:

◦ Shooting in MAPP is formulated using DAEs and is unrelated to device models or physical
domains.

◦ Shooting requires running transient simulations. But since algorithm implementations in
MAPP are object-oriented, transient analysis does not need to be re-implemented within
shooting. Instead, a transient analysis object is initiated and its methods called. Likewise,
shooting itself is also written in an object-oriented manner, with its numerical routines
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Algorithm 1 Shooting Algorithm in MAPP (pseudo-code)
shootObj = shoot(DAE): // constructor
1: shootObj.DAE = DAE;
2: shootObj.tranObj = LMS(DAE); // transient simulation object
3: set up member functions: .solve, .g, and .J;
4: return shootObj;

shootObj.solve (initguess, T):
x0 ← NR(@g, @J, initguess);
shootSols = tranObj.solve(x0, 0, T);
return shootSols;

shootObj.g (x0):
tranSols = tranObj.solve(x0, 0, T);
return gout = tranSols(:, n) - x0;

shootObj.J (x0):
tranSols = tranObj.solve(x0, 0, T);
Ci pre = DAE.dq dx(x0);
M = eye(n);
for i = 2:n do

x = tranSols(:, i); u = inputs(:, i);
Ci = DAE.dq dx(x); Gi = DAE.df dx(x, u);
M = (Ci + (tpts(i) - tpts(i-1)) * Gi) \ Ci pre * M;
Ci pre = Ci;

end for
return Jout = M - eye(n);

encapsulated in its member functions. So other analyses, if needed, can also internally use
shooting conveniently.

◦ MAPP’s implementation of shooting leverages MATLAB’s vector (line 5 in shootObj.J)
and sparse matrix (line 7 in shootObj.J) data types and associated functions. This makes
the actual code almost as simple as the pseudo-code shown in Algorithm 1.

Shooting was implemented, debugged and tested on a number of circuits in about a
week by one of the authors. By way of comparison, it had taken a bright, hard-working
graduate student two years to implement shooting in SPICE3 [198]; the implementation
was not widely released because the student was unable to debug it satisfactorily before he
graduated [199]. In fact, more than twenty years later, shooting is still not widely available
in open-source simulators today.

5.5 Using MAPP for Oscillator-based Computation

The design and analysis of oscillator-based systems has always been challenging. In par-
ticular, standard SPICE transient simulation is often not well suited for capturing oscillator
phases accurately. Periodic steady state (PSS) analyses, often only available in commercial
simulators, still lack the ability to predict injection locking efficiently. Such analysis is
non-trivial for a single oscillator, and becomes much more difficult for coupled oscillator
systems.

MAPP has been an indispensable tool in our study of oscillator-based computational
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systems. It provides us with efficient simulation capabilities and convenient visualization
facilities — both are essential to the realization of our systems. Specifically, it helps the
design of oscillator-based computational systems in the following ways.

◦ Extraction of oscillator PPVs. Sec. 5.4 uses the shooting method as an example to
show how advanced simulation algorithms can be conveniently implemented in MAPP.
Shooting is one method for calculating an oscillator’s PSS and is thus immediately
useful for oscillator analysis. MAPP has both the shooting method and harmonic
balance (including the multi-tone version) available. Building on them, we have also
implemented in MAPP both frequency-domain [59] and time-domain [58] methods
to calculate an oscillator’s PPV numerically. The numerical calculation of PPV is the
foundation of phase-base analyses, and is not commonly available in existing simulators.

◦ Adlerization of oscillator phase-macromodels. MAPP can also be used to calculate
the GAE model for analyzing injection locking, by numerically integrate over the t2
dimension in (2.15). Based on GAE equations, especially the phase interference function,
MAPP can also construct the generalized Kuramoto model for coupled oscillators in the
analysis of an OIM system.

◦ Prediction of SHIL. Based on the GAE model, MAPP can numerically predict whether
IL and SHIL will happen, and when it does, estimate the locking range and locking
phase error.

Fig. 5.29: PPVs extracted by the design tools from
ring oscillator latches with 2N1P and 1N1P
inverters.

Fig. 5.30: Locking range returned by the design tools
on ring oscillator latches with 2N1P and
1N1P inverters.

MAPP performs such analysis by calculating the DC operating point of the GAE. When
operating points exist, they represent the occurrence of injection locking. And when
such DC analysis is performed while we vary the design parameters, the locking range
can be obtained. As an example, we apply it to the ring oscillator latch used in Sec. 3.3.1,
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and compare the PPV (Fig. 5.29) and SHIL locking range (Fig. 5.30) [147]. From the
numerical results, we can easily choose the better design with the larger locking range.

Moreover, the GAE DC solutions gained from MAPP also tell us the locking phase error
within the locking range [147] — the difference between the ideal locking phase Δφ̂ i
assuming no variability in the oscillator’s frequency and the oscillator’s actual locked
phase Δφi. As an example, Fig. 5.31 shows the results obtained on the three-stage ring
oscillator used in Sec. 3.3.1.

Fig. 5.31: Locking phase errors |Δφ̂ i −Δφi| within the locking range.

◦ Full System Transient Simulation with Phase Macromodels
In the operation of a phase logic FSM, when the logic values of inputs change over
time, i.e., their phase differences with respect to the reference signal shift back and forth
between 0 and 180◦, designers need to know whether the system is indeed performing
computation properly with phase-based logic.

For this purpose, traditional transient simulation can be performed on the DAE of the
full system:

d
dt
�qfull(�xfull)+�f full(�xfull)+�bfull(t) =�0. (5.24)

However, if we separate system unknowns �xfull into �xosci and �xother, where �xosci , i =
1,2, · · · ,k represents unknowns inside each of the k oscillator latches, we know �xosci

can be approximated well with its steady state response�xosci(s) and its phase αi as in
((2.2)). As αi is unbounded in simulation, similar to the formulation of GAE, we use
the locking phase error Δφi = f0t + f0αi(t)− f1t instead, such that

�xosci(t) =�xosci(s)(( f1t +Δφi(t))/ f0), (5.25)
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Fig. 5.32: Transient simulation of the serial adder in Fig. 3.11 with oscillator latches replaced by their PPV
macromodels. Δφ = 0.5 indicates opposite phase w.r.t. REF, thus encoding phase-based 0, while
Δφ = 1 encodes 1.

where Δφi is governed by

d
dt

Δφi(t) = f0 − f1 + f0 ·�vT
i (T1Δφi(t)+ t) ·�bi(t), (5.26)

where external�bi(t) can be calculated from�xother based on circuit connections.

The formulation in (5.26) is slightly different from the GAE in ((2.20)) in that the fast
varying mode is preserved instead of averaged out [81]. In this way, the full system can
be formulated as

d
dt
�q�(�xother,Δ�φ)+�f �(�xother,Δ�φ)+�b(t) =�0, (5.27)

where Δ�φ represents all Δφis. For each oscillator latch, all its voltage and current
unknowns are now represented by only one scalar. Therefore, the system size is
reduced.

Instead of formulating (5.27) analytically, our design tools allow users to identify
subcircuits that describe oscillator latches and replace them with their PPV macromodels
as in (5.26). Since the PPV of the latch has already been calculated in previous stages
of design, little computation is introduced in reformulating the full system into (5.27).
Such reformulation with PPV macromodels results in an equation system not only with
less unknowns, but also with unknowns that are more directly related to the phase
operation of the system.

As an example of this full-system analysis, we simulate the operation of the serial adder
in Fig. 3.11 while replacing the two oscillator latches with their phase-domain models.
From the transient simulation results in Fig. 5.32, we can observe the phase transitions
of the two latches when the adder is working, showing how the slave latch follows the
master’s phase in the flip-flop.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we introduced novel schemes of computing using coupled oscillator
systems, as well as the analyses and tools that have made them possible.

We showed that oscillators can be used to implement phase-encoded finite state machines
for general-purpose Boolean computation, extending a scheme originally proposed by Goto
and von Neumann in the 1950s. We also demonstrated oscillator-based Ising machines,
suitable for solving combinatorial optimization problems efficiently. We presented the
mechanisms of our schemes, explored their practical design, and demonstrated working
hardware prototypes as proof of concept. These new paradigms greatly expanded the scope
of oscillator-based computing.

The ideas we presented are original and innovative. To the best of our knowledge, our
work demonstrated the world’s first oscillator-based finite state machine, and the first
practical Ising machine based on self-sustaining oscillators. Moreover, our exploration
of non-electronic oscillators resulted in the first demonstration of sub-harmonic injection
locking in mechanical metronomes, which has led to the first oscillator-based mechanical
memory with phase-based encoding.
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6.2 Future Work

We have also identified several directions for future work/research.

◦ Integrated circuits (ICs) for PHLOGON and OIM. One immediate direction is to
scale up our proof-of-concept implementations. As our existing prototypes use standard
CMOS circuit technology, moving their implementations from breadboards/PCBs onto
ICs does not represent a significant technological challenge. On ICs, Ising machines
with tens of thousands or even a hundred thousand oscillator spins can significantly
surpass any existing Ising machine in scale. Such Ising chips can be directly plugged
into computers (through interfaces such as USB and PCI); CPUs can offload previously
intractable Ising problems onto them and get high-quality solutions with ultra-low power
consumption and high speed. These chips can be useful both for data centers and for
edge computing on smartphones and IoT devices. This future direction is a low-hanging
fruit with immediate wide-ranging impacts.

◦ Nano-oscillator-based implementations of PHLOGON and OIM. As mentioned in
this dissertation, the mechanism for the proposed systems is general for all oscillators,
and the implementations are not limited to using CMOS technology. Various nano-
oscillators, implemented with optics, MEMS, spintronics, memristive devices, etc.,
have potential for further improving the speed, compactness and energy efficiency of
our computational systems. We expect to soon see efforts on the demonstration of
Ising machines using spin-torque nano-oscillators, memristive-device-based relaxation
oscillators, etc., from the device physics community. While such small-scale hardware
demonstrations may be around the corner, their practical large-scale implementation and
deployment remain a challenge, due to the progress of the underlying device technology.
In any scenario, the device compact modelling flow, the multiphysics capabilities, and
the oscillator-specific analyses in our design tool MAPP can greatly facilitate this
exploration in the future.

◦ Detailed design trade-offs for PHLOGON. Our preliminary work studies these trade-
offs using circuit theory and simulation analysis; hardware-based validations and explo-
rations are needed as future work.

◦ Scaling analysis for OIM. Our Ising machines do not solve NP-hard problems in
polynomial time — no Ising machines do. Preliminary results show that even though the
time to solution does not increase much with the problem size, in order to achieve the
global optimum, the number of samples needed from the machines grows exponentially.
How the solution quality degrades with problem size, and how by allowing more time in
OIM’s annealing schedule does the quality improve, are both questions that require more
in-depth analysis. Also, it is worth noting that in most real-world scenarios, achieving
the global optimum of optimization problems is not necessary; it is usually good enough
to get high-quality local optima very fast. As a physical system directly performing the
optimization, OIM is naturally suitable for this purpose.



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 122

◦ Maintaining the open-source releases of PHLOGON, OIM and MAPP. We have
always strived to make our work publicly available under open-source licenses for
reproducible research. Over the years, we have been releasing our code and hardware
designs by hosting snapshots on our websites, setting up our own GitLab servers, and
most recently using GitHub repositories. Maintaining the public releases for PHLOGON,
OIM and MAPP is also an important part of future work.



BIBLIOGRAPHY 123

Bibliography

[1] A. Marandi, Z. Wang, K. Takata, R. L. Byer and Y. Yamamoto. Network of time-
multiplexed optical parametric oscillators as a coherent Ising machine. Nature
Photonics, 8(12):937–942, 2014.

[2] C. Helmberg, F. Rendl. A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization, 10(3):673–696, 2000.

[3] K. Camsari, S. Ganguly, and S. Datta. Modular approach to spintronics. Scientific
reports, 5.

[4] G. E. Moore et al. Cramming More Components onto Integrated Circuits, 1965.

[5] L. Wilson. International Technology Roadmap for Semiconductors (ITRS). 2013.

[6] C. Hu. Modern semiconductor devices for integrated circuits, volume 2. Prentice
Hall Upper Saddle River, NJ, 2010.

[7] H.L. Hennessy, D.A. Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

[8] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson,
T.-J. King, J. Bokor, and C. Hu. FinFET—a Self-aligned Double-gate MOSFET
Scalable to 20 nm. IEEE Transactions on Electron Devices, 47(12):2320–2325, 2000.

[9] N. Singh, A. Agarwal, L.K. Bera, T.Y Liow, R. Yang, S.C. Rustagi, C.H. Tung, R.
Kumar, G.Q. Lo, N. Balasubramanian, and others. High-performance fully depleted
silicon nanowire (diameter/spl les/5 nm) gate-all-around CMOS devices. IEEE
Electron Device Letters, 27(5):383–386, 2006.

[10] N.P. Jouppi, C. and Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.
Bhatia, N. Boden, A.Borchers, and others. In-datacenter performance analysis of a
tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pages 1–12. IEEE, 2017.

[11] J.M. Shalf, R. Leland. Computing beyond moore’s law. Computer, 48(SAND-2015-
8039J), 2015.

[12] C. Sun, M.T. Wade, Y. Lee, and J.S. Orcutt, L. Alloatti, M.S. Georgas, A.S. Water-
man,J.M. Shainline, R.R. Avizienis, S. Lin, and others. Single-chip microprocessor
that communicates directly using light. Nature, 528(7583):534, 2015.

[13] S. Tehrani, J.M. Slaughter, E. Chen, M. Durlam, J. Shi, M. DeHerren. Progress and
outlook for MRAM technology. IEEE Transactions on Magnetics, 35(5):2814–2819,
1999.



BIBLIOGRAPHY 124

[14] K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, et al. A
roadmap for graphene. Nature, 490(7419):192–200, 2012.

[15] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Chen, H.-S. P. Wong, and S. Mitra.
Carbon nanotube computer. Nature, 501(7468):526–530, 2013.

[16] J. Deng, K. Ryu, C. Zhou, et al. Carbon nanotube transistor circuits: Circuit-level
performance benchmarking and design options for living with imperfections. In
2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers,
pages 70–588, 2007.

[17] A. Singh, H. A. Zeineddine, A. Aziz, S. Vishwanath, et al. A heterogeneous CMOS-
CNT architecture utilizing novel coding of boolean functions. In Proceedings of the
2007 IEEE International Symposium on Nanoscale Architectures, pages 15–20. IEEE
Computer Society, 2007.

[18] H. Arsenault. Optical processing and computing. Elsevier, 2012.

[19] B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta. Proposal for an all-spin logic
device with built-in memory. Nature nanotechnology, 5(4):266–270, 2010.

[20] A.K. Yadav, K.X. Nguyen, Z. Hong, P. Garcı́a-Fernández, P. Aguado-Puente, C.T.
Nelson, S. Das, B. Prasad, D. Kwon, Daewoong, and others. Spatially resolved
steady-state negative capacitance. Nature, 565(7740):468, 2019.

[21] P. Sheridan, K.-H. Kim, S. Gaba, T. Chang, L. Chen and W. Lu. Device and SPICE
modeling of RRAM devices. Nanoscale, 3(9):3833–3840, 2011.

[22] S. Lai. Current status of the phase change memory and its future. In IEEE Interna-
tional Electron Devices Meeting 2003, pages 10–1. IEEE, 2003.

[23] H.-S. P. Wong, S. and Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. and Rajendran,
M. Asheghi, K.E. Goodson. Phase change memory. Proceedings of the IEEE,
98(12):2201–2227, 2010.

[24] M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. Ufert,
and G. Muller. Conductive bridging RAM (CBRAM): An emerging non-volatile
memory technology scalable to sub 20nm. In IEEE International Electron Devices
Meeting, 2005. IEDM Technical Digest., pages 754–757. IEEE, 2005.

[25] C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, F. Koushan, P. Blan-
chard, S. Hollmer, S. Demonstration of conductive bridging random access memory
(CBRAM) in logic CMOS process. Solid-State Electronics, 58(1):54–61, 2011.



BIBLIOGRAPHY 125

[26] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S.
Boixo, and others. Quantum supremacy using a programmable superconducting
processor. Nature, 574(7779):505–510, 2019.

[27] Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P.
Strachan, Z. Li, and others. Memristors with diffusive dynamics as synaptic emulators
for neuromorphic computing. Nature materials, 16(1):101, 2017.

[28] T. Wang and J. Roychowdhury. PHLOGON: PHase-based LOGic using Oscillatory
Nanosystems. In Proc. UCNC, LNCS sublibrary: Theoretical computer science and
general issues. Springer, July 2014. DOI link.

[29] T. Wang and J. Roychowdhury. Oscillator-based Ising Machine. arXiv preprint
arXiv:1709.08102, 2017.

[30] (Best Paper) T. Wang and J. Roychowdhury. OIM: Oscillator-based Ising Machines
for Solving Combinatorial Optimisation Problems. In Proc. UCNC, LNCS sublibrary:
Theoretical computer science and general issues. Springer, June 2019. Preprint
available at arXiv:1903.07163 [cs.ET].

[31] T. Wang, L. Wu, J. Roychowdhury. New Computational Results and Hardware
Prototypes for Oscillator-based Ising Machines. In Proceedings of the 56th Annual
Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06,
2019, pages 239:1–239:2, 2019.

[32] J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the
United States of America, 79(8):2554–2558, 1982.

[33] L. O. Chua and L. Yang. Cellular neural networks: Applications. Circuits and
Systems, IEEE Transactions on, 35(10):1273–1290, 1988.

[34] T. Shibata, R. Zhang, S. P. Levitan, D. E. Nikonov and G. I. Bourianoff. CMOS
supporting circuitries for nano-oscillator-based associative memories. In International
Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pages
1–5. IEEE, 2012.

[35] S. P. Levitan, Y. Fang, D. H. Dash, T. Shibata, D. E. Nikonov and G. I. Bourianoff.
Non-Boolean associative architectures based on nano-oscillators. In International
Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pages
1–6. IEEE, 2012.

[36] P. Maffezzoni, B. Bahr, Z. Zhang and L. Daniel. Analysis and design of weakly
coupled LC oscillator arrays based on phase-domain macromodels. IEEE Trans.
CAD, 34(1):77–85, 2015.



BIBLIOGRAPHY 126

[37] P. Maffezzoni, B. Bahr, Z. Zhang and L. Daniel. Oscillator array models for asso-
ciative memory and pattern recognition. IEEE Trans. on Circuits and Systems I:
Fundamental Theory and Applications, 62(6):1591–1598, June 2015.

[38] F. Hoppensteadt and E. Izhikevich. Synchronization of laser oscillators, associative
memory, and optical neurocomputing. Physical Review E, 62(3):4010, 2000.

[39] F. Hoppensteadt and E. Izhikevich. Pattern recognition via synchronization in phase-
locked loop neural networks. IEEE Transactions on Neural Networks, 11(3):734–738,
2000.

[40] T. Nishikawa, F. Hoppensteadt and Y.-C. Lai. Oscillatory associative memory network
with perfect retrieval. Physica D: Nonlinear Phenomena, 197(1):134–148, 2004.

[41] G. Csaba, M. Pufall, D. E. Nikonov, G. I. Bourianoff, A. Horvath, T. Roska and
W. Porod. Spin torque oscillator models for applications in associative memories.
In International Workshop on Cellular Nanoscale Networks and Their Applications
(CNNA), pages 1–2. IEEE, 2012.

[42] G. Csaba and W. Porod. Computational study of spin-torque oscillator interactions for
non-Boolean computing applications. IEEE Transactions on Magnetics, 49(7):4447–
4451, 2013.

[43] M. Sharad, D. Fan and K. Roy. Energy-Efficient and Robust Associative Computing
With Injection-Locked Dual-Pillar Spin-Torque Oscillators. IEEE Transactions on
Magnetics, 51(7):1–9, 2015.

[44] G. Csaba, A. Papp, W. Porod and R. Yeniceri. Non-boolean computing based on
linear waves and oscillators. In European Solid State Device Research Conference
(ESSDERC), pages 101–104. IEEE, 2015.

[45] T. C. Jackson, A. A. Sharma, J. A. Bain, J. A. Weldon and L. Pileggi. Oscillatory
Neural Networks Based on TMO Nano-Oscillators and Multi-Level RRAM Cells.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 5(2):230–
241, 2015.

[46] A. A. Sharma, T. C. Jackson, M. Schulaker, C. Kuo, C. Augustine, J. A. Bain, H.-
S. P. Wong, S. Mitra, L. Pileggi and J. A. Weldon. High performance, integrated
1T1R oxide-based oscillator: Stack engineering for low-power operation in neural
network applications. In Symposium on VLSI Technology (VLSI Technology), pages
T186–T187. IEEE, 2015.

[47] S. Datta, N. Shukla, M. Cotter, A. Parihar and A. Raychowdhury. Neuro inspired
computing with coupled relaxation oscillators. In Proc. IEEE DAC, pages 1–6. ACM,
2014.



BIBLIOGRAPHY 127

[48] P. Maffezzoni, L. Daniel, N. Shukla, S. Datta, A. Raychowdhury and V. Narayanan.
Modelling hysteresis in vanadium dioxide oscillators. IET Electronics Letters,
51(11):819–820, 2015.

[49] P. Maffezzoni, L. Daniel, N. Shukla, S. Datta and A. Raychowdhury. Modeling and
Simulation of Vanadium Dioxide Relaxation Oscillators. IEEE Trans. on Circuits
and Systems I: Fundamental Theory and Applications, 62(9):2207–2215, 2015.

[50] X. Lai and J. Roychowdhury. Fast Simulation of Large Networks of Nanotechnologi-
cal and Biochemical Oscillators for Investigating Self-Organization Phenomena. In
Proc. IEEE ASP-DAC, pages 273–278, January 2006. DOI link.

[51] T. Yang, R.A. Kiehl, L.O. Chua. Tunneling phase logic cellular nonlinear networks.
International Journal of Bifurcation and chaos, 11(12):2895–2911, 2001.

[52] K. Yogendra, C. Liyanagedera, D. Fan, Y. Shim and K. Roy. Coupled Spin-Torque
Nano-Oscillator-Based Computation: A Simulation Study. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 13(4):56, 2017.

[53] D. Wang. A comparison of CNN and LEGION networks. In Neural Networks,
2004. Proceedings. 2004 IEEE International Joint Conference on, volume 3, pages
1735–1740. IEEE, 2004.

[54] K. Chen and D. Wang. A dynamically coupled neural oscillator network for image
segmentation. Neural Networks, 15(3):423–439, 2002.

[55] J. Roychowdhury. Numerical simulation and modelling of electronic and biochemical
systems. Foundations and Trends in Electronic Design Automation, 3(2-3):97–303,
December 2009.

[56] A. Demir, A. Mehrotra, and J. Roychowdhury. Phase Noise in Oscillators: a Unifying
Theory and Numerical Methods for Characterization. IEEE Trans. Ckts. Syst. – I:
Fund. Th. Appl., 47:655–674, May 2000. DOI link.

[57] J. Roychowdhury. Exact analytical equations for predicting nonlinear phase errors
and jitter in ring oscillators. In Proc. IEEE International Conference on VLSI Design,
January 2005.

[58] A. Demir and J. Roychowdhury. A Reliable and Efficient Procedure for Oscillator
PPV Computation, with Phase Noise Macromodelling Applications. IEEE Trans.
CAD, pages 188–197, February 2003. DOI link.

[59] T. Mei and J. Roychowdhury. PPV-HB: Harmonic Balance for Oscillator/PLL Phase
Macromodels. In Proc. ICCAD, pages 283–288, Nov. 2006.



BIBLIOGRAPHY 128

[60] J. Roychowdhury. Applied and Computational Control, Signals and Circuits – Recent
Developments, chapter 3 (Multi-time PDEs for Dynamical System Analysis), pages
85–143. Kluwer Academic, 2001.

[61] R. Adler. A study of locking phenomena in oscillators. Proc. IEEE, 61:1380–1385,
1973. Reprinted from [200].

[62] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler. The Kuramoto
Model: A Simple Paradigm for Synchronization Phenomena. Reviews of Modern
Physics, 77(1):137, 2005.

[63] Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In
International symposium on mathematical problems in theoretical physics, pages
420–422. Springer, 1975.

[64] Steven Strogatz. Sync: The Emerging Science of Spontaneous Order. Theia, March
2003.

[65] D. Cumin, C.P. Unsworth. Generalising the Kuramoto model for the study of neuronal
synchronisation in the brain. Physica D: Nonlinear Phenomena, 226(2):181–196,
2007.

[66] D. Hansel, G. Mato, C. Meunier. Phase dynamics for weakly coupled Hodgkin-
Huxley neurons. EPL (Europhysics Letters), 23(5):367, 1993.

[67] H. Sakaguchi, Y. Kuramoto. A soluble active rotater model showing phase transitions
via mutual entertainment. Progress of Theoretical Physics, 76(3):576–581, 1986.

[68] A. M. Lyapunov. The General Problem of the Stability of Motion. International
Journal of Control, 55(3):531–534, 1992.

[69] R. L. Wigington. A New Concept in Computing. Proceedings of the Institute of
Radio Engineers, 47:516–523, April 1959. DOI link.

[70] John von Neumann. Non-linear capacitance or inductance switching, amplifying and
memory devices, 1954. Basic paper for Patent 2,815,488, filed April 28, granted
December 3, 1957, and assigned to IBM. Reprinted in [71, Paper 11, pp. 379–419].
Google patents link.

[71] A. H. Taub, editor. John von Neumann: Collected Works. Volume V: Design of
Computers, Theory of Automata and Numerical Analysis. Pergamon Press, New York,
NY, USA, 1963. See also volumes I–IV, VI [201–205].

[72] J. M. Manley and R. E Rowe. Some general properties of nonlinear elements –
Part I. General energy relations. Proceedings of the Institute of Radio Engineers,
44(7):904–913, July 1956.



BIBLIOGRAPHY 129

[73] Eiichi Goto. New Parametron circuit element using nonlinear reactance. KDD Kenyku
Shiryo, October 1954.

[74] S. Oshima. Introduction to Parametron. Denshi Kogyo, 4(11):4, December 1955.

[75] Oshima, Enemoto, and Watanabe. Oscillation theory of Parametron and method of
measuring nonlinear elements. KDD Kenkyu Shiryo, November 1955.

[76] H. Takahashi. The Parametron. Tsugakkat Shi, 39(6):56, June 1956.

[77] S. Muroga. Elementary principle of Parametron and its application to digital comput-
ers. Datamation, 4(5):31–34, September/October 1958.

[78] IPSJ Computer Museum: Parametron (web page).
http://museum.ipsj.or.jp/en/computer/dawn/0007.html.

[79] IPSJ Computer Museum: PC-1 Parametron Computer (web page).
http://museum.ipsj.or.jp/en/computer/dawn/0016.html.

[80] Willy Hoe and Eiichi Goto. Quantum Flux Parametron: A Single Quantum Flux
Superconducting Logic Device, volume 2 of Studies in Josephson Supercomputers.
World Scientific, 1991.

[81] P. Bhansali and J. Roychowdhury. Gen-Adler: The generalized Adler’s equation for
injection locking analysis in oscillators. In Proc. IEEE ASP-DAC, pages 522–227,
January 2009. DOI link.

[82] A. Neogy and J. Roychowdhury. Analysis and Design of Sub-harmonically Injection
Locked Oscillators. In Proc. IEEE DATE, Mar 2012. DOI link.

[83] Andrei Slavin. Microwave sources: Spin-torque oscillators get in phase. Nature
Nanotechnology, 4(8):479–480, Aug 2009.

[84] Peter de Groot and Hans Fangohr. Spin Torque and Dynamics in Magnetic Nanos-
tructures (web page). http://www.icss.soton.ac.uk/research/nano.html.

[85] R. A. Kiehl and T. Ohshima. Bistable locking of single-electron tunneling elements
for digital circuitry. Appl. Phys. Lett., 67(17):2494–2496, Oct 1995.

[86] T. Li and R. A. Kiehl. Operating regimes for multivalued single-electron tunneling
phase logic. Journal of Applied Physics, 93:9291–9297, June 2003.

[87] T. Ohshima and R. A. Kiehl. Operation of bistable phase-locked single-electron
tunneling logic elements. J. Appl. Phys., April 1996.

[88] R.A. Kiehl and T. Ohshima. Bistable locking of single-electron tunneling elements
for digital circuitry. Applied Physics Letters, 67:2494–2496, 1995.



BIBLIOGRAPHY 130

[89] Clark T-C. Nguyen. Vibrating RF MEMS for Next Generation Wireless Applications.
In Proc. IEEE CICC, May 2004.

[90] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature, 403(6767):335–338, Jan 2000.

[91] T. Wang. Sub-harmonic Injection Locking in Metronomes. arXiv preprint
arXiv:1709.03886, 2017.

[92] T. Wang. Achieving Phase-based Logic Bit Storage in Mechanical Metronomes.
arXiv preprint arXiv:1710.01056, 2017.

[93] J. Pantaleone. Synchronization of Metronomes. American Journal of Physics,
70(10):992–1000, 2002.

[94] J. Jia, Z. Song, W. Liu, J. Kurths and J. Xiao. Experimental Study of the Triplet
Synchronization of Coupled Nonidentical Mechanical Metronomes. Scientific reports,
5, 2015.

[95] T. Wang and J. Roychowdhury. Well-Posed Models of Memristive Devices. arXiv
preprint arXiv:1605.04897, 2016.

[96] T. Wang. Modelling Multistability and Hysteresis in ESD Clamps, Memristors and
Other Devices. In Proc. IEEE CICC, pages 1–10. IEEE, 2017.

[97] C. Makkar, W.E. Dixon, W.G. Sawyer, and G. Hu. A new continuously differentiable
friction model for control systems design. In Advanced Intelligent Mechatronics.
Proceedings, 2005 IEEE/ASME International Conference on, pages 600–605. IEEE,
2005.

[98] Douglas C. Giancoli. Physics for Scientists and Engineers. Prentice-Hall, Englewood
Cliff, N.J., 1989.

[99] Mircea Grigoriu. Stochastic Calculus: Applications in Science and Engineering.
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