
What Supervision Scales? Practical Learning Through
Interaction

Carlos Florensa Campo

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-128
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-128.html

May 30, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This PhD has been a long endeavour that started many years before arriving
to Berkeley, and I want to dedicate this dissertation to the early beacons
that have guided my steps in this direction. See the dissertation file for full
acknowledgments.

What Supervision Scales? Practical Learning Through Interaction

by

Carlos Florensa

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Assistant Professor Sergey Levine

Professor Ken Goldberg
Professor John Canny

Spring 2020

What Supervision Scales? Practical Learning Through Interaction

Copyright 2020
by

Carlos Florensa

1

Abstract

What Supervision Scales? Practical Learning Through Interaction

by

Carlos Florensa

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

To have an agent learn useful behaviors, we must be able to specify what are the desired outcomes.
This supervision can come in many forms, like the reward in Reinforcement Learning (RL), the
target state-action pairs in Imitation Learning, or the dynamics model in motion-planning. Each
form of supervision needs to be evaluated along three cost dimensions that dictate how well it scales:
how much domain knowledge is required to provide that supervision form, what is the total volume
of interaction under such supervision needed to learn a task, and how does this amount increases for
every new task that the agent has to learn. For example, guiding rewards provided at every time-step
might speed up an RL algorithm, but it is hard to design such dense rewards that are easy-to-provide
and induce a solution to the task at hand, and the design process must be repeated for every new task;
On the other hand, a completion signal is a weaker form of supervision because non-expert users can
specify the objective to many tasks in this way, but unfortunately standard RL algorithms struggle
with such sparse rewards. In the first part of this dissertation we study how overcome this limitation
by means of learning hierarchies over re-usable skills. In the second part of this dissertation, we
extend the scope to explicitly minimize the supervision needed to learn distributions of tasks. This
paradigm shifts the focus away from the complexity of learning a single task, hence paving the way
towards more general agents that efficiently learn from multiple tasks. To achieve this objective,
we propose two automatic curriculum generation methods. In the third part of the dissertation, we
investigate how to leverage different kinds of partial experts as supervision. First we propose a
method that does not require any reward, and is still able to largely surpass the performance of the
demonstrator in goal-reaching tasks. This allows to leverage sub-optimal “experts", hence lowering
the cost of the provided supervision. Finally we explore how to exploit a rough description of a
task and an “expert" able to operate in only parts of the state-space. This is a common setting
in robotic applications where the model provided by the manufacturer allows to execute efficient
motion-planning as long as there’s no contacts or perception errors, but fails to complete the last
contact-rich part of the task, like inserting a key. These are all key pieces to provide supervision
that scales to generate robotic behavior for practical tasks.

i

To my family.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 Hierarchical RL to Learn with Sparse Rewards 4
2.1 Introduction . 4
2.2 Related Work . 6
2.3 Hierarchical Policies . 7
2.4 Learning Diverse Skills with Stochastic Neural Networks 9
2.5 Experimental Results for SNN4HRL . 13
2.6 Efficient Adaptation with End-to-End Hierarchical Policy Gradients 18
2.7 Experimental Results for HiPPO . 22
2.8 Conclusions and Future Work . 26

3 Automatic Curriculum Generation 28
3.1 Introduction . 28
3.2 Related Work . 29
3.3 Goal-Reaching Policy Learning . 30
3.4 Automatic Goal Generation for Reinforcement Learning Agents 32
3.5 Experimental Results for goalGAN . 35
3.6 Reverse Curriculum Generation for Reinforcement Learning 41
3.7 Experimental Results for Reverse Curriculum . 45
3.8 Conclusions and Future Directions . 48

4 Leveraging Partial Expert Demonstrations 50
4.1 Introduction . 50
4.2 Related Work . 51
4.3 Background on Imitation Learning . 53
4.4 Goal-conditioned Imitation Learning . 54

iii

4.5 Experimental Results for Goal-Conditioned IL . 56
4.6 Guided Uncertainty-Aware Policy Optimization 61
4.7 Experimental Results for GUAPO . 66
4.8 Conclusions and Future Work . 69

5 Conclusions 71

Bibliography 72

A Appendix 86
A.1 Stochastic Neural Networks for Hierarchical Reinforcement Learning Appendix . . 86
A.2 Hierarchical Proximal Policy Optimization Appendix 90
A.3 Automatic Curriculum Generation for RL Agents Appendix 96
A.4 Reverse Curriculum for Reinforcement Learning Appendix 102

iv

List of Figures

2.1 Temporally Hierarchical Policies . 8
2.2 Different architectures for the integration of the latent variables 10
2.3 Hierarchical SNN architecture to solve downstream tasks 12
2.4 Illustration of the sparse reward tasks studied in SNN4HRL 14
2.5 Span of skills learn by different methods and architectures 15
2.6 Visitation plots for different randomly initialized architectures 17
2.7 Faster learning of the SNN4HRL architectures in the sparse downstream MDPs 18
2.8 Environments used to evaluate the performance of HiPPO 22
2.9 Analysis of different time-commitment strategies on learning from scratch. 24
2.10 Using a skill-conditioned baseline improves performance of HiPPO 24
2.11 Comparison of HiPPO to prior hierarchical methods on learning from scratch 24
2.12 Benefit of adapting given skills with HiPPO . 26

3.1 Environment Images for Automatic Goal Generation 36
3.2 Learning curves comparing the training efficiency of Goal GAN 37
3.3 Visualization of goals generated by GoalGAN on Maze Ant 38
3.4 Visualization of the policy performance trained with goalGAN on Maze Ant 38
3.5 Visualization of goal generated by goalGAN for Multi-Path Maze 39
3.6 Visualization of the policy performance trained with goalGAN on Multi-Path Maze . . 40
3.7 Final goal coverage on n-dim Point-mass . 40
3.8 Task images for Reverse Curriculum . 45
3.9 Learning curves for goal-oriented tasks . 47
3.10 Fraction of “good starts" generated during training for the robotic manipulation tasks . 48

4.1 Policy performance in the four rooms environment 55
4.2 Environments Images for Goal-Conditioned Imitation Learning 58
4.3 Goal-GAIL performance against baselines . 59
4.4 Expert Relabeling technique boosts final performance 60
4.5 Effect of sub-optimal demonstrations on different GCIL algorithms 61
4.6 Visualization of the Discriminator for the four rooms environment 61
4.7 Real-world setup for peg insertion used in GUAPO 62
4.8 Perception modules for the model-based and RL components 64
4.9 GUAPO compared to five baselines . 66

v

A.1 Results of SNN4HRL for the Gather environment in the benchmark settings 87
A.2 Snake Environment . 87
A.3 Span of skills learned with an SNN . 88
A.4 Faster learning of SNN4HRL in sparse downstream MDPs with Snake 88
A.5 Mild effect of switch time T . 89
A.6 Variation in performance among different pretrained SNNs 90
A.7 HIRO performance without access to the ground truth (x, y) 94
A.8 Sensitivity of HiPPO to variation in the time-commitment. 95
A.9 Sensitivity of HiPPO to variation in the number of skills. 95
A.10 Ablation study for goalGAN . 98
A.11 Visualization of the goals generated by GoalGAN on FreeAnt 99
A.12 Visualization of the policy performance for different parts of the state space 99
A.13 Study of goalGAN in the Multi-Path Maze environment 100
A.14 Visualization of the goals sampled by SAGG-RIAC 101
A.15 Visualization of the regions generated by the SAGG-RIAC algorithm 102
A.16 Samples from the test distribution for the manipulation tasks 103
A.17 Learning curves for the robotics manipulation tasks 104
A.18 Simple environment to illustrate asymmetric self-play 106

vi

List of Tables

2.1 Zero-shot transfer performance of HiPPO . 25
2.2 Empirical evaluation of Lemma 1 . 27

4.1 Real world peg insertion results for GUAPO . 68

A.1 SNN4HRL Parameters of algorithms for downstream tasks 86

vii

Acknowledgments

This PhD has been a long endeavour that started many years before arriving to Berkeley, and I
want to dedicate this dissertation to the early beacons that have guided my steps in this direction.
Obviously, it all starts with my parents Senén Florensa and Maria Antonia Campo, and my twin
brother Luis. With their love, blind faith, and high expectations, they made me push myself harder
every day. I am grateful to my whole family, who has always been there to encourage me in the
path to research, specially my uncle Joan Guinovart. Beyond my relatives, I want to acknowledge
how important it was to meet other young research enthusiasts that proved me how enjoyable and
thrilling it can be to work in science, like Miguel Picallo, many colleagues at the CFIS, my cohort
at Xlab, or the other summer fellows at ICFO. This last institution gave me one of the strongest
motivation thrusts, thanks to its inspiring director Lluis Torner and my supervisor Silvia Carrasco.

My first in-depth research experiences came under the wing of Victor Zavala at Argonne National
Lab, who offered me the most intellectually thriving summers of my undergrad. He also propelled
me to work with Ignacio Grossmann and Pablo Garcia-Herreros at CMU, who consolidated my
eagerness to devote myself to cutting edge science.

Combined with the generous La Caixa fellowship, I was ready to set sails for California! I want
to highlight how key the community around this fellowship has been: it provided role-models to
look up to and raise my own bar, but most importantly, it provided a warm family in Berkeley,
the famous "Berkeley Gang", including Vicenç Rubies, Carlitos Ruiz, Julia Gómez, and Jaime
Fernández Fisac. Another important source of support for the challenges of the first years in the PhD
were all the friends from the I-House: Xabi Azaguirre, Maria Eckstein, Kate Beck, Signe Kristensen,
and many others. Finally, there is one person I owe living in the best house in Berkeley, with the
best housemate himself: Adam Stooke! Becoming close friends has been the best side-effect of
struggling together to join Pieter’s lab from a non-Computer-Science background. We made sure to
compensate every hard time with a huge paella, or with an outdoors trip with the rest of the close
group: Kate Rakelly, Rebecca Sarto, Kim, Dan, etc.

Academically, I must thank my advisor Pieter Abbeel for granting me the opportunity to get
involved in AI and Robotics, for providing great mentorship the years I needed it the most, and
for his generous support throughout the PhD. His research group was a thriving place full of ideas
that fueled my determination to contribute to the field of Reinforcement Learning. Many late-night
discussions with Abhishek Gupta, Sandy Huang, Greg Khan or Ignasi Clavera kept me dreaming
about autonomous agents. My direct collaborators in the group have also been some of the people
I’ve learned the most from, like Yan Duan (yes, the legendary Rocky) or David Held. I also want to
give a huge shut-out to the two undergrads I’ve mentored: Yiming Ding and Alexander Li, now
starting their own PhD adventures at Stanford and CMU.

Beyond Berkeley, I’ve been fortunate to do internships at DeepMind, Nvidia, and Covariant.
In each place I’ve gained a new point of view on my research field, all complementing each other.
I want to particularly praise the contagious vision of Nicolas Heess at DeepMind, the insightful
discussions with Nathan Ratliff and Dieter Fox, and all the fun I had collaborating with Michelle
Lee and John Tremblay at Nvidia. Finally, I’m grateful to Covariant for providing an electrifying
environment to start pushing AI robotics research into the real world!

1

Chapter 1

Introduction

In this dissertation we study autonomous learning agents from the perspective of the cost of the
supervision they require to perform a range of tasks, and how to minimize it.

In the first part of this dissertation, Chapter 2, we focus on perhaps the most common kind of
supervision for autonomous agents: rewards. Specifying a task through rewards holds the promise
to allow users to describe "what" they want a complex system to do, but without needing to know
"how" it should perform it. From this perspective, a system able to learn only through rewards and
interactions with its environments requires a supervision that can be provided by non-experts, and
hence might scale better. In many cases, the most straight-forward way to specify a task is through
a completion signal, giving the agent a reward of 1 when it completes the task and 0 otherwise.
For example, in navigation tasks, the agent is not rewarded until it finds the target. This type of
reward is commonly referred to as "sparse", and does not require the user to have any knowledge of
the system to shape the reward appropriately. Unfortunately, most RL algorithms struggle to find
solutions under such weak supervision. In this chapter of the dissertation we propose two methods
for training policies for a collection of tasks with sparse rewards. The first framework starts by
learning a span of skills in a pre-training environment, where it is employed with nothing but a
proxy reward signal, whose design only requires very minimal domain knowledge. This proxy
reward can be understood as a form of intrinsic motivation that encourages the agent to explore
its own capabilities, without any goal information or sensor readings specific to each downstream
task. Then a hierarchical architecture is proposed to leverage these skills in a variety of downstream
tasks. The second method we introduce allows to train both levels of a hierarchical end-to-end,
therefore enhancing many prior HRL works like the one described above. Having fixed skills can
considerably cap the final performance on the new task, and little work has been done on adapting
pre-trained sub-policies to be optimal for a new task.

In the second part of this dissertation, Chapter 3, we focus on efficiently learning sets of tasks
so that the total supervision needed to learn all tasks is minimized. The most natural question when
trying to train an agent to perform well on a set of tasks is whether there is an ordering of the
tasks that makes the process more efficient than randomly training on one task at a time. But the
gain in sample complexity shouldn’t come to the expense of more expert supervision designing
this ordering. Therefore in this section we propose two different kinds of automatic curriculum

CHAPTER 1. INTRODUCTION 2

that don’t require any additional supervision and hence scale better to large sets of tasks. Our first
curriculum method uses a generator network to propose tasks for the agent to try to accomplish,
each task being specified as reaching a certain parametrized subset of the state-space. The generator
network is optimized using a Goal Generative Adversarial Network (Goal GAN), to produce tasks
that are always at the appropriate level of difficulty for the agent. We show that, by using this
framework, an agent can efficiently and automatically learn to perform a wide set of tasks without
requiring any prior knowledge of its environment, even when only sparse rewards are available Our
second approach is particularly geared towards reaching a single extremely hard-to-reach goal from
anywhere, like when a seven DoF robotic arm has to robustly place a ring onto a peg. Therefore the
“set of tasks" is now parameterized by the start-state rather than the goal-state, that is the same for
all tasks. Past approaches tackle these problems by exploiting expert demonstrations or by manually
designing a task-specific reward shaping function to guide the learning agent. Instead, we propose a
method to learn these tasks without requiring any prior knowledge other than obtaining a single
state in which the task is achieved. The robot is trained in “reverse", gradually learning to reach the
goal from a set of start states increasingly far from the goal. Our method automatically generates
a curriculum of start states that adapts to the agent’s performance, leading to efficient training on
goal-oriented tasks. We demonstrate our approach on difficult simulated navigation and fine-grained
manipulation problems, not solvable by state-of-the-art reinforcement learning methods.

The third part of this dissertation, Chapter 4, broadens the spectrum of possible supervisions
that can be leveraged to obtain a desired behavior. We strive for other types of supervision because
designing rewards for Reinforcement Learning (RL) can be challenging: it needs to convey the
desired task, be efficient to optimize, and be easy to compute. The latter is particularly problematic
when applying RL to robotics, where detecting whether the desired configuration is reached might
require considerable supervision and instrumentation. Therefore, we deepen into two possible
methods to exploit two different kinds of partial experts. First, we propose a novel algorithm
goalGAIL, which incorporates sub-optimal demonstrations to drastically speed up the convergence
to a policy able to reach any goal, surpassing the performance of an agent trained with other Imitation
Learning algorithms. Furthermore, we show our method can also be used when the available expert
trajectories do not contain the actions, which makes it applicable when only kinesthetic, third-person
or noisy demonstrations are available. Finally we explore how to exploit a rough description of
a task and an “expert" able to operate in only parts of the state-space. This is a common setting
in robotic applications where the model provided by the manufacturer allows to execute efficient
motion-planning as long as there’s no contacts or perception errors, but fails to complete the last
contact-rich part of the task, like manipulating a key. This method is shown to be very efficient in
real-world tasks like peg insertion.

CHAPTER 1. INTRODUCTION 3

This dissertation composes the work published in the following articles:

• Carlos Florensa, Yan Duan, and Pieter Abbeel. “Stochastic Neural Networks for Hierarchical
Reinforcement Learning”. In: International Conference in Learning Representations (2017),
pp. 1–17

• Alexander C. Li*, Carlos Florensa*, Ignasi Clavera, and Pieter Abbeel. “Sub-policy Adapta-
tion for Hierarchical Reinforcement Learning”. In: International Conference on Learning
Representations (2020)

• Carlos Florensa*, David Held*, Xinyang Geng*, and Pieter Abbeel. “Automatic Goal
Generation for Reinforcement Learning Agents”. In: International Conference in Machine
Learning (2018)

• Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. “Reverse
Curriculum Generation for Reinforcement Learning”. In: Conference on Robot Learning
(2017)

• Yiming Ding*, Carlos Florensa*, Mariano Phielipp, and Pieter Abbeel. “Goal-conditioned
Imitation Learning”. In: Advances in Neural Information Processing Systems (2019)

• Michelle A Lee*, Carlos Florensa*, Jonathan Tremblay, Nathan Ratliff, Animesh Garg, Fabio
Ramos, and Dieter Fox. “Guided Uncertainty-Aware Policy Optimization: Combining Learn-
ing and Model-Based Strategies for Sample-Efficient Policy Learning”. In: International
Conference on Robotics and Automation (2020)

If interested in the full body of work by Carlos Florensa, visit:
https://sites.google.com/view/carlosflorensa.

https://sites.google.com/view/carlosflorensa

4

Chapter 2

Hierarchical RL to Learn with Sparse
Rewards

2.1 Introduction
Specifying a task through rewards holds the promise to allow users to describe "what" they want a
complex system to do, but not "how" it should perform it. From this perspective, a system able to
learn only through rewards and interactions with its environments requires a supervision that can be
provided by non-experts, and hence might scale better. In many cases, the most straight-forward way
to specify a task is through a completion signal, giving the agent a reward of 1 when it completes
the task and 0 otherwise. For example, in navigation tasks, the agent is not rewarded until it finds
the target. This type of reward is commonly referred to as "sparse", and does not require the user to
have any knowledge of the system to shape the reward appropriately.

Reinforcement learning (RL) has made great progress at learning only from a reward and
interaction, from playing games such as Pong and Go [103, 142] to automating robotic locomotion
[138, 54], dexterous manipulation [36, 3], and perception [106, 38]. Despite these success stories,
these deep RL algorithms typically employ naive exploration strategies such as ε-greedy or uniform
Gaussian exploration noise, which have been shown to perform poorly in tasks with sparse rewards
[30, 62, 11]. The challenge is further complicated by long horizons, where naive exploration
strategies can lead to exponentially large sample complexity [110]. Furthermore, most work in RL is
still learn from scratch when faced with a new problem. This is particularly inefficient when tackling
multiple related tasks that are hard to solve due to sparse rewards or long horizons. Therefore, to
fully leverage that sparse rewards scale well in terms of not requiring expert knowledge, we need to
overcome the optimization challenges that they pose.

To tackle these challenges, two main strategies have been pursued: The first strategy is to
design a hierarchy over the actions [111, 156, 28]. By composing low-level actions into high-level
primitives, the search space can be reduced exponentially. However, these approaches require
domain-specific knowledge and careful hand-engineering. The second strategy uses intrinsic
rewards to encourage exploration [130, 131, 62, 11]. The computation of these intrinsic rewards

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 5

does not require domain-specific knowledge. However, when facing a collection of tasks, these
methods do not provide a direct answer about how knowledge about solving one task may transfer
to other tasks, and by solving each of the tasks from scratch, the overall sample complexity may
still be high.

In this chapter, we propose two methods for training policies for a collection of tasks with sparse
rewards. The first framework, starts by learning a span of skills in a pre-training environment, where
it is employed with nothing but a proxy reward signal, whose design only requires very minimal
domain knowledge about the downstream tasks. This proxy reward can be understood as a form
of intrinsic motivation that encourages the agent to explore its own capabilities, without any goal
information or sensor readings specific to each downstream task. The set of skills can be used later
in a wide collection of different tasks, by training a separate high-level policy for each task on top
of the skills, thus reducing sample complexity uniformly. To learn the span of skills, we propose to
use Stochastic Neural Networks (SNNs) [108, 107, 160], a class of neural networks with stochastic
units in the computation graph. This class of architectures can easily represent multi-modal policies,
while achieving weight sharing among the different modes. We parametrize the stochasticity in
the network by feeding latent variables with simple distributions as extra input to the policy. In
the experiments, we observed that direct application of SNNs does not always guarantee that a
wide range of skills will be learned. Hence, we propose an information-theoretic regularizer based
on Mutual Information (MI) in the pre-training phase to encourage diversity of behaviors of the
SNN policy. Our experiments1 show2 that this combination is effective in learning a wide span of
interpretable skills in a sample-efficient way, and can significantly boost the learning performance
uniformly across a wide range of downstream tasks. We call our full method SNN4HRL.

The second method we introduce allows to train both levels of a hierarchical end-to-end,
therefore enhancing many prior HRL works like the one described above. Having fixed skills can
considerably cap the final performance on the new task, and little work has been done on adapting
pre-trained sub-policies to be optimal for a new task. To develop a new framework for simultaneously
adapting all levels of temporal hierarchies we do several contributions. First, we derive an efficient
approximated hierarchical policy gradient. The key insight is that, despite the decisions of the
manager being unobserved latent variables from the point of view of the Markovian environment,
from the perspective of the sub-policies they can be considered as part of the observation. We show
that this provides a decoupling of the manager and sub-policy gradients, which greatly simplifies
the computation in a principled way. It also theoretically justifies a technique used in other prior
works [40]. Second, we introduce a sub-policy specific baseline for our hierarchical policy gradient.
We prove that this baseline is unbiased, and our experiments reveal faster convergence, suggesting
efficient gradient variance reduction. Then, we introduce a more stable way of using this gradient,
Hierarchical Proximal Policy Optimization (HiPPO). This method helps us take more conservative
steps in our policy space [137], critical in hierarchies because of the interdependence of each layer.
Results show that HiPPO is highly efficient both when learning from scratch, i.e. adapting randomly
initialized skills, and when adapting pretrained skills on a new task. Finally, we evaluate the benefit

1Code available at: https://github.com/florensacc/snn4hrl
2Videos available at: http://bit.ly/snn4hrl-videos

https://github.com/florensacc/snn4hrl
http://bit.ly/snn4hrl-videos

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 6

of randomizing the time-commitment of the sub-policies, and show it helps both in terms of final
performance and zero-shot adaptation on similar tasks.

2.2 Related Work
One of the main appealing aspects of hierarchical reinforcement learning (HRL) is to use skills to
reduce the search complexity of the problem [111, 156, 28]. However, specifying a good hierarchy
by hand requires domain-specific knowledge and careful engineering, hence motivating the need
for learning skills automatically. Prior work on automatic learning of skills has largely focused on
learning skills in discrete domains [20, 174]. A popular approach there is to use statistics about state
transitions to identify bottleneck states [150, 98, 144]. It is however not clear how these techniques
can be applied to settings with high-dimensional continuous spaces, and only recently HRL has
been applied to high-dimensional continuous domains as we do in this chapter [79, 24].

To obtain the lower level policies, or skills, most methods exploit some additional assumptions,
like access to demonstrations [85, 101, 121, 139], policy sketches [1], or task decomposition into
sub-tasks [45, 147]. Other methods use a different reward for the lower level, often constraining
it to be a “goal reacher” policy, where the signal from the higher level is the goal to reach [104,
93, 172]. These methods are very promising for state-reaching tasks, but might require access to
goal-reaching reward systems not defined in the original MDP, and are more limited when training
on tasks beyond state-reaching. Our methods does not require any additional supervision, and the
obtained skills are not constrained to be goal-reaching.

There has also been work on learning skills in tasks with continuous actions [128, 76, 22,
122]. These methods extract useful skills from successful trajectories for the same (or closely
related) tasks, and hence require first solving a comparably challenging task or demonstrations.
Guided Policy Search (GPS) [90] leverages access to training in a simpler setting. GPS trains with
iLQG [167] in state space, and in parallel trains a neural net that only receives raw sensory inputs
that has to agree with the iLQG controller. The neural net policy is then able to generalize to new
situations.

Another line of work on skill discovery particularly relevant to our approaches is the HiREPS
algorithm by [23] where, instead of having a mutual information bonus like in our proposed approach,
they introduce a constraint on an equivalent metric. The solution approach is nevertheless very
different as they cannot use policy gradients. Furthermore, although they do achieve multimodality
like us, they only tried the episodic case where a single option is active during the rollout. Hence
the hierarchical use of the learned skills is less clear. Similarly, the Option-critic architecture [7] can
learn interpretable skills, but whether they can be reuse across complex tasks is still an open question.
Recently, [55] have independently proposed to learn a range of skills in a pre-training environment
that will be useful for the downstream tasks, which is similar to our framework. However, their
pre-training setup requires a set of goals to be specified. In comparison, we use a signle proxy
reward as the only signal to the agent during the pre-training phase, the construction of which only
requires minimal domain knowledge or instrumentation of the environment.

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 7

When transferring skills to a new environment, most HRL methods keep them fixed and simply
train a new higher-level on top [53, 56]. Other work allows for building on previous skills by
constantly supplementing the set of skills with new ones [141], but they require a hand-defined
curriculum of tasks, and the previous skills are never fine-tuned. Our algorithm allows for seamless
adaptation of the skills, showing no trade-off between leveraging the power of the hierarchy and the
final performance in a new task. Other methods use invertible functions as skills [50], and therefore
a fixed skill can be fully overwritten when a new layer of hierarchy is added on top. This kind of
“fine-tuning” is promising, although similar to other works [114], they do not apply it to temporally
extended skills as we do here.

One of the most general frameworks to define temporally extended hierarchies is the options
framework [157], and it has recently been applied to continuous state spaces [6]. One of the most
delicate parts of this formulation is the termination policy, and it requires several regularizers to
avoid skill collapse [52, 173]. This modification of the objective may be difficult to tune and
affects the final performance. Instead of adding such penalties, we propose to have skills of a
random length, not controlled by the agent during training of the skills. The benefit is two-fold: no
termination policy to train, and more stable skills that transfer better. Furthermore, these works only
used discrete action MDPs. We lift this assumption, and show good performance of our algorithm
in complex locomotion tasks. There are other algorithms recently proposed that go in the same
direction, but we found them more complex, less principled (their per-action marginalization cannot
capture well the temporal correlation within each option), and without available code or evidence of
outperforming non-hierarchical methods [145].

The closest work to ours in terms of final algorithm structure is the one proposed by Frans
et al. [40]. Their method can be included in our framework, and hence benefits from our new
theoretical insights. We introduce a modification that is shown to be highly beneficial: the random
time-commitment mentioned above, and find that our methods can learn in difficult environments
without their complicated training scheme.

2.3 Hierarchical Policies

Basic Definitions
We define a discrete-time finite-horizon discounted Markov decision process (MDP) by a tupleM =
(S,A,P , r, ρ0, γ, T), in which S is a state set, A an action set, P : S ×A× S → R+ a transition
probability distribution, r : S ×A → [−Rmax, Rmax] a bounded reward function, ρ0 : S → R+ an
initial state distribution, γ ∈ [0, 1] a discount factor, and T the horizon. When necessary, we attach
a suffix to the symbols to resolve ambiguity, such as SM . In policy search methods, we typically
optimize a stochastic policy πθ : S × A → R+ parametrized by θ. The objective is to maximize
its expected discounted return, η(πθ) = Eτ [

∑T
t=0 γ

tr(st, at)], where τ = (s0, a0, . . .) denotes the
whole trajectory, s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at).

In this chapter, we propose two methods to learn a hierarchical policy to efficiently perform a
new task. We study hierarchical policies composed of a higher level, or manager πθh(zt|st), and a

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 8

Figure 2.1: Temporal hierarchy studied in this section. A latent code zt is sampled from the manager
policy πθh(zt|st) every p time-steps, using the current observation skp. The actions at are sampled
from the sub-policy πθl(at|st, zkp) conditioned on the same latent code from t = kp to (k + 1)p− 1

lower level, or sub-policy πθl(at′ |zt, st′). The higher level does not take actions in the environment
directly, but rather outputs a command, or latent variable zt ∈ Z , that conditions the behavior of the
lower level. We focus on the common case where Z = Zn making the manager choose among n
sub-policies, or skills, to execute. The manager typically operates at a lower frequency than the
sub-policies, only observing the environment every p time-steps. When the manager receives a
new observation, it decides which low level policy to commit to for p environment steps by the
means of a latent code z. Figure 2.1 depicts this framework where the high level frequency p is a
random variable, which is one of the contribution we introduce in our HiPPO algorithm as described
in Section 2.6. In most works, including the first one we present in 2.4, this is a deterministic
hyper-parameter. Note that the class of hierarchical policies we work with is more restrictive
than others like the Options framework, where the time-commitment is also decided by the policy.
Nevertheless, we show that this loss in policy expressivity acts as a regularizer and does not prevent
our algorithms from surpassing other state-of-the art methods.

Problem statement for leveraging reusable skills
Our main interest is in solving a collection of downstream tasks, specified via a collection of MDPs
M. If these tasks do not share any common structure, we cannot expect to acquire a set of skills
that will speed up learning for all of them. On the other hand, we want the structural assumptions to
be minimal, to make our problem statement more generally applicable.

For each MDPM ∈M, we assume that the state space SM can be factored into two components,
Sagent, and SMrest, which only weakly interact with each other. The Sagent should be the same for
all MDPs inM. We also assume that all the MDPs share the same action space. Intuitively, we

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 9

consider a robot who faces a collection of tasks, where the dynamics of the robot are shared across
tasks, and are covered by Sagent, but there may be other components in a task-specific state space,
which will be denoted by Srest. For instance, in a grasping task M , SMrest may include the positions
of objects at interest or the new sensory input associated with the task. This specific structural
assumption has been studied in the past as sharing the same agent-space [75].

Given a collection of tasks satisfying the structural assumption, our objective for designing the
algorithm is to minimize the total sample complexity required to solve these tasks. This has been
more commonly studied in the past in sequential settings, where the agent is exposed to a sequence
of tasks, and should learn to make use of experience gathered from solving earlier tasks to help
solve later tasks [161, 178, 83, 27]. However, this requires that the earlier tasks are relatively easy to
solve (e.g., through good reward shaping or simply being easier) and is not directly applicable when
all the tasks have sparse rewards, which is a much more challenging setting. In the next section, we
describe our formulation, which takes advantage of a pre-training task that can be constructed with
minimal domain knowledge, and can be applied to the more challenging scenario.

2.4 Learning Diverse Skills with Stochastic Neural Networks
In this section, we describe our formulation to solve a collection of tasks, exploiting the structural
assumption articulated above. In Sec. 2.4, we describe the pre-training environment, where we use
proxy rewards to learn a useful span of skills. In Sec. 2.4, we motivate the usage of Stochastic
Neural Networks (SNNs) and discuss the architectural design choices made to tailor them to skill
learning for RL. In Sec. 2.4, we describe an information-theoretic regularizer that further improves
the span of skills learned by SNNs. In Sec. 2.4, we describe the architecture of high-level policies
over the learned skills, and the training procedure for the downstream tasks with sparse rewards.
Finally, in Sec. 2.4, we describe the policy optimization for both phases of training.

Constructing the pre-training environment
Given a collection of tasks, we would like to construct a pre-training environment, where the agent
can learn a span of skills, useful for enhancing exploration in downstream tasks. We achieve this by
letting the agent freely interact with the environment in a minimal setup. For a mobile robot, this
can be a spacious environment where the robot can first learn the necessary locomotion skills; for a
manipulator arm which will be used for object manipulation tasks, this can be an environment with
many objects that the robot can interact with.

The skills learned in this environment will depend on the reward given to the agent. Rather
than setting different rewards in the pre-training environment corresponding to the desired skills,
which requires precise specification about what each skill should entail, we use a generic proxy
reward as the only reward signal to guide skill learning. The design of the proxy reward should
encourage the existence of locally optimal solutions, which will correspond to different skills the
agent should learn. In other words, it encodes the prior knowledge about what high level behaviors
might be useful in the downstream tasks, rewarding all of them roughly equally. For a mobile robot,

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 10

this reward can be as simple as proportional to the magnitude of the speed of the robot, without
constraining the direction of movement. For a manipulator arm, this reward can be the successful
grasping of any object.

Every time we train a usual uni-modal gaussian policy in such environment, it should converge
towards a potentially different skill. As seen in Sec. 2.5, applying this approach to mobile robots
gives a different direction (and type) of locomotion every time. But it is an inefficient procedure:
training each policy from scratch is not sample efficient (sample complexity grows linearly with the
number of skills to be learned) and nothing encourages the individual skills to be distinct. The first
issue will be addressed in the next subsection by using Stochastic Neural Networks as policies and
the second issue will be addressed in Sec. 2.4 by adding an information-theoretic regularizer.

Stochastic Neural Networks for Skill Learning
To learn several skills at the same time, we propose to use Stochastic Neural Networks (SNNs), a
general class of neural networks with stochastic units in the computation graph. There has been
a large body of prior work on special classes of SNNs, such as Restricted Boltzmann Machines
(RBMs) [146, 58], Deep Belief Networks (DBNs) [59], and Sigmoid Belief Networks (SBNs) [108,
160]. They have rich representation power and can in fact approximate any well-behaved probability
distributions [84, 21]. Policies modeled via SNNs can hence represent complex action distributions,
especially multi-modal distributions.

For our purpose, we use a simple class of SNNs, where latent variables with fixed distributions
are integrated with the inputs to the neural network (here, the observations from the environment) to
form a joint embedding, which is then fed to a standard feed-forward neural network (FNN) with
deterministic units, that computes distribution parameters for a uni-modal distribution (e.g. the
mean and variance parameters of a multivariate Gaussian). We use simple categorical distributions
with uniform weights for the latent variables, where the number of classes, K, is an hyperparameter
that upper bounds the number of skills that we would like to learn.

(a) Concatenation (b) Bilinear integration

Figure 2.2: Different architectures for the integration of the latent variables

The simplest joint embedding, as shown in Figure 2.2a, is to concatenate the observations

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 11

and the latent variables directly.3 However, this limits the expressiveness power of integration
between the observation and latent variable. Richer forms of integrations, such as multiplicative
integrations and bilinear pooling, have been shown to have greater representation power and improve
the optimization landscape, achieving better results when complex interactions are needed [42, 179].
Inspired by this work, we study using a simple bilinear integration, by forming the outer product
between the observation and the latent variable (Fig. 2.2b). Note that the concatenation integration
effectively corresponds to changing the bias term of the first hidden layer depending on the latent
code z sampled, and the bilinear integration to changing all the first hidden layer weights. As shown
in the experiments, the choice of integration greatly affects the quality of the span of skills that is
learned. Our bilinear integration already yields a large span of skills, hence no other type of SNNs
is studied in this work.

To obtain temporally extended and consistent behaviors associated with each latent code, in
the pre-training environment we sample a latent code at the beginning of every rollout and keep
it constant throughout the entire rollout. After training, each of the latent codes in the categorical
distribution will correspond to a different, interpretable skill, which can then be used for the
downstream tasks.

Compared to training separate policies, training a single SNN allows for flexible weight-sharing
schemes among different policies. It also takes a comparable amount of samples to train an SNN
than a regular uni-modal gaussian policy, so the sample efficiency of training K skills is effectively
K times better. To further encourage the diversity of skills learned by the SNN we introduce an
information theoretic regularizer, as detailed in the next section.

Information-Theoretic Regularization
Although SNNs have sufficient expressiveness to represent multi-modal policies, there is nothing in
the optimization that prevents them from collapsing into a single mode. We have not observed this
worst case scenario in our experiments, but sometimes different latent codes correspond to very
similar skills. It is desirable to have direct control over the diversity of skills that will be learned. To
achieve this, we introduce an information-theoretic regularizer, inspired by recent success of similar
objectives in encouraging interpretable representation learning in InfoGAN [18].

Concretely, we add an additional reward bonus, proportional to the mutual information (MI)
between the latent variable and the current state. We only measure the MI with respect to a relevant
subset of the state. For a mobile robot, we choose this to be the c = (x, y) coordinates of its center of
mass (CoM). Formally, let C be a random variable denoting the current CoM coordinate of the agent,
and letZ be the latent variable. Then the MI can be expressed as I(Z;C) = H(Z)−H(Z|C), where
H denotes the entropy function. In our case, H(Z) is constant since the probability distribution of
the latent variable is fixed to uniform during this stage of training. Hence, maximizing the MI is
equivalent to minimizing the conditional entropy H(Z|C). As entropy is a measure of uncertainty,
another interpretation of this bonus is that, given where the robot is, it should be easy to infer which

3In scenarios where the observation is very high-dimensional such as images, we can form a low-dimensional
embedding of the observation alone, say using a neural network, before jointly embedding it with the latent variable.

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 12

skill the robot is currently performing. To penalize H(Z|C) = −Ez,c log p(Z = z|C = c), we
modify the reward received at every step as specified in Eq. (2.1), where p̂(Z = zn|cnt) is an estimate
of the posterior probability of the latent code zn sampled on rollout n, given the coordinates cnt at
time t of that rollout.

Rn
t ← Rn

t + αH log p̂(Z = zn|cnt) (2.1)

To estimate the posterior p̂(Z = zn|cnt), we apply the following discretization: we partition the
(x, y) coordinate space into cells and map the continuous-valued CoM coordinates into the cell
containing it. Overloading notation, now ct is a discrete variable indicating the cell where the CoM
is at time t. This way, calculation of the empirical posterior only requires maintaining visitation
counts mc(z) of how many times each cell c is visited when latent code z is sampled. Given that
we use a batch policy optimization method, we use all trajectories of the current batch to compute
all the mc(z) and estimate p̂(Z = zn|cnt), as shown in Eq. (2.2). If c is more high dimensional, the
posterior p̂(Z = zn|cnt) can also be estimated by fitting a MLP regressor by Maximum Likelihood.

p̂
(
Z = z

∣∣(x, y)
)
≈ p̂(Z = z|c) =

mc(z)∑
z′ mc(z′)

(2.2)

Learning High-level Policies
Given a span of K skills learned during the pre-training task, we now describe how to use them
as basic building blocks for solving tasks where only sparse reward signals are provided. Instead
of learning from scratch the low-level controls, we leverage the provided skills by freezing them
and training a high-level policy (Manager Neural Network) that operates by selecting a skill and
committing to it for a fixed amount of steps T . The imposed temporal consistency and the quality
of the skills (in our case given by optimizing the proxy reward in the pre-train environment) yield
an enhanced exploration allowing to solve the downstream tasks with sparse rewards.

Figure 2.3: Hierarchical SNN architecture
to solve downstream tasks

For any given taskM ∈Mwe train a new Manager
NN on top of the common skills. Given the factored
representation of the state space SM as Sagent and SMrest,
the high-level policy receives the full state as input, and
outputs the parametrization of a categorical distribution
from which we sample a discrete action z out of K pos-
sible choices, corresponding to the K available skills.
If those skills are independently trained uni-modal poli-
cies, z dictates the policy to use during the following
T time-steps. If the skills are encapsulated in a SNN, z
is used in place of the latent variable. The architecture
is depicted in Fig. 2.3.

The weights of the low level and high level neural
networks could also be jointly optimized to adapt the
skills to the task at hanad. This end-to-end training of

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 13

a policy with discrete latent variables in the Stochastic
Computation Graph could be done using straight-through estimators like the one proposed by [64] or
[97]. Nevertheless, we show in our experiments that frozen low-level policies are already sufficient
to achieve good performance in the studied downstream tasks, so these directions are left as future
research.

Policy Optimization
For both the pre-training phase and the training of the high-level policies, we use Trust Region
Policy Optimization (TRPO) as the policy optimization algorithm [138]. We choose TRPO due to
its excellent empirical performance and because it does not require excessive hyperparameter tuning.
The training on downstream tasks does not require any modifications, except that the action space is
now the set of skills that can be used. For the pre-training phase, due to the presence of categorical
latent variables, the marginal distribution of π(a|s) is now a mixture of Gaussians instead of a
simple Gaussian, and it may even become intractable to compute if we use more complex latent
variables. To avoid this issue, we consider the latent code as part of the observation. Given that
π(a|s, z) is still a Gaussian, TRPO can be applied without any modification.

Algorithm 1: Skill training for SNNs with MI bonus
Initialize: Policy πθ; Latent dimension K;
while Not trained do

for n← 1 to N do
Sample zn ∼ Cat

(
1
K

)
;

Collect rollout with zn fixed;
end
Compute p̂(Z = z|c) = mc(z)∑

z′ mc(z
′)

;
Modify Rn

t ← Rn
t + αH log p̂(Z = zn|cnt);

Apply TRPO considering z part of the observation;
end

2.5 Experimental Results for SNN4HRL
We have applied our framework to the two hierarchical tasks described in the benchmark by [30]:
Locomotion + Maze and Locomotion + Food Collection (Gather). The observation space of these
tasks naturally decompose into Sagent being the robot and SMrest the task-specific attributes like walls,
goals, and sensor readings. Here we report the results using the Swimmer robot, also described in
the benchmark paper. In fact, the swimmer locomotion task described therein corresponds exactly
to our pretrain task, as we also solely reward speed in a plain environment.

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 14

To increase the variety of downstream tasks, we have constructed four different mazes. Maze 0
is the same as the one described in the benchmark [30] and Maze 1 is its reflection, where the robot
has to go backwards-right-right instead of forward-left-left. These correspond to Figs. 2.4a-2.4b,
where the robot is shown in its starting position and has to reach the other end of the U turn. Mazes
2 and 3 are different instantiations of the environment shown in Fig. 2.4c, where the goal has been
placed in the North-East or in the South-West corner respectively. A reward of 1 is only granted
when the robot reaches the goal position. In the Gather task depicted in Fig. 2.4d, the robot gets a
reward of 1 for collecting green balls and a reward of -1 for the red ones, all of which are positioned
randomly at the beginning of each episode. Apart from the robot joints positions and velocities, in
these tasks the agent also receives LIDAR-like sensor readings of the distance to walls, goals or
balls that are within a certain range.

In the benchmark of continuous control problems [30] it was shown that algorithms that
employ naive exploration strategies could not solve them. More advanced intrinsically motivated
explorations [62] do achieve some progress, and we report our stronger results with the exact same
setting in Appendix A.1. Our hyperparameters for the neural network architectures and algorithms
are detailed in the Appendix A.1 and the full code is available4.

(a) Maze 0 (b) Maze 1 (c) Maze 2 or 3 (d) Food Gather

Figure 2.4: Illustration of the sparse reward tasks studied in SNN4HRL

We evaluate every step of the skill learning process, showing the relevance of the different pieces
of our architecture and how they impact the exploration achieved when using them in a hierarchical
fashion. Then we report the results5 on the sparse environments described above. We seek to answer
the following questions:

• Can the multimodality of SNNs and the MI bonus consistently yield a large span of skills?

• Can the pre-training experience improve the exploration in downstream environments?

• Does the enhanced exploration help to efficiently solve sparse complex tasks?
4Code available at: https://github.com/florensacc/snn4hrl
5Videos available at: http://bit.ly/snn4hrl-videos

https://github.com/florensacc/snn4hrl
http://bit.ly/snn4hrl-videos

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 15

Skill learning in pretrain
To evaluate the diversity of the learned skills we use “visitation plots”, showing the (x, y) position
of the robot’s Center of Mass (CoM) during 100 rollouts of 500 time-steps each. At the beginning
of every rollout, we reset the robot to the origin, always in the same orientation (as done during
training). In Fig. 2.5a we show the visitation plot of six different feed-forward policies, each trained
from scratch in our pre-training environment. For better graphical interpretation and comparison
with the next plots of the SNN policies, Fig. 2.5b superposes a batch of 50 rollout for each of the
6 policies, each with a different color. Given the morphology of the swimmer, it has a natural
preference for forward and backward motion. Therefore, when no extra incentive is added, the
visitation concentrates heavily on the direction it is always initialized with. Note nevertheless that
the proxy reward is general enough so that each independently trained policy yields a different way
of advancing, hence granting a potentially useful skills to solve downstream tasks when embedded
in our described Multi-policy hierarchical architecture.

(a) Independently trained policies in the pre-train MDP with the proxy reward of
the CoM speed norm

(b) Superposed policy
visitations from (a)

(c) SNN without bilinear integration and increasing αH = 0, 0.001, 0.01, 0.1

(d) SNN with bilinear integration and increasing αH = 0, 0.001, 0.01, 0.1

Figure 2.5: Span of skills learn by different methods and architectures

Next we show that, using SNNs, we can learn a similar or even larger span of skills without
training several independent policies. The number of samples used to train a SNN is the same as

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 16

a single feed-forward policy from Fig. 2.5a, therefore this method of learning skills effectively
reduces the sample complexity by a factor equal to the numbers of skills being learned. With an
adequate architecture and MI bonus, we show that the span of skills generated is also richer. In the
two rows of Figs. 2.5c-2.5d we present the visitation plots of SNNs policies obtained for different
design choices. Now the colors indicate the latent code that was sampled at the beginning of the
rollout. We observe that each latent code generates a particular, interpretable behavior. Given that
the initialization orientation is always the same, the different skills are truly distinct ways of moving:
forward, backwards, or sideways. In the following we analyze the impact on the span of skills of
the integration of latent variables (concatenation in first row and bilinear in the second) and the
MI bonus (increasing coeficient αH towards the right). Simple concatenation of latent variables
with the observations rarely yields distinctive behaviors for each latent code sampled. On the other
hand, we have observed that 80% of the trained SNNs with bilinear integration acquire at least
forward and backward motion associated with different latent codes. This can be further improved
to 100% by increasing αH and we also observe that the MI bonus yields less overlapped skills and
new advancing/turning skills, independently of the integration of the latent variables.

Hierarchical use of skills
The hierarchical architectures we propose have a direct impact on the areas covered by random
exploration. We will illustrate it with plots showing the visitation of the (x − y) position of the
Center of Mass (CoM) during single rollouts of one million steps, each generated with a different
architecture.

On one hand, we show in Fig. 2.6a the exploration obtained with actions drawn from a Gaussian
with µ = 0 and Σ = I , similar to what would happen in the first iteration of training a Multi-Layer
Perceptron with normalized random initialization of the weights. This noise is relatively large as
the swimmer robot has actions clipped to [−1, 1]. Still, it does not yield good exploration as all
point reached by the robot during the one million steps rollout lay within the [−2, 2]× [−2, 2] box
around the initial position. This exploration is not enough to reach the first reward in most of the
downstream sparse reward environments and will never learn, as already reported by Duan et al.
[30].

On the other hand, using our hierarchical structures with pretrained policies introduced in Sec.
2.4 yields a considerable increase in exploration, as reported in Fig. 2.6b-2.6d. These plots also
show a possible one millions steps rollout, but under a randomly initialized Manager Network,
hence outputting uniformly distributed one-hot vectors every T = 500 steps. The color of every
point in the CoM trajectory corresponds to the latent code that was fixed at that time-step, clearly
showing the “skill changes". In the following we describe what specific architecture was used for
each plot.

The rollout in Fig. 2.6b is generated following a policy with the Multi-policy architecture. This
hierarchical architecture is our strong baseline given that it has used six times more samples for
pretrain because it trained six policies independently. As explained in Sec. 2.4, every T = 500
steps it uses the sampled one-hot output of the Manager Network to select one of the six pre-trained
policies. We observe that the exploration given by the Multi-policy hierarchy heavily concentrates

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 17

around upward and downward motion, as is expected from the six individual pre-trained policies
composing it (refer back to Fig. 2.5a).

Finally, the rollouts in Fig.2.6c and 2.6d use our hierarchical architecture with a SNN with
bilinear integration and αH = 0 and 0.01 respectively. As described in Sec. 2.4, the placeholder that
during the SNN training received the categorical latent code now receives the one-hot vector output
of the Manager Network instead. The exploration obtained with SNNs yields a wider coverage
of the space as the underlying policy usually has a larger span of skills. Note how most of the
changes of latent code yield a corresponding change in direction. Our simple pre-train setup and
the interpretability of the obtained skills are key advantages with respect to previous hierarchical
structures.

(a) Gaussian noise with
covariance Σ = I

(b) Hierarchy with
Multi-policy

(c) Hierarchy with Bil-
SNN αH = 0

(d) Hierarchy with Bil-
SNN αH = 0.01

Figure 2.6: Visitation plots for different randomly initialized architectures (one rollout of 1M steps).
All axis are in scale [-30,30] and we added a zoom for the Gaussian noise to scale [-2,2]

Mazes and Gather tasks
In Fig. 2.7 we evaluate the learning curves of the different hierarchical architectures proposed. Due
to the sparsity of these tasks, none can be properly solved by standard reinforcement algorithms [30].
Therefore, we compare our methods against a better baseline: adding to the downstream task the
same Center of Mass (CoM) proxy reward that was granted to the robot in the pre-training task. This
baseline performs quite poorly in all the mazes, Fig. 2.7a-2.7c. This is due to the long time-horizon
needed to reach the goal and the associated credit assignment problem. Furthermore, the proxy
reward alone does not encourage diversity of actions as the MI bonus for SNN does. The proposed
hierarchical architectures are able to learn much faster in every new MDP as they effectively shrink
the time-horizon by aggregating time-steps into useful primitives. The benefit of using SNNs with
bilinear integration in the hierarchy is also clear over most mazes, although pretraining with MI
bonus does not always boost performance. Observing the learned trajectories that solve the mazes,
we realize that the turning or sideway motions (more present in SNNs pretrained with MI bonus)
help on maze 0, but are not critical in these tasks because the robot may use a specific forward
motion against the wall of the maze to reorient itself. We think that the extra skills will shine more
in other tasks requiring more precise navigation. And indeed this is the case in the Gather task as
seen in Fig. 2.7d, where not only the average return increases, but also the variance of the learning

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 18

curve is lower for the algorithm using SNN pretrained with MI bonus, denoting a more consistent
learning across different SNNs. For more details on the Gather task, refer to Appendix A.1.

It is important to mention that each curve of SNN or Multi-policy performance corresponds to a
total of 10 runs: 2 random seeds for 5 different SNNs obtained with 5 random seeds in the pretrain
task. There is no cherry picking of the pre-trained policy to use in the sparse environment, as done
in most previous work. This also explains the high variance of the proposed hierarchical methods
in some tasks. This is particularly hard on the mazes as some pretrained SNN may not have the
particular motion that allows to reach the goal, so they will have a 0 reward. See Appendix A.1 for
more details.

0 5 10 15 20 25
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

at
hs

 re
ac

hi
ng

 g
oa

l

CoM reward in maze
Multi-policy
SNN
SNN with Mutual Information

(a) Maze 0

0 5 10 15 20 25
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

at
hs

 re
ac

hi
ng

 g
oa

l

CoM reward in maze
Multi-policy
SNN
SNN with Mutual Information

(b) Maze 1

0 2 4 6 8 10 12 14
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

at
hs

 re
ac

hi
ng

 g
oa

l

CoM reward in maze
Multi-policy
SNN
SNN with Mutual Information

(c) Aggregated results for Mazes 2 and 3

0 500 1000 1500 2000
Iteration

0

1

2

3

4

5

6

Fr
ac

tio
n

of
 p

at
hs

 re
ac

hi
ng

 g
oa

l

CoM reward in gather
Multi-policy
SNN
SNN with Mutual Information

(d) Gather task

Figure 2.7: Faster learning of the SNN4HRL architectures in the sparse downstream MDPs

2.6 Efficient Adaptation with End-to-End Hierarchical Policy
Gradients

Most methods in Hierarchical Reinforcement Learning, like the one presented in the previous
section, still decouple the lower-level skill acquisition process and the training of a higher level that
controls the skills in a new task. Leaving the skills fixed can lead to sub-optimality in the transfer
setting.

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 19

One of the obstacles for training end-to-end hierarchical policies with policy gradient algorithms
is that the gradient is considerably harder to compute. This is due to the fact that the intermediate
decision taken by the higher level is not directly applied in the environment. Therefore, technically
it should not be incorporated into the trajectory description as an observed variable, like the actions,
and we should marginalize over this latent variable. In this section we first prove that, under mild
assumptions, the hierarchical policy gradient can be accurately approximated without needing
to marginalize over this latent variable. Then, we derive an unbiased baseline for the policy
gradient that can reduce the variance of its estimate. With these findings, we present a new method,
Hierarchical Proximal Policy Optimization (HiPPO), an on-policy algorithm for hierarchical policies,
allowing learning at all levels of the policy end-to-end and preventing sub-policy collapse. We also
propose a method for training time-abstractions that improves the robustness of the obtained skills
to environment changes. Code and videos for the work presented in this section are available6.

Approximate Hierarchical Policy Gradient
Policy gradient algorithms are based on the likelihood ratio trick [177] to estimate the gradient of
returns with respect to the policy parameters as

∇θη(πθ) = Eτ
[
∇θ logP (τ)R(τ)

]
≈ 1

N

n∑
i=1

∇θ logP (τi)R(τi) (2.3)

=
1

N

n∑
i=1

1

H

H∑
t=1

∇θ log πθ(at|st)R(τi) (2.4)

In a temporal hierarchy, a hierarchical policy with a manager πθh(zt|st) selects every p time-steps
one of n sub-policies to execute. These sub-policies, indexed by z ∈ Zn, can be represented as
a single conditional probability distribution over actions πθl(at|zt, st). This allows us to not only
use a given set of sub-policies, but also leverage skills learned with Stochastic Neural Networks
(SNNs) [35]. Under this framework, the probability of a trajectory τ = (s0, a0, s1, . . . , sH) can be
written as

P (τ) =

(H/p∏
k=0

[n∑
j=1

πθh(zj|skp)
(k+1)p−1∏
t=kp

πθl(at|st, zj)
])[

P (s0)
H∏
t=1

P (st+1|st, at)
]
. (2.5)

The mixture action distribution, which presents itself as an additional summation over skills,
prevents additive factorization when taking the logarithm, as from Eq. 2.3 to 2.4. This can yield
numerical instabilities due to the product of the p sub-policy probabilities. For instance, in the
case where all the skills are distinguishable all the sub-policies’ probabilities but one will have
small values, resulting in an exponentially small value. In the following Lemma, we derive an
approximation of the policy gradient, whose error tends to zero as the skills become more diverse,
and draw insights on the interplay of the manager actions.

6sites.google.com/view/hippo-rl

sites.google.com/view/hippo-rl

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 20

Lemma 1. If the skills are sufficiently differentiated, then the latent variable can be treated as part
of the observation to compute the gradient of the trajectory probability. Let πθh(z|s) and πθl(a|s, z)
be Lipschitz functions w.r.t. their parameters, and assume that 0 < πθl(a|s, zj) < ε ∀j 6= kp, then

∇θ logP (τ) =

H/p∑
k=0

∇θ log πθh(zkp|skp) +
H∑
t=0

∇θ log πθl(at|st, zkp) +O(nHεp−1) (2.6)

Proof. See Appendix.

Our assumption can be seen as having diverse skills. Namely, for each action there is just one
sub-policy that gives it high probability. In this case, the latent variable can be treated as part of
the observation to compute the gradient of the trajectory probability. Many algorithms to extract
lower-level skills are based on promoting diversity among the skills [35, 31], therefore usually
satisfying our assumption. We further analyze how well this assumption holds in our experiments
section and Table 2.2.

Unbiased Sub-Policy Baseline
The policy gradient estimate obtained when applying the log-likelihood ratio trick as derived above
is known to have large variance. A very common approach to mitigate this issue without biasing the
estimate is to subtract a baseline from the returns [115]. It is well known that such baselines can be
made state-dependent without incurring any bias. However, it is still unclear how to formulate a
baseline for all the levels in a hierarchical policy, since an action dependent baseline does introduce
bias in the gradient [169]. It has been recently proposed to use latent-conditioned baselines [176].
Here we go further and prove that, under the assumptions of Lemma 1, we can formulate an unbiased
latent dependent baseline for the approximate gradient (Eq. 2.6).

Lemma 2. For any functions bh : S → R and bl : S × Z → R we have:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)bh(skp)] = 0 and Eτ [
H∑
t=0

∇θ log πθl(at|st, zkp)bl(st, zkp)] = 0

Proof. See Appendix.

Now we apply Lemma 1 and Lemma 2 to Eq. 2.3. By using the corresponding value functions as
the function baseline, the return can be replaced by the Advantage function A(skp, zkp) (see details
in Schulman et al. [136]), and we obtain the following approximate policy gradient expression:

ĝ = Eτ
[
(

H/p∑
k=0

∇θ log πθh(zkp|skp)A(skp, zkp)) + (
H∑
t=0

∇θ log πθl(at|st, zkp)A(st, at, zkp))
]

This hierarchical policy gradient estimate can have lower variance than without baselines, but using
it for policy optimization through stochastic gradient descent still yields an unstable algorithm. In
the next section, we further improve the stability and sample efficiency of the policy optimization
by incorporating techniques from Proximal Policy Optimization [137].

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 21

Algorithm 2: HiPPO Rollout

Input : skills πθl(a|s, z), manager πθh(z|s), time-commitment bounds Pmin and Pmax,
horizon H

Reset environment: s0 ∼ ρ0, t = 0.
while t < H do

Sample time-commitment p ∼ Cat([Pmin, Pmax]) ;
Sample skill zt ∼ πθh(·|st) ;
for t′ = t . . . (t+ p) do

Sample action at′ ∼ πθl(·|st′ , zt) ;
Observe new state st′+1 and reward rt′ ;

end
t← t+ p ;

end
Output :(s0, z0, a0, s1, a1, . . . , sH , zH , aH , sH+1)

Algorithm 3: HiPPO
Input :skills πθl(a|s, z), manager πθh(z|s), horizon H , learning rate α
while not done do

for actor = 1, 2, ..., N do
Obtain trajectory with HiPPO Rollout ;
Estimate advantages Â(at′ , st′ , zt) and Â(zt, st) ;

end
θ ← θ + α∇θL

CLIP
HiPPO(θ) ;

end

Hierarchical Proximal Policy Optimization
Using an appropriate step size in policy space is critical for stable policy learning. Modifying the
policy parameters in some directions may have a minimal impact on the distribution over actions,
whereas small changes in other directions might change its behavior drastically and hurt training
efficiency [69]. Trust region policy optimization (TRPO) uses a constraint on the KL-divergence
between the old policy and the new policy to prevent this issue [138]. Unfortunately, hierarchical
policies are generally represented by complex distributions without closed form expressions for
the KL-divergence. Therefore, to improve the stability of our hierarchical policy gradient we
turn towards Proximal Policy Optimization (PPO) [137]. PPO is a more flexible and compute-
efficient algorithm. In a nutshell, it replaces the KL-divergence constraint with a cost function that
achieves the same trust region benefits, but only requires the computation of the likelihood. Letting
wt(θ) = πθ(at|st)

πθold (at|st)
, the PPO objective is:

LCLIP (θ) = Et min
{
wt(θ)At, clip(wt(θ), 1− ε, 1 + ε)At

}

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 22

(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 2.8: Environments used to evaluate the performance of HiPPO. Every episode has a different
configuration: wall heights for (a)-(b), ball positions for (c)-(d)

We can adapt our approximated hierarchical policy gradient with the same approach by letting
wh,kp(θ) =

πθh (zkp|skp)
πθh,old (zkp|skp)

and wl,t(θ) =
πθl (at|st,zkp)

πθl,old (at|st,zkp)
, and using the super-index clip to denote

the clipped objective version, we obtain the new surrogate objective:

LCLIPHiPPO(θ) = Eτ
[H/p∑
k=0

min
{
wh,kp(θ)A(skp, zkp), w

clip
h,kp (θ)A(skp, zkp)

}
+

H∑
t=0

min
{
wl,t(θ)A(st, at, zkp), w

clip
l,t (θ)A(st, at, zkp)

}]
We call this algorithm Hierarchical Proximal Policy Optimization (HiPPO). Next, we introduce

a critical additions: a switching of the time-commitment between skills.

Varying Time-commitment
Most hierarchical methods either consider a fixed time-commitment to the lower level skills [35,
40], or implement the complex options framework [118, 6]. In this work we propose an in-between,
where the time-commitment to the skills is a random variable sampled from a fixed distribution
Categorical(Tmin, Tmax) just before the manager takes a decision. This modification does not
hinder final performance, and we show it improves zero-shot adaptation to a new task. This approach
to sampling rollouts is detailed in Algorithm 2. The full algorithm is detailed in Algorithm 3.

2.7 Experimental Results for HiPPO
We designed our experiments to answer the following questions:

1. How does HiPPO compare against a flat policy when learning from scratch?

2. Does it lead to policies more robust to environment changes?

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 23

3. How well does it adapt already learned skills?

4. Does our skill diversity assumption hold in practice?

Tasks
We evaluate our approach on a variety of robotic locomotion and navigation tasks. The Block
environments, depicted in Fig. 2.8a-2.8b, have walls of random heights at regular intervals, and
the objective is to learn a gait for the Hopper and Half-Cheetah robots to jump over them. The
agents observe the height of the wall ahead and their proprioceptive information (joint positions and
velocities), receiving a reward of +1 for each wall cleared. The Gather environments, described by
Duan et al. [30], require agents to collect apples (green balls, +1 reward) while avoiding bombs (red
balls, -1 reward). The only available perception beyond proprioception is through a LIDAR-type
sensor indicating at what distance are the objects in different directions, and their type, as depicted
in the bottom left corner of Fig. 2.8c-2.8d. This is challenging hierarchical task with sparse rewards
that requires simultaneously learning perception, locomotion, and higher-level planning capabilities.
We use the Snake and Ant robots in Gather. As described in the previous section, we apply the
same partition of the state-space into SMagent and SMrest. Details for all robotic agents are provided in
Appendix A.2.

Learning from Scratch and Time-Commitment
In this section, we study the benefit of using our HiPPO algorithm instead of standard PPO on a flat
policy [137]. The results, reported in Figure 2.9, demonstrate that training from scratch with HiPPO
leads to faster learning and better performance than flat PPO. Furthermore, we show that the benefit
of HiPPO does not just come from having temporally correlated exploration: PPO with action
repeat converges at a lower performance than our method. HiPPO leverages the time-commitment
more efficiently, as suggested by the poor performance of the ablation where we set p = 1, when the
manager takes an action every environment step as well. Finally, Figure 2.10 shows the effectiveness
of using the presented skill-dependent baseline.

Comparison to Other Methods
We compare HiPPO to current state-of-the-art hierarchical methods. First, we evaluate HIRO [104],
an off-policy RL method based on training a goal-reaching lower level policy. Fig. 2.11 shows that
HIRO achieves poor performance on our tasks. As further detailed in Appendix A.2, this algorithm
is sensitive to access to ground-truth information, like the exact (x, y) position of the robot in Gather.
In contrast, our method is able to perform well directly from the raw sensory inputs described in
Section 2.7. We evaluate Option-Critic [6], a variant of the options framework [157] that can be
used for continuous action-spaces. It fails to learn, and we hypothesize that their algorithm provides
less time-correlated exploration and learns less diverse skills. We also compare against MLSH [40],
which repeatedly samples new environment configurations to learn primitive skills. We take these

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 24

0 500 1000
Iteration

0

2

4

6

A
ve

ra
ge

 R
et

ur
n

(a) Block Hopper

0 250 500 750 1000
Iteration

0

1

2

3

(b) Block Half Cheetah

0 250 500 750 1000
Iteration

0

2

4

6

(c) Snake Gather

0 250 500 750 1000
Iteration

0

2

4

(d) Ant Gather

Figure 2.9: Analysis of different time-commitment strategies on learning from scratch.

0 500 1000
Iteration

0

2

4

6

A
ve

ra
ge

 R
et

ur
n

(a) Block Hopper

0 250 500 750 1000
Iteration

0

1

2

(b) Block Half Cheetah

0 250 500 750 1000
Iteration

0

2

4

6

(c) Snake Gather

0 250 500 750 1000
Iteration

0

1

2

3

4

(d) Ant Gather

Figure 2.10: Using a skill-conditioned baseline, as defined in Section 2.6, generally improves
performance of HiPPO when learning from scratch.

0 500 1000
Iteration

0

2

4

6

A
ve

ra
ge

 R
et

ur
n

(a) Block Hopper

0 250 500 750 1000
Iteration

0

1

2

3

(b) Block Half Cheetah

0 250 500 750 1000
Iteration

0

2

4

6

(c) Snake Gather

0 250 500 750 1000
Iteration

0

2

4

(d) Ant Gather

Figure 2.11: Comparison of HiPPO and HierVPG to prior hierarchical methods on learning from
scratch.

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 25

hyperparameters from their Ant Twowalk experiment: resetting the environment configuration every
60 iterations, a warmup period of 20 during which only the manager is trained, and a joint training
period of 40 during which both manager and skills are trained. Our results show that such a training
scheme does not provide any benefits. Finally, we provide a comparison to a direct application of
our Hierarchical Vanilla Policy Gradient (HierVPG) algorithm, and we see that the algorithm is
unstable without PPO’s trust-region-like technique.

Robustness to Dynamics Perturbations
We investigate the robustness of HiPPO to changes in the dynamics of the environment. We
perform several modifications to the base Snake Gather and Ant Gather environments. One at a
time, we change the body mass, dampening of the joints, body inertia, and friction characteristics
of both robots. The results, presented in Table 2.1, show that HiPPO with randomized period
Categorical([Tmin, Tmax]) is able to better handle these dynamics changes. In terms of the
drop in policy performance between the training environment and test environment, it outperforms
HiPPO with fixed period on 6 out of 8 related tasks. These results suggest that the randomized
period exposes the policy to a wide range of scenarios, which makes it easier to adapt when the
environment changes.

Gather Algorithm Initial Mass Dampening Inertia Friction

Snake
Flat PPO 2.72 3.16 (+16%) 2.75 (+1%) 2.11 (-22%) 2.75 (+1%)
HiPPO, p = 10 4.38 3.28 (-25%) 3.27 (-25%) 3.03 (-31%) 3.27 (-25%)
HiPPO random p 5.11 4.09 (-20%) 4.03 (-21%) 3.21 (-37%) 4.03 (-21%)

Ant
Flat PPO 2.25 2.53 (+12%) 2.13 (-5%) 2.36 (+5%) 1.96 (-13%)
HiPPO, p = 10 3.84 3.31 (-14%) 3.37 (-12%) 2.88 (-25%) 3.07 (-20%)
HiPPO random p 3.22 3.37 (+5%) 2.57 (-20%) 3.36 (+4%) 2.84 (-12%)

Table 2.1: Zero-shot transfer performance. The final return in the initial environment is shown, as
well as the average return over 25 rollouts in each new modified environment.

Adaptation of Pre-Trained Skills
For the Block task, we use DIAYN [31] to train 6 differentiated subpolicies in an environment
without any walls. Here, we see if these diverse skills can improve performance on a downstream
task that’s out of the training distribution. For Gather, we take 6 pretrained subpolicies encoded by
a Stochastic Neural Network [159] that was trained in a diversity-promoting environment [35]. We
fine-tune them with HiPPO on the Gather environment, but with an extra penalty on the velocity of
the Center of Mass. This can be understood as a preference for cautious behavior. This requires
adjustment of the sub-policies, which were trained with a proxy reward encouraging them to move

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 26

0 500 1000
Iteration

0

2

4

6

A
ve

ra
ge

 R
et

ur
n

(a) Block Hopper

0 250 500 750 1000
Iteration

0

1

2

3

(b) Block Half Cheetah

0 250 500 750 1000
Iteration

0

1

2

3

4

(c) Snake Gather

0 250 500 750 1000
Iteration

2

0

2

4

(d) Ant Gather

Figure 2.12: Benefit of adapting some given skills when the preferences of the environment are
different from those of the environment where the skills were originally trained. Adapting skills
with HiPPO has better learning performance than leaving the skills fixed or learning from scratch.

as far as possible (and hence quickly). Fig. 2.12 shows that using HiPPO to simultaneously train a
manager and fine-tune the skills achieves higher final performance than fixing the sub-policies and
only training a manager with PPO. The two initially learn at the same rate, but HiPPO’s ability to
adjust to the new dynamics allows it to reach a higher final performance. Fig. 2.12 also shows that
HiPPO can fine-tune the same given skills better than Option-Critic [6], MLSH [40], and HIRO
[104].

Skill Diversity Assumption
In Lemma 1, we derived a more efficient and numerically stable gradient by assuming that the
sub-policies are diverse. In this section, we empirically test the validity of our assumption and
the quality of our approximation. We run the HiPPO algorithm on Ant Gather and Snake Gather
both from scratch and with given pretrained skills, as done in the previous section. In Table 2.2,
we report the average maximum probability under other sub-policies, corresponding to ε from the
assumption. In all settings, this is on the order of magnitude of 0.1. Therefore, under the p ≈ 10
that we use in our experiments, the term we neglect has a factor εp−1 = 10−10. It is not surprising
then that the average cosine similarity between the full gradient and our approximation is almost 1,
as reported in Table 2.2.

2.8 Conclusions and Future Work
In this Chapter we have studied the use of hierarchical policies to tackle problems with very weak
supervision, like sparse rewards. This type of supervision scales very well from the "providing"
end, because sparse rewards are closer to how a non-expert operator could specify a task, without
needing domain knowledge to shape the reward of every new task. There is still a lot of work to
improve the scaling from the "optimization" end, or how to efficiently use this type of supervision.
In this Chapter we introduced two new methods pushing the needle in that direction.

CHAPTER 2. HIERARCHICAL RL TO LEARN WITH SPARSE REWARDS 27

Gather Algorithm Cosine Sim. maxz′ 6=zkp πθl(at|st, z′) πθl(at|st, zkp)

Snake
HiPPO on given skills 0.98± 0.01 0.09± 0.04 0.44± 0.03
HiPPO on random skills 0.97± 0.03 0.12± 0.03 0.32± 0.04

Ant
HiPPO on given skills 0.96± 0.04 0.11± 0.05 0.40± 0.08
HiPPO on random skills 0.94± 0.03 0.13± 0.05 0.31± 0.09

Table 2.2: Empirical evaluation of Lemma 1. In the middle and right columns, we evaluate the
quality of our assumption by computing the largest probability of a certain action under other skills
(ε), and the action probability under the actual latent. We also report the cosine similarity between
our approximate gradient and the exact gradient from Eq. 2.5. The mean and standard deviation of
these values are computed over the full batch collected at iteration 10.

The first method, SNN4HRL, first learns a diverse set of skills using Stochastic Neural Networks
trained with minimum supervision, and then utilizes these skills in a hierarchical architecture to solve
the downstream tasks. This framework successfully combines two parts, firstly an unsupervised
procedure to learn a large span of skills using proxy rewards and secondly a hierarchical structure
that encapsulates the latter span of skills and allows to re-use them in future tasks. The span of
skills learning can be greatly improved by using Stochastic Neural Networks as policies and their
additional expressiveness and multimodality. The bilinear integration and the mutual information
bonus are key to consistently yield a wide, interpretable span of skills. As for the hierarchical
structure, our experiments demonstrate it can significantly boost the exploration of an agent in a
new environment and we demonstrate its relevance for solving complex tasks as mazes or gathering.

The second method, HiPPO, reveals how to effectively adapt temporal hierarchies, overcoming
one of the main limitations of SNN4HRL and many other HRL methods. We began by deriving
a hierarchical policy gradient and its approximation. We then show that HiPPO can stably train
multiple layers of a hierarchy jointly. The adaptation experiments suggest that we can optimize
pretrained skills for downstream environments, as well as learn skills without any unsupervised
pre-training. We also demonstrate that HiPPO with randomized period can learn from scratch
on sparse-reward and long time horizon tasks, while outperforming non-hierarchical methods on
zero-shot transfer.

Still, we have many different possible avenues of future work. We only used SNNs to encode
our subpolicies for both experiments. How would we perform if we were provided n separate neural
networks to finetune? We still need to explore this setting, as finetuning for SNNs has the problem
where training one subpolicy will change the behavior of the other. While HiPPO does learn good
emergent skills, their transferability is not guaranteed. As HiPPO is simply a policy architecture and
gradient expression, we could explore using meta-learning on top in order to learn better skills that
are more useful on a distribution of different tasks. Another avenue of research is having extended
hierarchies with multiple layers of managers, each operating at broader and broader timescales.

28

Chapter 3

Automatic Curriculum Generation

3.1 Introduction
In the previous chapter we introduced two hierarchical reinforcement learning methods to be able to
learn from the weak supervision of sparse rewards. The reusability of skills was key to speed up the
learning on new tasks that shared a common agent but had otherwise arbitrarily different objectives
or even different dynamics depending on the interaction with the environment. Nevertheless each
new downstream task was still considered independently. The skills were re-used for all tasks, but
the efficiency of learning a new downstream task could not leverage the training from the other
downstream tasks.

In this chapter we focus on efficiently learning sets of tasks so that the total supervision needed
to learn all tasks is minimized. The most natural question when trying to train an agent to perform
well on a set of tasks is whether there is an ordering of the tasks that makes the process more
efficient than randomly training on one task at a time. But the gain in sample complexity shouldn’t
come to the expense of more expert supervision designing this ordering. Therefore in this section we
propose two different kinds of automatic curriculum that don’t require any additional supervision
and hence scale better to large sets of tasks.

Throughout this chapter we will consider goal-conditioned tasks that require an agent to reach
a certain states or to manipulate objects into desired configurations. For example, we might want
a robot to navigate to any positions in a room, moving objects to varying locations, or insert and
turn a key in a lock. These goal-oriented tasks present a considerable challenge for reinforcement
learning, since their natural reward function is sparse and prohibitive amounts of exploration are
required to reach the goal and receive some learning signal. To tackle this challenge, we propose
two methods that allows an agent to automatically discover the range of tasks that it is capable of
performing in its environment.

Our first method uses a generator network to propose tasks for the agent to try to accomplish,
each task being specified as reaching a certain parametrized subset of the state-space. The generator
network is optimized using a Goal Generative Adversarial Network (Goal GAN), a variation of to
the GANs introduced by Goodfellow et al. [47], to produce tasks that are always at the appropriate

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 29

level of difficulty for the agent. We show that, by using this framework, an agent can efficiently
and automatically learn to perform a wide set of tasks without requiring any prior knowledge
of its environment, even when only sparse rewards are available. Videos and code available at:
https://sites.google.com/view/goalgeneration4rl.

Our second approach is particularly geared towards reaching a single extremely hard-to-reach
goal from anywhere, like when a seven DoF robotic arm has to robustly place a ring onto a peg, as
shown in Fig. 3.8c. Therefore the “set of tasks" is now parameterized by the start-state rather than
the goal-state, that is the same for all tasks. Past approaches tackle these problems by exploiting
expert demonstrations or by manually designing a task-specific reward shaping function [109]
to guide the learning agent. Instead, we propose a method to learn these tasks without requiring
any prior knowledge other than obtaining a single state in which the task is achieved. The robot
is trained in “reverse", gradually learning to reach the goal from a set of start states increasingly
far from the goal. Our method automatically generates a curriculum of start states that adapts to
the agent’s performance, leading to efficient training on goal-oriented tasks. We demonstrate our
approach on difficult simulated navigation and fine-grained manipulation problems, not solvable by
state-of-the-art reinforcement learning methods.

3.2 Related Work
The problem that we are exploring has been referred to as “multi-task policy search" [26] or
“contextual policy search," in which the task is viewed as the context for the policy [25, 32]. Unlike
the work of Deisenroth et al. [26], our work uses a curriculum to perform efficient multi-task
learning, even in sparse reward settings. In contrast to Fabisch and Metzen [32], which trains from
a small number of discrete contexts / tasks, our method generates a training curriculum directly in
continuous task space.

Curriculum-based approaches with manually designed schedules have been explored in super-
vised learning [13, 183, 12, 48] to split particularly complex tasks into smaller, easier-to-solve
sub-problems. One particular type of curriculum learning explicitly enables the learner to reject
examples which it currently considers too hard [80, 65]. This type of adaptive curriculum has
mainly been applied to supervised tasks, and most practical curriculum approaches in RL rely
on pre-specified task sequences [5, 72]. Some very general frameworks have been proposed to
generate increasingly hard problems [132, 148], although challenges remain to apply the idea to
difficult robotics tasks. A similar line of work uses intrinsic motivation based on learning progress
to obtain “developmental trajectories" that focus on increasingly difficult tasks [10]. Nevertheless,
their method requires iteratively partitioning the full task space, which strongly limits the application
to fine-grain manipulation tasks like the ones presented in our work.

More recent work in using a curriculum for RL assumes that baseline performances for several
tasks are given, and it uses them to gauge which tasks are the hardest (furthest behind the baseline)
and require more training [140]. However, this framework can only handle finite sets of tasks and
requires each task to be learnable on its own. On the other hand, our method trains a policy that
generalizes to a set of continuously parameterized tasks, and it is shown to perform well even under

https://sites.google.com/view/goalgeneration4rl

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 30

sparse rewards by not allocating training effort to tasks that are too hard for the current performance
of the agent.

Closer to our method of adaptively generating the tasks to train on, an interesting asymmetric self-
play strategy has recently been proposed [152]. Contrary to our approach, which aims to generate
and train on all tasks that are at the appropriate level of difficulty, the asymmetric component of
their method can lead to biased exploration concentrating on only a subset of the tasks that are at
the appropriate level of difficulty, as the authors and our own experiments suggests. This problem
and their time-oriented metric of hardness may lead to poor performance in continuous state-action
spaces, which are typical in robotics. Furthermore, their approach is designed as an exploration
bonus for a single target task; in contrast, we define a new problem of efficiently optimizing a policy
across a range of start states, which is considered relevant to improve generalization [120].

Our approach can be understood as sequentially composing locally stabilizing controllers by
growing a tree of stabilized trajectories backwards from the goal state, similar to work done by
Tedrake et al. [162]. This can be viewed as a “funnel” which takes start states to the goal state via
a series of locally valid policies [16]. Unlike these methods, our approach does not require any
dynamic model of the system. An RL counterpart, closer to our approach, is the work by Bagnell
et al. [8], where a policy search algorithm in the spirit of traditional dynamic programming methods
is proposed to learn a non-stationary policy: they learn what should be done in the last time-step and
then “back it up" to learn the previous time-step and so on. Nevertheless, they require the stronger
assumption of having access to baseline distributions that approximate the optimal state-distribution
at every time-step.

The idea of directly influencing the start state distribution to accelerate learning in a Markov
Decision Process (MDP) has drawn attention in the past. Kakade and Langford [70] studied the
idea of exploiting the access to a ‘generative model’ [73] that allows training the policy on a fixed
‘restart distribution’ different from the one originally specified by the MDP. If properly chosen, this
is proven to improve the policy training and final performance on the original start state distribution.
Nevertheless, no practical procedure is given to choose this new distribution (only suggesting to use
a more uniform distribution over states, which is what our baseline does), and they don’t consider
adapting the start state distribution during training, as we do. Other researchers have proposed to
use expert demonstrations to improve learning of model-free RL algorithms, either by modifying
the start state distribution to be uniform among states visited by the provided trajectories [117],
or biasing the exploration towards relevant regions [151]. Our method works without any expert
demonstrations, so we do not compare against these lines of research.

3.3 Goal-Reaching Policy Learning

Goal-parameterized Reward Functions
In the traditional RL framework, at each timestep t, the agent in state st ∈ S ⊆ Rn takes an action
at ∈ A ⊆ Rm, according to some policy π(at |st) that maps from the current state st to a probability
distribution over actions. Taking this action causes the agent to enter into a new state st+1 according

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 31

to a transition distribution p(st+1|st, at), and receive a reward rt = r(st, at, st+1). The objective of
the agent is to find the policy π that maximizes the expected return, defined as the sum of rewards
R =

∑T
t=0 rt, where T is a maximal time given to perform the task. The learned policy corresponds

to maximizing the expected return for a single reward function.
In our framework, instead of learning to optimize a single reward function, we consider a range

of reward functions rg indexed or parametrized by a goal g ∈ G. Each goal g corresponds to a set of
states Sg ⊂ S such that goal g is considered to be achieved when the agent is in any state st ∈ Sg.
Then the objective is to learn a policy that, given any goal g ∈ G, acts optimally with respect to rg.
We define a very simple reward function that measures whether the agent has reached the goal:

rg(st, at, st+1) = 1{st+1 ∈ Sg} , (3.1)

where 1 is the indicator function. In our case, we use Sg = {st : d(f(st), g) ≤ ε}, where f(·) is a
function that projects a state into goal space G, d(·, ·) is a distance metric in goal space, and ε is the
acceptable tolerance that determines when the goal is reached. However, our method can handle
generic binary rewards (as in Eq. (3.1)) and does not require a distance metric for learning.

Furthermore, we define our MDP such that each episode terminates when st ∈ Sg. Thus, the
return Rg =

∑T
t=0 r

g
t is a binary random variable whose value indicates whether the agent has

reached the set Sg in at most T time-steps. Policies π(at | st, g) are also conditioned on the current
goal g (as in Schaul et al. [129]). The expected return obtained when we take actions sampled from
the policy can then be expressed as the probability of success on that goal within T time-steps, as
shown in Eq. (3.2).

Rg(π) = Eπ(· | st,g)1
{
∃ t ∈ [1 . . . T] : st ∈ Sg

}
= P

(
∃ t ∈ [1 . . . T] : st ∈ Sg

∣∣∣ π, g) (3.2)

The sparse indicator reward function of Eq. (3.1) is not only simple but also represents a property of
many real-world goal problems: in many settings, it may be difficult to tell whether the agent is
getting closer to achieving a goal, but easy to tell when a goal has been achieved (e.g. in a maze). In
theory, one could hand-engineer a meaningful distance function for each task that could be used
to create a dense reward function. Instead, our method is able to learn simply using the indicator
function of Eq. (3.1).

Overall Objective
We desire to find a policy π(at | st, g) that achieves a high reward for many goals g. We assume
that there is a test distribution of goals pg(g) that we would like to perform well on. For simplicity,
we assume that the test distribution samples goals uniformly from the set of goals G, although in
practice any distribution can be used. The overall objective is then to find a policy π∗ such that

π∗(at | st, g) = arg max
π

Eg∼pg(·)Rg(π) . (3.3)

Recall from Eq. (3.2) that Rg(π) is the probability of success for each goal g. Thus the objective of
Eq. (3.3) measures the average probability of success over all goals sampled from pg(g). We refer
to the objective in Eq. (3.3) as the coverage.

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 32

3.4 Automatic Goal Generation for Reinforcement Learning
Agents

In order to efficiently maximize the objective from the previous section, the algorithm must
intelligently choose which goals to focus on at every training stage: goals should be at the appropriate
level of difficulty for the current policy. To do so, our algorithm allows an agent to generate its
own reward functions, defined with respect to target subsets of the state space, called goals. We
generate such goals using a Goal Generative Adversarial Network (Goal GAN), a variation of to the
GANs introduced by Goodfellow et al. [47]. A goal discriminator is trained to evaluate whether a
goal is at the appropriate level of difficulty for the current policy, and a goal generator is trained to
generate goals that meet this criteria. We show that such a framework allows an agent to quickly
learn a policy that reaches all feasible goals in its environment, with no prior knowledge about
the environment or the tasks being performed. The method described in this section automatically
creates a curriculum, in which, at each step, the generator generates goals that are only slightly
more difficult than the goals that the agent already knows how to achieve.

Similar to previous work [129, 81, 32, 26], we require a continuous goal-space representation
such that a goal-conditioned policy can efficiently generalize over the goals. In particular, we
assume that:

1. A policy trained on a sufficient number of goals in some area of the goal-space will learn to
interpolate to other goals within that area.

2. A policy trained on some set of goals will provide a good initialization for learning to
reach close-by goals, meaning that the policy can occasionally reach them but maybe not
consistently.

Furthermore, we assume that if a goal is reachable, there exists a policy that does so reliably. This
is a reasonable assumption for any practical robotics problem, and it will be key for our method, as
it strives to train on every goal until it is consistently reached.

The approach described in this section can be broken down into three parts: First, we label a
set of goals based on whether they are at the appropriate level of difficulty for the current policy.
Second, using these labeled goals, we train a generator to output new goals at the appropriate level
of difficulty. Finally, we use these new goals to efficiently train the policy, improving its coverage
objective. We iterate through each of these steps until the policy converges.

Goal Labeling
As shown in our experiments, sampling goals from pg(g) directly, and training our policy on each
sampled goal may not be the most sample efficient way to optimize the coverage objective of
Eq. (3.3). Instead, we modify the distribution from which we sample goals during training to be
uniform over the set of Goals of Intermediate Difficulty (GOID):

GOIDi := {g : Rmin ≤ Rg(πi) ≤ Rmax} ⊆ G. (3.4)

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 33

The justification for this is as follows: due to the sparsity of the reward function, for most goals
g, the current policy πi (at iteration i) obtains no reward. Instead, we wish to train our policy on
goals g for which πi is able to receive some minimum expected return Rg(πi) > Rmin such that the
agent receives enough reward signal for learning. On the other hand, with this single restriction, we
might sample repeatedly from a small set of already mastered goals. To force our policy to train on
goals that still need improvement, we also ask for Rg(πi) ≤ Rmax, where Rmax is a hyperparameter
setting a maximum level of performance above which we prefer to concentrate on new goals. Note
that from Eq. (3.2), Rmin and Rmax can be interpreted as a minimum and maximum probability of
reaching a goal over T time-steps. Training our policy on goals in GOIDi allows us to efficiently
maximize the coverage objective of Eq. (3.3). The justification for this is as follows: due to the
sparsity of the reward function, for most goals g, the current policy πi (at iteration i) obtains no
reward. Instead, we wish to train our policy on goals g for which πi is able to receive some minimum
expected return Rg(πi) > Rmin such that the agent receives enough reward signal for learning. On
the other hand, with this single restriction, we might sample repeatedly from a small set of already
mastered goals. To force our policy to train on goals that still need improvement, we also ask for
Rg(πi) ≤ Rmax, where Rmax is a hyperparameter setting a maximum level of performance above
which we prefer to concentrate on new goals. Note that from Eq. (3.2), Rmin and Rmax can be
interpreted as a minimum and maximum probability of reaching a goal over T time-steps. Training
our policy on goals in GOIDi allows us to efficiently maximize the coverage objective of Eq. (3.3).
Therefore, we need to approximate the sampling fromGOIDi. We propose to first estimate the label
yg ∈ {0, 1} that indicates whether g ∈ GOIDi for all goals g used in the previous training iteration,
and then use these labels to train a generative model from where we can sample goals to train on
the next iteration. We estimate the label of a goal g by computing the fraction of success among
all trajectories that had this goal g during the previous training iteration, and then check whether
this estimate is in between Rmin and Rmax. In all our experiments we use 0.1 and 0.9 respectively,
although the algorithm is very robust to these hyperparameters (any value of Rmin ∈ (0, 0.25) and
Rmax ∈ (0.75, 1) would yield basically the same result, as shown in Appendix A.3)

Adversarial Goal Generation
In order to sample new goals g uniformly from GOIDi, we introduce an adversarial training
procedure called “goal GAN", which is a modification of the procedure used for training Generative
Adversarial Networks (GANs) [47]. The modification allows us to train the generative model
both with positive examples from the distribution we want to approximate and negative examples
sampled from a distribution that does not share support with the desired one. This improves the
accuracy of the generative model despite being trained with few positive samples. Our choice of
GANs for goal generation is motivated both from this training from negative examples, as well as
their ability to generate very high dimensional samples such as images [47] which is important
for scaling up our approach to goal generation in high-dimensional goal spaces. Other generative
models like Stochastic Neural Networks [159] don’t accept negative examples, and don’t scale to
higher dimensions.

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 34

We use a “goal generator" neural network G(z) to generate goals g from a noise vector z. We
train G(z) to uniformly output goals in GOIDi using a second “goal discriminator" network D(g).
The latter is trained to distinguish goals that are in GOIDi from goals that are not in GOIDi. We
optimize our G(z) and D(g) in a manner similar to that of the Least-Squares GAN (LSGAN) [100],
which we modify by introducing the binary label yg allowing us to train from “negative examples"
when yg = 0:

min
D
V (D) = Eg∼pdata(g)

[
yg(D(g)− b)2 + (1− yg)(D(g)− a)2

]
+ Ez∼pz(z)[(D(G(z))− a)2]

min
G
V (G) = Ez∼pz(z)[D(G(z))− c)2] (3.5)

We directly use the original hyperparameters reported in Mao et al. [100] in all our experiments
(a = -1, b = 1, and c = 0). The LSGAN approach gives us a considerable improvement in training
stability over vanilla GAN, and it has a comparable performance to WGAN [4]. However, unlike in
the original LSGAN paper [100], we have three terms in our value function V (D) rather than the
original two. For goals g for which yg = 1, the second term disappears and we are left with only the
first and third terms, which are identical to that of the original LSGAN framework. Viewed in this
manner, the discriminator is trained to discriminate between goals from pdata(g) with a label yg = 1
and the generated goals G(z). Looking at the second term, our discriminator is also trained with
“negative examples" with a label yg = 0 which our generator should not generate. The generator is
trained to “fool" the discriminator, i.e. to output goals that match the distribution of goals in pdata(g)
for which yg = 1.

Policy Optimization

Algorithm 4: Generative Goal Learning
Input :Policy π0
Output :Policy πN
(G,D)← initialize_GAN()
goalsold ← ∅
for i← 1 to N do

z ← sample_noise(pz(·));
goals← G(z) ∪ sample(goalsold);
πi ← update_policy(goals, πi−1);
returns← evaluate_policy(goals, πi);
labels← label_goals(returns)
(G,D)← train_GAN(goals, labels,G,D);
goalsold ← update_replay(goals)

end

Our full algorithm for training a policy π(at | st, g) to maximize the coverage objective in
Eq. (3.3) is shown in Algorithm 4. At each iteration i, we generate a set of goals by first using

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 35

sample_noise to obtain a noise vector z from pz(·) and then passing this noise to the generator
G(z). We use these goals to train our policy using RL, with the reward function given by Eq. (3.1)
(update_policy). Any RL algorithm can be used for training; in our case we use TRPO with
GAE [136]. Our policy’s empirical performance on these goals (evaluate_policy) is used
to determine each goal’s label yg (label_goals), as described in Section 3.4. Next, we use
these labels to train our goal generator and our goal discriminator (train_GAN), as described in
Section 3.4. The generated goals from the previous iteration are used to compute the Monte Carlo
estimate of the expectations with respect to the distribution pdata(g) in Eq. (3.5). By training on goals
within GOIDi produced by the goal generator, our method efficiently finds a policy that optimizes
the coverage objective. For details on how we initialize the goal GAN (initialize_GAN),
and how we use a replay buffer to prevent “catastrophic forgetting" (update_replay), see
Appendix A.3.

The algorithm described above naturally creates a curriculum. The goal generator is updated
along with the policy to generate goals in GOIDi, for which our current policy πi obtains an
intermediate level of return. Thus such goals are always at the appropriate level of difficulty.
However, the curriculum occurs as a by-product via our optimization, without requiring any prior
knowledge of the environment or the tasks that the agent must perform.

3.5 Experimental Results for goalGAN
In this section we provide the experimental results to answer the following questions:
• Does our automatic curriculum yield faster maximization of the coverage objective?
• Does our Goal GAN dynamically shift to sample goals of the appropriate difficulty (i.e. in
GOIDi)?
• Can our Goal GAN track complex multimodal goal distributions GOIDi?
• Does it scale to higher-dimensional goal-spaces with a low-dimensional space of feasible

goals?
To answer the first two questions, we demonstrate our method in two challenging robotic locomotion
tasks, where the goals are the (x, y) position of the Center of Mass (CoM) of a dynamically complex
quadruped agent. In the first experiment the agent has no constraints (see Fig. 3.1a) and in the
second one the agent is inside a U-maze (see Fig. 3.1b). To answer the third question, we train a
point-mass agent to reach any point within a multi-path maze (see Fig. 3.1d). To answer the final
question, we study how our method scales with the dimension of the goal-space in an environment
where the feasible region is kept of approximately constant volume in an embedding space that
grows in dimension (see Fig. 3.1c for the 3D case). We compare our Goal GAN method against
four baselines. Uniform Sampling is a method that does not use a curriculum at all, training at every
iteration on goals uniformly sampled from the goal-space. To demonstrate that a straight-forward
distance reward can be prone to local minima, Uniform Sampling with L2 loss samples goals in the
same fashion as the first baseline, but instead of the indicator reward that our method uses, it receives
the negative L2 distance to the goal as a reward at every step. We have also adapted two methods
from the literature to our setting: Asymmetric Self-play [152] and SAGG-RIAC [9]. Finally, we

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 36

(a) Free Ant Locomotion
(b) Maze Ant
Locomotion

(c) Point-mass 3D
(d) Multi-path

point-mass

Figure 3.1: In 3.1a-3.1d, the red areas are goals reachable by the orange agent. In 3.1c any point
within the blue frame is a feasible goal (purple balls) and the rest are unfeasible (black triangles).

provide an ablation and an oracle for our method to better understand the importance of sampling
goals of intermediate difficulty g ∈ GOIDi. The ablation GAN fit all consists on training the GAN
not only on the goals g ∈ GOIDi but rather on every goal attempted in the previous iteration.
Given the noise injected at the output of the GAN this generates a gradually expanding set of goals -
similar to any hand-designed curriculum. The oracle consists in sampling goals uniformly from the
feasible state-space, but only keeping them if they satisfy the criterion in Eq. (3.4) defining GOIDi.
This Rejection Sampling method is orders of magnitude more expensive in terms of labeling, but it
serves to estimate an upper-bound for our method in terms of performance.

Ant Locomotion
We test our method in two challenging environments of a complex robotic agent navigating either a
free space (Free Ant, Fig. 3.1a) or a U-shaped maze (Maze Ant, Fig. 3.1b). Duan et al. [30] describe
the task of trying to reach the other end of the U-turn, and they show that standard RL methods
are unable to solve it. We further extend the task to ask to be able to reach any given point within
the maze, or within the [−5, 5]2 square for Free Ant. The reward is still a sparse indicator function
being 1 only when the (x, y) CoM of the Ant is within ε = 0.5 of the goal. Therefore the goal
space is 2 dimensional, the state-space is 41 dimensional, and the action space is 8 dimensional (see
Appendix A.3).

We first explore whether, by training on goals that are generated by our Goal GAN, we are
able to improve our policy’s training efficiency, compared to the baselines described above. In
Figs. 3.2a-Fig. 3.2b we see that our method leads to faster training compared to the baselines. The
Uniform Sampling baseline does very poorly because too many samples are wasted attempting
to train on goals that are infeasible or not reachable by the current policy - hence not receiving
any learning signal. If an L2 loss is added to try to guide the learning, the agent falls into a poor
local optima of not moving to avoid further negative rewards. The two other baselines that we
compare against perform better, but still do not surpass the performance of our method. In particular,
Asymmetric Self-play needs to train the goal-generating policy (Alice) at every outer iteration, with

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 37

(a) Free Ant - Baselines (b) Maze Ant - Baselines

(c) Free Ant - Variants (d) Maze Ant - Variants

Figure 3.2: Learning curves comparing the training efficiency of our Goal GAN method and
different baselines (first row) and variants (second row), for the Free Ant (left column) and the Maze
Ant (right column). The y-axis indicates the average return over all feasible goals. The x-axis shows
the number of times that new goals have been sampled. All plots average over 10 random seeds.

an amount of rollouts equivalent to the ones used to train the goal-reaching policy. This additional
burden is not represented in the plots, being therefore at least half as sample-efficient as the plots
indicate. SAGG-RIAC maintains an ever-growing partition of the goal-space that becomes more
and more biased towards areas that already have more sub-regions, leading to reduced exploration
and slowing down the expansion of the policy’s capabilities. Details of our adaptation of these two
methods to our problem, as well as further study of their failure cases, is provided in the Appendices
A.3 and A.3.

To better understand the efficiency of our method, we analyze the goals generated by our
automatic curriculum. In these Ant navigation experiments, the goal space is two dimensional,
allowing us to study the shift in the probability distribution generated by the Goal GAN (Fig. 3.3 for
the Maze Ant) along with the improvement of the policy coverage (Fig. 3.4 for the Maze Ant). We
have indicated the difficulty of reaching the generated goals in Fig. 3.3. It can be observed in these
figures that the location of the generated goals shifts to different parts of the maze, concentrating on
the area where the current policy is receiving some learning signal but needs more improvement.
The percentage of generated goals that are at the appropriate level of difficulty (in GOIDi) stays

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 38

around 20% even as the policy improves. The goals in these figures include a mix of newly generated
goals from the Goal GAN as well as goals from previous iterations that we use to prevent our policy
from “forgetting" (Appendix A.3). Overall it is clear that our Goal GAN dynamically shift to sample
goals of the appropriate difficulty. See Appendix A.3 and Fig. A.11-A.12 therein for the analogous
analysis of Free Ant, where we observe that Goal GAN produces a growing ring of goals around
the origin.

(a) Iteration 5 (b) Iteration 90 (c) Iterartion 350

Figure 3.3: Goals that, at iterations i, our algorithm trains on - 200 sampled from Goal GAN, 100
from replay. Green goals satisfy R̄g(πi) ≥ Rmax. Blue ones have appropriate difficulty for the
current policy Rmin ≤ R̄g(πi) ≤ Rmax. The red ones have Rmin ≥ R̄g(πi).

(a) Itr 5: Coverage=0.20 (b) Itr 90: Coverage=0.48 (c) Itr 350: Coverage=0.71

Figure 3.4: Visualization of the policy performance (same policy training as in Fig. 3.3). For
illustration purposes, each grid cell is colored according to the expected return achieved when fixing
its center as goal: Red indicates 100% success; blue indicates 0% success.

It is interesting to analyze the importance of generating goals in GOIDi for efficient learning.
This is done in Figs. 3.2c-3.2d, where we first show an ablation of our method GAN fit all, that
disregards the labels. This method performs worse than ours, because the expansion of the goals
is not related to the current performance of the policy. Finally, we study the Rejection Sampling
oracle. As explained in Section 3.4, we wish to sample from the set of goals GOIDi, which we
approximate by fitting a Goal GAN to the distribution of good goals observed in the previous policy
optimization step. We evaluate now how much this approximation affects learning by comparing
the learning performance of our Goal GAN to a policy trained on goals sampled uniformly from

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 39

GOIDi by using rejection sampling. This method is orders of magnitude more sample inefficient,
but gives us an upper bound on the performance of our method. Figs. 3.2c-3.2d demonstrate that
our performance is quite close to the performance of this much less efficient baseline.

Multi-path point-mass maze
In this section we show that our Goal GAN method is efficient at tracking clearly multi-modal
distributions of goals g ∈ GOIDi. To this end, we introduce a new maze environment with multiple
paths, as can be seen in Fig. 3.1d. To keep the experiment simple we replace the Ant agent by a
point-mass, which actions are the velocity vector (2 dim). As in the other experiments, our aim is to
learn a policy that can reach any feasible goal corresponding to ε-balls in state space, like the one
depicted in red.

Similar to the experiments in Figures 3.3 and 3.4, here we show the goals that our algorithm
generated to train the Mutli-path point-mass agent. Figures 3.5 and 3.6 show the results. It can
be observed that our method produces a multi-modal distribution over goals, tracking all the areas
where goals are at the appropriate level of difficulty. Note that the samples from the regularized
replay buffer are responsible for the trailing spread of “High Reward" goals and the Goal GAN is
responsible for the more concentrated nodes (see only Goal GAN samples in Appendix Fig. A.13a).
A clear benefit of using our Goal GAN as a generative model is that no prior knowledge about the
distribution to fit is required (like the number of modes). Finally, having several possible paths to
reach a specific goal does not hinder the learning of our algorithm that consistently reaches full
coverage in this problem (see Appendix Fig. A.13b).

(a) Iteration 1 (b) Iteration 10 (c) Iteration 30 (d) Iteration 100

Figure 3.5: Goals that, at iterations i, our algorithm trains on - 200 sampled from Goal GAN, 100
from replay. Green goals satisfy R̄g(πi) ≥ Rmax. Blue ones have appropriate difficulty for the
current policy Rmin ≤ R̄g(πi) ≤ Rmax. The red ones have Rmin ≥ R̄g(πi).

N-dimensional Point Mass
In many real-world RL problems, the set of feasible states is a lower-dimensional subset of the full
state space, defined by the constraints of the environment. For example, the kinematic constraints
of a robot limit the set of feasible states that the robot can reach. In this section we use an N-

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 40

(a) Itr 1:
Coverage=0.014

(b) Itr 10:
Coverage=0.53

(c) Itr 30:
Coverage=0.78

(d) Itr 100:
Coverage=0.98

Figure 3.6: Visualization of the policy performance (same policy training as in Fig. 3.5). For
illustration purposes, each grid cell is colored according to the expected return achieved when fixing
its center as goal: Red indicates 100% success; blue indicates 0% success.

Figure 3.7: Final goal coverage obtained after 200 outer iterations on the N-dim point mass
environment. All plots average over 5 random seeds.

dimensional Point Mass to demonstrate the performance of our method as the embedding dimension
increases.

In this experiments, the full state-space of the N -dimensional Point Mass is the hypercube
[−5, 5]N . However, the Point Mass can only move within a small subset of this state space. In
the two-dimensional case, the set of feasible states corresponds to the [−5, 5]× [−1, 1] rectangle,
making up 20% of the full space. For N > 2, the feasible space is the Cartesian product of this 2D
strip with [−ε, ε]N−2, where ε = 0.3. In this higher-dimensional environment, our agent receives

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 41

a reward of 1 when it moves within εN = 0.3
√
N√
2

of the goal state, to account for the increase in
average L2 distance between points in higher dimensions. The fraction of the volume of the feasible
space decreases as N increases (e.g. 0.00023:1 for N = 6).

We compare the performance of our method to the baselines in Fig. 3.7. The uniform sampling
baseline has poor performance as the number of dimensions increases because the fraction of
feasible states within the full state space decreases as the dimension increases. Thus, sampling
uniformly results in sampling an increasing percentage of unfeasible goals, leading to poor learning
signal. In contrast, the performance of our method does not decay as much as the state space
dimension increases, because our Goal GAN always generates goals within the feasible portion
of the state space. The GAN fit all variation of our method suffers from the increase in dimension
because it is not encouraged to track the narrow feasible region. Finally, the oracle and the baseline
with an L2 distance reward have perfect performance, which is expected in this task where the
optimal policy is just to go in a straight line towards the goal. Even without this prior knowledge,
the Goal GAN discovers the feasible subset of the goal space.

3.6 Reverse Curriculum Generation for Reinforcement
Learning

In this section we focus on distributions of tasks where there is a single goal to reach, but we want
to reach it robustly from any starting state. We are particularly interested in hard-to-reach goals
that would be too inefficient to learn how to reach with the previous hierarchical methods or the
automatic goal generation method above. In this section, we avoid costly supervisions like reward
engineering or use of demonstrations by exploiting two key insights. First, it is easier to reach the
goal from states nearby the goal, or from states nearby where the agent already knows how to reach
the goal. Second, applying random actions from one such state leads the agent to new feasible
nearby states, from where it is not too much harder to reach the goal. This can be understood as
requiring a minimum degree of reversibility, which is usually satisfied in many robotic manipulation
tasks like assembly and manufacturing.

We take advantage of these insights to develop a “reverse learning" approach for solving such
difficult manipulation tasks. The robot is first trained to reach the goal from start states nearby
a given goal state. Then, leveraging that knowledge, the robot is trained to solve the task from
increasingly distant start states. All start states are automatically generated by executing a short
random walk from the previous start states that got some reward but still require more training.
This method of learning in reverse, or growing outwards from the goal, is inspired by dynamic
programming methods like value iteration, where the solutions to easier sub-problems are used to
compute the solution to harder problems.

Therefore, our method automatically generates a curriculum of initial positions from which to
learn to achieve the task. Our method requires no prior knowledge of the task other than providing a
single state that achieves the task (i.e. is at the goal). The contributions of this section include:

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 42

• Formalizing a novel problem definition of finding the optimal start-state distribution at every
training step to maximize the overall learning speed.

• A novel and practical approach for sampling a start state distribution that varies over the
course of training, leading to an automatic curriculum of start state distributions.

• Empirical experiments showing that our approach solves difficult tasks like navigation or
fine-grained robotic manipulation, not solvable by state-of-the-art learning methods.

Formalization and assumptions
We denote by R(π, s0) := Eτ |s0 [

∑T
t=0 r(st, at)] the expected cumulative reward starting when

starting from a s0 ∼ ρ0, where τ = (s0, a0, , . . . , aT−1, sT) denotes a whole trajectory, with
at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at).

In our work we propose to instead use a different start-state distribution ρi at every training
iteration i to maximize the learning rate. Learning progress is still evaluated based on the original
distribution ρ0. Convergence of ρi to ρ0 is desirable but not required as an optimal policy π?i under a
start distribution ρi is also optimal under any other ρ0, as long as their support coincide. In the case
of approximately optimal policies under ρi, bounds on the performance under ρ0 can be derived
[70].

In this work we study how to exploit three assumptions that hold true in a wide range of practical
learning problems (especially if learned in simulation):

Assumption 1. We can arbitrarily reset the agent into any start state s0 ∈ S at the beginning of all
trajectories.

Assumption 2. At least one state sg is provided such that sg ∈ Sg.

Assumption 3. The Markov Chain induced by taking uniformly sampled random actions has a
communicating class1 including all start states S0 and the given goal state sg.

The first assumption has been considered previously (e.g. access to a generative model in Kearns,
Mansour, and Ng [73]) and is deemed to be a considerably weaker assumption than having access
to the full transition model of the MDP. Kakade and Langford [70] proved that Assumption 1 can
be used to improve the learning in MDPs that require large exploration. Nevertheless, they do not
propose a concrete procedure to choose a distribution ρ from which to sample the start states in order
to maximally improve on the objective coverage objective. In our case, combining Assumption 1
with Assumption 2, we are able to reset the state to sg, which is critical in our method to initialize
the start state distribution to concentrate around the goal space at the beginning of learning. For
Assumption 2, note that we only assume access to one state sg in the goal region; we do not require
a description of the full region nor trajectories leading to it. Finally, Assumption 3 ensures that

1A communicating class is a maximal set of states C such that every pair of states in C communicates with each
other. Two states communicate if there is a non-zero probability of reaching one from the other.

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 43

the goal can be reached from any of the relevant start states, and that those start states can also be
reached from the goal; this assumption is satisfied by many robotic problems of interest, as long
as there are no major irreversibilities in the system. In the next sections we detail our automatic
curriculum generation method based on continuously adapting the start state distribution to the
current performance of the policy. We demonstrate the value of this method for challenging robotic
manipulation tasks.

In a wide range of goal-oriented RL problems, reaching the goal from an overwhelming majority
of start states in S0 requires a prohibitive amount of on-policy or undirected exploration. On the
other hand, it is usually easy for the learning agent (i.e. our current policy πi) to reach the goal Sg

from states nearby a goal state sg ∈ Sg. Therefore, learning from these states will be fast because
the agent will perceive a strong signal, even under the indicator reward introduced in Section 3.7.
Once the agent knows how to reach the goal from these nearby states, it can train from even further
states and bootstrap its already acquired knowledge. This reverse expansion is inspired by classical
RL methods like Value Iteration or Policy Iteration [155], although in our case we do not assume
knowledge of the transition model and our environments have high-dimensional continuous action
and state spaces. In the following subsections we propose a method that leverages the assumptions
from the previous section and the idea of reverse expansion to automatically adapt the start state
distribution, generating a curriculum of start state distributions that can be used to tackle problems
unsolvable by standard RL methods.

Policy Optimization with modified start state distribution
Policy gradient strategies are well suited for robotic tasks with continuous and high dimensional
action-spaces [25]. Nevertheless, applying them directly on the original MDP does poorly in tasks
with sparse rewards and long horizons like our challenging manipulation tasks. If the goal is not
reached from the start states in S0, no reward is received, and the policy cannot improve. Therefore,
we propose to adapt the distribution ρi from where start states s0 are sampled to train policy πi.

Analogously to the previous section, here we also postulate that in goal-oriented environments,
a strong learning signal is obtained when training on start states s0 ∼ ρi from where the agent
reaches the goal sometimes, but not always. We call these start states “good starts". More formally,
at training iteration i, we would like to sample from ρi = Unif(S0

i) where S0
i = {s0 : Rmin <

R(πi, s0) < Rmax}. The hyper-parametersRmin andRmax are easy to tune due to their interpretation
as bounds on the probability of success. Unfortunately, sampling uniformly from S0

i is intractable.
Nevertheless, at least at the beginning of training, states nearby a goal state sg are more likely to be
in S0

i . Then, after some iterations of training on these start states, some will be completely mastered
(i.e. R(πi+1, s0) > Rmax and s0 is no longer in S0

i+1), but others will still need more training. To
find more “good starts", we follow the same reasoning: the states nearby these remaining s ∈ S0

i+1

are likely to also be in S0
i+1. In the rest of the section we describe an effective way of sampling

feasible nearby states and we layout the full algorithm.

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 44

Algorithm 5: Policy Training
Input :π0, sg, ρ0, Nnew, Nold, Rmin, Rmax, Iter
Output :Policy πN
startsold ← [sg];
starts, rews← [sg], [1];
for i← 1 to Iter do

starts← SampleNearby(starts, Nnew);
starts.append[sample(startsold, Nold)];
ρi ← Unif(starts);
πi, rews← train_pol(ρi, πi−1);
starts←
select(starts, rews,Rmin, Rmax);
startsold.append[starts];

end

Procedure 6: SampleNearby
Input :starts, Nnew, Σ, TB,

M
Output :startsnew

while len(starts) < M do
s0 ∼ Unif(starts);
for t← 1 to TB do

at = εt, εt ∼ N (0,Σ);
st ∼ P(st|st−1, at);
starts.append(st);

end
end
startsnew ←
sample(starts,Nnew)

Sampling “nearby" feasible states
For robotic manipulation tasks with complex contacts and constraints, applying noise in state-
space s′ = s + ε, ε ∼ N may yield many infeasible states s′. For example, even small random
perturbations of the joint angles of a seven degree-of-freedom arm generate large modifications to
the end-effector position, potentially placing it in an infeasible state that intersects with surrounding
objects. For this reason, the concept of “nearby" states might be unrelated to the Euclidean distance
‖s′− s‖2 between these states. Instead, we have to understand proximity in terms of how likely it is
to reach one state from the other by taking actions in the MDP.

Therefore, we choose to generate new states s′ from a certain seed state s by applying noise
in action space. This means we exploit Assumption 1 to reset the system to state s, and from
there we execute short “Brownian motion" rollouts of horizon TB taking actions at+1 = εt with
εt ∼ N (0,Σ). This method of generating “nearby" states is detailed in Procedure 6. The total
sampled states M should be large enough such that the Nnew desired states startsnew, obtained by
subsampling, extend in all directions around the input states starts. All states visited during the
rollouts are guaranteed to be feasible and can then be used as start states to keep training the policy.

Detailed Algorithm
Our generic algorithm is detailed in Algorithm 5. We first initialize the policy with π0 and the “good
start" states list starts with the given goal state sg. Then we perform Iter training iterations of our
RL algorithm of choice train_pol. In our case we perform 5 iterations of Trust Region Policy
Optimization (TRPO) [138] but any on-policy method could be used. At every iteration, we set the
start state distribution ρi to be uniform over a list of start states obtained by samplingNnew start states
from nearby the ones in our “good starts" list starts (see SampleNearby in previous section),
and Nold start states from our replay buffer of previous “good starts" startsold. As already shown

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 45

by Florensa* et al. [39], the replay buffer is an important feature to avoid catastrophic forgetting.
Technically, to check which of the states s0 ∈ starts are in S0

i (i.e. the “good starts") we should
execute some trajectories from each of those states to estimate the expected returns R(s0, πi−1),
but this considerably increases the sample complexity. Instead, we use the trajectories collected by
train_pol to estimate R(πi−1, s0) and save it in the list rews. These are used to select the
“good" start states for the next iteration - picking the ones with Rmin ≤ R(πi−1, s0) ≤ Rmax. We
found this heuristic to give a good enough estimate and not drastically decrease learning performance
of the overall algorithm.

Our method keeps expanding the region of the state-space from which the policy can reach the
goal reliably. It samples more heavily nearby the start states that need more training to be mastered
and avoiding start states that are yet too far to receive any reward under the current policy. Then,
thanks to Assumption 3, the Brownian motion that is used to generate further and further start states
will eventually reach all start states in S0, and therefore our method improves the metric ηρ0 defined
in Sec. 3.3 (see also Sec. A.4 for details on how we evaluate our progress on this metric).

3.7 Experimental Results for Reverse Curriculum
We investigate the following questions in our experiments:

• Does the performance of the policy on the target start state distribution ρ0 improve by training
on distributions ρi growing from the goal?
• Does focusing the training on “good starts" speed up learning?
• Is Brownian motion a good way to generate “good starts" from previous “good starts"?

We use the below task settings to explore these questions. All are implemented in MuJoCo [166]
and the hyperparameters used in our experiments are described in Appendix A.4.

(a) Point-mass maze task (b) Ant maze task (c) Ring on Peg task (d) Key insertion task

Figure 3.8: Task images. Source code and videos of the performance obtained by our algorithm are
available here: http://bit.ly/reversecurriculum

http://bit.ly/reversecurriculum

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 46

Point-mass maze: (Fig. 3.8a) A point-mass agent (orange) must navigate within 30cm of the
goal position (4m, 4m) at the end of a G-shaped maze (red). The target start state distribution from
which we seek to reach the goal is uniform over all feasible (x, y) positions in the maze.

Ant maze: (Fig. 3.8b) A quadruped robot (orange) must navigate its Center of Mass to within
50cm of the goal position (0m, 4m) at the end of a U-shaped maze (red). The target start state
distribution from which we seek to reach the goal is uniform over all feasible ant positions inside
the maze.

Ring on Peg: (Fig. 3.8c) A 7 DOF robot must learn to place a “ring" (actually a square disk
with a hole in the middle) on top of a tight-fitting round peg. The task is complete when the ring is
within 3 cm of the bottom of the 15 cm tall peg. The target start state distribution from which we
seek to reach the goal is uniform over all feasible joint positions for which the center of the ring is
within 40 cm of the bottom of the peg.

Key insertion: (Fig. 3.8d) A 7 DOF robot must learn to insert a key into a key-hole. The task is
completed when the distance between three reference points at the extremities of the key and its
corresponding targets is below 3cm. In order to reach the target, the robot must first insert the key
at a specific orientation, then rotate it 90 degrees clockwise, push forward, then rotate 90 degrees
counterclockwise. The target start state distribution from which we seek to reach the goal is uniform
over all feasible joint positions such that the tip of the key is within 40 cm of key-hole.

Effect of start state distribution
In Figure 3.9, the Uniform Sampling (baseline) red curves show the average return of policies
learned with TRPO without modifying the start state distribution. The green and blue curves
correspond to our method and an ablation, both exploiting the idea of modifying the start state
distribution at every learning iteration. These approaches perform consistently better across the
board. In the case of the point-mass maze navigation task in Fig. 3.9a, we observe that Uniform
Sampling has a very high variance because some policies only learn how to perform well from one
side of the goal (see Appendix A.4 for a thorough analysis). The Ant-maze experiments in Fig. 3.9b
also show a considerable slow-down of the learning speed when using plain TRPO, although the
effect is less drastic as the start state distribution ρ0 is over a smaller space.

In the more complex manipulation tasks shown in Fig. 3.9c-3.9d, we see that the probability
of reaching the goal with Uniform Sampling is around 10% for the ring task and 2% for the key
task. These success probabilities correspond to reliably reaching the goal only from very nearby
positions: when the ring is already on the peg or when the key is initialized very close to the final
position. None of the learned policies trained on the original ρ0 learn to reach the goal from more
distant start states. On the other hand, our methods do succeed at reaching the goal from a wide
range of far away start states. The underlying RL training algorithm and the evaluation metric are
the same. We conclude that training on a different start state distribution ρi can improve training or
even allow learning at all.

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 47

(a) Point-mass Maze task (b) Ant Maze task

(c) Ring on Peg task (d) Key insertion task

Figure 3.9: Learning curves for goal-oriented tasks (mean and variance over 5 random seeds).

Effect of “good starts"
In Figure 3.9 we see how applying our Algorithm 5 to modify the start state distribution considerably
improves learning (Brownian on Good Starts, in green) and final performance on the original MDP.
Two elements are involved in this improvement: first, the backwards expansion from the goal, and
second, the concentration of training efforts on “good starts". To test the relevance of this second
element, we ablate our method by running our SampleNearby Procedure 6 on all states from
which the policy was trained in the previous iteration. In other words, the select function in
Algorithm 5 is replaced by the identity, returning all starts independently of the rewards rews they
obtained during the last training iteration. The resulting algorithm performance is shown as the
Brownian from All Starts blue curve in Figures 3.9. As expected, this method is still better than not
modifying the start state distribution but has a slower learning rate than running SampleNearby
around the estimated good starts.

Now we evaluate an upper bound of the benefit provided by our idea of sampling “good starts".
As mentioned in Sec. 3.6, we would ideally like to sample start states from ρi = Unif(S0

i), but it is
intractable. Instead, we evaluate states in S0

i−1, and we use Brownian motion to find nearby states,
to approximate S0

i . We can evaluate how much this approximation hinders learning by exhaustively
sampling states in the lower dimensional point-mass maze task. To do so, at every iteration we

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 48

can sample states s0 uniformly from the state-space S, empirically estimate their return R(s0, πi),
and reject the ones that are not in the set S0

i = {s0 : Rmin < R(πi, s0) < Rmax}. This exhaustive
sampling method is orders of magnitude more expensive in terms of sample complexity, so it would
not be of practical use. In particular, we can only run it in the easier point-mass maze task. Its
performance is shown in the brown curve of Fig. 3.9a, called “Oracle (rejection sampling)"; training
on states sampled in such a manner further improves the learning rate and final performance. Thus
we can see that our approximation of using states in S0

i−1 to find states in S0
i leads to some loss in

performance, at the benefit of a greatly reduced computation time.
Finally, we compare to another way of generating start states based on the asymmetric self-play

method of Sukhbaatar et al. [152]. The basic idea is to train another policy, “Alice", that proposes
start states to the learning policy, “Bob". As can be seen, this method performs very poorly in
the point-mass maze task, and our investigation shows that “Alice" often gets stuck in a local
optimum, leading to poor start states suggestions for “Bob". In the original paper, the method
was demonstrated only on discrete action spaces, in which a multi-modal distribution for Alice
can be maintained; even in such settings, the authors observed that Alice can easily get stuck in
local optima. This problem is exacerbated when moving to continuous action spaces defined by a
unimodal Gaussian distribution. See a detailed analysis of these failure modes in Appendix A.4.

Brownian motion to generate good starts “nearby" good starts
Here we evaluate if running our Procedure 6 SampleNearby with the start states estimated as
“good" from the previous iteration yields more good starts than running SampleNearby from
all start states used in the previous iteration. This can clearly be seen in Figs. 3.10b-3.10a for the
robotic manipulation tasks.

(a) Ring on Peg task (b) Key insertion task

Figure 3.10: Fraction of “good starts" generated during training for the robotic manipulation tasks

3.8 Conclusions and Future Directions
In this chapter we have proposed two methods within the RL paradigm where the objective is to
train a single policy to succeed on a variety of tasks, under sparse rewards. To solve this problem
first we develop a method for automatic curriculum generation that dynamically adapts to the

CHAPTER 3. AUTOMATIC CURRICULUM GENERATION 49

current performance of the agent. The curriculum is obtained without any prior knowledge of the
environment or of the tasks being performed. We use generative adversarial training to automatically
generate goals for our policy that are always at the appropriate level of difficulty (i.e. not too hard
and not too easy). In the future we want to combine our goal-proposing strategy with recent
multi-goal approaches like HER [2] that could greatly benefit from better ways to select the next
goal to train on. Another promising line of research is to build hierarchy on top of the multi-task
policy that we obtain with our method by training a higher-level policy that outputs the goal for
the lower level multi-task policy [56, 35]. The hierarchy could also be introduced by replacing our
current feed-forward neural network policy by an architecture that learns to build implicit plans
[102, 158], or by leveraging expert demonstrations to extract sub-goals [184], although none of
these approaches tackles yet the multi-task learning problem formulated in this chapter.

We also propose a method to automatically adapt the start state distribution on which an agent is
trained, such that the performance on the original problem is efficiently optimized. We leverage
three assumptions commonly satisfied in simulated tasks to tackle hard goal-oriented problems that
state of the art RL methods cannot solve. A limitation of the current approach is that it generates
start states that grow from a single goal uniformly outwards, until they cover the original start state
distribution Unif(S0). Nevertheless, if the target set of start states S0 is far from the goal and we have
some prior knowledge, it would be interesting to bias the generated start distributions ρi towards the
desired start distribution. A promising future line of work is to combine both present automatic
curriculum methods presented in this chapter, jointly sampling starts and goals similarly to classical
results in planning [78]. It can be observed in the videos of our final policy for the manipulation
tasks that the agent has learned to exploit the contacts instead of avoiding them. Therefore, the
learning based aspect of the presented method has a huge potential to tackle problems that classical
motion planning algorithms could struggle with, such as environments with non-rigid objects or
with uncertainties in the task geometric parameters. We also leave as future work to combine our
curriculum-generation approach with domain randomization methods [165] to obtain policies that
are transferable to the real world.

50

Chapter 4

Leveraging Partial Expert Demonstrations

4.1 Introduction
Designing rewards for Reinforcement Learning (RL) is challenging because it needs to convey the
desired task, be efficient to optimize, and be easy to compute. The latter is particularly problematic
when applying RL to robotics, where detecting whether the desired configuration is reached might
require considerable supervision and instrumentation. Furthermore, we are often interested in being
able to reach a wide range of configurations, hence setting up a different reward every time might
be unpractical. Methods like Hindsight Experience Replay (HER) have recently shown promise
to learn policies able to reach many goals, without the need of a reward. Unfortunately, without
tricks like resetting to points along the trajectory, HER might require many samples to discover
how to reach certain areas of the state-space. In this work we propose a novel algorithm goalGAIL,
which incorporates demonstrations to drastically speed up the convergence to a policy able to reach
any goal, surpassing the performance of an agent trained with other Imitation Learning algorithms.
Furthermore, we show our method can also be used when the available expert trajectories do
not contain the actions or when the expert is suboptimal, which makes it applicable when only
kinesthetic, third-person or noisy demonstrations are available. Our code is open-source 1.

Reinforcement Learning (RL) has shown impressive results in a plethora of simulated tasks,
ranging from attaining super-human performance in video-games [103, 175] and board-games
[142], to learning complex locomotion behaviors [54, 35]. Nevertheless, these successes are shyly
echoed in real world robotics [125, 185]. This is due to the difficulty of setting up the same learning
environment that is enjoyed in simulation. One of the critical assumptions that are hard to obtain
in the real world are the access to a reward function. Self-supervised methods have the power to
overcome this limitation.

A very versatile and reusable form of self-supervision for robotics is to learn how to reach
any previously observed state upon demand. This problem can be formulated as training a goal-
conditioned policy [68, 129] that seeks to obtain the indicator reward of having the observation
exactly match the goal. Such a reward does not require any additional instrumentation of the

1https://sites.google.com/view/goalconditioned-il/

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 51

environment beyond the sensors the robot already has. But in practice, this reward is never observed
because in continuous spaces like the ones in robotics, it is extremely rare to observe twice the exact
same sensory input. Luckily, if we are using an off-policy RL algorithm [95, 51], we can “relabel" a
collected trajectory by replacing its goal by a state actually visited during that trajectory, therefore
observing the indicator reward as often as we wish. This method was introduced as Hindsight
Experience Replay [2] or HER, although it used special resets, and the reward was in fact an ε-ball
around the goal, which is only easy to interpret and use in lower-dimensional state-spaces. More
recently the method was shown to work directly from vision with a special reward [106], and even
only with the indicator reward of exactly matching observation and goal [38].

In theory these approaches could learn how to reach any goal, but the breadth-first nature of the
algorithm makes that some areas of the space take a long time to be learned [39]. This is specially
challenging when there are bottlenecks between different areas of the state-space, and random
motion might not traverse them easily [36]. Some practical examples of this are pick-and-place, or
navigating narrow corridors between rooms, as illustrated in Fig. 4.2 depicting the diverse set of
environments we work with. In both cases a specific state needs to be reached (grasp the object,
or enter the corridor) before a whole new area of the space is discovered (placing the object, or
visiting the next room). This problem could be addressed by engineering a reward that guides
the agent towards the bottlenecks, but this defeats the purpose of trying to learn without direct
reward supervision. In this work we study how to leverage a few demonstrations that traverse those
bottlenecks to boost the learning of goal-reaching policies.

Learning from Demonstrations, or Imitation Learning (IL), is a well-studied field in robotics
[71, 126, 15]. In many cases it is easier to obtain a few demonstrations from an expert than
to provide a good reward that describes the task. Most of the previous work on IL is centered
around trajectory following, or doing a single task. Furthermore it is limited by the performance
of the demonstrations, or relies on engineered rewards to improve upon them. In this work we
first illustrate how IL methods can be extended to the goal-conditioned setting, and study a more
powerful relabeling strategy that extracts additional information from the demonstrations. We then
propose a novel algorithm, goalGAIL, and show it can outperform the demonstrator without the need
of any additional reward. We also investigate how our method is more robust to sub-optimal experts.
Finally, the method we develop is able to leverage demonstrations that do not include the expert
actions. This considerably broadens its application in practical robotics, where demonstrations
might be given by a motion planner, by kinesthetic demonstrations [99] (moving the agent externally,
instead of using its own controls), or even by another agent [149]. To our knowledge, this is the first
framework that can boost goal-conditioned policy learning with only state demonstrations.

4.2 Related Work

Related Work for Goal-Conditioned Imitation Learning
Imitation Learning is an alternative to reward crafting to train a desired behaviors. There are
many ways to leverage demonstrations, from Behavioral Cloning [116] that directly maximizes the

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 52

likelihood of the expert actions under the training agent policy, to Inverse Reinforcement Learning
that extracts a reward function from those demonstrations and then trains a policy to maximize it
[188, 33, 41]. Another formulation close to the latter is Generative Adversarial Imitation Learning
(GAIL), introduced by Ho and Ermon [60]. GAIL is one of the building blocks of our own algorithm,
and is explained in more details in the Preliminaries section.

Unfortunately most work in the field cannot outperform the expert, unless another reward is
available during training [171, 44, 153], which might defeat the purpose of using demonstrations in
the first place. Furthermore, most tasks tackled with these methods consist of tracking expert state
trajectories [187, 113], but cannot adapt to unseen situations.

In this work we are interested in goal-conditioned tasks, where the objective is to reach any
state upon demand [68, 129]. This kind of multi-task learning is pervasive in robotics [3, 96], but
challenging and data-hungry if no reward-shaping is available. Relabeling methods like Hindsight
Experience Replay [2] unlock the learning even in the sparse reward case [38]. Nevertheless, the
inherent breath-first nature of the algorithm might still produce inefficient learning of complex poli-
cies. To overcome the exploration issue we investigate the effect of leveraging a few demonstrations.
The closest prior work is by Nair et al. [105], where a Behavioral Cloning loss is used with a Q-filter.
We found that a simple annealing of the Behavioral Cloning loss [119] works well and allows the
agent to outperform demonstrator. Furthermore, we introduce a new relabeling technique of the
expert trajectories that is particularly useful when only few demonstrations are available. Finally
we propose a novel algorithm goalGAIL, leveraging the recently shown compatibility of GAIL with
off-policy algorithms.

Related Work for GUAPO
In robotic manipulation there are two dominating paradigms to perform a task: leveraging model of
the environment (model-based method) or leveraging data to learn (learning-based method). The
first category of methods relies on a precise description of the task, such as object CAD models,
as well as powerful and sophisticated perception systems [133, 180]. With an accurate model, a
well engineered solution can be designed for that particular task [170, 74], or the model can then
be combined with some search algorithm like motion planning [164]. This type of model-based
approach is limited by the ingenuity of the roboticist, and could lead to irrecoverable failure if the
perception system has un-modeled noise and error.

On the other hand, learning-based approaches in manipulation [89, 49] do not require such
detailed description, but rather require access to interaction with the environment, as well as a
reward that indicates success. Such binary rewards are easy to describe, but unfortunately they
render Reinforcement Learning methods extremely sample-inefficient. Hence many prior works
use shaped rewards [86], which requires considerable tuning. Other works use low-dimensional
state spaces [186] instead of image inputs, which requires either precise perception systems or
specially-designed hardware with sensors. There are some proposed methods that manage to
deal directly with the sparse rewards, like automatic curriculum generation [39, 36] or the use of
demonstrations [171, 29, 105], but these approaches still require large amounts of interaction with
the environment. Furthermore, if the position of the objects in the scene changes or there are new

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 53

distractors in the scene, these methods need to be fully retrained. On the other hand, our method is
extremely sample-efficient with a sparse success reward, and is robust to these variations thanks to
the model-based component.

Recent works can also be understood as combining model-based and learning-based approaches.
One such method [67] uses a reinforcement learning algorithm to find the best parameters that
describe the behavior of the agent based on a model-based template. The learning is very efficient,
but at the cost of an extremely engineered pre-solution that also relies on an accurate perception
system. Another line of work that allows to combine model-based and learning-based methods is
Residual Learning [66, 143], where RL is used to learn an additive policy that can potentially fully
over-write the original model-based policy and does not require any further structure. Nevertheless,
these methods are hard to tune, and hardly preserve any of the benefits of the underlying model-based
method once trained.

The problem of known object pose estimation is a vibrant subject within the robotics and
computer vision communities [168, 57, 61, 182, 181, 63, 112, 154, 163]. Regressing to keypoints on
the object or on a cuboid encompassing the object seems to have become the defacto approach for
the problem. Keypoints are first detected by a neural network, then PnP [88] is used to predict the
pose of the object. Peng et al. [112] also explored the problem of using uncertainty by leveraging a
ransac voting algorithm to find regions where a keypoint could be detected. This approach differs
from ours as they do not directly regress to a keypoint probability map, they regress to a vector
voting map, where line intersection is then used to find keypoints. Moreover their method does not
carry pose uncertainty in the final prediction.

4.3 Background on Imitation Learning
We define a discrete-time finite-horizon discounted Markov decision process (MDP) by a tuple
M = (S,A,P , r, ρ0, γ,H), where S is a state set, A is an action set, P : S × A × S → R+

is a transition probability distribution, γ ∈ [0, 1] is a discount factor, and H is the horizon. Our
objective is to find a stochastic policy πθ that maximizes the expected discounted reward within
the MDP, η(πθ) = Eτ [

∑T
t=0 γ

tr(st, at, st+1)]. We denote by τ = (s0, a0, ...,) an entire state-action
trajectory, where s0 ∼ ρ0(s0), at ∼ πθ(·|st), and st+1 ∼ P(·|st, at). In the goal-conditioned setting
that we use here, the policy and the reward are also conditioned on a “goal" g ∈ S. The reward is
r(st, at, st+1, g) = 1

[
st+1 == g

]
, and hence the return is the γh, where h is the number of time-

steps to the goal. Given that the transition probability is not affected by the goal, g can be “relabeled"
in hindsight, so a transition (st, at, st+1, g, r = 0) can be treated as (st, at, st+1, g

′ = st+1, r = 1).
Finally, we also assume access to D trajectories

{
(sj0, a

j
0, s

j
1, ...)

}D
j=0
∼ τexpert that were collected

by an expert attempting to reach the goals {gj}Dj=0 sampled uniformly among the feasible goals.
Those trajectories must be approximately geodesics, meaning that the actions are taken such that
the goal is reached as fast as possible.

In GAIL [60], a discriminator Dψ is trained to distinguish expert transitions (s, a) ∼ τexpert,
from agent transitions (s, a) ∼ τagent, while the agent is trained to "fool" the discriminator
into thinking itself is the expert. Formally, the discriminator is trained to minimize LGAIL =

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 54

E(s,a)∼τagent [logDψ(s, a)] + E(s,a)∼τexpert [log(1−Dψ(s, a))]; while the agent is trained to maximize
E(s,a)∼τagent [logDψ(s, a)] by using the output of the discriminator logDψ(s, a) as reward. Originally,
the algorithms used to optimize the policy are on-policy methods like Trust Region Policy Opti-
mization [138], but recently there has been a wake of works leveraging the efficiency of off-policy
algorithms without loss in stability [14, 127, 134, 77]. This is a key capability that we exploit in our
goalGAIL algorithm.

4.4 Goal-conditioned Imitation Learning
In this section we describe methods to incorporate demonstrations into Hindsight Experience Replay
[2] for training goal-conditioned policies. First we revisit adding a Behavioral Cloning loss to
the policy update as in [105], then we propose a novel expert relabeling technique, and finally we
formulate for the first time a goal-conditioned GAIL algorithm termed goalGAIL, and propose a
method to train it with state-only demonstrations.

Goal-conditioned Behavioral Cloning

The most direct way to leverage demonstrations
{

(sj0, a
j
0, s

j
1, ...)

}D
j=0

is to construct a data-set D of

all state-action-goal tuples (sjt , a
j
t , g

j), and run supervised regression. In the goal-conditioned case
and assuming a deterministic policy πθ(s, g), the loss is:

LBC(θ,D) = E(sjt ,a
j
t ,g

j)∼D

[
‖πθ(sjt , gj)− a

j
t‖22
]

(4.1)

This loss and its gradient are computed without any additional environments samples from
the trained policy πθ. This makes it particularly convenient to combine a gradient descend step
based on this loss together with other policy updates. In particular we can use a standard off-policy
Reinforcement Learning algorithm like DDPG [95], where we fit the Qφ(a, s, g), and then estimate
the gradient of the expected return as:

∇θĴ =
1

N

N∑
i=1

∇aQφ(a, s, g)∇θπθ(s, g) (4.2)

In our goal-conditioned case, the Q fitting can also benefit from “relabeling“ like done in HER
[2]. The improvement guarantees with respect to the task reward are lost when we combine the
BC and the deterministic policy gradient updates, but this can be side-stepped by either applying a
Q-filter 1

{
Q(st, at, g) > Q(st, π(st, g), g)

}
to the BC loss as proposed in [105], or by annealing it

as we do in our experiments, which allows the agent to eventually outperform the expert.

Relabeling the expert
The expert trajectories have been collected by asking the expert to reach a specific goal gj . But they
are also valid trajectories to reach any other state visited within the demonstration! This is the key

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 55

(a) Performance on reaching states visited in the 20
given demonstrations. The states are green if reached
by the policy when attempting so, and red otherwise.

(b) Performance on reaching any possible state. Each
cell is colored green if the policy can reach the center
of it when attempting so, and red otherwise.

Figure 4.1: Policy performance on reaching different goals in the four rooms, when training with
standard Behavioral Cloning (top row) or with our expert relabeling (bottom).

motivating insight to propose a new type of relabeling: if we have the transitions (sjt , a
j
t , s

j
t+1, g

j) in
a demonstration, we can also consider the transition (sjt , a

j
t , s

j
t+1, g

′ = sjt+k) as also coming from the
expert! Indeed that demonstration also went through the state sjt+k, so if that was the goal, the expert
would also have generated this transition. This can be understood as a type of data augmentation
leveraging the assumption that the given demonstrations are geodesics (they are the faster way to go
from any state in it to any future state in it). It will be particularly effective in the low data regime,
where not many demonstrations are available. The effect of expert relabeling can be visualized in
the four rooms environment as it’s a 2D task where states and goals can be plotted. In Fig. 4.1 we
compare the final performance of two agents, one trained with pure Behavioral Cloning, and the
other one also using expert relabeling.

Goal-conditioned GAIL with Hindsight
The compounding error in Behavioral Cloning might make the policy deviate arbitrarily from the
demonstrations, and it requires too many demonstrations when the state dimension increases. The
first problem is less severe in our goal-conditioned case because in fact we do want to visit and
be able to purposefully reach all states, even the ones that the expert did not visit. But the second
drawback will become pressing when attempting to scale this method to practical robotics tasks
where the observations might be high-dimensional sensory input like images. Both problems can
be mitigated by using other Imitation Learning algorithms that can leverage additional rollouts
collected by the learning agent in a self-supervised manner, like GAIL [60]. In this section we
extend the formulation of GAIL to tackle goal-conditioned tasks, and then we detail how it can be
combined with HER [2], which allows the agent to outperform the demonstrator and generalize to

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 56

reaching all goals. We call the final algorithm goalGAIL.
We describe the key points of goalGAIL below. First of all, the discriminator needs to also be

conditioned on the goal which results in Dψ(a, s, g), and be trained by minimizing

LGAIL(Dψ,D,R) = E(s,a,g)∼R[logDψ(a, s, g)] +

E(s,a,g)∼D[log(1−Dψ(a, s, g))].
(4.3)

Once the discriminator is fitted, we can run our favorite RL algorithm on the reward logDψ(aht , s
h
t , g

h).
In our case we used the off-policy algorithm DDPG [95] to allow for the relabeling techniques
outlined above. In the goal-conditioned case we intepolate between the GAIL reward described
above and an indicator reward rht = 1

[
sht+1 == gh

]
. This combination is slightly tricky because

now the fitted Qφ does not have the same clear interpretation it has when only one of the two
rewards is used [38] . Nevertheless, both rewards are pushing the policy towards the goals, so it
shouldn’t be too conflicting. Furthermore, to avoid any drop in final performance, the weight of the
reward coming from GAIL δGAIL can be annealed. The final proposed algorithm goalGAL, together
with the expert relabeling technique is formalized in Algorithm 7.

Use of state-only Demonstrations
Both Behavioral Cloning and GAIL use state-action pairs from the expert. This limits the use
of the methods, combined or not with HER, to setups where the exact same agent was actuated
to reach different goals. Nevertheless, much more data could be cheaply available if the action
was not required. For example, non-expert humans might not be able to operate a robot from
torque instructions, but might be able to move the robot along the desired trajectory. This is called
a kinesthetic demonstration. Another type of state-only demonstration could be the one used in
third-person imitation [149], where the expert performed the task with an embodiment different
from the agent that needs to learn the task. This has mostly been applied to the trajectory-following
case. In our case every demonstration might have a different goal.

Furthermore, we would like to propose a method that not only leverages state-only demonstra-
tions, but can also outperform the quality and coverage of the demonstrations given, or at least
generalize to similar goals. The main insight we have here is that we can replace the action in the
GAIL formulation by the next state s′, and in most environments this should be as informative as
having access to the action directly. Intuitively, given a desired goal g, it should be possible to
determine if a transition s→ s′ is taking the agent in the right direction. The loss function to train a
discriminator able to tell apart the current agent and expert demonstrations (always transitioning
towards the goal) is simply:

LGAILs(Ds
ψ,D,R) = E(s,s′,g)∼R[logDs

ψ(s, s′, g)] + E(s,s′,g)∼D[log(1−Ds
ψ(s, s′, g))].

4.5 Experimental Results for Goal-Conditioned IL
We are interested in answering the following questions:

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 57

Algorithm 7: Goal-conditioned GAIL with Hindsight: goalGAIL

Input :Demonstrations D =
{

(sj0, a
j
0, s

j
1, ..., g

j)
}D
j=0

, replay bufferR = {}, policy
πθ(s, g), discount γ, hindsight probability p

while not done do
Sample rollout
g ∼ Uniform(S)
R ← R∪ (s0, a0, s1, ...) sampled using π(·, g)
Sample from expert buffer and replay buffer{

(sjt , a
j
t , s

j
t+1, g

j)
}
∼ D,

{
(sit, a

i
t, s

i
t+1, g

i)
}
∼ R

Relabel agent transitions
for each i, with probability p do

gi ← sit+k, k ∼ Unif{t+ 1, . . . , T i} ; // Use future HER strategy
end
Relabel expert transitions
gj ← sjt+k′ , k′ ∼ Unif{t+ 1, . . . , T j}
rht = 1

[
sht+1 == gh

]
ψ ← minψ LGAIL(Dψ,D,R) (Eq. 4.3)
rht = (1− δGAIL)rht + δGAIL logDψ(aht , s

h
t , g

h) ; // Add annealed GAIL
reward

Fit Qφ

yht = rht + γQφ(π(sht+1, g
h), sht+1, g

h) ; // Use target networks Qφ′ for
stability
φ← minφ

∑
h ‖Qφ(aht , s

h
t , g

h)− yht ‖
Update Policy
θ+ = α∇θĴ (Eq. 4.2)
Anneal δGAIL ; // Ensures outperforming the expert

end

• Without supervision from reward, can goalGAIL use demonstrations to accelerate the learning
of goal-conditioned tasks and outperform the demonstrator?
• Is the Expert Relabeling an efficient way of doing data-augmentation on the demonstrations?
• Compared to Behavioral Cloning methods, is goalGAIL more robust to expert action noise?
• Can goalGAIL leverage state-only demonstrations equally well as full trajectories?

We evaluate these questions in four different simulated robotic goal-conditioned tasks that are
detailed in the next subsection along with the performance metric used throughout the experiments
section. All the results use 20 demonstrations reaching uniformly sampled goals. All curves have 5
random seeds and the shaded area is one standard deviation.

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 58

(a) Four rooms (b) Block pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Figure 4.2: Four continuous goal-conditioned environments where we tested the effectiveness of
the proposed algorithm goalGAIL and expert relabeling technique.

Tasks
Experiments are conducted in four continuous environments in MuJoCo [166]. The performance
metric we use in all our experiments is the percentage of goals in the feasible goal space the agent
is able to reach. We call this metric coverage. To estimate this percentage we sample feasible goals
uniformly, and execute a rollout of the current policy. It is consider a success if the agent reaches
within ε of the desired goal.

Four rooms environment: This is a continuous twist on a well studied problem in the Rein-
forcement Learning literature. A point mass is placed in an environment with four rooms connected
through small openings as depicted in Fig. 4.2a. The action space of the agent is continuous
and specifies the desired change in state space, and the goals-space exactly corresponds to the
state-space.

Pointmass Block Pusher: In this task, a Pointmass needs to navigates itself to the block, push
the block to a desired position (x, y) and then eventually stops a potentially different spot (a, b). The
action space is two dimensional as in four rooms environment. The goal space is four dimensional
and specifies (x, y, a, b).

Fetch Pick and Place: This task is the same as the one described by Nair et al. [105], where
a fetch robot needs to pick a block and place it in a desired point in space. The control is four-
dimensional, corresponding to a change in (x, y, z) position of the end-effector as well as a change
in gripper opening. The goal space is three dimensional and is restricted to the position of the block.

Fetch Stack Two: A Fetch robot stacks two blocks on a desired position, as also done in Nair
et al. [105]. The control is the same as in Fetch Pick and Place while the goal space is now the
position of two blocks, which is six dimensional.

Goal-conditioned GAIL with Hindsight: goalGAIL
In goal-conditioned tasks, HER [2] should eventually converge to a policy able to reach any
desired goal. Nevertheless, this might take a long time, specially in environments where there
are bottlenecks that need to be traversed before accessing a whole new area of the goal space.

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 59

(a) Four rooms (b) Block pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Figure 4.3: In all four environments, the proposed algorithm goalGAIL takes off and converges
faster than HER by leveraging demonstrations. It is also able to outperform the demonstrator unlike
standard GAIL, the performance of which is capped.

In this section we show how the methods introduced in the previous section can leverage a few
demonstrations to improve the convergence speed of HER. This was already studied for the case of
Behavioral Cloning by [105], and in this work we show we also get a benefit when using GAIL as
the Imitation Learning algorithm, which brings considerable advantages over Behavioral Cloning
as shown in the next sections. In all four environments, we observe that our proposed method
goalGAIL considerably outperforms the two baselines it builds upon: HER and GAIL. HER alone
has a very slow convergence, although as expected it ends up reaching the same final performance
if run long enough. On the other hand GAIL by itself learns fast at the beginning, but its final
performance is capped. This is because despite collecting more samples on the environment, those
come with no reward of any kind indicating what is the task to perform (reach the given goals).
Therefore, once it has extracted all the information it can from the demonstrations it cannot keep
learning and generalize to goals further from the demonstrations. This is not an issue anymore when
combined with HER, as our results show.

Expert relabeling
Here we show that the Expert Relabeling technique introduced in Section 4.4 is an effective means
of data augmentation on demonstrations. We show the effect of Expert Relabeling on three methods:
standard behavioral cloning (BC), HER with a behavioral cloning loss (BC+HER) and goalGAIL.
For BC+HER, the gradient of the behavior cloning loss LBC (Equation 4.1) is combined with the
gradient of the policy objective∇θĴ (Equation 4.2). The resulting gradient for the policy update is:

∇θĴBC+HER = ∇θĴ − β∇θLBC

where β is the weight of the BC loss and is annealed to enable the agent to outperform the expert.
As shown in Fig. 4.4, our expert relabeling technique brings considerable performance boosts

for both Behavioral Cloning methods and goalGAIL in all four environments.
We also perform a further analysis of the benefit of the expert relabeling in the four-rooms

environment because it is easy to visualize in 2D the goals the agent can reach. We see in Fig. 4.1

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 60

(a) Four Rooms (b) Block Pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Figure 4.4: Our Expert Relabeling technique boosts final performance of standard BC. It also
accelerates convergence of BC+HER and goalGAIL on all four environments.

that without the expert relabeling, the agent fails to learn how to reach many intermediate states
visited in demonstrations.

The performance of running pure Behavioral Cloning is plotted as a horizontal dotted line given
that it does not require any additional environment steps. We observe that combining BC with HER
always produces faster learning than running just HER, and it reaches higher final performance than
running pure BC with only 20 demonstrations.

Robustness to sub-optimal expert
In the above sections we were assuming access to perfectly optimal experts. Nevertheless, in
practical applications the experts might have a more erratic behavior, not always taking the best
action to go towards the given goal. In this section we study how the different methods perform
when a sub-optimal expert is used. To do so we collect sub-optimal demonstration trajectories by
adding noise α to the optimal actions, and making it be ε-greedy. Thus, the sub-optimal expert
is a = 1[r < ε]u + 1[r > ε](π∗(a|s, g) + α), where r ∼ Unif(0, 1), α ∼ N (0, σ2

αI) and u is a
uniformly sampled random action in the action space.

In Fig. 4.5 we observe that approaches that directly try to copy the action of the expert, like
Behavioral Cloning, greatly suffer under a sub-optimal expert, to the point that it barely provides
any improvement over performing plain Hindsight Experience Replay. On the other hand, methods
based on training a discriminator between expert and current agent behavior are able to leverage
much noisier experts. A possible explanation of this phenomenon is that a discriminator approach
can give a positive signal as long as the transition is "in the right direction", without trying to exactly
enforce a single action. Under this lens, having some noise in the expert might actually improve the
performance of these adversarial approaches, as it has been observed in many generative models
literature [46].

Using state-only demonstrations

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 61

(a) Four Rooms (b) Block Pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Figure 4.5: Effect of sub-optimal demonstrations on goalGAIL and Behavorial Cloning method. We
produce sub-optimal demonstrations by making the expert ε-greedy and adding Gaussian noise to
the optimal actions.

Figure 4.6: Output of the Dis-
criminator D(·, g) for the four
rooms environment. The goal
is the lower left white dot, and
the start is at the top right.

Behavioral Cloning and standard GAIL rely on the state-action
(s, a) tuples coming from the expert. Nevertheless there are many
cases in robotics where we have access to demonstrations of a task,
but without the actions. In this section we want to emphasize that
all the results obtained with our goalGAIL method and reported in
Fig. 4.3 and Fig. 4.4 do not require any access to the action that
the expert took. Surprisingly, in all environments but Fetch Pick &
Place, despite the more restricted information goalGAIL has access
to, it outperforms BC combined with HER. This might be due to
the superior imitation learning performance of GAIL, and also to
the fact that these tasks are solvable by only matching the state-
distribution of the expert. We run the experiment of training GAIL
only conditioned on the current state, and not the action (as also
done in other non-goal-conditioned works [41]), and we observe
that the discriminator learns a very well shaped reward that clearly
encourages the agent to go towards the goal, as pictured in Fig. 4.6.
See the Appendix for more details.

4.6 Guided Uncertainty-Aware Policy
Optimization
Traditional robotic approaches rely on an accurate model of the environment, a detailed description
of how to perform the task, and a robust perception system to keep track of the current state. On
the other hand, reinforcement learning approaches can operate directly from raw sensory inputs
with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-
based methods to obtain a general method that is able to overcome inaccuracies in the robotics
perception/actuation pipeline, while requiring minimal interactions with the environment. This

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 62

is achieved by leveraging uncertainty estimates to divide the space in regions where the given
model-based policy is reliable, and regions where it may have flaws or not be well defined. In
these uncertain regions, we show that a locally learned-policy can be used directly with raw sensory
inputs. We test our algorithm, Guided Uncertainty-Aware Policy Optimization (GUAPO), on a
real-world robot performing peg insertion. Videos are available at: https://sites.google.
com/view/guapo-rl.

"̂u

"free
πMB

πRL

t t + 1

Figure 4.7: Real-world setup for peg insertion: one perception system (in orange) gives the
approximate position of the relevant objects. The model-based method, πMB, drives the system
from free space, Sfree, to the uncertainty area, Ŝu (in blue). Once inside this area, the model can’t
be trusted, and a reinforcement learning policy, πRL, is then learned directly from the raw sensory
inputs of another “local” camera (in blue) that gives enough information to complete the task.

Modern robots rely on extensive systems to accomplish a given task, such as a perception
module to monitor the state of the world [133, 19, 181]. Simple perception failure in this context
is catastrophic for the robot, since its motion generator relies on it. Moreover, classic motion
generators are quite rigid in how they accomplish a task, e.g., the robot has to pick an object in
a specific way and might not recover if the grasp fails. These problems make robotics systems
unstable, and hard to scale to new domains. In order to expand robotics reach we need more robust,
adaptive, and flexible systems.

Learning-based method, such as Reinforcement Learning (RL) has the capacity to adapt, and
deal directly with raw sensory inputs, which are not subject to estimation errors [106, 89]. The
strength of RL stems from its capacity to define a task at a higher level through a reward function
indicating what to do, not through an explicit set of control actions describing how the task should be
performed. RL does not need specific physical modelling as they implicitly learn a data-driven model
from interacting with the environment [17], allowing the method to be deployed in different settings.
These characteristics are desired but come with different limitations: 1) randomly interacting with
an environment can be quite unsafe for the human users as well as for the equipment, 2) RL is not

https://sites.google.com/view/guapo-rl
https://sites.google.com/view/guapo-rl

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 63

recognized for being sample efficient. As such, introducing RL to a new environment can be time
consuming and difficult.

Classic robotic approaches have mastered generating movements within free space, where there
are no contacts with other elements in the environment [123]. We refer to these accessible methods
as Model Based (MB) methods. One of their main limitations is that they normally do not handle
perception errors and physical interactions naturally, e.g., grasping an object, placing an object,
object insertion, etc. As such this limits the expressiveness of roboticists and the reliability of the
system.

In this work we present an algorithmic framework that is aware of its own uncertainty in the
perception and actuation system. As such a MB guides the agent to the relevant region, hence
reducing the area where the RL policy needs to be optimized and making it more invariant to
the absolute goal location. Our novel algorithm combines the strengths from MB and RL. We
leverage the efficiency of MB to move in free-space, and the capacity of RL to learn from its
environment from a loosely defined goal. In order to efficiently fuse MB and RL, we introduce a
perception system that provides uncertainty estimates of the region where contacts might occur.
This uncertainty is used to determine the region where the MB method shouldn’t be applied, and an
RL policy should be learned instead. Therefore, we call our algorithm Guided Uncertainty Aware
Policy Optimization (GUAPO).

Figure 4.7 shows an overview of our system, the task is initialized with MB where it guides the
robot within the range of the uncertainties of the object of interest, e.g., the box where to insert the
peg. Once we have reached that region, we switch to RL to complete the task. At learning time,
we leverage information from task completion by the RL policy to reduce our perception system’s
uncertainties. This work makes the following contributions:

• We demonstrate that GUAPO outperforms pure RL, pure MB, as well as a Residual policy
baseline [143, 66] that combines MB and RL for peg insertion;

• We present a simple and yet efficient way to express pose uncertainties for a keypoint based
pose estimator;

• We show that our approach is sample efficient for learning methods on real-world robots.

Definitions and Formulation
We tackle the problem of learning to perform an operation, unknown a-priori, in an area of which
we only have an estimated location and no accurate model. We formalize this problem as a
Markov Decision Process (MDP), where we want to find a policy π : S × A → R+ that is a
probability distribution over actions a ∈ A conditioned on a given state s ∈ S. We optimize
this policy to maximize the expected return

∑H
t=0 γ

tr(st, at), where r : S → R is a given reward
function, H is the horizon of each rollout, and γ is the discount factor. The first assumption we
leverage in this work can be expressed as having a partial knowledge of the transition function
P : S ×A× S → R+ dictating the probability over next states when executing a certain action in
the current state. Specifically, we assume this transition function is available only within a sub-space

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 64

(a) DOPE perception and uncertainty to estimate Ŝu

.
(b) Variational autoencoder for πRL

.

Figure 4.8: Perception modules for the model-based component (left) and reinforcement learning
component (right).

of the state-space Sfree ⊂ S. This is a common case in robotics, where it is perfectly known how
the robot moves while it is in free-space, but there are no reliable and accurate models of general
contacts and interactions with its surrounding [43]. This partial model can be combined with well
established methods able to plan and execute trajectories that traverse Sfree [124, 135, 82], but these
methods cannot successfully complete tasks that require acting in Su = S \ Sfree. It is usually easy
for the user to specify this split relative to the objects in the scene, e.g., all points around or in
contact with an object are not free space. If we call a point of interest, g, in that region we can
therefore express that region relative to it as Su(g). We do not assume perfect knowledge of the
absolute coordinates of that point g nor of Su, but rather only a noisy estimate of them as described
in Section 4.6.

The tasks we consider consist on reaching a particular state or configuration through interaction
with the environment, like peg-insertion, switch-toggling, or grasping. These tasks are conveniently
defined by a binary reward function r(s) = 1[s ∈ Sg] that indicates having successfully reached a
goal set Sg ⊂ Su, usually described with respect to a point g [129, 39, 36]. Unfortunately this reward
is extremely sparse, and random actions can take an prohibitive amount of samples to discover
it [30, 35]. Therefore this paper addresses how to leverage the partial model described above to
efficiently learn to solve the full task through interactions with the environment, overcoming an
imperfect perception system and dynamics.

In the following subsections, we describe the different components of GUAPO. We define Ŝu

as a super-set of Su generated from the perception system uncertainty estimation. We use this set
to partition the space into the regions where the MB method is used, and regions where the RL
policy is trained. Then we describe a MB method that can now confidently be used outside of Ŝu to
bring the robot within that set. Finally we define the RL policy, and how the learning can be more
efficient by making its inputs local. We also outline our algorithm in Algorithm 8.

From coarse perception to the RL workspace
Coarse perception systems are usually cheaper and faster to setup because they might require
simpler hardware like RGB cameras, and can be used out-of-the-box without excessive tuning and

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 65

calibration efforts [168]. If we use such a system to directly localize Su, the perception errors might
misleadingly indicate that a certain area belongs to Sfree, hence trying to apply the MB method and
potentially not being able to learn how to recover from there. Instead, we propose to use a perception
system that also gives an uncertainty estimate. Many methods can represent the uncertainty by a
nonparametric distribution, with n possible descriptions of the region {S iu}ni=1 and their associated
weights p(S iu). By interpreting these weights as the likelihoods P (S iu = Su), we can express the
likelihood of a certain state s belonging to Su as:

p(s ∈ Su) =
n∑
i=1

1
[
s ∈ S iu

]
p(S iu). (4.4)

If the perception system provides a parametric distribution, the above probability can be computed
by integration, or approximated in a way such that the set Ŝu = {s : p(s ∈ Su) > ε} is a super-set
of Su for an appropriate ε set by the user. A more accurate perception system would make Ŝu a
tighter super-set of Su. Now that we have an over-approximation of the area where we cannot use
our model-based method, we define a function α(s) = 1[s ∈ Ŝu] indicating when to apply an RL
policy πRL(a|s) instead of the given MB one πMB. In short, GUAPO uses a hybrid policy presented
in 4.5.

π(a|s) = (1− α(s)) · πMB(a|s) + α(s) · πRL(a|s), (4.5)

Therefore we use a switch between these two policies, based on the uncertainty estimate. A lower
perception uncertainty reduces the area where the reinforcement learning method is required, and
improves the overall efficiency. We now detail how each of these policies is obtained.

Model-based actuation
In the previous section we defined Ŝu, the region containing the goal set Sg and hence the agent’s
reward. In our problem statement we assume that outside that region, the environment model is
well known, and therefore it is amenable to use a model-based approach. Therefore, whenever we
are outside of Ŝu, the MB approach corrects any deviations.

Our formulation can be extended for obstacle avoidance. Using a similar approach used to
over-estimate the set Ŝu, we can over-estimate the obstacle set to be avoided by Ŝobst

u , and remove
that space from where the MB method can be applied, Sfree. An obstacle-avoiding MB method can
be used to get to the area where the goal is, while avoiding the regions where the obstacle might be,
as shown in our videos2.

From Model-Based to Reinforcement learning
Once πMB has brought the system within Ŝu, the control is handed-over to πRL as expressed in
Eq. 4.5. Note that our switching definition goes both ways, and therefore if πRL takes exploratory
actions that move it outside of Ŝu, the MB method will act again to funnel the state to the area of

2https://sites.google.com/view/guapo-rl

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 66

interest. This also provides a framework for safe learning [34] in case there are obstacles to avoid
as introduced in the section above. There are several advantages to having a more restricted area
where the RL policy needs to learn how to act: first the exploration becomes easier, second, the
policy can be local. In particular, we only feed to πRL the images from a wrist-mounted camera and
its current velocities, as depicted in Fig. 4.8b. Not using global information from our perception
system in Fig. 4.8a can make our RL policy generalize better across locations of Ŝu. Finally, we
propose to use an off-policy RL algorithm, so all the observed transitions can be added in the replay
buffer, no matter if they come from πMB or πRL.

Closing the MB-RL loop
This framework also allows to use any newly acquired experience to reduce Ŝu such that successive
rollouts can use the model-based method in larger areas of the state-space. For example, in the
peg-insertion task, once the reward of fully inserting the peg is received, the location of the opening
is immediately known. Since we no longer need to rely on the noisy perception system to estimate
the location of the hole, we can update Ŝu = Su, where now the reinforcement learning algorithm
only needs to do the actual insertion and not keep looking for the opening.

4.7 Experimental Results for GUAPO

(a) Real Robot Task Success (b) Steps for Peg Insertion

Figure 4.9: GUAPO is compared with five other methods: (1) Model-based policy with perfect
goal estimate (MB-Perfect), (2) Model-based policy with additive random actions and perfect goal
estimate (MB-Rand-Perfect), (3) Model-Based policy with additive random actions using DOPE
goal estimates (MB-Rand-DOPE), (4) Reinforcement learning algorithm Soft Actor Critic (SAC),
and (5) Residual policy. We train the policy for over 60 iterations, each with two episodes, 1000
steps long.

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 67

Algorithm 8: GUAPO
Input : s0 ∈ S: reset state
og: global observation→ RGB workspace camera
ol: local observations→ wrist-mounted camera, robot velocity observations
Su: model uncertain region containing the goal region Sg, both unknown a-priori until
reward is obtained.
Output :at: robot actions

goal_localized← False
for each episode do

st=0 ← s0 ; // Reset robot
if not goal_localized then
Ŝu ← DOPE(og) ; // Run perception

end
for t = 0 . . . H do

if robot not in Ŝu then
at ← πMB ; // Takes robot to Ŝu

end
else

at ← πRL(olt) ;
end
Apply action at to environment ;
rt = 1[st ∈ Sg]
Add (olt, at, o

l
t+1, rt) to replay buffer ;

if rt = 1 then
Ŝu ← Su(st) ; // No DOPE uncert.
goal_localized← True ;

end
end

end

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 68

Table 4.1: Real world peg insertion results out of 30 trials. All learning policies (SAC, Residual,
and Guapo) trained for 120 episodes (which takes around 90 minutes). The first row indicates
percentage success for a full peg insertion. The second row depicts the speed of insertion for the
trained policies. The last two rows indicate the percentage the method enters Su and Ŝu.

MB-
Perfect

MB-
DOPE

MB-Rand-
Perfect

MB-Rand-
DOPE

SAC [51] RESIDUAL [66] GUAPO (ours)

Success Rate 100% 0% 86.67% 26.6% 0% 0% 93%
Avg. Steps for

Task Completion
158.3 n/a 554.1 925.4 n/a n/a 469.6

In Su 100% 0% 100% 70.0% 0% 0% 100%
In Ŝu 100% 100% 100% 93.3% 0% 100% 100%

In this section we seek to answer the following questions: How does our method compares to
our baseline policies, such as, Residual policies, in terms of sample efficiency and task completion?
And, is the proposed algorithm capable of performing peg insertion on a real robot?

Comparison Methods
All the different baselines were initialized about 75 cm away from the goal. They were all
implemented on our real robotics system. As such we compare our proposed method to the
following:

• MB-Perfect. This method consists of a scripted policy under perfect state estimation.

• MB-Rand-Perfect. This method uses the same policy as MB-Perfect where we injected
random actions, which we sample from a normal distribution with 0 mean and a standard
deviation defined by the perception uncertainty from DOPE (which is around 2.5cm to 3 cm).

• MB-DOPE. This method is similar to MB-Perfect, but instead uses the pose estimator
prediction to servo to the hole and accomplish insertion.

• MB-Rand-Dope. This method uses the same policy as MB-Dope where we injected random
actions, which is sampled in the same way as MB-Rand-Perfect.

• SAC. This uses just the policy learned from the RL algorithm, Soft-Actor Critic (SAC), to
accomplish the task.

• Residual. This method is based off recent residual-learning techniques that combine model-
based and reinforcement learning methods [143, 66].

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 69

Results
The results comparing the different methods is shown in Table 4.1, this table presents the success
rate for insertion as well as the average number of steps needed for completion (a step is equivalent
to 50 milliseconds of following the same robot command, as our policy is running at 20 Hz), and
the percentage that the end-effector ends up in the Su and Ŝu regions over 30 trials. We also present
training iteration performance (task success and steps to completion) for the different methods in
Figure 4.9.

MB-Perfect is able to insert 100% of the time, as it has perfect knowledge of the state, and
can be seen as an oracle. We can see that taking random actions with MB-Rand-Perfect does not
degrade excessively the full performance achieved by MB-Perfect. However, when we used DOPE
as the perception system, which has around 2.5 to 3.5 cm of noise and error, the performance of
MB-DOPE and MB-Rand-DOPE drops drastically. MB-Rand-DOPE performs 26.6% better than
MB-DOPE, as the random actions can help offset the perception error.

In our setup SAC did not achieve any insertion. This is due to the low number of samples
that SAC trained on, since most success stories of RL in the real world require several orders of
magnitude more data [91]. The Residual method also did not achieve any insertions. The Residual
method often would apply large actions far away from the hole opening, and end up sliding off the
box and getting stuck pushing against the side of the box. In comparison, GUAPO only turns on
the reinforcement learning policy once it is already nearby the region of interest, and hence does
not suffer from this. However, Residual was able to reach Ŝu 100% of the time after 120 training
episodes, while SAC never did.

In comparison, as seen in Fig. 4.9, after around 8 training iterations, GUAPO is also able to start
inserting into the hole (which is about 12 minute real-world training time). As the policy trains, the
average number of steps it takes to insert the peg also decreases. After 120 training episodes (and
90 minutes of training), GUAPO is able to achieve 93% insertion rate.

4.8 Conclusions and Future Work
Hindsight relabeling can be used to learn useful behaviors without any reward supervision for
goal-conditioned tasks, but they are inefficient when the state-space is large or includes exploration
bottlenecks. In this work we show how only a few demonstrations can be leveraged to improve the
convergence speed of these methods. We introduce a novel algorithm, goalGAIL, that converges
faster than HER and to a better final performance than a naive goal-conditioned GAIL. We also study
the effect of doing expert relabeling as a type of data augmentation on the provided demonstrations,
and demonstrate it improves the performance of our goalGAIL as well as goal-conditioned Behav-
ioral Cloning. We emphasize that our goalGAIL method only needs state demonstrations, without
using expert actions like other Behavioral Cloning methods. Finally, we show that goalGAIL is
robust to sub-optimalities in the expert behavior.

All the above factors make our goalGAIL algorithm very suited for real-world robotics. This is
a very exciting future work. In the same line, we also want to test the performance of these methods

CHAPTER 4. LEVERAGING PARTIAL EXPERT DEMONSTRATIONS 70

in vision-based tasks. Our preliminary experiments show that Behavioral Cloning fails completely
in the low data regime in which we operate (less than 20 demonstrations).

We also introduce a novel algorithm, Guided Uncertainty Aware Policy Optimization (GUAPO),
that combines the generalization capabilities of model-based methods and the adaptability of
learning-based methods. It allows to loosely define the task to perform, by solely providing a
coarse model of the objects, and a rough description of the area where some operation needs to
be performed. The model-based system leverage this high-level information and accessible state
estimation systems to create a funnel around the area of interest. We use the uncertainty estimate
provided by the perception system to automatically switch between the model-based policy, and a
learning-based policy that can learn from an easy-to-define sparse reward, overcoming the model
and estimation errors of the model-based part. We show learning in the real world of a peg insertion
task.

71

Chapter 5

Conclusions

Learning through interaction with weak supervision is one of the hallmarks of Intelligence. This
dissertation is our contribution towards understanding what types of supervision scale well enough
to enable general agents to tackle diverse ranges of tasks. To this end, we presented two methods
on Hierarchical Reinforcement Learning, allowing to learn only from a sparse reward signal in
long-horizon tasks. The re-usability of the skills allows to reduce the sample complexity on many
related tasks. Then we explicitly considered the objective of performing well on a distribution of
tasks, which lead to proposing two innovative curriculum learning algorithms, enabling robotic
agents to learn some of the most complex manipulation tasks seen in this body of literature. Finally,
we considered the cost of using other sources of supervision, like partial experts. We proposed
an algorithm that leverages and outperform sub-optimal demonstrations without the need of any
additional reward signal, and another algorithm that leverages and outperform an expert that can
only be queried in a fraction of the state-space.

We hope this dissertation inspires other researchers to evaluate the cost of providing the supervi-
sion required by their algorithms under the three axis proposed here: how much domain knowledge
is required to obtain that supervision form, what is the total volume of interaction under such super-
vision needed to learn a task, and how does this amount increases for every new task that the agent
has to learn. This considerations will only get more important as the field of autonomous agents
starts to move away from simulation and games to tackle more impactful real-world problems.

72

Bibliography

[1] Jacob Andreas, Dan Klein, and Sergey Levine. “Modular Multitask Reinforcement Learning
with Policy Sketches”. In: International Conference in Machine Learning (2017). URL:
http://github.com/.

[2] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: Advances in Neural In-
formation Processing Systems (2017). ISSN: 10495258. DOI: 10.1016/j.surfcoat.
2018.06.018. URL: http://arxiv.org/abs/1707.01495.

[3] Marcin Andrychowicz et al. “Learning Dexterous In-Hand Manipulation”. In: (), pp. 1–27.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”. In: Stat. 2017.

[5] Minoru Asada et al. “Purposive Behavior Acquisition for a Real Robot by Vision-Based
Reinforcement Learning”. en. In: Machine Learning (1996).

[6] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The Option-Critic Architecture”. In:
AAAI (2017), pp. 1726–1734. URL: http://arxiv.org/abs/1609.05140.

[7] Pierre-Luc Bacon and Doina Precup. “The option-critic architecture”. In: arXiv preprint
arXiv:1609.05140v2 (2016).

[8] J Andrew Bagnell et al. “Policy search by dynamic programming”. In: Advances in Neural
Information Processing Systems 16 (2003), p. 79.

[9] Adrien Baranes and Pierre-Yves Oudeyer. “Active Learning of Inverse Models with Intrinsi-
cally Motivated Goal Exploration in Robots”. In: Robotics and Autonomous Systems 61.1
(2013).

[10] Adrien Baranes and Pierre-Yves Oudeyer. “Active learning of inverse models with intrin-
sically motivated goal exploration in robots”. In: Robotics and Autonomous Systems 61.1
(2013), pp. 49–73.

[11] Marc G Bellemare et al. “Unifying Count-Based Exploration and Intrinsic Motivation”. In:
Advances in Neural Information Processing Systems (2016).

[12] Samy Bengio et al. “Scheduled Sampling for Sequence Prediction with Recurrent Neural
Networks”. In: Advances in Neural Information Processing Systems. 2015.

[13] Yoshua Bengio et al. “Curriculum learning”. In: International Conference on Machine
Learning. ACM. 2009, pp. 41–48.

http://github.com/
https://doi.org/10.1016/j.surfcoat.2018.06.018
https://doi.org/10.1016/j.surfcoat.2018.06.018
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1609.05140

BIBLIOGRAPHY 73

[14] Lionel Blondé and Alexandros Kalousis. “Sample-Efficient Imitation Learning via Genera-
tive Adversarial Nets”. In: AISTATS (2019). URL: https://youtu.be/-nCsqUJnRKU..

[15] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”. In: (2016). URL:
http://arxiv.org/abs/1604.07316.

[16] Robert R Burridge, Alfred A Rizzi, and Daniel E Koditschek. “Sequential composition of
dynamically dexterous robot behaviors”. In: The International Journal of Robotics Research
(1999).

[17] Yevgen Chebotar et al. “Closing the sim-to-real loop: Adapting simulation randomization
with real world experience”. In: arXiv preprint arXiv:1810.05687 (2018).

[18] Xi Chen et al. “Infogan: Interpretable representation learning by information maximizing
generative adversarial nets”. In: Advances in Neural Information Processing Systems (2016).

[19] Ching-An Cheng et al. “RMPflow : A Computational Graph for Automatic Motion Policy
Generation”. In: preprint arxiv:1811.07049 (2019). URL: https://arxiv.org/pdf/
1811.07049.pdf.

[20] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. “Intrinsically motivated
reinforcement learning”. In: Advances in Neural Information Processing Systems. 2004,
pp. 1281–1288.

[21] Kyung Hyun Cho, Tapani Raiko, and Alexander Ilin. “Gaussian-bernoulli deep boltzmann
machine”. In: International Joint Conference on Neural Networks (IJCNN). IEEE. 2013,
pp. 1–7.

[22] Christian Daniel, Gerhard Neumann, and Jan Peters. “Autonomous reinforcement learning
with hierarchical REPS”. In: International Joint Conference on Neural Networks. IEEE.
2013, pp. 1–8.

[23] Christian Daniel, Gerhard Neumann, and Jan Peters. “Hierarchical Relative Entropy Policy
Search.” In: AISTATS. 2012, pp. 273–281.

[24] Christian Daniel et al. “Probabilistic inference for determining options in reinforcement
learning”. In: Machine Learning 104.104 (2016). DOI: 10.1007/s10994-016-5580-
x.

[25] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. “A survey on policy search for
robotics”. In: Foundations and Trends in Robotics 2.1–2 (2013), pp. 1–142.

[26] Marc Peter Deisenroth et al. “Multi-task policy search for robotics”. In: Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE. 2014, pp. 3876–3881.

[27] Coline Devin et al. “Learning Modular Neural Network Policies for Multi-Task and Multi-
Robot Transfer”. In: International Conference on Robotics and Automation. 2017.

[28] Thomas G Dietterich. “Hierarchical reinforcement learning with the MAXQ value function
decomposition”. In: Journal of Artificial Intelligence Research 13 (2000), pp. 227–303.

https://youtu.be/-nCsqUJnRKU.
http://arxiv.org/abs/1604.07316
https://arxiv.org/pdf/1811.07049.pdf
https://arxiv.org/pdf/1811.07049.pdf
https://doi.org/10.1007/s10994-016-5580-x
https://doi.org/10.1007/s10994-016-5580-x

BIBLIOGRAPHY 74

[29] Yiming Ding* et al. “Goal-conditioned Imitation Learning”. In: Advances in Neural Infor-
mation Processing Systems (2019).

[30] Yan Duan et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In:
International Conference on Machine Learning (2016).

[31] Benjamin Eysenbach et al. “Diversity is All You Need: Learning Skills without a Reward
Function”. In: International Conference in Learning Representations (2019). URL: http:
//arxiv.org/abs/1802.06070.

[32] Alexander Fabisch and Jan Hendrik Metzen. “Active contextual policy search.” In: Journal
of Machine Learning Research 15.1 (2014), pp. 3371–3399.

[33] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided Cost Learning: Deep Inverse
Optimal Control via Policy Optimization”. In: Internation Conference in Machine Learning
(Mar. 2016). URL: http://arxiv.org/abs/1603.00448.

[34] Jaime F. Fisac et al. “A General Safety Framework for Learning-Based Control in Uncertain
Robotic Systems”. In: preprint arxiv:1705.01292 (May 2017). URL: http://arxiv.
org/abs/1705.01292.

[35] Carlos Florensa, Yan Duan, and Pieter Abbeel. “Stochastic Neural Networks for Hierarchical
Reinforcement Learning”. In: International Conference in Learning Representations (2017),
pp. 1–17.

[36] Carlos Florensa et al. “Reverse Curriculum Generation for Reinforcement Learning”. In:
Conference on Robot Learning (2017).

[37] Carlos Florensa et al. “Reverse Curriculum Generation for Reinforcement Learning”. In:
Conference on Robot Learning (CoRL) (2017).

[38] Carlos Florensa et al. “Self-supervised Learning of Image Embedding for Continuous
Control”. In: Workshop on Inference to Control at NeurIPS. 2018. URL: http://arxiv.
org/abs/1901.00943.

[39] Carlos Florensa* et al. “Automatic Goal Generation for Reinforcement Learning Agents”.
In: International Conference in Machine Learning (2018).

[40] Kevin Frans et al. “Meta Learning Shared Hierarchies”. In: International Conference in
Learning Representations (2018), pp. 1–11. ISSN: 14639076. DOI: 10.1039/b203755f.
URL: http://arxiv.org/abs/1710.09767.

[41] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with Adversarial
Inverse Reinforcement Learning”. In: International Conference in Learning Representations
(Oct. 2018). URL: http://arxiv.org/abs/1710.11248.

[42] Akira Fukui et al. “Multimodal Compact Bilinear Pooling for Visual Question Answering
and Visual Grounding”. In: EMNLP. 2016.

[43] Shameek Ganguly and Oussama Khatib. “Experimental studies of contact space model for
multi-surface collisions in articulated rigid-body systems”. In: International Symposium on
Experimental Robotics. Springer. 2018.

http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1603.00448
http://arxiv.org/abs/1705.01292
http://arxiv.org/abs/1705.01292
http://arxiv.org/abs/1901.00943
http://arxiv.org/abs/1901.00943
https://doi.org/10.1039/b203755f
http://arxiv.org/abs/1710.09767
http://arxiv.org/abs/1710.11248

BIBLIOGRAPHY 75

[44] Yang Gao et al. “Reinforcement Learning from Imperfect Demonstrations”. In: Internation
Conference in Machine Learning (2018).

[45] Mohammad Ghavamzadeh and Sridhar Mahadevan. “Hierarchical Policy Gradient Al-
gorithms”. In: International Conference in Machine Learning (2003). URL: http://
chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_
files/icml03.pdf.

[46] Ian J Goodfellow et al. “Generative Adversarial Nets”. In: (), pp. 1–9.

[47] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in Neural Information
Processing Systems. 2014, pp. 2672–2680.

[48] Alex Graves et al. “Automated Curriculum Learning for Neural Networks”. In: (2017). URL:
https://arxiv.org/pdf/1704.03003.pdf%20http://arxiv.org/abs/
1704.03003.

[49] Tuomas Haarnoja et al. “Composable Deep Reinforcement Learning for Robotic Manipu-
lation”. In: Proceedings - IEEE International Conference on Robotics and Automation. 1.
2018, pp. 6244–6251. ISBN: 9781538630815. DOI: 10.1109/ICRA.2018.8460756.

[50] Tuomas Haarnoja et al. “Latent Space Policies for Hierarchical Reinforcement Learning”.
In: Internation Conference in Machine Learning (2018). URL: http://arxiv.org/
abs/1804.02808.

[51] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforce-
ment Learning with a Stochastic Actor”. In: Internation Conference in Machine Learning
(2018), pp. 1–15.

[52] Jean Harb et al. “When Waiting is not an Option : Learning Options with a Deliberation
Cost”. In: AAAI (Sept. 2017). URL: http://arxiv.org/abs/1709.04571.

[53] Karol Hausman et al. “Learning an Embedding Space for Transferable Robot Skills”. In:
International Conference in Learning Representations (2018), pp. 1–16.

[54] Nicolas Heess et al. “Emergence of Locomotion Behaviours in Rich Environments”. In:
(July 2017). URL: http://arxiv.org/abs/1707.02286.

[55] Nicolas Heess et al. “Learning and Transfer of Modulated Locomotor Controllers”. In:
arXiv preprint arXiv:1610.05182 (2016).

[56] Nicolas Heess et al. “Learning and Transfer of Modulated Locomotor Controllers”. In:
(2016). URL: https://arxiv.org/abs/1610.05182.

[57] S. Hinterstoisser et al. “Model based training, detection and pose estimation of texture-less
3D objects in heavily cluttered scenes”. In: ACCV. 2012.

[58] Geoffrey E Hinton. “Training products of experts by minimizing contrastive divergence”.
In: Neural Computation 14.8 (2002), pp. 1771–1800.

[59] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for
deep belief nets”. In: Neural Computation 18.7 (2006), pp. 1527–1554.

http://chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf
http://chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf
http://chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf
https://arxiv.org/pdf/1704.03003.pdf%20http://arxiv.org/abs/1704.03003
https://arxiv.org/pdf/1704.03003.pdf%20http://arxiv.org/abs/1704.03003
https://doi.org/10.1109/ICRA.2018.8460756
http://arxiv.org/abs/1804.02808
http://arxiv.org/abs/1804.02808
http://arxiv.org/abs/1709.04571
http://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1610.05182

BIBLIOGRAPHY 76

[60] Jonathan Ho and Stefano Ermon. “Generative Adversarial Imitation Learning”. In: Advances
in Neural Information Processing Systems (2016). URL: http://arxiv.org/abs/
1606.03476.

[61] T. Hodaň et al. “T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less
Objects”. In: WACV. 2017.

[62] Rein Houthooft et al. “Variational Information Maximizing Exploration”. In: Advances in
Neural Information Processing Systems (2016).

[63] Yinlin Hu et al. “Segmentation-driven 6D object pose estimation”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 3385–3394.

[64] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-
Softmax”. In: International Conference on Learning Representations. 2017.

[65] Lu Jiang et al. “Self-Paced Curriculum Learning.” In: AAAI. Vol. 2. 2015, p. 6.

[66] Tobias Johannink et al. “Residual Reinforcement Learning for Robot Control”. In: preprint
arxiv:1812.03201 (2019), pp. 1–9. DOI: arXiv:1812.03201v1.

[67] Lars Johannsmeier, Malkin Gerchow, and Sami Haddadin. A Framework for Robot Ma-
nipulation: Skill Formalism, Meta Learning and Adaptive Control. Tech. rep. Technische
Universitat Munchen, 2019. URL: https://arxiv.org/pdf/1805.08576.pdf.

[68] Leslie P. Kaelbling. “Learning to Achieve Goals”. In: International Joint Conference on
Artificial Intelligence (IJCAI) (1993), pp. 1094–1098.

[69] Sham Kakade. “A Natural Policy Gradient”. In: Advances in Neural Information Processing
Systems (2002).

[70] Sham Kakade and John Langford. “Approximately Optimal Approximate Reinforcement
Learning”. In: International Conference in Machine Learning (2002). URL: https :
//people.eecs.berkeley.edu/~pabbeel/cs287- fa09/readings/
KakadeLangford-icml2002.pdf.

[71] Mrinal Kalakrishnan et al. “Learning locomotion over rough terrain using terrain templates”.
In: International Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 167–
172. ISBN: 978-1-4244-3803-7. DOI: 10.1109/IROS.2009.5354701. URL: http:
//ieeexplore.ieee.org/document/5354701/.

[72] Andrej Karpathy and Michiel Van De Panne. “Curriculum learning for motor skills”. In:
Canadian Conference on Artificial Intelligence. 2012, pp. 325–330.

[73] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. “A Sparse Sampling Algorithm
for Near-Optimal Planning in Large Markov Decision Processes”. In: Machine Learning
49.2/3 (2002), pp. 193–208. ISSN: 08856125. DOI: 10.1023/A:1017932429737. URL:
http://link.springer.com/10.1023/A:1017932429737.

http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1606.03476
https://doi.org/arXiv:1812.03201v1
https://arxiv.org/pdf/1805.08576.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
https://doi.org/10.1109/IROS.2009.5354701
http://ieeexplore.ieee.org/document/5354701/
http://ieeexplore.ieee.org/document/5354701/
https://doi.org/10.1023/A:1017932429737
http://link.springer.com/10.1023/A:1017932429737

BIBLIOGRAPHY 77

[74] Chung Hee Kim and Jungwon Seo. “Shallow-Depth Insertion: Peg in Shallow Hole Through
Robotic In-Hand Manipulation”. In: IEEE Robotics and Automation Letters 4.2 (Apr. 2019),
pp. 383–390. ISSN: 2377-3766. DOI: 10.1109/LRA.2018.2890449. URL: https:
//ieeexplore.ieee.org/document/8598749/.

[75] George Konidaris and Andrew G Barto. “Building Portable Options: Skill Transfer in
Reinforcement Learning.” In: IJCAI. Vol. 7. 2007, pp. 895–900.

[76] George Konidaris et al. “Autonomous Skill Acquisition on a Mobile Manipulator.” In: AAAI.
2011.

[77] Ilya Kostrikov et al. “DISCRIMINATOR-ACTOR-CRITIC: ADDRESSING SAMPLE
INEFFICIENCY AND REWARD BIAS IN ADVERSARIAL IMITATION LEARNING”.
In: International Conference in Learning Representations (2019).

[78] J.J. Kuffner and S.M. LaValle. “RRT-connect: An efficient approach to single-query path
planning”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Confer-
ence on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 2.
IEEE, pp. 995–1001. ISBN: 0-7803-5886-4. DOI: 10.1109/ROBOT.2000.844730.
URL: http://ieeexplore.ieee.org/document/844730/.

[79] Tejas D Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrating Temporal
Abstraction and Intrinsic Motivation”. In: Advances in Neural Information Processing
Systems (2016), pp. 1–13.

[80] M. P. Kumar, Benjamin Packer, and Daphne Koller. “Self-Paced Learning for Latent
Variable Models”. In: Advances in Neural Information Processing Systems. 2010, pp. 1189–
1197.

[81] Andras Gabor Kupcsik et al. “Data-efficient generalization of robot skills with contextual
policy search”. In: AAAI Conference on Artificial Intelligence. 2013, pp. 1401–1407.

[82] S. M. LaValle. Planning Algorithms. Available at http://planning.cs.uiuc.edu/. Cambridge,
U.K.: Cambridge University Press, 2006.

[83] Alessandro Lazaric and Mohammad Ghavamzadeh. “Bayesian multi-task reinforcement
learning”. In: 27th International Conference on Machine Learning. Omnipress. 2010,
pp. 599–606.

[84] Nicolas Le Roux and Yoshua Bengio. “Representational power of restricted Boltzmann
machines and deep belief networks”. In: Neural Computation 20.6 (2008), pp. 1631–1649.

[85] Hoang M Le et al. “Hierarchical Imitation and Reinforcement Learning”. In: International
Conference in Machine Learning (2018).

[86] Michelle A Lee et al. “Making Sense of Vision and Touch: Self-Supervised Learning of
Multimodal Representations for Contact-Rich Tasks”. In: International Conference on
Robotics and Automation (2018).

https://doi.org/10.1109/LRA.2018.2890449
https://ieeexplore.ieee.org/document/8598749/
https://ieeexplore.ieee.org/document/8598749/
https://doi.org/10.1109/ROBOT.2000.844730
http://ieeexplore.ieee.org/document/844730/

BIBLIOGRAPHY 78

[87] Michelle A Lee* et al. “Guided Uncertainty-Aware Policy Optimization: Combining Learn-
ing and Model-Based Strategies for Sample-Efficient Policy Learning”. In: International
Conference on Robotics and Automation (2020).

[88] V. Lepetit, F. Moreno-Noguer, and P. Fua. “EPnP: An Accurate O(n) Solution to the PnP
Problem”. In: International Journal Computer Vision 81.2 (2009).

[89] Sergey Levine and Chelsea Finn. “End-to-End Training of Deep Visuomotor Policies”. In:
Journal of Machine Learning Research 17 (2016), pp. 1–40.

[90] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: Journal of
Machine Learning Research 17.39 (2016), pp. 1–40.

[91] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection”. In: The International Journal of Robotics Research 37.4-5
(2018), pp. 421–436.

[92] Andrew Levy, Robert Platt, and Kate Saenko. “Hierarchical Actor-Critic”. In: arXiv:1712.00948
(Dec. 2017). URL: http://arxiv.org/abs/1712.00948.

[93] Andrew Levy, Robert Platt, and Kate Saenko. “Hierarchical Reinforcement Learning with
Hindsight”. In: International Conference on Learning Representations (May 2019). URL:
http://arxiv.org/abs/1805.08180.

[94] Alexander C. Li* et al. “Sub-policy Adaptation for Hierarchical Reinforcement Learning”.
In: International Conference on Learning Representations (2020).

[95] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv
preprint arXiv:1509.02971 (2015), pp. 1–14. URL: http://arxiv.org/abs/1509.
02971.

[96] Xingyu Lin et al. “Adaptive Variance for Changing Sparse-Reward Environments”. In:
International Conference on Robotics and Automation (2019). arXiv: 1903.06309. URL:
http://arxiv.org/abs/1903.06309.

[97] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A Contin-
uous Relaxation of Discrete Random Variables”. In: International Conference on Learning
Representations. 2017.

[98] Shie Mannor et al. “Dynamic abstraction in reinforcement learning via clustering”. In: 21st
International Conference on Machine Learning. ACM. 2004, p. 71.

[99] Simon Manschitz et al. “Learning movement primitive attractor goals and sequential skills
from kinesthetic demonstrations”. In: Robotics and Autonomous Systems 74 (2015), pp. 97–
107. DOI: 10.1016/J.ROBOT.2015.07.005.

[100] Xudong Mao et al. “On the Effectiveness of Least Squares Generative Adversarial Net-
works”. In: arXiv preprint arXiv:1712.06391 (2017).

[101] Josh Merel et al. “Hierarchical visuomotor control of humanoids”. In: International Con-
ference in Learning Representations (2019). URL: http://arxiv.org/abs/1811.
09656.

http://arxiv.org/abs/1712.00948
http://arxiv.org/abs/1805.08180
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1903.06309
http://arxiv.org/abs/1903.06309
https://doi.org/10.1016/J.ROBOT.2015.07.005
http://arxiv.org/abs/1811.09656
http://arxiv.org/abs/1811.09656

BIBLIOGRAPHY 79

[102] Volodymyr Mnih et al. “Strategic Attentive Writer for Learning Macro-Actions”. In: Ad-
vances in Neural Information Processing Systems. 2016.

[103] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
Nature 518.7540 (2015), pp. 529–533.

[104] Ofir Nachum et al. “Data-Efficient Hierarchical Reinforcement Learning”. In: Advances in
Neural Information Processing Systems (2018).

[105] Ashvin Nair et al. “Overcoming Exploration in Reinforcement Learning with Demonstra-
tions”. In: International Conference on Robotics and Automation (2018). ISSN: 0969-2290.
DOI: 10.1080/09692290.2013.809781. URL: http://arxiv.org/abs/
1709.10089.

[106] Ashvin Nair et al. “Visual Reinforcement Learning with Imagined Goals”. In: Adavances in
Neural Information Processing Systems (2018).

[107] Radford M Neal. “Connectionist learning of belief networks”. In: Artificial intelligence 56.1
(1992), pp. 71–113.

[108] Radford M Neal. “Learning stochastic feedforward networks”. In: Department of Computer
Science, University of Toronto (1990).

[109] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance under reward trans-
formations: Theory and application to reward shaping”. In: International Conference on
Machine Learning. Vol. 99. 1999, pp. 278–287.

[110] Ian Osband, Benjamin Van Roy, and Zheng Wen. “Generalization and Exploration via
Randomized Value Functions”. In: arXiv preprint arXiv:1402.0635 (2014).

[111] Ronald Parr and Stuart Russell. “Reinforcement learning with hierarchies of machines”. In:
Advances in Neural Information Processing Systems (1998), pp. 1043–1049.

[112] Sida Peng et al. “PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation”. In: CVPR.
2019.

[113] Xue Bin Peng et al. “DeepMimic: Example-Guided Deep Reinforcement Learning of
Physics-Based Character Skills”. In: Transactions on Graphics (Proc. ACM SIGGRAPH)
37.4 (2018). DOI: 10.1145/3197517.3201311. URL: http://arxiv.org/abs/
1804.02717%0Ahttp://dx.doi.org/10.1145/3197517.3201311.

[114] Xue Bin Peng et al. “MCP: Learning Composable Hierarchical Control with Multiplicative
Compositional Policies”. In: (May 2019). URL: http://arxiv.org/abs/1905.
09808.

[115] Jan Peters and Stefan Schaal. “Natural Actor-Critic”. In: Neurocomputing 71.7-9 (2008),
pp. 1180–1190. ISSN: 09252312. DOI: 10.1016/j.neucom.2007.11.026.

https://doi.org/10.1080/09692290.2013.809781
http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
https://doi.org/10.1145/3197517.3201311
http://arxiv.org/abs/1804.02717%0Ahttp://dx.doi.org/10.1145/3197517.3201311
http://arxiv.org/abs/1804.02717%0Ahttp://dx.doi.org/10.1145/3197517.3201311
http://arxiv.org/abs/1905.09808
http://arxiv.org/abs/1905.09808
https://doi.org/10.1016/j.neucom.2007.11.026

BIBLIOGRAPHY 80

[116] Dean A Pomerleau. “ALVINN: an autonomous land vehicle in a neural network”. In:
Advances in Neural Information Processing Systems (1989), pp. 305–313. URL: https:
//papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-
in-a-neural-network.pdf%20http://dl.acm.org/citation.cfm?
id=89851.89891.

[117] Ivaylo Popov et al. “Data-efficient Deep Reinforcement Learning for Dexterous Manipula-
tion”. In: (). URL: https://arxiv.org/pdf/1704.03073.pdf.

[118] Doina Precup. Temporal abstraction in reinforcement learning. Jan. 2000. URL: https:
//scholarworks.umass.edu/dissertations/AAI9978540.

[119] Aravind Rajeswaran et al. “Learning Complex Dexterous Manipulation with Deep Rein-
forcement Learning and Demonstrations”. In: Robotics: Science and Systems (2018).

[120] Aravind Rajeswaran et al. “Towards Generalization and Simplicity in Continuous Control”.
In: (2017). URL: https://arxiv.org/pdf/1703.02660.pdf%20http:
//arxiv.org/abs/1703.02660.

[121] Pravesh Ranchod, Benjamin Rosman, and George Konidaris. “Nonparametric Bayesian
Reward Segmentation for Skill Discovery Using Inverse Reinforcement Learning”. In:
(2015). ISSN: 21530866. DOI: 10.1109/IROS.2015.7353414.

[122] Pravesh Ranchod, Benjamin Rosman, and George Konidaris. “Nonparametric Bayesian
reward segmentation for skill discovery using inverse reinforcement learning”. In: Interna-
tional Conference on Intelligent Robots and Systems. IEEE. 2015, pp. 471–477.

[123] Nathan D. Ratliff et al. “Riemannian Motion Policies”. In: arXiv preprint arXiv:1801.02854
(Jan. 2018). URL: http://arxiv.org/abs/1801.02854.

[124] Nathan Ratliff, Marc Toussaint, and Stefan Schaal. “Understanding the Geometry of
Workspace Obstacles in Motion Optimization”. In: International Conference on Robotics
and Automation. 2015.

[125] Martin Riedmiller et al. “Learning by Playing – Solving Sparse Reward Tasks from Scratch”.
In: Internation Conference in Machine Learning (2018).

[126] Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. “A Reduction of Imitation Learn-
ing and Structured Prediction to No-Regret Online Learning”. In: International Conference
on Artificial Intelligence and Statistics (2011).

[127] Fumihiro Sasaki, Tetsuya Yohira, and Atsuo Kawaguchi. “Sample Efficient Imitation Learn-
ing for Continuous Control”. In: International Conference in Learning Representationsa
(2019), pp. 1–15.

[128] Stefan Schaal et al. “Learning movement primitives”. In: Robotics Research. The Eleventh
International Symposium. 2005, pp. 561–572.

[129] Tom Schaul et al. “Universal value function approximators”. In: International Conference
on Machine Learning. 2015, pp. 1312–1320.

https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf%20http://dl.acm.org/citation.cfm?id=89851.89891
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf%20http://dl.acm.org/citation.cfm?id=89851.89891
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf%20http://dl.acm.org/citation.cfm?id=89851.89891
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf%20http://dl.acm.org/citation.cfm?id=89851.89891
https://arxiv.org/pdf/1704.03073.pdf
https://scholarworks.umass.edu/dissertations/AAI9978540
https://scholarworks.umass.edu/dissertations/AAI9978540
https://arxiv.org/pdf/1703.02660.pdf%20http://arxiv.org/abs/1703.02660
https://arxiv.org/pdf/1703.02660.pdf%20http://arxiv.org/abs/1703.02660
https://doi.org/10.1109/IROS.2015.7353414
http://arxiv.org/abs/1801.02854

BIBLIOGRAPHY 81

[130] Jürgen Schmidhuber. “Curious model-building control systems”. In: International Joint
Conference on Neural Networks. IEEE. 1991, pp. 1458–1463.

[131] Jürgen Schmidhuber. “Formal theory of creativity, fun, and intrinsic motivation (1990–
2010)”. In: IEEE Transactions on Autonomous Mental Development 2.3 (2010), pp. 230–
247.

[132] Jürgen Schmidhuber. “POWER PLAY : Training an Increasingly General Problem Solver
by Continually Searching for the Simplest Still Unsolvable Problem”. In: Frontiers in
Psychology 4.313 (2013). URL: https://arxiv.org/pdf/1112.5309.pdf%
20http://journal.frontiersin.org/article/10.3389/fpsyg.2013.
00313.

[133] Tanner Schmidt, Richard Newcombe, and Dieter Fox. DART: Dense Articulated Real-Time
Tracking. Tech. rep. University of Washington, 2015. URL: https://www.cc.gatech.
edu/~afb/classes/CS7495-Fall2014/readings/dart.pdf.

[134] Yannick Schroecker, Mel Vecerik, and Jonathan Scholz. “Generative predecessor models
for sample-efficient imitation learning”. In: International Conference on Learning Repre-
sentations. 2019. URL: https://openreview.net/forum?id=SkeVsiAcYm.

[135] John Schulman et al. “Finding Locally Optimal, Collision-Free Trajectories with Sequential
Convex Optimization”. In: RSS. June 2013. DOI: 10.15607/RSS.2013.IX.031.

[136] John Schulman et al. “High-dimensional continuous control using generalized advantage
estimation”. In: International Conference on Learning Representations. 2016.

[137] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: (2017). URL: https:
//openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/
ppo/ppo-arxiv.pdf.

[138] John Schulman et al. “Trust Region Policy Optimization”. In: International Conference in
Machine Learning (2015).

[139] Arjun Sharma et al. “Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented
Demonstrations using Directed Information”. In: International Conference in Learning
Representations (2018). URL: http://arxiv.org/abs/1810.01266.

[140] Sahil Sharma and Balaraman Ravindran. “Online Multi-Task Learning Using Biased Sam-
pling”. In: (2017).

[141] Tianmin Shu, Caiming Xiong, and Richard Socher. “Hierarchical and interpretable skill
acquisition in multi-task reinforcement Learning”. In: International Conference in Learning
Representations 3 (2018), pp. 1–13. DOI: 10.1109/MWC.2016.7553036.

[142] David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature
550.7676 (Oct. 2017), pp. 354–359. ISSN: 14764687. DOI: 10.1038/nature24270.
URL: http://arxiv.org/abs/1610.00633.

[143] Tom Silver et al. “Residual Policy Learning”. In: preprint arXiv:1812.06298 (2018).

https://arxiv.org/pdf/1112.5309.pdf%20http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00313
https://arxiv.org/pdf/1112.5309.pdf%20http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00313
https://arxiv.org/pdf/1112.5309.pdf%20http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00313
https://www.cc.gatech.edu/~afb/classes/CS7495-Fall2014/readings/dart.pdf
https://www.cc.gatech.edu/~afb/classes/CS7495-Fall2014/readings/dart.pdf
https://openreview.net/forum?id=SkeVsiAcYm
https://doi.org/10.15607/RSS.2013.IX.031
https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
http://arxiv.org/abs/1810.01266
https://doi.org/10.1109/MWC.2016.7553036
https://doi.org/10.1038/nature24270
http://arxiv.org/abs/1610.00633

BIBLIOGRAPHY 82

[144] Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. “Identifying useful subgoals in rein-
forcement learning by local graph partitioning”. In: Proceedings of the 22nd international
conference on Machine learning. ACM. 2005, pp. 816–823.

[145] Matthew J. A. Smith, Herke van Hoof, and Joelle Pineau. An inference-based policy gradient
method for learning options. Feb. 2018. URL: https://openreview.net/forum?
id=rJIgf7bAZ.

[146] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony
theory. Tech. rep. DTIC Document, 1986.

[147] Sungryull Sohn, Junhyuk Oh, and Honglak Lee. “Multitask Reinforcement Learning for
Zero-shot Generalization with Subtask Dependencies”. In: Advances in Neural Information
Processing Systems (2018).

[148] Rupesh Kumar Srivastava et al. “Continually adding self-invented problems to the reper-
toire: First experiments with POWERPLAY”. In: 2012 IEEE International Conference on
Development and Learning and Epigenetic Robotics (ICDL). IEEE, Nov. 2012, pp. 1–6.
ISBN: 978-1-4673-4965-9. DOI: 10.1109/DevLrn.2012.6400843. URL: http:
//ieeexplore.ieee.org/document/6400843/.

[149] Bradly C. Stadie, Pieter Abbeel, and Ilya Sutskever. “Third-Person Imitation Learning”.
In: International Conference in Learning Representations (Mar. 2017). URL: http://
arxiv.org/abs/1703.01703.

[150] Martin Stolle and Doina Precup. “Learning options in reinforcement learning”. In: Inter-
national Symposium on Abstraction, Reformulation, and Approximation. 2002, pp. 212–
223.

[151] Kaushik Subramanian, Charles L Isbell Jr., and Andrea L Thomaz. “Exploration from
Demonstration for Interactive Reinforcement Learning”. In: Proceedings of the International
Conference on Autonomous Agents & Multiagent Systems. 2016.

[152] Sainbayar Sukhbaatar et al. “Intrinsic Motivation and Automatic Curricula via Asymmetric
Self-Play”. In: 0 ().

[153] Wen Sun, J. Andrew Bagnell, and Byron Boots. “Truncated Horizon Policy Search: Combin-
ing Reinforcement Learning & Imitation Learning”. In: (2018), pp. 1–14. ISSN: 0004-6361.
DOI: 10.1051/0004-6361/201527329. URL: http://arxiv.org/abs/
1805.11240.

[154] Martin Sundermeyer et al. “Implicit 3D Orientation Learning for 6D Object Detection from
RGB Images”. In: ECCV. 2018.

[155] Richard S Sutton and Andrew G Barto. “Reinforcement Learning : An Introduction”. In:
(1998). ISSN: 18726240. DOI: 10.1016/j.brainres.2010.09.091.

[156] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning”. In: Artificial intelligence
112.1 (1999), pp. 181–211.

https://openreview.net/forum?id=rJIgf7bAZ
https://openreview.net/forum?id=rJIgf7bAZ
https://doi.org/10.1109/DevLrn.2012.6400843
http://ieeexplore.ieee.org/document/6400843/
http://ieeexplore.ieee.org/document/6400843/
http://arxiv.org/abs/1703.01703
http://arxiv.org/abs/1703.01703
https://doi.org/10.1051/0004-6361/201527329
http://arxiv.org/abs/1805.11240
http://arxiv.org/abs/1805.11240
https://doi.org/10.1016/j.brainres.2010.09.091

BIBLIOGRAPHY 83

[157] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning”. In: Artificial Intelligence
112 (1999), pp. 181–211. URL: http://www-anw.cs.umass.edu/~barto/
courses/cs687/Sutton-Precup-Singh-AIJ99.pdf.

[158] Aviv Tamar, Sergey Levine, and Pieter Abbeel. “Value Iteration Networks”. In: Advances in
Neural Information Processing Systems.

[159] Yichuan Tang and Ruslan Salakhutdinov. “Learning Stochastic Feedforward Neural Net-
works”. In: Advances in Neural Information Processing Systems 2 (2013), pp. 530–538.
DOI: 10.1.1.63.1777.

[160] Yichuan Tang and Ruslan R Salakhutdinov. “Learning Stochastic Feedforward Neural
Networks”. In: Advances in Neural Information Processing Systems 26. 2013, pp. 530–538.

[161] Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learning domains:
A survey”. In: Journal of Machine Learning Research 10 (2009), pp. 1633–1685.

[162] Russ Tedrake et al. “LQR-trees: Feedback motion planning via sums-of-squares verification”.
In: The International Journal of Robotics Research 29.8 (2010), pp. 1038–1052.

[163] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. “Real-Time Seamless Single Shot 6D
Object Pose Prediction”. In: CVPR. 2018.

[164] Garrett Thomas et al. “Learning Robotic Assembly from CAD”. In: International Confer-
ence on Robotics and Automation (2018).

[165] Josh Tobin et al. “Domain Randomization for Transferring Deep Neural Networks from
Simulation to the Real World”. In: (Mar. 2017). URL: http://arxiv.org/abs/
1703.06907.

[166] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo : A physics engine for model-based
control”. In: (2012), pp. 5026–5033.

[167] Emanuel Todorov and Weiwei Li. “A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems”. In: American Control Con-
ference, 2005. Proceedings of the 2005. IEEE. 2005, pp. 300–306.

[168] Jonathan Tremblay et al. “Deep object pose estimation for semantic robotic grasping of
household objects”. In: arXiv preprint arXiv:1809.10790 (2018).

[169] George Tucker et al. “The Mirage of Action-Dependent Baselines in Reinforcement Learn-
ing”. In: Internation Conference in Machine Learning (2018). URL: http://arxiv.
org/abs/1802.10031.

[170] Karl Van Wyk et al. “Comparative Peg-in-Hole Testing of a Force-Based Manipulation
Controlled Robotic Hand”. In: IEEE Transactions on Robotics 34.2 (2018), pp. 542–549.
ISSN: 15523098. DOI: 10.1109/TRO.2018.2791591.

[171] Mel Vecerik et al. “Leveraging Demonstrations for Deep Reinforcement Learning on
Robotics Problems with Sparse Rewards”. In: (2017), pp. 1–11.

http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
https://doi.org/10.1.1.63.1777
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1802.10031
http://arxiv.org/abs/1802.10031
https://doi.org/10.1109/TRO.2018.2791591

BIBLIOGRAPHY 84

[172] Alexander Sasha Vezhnevets et al. “Feudal Networks for Hierarchical Reinforcement
Learning”. In: International Conference in Machine Learning (2017). URL: https://
arxiv.org/pdf/1703.01161.pdf.

[173] Alexander Vezhnevets et al. “Strategic Attentive Writer for Learning Macro-Actions”. In:
Advances in Neural Information Processing Systems (2016).

[174] Christopher M Vigorito and Andrew G Barto. “Intrinsically motivated hierarchical skill
learning in structured environments”. In: IEEE Transactions on Autonomous Mental Devel-
opment 2.2 (2010), pp. 132–143.

[175] Oriol Vinyals et al. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. Tech.
rep. 2019.

[176] Théophane Weber et al. “Credit Assignment Techniques in Stochastic Computation Graphs”.
In: (Jan. 2019). URL: http://arxiv.org/abs/1901.01761.

[177] Ronald J Williams. “Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning”. In: Machine Learning 8.3-4 (1992), pp. 229–256.

[178] Aaron Wilson et al. “Multi-task reinforcement learning: a hierarchical Bayesian approach”.
In: Proceedings of the 24th international conference on Machine learning. ACM. 2007,
pp. 1015–1022.

[179] Yuhuai Wu et al. “On multiplicative integration with recurrent neural networks”. In: Ad-
vances in Neural Information Processing Systems. 2016.

[180] M. Wuthrich et al. “Probabilistic Object Tracking Using a Range Camera”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, Nov. 2013, pp. 3195–
3202.

[181] Y. Xiang et al. “PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation
in Cluttered Scenes”. In: RSS. 2018.

[182] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. “DPOD: Dense 6D pose object detector
in RGB images”. In: arXiv preprint arXiv:1902.11020 (2019).

[183] Wojciech Zaremba and Ilya Sutskever. “Learning to execute”. In: arXiv preprint arXiv:1410.4615
(2014).

[184] Stephan Zheng, Yisong Yue, and Jennifer Hobbs. “Generating Long-term Trajectories Using
Deep Hierarchical Networks”. In: Advances in Neural Information Processing Systems 29.
Ed. by D D Lee et al. 2016.

[185] Henry Zhu et al. “Dexterous Manipulation with Deep Reinforcement Learning: Efficient,
General, and Low-Cost”. In: (Oct. 2018). URL: http://arxiv.org/abs/1810.
06045.

[186] Henry Zhu et al. “Dexterous manipulation with deep reinforcement learning: Efficient,
general, and low-cost”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 3651–3657.

https://arxiv.org/pdf/1703.01161.pdf
https://arxiv.org/pdf/1703.01161.pdf
http://arxiv.org/abs/1901.01761
http://arxiv.org/abs/1810.06045
http://arxiv.org/abs/1810.06045

BIBLIOGRAPHY 85

[187] Yuke Zhu et al. “Reinforcement and Imitation Learning for Diverse Visuomotor Skills”.
In: Robotics: Science and Systems (2018). URL: http://arxiv.org/abs/1802.
09564.

[188] Brian D Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”. In: (2008),
pp. 1433–1438.

http://arxiv.org/abs/1802.09564
http://arxiv.org/abs/1802.09564

86

Appendix A

Appendix

A.1 Stochastic Neural Networks for Hierarchical
Reinforcement Learning Appendix

Hyperparameters
All policies are trained with TRPO with step size 0.01 and discount 0.99. All neural networks (each
of the Multi-policy ones, the SNN and the Manager Network) have 2 layers of 32 hidden units.
For the SNN training, the mesh density used to grid the (x, y) space and give the MI bonus is 10
divisions/unit. The number of skills trained (ie dimension of latent variable in the SNN or number
of independently trained policies in the Mulit-policy setup) is 6. The batch size and the maximum
path length for the pre-train task are also the ones used in the benchmark [30]: 50,000 and 500
respectively. For the downstream tasks, see Tab. A.1.

Parameter Mazes Food Gather
Batch size 1M 100k
Maximum path length 10k 5k
Switch time T 500 10

Table A.1: Parameters of algorithms for downstream tasks, measured in number of time-steps of the
low level control

Results for Gather with Benchmark settings
To fairly compare our methods to previous work on the downstream Gather environment, we report
here our results in the exact settings used in Duan et al. [30]: maximum path length of 500 and
batch-size of 50k. Our SNN hierarchical approach outperforms state-of-the-art intrinsic motivation
results like VIME [62].

APPENDIX A. APPENDIX 87

The baseline of having a Center of Mass speed intrinsic reward in the task happens to be stronger
than expected. This is due to two factors. First, the task offers a not-so-sparse reward (green and
red balls may lie quite close to the robot), which can be easily reached by an agent intrinsically
motivated to move. Second, the limit of 500 steps makes the original task much simpler in the
sense that the agent only needs to learn how to reach the nearest green ball, as it won’t have time to
reach anything else. Therefore there is no actual need of skills to re-orient or properly navigate the
environment, making the hierarchy useless. This is why when increasing the time-horizon to 5,000
steps, the hierarchy shines much more, as can also be seen in the videos.

0 200 400 600 800 1000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Fr
ac

tio
n

of
 p

at
hs

 re
ac

hi
ng

 g
oa

l

CoM reward in gather
Multi-policy
SNN
SNN with Mutual Information

Figure A.1: Results of SNN4HRL for the Gather environment in the benchmark settings

Additional Experiments with "Snake"

Figure A.2: Snake Environment

In this section we study how our method scales to a more com-
plex robot. We repeat most experiments from Section 7 with the
"Snake" agent, a 5-link robot depicted in Fig. A.2. Compared
to Swimmer, the action dimension doubles and the state-space
increases by 50%. We also perform a further analysis on the
relevance of the switch time T and end up by reporting the
performance variation among different pretrained SNNs on the
hierarchical tasks.

Skill learning in pretrain

The Snake robot can learn a large span of skills as consistently as Swimmer. We report in Figs.
A.3a-A.3e the visitation plots obtained for five different random seeds in our SNN pretraining
algorithm from Secs. 2.4-2.4, with Mutual Information bonus of 0.05. The impact of the different
spans of skills on the later hierarchical training is discussed in Sec. A.1.

APPENDIX A. APPENDIX 88

(a) seed 10 (b) seed 20 (c) seed 30 (d) seed 40 (e) seed 50

Figure A.3: Span of skills learned using different random seeds to pretraining a SNN with MI
= 0.05

Hierarchical use of skills in Maze and Gather

Here we evaluate the performance of our hierarchical architecture to solve with Snake the sparse
tasks Maze 0 and Gather from Sec. 2.5. Given the larger size of the robot, we have also increased
the size of the Maze and the Gather task, from 2 to 7 and from 6 to 10 respectively. The maximum
path length is also increased in the same proportion, but not the batch size nor the switch time T
(see Sec. A.1 for an analysis on T). Despite the tasks being harder, our approach still achieves good
results, and Figs. A.4a-A.4b, clearly shows how it outperforms the baseline of having the intrinsic
motivation of the Center of Mass in the hierarchical task.

(a) Maze 0 with Snake (b) Gather task with Snake

Figure A.4: Faster learning of SNN4HRL in sparse downstream MDPs with Snake

Analysis of the switch time T

The switch time T does not critically affect the performance for these static tasks, where the robot
is not required to react fast and precisely to changes in the environment. The performance of
very different T is reported for the Gather task of sizes 10 and 15 in Figs. A.5a-A.5b. A smaller
environment implies having red/green balls closer to each other, and hence more precise navigation

APPENDIX A. APPENDIX 89

is expected to achieve higher scores. In our framework, lower switch time T allows faster changes
between skills, therefore explaining the slightly better performance of T = 10 or 50 over 100 for the
Gather task of size 10 (Fig. A.5a). On the other hand, larger environments mean more sparcity as
the same number of balls is uniformly initialized in a wider space. In such case, longer commitment
to every skill is expected to improve the exploration range. This explains the slower learning of
T = 10 in the Gather task of size 15 (Fig. A.5b). It is still surprising the mild changes produced by
such large variations in the switch time T for the Gather task.

For the Maze 0 task, Figs. A.5c-A.5d show that the difference between different T is important
but not critical. In particular, radical increases of T have little effect on the performance in this
task because the robot will simply keep bumping against a wall until it switches latent code. This
behavior is observed in the videos attached with the paper2. The large variances observed are due to
the performance of the different pretrained SNN. This is further studied in Sec. A.1.

(a) Gather task with size 10 (b) Gather task with size 15

(c) Maze 0 task with size 7 (d) Maze 0 task with size 9

Figure A.5: Mild effect of switch time T on different sizes of Gather and Maze 0

Impact of the pre-trained SNN on the hierarchy

In the previous section, the low variance of the learning curves for Gather indicates that all
pretrained SNN preform equally good in this task. For Maze, the performance depends strongly on
the pretrained SNN. For example we observe that the one obtained with the random seed 50 has a
visitation with a weak backward span (Fig. A.3e), which happens to be critical to solve the Maze 0
(as can be seen in the videos2). This explains the lack of learning in Fig. A.6a for this particular

APPENDIX A. APPENDIX 90

pretrained SNN. Note that the large variability between different random seeds is even worse in the
baseline of having the CoM reward in the Maze, as seen in Fig. A.6b. 3 out of 5 seeds never reach
the goal and the ones that does have an unstable learning due to the long time-horizon.

(a) Snake on Maze 0 of size 7 and switch-time
T = 500

(b) Snake on Maze 0 of size 7 trained with TRPO
and CoM reward

Figure A.6: Variation in performance among different pretrained SNNs and different TRPO seeds

A.2 Hierarchical Proximal Policy Optimization Appendix

Hyperparameters and Architectures Details
The Block environments used a horizon of 1000 and a batch size of 50,000, while Gather used a
batch size of 100,000. Ant Gather has a horizon of 5000, while Snake Gather has a horizon of
8000 due to its larger size. For all experiments, both PPO and HiPPO used learning rate 3× 10−3,
clipping parameter ε = 0.1, 10 gradient updates per iteration, and discount γ = 0.999. The
learning rate, clipping parameter, and number of gradient updates come from the OpenAI Baselines
implementation.

HiPPO used n = 6 sub-policies. HiPPO uses a manager network with 2 hidden layers of 32
units, and a skill network with 2 hidden layers of 64 units. In order to have roughly the same
number of parameters for each algorithm, flat PPO uses a network with 2 hidden layers with 256
and 64 units respectively. For HiPPO with randomized period, we resample p ∼ Uniform{5, 15}
every time the manager network outputs a latent, and provide the number of timesteps until the
next latent selection as an input into both the manager and skill networks. The single baselines and
skill-dependent baselines used a MLP with 2 hidden layers of 32 units to fit the value function. The
skill-dependent baseline receives, in addition to the full observation, the active latent code and the
time remaining until the next skill sampling. All runs used five random seeds.

APPENDIX A. APPENDIX 91

Robot Agent Description
Hopper is a 3-link robot with a 14-dimensional observation space and a 3-dimensional action
space. Half-Cheetah has a 20-dimensional observation space and a 6-dimensional action space. We
evaluate both of these agents on a sparse block hopping task. In addition to observing their own
joint angles and positions, they observe the height and length of the next wall, the x-position of the
next wall, and the distance to the wall from the agent. We also provide the same wall observations
for the previous wall, which the agent can still interact with.

Snake is a 5-link robot with a 17-dimensional observation space and a 4-dimensional action
space. Ant is a quadrupedal robot with a 27-dimensional observation space and a 8-dimensional
action space. Both Ant and Snake can move and rotate in all directions, and Ant faces the added
challenge of avoiding falling over irrecoverably. In the Gather environment, agents also receive 2 sets
of 10-dimensional lidar observations, whcih correspond to separate apple and bomb observations.
The observation displays the distance to the nearest apple or bomb in each 36◦ bin, respectively. All
environments are simulated with the physics engine MuJoCo [166].

Proofs
Lemma 1. If the skills are sufficiently differentiated, then the latent variable can be treated as part
of the observation to compute the gradient of the trajectory probability. Concretely, if πθh(z|s) and
πθl(a|s, z) are Lipschitz in their parameters, and 0 < πθl(at|st, zj) < ε ∀j 6= kp, then

∇θ logP (τ) =

H/p∑
k=0

∇θ log πθh(zkp|skp) +

p∑
t=1

∇θ log πθl(at|st, zkp) +O(nHεp−1) (A.1)

Proof. From the point of view of the MDP, a trajectory is a sequence τ = (s0, a0, s1, a1, . . . , aH−1, sH).
Let’s assume we use the hierarchical policy introduced above, with a higher-level policy modeled as
a parameterized discrete distribution with n possible outcomes πθh(z|s) = Categoricalθh(n). We
can expand P (τ) into the product of policy and environment dynamics terms, with zj denoting the
jth possible value out of the n choices,

P (τ) =

(H/p∏
k=0

[n∑
j=1

πθh(zj|skp)
(k+1)p−1∏
t=kp

πθl(at|st, zj)
])[

P (s0)
H∏
t=1

P (st+1|st, at)
]

Taking the gradient of logP (τ) with respect to the policy parameters θ = [θh, θl], the dynamics
terms disappear, leaving:

∇θ logP (τ) =

H/p∑
k=0

∇θ log
(n∑
j=1

πθl(zj|skp)
(k+1)p−1∏
t=kp

πs,θ(at|st, zj)
)

=

H/p∑
k=0

∑n
j=1∇θ

(
πθh(zj|skp)

∏(k+1)p−1
t=kp πθl(at|st, zj)

)
∑n

j=1 πθh(zj|skp)
∏(k+1)p−1

t=kp πθl(at|st, zj)

APPENDIX A. APPENDIX 92

The sum over possible values of z prevents the logarithm from splitting the product over the p-step
sub-trajectories. This term is problematic, as this product quickly approaches 0 as p increases, and
suffers from considerable numerical instabilities. Instead, we want to approximate this sum of
products by a single one of the terms, which can then be decomposed into a sum of logs. For this
we study each of the terms in the sum: the gradient of a sub-trajectory probability under a specific
latent ∇θ

(
πθh(zj|skp)

∏(k+1)p−1
t=kp πθl(at|st, zj)

)
. Now we can use the assumption that the skills are

easy to distinguish, 0 < πθl(at|st, zj) < ε ∀j 6= kp. Therefore, the probability of the sub-trajectory
under a latent different than the one that was originally sampled zj 6= zkp, is upper bounded by
εp. Taking the gradient, applying the product rule, and the Lipschitz continuity of the policies, we
obtain that for all zj 6= zkp,

∇θ

(
πθh(zj|skp)

(k+1)p−1∏
t=kp

πθl(at|st, zj)
)

= ∇θπθh(zj|skp)
(k+1)p−1∏
t=kp

πθl(at|st, zj)+

(k+1)p−1∑
t=kp

πθh(zj|skp)
(
∇θπθl(at|st, zj)

) (k+1)p−1∏
t=kp
t′ 6=t

πθl(at′|st′ , zj)

= O(pεp−1)

Thus, we can across the board replace the summation over latents by the single term correspond-
ing to the latent that was sampled at that time.

∇θ logP (τ) =

H/p∑
k=0

1

πθh(zkp|skp)
∏(k+1)p−1

t=kp πθl(at|st, zkp)
∇θ

(
P (zkp|skp)

(k+1)p−1∏
t=kp

πθl(at|st, zkp)
)

+
nH

p
O(pεp−1)

=

H/p∑
k=0

∇θ log
(
πθh(zkp|skp)

(k+1)p−1∏
t=kp

πθl(at|st, zkp)
)

+O(nHεp−1)

= Eτ
[(H/p∑

k=0

∇θ log πθh(zkp|skp) +
H∑
t=1

∇θ log πθl(at|st, zkp)
)]

+O(nHεp−1)

Interestingly, this is exactly ∇θP (s0, z0, a0, s1, . . .). In other words, it’s the gradient of the
probability of that trajectory, where the trajectory now includes the variables z as if they were
observed.

Lemma 2. For any functions bh : S → R and bl : S × Z → R we have:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)b(skp)] = 0

APPENDIX A. APPENDIX 93

Eτ [
H∑
t=0

∇θ log πθl(at|st, zkp)b(st, zkp)] = 0

Proof. We can use the tower property as well as the fact that the interior expression only depends
on skp and zkp:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)b(skp)] =

H/p∑
k=0

Eskp,zkp [Eτ\skp,zkp [∇θ logP (zkp|skp)b(skp)]]

=

H/p∑
k=0

Eskp,zkp [∇θ logP (zkp|skp)b(skp)]

Then, we can write out the definition of the expectation and undo the gradient-log trick to prove that
the baseline is unbiased.

Eτ
H/p∑
k=0

∇θ log πθh(zkp|skp)b(skp) =

H/p∑
k=0

∫
(skp,zkp)

P (skp, zkp)∇θ log πθh(zkp|skp)b(skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)

∫
zkp

πθh(zkp|skp)∇θ log πθh(zkp|skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)

∫
zkp

πθh(zkp|skp)
∇θπθh(zkp|skp)
πθh(zkp|skp)

dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)∇θ

∫
zkp

πθh(zkp|skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)∇θ1dskp

= 0

Subtracting a state- and subpolicy- dependent baseline from the second term is also unbiased,
i.e.

Eτ [
H∑
t=0

∇θ log πs,θ(at|st, zkp)b(st, zkp)] = 0

APPENDIX A. APPENDIX 94

0 50 100 150
Iteration

0

1

2

3

4

A
ve

ra
ge

 R
et

ur
n With (x,y)

Without (x,y)

Figure A.7: HIRO performance on Ant Gather with and without access to the ground truth (x, y),
which it needs to communicate useful goals.

We’ll follow the same strategy to prove the second equality: apply the tower property, express
the expectation as an integral, and undo the gradient-log trick.

Eτ [
H∑
t=0

∇θ log πθl(at|st, zkp)b(st, zkp)]

=
H∑
t=0

Est,at,zkp [Eτ\st,at,zkp [∇θ log πθm(at|st, zkp)b(st, zkp)]]

=
H∑
t=0

Est,at,zkp [∇θ log πθl(at|st, zkp)b(skp, zkp)]

=
H∑
t=0

∫
(st,zkp)

P (st, zkp)b(st, zkp)

∫
at

πθl(at|st, zkp)∇θ log πθl(at|st, zkp)datdzkpdst

=
H∑
t=0

∫
(st,zkp)

P (st, zkp)b(st, zkp)∇θ1dzkpdst

= 0

HIRO sensitivity to observation-space
In this section we provide a more detailed explanation of why HIRO [104] performs poorly under
our environments. As explained in our related work section, HIRO belongs to the general category
of algorithms that train goal-reaching policies as lower levels of the hierarchy [172, 92]. These
methods rely on having a goal-space that is meaningful for the task at hand. For example, in
navigation tasks they require having access to the (x, y) position of the agent such that deltas in
that space can be given as meaningful goals to move in the environment. Unfortunately, in many
cases the only readily available information (if there’s no GPS signal or other positioning system
installed) are raw sensory inputs, like cameras or the LIDAR sensors we mimic in our environments.

APPENDIX A. APPENDIX 95

In such cases, our method still performs well because it doesn’t rely on the goal-reaching extra
supervision that is leveraged (and detrimental in this case) in HIRO and similar methods. In Figure
A.7, we show that knowing the ground truth location is critical for its success. We have reproduced
the HIRO results in Fig. A.7 using the published codebase, so we are convinced that our results
showcase a failure mode of HIRO.

Hyperparameter Sensitivity Plots

0 200 400 600 800 1000
Iteration

0

1

2

3

4

A
ve

ra
ge

 R
et

ur
n

AntGather: Sensitivity to p

p=35, 45
p=20, 30
p=10, 20
p=5, 15
p=1, 5
PPO at 1000 itr

0 200 400 600 800 1000
Iteration

0

1

2

3

4

5

6

SnakeGather HiPPO: Sensitivity to p

Figure A.8: Sensitivity of HiPPO to variation in the time-commitment.

0 200 400 600 800 1000
Iteration

0

1

2

3

4

A
ve

ra
ge

 R
et

ur
n

AntGather HiPPO: Sensitivity to number of skills

n=12
n=9
n=6
n=3
PPO at 1000 itr

0 200 400 600 800 1000
Iteration

0

1

2

3

4

5

6

SnakeGather HiPPO: Sensitivity to number of skills

Figure A.9: Sensitivity of HiPPO to variation in the number of skills.

APPENDIX A. APPENDIX 96

A.3 Automatic Curriculum Generation for RL Agents
Appendix

Implementation details
Replay buffer

In addition to training our policy on the goals that were generated in the current iteration, we also
save a list (“regularized replay buffer") of goals that were generated during previous iterations
(update_replay). These goals are also used to train our policy, so that our policy does not
forget how to achieve goals that it has previously learned. When we generate goals for our policy to
train on, we sample two thirds of the goals from the Goal GAN and we sample the one third of the
goals uniformly from the replay buffer. To prevent the replay buffer from concentrating in a small
portion of goal space, we only insert new goals that are further away than ε from the goals already
in the buffer, where we chose the goal-space metric and ε to be the same as the ones introduced in
Section 3.3.

Goal GAN Initialization

In order to begin our training procedure, we need to initialize our goal generator to produce an initial
set of goals (initialize_GAN). If we initialize the goal generator randomly (or if we initialize
it to sample uniformly from the goal space), it is likely that, for most (or all) of the sampled goals,
our initial policy would receives no reward due to the sparsity of the reward function. Thus we
might have that all of our initial goals g have R̄g(π0) < Rmin, leading to very slow training.

To avoid this problem, we initialize our goal generator to output a set of goals that our initial
policy is likely to be able to achieve with R̄g(πi) ≥ Rmin . To accomplish this, we run our initial
policy π0(at | st, g) with goals sampled uniformly from the goal space. We then observe the set
of states Sv that are visited by our initial policy. These are states that can be easily achieved with
the initial policy, π0, so the goals corresponding to such states will likely be contained within SI0 .
We then train the goal generator to produce goals that match the state-visitation distribution pv(g),
defined as the uniform distribution over the set f(Sv). We can achieve this through traditional GAN
training, with pdata(g) = pv(g). This initialization of the generator allows us to bootstrap the Goal
GAN training process, and our policy is able to quickly improve its performance.

Experimental details
Ant specifications

The ant is a quadruped with 8 actuated joints, 2 for each leg. The environment is implemented in
Mujoco [166]. Besides the coordinates of the center of mass, the joint angles and joint velocities are
also included in the observation of the agent. The high degrees of freedom make navigation a quite
complex task requiring motor coordination. More details can be found in Duan et al. [30], and the
only difference is that in our goal-oriented version of the Ant we append the observation with the

APPENDIX A. APPENDIX 97

goal, the vector from the CoM to the goal and the distance to the goal. For the Free Ant experiments
the objective is to reach any point in the square [−5m, 5m]2 on command. The maximum time-steps
given to reach the current goal are 500.

Ant Maze Environment

The agent is constrained to move within the maze environment, which has dimensions of 6m x 6m.
The full state-space has an area of size 10 m x 10 m, within which the maze is centered. To compute
the coverage objective, goals are sampled from within the maze according to a uniform grid on the
maze interior. The maximum time-steps given to reach the current goal are 500.

Point-mass specifications

For the N-dim point mass of Section 3.5, in each episode (rollout) the point-mass has 400 timesteps
to reach the goal, where each timestep is 0.02 seconds. The agent can accelerate in up to a rate of 5
m/s2 in each dimension (N = 2 for the maze). The observations of the agent are 2N dimensional,
including position and velocity of the point-mass.

Goal GAN design and training

After the generator generates goals, we add noise to each dimension of the goal sampled from a
normal distribution with zero mean and unit variance. At each step of the algorithm, we train the
policy for 5 iterations, each of which consists of 100 episodes. After 5 policy iterations, we then
train the GAN for 200 iterations, each of which consists of 1 iteration of training the discriminator
and 1 iteration of training the generator. The generator receives as input 4 dimensional noise
sampled from the standard normal distribution. The goal generator consists of two hidden layers
with 128 nodes, and the goal discriminator consists of two hidden layers with 256 nodes, with relu
nonlinearities.

Policy and optimization

The policy is defined by a neural network which receives as input the goal appended to the agent
observations described above. The inputs are sent to two hidden layers of size 32 with tanh
nonlinearities. The final hidden layer is followed by a linear N -dimensional output, corresponding
to accelerations in the N dimensions. For policy optimization, we use a discount factor of 0.998 and
a GAE lambda of 0.995. The policy is trained with TRPO with Generalized Advantage Estimation
implemented in rllab [138, 30, 136]. Every "update_policy" consists of 5 iterations of this algorithm.

Study of GoalGAN goals
To label a given goal (Section 3.4), we could empirically estimate the expected return for this
goal R̄g(πi) by performing rollouts of our current policy πi. The label for this goal is then set
to yg = 1

{
Rmin ≤ R̄g(πi) ≤ Rmax

}
. Nevertheless, having to execute additional rollouts just

APPENDIX A. APPENDIX 98

for labeling is not sample efficient. Therefore, we instead use the rollouts that were used for the
most recent policy update. This is an approximation as the rollouts where performed under πi−1,
but as we show in Figs. A.10a-A.10b, this small “delay" does not affect learning significantly.
Indeed, using the true label (estimated with three new rollouts from πi) yields the Goal GAN
true label curves that are only slightly better than what our method does. Furthermore, no matter
what labeling technique is used, the success rate of most goals is computed as an average of at
most four attempts. Therefore, the statement Rmin ≤ R̄g(πi) will be unchanged for any value of
Rmin ∈ (0, 0.25). Same for R̄g(πi) ≤ Rmax and Rmax ∈ (0.75, 1). This implies that the labels
estimates (and hence our automatic curriculum generation algorithm) is almost invariant for any
value of the hypermparameters Rmin and Rmax in these ranges.

(a) Free Ant - Variants (b) Maze Ant - Variants

Figure A.10: Learning curves comparing the training efficiency of our method and different variants.
All plots are an average over 10 random seeds.

In the same plots we also study another criteria to choose the goals to train on that has been
previously used in the literature: learning progress [9, 48]. Given that we work in a continuous
goal-space, estimating the learning progress of a single goal requires estimating the performance
of the policy on that goal before the policy update and after the policy update (potentially being
able to replace one of these estimations with the rollouts from the policy optimization, but not both).
Therefore the method does require more samples, but we deemed interesting to compare how well
the metrics allow to automatically build a curriculum. We see in the Figs. A.10a-A.10b that the two
metrics yield a very similar learning, at least in the case of Ant navigation tasks with sparse rewards.

Goal Generation for Free Ant
Similar to the experiments in Figures 3.3 and 3.4, here we show the goals that were generated for
the Free Ant experiment in which a robotic quadruped must learn to move to all points in free space.
Figures A.11 and A.12 show the results. As shown, our method produces a growing circle around
the origin; as the policy learns to move the ant to nearby points, the generator learns to generate
goals at increasingly distant positions.

APPENDIX A. APPENDIX 99

(a) Iteration 10 (b) Iteration 100 (c) Iterartion 300

Figure A.11: Goals that our algorithm trains on (200 sampled from the Goal GAN, 100 from the
replay). “High rewards" (green) are goals with R̄g(πi) ≥ Rmax; GOIDi (blue) have appropriate
difficulty for the current policy Rmin ≤ R̄g(πi) ≤ Rmax. The red ones have Rmin ≥ R̄g(πi)

(a) Iteration 10: Coverage = 0.037 (b) Iteration 100: Coverage = 0.4
(c) Iteration 300: Coverage =

0.86

Figure A.12: Visualization of the policy performance for different parts of the state space (same
policy training as in Fig. A.11). For illustration purposes, the feasible state-space is divided into
a grid, and a goal location is selected from the center of each grid cell. Each grid cell is colored
according to the expected return achieved on this goal: Red indicates 100% success; blue indicates
0% success.

Learning for Multi-path point-mass
To clearly observe that our GoalGAN approach is capable of fitting multimodal distributions, we
have plotted in Fig. A.13a only the samples coming from the GoalGAN (i.e. no samples from the
replay buffer). Also, in this environment there are several ways of reaching every part of the maze.
This is not a problem for our algorithm, as can be seen in the full learning curves in Fig.A.13b,
where we see that all runs of the algorithm reliably reaches full coverage of the multi-path maze.

APPENDIX A. APPENDIX 100

(a) Iteration 10 Goal GAN sam-
ples (Fig. 3.5b without replay
samples)

(b) Learning curves of our algorithm on Multi-path Point-mass Maze,
consistently achieving full coverage

Figure A.13: Study of goalGAN in the Multi-Path Maze environment

Comparisons with other methods
Asymmetric self-play [152]

Although not specifically designed for the problem presented in this paper, it is straight forward to
apply the method proposed by Sukhbaatar et al. [152] to our problem. An interesting study of its
limitations in a similar setting can be found in [37].

SAGG-RIAC [9]

In our implementation of this method, we use TRPO as the “Low-Level Goal-Directed Exploration
with Evolving Context". We therefore implement the method as batch: at every iteration, we sample
Nnew new goals {yi}i=0...Nnew , then we collect rollouts of tmax steps trying to reach them, and
perform the optimization of the parameters using all the collected data. The detailed algorithm is
given in the following pseudo-code.

UpdateRegions(R, yf ,Γyf) is exactly the Algorithm 2 described in the original paper, and
Self-generate is the "Active Goal Self-Generation (high-level)" also described in the paper (Section
2.4.4 and Algorithm 1), but it’s repeated Nnew times to produce a batch of Nnew goals jointly. As
for the competence Γyg , we use the same formula as in their section 2.4.1 (use highest competence
if reached close enough to the goal) and C(yg, yf) is computed with their equation (7). The
collect_rollout function resets the state s0 = sreset and then applies actions following the
goal-conditioned policy πθ(·, yg) until it reaches the goal or the maximum number of steps tmax has
been taken. The final state, transformed in goal space, yf is returned.

As hyperparameters, we have used the recommended ones in the paper, when available: p1 =
0.7, p2 = 0.2, p3 = 0.1. For the rest, the best performance in an hyperparameter sweep yields:
ζ = 100, gmax = 100. The noise for mode(3) is chosen to be Gaussian with variance 0.1, the same
as the tolerance threshold εmax and the competence threshold εC .

As other details, in our tasks there are no constraints to penalize for, so ρ = ∅. Also, there are
no sub-goals. The reset value r is 1 as we reset to sstart after every reaching attempt. The number

APPENDIX A. APPENDIX 101

Algorithm 9: Generative Goal with Sagg-RIAC
Hyper-parameters :window size ζ , tolerance threshold εmax, competence threshold εC ,

maximum time horizon tmax, number of new goals Nnew, maximum
number of goals gmax, mode proportions (p1, p2, p3)

Input :Policy πθ0(sstart, yg), goal bounds BY , reset position srest
Output :Policy πθN (sstart, yg)
R←

{
(R0,ΓR0)

}
where R0 = Region(BY), ΓR0 = 0;

for i← 1 to N do
goals← Self-generate Nnew goals: {yj}j=0...Nnew ;
paths = [];
while number_steps_in(paths) < batch_size do

Reset s0 ← srest;
yg ← Uniform(goals);
yf , Γyg , path← collect_rollout(πθi(·, yg), sreset);
paths.append(path);
UpdateRegions(R, yf , 0) ;
UpdateRegions(R, yg,Γyg);

end
πθi+1

← train πθi with TRPO on collected paths;
end

of explorative movements q ∈ N has a less clear equivalence as we use a policy gradient update
with a stochastic policy πθ instead of a SSA-type algorithm.

(a) Iteration 2 (b) Iteration 20 (c) Iterartion 300

Figure A.14: Goals sampled by SAGG-RIAC (same policy training as in Fig. A.15). “High rewards"
(in green) are goals with R̄g(πi) ≥ Rmax; GOIDi (in blue) are those with the appropriate level of
difficulty for the current policy (Rmin ≤ R̄g(πi) ≤ Rmax). The red ones have Rmin ≥ R̄g(πi)

APPENDIX A. APPENDIX 102

(a) Iteration 2: Num. of
Regions = 54

(b) Iteration 100: Num. of
Regions = 1442

(c) Iteration 300: Num. of
Regions = 15420

Figure A.15: Visualization of the regions generated by the SAGG-RIAC algorithm

A.4 Reverse Curriculum for Reinforcement Learning
Appendix

Experiment Implementation Details
Hyperparameters

Here we describe the hyperparemeters used for our method. Each iteration, we generate new start
states (as described in Section 3.6 and Procedure 6), which we append to the seed states until we
have a total of M = 10000 start states. We then subsample these down to Nnew = 200 new start
states. These are appended with Nold = 100 sampled old start states (as described in Section 3.6
and Procedure 5), and these states are used to initialize our agent when we train our policy. The
“Brownian motion" rollouts have a horizon of TB = 50 timesteps, and the actions taken are random,
sampled from a standard normal distribution (e.g. a 0-mean Gaussian with a covariance Σ = I).

For our method as well as the baselines, we train a (64, 64) multi-layer perceptron (MLP)
Gaussian policy with TRPO [138], implemented with rllab [30]. We use a TRPO step-size of 0.01
and a (32, 32) MLP baseline. For all tasks, we train with a batch size of 50,000 timesteps. All
experiments use a maximum horizon of T = 500 time steps except for the Ant maze experiments
that use a maximum horizon of T = 2000. The episode ends as soon as the agent reaches a goal
state. We define the goal set Sg to be a ball around the goal state, in which the ball has a radius of
0.03m for the ring and key tasks, 0.3m for the point-mass maze task and 0.5m for the ant-maze task.
In our definition of S0

i , we use Rmin = 0.1 and Rmax = 0.9. We use a discount factor γ = 0.998 for
the optimization, in order to encourage the policy to reach the goal as fast as possible.

Performance metric

The aim of our tasks is to reach a specified goal region Sg from all start states s0 ∈ S0 that are
feasible and within a certain distance of that goal region. Therefore, to evaluate the progress on
ηρ0(πi) we need to collect trajectories starting at states uniformly sampled from S0. For the point-

APPENDIX A. APPENDIX 103

mass maze navigation task this is straight forward as the designer can give a concrete description
of the feasible (x, y) space, so we can uniformly sample from it. Nevertheless, it is not trivial to
uniformly sample from all feasible start states for the robotics tasks. In particular, the state space
is in joint angles and angular velocities of the 7 DOF arm, but the physical constraints of these
contact-rich environments are given by the geometries of the task. Therefore, uniformly sampling
from the angular bounds mostly yields infeasible states, with some part of the arm or the end-effector
intersecting with other objects in the scene. In order to approximate uniformly sampling from S0,
we make use of our assumptions (Section 3.6). We simply run our SampleNearby procedure
initialized with starts = [sg] with a very large M and long time horizons TB . This large aggregated
state data-set is saved and samples from it are used as proxy to S0 to evaluate the performance of
our algorithm. Figures A.16a and A.16b show six sampled start states from the data sets used to
evaluate the ring task and the key task. These data sets are available at the project website1 for
future reproducibility and benchmarking.

(a) Uniformly sampled start states for ring task. There are 39,530 states in the data-set, of which 5,660 have
the ring with its hole already in the peg

(b) Uniformly sampled start states for key task. There are 544,575 states in the data-set, of which 120,784
have the key somewhere inside the key-hole

Figure A.16: Samples from the test distribution for the manipulation tasks

Given the quasi-static nature of the tasks considered, we generate only initial joint positions,
and we set all initial velocities to zero. Generating initial velocities is a fairly simple extension of
our approach that we leave for future work.

1Videos, data sets and code available at: bit.ly/reversecurriculum

APPENDIX A. APPENDIX 104

Other methods
Distance reward shaping

Although our method is able to train policies with sparse rewards, the policy optimization steps
train_pol can use any kind of reward shaping available. To an extent, we already do that by
using a discount factor γ, which motivates the policies to reach the goal as soon as possible. Similar
reward modulations could be included to take into account energy penalties or reward shaping from
prior knowledge. For example, in the robotics tasks considered in this paper, the goal is defined
in terms of a reference state, and hence it seems natural to try to use the distance to this state as
an additional penalty to guide learning. However, we have found that this modification does not
actually improve training. For the start states near to the goal, the policy can learn to reach the goal
simply from the indicator reward introduced in Section . For the states that are further away, the
distance to the goal is actually not a useful metric to guide the policy; hence, the distance reward
actually guides the policy updates towards a suboptimal local optimum, leading to poor performance.
In Fig. A.17 we see that the ring task is not much affected by the additional reward, whereas the key
task suffers considerably if this reward is added.

(a) Ring on Peg task (b) Key insertion task

Figure A.17: Learning curves for the robotics manipulation tasks

Failure cases of Uniform Sampling for maze navigation

In the case of the maze navigation task, we observe that applying TRPO directly on the original
MDP incurs a very high variance across learning curves. We have observed that some policies only
learned how to perform well from a certain side of the goal. The reason for this is that our learning
algorithm (TRPO) is a batch on-policy method; therefore, at the beginning of learning, uniformly
sampling from the state-space might give a batch with very few trajectories that reach the goal and
hence it is likely that the successful trajectories all come from one side of the goal. In this case, the
algorithm will update the policy to go in the same direction from everywhere, wrongly extrapolating

APPENDIX A. APPENDIX 105

from these very few successful trajectories it received. This is less likely to happen if the trajectories
for the batch are collected with a different start state distribution that concentrates more uniformly
around the goal, as the better learning progress of the other curves show.

Failure cases of Asymmetric Self-play

In Section 3.7, we compare the performance of our method to the asymmetric self-play approach
of Sukhbaatar et al. [152]. Although such an approach learns faster than the uniform sampling
baseline, it gets stuck in a local optimum and fails to learn to reach the goal from more than 40% of
start-states in the point-mass maze task.

As explained above, part of the reason that this method gets stuck in a local optimum is that
“Alice" (the policy that is proposing start-states) is represented with a unimodal Gaussian distribution,
which is a common representation for policies in continuous action spaces. Thus Alice’s policy
tends to converge to moving in a single direction. In the original paper, this problem is somewhat
mitigated by using a discrete action space, in which a multi-modal distribution for Alice can be
maintained. However, even in such a case, the authors of the original paper also observed that Alice
tends to converge to a local optimum [152].

A further difficulty for Alice is that her reward function can be sparse, which can be inherently
difficult to optimize. Alice’s reward is defined as rA = max(0, tB − tA), where tA is the time that
it takes Alice to reach a given start state from the goal (at which point Alice executes the “stop"
action), and tB is the time that it takes Bob to return to the goal from the start state. Based on this
reward, the optimal policy for Alice is to find the nearest state for which Bob does not know how
to return to the goal; this will lead to a large value for tB with a small value for tA. In theory, this
should lead to an automatic curriculum of start-states for Bob.

However, in practice, we find that sometimes, Bob’s policy might improve faster than Alice’s. In
such a case, Bob will have learned how to return to the goal from many start states much faster than
Alice can reach those start states from the goal. In such cases, we would have that tB < tA, and
hence rA = 0. Thus, Alice’s rewards are sparse (many actions that Alice takes result in 0 reward)
and hence it will be difficult for Alice’s policy to improve, leading to a locally optimal policy for
Alice. For these reasons, we have observed Alice’s policy often getting “stuck," in which Alice is
unable to find new start-states to propose for Bob that Bob does not already know how to reach the
goal from.

We have implemented a simple environment that illustrates these issues. In this environment,
we use a synthetic “Bob" that can reach the goal from any state within a radius rB from the goal.
For states within rB, Bob can reach the goal in a time proportional to the distance between the
state and the goal; in other words, for such states s0 ∈ {s : |s− sg| < rB, s ∈ S0}, we have that
tB = |s0 − sg|/vB , where |s0 − sg| is the distance between state s0 and the goal sg, and vB is Bob’s
speed. For states further than rB from the goal, Bob does not know how to reach the goal, and thus
tB for such states takes the maximum possible value.

This setup is illustrated in Figure A.18. The region shown in red designates the area within
rB from the goal, e.g. the set of states from which Bob knows how to reach the goal. On the
first iteration, Alice has a random policy (Figure A.18a). After 10 iterations of training, Alice has

APPENDIX A. APPENDIX 106

converged to a policy that reaches the location just outside of the set of states from which Bob knows
how to reach the goal (Figure A.18b). From these states, Alice receives a maximum reward, because
tB is very large while tA is low. Note that we also observe the unimodal nature of Alice’s policy;
Alice has converged to a policy which proposes just one small set of states among all possible states
for which she would receive a similar reward.

(a) Iteration 1 (b) Iteration 10 (c) Iteration 32

Figure A.18: Simple environment to illustrate asymmetric self-play [152]. The red areas indicate the
states from which Bob knows how to reach the goal. The blue points are the start-states proposed
by Alice at each iteration (i.e. the states from which Alice performed the stop action)

.

At this point we synthetically increase rB, corresponding to the situation in which Bob learns
how to reach the goal from a larger set of states. However, Alice’s policy has already converged
to reaching a small set of states which were optimal for Bob’s previous policy. From these states
Alice now receives a reward of 0, as described above: Bob can return from these states quickly to
the goal, so we have that tB < tA and rA = 0. Thus, Alice does not receive any reward signal and
is not able to improve her policy. Hence, Alice’s policy remains stuck at this point and she is not
able to find new states to propose to Bob (Figure A.18c).

In this simple case, one could attempt to perform various hacks to try to fix the situation, e.g.
by artificially increasing Alice’s variance, or by resetting Alice to a random policy. However, note
that, in a real example, Bob is learning an increasingly complex policy, and so Alice would need to
learn an equally complex policy to find a set of states that Bob cannot succeed from; hence, these
simple fixes would not suffice to overcome this problem. Fundamentally, the asymmetric nature of
the self-play between Alice and Bob creates a situation in which Alice has a difficult time learning
and often gets stuck in a local optimum from which she is unable to improve.

	Contents
	List of Figures
	List of Tables
	Introduction
	Hierarchical RL to Learn with Sparse Rewards
	Introduction
	Related Work
	Hierarchical Policies
	Learning Diverse Skills with Stochastic Neural Networks
	Experimental Results for SNN4HRL
	Efficient Adaptation with End-to-End Hierarchical Policy Gradients
	Experimental Results for HiPPO
	Conclusions and Future Work

	Automatic Curriculum Generation
	Introduction
	Related Work
	Goal-Reaching Policy Learning
	Automatic Goal Generation for Reinforcement Learning Agents
	Experimental Results for goalGAN
	Reverse Curriculum Generation for Reinforcement Learning
	Experimental Results for Reverse Curriculum
	Conclusions and Future Directions

	Leveraging Partial Expert Demonstrations
	Introduction
	Related Work
	Background on Imitation Learning
	Goal-conditioned Imitation Learning
	Experimental Results for Goal-Conditioned IL
	Guided Uncertainty-Aware Policy Optimization
	Experimental Results for GUAPO
	Conclusions and Future Work

	Conclusions
	Bibliography
	Appendix
	Stochastic Neural Networks for Hierarchical Reinforcement Learning Appendix
	Hierarchical Proximal Policy Optimization Appendix
	Automatic Curriculum Generation for RL Agents Appendix
	Reverse Curriculum for Reinforcement Learning Appendix

