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Abstract

Scoring Confidence in Neural Networks

by

Nikita Vemuri

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph Gonzalez

Increased trust in the predictions of neural networks are required for these models to gain
greater popularity in real world decision making systems where the cost of misclassification
is high. Accurate confidence estimates which represent the expected sample accuracy can
greatly aid in increasing this trust, however modern neural networks are largely miscali-
brated. Confidence estimates can be used as interpretable probabilities which are fed into
the next stage of the decision making system, or as values which determine when not to act
on the neural network’s predictions when compared to a threshold. We explore the effects of
various regularization techniques and calibration methods on the expected calibration error.
We find that widely regularization techniques do decrease the calibration error, but that
the best hyperparameter values for this regularization may be different than the value that
maximizes the generalization accuracy. For the application of using confidence estimates to
determine which inputs to not predict on, we develop a framework of visualizing the tradeoff
between the proportion of inputs not predicted on and the resulting accuracy. This method
has a greater flexibility in the types of confidence scores that result in good indicators of
when to trust the model and can also support confidence scores that are not probabilities
or direct estimates of the expected sample accuracy. We demonstrate this using entropy
and distance to the decision boundary as two methods which can separate out points that
are likely to be incorrect without returning probabilities that are interpreted as traditional
confidence estimates.
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Chapter 1

Introduction

As neural networks are able to obtain higher accuracies across a variety of problems, there
is an increased demand to deploy them in applications where the cost of misclassification is
high, such as medical decision making systems [1]. However, in order for neural networks
to gain widespread popularity in these domains, there needs to be a more reliable notion of
predictability and trust in the performance at test time. Many of these high risk applications
have long established legacy processes that can perform the task, such as having a human
expert make a classification. Although these processes are generally more trusted, they are
very costly to use at large scales.

For classification problems, a critical aspect to maintaining trust in a model’s performance
is developing estimates in the confidence of the prediction that reflect the true expected
accuracy of that sample. This would allow a practitioner to not only better understand the
chance of the model predicting incorrectly on a per sample basis, but also potentially use
that estimate to determine when to default to the legacy process.

There are two main uses for estimates of the confidence of a prediction. Some applications
directly need the confidence estimate as an output of the model, which is then used in the
next step of the decision making process. For these applications, it is especially important the
confidence estimate represents the expected sample accuracy, so the natural interpretation
of the probability is valid. For example, a doctor may want to use the probability that a
patient has a disease in combination with other information to make the final diagnosis,
so the probability must have the expected meaning. In other applications, a threshold can
be set on the confidence estimate to determine when the neural network should not make
a prediction. Recent work has shown that modern neural networks are overconfident in
their predictions despite a higher generalization accuracy, thereby highlighting the need for
calibration methods [6]. In addition, it has been shown that not all points in a dataset are
equally difficult to classify [21].

We address the two main applications of confidence estimates in this work. Guo et al. [6]
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indicates that a key reason behind the trend of increasing miscalibration is that modern
neural networks can overfit to the negative log likelihood loss without overfitting to the 0/1
loss that is used to determine generalization accuracy. As a result, we first investigate the
role of widely used regularization techniques on the calibration error.

We then look at various methods of calibrating outputs of neural networks, such as histogram
binning, matrix scaling, and temperature scaling, which can provide a better direct estimate
of the expected sample accuracy. These methods are well suited to analysis using reliabil-
ity diagrams [15], which visualize the calibration error by plotting the confidence estimate
against the expected sample accuracy .

In addition, we develop a method of directly analyzing the tradeoff between only using the
neural network’s predictions on a subset of the data (ignoring predictions that are assigned
low confidence estimates based on some threshold) and the resulting accuracy of the model.
This framework is simple to use on the validation dataset for any classification problem, and
is well suited for the case when inputs arrive in a stream during deployment. It also allows
for the usage of confidence scores, which are values that may not represent the expected
sample accuracy but still give some indication of the confidence in the prediction. Because
they don’t represent the probability of correct prediction, confidence scores should not be
used in the same way as a confidence estimate, even if the values are probabilities.

This framework is especially useful in applications which have a robust and tested legacy
process to perform classifications, and are shifting to using neural networks for the task.
These types of applications tend to have a high cost for misclassification, so predictability
of the model’s performance is very important. Only predicting on the inputs where the
neural network produces confident predictions allows for a gradual transition to automate
the legacy process, while still maintaining a high level of trust. It also gives the practitioner
the ability to tune the expected accuracy of the system by choosing the proportion of inputs
to defer to the expert.

Using this framework, we analyze methods that provide indications of the likelihood of
correctness without directly calibrating to the expected sample accuracy. For example, we
use approximations of the distance to the decision boundary as proposed in Elsayed et al. [3]
as scores that may indicate the likelihood of correct prediction and find performance that is
almost equal to temperature scaling. Entropy of the predicted distribution over class labels is
also shown as a reasonable confidence score, even though it doesn’t correspond to the sample
accuracy. These alternative scoring methods are not required to be probabilities, so are not
well suited for reliability diagrams. However, our method of visualizing the best accuracy
for various sized subsets allows a framework that can compare confidence scoring methods
regardless of whether they have the traditional intepretation of a confidence estimate.
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Chapter 2

Related Work

Uses of Accurate Confidence Estimates

As machine learning models get deployed in real world decision making systems where the
cost of a misclassification is high, well calibrated confidence estimates become increasingly
important. A confidence estimate can be considered well calibrated if the estimate is suffi-
ciently close to the probability of that input being correctly classified. In practice, we can
obtain an estimate of the probability of correct classification by taking the sample average
accuracy of all data points with the same features. In situations where there are not a
sufficient number of data points with identical features, a grouping can be done on similar
inputs.

Certain applications use the confidence estimate from a discriminative model as an input to
the next level of the decision making process. Jiang et al. [10] describes a study in which
the confidence estimates from ICU mortality calculators are used to determine whether or
not to discontinue various types of therapy. In these types of applications, it is important
the confidence estimate is a probability that takes on the same intuitive meaning humans
would expect out of a probability, as the next step is usually determined on that assumption.
Rather than simply comparing the confidence estimate of the predicted class to a threshold,
the entire estimated probability distribution across all possible classes can be used as an
input to another model. An interpretable probability estimate is especially required if human
expert will make a recommendation on that value.

On the other hand, confidence estimates in combination with a threshold can be used to
obtain an indicator of whether to trust the model’s predictions. This can seamlessly be
used in the example of automated medical diagnoses, as the model can rely on an expert for
inputs which cannot be predicted with sufficient confidence [10]. Because the legacy process
of receiving a diagnosis from a doctor can be treated as the expert’s prediction and there is
a high cost for incorrect diagnoses, the model should only be used when the user can trust
that the its prediction will be correct. In this case, it is not necessary that the confidence
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estimate is interpretable as a stand-alone quantity, but instead that it can be used to develop
a good indicator of trust in the model predictions.

Calibration of Modern Neural Networks

For classification problems, applying a softmax layer on the output of the neural network
gives a natural probability distribution over the output space that can be used as a confidence
estimate. However, recent work has shown that unlike some of their predecessors, modern
neural networks are poorly calibrated even though they tend to have higher generalization
accuracies [6]. The authors study a variety of changes to neural network design and training
in recent years, and ultimately correlate this trend with increases in model capacity and a
form of overfitting.

Although the test error does decrease throughout the course of training a large ResNet model
on CIFAR-100, the authors find that the negative log likelihood (NLL) increases after a cer-
tain point, indicating that the model overfits on the NLL loss without overfitting on the test
accuracy [6]. This is especially possible with the NLL loss because even after all the train
points are correctly classified, the loss can be further decreased by pushing the estimated
probability distribution across output classes to be closer to a soft-indicator function. As a
result, the probability estimates from modern neural networks can be overconfident. These
results are in line with Zhang et al. [24], which state that deep neural networks can counter
the traditionally supported notion that large models generalize poorly without regulariza-
tion. Relating to these findings, the authors of Guo et al. [6] suggest the overfitting that
is observed during training doesn’t show up in the generalization error, but instead in the
accuracy of the confidence estimates. Because miscalibration of confidence estimates can
be attributed to overfitting, in this work we will explore the calibration error when various
forms of regularization are used.

Prior work has explored calibrating the confidence estimate using an ensemble of neural
networks, however, unless the task to solve already requires an ensemble model, training
multiple networks simply for the purpose of calibration becomes expensive [12]. Other work
has investigated getting an estimate of the uncertainty of a prediction by using information
collected from stochastic forward passes of a network trained with dropout, which also makes
certain assumptions on the model architecture [4].

Alternate Approaches to Quantifying Model Uncertainty

Rather than directly recalibrating the confidence estimates, models can be trained with an
emphasis on better estimating the uncertainty in a prediction. Gao et al. [5] present a
solution for the problem of ambiguous labels by training neural networks on the observed
label distribution rather than on a one-hot vector. This is similar to the idea of label
smoothing which is used to regularize neural networks, but takes into account the true
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labels of inputs in the training set and accordingly defines the level of smoothing. Seo, Seo,
and Han [17] introduce a loss function that is a combination of the cross entropy loss with
respect to the true label distribution and the cross entropy loss with respect to the uniform
distribution across labels. These two terms are weighted by the variance of the predictions
from stochastic inferences of an input, and networks trained with this method have predicted
confidence estimates that are better calibrated.

Mixup is another technique introduced primarily to increase the generalization abilities of
neural networks through regularization, but also has been shown to increase the robustness
of models and the overall calibration of confidences [25]. It is performed by augmenting the
training data with inputs that are a convex combination of both the features and labels of
two training examples in the original dataset. Although initially developed to help neural
networks generalize better, Thulasidasan et al. [19] show that mixup can improve the cali-
bration of neural networks. The benefit from mixup on calibration is is greatly dependent on
the label smoothing aspect of the procedure that is not present when only data augmentation
is done using a combination of the input features.

The training procedure of neural networks can be modified with various techniques that
better the model calibration, but this work primarily focuses on procedures that occur after
the training of a model that can further boost the calibration of the confidence estimates.

If the goal of calibrating uncertainty estimates is to get a better understanding and finer
grained control of how the neural network may perform at test time, methods can be used
to directly accomplish the desired task, rather than first calibrating the confidences. Trap-
penberg and Back [20] uses an ”I Don’t Know” (IDK) class to highlight areas of the input
space with high uncertainty, and accordingly relabel the training data so the model performs
better. Wang et al. [21] reduce computational cost of a prediction without decreasing the
accuracy by cascading the input to a more expensive model with higher accuracy if the
cheaper initial model predicts the IDK class. A particularly interesting result from this work
is that some inputs are ”inherently easier” than others, as quantified by multiple models of
varying complexity and accuracy classifying those inputs correctly [21]. This indicates there
is some natural separation between easy and hard inputs, that a good confidence calibration
method should be able to pick up on.

One may also care about accurate confidence estimates from the perspective of predicting
the accuracy of a model at test time. Jiang et al. [11] directly predicts the generalization
gap of a model by regressing a signature of the distribution of margins. The margin can
be defined as the minimum distance to the decision boundary from the data points, and
is often used in context of SVMs. The margin cannot be analytically calculated for neural
networks, unlike for more classical models, so Elsayed et al. [3] propose an approximation of
the margin under a lp norm.
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Directly analyzing the quantity that best defines model uncertainty for a given problem may
work well as an alternative to calibrating confidence estimates to use them for another task.
We take inspiration from these various techniques and strategies to eventually determine the
exact tradeoff between accuracy and deferring a greater proportion of inputs to the expert.
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Chapter 3

Framework for Quantifying
Calibration

The calibration of a model can be quantified using reliability diagrams, which visualize
the relationship between confidence and accuracy [2] [15] [6]. Throughout this work, we
assume a classification problem where the the training and testing data comes from the
same underlying distribution. In the multiclass classification problem, let the data be (x, y)
where y ∈ {1 . . . K}. Let the neural network be defined as h, where h(x, y) = (ŷ, p̂). ŷ is
the network’s prediction of the class label and p̂ is the confidence value associated with that
prediction, usually obtained from applying the softmax function on the network’s outputs. A
perfectly calibrated model would produce confidence values which exactly match the expected
sample accuracy. In other words, if a perfectly calibrated model produces multiple predictions
with confidence of p̂ then we would expect that a p̂ fraction of those predictions are correct.

However, in practice it is highly unlikely that there will be sufficient identical inputs to
the model to get a good estimate of the expected sample accuracy, so instead, the model
predictions are grouped into M bins of equal length based on their confidence values. The
accuracy of bin Bm is given by

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi)

The average confidence in a bin Bm is given by

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i

The reliability diagram is generated by creating a bin Bm of height acc(Bm) for each m ∈
{1 . . .M}. A bin Bm would be considered perfectly calibrated if acc(Bm) = conf(Bm).
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Figure 3.1: Reliability diagrams for a 44-layer ResNet on CIFAR-10 shows that modern
neural networks are overly confident in their confidence estimates.

Reliability diagrams can give information about the miscalibration within each bin, but don’t
indicate the miscalibration across all predictions as the number of samples per bin is not
displayed.

The Expected Calibration Error (ECE) [14] is a summary statistic of the calibration across
all the predictions, and is obtained by weighting the difference between the accuracy and
confidence of each bin with the number of samples in that bin.

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)|

Miscalibration of Confidence

Throughout the years, modern neural networks have demonstrated an improved accuracy
across a variety of tasks, but Guo et al. [6] showed that these gains in accuracy come at
the cost of miscalibrated confidence outputs. Figure 3.1 replicates this result on a 44-layer
ResNet [7] on the CIFAR-10 dataset for both the training and testing data. While the
predictions on both datasets are overconfident, the test set shows a much higher ECE.

Guo et al. [6] analyzes various potential causes of increasing miscalibration in current neural
networks and primarily links greater model capacity and a lack of sufficient regularization to
this trend. They show that given current practices of model architectures and optimization
techniques, neural networks can overfit to the negative log likelihood (NLL) loss function
without overfitting to the 0/1 loss.
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Figure 3.2: Modern neural networks can overfit to the NLL loss without overfitting to the
0/1 error.

This results in models that generalize well to the test set in terms of accuracy, even though
the NLL loss on the test set may increase after a certain amount of training, as replicated
in Figure 3.2. Although the overfitting to the NLL loss is not present in the classification
error, Guo et al. [6] state that this overfitting manifests itself in miscalibration of confidence
estimates. This effect is possible when models are trained with the NLL loss because even
after all of the training points are classified correctly, the loss can be further decreased by
pushing the confidence estimates of the predicted class towards one.
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Chapter 4

Framework for Flagging Likely
Incorrect Points

Meaningful confidence estimates can increase the trust in a neural network’s performance
when it is deployed in a real world decision making system. Neural networks may be intro-
duced to fully or partially replace a legacy system that is reliable yet expensive to use at
scale. In these scenarios, calibrated confidence estimates can be used to guide a practitioner
on when to let the system act on the prediction of a neural network and when to revert to
the legacy system. The use for the confidence estimates then becomes to separate out points
that are likely incorrect from those that are likely correct.

This idea has been explored through the use of “I Don’t Know” (IDK) uncertainty classes
[20] [21], which the model can predict if there is not sufficient confidence in any of the original
classes. Confidence can be defined as either the softmax probability for the predicted class or
some transformation on the output of the neural network. Once some threshold is crossed,
the model predicts the IDK class. For example, Wang et al. [21] explore various methods as
the confidence values, including using a linear transformation and the entropy on the model
outputs, and determine a threshold for the IDK class through grid search. Although the
threshold for the IDK class is crucial for the final deployment process, a practitioner may
be more interested in an estimate of how much data the model will defer to a oracle at test
time and the resulting accuracy, rather than the value of the threshold.

We present uncertainty class threshold diagrams as a direct visualization of this process.
These diagrams plot the accuracy when predictions are made on various subsets of data that
are generated from a range of thresholds on the confidence score. If we assume scores below
a threshold are considered uncertain predictions, each point on the diagram represents a
confidence score that is used as a threshold. The proportion of predictions with a greater
score than that threshold and the accuracy of the resulting subset are accordingly plotted.
Figure 4.1 shows these curves for the reliability diagram in fig. 3.1 as well as in the ideal
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case.

When determining the maximum proportion of the dataset that the neural network can
predict on while still maintaining some desired accuracy, we want a measure of confidence
that reliably flags likely incorrect points by assigning them low scores. This is in contrast to
the task of perfect confidence calibrations where the goal is to obtain a confidence estimate
equal to a specific value. The ideal curve for this plot is accordingly created by setting the
confidence values to be equal to the indicator of whether the point is correctly classified.

confideal(h, xi) = 1(ŷi = yi)
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Figure 4.1: Visualization of the uncertainty class threshold diagram for ResNet-44 trained
on CIFAR-10, which shows the accuracy obtained when various proportions of the dataset
are deferred to the oracle by using the specified confidence estimate as a threshold. The
ideal curve is generated by taking the confidence as the indicator of whether that input was
correctly classified. The AAC for the ideal case is 0.023 and the AAC for the ResNet-44
model is 0.066.

Based on this definition of the ideal curve, this plot can be summarized with the area above
the curve and below the line y = 1 (AAC) on the domain of 0 <= x <= 1. Confidence
metrics that result in lower values of AAC are preferred, as they allow for the model to
perform at a higher overall accuracy while still predicting on most of the dataset. Baseline
accuracies are factored in to the AAC, with higher baseline accuracies resulting in lower
AAC values.

The concept of coverage in machine learning informs what proportion of data the model has
enough confidence in to make a prediction. The uncertainty class threshold diagram contains
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this information as the proportion of data deferred to the expert given a threshold, but also
includes information on the accuracy of the subset that is predicted on. Unlike the receiver
operating characteristic (ROC) curve, this plot visualizes the expected accuracy for different
subsets of the original dataset.

Each point on the uncertainty class threshold diagram has an underlying threshold that is
associated with a certain proportion of inputs having greater confidence. Although fig. 4.1
visualizes this on the full test dataset, once a desired accuracy and corresponding proportion
of data to defer is decided in advance, the threshold on the confidence estimate that resulted
in that point on the curve can be also used in the streaming case to determine which inputs
to use a model prediction on.
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Figure 4.2: The uncertainty class threshold diagrams may allow for more flexibility in a
confidence estimation. As shown by these toy examples, multiple confidence estimations
for a single problem can result in the same cutoff plot. The first example is generated by
setting the probability of a correct prediction be the confidence value exactly. The next two
examples show cases where the probability of a correct prediction is a linear transformations
on the confidence value.

The uncertainty class threshold diagrams provide a framework that allows calibrating confi-
dence scores to values that don’t have to be interpretable as probabilities, because they take
into account the relative ordering of confidence scores. By using these diagrams to determine
a threshold, the calibration method can be more flexible in its assignment of scores, because
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there is no longer a need to precisely estimate the expected accuracy of an input. Figure 4.2
shows a toy example where multiple reliability diagrams all result in the same uncertainty
class threshold diagram because the relative ordering is maintained.

Although the uncertainty class threshold diagrams don’t provide information on the cali-
bration error and don’t even require confidence scores to be probabilities, they are able to
visualize how well a particular confidence scoring method can be used to create an indicator
of whether to trust the neural network’s predictions.
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Chapter 5

Effect of Regularization on
Calibration

Guo et al. [6] show that although modern neural networks generalize well in terms of accuracy,
they still overfit to the negative log likelihood. They suggest that the overfitting doesn’t affect
the classification error but instead may manifest as miscalibrated confidence estimates. We
further evaluate this hypothesis by observing the ECE and test error for various forms of
regularization in 5.1.

Label smoothing is a regularization technique in which a neural network is trained using a
weighted average of the one-hot encoding of the labels and a uniform distribution as the
labels [18]. Recently Müller, Kornblith, and Hinton [13] has shown that in addition to
improving generalization accuracy, this technique can be used to decrease the calibration
error. Although we don’t find label smoothing to produce a large change in the test error,
it does affect the ECE more drastically. The label smoothing parameter that results in
the best ECE is not the same as the one that results in the best test error, indicating this
hyperparameter should be chosen based on whether greater importance is given to the test
error or to the ECE at test time.

Dropout prevents co-adaptation and regularizes a neural network by randomly omitting
hidden units at training time based on the dropout probability [8]. Although dropping out
too many hidden units hurts the test accuracy, large values of dropout seem to decrease the
ECE. This may occur because a model with the majority of hidden units dropped out is
simpler and has lower model capacity, which limits the amount of overfitting to the NLL
that can happen.

Although weight decay is a effective method of regularization for large neural networks, it
has been used less frequently in recent times, as other techniques such as batch normalization
also act as a regularization mechanism [9]. For a ResNet-44 model trained on CIFAR-10,
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Figure 5.1: Various values for label smoothing, dropout, weight decay, and early stopping
were tested to observe the effect on the test error and the ECE. For all of the regularization
techniques tested, except early stopping, varying amounts of regularization does affect the
ECE for ResNet44 on CIFAR-10. Specifically in the case of label smoothing and dropout,
the setting that minimizes the ECE is not the same as the setting that minimizes the test
error. This suggests that in applications where accurate calibrations are important, hyper-
parameters can be tuned using the ECE as a metric. The AAC of the uncertainty class
threshold diagram seems to mirror the test error more closely, partly because higher baseline
accuracies result in less space being above the cutoff curve that the confidence metric has to
threshold on.

the test error and ECE seem to mirror each other closer than the other previously explored
regularization methods. Weight decay does impact the ECE as very small and very large
values of weight decay result in higher calibration errors.

Early stopping of training doesn’t seem to affect the ECE at test time much differently
than the test error. For all of the regularization methods, the AAC for the uncertainty
class threshold diagram mirror the test error as it is highly dependent on the accuracy when
predicting on the entire test set. In addition to the above regularization methods, we observe
that augmenting the training data through standard transforms also decreases the ECE.



CHAPTER 5. EFFECT OF REGULARIZATION ON CALIBRATION 16

Overall, we find that regularizing the neural network at train time does seem to positively
impact the calibration error. Moreover, for techniques like label smoothing and dropout,
hyperparameters should be optimized with respect to the ECE if that is of higher importance
than the generalization error, as the best values under both these metrics can be different.

Effect of Regularization on ECE
Train ECE Test ECE

Standard 0.016 0.168
Data Augmenta-
tion

0.006 0.080

Dropout (0.7) 0.008 0.080
Label Smoothing
(0.9)

0.094 0.045

Weight Decay
(0.001)

0.005 0.059

Early Stopping
(200)

0.016 0.168
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ResNet 44 on Cifar 10 - Label Smoothing (0.9)

Figure 5.2: Label smoothing with a value of 0.9 works best to reduce the ECE at test time,
but as a result makes the model slightly less calibrated at train time.
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Chapter 6

Methods of Calibration

In addition to using regularization techniques to get lower calibration errors, one can directly
calibrate the confidence estimates from the network. In the following section, we will explore
the effect of widely used calibration methods on the ECE at test time and the AAC for the
uncertainty class threshold diagrams. Methods that require a learned parameter are trained
on the validation set.

Calibration to Estimated Sample Accuracy

Histogram Binning

Histogram binning can be used in multiclass setting to calibrate confidence estimates by
treating the problem as K binary classification problems using the one-vs-all method [22]

[23]. The following section will use the notation in Guo et al. [6]. For each class label k, let p̂
(k)
i

be the probability of the input being of class label k. The uncalibrated confidence estimates
are then partitioned into M bins Bk

1 . . . B
k
m of equal length. For the below experiments, we

chose M = 15. The calibrated score θkm for bin Bk
m is the average number of samples with

label k in that bin. For any input at train or test time, if the uncalibrated probability of
class k falls in bin Bk

m, then the calibrated score q̂
(k)
i = θkm. Applying this method for the

K different classes gives an unnormalized vector of calibrated scores [q̂
(1)
i . . . q̂

(k)
i ] which can

then be normalized to get the calibrated confidence values for each class. The predicted class
label is given by ŷi = arg max

k=1...K
q̂
(k)
i .

One limitation of the method is that there are only M possible values of calibrated confidence
estimates. If M is increased, one faces the risk of not having enough samples per bin, thereby
increasing the variance in the calibrated estimate.
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Matrix Scaling

Matrix scaling applies a linear transformation to the logits, zi, of a neural network and trains
the parameters W and b using a negative log likelihood loss function on the validation set.
The calibrated confidence then becomes

q̂i = max
k
σ(Wzi + b)(k)

where σ is the softmax function. The new predicted class label becomes

ŷi = arg max
k=1...K

(Wzi + b)(k)

Temperature Scaling

Temperature scaling is an extension of Platt scaling [16] where a scalar parameter T > 0 is
learned so the calibrated confidence estimate becomes

q̂i = max
k
σ(zi/T )(k)

Unlike the other previous methods, scaling by T preserves the order of scores in the original
logits vector zi, so the predicted class label is not changed. T is learned using the negative
log likelihood loss function on the validation set.

Calibration to General Confidence Score

Entropy

Entropy can be used to calibrate confidence estimates by directly measuring the uncertainity
in the class label given the estimated probability distribution from the output of the softmax
layer in the neural network. The entropy function is given as

H(xi) = −
K∑
k=1

p̂
(k)
i ∗ logK(p̂

(k)
i )

Higher values of entropy indicate more uncertainty and correspond to a predicted confidence
distribution that is closer to uniform. To follow the convention of the previous calibration
methods, we define the calibrated score to be

q̂i = 1−H(xi)

so higher scores correspond to lower entropy values. By definition, 0 ≤ q̂i ≤ 1 so it can be
plotted using a reliability diagram, however this calibrated score can no longer be interpreted
as the probability of the input being of a particular class label. Naturally, the ECE at test
time when using entropy as the calibration method is higher than the others as shown in
fig. 6.1. Unlike previous methods, the confidence score when using the entropy method is
not tied to the predicted class label.
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Distance to Decision Boundary

The margin is the minimum distance to the decision boundary across all data points, and
larger margins are desirable for the purpose of better generalization. We use the notion
of distance to the decision boundary as a score indicative of the likelihood a particular
input is correctly classified. Larger distances to the decision boundary can be associated
with a greater chance of correct classification, whereas smaller distances can be associated
with predictions that are likely incorrect. The distance to the decision boundary cannot be
analytically computed for neural networks, unlike for more classical models like SVMs, so
we use the method from Elsayed et al. [3] to approximate it.

For an input x, let h be the neural network where h(x) returns a distribution[
h(x)1 h(x)2 . . . h(x)k

]
over all k possible class labels. The predicted label is

ŷ = arg max
[
h(x)1 h(x)2 . . . h(x)k

]
. Let h(x)i and h(x)j correspond to the classes with

the highest and second highest scores respectively. We will be taking distance of inputs to
the decision boundary defined by these two classes.

The decision boundary can formally be defined as

D(i,j) = {x | h(x)i = h(x)j}

Then, the distance for a input to the decision boundary under the lp norm is

d(i,j)(x) = min ‖δ‖p s.t. h(x+ δ)i = h(x+ δ)j

Because this equation is intractable, we take the first order Taylor approximation using the
l2 norm as described in Elsayed et al. [3]:

d(i,j)(x) =
h(x)i − h(x)j

‖∇x(h(x)i)−∇x(h(x)j)‖2

We use this approximation of the distance directly as the score indicating likelihood of
correct classification. Distances can be any positive value, so we analyze this method using
the uncertainty class threshold diagram rather than the reliability diagram.
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Discussion of Results
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Histogram Binning 0.002 0.014 0.171 0.224
Entropy 0.018 0.001 0.197 0.064
Matrix Scaling 0.006 0.001 0.116 0.065
Temperature Scaling 0.013 0.001 0.139 0.061
Distance to Decision
Boundary
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Figure 6.1: Various calibrations of the confidence estimates are performed on ResNet-
44/CIFAR-10 model. Without any calibration, the baseline test ECE is 0.168 and the
baseline test AAC of the uncertainty class threshold diagram is 0.066. Entropy, Matrix Scal-
ing, and Temperature Scaling seem to give more useful confidence values than the baseline
of no calibration. Using entropy for the confidence estimate highlights the value of directly
plotting the accuracy as a function of the proportion of data that is predicted on, because
although the calibrated test ECE is higher than the baseline, the AAC is lower. Because the
distance to decision boundary approximation doesn’t result in a probability, the reliability
diagrams and ECE cannot be calculated.
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When comparing these methods, matrix scaling and temperature scaling perform best in
terms of the ECE and the AAC for the uncertainty class threshold diagram respectively. In
the case of both of these methods, we see that a good calibration of confidence estimates
results in better separation of inputs that are likely incorrect. However, we also observe
that the likely incorrect points can be flagged even without good confidence calibrations.
The entropy method results in scores that cannot be interpreted as the estimated sample
accuracy, and therefore has a ECE that is worse than the baseline. However, inputs that are
likely incorrect seem to tend to have high entropy in the predicted probability distribution
across classes, and can be flagged with this method. In addition, the distance to the decision
boundary method results in scores that can be any positive number and don’t have the
interpretation of being the expected sample accuracy, so reliability diagrams and calibration
errors cannot be computed.
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Figure 6.2: Plotting the proportion of the test set deferred to the expert vs the accuracy
allows the comparison of methods that calibrate directly to expected sample accuracy and
others that calibrate to general confidence scores. Reliability diagrams require that the cali-
brations are probabilities which can be interpreted as estimates of expected sample accuracy,
so the ECE for methods like entropy and distance to decision boundary calibration are not
meaningful.

Even though fig. 6.2 shows the distance to decision boundary method and temperature scaling
generating similar curves on the uncertainty class threshold diagram, the temperature scaling
method may still be a better choice because of its lower computational cost. It also has the
benefit that the calibrated scores can be interpreted as expected sample accuracy, and can
therefore be used in applications other than determining what subset of data to trust neural
network predictions on.
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Choosing Calibration Method - ResNet44/CIFAR10
Val Train
ECE

Val Test
ECE

Test ECE Val Train
AAC

Val Test
AAC

Test
AAC

Histogram Binning 0.004 0.006 0.163 0.013 0.022 0.235
Entropy 0.021 0.015 0.197 0.001 0.002 0.064
Matrix Scaling 0.007 0.004 0.129 0.001 0.002 0.071
Temperature Scal-
ing

0.014 0.011 0.138 0.001 0.001 0.062

Distance to Deci-
sion Boundary

— — — 0.001 0.002 0.062

Figure 6.3: The correct calibration method to use for a given application can be determined
by learning any parameters for calibration on a subset of the validation data and evaluating
on the other subset. In this example the validation data was split in half for training and
evaluating. Note the difference in some table values from fig. 6.1 are due to the calibration
method being fit on only half of the validation data.

Although calibration methods like matrix scaling and temperature scaling tend to perform
well, for a new problem, it is not immediately clear which calibration method would work
best. Moreover, many of these methods have hyperparameters that affect the final perfor-
mance. In fig. 6.3, we find that evaluating calibration methods on a subset of the validation
set that is not used for training the learnable parameters for calibration gives a good indi-
cation of which method will perform well at test time.
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Chapter 7

Conclusions and Future Work

Calibrated confidence estimates of predictions are critical to increasing our trust in the
performance of neural networks. As interest grows in deploying neural networks in real work
decision making systems, predictable behavior of the model will be a necessity. A confidence
estimate that has the interpretation of the expected accuracy can be used as a value that
is directly fed into the next stage of the decision making pipeline, whether that is another
probabilistic model or a human expert acting on this information. For other applications,
the confidence estimate may be used to decide whether to act on the model prediction, or
defer this input to the expert.

Modern neural networks have been shown to be more overconfident in their predictions
than predecessors even though their generalization accuracy is higher, partly due to the
fact that they can overfit on the NLL loss without overfitting on the 0/1 error. We further
investigate this idea by exploring the effect of various common regularization techniques on
the calibration error. Tuning the label smoothing, weight decay, and dropout parameters and
performing data augmentation seemed to have a positive impact on the ECE. However, the
best value of some of the hyperparameters required for these regularization methods for the
purpose of calibration were different than the best value to increase generalization accuracy,
indicating tuning should be done using the ECE if that is a specific metric of interest.

The IDK class has been proposed as a method of allowing the model to choose not to predict
on a particular input, but prior work on setting a threshold of when to choose this class hasn’t
explicitly accounted for the proportion of data that the model would defer to the oracle. We
introduced the uncertainty class threshold diagram which visualizes across thresholds the
proportion of data not predicted by the model against the accuracy that can be obtained by
taking the best subset of data using a certain confidence scoring method. Calibration meth-
ods can be evaluated by taking the AAC of the threshold plot, with lower values indicating
more useful confidence scores. This framework is naturally suited to applications with a
high cost of misclassification in which there is a desire to gradually transition from a legacy



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 24

system to a machine learning model. Choosing a threshold based on this framework allows
better control over the final accuracy of the system, and greater trust in its performance.

Although confidence estimates that are calibrated to equal the estimated sample accuracy
are considered good calibration methods under this new framework, we find that confidence
scoring methods that may not have good calibration errors can also perform well under this
method of evaluation. Moreover the uncertainty class threshold diagrams don’t require the
confidence scoring method to even return a valid probability, because only the relative or-
dering of scores are used. We analyze entropy and introduce distance to decision boundary
as two methods that don’t directly estimate the expected sample accuracy. The method of
scoring points by their estimated distance to the decision boundary showed performance that
almost equaled that of temperature scaling. However, because of its comparative simplic-
ity to implement and additional interpretation as an estimate of expected sample accuracy,
temperature scaling is likely a better method of calibration to use in many settings. These
experiments still highlight the value in using this alternate framework to analyze general
confidence scores, rather than being limited to true confidence estimates when using reliabil-
ity diagrams. If the goal of a confidence estimate is to develop this threshold, this framework
can allow for more flexibility in the calibration methods and also open doors for confidence
scoring that does more advanced transformations to return general confidence scores that
may not even be probabilities.

There are a variety of methods that can be used to either calibrate the confidence estimates
that the neural network predicts, or to modify the training procedure itself so the confidence
estimates are better calibrated, so it is important that these methods can be compared using
a framework that closely models the final use of the confidence estimates. For the purpose of
determining a set of inputs that the model should not predict on to reach a desired accuracy,
we proposed comparing the area above the curve of the uncertainty class threshold diagram
on a portion of the validation set that was not used to fit any parameters for calibration.

Although this method can indicate which model would best indicate when it is likely to make
an incorrect prediction, the accuracy on the validation set for a particular threshold on the
confidence score is not necessarily equivalent to the accuracy one can expect at test time
for that threshold. It is important for practitioners to be able to estimate what the model’s
accuracy will be before it is deployed, so further work could explore directly estimating what
the test time accuracy if only a subset of the data is predicted on as determined by the
validation set. However, there is still value to using this framework even if the test accuracy
cannot be precisely estimated in advance. An analysis of the inputs that the model was not
confident enough to predict on at validation time could give an indication of the types of
inputs that would be deferred to the expert at test time.

This work assumes that the underlying distribution of data at train and test time are the
same and determines thresholds accordingly, however there could be a covariate shift effect
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or outliers that appear at test time that would change the relative threshold of when to not
predict. There has been prior research on detecting these events and potentially correcting
for them, but additional work can also be done on dynamically changing the threshold as
the model predicts on individual inputs during deployment to maintain a certain accuracy.
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