
From Distribution Shift to Kernel Methods: A study of
empirical phenomena in machine learning

Vaishaal Shankar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-141
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-141.html

August 11, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

From Distribution Shift to Kernel Methods: A study of empirical phenomena in machine
learning

by

Vaishaal Shankar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Benjamin Recht, Chair
Professor Ion Stoica

Professor Solomon Hsiang

Summer 2020

From Distribution Shift to Kernel Methods: A study of empirical phenomena in machine
learning

Copyright 2020
by

Vaishaal Shankar

1

Abstract

From Distribution Shift to Kernel Methods: A study of empirical phenomena in machine
learning

by

Vaishaal Shankar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Benjamin Recht, Chair

As machine learning becomes a progressively empirical field, the need for rigorous empirical
evaluation of existing methodology grows. In this dissertation I present a line of work
that studies the effect of subtle distribution shifts to classifier accuracy. I then present
a construction and evaluation of high performance classifiers using tools from classical
kernel literature.

To study the effect of distribution shfts in machine learning, we build new test sets for
the CIFAR-10 and ImageNet datasets. By closely following the original dataset creation
processes, we test to what extent current classification models generalize to new data. We
evaluate a broad range of models and find accuracy drops of 3% – 15% on CIFAR-10 and
11% – 14% on ImageNet. However, accuracy gains on the original test sets translate to
larger gains on the new test sets. Our results suggest that the accuracy drops are not
caused by adaptivity, but by the models’ inability to generalize to slightly “harder” images
than those found in the original test sets.

We then perform an in-depth evaluation of human accuracy on the ImageNet dataset. First,
three expert labelers re-annotated 30,000 images from the original ImageNet validation
set and the ImageNetV2 replication experiment with multi-label annotations to enable
a semantically coherent accuracy measurement. Then we evaluated five trained humans
on both datasets. The median of the five labelers outperforms the best publicly released
ImageNet model by 1.5% on the original validation set and by 6.2% on ImageNetV2.
Moreover, the human labelers see a substantially smaller drop in accuracy between the

2

two datasets compared to the best available model (less than 1% vs 5.4%). Our results
put claims of superhuman performance on ImageNet in context and show that robustly
classifying ImageNet at human-level performance is still an open problem.

To study the effect of another form of distribution shift, we study the robustness of
image classifiers to temporal perturbations derived from videos. As part of this study, we
construct two new datasets, ImageNet-Vid-Robust and YTBB-Robust, containing
a total of 57,897 images grouped into 3,139 sets of perceptually similar images. Our
datasets were derived from ImageNet-Vid and Youtube-BB respectively and thoroughly
re-annotated by human experts for image similarity. We evaluate a diverse array of
classifiers pre-trained on ImageNet and show a median classification accuracy drop of
16 and 10 percent, respectively, on our two datasets. Additionally, we evaluate three
detection models and show that natural perturbations induce both classification as well as
localization errors, leading to a median drop in detection mAP of 14 points. Our analysis
demonstrates that perturbations occurring naturally in videos pose a substantial and
realistic challenge to deploying convolutional neural networks in environments that require
both reliable and low-latency predictions.

Finally, we investigate the connections between neural networks and simple building blocks
in kernel space. In particular, using well established feature space tools such as direct sum,
averaging, and moment lifting, we present an algebra for creating “compositional" kernels
from bags of features. We show that these operations correspond to many of the building
blocks of “neural tangent kernels" (NTK). Experimentally, we show a correlation in test
error between neural network architectures and the associated kernels. We construct a
simple neural network architecture using only 3× 3 convolutions, 2× 2 average pooling,
ReLU, and optimized with SGD and MSE loss that achieves 96% accuracy on CIFAR10,
and whose corresponding compositional kernel achieves 90% accuracy. We also use
our constructions to investigate the relative performance of neural networks, NTKs, and
compositional kernels in the small dataset regime. In particular, we find that compositional
kernels outperform NTKs and neural networks outperform both kernel methods.

i

To Merra

ii

Contents

Contents v

1 Introduction 1
1.1 Distribution Shift . 1

1.1.1 Potential Causes of Accuracy Drops 2
1.1.2 Distinguishing Between the Two Mechanisms 4

1.2 Kernel Methods . 4
1.2.1 Nonparametric Prediction With Kernels 5

I Distribution Shift 6

2 Do ImageNet Classifiers Generalize to ImageNet 7
2.1 Introduction . 7
2.2 Summary of Our Experiments . 8

2.2.1 Choice of Datasets . 8
2.2.2 Dataset Creation Methodology . 10
2.2.3 Results on the New Test Sets . 11
2.2.4 Experiments to Test Follow-Up Hypotheses 14

2.3 Understanding the Impact of Data Cleaning on ImageNet 14
2.4 Discussion . 16

2.4.1 Adaptivity Gap . 16
2.4.2 Distribution Gap . 18
2.4.3 A Model for the Linear Fit . 19

2.5 Related Work . 21
2.6 Conclusion & Future Work . 22
2.7 Appendix: Details of the CIFAR-10 Experiments 26

iii

2.7.1 Dataset Creation Methodology . 27
2.7.2 Follow-up Hypotheses . 30
2.7.3 Additional Figures, Tables, and Lists 35

2.8 Appendix: Details of the ImageNet Experiments 47
2.8.1 Dataset Creation Methodology . 48
2.8.2 Model Performance Results . 55
2.8.3 Follow-up Hypotheses . 56
2.8.4 Additional Figures, Tables, and Lists 60

3 Human Accuracy on ImageNetV2 90
3.1 Introduction . 90
3.2 Experiment setup . 93
3.3 Multi-label annotations . 95

3.3.1 Types of multi-label annotations 96
3.3.2 Collecting multi-label annotations 97

3.4 Human accuracy measurement process . 98
3.4.1 Human labeler training . 99
3.4.2 Labeling guide . 100
3.4.3 Final evaluation and annotation review. 100

3.5 Main Results . 101
3.5.1 Accuracies on three disjoint subsets 103
3.5.2 Top-1 Accuracies . 104
3.5.3 Examples of training effective Images 113
3.5.4 Time Spent Per Image . 114
3.5.5 Problematic Image removal . 114
3.5.6 Ensembling Humans . 115

3.6 Related Work . 116
3.7 Conclusion & Future Work . 117

4 Do ImageNet Classifiers Generalize Across Time? 118
4.1 Introduction . 118
4.2 Constructing a test set for robustness . 120

4.2.1 Source Dataset Overview . 120
4.2.2 ImageNet-Vid . 120
4.2.3 Youtube-BB . 121
4.2.4 Constructing ImageNet-Vid-Robust and YTBB-Robust 121
4.2.5 The pm-k evaluation metric . 123

iv

4.3 Detection . 123
4.4 Experimental results . 124

4.4.1 Classification . 125
4.4.2 Detection . 128
4.4.3 Impact of Dataset Review . 129
4.4.4 Per class analysis . 130
4.4.5 Per-frame conditional robustness metric introduced in [61] 131

4.5 `∞ distance vs PM-k Accuracy . 131
4.5.1 PM-k Accuracy with varying k . 132
4.5.2 ImageNet-Vid-Robust . 132
4.5.3 Model independent perturbed frame selection 133
4.5.4 Impact of video compression . 133
4.5.5 Impact of dataset review . 134
4.5.6 FPS analysis . 135
4.5.7 ILSVRC training with ImageNet-Vid-Robust classes 136
4.5.8 Detection pm-k . 137
4.5.9 Experimental Details & Hyperparameters 137

4.6 Full Original vs Perturbed Accuracies . 138
4.6.1 ImageNet-Vid-Robust . 138
4.6.2 YTBB-Robust . 138

4.7 Related work . 138
4.8 Conclusion . 141

II Kernels 144

5 Neural Kernels Without Tangents 145
5.1 Introduction . 145
5.2 Related Work . 146
5.3 Compositional kernels for bags of features 147

5.3.1 Kernels on bags of features . 148
5.3.2 Kernel operations on images . 149
5.3.3 Relating compositional kernels to neural network architectures . . . 152
5.3.4 Implementation . 153

5.4 Experiments . 154
5.4.1 Architectures . 154
5.4.2 Experimental setup. 154

v

5.4.3 MNIST . 155
5.4.4 CIFAR-10 . 156
5.4.5 CIFAR-100 . 156
5.4.6 Subsampled CIFAR-10 . 157
5.4.7 UCI datasets . 157

5.5 Limitations and Future Work . 160
5.6 Appendix: LOO Tilting and ZCA Augmentation 162

5.6.1 ZCA Augmentation . 162
5.6.2 Leave-One-Out Tilting . 162

5.7 Appendix: Supplementary proof . 163
5.8 Appendix: Neural Network Parameters . 165
5.9 Appendix: Neural Network Architectures 165
5.10 Appendix: Subsampled CIFAR-10 experiments details 166

6 Transcription Factor Binding Site Prediction 168
6.1 Problem Setup . 168
6.2 Method . 169
6.3 Results . 171

6.3.1 Datasets . 171
6.3.2 Experimental Setup . 173
6.3.3 Evaluation . 173

6.4 Conclusion & Future Work . 173

Bibliography 175

vi

Acknowledgments

While I must put this thesis together with one functioning hand due to an unfortunate
bike accident at the end of my PhD, the work in this document could not have been
possible single handedly (pun intented). I was fortunate to have an excellent advisor,
brilliant colleagues, wonderful friends, a supportive girlfriend and a loving family. My
strong support system made graduate school truly the best five years of my life so far (not
to say it didn’t get extremely difficult at times).

To this day I am unsure why Ben decided to take me as an advisee, as coming out
of undergrad at Berkeley I knew far more about filesystems and compilers than vector
spaces or statistics. I did not have the profile of a typical machine learning graduate
student. Nevertheless, Ben’s unique and contrarian view of machine learning helped me
both grow as a researcher and appreciate the nuances of field without being drawn into
the headline grabbing “trend-of-the-week” types of work. While not pumping out 44 ICLR
papers may have harmed my H-index, the careful, methodological approach to research
Ben encouraged in our group has made me a better scientist.

While Ben gave me the hard problems to work on during my PhD, our group gave me
the tools to solve them. I probably sent Shivaram upwards of a 10, 000 slack messages
trying to understand how to use a computer properly. From ssh-ing into our local compute
nodes, running 500 machine jobs on AWS to tweaking SPARK_MEM_FRACTION. All I’m
saying is I thought I knew how to use a computer when I got a B.S in Computer Science,
but in reality I didn’t know anything until I met Shiv.

If Shiv taught me how computers work, Eric taught me how science works. For the
two years of my PhD I was convinced Eric knew everything. Operationally, he taught
me how to pick good problems to work on, the importance of a good experimental setup,
and how to effectively communicate your work. Beyond practical skills, Eric also taught
me how to love my work, and how science can be simultaneously the coolest and most
frustrating thing in the world.

Towards the end of my PhD virtually every paper had Ludwig as a co-author, simply
because adding Ludwig makes any project stronger For every project Ludwig will occupy
a almost paradoxical dual role of both an advisor dictating high level motivations of the
project and a boots-on-the-ground experimentalist writing frontend javascript. While
Ludwig and I have had more than a few heated arguments because he wants to do things
the “right” way and I want to do things the “pragmatic” way, I’ve greatly enjoyed working
(labeling dogs, writing database code, writing javascript, implementing block coordinate
descent, reading the JPEG spec, and writing papers) with him. Hopefully we can continue
collaborating while he is Professor-ing at University of Washington.

vii

I cannot emphasize how fortunate I was to have such a strong and diverse group in
graduate school. Each member of Modest Yachts shaped my experience in a unique way. I
know Horia has probably taught me a lot but in my opinion his greatest contribution to my
life was introducing me to the Reuben at Saul’s. Esther taught me both about the difficulty
and importance of collaborations outside our little machine learning bubble. Max was an
excellent source of South Park memes. Sarah taught me to think about the consequences
and ethical impacts of seemingly innocous algorithms. Becca helped me understand the
value of not getting distracted and finishing things on time (ImageNetV2 would have been
impossible if it wasn’t for Becca’s unrelenting schedule). Ross was a great desk-mate and
got me to google for many obscure 90s pop-culture and sports trivia. Stephen actually
taught me a lot of random technical tid-bits via his blog, he also taught me its ok to make
big pivots during your PhD. Alex and Rohan were fantastic undergraduates to work with
very excited to see what they do in the future! Beyond each individual person in our group,
the Modest Yachts slack was almost a character of its own with interesting spontaneous
technical, political and sometimes philosphical conversations with the smartest people I
know.

Outside of our group, I am also thankful to all my senior collaborators, Joanathan
Ragan Kelley, Solomon Hsiang and Ion Stoica that helped me work on diverse projects
and also served on my thesis commitee.

I of course must mention the never-ending group chat with Achal and Steve, encrypted
tensors (formerly remedial tensor discussion) that served as group therapy,
a way to stay connected with my closest friends from undergrad, and most importantly a
place to argue about machine learning.

While graduate school was mostly work, there was indeed life outside of the research that
served as a crucial pressure release valve. These spanned from much-needed midday coffee-
breaks to complain about work with Alyssa to hiking through hot springs in pamukkale
with Achal, Radhika and Merra.

As an avid runner, I was delighted to find that tunning was a consistent social activity
across my five years in Berkeley. I was fortunate to be able to go on runs with many
people in my social circle: Jeff, Robert, Ludwig, Becca, Steve, Alyssa, Esther, Horia. Due
to Alyssa’s encouragement I tried to get into biking but after this accident, perhaps I’ll
stick to running for now.

Speaking of my accident, Nilesh has always been an excellent room mate and put up
with my annoying habbits (loud phone calls, late night tv, etc..), he has literally been a
lifesaver last few weeks while I was recovering.

Of course I cannot forget the four most important people in my life: Mom, Dad,
Vishan and Merra. Even though they are thousands of miles away, their support really got

viii

me through the lowest points of graduate school. My family though they didn’t always
understand my decision process (spend 5 more years in school rather than get a “real” six
figure job?) they were always supportive with whatever I chose to do. Merra has been
with me from day 1 of graduate school, and though for most of it we were physically apart,
it feels like she was with me every step of the way. Graduate school would not have been
the same without our late-night phone calls, elaborate vacation plans and food delivery
surprises. I am extremely fortunate to have such a support system.

1

Chapter 1

Introduction

Over the past decade machine learning has become a heavily empirical science. In this
thesis we will hone in on two avenues in which rigorous experimental work led to interesting
findings, distribution shifts and high performance kernel machines. We first present some
background on the two topics of interest.

1.1 Distribution Shift
The past decade has seen substantial progress on a wide range of machine learning
benchmarks. A key challenge for the field now is translating the emerging technologies
into safe, dependable, and secure systems that can be deployed in the real world and in
interactions with humans. However, it is not clear whether machine learning currently has
the evaluation methodology to underwrite dependable performance. In short, what can
we expect from a trained model with a good benchmark score?

Machine learning benchmarks evaluated with standard train / test splits only provide
a narrow guarantee for future performance: as long as the data comes from the same
distribution as the test set, we can expect a model to behave similarly well. However,
i.i.d. data is a highly idealized scenario and small deviations from the data distribution
can lead to substantially worse performance [46, 71, 114, 119, 127, 135, 144]. Providing
broader performance guarantees is difficult because tasks in machine learning are often
incompletely defined (what set of pixel values counts as a cat?). Instead of precisely
characterizing the actual task of interest, we approximate it through train and test sets.
The hope is that a model with good performance on this train / test split can imitate
human behavior on the task of interest.

CHAPTER 1. INTRODUCTION 2

Unfortunately, we have little understanding of the extent to which current benchmark
protocols can measure the relative generalization capabilities of trained models and humans
on a given task. While widely used datasets such as ImageNet [32, 131] and SQuAD [123]
have human baselines, it is unclear what conclusions we can draw from a direct comparison
in the i.i.d. scenario favored by machine learning models. Trained models that “surpass”
the human baseline on a benchmark still often fail in a variety of ways, while humans are
usually reliable in a wide range of scenarios. Moreover, the benchmarks often attempt to
render immeasurable ambiguous, cultural, and subjective aspects of their tasks measurable
in a way that does not capture important dimensions of human experience, thus making
the benchmarks problematic from a human perspective.

To address the above concerns we perform a systematic analysis to study how a wide
array of models behave under various natural distribution shifts. We then study how
susceptible humans are to one shifts to gain better context for model performance.

1.1.1 Potential Causes of Accuracy Drops

We adopt the standard classification setup and posit the existence of a “true” underlying
data distribution D over labeled examples (x, y). The overall goal in classification is to
find a model f̂ that minimizes the population loss

LD(f̂) = E
(x,y)∼D

[
I[f̂(x) 6= y]

]
. (1.1.1)

Since we usually do not know the distribution D, we instead measure the performance
of a trained classifier via a test set S drawn from the distribution D:

LS(f̂) =
1

|S|
∑

(x,y)∈S

I[f̂(x) 6= y] . (1.1.2)

We then use this test error LS(f̂) as a proxy for the population loss LD(f̂). If a model
f̂ achieves a low test error, we assume that it will perform similarly well on future examples
from the distribution D. This assumption underlies essentially all empirical evaluations in
machine learning since it allows us to argue that the model f̂ generalizes.

In our experiments, we test this assumption by collecting a new test set S ′ from a data
distribution D′ that we carefully control to resemble the original distribution D. Ideally,
the original test accuracy LS(f̂) and new test accuracy LS′(f̂) would then match up to
the random sampling error. In contrast to this idealized view, our results in Figure 3.2
show a large drop in accuracy from the original test set S set to our new test set S ′. To

CHAPTER 1. INTRODUCTION 3

understand this accuracy drop in more detail, we decompose the difference between LS(f̂)
and LS′(f̂) into three parts (dropping the dependence on f̂ to simplify notation):

LS − LS′ = (LS − LD)︸ ︷︷ ︸
Adaptivity gap

+ (LD − LD′)︸ ︷︷ ︸
Distribution Gap

+ (LD′ − LS′)︸ ︷︷ ︸
Generalization gap

.

We now discuss to what extent each of the three terms can lead to accuracy drops.

Generalization Gap. By construction, our new test set S ′ is independent of the existing
classifier f̂ . Hence the third term LD′ − LS′ is the standard generalization gap commonly
studied in machine learning. It is determined solely by the random sampling error.

A first guess is that this inherent sampling error suffices to explain the accuracy drops
in Figure 3.2 (e.g., the new test set S ′ could have sampled certain “harder” modes of
the distribution D more often). However, random fluctuations of this magnitude are
unlikely for the size of our test sets. With 10,000 data points (as in our new ImageNet
test set), a Clopper-Pearson 95% confidence interval for the test accuracy has size of at
most ±1%. Increasing the confidence level to 99.99% yields a confidence interval of size
at most ±2%. Moreover, these confidence intervals become smaller for higher accuracies,
which is the relevant regime for the best-performing models. Hence random chance alone
cannot explain the accuracy drops observed in our experiments.1

Adaptivity Gap. We call the term LS − LD the adaptivity gap. It measures how much
adapting the model f̂ to the test set S causes the test error LS to underestimate the
population loss LD. If we assumed that our model f̂ is independent of the test set S,
this terms would follow the same concentration laws as the generalization gap LD′ − LS′
above. But this assumption is undermined by the common practice of tuning model
hyperparameters directly on the test set, which introduces dependencies between the
model f̂ and the test set S. In the extreme case, this can be seen as training directly on
the test set. But milder forms of adaptivity may also artificially inflate accuracy scores by
increasing the gap between LS and LD beyond the purely random error.

Distribution Gap. We call the term LD − LD′ the distribution gap. It quantifies how
much the change from the original distribution D to our new distribution D′ affects the

1We remark that the sampling process for the new test set S′ could indeed systematically sample
harder modes more often than under the original data distribution D. Such a systematic change in the
sampling process would not be an effect of random chance but captured by the distribution gap described
below.

CHAPTER 1. INTRODUCTION 4

model f̂ . Note that this term is not influenced by random effects but quantifies the
systematic difference between sampling the original and new test sets. While we went
to great lengths to minimize such systematic differences, in practice it is hard to argue
whether two high-dimensional distributions are exactly the same. We typically lack a
precise definition of either distribution, and collecting a real dataset involves a plethora of
design choices.

1.1.2 Distinguishing Between the Two Mechanisms

For a single model f̂ , it is unclear how to disentangle the adaptivity and distribution
gaps. To gain a more nuanced understanding, we measure accuracies for multiple models
f̂1, . . . , f̂k. This provides additional insights because it allows us to determine how the two
gaps have evolved over time.

For both CIFAR-10 and ImageNet, the classification models come from a long line
of papers that incrementally improved accuracy scores over the past decade. A natural
assumption is that later models have experienced more adaptive overfitting since they are
the result of more successive hyperparameter tuning on the same test set. Their higher
accuracy scores would then come from an increasing adaptivity gap and reflect progress
only on the specific examples in the test set S but not on the actual distribution D. In an
extreme case, the population accuracies LD(f̂i) would plateau (or even decrease) while the
test accuracies LS(f̂i) would continue to grow for successive models f̂i.

However, this idealized scenario is in stark contrast to our results in Figure 3.2. Later
models do not see diminishing returns but an increased advantage over earlier models.
Hence we view our results as evidence that the accuracy drops mainly stem from a large
distribution gap. After presenting our results in more detail in the next section, we will
further discuss this point in Section 2.4.

1.2 Kernel Methods
Recent research has drawn exciting connections between neural networks and kernel
methods, providing new insights into training dynamics, generalization, and expressibility [6,
27, 35, 36, 58, 80, 97]. This line of work relates “infinitely wide” neural networks to particular
kernel spaces, showing that infinite limits of random initializations of neural networks lead
to particular kernels on the same input data. Since these initial investigations, some have
proposed to use these kernels in prediction problems, finding promising results on many
benchmark problems [8, 100]. However, these kernels do not match the performance of

CHAPTER 1. INTRODUCTION 5

neural networks on most tasks of interest, and the kernel constructions themselves are not
only hard to compute, but their mathematical formulae are difficult to even write down [7].

We explore kernels constructions that are both simple and performant. Our kernel
constructions perform well on both standard benchmark tasks and real world scientific
tasks such as transcription factor binding site prediction 6 and solar flare prediction [82]

1.2.1 Nonparametric Prediction With Kernels

We proceed with kernel classification as follows. Let C be the total number of classes. Let
{x1...xN} be N training examples in d dimensions. Let {y1...yN} be N one-hot encoded
training labels. We use vim to denote the mth entry of the vector vi. For a choice of
kernel function k(x, y), loss function L, and regularization value λ, we solve the following
optimization problem:

minimize
α

1

N

N∑
i=1

L
(N∑
j=1

Kj·α, yi
)

+ λTr(αTKα) (1.2.1)

where K is the matrix of kernel evaluations on the data: Kij = k(xi, xj). The prediction
for an example xtest is:

argmax
c

N∑
i=1

αick(xtest, xi) (1.2.2)

If not otherwise specificed, we use the squared error loss, L(ŷ, y) = ‖ŷ − y‖2, for our
experiments. In this case, α in (1.2.1) is given by

α = (K + λI)−1Y

where Y is the N ×C matrix of all one-hot-encodings of the labels. We allow for the value
of λ = 0 in our experiments, and oftentimes this value produces the lowest test error.

6

Part I

Distribution Shift

7

Chapter 2

Do ImageNet Classifiers Generalize to
ImageNet

2.1 Introduction
The overarching goal of machine learning is to produce models that generalize. We

usually quantify generalization by measuring the performance of a model on a held-out
test set. What does good performance on the test set then imply? At the very least, one
would hope that the model also performs well on a new test set assembled from the same
data source by following the same data cleaning protocol.

In this chapter, we realize this thought experiment by replicating the dataset creation
process for two prominent benchmarks, CIFAR-10 and ImageNet [32, 91]. In contrast to
the ideal outcome, we find that a wide range of classification models fail to reach their
original accuracy scores. The accuracy drops range from 3% to 15% on CIFAR-10 and
11% to 14% on ImageNet. On ImageNet, the accuracy loss amounts to approximately five
years of progress in a highly active period of machine learning research.

Conventional wisdom suggests that such drops arise because the models have been
adapted to the specific images in the original test sets, e.g., via extensive hyperparameter
tuning. However, our experiments show that the relative order of models is almost exactly
preserved on our new test sets: the models with highest accuracy on the original test sets
are still the models with highest accuracy on the new test sets. Moreover, there are no
diminishing returns in accuracy. In fact, every percentage point of accuracy improvement
on the original test set translates to a larger improvement on our new test sets. So
although later models could have been adapted more to the test set, they see smaller drops

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 8

in accuracy. These results provide evidence that exhaustive test set evaluations are an
effective way to improve image classification models. Adaptivity is therefore an unlikely
explanation for the accuracy drops.

Instead, we propose an alternative explanation based on the relative difficulty of the
original and new test sets. We demonstrate that it is possible to recover the original
ImageNet accuracies almost exactly if we only include the easiest images from our candidate
pool. This suggests that the accuracy scores of even the best image classifiers are still
highly sensitive to minutiae of the data cleaning process. This brittleness puts claims
about human-level performance into context [67, 86, 132]. It also shows that current
classifiers still do not generalize reliably even in the benign environment of a carefully
controlled reproducibility experiment.

Figure 3.2 shows the main result of our experiment. Before we describe our methodology
in Section 2.2, the next section provides relevant background. To enable future research,
we release both our new test sets and the corresponding code.1

2.2 Summary of Our Experiments
We now give an overview of the main steps in our reproducibility experiment. Appendices
2.7 and 2.8 describe our methodology in more detail. We begin with the first decision,
which was to choose informative datasets.

2.2.1 Choice of Datasets

We focus on image classification since it has become the most prominent task in machine
learning and underlies a broad range of applications. The cumulative progress on ImageNet
is often cited as one of the main breakthroughs in computer vision and machine learning
[109]. State-of-the-art models now surpass human-level accuracy by some measure [67, 132].
This makes it particularly important to check if common image classification models can
reliably generalize to new data from the same source.

We decided on CIFAR-10 and ImageNet, two of the most widely-used image clas-
sification benchmarks [63]. Both datasets have been the focus of intense research for
almost ten years now. Due to the competitive nature of these benchmarks, they are an
excellent example for testing whether adaptivity has led to overfitting. In addition to their
popularity, their carefully documented dataset creation process makes them well suited for
a reproducibility experiment [32, 91, 132].

1https://github.com/modestyachts/CIFAR-10.1 and https://github.com/modesty
achts/ImageNetV2

https://github.com/modestyachts/CIFAR-10.1
https://github.com/modestyachts/ImageNetV2
https://github.com/modestyachts/ImageNetV2

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 9

80 90 100
Original test accuracy (%)

70

80

90

100

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

CIFAR-10

60 70 80
OriginaO test accuracy (top-1, %)

40

50

60

70

80

1
ew

 te
st

 a
cc

ur
ac

y
(t

op
-1

, %
) ,mage1et

Ideal reproducibility Model accuracy Linear fit
Figure 2.1: Model accuracy on the original test sets vs. our new test sets. Each data point
corresponds to one model in our testbed (shown with 95% Clopper-Pearson confidence
intervals). The plots reveal two main phenomena: (i) There is a significant drop in accuracy
from the original to the new test sets. (ii) The model accuracies closely follow a linear
function with slope greater than 1 (1.7 for CIFAR-10 and 1.1 for ImageNet). This means
that every percentage point of progress on the original test set translates into more than
one percentage point on the new test set. The two plots are drawn so that their aspect
ratio is the same, i.e., the slopes of the lines are visually comparable. The red shaded
region is a 95% confidence region for the linear fit from 100,000 bootstrap samples.

Each of the two datasets has specific features that make it especially interesting for
our replication study. CIFAR-10 is small enough so that many researchers developed and
tested new models for this dataset. In contrast, ImageNet requires significantly more
computational resources, and experimenting with new architectures has long been out
of reach for many research groups. As a result, CIFAR-10 has likely experienced more
hyperparameter tuning, which may also have led to more adaptive overfitting.

On the other hand, the limited size of CIFAR-10 could also make the models more
susceptible to small changes in the distribution. Since the CIFAR-10 models are only
exposed to a constrained visual environment, they may be unable to learn a robust
representation. In contrast, ImageNet captures a much broader variety of images: it
contains about 24× more training images than CIFAR-10 and roughly 100× more pixels
per image. So conventional wisdom (such as the claims of human-level performance) would
suggest that ImageNet models also generalize more reliably .

As we will see, neither of these conjectures is supported by our data: CIFAR-10 models

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 10

do not suffer from more adaptive overfitting, and ImageNet models do not appear to be
significantly more robust.

2.2.2 Dataset Creation Methodology

One way to test generalization would be to evaluate existing models on new i.i.d. data
from the original test distribution. For example, this would be possible if the original
dataset authors had collected a larger initial dataset and randomly split it into two test
sets, keeping one of the test sets hidden for several years. Unfortunately, we are not aware
of such a setup for CIFAR-10 or ImageNet.

In this paper, we instead mimic the original distribution as closely as possible by
repeating the dataset curation process that selected the original test set2 from a larger
data source. While this introduces the difficulty of disentangling the adaptivity gap from
the distribution gap, it also enables us to check whether independent replication affects
current accuracy scores. In spite of our efforts, we found that it is astonishingly hard to
replicate the test set distributions of CIFAR-10 and ImageNet. At a high level, creating a
new test set consists of two parts:

Gathering Data. To obtain images for a new test set, a simple approach would be
to use a different dataset, e.g., Open Images [90]. However, each dataset comes with
specific biases [144]. For instance, CIFAR-10 and ImageNet were assembled in the late
2000s, and some classes such as car or cell_phone have changed significantly over the
past decade. We avoided such biases by drawing new images from the same source as
CIFAR-10 and ImageNet. For CIFAR-10, this was the larger Tiny Image dataset [145].
For ImageNet, we followed the original process of utilizing the Flickr image hosting service
and only considered images uploaded in a similar time frame as for ImageNet. In addition
to the data source and the class distribution, both datasets also have rich structure within
each class. For instance, each class in CIFAR-10 consists of images from multiple specific
keywords in Tiny Images. Similarly, each class in ImageNet was assembled from the results
of multiple queries to the Flickr API. We relied on the documentation of the two datasets
to closely match the sub-class distribution as well.

2For ImageNet, we repeat the creation process of the validation set because most papers developed
and tested models on the validation set. We discuss this point in more detail in Appendix 2.8.1. In the
context to this paper, we use the terms “validation set” and “test set” interchangeably for ImageNet.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 11

Cleaning Data. Many images in Tiny Images and the Flickr results are only weakly
related to the query (or not at all). To obtain a high-quality dataset with correct labels, it
is therefore necessary to manually select valid images from the candidate pool. While this
step may seem trivial, our results in Section 2.3 will show that it has major impact on the
model accuracies.

The authors of CIFAR-10 relied on paid student labelers to annotate their dataset.
The researchers in the ImageNet project utilized Amazon Mechanical Turk (MTurk) to
handle the large size of their dataset. We again replicated both annotation processes.
Two graduate students authors of this paper impersonated the CIFAR-10 labelers, and
we employed MTurk workers for our new ImageNet test set. For both datasets, we also
followed the original labeling instructions, MTurk task format, etc.

After collecting a set of correctly labeled images, we sampled our final test sets from
the filtered candidate pool. We decided on a test set size of 2,000 for CIFAR-10 and 10,000
for ImageNet. While these are smaller than the original test sets, the sample sizes are still
large enough to obtain 95% confidence intervals of about ±1%. Moreover, our aim was
to avoid bias due to CIFAR-10 and ImageNet possibly leaving only “harder” images in
the respective data sources. This effect is minimized by building test sets that are small
compared to the original datasets (about 3% of the overall CIFAR-10 dataset and less
than 1% of the overall ImageNet dataset).

2.2.3 Results on the New Test Sets

After assembling our new test sets, we evaluated a broad range of image classification
models spanning a decade of machine learning research. The models include the seminal
AlexNet [92], widely used convolutional networks [68, 76, 137, 142], and the state-of-the-art
[23, 103]. For all deep architectures, we used code previously published online. We relied
on pre-trained models whenever possible and otherwise ran the training commands from
the respective repositories. In addition, we also evaluated the best-performing approaches
preceding convolutional networks on each dataset. These are random features for CIFAR-10
[21, 122] and Fisher vectors for ImageNet [117].3 We wrote our own implementations for

3We remark that our implementation of Fisher vectors yields top-5 accuracy numbers that are 17%
lower than the published numbers in ILSVRC 2012 [132]. Unfortunately, there is no publicly available
reference implementation of Fisher vector models achieving this accuracy score. Hence our implementation
should not be seen as an exact reproduction of the state-of-the-art Fisher vector model, but as a baseline
inspired by this approach. The main goal of including Fisher vector models in our experiment is to
investigate if they follow the same overall trends as convolutional neural networks.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 12

CIFAR-10
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0
6 shake_shake_64d_cutout97.1 [96.8, 97.4] 93.0 [91.8, 94.1] 4.1 5 1
16 wide_resnet_28_10 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 14 2
23 resnet_basic_110 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 24 -1
27 vgg_15_BN_64 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 27 0
30 cudaconvnet 88.5 [87.9, 89.2] 77.5 [75.7, 79.3] 11.0 30 0
31 random_features_256k_aug85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12.5 31 0

ImageNet Top-1
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 72.2 [71.3, 73.1] 10.7 3 -2
4 nasnetalarge 82.5 [82.2, 82.8] 72.2 [71.3, 73.1] 10.3 1 3
21 resnet152 78.3 [77.9, 78.7] 67.0 [66.1, 67.9] 11.3 21 0
23 inception_v3_tf 78.0 [77.6, 78.3] 66.1 [65.1, 67.0] 11.9 24 -1
30 densenet161 77.1 [76.8, 77.5] 65.3 [64.4, 66.2] 11.8 30 0
43 vgg19_bn 74.2 [73.8, 74.6] 61.9 [60.9, 62.8] 12.3 44 -1
64 alexnet 56.5 [56.1, 57.0] 44.0 [43.0, 45.0] 12.5 64 0
65 fv_64k 35.1 [34.7, 35.5] 24.1 [23.2, 24.9] 11.0 65 0

Table 2.1: Model accuracies on the original CIFAR-10 test set, the original ImageNet
validation set, and our new test sets. ∆ Rank is the relative difference in the ranking from
the original test set to the new test set in the full ordering of all models (see Appendices
2.7.3.3 and 2.8.4.4). For example, ∆Rank = −2 means that a model dropped by two
places on the new test set compared to the original test set. The confidence intervals are
95% Clopper-Pearson intervals. Due to space constraints, references for the models can be
found in Appendices 2.7.3.2 and 2.8.4.3.

these models, which we also release publicly.4
Overall, the top-1 accuracies range from 83% to 98% on the original CIFAR-10 test

set and 21% to 83% on the original ImageNet validation set. We refer the reader to
Appendices 2.8.4.3 and 2.7.3.2 for a full list of models and source repositories.

Figure 3.2 in the introduction plots original vs. new accuracies, and Table 2.1 in this
section summarizes the numbers of key models. The remaining accuracy scores can be

4https://github.com/modestyachts/nondeep

https://github.com/modestyachts/nondeep

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 13

found in Appendices 2.7.3.3 and 2.8.4.4. We now briefly describe the two main trends and
discuss the results further in Section 2.4.

A Significant Drop in Accuracy. All models see a large drop in accuracy from the
original test sets to our new test sets. For widely used architectures such as VGG [137]
and ResNet [68], the drop is 8% on CIFAR-10 and 11% on ImageNet. On CIFAR-10, the
state of the art [23] is more robust and only drops by 3% from 98.4% to 95.5%. In contrast,
the best model on ImageNet [103] sees an 11% drop from 83% to 72% in top-1 accuracy
and a 6% drop from 96% to 90% in top-5 accuracy. So the top-1 drop on ImageNet is
larger than what we observed on CIFAR-10.

To put these accuracy numbers into perspective, we note that the best model in
the ILSVRC5 2013 competition achieved 89% top-5 accuracy, and the best model from
ILSVRC 2014 achieved 93% top-5 accuracy. So the 6% drop in top-5 accuracy from the
2018 state-of-the-art corresponds to approximately five years of progress in a very active
period of machine learning research.

Few Changes in the Relative Order. When sorting the models in order of their
original and new accuracy, there are few changes in the respective rankings. Models with
comparable original accuracy tend to see a similar decrease in performance. In fact, Figure
3.2 shows that the original accuracy is highly predictive of the new accuracy and that
the relationship can be summarized well with a linear function. On CIFAR-10, the new
accuracy of a model is approximately given by the following formula:

accnew = 1.69 · accorig − 72.7% .

On ImageNet, the top-1 accuracy of a model is given by

accnew = 1.11 · accorig − 20.2% .

Computing a 95% confidence interval from 100,000 bootstrap samples gives [1.63, 1.76] for
the slope and [−78.6,−67.5] for the offset on CIFAR-10, and [1.07, 1.19] and [−26.0,−17.8]
respectively for ImageNet.

On both datasets, the slope of the linear fit is greater than 1. So models with higher
original accuracy see a smaller drop on the new test sets. In other words, model robustness
improves with increasing accuracy. This effect is less pronounced on ImageNet (slope 1.1)
than on CIFAR-10 (slope 1.7). In contrast to a scenario with strong adaptive overfitting,
neither dataset sees diminishing returns in accuracy scores when going from the original
to the new test sets.

5ILSVRC is the ImageNet Large Scale Visual Recognition Challenge [132].

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 14

2.2.4 Experiments to Test Follow-Up Hypotheses

Since the drop from original to new accuracies is concerningly large, we investigated
multiple hypotheses for explaining this drop. Appendices 2.7.2 and 2.8.3 list a range of
follow-up experiments we conducted, e.g., re-tuning hyperparameters, training on part of
our new test set, or performing cross-validation. However, none of these effects can explain
the size of the drop. We conjecture that the accuracy drops stem from small variations in
the human annotation process. As we will see in the next section, the resulting changes in
the test sets can significantly affect model accuracies.

2.3 Understanding the Impact of Data Cleaning on
ImageNet

A crucial aspect of ImageNet is the use of MTurk. There is a broad range of design choices
for the MTurk tasks and how the resulting annotations determine the final dataset. To
better understand the impact of these design choices, we assembled three different test
sets for ImageNet. All of these test sets consist of images from the same Flickr candidate
pool, are correctly labeled, and selected by more than 70% of the MTurk workers on
average. Nevertheless, the resulting model accuracies vary by 14%. To put these numbers
in context, we first describe our MTurk annotation pipeline.

MTurk Tasks. We designed our MTurk tasks and user interface to closely resemble
those originally used for ImageNet. As in ImageNet, each MTurk task contained a grid
of 48 candidate images for a given target class. The task description was derived from
the original ImageNet instructions and included the definition of the target class with a
link to a corresponding Wikipedia page. We asked the MTurk workers to select images
belonging to the target class regardless of “occlusions, other objects, and clutter or text in
the scene” and to avoid drawings or paintings (both as in ImageNet). Appendix 2.8.4.1
shows a screenshot of our UI and a screenshot of the original UI for comparison.

For quality control, we embedded at least six randomly selected images from the
original validation set in each MTurk task (three from the same class, three from a class
that is nearby in the WordNet hierarchy). These images appeared in random locations of
the image grid for each task. In total, we collected sufficient MTurk annotations so that
we have at least 20 annotated validation images for each class.

The main outcome of the MTurk tasks is a selection frequency for each image, i.e., what
fraction of MTurk workers selected the image in a task for its target class. We recruited

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 15

at least ten MTurk workers for each task (and hence for each image), which is similar to
ImageNet. Since each task contained original validation images, we could also estimate
how often images from the original dataset were selected by our MTurk workers.

Sampling Strategies. In order to understand how the MTurk selection frequency
affects the model accuracies, we explored three sampling strategies.

• MatchedFrequency: First, we estimated the selection frequency distribution for
each class from the annotated original validation images. We then sampled ten images
from our candidate pool for each class according to these class-specific distributions
(see Appendix 2.8.1.2 for details).

• Threshold0.7: For each class, we sampled ten images with selection frequency at
least 0.7.

• TopImages: For each class, we chose the ten images with highest selection frequency.

In order to minimize labeling errors, we manually reviewed each dataset and removed
incorrect images. The average selection frequencies of the three final datasets range
from 0.93 for TopImages over 0.85 for Threshold0.7 to 0.73 for MatchedFrequency. For
comparison, the original validation set has an average selection frequency of 0.71 in our
experiments. Hence all three of our new test sets have higher selection frequencies than
the original ImageNet validation set. In the preceding sections, we presented results on
MatchedFrequency for ImageNet since it is closest to the validation set in terms of selection
frequencies.

Results. Table 2.2 shows that the MTurk selection frequency has significant impact
on both top-1 and top-5 accuracy. In particular, TopImages has the highest average
MTurk selection frequency and sees a small increase of about 2% in both average top-1
and top-5 accuracy compared to the original validation set. This is in stark contrast
to MatchedFrequency, which has the lowest average selection frequency and exhibits a
significant drop of 12% and 8%, respectively. The Threshold0.7 dataset is in the middle
and sees a small decrease of 3% in top-1 and 1% in top-5 accuracy.

In total, going from TopImages to MatchedFrequency decreases the accuracies by about
14% (top-1) and 10% (top-5). For comparison, note that after excluding AlexNet (and
the SqueezeNet models tuned to match AlexNet [77]), the range of accuracies spanned
by all remaining convolutional networks is roughly 14% (top-1) and 8% (top-5). So the

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 16

Sampling
Strategy

Average MTurk
Selection Freq.

Average Top-1
Accuracy Change

Average Top-5
Accuracy Change

MatchedFrequency 0.73 -11.8% -8.2%
Threshold0.7 0.85 -3.2% -1.2%
TopImages 0.93 +2.1% +1.8%

Table 2.2: Impact of the three sampling strategies for our ImageNet test sets. The table
shows the average MTurk selection frequency in the resulting datasets and the average
changes in model accuracy compared to the original validation set. We refer the reader to
Section 2.3 for a description of the three sampling strategies. All three test sets have an
average selection frequency of more than 0.7, yet the model accuracies still vary widely.
For comparison, the original ImageNet validation set has an average selection frequency of
0.71 in our MTurk experiments. The changes in average accuracy span 14% and 10% in
top-1 and top-5, respectively. This shows that details of the sampling strategy have large
influence on the resulting accuracies.

variation in accuracy caused by the three sampling strategies is larger than the variation
in accuracy among all post-AlexNet models we tested.

Figure 2.2 plots the new vs. original top-1 accuracies on Threshold0.7 and TopImages,
similar to Figure 3.2 for MatchedFrequency before. For easy comparison of top-1 and top-5
accuracy plots on all three datasets, we refer the reader to Figure 3.2 in Appendix 2.8.4.4.
All three plots show a good linear fit.

2.4 Discussion
We now return to the main question from Section 1.1.1: What causes the accuracy drops?
As before, we distinguish between two possible mechanisms.

2.4.1 Adaptivity Gap

In its prototypical form, adaptive overfitting would manifest itself in diminishing returns
observed on the new test set (see Section 1.1.2). However, we do not observe this pattern
on either CIFAR-10 or ImageNet. On both datasets, the slope of the linear fit is greater
than 1, i.e., each point of accuracy improvement on the original test set translates to more
than 1% on the new test set. This is the opposite of the standard overfitting scenario. So

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 17

60 70 80
Original test accuracy (top-1, %)

50

60

70

80

90

Ne
w

te
st

 a
cc

ur
ac

y
(to

p-
1,

 %
) ImageNet (New Test Set: Threshold.7)

60 70 80
Original test accuracy (top-1, %)

50

60

70

80

90

Ne
w

te
st

 a
cc

ur
ac

y
(to

p-
1,

 %
) ImageNet (New Test Set: TopImages)

Ideal reproducibility Model accuracy Linear fit
Figure 2.2: Model accuracy on the original ImageNet validation set vs. accuracy on two
variants of our new test set. We refer the reader to Section 2.3 for a description of these
test sets. Each data point corresponds to one model in our testbed (shown with 95%
Clopper-Pearson confidence intervals). On Threshold0.7, the model accuracies are 3% lower
than on the original test set. On TopImages, which contains the images most frequently
selected by MTurk workers, the models perform 2% better than on the original test set. The
accuracies on both datasets closely follow a linear function, similar to MatchedFrequency
in Figure 3.2. The red shaded region is a 95% confidence region for the linear fit from
100,000 bootstrap samples.

at least on CIFAR-10 and ImageNet, multiple years of competitive test set adaptivity did
not lead to diminishing accuracy numbers.

While our experiments rule out the most dangerous form of adaptive overfitting, we
remark that they do not exclude all variants. For instance, it could be that any test set
adaptivity leads to a roughly constant drop in accuracy. Then all models are affected
equally and we would see no diminishing returns since later models could still be better.
Testing for this form of adaptive overfitting likely requires a new test set that is truly i.i.d.
and not the result of a separate data collection effort. Finding a suitable dataset for such
an experiment is an interesting direction for future research.

The lack of adaptive overfitting contradicts conventional wisdom in machine learning.
We now describe two mechanisms that could have prevented adaptive overfitting:

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 18

The Ladder Mechanism. Blum and Hardt introduced the Ladder algorithm to protect
machine learning competitions against adaptive overfitting [15]. The core idea is that
constrained interaction with the test set can allow a large number of model evaluations
to succeed, even if the models are chosen adaptively. Due to the natural form of their
algorithm, the authors point out that it can also be seen as a mechanism that the machine
learning community implicitly follows.

Limited Model Class. Adaptivity is only a problem if we can choose among models for
which the test set accuracy differs significantly from the population accuracy. Importantly,
this argument does not rely on the number of all possible models (e.g., all parameter settings
of a neural network), but only on those models that could actually be evaluated on the test
set. For instance, the standard deep learning workflow only produces models trained with
SGD-style algorithms on a fixed training set, and requires that the models achieve high
training accuracy (otherwise we would not consider the corresponding hyperparameters).
Hence the number of different models arising from the current methodology may be small
enough so that uniform convergence holds.

Our experiments offer little evidence for favoring one explanation over the other.
One observation is that the convolutional networks shared many errors on CIFAR-10,
which could be an indicator that the models are rather similar. But to gain a deeper
understanding into adaptive overfitting, it is likely necessary to gather further data from
more machine learning benchmarks, especially in scenarios where adaptive overfitting does
occur naturally.

2.4.2 Distribution Gap

The lack of diminishing returns in our experiments points towards the distribution gap as
the primary reason for the accuracy drops. Moreover, our results on ImageNet show that
changes in the sampling strategy can indeed affect model accuracies by a large amount,
even if the data source and other parts of the dataset creation process stay the same.

So in spite of our efforts to match the original dataset creation process, the distribution
gap is still our leading hypothesis for the accuracy drops. This demonstrates that it is
surprisingly hard to accurately replicate the distribution of current image classification
datasets. The main difficulty likely is the subjective nature of the human annotation
step. There are many parameters that can affect the quality of human labels such as the
annotator population (MTurk vs. students, qualifications, location & time, etc.), the exact
task format, and compensation. Moreover, there are no exact definitions for many classes
in ImageNet (e.g., see Appendix 2.8.4.8). Understanding these aspects in more detail is an

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 19

important direction for designing future datasets that contain challenging images while
still being labeled correctly.

The difficulty of clearly defining the data distribution, combined with the brittle
behavior of the tested models, calls into question whether the black-box and i.i.d. framework
of learning can produce reliable classifiers. Our analysis of selection frequencies in Figure
2.15 (Appendix 2.8.4.7) shows that we could create a new test set with even lower model
accuracies. The images in this hypothetical dataset would still be correct, from Flickr, and
selected by more than half of the MTurk labelers on average. So in spite of the impressive
accuracy scores on the original validation set, current ImageNet models still have difficulty
generalizing from “easy” to “hard” images.

2.4.3 A Model for the Linear Fit

Finally, we briefly comment on the striking linear relationship between original and new
test accuracies that we observe in all our experiments (for instance, see Figure 3.2 in the
introduction or Figures 2.12 and 2.13 in the appendix). To illustrate how this phenomenon
could arise, we present a simple data model where a small modification of the data
distribution can lead to significant changes in accuracy, yet the relative order of models
is preserved as a linear relationship. We emphasize that this model should not be seen
as the true explanation. Instead, we hope it can inform future experiments that explore
natural variations in test distributions.

First, as we describe in Appendix 2.8.2, we find that we achieve better fits to our data
under a probit scaling of the accuracies. Over a wide range from 21% to 83% (all models
in our ImageNet testbed), the accuracies on the new test set, αnew, are related to the
accuracies on the original test set, αorig, by the relationship

Φ−1(αnew) = u · Φ−1(αorig) + v

where Φ is the Gaussian CDF, and u and v are scalars. The probit scale is in a sense
more natural than a linear scale as the accuracy numbers are probabilities. When we plot
accuracies on a probit scale in Figures 2.6 and 2.13, we effectively visualize Φ−1(α) instead
of α.

We now provide a simple plausible model where the original and new accuracies are
related linearly on a probit scale. Assume that every example i has a scalar “difficulty”
τi ∈ R that quantifies how easy it is to classify. Further assume the probability of a model
j correctly classifying an image with difficulty τ is given by an increasing function ζj(τ).
We show that for restricted classes of difficulty functions ζj, we find a linear relationship
between average accuracies after distribution shifts.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 20

To be specific, we focus on the following parameterization. Assume the difficulty
distribution of images in a test set follows a normal distribution with mean µ and variance
σ2. Further assume that

ζj(τ) = Φ(sj − τ) ,

where Φ : R→ (0, 1) is the CDF of a standard normal distribution, and sj is the “skill” of
model j. Models with higher skill have higher classification accuracy, and images with
higher difficulty lead to smaller classification accuracy. Again, the choice of Φ here is
somewhat arbitrary: any sigmoidal function that maps (−∞,+∞) to (0, 1) is plausible.
But using the Gaussian CDF yields a simple calculation illustrating the linear phenomenon.

Using the above notation, the accuracy αj,µ,σ of a model j on a test set with difficulty
mean µ and variance σ is then given by

αj,µ,σ = Eτ∼N (µ,σ) [Φ(sj − τ)] .

We can expand the CDF into an expectation and combine the two expectations by utilizing
the fact that a linear combination of two Gaussians is again Gaussian. This yields:

αj,µ,σ = Φ

(
sj − µ√
σ2 + 1

)
.

On a probit scale, the quantities we plot are given by

α̃j,µ,σ = Φ−1(αj,µ,σ) =
sj − µ√
σ2 + 1

.

Next, we consider the case where we have multiple models and two test sets with
difficulty parameters µk and σk respectively for k ∈ {1, 2}. Then α̃j,2, the probit-scaled
accuracy on the second test set, is a linear function of the accuracy on the first test set,
α̃j,1:

α̃j,2 = u · α̃j,1 + v ,

with

u =

√
σ2

1 + 1√
σ2

2 + 1
and v =

µ1 − µ2√
σ2

2 + 1
.

Hence, we see that the Gaussian difficulty model above yields a linear relationship between
original and new test accuracy in the probit domain. While the Gaussian assumptions
here made the calculations simple, a variety of different simple classes of ζj will give rise
to the same linear relationship between the accuracies on two different test sets.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 21

2.5 Related Work
We now briefly discuss related threads in machine learning. To the best of our knowledge,
there are no reproducibility experiments directly comparable to ours in the literature.

Dataset Biases. The computer vision community has a rich history of creating new
datasets and discussing their relative merits, e.g., [32, 43, 47, 102, 118, 132, 144, 159].
The paper closest to ours is [144], which studies dataset biases by measuring how models
trained on one dataset generalize to other datasets. The main difference to our work
is that the authors test generalization across different datasets, where larger changes
in the distribution (and hence larger drops in accuracy) are expected. In contrast, our
experiments explicitly attempt to reproduce the original data distribution and demonstrate
that even small variations arising in this process can lead to significant accuracy drops.
Moreover, [144] do not test on previously unseen data, so their experiments cannot rule
out adaptive overfitting.

Transfer Learning From ImageNet. Kornblith et al. [89] study how well accuracy
on ImageNet transfers to other image classification datasets. An important difference
from both our work and [144] is that the the ImageNet models are re-trained on the
target datasets. The authors find that better ImageNet models usually perform better on
the target dataset as well. Similar to [144], these experiments cannot rule out adaptive
overfitting since the authors do not use new data. Moreover, the experiments do not
measure accuracy drops due to small variations in the data generating process since the
models are evaluated on a different task with an explicit adaptation step. Interestingly,
the authors also find an approximately linear relationship between ImageNet and transfer
accuracy.

Adversarial Examples. While adversarial examples [13, 140] also show that existing
models are brittle, the perturbations have to be finely tuned since models are much more
robust to random perturbations. In contrast, our results demonstrate that even small,
benign variations in the data sampling process can already lead to a significant accuracy
drop without an adversary.

A natural question is whether adversarially robust models are also more robust to the
distribution shifts observed in our work. As a first data point, we tested the common
`∞-robustness baseline from [106] for CIFAR-10. Interestingly, the accuracy numbers of
this model fall almost exactly on the linear fit given by the other models in our testbed.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 22

Hence `∞-robustness does not seem to offer benefits for the distribution shift arising
from our reproducibility experiment. However, we note that more forms of adversarial
robustness such as spatial transformations or color space changes have been studied
[40, 44, 73, 84, 153]. Testing these variants is an interesting direction for future work.

Non-Adversarial Image Perturbations. Recent work also explores less adversarial
changes to the input, e.g., [55, 70]. In these papers, the authors modify the ImageNet
validation set via well-specified perturbations such as Gaussian noise, a fixed rotation, or
adding a synthetic snow-like pattern. Standard ImageNet models then achieve significantly
lower accuracy on the perturbed examples than on the unmodified validation set. While
this is an interesting test of robustness, the mechanism underlying the accuracy drops is
significantly different from our work. The aforementioned papers rely on an intentional,
clearly-visible, and well-defined perturbation of existing validation images. Moreover, some
of the interventions are quite different from the ImageNet validation set (e.g., ImageNet
contains few images of falling snow). In contrast, our experiments use new images and
match the distribution of the existing validation set as closely as possible. Hence it is
unclear what properties of our new images cause the accuracy drops.

2.6 Conclusion & Future Work
The expansive growth of machine learning rests on the aspiration to deploy trained systems
in a variety of challenging environments. Common examples include autonomous vehicles,
content moderation, and medicine. In order to use machine learning in these areas
responsibly, it is important that we can both train models with sufficient generalization
abilities, and also reliably measure their performance. As our results show, these goals
still pose significant hurdles even in a benign environment.

Our experiments are only one step in addressing this reliability challenge. There are
multiple promising avenues for future work:

Understanding Adaptive Overfitting. In contrast to conventional wisdom, our ex-
periments show that there are no diminishing returns associated with test set re-use on
CIFAR-10 and ImageNet. A more nuanced understanding of this phenomenon will require
studying whether other machine learning problems are also resilient to adaptive overfitting.
For instance, one direction would be to conduct similar reproducibility experiments on

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 23

tasks in natural language processing, or to analyze data from competition platforms such
as Kaggle and CodaLab.6

Characterizing the Distribution Gap. Why do the classification models in our
testbed perform worse on the new test sets? The selection frequency experiments in
Section 2.3 suggest that images selected less frequently by the MTurk workers are harder
for the models. However, the selection frequency analysis does not explain what aspects
of the images make them harder. Candidate hypotheses are object size, special filters
applied to the images (black & white, sepia, etc.), or unusual object poses. Exploring
whether there is a succinct description of the difference between the original and new test
distributions is an interesting direction for future work.

Learning More Robust Models. An overarching goal is to make classification models
more robust to small variations in the data. If the change from the original to our new
test sets can be characterized accurately, techniques such as data augmentation or robust
optimization may be able to close some of the accuracy gap. Otherwise, one possible
approach could be to gather particularly hard examples from Flickr or other data sources
and expand the training set this way. However, it may also be necessary to develop entirely
novel approaches to image classification.

Measuring Human Accuracy. One interesting question is whether our new test sets
are also harder for humans. As a first step in this direction, our human accuracy experiment
on CIFAR-10 (see Appendix 2.7.2.5) shows that average human performance is not affected
significantly by the distribution shift between the original and new images that are most
difficult for the models. This suggests that the images are only harder for the trained
models and not for humans. But a more comprehensive understanding of the human
baseline will require additional human accuracy experiments on both CIFAR-10 and
ImageNet.

Building Further Test Sets. The dominant paradigm in machine learning is to evaluate
the performance of a classification model on a single test set per benchmark. Our results
suggest that this is not comprehensive enough to characterize the reliability of current
models. To understand their generalization abilities more accurately, new test data from
various sources may be needed. One intriguing question here is whether accuracy on other
test sets will also follow a linear function of the original test accuracy.

6https://www.kaggle.com/competitions and https://competitions.codalab.org/.

https://www.kaggle.com/competitions
https://competitions.codalab.org/

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 24

Suggestions For Future Datasets. We found that it is surprisingly difficult to create
a new test set that matches the distribution of an existing dataset. Based on our experience
with this process, we provide some suggestions for improving machine learning datasets in
the future:

• Code release. It is hard to fully document the dataset creation process in a paper
because it involves a long list of design choices. Hence it would be beneficial for
reproducibility efforts if future dataset papers released not only the data but also all
code used to create the datasets.

• Annotator quality. Our results show that changes in the human annotation
process can have significant impact on the difficulty of the resulting datasets. To
better understand the quality of human annotations, it would be valuable if authors
conducted a standardized test with their annotators (e.g., classifying a common
set of images) and included the results in the description of the dataset. Moreover,
building variants of the test set with different annotation processes could also shed
light on the variability arising from this data cleaning step.

• “Super hold-out”. Having access to data from the original CIFAR-10 and ImageNet
data collection could have clarified the cause of the accuracy drops in our experiments.
By keeping an additional test set hidden for multiple years, future benchmarks could
explicitly test for adaptive overfitting after a certain time period.

• Simpler tasks for humans. The large number of classes and fine distinctions
between them make ImageNet a particularly hard problem for humans without special
training. While classifying a large variety of objects with fine-grained distinctions
is an important research goal, there are also trade-offs. Often it becomes necessary
to rely on images with high annotator agreement to ensure correct labels, which
in turn leads to bias by excluding harder images. Moreover, the large number of
classes causes difficulties when characterizing human performance. So an alternative
approach for a dataset could be to choose a task that is simpler for humans in terms
of class structure (fewer classes, clear class boundaries), but contains a larger variety
of object poses, lighting conditions, occlusions, image corruptions, etc.

• Test sets with expert annotations. Compared to building a full training set, a
test set requires a smaller number of human annotations. This makes it possible to
employ a separate labeling process for the test set that relies on more costly expert
annotations. While this violates the assumption that train and test splits are i.i.d.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 25

from the same distribution, the expert labels can also increase quality both in terms
of correctness and example diversity.

Finally, we emphasize that our recommendations here should not be seen as flaws in
CIFAR-10 or ImageNet. Both datasets were assembled in the late 2000s for an accuracy
regime that is very different from the state-of-the-art now. Over the past decade, especially
ImageNet has successfully guided the field to increasingly better models, thereby clearly
demonstrating the immense value of this dataset. But as models have increased in accuracy
and our reliability expectations have grown accordingly, it is now time to revisit how we
create and utilize datasets in machine learning.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 26

2.7 Appendix: Details of the CIFAR-10 Experiments
We first present our reproducibility experiment for the CIFAR-10 image classification
dataset [91]. There are multiple reasons why CIFAR-10 is an important example for
measuring how well current models generalize to unseen data.

• CIFAR-10 is one of the most widely used datasets in machine learning and serves
as a test ground for many image classification methods. A concrete measure of
popularity is the fact that CIFAR-10 was the second most common dataset in NIPS
2017 (after MNIST) [63].

• The dataset creation process for CIFAR-10 is transparent and well documented [91].
Importantly, CIFAR-10 draws from the larger Tiny Images repository that has more
fine-grained labels than the ten CIFAR-10 classes [145]. This enables us to minimize
various forms of distribution shift between the original and new test set.

• CIFAR-10 poses a difficult enough problem so that the dataset is still the subject of
active research (e.g., see [23, 33, 51, 126, 158, 166]). Moreover, there is a wide range
of classification models that achieve significantly different accuracy scores. Since
code for these models has been published in various open source repositories, they
can be treated as independent of our new test set.

Compared to ImageNet, CIFAR-10 is significantly smaller both in the number of
images and in the size of each image. This makes it easier to conduct various follow-up
experiments that require training new classification models. Moreover, the smaller size
of CIFAR-10 also means that the dataset has been accessible to more researchers for a
longer time. Hence it is plausible that CIFAR-10 experienced more test set adaptivity
than ImageNet, where it is much more costly to tune hyperparameters.

Before we describe how we created our new test set, we briefly review relevant back-
ground on CIFAR-10 and Tiny Images.

Tiny Images. The dataset contains 80 million RGB color images with resolution 32
× 32 pixels and was released in 2007 [145]. The images are organized by roughly 75,000
keywords that correspond to the non-abstract nouns from the WordNet database [112]
Each keyword was entered into multiple Internet search engines to collect roughly 1,000
to 2,500 images per keyword. It is important to note that Tiny Images is a fairly noisy
dataset. Many of the images filed under a certain keyword do not clearly (or not at all)
correspond to the respective keyword.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 27

CIFAR-10. The CIFAR-10 dataset was created as a cleanly labeled subset of Tiny
Images for experiments with multi-layer networks. To this end, the researchers assembled
a dataset consisting of ten classes with 6,000 images per class, which was published in
2009 [91]. These classes are airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. The standard train / test split is class-balanced and contains
50,000 training images and 10,000 test images.

The CIFAR-10 creation process is well-documented [91]. First, the researchers as-
sembled a set of relevant keywords for each class by using the hyponym relations in
WordNet [112] (for instance, “Chihuahua” is a hyponym of “dog”). Since directly using
the corresponding images from Tiny Images would not give a high quality dataset, the
researchers paid student annotators to label the images from Tiny Images. The labeler
instructions can be found in Appendix C of [91] and include a set of specific guidelines (e.g.,
an image should not contain two object of the corresponding class). The researchers then
verified the labels of the images selected by the annotators and removed near-duplicates
from the dataset via an `2 nearest neighbor search.

2.7.1 Dataset Creation Methodology

Our overall goal was to create a new test set that is as close as possible to being drawn
from the same distribution as the original CIFAR-10 dataset. One crucial aspect here is
that the CIFAR-10 dataset did not exhaust any of the Tiny Image keywords it is drawn
from. So by collecting new images from the same keywords as CIFAR-10, our new test set
can match the sub-class distribution of the original dataset.

Understanding the Sub-Class Distribution. As the first step, we determined the
Tiny Image keyword for every image in the CIFAR-10 dataset. A simple nearest-neighbor
search sufficed since every image in CIFAR-10 had an exact duplicate (`2-distance 0) in
Tiny Images. Based on this information, we then assembled a list of the 25 most common
keywords for each class. We decided on 25 keywords per class since the 250 total keywords
make up more than 95% of CIFAR-10. Moreover, we wanted to avoid accidentally creating
a harder dataset with infrequent keywords that the classifiers had little incentive to learn
based on the original CIFAR-10 dataset.

The keyword distribution can be found in Appendix 2.7.3.1. Inspecting this list reveals
the importance of matching the sub-class distribution. For instance, the most common
keyword in the airplane class is stealth_bomber and not a more common civilian
type of airplane. In addition, the third most common keyword for the airplane class
is stealth_fighter. Both types of planes are highly distinctive. There are more

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 28

examples where certain sub-classes are considerably different. For instance, trucks from
the keyword fire_truck are mostly red, which is quite different from pictures for
dump_truck or other keywords.

Collecting New Images. After determining the keywords, we collected corresponding
images. To simulate the student / researcher split in the original CIFAR-10 collection
procedure, we introduced a similar split among two authors of this paper. Author A
took the role of the original student annotators and selected new suitable images for the
250 keywords. In order to ensure a close match between the original and new images
for each keyword, we built a user interface that allowed Author A to first look through
existing CIFAR-10 images for a given keyword and then select new candidates from the
remaining pictures in Tiny Images. Author A followed the labeling guidelines in the
original instruction sheet [91]. The number of images Author A selected per keyword was
so that our final dataset would contain between 2,000 and 4,000 images. We decided on
2,000 images as a target number for two reasons:

• While the original CIFAR-10 test set contains 10,000 images, a test set of size 2,000
is already sufficient for a fairly small confidence interval. In particular, a conservative
confidence interval (Clopper-Pearson at confidence level 95%) for accuracy 90% has
size about ±1% with n = 2,000 (to be precise, [88.6%, 91.3%]). Since we considered
a potential discrepancy between original and new test accuracy only interesting if it
is significantly larger than 1%, we decided that a new test set of size 2,000 was large
enough for our study.

• As with very infrequent keywords, our goal was to avoid accidentally creating a
harder test set. Since some of the Tiny Image keywords have only a limited supply
of remaining adequate images, we decided that a smaller target size for the new
dataset would reduce bias to include images of more questionable difficulty.

After Author A had selected a set of about 9,000 candidate images, Author B adopted the
role of the researchers in the original CIFAR-10 dataset creation process. In particular,
Author B reviewed all candidate images and removed images that were unclear to Author
B or did not conform to the labeling instructions in their opinion (some of the criteria
are subjective). In the process, a small number of keywords did not have enough images
remaining to reach the n = 2,000 threshold. Author B then notified Author A about the
respective keywords and Author A selected a further set of images for these keywords. In
this process, there was only one keyword where Author A had to carefully examine all

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 29

(a) Test set A (b) Test set B

Figure 2.3: Randomly selected images from the original and new CIFAR-10 test sets.
Each grid contains two images for each of the ten classes. The following footnote reveals
which of the two grids corresponds to the new test set.7

available images in Tiny Images. This keyword was alley_cat and comprises less than
0.3% of the overall CIFAR-10 dataset.

Final Assembly. After collecting a sufficient number of high-quality images for each
keyword, we sampled a random subset from our pruned candidate set. The sampling
procedure was such that the keyword-level distribution of our new dataset matches the
keyword-level distribution of CIFAR-10 (see Appendix 2.7.3.1). In the final stage, we again
proceeded similar to the original CIFAR-10 dataset creation process and used `2-nearest
neighbors to filter out near duplicates. In particular, we removed near-duplicates within
our new dataset and also images that had a near duplicate in the original CIFAR-10 dataset
(train or test). The latter aspect is particularly important since our reproducibility study
is only interesting if we evaluate on truly unseen data. Hence we manually reviewed the
top-10 nearest neighbors for each image in our new test set. After removing near-duplicates
in our dataset, we re-sampled the respective keywords until this process converged to our
final dataset.

Figure 2.3b shows a random subset of images from the original and our new test set.
We remark that we did not run any classifiers on our new dataset during the data

collection phase of our study. In order to ensure that the new data does not depend on
the existing classifiers, it is important to strictly separate the data collection phase from
the following evaluation phase.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 30

2.7.2 Follow-up Hypotheses

Since the gap between original and new accuracy is concerningly large, we investigated
multiple hypotheses for explaining this gap.

2.7.2.1 Statistical Error

A first natural guess is that the gap is simply due to statistical fluctuations. But as noted
before, the sample size of our new test set is large enough so that a 95% confidence interval
has size about ±1.2%. Since a 95% confidence interval for the original CIFAR-10 test
accuracy is even smaller (roughly ±0.6% for 90% classification accuracy and ±0.3% for
97% classification accuracy), we can rule out statistical error as the main explanation.

2.7.2.2 Differences in Near-Duplicate Removal

As mentioned in Section 2.7.1, the final step of both the original CIFAR-10 and our dataset
creation procedure is to remove near-duplicates. While removing near-duplicates between
our new test set and the original CIFAR-10 dataset, we noticed that the original test
set contained images that we would have ruled out as near-duplicates. A large number
of near-duplicates between CIFAR-10 train and test, combined with our more stringent
near-duplicate removal, could explain some of the accuracy drop. Indeed, we found about
800 images in the original CIFAR-10 test set that we would classify as near-duplicates (8%
of the entire test set). Moreover, most classifiers have accuracy between 99% and 100%
on these near-duplicates (recall that most models achieve 100% training error). However,
the following calculation shows that the near-duplicates can explain at most 1% of the
observed difference.

For concreteness, we consider a model with 93% original test set accuracy such as a
common VGG or ResNet architecture. Let acctrue be the “true” accuracy of the model on
test images that are not near-duplicates, and let accnd be the accuracy on near-duplicates.
Then for 8% near-duplicates, the overall accuracy is given by

acc = 0.92 · acctrue + 0.08 · accnd .

Using acc = 0.93, accnd = 1.0, and solving for acctrue then yields acctrue ≈ 0.924. So the
accuracy on original test images that are not near-duplicates is indeed lower, but only by
a small amount (0.6%). This is in contrast to the 8% - 9% accuracy drop that VGG and
ResNet models with 93% original accuracy see in our experiments.

For completeness, we describe our process for finding near duplicates in detail. For
every test image, we visually inspected the top-10 nearest neighbors in both `2-distance

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 31

and the SSIM (structural similarity) metric. We compared the original test set to the
CIFAR-10 training set, and our new test set to both the original training and test sets. We
consider an image pair as near-duplicates if both images have the same object in the same
pose. We include images that have different zoom, color scale, stretch in the horizontal
or vertical direction, or small shifts in vertical or horizontal position. If the object was
rotated or in a different pose, we did not include it as a near-duplicate.

2.7.2.3 Hyperparameter Tuning

Another conjecture is that we can recover some of the missing accuracy by re-tuning
hyperparameters of a model. To this end, we performed a grid search over multiple
parameters of a VGG model. We selected three standard hyperparameters known to
strongly influence test set performance: initial learning rate, dropout, and weight decay.
The vgg16_keras architecture uses different amounts of dropout across different layers
of the network, so we chose to tune a multiplicative scaling factor for the amount of
dropout. This keeps the ratio of dropout across different layers constant.

We initialized a hyperparameter configuration from values tuned to the original test
set (learning rate 0.1, dropout ratio 1, weight decay 5×10−4), and performed a grid search
across the following values:

• Learning rate in {0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8}.

• Dropout ratio in {0.5, 0.75, 1, 1.25, 1.75}.

• Weight decay in {5×10−5, 1×10−4, 5×10−4, 1×10−3, 5×10−3}.

We ensured that the best performance was never at an extreme point of any range
we tested for an individual hyperparameter. Overall, we did not find a hyperparameter
setting with a significantly better accuracy on the new test set (the biggest improvement
was from 85.3% to 85.8%).

2.7.2.4 Visually Inspecting Hard Images

It is also possible that we accidentally created a more difficult test set by including a set
of “harder” images. To explore this question, we visually inspected the set of images that
most models incorrectly classified. Figure 2.4 in Appendix 2.7.3.5 shows examples of the
hard images in our new test set that no model correctly classified. We find that all the
new images are valid images that are recognizable to humans.

7Test Set A is the new test set and Test Set B is the original test set.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 32

2.7.2.5 Human Accuracy Comparison

The visual inspection of hard images in the previous section is one way to compare the
original and new test sets. However, our conclusion may be biased since we have created
the new test set ourselves. To compare the relative hardness of the two test sets more
objectively, we also conducted a small experiment to measure human accuray on the two
test sets.8 The goal of the experiment was to measure if human accuracy is significantly
different on the original and new test sets.

Since we conjectured that our new test set included particularly hard images, we
focused our experiment on the approximately 5% hardest images in both test sets. Here,
“hardness” is defined by how many models correctly classified an image. After rounding to
include all images that were classified by the same number of models, we obtained 500
images from the original test set and 115 images from our new test set.

We recruited nine graduate students from three different research groups in the Electrical
Engineering & Computer Sciences Department at UC Berkeley. We wrote a simple user
interface that allowed the participants to label images with one of the ten CIFAR-10
classes. To ensure that the participants did not know which dataset an image came from,
we presented the images in random order.

Table 2.3 shows the results of our experiment. We find that four participants performed
better on the original test set and five participants were better on our new test set. The
average difference is -0.8%, i.e., the participants do not see a drop in average accuracy
on this subset of original and new test images. This suggests that our new test set is not
significantly harder for humans. However, we remark that our results here should only be
seen as a preliminary study. Understanding human accuracy on CIFAR-10 in more detail
will require further experiments.

2.7.2.6 Training on Part of Our New Test Set

If our new test set distribution is significantly different from the original CIFAR-10
distribution, retraining on part of our new test set (plus the original training data) may
improve the accuracy on the held-out fraction of our new test set.

We conducted this experiment by randomly drawing a class-balanced split containing
about 1,000 images from the new test set. We then added these images to the full CIFAR-
10 training set and retrained the vgg16_keras model. After training, we tested the
model on the remaining half of the new test set. We repeated this experiment twice with

8Use of this data was permitted by the Berkelely Committee for Protection of Human Subjects
(CPHS).

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 33

Human Accuracy (%)
Original Test Set New Test Set Gap

Participant 1 85 [81.6, 88.0] 83 [74.2, 89.8] 2
Participant 2 83 [79.4, 86.2] 81 [71.9, 88.2] 2
Participant 3 82 [78.3, 85.3] 78 [68.6, 85.7] 4
Participant 4 79 [75.2, 82.5] 84 [75.3, 90.6] -5
Participant 5 76 [72.0, 79.7] 77 [67.5, 84.8] -1
Participant 6 75 [71.0, 78.7] 73 [63.2, 81.4] 2
Participant 7 74 [69.9, 77.8] 79 [69.7, 86.5] -5
Participant 8 74 [69.9, 77.8] 76 [66.4, 84.0] -2
Participant 9 67 [62.7, 71.1] 71 [61.1, 79.6] -4

Table 2.3: Human accuracy on the “hardest” images in the original and our new CIFAR-10
test set. We ordered the images by number of incorrect classifications from models in
our testbed and then selected the top 5% images from the original and new test set (500
images from the original test set, 115 images from our new test set). The results show
that on average humans do not see a drop in accuracy on this subset of images.

different randomly selected splits from our test set, obtaining accuracies of 85.1% and
85.4% (compared to 84.9% without the extra training data9). This provides evidence that
there is no large distribution shift between our new test set and the original CIFAR-10
dataset, or that the model is unable to learn the modified distribution.

2.7.2.7 Cross-validation

Cross-validation can be a more reliable way of measuring a model’s generalization ability
than using only a single train / test split. Hence we tested if cross-validation on the
original CIFAR-10 dataset could predict a model’s error on our new test set. We created
cross-validation data by randomly dividing the training set into 5 class-balanced splits.
We then randomly shuffled together 4 out of the 5 training splits with the original test set.
The leftover held-out split from the training set then became the new test set.

We retrained the models vgg_15_BN_64 and wide_resnet_28_10 on each of the
5 new datasets we created. The accuracies are reported in Table 2.4. The accuracies on
the cross-validation splits did not differ much from the accuracy on the original test set.

9This number is slightly lower than the accuracy of vgg16_keras on our new test set in Table 2.11,
but still within the 95% confidence interval [83.6, 86.8]. Hence we conjecture that the difference is due to
the random fluctuation arising from randomly initializing the model.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 34

The variation among the cross-validation splits is significantly smaller than the drop on
our new test set.

Model Accuracy (%)
Dataset vgg_15_BN_64 wide_resnet_28_10

Original Test Set 93.6 [93.1, 94.1] 95.7 [95.3, 96.1]
Split 1 93.9 [93.4, 94.3] 96.2 [95.8, 96.6]
Split 2 93.8 [93.3, 94.3] 96.0 [95.6, 96.4]
Split 3 94.0 [93.5, 94.5] 96.4 [96.0, 96.8]
Split 4 94.0 [93.5, 94.5] 96.2 [95.8, 96.6]
Split 5 93.5 [93.0, 94.0] 96.5 [96.1, 96.9]

New Test Set 84.9 [83.2, 86.4] 89.7 [88.3, 91.0]

Table 2.4: Model accuracies on cross-validation splits for the original CIFAR-10 data.
The difference in cross-validation accuracies is significantly smaller than the drop to the
new test set.

2.7.2.8 Training a Discriminator for Original vs. New Test Set

Our main hypothesis for the accuracy drop is that small variations in the test set creation
process suffice to significantly reduce a model’s accuracy. To test whether these variations
could be detected by a convolutional network, we investigated whether a discriminator
model could distinguish between the two test sets.

We first created a training set consisting of 3, 200 images (1,600 from the original test
set and 1,600 from our new test set) and a test set of 800 images (consisting of 400 images
from original and new test set each). Each image had a binary label indicating whether it
came from the original or new test set. Additionally, we ensured that that both datasets
were class balanced.

We then trained resnet_32 and resnet_110models for 160 epochs using a standard
SGD optimizer to learn a binary classifier between the two datasets. We conducted two
variants of this experiment: in one variant, we traind the model from scratch. In the other
variant, we started with a model pre-trained on the regular CIFAR-10 classification task.

Our results are summarized in Table 2.5. Overall we found that the resulting models
could not discriminate well between the original and our new test set: the best accuracy
we obtained is 53.1%.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 35

Model Discriminator Accuracy (%) Discriminator Accuracy (%)
random initialization pre-trained

resnet_32 50.1 [46.6, 53.6] 52.9 [49.4, 56.4]
resnet_110 50.3 [46.7, 53.8] 53.1 [49.6, 56.6]

Table 2.5: Accuracies for discriminator models trained to distinugish between the original
and new CIFAR-10 test sets. The models were initialized either randomly or using a model
pre-trained on the original CIFAR-10 dataset. Although the models performed slightly
better than random chance, the confidence intervals (95% Clopper Pearson) still overlap
with 50% accuracy.

2.7.2.9 An Exactly Class-balanced Test Set

The top 25 keywords of each class in CIFAR-10 capture approximately 95% of the dataset.
However, the remaining 5% of the dataset are skewed towards the class ship. As a result,
our new dataset was not exactly class-balanced and contained only 8% images of class
ship (as opposed to 10% in the original test set).

To measure whether this imbalance affected the acccuracy scores, we created an exactly
class-balanced version of our new test set with 2,000 images (200 per class). In this
version, we selected the top 50 keywords in each class and computed a fractional number
of images for each keyword. We then rounded these numbers so that images for keywords
with the largest fractional part were added first. The resulting model accuracies can be
found in Table 2.12 (Appendix 2.7.3.4). Models with lower original accuracies achieve a
small accuracy improvement on the exactly class-balanced test set (around 0.3%), but the
accuracy drop of the best-performing model remains unchanged.

2.7.3 Additional Figures, Tables, and Lists

In this appendix we provide content that did not fit into the preceding sections about our
CIFAR-10 experiments.

2.7.3.1 Keyword Distribution in CIFAR-10

The sub-tables in Table 2.6 show the keyword distribution for each of the ten classes in
the original CIFAR-10 test set and our new test set.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 36

Table 2.6: Distribution of the top 25 keywords in each class for the new and original test
set.

Frog
New Original

bufo_bufo 0.64% 0.63%
leopard_frog 0.64% 0.64%
bufo_viridis 0.59% 0.57%
rana_temporaria 0.54% 0.53%
bufo 0.49% 0.47%
bufo_americanus 0.49% 0.46%
toad 0.49% 0.46%
green_frog 0.45% 0.44%
rana_catesbeiana 0.45% 0.43%
bufo_marinus 0.45% 0.43%
bullfrog 0.45% 0.42%
american_toad 0.45% 0.43%
frog 0.35% 0.35%
rana_pipiens 0.35% 0.32%
toad_frog 0.30% 0.30%
spadefoot 0.30% 0.27%
western_toad 0.30% 0.26%
grass_frog 0.30% 0.27%
pickerel_frog 0.25% 0.24%
spring_frog 0.25% 0.22%
rana_clamitans 0.20% 0.20%
natterjack 0.20% 0.17%
crapaud 0.20% 0.18%
bufo_calamita 0.20% 0.18%
alytes_obstetricans 0.20% 0.16%

Cat
New Original

tabby_cat 1.78% 1.78%
tabby 1.53% 1.52%
domestic_cat 1.34% 1.33%
cat 1.24% 1.25%
house_cat 0.79% 0.79%
felis_catus 0.69% 0.69%
mouser 0.64% 0.63%
felis_domesticus 0.54% 0.50%
true_cat 0.49% 0.47%
tomcat 0.49% 0.49%
alley_cat 0.30% 0.30%
felis_bengalensis 0.15% 0.11%
nougat 0.10% 0.05%
gray 0.05% 0.03%
manx_cat 0.05% 0.04%
fissiped 0.05% 0.03%
persian_cat 0.05% 0.03%
puss 0.05% 0.05%
catnap 0.05% 0.03%
tiger_cat 0.05% 0.03%
black_cat 0.05% 0.04%
bedspread 0.00% 0.02%
siamese_cat 0.00% 0.02%
tortoiseshell 0.00% 0.02%
kitty-cat 0.00% 0.02%

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 37

Dog
New Original

pekingese 1.24% 1.22%
maltese 0.94% 0.93%
puppy 0.89% 0.87%
chihuahua 0.84% 0.81%
dog 0.69% 0.67%
pekinese 0.69% 0.66%
toy_spaniel 0.59% 0.60%
mutt 0.49% 0.47%
mongrel 0.49% 0.49%
maltese_dog 0.45% 0.43%
toy_dog 0.40% 0.36%
japanese_spaniel 0.40% 0.38%
blenheim_spaniel 0.35% 0.35%
english_toy_spaniel 0.35% 0.31%
domestic_dog 0.35% 0.32%
peke 0.30% 0.28%
canis_familiaris 0.30% 0.27%
lapdog 0.30% 0.30%
king_charles_spaniel 0.20% 0.17%
toy 0.15% 0.13%
feist 0.10% 0.06%
pet 0.10% 0.07%
cavalier 0.10% 0.05%
canine 0.05% 0.04%
cur 0.05% 0.04%

Deer
New Original

elk 0.79% 0.77%
capreolus_capreolus 0.74% 0.71%
cervus_elaphus 0.64% 0.61%
fallow_deer 0.64% 0.63%
roe_deer 0.59% 0.60%
deer 0.59% 0.60%
muntjac 0.54% 0.51%
mule_deer 0.54% 0.51%
odocoileus_hemionus 0.49% 0.50%
fawn 0.49% 0.49%
alces_alces 0.40% 0.36%
wapiti 0.40% 0.36%
american_elk 0.40% 0.35%
red_deer 0.35% 0.33%
moose 0.35% 0.35%
rangifer_caribou 0.25% 0.24%
rangifer_tarandus 0.25% 0.24%
caribou 0.25% 0.23%
sika 0.25% 0.22%
woodland_caribou 0.25% 0.21%
dama_dama 0.20% 0.19%
cervus_sika 0.20% 0.16%
barking_deer 0.20% 0.18%
sambar 0.15% 0.15%
stag 0.15% 0.13%

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 38

Bird
New Original

cassowary 0.89% 0.85%
bird 0.84% 0.84%
wagtail 0.74% 0.74%
ostrich 0.69% 0.68%
struthio_camelus 0.54% 0.51%
sparrow 0.54% 0.52%
emu 0.54% 0.51%
pipit 0.49% 0.47%
passerine 0.49% 0.50%
accentor 0.49% 0.49%
honey_eater 0.40% 0.37%
dunnock 0.40% 0.37%
alauda_arvensis 0.30% 0.26%
nandu 0.30% 0.27%
prunella_modularis 0.30% 0.30%
anthus_pratensis 0.30% 0.28%
finch 0.25% 0.24%
lark 0.25% 0.20%
meadow_pipit 0.25% 0.20%
rhea_americana 0.25% 0.21%
flightless_bird 0.15% 0.10%
emu_novaehollandiae 0.15% 0.12%
dromaius_novaehollandiae 0.15% 0.14%
apteryx 0.15% 0.10%
flying_bird 0.15% 0.13%

Ship
New Original

passenger_ship 0.79% 0.78%
boat 0.64% 0.64%
cargo_ship 0.40% 0.37%
cargo_vessel 0.40% 0.39%
pontoon 0.35% 0.31%
container_ship 0.35% 0.31%
speedboat 0.35% 0.32%
freighter 0.35% 0.32%
pilot_boat 0.35% 0.31%
ship 0.35% 0.31%
cabin_cruiser 0.30% 0.29%
police_boat 0.30% 0.25%
sea_boat 0.30% 0.29%
oil_tanker 0.30% 0.29%
pleasure_boat 0.25% 0.21%
lightship 0.25% 0.22%
powerboat 0.25% 0.25%
guard_boat 0.25% 0.20%
dredger 0.25% 0.20%
hospital_ship 0.25% 0.21%
banana_boat 0.20% 0.19%
merchant_ship 0.20% 0.17%
liberty_ship 0.20% 0.15%
container_vessel 0.20% 0.19%
tanker 0.20% 0.18%

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 39

Truck
New Original

dump_truck 0.89% 0.89%
trucking_rig 0.79% 0.76%
delivery_truck 0.64% 0.61%
truck 0.64% 0.65%
tipper_truck 0.64% 0.60%
camion 0.59% 0.58%
fire_truck 0.59% 0.55%
lorry 0.54% 0.53%
garbage_truck 0.54% 0.53%
moving_van 0.35% 0.32%
tractor_trailer 0.35% 0.34%
tipper 0.35% 0.30%
aerial_ladder_truck 0.35% 0.34%
ladder_truck 0.30% 0.26%
fire_engine 0.30% 0.27%
dumper 0.30% 0.28%
trailer_truck 0.30% 0.28%
wrecker 0.30% 0.27%
articulated_lorry 0.25% 0.24%
tipper_lorry 0.25% 0.25%
semi 0.20% 0.18%
sound_truck 0.15% 0.12%
tow_truck 0.15% 0.12%
delivery_van 0.15% 0.11%
bookmobile 0.10% 0.10%

Horse
New Original

arabian 1.14% 1.12%
lipizzan 1.04% 1.02%
broodmare 0.99% 0.97%
gelding 0.74% 0.73%
quarter_horse 0.74% 0.72%
stud_mare 0.69% 0.69%
lippizaner 0.54% 0.52%
appaloosa 0.49% 0.45%
lippizan 0.49% 0.46%
dawn_horse 0.45% 0.42%
stallion 0.45% 0.43%
tennessee_walker 0.45% 0.45%
tennessee_walking_horse 0.40% 0.38%
walking_horse 0.30% 0.28%
riding_horse 0.20% 0.20%
saddle_horse 0.20% 0.18%
female_horse 0.15% 0.11%
cow_pony 0.15% 0.11%
male_horse 0.15% 0.14%
buckskin 0.15% 0.13%
horse 0.10% 0.08%
equine 0.10% 0.08%
quarter 0.10% 0.07%
cavalry_horse 0.10% 0.09%
thoroughbred 0.10% 0.06%

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 40

Airplane
New Original

stealth_bomber 0.94% 0.92%
airbus 0.89% 0.89%
stealth_fighter 0.79% 0.80%
fighter_aircraft 0.79% 0.76%
biplane 0.74% 0.74%
attack_aircraft 0.69% 0.67%
airliner 0.64% 0.61%
jetliner 0.59% 0.56%
monoplane 0.54% 0.55%
twinjet 0.54% 0.52%
dive_bomber 0.54% 0.52%
jumbo_jet 0.49% 0.47%
jumbojet 0.35% 0.35%
propeller_plane 0.30% 0.28%
fighter 0.20% 0.20%
plane 0.20% 0.15%
amphibious_aircraft 0.20% 0.20%
multiengine_airplane 0.15% 0.14%
seaplane 0.15% 0.14%
floatplane 0.10% 0.05%
multiengine_plane 0.10% 0.06%
reconnaissance_plane 0.10% 0.09%
airplane 0.10% 0.08%
tail 0.10% 0.05%
joint 0.05% 0.04%

Automobile
New Original

coupe 1.29% 1.26%
convertible 1.19% 1.18%
station_wagon 0.99% 0.98%
automobile 0.89% 0.90%
car 0.84% 0.81%
auto 0.84% 0.83%
compact_car 0.79% 0.76%
shooting_brake 0.64% 0.63%
estate_car 0.59% 0.59%
wagon 0.54% 0.51%
police_cruiser 0.45% 0.45%
motorcar 0.40% 0.40%
taxi 0.20% 0.17%
cruiser 0.15% 0.13%
compact 0.15% 0.11%
beach_wagon 0.15% 0.13%
funny_wagon 0.10% 0.05%
gallery 0.10% 0.07%
cab 0.10% 0.07%
ambulance 0.10% 0.07%
door 0.00% 0.03%
ford 0.00% 0.03%
opel 0.00% 0.03%
sport_car 0.00% 0.03%
sports_car 0.00% 0.03%

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 41

2.7.3.2 Full List of Models Evaluated on CIFAR-10

The following list contains all models we evaluated on CIFAR-10 with references and links
to the corresponding source code.

1. autoaug_pyramid_net [23, 64] https://github.com/tensorflow/mode
ls/tree/master/research/autoaugment

2. autoaug_shake_shake_112 [23, 51] https://github.com/tensorflow/
models/tree/master/research/autoaugment

3. autoaug_shake_shake_32 [23, 51] https://github.com/tensorflow/mo
dels/tree/master/research/autoaugment

4. autoaug_shake_shake_96 [23, 51] https://github.com/tensorflow/mo
dels/tree/master/research/autoaugment

5. autoaug_wrn [23, 160] https://github.com/tensorflow/models/tree/
master/research/autoaugment

6. cudaconvnet [92] https://github.com/akrizhevsky/cuda-convnet2

7. darc [87] http://lis.csail.mit.edu/code/gdl.html

8. densenet_BC_100_12 [76] https://github.com/hysts/pytorch_image
_classification/

9. nas [166] https://github.com/tensorflow/models/blob/master/res
earch/slim/nets/nasnet/nasnet.py#L32

10. pyramidnet_basic_110_270 [64] https://github.com/hysts/pytorch
_image_classification/

11. pyramidnet_basic_110_84 [64] https://github.com/hysts/pytorch
_image_classification/

12. random_features_256k_aug [21] https://github.com/modestyachts/
nondeep Random 1 layer convolutional network with 256k filters sampled from
image patches, patch size = 6, pool size 15, pool stride 6, and horizontal flip data
augmentation.

https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/akrizhevsky/cuda-convnet2
http://lis.csail.mit.edu/code/gdl.html
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py#L32
https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py#L32
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 42

13. random_features_256k [21] https://github.com/modestyachts/nond
eep Random 1 layer convolutional network with 256k filters sampled from image
patches, patch size = 6, pool size 15, pool stride 6.

14. random_features_32k_aug [21] https://github.com/modestyachts/no
ndeep Random 1 layer convolutional network with 32k filters sampled from im-
age patches, patch size = 6, pool size 15, pool stride 6, and horizontal flip data
augmentation.

15. random_features_32k [21] Random 1 layer convolutional network with 32k
filters sampled from image patches, patch size = 6, pool size 15, pool stride 16.

16. resnet_basic_32 [68] https://github.com/hysts/pytorch_image_c
lassification/

17. resnet_basic_44 [68] https://github.com/hysts/pytorch_image_c
lassification/

18. resnet_basic_56 [68] https://github.com/hysts/pytorch_image_c
lassification/

19. resnet_basic_110 [68] https://github.com/hysts/pytorch_image_c
lassification/

20. resnet_preact_basic_110 [69] https://github.com/hysts/pytorch
_image_classification/

21. resnet_preact_bottleneck_164 [69] https://github.com/hysts/pyt
orch_image_classification/

22. resnet_preact_tf [69] https://github.com/tensorflow/models/tre
e/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet

23. resnext_29_4x64d [157] https://github.com/hysts/pytorch_image_c
lassification/

24. resnext_29_8x64d [157] https://github.com/hysts/pytorch_image_c
lassification/

25. shake_drop [158] https://github.com/imenurok/ShakeDrop

https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/tensorflow/models/tree/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet
https://github.com/tensorflow/models/tree/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/imenurok/ShakeDrop

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 43

26. shake_shake_32d [51] https://github.com/hysts/pytorch_image_c
lassification/

27. shake_shake_64d [51] https://github.com/hysts/pytorch_image_c
lassification/

28. shake_shake_96d [51] https://github.com/hysts/pytorch_image_c
lassification/

29. shake_shake_64d_cutout [33, 51] https://github.com/hysts/pytor
ch_image_classification/

30. vgg16_keras [104, 137] https://github.com/geifmany/cifar-vgg

31. vgg_15_BN_64 [104, 137] https://github.com/hysts/pytorch_image_c
lassification/

32. wide_resnet_tf [160] https://github.com/tensorflow/models/tree/
b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet

33. wide_resnet_28_10 [160] https://github.com/hysts/pytorch_image
_classification/

34. wide_resnet_28_10_cutout [33, 160] https://github.com/hysts/pyt
orch_image_classification/

2.7.3.3 Full Results Table

Table 2.11 contains the detailed accuracy scores for the original CIFAR-10 test set and
our new test set.

2.7.3.4 Full Results Table for the Exactly Class-Balanced Test Set

Table 2.12 contains the detailed accuracy scores for the original CIFAR-10 test set and
the exactly class-balanced variant of our new test set.

2.7.3.5 Hard Images

Figure 2.4 shows the images in our new CIFAR-10 test set that were misclassified by all
models in our testbed. As can be seen in the figure, the class labels for these images are
correct.

https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/geifmany/cifar-vgg
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/tensorflow/models/tree/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet
https://github.com/tensorflow/models/tree/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 44

True: automobile
Predicted: airplane

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: bird
Predicted: frog

True: horse
Predicted: frog

True: cat
Predicted: dog

True: cat
Predicted: dog

True: cat
Predicted: deer

True: dog
Predicted: cat

True: dog
Predicted: cat

Figure 2.4: Hard images from our new test set that no model correctly. The caption of
each image states the correct class label (“True”) and the label predicted by most models
(“Predicted”).

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 45

Table 2.11: Model accuracy on the original CIFAR-10 test set and our new test set. ∆
Rank is the relative difference in the ranking from the original test set to the new test set.
For example, ∆Rank = −2 means that a model dropped by two places on the new test
set compared to the original test set. The confidence intervals are 95% Clopper-Pearson
intervals. Due to space constraints, references for the models can be found in Appendix
2.7.3.2.

CIFAR-10
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0
2 autoaug_shake_shake_112_tf98.1 [97.8, 98.4] 93.9 [92.7, 94.9] 4.3 2 0
3 autoaug_shake_shake_96_tf98.0 [97.7, 98.3] 93.7 [92.6, 94.7] 4.3 3 0
4 autoaug_wrn_tf 97.5 [97.1, 97.8] 93.0 [91.8, 94.1] 4.4 4 0
5 autoaug_shake_shake_32_tf97.3 [97.0, 97.6] 92.9 [91.7, 94.0] 4.4 6 -1
6 shake_shake_64d_cutout97.1 [96.8, 97.4] 93.0 [91.8, 94.1] 4.1 5 1
7 shake_shake_26_2x96d_SSI97.1 [96.7, 97.4] 91.9 [90.7, 93.1] 5.1 9 -2
8 shake_shake_64d 97.0 [96.6, 97.3] 91.4 [90.1, 92.6] 5.6 10 -2
9 wrn_28_10_cutout16 97.0 [96.6, 97.3] 92.0 [90.7, 93.1] 5.0 8 1
10 shake_drop 96.9 [96.5, 97.2] 92.3 [91.0, 93.4] 4.6 7 3
11 shake_shake_32d 96.6 [96.2, 96.9] 89.8 [88.4, 91.1] 6.8 13 -2
12 darc 96.6 [96.2, 96.9] 89.5 [88.1, 90.8] 7.1 16 -4
13 resnext_29_4x64d 96.4 [96.0, 96.7] 89.6 [88.2, 90.9] 6.8 15 -2
14 pyramidnet_basic_110_27096.3 [96.0, 96.7] 90.5 [89.1, 91.7] 5.9 11 3
15 resnext_29_8x64d 96.2 [95.8, 96.6] 90.0 [88.6, 91.2] 6.3 12 3
16 wrn_28_10 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 14 2
17 pyramidnet_basic_110_8495.7 [95.3, 96.1] 89.3 [87.8, 90.6] 6.5 17 0
18 densenet_BC_100_12 95.5 [95.1, 95.9] 87.6 [86.1, 89.0] 8.0 20 -2
19 nas 95.4 [95.0, 95.8] 88.8 [87.4, 90.2] 6.6 18 1
20 wide_resnet_tf_28_10 95.0 [94.6, 95.4] 88.5 [87.0, 89.9] 6.5 19 1
21 resnet_v2_bottleneck_16494.2 [93.7, 94.6] 85.9 [84.3, 87.4] 8.3 22 -1
22 vgg16_keras 93.6 [93.1, 94.1] 85.3 [83.6, 86.8] 8.3 23 -1
23 resnet_basic_110 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 24 -1
24 resnet_v2_basic_110 93.4 [92.9, 93.9] 86.5 [84.9, 88.0] 6.9 21 3
25 resnet_basic_56 93.3 [92.8, 93.8] 85.0 [83.3, 86.5] 8.3 25 0
26 resnet_basic_44 93.0 [92.5, 93.5] 84.2 [82.6, 85.8] 8.8 29 -3
27 vgg_15_BN_64 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 27 0
29 resnet_basic_32 92.5 [92.0, 93.0] 84.9 [83.2, 86.4] 7.7 26 3
31 random_features_256k_aug85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12.5 31 0
32 random_features_32k_aug85.0 [84.3, 85.7] 71.9 [69.9, 73.9] 13.0 32 0
33 random_features_256k 84.2 [83.5, 84.9] 69.9 [67.8, 71.9] 14.3 33 0
34 random_features_32k 83.3 [82.6, 84.0] 67.9 [65.9, 70.0] 15.4 34 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 46

Table 2.12: Model accuracy on the original CIFAR-10 test set and the exactly class-
balanced variant of our new test set. ∆ Rank is the relative difference in the ranking
from the original test set to the new test set. For example, ∆Rank = −2 means that
a model dropped by two places on the new test set compared to the original test set.
The confidence intervals are 95% Clopper-Pearson intervals. Due to space constraints,
references for the models can be found in Appendix 2.7.3.2.

CIFAR-10
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0
2 autoaug_shake_shake_112_tf98.1 [97.8, 98.4] 94.0 [92.9, 95.0] 4.1 2 0
3 autoaug_shake_shake_96_tf98.0 [97.7, 98.3] 93.9 [92.8, 94.9] 4.1 3 0
4 autoaug_wrn_tf 97.5 [97.1, 97.8] 93.0 [91.8, 94.1] 4.5 6 -2
5 autoaug_shake_shake_32_tf97.3 [97.0, 97.6] 93.2 [92.0, 94.2] 4.2 4 1
6 shake_shake_64d_cutout97.1 [96.8, 97.4] 93.1 [91.9, 94.2] 4.0 5 1
7 shake_shake_26_2x96d_SSI97.1 [96.7, 97.4] 92.0 [90.7, 93.1] 5.1 9 -2
8 shake_shake_64d 97.0 [96.6, 97.3] 91.9 [90.6, 93.1] 5.1 10 -2
9 wrn_28_10_cutout16 97.0 [96.6, 97.3] 92.1 [90.8, 93.2] 4.9 8 1
10 shake_drop 96.9 [96.5, 97.2] 92.3 [91.1, 93.4] 4.6 7 3
11 shake_shake_32d 96.6 [96.2, 96.9] 90.0 [88.6, 91.3] 6.6 15 -4
12 darc 96.6 [96.2, 96.9] 89.9 [88.5, 91.2] 6.7 16 -4
13 resnext_29_4x64d 96.4 [96.0, 96.7] 90.1 [88.8, 91.4] 6.2 12 1
14 pyramidnet_basic_110_27096.3 [96.0, 96.7] 90.5 [89.1, 91.7] 5.8 11 3
15 resnext_29_8x64d 96.2 [95.8, 96.6] 90.1 [88.7, 91.4] 6.1 14 1
16 wrn_28_10 95.9 [95.5, 96.3] 90.1 [88.8, 91.4] 5.8 13 3
17 pyramidnet_basic_110_8495.7 [95.3, 96.1] 89.6 [88.2, 90.9] 6.1 17 0
18 densenet_BC_100_12 95.5 [95.1, 95.9] 87.9 [86.4, 89.3] 7.6 20 -2
19 nas 95.4 [95.0, 95.8] 89.2 [87.8, 90.5] 6.2 18 1
20 wide_resnet_tf_28_10 95.0 [94.6, 95.4] 88.8 [87.4, 90.2] 6.2 19 1
21 resnet_v2_bottleneck_16494.2 [93.7, 94.6] 86.1 [84.5, 87.6] 8.1 22 -1
22 vgg16_keras 93.6 [93.1, 94.1] 85.6 [84.0, 87.1] 8.0 23 -1
23 resnet_basic_110 93.5 [93.0, 93.9] 85.4 [83.8, 86.9] 8.1 24 -1
24 resnet_v2_basic_110 93.4 [92.9, 93.9] 86.9 [85.4, 88.3] 6.5 21 3
25 resnet_basic_56 93.3 [92.8, 93.8] 84.9 [83.2, 86.4] 8.5 28 -3
26 resnet_basic_44 93.0 [92.5, 93.5] 84.8 [83.2, 86.3] 8.2 29 -3
27 vgg_15_BN_64 93.0 [92.5, 93.5] 85.0 [83.4, 86.6] 7.9 27 0
29 resnet_basic_32 92.5 [92.0, 93.0] 85.2 [83.6, 86.7] 7.3 25 4
31 random_features_256k_aug85.6 [84.9, 86.3] 73.6 [71.6, 75.5] 12.0 31 0
32 random_features_32k_aug85.0 [84.3, 85.7] 72.2 [70.2, 74.1] 12.8 32 0
33 random_features_256k 84.2 [83.5, 84.9] 70.5 [68.4, 72.4] 13.8 33 0
34 random_features_32k 83.3 [82.6, 84.0] 68.7 [66.6, 70.7] 14.6 34 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 47

2.8 Appendix: Details of the ImageNet Experiments
Our results on CIFAR-10 show that current models fail to reliably generalize in the presence
of small variations in the data distribution. One hypothesis is that the accuracy drop stems
from the limited nature of the CIFAR-10 dataset. Compared to other datasets, CIFAR-10
is relatively small, both in terms of image resolution and the number of images in the
dataset. Since the CIFAR-10 models are only exposed to a constrained visual environment,
they may be unable to learn a more reliable representation.

To investigate whether ImageNet models generalize more reliably, we assemble a new
test set for ImageNet. ImageNet captures a much broader variety of natural images: it
contains about 24× more training images than CIFAR-10 with roughly 100× more pixels
per image. As a result, ImageNet poses a significantly harder problem and is among the
most prestigious machine learning benchmarks. The steadily improving accuracy numbers
have also been cited as an important breakthrough in machine learning [109]. If popular
ImageNet models are indeed more robust to natural variations in the data (and there is
again no adaptive overfitting), the accuracies on our new test set should roughly match
the existing accuracies.

Before we proceed to our experiments, we briefly describe the relevant background
concerning the ImageNet dataset. For more details, we refer the reader to the original
ImageNet publications [32, 132].

ImageNet. ImageNet [32, 132] is a large image database consisting of more than 14
million human-annotated images depicting almost 22,000 classes. The images do not
have a uniform size, but most of them are stored as RGB color images with a resolution
around 500× 400 pixels. The classes are derived from the WordNet hierarchy [112], which
represents each class by a set of synonyms (“synset”) and is organized into semantically
meaningful relations. Each class has an associated definition (“gloss”) and a unique
WordNet ID (“wnid”).

The ImageNet team populated the classes with images downloaded from various image
search engines, using the WordNet synonyms as queries. The researchers then annotated
the images via Amazon Mechanical Turk (MTurk). A class-specific threshold decided how
many agreements among the MTurk workers were necessary for an image to be considered
valid. Overall, the researchers employed over 49,000 workers from 167 countries [99].

Since 2010, the ImageNet team has run the yearly ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), which consists of separate tracks for object classification,
localization, and detection. All three tracks are based on subsets of the ImageNet data.
The classification track has received the most attention and is also the focus of our paper.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 48

The ILSVRC2012 competition data has become the de facto benchmark version of the
dataset and comprises 1.2 million training images, 50,000 validation images, and 100,000
test images depicting 1,000 categories. We generally refer to this data as the ImageNet
training, validation, and test set. The labels for the ImageNet test set were never publicly
released in order to minimize adaptive overfitting. Instead, teams could submit a limited
number of requests to an evaluation server in order to obtain accuracy scores. There were
no similar limitations in place for the validation set. Most publications report accuracy
numbers on the validation set.

The training, validation, and test sets were not drawn strictly i.i.d. from the same
distribution (i.e., there was not a single data collection run with the result split randomly
into training, validation, and test). Instead, the data collection was an ongoing process
and both the validation and test sets were refreshed in various years of the ILSVRC.
One notable difference is that the ImageNet training and validation sets do not have the
same data source: while the ImageNet training set consists of images from several search
engines (e.g., Google, MSN, Yahoo, and Flickr), the validation set consists almost entirely
of images from Flickr [11].

2.8.1 Dataset Creation Methodology

Since the existing training, validation, and test sets are not strictly i.i.d. (see above), the
first question was which dataset part to replicate. For our experiment, we decided to
match the distribution of the validation set. There are multiple reasons for this choice:

• In contrast to the training set, the validation set comes from only one data source
(Flickr). Moreover, the Flickr API allows fine-grained searches, which makes it easier
to control the data source and match the original distribution.

• In contrast to the original test set, the validation set comes with label information.
This makes it easier to inspect the existing image distribution for each class, which
is important to ensure that we match various intricacies of the dataset.

• Most papers report accuracy numbers on the validation set. Hence comparing new
vs. existing accuracies is most relevant for the validation set.

• The validation set is commonly used to develop new architectures and tune hyperpa-
rameters, which leads to the possibility of adaptive overfitting. If we again observe
no diminishing returns in accuracy on our new test set, this indicates that even the
validation set is resilient to adaptive overfitting.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 49

Therefore, our goal was to replicate the distribution of the original validation set as
closely as possible. We aimed for a new test set of size 10,000 since this would already
result in accuracy scores with small confidence intervals (see Section 1.1.1). While a larger
dataset would result in even smaller confidence intervals, we were also concerned that
searching for more images might lead to a larger distribution shift. In particular, we
decided to use a time range for our Flickr queries after the original ImageNet collection
period (see below for the corresponding considerations). Since a given time period only
has a limited supply of high quality images, a larger test set would have required a longer
time range. This in turn may create a larger temporal distribution shift. To balance these
two concerns, we decided on a size of 10,000 images for the new test set.

Figure 2.5 presents a visual overview of our dataset creation pipeline. It consists of
two parts: creating a pool of candidate images and sampling a clean dataset from this
candidate pool. We now describe each part in detail to give the reader insights into the
design choices potentially affecting the final distribution.

Figure 2.5: The pipeline for the new ImageNet test set. It consists of two parts: creating
the candidate pool and sampling the final dataset from this candidate pool.

2.8.1.1 Creating a Candidate Pool

Similar to the creation procedure for the original ImageNet validation set, we collected
candidate images from the Flickr image hosting service and then annotated them with
Amazon Mechanical Turk (MTurk).

Downloading images from Flickr. The Flickr API has a range of parameters for
image searches such as the query terms, an allowed time range, a maximum number of
returned images, and a sorting order. We summarize the main points here:

• Query terms: For each class, we used each of the WordNet synonyms as a search
term in separate queries.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 50

• Date range: There were two main options for the date range associated with our
queries to Flickr: either the same date range as the original ImageNet data collection,
or a date range directly after ImageNet. The advantage of using the ImageNet date
range is that it avoids a distribution shift due to the time the images were taken.
However, this option also comes with two important caveats: First, the pool of
high quality images in the original ImageNet date range could have been largely
exhausted by ImageNet. Second, the new dataset could end up with near-duplicates
of images in the original validation or training set that are hard to detect. Especially
the first issue is difficult to quantify, so we decided on a time range directly after the
ImageNet collection period.

In particular, we initially searched for images taken and uploaded to Flickr between
July 11, 2012 and July 11, 2013 because the final ILSVRC2012 public data release
was on July 10, 2012. Since we used a period of only one year (significantly shorter
than the ImageNet collection period), we believe that the temporal component of
the distribution shift is small.

• Result size: We initially downloaded up to 100 images for each class. If a class
has k synonyms associated with it, we requested 100/k images for each synonym.
We decided on 100 images per class since we aimed for 10,000 images overall and
estimated that 10% of the candidate images would be of sufficiently high quality
(similar to ImageNet [32]).

• Result order: Flickr offers the sorting options “relevance”, “interestingness”, and
various temporal orderings. Note that the “relevance” and “interestingness” orderings
may rely on machine learning models trained on ImageNet. Since these orderings may
introduce a significant bias (e.g., by mainly showing images that current ImageNet
models recognize for the respective search term), we chose to order the images by
their upload date. This helps to ensure that our new test set is independent of
current classifiers.

After our first data collection, we found it necessary to expand the initial candidate
pool for particular classes in order to reach a sufficient number of valid images. This is
similar to the original ImageNet creation process, where the authors expanded the set of
queries using two methods [32, 132]. The first method appended a word from the parent
class to the queries if this word also appeared in the gloss of the target class. The second
method included translations of the queries into other languages such as Chinese, Spanish,
Dutch, and Italian.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 51

We took the following steps to expand our search queries, only proceeding to the next
step for a given class when in need of more images.

1. Append a word from the parent class if the word appears in the gloss of the target
class.

2. Expand the maximum number of images to 200 for this class.

3. Expand the search range to include photos taken or uploaded before July 11, 2014
(i.e., a time span of two years instead of one).

4. Concatenate compound queries, i.e., search for “dialphone” instead of “dial phone”.

5. Manually pick alternative query words, including translations of the queries.

In total, we obtained 208,145 candidate images from Flickr.

Amazon Mechanical Turk. While the candidate images from Flickr are correlated
with their corresponding class, a large number of images are still unsuitable for an image
classification dataset. For instance, the images may be of low quality (blurry, unclear
object presence, etc.), violate dataset rules (e.g., no paintings), or be simply unrelated to
the target class. So similar to ImageNet, we utilized MTurk to filter our pool of candidate
images.

We designed our MTurk tasks and UI to be close to those used in ImageNet. As
in ImageNet, we showed each MTurk worker a grid of 48 candidate images for a given
target class. The task description was derived from the original ImageNet instructions and
included the definition of the target class with a link to a corresponding Wikipedia page.
We asked the MTurk workers to select images belonging to the target class regardless
of “occlusions, other objects, and clutter or text in the scene” and to avoid drawings or
paintings (both as in ImageNet). Appendix 2.8.4.1 shows a screenshot of our UI and a
screenshot of the original UI for comparison.

For quality control, we embedded at least six randomly selected images from the
original validation set in each MTurk task (three from the same class, three from a class
that is nearby in the WordNet hierarchy). These images appeared in random locations
of the image grid for each task. We obfuscated all image URLs and resized our images
to match the most common size of the existing validation images so that the original
validation images were not easy to spot.

The main outcome of the MTurk tasks is a selection frequency for each image, i.e., what
fraction of MTurk workers selected the image in a task for its target class. We recruited

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 52

at least ten MTurk workers for each task (and hence for each image), which is similar to
ImageNet. Since each task contained original validation images, we could also estimate
how often images from the original dataset were selected by our MTurk workers.

Removing near-duplicate images. The final step in creating the candidate pool was
to remove near-duplicates, both within our new test set and between our new test set and
the original ImageNet dataset. Both types of near-duplicates could harm the quality of
our dataset.

Since we obtained results from Flickr in a temporal ordering, certain events (e.g., the
2012 Olympics) led to a large number of similar images depicting the same scene (e.g.,
in the class for the “horizontal bar“ gymnastics instrument). Inspecting the ImageNet
validation set revealed only very few sets of images from a single event. Moreover, the
ImageNet paper also remarks that they removed near-duplicates [32]. Hence we decided
to remove near-duplicates within our new test set.

Near-duplicates between our dataset and the original test set are also problematic. Since
the models typically achieve high accuracy on the training set, testing on a near-duplicate
of a training image checks for memorization more than generalization. A near-duplicate
between the existing validation set and our new test set also defeats the purpose of
measuring generalization to previously unseen data (as opposed to data that may already
have been the victim of adaptive overfitting).

To find near-duplicates, we computed the 30 nearest neighbors for each candidate image
in three different metrics: `2-distance on raw pixels, `2-distance on features extracted from
a pre-trained VGG [137] model (fc7), and SSIM (structural similarity) [151], which is a
popular image similarity metric. For metrics that were cheap to evaluate (`2-distance on
pixels and `2-distance on fc7), we computed nearest neighbor distances to all candidate
images and all of the original ImageNet data. For the more compute-intensive SSIM
metric, we restricted the set of reference images to include all candidate images and the
five closest ImageNet classes based on the tree distance in the WordNet hierarchy. We
then manually reviewed nearest neighbor pairs below certain thresholds for each metric
and removed any duplicates we discovered.

To the best of our knowledge, ImageNet used only nearest neighbors in the `2-distance
to find near-duplicates [11]. While this difference may lead to a small change in distribution,
we still decided to use multiple metrics since including images that have near-duplicates
in ImageNet would be contrary to the main goal of our experiment. Moreover, a manual
inspection of the original validation set revealed only a very small number of near-duplicates
within the existing dataset.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 53

2.8.1.2 Sampling a Clean Dataset

The result of collecting a candidate pool was a set of images with annotations from MTurk,
most importantly the selection frequency of each image. In the next step, we used this
candidate pool to sample a new test set that closely resembles the distribution of the
existing validation set. There were two main difficulties in this process.

First, the ImageNet publications do not provide the agreement thresholds for each
class that were used to determine which images were valid. One possibility could be to
run the algorithm the ImageNet authors designed to compute the agreement thresholds.
However, this algorithm would need to be exactly specified, which is unfortunately not
the case to the best of our knowledge.10

Second, and more fundamentally, it is impossible to exactly replicate the MTurk worker
population from 2010 – 2012 with a reproducibility experiment in 2018. Even if we had
access to the original agreement thresholds, it is unclear if they would be meaningful
for our MTurk data collection (e.g., because the judgments of our annotations could be
different). Similarly, re-running the algorithm for computing agreement thresholds could
give different results with our MTurk worker population.

So instead of attempting to directly replicate the original agreement thresholds, we
instead explored three different sampling strategies. An important asset in this part of our
experiment was that we had inserted original validation images into the MTurk tasks (see
the previous subsection). So at least for our MTurk worker population, we could estimate
how frequently the MTurk workers select the original validation images.

In this subsection, we describe our sampling strategy that closely matches the selection
frequency distribution of the original validation set. The follow-up experiments in Section
2.3 then explore the impact of this design choice in more detail. As we will see, the
sampling strategy has significant influence on the model accuracies.

Matching the Per-class Selection Frequency. A simple approach to matching the
selection frequency of the existing validation set would be to sample new images so that
the mean selection frequency is the same as for the original dataset. However, a closer

10To be precise: Jia Deng’s PhD thesis [31] provides a clear high-level description of their algorithm
for computing agreement thresholds. However – as is commonly the case in synopses of algorithms –
the description still omits some details such as the binning procedure or the number of images used to
compute the thresholds. Since it is usually hard to exactly reconstruct a non-trivial algorithm from an
informal summary, we instead decided to implement three different sampling strategies and compare their
outcomes. Potential deviations from the ImageNet sampling procedure are also alleviated by the fact that
our MTurk tasks always included at least a few images from the original validation set, which allowed us
to calibrate our sampling strategies to match the existing ImageNet data.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 54

inspection of the selection frequencies reveals significant differences between the various
classes. For instance, well-defined and well-known classes such as “African elephant” tend
to have high selection frequencies ranging from 0.8 to 1.0. At the other end of the spectrum
are classes with an unclear definition or easily confused alternative classes. For instance,
the MTurk workers in our experiment often confused the class “nail” (the fastener) with
fingernails, which led to significantly lower selection frequencies for the original validation
images belonging to this class. In order to match these class-level details, we designed a
sampling process that approximately matches the selection frequency distribution for each
class.

As a first step, we built an estimate of the per-class distribution of selection frequencies.
For each class, we divided the annotated validation images into five histogram bins based
on their selection frequency. These frequency bins were [0.0, 0.2), [0.2, 0.4), [0.4, 0.6),
[0.6, 0.8), and [0.8, 1.0]. Intuitively, these bins correspond to a notion of image quality
assessed by the MTurk workers, with the [0.0, 0.2) bin containing the worst images and
the [0.8, 1.0] bin containing the best images. Normalizing the resulting histograms then
yielded a distribution over these selection frequency bins for each class.

Next, we sampled ten images for each class from our candidate pool, following the
distribution given by the class-specific selection frequency histograms. More precisely, we
first computed the target number of images for each histogram bin, and then sampled
from the candidates images falling into this histogram bin uniformly at random. Since we
only had a limited number of images for each class, this process ran out of images for a
small number of classes. In these cases, we then sampled candidate images from the next
higher bin until we found a histogram bin that still had images remaining. While this
slightly changes the distribution, we remark that it makes our new test set easier and only
affected 0.8% of the images in the new test set.

At the end of this sampling process, we had a test set with 10, 000 images and an
average sampling frequency of 0.73. This is close to the average sampling frequency of the
annotated validation images (0.71).

Final Reviewing. While the methodology outlined so far closely matches the original
ImageNet distribution, it is still hard to ensure that no unintended biases crept into the
dataset (e.g., our MTurk workers could interpret some of the class definitions differently
and select different images). So for quality control, we added a final reviewing step to our
dataset creation pipeline. Its purpose was to rule out obvious biases and ensure that the
dataset satisfies our quality expectations before we ran any models on the new dataset.
This minimizes dependencies between the new test set and the existing models.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 55

In the final reviewing step, the authors of this paper manually reviewed every image
in the dataset. Appendix 2.8.4.2 includes a screenshot and brief description of the user
interface. When we found an incorrect image or a near-duplicate, we removed it from
the dataset. After a pass through the dataset, we then re-sampled new images from our
candidate pool. In some cases, this also required new targeted Flickr searches for certain
classes. We repeated this process until the dataset converged after 33 iterations. We
remark that the majority of iterations only changed a small number of images.

One potential downside of the final reviewing step is that it may lead to a distribution
shift. However, we accepted this possibility since we view dataset correctness to be more
important than minimizing distribution shift. In the end, a test set is only interesting if it
has correct labels. Note also that removing incorrect images from the dataset makes it
easier, which goes against the main trend we observe (a drop in accuracy). Finally, we
kept track of all intermediate iterations of our dataset so that we could measure the impact
of this final reviewing step (see Section 2.8.3.2). This analysis shows that the main trends
(a significant accuracy drop and an approximately linear relationship between original
and new accuracy) also hold for the first iteration of the dataset without any additional
reviewing.

2.8.2 Model Performance Results

After assembling our new test sets, we evaluated a broad range of models on both the
original validation set and our new test sets. Section 2.8.4.3 contains a list of all models
we evaluated with corresponding references and links to source code repositories. Tables
2.14 and 2.15 show the top-1 and top-5 accuracies for our main test set MatchedFrequency.
Figure 2.12 visualizes the top-1 and top-5 accuracies on all three test sets.

In the main text of the paper and Figure 2.12, we have chosen to exclude the Fisher
Vector models and show accuracies only for the convolutional neural networks (convnets).
Since the Fisher Vector models achieve significantly lower accuracy, a plot involving both
model families would have sacrificed resolution among the convnets. We decided to focus
on convnets in the main text because they have become the most widely used model family
on ImageNet.

Moreover, a linear model of accuracies (as shown in previous plots) is often not a good
fit when the accuracies span a wide range. Instead, a non-linear model such as a logistic
or probit model can sometimes describe the data better. Indeed, this is also the case for
our data on ImageNet. Figure 2.6 shows the accuracies both on a linear scale as in the
previous plots, and on a probit scale, i.e., after applying the inverse of the Gaussian CDF
to all accuracy scores. As can be seen by comparing the two plots in Figure 2.6, the probit

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 56

20 30 40 50 60 70 80
Original test accuracy (top-1, %)

10

20

30

40

50

60

70

80

Ne
w

te
st

 a
cc

ur
ac

y
(to

p-
1,

 %
) ImageNet (linear axis scaling)

20 30 40 50 60 70 80
Original test accuracy (%)

10

20

30
40
50
60
70

80

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet (probit axis scaling)

Ideal reproducibility Model accuracy Linear fit

Figure 2.6: Model accuracy on the original ImageNet validation set vs. our new test set
MatchedFrequency. Each data point corresponds to one model in our testbed (shown with
95% Clopper-Pearson confidence intervals), and we now also include the Fisher Vector
models. The left plot shows the model accuracies with a linear scale on the axes. The
right plot instead uses a probit scale, i.e., accuracy α appears at Φ−1(α), where Φ is the
Gaussian CDF. Comparing the two plot provides evidence that the probit model is a
better fit for the accuracy scores.

model is a better fit for our data. It accurately summarizes the relationship between
original and new test set accuracy for all models from both model families in our testbed.

Similar to Figure 2.12, we also show the top-1 and top-5 accuracies for all three datasets
in the probit domain in Figure 2.13. Section 2.4.3 describes a possible generative model
that leads to a linear fit in the probit domain as exhibited by the plots in Figures 2.6 and
2.13.

2.8.3 Follow-up Hypotheses

As for CIFAR-10, the gap between original and new accuracy is concerningly large. Hence
we investigated multiple hypotheses for explaining this gap.

2.8.3.1 Cross Validation

A natural question is whether cross-validation with the existing ImageNet data could have
pointed towards a significant drop in accuracy. If adaptive overfitting to the images in the

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 57

validation set is a cause for the accuracy drop, testing on different images from another
cross-validation fold could produce lower accuracies.11 Moreover, recall that the ImageNet
validation set is not a strictly i.i.d. sample from the same distribution as the training set
(see the beginning of Section 2.3). This also raises the question of how well a model would
perform on a cross-validation fold from the training data.

To investigate these two effects, we conducted a cross-validation experiment with the
ImageNet training and validation sets. In order to ensure that the new cross-validation
folds contain only training images, we treated the existing validation set as one fold and
created five additional folds with 50,000 images each. To this end, we drew a class-balanced
sample of 250,000 images from the training set and then randomly partitioned this sample
into five cross-validation folds (again class-balanced). For each of these five folds, we added
the validation set (and the other training folds) to the training data so that the size of
the training set was unchanged. We then trained one resnet50 model12 [68] for each of
the five training sets and evaluated them on the corresponding held-out data. Table 2.13
shows the resulting accuracies for each split.

Dataset resnet50 Top-5 Accuracy (%)
Original validation set 92.5 [92.3, 92.8]

Split 1 92.60 [92.4, 92.8]
Split 2 92.59 [92.4, 92.8]
Split 3 92.61 [92.4, 92.8]
Split 4 92.55 [92.3, 92.8]
Split 5 92.62 [92.4, 92.9]

New test set (MatchedFrequency) 84.7 [83.9, 85.4]

Table 2.13: resnet50 accuracy on cross-validation splits created from the original
ImageNet train and validation sets. The accuracy increase is likely caused by a small shift
in distribution between the ImageNet training and validation sets.

Overall, we do not see a large difference in accuracy on the new cross validation splits:
all differences fall within the 95% confidence intervals around the accuracy scores. This is
in contrast to the significantly larger accuracy drops on our new test sets.

11Note however that the training images may also be affected by adaptive overfitting since the model
hyperparameters are often tuned for fast training speed and high training accuracy.

12To save computational resources, we used the optimized training code from https://github.com
/fastai/imagenet-fast. Hence the top-5 accuracy on the original validation set is 0.4% lower than
in Table 2.15.

https://github.com/fastai/imagenet-fast
https://github.com/fastai/imagenet-fast

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 58

2.8.3.2 Impact of Dataset Revisions

As mentioned in Section 2.8.1.2, our final reviewing pass may have led to a distribution
shift compared to the original ImageNet validation set. In general, our reviewing criterion
was to blacklist images that were

• not representative of the target class,

• cartoons, paintings, drawings, or renderings,

• significantly different in distribution from the original ImageNet validation set,

• unclear, blurry, severely occluded, overly edited, or including only a small target
object.

For each class, our reviewing UI (screenshot in Appendix 2.8.4.2) displayed a random
sample of ten original validation images directly next to the ten new candidate images
currently chosen. At least to some extent, this allowed us to detect and correct distribution
shifts between the original validation set and our candidate pool. As a concrete example,
we noted in one revision of our dataset that approximately half of the images for “great
white shark” were not live sharks in the water but models in museums or statues outside.
In contrast, the ImageNet validation set had fewer examples of such artificial sharks. Hence
we decided to remove some non-live sharks from our candidate pool and sampled new
shark images as a replacement in the dataset.

Unfortunately, some of these reviewing choices are subjective. However, such choices
are often an inherent part of creating a dataset and it is unclear whether a more “hands-
off” approach would lead to more meaningful conclusions. For instance, if the drop in
accuracy was mainly caused by a distribution shift that is easy to identify and correct
(e.g., an increase in black-and-white images), the resulting drop may not be an interesting
phenomenon (beyond counting black-and-white images). Hence we decided to both remove
distribution shifts that we found easy to identify visually, and also to measure the effect of
these interventions.

Our reviewing process was iterative, i.e., we made a full pass over every incomplete
class in a given dataset revision before sampling new images to fill the resulting gaps. Each
time we re-sampled our dataset, we saved the current list of images in our version control
system. This allowed us to track the datasets over time and later measure the model
accuracy for each dataset revision. We remark that we only computed model accuracies
on intermediate revisions after we had arrived at the final revision of the corresponding
dataset.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 59

Figure 2.7 plots the top-1 accuracy of a resnet50 model versus the dataset revision
for our new MatchedFrequency test set. Overall, reviewing improved model accuracy by
about 4% for this dataset. This is evidence that our manual reviewing did not cause the
drop in accuracy between the original and new dataset.

1 3 5 7 9 11 13 15 17 19 21 23
ImageNetV2-b version #

0.615

0.620

0.625

0.630

0.635

0.640

0.645

0.650

0.655

to
p

1
ac

cu
ra

cy

version vs top 1 accuracy

1 3 5 7 9 11 13 15 17 19 21 23
ImageNetV2-b version #

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

to
p

5
ac

cu
ra

cy

version vs top 5 accuracy

2 4 6 8 10 12 14 16 18 20 22
ImageNetV2-b version #

0

250

500

750

1000

1250

1500

1750

nu
m

be
r o

f i
m

ag
es

 c
ha

ng
ed

 in
 v

er
sio

n

Figure 2.7: Impact of the reviewing passes on the accuracy of a resnet152 on our new
MatchedFrequency test set. The revision numbers correspond to the chronological ordering
in which we created the dataset revisions

In addition, we also investigated whether the linear relationship between original and
new test accuracy was affected by our final reviewing passes. To this end, we evaluated
our model testbed on the first revision of our MatchedFrequency test set. As can be seen
in Figure 2.8, the resulting accuracies still show a good linear fit that is of similar quality
as in Figure 2.12. This shows that the linear relationship between the test accuracies is

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 60

not a result of our reviewing intervention.

60 70 80
Original test accuracy (%)

40

50

60

70

80

90

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. MatchedFrequency, Top-1

80 90 100
Original test accuracy (%)

60

70

80

90

100

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. MatchedFrequency, Top-5

Ideal reproducibility Model accuracy Linear fit

Figure 2.8: Model accuracy on the original ImageNet validation set vs. accuracy on
the first revision of our MatchedFrequency test set. Each data point corresponds to one
model in our testbed (shown with 95% Clopper-Pearson confidence intervals). The red
shaded region is a 95% confidence region for the linear fit from 100,000 bootstrap samples.
The plots show that the linear relationship between original and new test accuracy also
occurs without our final dataset reviewing step. The accuracy plots for the final revision
of MatchedFrequency can be found in Figure 2.12.

2.8.4 Additional Figures, Tables, and Lists

In this appendix we provide content pertaining to ImageNetV2 that did not fit into the
preceding sections about our ImageNet experiments.

2.8.4.1 MTurk User Interfaces

For comparison, we include the original ImageNet MTurk user interface (UI) in Figure 2.9
and the MTurk UI we used in our experiments in Figure 2.10. Each UI corresponds to one
task for the MTurk workers, which consists of 48 images in both cases. In contrast to the
original ImageNet UI, our UI takes up more than one screen. This requires the MTurk
workers to scroll but also provides more details in the images. While the task descriptions

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 61

are not exactly the same, they are very similar and contain the same directions (e.g., both
descriptions ask the MTurk workers to exclude drawings or paintings).

Figure 2.9: The user interface employed in the original ImageNet collection process for
the labeling tasks on Amazon Mechanical Turk.

2.8.4.2 User Interface for our Final Reviewing Process

Figure 2.11 shows a screenshot of the reviewing UI that the paper authors used to manually
review the new ImageNet datasets. At the top, the UI displays the wnid (“n01667114”),
the synset (mud turtle), and the gloss. Next, a grid of 20 images is shown in 4 rows.

The top two rows correspond to the candidate images currently sampled for the new
dataset. Below each image, our UI shows a unique identifier for the image and the date the
image was taken. There is also a check box to blacklist any incorrect images. In addition,
there is a check box for each image to add it to the blacklist of incorrect images. If an
image is added to the blacklist, it will be removed in the next revision of the dataset and
replaced with a new image from the candidate pools. The candidate images are sorted
by the date they were taken, which makes it easier to spot and remove near-duplicates.
Images are marked as near-duplicates by adding their identifier to the “Near-duplicate set”
text field.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 62

The bottom two rows correspond to a random sample of images from the validation
set that belong to the target class. We display these images to make it easier to detect
and correct for distribution shifts between our new test sets and the original ImageNet
validation dataset.

2.8.4.3 Full List of Models Evaluated on ImageNet

The following list contains all models we evaluated on ImageNet with references and links
to the corresponding source code.

1. alexnet [92] https://github.com/Cadene/pretrained-models.pyto
rch

2. bninception [78] https://github.com/Cadene/pretrained-models.py
torch

3. cafferesnet101 [68] https://github.com/Cadene/pretrained-model
s.pytorch

4. densenet121 [76] https://github.com/Cadene/pretrained-models.py
torch

5. densenet161 [76]https://github.com/Cadene/pretrained-models.py
torch

6. densenet169 [76] https://github.com/Cadene/pretrained-models.py
torch

7. densenet201 [76] https://github.com/Cadene/pretrained-models.py
torch

8. dpn107 [17] https://github.com/Cadene/pretrained-models.pytorc
h

9. dpn131 [17] https://github.com/Cadene/pretrained-models.pytorc
h

10. dpn68b [17]https://github.com/Cadene/pretrained-models.pytorc
h

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 63

11. dpn68 [17] https://github.com/Cadene/pretrained-models.pytorc
h

12. dpn92 [17] https://github.com/Cadene/pretrained-models.pytorc
h

13. dpn98 [17] https://github.com/Cadene/pretrained-models.pytorc
h

14. fbresnet152 [68] https://github.com/tensorflow/models/tree/ma
ster/research/slim/

15. fv_4k [19, 117] https://github.com/modestyachts/nondeep FisherVec-
tor model using SIFT, local color statistic features, and 16 GMM centers.

16. fv_16k [19, 117] https://github.com/modestyachts/nondeep FisherVec-
tor model using SIFT, local color statistic features, and 64 GMM centers.

17. fv_64k [19, 117] https://github.com/modestyachts/nondeep FisherVec-
tor model using SIFT, local color statistic features, and 256 GMM centers.

18. inception_resnet_v2_tf [143] https://github.com/tensorflow/mode
ls/tree/master/research/slim/

19. inception_v1_tf [141] https://github.com/tensorflow/models/tre
e/master/research/slim/

20. inception_v2_tf [78] https://github.com/tensorflow/models/tre
e/master/research/slim/

21. inception_v3_tf [142] https://github.com/tensorflow/models/tre
e/master/research/slim/

22. inception_v3 [142] https://github.com/Cadene/pretrained-model
s.pytorch

23. inception_v4_tf [143] https://github.com/tensorflow/models/tre
e/master/research/slim/

24. inceptionresnetv2 [78] https://github.com/Cadene/pretrained-m
odels.pytorch

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 64

25. inceptionv3 [142] https://github.com/Cadene/pretrained-models.
pytorch

26. inceptionv4 [143] https://github.com/Cadene/pretrained-models.
pytorch

27. mobilenet_v1_tf [74] https://github.com/tensorflow/models/tre
e/master/research/slim/

28. nasnet_large_tf [166] https://github.com/tensorflow/models/tre
e/master/research/slim/

29. nasnet_mobile_tf [166] https://github.com/tensorflow/models/tre
e/master/research/slim/

30. nasnetalarge [166] https://github.com/Cadene/pretrained-model
s.pytorch

31. nasnetamobile [166] https://github.com/Cadene/pretrained-model
s.pytorch

32. pnasnet5large [103] https://github.com/Cadene/pretrained-model
s.pytorch

33. pnasnet_large_tf [103] https://github.com/tensorflow/models/tre
e/master/research/slim/

34. pnasnet_mobile_tf [103] https://github.com/tensorflow/models/t
ree/master/research/slim/

35. polynet [161] https://github.com/Cadene/pretrained-models.pyto
rch

36. resnet101 [68] https://github.com/Cadene/pretrained-models.py
torch

37. resnet152 [68] https://github.com/Cadene/pretrained-models.py
torch

38. resnet18 [68] https://github.com/Cadene/pretrained-models.pyto
rch

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 65

39. resnet34 [68] https://github.com/Cadene/pretrained-models.pyto
rch

40. resnet50 [68] https://github.com/Cadene/pretrained-models.pyto
rch

41. resnet_v1_101_tf [68] https://github.com/tensorflow/models/tre
e/master/research/slim/

42. resnet_v1_152_tf [68] https://github.com/tensorflow/models/tre
e/master/research/slim/

43. resnet_v1_50_tf [68] https://github.com/tensorflow/models/tre
e/master/research/slim/

44. resnet_v2_101_tf [69] https://github.com/tensorflow/models/tre
e/master/research/slim/

45. resnet_v2_152_tf [69] https://github.com/tensorflow/models/tre
e/master/research/slim/

46. resnet_v2_50_tf [69] https://github.com/tensorflow/models/tre
e/master/research/slim/

47. resnext101_32x4d [157] https://github.com/Cadene/pretrained-m
odels.pytorch

48. resnext101_64x4d [157] https://github.com/Cadene/pretrained-m
odels.pytorch

49. se_resnet101 [75] https://github.com/Cadene/pretrained-models.
pytorch

50. se_resnet152 [75] https://github.com/Cadene/pretrained-models.
pytorch

51. se_resnet50 [75] https://github.com/Cadene/pretrained-models.py
torch

52. se_resnext101_32x4d [75] https://github.com/Cadene/pretrained
-models.pytorch

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 66

53. se_resnext50_32x4d [75] https://github.com/Cadene/pretrained-m
odels.pytorch

54. senet154 [75] https://github.com/Cadene/pretrained-models.pyto
rch

55. squeezenet1_0 [77] https://github.com/Cadene/pretrained-model
s.pytorch

56. squeezenet1_1 [77] https://github.com/Cadene/pretrained-model
s.pytorch

57. vgg11_bn [78] https://github.com/Cadene/pretrained-models.pyto
rch

58. vgg11 [137] https://github.com/Cadene/pretrained-models.pytorc
h

59. vgg13_bn [78] https://github.com/Cadene/pretrained-models.pyto
rch

60. vgg13 [137] https://github.com/Cadene/pretrained-models.pytorc
h

61. vgg16_bn [78] https://github.com/Cadene/pretrained-models.pyto
rch

62. vgg16 [137] https://github.com/Cadene/pretrained-models.pytorc
h

63. vgg19_bn [78] https://github.com/Cadene/pretrained-models.pyto
rch

64. vgg19 [137] https://github.com/Cadene/pretrained-models.pytorc
h

65. vgg_16_tf [137] https://github.com/tensorflow/models/tree/mast
er/research/slim/

66. vgg_19_tf [137] https://github.com/tensorflow/models/tree/mast
er/research/slim/

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/
https://github.com/tensorflow/models/tree/master/research/slim/

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 67

67. xception [18] https://github.com/Cadene/pretrained-models.pyto
rch

2.8.4.4 Full Results Tables

Tables 2.14 and 2.15 contain the detailed accuracy scores (top-1 and top-5, respectively)
for the original ImageNet validation set and our main new test set MatchedFrequency.
Tables 2.16 – 2.19 contain the accuracy scores for our Threshold0.7 and TopImages test
sets.

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 68

Figure 2.10: Our user interface for labeling tasks on Amazon Mechanical Turk. The
screenshot here omits the scroll bar and shows only a subset of the entire MTurk task. As
in the ImageNet UI, the full task involves a grid of 48 images.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 69

Figure 2.11: The user interface we built to review dataset revisions and remove incorrect
or near duplicate images. This user interface was not used for MTurk but only in the final
dataset review step conducted by the authors of this paper.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 70

Table 2.14: Top-1 model accuracy on the original ImageNet validation set and our new
test set MatchedFrequency.

ImageNet Top-1 MatchedFrequency
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 72.2 [71.3, 73.1] 10.7 3 -2
2 pnasnet5large 82.7 [82.4, 83.1] 72.1 [71.2, 73.0] 10.7 4 -2
3 nasnet_large_tf 82.7 [82.4, 83.0] 72.2 [71.3, 73.1] 10.5 2 1
4 nasnetalarge 82.5 [82.2, 82.8] 72.2 [71.3, 73.1] 10.3 1 3
5 senet154 81.3 [81.0, 81.6] 70.5 [69.6, 71.4] 10.8 5 0
6 polynet 80.9 [80.5, 81.2] 70.3 [69.4, 71.2] 10.5 6 0
7 inception_resnet_v2_tf80.4 [80.0, 80.7] 69.7 [68.7, 70.6] 10.7 7 0
8 inceptionresnetv2 80.3 [79.9, 80.6] 69.6 [68.7, 70.5] 10.6 8 0
9 se_resnext101_32x4d 80.2 [79.9, 80.6] 69.3 [68.4, 70.2] 10.9 9 0
10 inception_v4_tf 80.2 [79.8, 80.5] 68.8 [67.9, 69.7] 11.4 11 -1
11 inceptionv4 80.1 [79.7, 80.4] 69.1 [68.2, 70.0] 10.9 10 1
12 dpn107 79.7 [79.4, 80.1] 68.1 [67.2, 69.0] 11.7 12 0
13 dpn131 79.4 [79.1, 79.8] 67.9 [67.0, 68.8] 11.5 13 0
14 dpn92 79.4 [79.0, 79.8] 67.3 [66.3, 68.2] 12.1 17 -3
15 dpn98 79.2 [78.9, 79.6] 67.8 [66.9, 68.8] 11.4 15 0
16 se_resnext50_32x4d 79.1 [78.7, 79.4] 67.9 [66.9, 68.8] 11.2 14 2
17 resnext101_64x4d 79.0 [78.6, 79.3] 67.1 [66.2, 68.0] 11.9 20 -3
18 xception 78.8 [78.5, 79.2] 67.2 [66.2, 68.1] 11.7 18 0
19 se_resnet152 78.7 [78.3, 79.0] 67.5 [66.6, 68.5] 11.1 16 3
20 se_resnet101 78.4 [78.0, 78.8] 67.2 [66.2, 68.1] 11.2 19 1
21 resnet152 78.3 [77.9, 78.7] 67.0 [66.1, 67.9] 11.3 21 0
22 resnext101_32x4d 78.2 [77.8, 78.5] 66.2 [65.3, 67.2] 11.9 22 0
23 inception_v3_tf 78.0 [77.6, 78.3] 66.1 [65.1, 67.0] 11.9 24 -1
24 resnet_v2_152_tf 77.8 [77.4, 78.1] 66.1 [65.1, 67.0] 11.7 25 -1
25 se_resnet50 77.6 [77.3, 78.0] 66.2 [65.3, 67.2] 11.4 23 2
26 fbresnet152 77.4 [77.0, 77.8] 65.8 [64.9, 66.7] 11.6 26 0
27 resnet101 77.4 [77.0, 77.7] 65.7 [64.7, 66.6] 11.7 28 -1
28 inceptionv3 77.3 [77.0, 77.7] 65.7 [64.8, 66.7] 11.6 27 1
29 inception_v3 77.2 [76.8, 77.6] 65.4 [64.5, 66.4] 11.8 29 0
30 densenet161 77.1 [76.8, 77.5] 65.3 [64.4, 66.2] 11.8 30 0
31 dpn68b 77.0 [76.7, 77.4] 64.7 [63.7, 65.6] 12.4 32 -1
32 resnet_v2_101_tf 77.0 [76.6, 77.3] 64.6 [63.7, 65.6] 12.3 34 -2
33 densenet201 76.9 [76.5, 77.3] 64.7 [63.7, 65.6] 12.2 31 2

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 71

ImageNet Top-1 MatchedFrequency
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 64.6 [63.7, 65.6] 12.2 33 1
35 resnet_v1_101_tf 76.4 [76.0, 76.8] 64.5 [63.6, 65.5] 11.9 35 0
36 cafferesnet101 76.2 [75.8, 76.6] 64.3 [63.4, 65.2] 11.9 36 0
37 resnet50 76.1 [75.8, 76.5] 63.3 [62.4, 64.3] 12.8 39 -2
38 dpn68 75.9 [75.5, 76.2] 63.4 [62.5, 64.4] 12.4 38 0
39 densenet169 75.6 [75.2, 76.0] 63.9 [62.9, 64.8] 11.7 37 2
40 resnet_v2_50_tf 75.6 [75.2, 76.0] 62.7 [61.8, 63.7] 12.9 40 0
41 resnet_v1_50_tf 75.2 [74.8, 75.6] 62.6 [61.6, 63.5] 12.6 41 0
42 densenet121 74.4 [74.0, 74.8] 62.2 [61.3, 63.2] 12.2 42 0
43 vgg19_bn 74.2 [73.8, 74.6] 61.9 [60.9, 62.8] 12.3 44 -1
44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 60.9 [59.9, 61.8] 13.3 48 -4
45 nasnetamobile 74.1 [73.7, 74.5] 61.6 [60.6, 62.5] 12.5 45 0
46 inception_v2_tf 74.0 [73.6, 74.4] 61.2 [60.2, 62.2] 12.8 46 0
47 nasnet_mobile_tf 74.0 [73.6, 74.4] 60.8 [59.8, 61.7] 13.2 50 -3
48 bninception 73.5 [73.1, 73.9] 62.1 [61.2, 63.1] 11.4 43 5
49 vgg16_bn 73.4 [73.0, 73.7] 60.8 [59.8, 61.7] 12.6 49 0
50 resnet34 73.3 [72.9, 73.7] 61.2 [60.2, 62.2] 12.1 47 3
51 vgg19 72.4 [72.0, 72.8] 59.7 [58.7, 60.7] 12.7 51 0
52 vgg16 71.6 [71.2, 72.0] 58.8 [57.9, 59.8] 12.8 53 -1
53 vgg13_bn 71.6 [71.2, 72.0] 59.0 [58.0, 59.9] 12.6 52 1
54 mobilenet_v1_tf 71.0 [70.6, 71.4] 57.4 [56.4, 58.4] 13.6 56 -2
55 vgg_19_tf 71.0 [70.6, 71.4] 58.6 [57.7, 59.6] 12.4 54 1
56 vgg_16_tf 70.9 [70.5, 71.3] 58.4 [57.4, 59.3] 12.5 55 1
57 vgg11_bn 70.4 [70.0, 70.8] 57.4 [56.4, 58.4] 13.0 57 0
58 vgg13 69.9 [69.5, 70.3] 57.1 [56.2, 58.1] 12.8 59 -1
59 inception_v1_tf 69.8 [69.4, 70.2] 56.6 [55.7, 57.6] 13.1 60 -1
60 resnet18 69.8 [69.4, 70.2] 57.2 [56.2, 58.2] 12.6 58 2
61 vgg11 69.0 [68.6, 69.4] 55.8 [54.8, 56.8] 13.2 61 0
62 squeezenet1_1 58.2 [57.7, 58.6] 45.3 [44.4, 46.3] 12.8 62 0
63 squeezenet1_0 58.1 [57.7, 58.5] 45.0 [44.0, 46.0] 13.1 63 0
64 alexnet 56.5 [56.1, 57.0] 44.0 [43.0, 45.0] 12.5 64 0
65 fv_64k 35.1 [34.7, 35.5] 24.1 [23.2, 24.9] 11.0 65 0
66 fv_16k 28.3 [27.9, 28.7] 19.2 [18.5, 20.0] 9.1 66 0
67 fv_4k 21.2 [20.8, 21.5] 15.0 [14.3, 15.7] 6.2 67 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 72

Table 2.15: Top-5 model accuracy on the original ImageNet validation set and our new
test set MatchedFrequency.

ImageNet Top-5 MatchedFrequency
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 90.1 [89.5, 90.7] 6.1 3 -2
2 nasnet_large_tf 96.2 [96.0, 96.3] 90.1 [89.5, 90.6] 6.1 4 -2
3 nasnetalarge 96.0 [95.8, 96.2] 90.4 [89.8, 91.0] 5.6 1 2
4 pnasnet5large 96.0 [95.8, 96.2] 90.2 [89.6, 90.8] 5.8 2 2
5 polynet 95.6 [95.4, 95.7] 89.1 [88.5, 89.7] 6.4 5 0
6 senet154 95.5 [95.3, 95.7] 89.0 [88.4, 89.6] 6.5 6 0
7 inception_resnet_v2_tf95.2 [95.1, 95.4] 88.4 [87.7, 89.0] 6.9 9 -2
8 inception_v4_tf 95.2 [95.0, 95.4] 88.3 [87.6, 88.9] 6.9 10 -2
9 inceptionresnetv2 95.1 [94.9, 95.3] 88.5 [87.8, 89.1] 6.7 8 1
10 se_resnext101_32x4d 95.0 [94.8, 95.2] 88.0 [87.4, 88.7] 7.0 11 -1
11 inceptionv4 94.9 [94.7, 95.1] 88.7 [88.1, 89.3] 6.2 7 4
12 dpn107 94.7 [94.5, 94.9] 87.6 [86.9, 88.2] 7.1 13 -1
13 dpn92 94.6 [94.4, 94.8] 87.2 [86.5, 87.8] 7.5 17 -4
14 dpn131 94.6 [94.4, 94.8] 87.0 [86.3, 87.7] 7.6 19 -5
15 dpn98 94.5 [94.3, 94.7] 87.2 [86.5, 87.8] 7.3 16 -1
16 se_resnext50_32x4d 94.4 [94.2, 94.6] 87.6 [87.0, 88.3] 6.8 12 4
17 se_resnet152 94.4 [94.2, 94.6] 87.4 [86.7, 88.0] 7.0 15 2
18 xception 94.3 [94.1, 94.5] 87.0 [86.3, 87.7] 7.3 20 -2
19 se_resnet101 94.3 [94.1, 94.5] 87.1 [86.4, 87.7] 7.2 18 1
20 resnext101_64x4d 94.3 [94.0, 94.5] 86.9 [86.2, 87.5] 7.4 22 -2
21 resnet_v2_152_tf 94.1 [93.9, 94.3] 86.9 [86.2, 87.5] 7.2 21 0
22 resnet152 94.0 [93.8, 94.3] 87.6 [86.9, 88.2] 6.5 14 8
23 inception_v3_tf 93.9 [93.7, 94.1] 86.4 [85.7, 87.0] 7.6 23 0
24 resnext101_32x4d 93.9 [93.7, 94.1] 86.2 [85.5, 86.8] 7.7 25 -1
25 se_resnet50 93.8 [93.5, 94.0] 86.3 [85.6, 87.0] 7.4 24 1
26 resnet_v2_101_tf 93.7 [93.5, 93.9] 86.1 [85.4, 86.8] 7.6 27 -1
27 fbresnet152 93.6 [93.4, 93.8] 86.1 [85.4, 86.7] 7.5 28 -1
28 dpn68b 93.6 [93.4, 93.8] 85.3 [84.6, 86.0] 8.3 33 -5
29 densenet161 93.6 [93.3, 93.8] 86.1 [85.4, 86.8] 7.4 26 3
30 resnet101 93.5 [93.3, 93.8] 86.0 [85.3, 86.7] 7.6 30 0
31 inception_v3 93.5 [93.3, 93.7] 85.9 [85.2, 86.6] 7.6 31 0
32 inceptionv3 93.4 [93.2, 93.6] 86.1 [85.4, 86.7] 7.4 29 3
33 densenet201 93.4 [93.1, 93.6] 85.3 [84.6, 86.0] 8.1 34 -1

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 73

ImageNet Top-5 MatchedFrequency
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 85.4 [84.6, 86.0] 7.8 32 2
35 resnet_v1_101_tf 92.9 [92.7, 93.1] 85.2 [84.5, 85.9] 7.7 35 0
36 resnet50 92.9 [92.6, 93.1] 84.7 [83.9, 85.4] 8.2 38 -2
37 resnet_v2_50_tf 92.8 [92.6, 93.1] 84.4 [83.6, 85.1] 8.5 40 -3
38 densenet169 92.8 [92.6, 93.0] 84.7 [84.0, 85.4] 8.1 37 1
39 dpn68 92.8 [92.5, 93.0] 84.6 [83.9, 85.3] 8.2 39 0
40 cafferesnet101 92.8 [92.5, 93.0] 84.9 [84.1, 85.6] 7.9 36 4
41 resnet_v1_50_tf 92.2 [92.0, 92.4] 84.1 [83.4, 84.8] 8.1 41 0
42 densenet121 92.0 [91.7, 92.2] 83.8 [83.1, 84.5] 8.2 42 0
43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 83.1 [82.4, 83.8] 8.8 46 -3
44 vgg19_bn 91.8 [91.6, 92.1] 83.5 [82.7, 84.2] 8.4 43 1
45 inception_v2_tf 91.8 [91.5, 92.0] 83.1 [82.3, 83.8] 8.7 47 -2
46 nasnetamobile 91.7 [91.5, 92.0] 83.4 [82.6, 84.1] 8.4 45 1
47 nasnet_mobile_tf 91.6 [91.3, 91.8] 82.2 [81.4, 82.9] 9.4 50 -3
48 bninception 91.6 [91.3, 91.8] 83.4 [82.7, 84.2] 8.1 44 4
49 vgg16_bn 91.5 [91.3, 91.8] 83.0 [82.2, 83.7] 8.6 48 1
50 resnet34 91.4 [91.2, 91.7] 82.7 [82.0, 83.5] 8.7 49 1
51 vgg19 90.9 [90.6, 91.1] 81.5 [80.7, 82.2] 9.4 52 -1
52 vgg16 90.4 [90.1, 90.6] 81.7 [80.9, 82.4] 8.7 51 1
53 vgg13_bn 90.4 [90.1, 90.6] 81.1 [80.3, 81.9] 9.3 53 0
54 mobilenet_v1_tf 90.0 [89.7, 90.2] 79.4 [78.6, 80.1] 10.6 60 -6
56 vgg_19_tf 89.8 [89.6, 90.1] 80.7 [79.9, 81.4] 9.2 54 2
55 vgg_16_tf 89.8 [89.6, 90.1] 80.5 [79.7, 81.3] 9.3 55 0
57 vgg11_bn 89.8 [89.5, 90.1] 80.0 [79.2, 80.8] 9.8 58 -1
58 inception_v1_tf 89.6 [89.4, 89.9] 80.1 [79.3, 80.9] 9.5 57 1
59 vgg13 89.2 [89.0, 89.5] 79.5 [78.7, 80.3] 9.7 59 0
60 resnet18 89.1 [88.8, 89.3] 80.2 [79.4, 81.0] 8.9 56 4
61 vgg11 88.6 [88.3, 88.9] 78.8 [78.0, 79.6] 9.8 61 0
62 squeezenet1_1 80.6 [80.3, 81.0] 69.0 [68.1, 69.9] 11.6 62 0
63 squeezenet1_0 80.4 [80.1, 80.8] 68.5 [67.6, 69.4] 11.9 63 0
64 alexnet 79.1 [78.7, 79.4] 67.4 [66.5, 68.3] 11.7 64 0
65 fv_64k 55.7 [55.3, 56.2] 42.6 [41.6, 43.6] 13.2 65 0
66 fv_16k 49.9 [49.5, 50.4] 37.5 [36.6, 38.5] 12.4 66 0
67 fv_4k 41.3 [40.8, 41.7] 31.0 [30.1, 31.9] 10.3 67 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 74

Table 2.16: Top-1 model accuracy on the original ImageNet validation set and our new
test set Threshold0.7.

ImageNet Top-1 Threshold0.7
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 80.2 [79.4, 80.9] 2.7 2 -1
2 pnasnet5large 82.7 [82.4, 83.1] 80.3 [79.5, 81.1] 2.4 1 1
3 nasnet_large_tf 82.7 [82.4, 83.0] 80.1 [79.3, 80.9] 2.6 3 0
4 nasnetalarge 82.5 [82.2, 82.8] 80.0 [79.2, 80.8] 2.5 4 0
5 senet154 81.3 [81.0, 81.6] 78.7 [77.8, 79.5] 2.6 5 0
6 polynet 80.9 [80.5, 81.2] 78.5 [77.7, 79.3] 2.3 6 0
7 inception_resnet_v2_tf80.4 [80.0, 80.7] 77.9 [77.1, 78.7] 2.5 8 -1
8 inceptionresnetv2 80.3 [79.9, 80.6] 78.0 [77.2, 78.8] 2.3 7 1
9 se_resnext101_32x4d 80.2 [79.9, 80.6] 77.6 [76.8, 78.5] 2.6 11 -2
10 inception_v4_tf 80.2 [79.8, 80.5] 77.8 [77.0, 78.6] 2.4 10 0
11 inceptionv4 80.1 [79.7, 80.4] 77.9 [77.0, 78.7] 2.2 9 2
12 dpn107 79.7 [79.4, 80.1] 76.6 [75.8, 77.5] 3.1 12 0
13 dpn131 79.4 [79.1, 79.8] 76.6 [75.7, 77.4] 2.9 13 0
14 dpn92 79.4 [79.0, 79.8] 76.3 [75.5, 77.1] 3.1 17 -3
15 dpn98 79.2 [78.9, 79.6] 76.3 [75.5, 77.2] 2.9 16 -1
16 se_resnext50_32x4d 79.1 [78.7, 79.4] 76.5 [75.7, 77.3] 2.6 14 2
17 resnext101_64x4d 79.0 [78.6, 79.3] 75.6 [74.7, 76.4] 3.4 20 -3
18 xception 78.8 [78.5, 79.2] 76.4 [75.5, 77.2] 2.5 15 3
19 se_resnet152 78.7 [78.3, 79.0] 76.1 [75.3, 76.9] 2.5 18 1
20 se_resnet101 78.4 [78.0, 78.8] 75.8 [75.0, 76.7] 2.6 19 1
21 resnet152 78.3 [77.9, 78.7] 75.3 [74.5, 76.2] 3.0 22 -1
22 resnext101_32x4d 78.2 [77.8, 78.5] 75.4 [74.5, 76.2] 2.8 21 1
23 inception_v3_tf 78.0 [77.6, 78.3] 75.0 [74.2, 75.9] 2.9 24 -1
24 resnet_v2_152_tf 77.8 [77.4, 78.1] 75.2 [74.4, 76.1] 2.6 23 1
25 se_resnet50 77.6 [77.3, 78.0] 74.2 [73.3, 75.1] 3.4 30 -5
26 fbresnet152 77.4 [77.0, 77.8] 74.8 [74.0, 75.7] 2.6 25 1
27 resnet101 77.4 [77.0, 77.7] 74.5 [73.6, 75.3] 2.9 29 -2
28 inceptionv3 77.3 [77.0, 77.7] 74.5 [73.6, 75.4] 2.8 28 0
29 inception_v3 77.2 [76.8, 77.6] 74.7 [73.8, 75.6] 2.5 26 3
30 densenet161 77.1 [76.8, 77.5] 74.6 [73.7, 75.4] 2.6 27 3
31 dpn68b 77.0 [76.7, 77.4] 73.8 [72.9, 74.7] 3.2 33 -2
32 resnet_v2_101_tf 77.0 [76.6, 77.3] 74.0 [73.1, 74.8] 3.0 31 1
33 densenet201 76.9 [76.5, 77.3] 73.9 [73.1, 74.8] 3.0 32 1

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 75

ImageNet Top-1 Threshold0.7
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 73.7 [72.9, 74.6] 3.1 34 0
35 resnet_v1_101_tf 76.4 [76.0, 76.8] 73.4 [72.5, 74.2] 3.0 35 0
36 cafferesnet101 76.2 [75.8, 76.6] 72.9 [72.0, 73.7] 3.3 37 -1
37 resnet50 76.1 [75.8, 76.5] 72.7 [71.8, 73.6] 3.4 38 -1
38 dpn68 75.9 [75.5, 76.2] 73.0 [72.1, 73.8] 2.9 36 2
39 densenet169 75.6 [75.2, 76.0] 72.3 [71.4, 73.1] 3.3 40 -1
40 resnet_v2_50_tf 75.6 [75.2, 76.0] 72.3 [71.4, 73.2] 3.3 39 1
41 resnet_v1_50_tf 75.2 [74.8, 75.6] 71.9 [71.0, 72.8] 3.3 41 0
42 densenet121 74.4 [74.0, 74.8] 70.5 [69.6, 71.4] 3.9 47 -5
43 vgg19_bn 74.2 [73.8, 74.6] 71.4 [70.5, 72.3] 2.8 42 1
44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 70.6 [69.7, 71.5] 3.6 46 -2
45 nasnetamobile 74.1 [73.7, 74.5] 70.9 [70.0, 71.8] 3.2 45 0
46 inception_v2_tf 74.0 [73.6, 74.4] 71.1 [70.2, 72.0] 2.9 44 2
47 nasnet_mobile_tf 74.0 [73.6, 74.4] 70.0 [69.0, 70.8] 4.0 50 -3
48 bninception 73.5 [73.1, 73.9] 71.3 [70.4, 72.2] 2.2 43 5
49 vgg16_bn 73.4 [73.0, 73.7] 70.2 [69.3, 71.1] 3.1 48 1
50 resnet34 73.3 [72.9, 73.7] 70.2 [69.2, 71.0] 3.2 49 1
51 vgg19 72.4 [72.0, 72.8] 68.7 [67.8, 69.6] 3.7 51 0
52 vgg16 71.6 [71.2, 72.0] 68.0 [67.0, 68.9] 3.6 52 0
53 vgg13_bn 71.6 [71.2, 72.0] 67.3 [66.4, 68.2] 4.3 55 -2
54 mobilenet_v1_tf 71.0 [70.6, 71.4] 66.1 [65.2, 67.0] 4.9 59 -5
55 vgg_19_tf 71.0 [70.6, 71.4] 67.4 [66.5, 68.3] 3.6 54 1
56 vgg_16_tf 70.9 [70.5, 71.3] 67.6 [66.7, 68.5] 3.3 53 3
57 vgg11_bn 70.4 [70.0, 70.8] 66.4 [65.5, 67.3] 4.0 58 -1
58 vgg13 69.9 [69.5, 70.3] 66.0 [65.0, 66.9] 4.0 60 -2
59 inception_v1_tf 69.8 [69.4, 70.2] 66.4 [65.5, 67.4] 3.3 57 2
60 resnet18 69.8 [69.4, 70.2] 66.6 [65.7, 67.5] 3.2 56 4
61 vgg11 69.0 [68.6, 69.4] 64.6 [63.7, 65.6] 4.4 61 0
62 squeezenet1_1 58.2 [57.7, 58.6] 54.4 [53.4, 55.4] 3.8 62 0
63 squeezenet1_0 58.1 [57.7, 58.5] 53.4 [52.4, 54.4] 4.7 63 0
64 alexnet 56.5 [56.1, 57.0] 51.3 [50.3, 52.3] 5.2 64 0
65 fv_64k 35.1 [34.7, 35.5] 29.1 [28.2, 30.0] 6.0 65 0
66 fv_16k 28.3 [27.9, 28.7] 23.4 [22.5, 24.2] 5.0 66 0
67 fv_4k 21.2 [20.8, 21.5] 17.8 [17.0, 18.5] 3.4 67 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 76

Table 2.17: Top-5 model accuracy on the original ImageNet validation set and our new
test set Threshold0.7.

ImageNet Top-5 Threshold0.7
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 95.6 [95.2, 96.0] 0.6 2 -1
2 nasnet_large_tf 96.2 [96.0, 96.3] 95.7 [95.2, 96.0] 0.5 1 1
3 nasnetalarge 96.0 [95.8, 96.2] 95.3 [94.9, 95.8] 0.7 4 -1
4 pnasnet5large 96.0 [95.8, 96.2] 95.5 [95.0, 95.9] 0.5 3 1
5 polynet 95.6 [95.4, 95.7] 94.9 [94.4, 95.3] 0.7 5 0
6 senet154 95.5 [95.3, 95.7] 94.8 [94.3, 95.2] 0.7 6 0
7 inception_resnet_v2_tf95.2 [95.1, 95.4] 94.7 [94.2, 95.1] 0.6 7 0
8 inception_v4_tf 95.2 [95.0, 95.4] 94.4 [94.0, 94.9] 0.8 9 -1
9 inceptionresnetv2 95.1 [94.9, 95.3] 94.5 [94.1, 95.0] 0.6 8 1
10 se_resnext101_32x4d 95.0 [94.8, 95.2] 94.3 [93.8, 94.7] 0.7 11 -1
11 inceptionv4 94.9 [94.7, 95.1] 94.3 [93.8, 94.7] 0.6 10 1
12 dpn107 94.7 [94.5, 94.9] 93.7 [93.2, 94.2] 1.0 12 0
13 dpn92 94.6 [94.4, 94.8] 93.7 [93.2, 94.2] 0.9 14 -1
14 dpn131 94.6 [94.4, 94.8] 93.5 [92.9, 93.9] 1.1 20 -6
15 dpn98 94.5 [94.3, 94.7] 93.6 [93.1, 94.1] 0.9 17 -2
16 se_resnext50_32x4d 94.4 [94.2, 94.6] 93.6 [93.1, 94.1] 0.8 16 0
17 se_resnet152 94.4 [94.2, 94.6] 93.7 [93.2, 94.2] 0.7 13 4
18 xception 94.3 [94.1, 94.5] 93.6 [93.1, 94.1] 0.7 18 0
19 se_resnet101 94.3 [94.1, 94.5] 93.6 [93.1, 94.0] 0.7 19 0
20 resnext101_64x4d 94.3 [94.0, 94.5] 93.3 [92.8, 93.8] 0.9 22 -2
21 resnet_v2_152_tf 94.1 [93.9, 94.3] 93.4 [92.9, 93.9] 0.7 21 0
22 resnet152 94.0 [93.8, 94.3] 93.7 [93.2, 94.2] 0.4 15 7
23 inception_v3_tf 93.9 [93.7, 94.1] 92.8 [92.3, 93.3] 1.1 25 -2
24 resnext101_32x4d 93.9 [93.7, 94.1] 92.7 [92.2, 93.2] 1.2 28 -4
25 se_resnet50 93.8 [93.5, 94.0] 93.0 [92.4, 93.5] 0.8 24 1
26 resnet_v2_101_tf 93.7 [93.5, 93.9] 93.2 [92.7, 93.7] 0.5 23 3
27 fbresnet152 93.6 [93.4, 93.8] 92.7 [92.1, 93.2] 0.9 29 -2
28 dpn68b 93.6 [93.4, 93.8] 92.7 [92.1, 93.2] 0.9 31 -3
29 densenet161 93.6 [93.3, 93.8] 92.8 [92.3, 93.3] 0.8 26 3
30 resnet101 93.5 [93.3, 93.8] 92.8 [92.3, 93.3] 0.8 27 3
31 inception_v3 93.5 [93.3, 93.7] 92.7 [92.1, 93.2] 0.9 30 1
32 inceptionv3 93.4 [93.2, 93.6] 92.6 [92.1, 93.1] 0.8 32 0
33 densenet201 93.4 [93.1, 93.6] 92.4 [91.9, 92.9] 1.0 33 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 77

ImageNet Top-5 Threshold0.7
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 92.2 [91.7, 92.7] 1.0 34 0
35 resnet_v1_101_tf 92.9 [92.7, 93.1] 92.0 [91.5, 92.5] 0.9 36 -1
36 resnet50 92.9 [92.6, 93.1] 92.0 [91.5, 92.5] 0.9 37 -1
37 resnet_v2_50_tf 92.8 [92.6, 93.1] 91.9 [91.4, 92.5] 0.9 38 -1
38 densenet169 92.8 [92.6, 93.0] 91.9 [91.4, 92.4] 0.9 39 -1
39 dpn68 92.8 [92.5, 93.0] 92.1 [91.5, 92.6] 0.7 35 4
40 cafferesnet101 92.8 [92.5, 93.0] 91.6 [91.1, 92.2] 1.1 40 0
41 resnet_v1_50_tf 92.2 [92.0, 92.4] 91.1 [90.6, 91.7] 1.0 41 0
42 densenet121 92.0 [91.7, 92.2] 91.1 [90.5, 91.6] 0.9 42 0
43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 90.7 [90.1, 91.3] 1.1 47 -4
44 vgg19_bn 91.8 [91.6, 92.1] 91.0 [90.4, 91.5] 0.9 44 0
45 inception_v2_tf 91.8 [91.5, 92.0] 91.0 [90.5, 91.6] 0.7 43 2
46 nasnetamobile 91.7 [91.5, 92.0] 90.9 [90.3, 91.4] 0.9 46 0
47 nasnet_mobile_tf 91.6 [91.3, 91.8] 90.1 [89.5, 90.7] 1.4 50 -3
48 bninception 91.6 [91.3, 91.8] 90.9 [90.3, 91.5] 0.7 45 3
49 vgg16_bn 91.5 [91.3, 91.8] 90.4 [89.8, 90.9] 1.1 49 0
50 resnet34 91.4 [91.2, 91.7] 90.5 [89.9, 91.0] 1.0 48 2
51 vgg19 90.9 [90.6, 91.1] 89.7 [89.1, 90.3] 1.2 51 0
52 vgg16 90.4 [90.1, 90.6] 88.8 [88.1, 89.4] 1.6 53 -1
53 vgg13_bn 90.4 [90.1, 90.6] 89.0 [88.3, 89.6] 1.4 52 1
54 mobilenet_v1_tf 90.0 [89.7, 90.2] 87.6 [86.9, 88.2] 2.4 60 -6
56 vgg_19_tf 89.8 [89.6, 90.1] 88.5 [87.8, 89.1] 1.4 55 1
55 vgg_16_tf 89.8 [89.6, 90.1] 88.6 [87.9, 89.2] 1.3 54 1
57 vgg11_bn 89.8 [89.5, 90.1] 88.3 [87.6, 88.9] 1.5 56 1
58 inception_v1_tf 89.6 [89.4, 89.9] 88.1 [87.4, 88.7] 1.5 57 1
59 vgg13 89.2 [89.0, 89.5] 87.6 [86.9, 88.2] 1.6 59 0
60 resnet18 89.1 [88.8, 89.3] 88.1 [87.4, 88.7] 1.0 58 2
61 vgg11 88.6 [88.3, 88.9] 86.9 [86.2, 87.5] 1.7 61 0
62 squeezenet1_1 80.6 [80.3, 81.0] 78.0 [77.2, 78.8] 2.6 62 0
63 squeezenet1_0 80.4 [80.1, 80.8] 77.7 [76.9, 78.5] 2.7 63 0
64 alexnet 79.1 [78.7, 79.4] 75.9 [75.0, 76.7] 3.2 64 0
65 fv_64k 55.7 [55.3, 56.2] 49.8 [48.8, 50.7] 6.0 65 0
66 fv_16k 49.9 [49.5, 50.4] 44.2 [43.2, 45.2] 5.7 66 0
67 fv_4k 41.3 [40.8, 41.7] 36.5 [35.6, 37.5] 4.8 67 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 78

Table 2.18: Top-1 model accuracy on the original ImageNet validation set and our new
test set TopImages.

ImageNet Top-1 TopImages
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 83.9 [83.2, 84.6] -1.0 3 -2
2 pnasnet5large 82.7 [82.4, 83.1] 83.9 [83.1, 84.6] -1.1 4 -2
3 nasnet_large_tf 82.7 [82.4, 83.0] 84.0 [83.3, 84.7] -1.3 2 1
4 nasnetalarge 82.5 [82.2, 82.8] 84.2 [83.4, 84.9] -1.7 1 3
5 senet154 81.3 [81.0, 81.6] 82.8 [82.1, 83.6] -1.5 6 -1
6 polynet 80.9 [80.5, 81.2] 83.0 [82.2, 83.7] -2.1 5 1
7 inception_resnet_v2_tf80.4 [80.0, 80.7] 82.5 [81.7, 83.2] -2.1 8 -1
8 inceptionresnetv2 80.3 [79.9, 80.6] 82.8 [82.0, 83.5] -2.5 7 1
9 se_resnext101_32x4d 80.2 [79.9, 80.6] 82.2 [81.5, 83.0] -2.0 11 -2
10 inception_v4_tf 80.2 [79.8, 80.5] 82.3 [81.5, 83.0] -2.1 9 1
11 inceptionv4 80.1 [79.7, 80.4] 82.3 [81.5, 83.0] -2.2 10 1
12 dpn107 79.7 [79.4, 80.1] 81.4 [80.6, 82.1] -1.6 13 -1
13 dpn131 79.4 [79.1, 79.8] 81.3 [80.5, 82.1] -1.9 15 -2
14 dpn92 79.4 [79.0, 79.8] 81.2 [80.5, 82.0] -1.8 16 -2
15 dpn98 79.2 [78.9, 79.6] 81.5 [80.7, 82.3] -2.3 12 3
16 se_resnext50_32x4d 79.1 [78.7, 79.4] 81.4 [80.6, 82.1] -2.3 14 2
17 resnext101_64x4d 79.0 [78.6, 79.3] 80.3 [79.5, 81.0] -1.3 22 -5
18 xception 78.8 [78.5, 79.2] 81.0 [80.2, 81.8] -2.2 18 0
19 se_resnet152 78.7 [78.3, 79.0] 81.0 [80.3, 81.8] -2.4 17 2
20 se_resnet101 78.4 [78.0, 78.8] 80.5 [79.7, 81.3] -2.1 19 1
21 resnet152 78.3 [77.9, 78.7] 80.3 [79.5, 81.1] -2.0 21 0
22 resnext101_32x4d 78.2 [77.8, 78.5] 79.9 [79.1, 80.6] -1.7 26 -4
23 inception_v3_tf 78.0 [77.6, 78.3] 80.1 [79.3, 80.9] -2.1 23 0
24 resnet_v2_152_tf 77.8 [77.4, 78.1] 80.3 [79.5, 81.1] -2.6 20 4
25 se_resnet50 77.6 [77.3, 78.0] 79.4 [78.6, 80.2] -1.8 31 -6
26 fbresnet152 77.4 [77.0, 77.8] 80.1 [79.3, 80.9] -2.7 24 2
27 resnet101 77.4 [77.0, 77.7] 79.0 [78.2, 79.8] -1.7 32 -5
28 inceptionv3 77.3 [77.0, 77.7] 79.6 [78.8, 80.4] -2.3 27 1
29 inception_v3 77.2 [76.8, 77.6] 79.6 [78.8, 80.4] -2.4 28 1
30 densenet161 77.1 [76.8, 77.5] 79.5 [78.7, 80.3] -2.4 29 1
31 dpn68b 77.0 [76.7, 77.4] 79.4 [78.6, 80.2] -2.4 30 1
32 resnet_v2_101_tf 77.0 [76.6, 77.3] 80.1 [79.3, 80.8] -3.1 25 7
33 densenet201 76.9 [76.5, 77.3] 79.0 [78.1, 79.7] -2.1 34 -1

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 79

ImageNet Top-1 TopImages
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 79.0 [78.2, 79.8] -2.2 33 1
35 resnet_v1_101_tf 76.4 [76.0, 76.8] 78.6 [77.8, 79.4] -2.2 35 0
36 cafferesnet101 76.2 [75.8, 76.6] 78.3 [77.4, 79.1] -2.1 37 -1
37 resnet50 76.1 [75.8, 76.5] 78.1 [77.3, 78.9] -2.0 38 -1
38 dpn68 75.9 [75.5, 76.2] 78.4 [77.6, 79.2] -2.6 36 2
39 densenet169 75.6 [75.2, 76.0] 78.0 [77.2, 78.8] -2.4 39 0
40 resnet_v2_50_tf 75.6 [75.2, 76.0] 78.0 [77.2, 78.8] -2.4 40 0
41 resnet_v1_50_tf 75.2 [74.8, 75.6] 77.0 [76.2, 77.9] -1.8 41 0
42 densenet121 74.4 [74.0, 74.8] 76.8 [75.9, 77.6] -2.3 45 -3
43 vgg19_bn 74.2 [73.8, 74.6] 76.6 [75.7, 77.4] -2.3 46 -3
44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 76.8 [76.0, 77.6] -2.7 44 0
45 nasnetamobile 74.1 [73.7, 74.5] 76.4 [75.5, 77.2] -2.3 47 -2
46 inception_v2_tf 74.0 [73.6, 74.4] 77.0 [76.1, 77.8] -3.0 43 3
47 nasnet_mobile_tf 74.0 [73.6, 74.4] 76.0 [75.1, 76.8] -2.0 49 -2
48 bninception 73.5 [73.1, 73.9] 77.0 [76.1, 77.8] -3.4 42 6
49 vgg16_bn 73.4 [73.0, 73.7] 75.9 [75.1, 76.8] -2.6 50 -1
50 resnet34 73.3 [72.9, 73.7] 76.3 [75.4, 77.1] -3.0 48 2
51 vgg19 72.4 [72.0, 72.8] 74.2 [73.3, 75.0] -1.8 51 0
52 vgg16 71.6 [71.2, 72.0] 73.9 [73.0, 74.7] -2.3 52 0
53 vgg13_bn 71.6 [71.2, 72.0] 73.5 [72.7, 74.4] -1.9 55 -2
54 mobilenet_v1_tf 71.0 [70.6, 71.4] 72.4 [71.5, 73.3] -1.4 59 -5
55 vgg_19_tf 71.0 [70.6, 71.4] 73.6 [72.7, 74.5] -2.6 53 2
56 vgg_16_tf 70.9 [70.5, 71.3] 73.5 [72.7, 74.4] -2.6 54 2
57 vgg11_bn 70.4 [70.0, 70.8] 73.0 [72.1, 73.8] -2.6 58 -1
58 vgg13 69.9 [69.5, 70.3] 72.0 [71.1, 72.9] -2.1 60 -2
59 inception_v1_tf 69.8 [69.4, 70.2] 73.1 [72.2, 73.9] -3.3 56 3
60 resnet18 69.8 [69.4, 70.2] 73.0 [72.2, 73.9] -3.3 57 3
61 vgg11 69.0 [68.6, 69.4] 70.8 [69.9, 71.7] -1.8 61 0
62 squeezenet1_1 58.2 [57.7, 58.6] 61.7 [60.7, 62.6] -3.5 62 0
63 squeezenet1_0 58.1 [57.7, 58.5] 60.7 [59.7, 61.7] -2.6 63 0
64 alexnet 56.5 [56.1, 57.0] 58.2 [57.2, 59.1] -1.7 64 0
65 fv_64k 35.1 [34.7, 35.5] 34.2 [33.3, 35.2] 0.8 65 0
66 fv_16k 28.3 [27.9, 28.7] 27.4 [26.6, 28.3] 0.9 66 0
67 fv_4k 21.2 [20.8, 21.5] 21.1 [20.3, 21.9] 0.1 67 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 80

Table 2.19: Top-5 model accuracy on the original ImageNet validation set and our new
test set TopImages.

ImageNet Top-5 TopImages
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 97.2 [96.9, 97.5] -1.0 2 -1
2 nasnet_large_tf 96.2 [96.0, 96.3] 97.2 [96.9, 97.5] -1.0 1 1
3 nasnetalarge 96.0 [95.8, 96.2] 97.1 [96.7, 97.4] -1.1 3 0
4 pnasnet5large 96.0 [95.8, 96.2] 96.9 [96.6, 97.2] -0.9 4 0
5 polynet 95.6 [95.4, 95.7] 96.8 [96.4, 97.1] -1.2 5 0
6 senet154 95.5 [95.3, 95.7] 96.6 [96.2, 97.0] -1.1 8 -2
7 inception_resnet_v2_tf95.2 [95.1, 95.4] 96.8 [96.4, 97.1] -1.5 6 1
8 inception_v4_tf 95.2 [95.0, 95.4] 96.5 [96.1, 96.9] -1.3 9 -1
9 inceptionresnetv2 95.1 [94.9, 95.3] 96.7 [96.3, 97.0] -1.5 7 2
10 se_resnext101_32x4d 95.0 [94.8, 95.2] 96.2 [95.8, 96.6] -1.2 11 -1
11 inceptionv4 94.9 [94.7, 95.1] 96.4 [96.0, 96.7] -1.5 10 1
12 dpn107 94.7 [94.5, 94.9] 96.0 [95.6, 96.4] -1.4 13 -1
13 dpn92 94.6 [94.4, 94.8] 95.9 [95.5, 96.3] -1.3 17 -4
14 dpn131 94.6 [94.4, 94.8] 96.0 [95.6, 96.4] -1.5 14 0
15 dpn98 94.5 [94.3, 94.7] 96.0 [95.6, 96.4] -1.5 15 0
16 se_resnext50_32x4d 94.4 [94.2, 94.6] 95.9 [95.5, 96.3] -1.5 18 -2
17 se_resnet152 94.4 [94.2, 94.6] 95.9 [95.5, 96.3] -1.5 19 -2
18 xception 94.3 [94.1, 94.5] 95.9 [95.5, 96.3] -1.6 20 -2
19 se_resnet101 94.3 [94.1, 94.5] 95.9 [95.5, 96.3] -1.6 21 -2
20 resnext101_64x4d 94.3 [94.0, 94.5] 95.7 [95.3, 96.1] -1.5 23 -3
21 resnet_v2_152_tf 94.1 [93.9, 94.3] 96.0 [95.6, 96.3] -1.9 16 5
22 resnet152 94.0 [93.8, 94.3] 96.2 [95.8, 96.5] -2.1 12 10
23 inception_v3_tf 93.9 [93.7, 94.1] 95.5 [95.1, 95.9] -1.5 25 -2
24 resnext101_32x4d 93.9 [93.7, 94.1] 95.2 [94.8, 95.6] -1.3 31 -7
25 se_resnet50 93.8 [93.5, 94.0] 95.5 [95.1, 95.9] -1.8 24 1
26 resnet_v2_101_tf 93.7 [93.5, 93.9] 95.8 [95.4, 96.2] -2.1 22 4
27 fbresnet152 93.6 [93.4, 93.8] 95.2 [94.8, 95.7] -1.7 28 -1
28 dpn68b 93.6 [93.4, 93.8] 95.2 [94.8, 95.6] -1.6 32 -4
29 densenet161 93.6 [93.3, 93.8] 95.2 [94.8, 95.6] -1.7 29 0
30 resnet101 93.5 [93.3, 93.8] 95.4 [95.0, 95.8] -1.9 26 4
31 inception_v3 93.5 [93.3, 93.7] 95.1 [94.7, 95.5] -1.6 34 -3
32 inceptionv3 93.4 [93.2, 93.6] 95.2 [94.8, 95.6] -1.8 30 2
33 densenet201 93.4 [93.1, 93.6] 95.2 [94.8, 95.7] -1.9 27 6

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 81

ImageNet Top-5 TopImages
Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 95.2 [94.7, 95.6] -2.0 33 1
35 resnet_v1_101_tf 92.9 [92.7, 93.1] 94.9 [94.4, 95.3] -2.0 35 0
36 resnet50 92.9 [92.6, 93.1] 94.7 [94.2, 95.1] -1.8 39 -3
37 resnet_v2_50_tf 92.8 [92.6, 93.1] 94.8 [94.3, 95.2] -1.9 37 0
38 densenet169 92.8 [92.6, 93.0] 94.7 [94.2, 95.1] -1.9 38 0
39 dpn68 92.8 [92.5, 93.0] 94.8 [94.3, 95.2] -2.0 36 3
40 cafferesnet101 92.8 [92.5, 93.0] 94.6 [94.1, 95.0] -1.8 40 0
41 resnet_v1_50_tf 92.2 [92.0, 92.4] 94.2 [93.8, 94.7] -2.1 41 0
42 densenet121 92.0 [91.7, 92.2] 94.0 [93.5, 94.5] -2.0 46 -4
43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 94.1 [93.6, 94.5] -2.2 44 -1
44 vgg19_bn 91.8 [91.6, 92.1] 94.0 [93.5, 94.4] -2.1 47 -3
45 inception_v2_tf 91.8 [91.5, 92.0] 94.2 [93.7, 94.7] -2.5 42 3
46 nasnetamobile 91.7 [91.5, 92.0] 94.1 [93.6, 94.5] -2.3 43 3
47 nasnet_mobile_tf 91.6 [91.3, 91.8] 93.8 [93.4, 94.3] -2.3 49 -2
48 bninception 91.6 [91.3, 91.8] 94.0 [93.6, 94.5] -2.5 45 3
49 vgg16_bn 91.5 [91.3, 91.8] 93.7 [93.2, 94.1] -2.1 50 -1
50 resnet34 91.4 [91.2, 91.7] 93.9 [93.4, 94.3] -2.5 48 2
51 vgg19 90.9 [90.6, 91.1] 92.8 [92.2, 93.3] -1.9 51 0
52 vgg16 90.4 [90.1, 90.6] 92.5 [92.0, 93.0] -2.1 53 -1
53 vgg13_bn 90.4 [90.1, 90.6] 92.6 [92.1, 93.1] -2.2 52 1
54 mobilenet_v1_tf 90.0 [89.7, 90.2] 91.4 [90.8, 91.9] -1.4 59 -5
56 vgg_19_tf 89.8 [89.6, 90.1] 92.1 [91.5, 92.6] -2.2 56 0
55 vgg_16_tf 89.8 [89.6, 90.1] 92.2 [91.6, 92.7] -2.3 54 1
57 vgg11_bn 89.8 [89.5, 90.1] 91.9 [91.4, 92.5] -2.1 58 -1
58 inception_v1_tf 89.6 [89.4, 89.9] 92.1 [91.6, 92.6] -2.5 55 3
59 vgg13 89.2 [89.0, 89.5] 91.4 [90.8, 91.9] -2.2 60 -1
60 resnet18 89.1 [88.8, 89.3] 92.0 [91.4, 92.5] -2.9 57 3
61 vgg11 88.6 [88.3, 88.9] 91.0 [90.4, 91.5] -2.4 61 0
62 squeezenet1_1 80.6 [80.3, 81.0] 83.9 [83.1, 84.6] -3.2 62 0
63 squeezenet1_0 80.4 [80.1, 80.8] 83.5 [82.8, 84.3] -3.1 63 0
64 alexnet 79.1 [78.7, 79.4] 81.8 [81.0, 82.6] -2.7 64 0
65 fv_64k 55.7 [55.3, 56.2] 55.9 [54.9, 56.8] -0.1 65 0
66 fv_16k 49.9 [49.5, 50.4] 49.8 [48.8, 50.8] 0.1 66 0
67 fv_4k 41.3 [40.8, 41.7] 41.9 [40.9, 42.8] -0.6 67 0

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 82

2.8.4.5 Accuracy Plots for All ImageNet Test Sets

Figure 2.12 shows the top-1 and top-5 accuracies for our three test sets and all convolutional
networks in our model testbed. Figure 2.13 shows the accuracies for all models (including
Fisher Vector models) with a probit scale on the axes.

2.8.4.6 Example Images

Figure 2.14 shows randomly selected images for three randomly selected classes for both
the original ImageNet validation set and our three new test sets.

2.8.4.7 Effect of Selection Frequency on Model Accuracy

To better understand how the selection frequency of an image impacts the model accuracies,
Figures 2.15, 2.16, and 2.17 show model accuracies stratified into five selection frequency
bins.

2.8.4.8 Ambiguous Class Examples

Figure ?? shows randomly selected images from the original ImageNet validation set for
three pairs of classes with ambiguous class boundaries. We remark that several more
classes in ImageNet have ill-defined boundaries. The three pairs of classes here were chosen
only as illustrative examples.

The following list shows names and definitions for the three class pairs:

• Pair 1

a. projectile, missile: “a weapon that is forcibly thrown or projected at
a targets but is not self-propelled”

b. missile: “a rocket carrying a warhead of conventional or nuclear explosives;
may be ballistic or directed by remote control”

• Pair 2

c. tusker: “any mammal with prominent tusks (especially an elephant or wild
boar)”

12Test Set A is the original validation set, Test Set B is the MatchedFrequencydataset, Test Set C is
the Threshold0.7, Test set D is TopImages.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 83

d. Indian elephant, Elephas maximus: “Asian elephant having smaller
ears and tusks primarily in the male”

• Pair 3

e. screen, CRT screen: “the display that is electronically created on the
surface of the large end of a cathode-ray tube”

f. monitor: “electronic equipment that is used to check the quality or content of
electronic transmissions”

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 84

60 70 80
Original test accuracy (%)

40

50

60

70

80

90

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. MatchedFrequency, Top-1

80 90 100
Original test accuracy (%)

70

80

90

100

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. MatchedFrequency, Top-5

60 70 80
Original test accuracy (%)

40

50

60

70

80

90

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. Threshold.7, Top-1

80 90 100
Original test accuracy (%)

70

80

90

100
Ne

w
te

st
 a

cc
ur

ac
y

(%
)

ImageNet vs. Threshold.7, Top-5

60 70 80
Original test accuracy (%)

40

50

60

70

80

90

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. TopImages, Top-1

80 90 100
Original test accuracy (%)

70

80

90

100

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. TopImages, Top-5

Ideal reproducibility Model accuracy Linear fit
Figure 2.12: Model accuracy on the original ImageNet validation set vs. our new test sets. See
Section 2.3 for a description of these test sets. Each data point corresponds to one model in our
testbed (shown with 95% Clopper-Pearson confidence intervals). The red shaded region is a 95%
confidence region for the linear fit from 100,000 bootstrap samples. For MatchedFrequency, the
accuracies on the new test set are significantly below the original accuracies. The accuracies for
Threshold0.7 are still below the original counterpart, but for TopImages they improve over the
original test accuracies.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 85

20 30 40 50 60 70 80
Original test accuracy (%)

10

20
30
40
50
60
70
80

90

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. MatchedFrequency, Top-1

40 50 60 70 80 90 95
Original test accuracy (%)

30
40
50
60
70
80

90

95

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. MatchedFrequency, Top-5

20 30 40 50 60 70 80
Original test accuracy (%)

10

20
30
40
50
60
70
80

90

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. Threshold.7, Top-1

40 50 60 70 80 90 95
Original test accuracy (%)

30
40
50
60
70
80

90

95
Ne

w
te

st
 a

cc
ur

ac
y

(%
)

ImageNet vs. Threshold.7, Top-5

20 30 40 50 60 70 80
Original test accuracy (%)

10

20
30
40
50
60
70
80

90

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. TopImages, Top-1

40 50 60 70 80 90 95
Original test accuracy (%)

30
40
50
60
70
80

90

95

Ne
w

te
st

 a
cc

ur
ac

y
(%

)

ImageNet vs. TopImages, Top-5

Ideal reproducibility Model accuracy Linear fit
Figure 2.13: Model accuracy on the original ImageNet validation set vs. our new test sets.
The structure of the plots is similar to Figure 2.12 and we refer the reader to the description
there. In contrast to Figure 2.12, the plots here contain also the Fisher Vector models. Moreover,
the axes are scaled according to the probit transformation, i.e., accuracy α appears at Φ−1(α),
where Φ is the Gaussian CDF. For all three datasets and both top-1 and top-5 accuracy, the plots
reveal a good linear fit in the probit domain spanning around 60 percentage points of accuracy.
All plots include a 95% confidence region for the linear fit as in Figure 2.12, but the red shaded
region is hard to see in some of the plots due to its small size.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 86

(a) Test Set A

(b) Test Set B

(c) Test Set C

(d) Test Set D

Figure 2.14: Randomly selected images from the original ImageNet validation set and our new
ImageNet test sets.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 87

60 70 80
Original test accuracy (top-1, %)

0

10

20

30

40

50

60

70

80

90

100

Ne
w

te
st

 a
cc

ur
ac

y
(to

p-
1,

 %
)

ImageNet, new test set binned

Ideal reproducibility
Model accuracy
Linear fit
Bin [0,0.2)
Bin [0.2,0.4)
Bin [0.4,0.6)
Bin [0.6,0.8)
Bin [0.8,1.0]

Figure 2.15: Model accuracy on the original ImageNet validation set vs. accuracy on
our new test set MatchedFrequency, stratified into five selection frequency bins. Every bin
contains the images with MTurk selection frequency falling into the corresponding range.
Each data point corresponds to one model and one of the five frequency bins (indicated
by the different colors). The x-value of each data point is given by the model’s accuracy
on the entire original validation set. The y-value is given by the model’s accuracy on our
new test images falling into the respective selection frequency bin. The plot shows that
the selection frequency has strong influence on the model accuracy. For instance, images
with selection frequencies in the [0.4, 0.6) bin lead to an average model accuracy about
20% lower than for the entire test set MatchedFrequency, and 30% lower than the original
validation set. We remark that we manually reviewed all images in MatchedFrequency
to ensure that (almost) all images have the correct class label, regardless of selection
frequency bin.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 88

60 70 80
Original test accuracy (top-1, %)

0

10

20

30

40

50

60

70

80

90

100

Or
ig

in
al

 te
st

 a
cc

ur
ac

y
(to

p-
1,

 %
)

ImageNet, original test set binned

Ideal reproducibility
Model accuracy
Linear fit
Bin [0,0.2)
Bin [0.2,0.4)
Bin [0.4,0.6)
Bin [0.6,0.8)
Bin [0.8,1.0]

Figure 2.16: Model accuracy on the original ImageNet validation set stratified into
five selection frequency bins. This plot has a similar structure as Figure 2.15 above, but
contains the original validation set accuracy on both axes (as before, the images are binned
on the y-axis and not binned on the x-axis, i.e., the x-value is the accuracy on the entire
validation set). The plot shows that the selection frequency has strong influence on the
model accuracy on the original ImageNet validation set as well. For instance, images with
selection frequencies in the [0.4, 0.6) bin lead to an average model accuracy about 10 –
15% lower than for the entire validation set.

CHAPTER 2. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET 89

0 10 20 30 40 50 60 70 80 90 100
Original test accuracy (top-1, %)

0

10

20

30

40

50

60

70

80

90

100

Ne
w

te
st

 a
cc

ur
ac

y
(to

p-
1,

 %
)

ImageNet, both test sets binned

Ideal reproducibility
Model accuracy
Linear fit
Bin [0,0.2)
Bin [0.2,0.4)
Bin [0.4,0.6)
Bin [0.6,0.8)
Bin [0.8,1.0]

Figure 2.17: Model accuracy on the original ImageNet validation set vs. accuracy on
our new test set MatchedFrequency. In contrast to the preceding Figures 2.15 and 2.16,
both original and new test accuracy is now stratified into five selection frequency bins.
Each data point corresponds to the accuracy achieved by one model on the images from
one of the five frequency bins (indicated by the different colors). The plot shows that the
model accuracies in the various bins are strongly correlated, but the accuracy on images
in our new test is consistently lower. The gap is largest for images in the middle frequency
bins (about 20% accuracy difference) and smallest for images in the lowest and highest
frequency bins (5 – 10 % difference).

90

Chapter 3

Human Accuracy on ImageNetV2

3.1 Introduction
In this chapter, we take a step towards a more comprehensive understanding of machine
performance relative to human generalization capabilities. We focus on the ImageNet
dataset since it has been a key benchmark in the past decade of machine learning and has
a widely cited human vs. machine comparison [2, 66, 131]. The core part of our study is
an extensive experimental comparison of human and machine behavior on ImageNet not
only in terms of absolute accuracy, but also in terms of robustness to small distribution
shifts. As the ultimate goal of a classification model is to process images beyond the
benchmark test set, robustness is a crucial property of a trained model. We hope that
our multi-dimensional approach will lead to improved evaluation methodology for trained
classifiers more broadly. In addition, our results provide context for earlier claims about
super-human performance on ImageNet.

To enable a thorough and semantically coherent evaluation of machine robustness,
our experiment addresses the following questions concerning classification accuracy on
ImageNet:

• What is a meaningful evaluation metric for ImageNet? Initially, most ImageNet
models were evaluated using the top-5 metric, which was also employed in the
aforementioned human vs. machine comparison [131]. Since then, the field has moved
to measuring top-1 accuracy, which leads to a harder task and may affect the
comparison of models and humans. However, a non-trivial fraction of images in
ImageNet has more than one correct label, which makes the top-1 metric overly
stringent.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 91

To address this issue, we re-annotate 40,000 images with multi-label annotations
specific to each image.

• How widely do trained humans vary on ImageNet? The 2014 study only compared
CNNs against two humans, and only one human was evaluated on more than 300
images [131]. As with many tasks, there may be substantial variation in human
behavior on ImageNet as well.

To gain a broader picture, we evaluate five trained labelers on 2,000 images each.

• How robust are humans and models to small distribution shifts? The 2014 study was
conducted only on the ImageNet test set, which is drawn from the same distribution as
the ImageNet training set. This leaves out important aspects of human generalization
as humans reliably recognize objects in a variety of scenarios.

To measure robustness, we utilize two separate test sets and evaluate humans and
models on both.

Our main result is that robustness to small, naturally occurring distribution shifts is a
performance dimension on which humans are still substantially better than all ImageNet
classifiers. To establish this fact, we compare humans and machines not only on the
standard ImageNet test set,1 but also on the test set from the ImageNetV2 replication
study [127].2 The authors of ImageNetV2 followed the ImageNet creation process to
construct a new test set that is close to the original, e.g., they used the same data source
(Flickr) and the same data cleaning process (Mechanical Turk). Nevertheless, all current
ImageNet models have substantially lower accuracy on the ImageNetV2 test set.

We find that this gap in model performance persists even after we re-labeled both test
sets consistently with multi-label annotations. In contrast, all of our five human labelers
see at most a 1% difference between the two datasets. Moreover, our five labelers show
substantially less variation in robustness than in classification accuracy. These findings
demonstrate that robustness to small distribution shift is a performance dimension not
captured by most current benchmark evaluations, although humans still substantially
outperform trained classifiers on this metric.

1We use the terms “test set” and “validation set” interchangeably in the context of ImageNet so that
we can use the same term for both ImageNet and ImageNetV2. While ImageNet has distinct validation
and test sets, the labels for the test set were never released and most papers report scores on the validation
set.

2Specifically, we utilized the MatchedFrequency test set from Recht et al. [127]. For conciseness, we
simply refer to this test set as ImageNetV2.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 92

Table 3.1 summarizes the outcome of our experiment. On both test sets, there is
substantial variation among humans: the gap between the highest and lowest accuracy
achieved by a human is 5.4% on the original test set and 5.6% on the new test set. On
the original dataset, three of our five labelers outperform the currently best published
ImageNet model, with the median human being 0.2% more accurate than the best model.
On the ImageNetV2 test set, all five labelers outperform all trained models, and the
median human is 5.2% better than the best model.3 Importantly, humans see almost no
drop between the two test sets, while all models suffer a substantial accuracy difference.
This trend is also visualized in Figure 3.1, which shows the accuracies of 71 ImageNet
models and five human labelers. All humans are close to the y = x diagonal, while the
models follow a linear trend substantially below this diagonal.

Table 3.1: Human and model multi-label accuracy on the ImageNet validation dataset
and ImageNetV2. The gap is measured as multi-label accuracy on ImageNet validation
minus multi-label accuracy on ImageNetV2. The confidence intervals are 95% Clopper-
Pearson intervals. The AdvProp model [156] is an EfficentNet-B8 trained with AdvProp
and the FixRes model [107, 147] is a ResNext-32x48d trained on one billion images from
Instagram.

ImageNet multi-label accuracy (%)
Participant Original V2 Gap
resnet50 84.2 [81.8, 86.4] 75.7 [73.2, 78.7] 8.4
AdvProp 93.6 [91.9, 95.0] 88.3 [86.5, 90.6] 5.3
FixRes 95.5 [94.0, 96.7] 89.6 [87.9, 91.8] 5.9
Human A 91.9 [90.0, 93.5] 91.1 [89.6, 93.2] 0.8
Human B 94.7 [93.1, 96.0] 93.9 [92.6, 95.6] 0.8
Human C 96.2 [94.9, 97.3] 96.7 [95.9, 98.1] -0.5
Human D 95.7 [94.3, 96.9] 94.8 [93.7, 96.4] 0.9
Human E 97.3 [96.0, 98.2] 96.5 [95.6, 97.9] 0.7

While the majority of our labelers outperforms the currently best published ImageNet
model, we emphasize that we do not see our numbers as a definite human baseline in
terms of absolute accuracy. First, we believe that more thoroughly trained humans will
achieve higher accuracy than the best humans in our evaluation. Most human errors are
currently in fine-grained class distinctions among the animal classes and particularly dog

3Here we only describe the point estimates. Section 3.5 contains a discussion of statistical significance.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 93

80 85 90 95
Multi-label Accuracy on ImageNet (%)

65

70

75

80

85

90

95

M
ul

ti-
la

be
l A

cc
ur

ac
y

on
 Im

ag
eN

et
V2

 (%
)

y=x
Model trained on ImageNet
Model trained on more data
Human labelers
Linear fit

Figure 3.1: Multi-label accuracies for both CNN models and human participants on
the ImageNet validation set versus their accuracies on the ImageNetV2 test set. The
confidence intervals are 95% Clopper-Pearson confidence intervals.

breeds, while our best labelers already achieve more than 99.5% accuracy on the object
classes (substantially outperforming the best models on this subset).

More importantly, we view robustness to small, naturally occuring distribution shift as
the main metric of interest in our evaluation. Humans show substantially less variation
in robustness than in accuracy, and the past decade of model development has led to
little progress in this metric. We believe that addressing this gap is an important research
direction for reliable machine learning.

3.2 Experiment setup
We conducted our experiment in four phases: (i) initial multi-label annotation, (ii) human
labeler training, (iii) human labeler evaluation, and (iv) final annotation review. Figure 3.2
provides a detailed timeline of the experiment. In total, five human labelers participated in
the experiment, denoted A through E. All five participants are anonymized authors of this

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 94

1. Initial annotation

Break

2. Human labeler
training

3. Human labeler
evaluation

4. Final annotation
review

Nov. 2018 May 2019 Oct. 14 2019 Dec.18 2019 Jan. 15 2020 Jan. 24 2020

ImageNet Val

10K

20K

ImageNetV2

30K ImageNet Val

ImageNetV2 ImageNetV2

ImageNet Val

1K

ImageNet Val

1K 1K

1KImageNetV2
3K

Only labelers A, B, C participated All five labelers participated

Human Test DataHuman Training Data Model Test Data

Figure 3.2: Timeline for the four phases of our experiment. 1) Initial multi-label
annotation: First, starting in November 2018, human labelers A, B, and C annotated
a set of images from ImageNetV2 and the ImageNet validation set with multi-label
annotations. 2) Human labeler training: Then, after a long break, on October 14, 2019, all
five participants began training on a 3,000 image subset of the original ImageNet validation
set. (Humans were not trained on ImageNetV2.) 3) Human labeler evaluation: Next,
starting on December 18, 2019, humans labeled 2,000 images from a random, class-balanced
sample including 1,000 images from the ImageNet validation dataset and 1,000 images
from ImageNetV2. The evaluation dataset did not include any of the images used in
training. 4) Final annotation review: Finally, all five labelers reviewed the annotations
collected for the 2,000 image evaluation dataset.

manuscript. While evaluating more humans would have provided additional information,
the scale of the experiment made it difficult to incentivize others to invest the time and
effort required to familiarize themselves with the 1,000 ImageNet classes and to label
thousands of images.

In detail, the four phases of the experiment were:
1. Initial multi-label annotation. Labelers A, B, and C provided multi-label annota-
tions for a subset of size 20,000 from the ImageNet validation set and 20,683 images from
all three ImageNetV2 test sets collected by Recht et al. [127]. At this point, labelers A, B,
and C already had extensive experience with the ImageNet dataset. We further discuss
the annotation process in Section 3.3.
2. Human labeler training. Using a subset of the remaining 30,000 unannotated
images in the ImageNet validation set, labelers A, B, C, D, and E underwent extensive
training to understand the intricacies of fine-grained class distinctions in the ImageNet
class hierarchy. The exact training process is detailed in Section 3.4.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 95

3. Human labeler evaluation. For the human labeler evaluation, we generated a
class-balanced random sample containing 1,000 images from the 20,000 annotated images
of the ImageNet validation set and 1,000 images from ImageNetV2. We combined the two
sets and randomly shuffled the resulting 2,000 images. Then, the five participants labeled
these images over the course of 28 days.
4. Final annotation review. Lastly, all labelers reviewed the additional annotations
generated in the human labeler evaluation phase. We discuss the main results from our
evaluation in Section 3.5.

3.3 Multi-label annotations
In this section, we describe the details of the multi-label annotation process for the ImageNet
validation dataset and ImageNetV2. We first explain why multi-label annotations are
necessary for proper accuracy evaluation on ImageNet by outlining the pitfalls of the two
most widely used accuracy metrics, top-1 and top-5.

Top-1 accuracy. Top-1 accuracy is the standard accuracy measure used in the classi-
fication literature. It measures the proportion of examples for which the predicted label
matches the single target label. However, the assumption that each image has a single
ground truth label from a fixed set of classes is often incorrect. ImageNet images, such
as Figure 3.3a, often contain multiple objects belonging to different classes (e.g. desk,
laptop, keyboard, space bar, screen, and mouse frequently all appear in the
same image). Moreover, even for images for which a class is prominent the ImageNet
label might refer to another class present in the image. For example, in Figure 3.3b the
class gown is central and appears in the foreground, but the ImageNet label is picket
fence. As a result, one is not guaranteed to achieve high top-1 accuracy by identifying
the main objects in images. In other words, top-1 accuracy can be overly stringent by
penalizing predictions that appear in the image but do not correspond to the target label.

Top-5 accuracy. To partially remedy issues with top-1, the organizers of the ImageNet
challenge [131] measured top-5 accuracy, which considers a classification correct if any of
the five predictions matches the target label. However, allowing five guesses on all images on
fine-grained classification tasks such as ImageNet can make certain class distinctions trivial.
For example, there are five turtles in the ImageNet class hierarchy (mud turtle, box
turtle, loggerhead turtle, leatherback turtle, and terrapin), which can

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 96

be difficult to distinguish, but given an image of a turtle, a classifier can guess all five
turtle classes to ensure that it predicts the correct label.

Multi-label accuracy. For multi-label accuracy, every image has a set of target labels
and a prediction is marked correct if it corresponds to any of the target labels for that
image. Due to the limitations of top-1 and top-5 accuracy, as well as ambiguity in the
target class for many images, multi-label annotations are necessary for rigorous accuracy
evaluation on ImageNet.

3.3.1 Types of multi-label annotations

Next, we discuss three categories of multi-label annotations that arose in our study,
exemplified in Figure 3.3.
Multiple objects or organisms. For images that contain multiple objects or organisms
corresponding to classes in the ImageNet hierarchy, we added an additional target label for
each entity in the scene. For example, Figure 3.3a shows an image with target label desk
that also contains multiple different objects corresponding to ImageNet classes. When
there are multiple correct objects or organisms, the target class does not always correspond
to the most central or largest entity in the scene. For example, in Figure 3.3b, the target
class picket fence appears in the background of the image, but classes groom, bow
tie, suit, gown, and hoopskirt all appear in the foreground.
Synonym or subset relationships. If two classes are synonyms of each other, or a class
is a subset of another class, we considered both classes to be correct target labels. For
example, the ImageNet class tusker is defined as any animal with visible tusks. Since
warthog, African elephant and Indian elephant all have prominent tusks,
these classes are all technically subsets of tusker. Figure 3.3c shows an African
elephant that additionally has tusker as a correct label.
Unclear images. In certain cases, we could not ascertain whether a label was correct
due to ambiguities in the image or in the class hierarchy. Figure 3.3d shows a scene which
could arguably be either a lakeshore or a seashore.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 97

(a) desk (b) picket
fence

(c) African
elephant

(d) lakeshore

Figure 3.3: Examples from the ImageNet validation of scenarios where multi-label
annotations are necessary. Multiple objects or organisms: In Figure 3.3a, the ImageNet
label is desk but screen, monitor, coffee mug and many more objects in the scene
could count as correct labels. Figure 3.3b shows a scene where the target label picket
fence is counterintuitive because it appears in the background of the image while
classes groom, bowtie, suit, gown, and possibly hoopskirt are more prominently
displayed in the foreground. b) Synonym or subset relationships: This image has ImageNet
label African elephant, but can be labeled tusker as well, because every African
elephant with tusks is a tusker. c) Unclear images: This image is labeled lakeshore,
but could also be labeled seashore as there is not enough information in the scene to
distinguish the water body between a lake or sea.

3.3.2 Collecting multi-label annotations

Next, we detail the process we used to collect multi-label annotations. We first collected
the top-1 predictions of 71 pre-trained ImageNet models published from 2012 to 2018.
Then, over a period of three months, participants A, B and C reviewed all predictions
made by the models on 40,683 images from ImageNet and ImageNetV2. Participants first
researched class distinctions extensively – the details of this research are covered in 3.4.
The three participants then categorized every unique prediction made by the 71 models on
the 40,683 images (a total of 182,597 unique predictions) into correct or incorrect,
thereby allowing each image to have multiple correct labels.

In total, we found that 18.2% of the ImageNet validation images have more than one
correct label. Among images with multiple correct labels, the mean number of correct
labels per image is 2.3.

The multi-label accuracy metric. Multi-label accuracy is computed by counting a
prediction as correct if and only if it was marked correct by the expert reviewers during

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 98

55 60 65 70 75 80 85
top-1 Accuracy

65

70

75

80

85

90

95

M
ul

ti-
La

be
l A

cc
ur

ac
y

Multi-Label vs. Top-1
y=x
Linear fit
Models trained on ImageNet
Models trained on more data

80 85 90 95
top-5 Accuracy

65

70

75

80

85

90

95

M
ul

ti-
La

be
l A

cc
ur

ac
y

Multi-Label vs Top-5
y=x
Linear fit
Models trained on ImageNet
Models trained on more data

Figure 3.4: The relationship between top-1, top-5, and multi-label accuracy on
ImageNet test for all 71 models in our test bed. The left figure plots multi-label vs. top-1
accuracy accuracy. Multi-label accuracy makes the task easier than top-1 accuracy, with
a median improvement of 8.9% between top-1 and multi-label scores. The right figure
plots multi-label vs. top-5 accuracy accuracy. Multi-label accuracy is more stringent
than top-5 accuracy, with a median drop of 7.4% between top-5 and multi-label scores.

the annotation stage. We note that we performed a second annotation stage after the
human labelers completed the experiment, as explained in Section 3.4.3.

In Figure 3.4, we plot each model’s top-5 and top-1 accuracy versus its multi-label
accuracy. Every model prediction was reviewed individually for correctness. Higher top-1
and top-5 accuracy correspond to higher multi-label accuracy with relatively few changes
in model rankings across the different metrics. However, for all models, top-1 accuracy
underestimates multi-label accuracy (models see a median improvement of 8.9% when
comparing multi-label to top-1) while top-5 overestimates multi-label accuracy (models
see a median drop of 7.4% when comparing multi-label accuracy to top-5). While
multi-label accuracy is highly correlated with top-1and top-5accuracy, we assert that
neither top-1nor top-5measure a semantically meaningful notion of accuracy.

3.4 Human accuracy measurement process
We now describe the human evaluation portion of our experiment. Annotators A, B, & C
participated in the initial annotation review and thus saw all 40,683 evaluation images
and labels from ImageNet and ImageNetV2. To remedy the possibility that annotators A,
B & C unintentionally memorized the evaluation labels, two precautions were taken. First,

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 99

annotators A, B, & C did not look at the data for six months. Second, we introduced
annotators D & E, neither of whom had seen the test images prior to evaluation.

3.4.1 Human labeler training

After a six month period of inactivity, in October 2019, all five participants began a
training regimen for the labeling task. Previously, participants A, B, C undertook a similar
training for the initial multi-label annotation review. All training was carried out using a
the 30,000 ImageNet validation images that would not be used for the final evaluation.
The primary goal of training was to familiarize humans with the ImageNet class hierarchy.

The initial human accuracy study by Russakovsky et al. [131] details three main failure
modes of humans: fine-grained distinctions, class unawareness, and insufficient training
images. We address all three failure modes with our training regimen:

Fine-grained distinctions. There are many difficult class distinctions in ImageNet,
but humans tend to struggle with fine-grained distinctions within the 410 animal classes
and 118 dog classes. Even the scientific community disagrees about the exact taxonomy of
specific species. For instance, while tiger beetles are often classified as a subfamily
of ground beetle, this classification isn’t universally accepted among entomologists
[3, 152]. Similar issues arise in other animal families, such as the mustelines, monkeys,
and wolves.

To help humans perform well on fine-grained class distinctions, we created training
tasks containing only images from certain animal families. The training tasks gave labelers
immediate feedback on whether they had made the correct prediction or not. These
targeted training tasks were created after labelers identified classes for which they wanted
additional training. Labelers trained on class-specific tasks for dogs, insects, monkeys,
terriers, electric rays and sting rays, and marmots and beavers. After training, labelers
reviewed each other’s annotations as a group and discussed the class distinctions. Labelers
also wrote a labeling guide containing useful information for distinguishing similar classes,
discussed in more detail in Section 3.4.2.

Information from the American Kennel Club [1] was frequently used to understand and
disambiguate difficult dog breeds. We also reached out to a member of the local chapter of
the club for aid with dog identification. Since some dogs may be mixed-breeds, it may be
impossible to disambiguate between similar dog breeds from pictures alone. Fortunately,
the ImageNet dog labels are of high quality as they are derived from the Flickr image
description, which are often authored by the owner of the dog.

Class unawareness. For the 590 object categories in ImageNet, recall is the primary
difficulty for untrained humans. To address this, we built a labeling user interface that

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 100

allowed annotators to either search for a specific ImageNet class or explore a graphical
representation of the ImageNet classes based on the WordNet [111] hierarchy.

Insufficient training images. The two annotators in [131] trained on 500 and 100
images respectively, and then had access to 13 training images per class while labeling. In
our experiment, human labelers had access to 100 training images per class while labeling.

3.4.2 Labeling guide

During training, the participants constructed a labeling guide that distilled class specific
analysis learned during training into key discriminative traits that could be referenced by
the labelers during the final labeling evaluation. The labeling guide contained detailed
entries for 431 classes.

3.4.3 Final evaluation and annotation review.

On December 18th 2019, 1,000 images were sampled from ImageNet Validation and 1,000
images were sampled from ImageNetV2 and shuffled together. The datasets were sampled
in a class balanced manner.

Between December 19th 2019 and January 16th 2020 all 5 participants labeled 2,000
images in order to produce the main results of this work. The only resources the labelers
had access to during evaluation were 100 randomly sampled images from the ImageNet
training set for each class, and the labeling guide. The participants spent a median of 26
seconds per image, with a median labeling time of 36 hours for the entire labeling task.

After the labeling task was completed, an additional multi-label annotation session
was necessary. Since each image only contained reviewed labels for classes predicted by
models, to ensure a fair multi-label accuracy, the human predictions for the 2,000 images
had to be manually reviewed. To minimize bias, participants were not allowed to view
their predicted labels after the task, and random model predictions were seeded into the
annotation review such that every image had both model and human predictions to be
reviewed. Compared to labels from the initial annotation review from November 2018,
after the final annotation review, labels were unchanged for 1320 images, added for 531
images, and modified for 239 images. The modifications were due to a much greater
knowledge of fine-grained class distinctions by the participants after the training phase.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 101

Table 3.2: Human and model multi-label accuracy on three subsets of the ImageNet
and ImageNetV2 test sets. These results suggest that human labelers have an easier time
identifying objects than dogs and organisms. Moreover, human labelers are highly accurate
on images on which they spent little time to assign a label.

ImageNet multi-label accuracy (%)
All Images Without Dogs Objects Only Fast Images

Participant Original V2 Original V2 Original V2 Original V2
resnet50 84.2 75.7 84.9 76.8 82.5 72.8 86.8 79.6
AdvProp 93.6 88.3 94.1 89.3 92.3 86.7 94.9 91.3

FixResNeXt 95.5 89.6 96.0 90.1 95.0 89.1 96.2 92.3
Human A 91.9 91.1 94.2 93.4 97.0 96.7 97.6 97.5
Human B 94.7 93.9 96.9 96.0 98.3 97.8 98.5 98.5
Human C 96.2 96.7 98.4 98.6 99.1 99.8 99.1 99.7
Human D 95.7 94.8 97.3 96.6 98.8 98.4 99.3 98.3
Human E 97.2 96.5 98.7 97.3 98.8 97.0 99.5 98.6

3.5 Main Results
In this section we discuss two key facets of our experimental findings: a comparison of
human and machine accuracies on ImageNet, and a comparison of human and machine
robustness to the distribution shift between the ImageNet validation set and the ImageNet-
V2 test set. We also consider these comparisons on three restricted sets of images.

The main results of our work are illustrated in Figure 3.1. We can see that all the
human labelers fall close to the dotted line, indicating they their accuracies on the two
datasets are within 1%. Moreover, we can see that the accuracies of three of the human
labelers are better than the performance of the best model on both the original ImageNet
validation set and on the ImageNet-V2 test set. Importantly, we note that labelers D and
E, who did not participate in the initial annotation period, performed better than the best
model.

Figure 3.1 shows that the ImageNet validation set confidence intervals of the best 4
humans labelers and of the best model overlap. However, McNemar’s paired test rejects
the null hypothesis that the FixResNeXt model (the best model) and Human E (the best
human labeler) have the same accuracy on the ImageNet validation set distribution with a
p-value of 0.037. In Figure 3.1 we observe that the confidence intervals of Humans C, D,
and E on the ImageNetV2 test set do not overlap with the confidence interval of the best

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 102

model. McNemar’s test between Human B and the FixResNeXt model on ImageNetV2
yields a p-value of 2× 10−4.

Difficult images: One of the benefits of our experiments is the potential insight into
the failure modes of image classification models. To have a point of comparison let us start
with the human labelers. There were 10 images which were misclassified by all human
labelers. These images consisted of one image of a monkey and nine images of dogs. On
the other hand, there were 27 images misclassified by all 71 models considered by us.
Interestingly, 19 out of these images correspond to object classes and 8 correspond to
organism classes. We note that there are only two images that were misclassified by all
models and human labelers, both of them containing dogs. Four of the 27 images which
were difficult for the models are displayed in Figure 3.5. It is interesting that the failure
cases of the models consist of many images of objects while the failure cases of human
labelers are exclusively images of animals.

Figure 3.5: Four images which were misclassified by all 71 models, two from ImageNet
(first two) and two from ImageNetv2. The correct target labels for these images are cup,
spotlight, yawl, nail

Accuracies without dogs: To understand the extent to which models are better
than the human labelers at classifying dogs and animals, we compute their accuracies on
two restricted sets of images. First, we computed accuracies by excluding the 118 dog
classes. In this case, Table 3.2 shows an increase in the accuracy of the best model ([147])
by 0.6% on ImageNet images and by 1.1% on ImageNetV2 images. However, the mean
increase of the human labelers’ accuracies is 1.9% on ImageNet and 1.8% on ImageNetV2.
Before we interpret this result, we must establish whether the changes in accuracies shown
in Table 3.2 are meaningful. There are 882 non-dog classes in ImageNet. We use the
bootstrap to estimate changes in accuracies when the data is restricted to 882 classes. We
compute accuracies over 1000 trials as follows: we sample without replacement 882 classes

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 103

and compute the accuracies of the human labelers on the images whose main labels are
in the sampled classes. All trials yield smaller changes in accuracy than those shown in
Table 3.2. This simulation indicates that the increase in human performance on non-dog
images is significant.

Therefore, the relative gap between human labelers and models increases on both
ImageNet and ImageNetV2 when we remove the images containing dogs. This suggests that
the dog images are more difficult for the human labelers participating in our experiment
than for the models.

Accuracies on objects: To further understand the strengths and weaknesses of the
models and human labelers, we compute their accuracies on the subset of data which
have objects as their main labels, as opposed to organisms. There are 590 object classes.
In Table 3.2 we can see the stark contrast in performance between human labelers and
models on images of objects. The mean increase of the human labelers’ accuracies is 3.3%
on ImageNet and 3.4% on ImageNetV2, whereas the accuracy of the best model decreased
by 0.5% on both ImageNet and ImageNetV2. A bootstrap simulation similar to the one
described for the “Without Dogs” comparison reveals that human accuracy increase is
significant. This result suggests that images of objects are substantially easier for the
human labelers than the models.

Accuracies on fast images: Whereas CNN models spend the same amount of time
classifying different images, the human labelers spent anywhere from a couple of seconds to
40 minutes labeling one image. What does the amount of time spent by humans labeling
an image say about that image? We compute accuracies of all models and human labelers
on the subset of images for which the median time spent by the human labelers to label it
was at most 60 seconds. Out of a total of 2000 images used in the evaluation, there are
756 such images from ImageNet (77% of images) and 714 such images from ImageNetV2
(73% of images). We observe a dramatic increase in the accuracies of the human labelers,
suggesting that human labelers know when an image is difficult for them and spend more
time labeling it. The accuracies of the models also increase on “Fast Images.” This result is
intuitive, suggesting that images that humans label quickly are more likely to be correctly
classified by models. We present results for these images in Table 3.2.

3.5.1 Accuracies on three disjoint subsets

To gain further insights in the capabilities of both machine and human labelers we compute
their accuracies on three disjoint sets of classes: dogs, animals without dogs, and inanimate
objects. The results can be found in Table 3.3

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 104

Table 3.3: Human and model multi-label accuracy on three subsets of the ImageNet
and ImageNetV2 test sets. These results suggest that human labelers have an easier time
identifying objects than dogs and organisms.

ImageNet multi-label accuracy (%)
All Images Dogs Animals(No dogs) Objects

Participant Original V2 Original V2 Original V2 Original V2
resnet50 84.2 75.7 78.8 67.8 90.4 84.0 82.5 72.8
AdvProp 93.6 88.3 89.8 80.0 97.4 93.6 92.3 86.7

FixResNeXt 95.5 89.6 92.4 79.1 97.4 93.6 95.0 89.1
Human A 91.9 91.1 74.5 73.9 89.4 86.9 97.0 96.7
Human B 94.7 93.9 78.8 78.2 94.2 92.6 98.3 97.8
Human C 96.2 96.7 80.5 82.6 97.1 96.4 99.1 99.8
Human D 95.7 94.8 83.9 80.8 94.5 93.0 98.8 98.4
Human E 97.2 96.5 86.4 90.4 98.7 97.7 98.8 97.0

3.5.2 Top-1 Accuracies

In the main text, we measured the multi-label accuracy of both models and humans on
both the ImageNet and ImageNetV2 test sets. For completeness, in Table ?? we now
provide both the top-1 and multi-label accuracy of models and humans on the same test
sets. Figure 3.6 shows the scatters plot of top-1accuracies on ImageNet and ImageNetV2
test sets.

We note that under the top-1metric, we observe a substantially larger median accuracy
drop of 4.3% between ImageNet and ImageNetV2 when compared to a median accuracy
drop of 0.8% between the two datasets under the multi-label metric. As shown in Table
3.6, a similar accuracy drop accuracy drop exists on all three subsets studied in the main
text.

While in Section 3.3 we address major issues with top-1accuracy for human evaluation,
it is nonetheless interesting that such humans exhibit such a large performance drop in
the top-1metric. In addition to the reasons mentioned in Section 3.3, we investigate two
additional conjectures for the difference between top-1and multi-label result:

1. Escape Hatches. One potential failure mode of the multi-label metric would be
an excess of images where the correct human prediction is a small or common object
that is present in the scene but is presumably not the intended subject of the image.
We denote these class labels “escape-hatch” labels as they allow the human to punt

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 105

on a difficult classification task such as the difference between a French bull
dog vs a Boston terrier to classify an easier background object such as pole.

Since the notion of escape-hatches could substantially inflate accuracies on the
classification task, all human subjects provided alternative labels for any image for
which they believed they used an escape hatch. To preserve our blind analysis this
was done before the subjects viewed the true labels for the images. While this process
isn’t perfect as it relied on each subjects own judgement on what constitutes an
escape-hatch, we believe this is unavoidable since the notion of an escape hatch label
is highly subjective in nature.

In table 3.7 we present accuracies on the predictions with the escape hatch alternatives
imputed, that is for each image the subject marked as an escape hatch we replaced
his or her prediction with the secondary prediction provided. We note these numbers
vary significantly across each of the participants as the set of escape hatch images
for each participants varies. We see that this induces an approximately 3% accuracy
drop in 4/5 participants.

2. Multi-label proportion in ImageNet vs ImageNet V2. Another possible
explanation for the top-1accuracy discrepancy between ImageNet and ImageNetV2
could be a higher proportion of images with multiple labels in ImageNetV2. Among
the 1000 images labeled, 30.0% (292/984) images in ImageNet contained multiple
labels compared to 34.4% (337/980) images in ImageNetV2.

If humans have a significantly lower top-1 accuracy on images with multiple
semantically correct labels, the higher proportion of multi-label images in ImageNetV2
could partially explain the accuracy drop between the two datasets. Figure 3.7
illustrates precisely this notion, we measure the top-1 accuracy on two mutually
exclusive subsets of ImageNet and ImageNetV2, those with exactly one correct label,
and those with multiple correct labels. We find that human accuracy can degrade
over 40% between images with a single correct label and those with multiple correct
labels.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 106

Table 3.4: Original ImageNet validation top-1, top-5, and multi-label accuracy for
every model in the testbed evaluated on the 20,000 image subset. The models are sorted
by their top-1 accuracy. The confidence intervals are 95% Clopper-Pearson intervals.
The second part of the table can be found on the following page.

Original ImageNet accuracy (%)
Model Multi-label Top-1 Top-5
FixResNeXt101_32x48d_v2 94.7 [94.4, 95.0] 86.1 [85.6, 86.6] 97.9 [97.7, 98.1]
instagram-48d 94.4 [94.1, 94.8] 85.6 [85.1, 86.0] 97.7 [97.4, 97.9]
tf_efficientnet_b8_ap 93.7 [93.4, 94.1] 85.3 [84.8, 85.8] 97.3 [97.1, 97.6]
efficientnet-b7 92.9 [92.6, 93.3] 84.3 [83.8, 84.8] 96.9 [96.7, 97.1]
pnasnet_large_tf 90.8 [90.4, 91.2] 82.6 [82.1, 83.2] 96.2 [95.9, 96.4]
pnasnet5large 90.8 [90.3, 91.2] 82.7 [82.2, 83.2] 95.9 [95.7, 96.2]
nasnetalarge 90.7 [90.3, 91.1] 82.4 [81.8, 82.9] 96.1 [95.8, 96.4]
nasnet_large_tf 90.6 [90.2, 91.1] 82.5 [82.0, 83.0] 96.1 [95.9, 96.4]
senet154 89.6 [89.1, 90.0] 81.2 [80.7, 81.8] 95.4 [95.1, 95.7]
polynet 89.3 [88.9, 89.8] 80.9 [80.4, 81.5] 95.5 [95.2, 95.8]
inception_v4_tf 88.6 [88.2, 89.1] 80.1 [79.5, 80.6] 95.2 [94.9, 95.5]
inceptionresnetv2 88.6 [88.1, 89.1] 80.2 [79.7, 80.8] 95.1 [94.8, 95.4]
inception_resnet_v2_tf 88.5 [88.1, 89.0] 80.3 [79.7, 80.8] 95.2 [94.9, 95.5]
se_resnext101_32x4d 88.3 [87.9, 88.8] 80.0 [79.5, 80.6] 94.9 [94.6, 95.2]
inceptionv4 88.3 [87.9, 88.8] 79.9 [79.4, 80.5] 94.9 [94.6, 95.2]
dpn107 88.1 [87.7, 88.6] 79.8 [79.2, 80.3] 94.7 [94.3, 95.0]
dpn131 87.7 [87.3, 88.2] 79.3 [78.7, 79.8] 94.5 [94.2, 94.8]
dpn92 87.5 [87.0, 87.9] 79.2 [78.7, 79.8] 94.6 [94.3, 94.9]
dpn98 87.4 [87.0, 87.9] 79.1 [78.5, 79.6] 94.4 [94.1, 94.7]
se_resnext50_32x4d 87.4 [86.9, 87.8] 79.0 [78.4, 79.6] 94.4 [94.0, 94.7]
xception 87.1 [86.6, 87.5] 78.7 [78.2, 79.3] 94.2 [93.9, 94.6]
resnext101_64x4d 87.0 [86.5, 87.5] 78.7 [78.2, 79.3] 94.2 [93.9, 94.5]
se_resnet152 86.9 [86.4, 87.4] 78.5 [77.9, 79.1] 94.3 [94.0, 94.6]
resnet152 86.6 [86.1, 87.1] 78.4 [77.8, 79.0] 94.2 [93.8, 94.5]
se_resnet101 86.6 [86.1, 87.0] 78.3 [77.7, 78.9] 94.4 [94.1, 94.7]
resnext101_32x4d 86.5 [86.0, 87.0] 78.2 [77.6, 78.7] 93.9 [93.5, 94.2]
inception_v3_tf 86.3 [85.8, 86.8] 78.0 [77.4, 78.5] 94.0 [93.6, 94.3]
resnet_v2_152_tf 86.2 [85.7, 86.7] 77.7 [77.1, 78.3] 94.0 [93.7, 94.4]
se_resnet50 85.8 [85.3, 86.3] 77.5 [76.9, 78.0] 93.8 [93.4, 94.1]
resnet101 85.7 [85.2, 86.2] 77.5 [76.9, 78.1] 93.5 [93.2, 93.9]
inception_v3 85.5 [85.0, 86.0] 77.1 [76.5, 77.7] 93.6 [93.3, 93.9]
inceptionv3 85.5 [85.0, 86.0] 77.3 [76.7, 77.9] 93.6 [93.2, 93.9]

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 107

Original ImageNet accuracy (%)
Model Multi-label Top-1 Top-5
resnet_v2_101_tf 85.5 [85.0, 86.0] 76.9 [76.3, 77.5] 93.6 [93.2, 93.9]
densenet161 85.4 [84.9, 85.9] 76.9 [76.3, 77.5] 93.5 [93.2, 93.9]
fbresnet152 85.4 [84.8, 85.9] 77.1 [76.5, 77.7] 93.5 [93.1, 93.8]
resnet_v1_152_tf 85.2 [84.7, 85.7] 76.9 [76.3, 77.5] 93.3 [92.9, 93.6]
dpn68b 85.2 [84.6, 85.7] 76.8 [76.2, 77.4] 93.7 [93.3, 94.0]
densenet201 85.1 [84.5, 85.6] 76.9 [76.3, 77.4] 93.4 [93.0, 93.7]
resnet_v1_101_tf 84.6 [84.1, 85.2] 76.4 [75.8, 77.0] 92.9 [92.5, 93.3]
cafferesnet101 84.3 [83.8, 84.8] 76.1 [75.5, 76.7] 92.8 [92.4, 93.1]
resnet50 84.2 [83.7, 84.8] 76.1 [75.5, 76.7] 92.9 [92.5, 93.2]
dpn68 84.0 [83.5, 84.5] 75.7 [75.1, 76.3] 92.7 [92.3, 93.0]
resnet_v2_50_tf 84.0 [83.5, 84.5] 75.5 [74.9, 76.1] 92.8 [92.4, 93.2]
densenet169 83.9 [83.4, 84.5] 75.7 [75.1, 76.3] 92.8 [92.5, 93.2]
resnet_v1_50_tf 83.6 [83.1, 84.1] 75.3 [74.7, 75.9] 92.2 [91.9, 92.6]
vgg19_bn 82.5 [82.0, 83.0] 74.3 [73.6, 74.9] 91.8 [91.5, 92.2]
densenet121 82.3 [81.8, 82.9] 74.2 [73.5, 74.8] 91.8 [91.4, 92.2]
pnasnet_mobile_tf 82.3 [81.8, 82.8] 74.3 [73.7, 74.9] 92.0 [91.7, 92.4]
inception_v2_tf 82.2 [81.7, 82.8] 74.0 [73.4, 74.6] 91.7 [91.3, 92.1]
nasnetamobile 82.1 [81.6, 82.7] 74.0 [73.4, 74.6] 91.8 [91.4, 92.2]
vgg16_bn 81.7 [81.1, 82.2] 73.4 [72.8, 74.0] 91.5 [91.2, 91.9]
bninception 81.6 [81.1, 82.2] 73.5 [72.9, 74.1] 91.6 [91.2, 92.0]
nasnet_mobile_tf 81.6 [81.0, 82.1] 73.8 [73.1, 74.4] 91.6 [91.2, 92.0]
resnet34 81.5 [80.9, 82.1] 73.3 [72.7, 74.0] 91.5 [91.1, 91.9]
vgg19 80.5 [79.9, 81.0] 72.3 [71.7, 72.9] 90.9 [90.5, 91.3]
vgg16 79.7 [79.1, 80.3] 71.5 [70.9, 72.2] 90.5 [90.1, 90.9]
vgg13_bn 79.5 [78.9, 80.1] 71.4 [70.7, 72.0] 90.3 [89.9, 90.7]
mobilenet_v1_tf 79.3 [78.7, 79.9] 71.1 [70.5, 71.7] 90.4 [90.0, 90.8]
vgg_16_tf 78.9 [78.3, 79.4] 70.9 [70.3, 71.5] 90.0 [89.6, 90.4]
vgg_19_tf 78.8 [78.2, 79.3] 70.7 [70.1, 71.3] 90.0 [89.6, 90.4]
vgg11_bn 78.1 [77.5, 78.7] 70.1 [69.4, 70.7] 89.8 [89.3, 90.2]
vgg13 78.0 [77.4, 78.6] 70.1 [69.5, 70.7] 89.3 [88.9, 89.8]
resnet18 77.6 [77.0, 78.2] 69.6 [68.9, 70.2] 89.2 [88.8, 89.6]
inception_v1_tf 77.5 [76.9, 78.1] 69.4 [68.8, 70.0] 89.7 [89.2, 90.1]
vgg11 76.8 [76.1, 77.4] 68.8 [68.2, 69.5] 88.6 [88.2, 89.1]
squeezenet1_1 65.5 [64.8, 66.2] 58.3 [57.6, 59.0] 80.8 [80.2, 81.3]
squeezenet1_0 65.0 [64.4, 65.7] 57.8 [57.1, 58.5] 80.3 [79.7, 80.8]
alexnet 63.7 [63.0, 64.4] 56.9 [56.3, 57.6] 79.3 [78.8, 79.9]

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 108

Table 3.5: ImageNetV2 top-1, top-5, and multi-label accuracy for every model in
the testbed. The confidence intervals are 95% Clopper-Pearson intervals. The models
are sorted by their top-1 accuracy. The second part of the table can be found on the
following page.

ImageNetV2 accuracy (%)
Model Multi-label Top-1 Top-5
FixResNeXt101_32x48d_v2 90.3 [89.7, 90.9] 86.1 [85.4, 86.8] 97.9 [97.6, 98.2]
instagram-48d 89.5 [88.9, 90.2] 85.6 [84.9, 86.2] 97.7 [97.3, 97.9]
tf_efficientnet_b8_ap 87.7 [87.1, 88.4] 85.3 [84.6, 86.0] 97.3 [97.0, 97.7]
efficientnet-b7 86.1 [85.4, 86.8] 84.3 [83.6, 85.0] 96.9 [96.5, 97.2]
pnasnet5large 83.0 [82.2, 83.8] 82.7 [82.0, 83.5] 95.9 [95.5, 96.3]
pnasnet_large_tf 83.0 [82.2, 83.7] 82.6 [81.9, 83.4] 96.2 [95.8, 96.5]
nasnetalarge 82.9 [82.1, 83.7] 82.4 [81.6, 83.1] 96.1 [95.7, 96.5]
nasnet_large_tf 82.8 [82.1, 83.6] 82.5 [81.8, 83.3] 96.1 [95.7, 96.5]
senet154 81.6 [80.8, 82.4] 81.2 [80.4, 82.0] 95.4 [95.0, 95.8]
polynet 81.4 [80.6, 82.2] 80.9 [80.2, 81.7] 95.5 [95.1, 95.9]
inceptionresnetv2 80.7 [79.9, 81.5] 80.2 [79.4, 81.0] 95.1 [94.7, 95.5]
inception_resnet_v2_tf 80.6 [79.8, 81.4] 80.3 [79.5, 81.0] 95.2 [94.8, 95.6]
se_resnext101_32x4d 80.3 [79.5, 81.1] 80.0 [79.3, 80.8] 94.9 [94.5, 95.4]
inceptionv4 80.1 [79.3, 80.9] 79.9 [79.1, 80.7] 94.9 [94.5, 95.3]
inception_v4_tf 79.5 [78.7, 80.3] 80.1 [79.3, 80.9] 95.2 [94.8, 95.6]
dpn107 79.2 [78.4, 80.0] 79.8 [79.0, 80.6] 94.7 [94.2, 95.1]
se_resnext50_32x4d 78.8 [77.9, 79.6] 79.0 [78.2, 79.8] 94.4 [93.9, 94.8]
dpn98 78.6 [77.7, 79.4] 79.1 [78.2, 79.8] 94.4 [93.9, 94.8]
dpn131 78.6 [77.7, 79.4] 79.3 [78.4, 80.0] 94.5 [94.0, 94.9]
se_resnet152 78.5 [77.7, 79.3] 78.5 [77.7, 79.3] 94.3 [93.9, 94.8]
xception 78.2 [77.4, 79.0] 78.7 [77.9, 79.5] 94.2 [93.8, 94.7]
se_resnet101 78.2 [77.3, 79.0] 78.3 [77.5, 79.1] 94.4 [93.9, 94.8]
dpn92 78.1 [77.2, 78.9] 79.2 [78.4, 80.0] 94.6 [94.2, 95.1]
resnet152 77.7 [76.9, 78.6] 78.4 [77.6, 79.2] 94.2 [93.7, 94.6]
resnext101_64x4d 77.7 [76.9, 78.6] 78.7 [77.9, 79.5] 94.2 [93.7, 94.7]
resnet_v2_152_tf 77.0 [76.1, 77.9] 77.7 [76.9, 78.5] 94.0 [93.6, 94.5]
se_resnet50 76.9 [76.0, 77.7] 77.5 [76.6, 78.3] 93.8 [93.3, 94.2]
resnext101_32x4d 76.9 [76.0, 77.7] 78.2 [77.4, 79.0] 93.9 [93.4, 94.3]

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 109

ImageNetV2 accuracy (%)
Model Multi-label Top-1 Top-5
inception_v3_tf 76.7 [75.8, 77.6] 78.0 [77.1, 78.8] 94.0 [93.5, 94.4]
resnet101 76.6 [75.7, 77.5] 77.5 [76.7, 78.3] 93.5 [93.0, 94.0]
inceptionv3 76.4 [75.5, 77.3] 77.3 [76.5, 78.1] 93.6 [93.1, 94.0]
fbresnet152 76.4 [75.5, 77.2] 77.1 [76.3, 77.9] 93.5 [92.9, 93.9]
densenet161 76.2 [75.4, 77.1] 76.9 [76.1, 77.8] 93.5 [93.0, 94.0]
inception_v3 75.9 [75.0, 76.8] 77.1 [76.3, 78.0] 93.6 [93.1, 94.1]
resnet_v2_101_tf 75.9 [75.0, 76.8] 76.9 [76.0, 77.7] 93.6 [93.1, 94.0]
densenet201 75.4 [74.5, 76.3] 76.9 [76.0, 77.7] 93.4 [92.9, 93.9]
dpn68b 75.4 [74.5, 76.3] 76.8 [76.0, 77.6] 93.7 [93.2, 94.1]
resnet_v1_152_tf 75.2 [74.4, 76.1] 76.9 [76.1, 77.7] 93.3 [92.8, 93.7]
resnet_v1_101_tf 75.2 [74.4, 76.1] 76.4 [75.5, 77.2] 92.9 [92.4, 93.4]
cafferesnet101 74.9 [74.0, 75.8] 76.1 [75.3, 76.9] 92.8 [92.2, 93.3]
densenet169 74.1 [73.2, 75.0] 75.7 [74.9, 76.6] 92.8 [92.3, 93.3]
resnet50 74.1 [73.2, 74.9] 76.1 [75.3, 77.0] 92.9 [92.3, 93.4]
dpn68 74.0 [73.1, 74.9] 75.7 [74.8, 76.5] 92.7 [92.2, 93.2]
resnet_v2_50_tf 73.5 [72.6, 74.4] 75.5 [74.7, 76.4] 92.8 [92.3, 93.3]
resnet_v1_50_tf 73.1 [72.2, 74.0] 75.3 [74.5, 76.2] 92.2 [91.7, 92.8]
densenet121 72.8 [71.9, 73.7] 74.2 [73.3, 75.0] 91.8 [91.3, 92.4]
bninception 72.7 [71.8, 73.6] 73.5 [72.6, 74.4] 91.6 [91.1, 92.2]
vgg19_bn 72.0 [71.0, 72.9] 74.3 [73.4, 75.1] 91.8 [91.3, 92.4]
resnet34 71.8 [70.9, 72.7] 73.3 [72.5, 74.2] 91.5 [90.9, 92.0]
inception_v2_tf 71.8 [70.8, 72.7] 74.0 [73.1, 74.9] 91.7 [91.2, 92.2]
nasnetamobile 71.7 [70.8, 72.6] 74.0 [73.1, 74.8] 91.8 [91.2, 92.3]
pnasnet_mobile_tf 71.3 [70.4, 72.2] 74.3 [73.4, 75.1] 92.0 [91.5, 92.6]
vgg16_bn 71.1 [70.1, 72.0] 73.4 [72.6, 74.3] 91.5 [91.0, 92.1]
nasnet_mobile_tf 71.0 [70.0, 71.9] 73.8 [72.9, 74.6] 91.6 [91.1, 92.2]
vgg19 69.7 [68.7, 70.6] 72.3 [71.4, 73.2] 90.9 [90.3, 91.5]
vgg13_bn 69.2 [68.3, 70.1] 71.4 [70.5, 72.2] 90.3 [89.7, 90.9]
vgg16 68.6 [67.7, 69.6] 71.5 [70.6, 72.4] 90.5 [89.9, 91.0]
vgg_19_tf 68.3 [67.4, 69.3] 70.7 [69.8, 71.6] 90.0 [89.4, 90.6]
vgg_16_tf 68.0 [67.1, 69.0] 70.9 [70.0, 71.8] 90.0 [89.4, 90.6]
vgg11_bn 67.6 [66.7, 68.6] 70.1 [69.2, 71.0] 89.8 [89.2, 90.4]
resnet18 67.2 [66.3, 68.2] 69.6 [68.7, 70.5] 89.2 [88.6, 89.8]
mobilenet_v1_tf 67.2 [66.3, 68.2] 71.1 [70.2, 72.0] 90.4 [89.8, 90.9]
inception_v1_tf 66.8 [65.8, 67.8] 69.4 [68.5, 70.3] 89.7 [89.1, 90.3]
vgg13 66.7 [65.7, 67.7] 70.1 [69.2, 71.0] 89.3 [88.7, 89.9]
vgg11 65.2 [64.2, 66.2] 68.8 [67.9, 69.8] 88.6 [88.0, 89.2]
squeezenet1_1 53.6 [52.6, 54.6] 58.3 [57.3, 59.3] 80.8 [80.0, 81.6]
squeezenet1_0 53.2 [52.2, 54.2] 57.8 [56.8, 58.7] 80.3 [79.5, 81.0]
alexnet 51.6 [50.6, 52.7] 56.9 [56.0, 57.9] 79.3 [78.5, 80.1]

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 110

70 75 80 85 90
Top-1 Accuracy on ImageNet

60

65

70

75

80

85

90

To
p-

1
Ac

cu
ra

cy
 o

n
Im

ag
eN

et
V2

y=x
Model trained on ImageNet
Model trained on more data
Human labelers
Linear fit

80 85 90 95
Multi-label Accuracy on ImageNet (%)

65

70

75

80

85

90

95

M
ul

ti-
la

be
l A

cc
ur

ac
y

on
 Im

ag
eN

et
V2

 (%
)

y=x
Model trained on ImageNet
Model trained on more data
Human labelers
Linear fit

70 75 80 85 90
Top-1 Accuracy on ImageNet (objects only)

55

60

65

70

75

80

85

90

To
p-

1
Ac

cu
ra

cy
 o

n
Im

ag
eN

et
V2

 (o
bj

ec
ts

 o
nl

y) ImageNet Objects Top 1

y=x
Model trained on ImageNet
Model trained on more data
Human labelers
Linear fit

75 80 85 90 95 100
Multi-label Accuracy on ImageNet (%)

60

65

70

75

80

85

90

95

100
M

ul
ti-

la
be

l A
cc

ur
ac

y
on

 Im
ag

eN
et

V2
 (%

) Objects Only
y=x
Model trained on ImageNet
Model trained on more data
Human labelers
Linear fit

75 80 85 90
Top-1 Accuracy on ImageNet (fast images)

65

70

75

80

85

90

To
p-

1
Ac

cu
ra

cy
 o

n
Im

ag
eN

et
V2

 (f
as

t i
m

ag
es

)

ImageNet Fast Images Top 1

y=x
Model trained on ImageNet
Model trained on more data
Human labelers
Linear fit

80 85 90 95 100
Multi-label Accuracy on ImageNet (%)

70

75

80

85

90

95

100

M
ul

ti-
la

be
l A

cc
ur

ac
y

on
 Im

ag
eN

et
V2

 (%
) Fast Images

y=x
Model trained on ImageNet
Model trained on more data
Human labelers
Linear fit

Figure 3.6: (left)top-1accuracies and (b) multi-label accuracies for both convolutional
neural networks and five human labelers on the ImageNet validation set versus their
accuracies on the ImageNetV2 test set. The confidence intervals are 95% Clopper-Pearson
confidence intervals.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 111

Table 3.6: Human and model top-1 accuracy on three subsets of the ImageNet and
ImageNetV2 test sets. The values shown in this table suggest that human labelers have
an easier time identifying objects than dogs and organisms. Moreover, human labelers are
highly accurate on images on which they spent little time to assign a label.

ImageNet Top-1 accuracy (%)
All Images Without Dogs Objects Only Fast Images

Participant Original V2 Original V2 Original V2 Original V2
resnet50 78.1 68.8 78.4 69.0 74.6 62.4 80.8 72.0
AdvProp 88.2 81.5 88.2 81.8 84.9 77.1 90.1 83.3

FixResNeXt 89.4 82.7 89.5 83.4 87.5 79.1 90.5 84.2
Human A 76.9 71.8 79.8 74.7 79.4 72.6 83.5 78.4
Human B 79.1 76.2 82.7 80.0 80.6 77.2 84.4 81.5
Human C 80.7 78.0 84.5 82.1 82.8 79.5 85.7 83.1
Human D 83.5 79.2 85.7 81.7 84.0 79.1 88.8 83.2
Human E 90.3 85.7 91.6 85.9 89.9 81.9 93.0 87.8

80 85 90 95
Accuracy on 1k Val Single (top-1, %)

70

75

80

85

90

95

Ac
cu

ra
cy

 o
n

1k
 V

2
Si

ng
le

 (t
op

-1
, %

)

ImageNet Top1 Single Label Images (probit axis scaling)
y=x
model
humans
Linear fit

50 55 60 65 70 75 80
Accuracy on 1k Val Multi (top-1, %)

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 o
n

1k
 V

2
M

ul
ti

(to
p-

1,
 %

)

ImageNet Top1 Multiple Label Images (probit axis scaling)
y=x
model
humans
Linear fit

Figure 3.7: Scatter plot of top-1accuracies on subsets of ImageNet and ImageNetV2
with (left) A single “correct label (right) multiple “correct” labels. Note humans do
significantly worse on images with multiple labels. The confidence intervals are 95%
Clopper-Pearson confidence intervals.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 112

Table 3.7: Human and model multi-label accuracy on ImageNet and ImageNetV2 test
sets after escape hatch imputation. We also provide the original accuracies for reference.

ImageNet multi-label accuracy (%)
With Escape Hatch Imputation Without Escape Hatch Imputation

Participant Original V2 Original V2
Human A 82.7 79.8 91.9 91.1
Human B 87.1 84.1 94.7 93.9
Human C 91.1 91.6 96.2 96.7
Human D 87.5 84.0 95.7 94.8
Human E 88.0 86.6 97.2 96.5

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 113

3.5.3 Examples of training effective Images

(a) (b) (c)

Figure 3.8: Examples of ImageNet classes that are difficult to distinguish or identify
for untrained human labelers. a) A French bull dog (top) versus a Boston bull
terrier (bottom). Though the dogs appear similar, there are key differences between
the two breeds. French bulldogs have a more muscular build and weigh more than
Boston terriers. b) A dragonfly (top) versus a damselfly (bottom). Again, the
classes may initially look similar, but dragonflies have wings perpendicular to their body at
rest while damselflies have wings parallel to their body at rest. c) A fire screen (top)
and an industrial can opener (bottom). Both images are not prototypical examples for
their class. Hence knowing the class hierarchy in detail to recognize the most likely classes
is helpful.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 114

3.5.4 Time Spent Per Image

Figure 3.9 details the median time spent by a human on each image. We note all the time
measured is active time the kparticipants spent searching the UI for a potential label.

0 50 100 150 200 250 300 350 400
Seconds

0

200

400

600

Nu
m

be
r o

f I
m

ag
es

ImageNet Test Set
ImageNetV2 Test Set

Figure 3.9: A histogram of the median time, measured in seconds, spent by the human
labelers on images. We omitted are 24 outliers for which the median time spent by the
human labelers was longer than 400 seconds: 13 outliers from the ImageNet test set and
11 outliers from the ImageNetV2 test set.

3.5.5 Problematic Image removal

One key step of the initial annotation procedure was removing problematic images. An
image was problematic if any of the below criteria held:

• The original ImageNet label (top-1label) was incorrect

• Image was a cartoon or drawing

• Image was excessively edited

• Image had inappropriate content

Out of the 40,683 reviewed there were a total of 1206 images from ImageNet that were
marked problematic and 686 images from ImageNetV2 marked problematic. In Table 3.8
we compute multi-label accuracies on both the problematic and non problematic subsets.
Note accuracies are substantially lower on the problematic subset. Curiously accuracies

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 115

Table 3.8: Model multi-label accuracies on problematic and non-problematic subsets

ImageNet multi-label accuracy (%)
Non Problematic Images Problematic Images

Model Original V2 Original V2
resnet50 84.2 74.0 66.6 68.4
AdvProp 93.7 87.7 72.1 73.1
FixRes 94.7 90.2 74.0 75.7

are slightly higher on the problematic images from ImageNetV2 compared to ImageNet,
we believe this is due to subjective decisions during the problematic image removal process
and not some fundamental phenomena.

3.5.6 Ensembling Humans

80 85 90 95
Multi-Label ImageNet Accuracy

65

70

75

80

85

90

95

M
ul

ti-
La

be
l I

m
ag

eN
et

 A
cc

ur
ac

y

ImageNetV2 vs ImageNet Accuracy
y=x
Linear fit
model
humans
human_ensemble

Figure 3.10: /
Accuracies of 71 convolutional neural networks, the five human labelers, and an ensemble

of the same five human labelers. The confidence intervals are 95% Clopper-Pearson
confidence intervals.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 116

3.6 Related Work
Human accuracy on ImageNet. In the context of the ImageNet challenge, Rus-
sakovsky et al. [131] studied the accuracy of two trained humans on 1,500 and 258
ImageNet images, respectively. The widely publicized human baseline on ImageNet is the
top-5 accuracy of the labeler who labeled 1,500 images. As mentioned in the introduction,
our study goes beyond their comparison in three ways: multi-label accuracy, more labelers,
and a focus on robustness to small distribution shift. While some of our findings differ,
other results from [131] are consistent with ours. For instance, both experiments found
that the time spent per image was approximately one minute, with a long tail due to
difficult images.

Human performance in computer vision broadly. There have been several recent
studies of humans in various areas of computer vision. For instance, Elsayed et al. [38]
construct adversarial examples that fool both models and time-limited humans. Geirhos
et al. [52] conducted psychophysical trials to investigate human robustness to synthetic
distribution shfits, and Geirhos et al. [54] studied characteristics used by humans to make
object recognition decisions. In a similar vein, Zhu et al. [165] contrast the effect of
foreground and background objects on performance by humans and trained models.

Multi-label annotations. In this work, we contribute multi-label annotations for
ImageNet and ImageNetV2. Previously, Stock and Cissé [139] studied the multi-label
nature of ImageNet and found that top-1 accuracy can underestimate multi-label by
as much as 13.2%. The results of this work largely agree with our study. We hope the
public release of our multi-label annotations will allow an accurate evaluation of all future
models.

ImageNet inconsistencies and label error. During our annotation review, we recorded
all incorrectly classified images we found in ImageNet and ImageNetV2. With the help
of experts from the Cornell Lab of Ornithology,Van Horn et al. [148] estimate that at
least 4% of birds are misclassified in ImageNet. Within the bird classes, [148] also observe
inconsistencies in ImageNet’s taxonomic structure which lead to weak class boundaries.
We found that these taxonomic issues are present in the majority of the fine-grained
organism classes.

CHAPTER 3. HUMAN ACCURACY ON IMAGENETV2 117

Distribution shift. There is a growing body of work studying methods for addressing
the challenge of distribution shift. For instance, the goal of distributionally robust
optimization (DRO) is to find models that minimize the worst case expected error over
a set of probability distributions [4, 10, 29, 37, 41, 133, 138]. A similar yet different line
of work has focused on finding models that have low error rates on adversarial examples
(worst case small perturbations to data points in the test set) [13, 14, 60, 106]. The
work surrounding both DRO and adversarial examples has developed valuable ideas, but
neither line of work has been shown to resolve the drop in accuracy between ImageNet
and ImageNetV2.

3.7 Conclusion & Future Work
Achieving truly reliable machine learning will require a deeper understanding of the input
changes a model should be robust to. Such understanding can likely guide research on more
robust methods and is essential for developing meaningful tests of reliable performance. For
tasks where human-like generalization is the ultimate goal, comparing model performance
to human generalization can provide valuable information about the desired robustness
properties. Our work is a step in this direction. Our results highlight that robustness to
small, naturally occuring distribution shifts is a performance dimension not addressed
by current benchmarks, but easily handled by humans. Besides the obvious direction of
improving model robustness to such distribution shifts, there are further avenues for future
work:

Robustness of non-expert labelers. A natural question is whether labelers with
less training exhibit similar robustness to the distribution shift from ImageNet to Ima-
geNetV2. Since untrained labelers will likely be in a lower accuracy regime, this would
further illustrate that human robustness is a more stable property than direct accuracy
measurements.

Other generalization dimensions. What further dimensions of human generaliza-
tion are current models clearly lacking? Other forms of natural distribution shift such as
robustness to temporal changes could be one candidate [62, 135].

118

Chapter 4

Do ImageNet Classifiers Generalize
Across Time?

4.1 Introduction
Convolutional neural networks (CNNs) still exhibit many troubling failure modes. At
one extreme, `p-adversarial examples cause large drops in accuracy for state-of-the-art
models while relying only on visually imperceptible changes to the input image [13, 60].
However, this failure mode usually does not pose a problem outside a fully adversarial
context because carefully crafted `p-perturbations are unlikely to occur naturally in the
real world.

To study more realistic failure modes, researchers have investigated benign image
perturbations such as rotations & translations, colorspace changes, and various image
corruptions [39, 45, 71, 72]. However, it is still unclear whether these perturbations reflect
the robustness challenges arising in real data since the perturbations also rely on synthetic
image modifications.

Recent work has therefore turned to videos as a source of naturally occurring pertur-
bations of images [9, 61, 162]. In contrast to other failure modes, the perturbed images
are taken from existing image data without further modifications to make the task more
difficult. As a result, robustness to such perturbations directly corresponds to performance
improvements on real data.

However, it is currently unclear to what extent such video perturbations pose a
robustness challenge. Azulay and Weiss [9] and Zheng et al. [162] only provide anecdotal
evidence from a small number of videos. Gu et al. [61] go beyond individual videos and

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 119

Figure 4.1: Three examples of natural perturbations from nearby video frames and
resulting classifier predictions from a ResNet-152 model fine-tuned on ImageNet-Vid.
While the images appear almost identical to the human eye, the classifier confidence
changes substantially.

utilize a large video dataset [125] in order to measure the effect of video perturbations
more quantitatively. In their evaluation, the best image classifiers lose about 3% accuracy
for video frames up to 0.3 seconds away. However, the authors did not employ humans
to review the frames in their videos. Hence the accuracy drop could also be caused
by significant changes in the video frames (e.g., due to fast camera or object motion).
Since the 3% accuracy drop is small to begin with, it remains unclear whether video
perturbations are a robustness challenge for current image classifiers.

We address these issues by conducting a thorough evaluation of robustness to natural
perturbations arising in videos. As a cornerstone of our investigation, we introduce two
test sets for evaluating model robustness: ImageNet-Vid-Robust and YTBB-Robust,
carefully curated from the ImageNet-Vid and Youtube-BB datasets, respectively [125, 130].
All images in the two datasets were screened by a set of expert labelers to ensure high
annotation quality and minimize selection biases that arise when filtering a dataset with
CNNs. To the best of our knowledge these are the first datasets of their kind, containing
tens of thousands of images that are human reviewed and grouped into thousands of
perceptually similar sets. In total, our datasets contain 3,139 sets of temporally adjacent
and visually similar images (57,897 images total).

We then utilize these datasets to measure the robustness of current CNNs to small,
naturally occurring perturbations. Our testbed contains over 45 different models, varying
both architecture and training methodology (adversarial training, data augmentation,
etc.). To better understand the drop in accuracy due to natural perturbations, we also
introduce a robustness metric that is more stringent than those employed in prior work.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 120

Under this metric, we find that natural perturbations from ImageNet-Vid-Robust
and YTBB-Robust induce a median accuracy drop of 16% and 10% respectively for
classification tasks and a median 14 point drop in mAP for detection tasks1. Even
for the best-performing classification models, we observe an accuracy drop of 14% for
ImageNet-Vid-Robust and 8% for YTBB-Robust.

Our results show that robustness to natural perturbations in videos is indeed a significant
challenge for current CNNs. As these models are increasingly deployed in safety-critical
environments that require both high accuracy and low latency (e.g., autonomous vehicles),
ensuring reliable predictions on every frame of a video is an important direction for future
work.

4.2 Constructing a test set for robustness
ImageNet-Vid-Robust and YTBB-Robust are sourced from videos in the ImageNet-
Vid and Youtube-BB datasets [125, 130]. All object classes in ImageNet-Vid and Youtube-
BB are from the WordNet hierarchy [112] and direct ancestors of ILSVRC-2012 classes.
Using the WordNet hierarchy, we construct a canonical mapping from ILSVRC-2012
classes to ImageNet-Vid and Youtube-BB classes, which allows us to evaluate off-the-shelf
ILSVRC-2012 models on ImageNet-Vid-Robust and YTBB-Robust. We provide
more background on the source datsets in the appendix.

4.2.1 Source Dataset Overview

4.2.2 ImageNet-Vid

The 2015 ImageNet-Vid dataset is widely used for training video object detectors [65] as
well as trackers [12]. We chose to work with the 2017 ImageNet-Vid dataset because it is a
superset of the 2015 dataset. In total, the 2017 ImageNet-Vid dataset consists of 1,181,113
training frames from 4,000 videos and 512,360 validation frames from 1,314 videos. The
videos have frame rates ranging from 9 to 59 frames per second (fps), with a median fps
of 29. The videos range from 0.44 to 96 seconds in duration with a median duration of
12 seconds. Each frame is annotated with labels indicating the presence or absence of 30

1We only evaluated detection on ImageNet-Vid-Robust as bounding-box annotations in Youtube-
BB are available only at a temporal resolution of 1 frame-per-second and hence not dense enough for our
evaluation.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 121

Anchor frame Discarded frame Anchor frame Anchor frame Discarded frameDiscarded frame

Figure 4.2: Temporally adjacent frames may not be visually similar. We show three
randomly sampled frame pairs where the nearby frame was marked as “dissimilar” to the
anchor frame during human review and then discarded from our dataset.

object classes and corresponding bounding boxes for any label present in the frame. The
30 classes are ancestors of 293 of the 1,000 ILSVRC-2012 classes.

4.2.3 Youtube-BB

The 2017 Youtube-BB is a a large scale dataset with 8,146,143 annotated training frames
253,569 unique videos and with 1,013,246 validation frames from 31,829 videos. The video
segments are approximately 19 seconds long on average. Each frame is annotated with
exactly one label indicating the presence of 22 object classes, all of which are ancestors of
229 out of the ILSVRC-2012 classes.

4.2.4 Constructing ImageNet-Vid-Robust and YTBB-Robust

Next, we describe how we extracted sets of naturally perturbed frames from ImageNet-Vid
and Youtube-BB to create ImageNet-Vid-Robust and YTBB-Robust. A straight-
forward approach would be to select a set of anchor frames and use temporally adjacent
frames in the video with the assumption that such frames contain only small perturbations
from the anchor. However, as Figure 4.2 illustrates, this assumption is frequently violated,
especially due to fast camera or object motion.

Instead, we first collect preliminary datasets of natural perturbations following the
same approach, and then manually review each of the frame sets. For each video, we
randomly sample an anchor frame and take k = 10 frames before and after the anchor
frame as candidate perturbation images2. This results in two datasets containing one

2For YTBB-Robust we use a subset of the anchor frames used by Gu et al. [61].

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 122

anchor frame each from 3,139 videos, with approximately 20 candidate perturbation per
anchor frame3.

Next, we curate the dataset with the help of four expert human annotators. The
goal of the curation step is to ensure that each anchor frame and its nearby frames are
correctly labeled with the same ground truth class, and that the anchor frame and the
nearby frames are visually similar.

Denser labels for Youtube-BB. As Youtube-BB contains only a single category
label per frame at 1 frame per second, annotators first inspected each anchor frame
individually and added any missing labels. In total, annotators corrected the labels for
834 frames, adding an average of 0.5 labels per anchor frame. These labels are then
propagated to nearby, unlabeled frames at the native frame rate and verified in the next
step. ImageNet-Vid densely labels all classes per frame, so we skipped this step for this
dataset.

Frame pairs review. Next, for each pair of anchor and nearby frames, a human
annotates (i) whether the pair is correctly labeled in the dataset, and (ii) whether the pair
is similar. We took several steps to mitigate the subjectivity of this task and ensure high
annotation quality. First, we trained reviewers to mark frames as dissimilar if the scene
undergoes any of the following transformations: significant motion, significant background
change, or significant blur change. We asked reviewers to mark each dissimilar frame with
one of these transformations, or “other”, and to mark a pair of images as dissimilar if a
distinctive feature of the object is only visible in one of the two frames (such as the face of
a dog). If an annotator was unsure about the correct label, she could mark the pair as
“unsure”. Second, we present only a single pair of frames at a time to reviewers because
presenting videos or groups of frames could cause them to miss large changes due to the
phenomenon of change blindness [116].

Verification. In the previous stage, all annotators were given identical labeling
instructions and individually reviewed a total of 71,660 image pairs. To increase consistency
in annotation, annotators jointly reviewed all frames marked as dissimilar, incorrectly
labeled, or “unsure”. A frame was only considered similar to its anchor if a strict majority
of the annotators marked the pair as such.

After the reviewing was complete, we discarded all anchor frames and candidate
perturbations that annotators marked as dissimilar or incorrectly labeled. The final
datasets contain a combined total of 3,139 anchor frames with a median of 20 similar
frames each.

3Anchor frames near the start or end of the video may have less than 20 candidate frames.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 123

ImageNet-Vid-Robust YTBB-Robust

Anchor frames
Reviewed 1,314 2,467
Accepted 1,109 (84%) 2,030 (82%)

Labels updated - 834 (41%)

Frame pairs Reviewed 26,029 45,631
Accepted 21,070 (81%) 36,827 (81%)

Table 4.1: Dataset statistics of ImageNet-Vid-Robust and YTBB-Robust. For
YTBB-Robust, we updated the labels from for 41% (834) of the accepted anchors due to
incomplete labels in Youtube-BB.

4.2.5 The pm-k evaluation metric

Given the datasets introduced above, we propose a metric to measure a model’s robustness
to natural perturbations. In particular, let A = {a1, ..., an} be the set of valid anchor
frames in our dataset. Let Y = {y1, ..., yn} be the set of labels for A. We let Nk(ai) be
the set of frames marked as similar to anchor frame ai. In our setting, Nk is a subset of
the 2k temporally adjacent frames (plus/minus k frames from the anchor).

Classification. The standard classification accuracy on the anchor frame is accorig =

1 − 1
N

∑N
i=1 L0/1(f(ai), yi), where L0/1 is the standard 0-1 loss function. We define the

pm-k analog of accuracy as

accpmk = 1− 1

N

N∑
i=1

max
b∈Nk(ai)

L0/1(f(b), yi) , (4.2.1)

which corresponds to picking the worst frame from each set Nk(ai) before computing
accuracy. We note the similarity of the pm-k metric to standard `p adversarial robustness.
If we let Nk(ai) be the set of all images within an `p ball of radius ε around ai, then the
two notions of robustness are identical.

4.3 Detection
We briefly introduce the mAP metric for detection here and refer the reader to [101] for
further details. The standard detection metric proceeds by first determining whether each
predicted bounding box in an image is a true or false positive, based on the intersection

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 124

over union (IoU) of the predicted and ground truth bounding boxes. The metric then
computes the per-category average precision (AP, averaged over recall thresholds) of the
predictions across all images. The final metric is reported as the mean of these per-category
APs (mAP).

We define the pm-k analog of mAP by replacing each anchor frame in the dataset with
a nearby frame that minimizes the per-image average precision. Since the category-specific
average precision is undefined for categories not present in an image, we minimize the
average precision across categories present in each frame rather than the mAP.

4.4 Experimental results

40 50 60 70 80
Original Test Accuracy

30

40

50

60

70

Pe
rtu

rb
ed

 T
es

t A
cc

ur
ac

y

ImageNet-Vid-Robust

50 60 70 80 90
Original Test Accuracy

30

40

50

60

70

80

Pe
rtu

rb
ed

 T
es

t A
cc

ur
ac

y

YTBB-Robust

No Accuracy Drop
Linear fit
ILSVRC

ILSVRC + noise augmentation
ILSVRC + l2 adversarial training
ILSVRC + finetuned on ILSVRC-VID

ILSVRC + finetuned on ILSVRC-VID-DET
ILSVRC + finetuned on YTBB

Figure 4.3: Model accuracy on original vs. perturbed images. Each data point corre-
sponds to one model in our testbed (shown with 95% Clopper-Pearson confidence intervals).
If models were robust to perturbations, we would expect them to fall on the dashed line
(y = x). Instead, we find they all lie significantly below this ideal line, consistently
exhibiting a significant accuracy drop to perturbed frames. Each perturbed frame was
taken from a ten frame neighborhood (approximately 0.3 seconds) of the original frame,
and reviewed by experts to confirm visual similarity to the original frame.

We evaluate a testbed of 45 classification and three detection models
on ImageNet-Vid-Robust and YTBB-Robust. We first discuss the various types of
classification models evaluated with the pm-k classification metric. Second, we evaluate
the performance of detection models on ImageNet-Vid-Robust using use the bounding
box annotations inherited from ImageNet-Vid and using a variant of the pm-k metric

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 125

for detection. We then analyze the errors made on the detection adversarial examples to
isolate the effects of localization errors vs. classification errors. Finally, we analyze the
impact of dataset review on the accuracy drop.

4.4.1 Classification

The classification robustness metric is accpmk defined in Equation (4.2.1). For frames with
multiple labels, we count a prediction as correct if the model predicts any of the correct
classes for a frame. In Figure 4.3, we plot the benign accuracy, accorig, versus the robust
accuracy, accpmk, for all classification models in our test bed and find a consistent drop
from accorig to accpmk. Further, we note that the relationship between accorig and accpmk is
approximately linear, indicating that while improvements in the benign accuracy do result
in improvements in the worst-case accuracy, they do not suffice to resolve the accuracy
drop due to natural perturbations.

Our test bed consists of five model types with increasing levels of supervision. We
present results for representative models from each model type in Table 4.2 and defer the
full classification results table to the appendix.

ILSVRC Trained The WordNet hierarchy enables us to repurpose models trained for
the 1,000 class ILSVRC-2012 dataset on ImageNet-Vid-Robust and YTBB-Robust
(see Appendix for further details) We evaluate a wide array of ILSVRC-2012 models
(available from [16]) against our natural perturbations. Since these datasets present a
substantial distribution shift from the original ILSVRC-2012 validation set, we expect the
benign accuracy accorig to be lower than the comparable accuracy on the ILSVRC-2012
validation set. However, our main interest here is in the difference between the original
and perturbed accuracies accorig - accpmk. A small drop in accuracy would indicate that
the model is robust to small changes that occur naturally in videos. Instead, we find
significant median drops of 15.0% and 13.2% in accuracy on our two datasets, indicating
sensitivity to such changes.

Noise augmentation One hypothesis for the accuracy drop from original to perturbed
accuracy is that subtle artifacts and corruptions introduced by video compression schemes
could degrade performance when evaluating on these corrupted frames. The worst-case
nature of the pm-k metric could then be focusing on these corrupted frames. One model
for these corruptions are the perturbations introduced in [71]. To test this hypothesis, we
evaluate models augmented with a subset of the perturbations (exactly one of: Gaussian

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 126

Table 4.2: Accuracies of five model types and the best performing model (shown with 95%
Clopper-Pearson confidence intervals). ∆ denotes accuracy drop between evaluation on
anchor frame (accorig) and worst frame in similarity set (accpmk). The model architecture
is ResNet-50 unless noted otherwise. ‘FT’ denotes ‘fine-tuning.’ See Section 4.4.1 for
details.

Model Type Accuracy
Original

Accuracy
Perturbed ∆

ImageNet-Vid-Robust
Trained on ILSVRC 67.5 [64.7, 70.3] 52.5 [49.5, 55.5] 15.0
+ Noise Augmentation 68.8 [66.0, 71.5] 53.2 [50.2, 56.2] 15.6
+ `∞ robustness (ResNext-101) 54.3 [51.3, 57.2] 40.8 [39.0, 43.7] 12.4
+ FT on ImageNet-Vid 80.8 [78.3, 83.1] 65.7 [62.9, 68.5] 15.1
+ FT on ImageNet-Vid (ResNet-152) 84.8 [82.5, 86.8] 70.2 [67.4, 72.8] 14.6
+ FT on ImageNet-Vid-Det 77.6 [75.1, 80.0] 65.4 [62.5, 68.1] 12.3

YTBB-Robust
Trained on ILSVRC 57.0 [54.9, 59.2] 43.8 [41.7, 46.0] 13.2
+ Noise Augmentation 62.3 [60.2, 64.4] 45.7 [43.5, 47.9] 16.6
+ `∞ robustness (ResNext-101) 53.6 [51.4, 55.8] 43.2 [41.0, 45.3] 10.4
+ FT on Youtube-BB 91.4 [90.1, 92.6] 82.0 [80.3, 83.7] 9.4
+ FT on Youtube-BB (ResNet-152) 92.9 [91.6, 93.9] 84.7 [83.0, 86.2] 8.2

Table 4.3: Detection and localization mAP for Faster R-CNN and R-FCN models. Both
detection and localization suffer from significant mAP drops due to perturbations. (R-
FCN was trained on ILSVRC Det and VID 2015, and evaluated on the 2015 subset of
ILSVRC-VID 2017, indicated by *.)

Task Model mAP
Original

mAP
Perturbed

mAP
∆

FRCNN, ResNet 50 62.8 48.8 14.0
FRCNN, ResNet 101 63.1 50.6 12.5Detection
R-FCN, ResNet 101 [154]* 79.4* 63.7* 15.7*
FRCNN, ResNet 50 76.6 64.2 12.4
FRCNN, ResNet 101 77.8 66.3 11.5Localization
R-FCN, ResNet 101* 80.9* 70.3* 10.6*

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 127

Figure 4.4: Naturally perturbed examples for detection. Red boxes indicate false
positives; green boxes indicate true positives; white boxes are ground truth. Classification
errors are common failures, such as the fox on the left, which is classified correctly in
the anchor frame, and misclassified as a sheep in a nearby frame. However, detection
models also have localization errors, where the object of interest is not correctly localized
in addition to being misclassified, such as the airplane (middle) and the motorcycle (right).
All visualizations show predictions with confidence greater than 0.5.

noise, Gaussian blur, shot noise, contrast change, impulse noise, or JPEG compression).
We found that these augmentation schemes did not improve robustness against our
perturbations substantially, and still result in a median accuracy drop of 15.6% and 16.6%
on the two datasets.

`∞-robustness. We evaluate the model from [155], which currently performs best
against `∞-attacks on ImageNet. We find that this model has a smaller accuracy drop
than the two aforementioned model types on both datasets. However, the robust model
achieves substantially lower original and perturbed accuracy than either of the two model
types above, and the robustness gain is modest (3% compared to models of similar benign
accuracy).

Fine-tuning on video frames. To adapt to the new class vocabulary and the video
domain, we fine-tune several network architectures on the ImageNet-Vid and Youtube-BB
training sets. For Youtube-BB, we train on the anchor frames used for training in [61],

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 128

and for ImageNet-Vid we use all frames in the training set. We provide hyperparameters
for all models in the appendix.

The resulting models significantly improve in accuracy over their ILSVRC pre-trained
counterparts (e.g., 13% on ImageNet-Vid-Robust and 34% on YTBB-Robust for
ResNet-50). This improvement in accuracy results in a modest improvement in the accuracy
drop for YTBB-Robust, but a finetuned ResNet-50 still suffers from a substantial 9.4%
drop. On ImageNet-Vid-Robust, there is almost no change in the accuracy drop from
15.0% to 15.1%.

Fine-tuning for detection on video frames. We further analyze whether additional
supervision in the form of bounding box annotations improves robustness. To this end, we
train the Faster R-CNN detection model [129] with a ResNet-50 backbone on ImageNet-
Vid. Following standard practice, the detection backbone is pre-trained on ILSVRC-2012.
To evaluate this detector for classification, we assign the class with the most confident
bounding box as label to the image. We find that this transformation reduces accuracy
compared to the model trained for classification (77.6% vs. 80.8%). While there is a slight
reduction in the accuracy drop caused by natural perturbations, the reduction is well
within the error bars for this test set. We leave an in-depth investigation of additional
supervision to induce robustness for future work.

4.4.2 Detection

We further study the impact of natural perturbations on object detection. Specifically, we
report results for two related tasks: object localization and detection. Object detection
is the standard computer vision task of correctly classifying an object and finding the
coordinates of a tight bounding box containing the object. “Object localization”, meanwhile,
refers to only the subtask of finding the bounding box, without attempting to correctly
classify the object.

We provide our results on ImageNet-Vid-Robust, which contains dense bounding
box labels unlike Youtube-BB, which only labels boxes at 1 frame per second. We use
the popular Faster R-CNN [129] and R-FCN [26, 154] architectures for object detection
and localization and report results in Table 4.3. For the R-FCN architecture, we use
the model from [154]4. We first note the significant drop in mAP of 12 to 15 points

4This model was originally trained on the 2015 subset of ImageNet-Vid. We evaluated this model
on the 2015 validation set because the method requires access to pre-computed bounding box proposals
which are available only for the 2015 subset of ImageNet-Vid.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 129

Table 4.4: Impact of human review on ImageNet-Vid-Robust and YTBB-Robust
on original and perturbed accuracy, using ResNet-152 fine-tuned on ImageNet-Vid and
Youtube-BB, respectively.

Accuracy
Reviewed Original Perturbed ∆

ImageNet-Vid-Robust
7 80.3 64.1 16.2
3 84.8 70.2 14.4

YTBB-Robust
7 88.1 78.1 10.0
3 92.9 84.7 8.9

for object detection due to perturbed frames for both the Faster R-CNN and R-FCN
architectures. Next, we show that localization is indeed easier than detection, as the mAP
is higher for localization than for detection (e.g., 76.6 vs 62.8 for Faster R-CNN with a
ResNet-50 backbone). Perhaps surprisingly, however, switching to the localization task
does not improve the drop between original and perturbed frames, indicating that natural
perturbations induce both classification and localization errors. We show examples of
detection failures in Figure 4.4.

4.4.3 Impact of Dataset Review

We analyze the impact of our human review, described in Section 4.2.4, on the classifiers
in our testbed. First, we compare the original and perturbed accuracies of a representative
classifier (ResNet-152 finetuned) with and without review in Table 4.5. Our review
improves the original accuracy by 3 to 4% by discarding mislabeled or blurry anchor
frames, and improves perturbed accuracy by 5 to 6% by discarding dissimilar frame pairs.
Our review reduces the accuracy drop by 1.8% on ImageNet-Vid-Robust and 1.1% on
YTBB-Robust. These results indicate that the changes in model predictions are indeed
due to a lack of robustness, rather than due to significant differences between adjacent
frames.

To further analyze the impact of our review on model errors, we plot how frequently
each offset distance from the anchor frame results in a model error across all model types
in Figure 4.12. For both datasets, larger offsets (indicating pairs of frames further apart in
time) lead to more frequent model errors. Our review reduces the fraction of errors across
offsets, especially for large offsets, which are more likely to display large changes from the
anchor frame.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 130

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Offset

0

2

4

6

8

%
 A

dv
er

sa
ria

l

Impact of review, Youtube-BB-Robust
YTBB
YTBB w/ review

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Offset

0

2

4

6

8

%
 A

dv
er

sa
ria

l

Impact of review, ImageNet-Vid-Robust
ImageNet-Vid
ImageNet-Vid w/ review

Figure 4.5: We plot how often each frame offset caused an error, across all evaluated
models, for frames with and without review. Frames further away more frequently cause
classifiers to misfire. Our review reduces the number of errors, especially for frames further
in time, by removing dissimilar frames.

air
pla

ne
an

tel
op

e
be

ar
bic

yc
le bir
d

bu
s ca
r

ca
ttle do

g

do
mes

tic
_ca

t
ele

ph
an

t
fox

gia
nt_

pa
nd

a
ha

mste
r

ho
rse lio

n
liza

rd
mon

ke
y

moto
rcy

cle
rab

bit
red

_p
an

da
sh

ee
p

sn
ak

e
sq

uir
reltig
er

tra
in

tur
tle

wate
rcr

aft
wha

le
ze

bra
en

tity

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ImageNet-Vid-Robust Per-Class
Benign
Perturbed

pe
rso

n
bir

d
bic

yc
le

bo
at bu
s

be
ar co
w ca
t

gir
aff

e
po

tte
d p

lan
t

ho
rse

moto
rcy

cle kn
ife

air
pla

ne
ska

teb
oa

rd
tra

in
tru

ck
ze

bra toi
let do
g

ele
ph

an
t

um
bre

lla ca
r

0.0

0.2

0.4

0.6

0.8

1.0
YouTube-BB-Robust Per-Class

Figure 4.6: Per-class accuracy statistics for our best performing classification model
(fine-tuned ResNet152) on ImageNet-Vid-Robust and YTBB-Robust. For Youtube-
BB, note that ‘zebra’ is the least common label, present in only 24 anchor frames sampled
by [61], of which 4 are included in our dataset.

4.4.4 Per class analysis

We study the effect of our perturbations on the 30 classes in ImageNet-Vid-Robust
and YTBB-Robust to determine whether the performance drop was concentrated in a few
“hard” classes. Figure 4.6 shows the original and perturbed accuracies across classes for our
best performing model (a fine-tuned ResNet-152). Although there are a few particularly
difficult classes for perturbed accuracy (e.g., lion or monkey on ImageNet-Vid-Robust),
the accuracy drop is spread across most classes. On ImageNet-Vid-Robust, this model
saw a total drop of 14.4% between original and perturbed images and a median drop of
14.0% in per-class accuracy. On YTBB-Robust, the total drop was 8.9% and the median
drop was 6.7%.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 131

4.4.5 Per-frame conditional robustness metric introduced in [61]

0 2 4 6 8 10
Frame Perturbation Distance (k)

0.92

0.94

0.96

0.98

1.00

Ro
bu

st
ne

ss

ImageNet-Vid-Robust (Gu, et al. 2019) Metric

ILSVRC Pretrained
Noise augmentation
L2 Adversarial Robust (ResNext-101)

Finetuned
Finetuned (ResNet-152)
Detection

0 2 4 6 8 10
Frame Perturbation Distance (k)

0.92

0.94

0.96

0.98

1.00

Ro
bu

st
ne

ss

YTBB-Robust (Gu, et al 2019) Metric

ILSVRC Pretrained
Noise augmentation
L2 Adversarial Robust (ResNext-101)

Finetuned
Finetuned (ResNet-152)

Figure 4.7: Conditional robustness metric from [61] on perturbed frames as a function of
perturbation distance on ImageNet-Vid-Robust and YTBB-Robust. Model accura-
cies from five different model types and the best performing model are shown. The model
architecture is ResNet-50 unless otherwise mentioned.

In concurrent work, the authors of [61] considered a different metric of robustness. In
this section, we compute this metric on all models in our test bed to compare our findings
to [61]. There are two main differences between PM-k and the robustness metric in [61].

1. For two visually similar “neighbor” frames I0 and I1 with true label Y and classifier
f , [61] studies the conditional probability P (f(I1) = y|f(I0) = y)

2. While PM-k looks for errors in all neighbor frames in a neighborhood of k frames
away from the anchor frame (so this would include frames 1, 2, . . . , k frames away),
[61] only considers errors from exactly k frames away.

In Fig. 4.8 we illustrate simple example where two videos can have the same behavior for
the metric introduced by [61] but drastically different behavior for the PM-kmetric.

4.5 `∞ distance vs PM-k Accuracy
`∞ adversarial examples are well studied in the robustness community, yet the connection
between `∞ and other forms of more “natural” robustness is unclear. Here, we plot the
cumulative distribution of the `∞ distance between pairs of nearby frames in our datasets.
In Figure 4.9, we show the CDF of `∞ distance for all pairs, all reviewed pairs, and
mistakes made by 3 indicative models. Note the fbrobust model is trained specifically
to be robust to `∞ adversaries.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 132

Dataset A Dataset B

Time step (k)
0 1 2

 #1

 #2

#3

Vi
de

o
ex

am
pl

es #1

 #2

#3

Vi
de

o
ex

am
pl

es

Time step (k)

Correct prediction
False prediction

-1-2

Anchor frame

0 1 2-1-2

Anchor frame

Figure 4.8: For the two example videos above the score from [61] metric (Accuracy @
K) is identical, but the PM-k metric behaves substantially differently when the errors are
spread across many independent videos, as shown in the right example

0 50 100 150 200 250

L norm

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

All pairs without reviews
All pairs with review
resnet152 mistakes
fbrobust mistakes
resnet152-finetuned mistakes

Figure 4.9: CDF showing the `∞ distance between pairs of frames from different distri-
butions.

4.5.1 PM-k Accuracy with varying k

4.5.2 ImageNet-Vid-Robust

In Figure 4.10, we plot the relationship between accpmk and perturbation distance (i.e.,
the k in the pm-k metric). The entire x-axis in Figure 4.10 corresponds to a temporal

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 133

0 2 4 6 8 10
Frame Perturbation Distance (k)

40

50

60

70

80

P
er

tu
rb

ed
 T

es
t A

cc
ur

ac
y

trained on ILSVRC
ILSVRC + noise augmentation
ILSVRC + l2 adversarial training (ResNext-101)
ILSVRC + fine-tune on ILSVRC-VID
ILSVRC + fine-tune on ILSVRC-VID (ResNet-152)
ILSVRC + fine-tune on ILSVRC-VID-DET

Figure 4.10: Model classification accuracy on perturbed frames as a function of pertur-
bation distance (shown with 95% Clopper-Pearson confidence intervals). Model accuracies
from five different model types and the best performing model are shown. The model
architecture is ResNet-50 unless otherwise mentioned.

distance of at most 0.3 seconds between the original and perturbed frames.

4.5.3 Model independent perturbed frame selection

We have so far considered model dependent perturbations, as we selected the worst neighbor
frame for each model. Here, we study the same problem but impose a static set of perturbed
frames across all models. In Figure 4.11, we study a static set of perturbations across all
models and still see a substantial (but smaller) drop in accuracy for both models. The
static set of perturbations were chosen by choosing the neighbor frame that the largest
number of models misclassified.

4.5.4 Impact of video compression

One concern with analyzing performance on video frames is the impact of video compression
on model robustness. In particular, the ‘mp4’ videos in ImageNet-Vid-Robust contain
3 frame types: ‘i-’, ‘p-’, and ‘b-’ frames. ‘p-frames’ are compressed by referencing pixel
content from previous frames, while ‘b-frames’ are compressed via references to previous
and future frames. ‘i-frames’ are stored without references to other frames.

We compute the original and perturbed accuracies, and the drop in accuracy for a
subset of the dataset without each frame type in Table 4.6. While there are modest
differences in accuracy due to compression, our analysis suggests that the sensitivity

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 134

40 50 60 70 80
Original Test Accuracy

30

40

50

60

70
Pe

rtu
rb

ed
 T

es
t A

cc
ur

ac
y

YTBB Accuracy

50 60 70 80 90
Original Test Accuracy

30

40

50

60

70

80

Pe
rtu

rb
ed

 T
es

t A
cc

ur
ac

y

ImageNet-Vid-Robust Accuracy

No Accuracy Drop
Linear fit
ILSVRC

ILSVRC + noise augmentation
ILSVRC + l2 adversarial training
ILSVRC + finetuned on ILSVRC-VID

ILSVRC + finetuned on ILSVRC-VID-DET
ILSVRC + finetuned on YTBB
Non transfer evaluation

Figure 4.11: Model accuracy on original vs. perturbed images for a static, model-
independent set of perturbed frames. The grey points and grey linear fit correspond to the
perturbed accuracies of models evaluated on per model perturbations studied in Figure
4.3. See Section 4.5.3 for details.

of models is not significantly due to the differences in quality of frames due to video
compression.

4.5.5 Impact of dataset review

Table 4.5: Impact of human review on original and perturbed accuracies for
ImageNet-Vid-Robust and YTBB-Robust, numbers come from a ResNet-152 fine-
tuned on ImageNet-Vid and Youtube-BB, respectively

Accuracy
Reviewed Original Perturbed ∆

ImVid-Robust
7 80.3 64.1 16.2
3 84.8 70.2 14.4

YTBB-Robust
7 88.1 78.1 10.0
3 92.9 84.7 8.9

We analyze the impact of our human review, described in Section 4.2.4, on the classifiers
in our testbed. First, we compare the original and perturbed accuracies of a representative

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 135

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Offset

0

2

4

6

8

%
 A

dv
er

sa
ria

l

Impact of review, Youtube-BB-Robust
YTBB
YTBB w/ review

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Offset

0

2

4

6

8

%
 A

dv
er

sa
ria

l

Impact of review, ImageNet-Vid-Robust
ImageNet-Vid
ImageNet-Vid w/ review

Figure 4.12: We plot the fraction of times each frame offset caused an error, across
all evaluated models, for frames with and without review. Frames further away more
frequently cause classifiers to misfire. Our review process reduces the number of errors,
especially for frames further in time, by removing dissimilar frames.

classifier (ResNet-152 finetuned) with and without review in Table 4.5. Our review
improves the original accuracy by 3 to 4% by discarding mislabeled or blurry anchor
frames, and improves perturbed accuracy by 5 to 6% by discarding dissimilar frame pairs.
Our review reduces the accuracy drop by 1.8% on ImageNet-Vid-Robust and 1.1% on
YTBB-Robust. These results indicate that the changes in model predictions are indeed
due to a lack of robustness, rather than due to significant differences between adjacent
frames.

To further analyze the impact of our review on model errors, we plot how frequently
each offset distance from the anchor frame results in a model error across all model types
in Figure 4.12. For both datasets, larger offsets (indicating pairs of frames further apart in
time) lead to more frequent model errors. Our review reduces the fraction of errors across
offsets, especially for large offsets, which are more likely to display large changes from the
anchor frame.

4.5.6 FPS analysis

ImageNet-Vid-Robust To analyze the impact of frame-rate on accuracy, we show
results on subsets of videos with fixed fps (25, 29, and 30, which cover 89% of the dataset)
using a fine-tuned ResNet-152 model in Table 4.7. The accuracy drop is similar across the
subsets, and similar to the drop for the whole dataset.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 136

Table 4.6: Analyzing results based on frame-type in video compression. See Section 4.5.4
for details.

Accuracy
Original Perturbed ∆ # anchors

All frames 84.8 70.2 14.6 1109
w/o ‘i-frames’ 84.7 70.3 14.4 1104
w/o ‘p-frames’ 83.9 73.7 10.2 415
w/o ‘b-frames’ 85.4 73.2 12.2 699

FPS Acc. Orig. Acc. Perturbed Drop # Videos
25 87.3 [83.0, 90.9] 73.3 [67.8, 78.3] 14.0 292
29 87.7 [84.0, 90.8] 74.9 [70.3, 79.2] 12.8 383
30 78.3 [73.3, 82.7] 61.7 [56.0, 67.1] 16.6 313

Table 4.7: Results on subsets of ImageNet-Vid-Robust with fixed FPS.

4.5.7 ILSVRC training with ImageNet-Vid-Robust classes

We trained ResNet-50 from scratch on ILSVRC using the 30 ImageNet-Vid classes. We
also fine-tuned the model on ImageNet-Vid. In Table 4.8, we show the accuracy drops are
consistent with models in our submission. We hypothesize that the lower accuracy is due
to coarser supervision on ILSVRC.

Model Acc. Orig. Acc. Perturbed Drop
ILSVRC-30 61.0 44.9 15.1
ILSVRC-30 + FT 77.8 59.9 17.9

Table 4.8: Results of training ResNet-50 on ILSVRC with 30 classes from
ImageNet-Vid-Robust.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 137

4.5.8 Detection pm-k

We briefly introduce the mAP metric for detection here and refer the reader to [101] for
further details. The standard detection metric proceeds by first determining whether each
predicted bounding box in an image is a true or false positive, based on the intersection
over union (IoU) of the predicted and ground truth bounding boxes. The metric then
computes the per-category average precision (AP, averaged over recall thresholds) of the
predictions across all images. The final metric is reported as the mean of these per-category
APs (mAP).

We define the pm-k analog of mAP by replacing each anchor frame in the dataset with
a nearby frame that minimizes the per-image average precision. Since the category-specific
average precision is undefined for categories not present in an image, we minimize the
average precision across categories present in each frame rather than the mAP.

4.5.9 Experimental Details & Hyperparameters

All classification experiments were carried out using PyTorch version 1.0.1 on an AWS
p3.2xlarge with the NVIDIA V100 GPU. All pretrained models were downloaded from [16]
at commit hash 021d97897c9aa76ec759deff43d341c4fd45d7ba. Evaluations in
Tables 4.6.1 and 4.6.2 all use the default settings for evaluation. The hyperparameters for
the fine-tuned models are presented in Table 4.9. We searched for learning rates between
10−3 and 10−5 for all models.

We additionally detail hyperparameters for detection models in Table 4.10. Detection
experiments were conducted with PyTorch version 1.0.1 on a machine with 4 Titan X
GPUs, using the Mask R-CNN benchmark repository[110]. We used the default learning
rate provided in [110]. For R-FCN, we used the model trained by [154].

Table 4.9: Hyperparameters for models finetuned on ImageNet-Vid,

Model Base Learning Rate Learning Rate Schedule Batch Size Epochs

resnet152 10−4 Reduce LR On Plateau 32 10
resnet50 10−4 Reduce LR On Plateau 32 10
alexnet 10−5 Reduce LR On Plateau 32 10
vgg16 10−5 Reduce LR On Plateau 32 10

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 138

Table 4.10: Hyperparameters for detection models.

Model Base Learning Rate Learning Rate Schedule Batch Size Iterations

F-RCNN ResNet-50 10−2 Step 20k, 30k 8 40k
F-RCNN ResNet-101 10−2 Step 20k, 30k 8 40k

4.6 Full Original vs Perturbed Accuracies

4.6.1 ImageNet-Vid-Robust

4.6.2 YTBB-Robust

4.7 Related work
Adversarial examples. Various forms of adversarial examples have been studied, the
majority of research focuses on `p robustness [13, 60]. However, it is unclear whether
adversarial examples pose a problem for robustness outside of a truly worst case context. It
is an open question whether perfect robustness against a `p adversary will induce robustness
to realistic image distortions such as those studied in this paper. Recent work has proposed
less adversarial image modifications such as small rotations & translations [9, 39, 45, 83],
hue and color changes [72], image stylization [53] and synthetic image corruptions such as
Gaussian blur and JPEG compression [56, 71]. Even though the above examples are more
realistic than the `p model, they still synthetically modify the input images to generate
perturbed versions. In contrast, our work performs no synthetic modification and instead
uses images that naturally occur in videos.

Utilizing videos to study robustness. In recent work, Gu et al. [61] exploit the
temporal structure in videos to study robustness. However, their experiments suggest a
substantially smaller drop in accuracy. The primary reason for this is a less stringent metric
used in [61]. By contrast, our PM-k metric is inspired by the “worst-of-k” metric used in
prior work [39], highlighting the sensitivity of models to natural perturbations. In the
appendix, we study the differences between the two metrics in more detail. Furthermore,
the lack of human review and the high label error-rate we discovered in Youtube-BB
(Table 4.1) presents a potentially troubling confounding factor that we resolve in our work.

Distribution shift. Small, benign changes in the test distribution are often referred
to as distribution shift. Recht et al. [128] explore this phenomenon by constructing new
test sets for CIFAR-10 and ImageNet and observe substantial performance drops for a

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 139

Table 4.11: Classification model perturbed and original accuracies for all models in our
test bed evaluated on the ImageNet-Vid-Robust dataset.

Model Accuracy
Original

Accuracy
Perturbed ∆

resnet152_finetuned 84.8 [82.5, 86.8] 70.2 [67.4, 72.8] 14.6
resnet50_finetuned 80.8 [78.3, 83.1] 65.7 [62.9, 68.5] 15.1
vgg16bn_finetuned 78.0 [75.4, 80.4] 61.0 [58.1, 63.9] 17.0
nasnetalarge_imagenet_pretrained 77.6 [75.1, 80.1] 62.1 [59.2, 65.0] 15.5
resnet50_detection 77.6 [75.1, 80.1] 65.0 [62.1, 67.8] 12.6
inceptionresnetv2_imagenet_pretrained 75.7 [73.1, 78.2] 58.7 [55.7, 61.6] 17.0
dpn107_imagenet_pretrained 75.6 [72.9, 78.1] 59.1 [56.1, 62.0] 16.5
inceptionv4_imagenet_pretrained 75.3 [72.6, 77.8] 59.0 [56.0, 61.9] 16.3
dpn92_imagenet_pretrained 74.4 [71.7, 76.9] 56.8 [53.8, 59.7] 17.6
dpn131_imagenet_pretrained 74.0 [71.3, 76.6] 59.9 [56.9, 62.8] 14.1
dpn68b_imagenet_pretrained 73.7 [71.0, 76.2] 54.0 [51.0, 57.0] 19.7
resnext101_32x4d_imagenet_pretrained 73.3 [70.6, 75.9] 57.2 [54.2, 60.1] 16.1
resnext101_64x4d_imagenet_pretrained 72.9 [70.1, 75.5] 56.6 [53.7, 59.6] 16.3
resnet152_imagenet_pretrained 72.8 [70.0, 75.4] 57.0 [54.0, 59.9] 15.8
resnet101_imagenet_pretrained 71.5 [68.7, 74.1] 53.7 [50.8, 56.7] 17.8
fbresnet152_imagenet_pretrained 71.5 [68.7, 74.1] 54.5 [51.5, 57.4] 17.0
densenet161_imagenet_pretrained 71.4 [68.7, 74.1] 55.1 [52.1, 58.1] 16.3
densenet169_imagenet_pretrained 70.2 [67.5, 72.9] 53.1 [50.1, 56.1] 17.1
densenet201_imagenet_pretrained 70.2 [67.5, 72.9] 53.4 [50.4, 56.4] 16.8
dpn68_imagenet_pretrained 69.4 [66.6, 72.1] 53.3 [50.3, 56.3] 16.1
bninception_imagenet_pretrained 69.0 [66.2, 71.7] 49.0 [46.0, 51.9] 20.0
densenet121_imagenet_pretrained 69.0 [66.2, 71.7] 50.9 [47.9, 53.8] 18.1

large suite of models on the newly constructed test sets. Similar to our Figure 4.3, the
relationship between their original and new test set accuracies is also approximately linear.
However, the images in their test set bear little visual similarity to images in the original
test set, while all of our failure cases are on perceptually similar images. In a similar vein
of study, [146] studies distribution shift across different computer vision data sets such as
Caltech-101, PASCAL, and ImageNet.

Temporal Consistency in Computer Vision A common issue when applying
image based models to videos is flickering, where object detectors spuriously produce

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 140

Table 4.12: (Continued) Classification model perturbed and original accuracies for all
models in our test bed evaluated on the ImageNet-Vid-Robust dataset.

Model Accuracy
Original

Accuracy
Perturbed ∆

nasnetamobile_imagenet_pretrained 68.8 [66.0, 71.5] 48.4 [45.4, 51.4] 20.4
resnet50_augment___jpeg_compression 68.8 [66.0, 71.5] 53.2 [50.2, 56.2] 15.6
resnet34_imagenet_pretrained 68.0 [65.2, 70.7] 48.0 [45.0, 51.0] 20.0
resnet50_augment___impulse_noise 67.7 [64.9, 70.5] 50.2 [47.2, 53.2] 17.5
resnet50_augment__gaussian_blur 67.7 [64.9, 70.5] 52.5 [49.5, 55.5] 15.2
resnet50_imagenet_pretrained 67.5 [64.7, 70.3] 52.5 [49.5, 55.5] 15.0
resnet50_augment___gaussian_noise 67.4 [64.5, 70.1] 50.6 [47.6, 53.6] 16.8
resnet50_augment___shot_noise 66.5 [63.6, 69.2] 51.1 [48.1, 54.1] 15.4
vgg16_bn_imagenet_pretrained 66.4 [63.5, 69.1] 47.4 [44.5, 50.4] 19.0
resnet50_augment___defocus_blur 66.3 [63.4, 69.1] 47.6 [44.6, 50.6] 18.7
vgg19_bn_imagenet_pretrained 65.6 [62.7, 68.4] 46.6 [43.6, 49.6] 19.0
vgg19_imagenet_pretrained 63.2 [60.3, 66.1] 45.4 [42.4, 48.3] 17.8
resnet18_imagenet_pretrained 61.9 [59.0, 64.8] 41.5 [38.6, 44.4] 20.4
vgg13_bn_imagenet_pretrained 61.9 [59.0, 64.8] 43.3 [40.3, 46.3] 18.6
vgg16_imagenet_pretrained 61.4 [58.5, 64.3] 43.1 [40.2, 46.1] 18.3
vgg11_bn_imagenet_pretrained 60.9 [57.9, 63.8] 43.2 [40.3, 46.2] 17.7
vgg13_imagenet_pretrained 59.6 [56.6, 62.5] 41.1 [38.2, 44.1] 18.5
vgg11_imagenet_pretrained 57.3 [54.4, 60.3] 41.3 [38.4, 44.3] 16.0
alexnet_finetuned 57.3 [54.3, 60.2] 43.6 [40.7, 46.6] 13.7
ResNeXtDenoiseAll-101_robust_pgd 54.3 [51.3, 57.2] 40.8 [37.8, 43.7] 13.5
squeezenet1_1_imagenet_pretrained 49.8 [46.8, 52.8] 31.7 [28.9, 34.5] 18.1
alexnet_imagenet_pretrained 49.4 [46.4, 52.4] 32.0 [29.3, 34.8] 17.4
resnet50_augment___contrast_change 38.3 [35.5, 41.3] 23.3 [20.8, 25.9] 15.0

false-positives or false-negatives in isolated frames or groups of frames. [81] explicitly
identify such failures and use a technique reminiscent of adversarially robust training to
improve image-based models. A similar line of work focuses on improving object detection
in videos as objects become occluded or move quickly [48, 85, 154, 164]. The focus in this
line of work has generally been on improving object detection when objects transform in a
way that makes recognition difficult from a single frame, such as fast motion or occlusion.
In this work, we document a broader set of failure cases for image-based classifiers and

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 141

detectors and show that failures occur when the neighboring frames are imperceptibly
different.

4.8 Conclusion
Our study quantifies the sensitivity of image classifiers to naturally occuring temporal
perturbations. These perturbations cause significant drops in accuracy for a wide range
of models in both classification and detection. Our work on analyzing this failure mode
opens multiple avenues for future research:

Building more robust models. Our YTBB-Robust and ImageNet-Vid-Robust
datasets provide a standard measure for robustness that can be used to evaluate to any
classification or detection model. In Table 4.2, we evaluated several commonly used
models and found that all of them suffer from substantial accuracy drops due to natural
perturbations. In particular, we found that model improvements with respect to artificial
perturbations (such as image corruptions or `∞ adversaries) induce at best modest im-
provements in robustness. We hope that our standardized datasets and evaluation metric
will enable future work to quantify improvements in natural robustness directly.

Further natural perturbations. Videos provide a straightforward method for
collecting natural perturbations of images, enabling the study of realistic forms of robustness
for machine learning methods. Other methods for generating these natural perturbations
are likely to provide additional insights into model robustness. As an example, photo
sharing websites contain a large number of near-duplicate images: pairs of images of
the same scene captured at different times, viewpoints, or from a different camera [128].
More generally, devising similar, domain-specific strategies to collect, verify, and measure
robustness to natural perturbations in domains such as natural language processing or
speech recognition is a promising direction for future work.

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 142

Table 4.13: Classification model perturbed and original accuracies for all models in our
test bed evaluated on the YTBB-robust dataset..

Model Accuracy
Original

Accuracy
Perturbed ∆

resnet152_finetuned 92.9 [91.2, 94.3] 84.7 [82.4, 86.8] 8.2
resnet50_finetuned 91.4 [89.6, 93.0] 82.0 [79.6, 84.2] 9.4
inceptionresnetv2_finetuned 91.3 [89.5, 92.9] 79.0 [76.4, 81.3] 12.3
vgg19_finetuned 90.5 [88.6, 92.2] 79.1 [76.5, 81.4] 11.4
vgg16_finetuned 89.1 [87.1, 90.8] 78.0 [75.4, 80.4] 11.1
inceptionv4_finetuned 88.5 [86.5, 90.3] 76.3 [73.6, 78.7] 12.2
resnet18_finetuned 88.0 [85.9, 89.8] 76.2 [73.6, 78.7] 11.8
alexnet_finetuned 80.6 [78.2, 82.9] 64.4 [61.5, 67.3] 16.2
pnasnet5large_imagenet_pretrained 65.2 [62.3, 68.0] 51.0 [48.0, 54.0] 14.2
nasnetalarge_imagenet_pretrained 64.9 [62.0, 67.7] 51.4 [48.4, 54.4] 13.5
inceptionresnetv2_imagenet_pretrained 64.5 [61.6, 67.4] 50.4 [47.5, 53.4] 14.1
dpn98_imagenet_pretrained 64.1 [61.2, 66.9] 49.0 [46.0, 52.0] 15.1
dpn107_imagenet_pretrained 64.1 [61.2, 66.9] 50.1 [47.2, 53.1] 14.0
dpn131_imagenet_pretrained 64.0 [61.1, 66.8] 49.9 [46.9, 52.9] 14.1
inceptionv4_imagenet_pretrained 63.6 [60.7, 66.4] 48.8 [45.8, 51.8] 14.8
xception_imagenet_pretrained 63.2 [60.2, 66.0] 47.6 [44.6, 50.6] 15.6
dpn92_imagenet_pretrained 62.3 [59.3, 65.1] 47.7 [44.8, 50.7] 14.6
resnet50_augment__jpeg_compressioon 62.3 [59.4, 65.2] 45.7 [42.8, 48.7] 16.6
polynet_imagenet_pretrained 61.4 [58.4, 64.3] 47.3 [44.4, 50.3] 14.1
nasnetamobile_imagenet_pretrained 61.4 [58.4, 64.3] 43.0 [40.1, 46.0] 18.4
resnet50_augment__shot_noise 61.3 [58.3, 64.2] 46.4 [43.4, 49.3] 14.9
dpn68_imagenet_pretrained 61.2 [58.3, 64.1] 44.2 [41.2, 47.2] 17.0
fbresnet152_imagenet_pretrained 61.1 [58.1, 64.0] 45.9 [42.9, 48.8] 15.2
resnet152_imagenet_pretrained 60.8 [57.8, 63.7] 46.5 [43.5, 49.5] 14.3
resnet101_imagenet_pretrained 60.8 [57.8, 63.7] 45.2 [42.2, 48.2] 15.6
senet154_imagenet_pretrained 60.7 [57.7, 63.6] 47.2 [44.3, 50.2] 13.5
resnet50_augment__impulse_noise 60.6 [57.7, 63.5] 45.5 [42.6, 48.5] 15.1
se_resnet101_imagenet_pretrained 60.5 [57.6, 63.4] 45.6 [42.6, 48.6] 14.9
bninception_imagenet_pretrained 60.4 [57.4, 63.3] 41.8 [38.9, 44.7] 18.6
densenet161_imagenet_pretrained 60.2 [57.3, 63.1] 46.4 [43.4, 49.4] 13.8
resnet50_augment__gaussian_noise 60.2 [57.3, 63.1] 45.7 [42.8, 48.7] 14.5
se_resnext50_32x4d_imagenet_pretrained 59.9 [56.9, 62.8] 45.7 [42.7, 48.6] 14.2
dpn68b_imagenet_pretrained 59.7 [56.7, 62.6] 45.9 [42.9, 48.8] 13.8

CHAPTER 4. DO IMAGENET CLASSIFIERS GENERALIZE ACROSS TIME? 143

Table 4.14: (Continued) Classification model perturbed and original accuracies for all
models in our test bed evaluated on the YTBB-robust dataset..

Model Accuracy
Original

Accuracy
Perturbed ∆

inceptionv3_imagenet_pretrained 59.6 [56.6, 62.5] 43.8 [40.8, 46.8] 15.8
densenet121_imagenet_pretrained 59.5 [56.5, 62.4] 43.1 [40.1, 46.0] 16.4
se_resnext101_32x4d_imagenet_pretrained 59.2 [56.3, 62.1] 45.2 [42.3, 48.2] 14.0
densenet201_imagenet_pretrained 59.2 [56.2, 62.1] 44.8 [41.8, 47.8] 14.4
densenet169_imagenet_pretrained 59.2 [56.2, 62.1] 44.6 [41.7, 47.6] 14.6
resnet50_augment__brightness_change 58.9 [56.0, 61.8] 42.6 [39.6, 45.5] 16.3
se_resnet50_imagenet_pretrained 58.8 [55.9, 61.7] 44.1 [41.1, 47.1] 14.7
se_resnet152_imagenet_pretrained 58.8 [55.9, 61.7] 44.8 [41.9, 47.8] 14.0
cafferesnet101_imagenet_pretrained 58.2 [55.2, 61.1] 44.3 [41.3, 47.3] 13.9
resnet50_augment__regular 58.0 [55.1, 61.0] 42.9 [39.9, 45.8] 15.1
resnet34_imagenet_pretrained 57.9 [55.0, 60.9] 42.8 [39.8, 45.7] 15.1
vgg19_imagenet_pretrained 57.5 [54.6, 60.5] 40.1 [37.2, 43.1] 17.4
resnet50_augment__gaussian_blur 57.5 [54.5, 60.4] 41.8 [38.9, 44.7] 15.7
vgg16_bn_imagenet_pretrained 57.2 [54.2, 60.1] 39.6 [36.7, 42.6] 17.6
resnet50_imagenet_pretrained 57.0 [54.1, 60.0] 43.8 [40.9, 46.8] 13.2
vgg19_bn_imagenet_pretrained 56.8 [53.9, 59.8] 40.6 [37.7, 43.5] 16.2
vgg16_imagenet_pretrained 55.4 [52.4, 58.4] 40.1 [37.2, 43.1] 15.3
vgg13_bn_imagenet_pretrained 54.8 [51.8, 57.7] 38.6 [35.7, 41.6] 16.2
vgg11_bn_imagenet_pretrained 54.8 [51.8, 57.7] 38.8 [35.9, 41.8] 16.0
vgg11_imagenet_pretrained 54.7 [51.7, 57.6] 38.4 [35.5, 41.3] 16.3
resnet18_imagenet_pretrained 54.4 [51.4, 57.4] 38.1 [35.2, 41.0] 16.3
vgg13_imagenet_pretrained 54.2 [51.3, 57.2] 37.7 [34.9, 40.7] 16.5
ResNeXtDenoiseAll-101_robust_pgd 53.6 [50.7, 56.6] 43.2 [40.2, 46.1] 10.4
squeezenet1_0_imagenet_pretrained 51.1 [48.1, 54.1] 33.1 [30.3, 36.0] 18.0
squeezenet1_1_imagenet_pretrained 48.6 [45.6, 51.6] 31.3 [28.6, 34.2] 17.3
resnet50_augment__defocus_blur 48.4 [45.4, 51.4] 29.1 [26.4, 31.8] 19.3
alexnet_imagenet_pretrained 45.3 [42.4, 48.3] 30.5 [27.8, 33.3] 14.8

144

Part II

Kernels

145

Chapter 5

Neural Kernels Without Tangents

5.1 Introduction
In this chapter, we aim to understand empirically if there are computationally tractable
kernels that approach the expressive power of neural networks, and if there are any practical
links between kernel and neural network architectures. We take inspiration from both
the recent literature on “neural tangent kernels” (NTK) and the classical literature on
compositional kernels, such as ANOVA kernels. We describe a set of three operations
in feature space that allow us to turn data examples presented as collections of small
feature vectors into a single expressive feature-vector representation. We then show how to
compute these features directly on kernel matrices, obviating the need for explicit vector
representations. We draw connections between these operations, the compositional kernels
of Daniely et al. [27], and the Neural Tangent Kernel limits of Jacot et al. [80]. These
connections allow us to relate neural architectures to kernels in a transparent way, with
appropriate simple analogues of convolution, pooling, and nonlinear rectification (Sec. 5.3).

Our main investigation, however, is not in establishing these connections. Our goal
is to test whether the analogies between these operations hold in practice: is there a
correlation between neural architecture performance and the performance of the associated
kernel? Inspired by simple networks proposed by David Page [115], we construct neural
network architectures for computer vision tasks using only 3 × 3 convolutions, 2 × 2
average pooling, and ReLU nonlinearities. We show that the performance of these neural
architectures on CIFAR-10 strongly predicts the performance of the associated kernel. The
best architecture achieves 96% accuracy on CIFAR-10 when trained with SGD on a mean
squared error (MSE) loss. The corresponding compositional kernel achieves 90% accuracy,

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 146

which is, to our knowledge, the highest accuracy achieved thus far by a kernel machine on
CIFAR-10. We emphasize here that we compute an exact kernel directly from pixels, and
do not rely on random feature approximations often used in past work.

On CIFAR-10, we observe that compositional kernels provide dramatically better
results than Neural Tangent Kernels. We also demonstrate that this trend holds in the
“small data” regime [8]. Here, we find that compositional kernels outperform NTKs and
neural networks outperform both kernel methods when properly tuned and trained. On
a benchmark of 90 UCI tabular datasets, we find that simple, properly tuned Gaussian
kernels perform, on aggregate, slightly better than NTKs. Taken together, our results
provide a promising starting point for designing practical, high performance, domain
specific kernel functions. We suggest that while some notion of compositionality and
hierarchy may be necessary to build kernel predictors that match the performance of
neural networks, NTKs themselves may not actually provide particularly useful guides to
the practice of kernel methods.

5.2 Related Work
We build upon many prior efforts to design specialized kernels that model specific types of
data. In classical work on designing kernels for pattern analysis, Shawe-Taylor et al. [136]
establishes an algebra for constructing kernels on structured data. In particular, we recall
the construction of the ANOVA kernels, which are defined recursively using a set of base
kernels. Many ideas from ANOVA kernels transfer naturally to images, with operations
that capture the similarities between different patches of data.

More recent work [108] proposes a multi-layer “convolutional kernel network" (CKN)
for image classification that iterates convolutional and nonlinear operations in kernel
space. While the structure of our compositional kernels is similar to CKNs, Mairal et al.
[108] are unable to explore networks deeper than two layers due to the inefficiency of
their construction, which involves approximating a kernel feature map using optimization.
In contrast, we compute our kernel exactly, and the complexity of our compositional
kernel functions is worst-case linear in depth, enabling us to explore much deeper kernel
compositions.

Another line of recent work investigates the connection between kernel methods and
infinitely wide neural networks. Jacot et al. [80] posits that least squares regression with
respect to the neural tangent kernel (NTK) is equivalent to optimizing an infinitely wide
neural network with gradient flow. Similarly, it has been shown that optimizing just
the last layer of an infinitely wide neural network is equivalent to a Gaussian process

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 147

(NNGP) based on the neural network architecture [96]. Both of these equivalences extend
to convolutional neural networks (CNNs) [100, 113]. The compositional kernels we explore
can be expressed as NNGPs.

To construct our compositional kernel functions, we rely on key results from Daniely
et al. [27], which explicitly studies the duality between neural network architectures and
compositional kernels.

5.3 Compositional kernels for bags of features
A variety of data formats are naturally represented by collections of related vectors. For
example, an image can be considered a spatially arranged collection of 3-dimensional
vectors. A sentence can be represented as a sequence of word embeddings. Audio can
be represented as temporally ordered short-time Fourier transforms. In this section, we
propose a generalization of these sorts of data types, and a set of operations that allow us
to compress these representations into vectors that can be fed into a downstream prediction
task. We then show how these operations can be expressed as kernels and describe how to
compute them. None of the operations described here are novel, but they form the basic
building blocks that we use to build classifiers to compare to neural net architectures.

A bag of features is simply a generalization of a matrix or tensor: whereas a matrix is a
list of vectors indexed by the natural numbers, a bag of features is a collection of elements
in a Hilbert space H with a finite, structured index set B. As a canonical example, we
can consider an image to be a bag of features where the index set B is the pixel’s row and
column location and H is R3: at every pixel location, there is a corresponding vector in R3

encoding the color of that pixel. In this section we will denote a generic bag of features by
a bold capital letter, e.g., X, and the corresponding feature vectors by adding subscripts,
e.g., Xb. That is, for each index b ∈ B, Xb ∈ H.

If our data is represented by a bag of features, we need to map it into a single Hilbert
space to perform linear (or nonlinear) predictions. We describe three simple operations to
compress a bag of features into a single feature vector.

Concatenation. Let S1, . . . ,SL ⊆ B be ordered subsets with the same cardinality, s.
We write each subset as an ordered set of indices: Sj = {ij1, . . . , ijs}. Then we can define
a new bag of features c(X) with index set {1, . . . , L} and Hilbert space Hs as follows. For
each j = 1, . . . , L, set

c(X)j = (Xij1 ,Xij2 , . . . ,Xijs) .

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 148

The simplest concatenation is setting S1 = B, which corresponds to vectorizing the bag
of features. As we will see, more complex concatenations have strong connections to
convolutions in neural networks.

Downsampling. Again let S1, . . . ,SL ⊆ B be subsets, but now let them have arbitrary
cardinality and order. We can define a new bag of features p(X) with index set {1, . . . , L}
and Hilbert space H. For each j = 1, . . . , L set

p(X)j =
1

|Sj|
∑
i∈Sj

Xi .

This is a useful operation for reducing the size of B. Here we use the letter p for the
operation as downsampling is commonly called “pooling” in machine learning.

Embedding. Embedding simply means a isomorphism of one Hilbert space to another.
Let ϕ : H → H′ be a map. Then we can define a new bag of features Φ(X) with index set
B and Hilbert Space H′ by setting

Φ(X)b = ϕ(Xb) .

Embedding functions are useful for increasing the expressiveness of a feature space.

5.3.1 Kernels on bags of features

Each operation on a bag of features can be performed directly on the kernel matrix of all
feature vectors. Given two bags of features with the same (B,H), we define the kernel
function

k(X, a,Z, b) = 〈Xa,Zb〉 .

Note that this implicitly defines a kernel matrix between two bags of features: we compute
the kernel function for each pair of indices in B × B to form a |B| × |B| matrix. Let us
now describe how to implement each of the above operations introduced in Section 5.3.

Concatenation. Since

〈c(X)j, c(Z)k〉 =
s∑
`=1

〈Xij` ,Zik`〉 ,

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 149

we have

k(c(X), j, c(Z), k) =
s∑
`=1

k(X, ij`,Z, ik`) .

Downsampling. Similarly, for downsampling, we have

k(c(X), j, c(Z), k) =
1

|Sj||Sk|
∑
i∈Sj

∑
`∈Sk

k(X, i,Z, `) .

Embedding. Note that the embedding function ϕ induces a kernel on H. If x and z
are elements of H, define

kϕ(x, z) = 〈ϕ(x), ϕ(z)〉 .

Then, we don’t need to materialize the embedding function to compute the effect of
embedding a bag of features. We only need to know kϕ:

k(Φ(X), j,Φ(Z), k) = kϕ(Xj,Zk) . (5.3.1)

We will restrict our attention to ϕ where we can compute kϕ(x, z) only from 〈x, z〉, ‖x‖
and ‖z‖. This will allow us to iteratively use Equation (5.3.1) in cascades of these primitive
operations.

5.3.2 Kernel operations on images

In this section, we specialize kernel operations to operations on images. As described
in Section 5.3, images are bags of three dimensional vectors indexed by two spatial
coordinates. Assuming that our images have D1 × D2 pixels, we create a sequence of
kernels by composing the three operations described above.

Input kernel. The input kernel function k0 relates all pixel vectors between all pairs of
images in our dataset. Computationally, given N images, we can use an image tensor T
of shape N ×D1 ×D2 × 3 to represent the whole dataset of images, and map this into a
kernel tensor Kout of shape N ×D1 ×D2 ×N ×D1 ×D2. The elements of Kout = k0(T)
can be written as:

Kout[i, j, k, `,m, n] = 〈T [i, j, k], T [`,m, n]〉 .

All subsequent operations operate on 6-dimensional tensors with the same indexing scheme.

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 150

Convolution. The convolution operation cw maps an input tensor Kin to an output
tensor Kout of the same shape: N ×D1 ×D2 ×N ×D1 ×D2. w is an integer denoting
the size of the convolution (e.g. w = 1 denotes a 3× 3 convolution).

The elements of Kout = cw(Kin) can be written as:

Kout[i, j, k, `,m, n] =
w∑

dx=−w

w∑
dy=−w

Kin[i, j + dx, k + dy, `,m+ dx, n+ dy]

For out-of-bound location indexes, we simply zero pad theKin so all out-of-bound accesses
return zero.

Average pooling. The average pooling operation pw downsamples the spatial dimension,
mapping an input tensor Kin of shape N ×D1 ×D2 ×N ×D1 ×D2 to an output tensor
Kout of shape N × (D1/w) × (D2/w) × N × (D1/w) × (D2/w). We assume D1 and D2

are divisible by w.
The elements of Kout = pw(Kin) can be written as:

Kout[i, j, k, `,m, n] =
1

w4

w∑
a=1

w∑
b=1

w∑
c=1

w∑
d=1(

Kin[i, wj + a, wk + b, `, wm+ c, wn+ d]

)
Embedding. The nonlinearity layers add crucial nonlinearity to the kernel function,
without which the entire map would be linear and much of the benefit of using a kernel
method would be lost. We first consider the kernel counterpart of the ReLU activation.

The ReLU embedding, krelu, is shape preserving, mapping an input tensorKin of shape
N×D1×D2×N×D1×D2 to an output tensorKout of shape N×D1×D2×N×D1×D2.
To ease the notation, we define two auxiliary tensors: A with shape N ×D1 ×D2 and B
with shape N ×D1 ×D2 ×N ×D1 ×D2, where the elements of each are:

A[i, j, k] =
√
Kin[i, j, k, i, j, k]

B[i, j, k, `,m, n] = arccos

(
Kin[i, j, k, `,m, n]

A[i, j, k]A[`,m, n]

)

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 151

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

k(
)

ReLU
Gaussian

Figure 5.1: Comparison of the ReLU (arccosine) and Gaussian kernels (γ = 1), as a
function of the angle ϑ between two examples.

The elements of Kout = krelu(Kin) can be written as:

Kout[i, j, k, `,m, n]

=
1

π

(
A[i, j, k]A[`,m, n] sin(B[i, j, k, `,m, n])+

(π −B[i, j, k, `,m, n]) cos(B[i, j, k, `,m, n])

)
The relationship between the ReLU operator and the ReLU kernel is covered in Subsection
5.3.3.

In addition to the ReLU kernel, we also work with a normalized Gaussian kernel. The
elements of Kout = kgauss(Kin) can be written as:

Kout[i, j, k, `,m, n]

= A[i, j, k]A[`,m, n] exp(B[i, j, k, `,m, n]− 1)

The normalized Gaussian kernel has a similar output response to the ReLU kernel
(shown in Figure 5.1). Experimentally, we find the Gaussian kernel to be marginally faster
and more numerically stable.

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 152

5.3.3 Relating compositional kernels to neural network
architectures

Each of these compositional kernel operations is closely related to neural net architectures,
with close ties to the literature on random features [121]. Consider two tensors: U of
shape N ×D1×D2×D3 andW of shape (2w+ 1)× (2w+ 1)×D3×D4. U is the input,
which can be N images, w is an integer denoting the size of the convolution (e.g. w = 1
denotes a 3× 3 convolution), and W is a tensor contains the “weights” of a convolution.
Consider a simple convolutional layer followed by a ReLU layer in a neural network:

Ψ(U) = relu(W ∗U)

where “∗" denotes the convolution operation and relu denotes elementwise ReLU nonlin-
earity.

A convolution operation can be rewritten as a matrix multiplication with a reshaping
of input tensors. We first flatten the weights tensor W to a matrix W ′ of D4 rows and
D3(2w+1)2 columns. For the input tensor U , given the convolution size (2w+1)×(2w+1),
we consider the “patch" of each entry U [n, d1, d2, c] , which includes the (2w+ 1)× (2w+ 1)
entries U [n, i, j, c], where i ∈ [d1 − w, d1 + w], j ∈ [d2 − w, d2 + w]. Therefore, we can
flatten the input tensor U to a matrix U ′ of size D3(2w + 1)2 ×D1D2N by padding all
out-of-bounds entries in the patches to zero.

The ReLU operation is shape preserving, applying the ReLU nonlinearity ϕ(x) ele-
mentwise to the tensor. Thus we can rewrite the above convolution and ReLU operations
into

Ψ(U) = relu(W ′U ′) = relu(W ∗U)

Therefore, a simple convolution layer and a ReLU layer give us an output tensor Ψ(U)
of shape N ×D1 ×D2 ×D4.

With the help of random features, we are able to relate the above neural network
architecture to kernel operations. Suppose the entries of W are appropriately scaled
random Gaussian variables. We can evaluate the following expectation according to the
calculation in Daniely et al. [27], thereby relating our kernel construction to inner products
between the outputs of random neural networks:

E
[D4∑
c=1

Ψ(U)[i, j, k, c]Ψ(U)[`,m, n, c]

]
=

krelu

(
cw
(
k0(U)

))
[i, j, k, `,m, n]

(5.3.2)

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 153

where k0 is the input kernel defined in Subsection 5.3.2. We include the proof for the
above equality in the appendix.

Similar calculations can be made for the pooling operation, and for any choice of
nonlinearity for which the above expectation can be computed. Moreover, since in Eq
(5.3.2), the term inside the expectation only depends on inner products, this relation can
be generalized to arbitrary depths.

5.3.4 Implementation

Now we actualize the above formulations into a procedure to generate a kernel matrix
from the input data. Let A be a set of valid neural network operations. A given network
architecture N is represented as an ordered list of operations from A. Let K denote a
mapping from elements of A to their corresponding operators as defined in Subsection
5.3.2.

Algorithm 1 defines the procedure for constructing a compositional kernel from a given
architecture N and an input tensor X of N RGB images of shape N ×D ×D × 3. We
note that the output kernel is only a N ×N matrix if there exist exactly logD pooling
layers. We emphasize that this procedure is a deterministic function of the input images
and network architecture.

Due to memory limitations, in practice we compute the compositional kernel in batches
on a GPU. Implementation details are given in Section 5.4.

Algorithm 1 Compositional Kernel
Input
N Input architecture of m layers from A
K Map from A to layerwise operators
X Tensor of input images, shape (N ×D ×D × 3)

Output
Km Compositional kernel matrix, shape (N ×N)

K0 = k0(X)
for i = 1 to m do

ki ← K(Ni)
Ki ← ki(Ki−1)

end for

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 154

5.4 Experiments

3 x 3 Conv ReLU 3 x 3 Conv ReLU 2x2 AvgPool 3 x 3 Conv ReLU 2x2 AvgPool 3 x 3 Conv ReLU 2x2 AvgPool 2x2 AvgPool 2x2 AvgPool

Figure 5.2: A 5 layer network from the “Myrtle” family (Myrtle5).

In this section, we first provide an overview of the architectures used in our experiments.
We then present comparison results between neural networks, NTKs, and compositional
kernels on a variety of datasets, including MNIST, CIFAR-10 (Krizhevsky [91]), CIFAR-10.1
(Recht et al. [128]), CIFAR-100 (Krizhevsky [91]) and 90 UCI datasets (Fernández-Delgado
et al. [49]).

5.4.1 Architectures

We design our deep convolutional kernel based on the non-residual convolutional “Myrtle"
networks introduced in Page [115]. We choose this particular network because of its rare
combination of simplicity and high performance. Many components commonly used in
neural networks, including residual connections, are intended to ease training but have
little or unclear effect in terms of the function of the trained network. It is unclear how to
model these neural network components in the corresponding kernels, but equally unclear
what benefit this might offer. We further simplify the architecture by removing batch
normalization and swapping out max pooling with average pooling, for similar reasons.
The remaining components are exclusively 3× 3 convolutions, 2× 2 average pools, and
ReLUs. More generally, we refer to all architectures that can be represented as a list of
operations from the set {conv3, pool2, relu} as the “Myrtle” family.

We work with 3 networks from this family: Myrtle5, Myrtle7 and Myrtle10, denoting
the depth of each network. An example of the Myrtle5 architecture is shown in Figure 5.2.
The deeper variants have more convolution and ReLU layers; we refer the reader to the
appendix for an illustration of the exact architectures. Next we show convolutional neural
networks from this family can indeed achieve high accuracy on CIFAR-10, as can their
kernel counterparts.

5.4.2 Experimental setup.

We implemented all the convolutional kernels in the tensor comprehensions framework
[149] and executed them on V100 GPUs using Amazon Web Services (AWS) P3.16xlarge

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 155

instances. For image classification tasks (MNIST, CIFAR-10, CIFAR-10.1, and CIFAR-
100), we used compositional kernels based on the Myrtle family described above. For
tabular datasets (90 UCI datasets), we used simpler Gaussian kernels. All experiments
on CIFAR-10, CIFAR-10.1 and CIFAR-100 used ZCA whitening as a preprocessing step,
except for the comparison experiments explicitly studying preprocessing. We apply “flip"
data augmentation to our kernel method by flipping every example in the training set
across the vertical axis and constructing a kernel matrix on the concatenation of the
flipped and standard datasets.

For all image classification experiments (MNIST, CIFAR-10, CIFAR-10.1, and CIFAR-
100) we perform kernel ridge regression with respect to one-hot labels, and solve the
optimization problem exactly using a Cholesky factorization. More details are provided
in the appendix. For experiments on the UCI datasets, we minimize the hinge loss with
libSVM to appropriately compare with prior work [8, 49].

5.4.3 MNIST

As a “unit test," we evaluate the performance of the compositional kernels in comparison
to several baseline methods, including the Gaussian kernel, on the MNIST dataset of hand-
written digits [94]. Results are presented in Table 5.1. We observe that all convolutional
methods show nearly identical performance, outperforming the three non-convolutional
methods (NTK, arccosine kernel, and Gaussian kernel).

Table 5.1: Classification performance on MNIST. All methods with convolutional struc-
ture have essentially the same performance.

Method MNIST
Accuracy

NTK 98.6
ArcCosine Kernel 98.8
Gaussian Kernel 98.8
Gabor Filters + Gaussian Kernel 99.4
LeNet-5 [93] 99.2
CKN [108] 99.6
Myrtle5 Kernel 99.5
Myrtle5 CNN 99.5

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 156

5.4.4 CIFAR-10

Table 5.3 compares the performance of neural networks with various depths and their
corresponding compositional kernels on both the 10,000 test images from CIFAR-10 and
the additional 2,000 “harder" test images from CIFAR-10.11 [91, 128]. We include the
performance of the Gaussian kernel and a standard ResNet32 as baselines. We train all
the Myrtle CNNs on CIFAR-10 using SGD and the mean squared error (MSE) loss with
multi-step learning rate decay. The exact hyperparameters are provided in the appendix.

We observe that a simple neural network architecture built exclusively from 3 × 3
convolutions, 2 × 2 average pooling layers, and ReLU nonlinearities, and trained with
only flip augmentation, achieves 93% accuracy on CIFAR-10. The corresponding fixed
compositional kernel achieves 90% accuracy on the same dataset, outperforming all previous
kernel methods. We note the previous best-performing kernel method from Li et al. [100]
heavily relies on a data dependent feature extraction before data is passed into the kernel
function [20]. When additional sources of augmentation are used, such as cutout and
random crops, the accuracy of the neural network increases to 96%. Unfortunately due
to the quadratic dependence on dataset size, it is currently intractable to augment the
compositional kernel to the same extent. For all kernel results2 on CIFAR-10, we gained a
performance improvement of roughly 0.5% using two techniques: Leave-One-Out tilting
and ZCA augmentation we detail these techniques in appendix 5.6.

Effect of preprocessing. For all of our primary CIFAR-10 experiments, we begin with
ZCA pre-processing [59]. Table 5.3 also shows the accuracy of our baseline CNN and
its corresponding kernel when we replace ZCA with a simpler preprocessing of mean
subtraction and standard deviation normalization. We find a substantial drop in accuracy
for the compositional kernel without ZCA preprocessing, compared to a much more
modest drop in accuracy for the CNN. This result underscores the importance of proper
preprocessing for kernel methods; we leave improvements in this area for future work.

5.4.5 CIFAR-100

For further evaluation, we compute the compositional kernel with the best performance on
CIFAR-10 on CIFAR-100. We report our results in Table 5.2. We find the compositional
kernel to be modestly performant on CIFAR-100, matching the accuracy of a CNN of the
same architecture when no augmentation is used. However we note this might be due to

1As this dataset was only recently released, some works do not report accuracy on this dataset.
2with the exception of the experiment performed without ZCA processing

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 157

training instability as the network performed more favorably after flip augmentation was
used. Accuracy further increased when batch normalization was added, lending credence
to the training instability hypothesis. We also note cross entropy loss was used to achieve
the accuracies in Table 5.2, as we had difficulty optimizing MSE loss on this dataset. We
leave further investigations on the intricacies of achieving high accuracy on CIFAR-100 for
future work.

Table 5.2: Accuracy on CIFAR-100. All CNNs were trained with cross entropy loss.

Method CIFAR-
100

Accuracy
Myrtle10-Gaussian Kernel 65.3
Myrtle10-Gaussian Kernel + Flips 68.2
Myrtle10 CNN 64.7
Myrtle10 CNN + Flips 71.4
Myrtle10 CNN + BatchNorm 70.3
Myrtle10 CNN + Flips + BatchNorm 74.7

5.4.6 Subsampled CIFAR-10

In this section, we present comparison results in the small dataset regime using subsam-
ples of CIFAR-10, as investigated in Arora et al. [8]. Results are shown in Figure 5.3.
Subsampled datasets are class balanced, and standard deviations are computed over 20
random subsamples, as in Arora et al. [8]. More details are provided in the appendix.

Results. We demonstrate that in the small dataset regime explored in Arora et al.
[8], our convolutional kernels significantly outperform the NTK on subsampled training
sets of CIFAR-10. We find a network with the same architecture as our kernel severely
underperforms both the compositional kernel and NTK in the low data regime. As with
CIFAR-100 we suspect this is a training issue as once we add batch normalization the
network outperforms both our kernel and the NTK from Arora et al. [8].

5.4.7 UCI datasets

In this section, we present comparison results between the Gaussian kernel and NTK
evaluated on 90 UCI datasets, following the setup used in Arora et al. [8]. Arora et al. [8]

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 158

Table 5.3: Classification performance on CIFAR-10.

Method CIFAR-10
Accuracy

CIFAR-
10.1

Accuracy
Gaussian Kernel 57.4 -
CNTK + Flips [100] 81.4 -
CNN-GP + Flips [100] 82.2 -
CKN [108] 82.2 -
Coates-NG + Flips [128] 85.6 73.1
Coates-NG + CNN-GP + Flips [100] 88.9 -
ResNet32 92.5 84.4
Myrtle5 Kernel + No ZCA 77.7 62.2
Myrtle5 Kernel 85.8 71.6
Myrtle7 Kernel 86.6 73.1
Myrtle10 Kernel 87.5 74.5
Myrtle10-Gaussian Kernel 88.2 75.1
Myrtle10-Gaussian Kernel + Flips 89.8 78.3
Myrtle5 CNN + No ZCA 87.8 75.8
Myrtle5 CNN 89.8 79.0
Myrtle7 CNN 90.2 79.7
Myrtle10 CNN 91.2 79.9
Myrtle10 CNN + Flips 93.4 84.8
Myrtle10 CNN + Flips + CutOut + Crops 96.0 89.8

identifies that the NTK outperforms a variety of classifiers, including the Gaussian kernel,
random forests (RF), and polynomial kernels, evaluated in Fernández-Delgado et al. [49]
on 90 UCI datasets.

Results. For appropriate comparison, we use the same set of 90 “small" UCI datasets
(containing no more than 5000 data points) as in Arora et al. [8] for the evaluations. For
the tuning and evaluation procedure we make one crucial modification to the evaluation
procedure posed in Arora et al. [8] and Fernández-Delgado et al. [49]. We compute
the optimal hyperparameters for each dataset (for both NTK and Gaussian kernel) by
averaging performance over four cross-validation folds, while both Arora et al. [8] and
Fernández-Delgado et al. [49] choose optimal hyper parameters on a single cross validation

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 159

101 102 103

Training Size

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Myrtle5
Myrtle5 + BN
Myrtle5 Kernel
14-Layer CNTK

Figure 5.3: Accuracy results on random subsets of CIFAR-10, with standard deviations
over 20 trials. The 14-layer CNTK results are from Arora et al. [8].

Table 5.4: Results on 90 UCI datasets for the NTK and Gaussian kernel (both tuned
over 4 eval folds).

Classifier Friedman Average P90 P95 PMA
Rank Accuracy (%) (%) (%) (%)

SVM NTK 14.3 83.2 ± 13.5 96.7 83.3 97.3 ± 3.8
SVM Gaussian kernel 11.6 83.4 ± 13.4 95.6 83.3 97.5 ± 3.7

fold. Using a single cross validation fold can lead to high variance in final performance,
especially when evaluation is done purely on small datasets. A single fold was used in
the original experimental setup of Fernández-Delgado et al. [49] for purely computational
reasons, and the authors point out the issue of high variance hyperparameter optimization.
Table 5.4 reports the average cross-validation accuracy over the 90 datasets for the NTK
and Gaussian kernel. Compared to results in Arora et al. [8], the modified evaluation
protocol increases the performance of both methods, and the gap between the NTK and
Gaussian kernel disappears.

We compute the same metrics used in Arora et al. [8]: Friedman rank, P90, P95 and
PMA, where a better classifier is expected to have lower Friedman rank and higher P90,
P95, and PMA. The average accuracy is reported together with its standard deviation.
Friedman rank denotes the ranking metric introduced to compare classifiers across multiple
datasets in Demšar [30], and reports the average ranking of a given classifier compared to
all other classifiers. P90/P95 denotes the percentage of datasets on which the classifier
achieves at least 90%/95% of the maximum accuracy across all classifiers for this dataset.

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 160

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

wi
th

 G
ap

 <

NTK
Gaussian Kernel

Figure 5.4: Performance profiles for NTK and tuned Gaussian kernel on 90 UCI datasets.

PMA denotes the average percentage of the maximum accuracy across all classifiers for
each dataset.

On all metrics reported by Arora et al. [8], the Gaussian kernel has comparable or
better performance relative to the NTK. Figure 5.4 shows a performance profile to visually
compare the two classifiers [34]. For a given τ , the y axis denotes the fraction of instances
where a classifier either has the highest accuracy or has accuracy within τ of the best
accuracy. The performance profile reveals that the Gaussian kernel and NTK perform
quite comparably on the 90 UCI datasets.

5.5 Limitations and Future Work
The compositional kernels proposed in this manuscript significantly advance the state of
the art of kernel methods applied to pattern recognition tasks. However, these kernels still
have significant limitations that must be addressed before they can be applied in practice.

Computational cost. The compositional kernels we study compare all pairs of input
pixels for two images with D pixels each, so the cost of evaluating the kernel function
on two data points is Õ(D2). In addition, O(N2) kernel evaluations must be computed
to construct the full kernel matrix, creating a total complexity of Õ(N2D2). Even with
heavily optimized GPU code, this requires significant computation time. We therefore
limited our scope to image datasets with a small pixel count and modest number of
examples: CIFAR-10/CIFAR-100 consist of 60, 000 32×32×3 images and MNIST consists
of 70, 000 28 × 28 images. Even with this constraint, the largest compositional kernel

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 161

matrices we study took approximately 1000 GPU hours to compute. Thus, we believe an
imperative direction of future work is reducing the complexity of each kernel evaluation.
Random feature methods or other compression schemes could play a significant role here.

Once a kernel matrix is constructed, exact minimization of empirical risk often scales as
O(N3). For datasets with less than 100,000 examples, these calculations can be performed
relatively quickly on standard workstations with sufficient RAM. However, even these
solves are expensive for larger datasets. Fortunately, recent work on kernel optimization
[25, 105, 134, 150] paves a way to scale our approach to larger datasets.

Data augmentation. A major advantage of neural networks is that data augmentation
can be added essentially for free. For kernel methods, data augmentation requires treating
each augmented example as if it was part of the data set, and hence computation scales
superlinearly with the amount of augmentation: if one wants to perform 100 augmentations
per example, then the final kernel matrix will be 10,000 times larger, and solving the
prediction problem may be one million times slower. Finding new paths to cheaply augment
kernels [28, 124] or to incorporate the symmetries implicit in data augmentation explicitly
in kernels should dramatically improve the effectiveness of kernel methods on contemporary
datasets. One promising avenue is augmentation via kernel ensembling, e.g. by forming
many smaller kernels with augmented data and averaging their predictions appropriately.

Architectural modifications. We consider a simple set of architectural building blocks
(convolution, average pool, and ReLU) in this work, but there exist several commonly
used primitives in deep networks that have no clear analogues for kernel machines (e.g
residual connections, max pool, batch normalization, etc.). While it is unclear whether
these primitives are necessary, the question remains open whether the performance gap
between kernels and neural networks indicates a fundamental limitation of kernel methods
or merely an engineering hurdle that can be overcome (e.g. with improved architectures
or by additional subunits).

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 162

5.6 Appendix: LOO Tilting and ZCA Augmentation
Two additional techniques were used for the Cifar-10 experiments for an additional 0.5%
performance improvement in test accuracy.

5.6.1 ZCA Augmentation

As mentioned in Section 5.5, incorporating augmentation directly is difficult for kernel
methods. To capture a small fraction of the benefit of the augmentation in the preprocessing
method itself, we first augment the data 20 times using the random augment method
proposed in Cubuk et al. [24].

We then learn the ZCA preprocessing matrix by computing the eigendecomposition
of the augmented training data as described in [59]. We then use just the portion of the
preprocessed data matrix corresponding to the regular unaugmented training data (or
corresponding to the unaugmented training data and its horizontal flips) to compute the
kernel matrix.

We find this technique offered a small performance boost of around 0.2% across
CIFAR-10 and CIFAR-10.

5.6.2 Leave-One-Out Tilting

We additionally found a minor improvement in prediction by averaging the predictions
from the true labels and from the labels imputed by leave-one-out prediction. With K
and Y defined as they are in section 1.2.1, let Q be (K + λI)−1 and α be (K + λI)−1Y .
α are the coefficients for standard ridge regression.

Let Yloo be a N × C matrix of leave-one-out predictions. Here, the ith row of Yloo
is the output of ridge regression where we predict example i using every element in the
entire training set except example i. For kernel ridge regression, we can actually compute
the leave-one-out prediction matrix in closed form:

Ylooic = Yic −
Qii

αic

Our titled prediction uses an affine combination of the true labels Y and the imputed
leave-one-out predictions Yloo:

αloo = (K + λI)−1(Y − tYloo)

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 163

Where t is chosen to maximize test accuracy on CIFAR-10. We empirically find the
optimal value of t to be 0.3. Though we do not yet have a theoretical justification for
this method, we found that this solution never reduced test error, and always performed
well on the test set CIFAR-10.1. For our best model, we found this technique offered a
modest performance boost of around 0.3% on both CIFAR-10 and CIFAR-10.1. We leave
an analysis of the efficacy of this technique to future work.

5.7 Appendix: Supplementary proof
For completeness, we present the proof details for section 3.3 using results from [27].

We aim to prove the following equality:

E
[D4∑
c=1

Ψ(U)[i, j, k, c]Ψ(U)[`,m, n, c]

]
=

krelu

(
cw
(
k0(U)

))
[i, j, k, `,m, n]

(5.7.1)

where Ψ, U and k0 are as defined in the main text.
Daniely et al. [27] (Section 4.2) presents the concepts of dual activation and kernel:

σ̂(ρ) = E(X,Y)∼Nρ [σ(X)σ(Y)]

where we denote by Nρ the multivariate Gaussian distribution with mean 0 and

covariance matrix
(

1 ρ
ρ 1

)
.

In our case, we have the relu activation σ(·) = max(x, 0), whose dual activation function

takes the form σ̂(ρ) =

√
1−ρ2+ρ(π−cos−1(ρ))

π
[27].

Now we show how the above result translates to equation 5.3.2. Recall that for a
convolutional layer followed by a ReLU layer, we have tensors U with shape N ×D1 ×
D2×D3, andW with shape (2w+ 1)× (2w+ 1)×D3×D4. To ease the notation, denote
Z as the tensorW ∗U with shape N ×D1×D2×D4. We begin with the LHS of equation
5.3.2:

E
[D4∑
c=1

Ψ(U)[i, j, k, c]Ψ(U)[`,m, n, c]

]
=E
[
σ
(√

D4(Z[i, j, k, 1])
)
σ
(√

D4(Z[l,m, n, 1])
)]

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 164

Let X =
√
D4(Z[i, j, k, 1]), Y =

√
D4(Z[l,m, n, 1]), and choose entries of W to be inde-

pendent and identically distributed Gaussian random variables with mean 0 and variance
1
D4

. With normalization on every patch, we have that (X, Y) follow the multivariate

Gaussian distribution with mean 0 and covariance matrix
(

1 ρ
ρ 1

)
, where

ρ =
w∑

δ=−w

w∑
∆=−w

D3∑
d=1

U [i, j + δ, k + ∆, d]U [l,m+ δ, n+ ∆, d]

Following Daniely et al. [27], we have:

E
[D4∑
c=1

Ψ(U)[i, j, k, c]Ψ(U)[`,m, n, c]

]
=

√
1− ρ2 + ρ(π − cos−1(ρ))

π

(5.7.2)

Now we show that the RHS of equation 5.3.2 is indeed
√

1−ρ2+ρ(π−cos−1(ρ))

π
.

As defined in Subsection 5.3.2,

k0(U)[i, j, k, l,m, n] =

D3∑
d=1

U [i, j, k, d]U [l,m, n, d]

.
Let C be the tensor cw

(
k0(U)

)
,

C[i, j, k, l,m, n]

=
w∑

δ=−w

w∑
∆=−w

D3∑
d=1

U [i, j ± δ, k ±∆, d]U [l,m± δ, n±∆, d]

With normalization for every patch,
√
C[i, j, k, i, j, k] = 1, and

krelu

(
cw

(
k0(U)

))
=

1

π

(√
1− ρ2 + ρ(π − cos−1(ρ))

) (5.7.3)

Combining (5.7.2) and (5.7.3) completes the proof.

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 165

5.8 Appendix: Neural Network Parameters
The parameters used to train neural networks for the experiments in this paper are as
follows:

For Myrtle5 on MNIST, we used a width of 1,024 filters for all layers and trained for 20
epochs using MSE loss and Adam as the optimizer with a learning rate of 0.001, without
weight decay, and without any form of data preprocessing. For the Myrtle5 Kernel on
MNIST we used a regularization value (λ) of 1e-4.

For CIFAR-10, all experiments are trained using MSE loss and SGD with Nesterov
momentum, setting weight decay to 0.0005, momentum to 0.9, and minibatch size to 128.
All experiments using Myrtle5 used 1,024 filters for all layers and trained for 60 epochs at
half-precision with an initial learning rate of 0.1, which is decayed by 0.1 at 15, 30, and
45 epochs. Myrtle7, Myrtle10 without augmentation, and Myrtle10 with flips used 1,024
filters and are trained for 200 epochs with an initial learning rate of 0.05, which is decayed
by 0.1 at 80, 120, and 160 epochs. Myrtle10 with flips, cutout, and random crops used
2,048 filters and is trained for 400 epochs with an initial learning rate of 0.1, which is
decayed by 0.1 at 80, 160, 240, and 320 epochs. For all CIFAR-10 kernel experiments we
used a regularization value (λ) of 0.

For CIFAR-100, all experiments use a width of 2,048 filters for all layers and are
trained for 200 epochs using cross entropy loss and SGD with Nesterov momentum, setting
weight decay to 0.0005, momentum to 0.9, and minibatch size to 128. The learning rate is
decayed by 0.2 at 60, 120, and 160 epochs. The initial learning rate is set to 0.1 for both
experiments with batch normalization, 0.05 for Myrtle10 CNN with flips, and 0.01 for
Myrtle10 CNN without augmentation. For all CIFAR-100 kernel experiments we used a
regularization value (λ) of 1e-4.

5.9 Appendix: Neural Network Architectures
In Figure 5.5 we illustrate the two “deeper" Myrtle architectures used. The architectures
are similar to the 5 layer variant illustrated in main text, except with more convolution
and nonlinearity layers.

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 166

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

2 x 2 Average Pool

2 x 2 Average Pool

Myrtle7

(a)

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

ReLU

3 x 3 Convolution

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

ReLU

3 x 3 Convolution

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

ReLU

3 x 3 Convolution

2 x 2 Average Pool

2 x 2 Average Pool

Myrtle10

(b)

Figure 5.5: a) 7 layer b) 10 layer variants of the Myrtle architectures

5.10 Appendix: Subsampled CIFAR-10 experiments
details

Subsets of CIFAR-10 were selected uniformly at random without replacement, and each
experiment was repeated in 20 independent trials (over which we report standard devi-
ations). This procedure, and the sizes of training sets we consider, match the setup in
[8]. Table 5.5 compares the performance (on all 10,000 test examples) of the CNTK from
[8] with that of our Myrtle5 kernel and CNN (with and without batch normalization),
our Myrtle10-Gaussian kernel, and a baseline linear classifier. Each linear model used a

CHAPTER 5. NEURAL KERNELS WITHOUT TANGENTS 167

regularization parameter λ tuned on a log scale between 10−4 and 106. The optimal values
for λ from top to bottom were: 102, 10−2, 102, 103, 103, 103, 105, 104. The Myrtle10-Gaussian
kernel is our highest-performing unaugmented kernel on the full CIFAR-10 dataset; here
we confirm that it retains high performance in the small-data regime.

Training CNTK Myrtle5 Myrtle5 Myrtle5 Myrtle10-G Linear
Size CNN CNN + BN Kernel Kernel
10 15.33± 2.43 11.29± 1.48 19.60± 3.32 17.22± 2.95 19.15± 1.94 12.94± 0.74
20 18.79± 2.13 11.83± 1.34 22.82± 2.56 22.16± 1.69 21.65± 2.97 13.54± 0.69
40 21.34± 1.91 12.16± 2.20 27.53± 1.61 26.74± 1.56 27.20± 1.90 14.66± 0.60
80 25.48± 1.91 18.96± 2.04 33.58± 1.22 32.56± 1.12 34.22± 1.08 15.54± 0.61
160 30.48± 1.17 20.36± 1.68 39.96± 1.44 38.61± 1.06 41.89± 1.34 17.15± 0.64
320 36.57± 0.88 34.79± 4.60 46.96± 1.29 46.03± 0.82 50.06± 1.06 19.18± 0.71
640 42.63± 0.68 43.36± 3.80 56.03± 0.80 53.45± 0.80 57.60± 0.48 22.30± 0.57
1280 48.86± 0.68 53.27± 1.55 61.94± 0.74 60.46± 0.58 64.40± 0.48 25.64± 0.61

Table 5.5: Accuracy results (%) on random subsets of CIFAR-10, with standard
deviations over 20 resamplings. Myrtle10-G denotes the Myrtle10-Gaussian kernel, our
best-performing kernel on the full CIFAR-10 dataset which retains its high performance in
the small-data regime. The shallower Myrtle5 CNN trained with batch normalization has
similar performance to the corresponding compositional kernel, both of which outperform
the CNTK and the Myrtle5 CNN trained without batch normalization.

168

Chapter 6

Transcription Factor Binding Site
Prediction

6.1 Problem Setup
Understanding binding affinity between proteins and DNA sequence is a crucial step in
deciphering the regulation of gene expression. Specifically, characterizing the binding
affinity of transcription factor proteins (TFs) to DNA sequence determines the relative
expression of genes downstream from a TF binding site.

The recent advent of sequencing technologies, such as chromatin immunoprecipitation
with massively parallel DNA sequencing (ChIP-seq), provides us with genome-wide binding
specificities for 187 TFs across 98 cellular contexts of interest from the ENCODE consortium
[22]. These specificities can be thresholded to define high-confidence bound and unbound
regions for a given TF. Given the location of these binding sites, we can formulate a binary
sequence classification problem, classifying regions bound and unbound by a TF as positive
and negative, respectively. Using a binary sequence classification model, we can predict
binding sites in new cellular contexts, learning regulatory behavior without the expense of
ChIP-seq experiments.

String kernel methods are well understood and have been extensively used for sequence
classification [42, 79, 98]. Specifically, Fletez-Brant et al. and Lee et al. [50, 95] have
applied string kernel methods to the prediction of transcription factor binding sites.
However, kernel methods require pairwise comparison between all n training sequences
and thus incur an expensive O(n2) computational and storage complexity, making them
computationally intractable for large data sets.

CHAPTER 6. TRANSCRIPTION FACTOR BINDING SITE PREDICTION 169

Recently, convolutional neural networks (CNN) have been successful for prediction
of TF binding sites [5, 88, 163]. CNNs generalize well by encoding spatial invariance
during training. Fast convolutions on a Graphical Processing Unit (GPU) allows CNNs to
train on large datasets. However, the actual design of the neural network greatly impacts
model performance, yet there is no clear understanding of how to design a network for a
particular task. Furthermore there is no generally accepted network architecture for the
task of TF binding site prediction from DNA sequence.

In this work, we present a convolutional kernel approximation algorithm that maintains
the spatial invariance and computational efficiency of CNNs. Dubbed Convolutional
Kitchen Sinks (CKS), our algorithm learns a model from the output of a 1 layer random
convolutional neural network [122]. All the parameters of the network are independent and
identically distributed (IID) random samples from a gaussian distribution with a specified
variance. We then train a linear model on the output of this network. Our results show
that for five out of six transcription factors, CKS outperform current state-of-the art CNN
implementations, while maintaining a simple architecture and training eight times faster
than a CNN.

6.2 Method
The task of transcription factor (TF) binding site prediction from DNA sequence reduces
to binary sequence classification. We present a randomized algorithm for finding an
embedding of sequence data apt for linear classification (Algorithm 2). Our algorithm
is closely related to the work of convolutional kernel networks, which approximates a
convolutional kernel feature map via a nonconvex optimization objective [108]. However,
unlike Mairal et al. [108], we approximate the convolutional kernel feature map via random
projections in the style of Rahimi et al. [120, 122].

We will first define the convolutional n-gram kernel, and then analyze why it has
desired properties for the task of string classification. Note that we use the term n-gram
to refer to a contiguous sequence of n characters, whereas computational biology literature
refers to the same concept as a k-mer.

Definition 1 (Convolutional n-gram kernel). Let x, y be strings of length d from an
underlying alphabet A, and let H(x, y) denote the Hamming distance between the two
strings. Let xi:j denote the substring of x from index i to j − 1. Let n be an integer less
than d and let γ be a real valued positive number denoting the width of the kernel. The
kernel function Kn,γ(x, y) is defined as:

CHAPTER 6. TRANSCRIPTION FACTOR BINDING SITE PREDICTION 170

Kn,γ(x, y) =
d−n∑
i=0

d−n∑
j=0

exp(−γH2(xi:i+n, yj:j+n)) (6.2.1)

To gain intuition for the behavior of this kernel, take γ to be a large value. It follows
that exp(−γH2(xi:i+n, yj:j+n)) ≈ 1[xi:i+n = yj:j+n].

This combinatorial reformulation results in the following well studied Spectrum Kernel
(Definition 2).

Definition 2 (Spectrum Kernel). Let Sn(A) be the set of all length n contiguous substrings
in A, and #(x, s) count the occurrences of s ∈ x [98].

Kspec(x, y) =
∑

s∈Sn(A)

#(x, s)#(y, s) (6.2.2)

Other string kernel methods such as the mismatch [42] and gapped n-gram kernel [57]
allow for partial mismatches between n-grams. We note that decreasing γ in Equation 6.2.1
relaxes the penalty of n-gram mismatches between disappoints, thereby capturing the
behavior of the mismatch and gapped n-gram kernels [42, 57]. Note that Equation 6.2.1 is
computationally prohibitive, as it takes Ω(nd2) to compute each of the N2 entries in the
kernel matrix. Furthermore, the feature map induced by the kernel in Equation 6.2.1 is
infinite dimensional, so the kernel matrix is necessary.

Instead, we turn to a random approximation of Equation 6.2.1 (see Algorithm 2). Since
our kernel is a sum of non linear functions it suffices to define a feature map φ̂ on sequences
x and y that approximates each term in the sum from Equation 6.2.1:

exp(−γH(xi:i+n, yj:j+n)) ≈ φ̂(xi:i+n)T φ̂(yj:j+n) (6.2.3)

Claim 1 from Rahimi et al. [120] states that for j ∈ {0 . . .M − 1}, if we choose
φ̂(xi:i+n)j =

√
2
M

cos(wTj xi:i+n + bj), where wj ∼ N (0, γ), bj ∼ U(0, 2π), then φ̂(xi:i+n)

satisfies Equation 6.2.3. Note that to use Claim 1, we represent Hamming distance
in Equation 6.2.1 as an L2 distance. We refer to each wj as a “random kitchen sink".
The result in in Rahimi et al. [120] (Claim 1) gives strong guarantees that φ̂(x)T φ̂(y)
concentrates exponentially fast to Equation 6.2.1, which means we can set M , the number
of kitchen sinks, to be small.

Algorithm 2 details the kernel approximation. Note that in Algorithm 2, line 16 we
reuse wj across all xi:i+n in Equation 6.2.1 by a convolution. Algorithm 2 is a finite
dimensional approximation of the feature map induced by the kernel in Equation 6.2.1

CHAPTER 6. TRANSCRIPTION FACTOR BINDING SITE PREDICTION 171

directly, circumventing the need for a kernel matrix. The computational complexity of
Algorithm 2 is O(NMdn).

For the task of TF binding site prediction we let alphabet A = {A, T, C,G}, and set
n = 8, similar to common parameter configuration for DNA sequence [5, 50, 57].

6.3 Results
We compare our CKS to DeepBind, a state-of-the-art CNN approach for predicting
transcription factor (TF) binding sites. We compare to DeepBind over other CNN
methods [88, 163] due to its primary attention to DNA sequence specificity and ability to
identify fine grained (101 bp) locations of binding affinity.

6.3.1 Datasets

We train and evalute on datasets preprocessed from the ENCODE consortium. Because
binding affinity is TF specific, we use separate train and evaluation sets for each TF.

We use the same training sets as DeepBind’s publically available models. We then
evaluate on DeepBind’s test sets as well as a larger dataset processed directly from
ENCODE.

Table 6.1: Comparison of ROC Area under Curve values (AUC) between DeepBind and
CKS tested on 500 bound regions from ENCODE and 500 synthetic unbound regions.

TF Train
Cell Type

Test
Cell Type

Train
Size

Train
Time

DeepBind
AUC

CKS
AUC

ATF2 H1-hESC GM12878 10998 154s 0.72 0.77
ATF3 H1-hESC HepG2 8616 139s 0.94 0.95
ATF3 H1-hESC K562 8616 139s 0.83 0.84
CEBPB HeLa-S3 A549 121010 1620s 0.99 0.99
CEBPB HeLa-S3 K562 121010 1620s 0.99 0.98
EGR1 K562 GM12878 72996 772s 0.94 0.96
EGR1 K562 H1-hESC 72996 772s 0.87 0.92
EP300 HepG2 SK-N-SH 54828 519s 0.67 0.70
EP300 HepG2 K562 54828 519s 0.66 0.81
STAT5A GM12878 K562 13846 199s 0.65 0.79

CHAPTER 6. TRANSCRIPTION FACTOR BINDING SITE PREDICTION 172

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Deepbind (0.72)
CKS (0.78)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Deepbind (0.56)
CKS (0.57)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Deepbind (0.94)
CKS (0.96)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Deepbind (0.87)
CKS (0.91)

A) B) C) D)

Figure 6.1: Comparison of ROC between DeepBind on CKS on EGR1 and ATF2 for
GM12878. A) ROC for ATF2 on the DeepBind’s test set. B) ROC for ATF2 on the
ENCODE set. C) ROC for EGR1 on the DeepBind’s test set. D) ROC for EGR1 on the
the ENCODE set.

DeepBind’s test sets consist of 1000 regions for each cell type over six TFs. Each set
consists of 500 positive sequences extracted from regions of high ChIP-seq signal and 500
synthetic negative sequences generated from dinucleotide shuffle of positive sequences [5].

The second test dataset consists of 100,000 regions extracted from ChIP-seq datasets
for TFs ATF2 and EGR1 across multiple cell types. Positive sequences are extracted from
regions of high ChIP-seq signal. Negative sequences are extracted from regions of low
ChIP-seq signal with exposed chromatin.

Table 6.2: Comparison of ROC Area under Curve values (AUC) between DeepBind
and CKS tested on 100,000 bound and unbound regions from ENCODE. Because both
experiments trained on the same dataset, the train cell types, train times, and train sizes
are the same as in Table 6.1.

TF Test
Cell Type

DeepBind
AUC

CKS
AUC

ATF2 GM12878 0.56 0.57
ATF2 MCF7 0.93 0.76
EGR1 GM12878 0.87 0.91
EGR1 H1-hESC 0.77 0.85
EGR1 HCT116 0.77 0.82
EGR1 MCF7 0.84 0.86

CHAPTER 6. TRANSCRIPTION FACTOR BINDING SITE PREDICTION 173

6.3.2 Experimental Setup

Experiments for DeepBind and CKS were run on one machine with 24 Xeon processors,
and 256 GB of ram and 1 Nvidia Tesla K20c GPU.

We train a linear model minimizing squared loss with an L2 penalty of λ on the output
of the CKS defined in Algorithm 2. We do not tune the hyper-parameters n (convolution
size) and M (number of kitchen sinks), and leave them constant at 8 and 8192 respectively.
We tune the hyper paraemters γ (kernel width) and λ on held out data from the train set.
To assess generalization across cellular contexts, we train and evaluate on separate cell
types.

6.3.3 Evaluation

We compare DeepBind against CKS using area under the curve (AUC) of Receiver
Operating Characteristic (ROC). We choose AUC as a metric for binary classifcation due
to its ability to measure both TF binding site detection and false positive rates.

We detail our experimental results and compare to DeepBind’s pretrained models
in Tables 6.1 and 6.2. We also show ROCs for ATF2 and EGR1 on both datasets in
Figure 6.1.

Our AUC is competitive (within 0.01) or superior to that of DeepBind except for ATF2
on MCF7 cell type. Furthermore on five out of six large ENCODE test sets, our AUC is
strictly greater than DeepBind.

We measure DeepBind’s training time on TF EGR1, trained on K562 with 72, 996 train
sequences. DeepBind’s training procedure takes 6497 seconds to learn 2123 parameters.
For comparison, training time for CKS takes 712 seconds (Table 6.1) to learn 16384
parameters, which is approximately eight times faster than DeepBind’s runtime.

6.4 Conclusion & Future Work
In this paper, we show that Convolutional Kitchen Sinks train eight times faster and
has superior predictive performance to CNNs. We note that our current work focuses on
binding affinity in the context of DNA sequence, making this model agnostic to specific
cell contexts of interest. Because Algorithm 1 is not specific to DNA sequence, positional
counts of chromatin accessibility and gene expression data can be aggregated with current
implementation to account for cell type specific information. We leave this extension for
future work.

CHAPTER 6. TRANSCRIPTION FACTOR BINDING SITE PREDICTION 174

Algorithm 2 Convolutional Kitchen Sink for sequences
1: Input
2: xi . . . xN ∈ Rd (input sequences)
3: γ (width of kernel)
4: n (convolution size)
5: M (the approximation dimension, number of kitchen sinks)
6: Output
7: φ(xi) . . . φ(xN)

8: for j ∈ {0 . . .M} do
9: wj ∼ N (0, γIn) Sample kitchen sink from gaussian
10: bj ∼ U(0, 2π) Sample phase from uniform disk
11:
12: for i ∈ {0 . . . N} do
13: zij = wj ∗ xi Convolve filter with input sequence
14:
15: cij = cos(zij + bj) Add phase and compute element-wise cosine
16: Note zij and cij are vectors in Rd−n+1

17:

18: φ(xi)j =
√

2
M

d−n∑
k=0

cijk Average to get the jth output feature value for sequence

xi
19:
20: end for
21: end for

175

Bibliography

[1] American kennel club. URL https://www.akc.org/.

[2] Economic Report of the President. 2019. https://www.govinfo.gov/app/collec
tion/erp/2019.

[3] Subfamily cicindelinae - tiger beetles, Oct 2019. URL https://bugguide.net/node/
view/375.

[4] Soroosh Shafieezadeh Abadeh, Peyman Mohajerin Mohajerin Esfahani, and Daniel Kuhn.
Distributionally robust logistic regression. In Advances in Neural Information Processing
Systems, pages 1576–1584, 2015.

[5] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting
the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature
biotechnology, 2015.

[6] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. In Advances in Neural Information
Processing Systems, 2019.

[7] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. In Advances in Neural
Information Processing Systems, 2019.

[8] Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli
Yu. Harnessing the power of infinitely wide deep nets on small-data tasks. In International
Conference on Learning Representations, 2020.

[9] Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly
to small image transformations? arXiv preprint arXiv:1805.12177, 2018.

https://www.akc.org/
https://www.govinfo.gov/app/collection/erp/2019
https://www.govinfo.gov/app/collection/erp/2019
https://bugguide.net/node/view/375
https://bugguide.net/node/view/375

BIBLIOGRAPHY 176

[10] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs
Rennen. Robust solutions of optimization problems affected by uncertain probabilities.
Management Science, 59(2):341–357, 2013.

[11] Alex Berg. Personal communication, 2018.

[12] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr.
Fully-convolutional siamese networks for object tracking. In European conference on
computer vision, pages 850–865. Springer, 2016.

[13] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition, 2018. https://arxiv.org/abs/1712.03141.

[14] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In
Machine Learning and Knowledge Discovery in Databases, 2013. https://link.sprin
ger.com/chapter/10.1007/978-3-642-40994-3_25.

[15] Avrim Blum and Moritz Hardt. The Ladder: A reliable leaderboard for machine learning
competitions. In International Conference on Machine Learning (ICML), 2015. http:
//arxiv.org/abs/1502.04585.

[16] Remi Cadene. Pretrained models for pytorch. https://github.com/Cadene/pretra
ined-models.pytorch. Accessed: 2019-05-20.

[17] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng.
Dual path networks. In Neural Information Processing Systems (NIPS), 2017. https:
//arxiv.org/abs/1707.01629.

[18] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017. https://arxi
v.org/abs/1610.02357.

[19] Stephane Clinchant, Gabriela Csurka, Florent Perronnin, and Jean-Michel Renders. XRCE’s
participation to ImagEval. http://citeseerx.ist.psu.edu/viewdoc/downlo
ad?doi=10.1.1.102.6670&rep=rep1&type=pdf, 2007.

[20] Adam Coates and Andrew Y Ng. Learning feature representations with k-means. In Neural
networks: Tricks of the Trade, pages 561–580. Springer, 2012.

[21] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In Conference on Artificial Intelligence and Statistics
(AISTATS), 2011. http://proceedings.mlr.press/v15/coates11a.html.

https://arxiv.org/abs/1712.03141
https://link.springer.com/chapter/10.1007/978-3-642-40994-3_25
https://link.springer.com/chapter/10.1007/978-3-642-40994-3_25
http://arxiv.org/abs/1502.04585
http://arxiv.org/abs/1502.04585
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://arxiv.org/abs/1707.01629
https://arxiv.org/abs/1707.01629
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.6670&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.6670&rep=rep1&type=pdf
http://proceedings.mlr.press/v15/coates11a.html

BIBLIOGRAPHY 177

[22] ENCODE Project Consortium et al. The ENCODE (Encyclopedia of DNA elements)
project. Science, 306(5696):636–640, 2004.

[23] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Au-
toAugment: Learning augmentation policies from data. https://arxiv.org/abs/18
05.09501, 2018.

[24] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
data augmentation with no separate search. arXiv preprint arXiv:1909.13719, 2019.

[25] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, and Le Song.
Scalable kernel methods via doubly stochastic gradients. In Advances in Neural Information
Processing Systems, 2014.

[26] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. In Advances in neural information processing systems, pages
379–387, 2016.

[27] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity. In Advances in
Neural Information Processing Systems, 2016.

[28] Tri Dao, Albert Gu, Alexander J. Ratner, Virginia Smith, Christopher De Sa, and Christo-
pher Re. A kernel theory of modern data augmentation. In International Conference on
Machine Learning (ICML), 2019.

[29] Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty
with application to data-driven problems. Operations research, 58(3):595–612, 2010.

[30] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7(Jan):1–30, 2006.

[31] Jia Deng. Large Scale Visual Recognition. PhD thesis, Princeton University, 2012. ftp:
//ftp.cs.princeton.edu/techreports/2012/923.pdf.

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2009. http://www.image-net.org/papers/imagenet_cvp
r09.pdf.

[33] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with Cutout. https://arxiv.org/abs/1708.04552, 2017.

https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1805.09501
ftp://ftp.cs.princeton.edu/techreports/2012/923.pdf
ftp://ftp.cs.princeton.edu/techreports/2012/923.pdf
http://www.image-net.org/papers/imagenet_cvpr09.pdf
http://www.image-net.org/papers/imagenet_cvpr09.pdf
https://arxiv.org/abs/1708.04552

BIBLIOGRAPHY 178

[34] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, Series A, 91:201–213, 2002.

[35] Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. In International Conference on Machine
Learning, 2019.

[36] Simon S. Du, Xiyu Zhai, Barnab’s Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019.

[37] John C Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. Distributionally robust
losses against mixture covariate shifts. Under review, 2019.

[38] Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Kurakin,
Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial examples that fool both computer
vision and time-limited humans. In Advances in Neural Information Processing Systems,
pages 3910–3920, 2018.

[39] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry.
A rotation and a translation suffice: Fooling cnns with simple transformations. arXiv
preprint arXiv:1712.02779, 2017.

[40] Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation
and a translation suffice: Fooling CNNs with simple transformations. http://arxiv.or
g/abs/1712.02779, 2017.

[41] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust opti-
mization using the wasserstein metric: Performance guarantees and tractable reformulations.
Mathematical Programming, 171(1-2):115–166, 2018.

[42] Eleazar Eskin, Jason Weston, William S Noble, and Christina S Leslie. Mismatch string
kernels for SVM protein classification. In Advances in Neural Information Processing
Systems, pages 1417–1424, 2002.

[43] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zisserman.
The Pascal Visual Object Classes (VOC) challenge. International Journal of Computer
Vision, 2010. http://dx.doi.org/10.1007/s11263-009-0275-4.

[44] Alhussein Fawzi and Pascal Frossard. Manitest: Are classifiers really invariant? In British
Machine Vision Conference (BMVC), 2015. https://arxiv.org/abs/1507.06535.

http://arxiv.org/abs/1712.02779
http://arxiv.org/abs/1712.02779
http://dx.doi.org/10.1007/s11263-009-0275-4
https://arxiv.org/abs/1507.06535

BIBLIOGRAPHY 179

[45] Alhussein Fawzi and Pascal Frossard. Manitest: Are classifiers really invariant? In British
Machine Vision Conference (BMVC), 2015.

[46] Alhussein Fawzi and Pascal Frossard. Manitest: Are classifiers really invariant? In British
Machine Vision Conference (BMVC), 2015. https://arxiv.org/abs/1507.06535.

[47] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few
training examples: An incremental Bayesian approach tested on 101 object categories.
Computer Vision and Image Understanding, 2007. http://dx.doi.org/10.1016/j
.cviu.2005.09.012.

[48] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to track and track to
detect. In Proceedings of the IEEE International Conference on Computer Vision, pages
3038–3046, 2017.

[49] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need
hundreds of classifiers to solve real world classification problems? The Journal of Machine
Learning Research, 15(1):3133–3181, 2014.

[50] Christopher Fletez-Brant, Dongwon Lee, Andrew S McCallion, and Michael A Beer. Kmer-
SVM: a web server for identifying predictive regulatory sequence features in genomic data
sets. Nucleic acids research, 41(W1):W544–W556, 2013.

[51] Xavier Gastaldi. Shake-shake regularization. https://arxiv.org/abs/1705.07485,
2017.

[52] Robert Geirhos, David HJ Janssen, Heiko H Schütt, Jonas Rauber, Matthias Bethge, and
Felix A Wichmann. Comparing deep neural networks against humans: object recognition
when the signal gets weaker. arXiv preprint arXiv:1706.06969, 2017.

[53] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape
bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

[54] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. CoRR, abs/1811.12231, 2018. URL http:
//arxiv.org/abs/1811.12231.

[55] Robert Geirhos, Carlos R. M. Temme, Jonas Rauber, Heiko H. Schütt, Matthias Bethge, and
Felix A. Wichmann. Generalisation in humans and deep neural networks. In Advances in
Neural Information Processing Systems (NeurIPS). 2018. http://papers.nips.cc/p
aper/7982-generalisation-in-humans-and-deep-neural-networks.pdf.

https://arxiv.org/abs/1507.06535
http://dx.doi.org/10.1016/j.cviu.2005.09.012
http://dx.doi.org/10.1016/j.cviu.2005.09.012
https://arxiv.org/abs/1705.07485
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
http://papers.nips.cc/paper/7982-generalisation-in-humans-and-deep-neural-networks.pdf
http://papers.nips.cc/paper/7982-generalisation-in-humans-and-deep-neural-networks.pdf

BIBLIOGRAPHY 180

[56] Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge, and
Felix A Wichmann. Generalisation in humans and deep neural networks. In Advances in
Neural Information Processing Systems, pages 7538–7550, 2018.

[57] Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A Beer. En-
hanced regulatory sequence prediction using gapped k-mer features. PLOS Computational
Bioliology, 10(7):e1003711, 2014.

[58] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized
two-layers neural networks in high dimension, 2019.

[59] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and Yoshua
Bengio. Maxout networks. In International Conference on Machine Learning, 2013.

[60] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[61] Keren Gu, Brandon Yang, Jiquan Ngiam, Quoc Le, and Jonathan Shlens. Using videos to
evaluate image model robustness. arXiv preprint arXiv:1904.10076, 2019.

[62] Keren Gu, Brandon Yang, Jiquan Ngiam, Quoc V. Le, and Jonathon Shlens. Using
videos to evaluate image model robustness. CoRR, abs/1904.10076, 2019. URL http:
//arxiv.org/abs/1904.10076.

[63] Ben Hamner. Popular datasets over time. https://www.kaggle.com/benhamner/p
opular-datasets-over-time/data, 2017.

[64] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017. https://arxi
v.org/abs/1610.02915.

[65] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad Babaeizadeh,
Honghui Shi, Jianan Li, Shuicheng Yan, and Thomas S Huang. Seq-nms for video object
detection. arXiv preprint arXiv:1602.08465, 2016.

[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In International Conference
on Computer Vision (ICCV), 2015. https://arxiv.org/abs/1502.01852.

http://arxiv.org/abs/1904.10076
http://arxiv.org/abs/1904.10076
https://www.kaggle.com/benhamner/popular-datasets-over-time/data
https://www.kaggle.com/benhamner/popular-datasets-over-time/data
https://arxiv.org/abs/1610.02915
https://arxiv.org/abs/1610.02915
https://arxiv.org/abs/1502.01852

BIBLIOGRAPHY 181

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Conference on Computer Vision and Pattern Recognition (CVPR),
2016. https://arxiv.org/abs/1512.03385.

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European Conference on Computer Vision (ECCV), 2016. https:
//arxiv.org/abs/1603.05027.

[70] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations
(ICLR), 2019. https://arxiv.org/abs/1807.01697.

[71] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[72] Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
1614–1619, 2018.

[73] Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2018. https://arxiv.
org/abs/1804.00499.

[74] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. https://arxiv.org/abs/1704.04861, 2017.

[75] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. https://arxiv.org/abs/
1709.01507.

[76] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely con-
nected convolutional networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. https://arxiv.org/abs/1608.06993.

[77] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,
and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
<0.5MB model size. https://arxiv.org/abs/1602.07360, 2016.

[78] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning
(ICML), 2015. https://arxiv.org/abs/1502.03167.

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1807.01697
https://arxiv.org/abs/1804.00499
https://arxiv.org/abs/1804.00499
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1502.03167

BIBLIOGRAPHY 182

[79] Tommi S Jaakkola, Mark Diekhans, and David Haussler. Using the Fisher kernel method
to detect remote protein homologies. In Proceedings of ISMB, volume 99, pages 149–158,
1999.

[80] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in Neural Information Processing
Systems, 2018.

[81] SouYoung Jin, Aruni RoyChowdhury, Huaizu Jiang, Ashish Singh, Aditya Prasad, Deep
Chakraborty, and Erik Learned-Miller. Unsupervised hard example mining from videos for
improved object detection. In ECCV, 2018.

[82] Eric Jonas, Monica Bobra, Vaishaal Shankar, J Todd Hoeksema, and Benjamin Recht.
Flare prediction using photospheric and coronal image data. Solar Physics, 293(3):48, 2018.

[83] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Geometric robustness
of deep networks: analysis and improvement. arXiv preprint arXiv:1711.09115, 2017.

[84] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Geometric robustness
of deep networks: Analysis and improvement. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. https://arxiv.org/abs/1711.09115.

[85] Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie Yan, Xihui Liu, and Xiaogang
Wang. Object detection in videos with tubelet proposal networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 727–735, 2017.

[86] Andrej Karpathy. Lessons learned from manually classifying CIFAR-10. http://karpat
hy.github.io/2011/04/27/manually-classifying-cifar10/, 2011.

[87] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep
learning. https://arxiv.org/abs/1710.05468, 2017.

[88] David R Kelley, Jasper Snoek, and John L Rinn. Basset: Learning the regulatory code of
the accessible genome with deep convolutional neural networks. Genome research, 2016.

[89] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better ImageNet models transfer
better? http://arxiv.org/abs/1805.08974, 2018.

[90] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami Abu-El-Haija, Alina
Kuznetsova, Hassan Rom, Jasper Uijlings, Stefan Popov, Shahab Kamali, Matteo Malloci,
Jordi Pont-Tuset, Andreas Veit, Serge Belongie, Victor Gomes, Abhinav Gupta, Chen
Sun, Gal Chechik, David Cai, Zheyun Feng, Dhyanesh Narayanan, and Kevin Murphy.

https://arxiv.org/abs/1711.09115
http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/
http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/
https://arxiv.org/abs/1710.05468
http://arxiv.org/abs/1805.08974

BIBLIOGRAPHY 183

Openimages: A public dataset for large-scale multi-label and multi-class image classification.
https://storage.googleapis.com/openimages/web/index.html, 2017.

[91] Alex Krizhevsky. Learning multiple layers of features from tiny images. https://www.
cs.toronto.edu/~kriz/learning-features-2009-TR.pdf, 2009.

[92] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
(NIPS), 2012. https://papers.nips.cc/paper/4824-imagenet-classificat
ion-with-deep-convolutional-neural-networks.

[93] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[94] Yann LeCun, Corinna Cortes, and CJC Burges. The mnist dataset of handwritten digits,
1998.

[95] Dongwon Lee, David U Gorkin, Maggie Baker, Benjamin J Strober, Alessandro L Asoni,
Andrew S McCallion, and Michael A Beer. A method to predict the impact of regulatory
variants from DNA sequence. Nature Genetics, 47(8):955–961, 2015.

[96] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. In International
Conference on Learning Representations, 2018.

[97] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. In Advances in Neural Information Processing Systems,
2019.

[98] Christina S Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel:
A string kernel for SVM protein classification. In Pacific Symposium on Biocomputing,
volume 7, pages 566–575, 2002.

[99] Fei-Fei Li and Jia Deng. ImageNet: Where have we been? where are we go-
ing? http://image-net.org/challenges/talks_2017/imagenet_ilsvrc201
7_v1.0.pdf, 2017.

[100] Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S. Du, Wei Hu, Ruslan Salakhutdinov, and
Sanjeev Arora. Enhanced convolutional neural tangent kernels, 2019.

https://storage.googleapis.com/openimages/web/index.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf
http://image-net.org/challenges/talks_2017/imagenet_ilsvrc2017_v1.0.pdf

BIBLIOGRAPHY 184

[101] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. MS COCO detection evaluation. http://cocoda
taset.org/#detection-eval. Accessed: 2019-05-16.

[102] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: Common objects in context. In European Conference on Computer Vision (ECCV),
2014. https://arxiv.org/abs/1405.0312.

[103] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search.
In European Conference on Computer Vision (ECCV), 2018. https://arxiv.org/ab
s/1712.00559.

[104] Shuying Liu and Weihong Deng. Very deep convolutional neural network based image
classification using small training sample size. In Asian Conference on Pattern Recognition
(ACPR), 2015. https://ieeexplore.ieee.org/document/7486599/.

[105] Siyuan Ma and Mikhail Belkin. Kernel machines that adapt to gpus for effective large
batch training, 2018.

[106] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. ICLR, 2018.

[107] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri,
Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 181–196, 2018.

[108] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel
networks. In Advances in Neural Information Processing Systems, pages 2627–2635, 2014.

[109] Jitendra Malik. Technical perspective: What led computer vision to deep learning?
Communications of the ACM, 2017. http://doi.acm.org/10.1145/3065384.

[110] Francisco Massa and Ross Girshick. maskrcnn-benchmark: Fast, modular reference imple-
mentation of Instance Segmentation and Object Detection algorithms in PyTorch. https:
//github.com/facebookresearch/maskrcnn-benchmark, 2018. Accessed: 2019-
05-20.

[111] George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38
(11):39–41, 1995.

http://cocodataset.org/#detection-eval
http://cocodataset.org/#detection-eval
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1712.00559
https://arxiv.org/abs/1712.00559
https://ieeexplore.ieee.org/document/7486599/
http://doi.acm.org/10.1145/3065384
https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark

BIBLIOGRAPHY 185

[112] George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38
(11):39–41, 1995.

[113] Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron, Daniel A.
Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional
networks with many channels are gaussian processes. In International Conference on
Learning Representations, 2019.

[114] Yaniv Ovadia, Jasper Snoek, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin,
D. Sculley, Joshua Dillon, Jie Ren, and Zachary Nado. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift. In Advances in Neural
Information Processing Systems, pages 13969–13980, 2019.

[115] David Page. myrtle.ai, 2018. URL https://myrtle.ai/how-to-train-your-re
snet-4-architecture/.

[116] Harold Pashler. Familiarity and visual change detection. Perception & psychophysics, 44
(4):369–378, 1988.

[117] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the Fisher ker-
nel for large-scale image classification. In European Conference on Computer Vision
(ECCV), 2010. URL https://www.robots.ox.ac.uk/~vgg/rg/papers/peronni
n_etal_ECCV10.pdf.

[118] Jean Ponce, Tamara L. Berg, Mark Everingham, David A. Forsyth, Martial Hebert, Sveltana
Lazebnik, Marcin Marszalek, Cordelia Schmid, Bryan C. Russell, Antionio Torralba, Chris.
K. I. Williams, Jianguo Zhang, and Andrew Zisserman. Dataset issues in object recognition.
2006. https://link.springer.com/chapter/10.1007/11957959_2.

[119] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.
Dataset Shift in Machine Learning. The MIT Press, 2009.

[120] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems, pages 1177–1184, 2007.

[121] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems, pages 1177–1184, 2008.

[122] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning. In Advances in Neural Information Processing
Systems, pages 1313–1320, 2009.

https://myrtle.ai/how-to-train-your-resnet-4-architecture/
https://myrtle.ai/how-to-train-your-resnet-4-architecture/
https://www.robots.ox.ac.uk/~vgg/rg/papers/peronnin_etal_ECCV10.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/peronnin_etal_ECCV10.pdf
https://link.springer.com/chapter/10.1007/11957959_2

BIBLIOGRAPHY 186

[123] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2016. URL https://www.aclweb.org/ant
hology/D16-1264.

[124] A. Ratner, H. Ehrenberg, Z. Hussain, J. Dunnmon, and Christopher Re. Learning to
compose domain-specific transformations for data augmentation. In Advances in Neural
Information Processing Systems, 2017.

[125] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vincent Vanhoucke.
Youtube-boundingboxes: A large high-precision human-annotated data set for object
detection in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5296–5305, 2017.

[126] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for
image classifier architecture search. http://arxiv.org/abs/1802.01548, 2018.

[127] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? 2019. URL http://arxiv.org/abs/1902.10811.

[128] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? arXiv preprint arXiv:1902.10811, 2019.

[129] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[130] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211–252,
2015. doi: 10.1007/s11263-015-0816-y.

[131] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Fei-Fei
Li. ImageNet large scale visual recognition challenge. International Journal of Computer
Vision, 2015. https://arxiv.org/abs/1409.0575.

[132] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Fei-Fei
Li. ImageNet large scale visual recognition challenge. International Journal of Computer
Vision, 2015. https://arxiv.org/abs/1409.0575.

https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1902.10811
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1409.0575

BIBLIOGRAPHY 187

[133] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[134] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman, Ion Stoica,
Benjamin Recht, and Jonathan Ragan-Kelley. numpywren: Serverless linear algebra. CoRR,
abs/1810.09679, 2018. URL http://arxiv.org/abs/1810.09679.

[135] Vaishaal Shankar, Achal Dave, Rebecca Roelofs, Deva Ramanan, Benjamin Recht, and
Ludwig Schmidt. A systematic framework for natural perturbations from videos. CoRR,
abs/1906.02168, 2019. URL http://arxiv.org/abs/1906.02168.

[136] John Shawe-Taylor, Nello Cristianini, et al. Kernel Methods for Pattern Analysis. Cambridge
university press, 2004.

[137] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. https://arxiv.org/abs/1409.1556, 2014.

[138] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robust-
ness with principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

[139] Pierre Stock and Moustapha Cissé. Convnets and imagenet beyond accuracy: Explanations,
bias detection, adversarial examples and model criticism. CoRR, abs/1711.11443, 2017.
URL http://arxiv.org/abs/1711.11443.

[140] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International
Conference on Learning Representations (ICLR), 2013. http://arxiv.org/abs/1312
.6199.

[141] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with con-
volutions. In Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
https://arxiv.org/abs/1409.4842v1.

[142] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the Inception architecture for computer vision. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. https://arxiv.org/abs/1512.005
67.

[143] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-v4,
Inception-Resnet and the impact of residual connections on learning. In Conference On
Artificial Intelligence (AAAI), 2017. https://arxiv.org/abs/1602.07261.

http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1906.02168
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1711.11443
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1409.4842v1
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1602.07261

BIBLIOGRAPHY 188

[144] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2011. http://people.csail.mit
.edu/torralba/publications/datasets_cvpr11.pdf.

[145] Antonio Torralba, Rob Fergus, and William. T. Freeman. 80 Million Tiny Images: A Large
Data Set for Nonparametric Object and Scene Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2008. https://ieeexplore.ieee.org/docume
nt/4531741/.

[146] Antonio Torralba, Alexei A Efros, et al. Unbiased look at dataset bias. In CVPR, volume 1,
page 7. Citeseer, 2011.

[147] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test
resolution discrepancy, 2019.

[148] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos
Ipeirotis, Pietro Perona, and Serge Belongie. Building a bird recognition app
and large scale dataset with citizen scientists: The fine print in fine-grained
dataset collection. In Computer Vision and Pattern Recognition (CVPR), 2015.
URL https://vision.cornell.edu/se3/wp-content/uploads/2015/05/Ho
rn_Building_a_Bird_2015_CVPR_paper.pdf.

[149] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,
William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstractions. arXiv preprint
arXiv:1802.04730, 2018.

[150] Ke Alexander Wang, Geoff Pleiss, Jake Gardner, Stephen Tyree, Kilian Weinberger, and
Andrew Gordon Wilson. Exact gaussian processes on a million data points. In Advances in
Neural Information Processing Systems, 2019.

[151] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 2004. http://www.cns.nyu.edu/pub/lcv/wang03-preprint.pdf.

[152] Wikipedia contributors. Tiger beetle — Wikipedia, the free encyclopedia, 2019.
URL https://en.wikipedia.org/w/index.php?title=Tiger_beetle&oldid
=932794435. [Online; accessed 1-February-2020].

[153] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially
transformed adversarial examples. In International Conference on Learning Representations
(ICLR), 2018. https://arxiv.org/abs/1801.02612.

http://people.csail.mit.edu/torralba/publications/datasets_cvpr11.pdf
http://people.csail.mit.edu/torralba/publications/datasets_cvpr11.pdf
https://ieeexplore.ieee.org/document/4531741/
https://ieeexplore.ieee.org/document/4531741/
https://vision.cornell.edu/se3/wp-content/uploads/2015/05/Horn_Building_a_Bird_2015_CVPR_paper.pdf
https://vision.cornell.edu/se3/wp-content/uploads/2015/05/Horn_Building_a_Bird_2015_CVPR_paper.pdf
http://www.cns.nyu.edu/pub/lcv/wang03-preprint.pdf
https://en.wikipedia.org/w/index.php?title=Tiger_beetle&oldid=932794435
https://en.wikipedia.org/w/index.php?title=Tiger_beetle&oldid=932794435
https://arxiv.org/abs/1801.02612

BIBLIOGRAPHY 189

[154] Fanyi Xiao and Yong Jae Lee. Video object detection with an aligned spatial-temporal
memory. In Proceedings of the European Conference on Computer Vision (ECCV), pages
485–501, 2018.

[155] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature
denoising for improving adversarial robustness. arXiv preprint arXiv:1812.03411, 2018.

[156] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan Yuille, and Quoc V. Le.
Adversarial examples improve image recognition, 2019.

[157] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. https://arxiv.org/abs/1611.05431.

[158] Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise. Shakedrop regularization. https:
//arxiv.org/abs/1802.02375, 2018.

[159] Benjamin Z. Yao, Xiong Yang, and Song-Chun Zhu. Introduction to a large-scale general
purpose ground truth database: methodology, annotation tool and benchmarks. In Energy
Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2007.
https://link.springer.com/chapter/10.1007/978-3-540-74198-5_14.

[160] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine
Vision Conference (BMVC), 2016. https://arxiv.org/abs/1605.07146.

[161] Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and Dahua Lin. Polynet: A pursuit of
structural diversity in very deep networks. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. https://arxiv.org/abs/1611.05725.

[162] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness
of deep neural networks via stability training. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun 2016. doi: 10.1109/cvpr.2016.485. URL
http://dx.doi.org/10.1109/cvpr.2016.485.

[163] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep
learning-based sequence model. Nature methods, 12(10):931–934, 2015.

[164] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided feature
aggregation for video object detection. In Proceedings of the IEEE International Conference
on Computer Vision, pages 408–417, 2017.

[165] Zhuotun Zhu, Lingxi Xie, and Alan L. Yuille. Object recognition with and without objects.
CoRR, abs/1611.06596, 2016. URL http://arxiv.org/abs/1611.06596.

https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1802.02375
https://arxiv.org/abs/1802.02375
https://link.springer.com/chapter/10.1007/978-3-540-74198-5_14
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1611.05725
http://dx.doi.org/10.1109/cvpr.2016.485
http://arxiv.org/abs/1611.06596

BIBLIOGRAPHY 190

[166] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. https://arxiv.org/abs/1707.07012.

https://arxiv.org/abs/1707.07012

	Contents
	Introduction
	Distribution Shift
	Potential Causes of Accuracy Drops
	Distinguishing Between the Two Mechanisms

	Kernel Methods
	Nonparametric Prediction With Kernels

	Distribution Shift
	Do ImageNet Classifiers Generalize to ImageNet
	Introduction
	Summary of Our Experiments
	Choice of Datasets
	Dataset Creation Methodology
	Results on the New Test Sets
	Experiments to Test Follow-Up Hypotheses

	Understanding the Impact of Data Cleaning on ImageNet
	Discussion
	Adaptivity Gap
	Distribution Gap
	A Model for the Linear Fit

	Related Work
	Conclusion & Future Work
	Appendix: Details of the CIFAR-10 Experiments
	Dataset Creation Methodology
	Follow-up Hypotheses
	Additional Figures, Tables, and Lists

	Appendix: Details of the ImageNet Experiments
	Dataset Creation Methodology
	Model Performance Results
	Follow-up Hypotheses
	Additional Figures, Tables, and Lists

	Human Accuracy on ImageNetV2
	Introduction
	Experiment setup
	Multi-label annotations
	Types of multi-label annotations
	Collecting multi-label annotations

	Human accuracy measurement process
	Human labeler training
	Labeling guide
	Final evaluation and annotation review.

	Main Results
	Accuracies on three disjoint subsets
	Top-1 Accuracies
	Examples of training effective Images
	Time Spent Per Image
	Problematic Image removal
	Ensembling Humans

	Related Work
	Conclusion & Future Work

	Do ImageNet Classifiers Generalize Across Time?
	Introduction
	Constructing a test set for robustness
	Source Dataset Overview
	ImageNet-Vid
	Youtube-BB
	Constructing ImageNet-Vid-Robust and YTBB-Robust
	The pm-k evaluation metric

	Detection
	Experimental results
	Classification
	Detection
	Impact of Dataset Review
	Per class analysis
	Per-frame conditional robustness metric introduced in gu2019using

	 distance vs PM-k Accuracy
	PM-k Accuracy with varying k
	ImageNet-Vid-Robust
	Model independent perturbed frame selection
	Impact of video compression
	Impact of dataset review
	FPS analysis
	ILSVRC training with ImageNet-Vid-Robust classes
	Detection pm-k
	Experimental Details & Hyperparameters

	Full Original vs Perturbed Accuracies
	ImageNet-Vid-Robust
	YTBB-Robust

	Related work
	Conclusion

	Kernels
	Neural Kernels Without Tangents
	Introduction
	Related Work
	Compositional kernels for bags of features
	Kernels on bags of features
	Kernel operations on images
	Relating compositional kernels to neural network architectures
	Implementation

	Experiments
	Architectures
	Experimental setup.
	MNIST
	CIFAR-10
	CIFAR-100
	Subsampled CIFAR-10
	UCI datasets

	Limitations and Future Work
	Appendix: LOO Tilting and ZCA Augmentation
	ZCA Augmentation
	Leave-One-Out Tilting

	Appendix: Supplementary proof
	Appendix: Neural Network Parameters
	Appendix: Neural Network Architectures
	Appendix: Subsampled CIFAR-10 experiments details

	Transcription Factor Binding Site Prediction
	Problem Setup
	Method
	Results
	Datasets
	Experimental Setup
	Evaluation

	Conclusion & Future Work

	Bibliography

