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Abstract

Safe Real-World Autonomy in Uncertain and Unstructured Environments

by

Sylvia Herbert

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Tomlin, Chair

We are captivated by the promise of autonomous systems in our everyday life. However,
ensuring that these systems act safely is an immense challenge: introducing complex systems
into real-world uncertain environments while guaranteeing safety at all times is impossible
in applications like self-driving vehicles, collaborative factory robots, and assistive robots.
These systems will inevitably need to make real-time decisions with limited computational
resources, and incomplete knowledge of the environment and other agents. This dissertation
is an e↵ort towards achieving trustworthy real-world autonomy by enabling autonomous
systems to:

• make theoretical safety guarantees e�ciently based on known information, and

• bridge the safety gap between this theory and the real world by reasoning about un-
certainty in the environment and other agents.

Towards this goal this dissertation covers various methods for scalable safety and real-time
decision-making that draw from control theory, cognitive science, and learning, and are
backed by both rigorous theory and physical testing on robotic platforms. We begin with an
overview of reachability analysis and its applications for optimal control with safety guaran-
tees. We then tackle the curse of dimensionality associated with reachability computation
by decomposing systems or updating previous solutions in a warm-starting fashion. Next
we explore planning in a simplified, low-dimensional space online with precomputed safety
guarantees and tracking controls o✏ine. This is extended to meta-planning, in which the
online algorithm switches between faster/conservative modes and slower/accurate modes.
Then we apply all of these tools towards navigating in uncertain environments among hard-
to-predict agents such as human pedestrians. We use Bayesian machine learning methods to
reason about human intention and navigate in a probabilistically safe manner. Finally, the
dissertation ends with information about code bases and reachability tutorial examples.
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Chapter 1

Introduction

My research has been motivated by a fairly straightforward idea: we want autonomous sys-
tems to function safely in real-world environments. Historically, this meant that we wanted
to guarantee the safety of every possible trajectory of a system through its environment.
But the systems that we are interested in have become more and more complex (e.g. fac-
tory robots, cars, assistive robots). Moreover, these systems are operating in less structured
environments, often in the presence of other agents (e.g. humans). As a result, many com-
panies rely on heuristic measures of safety, sometimes with disastrous and even fatal results.
Finding a way to advance rigorous safety analysis to be able to deal with these challenges is
crucial for safe real-world autonomy.

1.1 Safety Analysis for Autonomous Systems

However, verification of systems is challenging for many reasons. First, all possible system
behaviors must be accounted for. This makes most simulation-based approaches insu�cient,
and thus formal verification methods are needed. Second, many practical systems are a↵ected
by disturbances in the environment, which can be unpredictable, and may even contain
adversarial agents. In addition, these systems often have high dimensional state spaces and
evolve in continuous time with complex, nonlinear dynamics.

Satisfaction of properties such as safety, liveness, and fairness in computer software and
in discrete-time dynamical systems can be verified by checking whether runs of a transition
system, or words of a finite automaton satisfy certain desired properties [12, 24]. These
properties may be specified by a variety of logical formalisms such as linear temporal logic.
For specifications of properties of interest in autonomous robots, richer formalisms have
been proposed. For example, propositional temporal logic over the reals [146, 64] allows
specification of properties such as time in terms of real numbers, and chance-constrained
temporal logic [93] allows specification of requirements in the presence of uncertainty. Besides
autonomous cars and robots, verification approaches based on discrete models have also
been successfully used in the context of intelligent transportation systems [47] and human-
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automation interaction [28].
For continuous and hybrid systems, safety properties can be verified by checking whether

the forward reachable set or an over-approximation of it intersects with a set of undesirable
states, akin to checking runs of transition systems. Numerous tools such as SpaceEx [74],
Flow* [42], CORA [6], C2E2 [60, 65], and dReach [104] have been developed for this purpose;
the authors in [61] present a tutorial on combining di↵erent tools for hybrid systems verifi-
cation. In addition, methods that utilize semidefinite programming to search for Lyapunov
functions can be used to verify safety [139, 164]. This is done, for example, by constructing
barrier certificates [20] or funnels [121, 122] with Lyapunov properties.

Outside of the realm of checking whether the set of possible future states of a system
includes undesirable states, safety can also be verified by starting from known unsafe con-
ditions and computing backward reachable sets, which the system should avoid. In general,
the challenges facing verification methods include computational tractability, generality of
system dynamics, existence of control and disturbance variables, and representation of sets
[19, 126, 27, 73].

This dissertation largely focuses on a technique called Hamilton-Jacobi (HJ) reachability
analysis. Hamilton-Jacobi (HJ) reachability analysis is a verification method for guaranteeing
performance and safety properties of systems, overcoming some of the above challenges. HJ
reachability can be distinguished from other methods because it is applicable to general
nonlinear systems, easily handles control and disturbance variables, and is able to represent
sets of arbitrary shapes. However, this flexibility comes with the cost of computational
complexity.

The focus of this dissertation is to tackle challenges to safe real-world autonomy, including
computational complexity, uncertainty and changing information during online operation,
and multi-agent environments such as those involving humans. We will introduce techniques
that work towards overcoming these challenges in order to provide safety guarantees and
assurances for autonomous systems operating in a world of disturbances, uncertainties, and
other agents.

1.2 Challenges in Safety for Real-World Autonomy1

Computational E�ciency of Safety Verification

In reachability analysis, one computes the reach-avoid set, defined as the set of states from
which the system can be driven to a target set while satisfying time-varying state constraints
at all times. A major practical appeal of this approach stems from the availability of mod-
ern numerical tools, which can compute various definitions of reachable sets [158, 138, 129,
42]. For example, these numerical tools have been successfully used to solve a variety of
di↵erential games, path planning problems, and optimal control problems. Concrete prac-

1This is by no means a complete list of challenges, but includes the major challenges addressed in this
dissertation.
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tical applications include aircraft auto-landing [21], automated aerial refueling [57], model
predictive control (MPC) of quadrotors [29, 10], multiplayer reach-avoid games [91], large-
scale multiple-vehicle path planning [40, 41], and real-time safe motion planning [88, 107].
However, HJ reachability becomes computationally intractable as the state space dimension
increases.

Traditionally, reachable set computations involve solving an HJ partial di↵erential equa-
tion (PDE) on a grid representing a discretization of the state space, resulting in an exponen-
tial scaling of computational complexity with respect to system dimensionality; this is often
referred to as the “curse of dimensionality.” This issue can be mitigated somewhat for linear
systems by using convex optimization applied to the Hopf-Lax formula to allow for real-time
computation of the HJ PDE solution at any desired state and time instant [50, 44]. Other
backward reachability methods make other trade-o↵s. For example, [74, 112, 120] present
scalable methods for a�ne systems that rely on polytopic or ellipsoidal representation of
sets, while the methods presented in [121, 58, 86] are well-suited to systems with polynomial
dynamics. However, general nonlinear systems remain a challenge.

Adapting to New Information and Changing Assumptions Online

A result of the computational complexity of these verification techniques is that systems
struggle to update safety analyses in the face of new information. Instead, assumptions
about the system dynamics, disturbances, and the environment must be made ahead of time
in order to precompute the verification. In the real world, some assumptions will inevitably
be wrong, invalidating the safety precomputation. Understanding how to e�ciently adapt
these analyses online will be important to real-world safety.

Multi-Agent and Human-Centered Systems

Operating in an environment with multiple agents is particularly relevant and challenging
for real-world applications. Other agents may be hard to predict and plan around. Even
under the assumption that the agents are actively working together, reasoning directly in the
joint state space of multiple agents quickly becomes computationally intractable for realistic
systems. Clever inference, prediction, and decomposed planning techniques will be required
to make autonomous systems operate intelligently among humans and other systems.

1.3 Thesis Overview and Summary of Contributions

First, in Chapter 2 we will review the background information that serves as the foundation
of the research in this thesis. This material draws largely from the HJ reachability tutorial
[17].

Part I: Theory for Computational Gains in Reachability Analysis. The first part
of the thesis provides theoretical advances for more scalable computing of HJ reachability
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analyses for nonlinear systems with exact or conservative guarantees that preserve safety.
Chapter 3 begins with the decoupling as disturbance technique that forcibly splits high-
dimensional systems (around 10 dimensions, compared the standard 3 or 4) into smaller (and
more tractable) subsystems while maintaining conservative safety guarantees [35]. Chapter 4
follows this with the self-contained subsystems work that allows certain formulations of
coupled dynamics to decompose in a manner that allows for exact computation in reachability
analysis [38, 34]. Finally, Chapter 5 introduces recent work on warm-start reachability
analysis, which allows an autonomous system to update its safety analysis based on new
information and assumptions with exact or conservative guarantees [87]. By updating the
analysis from a previous solution the computation time can be drastically decreased for
high-dimensional systems. All of these techniques have enabled us to (a) apply reachability
analysis to more realistic higher-dimensional dynamic models and (b) make use of o✏ine
computation of safety analyses (even if these analyses become quickly outdated by new
information) by updating those o✏ine computations using warm-start reachability.

Part II: Fast and Safe Tracking. While scalability work in Part I for theoretical
guarantees is an important step towards safe real-world autonomy, these analyses depend
on pre-defined assumptions about the system model and environment that may be wrong
in practice. Therefore, we must equip autonomous systems with the ability to build upon
theoretical safety guarantees by reasoning about uncertainty in the real world. This is
where humans excel compared to current systems. We can reason e�ciently in unstructured
environments with limited computational resources. Researchers believe that humans plan
using simplified physical models, with an internal understanding of how these simple plans
map back to control policies and safety constraints on our true high-dimensional model.
Chapter 6 introduces the framework FaSTrack: Fast and Safe Tracking [88, 43] that mimics
human cognition by allowing for real-time online planning using a simplified planning model,
and “robustifying” this model with a precomputed feedback controller for the true system
to track the simple model. This is extended in Chapter 7 with a hybrid model based on the
idea that humans adaptively switch between a fast (and error-prone) mode and a slow (but
accurate) mode. This meta-planning hybrid model adaptively switches to the best planning
mode for the local sensed environment [76]. Together, this work has been used on multiple
platforms within and beyond UC Berkeley. Its success can be attributed to the simplicity
of the online algorithm, modularity with respect to “robustifying” di↵erent motion planning
techniques, and ability to separate the safety analysis from the online planning.

Part III: Navigation in Multi-Agent Environments. The next stage in producing
safe autonomy for the real world is tackling the challenge of dynamic and uncertain environ-
ments. Trying to predict the movement of other agents like humans is both computationally
challenging and inevitably imperfect. The psychology of human prediction suggests that we
use simple noisily-rational models of other humans to make fast predictions of their future
movement. We have high confidence in these predictions when humans match our simplified
models (for example, when walking in straight lines along the sidewalk), and lose confidence
when a human is acting unexpectedly. Chapter 8 introduces a confidence-aware prediction
framework that allows us to employ simple models of human motion while reasoning about
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the mismatch between these models and the observed human behavior [72, 75]. The frame-
work employs a probabilistic Boltzmann model of human behavior, where the distribution’s
variance is automatically adjusted based on measurements. When the observed human be-
havior is well-explained by the model, our framework provides a tight confident distribution
over future human motion. When our model does not explain human behavior well, the
probability distribution over the next human states increases in uncertainty. Combined with
FaSTrack, we can provide probabilistic safety assurances for real-time planning and con-
trol in environments with human pedestrians. Chapter 9 extends this work to multi-agent
scenarios with multiple humans and multiple cooperative robots [13].

Part IV: Codebases and Conclusions. The dissertation concludes with an overview
of the codebases used throughout the dissertation, followed by some concluding thought and
future directions.

Additional Contributions

There are two additional papers from my PhD research that are not covered in this disser-
tation. Both focus on computing HJ reachability analysis without grid-based techniques.
The first [150] trains a neural-network based classifier on the optimal policy for a system
using approximate dynamic programming, resulting in conservative guarantees. The second
[161] uses sum-of-squares optimization to compute higher-dimensional reachability analyses.
Both papers use FaSTrack as a motivating application.
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Chapter 2

Background

This chapter is based in part on the paper “Hamilton-Jacobi Reachability: A Brief Overview
and Recent Advances” [17], written in collaboration with Somil Bansal, Mo Chen, and Claire
J. Tomlin.

2.1 Dynamic Systems

The work in this dissertation is focused on understanding and controlling systems that op-
erate in time. The concept of system here is quite general, and can be applied to physical
systems (e.g. robotics, vehicles, humans) or non-physical systems (e.g. financial markets, de-
cision processes). As a simple motivating running example, consider the handcar in Fig. 2.1.
We are interested in analyzing how a system evolves over time, and what inputs can be
applied to steer the system towards desired outcomes and away from unsafe outcomes. Ap-
propriately, we call these inputs control inputs. In the running example, a person can directly
control the acceleration of the handcar.

We may also have uncertainty. This could be due to a variety of reasons, such as a
mismatch between our mathematical model and the true system, actions of other players
that may a↵ect the system, or external forces that act upon the system. To account for this
uncertainty, we introduce a disturbance input to the model. This is a term that we have no
control over, and can potentially change instantaneously and in unpredicted ways. In the
motivating example, we will assume that there is wind in the environment that can a↵ect the
velocity of the handcar. We will assume that this wind velocity can change instantaneously,
but it will be bounded by a maximum possible wind speed.

To analyze the evolution of the system over time, one must keep track of the state of
the system. This is a vector that comprises all parameters that are necessary to keep track
of the evolution of the model. In the running example, we will consider the state of the
system as consisting of the horizontal position and velocity of the handcar. Note that this
is a fairly simplistic model–we are not considering the lever used to operate the handcar,
or the dynamics of the human controlling the handcar. A more complicated model would
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require a richer state space.
Note also that we define the handcar system independently of the environment. Obstacles

and goals in the environment will be handled separately from our model of the handcar.
This is compared to the field of artificial intelligence, where the system and environment
are grouped together (for example, consider the game pong, where the AI field considers
the paddle and the surrounding environment as a single system termed “the environment”).
Separating the system from the environment allows us to easily generalize our analysis of
the system to di↵erent environments.

Mathematically, let x 2 Rn be the system state, which evolves according to the ordinary
di↵erential equation (ODE)

ẋ(⌧) = f(x(⌧), u(⌧), d(⌧)),

⌧ 2 [t, 0], u(⌧) 2 U , d(⌧) 2 D,
(2.1)

where u(⌧) and d(⌧) denote the control and the disturbance respectively. We assume that
these inputs are drawn from compact sets (U ⇢ Rnu and D ⇢ Rnd). This assumption
typically holds, as the magnitude of control that we can assert on the system is typically
bounded. Assuming that the disturbance is bounded is often true in practice, but can become
an issue if these bounds are too big (and therefore allow the disturbance to have a huge e↵ect
on the system) or too small (and are therefore invalid compared to the true disturbance).

The system dynamics, or flow field, f : Rn
⇥ U ⇥ D ! Rn is assumed to be uniformly

continuous, and Lipschitz continuous in x uniformly1 in u(·) and d(·). Therefore, given
u(·) 2 U and d(·) 2 D, there exists a unique trajectory solving (2.1) [46]. We will denote
solutions, or trajectories of (2.1) starting from state x at time t under control u(·), d(·) as

⇣(⌧ ; x, t, u(·), d(·)) : [t, T ]! Rn. (2.2)

This notation can be read as the state achieved at time ⌧ parameterized by initial state
x, initial time t, and input functions u(·) and d(·) applied over [t, ⌧ ]. Because we tend to
solve reachability problems backwards in time, we use the notation that forward trajectories
end at final time ⌧ = T , and start at an initial negative time t.

The output of the trajectory will always be a state. The point of trajectory notation
is to aid in keeping track of the progression of states along a trajectory over time. This is
useful in many of the proofs. The trajectory satisfies (2.1) with an initial condition almost
everywhere:

d

d⌧
⇣(⌧ ; x, t, u(·), d(·)) = f

⇣
⇣
⇣
⌧ ; x, t, u(·), d(·)

⌘
, u(⌧), d(⌧)

⌘

⇣(t; x, t, u(·), d(·)) = x
(2.3)

Here we have replaced the state x in (2.1) with the trajectory notation.

1For the remainder of dissertation, I will omit the notation (⌧) from variables such as x when referring
to function values.



CHAPTER 2. BACKGROUND 8

Figure 2.1: Motivating system example: a handcar. Dynamics assumed to be a double
integrator, as seen in the running example

A Brief Note on Time, State, and Trajectory Notation

Unless otherwise noted, the time horizon we consider is ⌧ 2 [t, T ]. Often, we think of the
final time T = 0, with a negative initial time t  0. This may seem confusing now, but makes
for cleaner notation when updating trajectories backwards in time, as we will do throughout
this dissertation.

State, control, and disturbance are all functions of time. Sometimes it is necessary to
reason explicitly about the time associated with a state (or control, or disturbance), and
so we explicitly write x(t) or xt (following the same pattern for control and disturbance).
This can make for very long equations, so whenever the time is obvious, we omit the time
argument.

When referring to an input function over time, we typically use u(·) and d(·). When
we reason about a state trajectory over time, we should use the trajectory notation
⇣(⌧ ; x, t, u(·), d(·)), referring to a trajectory that starts at state x, time t, and applies control
u(·) and disturbance d(·), ending at time ⌧ . This trajectory will output the state at the final
time, i.e. ⇣(⌧ ; x, t, u(·), d(·)) = x(⌧). For compactness we typically refer to these trajectories
as ⇣u,dx,t (⌧). However, for brevity’s sake, when the trajectory is obvious we often simply use
x(·) to refer to a general trajectory, and x(⌧) to refer to the trajectory at time ⌧ .

Example 2.1. For illustration we use the handcar as a running example. We assume
it operates as a double integrator. Recall that our analysis can handle general nonlinear
systems, but sometimes a simple linear system is helpful for illustration. Its system
dynamics are:

ẋ =


ṗ
v̇

�
=


v + d
u

�
, (2.4)

with states position p and velocity v, where u 2 [�1, 1] is acceleration. By default the
disturbance is d = 0.
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2.2 Optimal Control

The notion of optimal control is fairly intuitive: if I have some control over a system, what
inputs should I apply that will cause the system to reach some goal (or in general achieve
some objective) in an optimal way? We would ideally like our HVAC units, transit systems,
and robots to all function optimally. This raises the question of what optimality means.

The Optimal Control Problem

In the literature of optimal control, optimality means minimizing some cost function:

J(x, t, u(·)) =

Z
T

t

c(x(⌧), u(⌧))d⌧ + l(x(T )) (2.5)

where c(x(t), u(t)) is a running cost that the system occurs at every instant (for example,
amount of fuel being used), and l(x(T )) is a terminal cost (for example, distance to goal).
Determining the “correct” or desired cost function is non-trivial and in general is defined
by the user. In this thesis we will largely consider costs that reward entering goal sets and
avoiding unsafe sets.

In an optimal control problem, the goal is to use the control signal optimally in order to
minimize the total cost. This leads to the value function, written as:

V (x(t), t) = inf
u(·)

J(x, t, u(·)) (2.6)

subject to ẋ(⌧) = f(x(⌧), u(⌧)), 8⌧ 2 [t, T ] (2.7)

u(⌧) 2 U (2.8)

Thus, the “value” of a particular initial state and time depends on the cost of the system
from that state and time given optimal control input. The optimization is constrained by
the fact that the state evolution of the system must obey physics (the system dynamics),
and the control signal must stay within its bounds.

Example 2.2. Example of Optimal Control Problem for 2D Cart
Recall the 2D cart from Example 2.1, and consider the problem of minimizing distance
to the origin in position space after a time interval [t, T ]. This is a terminal cost and
can be written as l(x) = |p|. The associated value function at the initial time will be:
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V (x(t), t) = inf
u(·)

|p| (2.9)

subject to


ṗ
v̇

�
=


v + d
u

�
, 8⌧ 2 [t, T ] (2.10)

u(⌧) 2 U (2.11)

Optimal control problems have been studied extensively over the past few decades. There
are two major approaches to solving such problems: calculus of variations, and dynamic
programming. Calculus of variations brings the constraints of an optimal control problem
into the objective and considers how the value of the system changes under local deformations
of the trajectory. Unfortunately, this technique does not provide a global solution to the
optimal control problem.

Dynamic programming is currently the most commonly used technique for solving optimal
control and reinforcement learning problems. The core idea of dynamic programming is to
reason recursively about the optimal control of a system backwards in time. This recursive
update equation is called the Bellman equation (or Bellman backup) in discrete time, and the
Hamilton-Jacobi-Bellman (HJB) partial di↵erential equation (PDE) in continuous time. In
either case, this equation provides a necessary and su�cient condition that the value function
must satisfy, resulting in a global solution when applied recursively. This dissertation will
focus on using the HJB PDE and its variants.

Dynamic Programming and the Hamilton-Jacobi-Bellman PDE

The core idea of dynamic programming is simple but may not be obvious at first glance.
Bellman’s principle of optimality [23] states: “An optimal policy has the property that
whatever the initial state and initial decisions are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decisions.”

This means that if we are given the value of the system at the final time, we can recursively
build up the value at each previous time step. This notion can be nonintuitive at first glance;
[25] is a fantastic introduction to the concept.
Let’s begin by plugging the (2.5) into (2.6):

V (x(t), t) = inf
u(·)

Z
T

t

c(x(⌧), u(⌧))d⌧ + l(x(T )). (2.12)

At the final time the value is equal to the terminal cost, V (x(T ), T ) = l(x(T )). Given that
we know the value at the final time, it would be nice to have a recursive equation to build
up to the value at some initial time t. Therefore, we would like to be able to write the value
at any given time V (x(t), t) as a function of some future value V (x(t + �), t + �). We will
work towards this by first breaking the value function down into time intervals [t, t+ �] and
[t+ �, T ]:
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V (x(t), t) = inf
u(·)

⇢Z
t+�

t

c(x(⌧), u(⌧))d⌧ +

Z
T

t+�

c(x(⌧), u(⌧))d⌧ + l(x(T ))

�
, (2.13)

adding an additional infimum inside the first in order to get the second half of the equation
in the form of V (x(t+ �), t+ �),

V (x(t), t) = inf
u(·)2UT

t

(Z
t+�

t

c(x(⌧), u(⌧))d⌧ + inf
u(·)2UT

t+�

Z
T

t+�

c(x(⌧), u(⌧))d⌧ + l(x(T ))

�)
.

(2.14)
allows us to replace the math in blue with in V (x(t+ �), t+ �),

V (x(t), t) = inf
u(·)

Z
t+�

t

c(x(⌧), u(⌧))d⌧ + V (x(t+ �), t+ �)

�
. (2.15)

That is, the value V (x(t), t) is the value from V (x(t+ �), t+ �) plus the cost we incur when
optimizing over the horizon [t, t+ �]. This is Bellman’s principle of optimality (the dynamic
programming principle). If � is small, we can write this as:

V (x(t), t) = inf
u2U

[c(x(t), u(t))� + V (x(t+ �), t+ �)] . (2.16)

We will use Taylor’s expansion to expand V (x(t+ �), t+ �):

V (x(t+ �), t+ �) ⇡ V (x(t), t) +DtV (x(t), t)� +DxV (x(t), t) ·
dx

dt
� (2.17)

We can plug this into the previous equation to get:

V (x(t), t) = inf
u2U


c(x(t), u(t))� + V (x(t), t) +DtV (x(t), t)� +DxV (x(t), t) ·

dx

dt
�

�
, (2.18)

We can move the terms that do not depend on control outside of the optimization:

V (x(t), t) = V (x(t), t) +DtV (x(t), t)� + inf
u2U


c(x(t), u(t))� +DxV (x(t), t) ·

dx

dt
�

�
, (2.19)

Canceling redundant terms, dividing by � (noting that � > 0), and plugging in dx

dt
= f(x, u),

we have:

0 = DtV (x(t), t) + inf
u2U

[c(x(t), u(t)) +DxV (x(t), t) · f(x, u)] ,

V (x, T ) = l(x).
(2.20)

This is the di↵erential statement of the dynamic programming principle, otherwise called the
Hamilton-Jacobi-Bellman (HJB) equation. Using this, we can propagate the value function
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backwards from the terminal condition V (x(T ), T ) = l(x(T )). The resulting optimal control
at any particular state and time will be

u⇤(x, t) = arg inf
u2U

[c(x, u) +DxV (x, t) · f(x, u)] . (2.21)

An example of solving an optimal control problem using the HJB equation is in Section
10.1.

Variations to the Optimal Control Problem

There are many di↵erent variations of this optimal control problem:

• Lagrange problems (running cost, no terminal cost)

• Mayer problems (terminal cost, no running cost)

• Bolza problems (both running cost and terminal cost)

• Discrete-time problems (Instead of a PDE this formulation requires the discrete Bell-
man equation, a.k.a. “Bellman backup”)

• Robust optimal problems / di↵erential games (includes a disturbance and/or second
player. More on this in Section 2.3

• Changing control bounds over time, space

Viscosity Solutions

Note that in the derivation of the HJB equation we assumed that the value function is
continuous and di↵erentiable. This is a strong assumption that may not be true even in very
simple scenarios. Fortunately, this assumption was relaxed by mathematicians Crandall and
Lions in the 1980’s with the introduction of a viscosity solution.

A bounded, uniformly continuous value function V is a viscosity solution to the HJB if
it satisfies the HJB partial di↵erential equation at all points that are di↵erentiable. At non-
di↵erentiable points, V must satisfy a relaxed condition that involves bounding the value
function above and below with continuously di↵erentiable functions. For more details on
viscosity solutions, please refer to Jaime Fisac’s dissertation [66].

2.3 Optimal Control for Zero-Sum Di↵erential Games

When we add disturbance to our system we can treat it as equivalent to adding a second
player to our optimal control problem. In the original problem, the controller is the only
“player,” and their objective is to minimize the cost of the system. Now we’ve introduced
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a second player that controls disturbance, and assume that their objective is to do the
opposite–to maximize the cost of the system. This leads us to solving the robust control
problem, which asks how well the controller can do even if the disturbance to the system
is acting in a worst-case, adversarial fashion. The cost of our system now includes the
disturbance term:

J(x, t, u(·), d(·)) =

Z
T

t

c(x(⌧), u(⌧), d(⌧))d⌧ + l(x(T )) (2.22)

Player Strategies

Before defining our value function, it is important to address what information the players
know about each other’s decisions which directly a↵ects their strategies, and consequently,
the outcome of the game. For robust control problems, we generally assume that the Player
2 uses a strategy that is a map d : U(t) ! D(t) that restricts the input signal for Player 2
as a function of what Player 1 chooses. We assume that Player 2 uses only non-anticipative
strategies � [126], defined as follows:

d 2 �T

t
:= {N : U(t)! D(t) : u(⌧) = û(⌧) a. e. ⌧ 2 [t, T ]

) N [u](⌧) = N [û](⌧) a. e. ⌧ 2 [t, T ]}
(2.23)

That is, Player 2 cannot respond di↵erently to two Player 1 controls until they become
di↵erent. Therefore, Player 2 cannot anticipate the future control actions of Player 1 ahead
of time. Yet, in this setting, Player 2 has the advantage of factoring in Player 1’s choice
of input at every instant t and adapting its own accordingly (think of this as Player 2
going second in each instantaneous “round” of deciding an action). Thus, Player 2 has
an instantaneous informational advantage. We do this because we care about worst-case
scenarios, and therefore we want to make sure that we analyze the case where the disturbance
(or adversary) is given the slight advantage.

One particular class of problems in which the notion of non-anticipative strategies is
applicable is robust control problems, in which one wants to obtain the robust control (Player
1) with respect to the worst-case disturbance (Player 2), which can then be modeled as an
adversary with the instantaneous informational advantage (not because this disturbance is
in fact reacting to the controller’s input, but rather, because out of all possible disturbances
there will be one that will happen to be the worst possible given the chosen control).
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Formulation

Our value function for the robust control case can be written as: 2.

V (x, t) = inf
u(·)

sup
d(·)2�T

t

J(x, t, u(·), d(·))

subject to ẋ(t) = f(x(⌧), u(⌧), d(⌧)), 8⌧ 2 [t, T ]

u(⌧) 2 U , d(⌧) 2 D.

(2.24)

The notation here gets a bit tricky. At every time instant, the disturbance plays second,
and thus is listed second. However, since the disturbance function over time is dependent on
the control signal over time, the value function is often written with the disturbance function
first so that it can set its strategy with respect to the control signal. All of these notation
issues go away when we get to the actual di↵erential form of the dynamic programming
principle (below), and so I will leave the value function notation in its more intuitive and
consistent formulation (i.e. disturbance listed second).

We can follow the same dynamic programming proof to arrive at what we now call the
Hamilton-Jacobi-Isaacs equation:3

0 = DtV (x(t), t) + inf
u2U

sup
d2D

[c(x(t), u(t), d(t)) +DxV (x(t), t) · f(x, u, d)] ,

V (x, T ) = l(x).
(2.25)

The optimal control and optimal disturbance can be given by:

u⇤(x, t) = arg inf
u2U

sup
d2D

[c(x, u, d) +DxV (x, t) · f(x, u, d)] ,

d⇤(x, t) = inf
u2U

arg sup
d2D

[c(x, u, d) +DxV (x, t) · f(x, u, d)] .
(2.26)

2.4 Reachability Introduction

Consider a system operating in an environment under the presence of disturbances. As a
simple example, we can imagine a old-timey handcar along a track, the kind you see in

2There is some dispute over how to best represent the notation for the robust value function. I have
shown it with the disturbance playing second, which matches the actual structure of the game in (2.25) for
an instantaneous time step (where we allow disturbance to play second, as explained in player strategies).
However, when we write the equation like this in terms of input signals over time, this formulation abuses
notation somewhat, as the disturbance strategy � depends on the control signal u(·), and therefore u(·)
would need to be declared before d(·) in the order of operations. Because of this, many papers switch the
order of the inf and sup. This disagreement over representation does not a↵ect the actual equation used in
computation, namely (2.25).

3we use Isaacs instead of Bellman here because Isaac worked on dynamic programming for game theory,
and thus we use his name when referring to more than one player.
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cartoons as in Fig. 2.1. A person can pump the lever to accelerate the car left or right along
the track. Their ability to do this will depend on some external forces, like for example
the wind–if a strong wind is blowing against the person, it will be harder for them to move
against it. We will treat external forces like these as disturbances to the system.

In reachability problems there is a target set L that is meaningful to the agent: it can
be either a set of goal states (for example, a train station), or a set of unsafe states (for
example, a boulder that has fallen on the tracks). Here we will give intuitive introductions
to the di↵erent types of reachability problems. A more mathematically thorough description
will follow in Sec. 2.5.

Typically, HJI reachability seeks to find the set of initial states for which the system,
acting optimally and under worst-case disturbances, will enter the target set L either at a
particular time (backward reachable set, or BRS as shown in Fig. 2.2a) or within a time
horizon (backward reachable tube, or BRT as shown Fig. 2.2b).

Optimal behavior of the system depends on the nature of the target set and can be
formulated as a di↵erential game: for a goal set, the Player 1 (the human in this example)
will seek to minimize distance to the goal whereas Player 2 (which is in this case adversarial
wind) will maximize distance to the goal. For an unsafe set, the control will maximize and
the disturbance will minimize. Both cases (and various combinations of cases) can be solved
using HJI reachability analysis.

In our example, HJI reachability could tell us the initial states from which (under worst-
case wind conditions) we are doomed to hit the boulder (unsafe set) even if we try to
decelerate as much as possible, as in as in Fig. 2.2c. Alternatively, HJI reachability can also
compute the initial states from which our handcar will reach the train station (goal set) even
under the worst-case wind conditions (where the wind is actively blowing against us), as in
Fig. 2.2d.

Another distinction between types of reachability problems is the time horizon. We
already discussed the di↵erences between a set (where we want to know if we will enter the
target set at exactly time t) vs. tube (where we can to know if we will ever enter the target
set within the time horizon [t, T ]). For the tube case, we can look at finite time horizons
[t, T ] as in Fig. 2.2e, or infinite time horizons [t,1] as in Fig. 2.2f.

The last type of problem we will discuss is the forward reachable tube set and forward
reachable tube. Here the target set is actually the initial state, and we flip the problem to
ask where are all the final states that can be reached from this initial state at either a specific
time (FRS) or within a time horizon (FRT). An FRT is visualized in Fig. 2.2h. Note that
we call this forward reachability because we analyze the system forward in time instead of
backwards.

Note that there could be cases with both goals and obstacles. This leads us to reach-
avoid problems, wherein we solve for the set of initial states from which you are guaranteed
to reach the goal while avoiding the obstacles in the process.
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Figure 2.2: Types of reachability problems. Sets vs. Tubes: (a) Backward reachable
set (BRS) indicating states from which the system will hit the boulder at exactly the end
of the time horizon. (b) Backward reachable tube (BRT) indicating states from which the
system will hit the boulder at any point in the time horizon. Avoid vs. Reach: (c) Avoid
BRT, same as (b). (d) Reach BRT, indicating states from which the system is guaranteed to
reach a goal at any point within the time horizon. Finite vs. Infinite Time: (e) BRTs
with a finite time horizon. (f) BRTs with an infinite-time horizon. Note that avoid BRTS
tend to converge, and reach BRTs tend to continue indefinitely. Backward vs. Forward:
(g) a BRT, as shown in all sub-figures up until this point. Here the reachability problem
propagates backwards in time from goal or unsafe set until the time horizon. (h) a Forward
Reachable Tube (FRT), where the reachability problem propagates forward in time from the
initial condition. This instead computes the set of states that the system can reach within
the time horizon.
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Figure 2.3: Visualization of the boundaries of a target set L (can be either a goal set or
an unsafe set, depending on formulation) and corresponding target function l(p, v) for the
running example. Here the states p, v are position and velocity. In this case the target set
defines a set centered at the origin in position space p and across all velocity space v.

2.5 Defining the Reachability Problem

This section formally defines the types of reachability problems visualized in Fig. 2.2, and
constructs the value functions that correspond to each type of reachability problem. These
value functions, once solved for, provide the solutions to the reachability problems.

Avoid Problems (Safety)

Avoid Backward Reachable Set

In an avoid problem, the target set L represents the unsafe states. Let us first assume that
we want to solve a BRS, defined as:

VBRS(t) = {x : 9d(·) 2 �T

t
, 8u(·) 2 UT

t
, ⇣u,dx,t (T ) 2 L}, (2.27)

where �(·) in (2.27) denotes the feasible set of strategies for Player 2. This is the set of all
states x for which there exists a strategy for Player 2 for all inputs of Player 1 such that the
trajectory starting at time t and state x will enter the target set L at exactly the end of the
time horizon (at time T ).

The di↵erential game that must be solved in order to compute the BRS is a “game
of kind” rather than a “game of degree”, i.e., games in which the outcome is determined
by whether or not the state of the system reaches a given configuration under specified
constraints at any time within the duration of the game. The good news is that an approach
known as the level set method can transform these games of kind into games of degree in an
analytically sound and computationally tractable way.

To solve for this BRS, we first define a target function l(x) whose sub-zero level set is
the target set, i.e. L = {x : l(x)  0}. This can be considered as a reward function that
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Figure 2.4: Avoid problem visualizations for the double integrator example. In all figures, the
red dotted lines indicate the bounds of the target set L (which is here the unsafe set), defined
as an obstacle centered at the origin in position space and across all velocities. Note that to
reduce visual clutter the target function l(x) is not visualized here. The dark red function
represents the value function, and the corresponding BRS/BRT is shown as the subzero level
set of that function (also in dark red). (a) Avoid finite-time BRS with a time horizon of
t = �1s. (b) Avoid finite-time BRT with the same time horizon. (c) Avoid infinite-time
BRS. Note that the avoid set vanishes over time. This matches our intuition–given enough
time, the system can either decelerate enough to not enter the obstacle at the end of the time
horizon or accelerate through the obstacle before the end of the time horizon. (d) Avoid
infinite-time BRT. This captures all trajectories that ever enter the obstacle within infinite
time, even if they are able to then exit the obstacle after. Note that it has converged at
t = �9.1s. Trajectories from all states outside this BRT will be able to decelerate enough
to not enter the unsafe set. The videos associated with these computations can be seen at
https://youtu.be/f_I1QmDuxpk

must be (a) lipschitz continuous, and (b) positive outside of the unsafe set and negative
inside. Typically l(x) is defined as a signed distance function that measures distance to L,
as visualized in Fig. 2.3.

To compute the BRS we seek to capture the reward of the trajectories of the system at
the end of the time horizon, i.e.

JBRS(x, t, u(·), d(·)) = l(⇣u,dx,t (T )), t  T. (2.28)
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The corresponding value function will optimize for the optimal control signal that maxi-
mizes the reward (and drives the system away from the unsafe target set) and the worst-case
disturbance signal that minimizes the reward:

VBRS(x, t) = sup
u(·)

inf
d(·)

n
JBRS

⇣
x, t, u(·), d(·)

⌘o
. (2.29)

This value function can be computed using the HJI PDE (2.25). Level sets of the value
function correspond to level sets of the target (reward) function. If a state has a negative
value, optimal trajectories starting from that state achieve negative reward at the end of the
trajectory Therefore, once the value function is computed, the BRS is the subzero level set
of this function:

VBRS(t) = x : {VBRS(x, t)  0} (2.30)

Avoid Backward Reachable Tube

If instead we wish to solve a BRT, then we seek to find all trajectories that will enter L

at any point in the time horizon, and therefore become unsafe. This is often the desired
computation in avoid problems, as one cares about whether the system ever entered the
unsafe set. This is as compared to the BRS setting, where trajectories that enter and then
leave the unsafe set before the end of the time horizon are considered safe. The BRT is
defined as:

VBRT(t) = {x : 9d 2 �T

t
, 8u(·) 2 UT

t
, 9⌧ 2 [t, T ] ⇣u,dx,t (⌧) 2 L}. (2.31)

The BRT is computed by finding the minimum reward (and therefore minimum distance to
L) over time, leading to the cost function:

JBRT(x, t, u(·), d(·)) = min
⌧2[t,T ]

l(⇣u,dx,t (⌧)), t  T. (2.32)

The corresponding value function will once again optimize for the optimal control signal
that maximizes the reward (and drives the system away from the unsafe target set) and the
worst-case disturbance signal that minimizes the reward:

VBRT(x, t) = sup
u(·)

inf
d(·)

n
JBRT

⇣
x, t, u(·), d(·)

⌘o
. (2.33)

Computing this value function for the BRT case is more complicated than simply applying
the HJI PDE due to the minimization over time. In section 2.6, we will derive the new
update equation that solves for this value function. For now, know that intuitively this
involves updating the value function using the HJI PDE, and then minimizing the new value
function with the original target function l(x) to capture the minimum reward over that time
instant. This process repeats until the value function for the initial time has been reached.
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The BRT is the subzero level set of the value function:

VBRT(t) = x : {VBRT(x, t)  0} (2.34)

In the BRS case a negative value meant that optimal trajectories starting from that state
achieve negative reward at the end of the trajectory (i.e. the system is in the obstacle at
the end of the trajectory). Conversely, with a BRT a negative value means that optimal
trajectories starting from that state achieve negative reward at some point during the time
horizon (i.e. the system has entered the obstacle at some point during [t, T ]). Typically we
care about BRTs more when doing avoid problems, since we care if the system ever entered
the obstacle, not if the system happens to be in the obstacle at exactly the end of the time
horizon.

Reach Problem (Goal-Satisfaction)

A reach problem is the opposite of the avoid problem. Here, the target set L represents the
goal set, and is defined the same way: L = {x : l(x)  0}. One can think of the target
function as a cost function instead of a reward function. In this case we seek to identify
the states for which Player 1 can enter the goal set (i.e. achieve negative cost) despite the
worst-case e↵orts of Player 2. Therefore, the BRS and BRT are defined as:

VBRS(t) ={x : 9u(·) 2 UT

t
, 8d 2 �T

t
, ⇣u,dx,t (T ) 2 L}, (2.35)

VBRT(t) ={x : 9u(·) 2 UT

t
, 8d 2 �T

t
, 9⌧ 2 [t, T ]⇣u,dx,t (T ) 2 L}. (2.36)

The cost function JBRS and JBRT remain the same as in (2.28),(2.32):

JBRS(x, t, u(·), d(·)) = l(⇣u,dx,t (T )), t  T. (2.37)

JBRT(x, t, u(·), d(·)) = min
⌧2[t,T ]

l(⇣u,dx,t (⌧)), t  T. (2.38)

The value function now flips the direction of optimization for both players (because now
Player 1 seeks to minimize the cost and Player 2 seeks to do the opposite):

VBRS(x, t) = inf
u(·)

sup
d(·)

n
JBRS

⇣
x, t, u(·), d(·)

⌘o
, (2.39)

VBRT(x, t) = inf
u(·)

sup
d(·)

n
JBRT

⇣
x, t, u(·), d(·)

⌘o
. (2.40)

Once again, level sets of the value function correspond to level sets of the target function,
as visualized in Fig. 2.5. If a state has a negative value, optimal trajectories starting from
that state achieve negative cost at either the end of the trajectory (for BRS) or at some point



CHAPTER 2. BACKGROUND 21

Figure 2.5: Reach problem visualizations for the double integrator example. In all figures,
the green dotted lines indicate the bounds of the target set L (which is here the goal set),
defined as a goal that is left of the origin and must be achieved at a specific range of velocities
±5. Note that to reduce visual clutter the target function l(x) is not visualized here. The
dark green function represents the value function, and the corresponding BRS/BRT is shown
as the subzero level set of that function (also in dark green). (a) Reach finite-time BRS with
a time horizon of t = �1s. (b) Reach finite-time BRT with the same time horizon. (c)
Reach infinite-time BRS. Note that the reach set eventually encompasses the entire state
space. This matches our intuition–given enough time, the system can eventually reach the
goal. (d) Reach infinite-time BRT, which in this case is identical to the BRS. The videos
associated with these computations can be seen at https://youtu.be/f_I1QmDuxpk

in the trajectory (for BRT), meaning they have entered the target set L sometime within
the time horizon. Therefore, the sub-zero level set of the value function comprises the BRS
or the BRT, depending on the formulation:

VBRS(t) = x : {VBRS(x, t)  0} (2.41)

VBRT(t) = x : {VBRT(x, t)  0} (2.42)

Reach-Avoid Problem

What happens when there are both goal and unsafe states? This brings us to a reach-
avoid problem. Here we will define the goal set(s) using the same target set formulation:
L = {x : l(x)  0}. We will then define a second function to represent the unsafe set(s):
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Figure 2.6: Reach-Avoid problem visualizations for the double integrator example. In all
figures, the green dotted lines indicate the bounds of the target set L (which is here the
goal set), and the red dotted lines are the bounds of the obstacle set G. The target function
l(x) is not visualized here, but the obstacle function g(x) is shown in red. The dark green
function represents the value function, and the corresponding BRS/BRT is shown as the
subzero level set of that function (also in dark green). (a) Reach-Avoid finite-time BRS with
a time horizon of t = �1s. (b) Reach-Avoid finite-time BRT with the same time horizon. (c)
Reach-Avoid infinite-time BRS. (d) Reach-Avoid infinite-time BRT. The videos associated
with these computations can be seen at https://youtu.be/f_I1QmDuxpk

G = {x : g(x) � 0}4. Note that this function is positive inside the unsafe set and negative
outside.

The BRS in this case are the set of states such that the system is able to enter a goal set
at exactly the end of the time horizon without entering any unsafe sets along the way. The
BRT are the set of states that enter a goal set at some point in the time horizon without
entering any unsafe sets along the way:

VBRS(t) = {x(t) : 9u 2 UT

t
, 8d 2 �T

t
,

⇣u,dx,t (T ) 2 L ^ 8⌧ 2 [t, T ]⇣u,dx,t (⌧) 2 G
{
}.

(2.43)

VBRT(t) = {x(t) : 9u 2 UT

t
, 8d 2 �T

t
,

9⌧ 2 [t, T ]⇣u,dx,t (⌧) 2 L ^ 8s 2 [t, ⌧ ]⇣u,dx,t (s) 2 G
{
}.

(2.44)

4I understand the frustration of using a function called g(x) to represent constraints rather than goals.
To maintain consistency with [73] I am keeping the notation the same.
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The cost functionals for the reach-avoid case are:

JBRS(x, t, u(·), d(·)) = max
n
l(⇣u,dx,t (T ), T ), max

⌧2[t,T ]
g(⇣u,dx,t (⌧), ⌧)

o
. (2.45)

JBRT(x, t, u(·), d(·)) = min
⌧2[t,T ]

max
n
l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

o
. (2.46)

The maximizations ensure that a positive cost of g(x) overrides a negative cost of l(x),
i.e. trajectories that are able to reach the goal only by entering unsafe states are still counted
as unsafe. The corresponding value functions are the same as in the reach case:

VBRS(x, t) = inf
u(·)

sup
d(·)

n
JBRS

⇣
x, t, u(·), d(·)

⌘o
, (2.47)

VBRT(x, t) = inf
u(·)

sup
d(·)

n
JBRT

⇣
x, t, u(·), d(·)

⌘o
. (2.48)

Solving for these value functions is non-trivial, and a derivation is shown in Section 2.6.
The BRS and BRT are once again the subzero level set:

VBRS(t) = x : {VBRS(x, t)  0} (2.49)

VBRT(t) = x : {VBRT(x, t)  0} (2.50)

These value functions and sets for the reach-avoid case are visualized in Fig. 2.6.

Time-Varying Goals and Unsafe Sets

One of the advantages of the HJ formulation used in this dissertation over others (such
as in [126]) is that this formulation can handle time-varying goal sets and unsafe sets, as
visualized in Fig. 2.7. For such a case, the target and obstacle functions are also a function of
t, i.e. l(x, t) and g(x, t). Otherwise the equations remain the same. For the proof and more
information, see [73]. Another advantage of this formulation is its amenability to warm-start
reachability, as shown in Chapter 5.

Forward Reachability

In some cases, we might be interested in computing a forward reachable set (FRS): the set
of all states that a system can reach from a given initial set of states either within a time
horizon [T, t], t � T for an FRT, or at exactly the end of the time horizon for an FRS. These
are formally defined as:

VFRS(t) ={y : 9u(·) 2 UT

t
, 8d 2 �T

t
, x 2 L,

⇣u,d
x,T

(t) = y}, t > T,
(2.51)
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Figure 2.7: Time-varying goals and obstacles. Here, the dark green set and function represent
a time-varying reach-avoid finite-time BRT.
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VFRT(t) ={y : 9u(·)T
t
2 U, 8d 2 �T

t
, x 2 L,

9⌧ 2 [T, t] ⇣u,d[u]
x,T

(⌧) = y}, t > T.
(2.52)

Here, L represents the set of initial states of the system. VFRS(t) is the set of all states that
system can reach at exactly t, and VFRT(t) is the set of all states that system can reach
within the time horizon ending at t. Equations (2.51) and (2.52) are assuming the “reach”
case where Player 1 is trying to reach as many states as possible and Player 2 is doing the
opposite. This can be flipped easily as above for the case where Player 1 attempts to stay
in the initial set and Player 2 works to drive the system away from the initial set:

VFRS(t) ={y : 9d 2 �(t), 8u(·) 2 U, x 2 L,

⇣u,d[u]
x,T

(t) = y}, t > 0,
(2.53)

VFRT(t) ={y : 9d 2 �(t), 8u(·) 2 U, x 2 L,

9⌧ 2 [T, t] ⇣u,d[u]
x,T

(⌧) = y}, t > 0.
(2.54)

The FRS can be computed in a similar fashion as the BRS. The only di↵erence is that
an initial value HJB PDE needs to be solved instead of a final value PDE, which can always
be converted into an equivalent final value PDE by change of variables [63]. More details on
the computation of FRS and some of their concrete applications can be found in [39, 127].

A Note about Reachability with Running Cost

In optimal control problems, an objective can have both a running cost and a terminal
cost. However, having a mixed objective like this means that the optimization may value a
trajectory with a very low running cost that violates the terminal conditions. In reachability
problems, this terminal condition should never be violated, otherwise the subzero level set
of the value function is no longer guaranteed to reach (avoid) the target set. Therefore,
reachability problems are solved without a running cost. In the reinforcement learning this
issue is typically handled by putting a large weight on the terminal cost in the objective, but
in practice this still does not lead to guarantees.

2.6 Computing the Reachability Problem

We have derived the cost for each reachability problem and its corresponding value function.
We will now explain how to use dynamic programming to obtain the correct update equation
in each case that will solve for the value function. A handy summary of these equations are
in Table 2.1
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Table 2.1: Set Notation, Value Functions, and Update Equations for Reachability Problems

Reach
BRS (2.35): VBRS(t) = {x : 9u(·) 2 UT

t
, 8d 2 �T

t
, ⇣u,dx,t (T ) 2 L}

BRS
Value Function (2.39): VBRS(x, t) = infu(·) supd(·) l(⇣

u,d

x,t (T ))
HJI PDE (2.55): 0 = DtV + infu supd

DxV · f(x, u, d)

Avoid
BRS (2.27): VBRS(t) = {x : 9d(·) 2 �T

t
, 8u(·) 2 UT

t
, ⇣u,dx,t (T ) 2 L}

BRS
Value Function (2.29): VBRS(x, t) = sup

u(·) infd(·) l(⇣
u,d

x,t (T ))
HJI PDE (2.55): 0 = DtV + sup

u
infd DxV · f(x, u, d)

BRT (2.36): VBRT(t) = {x : 9u(·) 2 UT

t
, 8d 2 �T

t
,

Reach
9⌧ 2 [t, T ]⇣u,dx,t (T ) 2 L}

BRT
Value Function (2.40): VBRS(x, t) = infu(·) supd(·) min⌧2[t,T ] l(⇣

u,d

x,t (⌧))

Variational 0 = min
n
l(x, t)� V (x, t),

Inequality (2.65): DtV + infu supd
DxV · f(x, u)

o

BRT (2.31): VBRT(t) = {x : 9d 2 �T

t
, 8u(·) 2 UT

t
,

Avoid
9⌧ 2 [t, T ] ⇣u,dx,t (⌧) 2 L}

BRT
Value Function (2.33): VBRS(x, t) = sup

u(·) infd(·) min⌧2[t,T ] l(⇣
u,d

x,t (⌧))

Variational 0 = min
n
l(x, t)� V (x, t),

Inequality (2.65): DtV + sup
u
infd DxV · f(x, u)

o

BRS (2.43): VBRS(t) = {x(t) : 9u 2 UT

t
, 8d 2 �T

t
,

Reach-
⇣u,dx,t (T ) 2 L ^ 8⌧ 2 [t, T ]⇣u,dx,t (⌧) 2 G

{
}

Avoid
Value Function (2.47): VBRS(x, t) = infu(·) supd(·) max

n

BRS
l(⇣u,dx,t (T ), T ),max⌧2[t,T ] g(⇣

u,d

x,t (⌧), ⌧)
o

Modified Double- 0 = max
n
DtV + infu supd

DxV · f(x, u),

Obstacle Isaacs (2.83): g(x, t)� V (x, t)
o

BRT (2.44): VBRT(t) = {x(t) : 9u 2 UT

t
, 8d 2 �T

t
,

Reach-
9⌧ 2 [t, T ]⇣u,dx,t (⌧) 2 L ^ 8s 2 [t, ⌧ ]⇣u,dx,t (s) 2 G

{
}

Avoid
Value Function (2.48): VBRT(x, t) = infu(·) supd(·) min⌧2[t,T ] max

n

BRT
l(⇣u,dx,t (⌧), ⌧),maxs2[t,⌧ ] g(⇣

u,d

x,t (s), s)
o

Variational Inequality

(Double-Obstacle 0 = max
n
min

n
l(x, t)� V (x, t), DtV

Isaacs Equation) (2.80): + infu supd
DxV · f(x, u)

o
, g(x, t)� V (x, t)

o
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Solving the Value Function for a Reach (or Avoid) BRS

To solve a Reach BRS problem we solve the value function (2.39) using the same process
described in the optimal control section, resulting in a modified version of the HJI PDE
(2.25) with no running cost:

0 = DtV (x(t), t) + inf
u2U

sup
d[u]2�

[DxV (x(t), t) · f(x, u, d)] ,

V (x, T ) = l(x).
(2.55)

For the Avoid BRS value function (2.29), we simply switch the optimization so that the
control is maximizing and the disturbance is minimizing. Examples of using the HJI PDE
to solve for a reach BRS (and avoid BRS) are in 10.1.

Solving the Value Function for a Reach (or Avoid) BRT

For visual ease we will assume no disturbance in our derivation, but the derivation follows
in the same way when disturbance is included. Starting with the value function for a Reach
BRT (2.40):

V (x(t), t) = inf
u(·)2UT

t

min
⌧2[t,T ]

l(x(⌧), ⌧), (2.56)

to get a recursive equation we can break this into [t, t+ �] and [t+ �, T ]:

V (x(t), t) = inf
u(·)2UT

t

min

⇢
min

⌧2[t,t+�]
l(x(⌧), ⌧), min

⌧2[t+�,T ]
l(x(⌧), ⌧)

�
. (2.57)

Adding an extra infimum allows us to get to the formula for V (x(t+ �), t+ �):

V (x(t), t) = inf
u(·)2UT

t

min

(
min

⌧2[t,t+�]
l(x(⌧), ⌧), inf

u(·)2UT

t+�

min
⌧2[t+�,T ]

l(x(⌧), ⌧)

)
, (2.58)

V (x(t), t) = inf
u(·)2UT

t

min

⇢
min

⌧2[t,t+�]
l(x(⌧), ⌧), V (x(t+ �), t+ �)

�
. (2.59)

For a small �, we can approximate this as

V (x(t), t) = inf
u

min {l(x(t), t), V (x(t+ �), t+ �)} . (2.60)

Next, plug in the Taylor expansion for V (x(t+ �), t+ �) like we did in Section 2.2:

V (x(t), t) = inf
u

min {l(x(t), t), V (x(t), t) +DtV (x(t), t)� +DxV (x(t), t) · f(x, u)�} . (2.61)
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Apply the infimum over the control to both sides of the minimization

V (x(t), t) = min
n
inf
u

l(x(t), t), inf
u

[V (x(t), t) +DtV (x(t), t)� +DxV (x(t), t) · f(x, u)�]
o
,

(2.62)
and pull out any terms that don’t rely on control

V (x(t), t) = min

⇢
l(x(t), t), V (x(t), t) +DtV (x(t), t)� + inf

u(·)
DxV (x(t), t) · f(x, u)�

�
.

(2.63)
Subtracting V (x(t), t) on both sides:

0 = min

⇢
l(x(t), t)� V (x(t), t),


DtV (x(t), t) + inf

u(·)
DxV (x(t), t) · f(x, u)

�
�

�
. (2.64)

Note that this results in two possible cases:

• The left hand side of the minimization will be active, forcing l(x(t), t) = V (x(t), t),
and the right hand side will be greater than or equal to zero, or

• The right hand side of the minimization will be active, resulting in the HJI PDE, and
the left hand side will be greater than or equal to zero.

Given that the � is always positive, scaling the RHS by a positive number doesn’t a↵ect
the this minimization comparison. Therefore we can remove the delta, resulting in the
Hamilton Jacobi Isaacs Variational Inequality (HJI VI):

0 = min

⇢
l(x(t), t)� V (x(t), t), DtV (x(t), t) + inf

u(·)
DxV (x(t), t) · f(x, u)

�
. (2.65)

This is called a variational inequality because the HJI PDE must evolve in a way that
respects the inequality constraint that the value function cannot be greater than l(x(t), t).

A more convenient form of the HJI VI is in the form of dynamic programming. We
add V (x(t), t) back to both sides and note the partial Taylor’s expansion V (x(t), t) +
DtV (x(t), t)� = V (x(t), t+ �),

V (x(t), t) = min

⇢
l(x(t), t), V (x(t), t) +DtV (x(t), t)� + inf

u(·)
DxV (x(t), t) · f(x, u)�

�
(2.66)

V (x(t), t) = min

⇢
l(x(t), t), V (x(t), t+ �) + inf

u(·)
DxV (x(t), t) · f(x, u)�

�
(2.67)

This modified form of the HJI VI in (2.67) is used to recursively update the value function
at each instant in time to obtain the reach BRT. The avoid BRT value function (2.33) can
be solved similarly with a supremum over control. Examples of using the HJI VI to solve
for a reach BRT (and avoid BRT) are in 10.1.
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Solving the Value Function for Reach-Avoid Problems

With two optimal control derivations under our belt we’re ready to solve for the update
equation for a reach-avoid BRT. We’re going to revert back to using trajectory notation for
this derivation due to the complicated time intervals. Recall that ⇣u,dx,t (t) = x(t) because it
refers to a trajectory that begins at state x and time t and ends at the same time t. Starting
with the value function,

V (x(t), t) = inf
u(·)

min
⌧2[t,T ]

max
n
l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

o
. (2.68)

We will break this into time intervals [t, t+ �] and [t+ �, T ]:

V (x(t), t) = inf
u(·)

min
n

min
⌧2[t,t+�]

max


l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

�
,

min
⌧2[t+�,T ]

max


l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

�o
.

(2.69)

To get this in terms of V (x(t+ �), t+ �) we need the maximum over the second g to be over
t+ �, ⌧ , so we split the equation into:

V (x(t), t) = inf
u(·)

min
n

min
⌧2[t,t+�]

max


l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

�
,

min
⌧2[t+�,T ]

max
h
l(⇣u,dx,t (⌧), ⌧), max

s2[t,t+�]
g(⇣u,dx,t (s), s), max

s2[t+�,⌧ ]
g(⇣u,d

x,t+�(s), s)
io

.
(2.70)

We then rearrange the maximization terms to approach the formula for V (x(t+ �), t+ �):

V (x(t), t) = inf
u(·)

min
n

min
⌧2[t,t+�]

max


l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

�
,

max
n

min
⌧2[t+�,T ]

max
h
l(⇣u,dx,t (⌧), ⌧), max

s2[t+�,⌧ ]
g(⇣u,d

x,t+�(s), s)
i
, max
s2[t,t+�]

g(⇣u,dx,t (s), s)
oo

.
(2.71)

Splitting up the infimum over u brings us finally to the formula for V (x(t+ �), t+ �):

V (x(t), t) = inf
u(·)2Ut+�

t

min
n

min
⌧2[t,t+�]

max


l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

�
,

max
n

inf
u(·)2UT

t+�

⇢
min

⌧2[t+�,T ]
max

h
l(⇣u,dx,t (⌧), ⌧), max

s2[t+�,⌧ ]
g(⇣u,d

x,t+�(s), s)
i�

, max
s2[t,t+�]

g(⇣u,dx,t (s), s)
oo

,

(2.72)
we can now replace the math in blue with the value function,
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V (x(t), t) = inf
u(·)2Ut+�

t

min
n

min
⌧2[t,t+�]

max


l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

�
,

max
n
V (x(t+ �), t+ �), max

s2[t,t+�]
g(⇣u,dx,t (s), s)

oo
.

(2.73)

Now that we finally have a recursive equation for dynamic programming, we can once again
plug in the Taylor’s expansion,

V (x(t), t) = inf
u(·)2Ut+�

t

min
n

min
⌧2[t,t+�]

max


l(⇣u,dx,t (⌧), ⌧), max

s2[t,⌧ ]
g(⇣u,dx,t (s), s)

�
,

max
n
V (x(t), t) +DtV � +DxV · f(x, u)�, max

s2[t,t+�]
g(⇣u,dx,t (s), s)

oo
,

(2.74)

and then assume that � is small:

V (x(t), t) = inf
u

min
n
max

h
l(⇣u,dx,t (t), t), g(⇣

u,d

x,t (t), t)
i
,

max
n
V (x(t), t) +DtV � +DxV · f(x, u)�, g(⇣u,dx,t (t), t)

oo
.

(2.75)

Note that ⇣u,dx,t (t) is a trajectory that starts at state x and time t and stops at the same time

t. Therefore, it has not moved and remains at the same state ⇣u,dx,t (t) = x, so we can rewrite
the equation as

V (x(t), t) = inf
u

min
n
max [l(x, t), g(x, t)] ,

max
n
V (x(t), t) +DtV � +DxV · f(x, u)�, g(x(t), t)

oo
.

(2.76)

We will now pull everything outside of the infimum over control except for expressions that
depend on control:

V (x(t), t) = min
n
max [l(x, t), g(x, t)] ,

max
n
V (x(t), t) +DtV � + inf

u

{DxV · f(x, u)}�, g(x(t), t)
oo

.
(2.77)

Noting the identity that min[max(a, b),max(b, c)] = max[min(a, c), b],

V (x(t), t) =max
h

min
n
l(x, t), V (x(t), t) +DtV � + inf

u

{DxV · f(x, u)}�
o
, g(x(t), t)

i
.

(2.78)

Subtract V (x(t), t) from both sides of the equation:
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0 = max
h
min

n
l(x, t)� V (x(t), t), DtV (x(t), t)� + inf

u

{DxV (x(t), t) · f(x, u)}�
o
,

g(x(t), t)� V (x(t), t)
i
,

(2.79)

and remove the positive � as before, resulting in the Double-Obstacle Isaacs version of
the variational inequality:

0 = max
h
min

n
l(x, t)� V (x(t), t), DtV + inf

u

{DxV · f(x, u)}
o
,

g(x(t), t)� V (x(t), t)
i
.

(2.80)

A more convenient form of the Double-Obstacle Isaacs equation is in the form of dynamic
programming. We add V (x, t) back to both sides and note the partial Taylor’s expansion
V (x(t), t) +DtV � = V (x(t), t+ �),

V (x(t), t) = max
h
min

n
l(x, t), V (x(t), t) +DtV (x(t), t)�

+ inf
u

{DxV (x(t), t) · f(x, u)�}
o
, g(x(t), t)

i
,

(2.81)

V (x(t), t) = max
h
min

n
l(x, t), V (x(t), t+ �) + inf

u

{DxV (x(t), t) · f(x, u)�}
o
,

g(x(t), t)
i
.

(2.82)

This modified form of the Double-Obstacle Isaacs in (2.82) is used to recursively update the
value function at each instant in time to obtain the reach-avoid BRT. Intuitively, one solves
for the value function using the HJI PDE, then minimizes with l(x) to obtain a minimization
over time, followed by a maximization with g(x) to obtain a maximum with the obstacle
cost.
To solve a reach-avoid BRS, we simply remove the minimization with l(x):

0 = max
h
DtV (x(t), t) + inf

u

{DxV (x(t), t) · f(x, u)}, g(x(t), t)� V (x(t), t)
i
, (2.83)

V (x(t), t) = max
h
V (x(t), t+ �) + inf

u

{DxV (x(t), t) · f(x, u)�}, g(x(t), t)
i
. (2.84)

Examples of using the HJI PDE to solve for a reach-avoid BRT and BRS are in 10.1.

2.7 Chapter Summary

This chapter covered the background knowledge of dynamic systems, optimal control, and
reachability analysis. The following chapters will now dive into the work on safe real-world
autonomy in uncertain and unstructured environments.
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Part I

Theory for Computational Gains in
Reachability Analysis
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Chapter 3

Decoupling as Disturbance

This chapter is based on the paper “Fast Reachable Set Approximations via State Decoupling
Disturbances” [35], written in collaboration with Mo Chen and Claire J. Tomlin.

Optimal control problems and di↵erential games are important and powerful theoretical
tools for analyzing a wide variety of systems, particularly in safety-critical scenarios. They
have been extensively studied in the past several decades [169, 62, 19, 165, 126, 26, 73],
and have been successfully applied to practical problems such as pairwise collision avoidance
[126], aircraft in-flight refueling [57], vehicle platooning [41], and many others [21, 91]. With
the recent growing interest in using safety-critical autonomous systems such as autonomous
cars and unmanned aerial vehicles for civil purposes [140, 159, 116, 141], the importance
and necessity of having flexible tools that can provide safety guarantees have substantially
increased.

Intuitively, in an optimal control problem, one seeks to find the cheapest way a system
described by an ordinary di↵erential equation (ODE) model can perform a certain task. In a
di↵erential game, a system is controlled by two adversarial agents competing to respectively
minimize and maximize a joint cost function. Hamilton-Jacobi (HJ) reachability is a common
and e↵ective way to analyze both optimal control problems and di↵erential games because
of the guarantees that it provides and its flexibility with respect to the system dynamics.

In a reachability problem, one is given some system dynamics described by an ODE,
and a target set which describes the set of final conditions under consideration. Depending
on the application, the target set can represent either a set of desired or undesired states.
The goal in reachability analysis is to compute the backward reachable set (BRS). When
the target set is a set of desired states, the BRS represents the set of states from which the
system can be guaranteed to be driven to the target set, despite the worst case disturbance.
In contrast, when the target set is a set of undesired states, the BRS represents the set of
states from which the system may be driven into the target set under some disturbance,
despite its best control e↵orts to remain outside. Because of the theoretical guarantees
that reachability analysis provides, it is ideal for analyzing the newest problems involving
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autonomous systems.
Despite these advantages, there are serious drawbacks to using HJ Reachability on large

systems. In order to compute the BRS, an HJ partial di↵erential equation (PDE) must be
solved on a grid representing a discretization of the state space. This means that the com-
plexity of computing a BRS grows exponentially with the number of system states, making
the standard HJ reachability formulation intractable for systems higher than approximately
five dimensions. To address this di�culty, a number of approximation techniques have been
developed, such as those involving projections, approximate dynamic programming, and
occupation measure theory [131, 124, 115].

In this chapter, we propose a general method to remove coupling in systems by treating
coupling variables as disturbances. This uncoupling of dynamics transforms the system into
a form that is suitable for analysis using methods such as [128] and [37], which exploit
system structure. This method can also be combined with previous work such as [131, 124,
115]. to reduce computation complexity even further. We show that our approach results
in BRSs that are conservative in the desired direction, and demonstrate the performance of
our method when combined with the decoupled formulation in [37].

3.1 Problem Formulation

Consider a di↵erential game between two players described by the time-invariant system
with state x 2 Rn evolving according to the ODE

ẋ = f(x, u, d), t 2 [t, T ]

u 2 U , d 2 D
(3.1)

where u is the control of Player 1, and d is the control of Player 2. Often, u and d are
regarded as the control and disturbance, respectively, of a system described by (3.1). As in
[169, 62, 126], we allow Player 2 to only draw from nonanticipative strategies �T

t
, defined in

Section 2.3.
Suppose that the state can be written as x = (x1, x2) such that the control u and

disturbance d can be written as u = (ux1 , ux2), d = (dx1 , dx2), and such a decomposition of
the control leads to the following form of system dynamics:

ẋ1 = g(x1, x2, ux1 , dx1) ẋ2 = h(x1, x2, ux2 , dx2)

ux1 2 Ux1 , ux2 2 Ux2 , dx1 2 Dx1 , dx2 2 Dx2 , ⌧ 2 [t, T ]
(3.2)

where x1 2 Rnx1 , x2 2 Rnx2 , nx1 + nx2 = n, and g, h are components of the system dynamics
that involve (ux1 , dx1), (ux2 , dx2), respectively. Note that this assumption on u and d is a
mild one, and is satisfied by any system in which each of the control components ux1 , ux2

and disturbance components dx1 , dx2 have independent control sets Ux1 ,Ux2 and disturbance
sets Dx1 ,Dx2 , respectively; note that we can also write U = Ux1 ⇥ Ux2 , and D = Dx1 ⇥Dx2 .
This decomposition is very common in real world systems, where control input bounds such
as maximum acceleration and maximum turn rate are independent of each other.
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For the system in the form of (3.2), we would like to compute the BRS of time horizon
T , denoted VBRS(T ):

VBRS(t) ={x : 9u(·) 2 UT

t
, 8d 2 �T

t
, ⇣u,dx,t (T ) 2 L}, (3.3)

Standard HJ formulations exist for computing the BRS in the full dimensionality n [19,
126, 26, 73]. In addition, special HJ formulations can be used to substantially reduce com-
putation complexity for systems with special properties such as having terminal integrators
or having fully decoupled dynamics [128, 37]. The goal of this chapter will be to demonstrate
how to take advantage of previous work on BRS computation for systems of particular forms,
even when the actual system dynamics do not exactly satisfy necessary assumptions. For
concreteness, in this chapter we will focus on removing coupling to put systems into a fully
decoupled form that satisfies the assumptions in [37].

Our proposed approach computes an approximation of the BRS in dimension
max(nx1 , nx2) instead of in dimension n, dramatically reducing computation complexity. This
is done by removing coupling in the dynamics by treating certain variables as disturbances.
The computed approximation is conservative in the desired direction, meaning any state in
the approximate BRS is also in the true BRS.

3.2 Background

Given the system in (3.1), the BRS VBRS(t) can be computed using the following terminal
value HJI PDE:

DtV (x, t) + min
u2U

max
d2D

DxV (x, t) · f(x, u, d) = 0

V (x, T ) = l(x)
(3.4)

In (3.4), the target set L is represented as the sub-zero level set of the function l(x):
L = {x 2 Rn : l(x)  0}. The reach BRS VBRS(t) is the subzero level set of the value
function: VBRS(t) = {x 2 Rn : V (x, t)  0} [126, 48]. The control u tries to grow the BRS
as much as possible, and the disturbance d tries to do the opposite. Similar definitions of
the BRS, for example one in which the control tries to inhibit its growth, can be computed
by adjusting the minimum and maximum. The value function can be computed using (3.4).

In the case that the system is fully decoupled in the form of (3.5), [37] provides a method
to exactly compute V (x, t). The computation is done in each of the decoupled components,
substantially reducing computation complexity as long as the system is decoupled and as
long as the target L can be written as the intersection \iLi.

ẋi = fi(xi, ui, di), ⌧ 2 [t, T ]

ui 2 Ui, di 2 Di, i = 1, . . . , N
(3.5)

The reason for the dimension reduction is intuitive, and can be easily verified by checking
that the following statements are equivalent:
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1. 9ui 2 Ui, 8di 2 Di, xi(·) satisfies (3.5),
xi(0) 2 Li, i = 1, 2

2. 9(u1, u2) 2 U1 ⇥ U2, 8(d1, d2) 2 D1 ⇥ D2,
xi(·) satisfies (3.5), (x1(0), x2(0)) 2 L1 \ L2

3. 9u 2 U, 8d 2 D, x(·) satisfies (3.1), x(0) 2 L

Coupling as Disturbance

The decoupled formulation summarized in Section 3.2 enables the exact computation of n
dimensional BRSs in the space of the ni dimensional decoupled components. However, this
substantial computation benefit can only be gained if the system dynamics satisfy (3.5).

In the case where the dynamics are in the form of (3.2), the decoupled formulation cannot
be directly used. However, if one treats x2 as a disturbance in the function g, and x1 as a
disturbance in the function h, the system would become decoupled. Mathematically, (3.2)
becomes the following:

ẋ1 = ĝ(x1, x2d, ux1 , dx1)

x1 2 X1, x2d 2 X2

ux1 2 Ux1 , dx1 2 Dx1

ẋ2 = ĥ(x2, x1d, ux2 , dx2)

x1d 2 X1, x2 2 X2

ux2 2 Ux2 , ux2 2 Dx2

⌧ 2 [t, T ] (3.6)

where X1 ⇥ X2 represents the full-dimensional domain over which computation is done.
By treating the coupled variables as a disturbance, we have uncoupled the original system
dynamics (3.2), and produced approximate dynamics (3.6) that are decoupled, allowing us
to do the computation in the space of each decoupled component.

Compared to the original system dynamics given in (3.2), the uncoupled dynamics given
in (3.6) experiences a larger disturbance, since the x2 dependence of the function g and the x1

dependence on the function h are treated as disturbances. The approximate BRS computed
using the dynamics (3.6) is an under-approximation of the true BRS. We formalize this in
the proposition below.

Proposition 1. Let V
x1
BRS(t),V

x2
BRS(t) be the BRSs of the subsystem (3.6) from the target

sets Lx1 ,Lx2, and let VBRS(t) be the BRS of the system (3.2) from the target set L. Then1,
L = Lx1 \ Lx2 ) V

x1
BRS(t) \ V

x2
BRS(t) ✓ VBRS(t).

Proof. It su�ces to show that given any state (x1
0, x2

0) = (x1(t), x2(t)) such that x1
0, x2

0

are in the BRSs V
x1
BRS(t),V

x2
BRS(t) for the system in (3.6), respectively, then (x1

0, x2
0) is in

the BRS VBRS(t) for the system in (3.2).
For convenience, we will use x1(·) 2 X1 to denote x1(⌧) 2 X1 8⌧ 2 [t, T ], with x2(·) 2 X2

having the analogous meaning. Applying the definition of BRS in (3.3) to the subsystems
in (3.6), at the state x = (x1, x2) we have

1Strictly speaking, Lx1 , Lx2 , V
x1
BRS(t), V

x2
BRS(t) would need to be “back projected” into the higher dimen-

sional space before their intersections can be taken, but we will use the abuse of notation for convenience.
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1. 9ux1 2 Ux1 , 8dx1 2 Dx1 , 8x2d 2 X2, x1(·) satisfies (3.6),
x1(T ) 2 Lx1

2. 9ux2 2 Ux2 , 8dx2 2 Dx2 , 8x1d 2 X1, x2(·) satisfies (3.6),
x2(T ) 2 Lx2

The above two conditions together imply

9(ux1 , ux2) 2 Ux1 ⇥ Ux2 , 8(dx1 , dx2) 2 Dx1 ⇥ Dx2 ,

8(x1d, x2d) 2 X1 ⇥ X2, (x1(·), x2(·)) satisfies (3.6),

(x1(T ), x2(T )) 2 L

(3.7)

In particular, since x1(·) 2 X1, x2(·) 2 X2, the above is true also when x1d = x1(·), x2d =
x2(·), so

9(ux1 , ux2) 2 Ux1 ⇥ Ux2 , 8(dx1 , dx2) 2 Dx1 ⇥ Dx2 ,

(x1d, x2d) = (x1(·), x2(·)), (x1(·), x2(·)) satisfies (3.6),

(x1(T ), x2(T )) 2 L

(3.8)

But if xd = x(·), x2d = x2(·), then (3.6) becomes (3.2), thus

9(ux1 , ux2) 2 Ux1 ⇥ Ux2 , 8(dx1 , dx2) 2 Dx1 ⇥ Dx2 ,

(x1(·), x2(·)) satisfies (3.2), (x1(T ), x2(T )) 2 L.
(3.9)

By treating the coupled states as disturbance, the computation complexity reduces from
O(knT ) for the full formulation to O(kmax{nx1 ,nx2}T ) for the decoupled approximate system
(3.6).

3.3 Disturbance Splitting

By treating coupling variables y and x1 as disturbances in g and h, respectively, we introduce
conservatism in the BRS computation. This conservatism is always in the desired direction.
In situations where X1 and X2 are large, the degree of conservatism can be reduced by
splitting the disturbance x1d and yd into multiple sections, as long as the target set L does
not depend on the state variables being split. For example, x1d 2 X1 can be split as follows:

x1
i

d
2 X1i, i = 1, 2, . . . ,M

where
M[

i=1

X1i = X1

(3.10)
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This disturbance splitting results in the following family of approximate system dynamics

ẋ1 = g(x1, x2d, ux1 , dx1)

ux1 2 Ux1 , dx1 2 Dx1

x2d 2 X2

⌧ 2 [t, T ]

ẋ2 = h(x2, x1
i

d
, ux2 , dx2)

ux2 2 Ux2 , dx2 2 Dx2

x1
i

d
2 X1

i

i = 1, 2, . . . ,Mx1

(3.11)

from which a BRS can be computed in X1
i
⇥X2. Since X1

i
✓ X1, the uncoupling disturbance

is reduced whenever the disturbance x1d is split. In addition, the uncoupling disturbance
x2d can also be split into Mx2 , for a total of M = Mx1Mx2 total “pieces” of uncoupling
disturbances. However, a smaller disturbance bound also restricts the allowable trajectories
of each approximate system, so overall it is di�cult to determine a priori the optimal way
to split the uncoupling disturbances. The trade-o↵ between the size of disturbance bound
and degree of restriction placed on trajectories can be seen in Fig. 3.2.

3.4 Examples of Decoupling System Dynamics

Our proposed method applies to any system of the form (3.2), as we will demonstrate with
the example in Section 3.5. Systems with light coupling between groups of state variables are
particularly suitable for the application or our proposed method. Below are other example
systems for which treating the coupling variables y in g or x in h as disturbances would lead
to decoupling.

Linear systems with large Jordan blocks, for example,

ẋ =

2

664

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

3

775 x+Bu (3.12)

If the third dimension of x is treated as a disturbance in the equation for the second
dimension, we could decompose the system into the first two and last two states.

Lateral Quadrotor Dynamics near Hover [29]:

ż =

2

664

z2
g tan z3

z4
�d0z3 � z1z4

3

775+

2

664

0
0
0
n0

3

775 u (3.13)

where z1 is the longitudinal position, z2 is the longitudinal velocity, z3 is the pitch angle,
z4 is the pitch rate, and u is the desired pitch angle. These dynamics are valid for small
pitch angles. The system would become decoupled into the x1 = (z1, z2) and x2 = (z3, z4)
components if z3 is treated as a disturbance in ż2. In fact, the full ten-dimensional (10D)
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quadrotor dynamics given in [29] can be decomposed into five decoupled components of 2D
systems, allowing an approximation of the 10D BRS to be computed in 2D space.

It is worth noting that after decoupling the 4D system in (3.13) into two 2D systems, each
decoupled component is in the form ẋ2 = g(x2, u), ẋ1 = b(x2). This is exactly the form of the
dynamics in [128], allowing the 4D BRS to be exactly computed in 1D! In general, removing
coupling may bring the system dynamics into a form suitable for analysis using methods
that require specific assumptions on the dynamics, potentially greatly reducing computation
complexity.

3.5 Numerical Results

We demonstrate our proposed method using a 4D model of an aircraft flying at constant
altitude, given by

ṗx1 = v cos 

 ̇ = !

!  !  !̄

ṗx2 = v sin 

v̇ = a

a  a  ā

(3.14)

where (px1 , px2) represent the plane’s position in the x1 and x2 directions,  represents the
plane’s heading, and v represents the plane’s longitudinal velocity. The plane’s controls are
u = [!, a], where ! is the limited turn rate and a is the limited longitudinal acceleration.
For our example, the computation bounds are

px 2 [�40, 40] m

 2 [�⇡, ⇡] rad

py 2 [�40, 40] m

v 2 [6, 12] m/s

Using the decoupled approximation technique, we create the following decoupled approx-
imation of the system with (px1 , ) and (px2 , v) as the decoupled components:

ṗx1 = dv sin( )

 ̇ = !

!  !  !̄

dv  dv  d̄v

ṗx2 = v sin(d )

v̇ = a

a  a  ā

d  d  d̄ 

(3.15)

We define the target set as a square of length 4 m centered at (px1 , px2) = (0, 0), described
by L = {(px1 , px2 , , v) : |px1 |, |px2 |  2}. This can be interpreted as a positional goal cen-
tered at the origin that can be achieved for all angles and velocities within the computation
grid bounds. From the target set, we define l(x) such that l(x)  0 , x 2 L. To analyze
our newly decoupled system we must likewise decouple the target set by letting Li, i = 1, 2
be

L1 = {(px1 , ) : |px1 |  2}

L2 = {(px2 , v) : |px2 |  2}
(3.16)
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These target sets have corresponding implicit surface functions li(xi), i = 1, 2, which then
form the 4D target set represented by l(x) = maxi li(xi), i = 1, 2.

We set L as the target set in our reachability problem and computed the BRS VBRS(t) from
L using both the direct 4D computation as well as the proposed decoupled approximation
method.

Backward Reachable Sets

The BRS describes in this case the set of initial conditions from which the system is guar-
anteed to reach the target set within a given time period T � t despite worst possible dis-
turbances. To analyze the BRS we vary the degree of conservatism using the disturbance
splitting method described in Section 3.3. After applying splitting, we arrive at the following
piece-wise system:

ṗx1 = di
v
sin( )

 ̇ = !

!  !  !̄

di
v
 di

v
 d̄i

v

i =1, 2, . . . ,Mv

ṗx2 = v sin(dj
 
)

v̇ = a

a  a  ā

dj
 
 dj

 
 d̄j

 

j =1, 2, . . . ,M 

(3.17)

We analyzed the decoupled approximation formulation with Mv and M ranging from 1
to 32. To visually depict the computed 4D BRS, we plot 3D slices of the BRS in Fig. 3.1.
In these slices the green sets are the BRS computed using the full formulation, and the gray
sets are the decoupled approximations. With the definition of BRS given in (3.3), all the
decoupled approximations are constructed to be under-approximations.

The top row of plots shows the 3D projections through all values of v. The bottom
row of plots shows the 3D projections through all values of  . Moving from left to right,
each column of plots shows the decoupled approximations with an increasing number of split
sections M and Mv.

Reconstruction Performance

To compare the degree of conservatism of the decoupled approximations, we determined
the total 4D volume of the BRS computed using both methods. We then took the ratio
of the decoupled approximation volume to the full formulation BRS volume. Since under-
approximations are computed, a higher volume ratio indicates a lower degree of conservatism.

Fig. 3.2 shows this volume ratio as a function of M and Mv. For example, the purple
curve represents the volume ratio for Mv = 1 across various values of M , and on the other
extreme, the yellow curve represents the volume ratio for Mv = 32 across various values of
M . The highest number of sections computed was with M = Mv = 32.

Initially the decoupled approximations become less conservative as Mv and M increase.
This is because splitting the disturbance range has the e↵ect of mitigating the strength
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Figure 3.1: 3D slices of the BRSs across a range of Mv and M . The full formulation sets
are in green, and the decoupled approximation sets are in gray. The top row shows 3D
projections through all values of v. The top left plot shows this projection for M = Mv = 1
with M ,Mv increasing as we move right in the list of plots, up to M = Mv = 32 at top
right. The bottom figures show the same sections for 3D projections through  .

5 10 15 20 25 30

M
ψ
 Sections

0.05

0.1

0.15

0.2

V
o

lu
m

e
 R

a
ti
o

M
v
=1

M
v
=2

M
v
=4

M
v
=8

M
v
=16

M
v
=32

Figure 3.2: The vertical axis represents the ratio of the reconstructed BRS volume over the
full formulation volume. The graph shows how this ratio changes as a function of the number
of disturbance sections. The highest volume ratio (and therefore least conservative BRS)
was for M = 16,Mv = 2.
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Figure 3.3: 3D slices of the BRS for M = 16,Mv = 2. This decoupled approximation
provides the largest and least conservative under-approximation.

of the disturbances. However, splitting the disturbance range also restricts the allowable
trajectories of the system and can eventually introduce more conservatism. For example, if
the velocity disturbance range is 6  dv  12, the trajectories must stay within this velocity
range for the duration of T . If this range is split, the set of disturbances has a smaller range,
but likewise the trajectories for each subsection must remain within the smaller split velocity
range for the time period. Therefore, there is an optimal point past which splitting does not
help decrease conservatism.

In this system the least conservative approximation was for M = 16,Mv = 2. The
volume ratio for this approximation was 0.217, meaning that the decoupled approximation
had a volume that is 21.7% of the volume of the BRS computed using the full formulation.
The 3D projections of the set computed by M = 16,Mv = 2 can be seen in Fig. 3.3.

Computation Time Performance

In Fig. 3.4 we compare the computation time of the two methods as a function of the number
of grid points in each dimension. Computations were done on a desktop computer with a
Core i7-5820K CPU and 128 GB of random-access memory (RAM). The full formulation
(yellow curve) quickly becomes intractable as grid points are added; 100 grid points in each
dimension requires 12.7 hours and 97 GB of RAM.

The decoupled approximation is orders of magnitude faster than the full formulation,
and therefore can be done with many more grid points in each dimension. The decoupled
approximation used was for M = 16,Mv = 2 sections, as this provided the most accurate
BRS as determined in Section 3.5. The runtimes would be even faster using M = Mv = 1
sections. We plot both the runtimes for reachability computation with 4D-reconstruction (red
curve) as well as the runtimes for reachability computation alone (blue curve). Compared
to the full formulation, at 100 grid points in each dimension the decoupled approximation
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Figure 3.4: Computation time as a function of the number of grid points in each dimen-
sion. The full formulation (yellow curve) is orders of magnitude slower than the decoupled
approximation. The decoupled approximation with reconstruction (red curve) takes a bit
more time (and significantly more memory) than without reconstruction (blue curve).
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increases approximately linearly.
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takes 50 seconds to run and 36 seconds to reconstruct, with 625 MB of RAM to run and
6.75 GB of RAM to reconstruct. At 200 grid points the decoupled approximation takes 3.37
minutes to run and 44.1 minutes to reconstruct, with 1 GB of RAM to run and 120 GB of
RAM to reconstruct.

In general we recommend computing the value function in only a region near a state of
interest, bypassing the time and RAM required to reconstruct the function over the entire
grid. Without full reconstruction of the value function, we are able to obtain results faster
and for higher numbers of grid points before running out of memory, improving the accuracy
of the computation.

In Fig. 3.5 we compare the computation time of the 2D computations in the decoupled
approximation as a function Mv and M . Each line of the graph represents the computation
time for a fixed number of Mv across various values of M . As the number of sections
increases, the computation time required increases approximately linearly, as expected.

3.6 Chapter Summary

Hamilton-Jacobi reachability analysis can provide safety and performance guarantees for
many practical systems, but the curse of dimensionality limits its application to systems with
less than approximately five state variables. By treating state variables as disturbances, key
state dependencies can be eliminated, reducing the system dynamics to a simpler form and
allowing reachable sets to be calculated conservatively using available e�cient methods in
the literature.
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Chapter 4

Self-Contained Subsystems

This chapter is based on the papers “Exact and E�cient Hamilton-Jacobi-based Guaran-
teed Safety Analysis via System Decomposition” [34] and “A General System Decomposition
Method for Computing Reachable Sets and Tubes” [38], written in collaboration with Mo
Chen, Mahesh Vashishtha, Somil Bansal, and Claire J. Tomlin.

In this chapter, we present a system decomposition method for computing BRSs and
BRTs of a class of nonlinear systems. Our method drastically reduces dimensionality with-
out making any other trade o↵s. Our method first computes BRSs for lower-dimensional
subsystems, and then reconstructs the full-dimensional BRS without incurring additional ap-
proximation errors other than those arising from the lower-dimensional computations. Cru-
cially, the subsystems can be coupled through common states, controls, and disturbances.
The treatment of this coupling distinguishes our method from others which consider com-
pletely decoupled subsystems, potentially obtained through transformations [31, 153]. Since
BRTs are also of great interest in many situations, we prove conditions under which BRTs
can also be decomposed.

The theory we present in this chapter is compatible with any methods that compute
BRSs and BRTs, such as [42, 6, 74, 128, 37]. In addition, when di↵erent decomposition
methods are combined together, even more dimensionality reduction can be achieved. This
chapter will be presented as follows:

• In Sections 4.1 and 4.2 we introduce the basic concept of reachability, and all the
definitions needed for our proposed decomposition technique.

• In Sections 4.3 and 4.4 we present our theoretical results related to decomposing BRSs
for systems involving a control variable, but not involving a disturbance variable.

• In Section 4.5 we show how BRTs can be decomposed.

• In Section 4.6 we demonstrate our decomposition method on high-dimensional systems.
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• In Section 4.7 we discuss how the presence of disturbances a↵ects the above theoretical
results.

• We will also present numerical results obtained through the Hamilton-Jacobi (HJ)
reachability formulation in [126] throughout the chapter to validate our theory.

4.1 Background

There are various formulations for computing the BRS and BRT when the system dimen-
sionality is low. In this section, we give the basic mathematical problem setup to provide a
foundation on which we build the new proposed theory.

System Dynamics

Let z 2 Rn be the system state, which evolves according to the ordinary di↵erential equation
(ODE)

dz(⌧)

d⌧
= ż(⌧) = f(z(⌧), u(⌧)), ⌧ 2 [t, T ], u(⌧) 2 U (4.1)

In general, the theory we present is applicable when some states are periodic dimensions
(such as angles), but for simplicity we will consider Rn. The control is denoted by u(⌧), with
the control function u(·) 2 U being drawn from the set of measurable functions.

The control signal u 2 U ⇢ Rnu is compact, T = 0, and t < T . The system dynamics, or
flow field, f : Rn

⇥ U ! Rn is assumed to be uniformly continuous, bounded, and Lipschitz
continuous in1 z for fixed u. Therefore, given u(·) 2 U, there exists a unique trajectory
solving (4.1) [46]. We will denote solutions, or trajectories of (4.1) starting from state z
at time t under control u(·) as ⇣(⌧ ; z, t, u(·)) : [t, T ] ! Rn. ⇣ satisfies (4.1) with an initial
condition almost everywhere:

d

d⌧
⇣(⌧ ; z, t, u(·)) = f(⇣(⌧ ; z, t, u(·)), u(⌧))

⇣(t; z, t, u(·)) = z
(4.2)

Since the dynamics (4.1) are time-invariant, the time variables in trajectories can also be
shifted by some constant2 s:

⇣(⌧ ; z, t, u(·)) = ⇣(⌧ + s; z, t+ s, u(·)), 8z 2 Rn (4.3)

1For the remainder of the chapter, we will omit the notation “(⌧)” from variables such as z and u when
referring to function values.

2In this case, it is implicit that the control function u(·) is also time-shifted by the same amount s.



CHAPTER 4. SELF-CONTAINED SUBSYSTEMS 47

Backward Reachable Sets and Tubes

We consider two di↵erent definitions of the BRS and two di↵erent definitions of the BRT.
Intuitively, a BRS represents the set of states z 2 Rn from which the system can be

driven into some set L ✓ Rn at the end of a time horizon of duration |t� T |. We call L the
“target set”. First we define the “Maximal BRS”; in this case the system seeks to enter L

using some control function. We can think of L as a set of goal states. The Maximal BRS
represents the set of states from which the system is guaranteed to reach L. The second
definition is for the “Minimal BRS”; in this case the BRS is the set of states that will lead to
L for all possible controls. Here we often consider L to be an unsafe set such as an obstacle.
The Minimal BRS represents the set of states that leads to violation of safety requirements.
Formally, the two definitions of BRSs are below 3:

Definition 1. Maximal BRS.

R(t) = {z : 9u(·) 2 U, ⇣(T ; z, t, u(·)) 2 L}

Definition 2. Minimal BRS.

A(t) = {z : 8u(·) 2 U, ⇣(T ; z, t, u(·)) 2 L}

While BRSs indicate whether a system can be driven into L at the end of a time horizon,
BRTs indicate whether a system can be driven into L at some time during the time horizon
of duration |t|. Figure 4.1 demonstrates the di↵erence. BRTs are very important notions
especially in safety-critical applications, in which we are interested in determining the “Min-
imal BRT”: the set of states that could lead to danger at some time within a specified time
horizon. Formally, the two definitions of BRTs are as follows:

Definition 3. Maximal BRT.

R̄(t) = {z : 9u(·) 2 U, 9⌧ 2 [t, T ], ⇣(⌧ ; z, t, u(·)) 2 L}

Definition 4. Minimal BRT.

Ā(t) = {z : 8u(·) 2 U, 9⌧ 2 [t, T ], ⇣(⌧ ; z, t, u(·)) 2 L}

The terms “maximal” and “minimal” refer to the role of the optimal control [127]. In
the maximal (or minimal) case, the control causes the BRS or BRT to contain as many (or
few) states as possible – to have maximal (or minimal) size.

While BRSs and BRTs indicate sets of states of interest, from a practical implementation
perspective controller synthesis based on the reachable sets is extremely important. Much

3Sometimes in the literature, the argument of R, A, R̄, or Ā is some non-negative number ⌧ = �t;
however, for simplicity we will use the non-positive number t to refer to the time horizon of the BRS and
BRT.
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Figure 4.1: The di↵erence between a BRS and a BRT. The dashed trajectory starts at some
state z1 and passes through L during the period [t, T ] where T = 0, but exits L by the end
of the time period. Therefore the z1 is in the BRT, but not in the BRS. The solid trajectory
starting from z2 is in L at the end of the time period. Therefore, z2 is in both the BRS and
the BRT.

of the prior work on reachable set computations also include controller synthesis, which
is usually done by casting the reachability problem as an optimal control or optimization
problem, often with a functional representation of BRSs and BRTs. The controller is given
as decision variables in the optimization [169, 19, 126, 27, 121, 176]. We will not delve into
the details of controller synthesis, since the theory we present in this chapter is agnostic to
these details.

4.2 Problem Formulation

In this chapter, we seek to obtain the BRSs and BRTs in Definitions 1 and 4 via compu-
tations in lower-dimensional subspaces under the assumption that the system (4.1) can be
decomposed into self-contained subsystems (SCS) (4.5). Such a decomposition is common,
since many systems involve components that are loosely coupled. In particular, the evolution
of position variables in vehicle dynamics is often weakly coupled through other variables such
as heading.

Subsystem Dynamics

Let the state z 2 Rn be partitioned as z = (z1, z2, zc), with z1 2 Rn1 , z2 2 Rn2 , zc 2
Rnc , n1, n2 > 0, nc � 0, n1+n2+nc = n. Note that nc could be zero. We call z1, z2, zc “state
partitions” of the system. Intuitively, z1 and z2 are states belonging to subsystems 1 and 2,
respectively, and zc states belonging to both subsystems.

Under the above notation, the system dynamics (4.1) become
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ż1 = f1(z1, z2, zc, u)

ż2 = f2(z1, z2, zc, u)

żc = fc(z1, z2, zc, u)

(4.4)

In general, depending on how the dynamics f depend on u, some state partitions may
be independent of the control.

We group these states into subsystems by defining the SCS states x1 = (z1, zc) 2 Rn1+nc

and x2 = (z2, zc) 2 Rn2+nc , where x1 and x2 in general share the “common” states in zc. Note
that our theory is applicable to any finite number of subsystems defined in the analogous
way, with xi = (zi, zc); however, without loss of generality (WLOG), we assume that there
are just two subsystems.

Definition 5. Self-contained subsystem. Consider the following special case of (4.4):

ż1 = f1(z1, zc, u)

ż2 = f2(z2, zc, u)

żc = fc(zc, u)

(4.5)

We call each of the subsystems with states defined as xi = (zi, zc) a “self-contained
subsystem” (SCS), or just “subsystem” for short. Intuitively (4.5) means that the evolution
of each subsystem depends only on the subsystem states: ẋi depends only on xi = (zi, zc).
Explicitly, the dynamics of the two subsystems are as follows:

ż1 = f1(z1, zc, u) ż2 = f2(z2, zc, u)

żc = fc(zc, u) żc = fc(zc, u)

(Subsystem 1) (Subsystem 2)

Note that the two subsystems are coupled through the common state partition zc and
control u.

An example of a system that can be decomposed into SCSs is the Dubins Car with
constant speed v:

2

4
ṗx
ṗy
✓̇

3

5 =

2

4
v cos ✓
v sin ✓
!

3

5 , ! 2 U (4.6)

with state z = (px, py, ✓) representing the x position, y position, and heading, and control
u = ! representing the turn rate. The state partitions are simply the system states: z1 =
px, z2 = py, zc = ✓. The dynamics of the subsystems are
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Figure 4.2: This figure shows the back-projection of sets in the z1-zc plane S1 and the z2-zc
plane (S2) to the 3D space to form the intersection shown as the black cube (S). The figure
also shows projection of a point z onto the lower-dimensional subspaces in the z1-zc and z2-zc
planes.

ẋ1 =


ż1
żc

�
=


ṗx
✓̇

�
=


v cos ✓
!

�

ẋ2 =


ż2
żc

�
=


ṗy
✓̇

�
=


v sin ✓
!

�

u = !

(4.7)

where the overlapping state is ✓, and the shared control is u itself. For more examples of
systems decomposed into SCSs, see Section 4.6.

Although there may be common or overlapping states in x1 and x2, the evolution of each
subsystem does not depend on the other explicitly. In fact, if we for example entirely ignore
the subsystem x2, the evolution of the subsystem x1 is well-defined and can be considered a
full system on its own; hence, each subsystem is self-contained.

Projection Operators

For the projection operators, it will be helpful to refer to Fig. 4.2. Define the projection of
a state z = (z1, z2, zc) onto a subsystem state space Rni+nc as

proj
i
(z) = xi = (zi, zc) (4.8)

This projects a point in the full dimensional state space onto a point in the subsystem
state space. Also define the back-projection operator to be

proj�1(xi) = {z 2 Z : (zi, zc) = xi} (4.9)
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This back-projection lifts a point from the subsystem state space to a set in the full
dimensional state space. We will also need the ability to apply the back-projection operator
on subsystems set to full dimensional sets. In this case, we overload the back-projection
operator:

proj�1(Si) = {z 2 Z : 9xi 2 Si, (zi, zc) = xi} (4.10)

Subsystem Trajectories

Since each subsystem in (4.5) is self-contained, we can denote the subsystem trajectories
⇠i(⌧ ; xi, t, u(·)). When needed, we will write the subsystem trajectories more explicitly in
terms of the state partitions as ⇠i(⌧ ; zi, zc, t, u(·)). The subsystem trajectories satisfy the
subsystem dynamics and initial condition:

d

ds
⇠i(⌧ ; xi, t, u(·)) = gi(⇠i(⌧ ; xi, t, u(s))

⇠i(t; xi, t, u(·)) = xi

(4.11)

where gi(xi, u) = (fi(zi, zc, u), fc(zc, u)), and the full system trajectory and subsystem tra-
jectories are simply related to each other via the projection operator:

proj
i

�
⇣(⌧ ; z, t, u(·))

�
= ⇠i(⌧ ; xi, t, u(·)) (4.12)

where xi = proj
i
(z).

Goals of This Chapter

We assume that the full system target set L can be written in terms of the subsystem target
sets L1 ✓ X1,L2 ✓ X2 in one of the following ways:

L = proj�1(L1) \ proj�1(L2) (4.13)

where the full target set is the intersection of the back-projections of subsystem target sets,
or

L = proj�1(L1) [ proj�1(L2) (4.14)

where the full target set is the union of the back-projections of subsystem target sets. Fig. 4.2
helps provide intuition for these concepts: applying (4.13) to S1 and S2 results in the black
cube. Applying (4.14) would result in the cross-shaped set encompassing both proj�1(S1)
and proj�1(S2).

In practice, this is not a strong assumption, since L1 and L2 share the common variables
zc. Relatively complex shapes, for example those in Fig. 4.4 and 4.6, can be represented
by an intersection or union of back-projections of lower-dimensional sets that share common
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variables. In addition, such an assumption is reasonable since the full system target set
should at least be representable in some way in the lower-dimensional spaces.

Next, we define the subsystem BRSs Ri,Ai the same way as in Definitions 1 and 2, but
with the subsystems in (4.5) and subsystem target sets Li, i = 1, 2, respectively:

Ri(t) = {xi : 9u(·), ⇠i(T ; xi, t, u(·)) 2 Li}

Ai(t) = {xi : 8u(·), ⇠i(T ; xi, t, u(·)) 2 Li}
(4.15)

Subsystem BRTs are defined analogously:

R̄i(t) = {xi : 9u(·), 9⌧ 2 [t, T ], ⇠i(⌧ ; xi, t, u(·)) 2 Li}

Āi(t) = {xi : 8u(·), 9⌧ 2 [t, T ], ⇠i(⌧ ; xi, t, u(·)) 2 Li}
(4.16)

Given a system in the form of (4.5) with target set that can be represented by (4.13) or
(4.14), our goals are as follows.

• Decomposition of BRSs. First, we would like to compute full-dimensional BRSs by
performing computations in lower-dimensional subspaces. Specifically, we would like to
first compute the subsystem BRSs Ri(t) or Ai(t), and then reconstruct the full system
BRS R(t) or A(t). This process greatly reduces computation burden by decomposing
the full system into two lower-dimensional subsystems. Formally, we would like to
investigate the situations in which each of the following four cases is true:

(4.13)) R(t) = proj�1(R1(t)) \ proj�1(R2(t))

(4.13)) A(t) = proj�1(A1(t)) \ proj�1(A2(t))

(4.14)) R(t) = proj�1(R1(t)) [ proj�1(R2(t))

(4.14)) A(t) = proj�1(A1(t)) [ proj�1(A2(t))

(4.17)

Results related to BRSs are outlined for SCSs in Theorems 1 and 2. In the case that
the subsystem controls are independent, Propositions 2 and 3 state stronger results.

• Decomposition of BRTs. BRTs are useful since they provide guarantees over a time
horizon as opposed to at a particular time. However, often BRTs cannot be decomposed
the same way as BRSs. Therefore, our second goal is to propose how BRTs can be
decomposed. These results are stated in Propositions 4 and 5, and Theorem 3.

• Treatment of disturbances. Finally, we investigate how the above theoretical results
change in the presence of disturbances. In Section 4.7, we will show that slightly
conservative BRSs and BRTs can still be obtained using our decomposition technique.

Tables 4.1, 4.2, and 4.3 summarize our theoretical results and where details of each result
can be found.
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Table 4.1: Backward Reachable Set Decomposition

Section 4.3 4.4 4.7 4.7
Shared Controls Yes No Yes No
Shared Disturbance No No Yes Yes
Target Intersection Union Intersection Union Intersection Union Intersection Union
Recover Max. BRS? No Yes, exact Yes, exact Yes, exact No Yes, consrv Yes, consrv Yes, consrv
Recover Min. BRS? Yes, exact No Yes, exact Yes, exact Yes, consrv No Yes, consrv Yes, consrv

Locations & Equation(s) Thm 2, (4.19) Thm 1, (4.18)
Prop 2, (4.34)
Thm 2, (4.19)

Thm 1, (4.18)
Prop 3, (4.35)

Cor 4, (4.73) Cor 3, (4.71) Cor 5, (4.74) Cor 6, (4.76)

Summary of possible decompositions of the BRS, whether they are possible, and if so
whether they are exact or conservative. Exact means that no additional approximation
errors are introduced. Note that in the cases marked “no” for shared control (or shared
disturbance), the results hold for both decoupled control (or disturbance) and for no
control (or disturbance). All cases shown are for scenarios with shared states, with the
shared states being zc in (4.5); in the case that there are no shared states this becomes a
straightforward decoupled system.

Table 4.2: BRT Results for Reconstruction from Tubes

Section 4.5 4.7
Shared Controls Yes No Yes No
Shared Disturbance No No Yes Yes
Target Intersection Union Intersection Union Intersection Union Intersection Union
Recover Max. BRT? No Yes, exact No Yes, exact No Yes, conserv No Yes, conserv
Recover Min. BRT? No No No Yes, exact No No No Yes, conserv

Equation(s) N/A Prop 4, (4.40) N/A
Prop 4, (4.40)
Prop 4, (4.41)

N/A Cor 7, (4.77) N/A
Cor 7, (4.77)
Cor 8, (4.78)

Summary of possible decompositions of the BRT, whether they are possible, and if so
whether they are exact or conservative. Exact means that no additional approximation
errors are introduced. Note that in the cases marked “no” for shared control (or shared
disturbance), the results hold for both decoupled control (or disturbance) and for no
control (or disturbance). All cases shown are for scenarios with shared states, with the
shared states being zc in (4.5); in the case that there are no shared states this becomes a
straightforward decoupled system.
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Table 4.3: BRT Results for Reconstruction from Sets

Section 4.5 4.7
Disturbance No Yes
Recover Max. BRT? Yes, exact Yes, conserv
Recover Min. BRT? Yes, exact* Yes, exact*

Equation(s)
Prop 5, (4.42)
Thm 3, (4.44)

Cor 9, (4.79)
Thm 3, (4.44)

Summary of computation of the BRT via union of BRSs, whether they are exact or
conservative. Exact means that no additional approximation errors are introduced. These
results can be combined with those of Table 4.1 to, for the negative cases in Table 4.2,
e�ciently compute BRTs by first computing BRSs via decomposition and then taking the
union of BRSs to obtain the BRT. “*” indicates that the solution here can be found only if
the minimal BRSs are non-empty for the entire time period.

4.3 Self-Contained Subsystems

Suppose the full system (4.1) can be decomposed into SCSs in (4.5), then the full-dimensional
BRS can be reconstructed, without incurring additional approximation errors, from lower-
dimensional BRSs in situations stated in Theorem 1 and 2.

Remark 1. If L represents states the system aims to reach, then R(t) represents the set of
states from which L can be reached. If the system goal states are the union of subsystem goal
states, then it su�ces for any subsystem to reach its subsystem goal states, regardless of any
coupling that exists between the subsystems. Theorem 1 states this intuitive result.

Theorem 1. Suppose that the full system in (4.1) can be decomposed into the form of (4.5),
then

L = proj�1(L1) [ proj�1(L2)

) R(t) = proj�1(R1(t)) [ proj�1(R2(t))
(4.18)

Remark 2. If L represents the set of unsafe states, then A(t) is the set of states from which
the system will be driven into danger. Thus outside of A(t), there exists a control for the
system to avoid the unsafe states. For the system to avoid a target set L in the form of an
intersection of subsystem target sets, it su�ces to avoid the unsafe states in either subsystem,
regardless of any coupling that exists between the subsystems. Theorem 2 formally states this
intuitive result.

Theorem 2. Suppose that the full system in (4.1) can be decomposed into the form of (4.5),
then
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L = proj�1(L1) \ proj�1(L2)

) A(t) = proj�1(A1(t)) \ proj�1(A2(t))
(4.19)

These two theorems imply that the optimal closed-loop state feedback controller is de-
composable: at any given (full) state, the optimal control depends only on either of the
subsystem states, but not the full state. Therefore, BRSs for a system using a pre-specified
closed-loop controller can be decomposed if the control depends only on subsystem states
at any given (full) state. It is also interesting to note that BRSs for a system using a pre-
specified open-loop controller can be decomposed, since augmenting the state space with
ṫ = 1 would maintain the structure of self-contained subsystems. The additional com-
putational burden from the state augmentation can be eliminated through a time-varying
formulation of reachability, for example, in reference [73].

To prove the theorems, we need some intermediate results.

Lemma 1. Let z̄ 2 Z, x̄i = proj
i
(z̄),Si ✓ Xi. Then,

x̄i 2 Si , z̄ 2 proj�1(Si) (4.20)

Proof. Forward direction: Suppose x̄i 2 Si, then trivially 9xi 2 Si, proji(z̄) = xi. By the
definition of back-projection in (4.10), we have z̄ 2 proj�1(Si).

Backward direction: Suppose z̄ 2 proj�1(Si), then by (4.10) we have 9xi 2 Si, proji(z̄) =
xi. Denote such an xi to be x̂i, and suppose x̄i /2 Si. Then, we have x̂i 6= x̄i, a contradiction,
since x̄i = proj

i
(z̄) = x̂i.

Corollary 1. If S = proj�1(S1) [ proj�1(S2), then

z̄ 2 S , x̄1 2 S1 _ x̄2 2 S2, where x̄i = proj
i
(z̄)

Corollary 2. If S = proj�1(S1) \ proj�1(S2), then

z̄ 2 S , x̄1 2 S1 ^ x̄2 2 S2, where x̄i = proj
i
(z̄)

Proof of Theorem 1

Proof. We will prove the following equivalent statement:

z̄ 2 R(t), z̄ 2 proj�1(R1(t)) [ proj�1(R2(t)) (4.21)

Consider the relationship between the full system trajectory and subsystem trajectory in
(4.12). Define x̄i = proj

i
(z̄) and ⇠i(T ; x̄i, t, u(·)) = proj

i
(⇣(T ; z̄, t, u(·))).

Backward direction: By Corollary 1, (4.21) is equivalent to

x̄1 2 R1(t) _ x̄2 2 R2(t) (4.22)



CHAPTER 4. SELF-CONTAINED SUBSYSTEMS 56

WLOG, assume x̄1 2 R1(t). By the subsystem BRS definition in (4.15), this is equivalent
to

9u(·), ⇠1(T ; x̄1, t, u(·)) 2 L1 (4.23)

By Lemma 1, we equivalently have z̄ 2 proj�1(R1(t)). This proves the backward direc-
tion.

Forward direction: We begin with z̄ 2 R(t), which by Definition 1 is equivalent to
9u(·), ⇣(T ; z̄, t, u(·)) 2 L. By Corollary 1, we then have

9u(·), ⇠1(T ; x̄1, t, u(·)) 2 L1 _ ⇠2(T ; x̄2, t, u(·)) 2 L2 (4.24)

Finally, distributing “9u(·)” gives (4.22).

Proof of Theorem 2

Proof. We will prove the following equivalent statement:

z̄ /2 A(t), z̄ /2 proj�1(A1(t)) \ proj�1(A2(t)) (4.25)

The above statement is equivalent to

z̄ 2 A
c(t), z̄ 2

⇥
proj�1(A1(t))

⇤c
[
⇥
proj�1(A2(t))

⇤c
(4.26)

By the Definition 2 (minimal BRS), we have that z̄ 2 A
c(t) is equivalent to 9u(·) 2

U, ⇣(T ; z̄, t, u(·)) 2 L
c. Also,

z̄ 2
⇥
proj�1(A1(t))

⇤c
[
⇥
proj�1(A2(t))

⇤c

is equivalent to x̄1 2 A
c

1(t) _ x̄2 2 A
c

2(t).
From here, we can proceed in the same fashion as the proof of Theorem 1, with “R(t)”

replaced with “Ac(t)”, “proj�1(Ri(t))” replaced with “
⇥
proj�1(Ai(t))

⇤c
”, and “L”, “Li”

replaced with “Lc”, “Lc

i
”, respectively.

The conditions for reconstruction of the maximal BRS for an intersection of targets, as
well as the minimal BRS for a union of targets, are more complicated and beyond the scope
of this chapter. A summary of the results from this section can be seen in Table 4.1 under
Section 4.3.

Numerical Example: The Dubins Car

The Dubins Car is a well-known system whose dynamics are given by (4.6). This system is
only 3D, and its BRS can be tractably computed in the full-dimensional space, so we use it
to compare the full formulation with our decomposition method. The Dubins Car dynamics
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Figure 4.3: Comparison of the Dubins Car BRS A(t = �0.5) computed using the full
formulation and via decomposition. Left top: BRSs in the lower-dimensional subspaces and
how they are combined to form the full-dimensional BRS. Top right: BRS computed via
decomposition. Bottom left: BRSs computed using both methods, superimposed, showing
that they are indistinguishable. Bottom right: BRS computed using the full formulation.

can be decomposed according to (4.7). For this example, we computed the BRS from the
target set representing positions near the origin in both the px and py dimensions:

L = {(px, py, ✓) : |px|, |py|  0.5} (4.27)

Such a target set L can be used to model an obstacle that the vehicle must avoid. Given
L, the interpretation of the BRS A(t) is the set of states from which a collision with the
obstacle may occur after a duration of |t|. From L, we computed the BRS A(t) at t = �0.5.
The resulting full formulation BRS is shown in Fig. 4.3 as the red surface which appears in
the bottom subplots. To compute the BRS using our decomposition method, we write the
unsafe set L as

L1 = {(px, ✓) : |px|  0.5},L2 = {(py, ✓) : |py|  0.5}

L = proj�1(L1) \ proj�1(L2)
(4.28)

From L1 and L2, we computed the lower-dimensional BRSs A1(t) and A2(t), and then
reconstructed the full-dimensional BRS A(t) using Theorem 2: A(t) = proj�1(A1(t)) \
proj�1(A2(t)). The subsystem BRSs and their back-projections are shown in magenta and
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Figure 4.4: The Dubins Car BRS A(t = �0.5) computed using the full formulation and via
decomposition, other view angles.
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Figure 4.5: Computation times of the two methods in log scale for the Dubins Car. The
time of the direct computation in 3D increases rapidly with the number of grid points
per dimension. In contrast, computation times in 2D with decomposition are negligible in
comparison.

green in the top left subplot of Fig. 4.3. The reconstructed BRS is shown in the top left,
top right, and bottom left subplots of Fig. 4.3 (black mesh).

In the bottom left subplot of Fig. 4.3, we superimpose the full-dimensional BRS computed
using the two methods. We show the comparison of the computation results viewed from
two di↵erent angles in Fig. 4.4. The results are indistinguishable.

Theorem 2 allows the computation to be performed in lower-dimensional subspaces, which
is significantly faster. Another benefit of the decomposition method is that in the numerical
methods for solving the HJ PDE, the amount of numerical dissipation increases with the
number of state dimensions. Thus, computations in lower-dimensional subspaces lead to a
slightly more accurate numerical solution.

The computation benefits of using our decomposition method can be seen from Fig. 4.5.
The plot shows, in log-log scale, the computation time in seconds versus the number of grid
points per dimension in the numerical computation. One can see that the direct computation
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Figure 4.6: Comparison of the R(t) computed using our decomposition method and the full
formulation. The computation results are indistinguishable. Note that the surface shows the
boundary of the set; the set itself is on the “near” side of the left subplot, and the left side
of the right subplot.

of the BRS in 3D becomes very time-consuming as the number of grid points per dimension
is increased, while the computation via decomposition hardly takes any time in comparison.
Directly computing the BRS with 251 grid points per dimension in 3D took approximately
80 minutes, while computing the BRS via decomposition in 2D only took approximately 30
seconds! The computations were timed on a computer with an Intel Core i7-2600K processor
and 16GB of random-access memory.

Fig. 4.6 illustrates Theorem 1. We chose the target set to be L = {(px, py, ✓) : px 
0.5 _ py  0.5}, and computed the BRS R(t), t = �0.5 via decomposition. No additional
approximation error is incurred in the reconstruction process. The target set can be written
as L = proj�1(L1) [ proj�1(L1) where L1 = {(px, ✓) : px  0.5},L2 = {(py, ✓) : py  0.5}.

4.4 SCSs with Decoupled Control

In this section, we consider a special case of (4.5) in which the subsystem controls are
independent. The results from Section 4.3 still hold, and in addition we can state the results
in Propositions 2 and 3. The special case of (4.5) is as follows:

ż1 = f1(z1, zc, u1)

ż2 = f2(z2, zc, u2)

żc = fc(zc)

(4.29)

where the subsystem controls are independent, so that we have u = (u1, u2). Furthermore,
we can define the trajectory of zc as ⌘(⌧ ; zc, t)), which satisfies
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d

d⌧
⌘c(⌧ ; zc, t) = fc(⌘c(⌧ ; zc, t))

⌘c(t; zc, t)) = zc

(4.30)

Note that since the trajectory ⌘c(⌧ ; zc, t) does not depend on the control, we can treat
⌘c(⌧ ; zc, t) as a constant when given zc and ⌧ . Therefore, given zc, the other state partitions
also become self-contained, with dynamics

żi = fi(zi, zc, ui) = fi(zi, ui; ⌘c(s; zc, t)) (4.31)

and with trajectories ⌘i(⌧ ; zi, zc, t, ui(·)) satisfying

d

d⌧
⌘i(⌧ ; zi, zc, t, ui(·))

= fi(⌘i(⌧ ; zi, zc, t, ui(·)), ui(⌧); ⌘c(⌧ ; zc, t))

⌘i(t; zi, zc, t, ui(·)) = zi

(4.32)

Therefore, the subsystem trajectories can be written as

⇠i(⌧ ; xi, t, ui(·)) =
�
⌘i(⌧ ; zi, zc, t, ui(·)), ⌘c(⌧ ; zc, t)

�
(4.33)

Proposition 2. Suppose that the full system in (4.1) can be decomposed into the form of
(4.29). Then,

L = proj�1(L1) \ proj�1(L2)

) R(t) = proj�1(R1(t)) \ proj�1(R2(t))
(4.34)

Proposition 3. Suppose that the full system in (4.1) can be decomposed into the form of
(4.29). Then,

L = proj�1(L1) [ proj�1(L2)

) A(t) = proj�1(A1(t)) [ proj�1(A2(t))
(4.35)

Remark 3. Systems with fully decoupled subsystems in the form of x1 = z1, x2 = z2 are a
special case of (4.29).

Proof of Proposition 2

Proof. We will prove the following equivalent statement:

x̄ 2 R(t), x̄ 2 proj�1(R1(t)) \ proj�1(R2(t)) (4.36)

By Definition 1 (maximal BRS), we have

x̄ 2 R(t), 9u(·), ⇣(T ; x̄, t, u(·)) 2 L (4.37)
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Consider the relationship between the full system trajectory and subsystem trajectory in
(4.12). Define

x̄i = (z̄i, z̄c) = proj
i
(x̄), and

⇠i(⌧ ; x̄i, t, ui(·)) = proj
i
(⇣(T ; x̄, t, u(·)))

By (4.33) we can write

�
⌘i(⌧ ; z̄i, z̄c, t, ui(·)), ⌘c(⌧ ; z̄c, t)

�
= proj

i
(⇣(T ; x̄, t, u(·)))

Since L = proj�1(L1) \ proj�1(L2), (4.37) is equivalent to

9 (u1(·), u2(·)) ,�
⌘1(⌧ ; z̄1, z̄c, t, u1(·)), ⌘c(⌧ ; z̄c, t)

�
2 L1^�

⌘2(⌧ ; z̄2, z̄c, t, u2(·)), ⌘c(tdummy; z̄c, t)
�
2 L2

(by Corollary 2)

(4.38)

,
9u1(·),

�
⌘1(⌧ ; z̄1, z̄c, t, u1(·)), ⌘c(⌧ ; z̄c, t)

�
2 L1^

9u2(·),
�
⌘2(⌧ ; z̄2, z̄c, t, u2(·)), ⌘c(⌧ ; z̄c, t)

�
2 L2

(since subsystem controls do not share components)

(4.39)

, x1 2 R1(t) ^ x2 2 R2(t)
(by definition of subsystem BRS in (4.15))

, x̄ 2 proj�1(R1(t)) \ proj�1(R2(t))
(by Corollary 2)

Proof of Proposition 3

Proof. This proof follows the same arguments as 2, but with “R”, “\”, “9” replaced with
“A”, “[”, “8”, respectively.

Remark 4. When the subsystem controls are not independent, the control chosen by each
subsystem may not agree with the other. This is the intuition behind why the results of
Propositions 2 and 3 only hold true when the subsystem controls are independent. Note that
the theorems hold despite the state coupling between the subsystems.

A summary of the results from this section can be seen in Table 4.1 under Section 4.4.
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4.5 Decomposition of Reachable Tubes

Sometimes, BRTs are desired; for example, in safety analysis, the computation of the BRT
Ā(t) in Definition 2 is quite important, since if the target set L represents an unsafe set
of states, then Ā(t) contains all states that would lead to some unsafe state at some time
within a duration of length |t|.

We now first discuss a special case where the full system BRT can be directly recon-
structed from subsystem BRTs in Section 4.5, and then present a general method in which
a BRT can be obtained via the union of BRSs in Section 4.5.

Full System BRTs From Subsystem BRTs

Intuitively, it may seem like the results related to BRSs outlined in Sections 4.3 and 4.4
trivially carry over to BRTs, and the relationship between BRSs and BRTs are relatively
simple; however, this is only partially true. The results related to BRSs presented so far in
this chapter only easily carry over for BRTs if L = proj�1(L1)[proj

�1(L2). This is formally
stated in the following Proposition:

Proposition 4. Suppose (4.14) holds, that is,

L = proj�1(L1) [ proj�1(L2)

Then, the full-dimensional BRT can be reconstructed from the lower-dimensional BRTs
without incurring additional approximation errors. For systems with SCSs as in (4.5), we
have

R̄(t) = proj�1(R̄1(t)) [ proj�1(R̄2(t)) (4.40)

This is proven by starting the proof of Theorem 1 with Definition 3 for the BRT R̄(t)
instead of Definition 1 for the BRS R(t).

For systems with independent subsystem controls, we in addition have

Ā(t) = proj�1(Ā1(t)) [ proj�1(Ā2(t)) (4.41)

This can be proven by starting the proof of Proposition 3 from Definition 4 for the BRT
Ā(t) instead of Definition 2 for the BRS A(t). Note that (4.41) does not necessarily hold for
systems whose subsystem controls are not independent.

BRTs From Union of BRSs

If L = proj�1(L1) \ proj�1(L2), the BRT cannot be directly reconstructed from lower-
dimensional BRTs because when computing BRTs, we lose information about the exact
time that a trajectory enters a set. Instead, we provide an alternative method of obtaining
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the BRT: First compute BRSs, and then take their union over time. We show that R̄(t) =S
⌧2[t,T ] R(⌧), and Ā(t) =

S
⌧2[t,T ] A(⌧) when A(⌧) 6= ; 8⌧ 2 [t, T ]. These results related to

the indirect reconstruction of BRTs are given in Proposition 5 and Theorem 3.
This method is independent of how the BRSs are obtained and whether subsystem con-

trols are independent, since the union is taken over time of BRSs of the same dimensionality
as the BRT. To take advantage of decomposition, one would compute BRSs via decomposi-
tion for the cases outlined in Sections 4.3 and 4.4, and then take the union over time of the
BRSs to obtain the BRT.

Note that, as mentioned, this alternative method of computing the BRT is needed for the
case where L = proj�1(L1)\proj

�1(L2); however, it is also applicable for the cases presented
in Section 4.5, where L = proj�1(L1) [ proj�1(L2), as long as the BRSs can be computed
via decomposition; thus there is overlap of applicability between the two BRT computation
methods we present.

Proposition 5. [

⌧2[t,T ]

R(⌧) = R̄(t) (4.42)

Theorem 3. [

⌧2[t,T ]]

A(⌧) ✓ Ā(t) (4.43)

In addition, if 8⌧ 2 [t, T ]],A(⌧) 6= ;, then

[

⌧2[t,T ]]

A(⌧) = Ā(t). (4.44)

Proposition 5 and the first part of Theorem 3 are known [127], but we present them in
this chapter in greater detail for clarity and completeness. The second part of Theorem 3 is
the main new result related to obtaining the BRT from BRSs.

Remark 5. The reason the theorems in Sections 4.3 and 4.4 trivially carry over when
L = proj�1(L1) [ proj�1(L2) is that in this case, any subsystem trajectory that reaches the
corresponding subsystem target set implies that the full system trajectory reaches the full
system target set.

In contrast, in the case L = proj�1(L1) \ proj�1(L2), both subsystem trajectories must
be in the corresponding subsystem target sets at the same time. Mathematically, recall the
definitions of subsystem BRTs in (4.16):

Āi(t) = {xi : 8u(·), 9⌧ 2 [t, T ]], ⇠i(⌧ ; xi, t, u(·)) 2 Li}

R̄i(t) = {xi : 9u(·), 9⌧ 2 [t, T ]], ⇠i(⌧ ; xi, t, u(·)) 2 Li}

The set of “⌧” during which each subsystem trajectory is in Li may not overlap for the
di↵erent subsystems. In this case, we can still first compute the BRSs in lower-dimensional
subspaces, and then convert the BRSs to the BRT using Propositions 5 and Theorem 3.
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Proof of Proposition 5

Proof. We start with Definition 1 (maximal BRS):

R(t) = {x : 9u(·) 2 U, ⇣(T ]; x, t, u(·)) 2 L}

If some state x is in the union
S
⌧2[t,T ]] R(⌧), then there is some ⌧ 2 [t, T ]] such that

x 2 R(⌧). Therefore, the union can be written as

[

⌧2[t,T ]]

R(⌧) = {x : 9⌧ 2 [t, T ]], 9u(·), ⇣(T ]; x, ⌧, u(·)) 2 L} (4.45)

Suppose x 2
S
⌧2[t,T ]] R(⌧), then equivalently

9⌧ 2 [t, T ]], 9u(·) 2 U, ⇣(T ]; x, ⌧, u(·)) 2 L (4.46)

Using (4.3), the time-invariance of the system, we can shift the trajectory time arguments
by t� ⌧ to get

9⌧ 2 [t, T ]], 9u(·) 2 U, ⇣(t� ⌧ ; x, t, u(·)) 2 L (4.47)

Since ⌧ 2 [t, T ]], t� ⌧ 2 [t, T ]], we can equivalently write

9⌧ 2 [t, T ]], 9u(·) 2 U, ⇣(⌧ ; x, t, u(·)) 2 L (4.48)

We can swap the expressions 9⌧ 2 [t, T ]] and 9u(·) 2 U without changing meaning since
both quantifiers are the same:

9u(·) 2 U, 9⌧ 2 [t, T ]], ⇣(⌧ ; x, t, u(·)) 2 L (4.49)

which is equivalent to x 2 R̄(t) by Definition 3 (maximal BRT).

Proof of Theorem 3

Proof. We first establish
S
⌧2[t,T ]] A(⌧) ✓ Ā(t). Consider Definition 2 (minimal BRS):

A(t) = {x : 8u(·) 2 U, ⇣(T ]; x, t, u(·)) 2 L}

If some state x is in the union
S
⌧2[t,T ]] A(⌧), then 9⌧ 2 [t, T ]] such that x 2 A(⌧). Thus,

the union can be written as

[

⌧2[t,T ]]

A(⌧) = {x : 9⌧ 2 [t, T ]], 8u(·), ⇣(T ]; x, ⌧, u(·)) 2 L} (4.50)

Suppose x 2
S
⌧2[t,T ]] A(⌧), then

9⌧ 2 [t, T ]], 8u(·) 2 U, ⇣(T ]; x, ⌧, u(·)) 2 L (4.51)
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Using (4.3), the time-invariance of the system, we can shift the trajectory time arguments
by t� ⌧ to get

9⌧ 2 [t, T ]], 8u(·) 2 U, ⇣(t� ⌧ ; x, t, u(·)) 2 L (4.52)

Since ⌧ 2 [t, T ]], t� ⌧ 2 [t, T ]], we can equivalently write

9⌧ 2 [t, T ]], 8u(·) 2 U, ⇣(⌧ ; x, t, u(·)) 2 L (4.53)

Let such an ⌧ 2 [t, T ]] be denoted ⌧̄ , then

8u(·) 2 U, ⇣(⌧̄ ; x, t, u(·)) 2 L

) 8u(·) 2 U, 9⌧ 2 [t, T ]], ⇣(⌧ ; x, t, u(·)) 2 L
(4.54)

By Definition 4, we have x 2 Ā(t).
Next, given 8⌧ 2 [t, T ]],A(⌧) 6= ;, we show

S
⌧2[t,T ]] A(⌧) ◆ Ā(t). Equivalently, we show

x /2
[

⌧2[t,T ]]

A(⌧)) x /2 Ā(t) (4.55)

First, observe that by the definition of minimal BRS, we have that if any state x̄ 2 A(t),
then

8⌧ 2 [t, T ]], 8u(·) 2 U, ⇣(⌧ ; x̄, t, u(·)) 2 A(⌧) (4.56)

since otherwise, we would have for some ⌧̄ 2 [t, T ]],

9u(·) 2 U, ⇣(⌧̄ ; x̄, t, u(·)) /2 A(⌧̄)

) 9u(·) 2 U, ⇣(T ]; ⇣(⌧̄ ; x̄, t, u(·)), ⌧̄ , u(·)) /2 L

, 9u(·) 2 U, ⇣(T ]; x̄, t, u(·)) /2 L

(4.57)

which contradicts x̄ 2 A(t).
Given x /2 A(t), there exists some control ū(·) such that ⇣(T ]; x, t, ū(·)) /2 L = A(T ]).

Moreover, we must have 8⌧ 2 [t, T ]], ⇣(⌧ ; x, t, ū(·)) /2 L, since otherwise, we would have 9⌧̂
such that

⇣(⌧̂ ; x, t, ū(·)) 2 L = A(T ])

) x = ⇣(t; x, t, ū(·)) 2 A(t� ⌧̂)
(4.58)

which contradicts x /2
S
⌧2(t,T ]) A(⌧).

Using time-invariance of the system dynamics, we have 8⌧ 2 [t, T ]], ⇣(T ]; x, t� ⌧, ū(·)) /2
L, which is equivalent to 8⌧ 2 [t, T ]], ⇣(T ]; x, ⌧, ū(·)) /2 L. Therefore, 9u(·) 2 U, 8⌧ 2
[t, T ]], ⇣(T ]; x, ⌧, ū(·)) /2 L , x /2 Ā(t).
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Figure 4.7: The BRT computed directly in 3D (red surface) and computed via decomposition
in 2D (black mesh). Using our decomposition technique, we first compute the BRSs A(⌧), ⌧ 2
[�0.5, 0], and then obtain the BRT by taking their union.

Remark 6. The way to compute the union of BRSs over a continuous time interval depends
on the reachability formulation. In the case of HJ reachability, which is used to obtain
numerical examples in this chapter, time is discretized to satisfy the Courant-Friedrichs-
Lewy (CFL) condition, ensuring the underlying numerical methods are stable. We save sets
at each time interval, resulting in a series of look-up tables of dimension n, where n is the
number of states; the number of such look-up tables is the number of discrete time steps. As
in [126], sets are represented by the zero sublevel sets of functions, so taking the union of
sets amounts to taking an element-wise minimum between a finite number of di↵erent look-up
tables corresponding to each time interval.

Remark 7. When 9⌧ 2 [t, T ]],A(⌧) = ;, it is currently not known whether the union of
the BRSs A(⌧) will be equal to the BRT Ā(t) or a proper subset of the BRT Ā(t). Both are
possibilities. Finding a weaker condition under which the union of BRSs is equal to the BRT
is an important future direction that we plan to investigate.

Remark 8. Note that Proposition 5 and Theorem 3 also hold for decoupled control.

A summary of the results from this section can be seen in Table 4.2 under Section 4.5,
and Table 4.3 under Section 4.5.

Numerical Results

We now revisit the Dubins Car, whose full system and subsystem dynamics are given in
(4.6) and (4.7) respectively. Using the target set L given in (4.27) and writing L in the form
of (4.28), we computed the BRT Ā(t), t = �0.5 by first computing A(⌧), ⌧ 2 [�0.5, 0], and
then taking their union.
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Fig. 4.7 shows the BRT Ā(t), t = �0.5 computed directly in 3D and via decomposition.
Since A(⌧) 6= ; 8⌧ 2 [�0.5, 0], reconstruction does not incur additional approximation
errors.

4.6 High-Dimensional Numerical Results

In this section, we show numerical results for the 6D Acrobatic Quadrotor and the 10D Near-
Hover Quadrotor, two systems whose exact BRSs and BRTs were intractable to compute
with previous methods to the best of our knowledge.

The 6D Acrobatic Quadrotor

In [80], a 6D quadrotor model used to perform backflips was simplified into a series of smaller
models linked together in a hybrid system. The quadrotor has state z = (px, vx, py, vy,�,!),
and dynamics

2

6666664

ṗx
v̇x
ṗy
v̇y
�̇
!̇

3

7777775
=

2

6666664

vx
�

1
m
Cv
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sin�
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�

1
m
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D
vy) +
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m
cos�

!
�

1
Iyy

C�

D
! � l

Iyy
T1 +

l

Iyy
T2

3

7777775
(4.59)

where px, py, and � represent the quadrotor’s horizontal, vertical, and rotational positions,
respectively. Their derivatives represent the velocity with respect to each state. The control
inputs T1 and T2 represent the thrust exerted on either end of the quadrotor, and the constant
system parameters are m for mass, Cv

D
for translational drag, C�

D
for rotational drag, g for

acceleration due to gravity, l for the length from the quadrotor’s center to an edge, and Iyy
for moment of inertia.

We decompose the system into the following subsystems:

x1 = (px, vx,�,!) (4.60)

x2 = (py, vy,�,!) (4.61)

For this example we will compute A(t) and Ā(t), which describe the set of initial con-
ditions from which the system may enter the target set despite the best possible control to
avoid the target. We define the target set as a square of length 2 centered at (px, py) = (0, 0)
described by L = {(px, vx, py, vy,�,!) : |px|, |py|  1}. This can be interpreted as a posi-
tional box centered at the origin that must be avoided for all angles and velocities. From the
target set, we define l(z) such that l(z)  0, z 2 L. This target set is then decomposed as
follows:

L1 = {(px, vx,�,!) : |px|  1}

L2 = {(py, vy,�,!) : |py|  1}
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Figure 4.8: Left: 3D positional slices of the reconstructed 6D BRSs at vx = vy = 1, ! = 0 at
di↵erent points in time. The BRT cannot be seen in this image because it encompasses the
entire union of BRSs. Right: 3D velocity slices of the reconstructed 6D BRSs at px, py = 1.5,
� = 1.5 at di↵erent points in time. The BRT can be seen as the transparent gray surface
that encompasses the sets.

The BRS of each 4D subsystem is computed and then recombined into the 6D BRS.
To visually depict the 6D BRS, 3D slices of the BRS along the positional and velocity
axes were computed. The left image in Fig. 4.8 shows a 3D slice in (px, py,�) space at
vx = vy = 1,! = 0. The yellow set represents the target set L, with the BRS in other colors.
Shown on the right in Fig. 4.8 are 3D slices in (vx, vy,!) space at px, py = 1.5,� = 1.5
through di↵erent points in time. The sets grow darker as time propagates backward. In the
case of HJ reachability, time is discretized, and sets are represented via the zero sublevel set
of an implicit surface function [126]. Thus, the union in Theorem 3 for obtaining the BRT is
computed by taking the element-wise minimum between the stored BRSs at each discretized
time step in the time interval. The BRT can be seen in Fig. 4.8 as the gray surface.

The 10D Near-Hover Quadrotor

The 10D Near-Hover Quadrotor was used for experiments involving learning-based MPC
[29]. Its dynamics are
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(4.62)

where (px, py, pz) denotes the position, (vx, vy, vz) denotes the velocity, (✓x, ✓y) denotes the
pitch and roll, and (!x,!y) denotes the pitch and roll rates. The controls of the system
are (Sx, Sy), which respectively represent the desired pitch and roll angle, and Tz, which
represents the vertical thrust. The system experiences the disturbance (dx, dy, dz) which
represents wind in the three axes. g denotes the acceleration due to gravity. The parameters
d0, d1, n0, kT , as well as the control bounds U , that we used were d0 = 10, d1 = 8, n0 =
10, kT = 0.91, |ux|, |uy|  10 degrees, 0  uz  2g, |dx|, dy  0.5 m/s, |dz|  1 m/s. The
system can be fully decoupled into three subsystems of 4D, 4D, and 2D, respectively:

x1 = (px, vx, ✓x,!x) (4.63)

x2 = (py, vy, ✓y,!y) (4.64)

x3 = (pz, vz) (4.65)

The target set is chosen to be

L = {(px, vx, ✓x,!x, py, vy, ✓y,!y, pz, vz) :

|px|, |py|  1, |pz|  2.5}
(4.66)

This target set can be written as L =
T3

i=1 proj
�1(Lxi

), where proj�1(Lxi
), i = 1, 2, 3 are

given by

L1 = {(px, vx, ✓x,!x) : |px|  1}

L2 = {(py, vy, ✓y,!y) : |py|  1}

L3 = {(pz, vz) : |pz|  2.5}

(4.67)

Since the subsystems do not have any common controls or disturbances, and L =T3
i=1 proj

�1(Lxi
), we can compute the full-dimensional R(t) and R̄(t) by reconstructing

lower-dimensional BRSs and BRTs. A discussion of disturbances can be found in Section
4.7.
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Figure 4.9: 3D slices of the 10D BRSs over time (colored surfaces) and BRT (black surface)
for the Near-Hover Quadrotor. The slices are taken at the indicated 7D point.

From the target set, we computed the 10D BRS and BRT, R(s), R̄(s), s 2 [�1, 0]. In
the left subplot of Fig. 4.9, we show a 3D slice of the BRS and BRT sliced at (vx, vy, vz) =
(�1.5,�1.8, 1.2), ✓x = ✓y = !x = !y = 0. The colored sets show the slice of the BRSs
R(s), s 2 [�1, 0], with the times color-coded according to the legend. The slice of the BRT
is shown as the black surface; the BRT is the union of BRSs by Proposition 5.

The BRS and BRT in the position space makes intuitive sense. As expected, the BRSs
A(s) move in the opposite direction of the velocity slice (vx, vy, vz) = (1.5,�1,�1) as s goes
backward in time (decreases). In addition, the BRSs A(s) become smaller as s goes backward
in time, which makes sense since the farther the quadrotor is away from the obstacle, the
more time it has to apply a control to avoid the obstacle, and hence the set of unsafe states
is smaller.

The right subplot of Fig. 4.9 shows the BRS and BRT in (✓x, ✓y, vz) space, sliced at
(px, py, pz) = (�1.5, 0, 1), (vx, vy) = (1.2,�0.6),!x = !y = �0.5. To the best of our knowl-
edge, such a slice of the exact BRS and BRT is not possible to obtain using previous methods,
since a high-dimensional system model like (4.62) is needed for analyzing the angular behav-
ior of the system.

4.7 Handling disturbances

Under the presence of disturbances, the full system dynamics changes from (4.1) to

dx

d⌧
= ẋ = f(x, u, d), ⌧ 2 [t, T ], u 2 U , d 2 D (4.68)
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where d 2 D represents the disturbance, with d(·) 2 D drawn from the set of measurable
functions.

In addition, we assume that the disturbance function d(·) is drawn from the set of non-
anticipative strategies [126], denoted �(t). We denote the mapping from u(·) to d(·) as d(·)
as in [126]. The subsystems in (4.5) are now written as

ż1 = f1(z1, zc, u, d)

ż2 = f2(z2, zc, u, d)

żc = fc(zc, u, d)

(4.69)

In general, subsystem disturbances may be coupled. Whether this is the case is very
important, as some of the results involving disturbances become stronger when the subsystem
disturbances are independent.

Trajectories of the system and subsystems are now denoted

⇣(⌧ ; x, t, u(·), d(·)), ⇠i(⌧ ; xi, t, u(·), d(·)),

and satisfy conditions analogous to (4.2) and (4.11) respectively. We also need to incorporate
the disturbance into the BRS and BRT definitions:

Ā(t) = {x : 9d(·), 8u(·), 9⌧ 2 [t, T ],

⇣(⌧ ; x, t, u(·), d(·)) 2 L}

R̄(t) = {x : 8d(·), 9u(·), 9⌧ 2 [t, T ],

⇣(⌧ ; x, t, d(·), d(·)) 2 L}

A(t) = {x : 9d(·), 8u(·), ⇣(T ; x, t, u(·), d(·)) 2 L}

R(t) = {x : 8d(·), 9u(·), ⇣(T ; x, t, u(·), d(·)) 2 L}

(4.70)

Subsystem BRSs Ri,Ai, i = 1, 2 are defined analogously.

Self-Contained Subsystems

Under the presence of disturbances, the results from Section 4.3 carry over with some mod-
ifications. Theorems 1 and 2 need to be changed slightly, and the reconstructed BRS is now
an approximation conservative in the right direction.

Corollary 3. Suppose that the full system in (4.1) can be decomposed into the form of
(4.69), then

L = proj�1(L1) [ proj�1(L2)

) R(t) ◆ proj�1(R1(t)) [ proj�1(R2(t))
(4.71)

To solve this, in the proof of Theorem 1, (4.24) becomes
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8d(·), 9u(·), ⇠1(T ; x̄1, t, u(·), d(·)) 2 L1_

⇠2(T ; x̄2, t, u(·), d(·)) 2 L2
(4.72)

The expression “8d(·), 9u(·)” can no longer be distributed, thus making the reconstructed
BRS a conservative approximation of the true BRS in the right direction. By conservative
in the right direction, we mean that a state x in the reconstructed BRS is guaranteed to be
able to reach the target.

Corollary 4. Suppose that the full system in (4.1) can be decomposed into the form of
(4.69), then

L = proj�1(L1) \ proj�1(L2)

) A(t) ✓ proj�1(A1(t)) \ proj�1(A2(t))
(4.73)

The proof of Theorem 2 makes the same arguments except that it involves complements of
sets instead. Again, the reconstructed BRS is a conservative approximation of the true BRS
in the right direction, meaning that a state x outside of the reconstructed BRS is guaranteed
to be able to avoid the target.

If the subsystem disturbances have no shared components, then (4.72) becomes

8 (�1[u](·), �2[u](·)) , 9u(·), ⇠1(T ; x̄1, t, u(·), �1[u](·)) 2 L1_

⇠2(T ; x̄2, t, u(·), �2[u](·)) 2 L2

where d(·) is written as (�1[u](·), �2[u](·)).
In this case, the expression “8 (�1[u](·), �2[u](·)) , 9u(·)” can be distributed. Therefore, in

this case Theorems 1 and 2 still hold.

Subsystems with Decoupled Control

For systems with decoupled control, but coupled disturbance in the subsystems, results from
Section 4.7 still hold since the system dynamics structure is a special case of that in Section
4.7. In addition, results from Section 4.4 hold with some modifications. Propositions 2 and 3
need to be modified, and again the reconstructed BRS is now an approximation conservative
in the right direction.

Corollary 5. Suppose that the full system in (4.1) can be decomposed into the form of
(4.29), with the addition of coupled disturbances. Then,

L = proj�1(L1) \ proj�1(L2)

) R(t) ◆ proj�1(R1(t)) \ proj�1(R2(t))
(4.74)
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To prove this, we modify Proposition 2 by changing (4.38) to

8d(·), 9 (u1(·), u2(·))�
⌘1(⌧ ; z̄1, z̄c, t, u1(·), d(·)), ⌘c(⌧ ; z̄c, t)

�
2 L1^�

⌘2(⌧ ; z̄2, z̄c, t, u2(·), d(·)), ⌘c(⌧ ; z̄c, t)
�
2 L2

(4.75)

The expression “8d(·), 9 (u1(·), u2(·))” cannot be distributed to lead to a statement analogous
to (4.39). Hence, the forward direction of Proposition 2 does not hold, and conservativeness
is introduced.

By the same reasoning, the result of Proposition 3 changes to the following.

Corollary 6.
L = proj�1(L1) [ proj�1(L2)

) A(t) ✓ proj�1(A1(t)) [ proj�1(A2(t))
(4.76)

In both cases, conservative approximations of the BRS can still be obtained. A summary
of the results from this section can be seen in Table 4.1 under Sections 4.7 & 4.7.

Decomposition of Reachable Tubes

Under disturbances, the results from Section 4.5 carry over with modifications. For recon-
struction from other BRTs, the arguments in Proposition 4 do not change. However, in the
case where there is coupling in the subsystem disturbances, the reconstructed BRTs become
conservative approximations.

Corollary 7. Suppose our system has coupled control and disturbance as in (4.69), then

L = proj�1(L1) [ proj�1(L2)

) R̄(t) ◆ proj�1(R̄1(t)) [ proj�1(R̄2(t))
(4.77)

Corollary 8. Suppose our system has independent subsystem controls, then

L = proj�1(L1) [ proj�1(L2)

) Ā(t) ✓ proj�1(Ā1(t)) [ proj�1(Ā2(t))
(4.78)

For Proposition 5, the union of the BRSs now becomes an under-approximation of the
BRT in general:

Corollary 9. Suppose our system has coupled control and disturbance as in (4.69), then

L = proj�1(L1) \ proj�1(L2)

)

[

⌧2[t,T ]

R(⌧) ✓ R̄(t) (4.79)
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To show this, all arguments in the proof of Proposition 5 remain the same, except (4.45)
no longer implies (4.49). Instead, the implication is unidirectional:

9⌧ 2 [t, T ], 8d(·), 9u(·), ⇣(T ; x, ⌧, u(·), d(·)) 2 L

) 8d(·), 9u(·), 9⌧ 2 [t, T ], ⇣(⌧ ; x, t, u(·), d(·)) 2 L
(4.80)

This is due to the switching of the order of the expressions “9⌧ 2 [t, T ]” and “d(·)”.
Therefore, the union of the BRSs becomes an under-approximation of the BRT, a conser-
vatism in the right direction: a state in the under-approximated BRT is still guaranteed to
be able to reach the target.

In contrast to Proposition 5, all the arguments of Theorem 3 hold, since there is no
change of order of expressions involving existential and universal quantifiers. A summary of
the results from this section can be seen in Table 4.2 & 4.3 under Section 4.7.

Dubins Car with Disturbances

Under disturbances, the Dubins Car dynamics are given by

2

4
ṗx
ṗy
✓̇

3

5 =

2

4
v cos ✓ + dx
v sin ✓ + dy
! + d✓

3

5

! 2 U , (dx, dy, d✓) 2 D

(4.81)

with state x = (px, py, ✓), control u = !, and disturbances d = (dx, dy, d✓). The state
partitions are z1 = px, z2 = py, zc = ✓. The subsystems dynamics are as follows:

ẋ1 =


ż1
żc

�
=


ṗx
✓̇

�
=


v cos ✓ + dx
! + d✓

�

ẋ2 =


ż2
żc

�
=


ṗy
✓̇

�
=


v sin ✓ + dy
! + d✓

�

uc = ! = u

d1 = dx, d2 = dy, dc = d✓

(4.82)

where the overlapping state is ✓ = zc. We assume that each component of disturbance is
bounded in some interval centered at zero: |dx|  d̄x, |dy|  d̄y, |d✓|  d̄✓. The subsystem
disturbances b1 and b2 have the shared component d✓.
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Figure 4.10: Minimal BRTs computed directly in 3D and via decomposition in 2D for the
Dubins Car under coupled subsystem disturbances. The reconstructed BRT is an over-
approximation of the true BRT. The over-approximated regions of the reconstruction are
indicated by the arrows.

Figure 4.11: Minimal BRTs computed directly in 3D and via decomposition in 2D for the
Dubins Car under independent subsystem disturbances. In this case, the BRT computed
using decomposition matches the true BRT.

Fig. 4.10 compares the BRT Ā(t), t = �0.5 computed directly from the target set in
(4.27), and using our decomposition technique from the subsystem target sets in (4.28),
wherein the union is taken over a discrete number of BRSs over the time interval. For this
computation, we chose d̄x, d̄y = 1, d̄✓ = 5.

Since there is coupling in the disturbances, the BRT computed using our decompo-
sition technique becomes an over-approximation of the true BRT. One can see the over-
approximation by noting that the black set is not flush against the red set, as marked by
the arrows in Fig. 4.10.
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Fig. 4.11 shows the same computation with d̄✓ = 0, so that subsystem disturbances
are independent. In this case, one can see that the BRTs computed directly in 3D and via
decomposition in 2D are the same.

4.8 Chapter Summary

In this chapter, we presented a general system decomposition method for e�ciently comput-
ing BRSs and BRTs in several scenarios. By performing computations in lower-dimensional
subspaces, computation burden is substantially reduced, allowing currently tractable compu-
tations to be orders of magnitude faster, and currently intractable computations to become
tractable. Unlike related work on computation of BRSs and BRTs, our method can signifi-
cantly reduce dimensionality without sacrificing any optimality.

Under disturbances, the reconstructed BRSs and BRTs sometimes become slightly conser-
vative approximations which are still useful for providing performance and safety guarantees.
To the best of our knowledge, such guarantees for high-dimensional systems are now possi-
ble for the first time. Our decomposition technique can also be used in combination with
other dimensionality reduction or approximation techniques, further alleviating the curse of
dimensionality.

We are currently extending our decomposition technique to other scenarios, including
more representations of full-dimensional sets in lower-dimensional subspaces and more fam-
ilies of system dynamics. In addition, we look forward to combining our technique with
other related techniques such as reinforcement learning and machine learning, automating
the system decomposition process, and demonstrating our theory in hardware experiments.
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Chapter 5

Warm-Start Reachability

This chapter is based on the paper “Reachability-Based Safety Guarantees using E�cient
Initializations” [87], written in collaboration with Shromona Ghosh, Somil Bansal, and Claire
J. Tomlin.

As humanity increasingly relies on autonomous systems, ensuring provable safety guar-
antees and controllers for these systems is vital. To achieve safety for nonlinear systems,
tools such as Hamilton-Jacobi-Isaacs (HJI) reachability analysis can provide both a guar-
antee and a corresponding control input [17, 126]. Applications include collision avoidance
[126, 39], safe tracking of online motion planners [88, 107], stormwater management [32],
and administering anesthesia [99], and others [21, 91, 57]. HJI reachability analysis is based
on assumptions about system dynamics, external disturbances, and the surrounding envi-
ronment. However in reality the dynamics, the disturbance bounds, or the environment may
di↵er from the assumptions. In these situations the safety analysis must be updated.

Unfortunately, performing HJI reachability analysis is computationally intensive for large
systems and cannot be computed e�ciently as new information is acquired. There are some
methods for speeding up this computation using decomposition [38], and there are other
e�cient approaches that require simplified problem formulations and/or dynamics [74, 83,
111, 112, 120, 136, 100]. The methods in [6, 42, 58, 74, 122], can handle more complex
dynamics, but may be less scalable or unable to represent complex sets. E�cient reachability
analysis remains challenging for general system dynamics and problem setups.

Warm-starting in the optimization community involves using an initialization that acts as
a “best guess” of the solution, and therefore may converge in fewer iterations (if convergence
can be achieved). Recent work applied this warm-starting idea to create a “discounted
reachability” formulation for infinite-time horizon problems [3, 70]. By using a discount
factor, this formulation guarantees convergence regardless of the initialization. However,
convergence rates using this discount factor can be very slow, and in practice the analysis
may not converge numerically when convergence thresholds are too tight, or may converge
incorrectly when convergence thresholds are too lenient. In addition, parameter tuning of



CHAPTER 5. WARM-START REACHABILITY 78

the discount factor can be time-intensive. These issues reduce the computational benefit of
warm-start reachability.

Until now there were no guarantees of convergence for warm-starting HJ reachability
without using a discount factor. In this chapter we prove that warm-start reachability
with no discount factor will in general result in guaranteed conservative safety analyses
and controllers (i.e. the analysis over-approximates the set of states that are unsafe to
enter). Moreover, if the initialization is over-optimistic and therefore dangerous (i.e. the
initialization underestimates the set of states that are unsafe to enter), we prove that warm-
starting is guaranteed to converge exactly to the true solution (here we use “exact” to mean
numerically convergent [129]).

In addition to these proofs, we provide several common problem classes for which we
can prove this exact convergence. We demonstrate these results on an illustrative example
with a double integrator, and a more practical example of a realistic 10D quadcopter model
that experiences changes in mass and disturbances and must update its safety guarantees
accordingly. In these examples warm-start reachability is 1.6 times faster than standard
reachability and 6.2 times faster than (untuned) discounted reachability formulation.

5.1 Problem Formulation

Consider an autonomous agent in an environment in the presence of external disturbance.
This environment contains a target set L that is meaningful to the agent: it can be either
a set of goal states, or a set of unsafe states. HJI reachability seeks to find the set of
initial states for which the system, acting optimally and under worst-case disturbances, will
end up in the target set L either at a particular time (backward reachable set, or BRS) or
within a time horizon (backward reachable tube, or BRT). Optimal behavior of the system
depends on the nature of the target set and can be formulated as a game: for a goal set,
the control will seek to minimize distance to the goal whereas the worst-case disturbance
will maximize distance to the goal. For an unsafe set, the control will maximize and the
disturbance will minimize. Both cases (and various combinations of cases) can be solved
using HJI reachability analysis.1

The theory in this chapter applies to BRTs with infinite-time horizons. Typically this
scenario is more interesting in the avoid case (where the system seeks to avoid an unsafe set
of states forever), and will therefore be the focus of this chapter. In this section we define
the agent’s dynamics and formally introduce HJI reachability analysis.

1Note that there are combination reach-avoid problems that seek to reach a goal set while avoiding unsafe
sets. There are also problems that use forward reachable sets and tubes. More information can be found in
[17].
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Dynamic System Model

We assume that the autonomous system (i.e. agent) has initial state x 2 Rn and initial time
t, and evolves according to the ordinary di↵erential equation (ODE):

ẋ = f(x, u, d), u 2 U , d 2 D. (5.1)

Here the system has a control u and disturbance d. We assume that these inputs are drawn
from compact sets (U , D), and their signals over time (u(·), d(·)) are drawn from the set of
measurable functions U : [t, T ]! U and D : [t, T ]! D.

We assume that the flow field f : Rn
⇥U⇥D ! Rn is uniformly continuous and Lipschitz

continuous in x for fixed u and d. Under these assumption there exists a unique solution
of these system dynamics for a given u(·), d(·) [46], providing trajectories of the system:
⇣(⌧ ; x, t, u(·), d(·)). This notation can be read as the state achieved at time ⌧ by starting at
initial state x and initial time t, and applying input functions u(·) and d(·) over [t, ⌧ ]. For
compactness we will refer to trajectories using ⇣u,dx,t (⌧). Because we tend to solve reachability
problems backwards in time, we use the notation that forward trajectories end at final time
⌧ = T , and start at an initial negative time t.

Running example: In this chapter we use a double integrator as a running example.
Its system dynamics are:

ẋ =


ṗ
v̇

�
=


v + d
ub

�
, (5.2)

with states position p and velocity v, where u 2 [�1, 1] is acceleration. By default the
disturbance is d = 0, and there is a default model parameter of b = 1. In later examples we
will change the disturbance bound and model parameter.

Hamilton-Jacobi-Isaacs Reachability

Defining the Value Function

We define a target function l(x) whose sub-zero level set is the target set L describing the
unsafe states, i.e. L = {x : l(x)  0}. Typically l(x) is defined as a signed distance function
that measures distance to L. This can be considered as a measure of reward that is positive
outside of the unsafe set and negative inside.

This problem formulation seeks to find all trajectories that will enter L at any point in
the time horizon, and therefore become unsafe. This is computed by finding the minimum
reward (and therefore minimum distance to L) over time:

J(x, t, u(·), d(·)) = min
⌧2[t,0]

l(⇣u,dx,t (⌧)), t  0. (5.3)

More specifically, the goal is to capture this minimum reward for optimal trajectories of
the system. To do this we optimize for the optimal control signal that maximizes the reward
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Figure 5.1: Visualization of the running example using a double integrator model. The
target set L and corresponding function l(x) are in green. We initialize V (x, 0) = l(x), and
update the function using (5.5) by optimizing over the inner product between the spatial
gradients (seen for V (x, 0) as black arrows) and the system dynamics (whose flow field is
seen as blue arrows). The converged BRT V

⇤ and value function V ⇤(x) are in cyan.

(and drives the system away from the unsafe target set) and the worst-case disturbance
signal that minimizes the reward. This leads to the value function:2

V (x, t) = inf
d(·)

sup
u(·)

n
J
⇣
x, t, u(·), d(·)

⌘o
. (5.4)

Level sets of the value function correspond to level sets of the target function. If a state
has a negative value, optimal trajectories starting from that state achieve negative reward
at some point in their trajectory, meaning they have entered the target set L sometime
within the time horizon. Therefore, the sub-zero level set of the value function comprises
the backward reachable tube (BRT), notated as V : the set of states from which the system
is guaranteed to enter the target set within the time horizon under optimal control and
worst-case disturbance. For the infinite-time avoid BRT, if the limit exists, we define the
converged value function as V ⇤(x) = limt!�1 V (x, t). The sub-zero level set of this converged
value function is the infinite-time avoid backwards reachable tube: V

⇤ = {x : V ⇤(x)  0}.
Trajectories initialized from states in this set will eventually enter the unsafe target set
despite the control’s best e↵ort. The complement of this set is therefore the safe set.

Running example: In the running example the target set is L = {(p, v) : |p|  2, |v| <
1}. This set and its corresponding target function l(x) can be seen in Fig. 5.1 in green.
The converged BRT V

⇤ and value function V ⇤(x) are in cyan. If the system starts inside
V

⇤, it will eventually enter the unsafe target set even while applying the optimal control (i.e.
decelerating/accelerating as much as possible).

2Technically, d(·) in (5.4) is actually �[u(·)](·), where � maps control inputs to disturbance inputs,
� = {d : U ! D}. As in [126], we restrict the disturbance to draw from nonanticipative strategies.
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Solving for the Value Function

To solve this optimization problem for the value function, the state space is discretized and
the value function is initialized to be equal to the target function, V (x, 0) = l(x). The
function V (·, ·) satisfies the Hamilton-Jacobi-Isaacs variational inequality (HJI VI):

min
n
DtV (x, t) +H

⇣
V (x, t),f(x, u, d)

⌘
,

l(x)� V (x, t)
o
= 0.

(5.5)

Here H is the Hamiltonian, which optimizes over the inner product between the spatial
gradients of the value function and the flow field of the dynamics to compute the optimal
control and disturbance inputs:

H
⇣
V (x, t), f(x, u, d)

⌘
=

max
u

min
d

hrV (x, t), f(x, u, d)i.
(5.6)

d
The term l(x)�V (x, t) in (5.5) restricts the value function from becoming more positive

than the target function, e↵ectively enforcing that all trajectories that achieve negative
reward at any time will continue to have negative reward for the rest of the time horizon. For
more details on the derivation of this HJI VI and variations that include forward reachability
and reach-avoid scenarios, please refer to [123, 73, 17, 126].

Running example: For the running example the initial spatial gradients for V (x, 0) =
l(x) can be seen as black arrows in Fig. 5.1. The Hamiltonian (5.6) will optimize over the
inner product between these gradients and the flow field of the dynamics f(x, u, d), seen as
blue arrows.

We solve the HJI VI (5.5) using dynamic programming:

V (x, t) = max
u(·)

min
d(·)

min
n

inf
⌧2[t,t+dt)

l
⇣
⇣u,dx,t (⌧)

⌘
,

V
⇣
⇣u,dx,t (t+ dt), t+ dt

⌘o
.

(5.7)

In the limit as the time step dt! 0, this is equivalent to:

V (x, t) = min
n
l
⇣
⇣u,dx,t (t)

⌘
,

h Z t+dt

t

H
⇣
V (⇣u,dx,t (⌧), ⌧), f(⇣

u,d

x,t (⌧), u, d)
⌘
d⌧

+ V
⇣
⇣u,dx,t (t+ dt), t+ dt

⌘io
.

(5.8)

We use (5.7) to update the value of each discretized state backwards in time using the
level set method toolbox and associated helperOC toolbox [129, 17]. This update occurs
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until the initial time has been reached, or for the infinite-horizon cases considered in this
chapter, until convergence. At convergence the infinite-horizon value function’s sub-zero
level set V

⇤ corresponds to the set of states that should be avoided in order to remain
safe for all time. Online, the system avoids these states by solving for the instantaneous
optimal control at state x using the Hamiltonian and inifinite-horizon value function: u⇤ =
argmaxu mindhrV ⇤(x), f(x, u, d)i.

Discounted Reachability

In [3] and [70], the authors introduced a discounting factor � into the cost function (5.3)
motivated by the sum of discounted rewards in reinforcement learning. The dynamic pro-
gramming equation in (5.7) is thus changed to:

V (x, t) = max
u(·)

min
d(·)

min
n

inf
⌧2[t,t+dt)

l
⇣
⇣u,dx,t (⌧)

⌘
exp (� · ⌧),

exp (� · dt)V
⇣
⇣u,dx,t (t+ dt), t+ dt

⌘o
,

(5.9)

where t  0. The authors show that this is a contraction mapping and, hence, V (x, 0) can
be initialized to any function (not just l(x)). The discounting allows Vl(x, t) to forget any
incorrect initializations over a longer time horizon. However, this formulation can still result
in a slow convergence without careful tuning of �, as we demonstrate in Section 5.4.

5.2 Warm-Start Reachability

When there are minor changes to the problem formulation, such as changes to the model
parameters, external disturbances, or target sets, computing V ⇤(·, ·) requires recomputing
the entire value function starting with the target function (V (x, 0) = l(x)). Instead, we
initialize with a previous computed (converged) value function.

We define this warm-starting function as k(x), with subzero level set K = {x : k(x)  0}.
To develop the theory, we revisit the cost function (5.3). We rewrite, Jl(x, t, u(·), d(·)) =

min
n
inf⌧2[t,0) l(⇣

u,d

x,t (⌧)), l(⇣
u,d

x,t (0))
o
and Vl(x, t) is defined as in (5.4) by replacing J by Jl,

Vl(x, t) = max
u(·)

min
d(·)

Jl(x, t, u(·), d(·))

= max
u(·)

min
d(·)

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), Vl(⇣
u,d

x,t (0), 0)
o
,

= max
u(·)

min
d(·)

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), l(⇣
u,d

x,t (0))
o
,

(5.10)
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Figure 5.2: The top row shows the target sets and backward reachable tubes, which are the
subzero level sets of the target and value functions (bottom row). For all examples shown,
green is the target set and function, cyan is the true BRT and converged value function,
blue is the warm-start initialization, and black is the warm-start converged value function.
(a) conservative warm-start initialization that converges exactly. (b) somewhat unrealistic
conservative warm-start initialization that gets stuck in a local solution and results in a
conservative value function (K and V

⇤
k
are not visualized because they include the entire

state space). (c) initializing at zero everywhere (K not visualized because it includes the
entire state space) results in a slightly conservative BRT. (d) to demonstrate how well this
algorithm works in practice, we initialize with the complement of random circles, resulting
in exact convergence.

Vl(x, t) is the solution to the following HJI-VI,

0 = min
n
DtVl(x, t) +Hl

⇣
Vl(x, t), f(x, u, d)

⌘
,

l(x)� Vl(x, t)
o
,

Hl(Vl(x, t), f(x, u, d)) =

max
u

min
d

hrVl(x, t), f(x, u, d)i,

Vl(x, 0) = l(x, 0).

(5.11)

The converged value function is defined as V ⇤
l
(x) = limt!�1 Vl(x, t). When we warm-start

the computation of value function using k, the cost function is given by:

Jk(x, t, u(·), d(·)) = min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), k(⇣
u,d

x,t (0))
o
. (5.12)



CHAPTER 5. WARM-START REACHABILITY 84

Vk can be defined as in (5.4) with J = Jk, i.e

Vk(x, t) = max
u(·)

min
d(·)

Jk(x, t, u(·), d(·))

= max
u(·)

min
d(·)

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), k(⇣
u,d

x,t (0))
o
.

(5.13)

Vk is the solution to the HJI-VI defined similarly as in (5.11) with Vk(x, 0) = k(x). The
converged value function is defined as V ⇤

k
(x) = limt!�1 Vk(x, t).

In this section we prove that the converged value function V ⇤
k
(x) that is initialized as

above Vk(x, 0) = k(x) will always be more negative than the value function V ⇤
l
(x) achieved

by standard reachability (i.e. initialized as Vl(x, 0) = l(x)). For the case of avoiding an
unsafe set, this means that the relationship between the functions’ BRTs (i.e. subzero level
sets) is V

⇤
k
◆ V

⇤
l
. In other words, V

⇤
k
is a conservative over-approximation of V

⇤
l
. We will

prove that for certain conditions (i.e. when k(x) � V ⇤
l
(x)), we can guarantee the resulting

value function and BRT will be exact.

Conservative Warm-Start Reachability

If [Vk(x, 0) = k(x)]  V ⇤
l
(x), a contraction mechanism is required to raise V ⇤

k
(x) towards

the true solution V ⇤
l
(x). Recall the HJI VI from (5.5). Contraction may happen naturally,

when the left hand side of the minimization (the HJI PDE) “pulls the system up” due to
the Hamiltonian. However, there are no guarantees that this contraction will happen, and
the new value function may get stuck in a local solution, V ⇤

k
(x)  V ⇤

l
(x). This will result in

a conservative BRT.

Theorem 4. For all initializations of Vk(x, 0) = k(x), the result will be conservative: 8x, t <
0, Vk(x, t)  Vl(x, t).

Proof. We prove that Vk(x, t)  Vl(x, t) for two cases, (a) k(x) < l(x) and (b) k(x) � l(x).

k(x) < l(x) For 8x, t < 0, let Vl(x, t) be defined as (5.10) and Vk(x, t) be defined as (5.13).

At t = 0, we have
h
Vk(x, 0) = k(x)

i
<
h
l(x) = Vl(x, 0)

i
) Vk(x, 0) < Vl(x, 0). For any t < 0:

Vk(x, t) = max
u(·)

min
d(·)

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), k(⇣
u,d

x,t (0))
o
,

 max
u(·)

min
d(·)

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), l(⇣
u,d

x,t (0))
o
,

= Vl(x, t).

(5.14)

The second inequality follows from the fact that k(x) < l(x) 8x 2 Rn. Hence, 8x, t, we have
Vk(x, t)  Vl(x, t). Finally, t! �1, we have V ⇤

k
(x)  V ⇤

l
(x).
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k(x) � l(x) When t = 0,
h
Vk(x, 0) = k(x)

i
�

h
l(x) = Vl(x, 0)

i
. For a time instance

t = 0�,

Vk(x, t) = max
u(·)

min
d(·)

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), k(⇣
u,d

x,t (0))
o

= min{l(⇣u,dx,t (0
�)), k(⇣u,dx,t (0)}

= l(⇣u,dx,t (0
�)) = Vl(x, t).

(5.15)

We can re-write (5.10) and (5.13) by replacing 0 by 0�. The rest follows from proof of case
(a). Here 0� implies an infinitesimally small change in time and we are e↵ectively computing
Vk(x, 0�) = min(k(x), l(x)) and treating Vk(x, 0) = Vk(x, 0�). One could derive the same
proof by considering Vk(x, 0) = min(k(x), l(x)).

In other words, the converged warm-starting solution will never be more conservative
than the initialization, and at least as conservative as the exact solution.

Exact Warm-start Reachability

In the case in which k(x) � V ⇤
l
(x), we are additionally guaranteed to recover the exact

solution.

Theorem 5. If we warm-start with Vk(x, 0) = k(x), such that 8x k(x) � V ⇤
l
(x), then,

V ⇤
k
(x) = V ⇤

l
(x).

The proof of Theorem 5 follows from Theorem 4 and Lemma 2, stated as:

Lemma 2. If 8x k(x) � V ⇤
l
(x), we have,

Vk(x, t) � V ⇤
l
(x) 8x, t < 0 (5.16)

Proof. To prove Lemma 2, let us consider k0(x) = V ⇤
l
(x). For t < 0, using dynamic pro-

gramming we have,

Vk0(x, t) = max
u(·)

min
d(·)

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), Vk0(⇣
u,d

x,t (0), 0)
o
,

= max
u(·)

min
d(·)

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), k
0(⇣u,dx,t (0))

o
.

(5.17)

For any t < 0, we can follow the same logic as in (5.14). Hence, 8x, t, we have Vk0(x, t) 
Vk(x, t). Moreover, since Vk0(x, 0) = V ⇤

l
(x), we know that Vk0(x, t) = V ⇤

l
(x) 8t since V ⇤

l
(x)

is the converged value function corresponding to l(x). Hence, Vk(x, t) � V ⇤
l
(x) 8x, t < 0.

Since this holds for all time, it also holds for t! �1: V ⇤
k
(x) � V ⇤

l
(x).
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Proof. To prove Theorem 5, we have 8x,

V ⇤
k
(x)  V ⇤

l
(x) (Theorem 4)

V ⇤
k
(x) � V ⇤

l
(x) (Lemma 2)

) V ⇤
k
(x) = V ⇤

l
(x)

(5.18)

5.3 Conservative Warm-Start Examples

Below we demonstrate several scenarios using the running example that result in conservative
solutions. All experiments were run on a desktop computer with an Intel Core i7-5280K
CPU @3.30GHz ⇥12 processor and 12.8GB of memory. For all examples the value function
is considered converged when the maximum change of value in one time step (dt = 0.01) is
less than 0.001.

Conservative Initialization with Exact Results

In practice we find that frequently the value function converges to the exact solution even
when initialized below the converged value function, i.e. when k(x) < V ⇤

l
(x). Fig. 5.2a

demonstrates one such example. The warm-start function k(x) (seen in blue) is initialized to
be the original value function acquired when u 2 [�.7, .7]. If the control authority increases
to u 2 [�1, 1], standard reachability converges to the cyan value function V ⇤

l
(x). In black

is the value function under V ⇤
k
(x) that was initialized by k(x) instead of l(x). Convergence

occurs due to the Hamiltonian in (5.5) contracting the value function until the solution has
been reached.

Conservative Initialization with Conservative Results

To find a result that does not converge exactly and instead results in a conservative solution,
we initialize with k(x) < V ⇤

l
(x) that has incorrect gradients everywhere, as shown in blue

in Fig 5.2b. This is a fairly unrealistic initial estimate for the true value function, as as the
subzero level set K is the entire state space. As the Hamiltonian contracts the function,
convergence occurs at a local solution when the gradients of the value function approach
zero. In black we see that V ⇤

k
(x) < V ⇤

l
(x), and the BRT V

⇤
k
is the entire state space.

Mixed Initialization with Conservative Results

In Fig. 5.2c we initialize the warm-starting function as [Vk(x, 0) = k(x)] = 0 (blue) so that
k(x) � V ⇤

l
(x) for a subset of the state space. Where k(x) � V ⇤

l
(x) convergence is nearly

exact (black), with slight conservativeness introduced at the boundary where k(x) = V ⇤
l
(x).
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Where k(x) < V ⇤
l
(x) the warm-start solution remains flat at V ⇤

k
(x) = 0. The resulting BRT

V
⇤
k
is a slight over-approximation of V

⇤
l
.

Random Initialization with Exact Results

Though we are able to find cases that lead to conservative results, these cases are hard to
come by. In almost all initializations the correct value function was achieved exactly. Fig.
5.2d demonstrates this by initializing Vk with randomly spaced and sized circles. Similar
exact results were found for a variety of system dynamics and problem formulations.

5.4 Exact Warm-Start Examples

Though in general we may not know if k(x) � V ⇤
l
(x), there are some cases in which this

can be proved, and therefore the exact solution can be recovered. For all following examples
V ⇤
l
(x), is the original value function and V

⇤
l
is the corresponding BRT acquired from stan-

dard reachability using the default running example. Each subsection introduces changes
to the problem formulations, resulting in a new V ⇤

l0 (x),V
⇤
l0 acquired from standard reacha-

bility. Finally, V ⇤
k
(x),V⇤

k
are the value function and BRT acquired by warm-starting with

k(x) = V ⇤
l
(x) with the changed problem formulation. We further show what happens when

the conditions that lead to exact results are reversed. In these cases we cannot guarantee
exact convergence, but can guarantee that in each iteration the function will either reduce
conservativeness or remain in a local solution (i.e. k  Vk(x, t)  V ⇤

l
(x) 8x, t). We show

in Table 1 a time comparison for each example to standard and discounted reachability,
shown both in runtime and number of iteration steps. For the exact cases we find that
warm-starting is consistently faster. For comparison to discounted reachability, we used a
discount factor of 0.999 and annealed to a discount factor of 1 once convergence was reached
(see [3]).

Changing Target Set

When the target set increases (L0
◆ L), setting the initialization to the previously converged

value results in [k(x) = V ⇤
l
(x)] � V ⇤

l0 (x) and therefore exact convergence is guaranteed. Refer
to the Appendix for details. We demonstrate this in Fig. 5.3a, where the target sets are in
green (solid for L, dashed for L

0). When warm-starting from the original BRT V
⇤
l
(cyan),

we are able to recover the new BRT V
⇤
l0 (red) exactly, resulting in V

⇤
k
(black). We show the

reverse case for a decreasing target set in Fig. 5.3b.

Changing Control Authority

In many applications the control authority can change over time. This can happen because
of several reasons; for example, increasing the mass of a quadrotor leads to a reduction in
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Figure 5.3: For all examples shown, the region between the green lines is the target set.
Similarly cyan marks the boundary of the original BRT, red marks the BRT based on new
conditions, and black is the boundary of the warm-start converged BRT. The left column
shows cases in which the exact solution (red) can be achieved by warm-starting (black) from
a previous solution (cyan). The right column shows cases in which warm-starting (black) is
guaranteed to at worst remain at the initialization (cyan) or at best will achieve the exact
solution (red). In practice we generally achieve the exact solution.
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Table 1: Runtime Analysis for Reachability Methods
Standard Warm-Start Discounted

a) Increasing L (exact)
6.4s,
115 steps

6.0s,
109 steps

12.5s,
231 steps

b) Decreasing L (conserv)
6.0s
110 steps

9.3s,
169 steps

21.2s,
385 steps

d) Decreasing U (exact)
6.5s,
124 steps

6.0s,
111 steps

20.3s,
374 steps

e) Increasing U (conserv)
6.8s,
124 steps

6.1s,
111 steps

20.5s,
374 steps

c) Increasing D (exact)
21.4s,
311 steps

7.7s,
112 steps

13.3s,
195 steps

d) Decreasing D (conserv)
6.0s,
110 steps

11.7s,
213 steps

19.0s,
346 steps

e) 10D quad
increasing m, D (exact)

3.7hr,
86 steps

2.8hr,
65 steps

>18 hr,
>401 steps

f) 10D quad
decreasing m, D (conserv)

.68hr,
50 steps

.67hr,
48 steps

1.12hr,
82 steps

its e↵ective control authority. We can explicitly modify U when there is a change in the
control bounds or in a model parameter which updates the e↵ective control authority. When
the control space is decreased, i.e. U

0
✓ U , initializing with the previously converged value

function will lead to [k(x) = V ⇤
l
(x)] � V ⇤

l0 (x) and therefore exact convergence is guaranteed.
Proof is in the Appendix.

To demonstrate this case of reduced control authority we vary the parameter b in the
system model (5.2). When b decreases, the e↵ective control authority decreases. In Fig. 5.3c
we compute the value function for b = 1 (cyan). We then compute the value function for
b = .8 (red). Finally, we warm-start from the original cyan value function and reach the
new red value function exactly, as shown in black. We similarly show the reverse case for an
increasing control authority in Fig. 5.3d.

Changing Disturbance Authority

Following similar logic to the previous example, we find that increasing D to a larger D
0 has

the same e↵ect on the value function as decreasing U to U
0. To demonstrate this, we change

the disturbance bounds in our model (5.2). In Fig. 5.3e we compute the value function for
d 2 [0, 0], shown in blue. We then compute the value function for d 2 [�4, 4]. Finally,
we warm-start from the original cyan value function and reach the new red value function
exactly, as shown in black. We similarly show the reverse case for a decreasing disturbance
authority in Fig. 5.3f.
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Table 1: Runtime Analysis for Reachability Methods
Standard Warm-Start Discounted

a) Increasing L
6.4s
115 steps

6.0s
109 steps

12.5s
231 steps

b) Decreasing U
6.5s
124 steps

6.0s
111 steps

20.3s
374 steps

c) Increasing D
21.4s
311 steps

7.7s
112 steps

13.3s
195 steps

d) 10D quad
increasing m, D

3.7hr
86 steps

2.8hr
65 steps

>18 hr
>400 steps

e) 10D quad
decreasing m, D

5.5 high-dimensional example

The strength of warm-starting in reducing computation time is best seen in high-dimensional
examples. In this example we perform reachability analysis to provide safety guarantees for a
10D nonlinear near-hover quadcopter model from [29, 38]. When the quadcopter experiences
changes to its constraints or dynamics (e.g. changes in mass or disturbances), it must update
its safety guarantees appropriately.

The 10D near-hover quadcopter dynamics has states (px, py, pz) denoting the position,
(vx, vy, vz) for velocity, (✓x, ✓y) for pitch and roll, and (!x,!y) for pitch and roll rates. Its
controls are (Sx, Sy), which respectively represent the desired pitch and roll angle, and Tz,
which represents the vertical thrust. The disturbances are (dx, dy, dz) which represents wind,
and g is gravity. Its model is:

2

666666666666664

ṗx
v̇x
✓̇x
!̇x

ṗy
v̇y
✓̇y
!̇y

ṗz
v̇z

3

777777777777775

=

2

666666666666664

vx + dx
g tan ✓x

�d1✓x + !x

�d0✓x + n0Sx

vy + dy
g tan ✓y

�d1✓y + !y

�d0✓y + n0Sy

vz + dz
(kT/m)Tz � g

3

777777777777775

. (5.19)

The parameters d0, d1, n0, kT , as well as the control bounds U that we used were d0 = 10, d1 =
8, n0 = 10, kT = 4.55, |ux|, |uy|  10 degrees, 0  uz  2g. As in [38], we can decompose this
into two 4D systems and one 2D system.

In this example the initial mass is m = 5 and initial disturbances are |dx|, |dy|  1, |dz| 
1. As the quadcopter is flying, the mass increases to m = 5.25 (say, due to rain accumulation
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or picking up a package), e↵ectively decreasing the control bounds. In addition, disturbance
bounds go up: |dx|, |dy|  1.5. In this scenario we can warm-start from the previously com-
puted value function to update the safety guarantees exactly. The value function converges
to the true solution (max error of 0.189 in px, py and 0.003 in pz) in 66 steps (2.8 hours)
instead of 87 steps (3.65 hours) for standard reachability. Discounted reachability still hadn’t
converged after 400 steps (18+ hours), with max errors of 0.0034 in px, py and .325 in pz.

If the mass and disturbances instead go down (say, to m = 4.8, |dx|, |dy|  .95), we can
guarantee that the warm-start solution will at best be exactly the new solution, and at worst
will be a conservative solution. As demonstrated in Sec. 5.3, in practice we almost always
converge to the correct solution, and this 10D example converges correctly as well (max
error of 2.7e�05 in the px, py subsystems and .074 in the pz subsystem). Our warm-starting
method took 48 steps, compared to 50 for standard reachability and 82 for discounting (with
errors of 8.6e � 06 in the px, py subsystems and .004 in the pz subsystem). Though warm-
starting does not provide much computational benefit in this case, every iteration toward
convergence provides a guaranteed safe over-approximation of the BRT, which is not true
for standard reachability.

5.6 Chapter Summary

Warm-starting infinite-horizon HJI reachability computations with intelligent initializations
is beneficial because it may lead to a sizable reduction in computation time by reducing the
number of iterations required for convergence. In this chapter we proved that warm-starting
will provide guaranteed conservative safety analyses and controllers. Moreover, when the
initialization is under-conservative (i.e. k(x) � V ⇤

l
(x)), we proved that the reachability anal-

ysis is guaranteed to converge to the true solution. We also showed several conditions for
which exact convergence is achieved, and several cases that will either move closer to the cor-
rect safety guarantees or remain conservative with every iteration. In practice we frequently
converge to the correct solution regardless of the conservativeness of the initialization.

We demonstrated these results through several examples, including a 10D quadcopter
model experiencing changes in mass and disturbance bounds. We were able to accurately
recover the updated value function representing the backwards reachable tube in fewer iter-
ations than standard or discounted reachability. For our examples we find that warm-start
reachability is 1.6 times faster than standard reachability and 6.2 times faster than (untuned)
discounting. For high-dimensional systems this can save hours of computation time.

In many of the examples explored in this chapter finding a good initialization is obvious:
with slight changes in assumptions, simply use the previously computed value function.
However, in general finding good initialization is not always obvious and would be interesting
future work.

This new formulation opens the door to many di↵erent methods for solving HJI reach-
ability problems e�ciently. One direction would be to numerically parameterize the value
function (for example, by di↵erent masses), then warm-start online using an interpolated ini-
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tialization based on updated problem information. Another exciting direction is to update
the value function locally for local changes in the environment, or to use sparse or adaptive
gridding of the state space for fast initializations. Finally, we could use the conclusions
drawn from this chapter to inform a more tractable formulation of discounted reachability.

5.7 Appendix

Changing the Target Set

For a target function, l0(x), we define Jl0 and Vl0(x, t) as (5.3) and (5.10) by replacing l(x)
by l0(x). We define Vk(x, t) as the value function for L

0 when we warm-start from V ⇤
l
(x).

Proposition 1. If L ✓ L
0 (and hence l0(x)  l(x)) and we warm-start the value function

computation for L
0 with k(x) = V ⇤

l
(x), i.e., Vk(x, 0) = V ⇤

l
(x), then

lim
t!�1

Vk(x, t) = V ⇤
l0 (x) (5.20)

Proof. To prove this, it su�ces to prove that 8x V ⇤
l0 (x)  V ⇤

l
. We have 8x, t < 0,

Vl0(x, t) = max
u(·)

min
d(·)

inf
⌧2[t,0]

l0(⇣u,dx,t (⌧))

 max
u(·)

min
d(·)

inf
⌧2[t,0]

l(⇣u,dx,t (⌧)) = Vl(x, t)
(5.21)

As t ! �1, V ⇤
l0 (x)  V ⇤

l
(x). From Theorem 5, if we warm-start, Vl0(x, 0) = k(x) where

k(x) � V ⇤
l0 (x), then V ⇤

k
(x) = V ⇤

l
. Since, k(x) = V ⇤

l
(x) � V ⇤

l0 (x), Theorem 5 holds.

Remark 9. By reversing the proof with conditions L ◆ L
0, then

k(x)  Vk(x, t)  V ⇤
l
(x) 8x, t.

Changing the Control Authority

For a control domain, U
0, we define Vl0(x, t) similar to (5.10) by replacing u 2 U by u 2 U

0.
We define Vk(x, t) as the value function for U

0 when we warm-start from V ⇤
l
(x).

Proposition 2. If the e↵ective control authority U
0 reduces, i.e., U

0
✓ U and if Vk(x, 0) =

k(x) = V ⇤
l
(x), then

lim
t!�1

Vk(x, 0) = V ⇤
l0 (x) (5.22)

Proof. To prove this, we need only prove that, 8x V ⇤
l0 (x)  V ⇤

l
(x). We have, 8x, t < 0,

Vl0(x, t) = max
u2U 0

min
d2D

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), l(⇣
u,d

x,t (0))
o

 max
u2U

min
d2D

min
n

inf
⌧2[t,0)

l(⇣u,dx,t (⌧)), l(⇣
u,d

x,t (0))
o

= Vl(x, t)

(5.23)
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As t ! �1, V ⇤
l0 (x)  V ⇤

l
(x). From Theorem 5, if we warm-start with Vk(x, 0) = k(x) with

k(x) � V ⇤
l
(x), then V ⇤

k
(x) = V ⇤

l0 (x). Hence, k(x) = V ⇤
(l (x) satisfies Theorem 5.

Remark 10. By reversing the proof with conditions U ✓ U
0, then k(x)  Vk(x, t) 

V ⇤
l
(x) 8x, t.
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Part II

Fast and Safe Tracking



95

Chapter 6

FaSTrack: Fast and Safe Tracking

This chapter is based on a conference and a journal paper, both titled “FaSTrack: a Modular
Framework for Fast and Guaranteed Safe Motion Planning” [88, 43], written in collaboration
with Mo Chen, Haimin Hu, Ye Pu, Jaime Fisac, Somil Bansal, SooJean Han, and Claire
J. Tomlin. Please note that for this chapter we will use the time notation t 2 [T, 0], T  0
instead of ⌧ 2 [t, T ].

In autonomous dynamical systems, safety and real-time planning are both crucial for
many applications. This is particularly true when environments are a priori unknown, be-
cause replanning based on updated information about the environment is often necessary.
However, achieving safe navigation in real time is di�cult for many common dynamical sys-
tems due to the computational complexity of generating and formally verifying the safety
of dynamically feasible trajectories. To achieve real-time planning, many algorithms use
highly simplified model dynamics or kinematics to create a nominal trajectory that is then
tracked by the system using a feedback controller such as a linear quadratic regulator (LQR).
These nominal trajectories may not be dynamically feasible for the true autonomous system,
resulting in a tracking error between the planned path and the executed trajectory. This
concept is illustrated in Fig. 6.1, where the path was planned using a simplified planning
model, but the real dynamical system cannot track this path exactly. Additionally, external
disturbances (e.g. wind) can be di�cult to account for using real-time planning algorithms,
causing another source of tracking error. These tracking errors can lead to dangerous sit-
uations in which the planned path is safe, but the actual system trajectory enters unsafe
regions. Therefore, real-time planning is achieved at the cost of guaranteeing safety. Com-
mon practice techniques augment obstacles by an ad hoc safety margin, which may alleviate
the problem but is performed heuristically and therefore does not guarantee safety.

To attain fast planning speed while maintaining safety, we propose the modular frame-
work FaSTrack: Fast and Safe Tracking. FaSTrack also allows planning algorithms to use a
simplified model of the system in order to operate in real time using augmented obstacles.
However, in FaSTrack, the obstacle augmentation bound is rigorously computed and comes
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Figure 6.1: Left: A planning algorithm uses a fast but simple model (blue disk), to plan
around obstacles (gray disks). The more complicated tracking model (green plane) tracks
the path. By using FaSTrack the autonomous system is guaranteed to stay within some
TEB (black circle). Right: Safety can be guaranteed by planning with respect to obstacles
augmented by the TEB (large black circles).

with a corresponding optimal tracking controller. Together this tracking error bound (TEB)
and controller guarantee safety for the autonomous system as it tracks the simplified plans
(see Fig. 6.1, right). We compute this bound and controller by modeling the navigation task
as a pursuit-evasion game between a sophisticated tracking model (pursuer) and the simpli-
fied planning model of the system (evader). The tracking model accounts for complex system
dynamics as well as bounded external disturbances, while the simple planning model enables
the use of real-time planning algorithms. O✏ine, the pursuit-evasion game between the two
models can be analyzed using any suitable method [126, 161, 150] to produce a TEB. To
provide a TEB for all states of the planning model through solving a single pursuit-evasion
game and to reduce the problem dimensionality, TEB computations are performed using the
relative dynamics between the two models.

This results in a tracking error function that maps the initial relative state between the
two models to the TEB: the maximum possible relative distance that could occur over time.
The TEB can be thought of as a “safety bubble” around the planning model of the system
that the tracking model of the system is guaranteed to stay within.

The resulting TEB from this precomputation may converge to an invariant set (i.e. the
planning model cannot move arbitrarily far away from the tracking model when both act
optimally), or may result in a time-varying set. Intuitively, a time-varying TEB means that
as time progresses the tracking error bound increases by a known amount.

Because the tracking error is bounded in the relative state space, we can precompute and
store the optimal tracking controller that maps the real-time relative state to the optimal
tracking control action for the tracking model to pursue the planning model. The o✏ine
computations are independent of the path planned in real time.
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Online, the autonomous system senses local obstacles, which are then augmented by the
TEB to ensure that no potentially unsafe paths can be computed. Next, any chosen path or
trajectory planning algorithm uses the simplified planning model and the local environment
to determine the next planning state. The autonomous system (represented by the tracking
model) then finds the relative state between itself and the next desired state. If this relative
state is nearing the TEB then it is plugged into the optimal tracking controller to find the
instantaneous optimal tracking control of the tracking model required to stay within the error
bound; otherwise, any tracking controller may be used. In this sense, FaSTrack provides a
least-restrictive control law. This process is repeated for as long as the planning algorithm
(rapidly-exploring random trees, model predictive control, etc.) is active.

FaSTrack is modular, and can be used with any method for computing the TEB together
with any existing path or trajectory planning algorithms. Any feature of the planning
algorithm, such as the ability to account for time-varying obstacles, is inherited when used
in the FaSTrack framework. This enables motion planning that is real-time, guaranteed safe,
and dynamically accurate. FaSTrack was first introduced in [88], and is generalized here in
a number of important ways.

First, we adopt definitions in [161] to refine the notion of relative system to be much
more general; in particular, the new definition of relative state allows the pairing of a large
class of tracking and planning models.

Next, we introduce and prove the time-varying formulation of FaSTrack, which uses time-
varying tracking controllers to provide a time-varying TEB (tvTEB). This has significant
practical impact, since the ability to obtain a tvTEB means that the FaSTrack framework
does not depend on the convergence of pursuit-evasion games, which is in general not guar-
anteed and computationally expensive to check.

Furthermore, for both the time-invariant and time-varying cases, we provide mathemat-
ical proofs. Lastly, we demonstrate the FaSTrack framework using three di↵erent real-time
planning algorithms that have been “robustified” by precomputing the TEB and tracking
controller to demonstrate our framework.

Precomputation of the TEB and tracking control law for each planning-tracking model
pair is done by solving a Hamilton-Jacobi (HJ) partial di↵erential equation (PDE) in this
chapter; we encourage readers to refer to [161] for TEB computations using SOS optimiza-
tion. The planning algorithms used in our numerical examples are the fast sweeping method
(FSM) [163], rapidly-exploring random trees (RRT) [110, 98], and model predictive control
(MPC) [142, 175].

In the three examples, we also consider di↵erent tracking and planning models, one of
which utilizes the refined definition of relative system, and another involving a tvTEB. In
the simulations, the system travels through a static environment with constraints defined,
for example, by obstacles, while experiencing disturbances. The constraints are only fully
known through online sensing (e.g. once obstacles are within the limited sensing region of
the autonomous system). By combining the TEB with real-time planning algorithms, the
system is able to safely plan and track a trajectory through the environment in real time.
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6.1 Related Work

Motion planning is an active research area in the controls and robotics communities [90]. In
this section we will discuss past work on path, kinematic, and dynamic planning. A major
current challenge is to find an intersection of robust and real-time planning for general non-
linear systems. Sample-based planning methods like rapidly-exploring random trees (RRT)
[110], probabilistic road maps (PRM) [98], fast marching tree (FMT) [92], fast sweeping
method [163] and many others [148, 97, 102] can find collision-free paths through known
or partially known environments. While extremely e↵ective in a number of use cases, these
algorithms are not designed to be robust to model uncertainty or disturbances, and may not
even use a dynamic model of the system in the first place. Motion planning for kinematic
systems can also be accomplished through online trajectory optimization using methods such
as TrajOpt [156] and CHOMP [145]. These methods can work extremely well in many ap-
plications, but are generally challenging to implement in real time for nonlinear dynamic
systems.

Model predictive control (MPC) has been a very successful method for dynamic trajectory
optimization [142]. However, combining speed, safety, and complex dynamics is a di�cult
balance to achieve. Using MPC for robotic and aircraft systems typically requires model
simplification to take advantage of linear programming or mixed integer linear programming
[170, 174, 149]; robustness can also be achieved in linear systems [147, 53]. Nonlinear MPC
is most often used on systems that evolve more slowly over time [55, 154], with active work
to speed up computation [54, 134]. Adding robustness to nonlinear MPC is being explored
through algorithms based on min-max formulations and tube MPCs that bound output
trajectories around a nominal path (see [90] for references).

There are other methods of dynamic trajectory planning that manage to cleverly skirt
the issue of solving for optimal trajectories online. One such class of methods involve motion
primitives [81, 52]. Other methods include making use of safety funnels [122], or generating
and choosing random trajectories at waypoints [95, 157]. The latter methods have been
implemented successfully in many scenarios, but can be risky in their reliance on finding
combinations of pre-computed or randomly-generated safe trajectories.

One notable real-time planning method that also involves robustness guarantees is given
by [107], in which a forward reachable set for a high-fidelity model of the system is computed
o✏ine and then used to prune motion plans generated online using a low-fidelity model. The
approach relies on an assumed model mismatch bound; therefore our work has potential to
complement works such as [107] by providing the TEB as well as a corresponding feedback
tracking controller.

Recent work has considered using o✏ine Hamilton-Jacobi analysis to guarantee tracking
error bounds, which can then be used for robust trajectory planning [18]. A class of closely-
related techniques define safe tubes around nominal dynamic trajectories by constructing
control-Lyapunov functions, which tend to be very di�cult to compute [30]. In recent years,
methods involving using contraction theory and numerous optimization techniques have
enabled computation of conservative approximations of control-Lyapunov functions in the
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context of robust trajectory tracking [139, 122, 160, 1].
Finally, some online control techniques can be applied to trajectory tracking with con-

straint satisfaction. For control-a�ne systems in which a control barrier function can be
identified, it is possible to guarantee forward invariance of the desired set through a state-
dependent a�ne constraint on the control, which can be incorporated into an online opti-
mization problem, and solved in real time [7].

The work presented in this chapter di↵ers from the robust planning methods above
because FaSTrack is designed to be modular and easy to use in conjunction with any path or
trajectory planner. Additionally, FaSTrack can handle bounded external disturbances (e.g.
wind) and work with both known and unknown environments with obstacles.

6.2 Problem Formulation

FaSTrack is a modular framework to plan and track a trajectory (or path converted to a
trajectory) online and in real time. Planning is done using a relatively simple model of the
system, called the planning model. The planning model and algorithm should be chosen to
allow real-time planning.

On the other hand, tracking is achieved by a tracking model that more accurately repre-
sents the autonomous system. Practically, the tracking model should be chosen to consider
factors such as higher-order dynamics and disturbances. Under the FaSTrack framework,
a tracking error bound (TEB) is computed to account for the mismatch between the plan-
ning and tracking models to realize the benefits of both using a simplified model and a
higher-fidelity model. Although this chapter focuses on using the Hamilton-Jacobi method
to compute time-invariant and time-varying TEBs, in general any method can be used under
the FaSTrack framework. For example, the authors in [161] use SOS optimization to achieve
better computational scalability.

The environment may contain static obstacles that are a priori unknown and can be
observed by the system within a limited sensing range. In this section we define the tracking
and planning models, as well as the goals of the chapter.

Tracking Model

The tracking model is a relatively accurate and typically higher-dimensional representation
of the autonomous system dynamics. Let s 2 S ✓ Rns represent the states of the track-
ing model. The evolution of the tracking model dynamics satisfies the following ordinary
di↵erential equation (ODE):

ds

dt
= ṡ = f(s(t), us(t), d(t)), t 2 [0, T ],

s(t) 2 S, us(t) 2 Us, d(t) 2 D,
(6.1)
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We assume that the tracking model dynamics f : S ⇥ Us⇥D ! S is Lipschitz continuous
in the system state s for a fixed control and disturbance functions us(·), d(·). At every time
t, the control us is constrained by the compact set Us ✓ Rnus , and the disturbance d by the
compact set D ✓ Rnd . Furthermore, the control function us(·) and disturbance function d(·)
are measurable functions of time:

us(·) 2 Us := {� : [0, T ]! Us,�(·) is measurable}, (6.2)

d(·) 2 D := {� : [0, T ]! D,�(·) is measurable}. (6.3)

where Us and D represent the set of functions that respectively satisfy control and disturbance
constraints at all times. Under these assumptions there exists a unique trajectory solving
(6.1) for a given us(·) 2 Us, d(·) 2 D [46]. The trajectories of (6.1) that solve this ODE will
be denoted as ⇣f (t; s, t0, us(·), d(·)), where t0, t 2 [0, T ] and t0  t. This trajectory notation
represents the state of the system at time t, given that the trajectory is initiated at state s
and time t0 and the applied control and disturbance functions are us(·) and disturbance d(·)
respectively. These trajectories will satisfy the initial condition and the ODE (6.1) almost
everywhere:

d

dt
⇣f (t; s0, t0, us(·), d(·)) =

f(⇣f (t; s0, t0, us(·), d(·)), us(t), d(·)),

⇣f (t0; s0, t0, us(·), d(·)) = s0.

Let G ⇢ S represent the set of goal states, and C ⇢ S represent state constraints for all
time. Often, C represents the complement of obstacles that the system must avoid.

Example 6.1. We introduce a running example for illustration throughout the chapter.
In this example a car will have to navigate through an environment with a priori unknown
obstacles (C{) towards a goal (G). The tracking model of the car is represented by the
following five-dimensional dynamics:

2

66664

ẋ
ẏ
✓̇
v̇
!̇

3

77775
=

2

66664

v cos ✓ + dx
v sin ✓ + dy

!
a+ da
↵ + d↵

3

77775
, (6.4)

where (x, y, ✓) represent the pose (position and heading) of the 5D car model, and (v,!)
are the speed and turn rate. The control of the 5D model consists of the linear and angular
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acceleration, (a,↵), and the disturbances are (dx, dy, da, d↵). The model parameters are
chosen to be a 2 [�0.5, 0.5], |↵|  6, |dx|, |dy|, |d↵|  0.02, |da|  0.2.

Planning Model

The planning model is a simpler, lower-dimensional model of the system. Replanning is
necessary for navigation in unknown environments, so the planning model is typically con-
structed by the user so that the desired planning algorithm can operate in real time.

Let p represent the state of the planning model, and let up be the control. We assume
that the planning state p 2 P are a subset of the tracking state s 2 S, so that P is a subspace
within S. This assumption is reasonable since a lower-fidelity model of a system typically
involves a subset of the system’s states. The dynamics of the planning model satisfy

dp

dt
= ṗ = h(p, up), t 2 [0, T ], p 2 P , up 2 Up, (6.5)

with the analogous assumptions on continuity and boundedness as those for (6.1).
Note that the planning model does not include a disturbance input. This is a key feature

of FaSTrack: the treatment of disturbances is only necessary in the tracking model, which
is modular with respect to any planning method. Therefore we can and will assume that
the planning model (and the planning algorithm) do not consider disturbances. This allows
the algorithm to operate e�ciently without the need to consider robustness. If the planning
algorithm does consider disturbances then the added robustness of FaSTrack may result in
added conservativeness.

Let Gp ⇢ P and Cp ⇢ P denote the projection of G and C respectively onto the subspace
P . We will assume that Cp is a priori unknown, and must be sensed as the autonomous
system moves around in the environment. Therefore, for convenience, we denote the currently
known, or “sensed” constraints as Cp,sense(t). Note that Cp,sense(t) depends on time, since the
system may gather more information about constraints in the environment over time. In
addition, as described throughout the chapter, we will augment Cp,sense(t) according to the
TEB between the tracking and planning models. We denote the augmented obstacles as
Cp,aug(t).

Example 6.2. For e�cient planning use a simpler 3D model with the following dynam-
ics:

ṗ =

2

64

˙̂x
˙̂y
˙̂✓

3

75 =

2

4
v̂ cos ✓̂
v̂ sin ✓̂
!̂

3

5 , (6.6)

where (x̂, ŷ, ✓̂) represent the pose (position and heading) of the 3D car model. Here the
speed v̂ is a constant, and the turn rate !̂ is the control. The planning model must reach
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Figure 6.2: O✏ine framework. Output of the o✏ine framework shown in red.

its goal Gp while avoiding obstacles represented by Cp,aug(t). The model parameters are
chosen to be v̂ = 0.1, |!̂|  1.5.

Goals and Approach

Given system dynamics in (6.1), initial state s0, goal states G, and constraints C such that Cp

is a priori unknown and determined in real time, we would like to steer the system to G with
formally guaranteed satisfaction of C, despite any disturbances the system may experience.

To achieve this goal, FaSTrack decouples the formal safety guarantee from the planning
algorithm. Instead of having the system, represented by the tracking model, directly plan
trajectories towards G, the system (represented by the tracking model) “chases” the planning
model of the system, which may use any planning algorithm to obtain trajectories in real
time. The autonomous system is guaranteed to stay within the TEB relative to the planning
model. Therefore, we set Gp,contr to be the projection of G onto the subspace P and contracted
by one TEB. When the planning algorithm reaches Gp,contr, we know that the autonomous
system will be within G. Safety is formally guaranteed through precomputation of the TEB
along with a corresponding optimal tracking controller, in combination with augmentation
of constraints based on this TEB. An illustration of our framework is shown in Fig. 6.1.

6.3 General Framework

Details of the framework are summarized in Figs. 6.2, 6.3, and 6.4. The purpose of the o✏ine
framework (Fig. 6.2) is to generate a TEB and corresponding optimal tracking controller
that can be quickly and easily used by the online framework. The planning and tracking
model dynamics are used in the reachability precomputation (described in sec. 6.4), whose
solution is a value function that acts as the TEB function/look-up table. The gradients of
the value function comprise the optimal tracking controller function/look-up table. These
functions are independent of the online computations and environment – they depend only
on the relative system state and dynamics between the planning and tracking models, not
on absolute states along the trajectory at execution time.

Online, we start in the bottom-left corner of Fig. 6.3 to determine the tracking model’s
initial state (i.e. autonomous system’s initial state). Based on this we initialize the plan-
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Figure 6.3: Online framework. Components from o✏ine computation shown in red.

ning model such that the tracking model is within the TEB relative to the planning model.
The state of the planning model is entered into a planning algorithm. Another input to
the planning algorithm is the set of augmented constraints Cp,aug. These are acquired by
updating constraints Cp and accordingly updating the sensed constraints Cp,sense in the envi-
ronment. This can be done, for example, by sensing the environment for obstacles. Next,
Cp,sense is augmented by the precomputed TEB using the Minkowski di↵erence to produce
the augmented constraints Cp,aug. 1

In terms of obstacles in the environment, augmenting the constraints by this margin can
be thought of as equivalent to wrapping the planning model of the system with a “safety
bubble”. The planning algorithm takes in the planning model state and augmented con-
straints, and then outputs a next desired state for the planning model towards Gp,contr. The
hybrid tracking controller block takes in this next planning model state along with the cur-
rent state of the tracking model. Based on the relative state between these two models, the
hybrid tracking controller outputs a control signal to the autonomous system. The goal of
this control is to make the autonomous system track the desired planning state as closely as
possible. This cycle continues as the planning algorithm moves towards Gp,contr.

The hybrid tracking controller is expanded in Fig. 6.4 and consists of two controllers: an
optimal tracking controller (also referred to as the safety controller) and a performance con-
troller. In general, there may be multiple safety and performance controllers depending on
various factors such as observed size of disturbances, but for simplicity we will just consider
one safety and one performance controller in this chapter. The optimal tracking controller
consists of a function (or look-up table) computed o✏ine by solving a HJ variational inequal-
ity (VI) [73], and guarantees that the TEB is not violated, despite the worst-case disturbance

1For a faster computation we typically simply expand each obstacle by the maximum distance of the
TEB in each dimension as a conservative approximation
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Figure 6.4: Hybrid controller. Components from o✏ine computation are shown in red.

and worst-case planning control. Although the planning model in general does not apply the
worst-case planning control, assuming the worst allows us to obtain a trajectory-independent
TEB and an optimal tracking controller that is guaranteed safe. Note that the computation
of the value function and optimal tracking controller is done o✏ine; during online execution,
the table look-up operation is computationally inexpensive.

When the system is close to violating the TEB, the optimal tracking controller must be
used to prevent the violation. On the other hand, when the system is far from violating the
TEB, any controller (such as one that minimizes fuel usage), can be used. This control is used
to update the autonomous system’s state, and the process repeats. In the following sections
we will first explain the precomputation steps taken in the o✏ine framework. We will then
walk through the online framework. Finally, we will present three numerical examples.

6.4 O✏ine Computation

The o✏ine computation begins with setting up a pursuit-evasion game [165, 126] between
the tracking model and the planning model of the system. In this game, the tracking model
will try to “capture” the planning model, while the planning model is doing everything it
can to avoid capture. In reality the planning algorithm is typically not actively trying to
avoid the tracking model, but this allows us to account for worst-case scenarios and more
crucially, ensure that the TEB is trajectory-independent. If both systems are acting optimally
in this way, we can determine the maximum possible tracking error between the two models,
which is captured by the value function obtained from solving a Hamilton-Jacobi variational
inequality, as described below.

Relative System Dynamics

To determine the relative distance over time, we must first define the relative system derived
from the tracking (6.1) and planning (6.5) models. The relative system is obtained by fixing
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the planning model to the origin and finding the dynamics of the tracking model relative to
the planning model. Defining r to be the relative system state, we write

r = �(s, p)(s�Qp) (6.7)

where Q matches the common states of s and p by augmenting the state space of the
planning model. The relative system states r represent the tracking system states relative to
the planning states. The function � is a linear transform that simplifies the relative system
dynamics to be of the form

ṙ = g(r, us, up, d), (6.8)

which only depends on the relative system state r. A transform � that achieves the relative
system dynamics in the form of (6.8) is often the identity map or the rotation map when the
autonomous system is a mobile robot; therefore, in this chapter, we assume that a suitable
� is available. For general dynamical systems, it may be di�cult to determine �; a catalog
of tracking and planning models with suitable transforms �, as well as a more detailed
discussion of �, can be found in [161].

In addition, we define the error state e to be the relative system state excluding the
absolute states of the tracking model, and the auxiliary states ⌘ to be the relative system
state excluding the error state. Hence, r =

⇥
e, ⌘

⇤|
.

Example 6.3. We must determine the relative system state between our 5D tracking and
3D planning models of the car. We define the relative system state to be (xr, yr, ✓r, v,!),
such that the error state e = [xr, yr, ✓r]| is the position and heading of the 5D model
in the reference frame of the 3D model, and the auxiliary state ⌘ = [v,!]| represents
the speed and turn rate of the 5D model. The relative system state r =

⇥
e, ⌘

⇤|
, tracking

model state s, and planning model state p are related through � and Q as follows:
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, (6.9)

where 0, I denote the zero and identity matrices of the indicated sizes. Taking the time
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derivative, we obtain the following relative system dynamics:

ṙ =


ė
⌘̇

�
=

2

66664

ẋr

ẏr
✓̇r
v̇
!̇

3

77775
=

2

66664

�v̂ + v cos ✓r + !̂yr + dx
v sin ✓r � !̂xr + dy

! � !̂
a+ da
↵ + d↵

3

77775
. (6.10)

More examples of relative systems are in Section 6.6.

Formalizing the Pursuit-Evasion Game

Given the relative system dynamics between the tracking and planning models, we would
like to compute a guaranteed TEB between these models. This is done by first defining
an error function l(r) in the relative state space. One simple error function is the squared
distance to the origin, which is shown in Fig. 6.5 (top left, blue hatch surface), and is used
when one is concerned only with the tracking error in position.

When we would like to quantify the tracking error for more planning states (for example,
error in angular orientation between the two models), the error function can be defined over
these states as well. For example, the error function seen in Fig. 6.6 is defined in both
position and velocity space; Fig. 6.10 shows yet another error function defined using the
one-norm of the displacement between the two models. In our pursuit-evasion game, the
tracking model tries to minimize the error, while the planning model and any disturbances
experienced by the tracking model try to maximize.

Before constructing the pursuit-evasion game we must first define the method each player
must use for making decisions. We define a strategy for planning model as the mapping
�p : Us ! Up that determines a planning control based on the tracking control. We restrict
� to non-anticipative strategies �p 2 �p(t), as defined in [126]. We similarly define the
disturbance strategy �d : Us ! D, �d 2 �d(t).

We compute the highest cost that this game will ever attain when both players are acting
optimally. This is expressed through the following value function:

V (r, T ) = sup
�p2�p(t),�d2�d(t)

inf
us(·)2Us(t)

�

max
t2[0,T ]

l
⇣
⇣g(t; r, 0, us(·), �p[us](·), �d[us](·))

⌘ 
(6.11)

The value function can be computed via existing methods in HJ reachability analysis
[126, 73]. Adapting the formulation in [73] and taking a convention of negative time in
the backward reachability literature [38], we compute the value function by solving the HJ
variational inequality
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Figure 6.5: Value function and TEB for the running example in (6.9) and (6.10). Top Left:
projected slice (✓r = ⇡/2) of the error function (blue hatch) and converged value function
(magenta). The minimum value V of the converged value function is marked by the black
plane; the slice of the value function at V determines the TEB (pink set), also shown on
the bottom left. Right: the full TEB (no longer projected) in the error states. Note that
the slice shown on the bottom left corresponds to the slice marked by the magenta plane at
✓r = ⇡/2.

Figure 6.6: Time-varying value function (left) and TEBs (right) for the 8D quadrotor tracking
4D double integrator example in Section 6.6. The value function and the TEB varies with
⌧ , which represents time into the future. The size of the TEB increases with ⌧ because the
disturbance and planning control may drive the error states farther and farther from the
origin over time. The error states shown are the relative position xr and velocity vx,r. Note
that V (r, 0) = l(r).



CHAPTER 6. FASTRACK: FAST AND SAFE TRACKING 108

max
n@Ṽ
@t

+ min
us2S

max
up2P,d2D

rṼ · g(r, us, up, d),

l(r)� Ṽ (r, t)
o
= 0, t 2 [�T, 0], (6.12)

Ṽ (r, 0) = l(r),

from which we obtain the value function, V (r, t) = Ṽ (r,�t). There are many methods for
solving this HJ variational inequality, including the level set toolbox [129].

If the planning model is “close” to the tracking model and/or if the control authority of
the tracking model is powerful enough to always eventually remain within some distance from
the planning model, this value function will converge to an invariant solution for all time,
i.e. V1(r) := limT!1 V (r, T ). Because the planning model is user-defined, convergence can
often be achieved by tuning the planning model.

However, there may be tracking-planning model pairs for which the value function does
not converge. In these cases the value function provides a finite time horizon, time-varying
TEB, an example of which is shown in Fig. 6.6. Thus, even when convergence does not
occur we can still provide time-varying safety guarantees. In the rest of this chapter, we
will focus on the more general time-varying TEB case for clarity, and leave discussion of the
time-invariant TEB case in the Appendix. Our numerical examples will demonstrate both
cases.

Example 6.4. We will set the cost to l(r) = x2
r
+ y2

r
, squared distance to the origin in

position space. This means we would like the system to stay within an (xr, yr) bound
relative to the planning model, and ignore relative angle. We initialize equation (6.12)
with this cost function and the relative system dynamics (6.10). We propagate the HJ
variational inequality using the level set method toolbox until convergence or until we
reach the planning horizon. In this case the value function converges to V1 as seen in
Fig. 6.7.

In Section 6.4, we formally prove that sublevel sets of V (r, t) provide the corresponding
time-varying TEBs B(t) for the finite time horizon case. The analogous result for the time-
invariant, infinite time horizon case is proven in the appendix.

The optimal tracking controller is obtained from the value function’s spatial gradient
[126, 73], rV (r, t), as

u⇤
s
(r, t) = arg min

us2Us

max
up2Up,d2D

rV (r, t) · g(r, us, up, d) (6.13)

To ensure the relative system remains within the TEB, we also note that the optimal
(worst-case) planning control u⇤

p
and disturbance d⇤ can also obtained from rV (r, t) as

follows:
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
u⇤
p

d⇤

�
(r, t) = arg max

up2Up,d2D
rV (r, t) · g(r, u⇤

s
, up, d) (6.14)

For system dynamics a�ne in the tracking control, planning control, and disturbance, the
optimizations in (6.13) and (6.14) are given analytically, and provide the optimal solution
to (6.11). In practice, the gradient rV is saved as look-up tables over a grid representing
the state space of the relative system.

Error Bound Guarantee via Value Function

Prop. 6 states the main theoretical result of this chapter2: every level set of V (r, t) is
invariant under the following conditions:

1. The tracking model applies the control in (6.13) which tries to track the planning
model;

2. The planning model applies the control in (6.14) which tries to escape from the tracking
model;

3. The tracking model experiences the worst-case disturbance in (6.14) which tries to
prevent successful tracking.

In practice, since the planning control and disturbance are a priori unknown and are not
directly controlled by the tracking model, conditions 2 and 3 may not hold. In this case,
our theoretical results still hold; in fact, the absence of conditions 2 and 3 is advantageous
to the tracking model and makes it “easier” to stay within its current level set of V (r, t).
The smallest level set corresponding to the value V := minr V (r, T ) can be interpreted as
the smallest possible tracking error of the system. The TEB is given by the set3

B(⌧) = {r : V (r, T � ⌧)  V }. (6.15)

Recall that we write the relative system state as r = (e, ⌘), where e, ⌘ are the error and
auxiliary states. Therefore, the TEB in the error state subspace is given by projecting away
the auxiliary states ⌘ in B(⌧):

Be(⌧) = {e : 9⌘, V (e, ⌘, T � ⌧)  V } (6.16)

2The analogous infinite time horizon case is proven in the Appendix
3In practice, since V is obtained numerically, we set B(⌧) = {r : V (r, T � ⌧)  V + ✏} for some suitably

small ✏ > 0.
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This is the TEB that will be used in the online framework as shown in Fig. 6.3. Within
this bound the tracking model may use any controller, but on the boundary4 of this bound
the tracking model must use the optimal tracking controller. In general, the TEB is defined
as a set in the error space, which allows the TEB to not only be in terms of position, but
any state of the planning model such as velocity, as demonstrated in the example in Section
6.6.

We now formally state and prove the proposition.

Proposition 6. Finite time horizon guaranteed TEB. Given t 2 [0, T ],

8t0 2 [t, T ], r 2 B(t)) ⇣⇤
g
(t0; r, t) 2 B(t0), where (6.17a)

⇣⇤
g
(t0; r, t) := ⇣g(t

0; r, t, u⇤
s
(·), u⇤

p
(·), d⇤(·))), (6.17b)

u⇤
s
(·) = arg inf

us(·)2Us(t)

�

max
t02[t,T ]

l(⇣g(t
0; r, t, us(·), u

⇤
p
(·), d⇤(·)))

 
,

(6.17c)

u⇤
p
(·) := �⇤

p
[us](·) = arg sup

�p2�p(t)
inf

us(·)2Us(t)

�

max
t02[t,T ]

l(⇣g(t
0; r, t, us(·), �p[us](·), d

⇤(·)))
 (6.17d)

d⇤(·) = arg sup
�d2�d(t)

sup
�p2�p(t)

inf
us(·)2Us(t)

�

max
t02[t,T ]

l(⇣g(t
0; r, t, us(·), �p[us](·), �d[us](·)))

 (6.17e)

Proof: We first show that given t 2 [0, T ],

8t0 2 [t, T ], V (r, T � t) � V (⇣⇤
g
(t0; r, t), T � t0) (6.18)

4Practical issues arising from sampled data control can be handled using methods such as [130, 132, 49]
and are not the focus of this chapter.
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This follows from the definition of value function.

V (r, T � t) = max
⌧2[0,T�t]

l(⇣⇤
g
(⌧ ; r, 0)) (6.19a)

= max{ max
⌧2[0,t0�t]

l(⇣⇤
g
(⌧ ; r, 0)),

max
⌧2[t0�t,T�t]

l(⇣⇤
g
(⌧ ; r, 0))} (6.19b)

� max
⌧2[t0�t,T�t]

l(⇣⇤
g
(⌧ ; r, 0)) (6.19c)

= max
⌧2[0,T�t0]

l(⇣⇤
g
(⌧ ; r, t� t0)) (6.19d)

= max
⌧2[0,T�t0]

l(⇣⇤
g
(⌧ ; ⇣⇤

g
(0; r, t� t0), 0)) (6.19e)

= max
⌧2[0,T�t0]

l(⇣⇤
g
(⌧ ; ⇣⇤

g
(t0; r, t), 0)) (6.19f)

= V (⇣⇤
g
(t0; r, t), T � t0) (6.19g)

Explanation of steps:

• (6.19a), (6.19g): by definition of value function, after shifting the time interval in
(6.17c) to (6.17e) from [t, T ] to [0, T � t].

• (6.19b): rewriting max⌧2[0,T�t] by splitting up the time interval [0, T � t] into [0, t0� t]
and [t0 � t, T � t]

• (6.19c): ignoring first argument of the outside max operator

• (6.19d): shifting time reference by t� t0, since dynamics are time-invariant

• (6.19e): splitting trajectory ⇣⇤
g
(⌧ ; r, t�t0) into two stages corresponding to time intervals

[t� t0, 0] and [0, ⌧ ]

• (6.19f): shifting time reference in ⇣⇤
g
(0; r, t� t0) by t0, since dynamics are time-invariant

Now, we finish the proof as follows:

r 2 B(t), V (r, T � t)  V (6.20a)

) V (⇣⇤
g
(t0; r, t), T � t0)  V (6.20b)

, ⇣⇤
g
(t0; r, t) 2 B(t0), (6.20c)

where (6.18) is used for the step in (6.20b). ⌅
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Discussion

Worst-case assumptions

Prop. 6 assumes that the planning control up and disturbance d are optimally maximizing
the value function V , and thereby increasing the size of the TEB B. Despite this, (6.17a)
still holds. In reality, up and d do not behave in a worst-case fashion, and it is often the
case that when t0 � t, we have r 2 B(t) ) ⇣g(t0; r, t) 2 B(⌧) for some ⌧  t0. Thus, one
can “take advantage” of the suboptimality of up and d by finding the earliest ⌧ such that
⇣g(t0; r, t) 2 B(⌧) in order to have the tighter TEB over a longer time-horizon.

Relationship to reachable sets

Prop. 6 is similar to well-known results in di↵erential game theory with a di↵erent cost
function [4], and has been utilized in the context of interpreting the subzero level set of V as
a backward reachable set for tasks such as collision avoidance [126]. In this work we do not
assign special meaning to any particular level set, and instead consider all level sets at the
same time. This allows us to e↵ectively solve many simultaneous reachability problems in a
single computation, removing the need to check whether resulting invariant sets are empty,
as was done in [18].

Relationship to control-Lyapunov functions

One interpretation of (6.16) is that V (r, T�t) is a control-Lyapunov function for the relative
dynamics between the tracking model and the planning model, and any level set of V (r, T�t)
is invariant. It should be noted that computing control-Lyapunov functions for general
nonlinear systems is di�cult. In addition, the relative system trajectories are guaranteed
to remain within the initial level set despite the worst-case disturbance. In the absence of
any information about, for example, the intent of the planning system, such a worst-case
assumption is needed.

Example 6.5. In this example we have computed a converged value function V1. The
corresponding TEB can be found using (6.29) in the Appendix. We can similarly find
the TEB projected onto the planning states using (6.30). The minimum of the value
function was approximately V = 0.004, and the size of the TEB in (xr, yr) space is
approximately 0.065. The converged value function and TEB can be seen in Fig. 6.7.
The corresponding optimal tracking controller is obtained by plugging the gradients of
our converged value function and our relative system dynamics into (6.27).
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6.5 Online Computation

Algorithm 1 describes the online computation. Lines 1 to 3 indicate that the value function
V (r, t00), the gradient rV from which the optimal tracking controller is obtained, as well as
the TEB sets B,Be are given from o✏ine precomputation. Lines 4-6 initialize the computa-
tion by setting the planning and tracking model states such that the relative system state is
inside the TEB B.

Algorithm 1: Online Trajectory Planning
1: Given:
2: V (r, t00), t00 2 [0, T ] and gradient rV (r, t00)
3: B(t0), t0 2 [0, T ] from (6.15), and Be from (6.16)
4: Initialization:
5: Choose p, s such that r 2 B(0)
6: Set initial time: t 0.
7: while Planning goal is not reached OR planning horizon is exceeded do
8: TEB Block:
9: Look for the smallest ⌧ such that r 2 B(⌧)

10: Cp,aug(t+ t0) Cp,sense  Be(⌧ + t0)
11: Path Planning Block:
12: pnext  nextState(p, Cp,aug)
13: Hybrid Tracking Controller Block:
14: rnext  �(s, p)(s�Qpnext)
15: if rnext is on boundary Be(t) then
16: use optimal tracking controller: us  u⇤

s
in (6.13)

17: else
18: use performance controller:
19: us  desired controller
20: end if
21: Tracking Model Block:
22: apply control us to vehicle for a time step of �t
23: Planning Model Block:
24: update planning state, p pnext, from Line 12
25: check if p is at planning goal
26: Update time:
27: t t+�t
28: end while

The TEB block is shown on lines 8-10. The sensor detects obstacles, or in general
constraints, Cp,sense(·) within the sensing region around the vehicle. If the user allows the
planning model to instantaneously stop, then for the static environments explored in this
chapter the sensing region must be large enough to sense any obstacles within one TEB of
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the planning algorithm. Thus, the set representing the minimum allowable sensing region5 is
m = {Be(T )}

L
FRS(�t), where FRS(�t) is the forward reachable set of the planning model

for one time step of planning (i.e. the largest step in space that the planning algorithm can
make in one time step). When using sensors that perceive some fixed radius in position in
all directions, the required radius is simply the maximum distance of the TEB summed with
the maximum distance the planning algorithm can cover in one time step. Note that for
time-varying TEBs with long time horizons this sensing requirement can be fairly restrictive
depending on the maximum size of the time-varying TEB. If the planning model is not
allowed to stop instantaneously, recursive safety can be ensured by methods such as [13,
76]. FaSTrack applied to dynamic environments with humans is explored in [72, 76], and is
paired with work on sequential trajectory tracking [40] to handle multi-human, multi-robot
environments [13].

Constraints are defined in the state space of the planning model, and therefore can
represent constraints not only in position but also in, for example, velocity or angular space.
One can either augment the constraints by the TEB, or augment the planning algorithm by
the TEB. Augmenting either planning algorithms or constraints by some bu↵er is common
practice in motion planning. The decision on which to augment falls to the user based
on the planning method used. Augmenting the planning algorithm requires computing the
intersection of sets between the TEB and the constraints (as done in [72, 13]). Augmenting
the constraints instead requires using the Minkowski di↵erence, denoted “ .” If the TEB
is a complicated shape for which computing the Minkowski di↵erence is di�cult, one can
reduce computational speed by simply expanding the constraints by the maximum distance
of the TEB in each dimension (this will result in a more conservative approximation of the
unsafe space).

The path planning block (lines 11-12) takes in the planning model state p and the aug-
mented constraints Cp,aug, and outputs the next state of the planning model pnext through
the function nextState(·, ·). As mentioned, FaSTrack is agnostic to the planning algorithm
used, so we assume that nextState(·, ·) has been provided. The hybrid tracking controller
block (lines 13-20) first computes the updated relative system state rnext. If the rnext is on
the boundary of the TEB Be(0), the optimal tracking controller given in (6.27) must be used
to remain within the TEB. If the relative system state is not on the tracking boundary, a
performance controller may be used. For the example in Section 6.6 the safety and perfor-
mance controllers are identical, but in general this performance controller can suit the needs
of the individual applications.

The control u⇤
s
is then applied to the physical system in the tracking block (lines 21-22)

for a time period of �t. The next state is denoted snext. Finally, the planning model state
is updated to pnext in the planning model block (lines 23-25). We repeat this process until
the planning goal has been reached.

5T !1 for the infinite time horizon case.
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6.6 Numerical examples

In this section, we demonstrate the FaSTrack framework in three numerical simulation
examples that respectively represent dynamic programming- based, sampling- based, and
optimization- based planning algorithms: (1) a 5D car tracking a 3D car model with the
FSM planning algorithm, (2) a 10D quadrotor tracking a single integrator model with the
RRT planning algorithm, and (3) an 8D quadrotor tracking a double integrator model with
the MPC planning algorithm. In each example, obstacles in the environment are a priori
unknown, and are revealed to the vehicle when they are “sensed,” i.e. come within the
minimum allowable sensing distance. Whenever the obstacle map is updated, the planning
algorithm replans a trajectory in real time. In this chapter, the details of sensing are kept as
simple as possible; we aim to only demonstrate our framework for real-time guaranteed safe
planning and replanning. In general, any other planning algorithm can be used for planning
in unknown environments, as long as planning and replanning can be done in real time.

For each example, we first describe the tracking and planning models. Next, we present
the relative dynamics as well as the precomputation results. Afterwards, we briefly describe
the planning algorithm and how obstacles are sensed by the vehicle. Finally, we show
trajectory simulation results.

Running Example: 5D car-3D car example with FSM

For our first example, we continue our running example of the 5D tracking model and 3D
planning model of an autonomous car. We will demonstrate the combination of fast planning
and provably robust tracking by combining the fast sweeping method (FSM) [163] with our
computed TEB. FSM is an e�cient optimal control-based planning algorithm for car-like
systems, and provides numerically convergent globally optimal trajectory in real time. In
this example, we use FSM to perform real-time planning for the 3D kinematic car model,
whose trajectory is tracked by the 5D car model.

O✏ine computation

As stated in Sec. 6.4, we computed the converged value function V1(r), which is shown in
Fig. 6.7, with V = 0.004, and Bp,1 = 0.065. The top left plot of Fig. 6.7 shows the TEB
Bp,1 in green. The tracking model must apply the optimal control when it is on the green
boundary. The cross-sectional area of the TEB is the largest at ✓r = 0, ⇡, because at these
✓r values the 5D car model is either aligned with or opposite to the 3D car model. Since the
5D car is able to move both forward and backward, these two alignments make tracking the
easiest. For the same reasoning, the cross sectional area is the smallest at ✓r = �⇡/2, ⇡/2,
etc.

The magenta and cyan planes indicate slices of the TEB at ✓r = ⇡/2,�3⇡/4, respectively.
With these ✓r values fixed, corresponding projections of the value function onto (xr, yr) space
are shown in the top right and bottom left plots. Here, V is shown as the gray plane, with
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Figure 6.7: Infinite time horizon TEB (top left), two slices of the value function at ✓r =
⇡/2,�3⇡/4 (top right, bottom left), and corresponding TEB slices (bottom right) for the
running example (5D car tracking 3D car) introduced in Section 6.6.

the intersection of the gray plane and the value function projection shown by the curve in
the 0-level plane. These curves are slices of Bp,1 at the ✓r = ⇡/2,�3⇡/4 levels.

Computation was done on a desktop computer with an Intel Core i7 5820K processor, on
a 31⇥ 31⇥ 45⇥ 27⇥ 47 grid, and took approximately 23 hours and required approximately
2 GB of RAM using a C++ implementation of level set methods for solving (6.12). A 5D
computation is at the limit of computational tractability using the HJ method. Fortunately,
FaSTrack is modular with respect to the method for computating the TEB, and we are
exploring techniques for computing TEBs for higher-dimensional systems through sum-of-
squares optimization [161] and approximate dynamic programming [150].

Online sensing and planning

The simulation showing the combination of tracking and planning is shown in Fig. 6.8. The
goal of the system, the 5D car, is to reach the blue circle at (0.5, 0.5) with a heading that is
within ⇡/6 of the direction indicated by the arrow inside the blue circle, ⇡/2. Three initially
unknown obstacles, whose boundaries are shown in dotted black, make up the constraints
Cp.
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While planning a trajectory to the goal, the car also senses obstacles. For this example,
we chose a simple virtual sensor that reveals obstacles within a range of 0.5 and in front
of the vehicle within an angle of ⇡/6, depicted as the light green fan. When a portion of
the unknown obstacles is within this region, that portion is made known to the vehicle, and
is shown in red. These make up the sensed constraints Cp,sense. To ensure that the 5D car
does not collide with the obstacles despite error in tracking, planning is done with respect
to augmented constraints Cp,aug, shown in dashed blue.

Given the current planning constraints Cp,aug, the planning algorithm uses the 3D planning
model to generate a trajectory, in real time using FSM, towards the goal. This plan is shown
in dotted red. The 5D system robustly tracks the 3D system within the TEB in Fig. 6.7.
Four time snapshots of the simulation are shown in Fig. 6.8. In the top left subplot, the
system has sensed only a very small portion of the obstacles, and hence plans a trajectory
through an unknown obstacle to the target. However, while tracking this initial trajectory,
more of the L-shaped obstacle is made known to the system, and therefore the system plans
around this obstacle, as shown in the top right subplot. The bottom subplots show the
system navigating through sensed obstacles and reaching the goal at t = 23.9 s.

As explained in Fig. 6.4, when the tracking error is relatively large, the autonomous
system uses the optimal tracking controller given by (6.27); otherwise, it uses a performance
controller. In this simulation, we used a simple LQR controller on the linearized system when
the tracking error is less than a quarter of the size of the TEB. In general, this switching
condition is user-defined. The tracking error over time is shown in Fig. 6.9. The red dots
indicate the time points at which the optimal tracking controller in (6.27) is used, and the
blue dots indicate the time points at which the LQR controller is used. One can see that when
the optimal tracking controller is used, the error stays below 0.05, well below the predicted
TEB of 0.065, since the planning control and the disturbances are not being adversarial.
The disturbance was chosen to be uniformly random within the chosen bounds.

The simulation was done in MATLAB on a desktop computer with an Intel Core i7
2600K CPU. Time was discretized in increments of 0.067 seconds, (15 Hz). Averaged over
the duration of the simulation, planning with FSM took approximately 66 ms per iteration,
and obtaining the tracking control from (6.27) took approximately 2 ms per iteration.

10D quadrotor-3D single integrator example with RRT

Our second example involves a 10D near-hover quadrotor [29] as the tracking model and a
single integrator in 3D space as the planning model. Planning is done using RRT, a well-
known sampling-based planning algorithm that quickly produces geometric paths from a
starting position to a goal position [110, 98]. Paths given by the RRT planning algorithm
are converted to time-stamped trajectories by placing a maximum velocity in each dimension
along the generated geometric paths.

The dynamics of tracking model and of the 3D single integrator is as follows:
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Figure 6.8: Simulation of the 5D-3D example. As the vehicle with 5D car dynamics senses
new obstacles in the sensing region (light green), the 3D model replans trajectories, which
are robustly tracked by the 5D system. Augmentation of the constraints resulting from the
obstacles ensures safety of the 5D system using the optimal tracking controller.
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where quadrotor states (x, y, z) denote the position, (vx, vy, vz) denote the velocity, (✓x, ✓y)
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Figure 6.9: Tracking error bound over time for the 5D-3D example. The red dots indicate
that the optimal tracking controller is used, while the blue dots indicate that an LQR
controller for the linearized system is used. The hybrid controller switches from LQR to the
optimal tracking controller whenever the error exceeds 0.02. The tracking error is always
well below the predicted TEB of 0.065.

denote the pitch and roll, and (!x,!y) denote the pitch and roll rates. The controls of the
10D system are (ux, uy, uz), where ux and uy represent the desired pitch and roll angle, and
uz represents the vertical thrust.

The 3D system controls are (v̂x, v̂y, v̂z), and represent the velocity in each positional
dimension. The disturbances in the 10D system (dx, dy, dz) are caused by wind, which acts
on the velocity in each dimension. The model parameters are chosen to be d0 = 10, d1 = 8,
n0 = 10, kT = 0.91, g = 9.81, |ux|, |uy|  ⇡/9, uz 2 [0, 1.5g], |v̂x|, |v̂y|, |v̂z|  0.5. The
disturbance bounds were chosen to be |dx|, |dy|, |dz|  0.1.

O✏ine computation

We define the relative system states to consist of the error states, or relative position
(xr, yr, zr), concatenated with the rest of the state variables of the 10D quadrotor model.
Defining � = I10 and
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we obtain the following relative system dynamics:



CHAPTER 6. FASTRACK: FAST AND SAFE TRACKING 120

2

666666666666664

ẋr
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The relative system dynamics given in (6.22) is decomposable into three independent
subsystems involving the sets of variables (xr, vx, ✓x,!x), (xy, vy, ✓y,!y), (zr, vz), allowing us
to choose the error function to be also in the decomposable form of l(r) = max(x2

r
, y2

r
, z2

r
),

so that we can solve (6.12) tractably since each subsystem is at most 4D [38].
The left subplot of Fig. 6.10 shows the projection of the value function V onto the (xr, vx)

space resulting from solving (6.12) over an increasingly long time horizon. Starting from
⌧ = 0, we have that l(r) = V (r, 0). As ⌧ increases, the value function evolves according to
(6.12), and eventually converges when ⌧ reaches 3.5. This implies that V1(r) = V (r, ⌧ = 3.5),
since we would still obtain the same function even if we let ⌧ approach infinity. The horizontal
plane shows V = 0.3, which corresponds to a TEB of approximately 0.9.

The right subplot of Fig. 6.10 shows the V = 0.3 level set of value function projection,
which is the projection onto the (xr, vx) space, of the TEB Be,1. The range of xr provides the
TEB used for the planning algorithm, Bp,1. The value function and TEB in the (yr, vy, ✓y,!y)
and (zr, vz) spaces are combined to form the 10D TEB, which is projected down to the 3D
positional space. For conciseness, these value functions are not shown; however, one can see
the resulting TEB in Fig. 6.11 and 6.12 as the translucent blue box.

O✏ine computations were done on a laptop with an Intel Core i7 4702HQ CPU using
a MATLAB implementation of level set methods [129] used for solving (6.12). The 4D
computations were done on a 61 ⇥ 61 ⇥ 41 ⇥ 41 grid, took approximately 12 hours, and
required approximately 300 MB of RAM. The 2D computation in the (zr, vz) space was
done on a 101⇥ 101 grid, took approximately 15 seconds, and required negligible RAM.

Online sensing and planning

The simulation involving the 10D quadrotor model tracking the 3D single integrator is shown
in Fig. 6.11 and 6.12. Here, the system aims to start at (x, y, z) = (�12, 0, 0) and reach
(12, 0, 0). To best test our method, we allow the wind disturbance to act adversarially,
resulting in worst-case wind conditions. Three rectangular obstacles, which make up the
constraints Cp, are present and initially unknown. Before the obstacles are sensed by the
system, they are shown in gray. As the 10D quadrotor senses obstacles (when they are
within 1.5 units from the quadrotor), the component of the obstacle that is within sensing
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Figure 6.10: Left: snapshots in time of the value function V (r, ⌧) shown over dimensions xr

and vx,r. Snapshots are from ⌧ = 0 s (transparent dark red surface on bottom) to convergence
at ⌧ = 3.5 s (solid yellow surface on top). Right: 2D slice at V1(r) = 0.3 (corresponding to
gray slice on the left). This is the infinite horizon TEB, B1(r) in the xr and vx,r dimensions.

distance is revealed and shown in red. To demonstrate the flexibility of augmenting by the
TEB, in this example we show the TEB augmenting the planning algorithm rather than the
obstacles. Whenever new obstacles are revealed, the planning algorithm replans a trajectory
to the goal while avoiding the augmented constraint set Cp,aug. This happens in real time
using RRT.

Fig. 6.11 shows the entire trajectory, with the end of the trajectory being close to the goal
position. The planning model state is shown as a small green star, and the translucent box
around it depicts the TEB: the tracking model position is guaranteed to reside within this
box. Therefore, as long as the planning model plans in a way such that the TEB does not
intersect with the obstacles, the tracking model is guaranteed to be safe. Due to the random
nature of RRT, during the simulation the system appears to randomly explore to look for
an unobstructed path to the obstacle; we did not implement any exploration algorithms.

Fig. 6.12 shows three di↵erent time snapshots of the simulation. At t = 8, the planning
model has sensed a portion of the previously unknown obstacles, and replans, so that the
path deviates from a straight line from the initial position to the goal position. The subplot
showing t = 47.7 is rotated to show the trajectory up to this time from a more informative
view angle. Here, the system has safely passed by the first planar obstacle, and is moving
around the second. Note that the TEB never intersects the obstacles, implying that the
tracking model is guaranteed to avoid collision with the obstacles, since it is guaranteed to
stay within the TEB. At t = 83.5, the autonomous system safely passes by the last obstacle.

Fig. 6.13 shows the maximum tracking error, in the three positional dimensions over
time. The red points indicate the time points at which the optimal tracking controller from
Eq. (6.27) was used; this is the optimal tracking controller depicted in Fig. 6.4. The blue
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Figure 6.11: Simulation of the 10D quadrotor tracking (trajectory shown in blue) a 3D single
integrator (position shown as green star inside blue box). The dimensions x, y, z represent the
length, width, and height of the absolute state space. The system senses initially unknown
obstacles (gray), which are revealed (revealed parts shown in red) as the system approaches
them. Replanning is done in real time by RRT when new obstacles are sensed. The TEB is
shown as the blue box, and is the set of positions that the 10D quadrotor is guaranteed to
remain within.

points indicate the time points at which a performance controller, also depicted in Fig. 6.4,
was used. For the performance controller, we used a simple proportional controller that
depends on the tracking error in each positional dimension; this controller is used whenever
the tracking error is less than a quarter of the TEB. From Fig. 6.13, one can observe that
the tracking error is always less than the TEB implied by the value function.

The simulation was done in MATLAB on a desktop computer with an Intel Core i7 2600K
CPU. The time was discretized in increments of 0.01. On average per iteration, planning
with RRT using a simple multi-tree RRT planning algorithm implemented in MATLAB
modified from [79] took 5 ms, and computing the tracking controller took 5.5 ms.

8D quadrotor-4D double integrator example with MPC

In this section, we demonstrate the online computation framework in Alg. 1 with an 8D
quadrotor example and MPC as the online planning algorithm. Unlike in Sections 6.6 and 6.6,
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t = 140s

Figure 6.12: Three time snapshots of the simulation in Fig. 6.11. The full simulation can
be seen at https://youtu.be/JwDrYG-oZSY.

we consider a planning-tracking model pair for which the value function does not converge,
so that the computation instead provides a tvTEB. In addition, the TEB depends on both
position and speed, as opposed to just position. This is to accommodate velocity bounds on
the system.

First we define the 8D dynamics of the near-hover quadrotor, and the 4D dynamics of a
double integrator, which serves as the planning model to be used in MPC:
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where the states, controls, and disturbances are the same as the first 8 components of the



CHAPTER 6. FASTRACK: FAST AND SAFE TRACKING 124

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
0

2
0

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0
0

0
.2

0
.4

0
.6

0
.81

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

0

0
.2

0
.4

0
.6

0
.81

Figure 6.13: Tracking error over time for the 10D-3D example. The red dots indicate that
the optimal tracking controller in (6.27) is used, while the blue dots indicate that an LQR
controller for the linearized system is used. The tracking error stays below the predicted
TEB of 0.9 m, despite worst-case wind.

dynamics in (6.21). The position (x̂, ŷ) and velocity (v̂x, v̂y) are the states of the 4D system.
The controls are (âx, ây), which represent the acceleration in each positional dimension.
The model parameters are chosen to be d0 = 10, d1 = 8, n0 = 10, kT = 0.91, g = 9.81,
|ux|, |uy|  ⇡/9, |âx|, |ây|  1, |dx|, |dy|  0.2.

O✏ine precomputation

We define the relative system states to be the error states (xr, vx,r, yr, vy,r), which are the
relative position and velocity, concatenated with the rest of the states in the 8D system.
Defining � = I8 and
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we obtain the following relative system dynamics:
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As in the 10D-3D example in Section 6.6, the relative dynamics are decomposable into
two 4D subsystems, and so computations were done in 4D space.

Fig. 6.6 shows the (xr, vx,r)-projection of value function across several di↵erent times
on the left subplot. The total time horizon was T = 15, and the value function did not
converge. The gray horizontal plane indicates the value of V , which was 1.14. Note that
with increasing ⌧ , V (r, T � ⌧) is non-increasing, as proven in Prop. 6. The right subplot of
Fig. 6.6 shows the (xr, vx,r)-projection of the tvTEB. At ⌧ = 0, the TEB is the smallest,
and as ⌧ increases, the size of TEB also increases, consistent with Proposition 6. In other
words, the set of possible error states (xr, vx,r) in the relative system increases with time,
which makes intuitive sense.

The tvTEB shown in Fig. 6.6 is used to augment planning constraints in the x̂ and v̂x
dimensions. Since we have chosen identical parameters for the first four and last four states,
the TEB in the ŷ and v̂y dimensions is identical.

On a desktop computer with an Intel Core i7 5820K CPU, the o✏ine computation on
a 81 ⇥ 81 ⇥ 65 ⇥ 65 grid with 75 time points took approximately 30 hours and required
approximately 17 GB of RAM.

Online sensing and planning

We use the MPC design in [175] for online trajectory planning. It is formulated as a finite-
time optimal control problem (OCP) given by

minimize
{p̄k}Nk=0,{ūk}N�1

k=0

N�1X

k=0

l(p̄k, ūk) + lf (p̄N � pf ) (6.25a)

subject to p̄0 = pinit, (6.25b)

p̄k+1 = h(p̄k, p̄k), (6.25c)

ūk 2 U, p̄k 2 Cp,aug(tk), (6.25d)

where l(·, ·) and lf (·) are convex stage and terminal cost functions, the future states p̄k and
inputs ūk are decision variables, and N is the prediction horizon. The index tk = t0+k�tmpc
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denotes for the internal time steps used in MPC, with t0 and �tmpc being the current time
and the sampling interval of MPC, respectively. Note that N and �tmpc are chosen such
that t0 + N�tmpc  T � ⌧ with ⌧ given by Step 9 in Algorithm 1 and T defined for TEB
in (6.15). States of the planning model are denoted by the variable p = (x̂, v̂x, ŷ, v̂y) with
current state pinit and terminal state pf . The planning control is denoted by the variable
u = (âx, ây). The dynamical system h(·, ·) is set to be a zero-order hold discretized model of
the 4D dynamics in (6.23). The state and input constraints are Cp,aug(tk) and U. Note that
the time-varying constraint Cp,aug(tk) contains the augmented state constraints:

p̄k 2 Pk := P Be(tk), (6.26)

where P denotes the original state constraint, and Be(tk) is the tracking error bound at tk.
For this example, we represent the augmented constraints as the complement of polytopes,

which makes the MPC problem non-convex. We follow the approach presented in [175] to
compute a locally optimal solution that uses extra auxiliary variables for each non-convex
constraint. We use a horizon N = 8 with sampling interval �tmpc = 0.2 s. The MPC replans
every 0.8 s. The control frequency is 10 Hz, i.e. �t = 0.1 for both the 4D planning and 8D
tracking system.

The simulation showing the 8D quadrotor tracking the 4D double integrator is presented
in Fig. 6.14. The quadrotor starts at (2.0, 0.0) and seeks to reach the goal, i.e. the blue
circle centered at (9.0, 11.5) with a radius of 1.0. Three initially unknown polytopic obstacles
make up the constraints Cp.

The quadrotor has a circular sensing region with a radius of 6, colored in green. Unknown
obstacles are marked with dotted black boundaries. As the quadrotor explores the environ-
ment, obstacles are detected once they are within the sensing range. The union of all sensed
obstacles makes up the sensed constraints Cp,sense, whose boundaries are colored in red. They
are enclosed by the augmented obstacles shown as dashed polytopes with di↵erent colors,
each representing a di↵erent augmentation of the original sensed obstacles. These illustrate
the tvTEB in the position dimensions. The tvTEB is also defined in the velocity dimensions;
the value of the bounds over time are shown in Fig. 6.6. Therefore, time-varying constraints
Cp,aug(tk) in (6.25d) are augmented accordingly in all four dimensions of the planning system.

The MPC planner takes as input the current state pinit of the 4D planning system and
a list of augmented constraints Cp,aug(tk). It then solves the OCP (6.25) in real time for a
sequence of optimized control inputs, which steers the planning system towards the goal while
avoiding the augmented obstacles. The current state of the planning system is represented
as a green star. In front of it, the predicted trajectories in (x̂, ŷ) space are plotted in dotted
curves with the same color as the augmented obstacles considered at the time the MPC
problem is solved. The traveled path of the planning system is shown as a solid grey curve.
Here, unlike the standard MPC algorithm in which only the first element of the control inputs
is used before replanning happens, our proposed MPC planner applies multiple control inputs
to the 4D system in open-loop before it replans. This is due to the fact that the planning
and tracking system use the same control frequency, i.e. they both update states every �t
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time steps as shown in Step 28 in Algorithm 1; and that the sampling interval of the planner
�tmpc is in general larger than �t.

The state of the 8D tracking model (6.24) is represented as a red circle. Using the hybrid
tracking controller depicted in Fig. 6.4, the 8D system tracks the 4D planning system within
the tvTEB in Fig. 6.6, which guarantees constraint satisfaction despite the tracking error
at all times. The traveled path of the 8D system is shown as the solid black curve.

Fig. 6.14 also shows four time snapshots of the closed-loop simulation. The top left
subplot shows the positional trajectories of the planning and tracking system at t = 2.6.
At t = 5.0, the MPC planning algorithm speeds up and makes a sharp turn into a narrow
corridor. This results in a significant deviation between the two trajectories. However, the
tracking controller keeps the system within the TEB and no collision is incurred at this time,
as shown in the top right subplot. A similar case can be observed in the lower left subplot.
Finally, at t = 13.4 the quadrotor safely arrives at the destination. Note that the size of the
augmented obstacles keeps changing from time step to time step, as indicated by the dashed
polytopes with di↵erent colors and sizes in the snapshots. Meanwhile the MPC incorporates
the updated information of augmented constraints Cp,aug(tk) and plans safe trajectories.

Fig. 6.15 shows the tracking error in xr over time. The red dots indicate the time points
at which the optimal tracking controller from Eq. (6.13) is used. One may observe that the
tracking error is always less than 0.45, well below the minimal TEB of 1.11 implied by the
value function in Fig. 6.6.

Fig. 6.16 shows the tvTEB in the vx,r dimension used in the closed-loop simulation. Each
time when replanning is performed via solving the MPC problem in Eq. (6.25), a sequence of
8 TEBs are determined by Step 9 in Algorithm 1, and used for constructing the augmented
constraints in Eq. (6.25d). Each error bar and the red dot in the middle shows the range
and mean value of the TEBs used within a single MPC planning loop. Enabling a tvTEB
allows us to set smaller TEBs for the initial time steps, growing the TEB as the time horizon
extends. If we were to use a fixed TEB, we would have to keep the error bound as the largest
bound required over the time horizon; this can lead to fairly conservative movement from the
planning algorithm. Note that the tvTEB is employed on full states including both position
and velocity of the planning system, which allows us to reduce the conservativeness of the
planner as much as possible.

We compare the simulation time where the tvTEB is used for planning with the case in
that the TEB is fixed as a constant. The results are summarized in Table 6.1. One may
observe that with the use of tvTEB the conservativeness in planning is reduced and a shorter
flight time is achieved.

Table 6.1: Simulation Time with Constant and tvTEB.

Simulation case Time (s)
Planning with constant TEB 14.6

Planning with tvTEB 13.4
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Figure 6.14: Simulation of the 8D-4D example. As the quadrotor with 8D dynamics (position
shown as red circle and trajectory shown in black) senses new obstacles, the 4D planning
system (position shown as green star and trajectory shown in grey)

replans the trajectory, which is robustly tracked by the 8D system. The time-varying
augmented obstacles are plotted as dashed polytopes with di↵erent sizes and colors.
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Figure 6.15: Tracking error in xr over time for the 8D-4D example. The red dots represent
the time steps when the optimal tracking controller in (6.13) is used. The tracking error
remains lower than the minimal TEB of 1.11m at all times.
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Figure 6.16: Time-varying TEB over time in the vx,r dimension used by the MPC planner.
The error bars are plotted at time steps when the MPC replans. They characterize the range
of TEBs used for each planning while the red dots shows the mean value.
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Implementation of the MPC planner was based on MATLAB and ACADO Toolkit [89].
The nonlinear MPC problem was solved using an online active set strategy implemented in
qpOASES [67]. All the simulation results were obtained on a laptop with Ubuntu 14.04 LTS
operating system and a Core i5-4210U CPU. The average computation time for solving the
MPC problem (6.25) was 0.37 s.

6.7 Chapter Summary

This chapter introduced FaSTrack: Fast and Safe Tracking, a framework for providing tra-
jectory -independent tracking error bounds (TEB) for a tracking model representing an au-
tonomous system, and a planning model representing a simplified model of the autonomous
system. The TEB is obtained by analyzing a pursuit-evasion game between the two models,
and obtaining the associated value function by solving a Hamilton- Jacobi (HJ) variational
inequality.

We demonstrated the framework’s utility in three representative numerical simulations
involving a 5D car model tracking a 3D car model planning using the fast sweeping method,
a 10D quadrotor model tracking a 3D single integrator model planning using rapid-exploring
random trees, and an 8D quadrotor model tracking a 4D double integrator planning using
model predictive control. We considered simulated environments with static obstacles, but
FaSTrack has been demonstrated in hardware to safely navigate around environments with
static obstacles [76] and moving human pedestrians [72].

There are still challenges and simplifications to address. The o✏ine computation can be
computationally prohibitive, a challenge we are working to address using techniques such
as HJ reachability decomposition [38, 35], sophisticated optimization techniques [161], and
approximate dynamic programming [150]. We are also interested in exploring methods to
reduce conservativeness of the TEB by relaxing the worst-case assumption on the goals of
the planning control. Additionally, identifying when a particular tracking-planning model
will have a converged value function remains an open question. Finally, we currently assume
both perfect sensing and a perfectly representative tracking model. We would like to alleviate
these assumptions by bounding uncertainty from sensing error, and making online updates
to the value function as information about the tracking model is improved.

By computing trajectory-independent TEB, our framework decouples robustness guar-
antees from planning, and achieves the best of both worlds – formal robustness guarantees
which is usually computationally expensive to obtain, and real-time planning which usually
sacrifices robustness. Combined with any planning method in a modular fashion, our frame-
work enables guaranteed safe planning and replanning in unknown environments, among
other potential applications.
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Appendix: Infinite Time Horizon TEB

When the value function (6.11) converges, we write V (T, r) := V1(r). The optimal controller
is then given by

u⇤
s
(r) = arg min

us2Us

max
up2Up,d2D

rV (r) · g(r, us, up, d). (6.27)

with the optimal planning control and disturbance given by

u⇤
p

d⇤

�
(r) = arg max

up2Up,d2D
rV1(r) · g(r, u⇤

s
, up, d). (6.28)

The smallest level set corresponding to the value V 1 := minr V1(r) can be interpreted
as the smallest possible tracking error of the system, and the TEB is given by the set

B1 = {r : V1(r)  V 1}. (6.29)

with the TEB in error state subspace is given by

Be,1 = {e : 9⌘, V1(e, ⌘)  V 1}. (6.30)

In the online implementation in Alg. 1, one replaces all mentions of value function and
TEB with their infinite time horizon counterpart, and skip Line 9. Finally, Prop. 7 provides
the infinite time horizon result analogous to Prop. 6.

Proposition 7. Infinite time horizon guaranteed TEB. Given t � 0, 8t0 � t, r 2
B1 ) ⇣⇤

g
(t0; r, t) 2 B1, with ⇣⇤

g
defined the same way as in (6.17b) to (6.17e).

Proof: Suppose that the value function converges, and define

V1(r) := lim
T!1

V (r, T ) (6.31)

We first show that for all t, t0 with t0 � t,

V1(r) � V1(⇣⇤
g
(t0; r, t)). (6.32)

Without loss of generality, assume t = 0. Then, we have

V1(r) = lim
T!1

max
⌧2[0,T ]

l(⇣⇤
g
(⌧ ; r, 0)) (6.33a)

= lim
T!1

max
⌧2[�t0,T ]

l(⇣⇤
g
(⌧ ; r,�t0)) (6.33b)

� lim
T!1

max
⌧2[0,T ]

l(⇣⇤
g
(⌧ ; r,�t0)) (6.33c)

= lim
T!1

max
⌧2[0,T ]

l(⇣⇤
g
(⌧ ; ⇣⇤

g
(0; r,�t0), 0)) (6.33d)

= lim
T!1

max
⌧2[0,T ]

l(⇣⇤
g
(⌧ ; ⇣⇤

g
(t0; r, 0), 0)) (6.33e)

= V1(⇣⇤
g
(t0; r, 0)) (6.33f)

Explanation of steps:
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• (6.33a) and (6.19f): by definition of value function

• (6.33b): shifting time by �t0

• (6.33c): removing the time interval [�t0, 0) in the max operator

• (6.33d): splitting trajectory ⇣⇤
g
(⌧ ; r,�t0) into two stages corresponding to time intervals

[�t0, 0] and [0, ⌧ ]

• (6.33e): shifting time reference in ⇣⇤
g
(0; r,�t0) by t0, since dynamics are time-invariant

Now, we finish the proof as follows:

r 2 B1 , V1(r)  V (6.34a)

) V1(⇣⇤
g
(t0; r, t))  V (6.34b)

, ⇣⇤
g
(t0; r, t) 2 B1, (6.34c)

where (6.32) is used for the step in (6.34b). ⌅
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Chapter 7

Meta-Planning with FaSTrack

This chapter is based on the paper “Planning, Fast and Slow: A Framework for Adaptive
Real-Time Safe Trajectory Planning” [76], written in collaboration with David Fridovich-
Keil, Jaime Fisac, Sampada Deglurkar, and Claire J. Tomlin.

The navigation of autonomous dynamical systems through cluttered environments is a
hard problem, particularly when there is a need for both speed and safety. Often, elements of
the environment (such as obstacle locations) are also unknown a priori, further complicating
the problem. Many popular methods exist for planning trajectories in such scenarios, but a
key challenge lies in accounting for dynamic feasibility in real time while providing a safety
guarantee. Some of the most common approaches in this space are sampling-based planners
such as rapidly-exploring random trees (RRTs) [110]. Typically, these planners fall into one
of two broad categories: geometric planners only attempt to find a path the system can take
from its current position to the goal, while kinodynamic planners find a dynamically feasible
trajectory, i.e. a path with associated time stamps that adheres to some known system
dynamics.

Since the output of a geometric planner is not usually dynamically feasible, a common
practice is to apply a feedback controller, e.g. a linear quadratic regulator (LQR), to attempt
to track a geometric plan. Since the controller will not follow the plan perfectly, geometric
plans are usually generated by assuming an ad hoc safety margin. This idea is illustrated in
Fig. 7.1(a-b).

In practice, this safety margin is almost always a conservative heuristic chosen by the
operator. However, the recently-developed Fast and Safe Tracking (FaSTrack) framework
[88] provides a rigorous way to precompute a safety margin o✏ine, given a model of the true
system dynamics and a (possibly lower-dimensional) model of the online planner’s dynamics.
In the FaSTrack framework, a guaranteed maximum possible tracking error is computed
between the tracking system model and the planning model. This tracking error bound
(TEB) can also accommodate deviations due to external disturbances such as wind and time
delays. The TEB is used to expand obstacles by a margin that guarantees safety. The o✏ine
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Figure 7.1: (a) A dynamical system (black, dotted) may not be able to track the output of a
geometric planner (blue, solid), resulting in collision with an obstacle. (b) Often planners ac-
count for tracking error by heuristically augmenting obstacles; however, the system may still
deviate from the planned path by more than this margin. (c) Schematic of meta-planner op-
eration using fast (blue, dashed) and slow (red, solid) planning models with correspondingly
large (blue, solid) and small (red, hatched) TEB-augmented obstacles.

precomputation also provides a computationally e�cient safety controller that maps the
relative state between the tracking system and the planned trajectory at any given time to
the most e↵ective control action for the tracking system to remain within the TEB. Hence,
the online algorithm involves real-time planning using a fast, potentially low-dimensional
planning model, and quickly computable robust optimal tracking of the planned trajectory
using a higher-dimensional tracking model.

While FaSTrack makes no significant assumptions about the specific type of low-
dimensional planner, in this work we focus our attention on geometric planners operating
in the robot’s configuration space. We observe that the resulting geometric paths can be
interpreted as kinematic trajectories with a fixed maximum speed in each dimension. We em-
phasize that the restriction to geometric planners is pedagogical; like FaSTrack, our proposed
meta-planning approach is more general and extends to more complex planning models.
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One key drawback of FaSTrack is that the TEB can be overly conservative if the system is
tracking a particularly di�cult-to-track planning model. In this chapter we propose an extra
layer to the core framework that allows combining multiple planning models with di↵erent
maximum speeds, and hence di↵erent TEBs. We call this process meta-planning, and it
e↵ectively generates a tree of trajectories that switch between “faster” and “slower” planning
models, as illustrated in Fig. 7.1(c). Faster planning models are able to navigate through the
environment quickly, but their larger TEBs prevent them from threading narrow passages
between obstacles. Slower planning models take more time to traverse the environment, but
the correspondingly smaller TEBs allow them to maneuver more precisely near obstacles. By
adaptively selecting the planning model in real time, our framework can trade o↵ between
speed of navigation and size of the TEB. Crucially, our meta-planning scheme can quickly
and safely adapt to the presence of obstacles detected at motion time.

The main contributions of this chapter are the aforementioned real-time meta-planning
algorithm for Fast and Safe Tracking, a constructive proof of safety, and a demonstration of
the full algorithm both in simulation and hardware using a small quadrotor vehicle.

7.1 Related Work

Robust motion planning and trajectory optimization have been active areas of research in
recent years. However, navigation that is both robust and fast is still a challenge. Sampling-
based motion planners can be computationally e�cient, but attempts to make them robust
are generally heuristic. Other techniques for online dynamic navigation include model pre-
dictive control (MPC), which is extremely useful, particularly for linear systems. MPC is
harder to use in real time for nonlinear systems due to the computational costs of solving for
dynamic trajectories, though work to speed up computation is ongoing [54, 134]. Robustness
can be achieved in linear systems [147, 53], and there is work on making MPC for nonlinear
systems robust by using algorithms based on minimax formulations and tube MPCs that
bound output trajectories with a tube around a nominal path (see [90] for references).

There are other techniques for robust navigation that take advantage of precomputation.
Safety funnels can be constructed around motion primitives that can then be pieced together
in real time [122]. Given a precomputed nominal dynamically feasible trajectory, contraction
mapping can be used to make this nominal trajectory more robust to external disturbances in
real time [160]. Finally, Hamilton-Jacobi (HJ) reachability analysis has been used for o✏ine
robust trajectory planning in fully known environments, providing guaranteed tracking error
bounds under external disturbances [18].

The meta-planning aspect of this chapter was inspired by behavioral economist Daniel
Kahneman’s Nobel Prize winning work on “fast” (intuitive) and “slow” (deliberative) modes
of cognitive function in the brain [94]. Thinking with the “fast system” is e�cient, but
more error-prone. Thinking with the “slow system” is less error-prone, but slower. The
brain adaptively chooses which mode to be in to operate e�ciently while minimizing error
in scenarios where error can be disastrous. This act of deciding how much cognitive e↵ort
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to expend for a given task is called metareasoning [151], and can be useful for robotics. It
may be desirable for a robot to plan and move swiftly whenever possible, but to operate
more carefully when approaching a challenging region in the environment. Research in
psychology has suggested that selecting between a limited number of discrete cognitive modes
is computationally advantageous [125], which inspires the use of a discrete set of faster and
slower planning models in our meta-planning algorithm. Our algorithm is able to trade o↵
planner velocity and tracking conservativeness in a modular way while providing a strong
theoretical safety guarantee.

7.2 Background

The FaSTrack framework can be used to plan and track a trajectory online and in real time.
The real-time planning is done using a set of kinematic or dynamic planning models, and
the physical system is represented by a dynamic tracking model that will attempt to follow
the current planning model. The environment can contain static a priori unknown obstacles
provided they can be observed by the system within a limited sensing range.1 In this section
we will define the tracking and planning models and their relation to one another, and present
a brief overview of FaSTrack.

Tracking Model

The tracking model should be a realistic representation of the real system dynamics, and in
general may be nonlinear and high-dimensional. Let s represent the state variables of the
tracking model. The evolution of the dynamics satisfies the ordinary di↵erential equation
(ODE):

ds

dt
= ṡ = f(s, us, d), t 2 [0, T ]

s 2 S, us 2 Us, d 2 D

(7.1)

The trajectories of (7.1) will be denoted as ⇣f (t; s0, t0, us(·), d(·)), where t0, t 2 [0, T ] and
t0  t. Under standard technical assumptions [88], these trajectories will satisfy the initial
condition and the ODE (7.1) almost everywhere. For a running example we will consider a
tracking model of a simple double-integrator with control us and disturbances d = [dv, da]T :


ṡx
ṡvx

�
=


svx � dv
us � da

�
(7.2)

1In order to provide safety guarantees, the minimum allowable sensing distance in any direction is the
length of the TEB’s projection onto that direction, added to the largest distance the current planning
reference could move while a new meta-plan is generated.
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Planning Model

The planning model defines the class of trajectories generated by the motion planner. Let
p represent the state variables of the planning model, with control up. The planning states
p 2 P are a subset of the tracking states s 2 S. FaSTrack is agnostic to the type of planner,
as long it can be represented using a kinematic or dynamic model as follows:

dp

dt
= ṗ = h(p, up), t 2 [0, T ], p 2 P , up  up  up

(7.3)

This chapter focuses on geometric planners. Although geometric planners may not directly
use a dynamical model, the paths they generate can be described by a point with direct
velocity control. For example, a 1D geometric planner could be described as a point moving
with a direct velocity controller: ṗx = up. Note that the planning model does not need a
disturbance input. Disturbances need only be considered in the tracking model and not the
planning model, since the latter only exists in the abstract as a reference for the former.

Relative Dynamics

The FaSTrack framework relies on using the relative dynamics between the tracking and
planning models. The relative system may be derived by lifting the planner’s state from P

to S and subtracting:
r = s�Qp, ṙ = g(r, us, up, d) (7.4)

Q is a matrix that matches the common states of s and p by augmenting the state space of
the planning model. The relative states r now represent the tracking states relative to the
planning states. Using our tracking and planning model examples from above we can define
the dynamics of a double-integrator tracking a 1D point mass as:


ṙx
ṡvx

�
=


svx � dv � up

us � da

�
(7.5)

The FaSTrack Framework

The FaSTrack framework, explained in detail in [88], consists of both an o✏ine precomputa-
tion algorithm and an online planning algorithm. Together, these allow a nonlinear dynamic
system to navigate through an a priori unknown environment with static obstacles, safely
and in real time.

O✏ine, FaSTrack computes a tracking error bound (TEB) and a safety controller to
stay inside this bound. The TEB is a safety margin that, when using the safety controller,
guarantees robust tracking despite worst-case planner behavior and bounded disturbances.
The safety controller operates on the relative state between tracker and planner, and is com-
puted o✏ine via HJ reachability analysis in free space. This is possible because the relative
dynamics do not depend on the absolute state of the tracking system in the environment.
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Since the tracker will always remain inside the TEB, as long as the TEB never intersects
any obstacles, the free space relative dynamics will always apply.

Online, both at the start and whenever a new obstacle is sensed, an o↵-the-shelf planning
algorithm—equipped with the precomputed TEB for collision-checking—generates a new
trajectory. The tracking system may then apply the precomputed safety controller to track
this planned trajectory in real time.

7.3 Meta-Planning

General Framework

In this work, we use the term planner to denote the conjunction of a planning algorithm and
an associated planning model that it uses to generate timed trajectories.This chapter’s main
contribution to the FaSTrack framework is the introduction of a meta-planning algorithm
to choose between a selection of planners {⇡i}N

i=1 with di↵erent maximum speeds and hence
di↵erent TEBs at runtime. We first assume that planners are sorted in order of decreasing
maximum speed and hence TEB size, and that the overall objective is to minimize the time
to reach a specified goal point. This objective implies a preference for planners that can
move faster, but also for planners that can safely navigate a more direct route even if they
must do so at lower speed.

The core of the meta-planner is a random tree T inspired by RRT-style sampling-based
planners [110], as shown in Fig. 7.1.2 The obstacles are shown in black, and are augmented
by the TEBs for two di↵erent planners. As in RRT, waypoints in P are sampled randomly
from the environment and (potentially) connected with their nearest neighbor in T . If the
fast planner3 (with the large blue TEB) finds a collision-free trajectory, the connection is
established (dashed blue lines). Otherwise, the slow planner (with smaller red striped TEB
and solid red lines) attempts to connect to the nearest neighbor. Upon success, the waypoint
is inserted into T , along with the trajectory generated by the planner to reach that waypoint
from the nearest neighbor, and the associated safety controller to remain inside the TEB. If
a waypoint is successfully inserted near the goal, a similar process ensues to attempt to find
a trajectory between it and the goal point.

Once a valid “meta-plan” is found from start to goal, the meta-planner continues building
T until a user-specified maximum runtime has elapsed, always retaining the best (shortest
time) sequence of waypoints to the goal. Similar to Informed RRT* [78], the meta-planner
immediately rejects samples which could not possibly improve upon the best available tra-
jectory.4

2The choice of a tree topology is for convenience; any directed graph including the robot’s current state
would su�ce.

3Note that by a faster planner we mean one with a higher associated maximum velocity, rather than
smaller computation time.

4In Informed RRT*, planner velocities lie on the sphere leading to an elliptical geometry for valid samples.
Since we assume a maximum speed in each dimension, valid samples lie in a distorted rhombicuboctahedron.



CHAPTER 7. META-PLANNING WITH FASTRACK 139

-0.8 -0.4 0 0.4 0.8
-0.8

-0.4

0

0.4

0.8
analytic
numerical

Figure 7.2: Invariant set that the double-integrator can remain in despite worst-case distur-
bance and planning control for the both numerical solution (dotted) and analytic solution
(solid).

The key to meta-planning lies in ensuring safe switching between planners. This guaran-
tee requires an o✏ine computation to determine a safety margin for switching into succes-
sively slower planners (with smaller TEBs), as well as a safe switching control law. Online,
we must be sure to plan with the appropriate safety margin at each step, and to “backtrack”
if we detect the need for a switch to a slower planner. We will next explore the o✏ine and
online steps in detail.

O✏ine Reachability Analysis

There are two major components to the o✏ine precomputation for the meta-planner. The
first step is to compute the TEB and safety control look-up tables for each planner. This
is done following the standard FaSTrack precomputation algorithm [88]. Fig. 7.2 shows the
set of relative states in the x-subsystem that the tracker can remain within despite worst
case planner behavior and external disturbance. The projection of this controlled invariant
set onto the position axis comprises the x-TEB. For the double-integrator dynamics in (7.5),
an analytic solution can also be found by applying the equations of constant-acceleration
motion under the worst-case disturbance and the best associated control e↵ort. The analytic
controlled invariant set, consisting of two parabolic curves, is superimposed in Fig. 7.2. Such
analytic solutions do not exist in general.

The second major component of the o✏ine precomputation is to find the corresponding
tracking bound and optimal controller for transitioning between planners. For the dynamics
in (7.5), switching from a planner with a small TEB to one with a large TEB is safe by
construction, because the large TEB contains the small TEB. Switching from a large TEB
to a small one is more complicated.

To transition from a large TEB to a small TEB we must ensure that the relative state
between the autonomous system and the planned path is within the small TEB by the time
of the planner switch. FaSTrack provides the optimal control for staying within each bound
individually, but does not provide the controller and bound required for reducing the tracking
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Figure 7.3: Example of a Dubins car that must leave its tight orbit in order to eventually
move closer to the origin. This example illustrates why the switching safety bound may
generally be larger than the tracking error bound.

error prior to a switch. Perhaps surprisingly, in general the tracker may first need to exit the
large TEB before converging to the small TEB. Fig. 7.3 provides an intuitive example of this
phenomenon. Here, a Dubins car moving at a fixed speed remains within radius R of the
origin by turning at its maximum steering angle. In order for the car to reduce its distance
to the origin, it must first exit the original circle to reorient itself towards the origin. In
general we must precompute the set of states that the system may visit when transitioning
from a large TEB to a small TEB, and the optimal control to achieve this transition. To do
this we use HJ reachability analysis.

HJ reachability analysis provides a rigorous mechanism for analyzing the goal satisfaction
of a system, and can be used to determine the backward reachable tube (BRT). The BRT
is the set of all allowable initial states of a system such that it can enter a set of goal
states within a given time interval. HJ reachability analysis can also be used in the context
of di↵erential pursuit-evasion games [91, 40]. Here, as in FaSTrack [88], we assume there is
such a game between the tracking system and the planning system. In this game, the tracking
system will try to “capture” the planning system, while the planning system is attempting
to avoid capture. In practice, the planner is not actively trying to avoid the tracker, but this
assumption accounts for unexpected, worst-case planner behavior. We want to determine
the set of states that the tracking system may visit when transitioning from the larger TEB
to the smaller TEB.

Before constructing the di↵erential game we must first determine its information struc-
ture, i.e. how and when each player makes decisions. Since the relative dynamics between
the tracker and planner are decoupled in their respective inputs, and we assume an additive
disturbance, it is in fact irrelevant who “plays first” at each time instant, and the value of
the game is well defined under feedback strategies.

For the system in the form of (7.4), we would like to compute the BRT of time horizon
T , denoted V(T ). Intuitively, V(T ) is the set of states from which there exists a control
strategy to drive the system into a target set L within a duration of T despite worst-case
disturbances. Formally, the BRT is defined here as

V(T ) = {r : 9us(·) 2 Us, 8up(·) 2 Up, 8d(·) 2 D,

r(·) satisfies (7.4),

9t 2 [t0 � T, t0], ⇣(t; r, t0, us(·), d(·)) 2 L}

(7.6)
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Figure 7.4: Visualizations of the x-subsystem’s numerical (left) and analytic (right) con-
trolled invariant sets for two di↵erent planners. The numerical SSB is guaranteed to over-
approximate the minimal SSB.

where Us,Up,D denote the sets of feedback strategies for the tracker, planner and distur-
bance.

Standard HJ formulations exist for computing the BRT in general [19, 126, 26, 73], and
more e�ciently for decomposable systems [38]. Here the target L is the set of states repre-
sented by the smaller tracking error bound. Using the relative dynamics between the tracking
model and the planning model associated with the smaller TEB, we evolve this set back-
wards in time. We stop the computation when the tube contains the set of states associated
with the larger TEB. This BRT represents the set of states from which the system can enter
the small TEB, as well as the states that the trajectories may enter along the way. By pro-
jecting this set onto the position dimensions we obtain a switching safety bound (SSB). We
note that this is an over-approximation of the minimal SSB because it includes trajectories
that do not originate inside the larger TEB’s controlled invariant set. The SSB precompu-
tation also generates the switching controller. Continuing our double-integrator example,
Fig. 7.4a shows the controlled invariant sets associated with the larger and smaller TEBs,
and the over-approximated set associated with the SSB. The same information computed
analytically is shown in Fig. 7.4b, where the minimal SSB may be computed exactly.

Online Meta-Planning

At runtime, the meta-planner is in charge of constructing and maintaining a tree, T , of
waypoints connected via trajectories generated by the set of available planners. It is also
responsible for re-planning whenever new information about the environment becomes avail-
able, i.e. when obstacles are detected.

The precomputed safety sets allow the meta-planner to reason quickly about dynamic
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tracking feasibility as it builds T . Using the precomputed TEBs, the meta-planner can
determine which planners are safe to use in di↵erent regions of the environment. In addition,
the SSBs allow the meta-planner to determine the validity of planner-to-planner transitions.
The meta-planner’s logic is detailed below and illustrated in Fig. 7.5.

Step 0: Root. The root node of T is initially set at the starting position of the tracking
system. Since the system has an initial tracking error equal to zero, it is by definition inside
of all the available TEBs. Later, if an obstacle has just been detected mid-trajectory, the
new root node will be placed at the predicted position of the planning system after some
allowed computation time (typically < 1 s) and the tracking system will only be guaranteed
to be inside the TEB associated to the current edge of T .

Step 1: Sample. The meta-planner constructs its tree T by sequentially sampling
points uniformly at random from the environment and attempting to connect them to the
nearest existing waypoint in the tree.

Step 2: Plan. By default, the meta-planner always tries to connect waypoints using
the fastest planner ⇡1, which is also associated with the largest TEB. If ⇡1 does not find a
collision-free trajectory, the meta-planner then attempts to use the second-fastest planner
⇡2, which has a smaller TEB. The meta-planner continues trying available planners in order
of decreasing TEB size until one succeeds or all have failed (in which case it abandons this
candidate waypoint and samples a new one).

Step 3: Virtual Backtrack. When a planner ⇡k succeeds in reaching a new point p
from the nearest waypoint w 2 T , the meta-planner checks what planner was previously
used to reach waypoint w from its parent v 2 T . If this preceding planner ⇡j had a larger
TEB than the new planner (that is, if j < k), then p cannot be immediately added to
T . Instead, the meta-planner first needs to ensure that the tracking system will be able to
safely transition into TEBk before reaching w, so that it can then track ⇡k’s plan from w to
p while remaining inside its TEB. The meta-planner does this is by checking what planner
⇡i was used to reach w’s parent v, and if i < k, using the safe switching bound SSBi!k to
collision-check the already-computed path v ! w. If i � k, there is no need to use a SSB
and the path v ! w is guaranteed to be safe under TEBk, since it was already deemed safe
under the larger TEBj by ⇡j.

If the check is successful, this means that, instead of getting from v to w tracking the
faster planner ⇡j, the system can follow an alternative trajectory, skipping ⇡j altogether
and transitioning from the speed of ⇡i to the speed of ⇡k. This path is added to T as an
alternative to the original v ! w path: the more-slowly-reached w is a new node in T , and
p is added to T as a child of this new node.

If the check is unsuccessful, the meta-planner does not add p to the tree. Two di↵erent
options for handling this possibility are as follows:

a) Discard: p is discarded and the meta-planner moves on to sample a new candidate point.

b) Recursive Virtual Backtrack: the meta-planner marks v as a waypoint that needs
to be reached from its parent using a slower planner than the original ⇡i, so that safe



CHAPTER 7. META-PLANNING WITH FASTRACK 143

Step 1: Sample 

Step 3: Virtual Backtrack 

Step 2: Plan 

Medium planner 
Slow planner 
Switching 

Fast planner 

p p

p

w

ww

v

vv

�i

�i�i

�j�j

�k

�k

�k

TEBjTEBj

TEBi TEBi

TEBi

TEBk

TEBk

SSBi��k

Figure 7.5: Illustration of the online meta-planning algorithm.

transition into TEBk will be possible. This will always be the case if v is reached using
⇡j, since v ! w is safe under TEBj ⇢ TEBi. Step 3 can then be repeated on v, and
recursively applied (at worst) until the root of T .

One alternative option for handling planner-switching failures is to prevent them alto-
gether by always using SSBs instead of TEBs for the planning in Step 2. In particular,
replacing TEBi with SSBi!N will ensure that planners will only attempt to add a candidate
point p to the tree if it would not only be possible to reach p under this planner but also, if
later deemed necessary, to do so while transitioning to the smallest TEB (so that subsequent
nodes can be connected to it by any planner without the need for the backtracking verifica-
tion in Step 3). The additional conservativeness introduced by this substitution depends on
the relative tracker-planner dynamics, namely on how much larger SSBi!N is than TEBi.

Remark 11. In the case of a point-mass tracking model following a kinematic planner,
we have SSBi!j = TEBi, 8j > i, and therefore this substitution does not need to be done
explicitly nor does it introduce any additional conservativeness. The backtracking check in
Step 3 is always guaranteed to succeed.

Proposition 3. Any plan generated by the meta-planner algorithm can be safely followed by
the tracking system.

Proof. The proof is by construction of the meta-planner, based on FaSTrack guarantees; we
provide an outline here. A point is only added to the meta-planning tree if there exists a
sequence of planned trajectories that reach the point such that (a) each planned trajectory
can be tracked by the system with an error bounded by the associated TEB, and is clear of
known obstacles by at least TEB, (b) each transition between planners can be followed by
the system with an error bounded by the corresponding SSB, and is clear of known obstacles
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by at least SSB, and (c) if new obstacles are detected, re-planning succeeds (at worst, a
geometric planner can always reverse or stop) in time for the system to switch to the new
plan before colliding.

7.4 Results

(a) LQR controller. (b) Safety controller.

Figure 7.6: Simulated autonomous flight in a cluttered environment. Notice that when using
LQR control the quadrotor leaves the TEB, but under optimal safety control it remains
within the TEB. This is particularly important in the vicinity of obstacles.

We demonstrate our algorithm on a 6D near-hover quadrotor model tracking a suite of
3D geometric planners running BIT* [77] in the cluttered environment depicted in Fig. 7.6
with di↵erent maximum speeds in each dimension. The tracking5 and planning models (for
the ith planner ⇡i) are given below in Eq. 7.7 (tracker at left, planner at right):2
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ṡx
ṡy
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Here us = [✓,�, T ]T and correspond to roll, pitch, and thrust. In all experiments, we set
�0.15 rad  [✓,�]  0.15 rad and 7.81 m/s2  T  11.81 m/s2. Planner ⇡i’s controls are

up = [b(i)x , b(i)y , b(i)z ], each representing a fixed maximum speed in the given dimension. Due
to the form of (7.7), the optimal safety controller will be bang-bang. However, it is only
critical to apply the safety control at the boundary of the TEB. A smooth linear controller
may be used in the interior, following a least-restrictive supervisory control law. The relative

5Note that we have assumed a zero yaw angle for the quadrotor. This is enforced in practice by using a
strict feedback controller on yaw rate to regulate yaw to zero.
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dynamics between the tracking and planning models are:
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Figure 7.7: TEB vs. planner speed in each subsystem.

Equation (7.8) can be split into three 2D subsystems with states (x, vx), (y, vy), and (z, vz)
that are of the same form as the double-integrator example from Section 7.3. Note that the
dynamics of the (x, vx) and (y, vy) subsystems are identical, and thus can be solved once
and applied to each subsystem. By using decomposable HJ reachability [38] we compute the
(x, vx) set in 2 min 15 s and the (z, vz) set in 2 min, for a total of a 4 min 15 s precomputation
time. Fig. 7.7 shows the growth of Bp in each subsystem’s position state as the planner speed
in that dimension increases. Moreover, as explained in Section 7.3, the TEB for ⇡i is identical
to the SSB for switching from ⇡i ! ⇡j, j > i.

Simulation

We implemented the meta-planning online algorithm within the robot operating system
(ROS) [143] framework. We used the BIT* [77] geometric planner from the Open Motion
Planning Library (OMPL) [162]. Code is written in C++ and is available as an open source
ROS package.6 Meta-planning typically runs in well under one second in a moderately
cluttered environment.

Fig. 7.6 shows a snapshot of a simulated autonomous quadrotor flight in an artificial
environment with spherical obstacles using trajectories generated by our algorithm. Initially,

6https://github.com/HJReachability/meta fastrack
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the obstacle locations and sizes are unknown to the quadrotor, but as soon as they come
within the sensing radius (the size of which must adhere to the constraint discussed in
Section 7.2) they are added to the meta-planner’s internal environment model and used
during re-planning.

In Fig. 7.6a we show what happens when the tracking controller is a standard LQR
controller, while in Fig. 7.6b everything remains the same except that we apply the optimal
controllers derived from the o✏ine analysis in Section 7.3. Note that the LQR controller
makes no guarantee about staying within the TEB, and hence it is unable to remain inside
the TEB in the vicinity of the obstacle. The optimal controller, conversely, is guaranteed to
remain in the TEB.

Hardware Demonstration

We replicated the simulation on a hardware testbed using the Crazyflie 2.0 open source
quadrotor platform, shown in Fig. 7.8. We obtained position and orientation measurements
at ⇠ 235 Hz from an OptiTrack infrared motion capture system. Given state estimates, we
send control signals over a radio to the quadrotor at 100 Hz. As shown in our accompanying
video,7 the quadrotor successfully avoids the obstacles while remaining inside the TEB for
each planner the meta-plan.

Fig. 7.9 shows the quadrotor’s position over time recorded during a hardware demonstra-
tion. Note that the quadrotor stays well within the TEB throughout the flight even when
the TEB changes size during planner switches.

Figure 7.8: A Crazyflie 2.0 flying during our hardware demonstration. Two OptiTrack
cameras are visible in the background.

7https://youtu.be/lPdXtR8Ar-E
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Figure 7.9: Position vs. time during a hardware demonstration.

7.5 Conclusions

We have proposed a novel meta-planning algorithm for using FaSTrack with multiple plan-
ners. The algorithm adaptively selects the fastest-moving planner that finds locally collision-
free paths, and guarantees safe online transitions between these planners. The resulting
meta-plans use more aggressive, faster-moving planners in open areas and more cautious,
slower-moving planners near obstacles. We demonstrate meta-planning in simulation and
in a hardware demonstration, using a quadrotor to track piecewise-linear trajectories at
di↵erent top speeds.

The theory we develop here is general and can be applied to a wide variety of systems,
including manipulators and other mobile robots. However, computing the TEB and SSB
using HJ reachability can be challenging for these high-dimensional coupled systems. On-
going work seeks to alleviate this challenge using other methods of computation such as
sum of squares programming and neural network function approximators. Other promising
directions include incorporating time-varying obstacle avoidance, further integration with
OMPL and other planning libraries, providing adaptable error bounds based on external
disturbances, and updating the tracking error bound online based on learned information
about the tracking model.



148

Part III

Navigation in Multi-Agent
Environments
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Chapter 8

Single Robot, Single Human

This chapter is based on the papers “Probabilistically Safe Robot Planning with Confidence-
Based Human Predictions” [72] and “Confidence-aware motion prediction for real-time col-
lision avoidance” [75], written in collaboration with Jaime Fisac, Andrea Bajcsy, David
Fridovich-Keil, Steven Wang, Claire J. Tomlin, and Anca D. Dragan.

Motion planning serves a key role in robotics, enabling robots to automatically compute
trajectories that achieve the specified objectives while avoiding unwanted collisions. In many
situations of practical interest, such as autonomous driving and UAV navigation, it is impor-
tant that motion planning account not just for the current state of the environment, but also
for its predicted future state. Often, certain objects in the environment may move in active,
complex patterns that cannot be readily predicted using straightforward physics models; we
shall refer to such complex moving objects as agents. Examples of agents considered in this
chapter include pedestrians and human-driven vehicles. Predicting the future state of these
agents is generally a di�cult problem. Some of the key challenges include unclear and vary-
ing intents of other agents, mismatches between dynamics models and reality, incomplete
sensor information, and interaction e↵ects.

One popular approach to addressing the challenge of a priori unknown agent intent
is to use rule-based or data-driven algorithms to predict individual trajectories for each
agent, as in [155]. Alternatively, [180], [15], and [103] explicitly predict an agent’s full state
distribution over time; this representation may be better suited to capturing uncertainty in
an agent’s dynamics and the environment itself. [172] and [71] pose the prediction problem
game-theoretically to model coupled human-robot interaction e↵ects explicitly.

Unfortunately, a significant problem still remains: if an agent suddenly moves in a way
that is not predicted, or not assigned su�cient probability, the robot may not react ap-
propriately. For example, in Fig. 8.1 a pedestrian is walking around an obstacle which the
robot, a quadcopter, cannot detect. To the robot, such behavior may be assigned very low
probability, which could lead the robot to plan a dangerous trajectory. In this particular
example, this inaccuracy caused the quadcopter to collide with the pedestrian (Fig. 8.1, left).
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Figure 8.1: When planning around humans, accurate predictions of human motion (visual-
ized here pink and blue, representing high and low probability respectively) are an essential
prerequisite for safety. Unfortunately, these approaches may fail to explain all observed mo-
tion at runtime (e.g. human avoids unmodeled spill on the ground), leading to inaccurate
predictions, and potentially, collisions (left). Our method addresses this by updating its pre-
dictive model confidence in real time (right), leading to more conservative motion planning
in circumstances when predictions are known to be suspect.

To prepare for this eventuality, we introduce the idea of confidence-aware prediction. We
argue that, in addition to predicting the future state of an agent, it is also crucial for a
robot to assess the quality of the mechanism by which it is generating those predictions.
That is, a robot should reason about how confident it is in its predictions of other agents
before attempting to plan future motion. For computational e�ciency, the quadcopter uses
a simplified model of pedestrian dynamics and decision making. Thus equipped, it generates
a time-varying probability distribution over the future state of the pedestrian, and plans
trajectories to a pre-specified goal that maintain a low probability of collision. Fig. 8.1 (right)
illustrates how this approach works in practice. The quadcopter maintains a Bayesian belief
over its prediction confidence. As soon as the pedestrian moves in a way that was assigned
low probability by the predictive model, the quadcopter adjusts its belief about the accuracy
of that model. Consequently, it is less certain about what the pedestrian will do in the
future. This leads the quadcopter’s onboard motion planner, which attempts to find e�cient
trajectories with low probability of collision, to generate more cautious—and perhaps less
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e�cient—motion plans.
In order to improve the robustness of generated motion plans, we employ the recent

FaSTrack framework from [88] for fast and safe motion planning and tracking. FaSTrack
quantifies the maximum possible tracking error between a high-order dynamical model of the
physical robot and the (potentially lower-order) dynamical model used by its motion planner.
Solving an o✏ine Hamilton-Jacobi reachability problem yields a guaranteed tracking error
bound and the corresponding safety controller. These may be used by an out-of-the-box
real-time motion planning algorithm to facilitate motion plans with strong runtime collision-
avoidance guarantees.

The remainder of this chapter is organized as follows. Section 8.1 places this work in the
context of existing literature in human motion modeling and prediction, as well as robust
motion planning. Section 8.2 frames the prediction and planning problems more formally,
and introduces a running example used throughout the chapter. Section 8.3 presents our
main contribution: confidence-aware predictions. Section 8.5 showcases confidence-aware
predictions in operation in several examples. Section 8.6 describes the application of the
robust motion planning framework from FaSTrack to this setting, in which predictions are
probabilistic. Section 8.7 explores a connection between our approach and reachability the-
ory. Section 8.8 presents experimental results from a hardware demonstration. Finally,
Section 8.9 concludes with a discussion of some of the limitations of our work and how they
might be addressed in specific applications, as well as suggestions for future research.

8.1 Prior Work

Human Modeling and Prediction

One common approach for predicting human actions is to collect data from real-world sce-
narios and train a machine learning model via supervised learning. Such techniques use the
human’s current state, and potentially her prior state and action history, to predict future
actions directly. [8], [56], [106], [114], and [85] demonstrate the e↵ectiveness of this approach
for inference and planning around human arm motion. Additionally, [85] focus on multi-step
tasks like assembly, and [155] and [59] address the prediction problem for human drivers.

Rather than predicting actions directly, an alternative is for the robot to model the human
as a rational agent seeking to maximize an unknown objective function. The human’s actions
up to a particular time may be viewed as Bayesian evidence from which the robot may infer
the parameters of that objective. Assuming that the human seeks to maximize this objective
in the future, the robot can predict her future movements, e.g. [135], [14], [180], and [11]. In
this chapter, we build on this work by introducing a principled online technique for estimating
confidence in such a learned model of human motion.
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Safe Robot Motion Planning

Once armed with a predictive model of the human motion, the robot may leverage mo-
tion planning methods that plan around uncertain moving obstacles and generate real-time
dynamically feasible and safe trajectories.

To avoid moving obstacles in real time, robots typically employ reactive and/or path-
based methods. Reactive methods directly map sensor readings into control, with no memory
involved, e.g. [22]. Path-based methods such as rapidly-exploring random trees from [96] and
A* from [84] find simple kinematic paths through space and, if necessary, time. These path-
based methods of planning are advantageous in terms of e�ciency, yet, while they have in
some cases been combined with probabilistically moving obstacles as in [9, 180], they do not
consider the endogenous dynamics of the robot or exogenous disturbances such as wind. As
a result, the robot may deviate from the planned path and potentially collide with obstacles.
It is common for these plans to try to avoid obstacles by a heuristic margin of error. [88,
76] propose FaSTrack, a recent algorithm that provides a guaranteed tracking error margin
and corresponding error-feedback controller for dynamic systems tracking a generic planner
in the presence of bounded external disturbance. Our work builds upon FaSTrack to create
an algorithm that can safely and dynamically navigate around uncertain moving obstacles
in real time.

8.2 Problem Setup

We consider a single mobile robot operating in a shared space with a single human agent
(e.g. a pedestrian or human-driven car). For simplicity, we presume that the robot has
full knowledge of its own state and that of the human, although both would require online
estimation in practice. As we present each formal component of this problem, we will provide
a concrete illustration using a running example in which a quadcopter is navigating around
a pedestrian.

Dynamical System Models and Safety

We will model the motion of both the human and the robot as the evolution of two dynamical
systems. Let the state of the human be xH 2 RnH , where nH is the dimension of the human
state space. We similarly define the robot’s state, for planning purposes, as xR 2 RnR . In
general, these states could represent the positions and velocities of a mobile robot and a
human in a shared environment, the kinematic configurations of a human and a robotic
manipulator in a common workspace, or the positions, orientations, and velocities of human-
driven and autonomous vehicles in an intersection. We express the evolution of these states
over time as a family of ordinary di↵erential equations:

ẋH = fH(xH , uH) , ẋR = fR(xR, uR) (8.1)

where uH 2 RmH and uR 2 RmR are the control actions of the human and robot, respectively.
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Example 8.1. We introduce a running example for illustration purposes throughout the
chapter. In this example we consider a small quadcopter that needs to fly to goal location
gR 2 R3 in a room where a pedestrian is walking. For the purposes of planning, the
quadcopter’s 3D state is given by its position in space xR = [px, py, pz], with velocity
controls assumed decoupled in each spatial direction, up to vR = 0.25 m/s. The human
can only move by walking and therefore her state is given by planar coordinates xH =
[hx, hy] evolving as ẋH = [vH cos uH , vH sin uH ]. Intuitively, we model the human as
moving with a fixed speed and controlling her heading angle. At any given time, the
human is assumed to either move at a leisurely walking speed (vH ⇡ 1 m/s) or remain
still (vH ⇡ 0).

Ultimately, the robot needs to plan and execute an e�cient trajectory to a pre-specified
goal state (gR), without colliding with the human. We define the keep-out set K ⇢ RnH⇥RnR

as the set of joint robot-human states to be avoided (for example, because they imply physical
collisions). To avoid reaching this set, the robot must reason about the human’s future
motion when constructing its own motion plan.

Example 8.2. In our quadcopter-avoiding-pedestrian example, K consists of joint robot-
human states in which the quadcopter is flying within a square of side length l = 0.3 m
centered around the human’s location, while at any altitude, as well as any joint states
in which the robot is outside the environment bounds defined as a box with a square base
of side L = 3.66 m and height H = 2 m, regardless of the human’s state.

Robust Robot Control

Provided an objective and a dynamics model, the robot must generate a motion plan which
avoids the keep-out set K. Unfortunately, this safety requirement is di�cult to meet during
operation for two main reasons:

1. Model mismatch. The dynamical system model fR will never be a perfect representation
of the real robot. This mismatch could lead to unintended collision.

2. Disturbances. Even with a perfect dynamics model, there may be unobserved, external
“disturbance” inputs such as wind or friction. Without accounting for these distur-
bances, the system is not guaranteed to avoid K, even if the planned trajectory is
pointwise collision-free.

To account for modelling error and external disturbances, we could in principle design a
higher fidelity dynamical model directly in a robust motion planning framework. Unfortu-
nately, however, real-time trajectory optimization in high dimensions can be computationally
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burdensome, particularly when we also require some notion of robustness to external distur-
bance. Ideally we would like to enjoy the computational benefits of a planning with a lower-
fidelity model while enforcing the safety constraints induced by the higher-fidelity model. To
characterize this model mismatch, we consider a higher fidelity and typically higher-order
dynamical representation of the robot, with state representation sR 2 RnS . This dynamical
model will also explicitly account for external disturbances as unknown bounded inputs,
distinct from control inputs. In order to map between this higher fidelity “tracking” state
sR and the lower fidelity “planning” state xR, we shall assume a known projection operator
⇡ : RnS ! RnR . Fortunately, we can plan in the lower-dimensional state space at runtime,
and guarantee robust collision avoidance via an o✏ine reachability analysis that quantifies
the e↵ects of model mismatch and external disturbance. This framework, called FaSTrack
and first proposed by [88], is described in further detail in Section 8.6.

Example 8.3. We model our quadcopter with the following flight dynamics (in the near-
hover regime, at zero yaw with respect to a global coordinate frame):
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where [px, py, pz] is the quadcopter’s position in space and [vx, vy, vz] is its velocity ex-
pressed in the fixed global frame. We model its control inputs as thrust acceleration uT

and attitude angles (roll u� and pitch u✓), and denote the acceleration due to gravity
as ag. The quadcopter’s motion planner generates nominal kinematic trajectories in the
lower-dimensional [px, py, pz] position state space. Therefore we have a linear projection
map ⇡(sR) = [I3, 03]sR, that is, xR retains the position variables in sR and discards the
velocities.

Predictive Human Model

In order to predict the human’s future motion, the robot uses its internal model of human
dynamics, fH . Under this modeling assumption, the human’s future trajectory depends upon
her choice of control input over time, uH(·). Extensive work in econometrics and cognitive
science, such as [171, 119, 14], has shown that human behavior—that is, uH—can be well
modeled by utility-driven optimization. Thus, the robot models the human as optimizing a
reward function, rH(xH , uH ; ✓), that depends on the human’s state and action, as well as a
set of parameters ✓. This reward function could be a linear combination of features as in
many inverse optimal control implementations (where the goal or feature weighting ✓ must be
learned, either online or o✏ine), or more generally learned through function approximators
such as deep neural networks, where ✓ are the trained weights as in [68].

We assume that the robot has a suitable human reward function rH , either learned o✏ine
from prior human demonstrations or otherwise encoded by the system designers. Thus
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endowed with rH , the robot can model the human’s choice of control action as a probability
distribution over actions conditioned on state. Under maximum-entropy assumptions [179]
inspired by noisy-rationality decision-making models [14], the robot models the human as
more likely to choose (discrete) actions uH with high expected utility, in this case the state-
action value (or Q-value):

P (uH | xH ; �, ✓) =
e�QH(xH ,uH ;✓)

P
ũ
e�QH(xH ,ũ;✓)

. (8.3)

We use a temporally- and spatially-discretized version of human dynamics, f̃H . These
discrete-time dynamics may be found by integrating fH over a fixed time step of �t with
fixed control uH over the interval. Section 8.5 provides further details on this discretization.

Example 8.4. The quadcopter’s model of the human assumes that she intends to reach
some target location gH 2 R2 in a straight line. The human’s reward function is given
by the distance traveled over time step �t, i.e. rH(xH , uH ; gH) = �vH�t , and human
trajectories are constrained to terminate at gH . The state-action value, parameterized by
✓ = gH , captures the optimal cost of reaching gH from xH when initially applying uH for
a duration �t: QH(xH , uH ; gH) = �vH�t� kxH + vH�t[cosuH , sin uH ]> � gHk2.

Often, the coe�cient � is termed the rationality coe�cient, since it quantifies the degree
to which the robot expects the human’s choice of control to align with its model of utility.
For example, taking � # 0 yields a model of a human who appears “irrational,” choosing
actions uniformly at random and completely ignoring the modeled utility. At the other
extreme, taking � " 1 corresponds to a “perfectly rational” human, whose actions exactly
optimize the modeled reward function. As we will see in Section 8.3, � can also be viewed
as a measure of the robot’s confidence in the predictive accuracy of QH .

Note that QH(xH , uH ; ✓) only depends on the human state and action and not on the
robot’s. Thus far, we have intentionally neglected discussion of human-robot interaction
e↵ects. These e↵ects are notoriously di�cult to model, and the community has devoted a
significant e↵ort to building and validating a variety of models, e.g. [167], [152]. In that
spirit, we could have chosen to model human actions uH as dependent upon robot state xR in
(8.3), and likewise defined QH to depend upon xR. This extended formulation is su�ciently
general as to encompass all possible (Markov) interaction models. However, in this work we
explicitly do not model these interactions; indeed, one of the most important virtues of our
approach is its robustness to precisely these sorts of modeling errors.

Probabilistically Safe Motion Planning

Ideally, the robot’s motion planner should generate trajectories that reach a desired goal state
e�ciently, while maintaining safety. More specifically, in this context “safety” indicates that
the physical system will never enter the keep-out set K during operation, despite human
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motion and external disturbances. That is, we would like to guarantee that (⇡(sR), xH) 62 K

for all time.
To make this type of strong, deterministic, a priori safety guarantee requires the robot

to avoid the set of all human states xH which could possibly be occupied at a particular
time, i.e. the human’s forward reachable set. If the robot can find trajectories that are
safe for any possible human trajectory then there is no need to predict the human’s next
action. Unfortunately, the forward reachable set of the human often encompasses such a
large volume of the workspace that it is impossible for the robot to find a guaranteed safe
trajectory to the goal state. This motivates refining our notion of prediction: rather than
reasoning about all the places where the human could be, the robot can instead reason about
how likely the human is to be at each location. This probabilistic reasoning provides a guide
for planning robot trajectories with a quantitative degree of safety assurance.

Our probabilistic model of human control input (8.3) coupled with dynamics model fH
allows us to compute a probability distribution over human states for every future time. By
relaxing our conception of safety to consider only collisions which might occur with su�cient
probability Pth, we dramatically reduce the e↵ective volume of this set of future states to
avoid. In practice, Pth should be chosen carefully by a system designer in order to trade o↵
overall collision probability with conservativeness in motion planning.

The proposed approach in this chapter follows two central steps to provide a quantifiable,
high-confidence collision avoidance guarantee for the robot’s motion around the human. In
Section 8.3 we present our proposed Bayesian framework for reasoning about the uncertainty
inherent in a model’s prediction of human behavior. Based on this inference, we demonstrate
how to generate a real-time probabilistic prediction of the human’s motion over time. Next,
in Section 8.6 we extend a state-of-the-art, provably safe, real-time robotic motion planner
to incorporate our time-varying probabilistic human prediction.

8.3 Confidence-Aware Human Motion Prediction

Any approach to human motion prediction short of computing a full forward reachable set
must, explicitly or implicitly, reflect a model of human decision-making. In this work, we
make that model explicit by assuming that the human chooses control actions in a Markovian
fashion according to the probability distribution (8.3). Other work in the literature, such as
[155], aims to learn a generative probabilistic model for human trajectories; implicitly, this
training procedure distills a model of human decision making. Whether explicit or implicit,
these models are by nature imperfect and liable to make inaccurate predictions eventually.
One benefit of using an explicit model of human decision making, such as (8.3), is that we
may reason directly and succinctly about its performance online.

In particular, the entropy of the human control distribution in (8.3) is a decreasing func-
tion of the parameter �. High values of � place more probability mass on high-utility control
actions uH , whereas low values of � spread the probability mass more evenly between di↵er-
ent control inputs, regardless of their modeled utility QH . Therefore, � naturally quantifies
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how well the human’s motion is expected to agree with the notion of optimality encoded
in QH . The commonly used term “rationality coe�cient”, however, seems to imply that
discrepancies between the two indicate a failure on the human’s part to make the “cor-
rect” decisions, as encoded by the modeled utility. Instead, we argue that these inevitable
disagreements are primarily a result of the model’s inability to fully capture the human’s
behavior. Thus, instead of conceiving of � as a rationality measure, we believe that � can be
given a more pragmatic interpretation related to the accuracy with which the robot’s model
of the human is able to explain her motion. Consistently, in this chapter, we refer to � as
model confidence.

An important related observation following from this interpretation of � is that the
predictive accuracy of a human model is likely to change over time. For example, the human
may change her mind unexpectedly, or react suddenly to some aspect of the environment
that the robot is unaware of. Therefore, we shall model � as an unobserved, time-varying
parameter. Estimating it in real-time provides us with a direct, quantitative summary of the
degree to which the utility model QH explains the human’s current motion. To do this, we
maintain a Bayesian belief about the possible values of �. Initially, we begin with a uniform
prior over � and over time this distribution evolves given measurements of the human’s state
and actions.

Real-time Inference of Model Confidence

We reason about the model confidence � as a hidden state in a hidden Markov model (HMM)
framework. The robot starts with a prior belief b0� over the initial value of �. In this work,
we use a uniform prior, although that is not strictly necessary. At each discrete time step
k 2 {0, 1, 2, . . . }, it will have some belief about model confidence bk�(�).

1 After observing a
human action uk

H
, the robot will update its belief to bk+ by applying Bayes’ rule.

The hidden state may evolve between subsequent time steps, accounting for the important
fact that the predictive accuracy of the human model may change over time as unmodeled
factors in the human’s behavior become more or less relevant. Since by definition we do not
have access to a model of these factors, we use a naive “✏-static” transition model: at each
time k, � may, with some probability ✏, be re-sampled from the initial distribution b0�, and
otherwise retains its previous value. We define the belief over the next value of � (denoted by
�0) as an expectation of the conditional probability P (�0

| �), i.e. bk�(�
0) := E

�⇠b
k�1
+

[P (�0
|

�)]. Concretely, this expectation may be computed as

bk�(�
0) = (1� ✏)bk�1

+ (�0) + ✏b0�(�
0) . (8.4)

By measuring the evolution of the human’s state xH over time, we assume that, at every
time step k, the robot is able to observe the human’s control input uk

H
. This observed control

1To avoid confusion between discrete and continuous time, we shall use superscripts to denote discrete
time steps (e.g. xk

H
) and parentheticals to denote continuous time (e.g. xH(t)).



CHAPTER 8. SINGLE ROBOT, SINGLE HUMAN 158

may be used as evidence to update the robot’s belief bk� about � over time via a Bayesian
update:

bk+(�) =
P (uk

H
| xk

H
; �, ✓)bk�(�)P

�̃
P (uk

H
| xk

H
; �̃, ✓)bk�(�̃)

, (8.5)

with bk+(�) := P (� | x0:k
H
, u0:singlehumank

H
) for k 2 {0, 1, ...}, and P (uk

H
| xk

H
; �, ✓) given by

(8.3).
It is critical to be able to perform this update rapidly to facilitate real-time operation; this

would be di�cult in the original continuous hypothesis space � 2 [0,1), or even in a large
discrete set. Fortunately, our software examples in Section 8.5 and hardware demonstration
in Section 8.8 suggest that maintaining a Bayesian belief over a relatively small set of N� = 5
discrete values of � distributed on a log scale achieves significant improvement relative to
using a fixed value.

The “✏-static” transition model leads to the desirable consequence that old observations
of the human’s actions have a smaller influence on the current model confidence distribution
than recent observations. In fact, if no new observations are made, successively applying
time updates asymptotically contracts the belief towards the initial distribution, that is,
bk�(·) ! b0�(·). The choice of parameter ✏ e↵ectively controls the rate of this contraction,
with higher ✏ leading to more rapid contraction.

Human motion prediction

Equipped with a belief over � at time step k, we are now able to propagate the human’s state
distribution forward to any future time via the well-known Kolmogorov forward equations,
recursively. In particular, suppose that we know the probability that the human is in each
state x

H
at some future time step . We know that (according to our utility model) the

probability of the human choosing control u
H
if she is in state x

H
is given by (8.3). Account-

ing for the otherwise deterministic dynamics model f̃H , we obtain the following expression
for the human’s state distribution at the following time step + 1:

P (x+1
H

; �, ✓) =
X

x


H
,u



H

P (x+1
H

| x
H
, u

H
; �, ✓) · (8.6)

P (u
H

| x
H
; �, ✓)P (x

H
; �, ✓) ,

for a particular choice of �. Marginalizing over � according to our belief at the current step
time k, we obtain the overall occupancy probability distribution at each future time step :

P (x
H
; ✓) = E�⇠bkP (x

H
; �, ✓) . (8.7)

Note that (8.6) is expressed more generally than is strictly required. Indeed, because the
only randomness in dynamics model f̃H originates from the human’s choice of control input
uH , we have P (x+1

H
| x

H
, u

H
; �, ✓) = 1{x+1

H
= f̃H(xH , u



H
)}.
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8.4 Model Confidence with Auxiliary Parameter
Identification

Thus far, we have tacitly assumed that the only unknown parameter in the human utility
model (8.3) is the model confidence, �. However, often one or more of the auxiliary param-
eters ✓ are also unknown. These auxiliary parameters could encode one or more human goal
states or intents, or other characteristics of the human’s utility, such as her preference for
avoiding parts of the environment. Further, much like model confidence, they may change
over time.

In principle, it is possible to maintain a Bayesian belief over � and ✓ jointly. The Bayesian
update for the hidden state (�, ✓) is then given by

bk+(�, ✓) =
P (uk

H
| xk

H
; �, ✓)bk�(�, ✓)P

�̃,✓̃
P (uk

H
| xk

H
; �̃, ✓̃)bk�(�̃, ✓̃)

, (8.8)

with bk+(�, ✓) := P (�, ✓ | x0:k
H
, u0:k

H
) the running posterior and

bk�(�, ✓) := P (�, ✓ | x0:k�1
H

, u0:k�1
H

) the prior at time step k.
This approach can be practical for parameters taking finitely many values from a small,

discrete set, e.g. possible distinct modes for a human driver (distracted, cautious, aggressive).
However, for certain scenarios or approaches it may not be practical to maintain a full
Bayesian belief on the parameters ✓. In such cases, it is reasonable to replace the belief
over ✓ with a point estimate ✓̄, such as the maximum likelihood estimator or the mean, and
substitute that estimate into (8.6). Depending on the complexity of the resulting maximum
likelihood estimation problem, it may or may not be computationally feasible to update
the parameter estimate ✓̄ at each time step. Fortunately, even when it is computationally
expensive to estimate ✓̄, we can leverage our model confidence as an indicator of when re-
estimating these parameters may be most useful. That is, when model confidence degrades
that may indicate poor estimates of ✓̄.

8.5 Prediction Examples

We illustrate these inference steps with two sets of examples: our running pedestrian example
and a simple model of a car.

Pedestrian model (running example)

So far, we have presented a running example of a quadcopter avoiding a human. We use a
deliberately simple, purely kinematic model of continuous-time human motion:

ẋH =


ḣx

ḣy

�
=


vH cos uH

vH sin uH

�
. (8.9)
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However, as discussed in Section 8.2, the proposed prediction method operates in discrete
time (and space). The discrete dynamics corresponding to (8.9) are given by

xk+1
H

� xk

H
⌘ xH(t+�t)� xH(t) (8.10)

=


vH�t cos uH(t)
vH�t sin uH(t)

�
,

for a time discretization of �t.

Dubins car model

To emphasize the generality of our method, we present similar results for a di↵erent appli-
cation domain: autonomous driving. We will model a human-driven vehicle as a dynamical
system whose state xH evolves as

ẋH =

2

4
ḣx

ḣy

ḣ�

3

5 =

2

4
vH cosh�
vH sinh�

uH

3

5 . (8.11)

Observe that, while (8.11) appears very similar to (8.9), in this Dubins car example the angle
of motion is a state, not a control input.

We discretize these dynamics by integrating (8.11) from t to t+�t, assuming a constant
control input uH :

xk+1
H

� xk

H
⌘ xH(t+�t)� xH(t) = (8.12)

2

4
vH

uH(t)

�
sin

�
h�(t) + uH(t)�t

�
� sin(h�(t))

�

�
vH

uH(t)

�
cos

�
h�(t) + uH(t)�t

�
� cos(h�(t))

�

uH�t

3

5

For a specific goal position g = [gx, gy], the Q-value corresponding to state-action pair
(xH , uH) and reward function rH(xH , uH) = �vH�t (until the goal is reached) may be found
by solving a shortest path problem o✏ine.

Accurate Model

First, we consider a scenario in which the robot has full knowledge of the human’s goal, and
the human moves along the shortest path from a start location to this known goal state.
Thus, human motion is well-explained by QH .

The first row of Fig. 8.2 illustrates the probability distributions our method predicts for
the pedestrian’s future state at di↵erent times. Initially, the predictions generated by our
Bayesian confidence-inference approach (right) appear similar to those generated by the low
model confidence predictor (left). However, our method rapidly discovers that QH is an
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accurate description of the pedestrian’s motion and generates predictions that match the
high model confidence predictor (center). The data used in this example was collected by
tracking the motion of a real person walking in a motion capture arena. See Section 8.8 for
further details.

Likewise, the first row of Fig. 8.3 shows similar results for a human-driven Dubins car
model (in simulation) at an intersection. Here, tra�c laws provide a strong prior on the
human’s potential goal states. As shown, our method of Bayesian model confidence inference
quickly infers the correct goal and learns that the human driver is acting in accordance with
its model QH . The resulting predictions are substantially similar to the high-� predictor.
The data used in this example was simulated by controlling a Dubins car model along a
pre-specified trajectory.

Unmodeled Obstacle

Often, robots do not have fully specified models of the environment. Here, we showcase
the resilience of our approach to unmodeled obstacles which the human must avoid. In this
scenario, the human has the same start and goal as in the accurate model case, except that
there is an obstacle along the way. The robot is unaware of this obstacle, however, which
means that in its vicinity the human’s motion is not well-explained by QH , and b(�) ought
to place more probability mass on higher values of �.

The second rows of Fig. 8.2 and Fig. 8.3 illustrate this type of situation for the pedes-
trian and Dubins car, respectively. In Fig. 8.2, the pedestrian walks to an a priori known
goal location and avoids an unmodeled spill on the ground. Analogously, in Fig. 8.3 the car
swerves to avoid a large pothole. By inferring model confidence online, our approach gener-
ates higher-variance predictions of future state, but only in the vicinity of these unmodeled
obstacles. At other times throughout the episode when QH is more accurate, our approach
produces predictions more in line with the high model confidence predictor.

Unmodeled Goal

In most realistic human-robot encounters, even if the robot does have an accurate environ-
ment map and observes all obstacles, it is unlikely for it to be aware of all human goals. We
test our approach’s resilience to unknown human goals by constructing a scenario in which
the human moves between both known and unknown goals.

The third row of Fig. 8.2 illustrates this situation for the pedestrian example. Here,
the pedestrian first moves to one known goal position, then to another, and finally back to
the start which was not a modelled goal location. The first two legs of this trajectory are
consistent with the robot’s model of goal-oriented motion, though accurate prediction does
require the predictor to infer which goal the pedestrian is walking toward. However, when
the pedestrian returns to the start, her motion appears inconsistent with QH , skewing the
robot’s belief over � toward zero.
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Figure 8.2: Snapshots of pedestrian trajectory and probabilistic model predictions. Top
row: Pedestrian moves from the bottom right to a goal marked as a red circle. Middle row:
Pedestrian changes course to avoid a spill on the floor. Bottom row: Pedestrian moves to
one known goal, then to another, then to a third which the robot has not modeled. The
first two columns show predictions for low and high model confidence; the third column
shows the predictions using our Bayesian model confidence. For all pedestrian videos, see:
https://youtu.be/lh_E9rW-MJo

Similarly, in the third row of Fig. 8.3 we consider a situation in which a car makes an
unexpected turn onto an unmapped access road. As soon as the driver initiates the turn, our
predictor rapidly learns to distrust its internal model QH and shift its belief over � upward.

8.6 Safe Probabilistic Planning and Tracking

Given probabilistic predictions of the human’s future motion, the robot must plan e�cient
trajectories which avoid collision with high probability. In order to reason robustly about
this probability of future collision, we must account for potential tracking errors incurred



CHAPTER 8. SINGLE ROBOT, SINGLE HUMAN 163

(� = 0.1)
<latexit sha1_base64="tLmGwJC7RaD23sE3Xe5qcdnwuFo=">AAAB9HicbZBNSwMxEIaz9avWr6pHL8Ei1EvZFUEvQtGLxwr2A9qlZNPZNjSbXZPZQin9HV48KOLVH+PNf2Pa7kFbXwg8vDPDTN4gkcKg6347ubX1jc2t/HZhZ3dv/6B4eNQwcao51HksY90KmAEpFNRRoIRWooFFgYRmMLyb1Zsj0EbE6hHHCfgR6ysRCs7QWn65EwAyekPdinfeLZbcijsXXQUvgxLJVOsWvzq9mKcRKOSSGdP23AT9CdMouIRpoZMaSBgfsj60LSoWgfEn86On9Mw6PRrG2j6FdO7+npiwyJhxFNjOiOHALNdm5n+1dorhtT8RKkkRFF8sClNJMaazBGhPaOAoxxYY18LeSvmAacbR5lSwIXjLX16FxkXFs/xwWareZnHkyQk5JWXikStSJfekRuqEkyfyTF7JmzNyXpx352PRmnOymWPyR87nDw/WkFE=</latexit><latexit sha1_base64="tLmGwJC7RaD23sE3Xe5qcdnwuFo=">AAAB9HicbZBNSwMxEIaz9avWr6pHL8Ei1EvZFUEvQtGLxwr2A9qlZNPZNjSbXZPZQin9HV48KOLVH+PNf2Pa7kFbXwg8vDPDTN4gkcKg6347ubX1jc2t/HZhZ3dv/6B4eNQwcao51HksY90KmAEpFNRRoIRWooFFgYRmMLyb1Zsj0EbE6hHHCfgR6ysRCs7QWn65EwAyekPdinfeLZbcijsXXQUvgxLJVOsWvzq9mKcRKOSSGdP23AT9CdMouIRpoZMaSBgfsj60LSoWgfEn86On9Mw6PRrG2j6FdO7+npiwyJhxFNjOiOHALNdm5n+1dorhtT8RKkkRFF8sClNJMaazBGhPaOAoxxYY18LeSvmAacbR5lSwIXjLX16FxkXFs/xwWareZnHkyQk5JWXikStSJfekRuqEkyfyTF7JmzNyXpx352PRmnOymWPyR87nDw/WkFE=</latexit><latexit sha1_base64="tLmGwJC7RaD23sE3Xe5qcdnwuFo=">AAAB9HicbZBNSwMxEIaz9avWr6pHL8Ei1EvZFUEvQtGLxwr2A9qlZNPZNjSbXZPZQin9HV48KOLVH+PNf2Pa7kFbXwg8vDPDTN4gkcKg6347ubX1jc2t/HZhZ3dv/6B4eNQwcao51HksY90KmAEpFNRRoIRWooFFgYRmMLyb1Zsj0EbE6hHHCfgR6ysRCs7QWn65EwAyekPdinfeLZbcijsXXQUvgxLJVOsWvzq9mKcRKOSSGdP23AT9CdMouIRpoZMaSBgfsj60LSoWgfEn86On9Mw6PRrG2j6FdO7+npiwyJhxFNjOiOHALNdm5n+1dorhtT8RKkkRFF8sClNJMaazBGhPaOAoxxYY18LeSvmAacbR5lSwIXjLX16FxkXFs/xwWareZnHkyQk5JWXikStSJfekRuqEkyfyTF7JmzNyXpx352PRmnOymWPyR87nDw/WkFE=</latexit><latexit sha1_base64="tLmGwJC7RaD23sE3Xe5qcdnwuFo=">AAAB9HicbZBNSwMxEIaz9avWr6pHL8Ei1EvZFUEvQtGLxwr2A9qlZNPZNjSbXZPZQin9HV48KOLVH+PNf2Pa7kFbXwg8vDPDTN4gkcKg6347ubX1jc2t/HZhZ3dv/6B4eNQwcao51HksY90KmAEpFNRRoIRWooFFgYRmMLyb1Zsj0EbE6hHHCfgR6ysRCs7QWn65EwAyekPdinfeLZbcijsXXQUvgxLJVOsWvzq9mKcRKOSSGdP23AT9CdMouIRpoZMaSBgfsj60LSoWgfEn86On9Mw6PRrG2j6FdO7+npiwyJhxFNjOiOHALNdm5n+1dorhtT8RKkkRFF8sClNJMaazBGhPaOAoxxYY18LeSvmAacbR5lSwIXjLX16FxkXFs/xwWareZnHkyQk5JWXikStSJfekRuqEkyfyTF7JmzNyXpx352PRmnOymWPyR87nDw/WkFE=</latexit>

(� = 20)
<latexit sha1_base64="yVBd+yPFLQ3/flfb2UlaHEpN+NA=">AAAB83icbZBNSwMxEIZn61etX1WPXoJFqJeyWwS9CEUvHivYWuguJZtm29BsdklmhVL6N7x4UMSrf8ab/8a03YO2vhB4eGeGmbxhKoVB1/12CmvrG5tbxe3Szu7e/kH58Khtkkwz3mKJTHQnpIZLoXgLBUreSTWncSj5Yzi6ndUfn7g2IlEPOE55ENOBEpFgFK3lV/2QIyXXpO6e98oVt+bORVbBy6ECuZq98pffT1gWc4VMUmO6nptiMKEaBZN8WvIzw1PKRnTAuxYVjbkJJvObp+TMOn0SJdo+hWTu/p6Y0NiYcRzazpji0CzXZuZ/tW6G0VUwESrNkCu2WBRlkmBCZgGQvtCcoRxboEwLeythQ6opQxtTyYbgLX95Fdr1mmf5/qLSuMnjKMIJnEIVPLiEBtxBE1rAIIVneIU3J3NenHfnY9FacPKZY/gj5/MHo3OQGg==</latexit><latexit sha1_base64="yVBd+yPFLQ3/flfb2UlaHEpN+NA=">AAAB83icbZBNSwMxEIZn61etX1WPXoJFqJeyWwS9CEUvHivYWuguJZtm29BsdklmhVL6N7x4UMSrf8ab/8a03YO2vhB4eGeGmbxhKoVB1/12CmvrG5tbxe3Szu7e/kH58Khtkkwz3mKJTHQnpIZLoXgLBUreSTWncSj5Yzi6ndUfn7g2IlEPOE55ENOBEpFgFK3lV/2QIyXXpO6e98oVt+bORVbBy6ECuZq98pffT1gWc4VMUmO6nptiMKEaBZN8WvIzw1PKRnTAuxYVjbkJJvObp+TMOn0SJdo+hWTu/p6Y0NiYcRzazpji0CzXZuZ/tW6G0VUwESrNkCu2WBRlkmBCZgGQvtCcoRxboEwLeythQ6opQxtTyYbgLX95Fdr1mmf5/qLSuMnjKMIJnEIVPLiEBtxBE1rAIIVneIU3J3NenHfnY9FacPKZY/gj5/MHo3OQGg==</latexit><latexit sha1_base64="yVBd+yPFLQ3/flfb2UlaHEpN+NA=">AAAB83icbZBNSwMxEIZn61etX1WPXoJFqJeyWwS9CEUvHivYWuguJZtm29BsdklmhVL6N7x4UMSrf8ab/8a03YO2vhB4eGeGmbxhKoVB1/12CmvrG5tbxe3Szu7e/kH58Khtkkwz3mKJTHQnpIZLoXgLBUreSTWncSj5Yzi6ndUfn7g2IlEPOE55ENOBEpFgFK3lV/2QIyXXpO6e98oVt+bORVbBy6ECuZq98pffT1gWc4VMUmO6nptiMKEaBZN8WvIzw1PKRnTAuxYVjbkJJvObp+TMOn0SJdo+hWTu/p6Y0NiYcRzazpji0CzXZuZ/tW6G0VUwESrNkCu2WBRlkmBCZgGQvtCcoRxboEwLeythQ6opQxtTyYbgLX95Fdr1mmf5/qLSuMnjKMIJnEIVPLiEBtxBE1rAIIVneIU3J3NenHfnY9FacPKZY/gj5/MHo3OQGg==</latexit><latexit sha1_base64="yVBd+yPFLQ3/flfb2UlaHEpN+NA=">AAAB83icbZBNSwMxEIZn61etX1WPXoJFqJeyWwS9CEUvHivYWuguJZtm29BsdklmhVL6N7x4UMSrf8ab/8a03YO2vhB4eGeGmbxhKoVB1/12CmvrG5tbxe3Szu7e/kH58Khtkkwz3mKJTHQnpIZLoXgLBUreSTWncSj5Yzi6ndUfn7g2IlEPOE55ENOBEpFgFK3lV/2QIyXXpO6e98oVt+bORVbBy6ECuZq98pffT1gWc4VMUmO6nptiMKEaBZN8WvIzw1PKRnTAuxYVjbkJJvObp+TMOn0SJdo+hWTu/p6Y0NiYcRzazpji0CzXZuZ/tW6G0VUwESrNkCu2WBRlkmBCZgGQvtCcoRxboEwLeythQ6opQxtTyYbgLX95Fdr1mmf5/qLSuMnjKMIJnEIVPLiEBtxBE1rAIIVneIU3J3NenHfnY9FacPKZY/gj5/MHo3OQGg==</latexit>

(� ⇠ bt(·))
<latexit sha1_base64="u8JjjmEbX4KZetVgvyB6N3zFOr4=">AAACAHicbZDLSsNAFIYnXmu9RV24cDNYhHZTEhF0WXTjsoK9QBPLZDJph04yYeZEKKEbX8WNC0Xc+hjufBunbRba+sPAx3/O4cz5g1RwDY7zba2srq1vbJa2yts7u3v79sFhW8tMUdaiUkjVDYhmgiesBRwE66aKkTgQrBOMbqb1ziNTmsvkHsYp82MySHjEKQFj9e3jqhcwINjTPMbBA1Q9Gkqo1fp2xak7M+FlcAuooELNvv3lhZJmMUuACqJ1z3VS8HOigFPBJmUv0ywldEQGrGcwITHTfj47YILPjBPiSCrzEsAz9/dETmKtx3FgOmMCQ71Ym5r/1XoZRFd+zpM0A5bQ+aIoExgknqaBQ64YBTE2QKji5q+YDokiFExmZROCu3jyMrTP667hu4tK47qIo4RO0CmqIhddoga6RU3UQhRN0DN6RW/Wk/VivVsf89YVq5g5Qn9kff4A4c2VSg==</latexit><latexit sha1_base64="u8JjjmEbX4KZetVgvyB6N3zFOr4=">AAACAHicbZDLSsNAFIYnXmu9RV24cDNYhHZTEhF0WXTjsoK9QBPLZDJph04yYeZEKKEbX8WNC0Xc+hjufBunbRba+sPAx3/O4cz5g1RwDY7zba2srq1vbJa2yts7u3v79sFhW8tMUdaiUkjVDYhmgiesBRwE66aKkTgQrBOMbqb1ziNTmsvkHsYp82MySHjEKQFj9e3jqhcwINjTPMbBA1Q9Gkqo1fp2xak7M+FlcAuooELNvv3lhZJmMUuACqJ1z3VS8HOigFPBJmUv0ywldEQGrGcwITHTfj47YILPjBPiSCrzEsAz9/dETmKtx3FgOmMCQ71Ym5r/1XoZRFd+zpM0A5bQ+aIoExgknqaBQ64YBTE2QKji5q+YDokiFExmZROCu3jyMrTP667hu4tK47qIo4RO0CmqIhddoga6RU3UQhRN0DN6RW/Wk/VivVsf89YVq5g5Qn9kff4A4c2VSg==</latexit><latexit sha1_base64="u8JjjmEbX4KZetVgvyB6N3zFOr4=">AAACAHicbZDLSsNAFIYnXmu9RV24cDNYhHZTEhF0WXTjsoK9QBPLZDJph04yYeZEKKEbX8WNC0Xc+hjufBunbRba+sPAx3/O4cz5g1RwDY7zba2srq1vbJa2yts7u3v79sFhW8tMUdaiUkjVDYhmgiesBRwE66aKkTgQrBOMbqb1ziNTmsvkHsYp82MySHjEKQFj9e3jqhcwINjTPMbBA1Q9Gkqo1fp2xak7M+FlcAuooELNvv3lhZJmMUuACqJ1z3VS8HOigFPBJmUv0ywldEQGrGcwITHTfj47YILPjBPiSCrzEsAz9/dETmKtx3FgOmMCQ71Ym5r/1XoZRFd+zpM0A5bQ+aIoExgknqaBQ64YBTE2QKji5q+YDokiFExmZROCu3jyMrTP667hu4tK47qIo4RO0CmqIhddoga6RU3UQhRN0DN6RW/Wk/VivVsf89YVq5g5Qn9kff4A4c2VSg==</latexit><latexit sha1_base64="u8JjjmEbX4KZetVgvyB6N3zFOr4=">AAACAHicbZDLSsNAFIYnXmu9RV24cDNYhHZTEhF0WXTjsoK9QBPLZDJph04yYeZEKKEbX8WNC0Xc+hjufBunbRba+sPAx3/O4cz5g1RwDY7zba2srq1vbJa2yts7u3v79sFhW8tMUdaiUkjVDYhmgiesBRwE66aKkTgQrBOMbqb1ziNTmsvkHsYp82MySHjEKQFj9e3jqhcwINjTPMbBA1Q9Gkqo1fp2xak7M+FlcAuooELNvv3lhZJmMUuACqJ1z3VS8HOigFPBJmUv0ywldEQGrGcwITHTfj47YILPjBPiSCrzEsAz9/dETmKtx3FgOmMCQ71Ym5r/1XoZRFd+zpM0A5bQ+aIoExgknqaBQ64YBTE2QKji5q+YDokiFExmZROCu3jyMrTP667hu4tK47qIo4RO0CmqIhddoga6RU3UQhRN0DN6RW/Wk/VivVsf89YVq5g5Qn9kff4A4c2VSg==</latexit>

Figure 8.3: Snapshots of Dubins car and probabilistic predictions. Top row: Car moves
straight ahead toward a known goal (red arrow), staying in its lane. Middle row: Car
suddenly swerves to the left to avoid a pothole. Bottom row: Car turns to the right, away
from the only known goal. The left and center columns show results for low and high
confidence predictors, respectively, and the right column shows our approach using Bayesian
inferred model confidence. For all Dubins car videos, see: https://youtu.be/sAJKNnP42fQ

by the real system as it follows planned trajectories. To this end, we build on the recent
FaSTrack framework of [88], which provides control-theoretic robust safety certificates in
the presence of deterministic obstacles, and extend it to achieve approximate probabilistic
collision-avoidance.

Background: Fast Planning, Safe Tracking

Recall that xR is the robot’s state for the purposes of motion planning, and that sR encodes
a higher-fidelity, potentially higher-dimensional notion of state (with associated dynamics).
The recently proposed FaSTrack framework from [88] uses Hamilton-Jacobi reachability anal-
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ysis to quantify the worst-case tracking performance of the sR-system as it follows trajectories
generated by the xR-system. For further reading on reachability analysis refer to [62], [126],
and [17]. A byproduct of this FaSTrack analysis is an error feedback controller that the sR
system can use to achieve this worst-case tracking error. The tracking error bound may be
given to one of many o↵-the-shelf real-time motion planning algorithms operating in xR-space
in order to guarantee real-time collision-avoidance by the sR-system.

Formally, FaSTrack precomputes an optimal tracking controller, as well as a correspond-
ing compact set E in the robot’s planning state space, such that

�
⇡(sR(t))� xR,ref(t)

�
2 E

for any reference trajectory proposed by the lower-fidelity planner. This bound E is a tra-
jectory tracking certificate that can be passed to an online planning algorithm for real-time
safety verification: the dynamical robot is guaranteed to always be somewhere within the
bound relative to the current planned reference point xR,ref(t). This tracking error bound
may sometimes be expressed analytically; otherwise, it may be computed numerically using
level set methods, e.g. [129]. Equipped with E , the planner can generate safe plans by en-
suring that the entire bound around the nominal state remains collision-free throughout the
trajectory. Note that the planner only needs to know E and otherwise requires no explicit
understanding of the high-fidelity model.

Example 8.5. Since dynamics (8.2) are decoupled in the three spatial directions, the
bound E computed by FaSTrack is an axis-aligned box of dimensions Ex ⇥ Ey ⇥ Ez. For
further details refer to [76].

Robust Tracking, Probabilistic Safety

Unfortunately, planning algorithms for collision checking against deterministic obstacles can-
not be readily applied to our problem. Instead, a trajectory’s collision check should return
the probability that it might lead to a collision. Based on this probability, the planning
algorithm can discriminate between trajectories that are su�ciently safe and those that are
not.

As discussed in Section 8.2, a safe online motion planner invoked at time t should contin-
ually check the probability that, at any future time ⌧ , (⇡(sR(⌧)), xH(⌧)) 2 K. The tracking
error bound guarantee from FaSTrack allows us to conduct worst-case analysis on collisions
given a human state xH . Concretely, if no point in the Minkowski sum {xR + E} is in the
collision set with xH , we can guarantee that the robot is not in collision with the human.

The probability of a collision event for any point xR(⌧) along a candidate trajectory,
assuming worst-case tracking error bound E , can be upper-bounded by the total probability
that xH(⌧) will be in collision with any of the possible robot states x̃R 2 {xR(⌧) + E}. For
each robot planning state xR 2 RnR we define the set of human states in potential collision
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with the robot:

HE(xR) := {x̃H 2 RnH : (8.13)

9x̃R 2 {xR + E}, (x̃R, x̃H) 2 K} .

Example 8.6. Given K and E , HE(xR) is the set of human positions within the rect-
angle of dimensions (l + Ex)⇥ (l + Ey) centered on [px, py]. A human anywhere in this
rectangle could be in collision with the quadcopter.

The following result follows directly from the definition of the tracking error bound and
a union bound.

Proposition 4. The probability of a robot with worst case tracking error E colliding with
the human at any trajectory point xR(⌧) is bounded above by the probability mass of xH(⌧)
contained within HE(xR(⌧)).

We shall consider discrete-time motion plans. The probability of collision along any such
trajectory from current time step k to final step k +K is upper-bounded by:

P k:k+K

coll  P k:k+K

coll := (8.14)

1�
k+KY

=k

P
⇣
x
H
62 HE(x



R
) | x

H
62 HE(x

s

R
), k  s < 

⌘
.

Evaluating the right hand side of (8.14) exactly requires reasoning about the joint dis-
tribution of human states over all time steps and its conditional relationship on whether
collision has yet occurred. This is equivalent to maintaining a probability distribution over
the exponentially large space of trajectories xk:k+K

H
that the human might follow. As motion

planning occurs in real-time, we shall resort to a heuristic approximation of (8.14).
One approach to approximating (8.14) is to assume that the event x1

H
62 HE(x

1
R
) is

independent of x2
H
62 HE(x

2
R
), 81 6= 2. This independence assumption is equivalent to

removing the conditioning in (8.14). Unfortunately, this approximation is excessively pes-
simistic; if there is no collision at time step , then collision is also unlikely at time step
+ 1 because both human and robot trajectories are continuous.

We shall refine this approximation by finding a tight lower bound on the right hand side
of (8.14). Because collision events are correlated in time, we first consider replacing each
conditional probability P

�
x
H
62 HE(xR) | xs

H
62 HE(xs

R
), k  s < 

�
by 1 for all t > 0. This

e↵ectively lower bounds P k:k+K

coll by the worst case probability of collision at the current time
step k:

P k:k+K

coll � 1� P
�
xk

H
62 HE(x

k

R
)
�

(8.15)

= P
�
xk

H
2 HE(x

k

R
)
�
.
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a) b) c)

Figure 8.4: Scenario from the middle row of Fig. 8.2 visualized with robot’s trajectory.
When � is low and the robot is not confident, it makes large deviations from its path to
accommodate the human. When � is high, the robot refuses to change course and comes
dangerously close to the human. With inferred model confidence, the robot balances safety
and e�ciency with a slight deviation around the human.

This bound is extremely loose in general, because it completely ignores the possibility of
future collision. However, note that probabilities in the product in (8.14) may be conditioned
in any particular order (not necessarily chronological). This commutativity allows us to

generate K � k+1 lower bounds of the form P k:k+K

coll � P
�
x
H
2 HE(xR)

�
for  2 {k, . . . , k+

K}.Taking the tightest of all of these bounds, we can obtain an informative, yet quickly
computable, approximator for the sought probability:

P k:k+K

coll ⇡ max
2{k:k+K}

P
�
x
H
2 HE(x



R
)
�
. (8.16)

To summarize, (8.16) approximates the probability of collision over an entire trajectory
with the highest marginal collision probability at any point in the trajectory. While this
approximation will err on the side of optimism, we note that the robot’s ability to con-
tinually replan as updated human predictions become available mitigates this potentially
underestimated risk.

Safe Online Planning under Uncertain Human Predictions

This approximation of collision probability allows the robot to discriminate between valid
and invalid candidate trajectories during motion planning. Using the prediction methodology
proposed in Section 8.3, we may quickly generate, at every time t, the marginal probabilities
in (8.16) at each future time  2 {k, . . . , k+K}, based on past observations at times 0, . . . , k.
The planner then computes the instantaneous probability of collision P

�
x
H
2 HE(xR)

�
by

integrating P
�
x⌧
H

| x0:k
H

�
over HE(xR), and rejects the candidate point x

R
if this probability

exceeds Pth.
Note that for graph-based planners that consider candidate trajectories by generating a

graph of time-stamped states, rejecting a candidate edge from this graph is equivalent to
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Figure 8.5: The human (black dot) is moving west towards a goal. Visualized are the pre-
dicted state distributions for one second into the future when using low, high, and Bayesian
model confidence. Higher-saturation indicates higher likelihood of occupancy. The dashed
circle represents the pedestrian’s 1 second forward reachable set.

rejecting all further trajectories that would contain that edge. This early rejection rule is
consistent with the proposed approximation (8.16) of P k:k+K

coll while preventing unnecessary
exploration of candidate trajectories that would ultimately be deemed unsafe.

Throughout operation, the robot follows each planned trajectory using the error feedback
controller provided by FaSTrack, which ensures that the robot’s high-fidelity state represen-
tation sR and the lower-fidelity state used for planning, xR, di↵er by no more than the
tracking error bound E . This planning and tracking procedure continues until the robot
reaches its desired goal state.

Example 8.7. Our quadcopter is now required to navigate to a target position shown in
Fig. 8.4 without colliding with the human. Our proposed algorithm successfully avoids
collisions at all times, replanning to leave greater separation from the human whenever
her motion departs from the model. In contrast, robot planning with fixed model con-
fidence is either overly conservative at the expense of time and performance or overly
aggressive at the expense of safety.

8.7 Connections to Reachability Analysis

In this section, we present an alternative, complementary analysis of the overall safety proper-
ties of the proposed approach to prediction and motion planning. This discussion is grounded
in the language of reachability theory and worst-case analysis of human motion.
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Figure 8.6: Visualization of the states with probability greater than or equal to the collision
threshold, Pth = 0.01. The human’s forward reachable set includes the set of states assigned
probability greater than Pth. We show these “high probability” predicted states for predictors
with fixed low and high �, as well as our Bayesian-inferred �.

Forward Reachable Set

Throughout this section, we frequently refer to the human’s time-indexed forward reachable
set. We define this set formally below.

Definition 6. (Forward Reachable Set) For a dynamical system ẋ = f(x, u) with state
trajectories given by the function ⇠

�
x(0), t, u(·)

�
=: x(t), the forward reachable set VFRS(x, t)

of a state x after time t has elapsed is

VFRS(x, t) := {x0 : 9u(·), x0 = ⇠(x, t, u(·))} .

That is, a state x0 is in the forward reachable set of x after time t if it is reachable via some
applied control signal u(·).

Remark 12. (Recovery of VFRS) For Pth = 0 and any finite �, the set of states assigned
probability greater than Pth is identical to the forward reachable set, up to discretization
errors. This is visualized for low, high, and Bayesian model confidence in Fig. 8.5.

A Su�cient Condition for the Safety of Individual Trajectories

In Section 8.6, we construct an approximation to the probability of collision along a tra-
jectory, which we use during motion planning to avoid potentially dangerous states. To
make this guarantee of collision-avoidance for a motion plan even stronger, it would su�ce
to ensure that the robot never comes too close to the human’s forward reachable set. More
precisely, a planned trajectory is safe if {xR(t) + E} \ VFRS(xH , t) = ;, for every state xR(t)
along a motion plan generated when the human was at state xH . The proof of this statement
follows directly from the properties of the tracking error bound E described in Section 8.6.
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While this condition may seem appealing, it is in fact highly restrictive. The requirement
of avoiding the full forward reachable set is not always possible in confined spaces; indeed, this
was our original motivation for wanting to predict human motion (see Section 8.2). However,
despite this shortcoming, the logic behind this su�cient condition for safety provides insight
into the e↵ectiveness of our framework.

Recovering the Forward Reachable Set

Though it will not constitute a formal safety guarantee, we analyze the empirical safety
properties of our approach by examining how our predicted state distributions over time
relate to forward reachable sets. During operation, our belief over model confidence � evolves
to match the degree to which the utility model QH explains recent human motion. The “time
constant” governing the speed of this evolution may be tuned by the system designer to be
arbitrarily fast by choosing the parameter ✏ to be small, as discussed in Section 8.3. Thus,
we may safely assume that b(�) places high probability mass on small values of � as soon as
the robot observes human motion which is not well explained by QH .

Fig. 8.6 shows the sets of states with “high enough” (> Pth) predicted probability mass
overlaid on the human’s forward reachable set at time t, which is a circle of radius vHt
centered on xH for the dynamics in our running example. When � is high (10), we observe
that virtually all of the probability mass is concentrated in a small number of states in the
direction of motion predicted by our utility model. When � is low (0.05) we observe that the
set of states assigned probability above our collision threshold Pth occupies a much larger
fraction of the reachable set. A typical belief b(�) recorded at a moment when the human
was roughly moving according to QH yields an intermediate set of states.

Fig. 8.7 illustrates the evolution of these sets of states over time, for the unmodeled
obstacle example of Section 8.5 in which a pedestrian avoids a spill. Each row corresponds
to the predicted state distribution at a particular point in time. Within a row, each column
shows the reachable set and the set of states assigned occupancy probability greater than
Pth = 0.01. The color of each set of states corresponds to the value of � used by the low
confidence and high confidence predictors, and the maximum a posteriori value of � for the
Bayesian confidence predictor. The human’s known goal state is marked by a red dot.

Interestingly, as the Bayesian model confidence decreases—which occurs when the pedes-
trian turns to avoid the spill at t ⇡ 6 s—the predicted state distribution assigns high prob-
ability to a relatively large set of states, but unlike the low-� predictor that set of states is
oriented toward the known goal. Of course, had b(�) placed even more probability mass on
lower values of � then the Bayesian confidence predictor would converge to the low confidence
one.

Additionally, we observe that, within each row as the prediction horizon increases, the
area contained within the forward reachable set increases and the fraction of that area
contained within the predicted sets decreases. This phenomenon is a direct consequence of
our choice of threshold Pth. Had we chosen a smaller threshold value, a larger fraction of the
forward reachable set would have been occupied by the lower-� predictors.
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Figure 8.7: The human (black dot) is walking towards the known goal (red dot) but has to
avoid an unmodeled co↵ee spill on the ground. Here we show the snapshots of the predictions
at various future times (columns) as the human walks around in real time (rows). The
visualized states have probability greater than or equal to Pth = 0.01. Each panel displays
the human prediction under low confidence (in yellow), high confidence (in dark purple), and
Bayesian confidence (colored as per the most likely � value), as well as the forward reachable
set.
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Figure 8.8: Predicting with fixed-� (in this case, � = 20) can yield highly inaccurate pre-
dictions (and worse, confidently inaccurate ones). The subsequent motion plans may not be
safe; here, poor prediction quality leads to a collision.

This observation may be viewed prescriptively. Recalling the su�cient condition for
safety of planned trajectories from Section 8.7, if the robot replans every Treplan seconds,
we may interpret the fraction of VFRS(·, t + Treplan) assigned occupancy probability greater
than Pth by the low confidence predictor as a rough indicator of the safety of an individual
motion plan, robust to worst-case human movement. As this fraction tends toward unity, the
robot is more and more likely to be safe. However, for any Pth > 0, this fraction approaches
zero for Treplan " 1. This immediately suggests that, if we wish to replan every Treplan

seconds, we can achieve a particular level of safety as measured by this fraction by choosing
an appropriate threshold Pth.

In summary, confidence-aware predictions rapidly place high probability mass on low
values of � whenever human motion is not well-explained by utility model QH . Whenever
this happens, the resulting predictions encompass a larger fraction of the forward reachable
set, and in the limit that Pth # 0 we recover the forward reachable set exactly. The larger this
fraction, the more closely our approach satisfies the su�cient condition for safety presented
in Section 8.7.

8.8 Hardware Demonstration

We implemented confidence-aware human motion prediction (Section 8.3) and integrated
it into a real-time, safe probabilistic motion planner (Section 8.6), all within the Robot
Operating System (ROS) software framework of [143]. To demonstrate the e�cacy of our
methods, we tested our work for the quadcopter-avoiding-pedestrian example used for illus-
tration throughout this chapter. Human trajectories were recorded as (x, y) positions on the
ground plane at roughly 235 Hz by an OptiTrack infrared motion capture system, and we
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Figure 8.9: Inferring � leads to predicted state distributions whose entropy increases when-
ever the utility model QH fails to explain observed human motion. The resulting predictions
are more robust to modeling errors, resulting in safer motion plans. Here, the quadcopter
successfully avoids the pedestrian even when she turns unexpectedly.

used a Crazyflie 2.0 micro-quadcopter, also tracked by the OptiTrack system.2

Fig. 8.4 illustrates the unmodeled obstacle case from Section 8.5, in which the pedestrian
turns to avoid a spill on the ground. Using a low model confidence results in motion plans
that suddenly and excessively deviate from the ideal straight-line path when the pedestrian
turns to avoid the spill. By contrast, the high confidence predictor consistently predicts
that the pedestrian will walk in a straight line to her goal even when she turns; this almost
leads to collision, as shown in detail in Fig. 8.8. Our proposed approach for Bayesian model
confidence initially assigns high confidence and predicts that the pedestrian will walk straight
to the goal, but when she turns to avoid the spill, the predictions become less confident. This
causes the quadcopter to make a minor course correction, shown in further detail in Fig 8.9.

8.9 Chapter Summary

When robots operate in complex environments in concert with other agents, safety often
depends upon the robot’s ability to predict the agents’ future actions. While this prediction
problem may be tractable in some cases, it can be extremely di�cult for agents like people
who act with intent. In this chapter, we introduce the idea of confidence-aware prediction
as a natural coping mechanism for predicting the future actions of intent-driven agents.
Our approach uses each measurement of the human’s state to reason about the accuracy
of its internal model of human decision making. This reasoning about model confidence is

2We note that in a more realistic setting, we would require alternative methods for state estimation
using other sensors, such as lidar and/or camera(s). A video recording may be found at https://youtu.
be/2ZRGxWknENg.
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expressed compactly as a Bayesian filter over the possible values of a single parameter, �,
which controls the entropy of the robot’s model of the human’s choice of action. In e↵ect,
whenever the human’s motion is not well-explained by this model, the robot predicts that
the human could occupy a larger volume of the state space.

We couple this notion of confidence-aware prediction with a reachability-based robust
motion planning algorithm, FaSTrack, which quantifies the robot’s ability to track a planned
reference trajectory. Using this maximum tracking error allows us to bound an approximation
of the probability of collision along planned trajectories. Additionally, we present a deeper
connection between confidence-aware prediction and forward reachable sets, which provides
an alternative explanation of the safety of our approach. We demonstrate the proposed
methodology on a ROS-based quadcopter testbed in a motion capture arena.

There are several important limitations of this work, which we summarize and discuss
below.

Limitations: State Discretization

As presented, our approach to prediction requires a discrete representation of the human’s
state space. This can be tractable for the relatively simple dynamical models of human
motion we consider in this work. Fortunately, one of the strongest attributes of confidence-
aware prediction is that it a↵ords a certain degree of robustness to modeling errors by design.
Still, our approach is e↵ectively limited to low-order dynamical models.

Limitations: FaSTrack Complexity

FaSTrack provides a strong safety guarantee vis-à-vis the maximum tracking error that
could ever exist between a higher-fidelity dynamical model of the robot and a lower-order
one used for motion planning. Unfortunately, the computational complexity of finding this
maximum tracking error and the corresponding safety controller scales exponentially with
the dimension of the high-fidelity model. In some cases, these dynamics are decomposable
and analytic solutions exist, e.g. [76, 37], and in other cases conservative approximations
may be e↵ective, e.g. [35, 150].

Limitations: Boltzmann Distributional Assumption

We model the human’s choice of control input at each time step as an independent, random
draw from a Boltzmann distribution (8.3). This distributional assumption is motivated
from the literature in cognitive science and econometrics and is increasingly common in
robotics, yet it may not be accurate in all cases. Maintaining an up-to-date model confidence
belief b(�) can certainly mitigate this inaccuracy, but only at the cost of making excessively
conservative predictions.
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Limitations: Safety Certification

Our analysis in Section 8.7 makes connections to forward reachability in an e↵ort to un-
derstand the safety properties of our system. As shown, whenever our confidence-aware
prediction method detects poor model performance it quickly yields predictions that ap-
proximate the human’s forward reachable set. Although this approximation is not perfect,
and hence we cannot provide a strong safety certificate, the connection to reachability is in
some sense prescriptive. That is, it can be used to guide the choice of collision probability
threshold Pth and replanning frequency. However, even if we could provide a strong guaran-
tee of collision-avoidance for a particular motion plan, that would not, in general, guarantee
that future motion plans would be recursively safe. This recursive property is much more
general and, unsurprisingly, more di�cult to satisfy.

Future Directions

Future work will aim to address each of these shortcomings. We are also interested in
extending our methodology for the multi-robot, multi-human setting; our preliminary results
are reported in [13]. Additionally, we believe that our model confidence inference approach
could be integrated with other commonly-used probabilistic prediction methods besides the
Boltzmann utility model. Finally, we are excited to test our work in hardware in other
application spaces, such as manipulation and driving.
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Chapter 9

Multi-Robot, Multi-Human

This chapter is based on the paper “A Scalable Framework for Real-Time Multi-Robot,
Multi-Human Collision Avoidance” [13], written in collaboration with Andrea Bajcsy, David
Fridovich-Keil, Jaime Fisac, Sampada Deglurkar, Anca D. Dragan, and Claire J. Tomlin.

As robotic systems are increasingly used for applications such as drone delivery ser-
vices, semi-automated warehouses, and autonomous cars, safe and e�cient robotic naviga-
tion around humans is crucial. Consider the example in Fig. 9.1, inspired by a drone delivery
scenario, where two quadcopters must plan a safe trajectory around two humans who are
walking through the environment. We would like to guarantee that the robots will reach their
goals without ever colliding with each other, any of the humans, or the static surroundings.1

This safe motion planning problem faces three main challenges: (1) controlling the non-
linear robot dynamics subject to external disturbances (e.g. wind), (2) planning around
multiple humans in real time, and (3) avoiding conflicts with other robots’ plans. Exten-
sive prior work from control theory, motion planning, and cognitive science has led to the
development of computational tools for rigorous safety analysis, faster motion planners for
nonlinear systems, and predictive models of human agents. Individually, these problems
are di�cult—computing robust control policies, coupled robot plans, and joint predictions
of multiple human agents are all computationally demanding at best and intractable at
worst [126, 37, 108]. Recent work, however, has made progress in provably-safe real-time
motion planning [88, 122, 161, 107], real-time probabilistic prediction of a human agent’s
motion [72, 180], and robust sequential trajectory planning for multi-robot systems [18, 36].
It remains a challenge to synthesize these into a real-time planning system, primarily due
to the di�culty of joint planning and prediction for multiple robots and humans. There
has been some work combining subsets of this problem [101, 167, 16, 109, 113, 5], but the
full setting of real-time and robust multi-robot navigation around multiple humans remains
underexplored.

1We use a motion capture system for state estimation—robustness with respect to sensor uncertainty is
important but beyond the scope of this chapter.
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Figure 9.1: Hardware demonstration of real-time multi-agent planning while maintaining
safety with respect to internal dynamics, external disturbances, and humans. The quad-
copter’s trajectories are visualized, and the tracking error bound is shown as a box around
each quadcopter. The predictions of future human motion is shown in pink in front of each
human.

Our main contributions are tractable approaches to joint planning and prediction, while
still ensuring e�cient, probabilistically-safe motion planning. Concretely, we:

1. achieve online prediction for multiple humans by using simplified models of human
behavior that do not account for interaction e↵ects. When people do interact with each
other, our framework monitors confidence in the predictive model and automatically
increases prediction variance when our assumptions are wrong,

2. generate safe and real-time multi-robot trajectories by planning sequentially and using
a robust reachability-based controller with tracking guarantees, and

3. demonstrate our robust multi-human, multi-robot framework in hardware.

9.1 The Framework

Fig. 9.2 illustrates our overall framework. We introduce the components of the framework
by incrementally addressing the three main challenges identified above. We first present the
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Figure 9.2: Our framework begins with sensor measurements of the environment state that
is used to predict future human motion and construct an environment map. Our framework
provides each robot with a trajectory and a set of controls that are robust to disturbances,
other robots, and unmodeled human behavior.

robot planning and control module (Section 9.2), which is instantiated for each robot.
Each robot uses a robust controller (e.g. the reachability-based controller of [88]) to track
motion plans within a precomputed error margin that accounts for modeled dynamics and
external disturbances. In order to generate safe motion plans, each robot will ensure that
output trajectories are collision-checked with a set of obstacle maps, using the tracking error
margin.

These obstacle maps include an a priori known set of static obstacles, as well as predic-
tions of the future motion of any humans, which are generated by the human predictions
module (Section 9.3). By generating these predictions, each robot is able to remain proba-
bilistically safe with respect to the humans. To ensure tractability for multiple humans, we
generate predictions using simplified interaction models. We subsequently adapt the pre-
dictions following a real-time Bayesian approach based on [72]. We leverage the property
that individual predictions automatically become more uncertain whenever their accuracy
degrades, and use this to enable our tractable predictions to be robust to unmodeled inter-
action e↵ects.

Finally, to guarantee safety with respect to other robots, we carry out sequential trajec-
tory planning (Section 9.4) by adapting the cooperative multi-agent planning scheme [18]
to function in real time with the robust trajectories from the planning and control module.
The robots generate plans according to a pre-specified priority ordering. Each robot plans
to avoid the most recently generated trajectories from robots of higher priority, i.e. robot i
must generate a plan that is safe with respect to the planned trajectories from robots j, j < i.
This removes the computational complexity of planning in the joint state space of all robots
at once.
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9.2 Robot Planning and Control

To build a safe multi-robot navigation framework, each robot must be able to quickly generate
and communicate the time-varying set of states they may occupy as they navigate to their
goal. This tube must account for any possible deviation from planned trajectories that
may occur due to environmental disturbances such as wind. To generate these plans we
will first consider the canonical problem of planning through a static environment. E�cient
algorithms for purely kinematic planning such as A⇤ or rapidly-exploring random trees (RRT)
[84, 96] excel at this task.

We now introduce robot dynamics and allow the environment to have external distur-
bances such as wind. Kinematic planners such as A⇤ and RRT do not consider these factors
when creating plans. In practice, however, these planners are often used to generate an ini-
tial trajectory, which may then be smoothed and tracked using a feedback controller such as
a linear quadratic regulator (LQR). During execution, the mismatch between the planning
model and the physical system can result in tracking error, which may cause the robot to
deviate far enough from its plan to collide with an obstacle. To reduce the chance of collision,
one can augment the robot by a heuristic error bu↵er; this induces a “safety bubble” around
the robot used when collision checking. However, heuristically generating this bu↵er will not
guarantee safety.

Several recent approaches address e�cient planning while considering model dynamics
and maintaining robustness with respect to external disturbances. These methods include
robust motion primitives [122], model-predictive control [144] utilizes robust model-predictive
control, parameterized reachable sets [107], and contraction theory [160].

In this chapter, we use FaSTrack [88, 76], a modular framework that computes a tracking
error bound (TEB) via o✏ine reachability analysis. This TEB can be thought of as a
rigorous counterpart of the error-bu↵er concept introduced above. More concretely, the
TEB is the set of states capturing the maximum relative distance (i.e. maximum tracking
error) that may occur between the physical robot and the current state of the planned
trajectory. We compute the TEB by formulating the tracking task as a pursuit-evasion game
between the planning algorithm and the physical robot. We then solve this di↵erential game
using Hamilton-Jacobi reachability analysis. To ensure robustness, we assume (a) worst-case
behavior of the planning algorithm (i.e. being as di�cult as possible to track), and (b) that
the robot is experiencing worst-case, bounded external disturbances. The computation of the
TEB also provides a corresponding error-feedback controller for the robot to always remain
inside the TEB. Thus, FaSTrack wraps e�cient motion planners, and adds robustness to
modeled system dynamics and external disturbances through the precomputed TEB and
error-feedback controller. Fig. 9.4 shows a top-down view of a quadcopter using a kinematic
planner (A⇤) to navigate around static obstacles. By employing the error-feedback controller,
the quadcopter is guaranteed to remain within the TEB (shown in blue) as it traverses the
A⇤ path.
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FaSTrack Module

Assumptions: As stated above, we assume full state information and noiseless sensing
of obstacles. To use FaSTrack, one needs a high-fidelity dynamical model of the system
used for reference tracking, and a (potentially simpler) dynamic or kinematic model used by
the planning algorithm. Using the relative dynamics between the tracking model and the
planning model, the TEB and safety controller may be computed using any high-dimensional
Hamilton-Jacobi reachability analysis technique [38, 35, 88, 161, 150].

Implementation: Fig. 9.3 describes the online algorithm for FaSTrack after the o✏ine
precomputation of the TEB and safety controller. We initialize the planning module to
start within the TEB centered on the robot’s current state. The planner then uses any
desired planning algorithm (e.g. A⇤, or model predictive control) to find a trajectory from
this initial state to a desired goal state. When collision-checking, the planning algorithm
must ensure that the tube defined by the Minkowski sum of the TEB and the planned
trajectory does not overlap any obstacles in the obstacle map.

The planning module provides the current planned reference state to the FaSTrack
controller, which determines the relative state between the tracking model (robot) and
planned reference (motion plan). The controller then applies the corresponding safe tracking
control via a look-up table.

FaSTrack in the Framework

In the robot planning and control section of Fig. 9.2, each robot uses FaSTrack for
robust planning and control. FaSTrack guarantees that each robot remains within its TEB-
augmented trajectory.
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Figure 9.4: Top-down view of FaSTrack applied to a 6D quadcopter navigating a static
environment. Note the simple planned trajectory (changing color over time) and the tracking
error bound (TEB) around the quadcopter. This TEB is a 6D set that has been projected
down to the position dimensions. Because we assume the quadcopter moves independently
in (x, y, z), this projection looks like a box, making collision-checking very straightforward.

9.3 Human Predictions

Section 9.2 introduced methods for the fast and safe navigation of a single robot in an
environment with deterministic, moving obstacles. However, moving obstacles—especially
human beings—are not always best modeled as deterministic. For such “obstacles,” robots
can employ probabilistic predictive models to produce a distribution of states the human
may occupy in the future. The quality of these predictions and the methods used to plan
around them determine the overall safety of the system. Generating accurate real-time
predictions for multiple humans (and, more generally, uncertain agents) is an open problem.
A key challenge arises from the combinatorial explosion of interaction e↵ects as the number
of agents increases. Any simplifying assumptions, such as neglecting interaction e↵ects, will
inevitably cause predictions to become inaccurate. Such inaccuracies could threaten the
safety of plans that rely on these predictions.

Our goal is to compute real-time motion plans that are based on up-to-date predictions of
all humans in the environment, and at the same time maintain safety when these predictions
become inaccurate. The confidence-aware prediction approach of [72] provides a convenient
mechanism for adapting prediction uncertainty online to reflect the degree to which humans’
actions match an internal model. This automatic uncertainty adjustment allows us to sim-
plify or even neglect interaction e↵ects between humans, because uncertain predictions will
automatically result in more conservative plans when the observed behavior departs from
internal modeling assumptions.
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Human Prediction Module

Assumptions: In order to make any sort of collision-avoidance guarantees, we require a
prediction algorithm that produces distributions over future states, and rapidly adjusts those
predictions such that the actual trajectories followed by humans lie within the prediction
envelope. There are many approaches to probabilistic trajectory prediction in the literature,
e.g. [56, 85, 180, 114]. These methods could be used to produce a probabilistic prediction
of the i-th human’s state xi 2 Rni at future timesteps ⌧ > t, conditioned on the current
state at time t.2 However, these distributions may not always accurately predict the true
trajectories of each human, especially when the models do not explicitly account for interac-
tion e↵ects. Fisac et. al. [72] provide an e�cient mechanism for direct Bayesian updates to
P (x⌧

i
|x0:t) which automatically generates more conservative predictions when the human’s

motion deviates from the modeled structure.
Implementation: Fig. 9.5 illustrates the human prediction module. We use a

maximum-entropy model as in [72, 68, 179], in which the dynamics of the i-th human are af-
fected by actions ut

i
drawn from a Boltzmann probability distribution. This time-dependent

distribution over actions implies a distribution over future states. Given a sensed state xt

i

of human i at time t, we invert the dynamics model to infer the human’s action, ut

i
. Given

this action, we perform a Bayesian update on the distribution of two parameters: ✓i, which
describes the objective of the human (e.g. the set of candidate goal locations), and �i,
which governs the variance of the predicted action distributions. �i can be interpreted as
a natural indicator of model confidence, quantifying the model’s ability to capture humans’
current behavior [72]. Were we to model actions with a di↵erent distribution, e.g. a Gaus-
sian process, the corresponding parameters could be learned from prior data [179, 180, 68],
or inferred online [152, 72] using standard inverse optimal control (inverse reinforcement
learning) techniques.

Once distributional parameters are updated, we produce a prediction over the future
actions of human i through the following Boltzmann distribution:

P (ut

i
| xt; �i, ✓i) / e�iQi(xt

,u
t

i
;✓i) . (9.1)

This model treats each human as more likely to choose actions with high expected utility as
measured by the (state-action) Q-value associated to a certain reward function, ri(x, ui; ✓i).
In general, this value function may depend upon the joint state x and the human’s own
action ui, as well as the parameters ✓i, �i. Finally, combining (9.1) with a dynamics model,
these predicted actions may be used to generate a distribution over future states (see eq. (6)
in [72]). In practice, we represent this distribution as a discrete occupancy grid. One such
grid is visualized in Fig. 9.6.

By reasoning about each human’s model confidence as a hidden state [72], our framework
dynamically adapts predictions to the evolving accuracy of the models encoded in the set of
state-action functions, {Qi}. Uncertain predictions will force the planner to be more cautious
whenever the actions of the humans occur with low probability as measured by (9.1).

2For simplicity, we will assume complete state observability.
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Figure 9.5: Human Prediction Module

Figure 9.6: Our environment now has a human (red square). The robot models the human
as likely to move north. Visualized on top of the human is the distribution of future states
(pink is high, blue is low probability). Since the human is walking north and matching the
model, the robot’s predictions are confident that the human will continue northward and
remain collision-free.
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Figure 9.7: Birds-eye visualization of hardware demonstration from Fig. 9.1. (a) Two
humans (red and blue) start moving towards their respective goals (also red and blue).
Robot in lower right-hand corner has first priority, and robot in upper left-hand corner has
second. The time-varying predictions of each human’s future motion are visualized. (b)
Robots plan trajectories to their goals based on the predictions, priority order, and are
guaranteed to stay within the tracking error bound (shown in blue). (c) When the humans
begin to interact in an unmodeled way by moving around each other, the future predictions
become more uncertain. (d) The robots adjust their plans to be more conservative–note the
upper-left robot waiting as the blue human moves past. (c) When the humans pass each
other and the uncertainty decreases, the robots complete their trajectories.

Human Prediction in the Framework

The predicted future motion of the humans is generated as a probability mass function,
represented as a time-indexed set of occupancy grids. These distributions are interpreted
as an obstacle map by the FaSTrack module. During planning, a state is considered to be
unsafe if the total probability mass contained within the TEB centered at that state exceeds
a preset threshold, Pth. As in [72], we consider a trajectory to be unsafe if the maximum
marginal collision probability at any individual state along it exceeds Pth.

When there are multiple humans, their state at any future time ⌧ will generally be
characterized by a joint probability distribution P (x⌧1, ..., x

⌧

N
).

Let p⌧ be the planned state of a robot at time ⌧ . We write coll(p⌧ , x⌧
i
) to denote the

overlap of the TEB centered at p⌧ with the ith human at state x⌧
i
. Thus, we may formalize

the probability of collision with at least one human as:

P
�
coll(p⌧ , {x⌧

i
}
N

i=1)
�
= (9.2)

1�
NY

i=1

P
�
¬coll(p⌧ , x⌧

i
) | ¬coll(p⌧ , {x⌧

j
}
i�1
j=1)

�
.

Intuitively, (9.2) states that the probability that the robot is in collision at s⌧ is one minus
the probability that the robot is not in collision. We compute the second term by taking the
product over the probability that the robot is not in collision with each human, given that
the robot is not in collision with all previously accounted for humans. Unfortunately, it is
generally intractable to compute the terms in the product in (9.2). Fortunately, tractable
approximations can be computed by storing only the marginal predicted distribution of each
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human at every future time step ⌧ , and assuming independence between humans. This way,
each robot need only operate with N occupancy grids:

P
�
coll(p⌧ , {x⌧

i
}
N

i=1)
�
⇡ 1�

NY

i=1

�
1� P (coll(p⌧ , x⌧

i
))
�
. (9.3)

Here we take the product over the probability that the robot is not in collision with each
human, and then again take the complement to compute the probability of collision with any
human. Note that when the predictive model neglects future interactions between multiple
humans, (9.2) reduces to (9.3). If model confidence analysis [72] is used in conjunction
with such models, each marginal distribution will naturally become more uncertain when
interaction e↵ects are significant.

Once a collision probability is computed, the planner can reject plans for which, at any
time ⌧ > t, the probability of collision from (9.3) exceeds Pth for any future instant.

9.4 Planning for Multiple Robots

Thus far, we have shown how our framework allows a single robot to navigate in real-time
through an environment with multiple humans while maintaining safety (at a probability
of approximately Pth) and accounting for internal dynamics, external disturbances, and
humans. However, in many applications (such as autonomous driving), the environment
may also be occupied by other robots.

Finding the optimal set of trajectories for all robots in the environment would require
planning over the joint state space of all robots. This very quickly becomes computationally
intractable with increasing numbers of robots. Approaches for multi-robot trajectory plan-
ning often assume that the other vehicles operate with specific control strategies [173, 69,
33, 168] and involving virtual structures or potential fields to avoid collision [137, 45, 177].
These assumptions greatly reduce the dimensionality of the problem, but may not hold in
general. An alternative strategy is for each robot to predict the future motion of all other
robots, as in [178, 118, 2]. These techniques all require simple dynamics for each robot.

When robots can communicate with each other, methods for centralized and/or coop-
erative multi-agent planning allow for other scalable techniques [117, 166, 133]. One such
method is sequential trajectory planning (STP) [41], which coordinates robust multi-agent
planning using a sequential priority ordering. Priority ordering is commonly used in many
multi-agent scenarios, particularly for aerospace applications [105]. In this work, we merge
STP with FaSTrack to produce real-time planning for multi-agent systems.

Sequential Trajectory Planning

Assumptions: To apply STP, robots must be able to communicate trajectories and TEBs
quickly and reliably over a network. We also assume that each robot can re-check its plan
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for safety whenever the environment changes (e.g. humans move) or a higher-priority robot
replans.

Implementation: STP addresses the computational complexity of coupled motion
planning by assigning a priority order to the robots and allowing higher-priority robots
to ignore the planned trajectories of lower-priority robots. The first-priority robot uses the
FaSTrack module to plan a (time-dependent) trajectory through the environment while
avoiding the obstacle maps. This trajectory is shared across the network with all lower-
priority robots. The i-th robot augments the trajectories from robots 0 : i � 1 by their
respective TEBs, and treats them as time-varying obstacles. The i-th robot determines a
safe trajectory that avoids these time-varying tubes as well as the predicted state distribu-
tions of humans, and publishes this trajectory for robots i+1 : n. This process continues until
all robots have computed their trajectory. Each robot replans as quickly as it is able; in our
experiments, this was between 50–300 ms. Overall computational complexity is quadratic
in the number of robots, and linear for each individual robot. Note that the method of
assigning priority ordering is user-defined based on the objective (for example, ensuring that
all robots reach their goal in minimum time vs. allowing certain “emergency” robots higher
priority).

Sequential Trajectory Planning in the Framework

By combining this method with FaSTrack for fast individual planning, the sequential nature
of STP does not significantly a↵ect overall planning time. Note that STP does depend upon
reliable, low-latency communication between the robots. If there are communication delays,
techniques such as [51] may be used to augment each robot’s TEB by a term relating to time
delay.

9.5 Implementation and Experimental Results

We demonstrate our framework’s feasibility in hardware with two robots and two humans,
and its scalability in simulation with five robots and ten humans.

Hardware Demonstration

We implemented our framework in C++ and Python, using Robot Operating System (ROS)
[143]. As shown in Fig. 9.1, we used Crazyflie 2.0 quadcopters as our robots, and two human
volunteers. All computations for our hardware demonstration were done on a single laptop
computer (specs: 31.3 GB of memory, 216.4 GB disk, Intel Core i7 @ 2.70GHz x 8), due
to the limited onboard computational capability of the Crazyflie robots.3 The position and
orientation of robots and humans were measured at roughly 235 Hz by an OptiTrack infrared

3Despite running on a single computer, our implementation is fully decentralized within the ROS ecosys-
tem.
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motion capture system. The humans were instructed to move towards di↵erent places in the
lab, while the quadcopters planned collision-free trajectories in three dimensions (x, y, z)
using a time-varying implementation of A⇤. The quadcopters tracked these trajectories
using the precomputed FaSTrack controller designed for a 6D near-hover quadcopter model
tracking a 3D point [76]. Human motion was predicted 2 s into the future. Fig. 9.7 shows
several snapshots of this scene over time. Note that the humans must move around each
other to reach their goals—this is an unmodeled interaction a↵ect. The predictions become
less certain during this interaction, and the quadcopters plan more conservatively, giving the
humans a wider berth. The full video of the hardware demonstration can be viewed in our
accompanying video4.

Framework Simulation Analysis

Due to the relatively small size of our motion capture arena, we demonstrate scalability of
the framework through a large-scale simulation. As we increase human and robots in the
environment, a robot may not always find a safe plan in their allocated planning time. In this
case, we instruct the robot to find a safe location to hover with respect to the higher-priority
robots until a path toward their goal is achievable. In this simulation, pedestrians are crossing
through a 25⇥20m2 region of the UC Berkeley campus. We simulate the pedestrians’ motion
using potential fields [82], which “pull” each pedestrian toward his or her own goal and “push”
them away from other pedestrians and robots. These interaction e↵ects between humans
and robots are not incorporated into the state-action functions {Qi}, and lead to increased
model uncertainty (i.e., higher estimates of �i) during such interactions. The fleet of robots
must reach their respective goals while maintaining safety with respect to their internal
dynamics, humans, and each other. We ran our simulation on a desktop workstation with
an Intel i7 Processor and 12 CPUs operating at 3.3 GHz.5 Our simulation took 98 seconds
for all robots to reach their respective goals. Predictions over human motion took 0.15±0.06
seconds to compute for each human. This computation can be done in parallel. Each robot
took 0.23±0.16 seconds to determine a plan. There was no significant di↵erence in planning
time between robots of varying priority. Robots used A⇤ on a 2-dimensional grid with 1.5
m resolution, and collision checks were performed at 0.1 m along each trajectory segment.
The resolution for human predictions was 0.25 m and human motion was predicted 2 s into
the future.

9.6 Chapter Summary

In this chapter, we compose several techniques for robust and e�cient planning together in
a framework designed for fast multi-robot planning in environments with uncertain moving

4https://youtu.be/lJGRHNJ1 Wk
5The computation appears to be dominated by the prediction step, which we have not yet invested e↵ort

in optimizing.
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Figure 9.8: Simulation of 5 robots navigating among 10 humans. Simulated humans move
according to a potential field, resulting in unmodeled interaction e↵ects. However, our
framework enables each robot to reach its goal safely.

obstacles, such as humans. Each robot generates real-time motion plans while maintaining
safety with respect to external disturbances and modeled dynamics via the FaSTrack frame-
work. To maintain safety with respect to humans, the robots use human state information
to form probabilistic, adaptive predictions over their future trajectories. For e�ciency, we
model these humans’ motions as independent, and to maintain robustness, we adapt pre-
diction model confidence online. Finally, to remain safe with respect to other robots, we
introduce multi-robot cooperation through STP, which relieves the computational complex-
ity of planning in the joint state space of all robots by instead allowing robots to plan
sequentially according to a fixed priority ordering.

We demonstrate our framework in hardware with two quadcopters navigating around
two humans. We also present a larger simulation of five quadcopters and ten humans. To
further demonstrate our framework’s robustness, we are interested in exploring (a) non-grid
based methods of planning and prediction, (b) the incorporation of sensor uncertainty, (c)
optimization for timing and communication delays, and (d) recursive feasibility in planning.
We are also interested in testing more sophisticated predictive models for humans, and other
low-level motion planners.
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Part IV

Examples, Codebases, and
Conclusions
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Chapter 10

HJ Reachability Examples and
Codebases

10.1 HJ Reachability Computation Examples

Reach BRS

Recall the system from 2.1, with states x = [p, v]T . In our example we will set the target
set (i.e. goal) as L = {(p, v) : |p|  2, |v| < 1}. The target function l(x) will be a signed
distance function to the boundary of L. This set and target function can be seen in Fig. 2.3
in black.

We set the final time as T = 0, and set the terminal value function as V (x(T ), T ) = l(x).
We then update the value using the Hamilton-Jacobi-Bellman partial di↵erential equation:

0 = DtV + min
u2[�1,1]

DxV · f(x, u),

�DtV = min
u2[�1,1]

✓
@V

@p

dp

dt
+
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dv

dt

◆
,

�DtV = min
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u

◆
,
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u

◆
,

�DtV =
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@p
v �

����
@V

@v

���� .

(10.1)

Starting with V (x(T ), T ) = l(x), the partial gradients of the value function can be taken
with respect to each state variable. This can intuitively be seen by looking at the slopes of
l(x) in Fig. 2.3:

@V

@v
= 0, and
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@V

@p
= 1 when p > 0 and

@V

@p
= �1 when p < 0.

These gradients are plugged into the HJB PDE to update the value at each state backwards
in time (thus the negative in �DtV ) 1. The process repeats recursively until the initial time
has been reached. The corresponding BRSs and value functions are visualized in Fig. 2.5
with initial time t = �0.1s (for the finite-time case) or t = �1s (for the infinite-time case).

Once the value at every time instant has been computed, the optimal control for a
particular time instant can be determined by

u⇤(x, t) = arg inf
u2[�1,1]

DxV · f(x, u),

u⇤(x, t) = arg inf
u2[�1,1]
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u⇤(x, t) = �
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@V
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���� .

(10.2)

Note that in general the derivative @V

@v
must be with respect to the value function corre-

sponding to that particular time instant, i.e. @V

@v
(t).

Avoid BRS

Avoid BRS for 2D Cart
The process of solving for a reach BRS (with the same dynamics and target set) is almost

the same as an avoid BRS. Now the target set L is an obstacle, and the target function l(x)
can be considered a terminal reward function. We will use the same set and target function
as in Example 10.1, shown in Fig. 2.3.

We set the final time as T = 0, and set the terminal value function as V (x(T ), T ) = l(x).
We then update the value using the Hamilton-Jacobi-Bellman partial di↵erential equation:

0 = DtV + max
u2[�1,1]

DxV · f(x, u),

�DtV =
@V

@p
v +

����
@V

@v

���� .
(10.3)

Starting with V (x(T ), T ) = l(x), the partial gradients of the value function can be taken with
respect to each state variable. These gradients are plugged into the HJB PDE to update the
value at each state backwards in time. The process repeats recursively until the initial time
has been reached. The corresponding BRSs and value functions are visualized in Fig. 2.5

1Note that there is a discontinuity in the gradient @V

@p
at p = 0. Refer to the viscosity solution in

Section 2.2 for details.
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with initial time t = �0.1s (for the finite-time case) or t = �1s (for the infinite-time case).
Once the value at every time instant has been computed, the optimal control for a particular

time instant can be determined by

u⇤(x, t) = argmax
u2[�1,1]

DxV · f(x, u),

u⇤(x, t) =

����
@V

@v

���� .
(10.4)

Reach BRT

We will solve the same problem setup as in 10.1, but for a BRT. Plugging in the previously
computed information, our HJI VI becomes:

0 = min

⇢
l(x)� V (x, t), DtV � +

@V

@x1
x2� +

����
@V

@x2

���� �
�

(10.5)

Initialize to V (x, T ) = l(x) and note as before that at time T ,

@V

@v
= 0,

@V

@p
= 1 when p > 0 and

@V

@p
= �1 when p < 0.

Let’s focus on updating the value for the state x = [2,�2] (i.e. at a position of 2m and
velocity of -2m/s). At this state, V (x, T ) = l(x) = 0 because it is on the boundary of the
goal.
Begin by initializing the current value to V (x, t+ �). For example, here we set V (x, t+ �) =
V (x, T ). We will now solve for V (x, t)2.

We will start by assuming the left hand side of eq. (10.5) is active. Then,

0 = l(x)� V (x, t)

V (x, t) = l(x) = 0
(10.6)

Given this, we can solve for DtV :

V (x, t) +DtV � = V (x, t+ �),

0 +DtV � = 0.
(10.7)

2Alternatively you can leave the current value as V (x, t) and solve for V (x, t��). The point we’re solving
for the value function one step backwards in time



CHAPTER 10. HJ REACHABILITY EXAMPLES AND CODEBASES 192

Plugging V (x, t) and DtV into eq. 10.5:

0 = min
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l(x(t), t)� V (x, t), DtV � +
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� (10.8)

Plugging in our state x = [2,�2] and the corresponding gradients @V

@x1
= 1, @V

@x2
= 0,

0 = min {0� 0, 0 + (1)(�2)� + (0)�} 0 = min {0,�2�} = �2� (10.9)

Since � is positive, 0 6= �2�, so the left hand side must not be active.

Now assume that the right hand side of eq. 10.5 is active.
This will result in the HJI PDE. We can solve this using the steps in Example 10.1, resulting
in:

�DtV =
@V

@p
v +

����
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���� ,

�DtV = (1)(�2) + 0

DtV = 2

(10.10)

Given this, we can solve for V (x, t):

V (x, t) +DtV � = V (x, t+ �),

V (x, t) + 2� = 0,

V (x, t) = �2�.

(10.11)

Plugging V (x, t) and DtV into eq. 10.5:
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0 = min {0� (�2�), 2 + (1)(�2�) + (0)}

0 = min {2�, 0}

(10.12)

This is valid, so the LHS must be active, meaning that V (x, t) = �2�. Repeat for all states.
Once the value for all states for time t have been computed, move back one iteration in time.
The final reach BRT can be seen in Fig.2.5. The optimal control is acquired using the same
process as in the previous examples.
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Reach BRT (Modified)

Solving for Reach BRT using (2.67):

V (x, t) = min

⇢
l(x(t), t), V (x, t+ �) + inf

u(·)
DxV · f(x, u)�

�
(10.13)

Initialize to V (x, T ) = l(x) and note as before that at time T ,

@V

@v
= 0,

@V

@p
= 1 when p > 0 and

@V

@p
= �1 when p < 0.

Begin by initializing the current value to V (x(t + �), t + �). For example, here we set
V (x(t + �), t+ �) = V (x(T ), T ). Let’s focus on updating the value for the state x = [2,�2]
(i.e. at a position of 2m and velocity of -2m/s). At this state, V (x, T ) = l(x) = 0 because
it is on the boundary of the goal. We will fix this state and look at how the value changes
backwards in time, i.e. we have V (x(t+ �), t+ �) = V (x(t), t+ �) = V ([2,�2], t+ � = 0.
We will now solve for V (x, t)3.
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V (x(t), t) = min {0, 0 + (1)(�2)� + (0)�}

V (x(t), t) = min {0,�2�} = �2�

(10.14)

Repeat for all states. Once the value for all states for time t have been computed, move back
one iteration in time.The final reach BRT can be seen in Fig.2.5.

10.2 Computational Tools for HJ Reachability

This section is an overview of the computational tools used in this thesis that are publicly
available.

The Level Set Toolbox (toolboxLS)

The level set toolbox (or toolboxLS ) was developed by Professor Ian Mitchell [129] to
solve partial di↵erential equations using level set methods, and is the foundation of the
HJ reachability code. The toolbox is implemented in MATLAB and is equipped to solve

3Alternatively you can leave the current value as V (x, t) and solve for V (x, t��). The point we’re solving
for the value function one step backwards in time
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any final-value HJ PDE. Since di↵erent reachable set computations can be ultimately posed
as solving a final-value HJ PDE, the level set toolbox is fully equipped to compute var-
ious types of reachable sets. Information on how to install and use toolboxLS can be
found here: https://www.cs.ubc.ca/~mitchell/ToolboxLS/. This toolbox can be further
augmented by the Hamilton-Jacobi optimal control toolbox (or helperOC ). A quick-start
guide to using toolboxLS and helperOC is presented in the Appendix and is also available
at:http://www.github.com/HJReachability/helperOC.

The Berkeley E�cient API in C++ for Level Set methods
(BEACLS) Toolbox

The Berkeley E�cient API in C++ for Level Set methods (BEACLS ) Toolbox was developed
by Ken Tanabe. This toolbox implements the functions from helperOC and toolboxLS
in C++ for fast computation of reachability analyses. The library also uses GPUs for
parallelizing di↵erent computations in the level set toolbox. The installation instructions
and user guide can be found at: http://www.github.com/HJReachability/beacls. This
GPU library has been used for large-scale multi-vehicle reachability problems, such as safe
path planning.

FaSTrack: Fast and Safe Tracking

The FaSTrack framework implementation https://github.com/HJReachability/
fastrack is composed of a precomputation section in MATLAB (built by myself), and a
ROS online implementation in C++ (built largely by David Fridovich-Keil). This toolbox is
built primarily with implementation on quadrotors in mind, and is paired with the crazyflie
quadrotor flight toolbox https://github.com/HJReachability/crazyflie_clean, also
built by David Fridovich-Keil.
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Chapter 11

Summary and Conclusions

Below is a summary of the work in my dissertation, along with thoughts on where this work
can and should continue in the future.

11.1 Making Theoretical Safety Analysis Practical:
Scalable Safety Analysis for Learning and
Adaptation

Theoretical guarantees of safety are a crucial starting point to achieve trustworthy real-world
autonomy by formally verifying the safety of autonomous systems based on known informa-
tion. However, this analysis is computationally expensive, and has been di�cult to update
in the face of changing environments and new information. Because of this “curse of dimen-
sionality,” tools like Hamilton-Jacobi analysis for guaranteeing safety cannot handle realistic
complex models of autonomous systems, and cannot update analyses based on changing
knowledge of the system and environment. For example, finding the optimal guaranteed safe
trajectory for a 10D nonlinear quadcopter model to simply travel through a room with static
obstacles has been completely intractable with current desktop computers.

Contributions

I have developed scalable techniques for theoretically sound safety guarantees that can reduce
computation by orders of magnitude for high-dimensional systems (Part I). This allows us
to use more realistic high-dimensional models of autonomous systems, resulting in better
safety analysis. I have also developed techniques for e�ciently updating analyses in the face
of new information and changing assumptions on the system and the environment.
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Future Vision

I plan to create an interdisciplinary e↵ort to incorporate expertise in control theory, rein-
forcement learning, and formal methods to blend scalable tools performance-based control
policies with theoretical safety analysis. Methods like Hamilton-Jacobi safety analysis verify
all possible trajectories of a system to guarantee safety, but su↵ers from the curse of dimen-
sionality. At the other extreme, techniques for e�cient trajectory optimization and policy
generation can produce aggressive maneuvers for complex autonomous systems in real time.
To achieve scalability these methods typically reason only about expected outcomes and
therefore lack an understanding of safety. I will work to explore and blend these techniques
to make performance-based methods robust. For example, we can use the control policy
generated by these high-dimensional techniques to seed safety analyses and inform crucial
regions of the system’s state space to formally verify. We can likewise use an initial safety
analysis on a simple low-dimensional model of the system to guide the process of tuning the
performance control policy.

11.2 Thinking Like Humans: Cognitive Science for
Real-Time Decision-Making in Autonomous
Systems

While scalability for theoretical guarantees is an important step towards safe real-world
autonomy, these analyses depend on pre-defined assumptions about the system model and
environment that may be wrong in practice. Therefore, we must equip autonomous sys-
tems with the ability to build upon theoretical safety guarantees by reasoning about un-
certainty in the real world. This is where humans excel compared to current systems. We
can reason e�ciently in unstructured environments with limited computational resources.
The field of cognitive science has produced models and frameworks of human learning and
decision-making that can inform theory and algorithms for autonomous systems. Thrusts
like DARPA’s Common Sense initiative are pushing researchers to transfer this knowledge
to AI systems for better performance, human interaction, and human augmentation.

Contributions

In my PhD work I have blended models of human decision-making from cognitive science with
control theory and reinforcement learning to develop algorithms that mimic innate human
abilities (Parts II,III). These techniques allow systems to navigate safely and e�ciently, and
reason over the uncertainty inherent to predicting humans and other agents. For example,
the 10-dimensional nonlinear quadcopter can now use these algorithms combined with my
scalability work to navigate in real-time through an a priori unknown environment while
maintaining safety with respect to model mismatch, disturbances, human pedestrians, and
other quadcopters.
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Future Vision

I plan to adapt cognitive science for autonomous systems to (a) design algorithms that mimic
advantageous human skills, (b) better understand and predict humans, and (c) design sys-
tems that complement human decision-making. Cognitive Science has followed a similar path
to AI research over the past decades, from complete and computationally di�cult “rational”
models of humans, to fast heuristic models, to a blending of the two by exploring ratio-
nal models with bounded computation. I will explore translating this work to autonomous
systems.

11.3 Safety Throughout and Beyond Robotics

My work has the potential to impact robotic applications ranging from transportation, as-
sisted living, healthcare, and industrial applications. In many of these applications, safety
can be defined as preventing the intersection of the autonomous system and any unsafe ob-
stacles. However, some applications have more nuanced notions of safety: for example, what
is safe and unsafe for a surgical robot? When is bumping against a human tolerable (such
as with a Roomba) or safety-critical (such as on a highway)? In my lab we will explore how
to define and analyze safety throughout robotics. In addition to robotics and control, my
work can be directly applied to other high-dimensional safety-critical systems in fields like
biology, finance, and geology. My work also has implications for broader aspects of artificial
intelligence, where safety is often critical but hard to define and maintain. By merging the-
ory from safety analysis, formal methods, and reinforcement learning, I aim to apply these
analyses beyond robotics applications.

11.4 Final Thoughts

In conclusion, autonomous systems are becoming increasingly complex, and are being de-
ployed in unstructured real-world environments. Because of this, e↵ective safety analysis
for these systems is both more crucial and more challenging than ever before. I plan to
lead an interdisciplinary research agenda directed at blending expertise from control theory,
artificial intelligence, and cognitive science to tackle the challenge of safety for real-world
autonomy. My lab will focus on creating scalable and adaptable tools to construct theoreti-
cal and practical safety guarantees that are backed by rigorous hardware and human-subject
experiments.
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