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Abstract: Reinforcement learning is focused on the problem of learning a near-
optimal policy for a given task. But can we use reinforcement learning to instead
learn general-purpose policies that can perform a wide range of different tasks, re-
sulting in flexible and reusable skills? Contextual policies provide this capability
in principle, but the representation of the context determines the degree of gener-
alization and expressivity. Categorical contexts preclude generalization to entirely
new tasks. Goal-conditioned policies may enable some generalization, but cannot
capture all tasks that might be desired. In this paper, we propose goal distributions
as a general and broadly applicable task representation suitable for contextual poli-
cies. Goal distributions are general in the sense that they can represent any state-
based reward function when equipped with an appropriate distribution class, while
the particular choice of distribution class allows us to trade off expressivity and
learnability. We develop an off-policy algorithm called distribution-conditioned
reinforcement learning (DisCo RL) to efficiently learn these policies. We evaluate
DisCo RL on a variety of robot manipulation tasks and find that it significantly
outperforms prior methods on tasks that require generalization to new goal distri-
butions.

Keywords: reinforcement learning, multi-task learning

1 Introduction

Versatile, general-purpose robotic systems will require not only broad repertoires of behavioral
skills, but also the faculties to quickly acquire new behaviors as demanded by their current situation
and the needs of their users. Reinforcement learning in principle enables autonomous acquisition of
such skills. However, each skill must be learned individually at considerable cost in time and effort.
In this paper, we instead explore how general-purpose robotic policies can be acquired by condi-
tioning policies on task representations. This question has previously been investigated by learning
goal-conditioned or universal policies, which take in not only the current state, but also some repre-
sentation of a goal state. However, such a task representation cannot capture many of the behaviors
we might actually want a versatile robotic system to perform, since it can only represent behaviors
that involve reaching individual states. For example, for a robot packing items into a box, the task is
defined by the position of the items relative to the box, rather than their absolute locations in space,
and therefore does not correspond to a single state configuration. How can we parameterize a more
general class of behaviors, so as to make it possible to acquire truly general-purpose policies that, if
conditioned appropriately, could perform any desired task?

To make it possible to learn general-purpose policies that can perform any task, we instead consider
conditioning a policy on a full distribution over goal states. Rather than reaching a specific state, a
policy must learn to reach states that have high likelihood under the provided distribution, which may
specify various covariance relationships (e.g., as shown in Figure 1, that the position of the items
should covary with the position of the box). In fact, we show that, because optimal policies are
invariant to additive factors in reward functions, arbitrary goal distributions can represent any state-
dependent reward function, and therefore any task. Choosing a specific distribution class provides
a natural mechanism to control the expressivity of the policy. We may choose a small distribution
class to narrow the range of tasks and make learning easier, or we may choose a large distribution
class to expand the expressiveness of the policy.

*Please refer to Section 8 for acknowledgement of collaborators and their contributions
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Figure 1: The distribution parameters w can be inferred from data and then passed to a DisCo policy.
Distribution-conditioned RL can express a broad range of tasks, from defining relationships between differ-
ent state components (top) to simply ignoring a dimension (bottom).
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We show that distribution-conditioned policies can be trained efficiently by sharing data from a vari-
ety of tasks and relabeling the goal distribution parameters based on the posterior likelihood of other
goal distributions. In this way, the same data can be utilized to train a policy for a wide range of
different distributions, each corresponding to a different reward. Lastly, while the distribution pa-
rameters can be provided manually to specify tasks, we also present a way to infer these distribution
parameter directly from data.

The main contribution of this paper is DisCo RL, an algorithm for learning distribution-conditioned
policies. To learn efficiently, DisCo RL uses off-policy training and a novel distribution relabeling
scheme. We evaluate on robot manipulation tasks in which a single policy must solve multiple tasks
that cannot be expressed as reaching different goal states. We find that conditioning the policies on
goal distributions results in significantly faster learning than solving each task individually, enabling
policies to acquire a broader range of tasks than goal-conditioned methods.

2 Related Work

In goal-conditioned RL, a policy is given a goal state, and must take actions to reach that
state [1, 2, 3,4, 5, 6,7, 8,9, 10]. However, as discussed previously, many tasks cannot be spec-
ified with a single goal state. To address this, many goal-conditioned methods manually design a
goal space that explicitly excludes some state variables [11, 12, 13, 14, 15, 16], for example by
only specifying the desired location of an object. This requires manual effort and user insight, and
does not generalize to environments with high-dimensional state representations, such as images,
where manually specifying a goal space is very difficult. With images, a number of methods learn
latent representations for specifying goal states [17, 7, 9, 18, 19], which makes image-based goals
more tractable, but does not address the representation issues discussed above. Our work on goal
distributions can be seen as a generalization of goal state reaching. Reaching a single goal state g is
equivalent to maximizing the likelihood of a delta-distribution centered at g, and ignoring some state
dimensions is equivalent to maximizing the likelihood of a distribution that places uniform likeli-
hood across the respective ignored state variables. But more generally, goal distributions capture the
set of all reward functions, enabling policies to be conditioned on arbitrary tasks.

A number of prior methods learn rewards [20, 21] or policies [22, 23, 24, 25] using expert trajectories
or observations. In this work, we also demonstrate that we can use observations to learn reward
functions, but we have different objectives and assumptions as compared to prior work. Many of
these prior methods require state sequences from expert demonstrations [22, 23, 24, 25], whereas
our work only requires observations of successful outcomes to fit the goal distribution. Fu et al. [21]
also only uses observations of successful outcomes to construct a reward function, but focuses on
solving single tasks or goal-reaching tasks, whereas we study the more general setting where the
policy is conditioned on a goal distribution.



Parametric representations of rewards have also been in the context of successor features [26, 27,
28, 29], which parameterize reward functions as linear combinations of known features. We present
a general framework in which arbitrary rewards can be represented as goal distributions rather than
feature weights, and also demonstrate that these goal distributions can be learned from data.

Prior work on state marginal matching [30] attempts to make a policy’s stationary distribution match
a target distribution to explore an environment. In our work, rather than matching a target distribu-
tion, we use the log-likelihood of a goal distributions to define a reward function, which we then
maximize with standard reinforcement learning.

3 Background

Reinforcement learning (RL) frames reward maximization in a Markov decision process (MDP),
defined by the tuple M = (S, A, r,p, po,y) [31], where S denotes the state space and .A denotes
the action space. In each episode, the agent’s initial state sy € S is sampled from an initial state
distribution sg ~ po(sg), the agent chooses an action a € A according to a stochastic policy
a; ~ 7(+|st), and the next state is generated from the state transition dynamics s¢11 ~ p(- | S¢, a).
We will use 7 to denote a trajectory sequence (sg, ag, S1, . . . ) and denote sampling as 7 ~ 7 since
we assume a fixed initial state and dynamics distribution. The objective of an agent is to maximize
the sum of discounted rewards, E- [> oo, v'7(s¢, ar)].

Off-policy, temporal-difference algorithms. Our method can be used with any off-policy
temporal-difference (TD) learning algorithm. TD-learning algorithms only need (s, as, 7+, St+1)
tuples to train a policy, where a, is an action taken from state s;, and where r, and s, are the re-
sulting reward and next state, respectively, sampled from the environment. Importantly, these tuples
can be collected by any policy, making it an off-policy algorithm. These tuples are typically sampled
from a replay buffer R, which consists of tuples generated by all previous environment interactions.

Contextual MDPs. A contextual MDP augments an MDP with a context space C and context
distribution p.. At the start of each episode, a context is sampled from the context distribution
c ~ D¢, and both the reward and the policy are conditioned on this context for the entire episode:
r(st,ay,c) and 7(a; | s¢,c)?. We note that contextual MDPs can always be reduced to a standard
MDP, by creating an augmented state space that includes both the original state and context, given
by &' = § x C. However, the concept of a contextual MDP is useful because it allows us to easily
model a policy that must accomplish different tasks at each episode. For example, when the context
is a goal that an agent must reach, we recover goal-conditioned reinforcement learning [1, 2]. When
the context is a weight vector w that specifies a linear combination of cumulants for the reward, as
in 7(s) = wl ¢(s), we recover successor features [27].

The design of the context space and contextual reward function determines the behaviors that these
policies can learn. For example, goal-conditioned policies are only trained to reach individual goal
states. If we want to train general-purpose policies that can perform arbitrary tasks, is it possible
to design a contextual MDP that captures the set of all rewards functions? In theory, the context ¢
could be a reward function and the context space C could be the set of all reward functions. But in
practice, it is unclear how to condition policies on reward functions, since most learning algorithms
are not well suited to take functions as inputs. In the next section, we present a promising context
space: the space of goal distributions.

4 Distribution-Conditioned Reinforcement Learning

In this section, we show how conditioning policies on a goal distribution results in a contextual MDP
that can capture any set of reward functions. Each distribution represents a different reward function,
and so choosing a distribution class provides a natural mechanism to choose the expressivity of the
contextual policy. We then present distribution-conditioned reinforcement learning (DisCo RL), an
off-policy algorithm for training policies conditioned on parametric representation of distributions,
and discuss the specific representation that we use.

2Some work assumes the dynamics p depend on the context [32]. We assume that the dynamics are the
same across all contexts, though our method could also be used with context-dependent dynamics.



4.1 Generality of Goal Distributions

We assume that the goal distribution is in a parametric family, with parameter space €2, and consider a
contextual MDP in which the context space is {2. At the beginning of each episode, a parameter w €
Q is sampled from some parameter distribution p,,. The parameter w defines the goal distribution
py(s;w) : S — Ry over the state space. The policy is conditioned on this parameter, and is given
by 7(- | s,w). The objective of a distribution-conditioned (DisCo) policy is to reach states that have
high log-likelihood under the goal distribution, which can be expressed as

mEXETN‘/r(~|s,w) [th logpg(st;w)] . (D
t

This formulation generalizes goal-conditioned RL. We can recover the standard goal-conditioned
formulation, in which an agent must reach a single goal s, by parameterizing the goal distributions
by this state, py(s;sy). If py(s;sy) is the Dirac-delta distribution centered around s,, we recover
goal-conditioned RL with a sparse indicator reward. If py(s;s,) is the Gaussian distribution, we
recover goal-conditioned RL with a squared distance reward to the goal. However, we can also
express much more complex distributions and tasks, as we illustrate in Figure 1. More formally:

Remark 1 Any standard reward maximization problem can be equivalently written as maximizing
the log-likelihood under a goal distribution (Equation 1), up to a constant factor.

This statement is true because for any reward function of the form r(s), we can define a distribution
py(s) o e"®), from which we can conclude that maximizing log p, (s) is equivalent to maximizing
r(s), up to the constant normalizing factor in the denominator. If the reward function depends on
the action, 7 (s, a), we can modify the MDP and append the previous action to the state s = [s, a],
reducing it to another MDP with a reward function of the form ().

Of course, while any reward can be expressed as the log-likelihood of a goal distribution, a specific
fixed parameterization p,(s;w) may not by itself be able to express any reward. In other words,
choosing the goal distribution parameterization is equivalent to choosing the set of reward functions
that the conditional policy can maximize. As we discuss in Section 4.3, we can trade off expressivity
and ease of learning by choosing an appropriate goal distribution family.

4.2 Learning Distribution-Conditioned Policies

In this section, we discuss how DisCo RL optimizes Equation 1 using an off-policy TD algorithm.
As discussed in Section 3, TD algorithms require tuples of state, action, next state, and reward,
denoted by (st,as,7t,8¢41). Off-policy TD algorithms can sample these tuples from a replay
buffer [33] of data collected by a policy as its learns. In our case, at the beginning of each episode, a
policy is conditioned on a goal distribution parameter w, collects a trajectory 7 = [sg, ay, - - - |, and
stores it in the replay buffer, denoted as R. We could simply store the parameter w that was used to
collect the trajectory in the replay buffer R, but, as we discuss below, we can greatly improve the
sample-efficiency of our method by dynamically relabeling this parameter.

Because TD algorithms are off-policy, we propose to reuse data collected by a policy conditioned
on one goal distribution w to learn about how a policy should behave under another goal distribution
w'. In particular, given a state s sampled from a policy that was conditioned on some goal distribu-
tion parameters w, we occasionally relabel the goal distribution with an alternative goal distribution
w’ = RS(s,w) for training, where RS is some relabeling strategy. This relabeling is similar to rela-
beling methods used in goal-conditioned reinforcement learning [1, 11, 13, 5, 6, 15, 7], but applied
to goal distributions rather than individual goal states. In the next section, we discuss the specific
relabeling strategy R.S that we use, which depends on the method for generating goal distributions.

We present a summary of the algorithm in 1. In our experiments, we use soft actor-critic as our RL
algorithm [34], though in theory a number of other off-policy algorithms could be used.

4.3 Goal Distribution Parameterization

The choice of goal distribution parameterization is important, as it balances the expressivity of DisCo
RL with how easy it is to train the DisCo policy. In our experiments, we evaluate DisCo RL using the



Algorithm 1 Distribution-Conditioned Reinforcement Learning

Require: Policy my, Q-function (04, TD algorithm A, relabeling strategy RS, exploration parame-
ter distribution p,,, replay buffer R.

1: for 0, ..., Nepisode — 1 episodes do

2:  Sample initial state sg ~ po and distribution parameters w ~ p,,(-).

3:  Sample trajectory from environment 7 ~ 7(+|s;w).

4:  Store trajectory with distribution parameter (7, w) in replay buffer R.

5 for 0, ..., Nypdaes — 1 steps do

6: Sample trajectory and parameter (7, w) ~ R.

7: Sample transition tuple (s, a;, s;+1) and a future state s;, from 7, where ¢ < h.

8 With probability prerabel, relabel the goal distribution parameters w <— RS(sp,,w).

9 Compute reward r = log p,(s;; w) and augment states §; <— [S;; w], Si41 — [Se1;w].

0 Update ()4 and 7y using A and data (8;; as, S¢41,7).

family of multivariate Gaussian distributions. Given a state space in R"”, the distribution parameters
consists of two components, w = (u, ), where p € R™ is the mean vector and ¥ € R™*" is the
covariance matrix. With these parameters, the reward from Equation 1 is given by

r(s;w) = —0.5(s — ) T2 (s — p), 2)

where we have dropped constant terms that do not depend on the state s. This simple parame-
terization can express a large number of reward functions. As discussed earlier, with an identity
covariance matrix, setting the mean to a specific value corresponds to goal-conditioned RL with a
squared-distance reward. However, it also captures a broader set of tasks. As visualized in Figure 1,
using this parameterization, the weight of individual state dimensions depend on the values along the
diagonal of the covariance matrix. By using off-diagonal covariance values, this parameterization
also captures the set of tasks in which state components need to covary, such as when the one object
must be placed near another one, regardless of the exact location of those objects. In practice, we
found that dropping the constant term and using the square-root before the —0.5 factor performed
slightly better, and so we used this reward.

5 Constructing Goal Distributions

The previous section presented an algorithm for learning DisCo RL policies, assuming that a goal
distribution is provided. In this section, we discuss two applications of DisCo RL, describing how
we obtain goal distributions in each case.

Inferring goal distributions. While a user can manually select the goal distribution parameters
w, this requires a degree of user insight. A more intuitive way to specify the goal distribution is
to provide K example observations {sk}le in which the task is successfully completed. This
supervision can be easier to provide than full demonstrations, which not only specify the task but
also must show how to solve the task through a sequence of states (s1, So, ... ) or state and actions
(s1,a1,82,...). Given this set of examples, we learn a goal distribution via maximum likelihood
estimation (MLE), such that

K
w* = arg max Z log py(sk;w),
weN —1 )
and condition the DisCo RL policy on the resulting parameters w*. In other words, we choose the
Dirac-delta distribution p,, (w) = §(w = w*).

For relabeling, given a state s and existing parameters w = (u, ), we would like to provide a
strong learning signal by creating a distribution parameter that gives high reward to an achieved
state. While a number of distribution relabeling schemes could be used, we found that the simple
strategy of keeping the covariance matrix Y and replacing the mean with the state vector s, as in
RS(s, u, X) = (s, X), performed well.

Conditional distributions for multi-stage tasks. While DisCo RL is a more general framework
than goal-conditioned RL, it can also be used to facilitate learning goal-directed behavior, in partic-
ular when tasks can be decomposed into multiple stages. For example, as we visualize in Figure 2



1

.
L]

Sy * —> p(sls})

red block x-position

sfc ‘ » = I 1 P(5|3?)

red block x-position

)

Figure 2: (Left) A robot must arrange objects into a configuration, sy, that varies between episodes. This task
contains sub-tasks, such as first moving the red object to the correct location. Given a final state sz, there exists
a distribution of intermediate states s in which this first sub-task is completed. We use pairs of states (s, ss) to
learn a conditional distribution p(s | s¢), which (right) defines the first sub-task given the final state, sy.

a robot that must arrange a dinner table may have a final desired goal state sy, that specifies the
location of every piece of silverware, but this task can be decomposed into several sub-tasks, such
as placing one plate in a desired location, each of which can be expressed as a DisCo RL problem.
This decomposition can make learning significantly easier, compared to training a single policy to
directly reach sy. In this situation, we need a way to generate a goal distribution for each sub-task,
conditioned on a final state sy.

Formally, we construct amap h : S — €2 that maps a final state s ¢ to a goal distribution parameter w
that represents a sub-task for reaching s . This map allows us to dynamically generate distributions
over the state space conditioning on sy, by mapping a state sy into a distribution parameter w =
h(sy). To obtain the map h, we learn a conditional distribution pg)g +» Which maps an observation of
the random variable sy into a probability distribution over the state space. To obtain this conditional

distribution, we assume that data is given in the form of pairs of states Dyyprak = { (s, sgck))} KL

in which s(*) correspond to a state where a sub-task is accomplished when trying to reach the final
state sy. We fit a joint Gaussian distribution, denoted by ps s, (s, sy), to these pairs of states, and
then compute the conditional distribution in closed form. For details on this process, see Section E.2.

6 Experiments

Our experiments study the following questions: (1) How does DisCo RL with a learned distribution
compare to using manually-designed rewards and prior work that also uses successful states for
computing rewards? (2) How does DisCo RL compare to prior methods at training policies to solve
multiple tasks? (3) Can we apply DisCo RL to solve long-horizon tasks that are decomposed into
shorter sub-tasks? (4) How do DisCo policies perform when conditioned on goal distributions that
were never used for data-collection? We also include ablations for each set of experiments that study
the importance of the relabeling strategy presented in Section 4.2.

We study these questions in three simulated manipulation environments, shown in Figure 3. The first
environment contains a Sawyer robot, a rectangular tray, and four blocks, which the robot must learn
to manipulate. The agent controls the velocity of a Sawyer arm and gripper, and the arm is restricted
to move in a 2D plane perpendicular to the table’s surface. We also use an IKEA furniture assembly
environment from Lee et al. [35]. An IKEA agent controls the velocity of a cursor that can lift and
place shelves onto a pole. Shelves are picked up and connected automatically when they are within a
certain distance of the cursor or pole. Lastly, we use a two-dimensional “Flat World” environment in
which an agent can pick up and place objects at various locations. The states comprise the Cartesian
position of all relevant objects and, for the Sawyer task, the gripper state. All plots show mean and
standard deviation across 5 seeds, as well as maximum performance with a gray, dashed line.

Baseline and comparisons. To demonstrate the difficulty of the tasks, we compare to goal-
conditioned RL (GCRL). Many of the tasks are not well suited for GCRL, meaning that the optimal
solution to these tasks is not equivalent to reaching a single state. In order to compare to goal con-
ditioned RL we perform oracle goal setting, where the features of the state that are irrelevant for
the task are set to their initial state sy. Note that this oracle method receives additional information
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Figure 3: Illustrations of the domains we use for evaluation, in which a policy must (left) control a Sawyer
arm to move cubes into and out of a tray (center) attach shelves to a pole using a cursor, and (right) use the
blue robot to move objects to different locations. Our tasks requires that the policy ignores objects or move the
object based on relative distances, such as moving an object into the tray regardless of the tray’s location.

that is not available for our method. For details on the goal-conditioned RL baseline algorithm see
Appendix E. We also compare our method to variational inverse control with events (VICE) [21],
which trains a success classifier on user-provided positive examples, and then uses this classifier as
a reward. This comparison is relevant because our method also fits the goal distribution to positive
examples. However, while VICE learns one task at a time, our method learns a policy that is con-
ditioned on the goal distribution, and therefore can perform many tasks. Further details about the
environments and tasks are in Appendix C.

Distribution inference. Our first set of experiments LT e
study the first question by comparing the perfor- 05- - SR

mance of DisCo RL with a learned goal distribution —— DisCo RL + hard-coded w
to using a manually specified goal distribution and e

existing approaches for solving reinforcement learn-

Success Rate
o
IS

ing problems. To compare to standard reinforcement 02
learning methods, we consider the single task set- 0.0-
ting, where there is only one reward (or one distribu- 0 25 500 750 1000 1250 1500 1750 2000

tion) on which the policy is evaluated. The task is to Num Env steps Total (x1000)

control the Sawyer arm and move the red object into  Figure 4: Learning curve on the single-object
the bowl while ignoring the remaining three “distrac-  moving task. DisCo RL with a learned goal distri-
tor” objects. We generated ' = 30 examples of suc-  bution performs just as well as using a manually
cessful states, by repeatedly randomly sampling the specified goal distribution or reward function.

location of the tray, placing the red object inside the tray, and then randomly sampling the loca-
tion of the three distracting objects. When inferring the goal distribution from data, we regularize
the covariance to avoid degeneracy, as discussed in Appendix E. Note that this task cannot be ex-
pressed as a single goal state s, since the location of the distractors are unimportant. In addition to
VICE and GCRL, we compare to DisCo RL using a manually specified parameterization of the goal
distribution, as well as soft actor critic [34], which uses the same reward as the manually selected
goal distribution, but does not condition a policy on w. We see in Figure 4 that DisCo RL matches
the performance of using a manually specified reward function and outperforms previous methods,
indicating that learning a goal distribution can be used to solve single-task problems effectively.

Multi-task performance. To evaluate how well a single DisCo policy solves multiple tasks speci-
fied by different distributions, we consider a task in the Sawyer environment in which the location
of the tray is fixed, and the agent must move one randomly chosen object of the four to a target
location. To generate goal distributions, we use the conditional distribution formulation presented
in Section 5. We construct four different example sets Dsiubtask’ for: = 1,2, 3,4. Each set ¢ contains
pairs of state (s, ss), in which object i is in the same location as in the final desired state s¢. See
Figure 2 for an illustration. During training, we sample an initial state sy and final goal state sy
uniformly from the set of possible states, and condition the policy on p;(s | sy).

For evaluation, we test how well DisCo RL can solving long-horizon tasks by conditioning the policy
on each p;(s | sy) for H/4 time steps. We report the cumulative number of tasks that were solved,
where each task is considered solved when the respective object is within a minimum distance of
its target location specified by sy. We design an analogous task in the IKEA environment (where
moving each shelf corresponds to its own task) and Flat World (moving each object corresponds
to its own task). We compare to VICE which runs a separately trained policy for each sub-task in
sequence, and GCRL, which is directly conditioned on sy.

We see in Figure 5 that DisCo RL significantly outperforms VICE and the goal-conditioned baseline
and successfully generalizes to new goal distributions at test time. While we were initially surprised
by the poor performance of GCRL, we found that the goal-conditioned policy learned to only focus
on moving the end effector, as we show in Appendix B. We note that this is a relatively common
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Figure 5: Learning curves for Sawyer (left), IKEA (middle) and Flat World (right) showing the number of
cumulative tasks completed across all three domains. We see that DisCo RL significantly out-performs GCRL
and VICE. We show in Appendix B that GCRL mainly fails because it only focuses on reaching the target end
effector or cursor location.

failure mode of GCRL, which is why many existing GCRL methods manually design a goal space
that excludes certain state variables [2, 11, 12, 15, 14].
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ting requires that the policy uses its experience when moving individual objects to learn how to
move pairs of objects, despite never attempting to move a pair of objects at the same time during
exploration. We compare to an on-policy variant, in which we collect data using all ten distributions,
and see in Figure 6 that off-policy learning performs comparably to on-policy learning.
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Figure 6: Learning curve when evaluated on off-

Ablations. We include ablations that test the importance of relabeling the mean and covariance
parameters during training. We see in Figure 5 that relabeling both helps DisCo policies perform
better (results on IKEA not available due to computational constraints).

7 Discussion

We presented DisCo RL, a method for learning general-purpose policies specified using a goal
distribution. Our experiments show that DisCo policies can solve a variety of tasks using goal dis-
tributions inferred from data, and can accomplish tasks specified by goal distributions that were
not seen during training. In this work, we studied Gaussian parameterizations of goal distributions,
and an exciting direction for future work would be to use more complex distributions to capture a
broader range of reward functions. Fortunately, learning to compactly represent complex distribu-
tions is an active area of research in machine learning, which could make for a natural goal distri-
bution parameterization. One promising approach would be to learn latent representations of states
where Gaussian distributions correspond to complex distributions in the state space, as done with
deep latent variables models [36, 37]. Additionally, since distribution-conditioned RL generalizes
goal-conditioned RL, an exciting direction for future work would be to apply it in various settings
where goal-conditioned RL has been used previously. For example, work on goal-directed explo-
ration [38, 39, 40, 9] could naturally be extended to exploration in goal-distribution space, which
can enable an agent to more flexibly explore an environment based on its current state. Similarly,
work on hierarchical goal-conditioned methods [41, 42, 12, 6, 5] could be extended to allow more
abstract notions of sub-tasks that are specified by a high-level controller.
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A Generalization to Real-World Robots

While our experiments were only conducted in simulated environments, we expect DisCo RL to
generalize to real-world robots. We note that both goal-conditioned RL [7] and VICE [43] have been
applied to real-world robot domains, and that Figure 5 demonstrates that DisCo RL can significantly
outperform these methods in multi-task settings where tasks are not specified by single goals. We
note that these findings are consistent across all three simulated domains, suggesting that these
results are general properties of the methods and may apply to other domains, including real-world
robotics. We also note that the PyBullet simulator [44] has been successfully applied for sim-to-real
transfer [45, 46], suggesting that strong performance in the simulator can generalize to real-world
robots.

Lastly, in our experiments DisCo RL used 30 to 50 examples to learn goal distributions that spec-
ify different robot tasks. Specifying such few number of example successful states is particularly
practical for real-world domains, where specifying tasks often requires manually specifying reward
functions or adding task-specific instrumentation and sensors.

B Additional Results

The objective of the tasks in Section 6 was to move objects to certain positions, and we found that
goal-conditioned reinforcement learning (GCRL) performed poorly. To better understand the be-
havior of the GCRL policies, we plotted the distance between the final end effector position reached
and the one specified by the final goal state s,. In Figure 7, we see that the GCRL policies quickly
learned to minimize the final distance to the end effector position in the goal state s,. We see that
the GCRL policies optimized only the dimensions of the goal state that were easiest to maximize,
rather than the important dimensions. VICE had unsatisfactory performance even on the end effector
position, and we hypothesize this is due to the fact that VICE needs a substantially higher number
of example states.

Sawyer IKEA Flat World
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Figure 7: (a) The distance between the final end-effector position and the position specified in the goal state
s4. (b) The success rate of the methods on the same task (with results copied from Figure 5 for convenience).
We see that goal-conditioned RL focuses primarily on moving the end effector to the correct position, while
DisCo RL ignores this task-irrelevant dimension and successfully completes the task.

Videos of the final policies for our method and baselines are available on the paper website:
https://sites.google.com/view/disco-rl

C Environments

Sawyer This environment is based in the PyBullet [44] physics simulator. It consists of a Sawyer
robot mounted next to a table, on top of which there is a tray and four blocks. The robot must learn to
manipulate the blocks via its gripper. The robot is controlled via position control, and it is restricted
to move in a 2D plane. Specifically, the robot arm can move in the YZ coordinate plane and the
gripper can open along the X axis, where the X, Y, Z axes move along the front-back, left-right,
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and up-down directions of table, respectively. We also constrain the objects to move along the YZ
coordinate plane. The agent has access to state information, comprising of the position of the end
effector and gripper state, as well as the positions of the objects and tray.

IKEA We adapted this environment from the suite of furniture assembly environments developed
by Lee et al. [35]. In our environment, the agent must learn to attach a set of 3 shelves to a pole. It
can do so by controlling two end effectors: one end effector that can move the pole, and another end
effector that can move the shelves. The former end effector is always attached to the pole, while the
latter end effector can selectively attach and detach itself from the shelves. Both end effectors can
move via 3D position control, ina 1 x 1 x 1 area for a maximum of 0.05 units (in each direction)
per timestep. The end effector interfacing with the shelves can hold onto a shelf by applying a grasp
action when it is within the bounding box region of a shelf. Each shelf has a connection point at
which point it will attach to the pole, and the pole has a receiving connection point as well. When
these two connection points are within 0.2 units away from one another, the shelf automatically
attaches to the pole and becomes welded. The objects have 3 degrees of freedom via translations
in 3D space. The objects are not allowed to collide with one another — if an action causes them
to collide, that action is ignored by the environment and the next state is the same as the current
state. As an exception, when an end effector is not grabbing an object, it is allowed to move through
objects. The agent has access to state information, comprising the 3D position of the end effectors,
shelves, and the pole, and indicator information for whether each end effector is grasping an object.

Flat World This two-dimensional environment consists of a policy and 4 objects, each of which
are defined by their XY-coordinate. The policy and objects are in an enclosed 8 x 8 unit space.
The policy’s action space is three dimensional: two correspond to relative change in position, for a
maximum of 1 unit in each dimension per timestep, and one corresponds to a grab action. The grab
action takes on a value between —1 and 1. If this grab action is positive, then the policy picks up
the closest object that is within 1 unit of it, or none if there are no such objects. If this grab action
is non-positive, then the policy drops any object that it was holding. While an object is grabbed,
the object moves rigidly with the policy. The policy can only grab one object at a time, with ties
broken by a predetermined, fixed order. The agent has access to state information, comprising the
2D position of the policy and the 4 objects.

D Experimental Details

Distribution inference These experiments were evaluated on the Sawyer environment. In this
setting, the agent needs to pick up one of the blocks (specifically, the red block) and place it into
the tray. The initial position of the tray and objects vary in each episode. The objective is only to
minimize the relative distance between the red block and the tray, and it is important for the agent to
ignore the absolute position of the other blocks and the tray. The robot can attempt to slide the tray
to a specific goal location, but the tray is heavy and moves very slowly. If it successfully moves the
tray to another location, it will not have enough time in the episode to move the red block. Thus, the
GCRL baseline will fail for this task unless the goal position of the tray matches the initial location
of the tray at the beginning of the episode.

We generated K = 30 examples of successful goal states, in which the red block is always inside
the tray, and the tray, other objects, hand, and gripper are in random locations and configurations.
We provided this set of example goal states as input to the competing baselines. Each baseline used
the example states in the following manner:

e DisCo RL: infer a goal distribution from the example states

o GCRL: the example states are the set of goals for exploration rollouts, and the set of goals
sampled for relabeling in training

o VICE: a classifier is trained to predict whether a state is optimal, with the example states
as the positive examples for the classifier

For evaluation, a trajectory is successful if the red block is placed in the tray. We plot this success
metric over time in Figure 4.

Multi-task performance For the multi-task evaluations, we performed experiments in all three of
our environments. For each environment, we split the task into several subtasks, as described below:

14



e Sawyer: move the blocks to their goal locations. Each subtask represents moving one block
at a time to its goal location.

e IKEA: move the pole and the shelves to their goal locations. Each subtask represents
moving the pole and one of the shelves to their goal locations.

e Flat World: move the objects to their goal locations. Each subtask represents moving one
object at a time to its goal location.

We generated an example dataset of successful states for each subtask. For each example state for
a particular subtask, we also provided a state representing the final configuration for the entire task
(after all subtasks are solved). See Section E.2 for additional details regarding the example sets. The
evaluation metrics for each environment are as follows:

e Sawyer: the number of objects that are within 0.10 units of their respective final goal
locations

e IKEA: the number of shelves that are connected to the pole, in addition to an indicator for
whether the pole is within 0.10 units of its final goal location

e Flat World: the number of objects that are within 1 unit of their respective final goal loca-
tions

For evaluation, we provide the GCRL baseline oracle goals. In this setting, the provided goal is
identical to the initial state at the beginning of the episode, except for the position of the red block,
which we set to be inside the tray. For example, if the state is given by

red-block , red-block xblue—block blue-block }
0 bl » 0 ) PR B

— [,.EE ,EE
So = [xO Yo, X Yo Yo

and we want the red block to move to a position (z*, y*), we set the goal to

Sy = [:CEE, y(l;?E’ :L‘*, y*7 xlalue—block’ yglue»block7 . } .
In theory, this oracle goal encourages the robot to focus on moving the red block to its goal rather
than moving the other state components. The GCRL baseline only uses this oracle during evaluation.

Details regarding the distribution of final goal states used for exploration rollouts and relabeling
during training, are provided in Table 1. For evaluation, we used H = 100 for the IKEA and Flat
World environments, and H = 400 for the Sawyer environment.

Goal Use Case | Sawyer IKEA Flat World
Exploration 50%:  objects on | Shelves assembled, | Objects in random
ground, 50%: ob- | pole in random | positions
jects in tray position
Training Same as above Objects in random | Same as above
positions

Table 1: Environment specific final goal distributions.

Off-policy distributions These experiments are conducted on the Flat World domain and extend
the multi-task experiments described in the previous section. We created a total of 10 total subtasks,
4 of which require moving a single object to its desired goal location, and 6 of which require moving
a pair of objects to their desired goal locations. We provided example sets of size K = 30 for each
of these 10 subtasks. For the on-policy variant, we explore and relabel with the goal distributions
inferred for all 10 subtasks. For the off-policy variant, we only explore with the first 4 goal distri-
butions and train with all 10 goal distributions. For evaluation, we measured the performance of the
algorithm for one of the pairwise subtasks. Our evaluation metric measures how many objects (out
of the specific pair) the agent was able to successfully move within 1 unit of their respective final
goal locations.

E Implementation Details

E.1 General Training Algorithm and Hyperparameters

In our experiments, we use soft actor-critic as our RL algorithm [34]. For specific details on the
hyperparameters that we used, see Table 3.
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Hyper-parameter Sawyer | IKEA | Flat World
Number of examples (per subtask) K 30 50 30
Std. dev. of Gaussian noise added to example set data 0.01 0.1 0.01

Table 2: Environment specific hyper-parameters.

Hyper-parameter Value
horizon H (for training) 100
batch size 2048
discount factor 0.99
Q-function and policy hidden sizes [400, 300]
Q-function and policy hidden activations ReLU
replay buffer size 1 million
hindsight relabeling probability 80%
target network update speed T 0.001
number of training updates per episode Nupdates per episode 100
number of training batches per environment step 1

Table 3: General hyper-parameters used for all experiments.

E.2 DisCo RL

Covariance Smoothing We apply pre-preprocessing and post-processing steps to obtain the dis-
tribution parameters used in RL. In the pre-processing phase, we add i.i.d. Gaussian noise to the
dataset of examples. The amount of noise that we apply varies by environment — see Table 2 for
specific details. After inferring the raw parameters of the Gaussian distribution p and 3, we apply
post-processing steps to the covariance matrix. We begin by inverting the covariance matrix . For
numerical stability, we ensure that the condition number of > does not exceed 100 by adding a
scaled version of the identity matrix to Y. After obtaining ¥ !, we normalize its components such
that the largest absolute value entry of the matrix is 1. Finally, we apply a regularization operation
that thresholds all values of the matrix whose absolute value is below 0.25 to 0. We found this
regularization operation to be helpful when the number of examples provided is low, to prevent the
Gaussian model from inferring spurious dependencies in the data. We used the resulting ; and ¥ 1
in Equation 2 for computing the reward.

Conditional distribution details To obtain the conditional distribution used for relabeling and
multi stage planning, we assume that data is given in the form of pairs of states {(s(*), s;k))}szl,

in which s(*) correspond to a state where a sub-task is accomplished when trying to reach the final
state s 7. We fit a joint Gaussian distribution of the form

3 5 ‘ . .

- N Hs 7 ss ssy Uy € Rdlm(S),E = RAIm(S) xdim(S)
pS7sf MSf ESfS ESfo HJ( ) ( )

to these pairs of states using maximum likelihood estimation. Since the joint distribution ps s, is

Gaussian, the conditional distribution pg|s is also Gaussian with parameters (u, 32) = h(sy), where

h is the standard conditional Gaussian formula:

h(sf) = | ps + ZSSngflsf (Sf - ,USf)v Yss — ESSfZ;flstSfS . 3)

H P

In summary, given a final desired state sy, we generate a distribution by computing w = h(sy) ac-
cording to Equation 3. This conditional distribution also provides a simple way to relabel goal distri-
butions given a reached state s,.: we relabel the goal distribution by using the parameters w’ = h(s;.).

Multi-task exploration scheme For training, in 50% of exploration rollouts we randomly selected
a single subtask for the entire rollout, and in the other 50% of exploration rollouts we sequentially
switched the subtask throughout the rollout, evenly allocating time to each subtask. For switching
the subtask, we simply switched the parameters of the subtask p and 3. We randomized the order
of the subtasks for sequential rollouts.
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Relabeling We relabel the parameters of the goal distribution (i, X2), and the relabeling strategy
we use depends on whether we use conditional goal distributions. For non-conditional distributions,
we relabel according to the following strategy:

e 40%: relabel p to a future state along the same collected trajectory
For conditional distributions, we relabel according to the following strategy:

o 40%: randomly sample s from the environment
o 40%: relabel s+ to a future state along the same collected trajectory

For our multi-task experiments, whenever we perform relabeling, we also relabel . Specifically,
we first randomly sample a task from the set of tasks that we have inferred, and relabel X to the
covariance matrix for that task.

E.3 GCRL

Our implementation of goal-conditioned RL follows from hindsight experience replay (HER) [11].
Crucially, we perform off-policy RL, in addition to using the relabeling strategies inspired by HER.
When provided a batch of data to train on, we relabel the goals according to the following strategy:

e 40%: randomly sampled goals from the environment, or the example sets
e 40%: future states along the same collected trajectory, as dictated by HER

Unlike HER, which used sparse rewards, we use the Euclidean distance as the basis for our reward
function:

r(s,89) = = [Is — syl ©)
To avoid manual engineering, the space of goals is the same as the space of states. L.e., the dimension
of the goal is the same as that of the state, and the corresponding entries in s and s, correspond to
the same semantic state features.

E4 VICE

Variational inverse control with events (VICE) is described in Fu et al. [21]. VICE proposes an in-
verse reinforcement learning method that extends adversarial inverse reinforcement learning (AIRL)
Fu et al. [47]. Like AIRL, VICE learns a density py(s, a) using a classification problem. However,
unlike the usual IRL setting, VICE assumes access to an example set that specifies the task — the
same assumption as DisCo RL.

VICE alternates between two phases: updating the reward and running RL. To learn a reward func-
tion, VICE solves a classification problem, considering the initial example set as positives and sam-
ples from the replay buffer as negatives. The discriminator is:
pols,a) s
po(s,a) + w(als)
At optimality, the reward recovered py(s,a) « 7*(a|s) = exp(A(s,a)), the advantage of the opti-
mal policy [47]. In practice the reward is represented as py(s), ignoring the dependence on actions.
However, actions are still needed to compute the discriminator logits; we follow the method spec-
ified in VICE-RAQ [43] to sample actions from m(a|s) for all states. We also use mixup [48] as
described in VICE-RAQ. Mixup significantly reduces overfitting and allows VICE to successfully
learn a neural net classifier even with so few (30 to 50) positive examples. In the RL phase, VICE
runs reinforcement learning with log py (s, a) as the reward function, actively collecting more sam-
ples to use as negatives.

Dy(s,a) =

We re-implemented VICE as above and confirmed that it successfully learns policies to reach a
single state, specified by examples. However, our results demonstrate that VICE struggles to reach
the example sets we use in this work. This issue is exacerbated when the problem is multi-task
instead of single-task and the state includes a goal, as in goal-conditioned learning.

In multi-stage tasks, we train a single DisCo RL policy shared among the stages. For VICE, sharing
data among different tasks would not respect the adversarial optimization performed by the method.
Instead, we train separate policies for each stage without sharing data between policies. Thus, for a
task with IV stages, VICE is generously allowed to experience N x the data, as each policy collects
its own experience).
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