
A Review of the Smith-Waterman GPU Landscape

Richard Barnes

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-152
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-152.html

August 13, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
Richard Barnes was supported by the Department of Energy's Computational
Science Graduate Fellowship (Grant DE-FG02-97ER25308) and, through the
Berkeley Institute for Data Science, by the Gordon and Betty Moore
Foundation (Grant GBMF3834) and by the Alfred P. Sloan Foundation (Grant
2013-10-27).
 
Tests were performed on the Titan and Summitdev supercomputers
managed by Oak Ridge National Laboratory's Leadership Computing Facility;
the Cori supercomputer managed by the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231; and
XSEDE's Comet supercomputer, which is supported by the NSF (Grant ACI-
1053575) and was available to RB through the NSF Graduate Research
Fellowship.



A Review of the Smith-Waterman GPU Landscape

Richard Barnes

Research Project

Submitted to the Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, in partial satisfaction of the re-
quirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Katherine Yelick
Research Advisor

(Date)

Adjunct Assistant Professor Aydın Buluç
Second Reader

yelick
Kathy Sig


yelick
Text Box
8/13/2020

yelick
Line




A Review of the Smith-Waterman GPU Landscape

Richard Barnesa,∗

aElectrical Engineering & Computer Sciences, Berkeley, USA
Energy & Resources Group, Berkeley, USA

Berkeley Institute for Data Science, Berkeley, USA

Abstract

A key step in the assembly of genomes is the identification of locally optimal alignments between small
subsections of the genome. The Smith-Waterman algorithm provides an exact solution to this problem
at the cost of significantly greater computation versus approximate methods. The need to advance both
the speed and sensitivity of local alignment has driven a great deal of research on accelerating the Smith-
Waterman algorithm using GPUs, which we review here. We find that some optimization techniques are
widespread and clearly beneficial, while others are not yet well-explored. We also identify a limited set of
algorithmic motifs which can be used to classify all of the existing Smith-Waterman GPU implementations.
This exposes gaps in the literature which can be filled through future research.

1. Introduction

Knowing the sequence of the human genome fa-
cilitates a better understanding of disease pro-
cesses [56] while knowing the genomes of agricul-
tural crops, such as rice, facilitate efforts to improve
their resilience and yield [61]. Metagenomics, the
study of genes within an environment, can help us
understand how varying microbial populations in
the human gut affect health [60] and how varying
populations affect ecosystems and ecosystem ser-
vices [26]. However, to obtain these benefits it is
necessary to be able to assemble the genetic data.

Genome and metagenome assembly is a process in
which a genome is cut into small pieces so it can be
processed into digital forms. Once digitized, these
many small segments of DNA (reads) are assembled
into longer sequences (contigs) in a process analo-
gous to assembling a puzzle without knowing what
the final picture looks like. Proteins, while gener-
ally shorter, are assembled via a similar process.
If two sequences overlap with high certainty, then
they can be joined into a single, longer sequence.
The process of determining this overlap is local se-
quence alignment. Finding overlap candidates nom-
inally involves comparing all sequences against all

∗Corresponding author. ORCID: 0000-0002-0204-6040
Email address: richard.barnes@berkeley.edu

(Richard Barnes)

other sequences to find the highest scoring over-
laps. Metagenome assembly problems can have up
to 50 million sequences or more, making a direct
all-pairs comparison infeasible. Instead, graph al-
gorithms and heuristics are used to reduce the size
of the search space and parallel techniques are used
to reduce wall-times [4, 16]. Still, after this exten-
sive filtering, many pairwise sequence alignments
may still need to be done.

The Smith-Waterman algorithm, detailed below, is
used to find the optimal alignment between two se-
quences in Ω(mn) time, where m and n are the
lengths of the sequences. To avoid this cost, heuris-
tic algorithms such as X-drop [94] and BLAST [85]
are used. Even these heuristic algorithms can be ex-
pensive; for instance, the SeqAn X-drop aligner [14]
takes 90% of the compute time when used to boot-
strap from reads to contigs in the BELLA long-read
aligner [23]. While optimal alignments may desir-
able, it’s clear that they must be calculated very
efficiently to be competitive with heuristic meth-
ods.

In response to this need, Smith-Waterman has
been repeatedly implemented to leverage low-level
aspects of target hardware including CPU SIMD
instructions [96], graphics GPUs [50], general-
purpose compute GPUs [1], the Sony Playsta-
tion [91], FPGAs [64, 80], and theoretical work has



Barnes Smith-Waterman GPU Landscape

been on quantum computing algorithms [58]. Here,
we review these implementations and show that,
perhaps surprisingly, despite the amount of research
that has been done on mapping Smith-Waterman
to hardware, the design space has still only been
shallowly explored and common design flaws in ex-
isting research products limit their utility. In re-
sponse, we develop a reusable library to solve some
common design issues. Since quantum computers
and FPGAs are not yet widely available, we focus
the review on CPU and GPU implementations, par-
ticularly the latter.

2. The Smith-Waterman Algorithm

The Smith-Waterman algorithm [78] computes the
optimal local alignment of two sequences of length
m and n. How the SW algorithm is instantiated de-
pends heavily on both the gap penalty as well as a
substitution function. We review several gap penal-
ties below, but note that only the constant, linear,
and affine penalties have seen significant optimiza-
tion work on GPUs.

A potential alignment between two DNA or amino
acid sequences is given positive scores if characters
between the sequences match, and negative scores if
they don’t (§ 3). However, if a sequence has gained
or lost many characters in a row (often in a sin-
gle biological event), this may result in many mis-
matches, indicating that the potential alignment is
highly unlikely. Such “gaps” can be detected and
assigned a gap penalty which penalizes the gap at
a lower rate than the sequential mismatches, giving
a better model of the biology.

As inputs, the algorithm takes

• Two sequences A = a1, a2, . . . am and B =
b1, b2, . . . bn

• A weight matrix W (ai, bj) where W ≤ 0 if ai 6=
bj and W > 0 if ai = bj

• Gap penalties G < 0 which are incurred for
either initiating or extending a gap

2.1. Constant/Linear Gap Penalty
For a constant gap penalty, the algorithm operates
in O(mn) time. For 1 ≤ i ≤ m and 1 ≤ j ≤ n the
value is given by:

Hi,j = max


0

Hi−1,j + g

Hi,j−1 + g

Hi−1,j−1 + W (ai, bj)

 (1)

If i < 1 or j < 1, then Hi,j = 0. Since each update
to the matrix depends only on adjacent entries, the
space required is proportional to the length of the
longest antidiagonal and is therefore O(min(m,n)).

2.2. Affine Gap Penalty

Since, biologically speaking, multicharacter gaps
can be created by a single evolutionary event, it
makes sense to weight the opening of a gap more
heavily than its extension. An affine gap penalty—
that is, a penalty in which the cost of a gap of
length k has the form G(k) = uk+v with u, v ≥ 0—
achieves this.

While the original Smith-Waterman algorithm [78]
allowed deletions or insertions (gaps) of any length
with an affine penalty, it did so at the cost of
O(m2n) time. A modification by Gotoh reduced
this to O(mn) time [20]. The space requirement
is again O(min(m,n)), proportional to the longest
antidiagonal.

For an affine gap penalty, the inputs to the algo-
rithm are largely the same as for the constant gap
penalty, though the penalty is now specified by

• A penalty Ginit for starting a gap
• A penalty Gext for extending a gap

We now introduce two matrices E and F which give
the alignment scores for ending with a gap along A
and B.

Ei,j = max

{
Ei,j−1 −Gext

Hi,j−1 −Ginit

}
(2)

Fi,j = max

{
Fi−1,j −Gext

Hi−1,j −Ginit

}
(3)

An insertion to one sequence can always be seen
as a deletion to the other sequence. However, with
the current setup E covers the case where there is
an extra character in A to account for, so we don’t
advance the pointer to B and instead pay the cost
of inserting a character into A. F covers deletion:
B has an extra character so we don’t advance A
and pay the cost of a deletion. While the costs for
insertion and deletion could be made asymmetrical,
this isn’t common in biology.

2



Barnes Smith-Waterman GPU Landscape

Given the above, the alignment score is given by:

Hi,j = max


0

Ei,j

Fi,j

Hi−1,j−1 + W (ai, bj)

 (4)

If i < 1 or j < 1, then Hi,j = Ei,j = Fi,j = 0.

2.3. Double affine gap penalty

Introduced by Liu et al. [41] the penalty has the
form

G(n) = a + min(n, k)b0 + max(0, n− k)b1 (5)

for a gap size of n and generalizes the standard
affine gap penalty by imposing a separate penalty
for each gap space beyond a given threshold. Few
details are available on the algorithm or its imple-
mentation.

2.4. Double affine gap penalty (another one)

Gotoh [21] notes that DNA and RNA codons
are three-character sequences and therefore, gaps
which are not multiples of three should have ad-
ditional penalties applied to discourage, but allow,
frameshifts in the genetic code. An algorithm is
available [21], but describing it here is beyond the
scope of this paper.

2.5. Logarithmic gap penalty

Human and rodent DNA have power-law distribu-
tions of gap sizes which suggests that a logarithmic
penalty of the form

G(n) = a + b lnn (6)

where n is the gap length may be appropriate [5,
22]. This penalty and its complexity are discussed
in further detail below (see § 2.6 and § 2.8).

2.6. Log-affine gap penalty

Cartwright [8] compared the performance of the
affine and logarithmic gap penalties, as well as a
log-affine gap penalty

G(n) = a + bn + c lnn (7)

and concluded that log-affine gap penalties pro-
duced the best accuracy followed closely by affine
gap penalties; logarithmic gap penalties produced
poor alignments. Cartwright concluded that al-
though log-affine gap penalties were better than
affine gap penalties, the difference may not be great
enough to justify the extra computation time (see
§ 2.8).

2.7. General gap penalty

The general gap penalty takes the same inputs as
before, but makes no assumptions about G(n). Let
the value of a particular i, j be given by V (i, j). For
i < 1 or j < 1, V (i, j) = 0; otherwise,

V (i, j) = max



0

V (i− 1, j − 1) + W (ai, bj)

max
0≤k≤j−1

(V (i, k)−G(j − k))

max
0≤k≤i−1

(V (k, j)−G(i− k))


(8)

Using dynamic programming, the best sequence
alignment can be found in O(nm(n+m)) time and
O(mn) space [83].

2.8. Convex gap penalty

First studied by Waterman [89], the convex gap
penalty (which bounds the performance of the log-
arithmic gap penalty) requires that the penalty sat-
isfy the condition

G(N+1)−G(N) ≤ G(N)−G(N−1) ∀N ≥ 1 (9)

That is, the penalty decreases as the gap length
increases. While the general algorithm above can
solve this problem, convexity allows the inner max-
imums to be found with binary searches resulting in
O(mn log(mn)) time and O(mn) space [19, 49, 83].

3. Substitution Costs

The weight or substitution matrix W in Equa-
tions 1, 4, and 8 can take several forms. For
protein sequence comparisons a 20 x 20 matrix is
needed. The BLOSUM62 matrix [15, 27] is a com-
mon choice among the sequencing algorithms, al-
though PAM [11], JTT [33], and application specific
matrices [79] could also used. Though the orig-
inal values for the BLOSUM62 matrix were mis-
calculated, the erroneous values seem to give bet-
ter search performance [82], although more recent
work using different benchmarks disagrees [28]. For
DNA, a 4 x 4 matrix would suffice; however, no se-
quencing algorithm uses such a matrix. Instead,
many algorithms forgo substitution matrices alto-
gether, opting to apply a fixed positive score if two
sequence characters match and a negative score oth-
erwise (see Table 2), we refer this to as a match-
mismatch (MM) system.

3



Barnes Smith-Waterman GPU Landscape

Using fixed substitution costs has computational
advantages at the expense of lower predictive ac-
curacy in alignment: the full substitution matrix
has 400 elements or 210 if the matrix is symmetric
about its diagonal. This is too large to store close
to the GPU’s threads, creating bandwidth limita-
tions. Constant memory (§ 4.1) is one way to mit-
igate this (e.g. [1, 2, 50, 53]), though it is notably
unused in NVBIO [55]. Converting an MM design
to a full substitution matrix can be difficult. For
instance, both NVBIO [55] and GASAL2 [1] pack
DNA information into 4-bit nibbles and transact
on 32-bit packages containing 8 such units. This
increases bandwidth utilization at the expense of
packing and unpacking the sequences. Since at least
5 bits are required for storing an amino acid, con-
verting these packages from MM to a full substi-
tution matrix would require rewriting most of the
kernels.

4. GPUs

Programming GPUs is challenging due to a complex
memory structure coupled with small instruction
pipelines and minimal opportunities for caching.

4.1. Memory

GPUs have several kinds of memory of varying sizes
and speeds, as listed in Table 1. Making appropri-
ate use of this memory is necessary to obtain good
application performance. These memories include:

• Registers (per-thread, read-write, fast, very
limited size): This memory is visible only to
the thread that wrote it and lasts only for the
lifetime of that thread

• Shared memory (per-block, read-write fast,
very limited size): This memory is visible to
all of the threads in a block and lasts for the
lifetime of the block. This memory facilitates
interthread communication and intratask par-
allelism. Parallel barriers or synchronization
points are necessary to prevent race conditions.

• Local memory (per-thread, read-write slow,
not cached, limited size): Local memory has
the same scoping rules as registers do, but it is
larger and performs significantly slower. Typi-
cally this memory is only encountered when a
thread has insufficient registers, in which case
it may be used automatically at a high perfor-
mance penalty.

• Global memory (per-grid, read-write, slow,
not cached, large size): Any part of the global
memory can be read and written by any thread
in the grid. In newer GPUs the global mem-
ory may exceed 16–32 GB. The optimal ac-
cess pattern is to have threads in a warp ac-
cess sequential memory addresses (coalesced
accesses); other access patterns can reduce per-
formance by half.

• Constant memory (per-grid, read-only,
slow/fast, cached, limited size): Typically on
the order of 64 kB. If all the threads of a half-
warp read from the same address, then access-
ing constant memory is as fast as a register
access; otherwise, it can be very slow. This
memory is sometimes used for storing query
sequences or substitution matrices [42, 50]

• Texture memory (per-grid, read-only, slow
but cached, large size): Texture memory is op-
timized for 1-, 2-, or 3-D spatial locality. Due
to the specialized nature of this memory, it is
not often used in sequencing.

The memory hierarchy of modern GPUs is com-
plex and the information presented here should be
viewed only as an approximation to its usage and
structure. Attempts to reverse-engineer the struc-
ture and instruction sets of GPUs are available
for some varieties including Nvidia’s Volta [32] and
Turing [31] architectures.

4.2. Branching

When GPUs reach a branching statement, this se-
rializes execution with those threads that pass the
branch condition executing their instructions first
and those threads that fail the condition execut-
ing second. The result is that conditions can halve
performance. More complex conditionals can cause
further degradation.

4.3. Page-Locked/Pinned Memory

Operating systems prefer to use RAM as a fast stor-
age bank; however, if RAM becomes full, data can
be relocated to disk-storage in swap/virtual mem-
ory. Modern hardware allows for memory trans-
fer directly between RAM and a GPU, saving the
round-trip time to the CPU, but such transfers are
only possible if there is a guarantee that the mem-
ory in question will stay in RAM. Applications can
allocate page-locked/pinned memory to obtain this
guarantee.

4



Barnes Smith-Waterman GPU Landscape

Name Capacity Cached? Latency Bandwidth Access
Nvidia Quadro GV100 (80 SMs, 1.38 GHz)

Register 64 KiB No Very low R/W, per-thread
Shared 0–96 KiB No Low 12 TiB/s R/W, per-block
Constant 16–32 GiB Yes (6 MB L2, 65 KiB L1.5, 2 KiB L1) Low/High R, per-grid
Texture 16–32 GiB Yes (6 MB L2, 32–128 KiB L1) High 750 GiB/s R, per-grid
Global 16–32 GiB Yes (6 MB L2, 32–128 KiB L1) High 750 GiB/s R/W, per-grid
Local 16–32 GiB Yes (6 MB L2, 32–128 KiB L1) High 750 GiB/s R/W, per-thread

Nvidia K80 (13 SMs, 875 MHz)
Register 64 KiB No Very low R/W, per-thread
Shared 0–48 KiB No Low 2.5 TiB/s R/W, per-block
Constant 12 GiB Yes (1.5 MB L2, 32 KiB L1.5, 2 KiB L1) Low/High R, per-grid
Texture 12 GiB Yes (1.5 MB L2, 16–48 KiB L1) High 191 GiB/s R, per-grid
Global 12 GiB Yes (1.5 MB L2, 16–48 KiB L1) High 191 GiB/s R/W, per-grid
Local 12 GiB Yes (1.5 MB L2, 16–48 KiB L1) High 191 GiB/s R/W, per-thread

Table 1: Properties of selected GPUs memories. The data is drawn from a series of microbenchmark surveys [31, 32].
Bandwidth values were measured using benchmarking tools.

4.4. Streams

The performance we extract from a GPU comes
from two sources: data parallelism and task par-
allelism. Data parallelism requires that the same
function be run across a dataset. Task paral-
lelism allows us to run different functions on differ-
ent data. Tasks are executed on separate streams.
Separate streams can also independently manage
data transfer to and from the CPU. The effect of
this is that it is possible to hide the latency of
data transfer (which is slow) by overlapping it with
computation, provided the data being transferred
comes to/from pinned/page-locked memory (mem-
ory which the host operating system is not allowed
to move).

In the context of alignment, a frequent optimiza-
tion is to break the input data into chunks. The
chunks are then transferred and processed on sepa-
rate streams to overlap computation and I/O, as
above. Another stream-based optimization, em-
ployed by GPU-BSW [92], is to launch forward and
reverse kernels for each stream. If the kernels don’t
require the same number of threads, this can in-
crease data parallelism by allowing more kernels to
be scheduled when fewer threads per kernel are re-
quired.

4.5. Latency hiding and data starvation

GPU hardware is optimized for throughput, not la-
tency. That is, on a per-element basis GPUs per-
form operations slower than CPUs. However, a
GPU can operate on many more elements at once.
Using multiple streams, as above, helps hide trans-
fer latency. To hide compute latency, the GPU

needs to be given a lot of data. Failing to do so leads
to “data starvation”. In § 9 we demonstrate how
the GPU implementations can dramatically under-
perform the CPU if they encounter this condition.

5. Motifs

Algorithms are designed around motifs which in-
corporate strong assumptions about the nature of
the data the algorithms will process. Broadly, these
motifs are

• Single 1:1 Pairwise Alignment (S1:1):
Two sequences being aligned against each
other.

• Multiple 1:1 Pairwise Alignment (M1:1):
Multiple sets of two sequences being aligned
against each other.

• Many-to-One Alignment (M:1): A large
number of sequences being aligned against the
same sequence. We only use this to indicate
situations where the motif somehow optimizes
by performing preprocessing on the reference
sequence, aligning multiple queries at once, or
otherwise doing something more than just it-
erating over S1:1 alignments.

• All-Pairs Alignment (AP): All the se-
quences in a set being aligned against all the
others. Again, this motif is only used if the
structure of the problem is exploited.

The length of the sequences involved in the align-
ment impacts both the design and performance of
the algorithm. Unlike on a CPU, a GPU requires
explicit allocation and handling of its many differ-
ent kinds of memory. This means that choosing

5



Barnes Smith-Waterman GPU Landscape

sequence lengths determines how memory can be
used; this, in turn, can place limits on performance.
For instance, CUDAlign [72] is a S1:1 algorithm
in which sequences of 200M+ bases are compared
against each other. This requires a GPU cluster. At
the opposite end of the spectrum GPU-BSW [92] is
an M1:1 algorithm that can only handle sequences
less than 1024 bases because it performs the entire
alignment within the GPU’s limited shared mem-
ory. Assumptions about input data and use cases
lead to very different designs. By incorporating
length into the broad classifications above, we can
identify at least ten possible motifs:

• One Long to One Long (S1:1)
• One Long to One Short (S1:1)
• One Short to One Short (S1:1)
• One Long to Many Long (M:1)
• One Long to Many Short (M:1)
• One Short to Many Short (M:1)
• Many Long to One Short (M:1)
• All-pairs Long to Long (AP)
• All-pairs Long to Short (AP)
• All-pairs Short to Short (AP)
• Many 1:1 Long to Long (M1:1)
• Many 1:1 Long to Short (M1:1)
• Many 1:1 Short to Short (M1:1)

It is possible to build one motif from another; how-
ever, there are good reasons to avoid doing so.

5.1. Combining Motifs

In a dataset of sequences that need to be aligned
against each other heuristics such as a common k-
mer requirements can be used to quickly eliminate
some possible alignments. The result is a sparse
graph of alignments which need to be performed by
SW. If we call the sequences S1, . . . , Sn, a subset of
this graph may look like this, where an X indicates
an SW alignment to be performed.

S1 S2 S3 S4 S5 S6

S7 X X
S8 X X X
S9 X X X X X X
S10 X X X
S11 X

(10)

There are several ways to batch the alignments.
One possibility is to treat this as a M1:1 prob-
lem; however, this is results in limited cache reuse
and, for longer sequences, unnecessary memory con-
sumption. An alternative option is to use some of

the other motifs from above in concert: an all-pairs
(AP), a many-to-one (M:1), and a many one-to-one
(M1:1), like so:

S1 S2 S3 S4 S5 S6

S7 M1:1 M1:1
S8 AP AP AP
S9 M :1 AP AP AP M :1 M :1
S10 AP AP AP
S11 M1:1

(11)

an alternative arrangement might be:

S1 S2 S3 S4 S5 S6

S7 M1:1 M1:1
S8 AP AP AP
S9 M :1 M :1 M :1 M :1 M :1 M :1
S10 AP AP AP
S11 M1:1

(12)

It might also be faster to perform everything as
an all-pairs operation with extraneous results dis-
carded.

Determining the best batching option is an opti-
mization problem that may require having an ap-
propriate, hardware-specific, cost model with vari-
ables for the number and length of the sequences in
question. Conceptually, this is similar to the matrix
chain multiplication problem: of the Ω(4n/n3/2)
different orders in which matrices can be multiplied,
an O(N logN) algorithm [29] finds the optimal or-
dering and faster approximate solutions exist [9].

6. Optimizations Employed

In addition to the high-level design choices dis-
cussed above, a number of techniques have been
used to increase the efficiency of algorithms. We
explore these below.

Sorting. A number of the implementations we re-
view (e.g. [42, 45, 50]) sort sequences by length.
If the lengths of the sequences vary significantly
this helps avoid a situation in which a number of
threads are finished and waiting on a single, longer
sequence to complete. Our ALBP package (§ 8)
includes functions to facilitate such sorting.

6



Barnes Smith-Waterman GPU Landscape

Query Profiles. An amino acid substitution ma-
trix has 210–400 elements (§ 3), so if these accesses
are relatively random each matrix lookup has a high
probability of either missing the L1 cache or trig-
gering a non-coalesced memory access, especially in
multi-threaded contexts. If these lookups occur in
the inner loop which calculates Equations 1, 4, and
8, then there are O(nm) such misses.

A query profile is generated by iterating along a se-
quence s and calculating W (si, c) for each possible
character c which might be paired with si. Since
the sequence is traversed sequentially and the ma-
trix accesses are non-random, the number of cache
misses is reduced to O(max(n,m)), since the query
profile need only be calculated for one of the se-
quences in a pair to be aligned. The gains are mag-
nified if the M:1 motif is used since a single query
may be made against potentially millions of refer-
ence sequences. In contrast, the cost of constructing
the query profile may be too expensive to be worth-
while in the M1:1 case [1]. Different authors have
taken a variety of approaches to the data layout for
the profile, depending how the parallel techniques
used in the alignment (see, e.g., [17, 44, 47, 62]).

Speculation. Farrar [17] and Zhao et al. [96] both
assume that the values in the F matrix will only
rarely affect the values in the H matrix; that is,
that lengthy insertions and deletions are relatively
rare. This assumption allows them to parallelize
along the matrix rows within an inner loop and
correct any mistakes in an outer loop. The effect
is that greater parallelism is available throughout
the computation. CUDASW++ 2.0 [44] brings this
technique to the GPU.

LR-2009 [39] and F-2007 [17] both calculate scores
using low-precision, storing information in single
bytes using saturating arithmetic. If a value of 255
is reached, then the sequences are aligned a second
time using higher-precision. If recalculation is un-
common, this technique can increase parallelism (in
SIMD contexts) and increase effective bandwidth.

Search Space Reduction. The long S1:1 mo-
tifs require so much compute time that optimiza-
tions which might be expensive for small sequences
become useful. The CUDASW family [69, 72, 74]
makes extensive use of one of these: block prun-
ing. The CUDASW family divides large (petacell)
matrices into blocks. Conceptually, each block is
a mini-SW problem with differing boundary condi-
tions and blocks can be processed in parallel along

a block-anti-diagonal (or in other orientations). If
a block can be shown to have such a small score
that it’s impossible to give a higher score than one
that has already been found, then that block can
be ignored, or pruned. The method is described
in detail in [69]. The method is formalized mathe-
matically in [75] where it is shown that the method
prunes between 0–68.8% of the cells in the matrix
depending on (1) the sequences involved, (2) the or-
der in which the H cells are calculated, and (3) the
parameter values (e.g. gap extension penalty).

Approximation. For sequences with high similar-
ity, the optimal alignment will fall close to the di-
agonal of the DP matrix. Formalizing this as an as-
sumption gives the k-banded Smith-Waterman al-
gorithm: only cells within a distance k of the main
diagonal are filled. SW# [53] employs this method
at scale for long S1:1 alignments, GASAL2 [1] pro-
vides it as an option for M1:1 alignments, and
NVBIO [55] provides it for M:1 alignments.

It is sometimes the case that progressive misalign-
ments result in the optimal alignment falling out-
side of the band. At this point, banded-SW cannot
recover. Another algorithm, X-Drop [94, 95] pro-
vides an alternative heuristic: the alignment only
considers cells whose score differs from the current
maximum by a value of at most X. This can be
thought of as forming a band that moves with the
current optimal alignment.

As noted in § 3, using match-mismatch scores in-
stead of full substitution matrices is also a cost-
saving approximation.

Space Reduction A näıve traceback algorithm re-
quires O(nm) space. CUDASW [69, 72, 74] and
SW# [53] work around this by using the Myers-
Miller algorithm [51]. This provides a way of find-
ing tracebacks in global and local alignments in lin-
ear space using a divide-and-conquer method. This
technique has only used for very long alignments.

Adaptively Algorithm Selection. If sequences
are relatively short, they and their intermediate
alignment artifacts can fit inside a GPU’s shared
memory. As sequences get longer, global memory
must be used. Short sequences also offer limited
opportunities for parallelism within a DP matrix
(but see [92]) versus longer sequences. Hains et al.
[25] suggest that a good algorithm will therefore
switch between inter-task and intra-task parallelism
as the sequence length increases; this optimization

7



Barnes Smith-Waterman GPU Landscape

is also used in CUDASW++ [42]. Dicker et al. [12]
proposes to use a parallel prefix algorithm [3] to
align (globally) sequences of less than 4096 bases
and then to switch to a more standard anti-diagonal
parallel algorithm for longer sequences. If (long) se-
quences are within 1% of each other’s lengths, CU-
DASW++ 3.0 [45] creates a static schedule map-
ping blocks to processes; otherwise, processes use
atomics to claim blocks as their tasks complete.

Packing. Early GPUs had high per-transaction
costs to access memory and limited-to-no caching.
In response, some algorithms pack four 8-bit inte-
gers into a single 32-bit integer [39, 43, 44, 47, 50]
to reduce transactions. More recent algorithms do
not mention this optimization.

For DNA data, there are four characters, which re-
quires only two bits of storage. Some algorithms
also allow for an “N” character symbolizing an
unknown base (typically arising from issues with
the physical measurement of the sequence to be
aligned). Including this character means that at
least 3 bits are required, although in practice 4
are used because this increases memory alignment.
NVBIO [55] and GASAL2 [1] both pack their data
such that one 32-bit integer holds 8 characters. This
effectively doubles (global) memory bandwidth at
the cost of increased computation; however, since
computation is often much faster than memory, the
result is a net savings. NVBIO [55] performs se-
quence packing on the CPU while GASAL2 [1] per-
forms packing on the GPU, which is found to be up
to 750 x faster.

Sequence packing doesn’t make sense for amino acid
data: there are 20 possible bases requiring 5 bits of
memory, but 8 are required to get aligned memory
accesses.

Wall-time Prediction. High-performance com-
pute environments often require users to estimate
the wall-time of their work ahead of time. If the
user over-estimates, their job may be scheduled
later as it takes time for a large enough block to
open up. If the user under-estimates, the job is cut
short and all the work may be lost. Similarly, if the
user under-estimates the resources they need, the
job may not finish in a timely fashion, but if they
over-estimate they may be charged an unnecessarily
high rate for their compute.

Sandes et al. [74] addresses this for the long S1:1
motif by developing an equation to predict align-

ment wall-time based on the lengths of the se-
quences and the number of GPUs used. They also
develop an equation to predict the speedup if addi-
tional GPUs are used, helping users to make in-
formed choices about what resources to request.
They show that for the single-GPU case their wall-
time prediction error is less than 0.45% and their
speedup prediction error is less than 5%.

Constant Memory. Under appropriate condi-
tions (see § 4.1), the GPU’s constant memory can
be accessed at the same speed as a register. How-
ever, this memory is limited in size (see Table 1). A
number of the implementations we review use this
memory to store substitution matrices. M:1 align-
ers also use it to store shorter query sequences.

7. Implementation Review

Table 2 summarizes our review of the existing GPU
implementations along with a subset of the CPU
implementations. In addition to sequence length
and the aforementioned properties—gap penalty
(§ 2), motif (§ 5), and substitution matrix (§ 3)—
we also consider software engineering aspects of the
implementations: whether the code compiles, has
tests of its correctness, can work as a library, and
runs.

7.1. Compilation

Almost none of the code compiled out of the box.
The reasons varied from having to correct hard-
coded library paths to having to make extensive
changes to the code to upgrade it to newer versions
of CUDA or port it to new architectures with dif-
ferent intrinsics (e.g. AltiVec). As Table 2 shows,
for most of the implementations considered it was
possible to get compilation. This often took on the
order of minutes to hours, with the notable excep-
tion of NVBIO, where the effort took considerably
longer due the extensive use of antiquated libraries
and low-level hardware features. Even in this com-
plex case, our modifications to NVBIO eventually
passed NVBIO’s test suite and we were able to
upstream our modifications. This provides some
evidence that despite frequent hardware and API
changes, CUDA code can be maintained. Compila-
tion issues are detailed in § 15.

7.2. Known to crash?

Perhaps the most basic requirement of code is that
it run and that, if it encounters a problem, it no-
tify the user in a meaningful way. Not all of the

8



Barnes Smith-Waterman GPU Landscape

packages we consider pass this basic test. A com-
mon failure mode was to segfault if the user pro-
vided inappropriate command-line arguments. In
some cases, there was no documentation as to what
those arguments should be. We propose a way to
resolve this in § 8. Another common failure mode
was for software to optimistically assume the GPU
had either infinite memory or infinite threads; that
is, the software failed to check that the input sizes
were appropriate for the device. This failure mode
manifests as CUDA errors. Problematically, these
errors look the same whether they arise from poor
memory management or other bugs in the software
and provide the user no context for their resolu-
tion. Therefore, we treat CUDA errors as a crash.
Software issues are detailed in § 15.

7.3. Tests

Almost none of the code had any form of test-
ing. Our metric for this was whether the code in-
cluded unit tests or described an end-to-end testing
methodology. Of the code with tests, NVBIO was
professionally developed by Nvidia and UGENE has
a 12-year development history with 21 contributors.
SWIFT also has unit tests while PyPaSWAS has
only end-to-end testing.

Unit testing is known to reduce the number of bugs
in software. Following the institution of unit test-
ing, Williams et al. [90] found a 20.9% decrease in
test defects. If the tests were written incrementally
in conjunction with the code itself, as in test-driven
development, the decrease is 62–91%. Notably, the
developers surveyed felt that unit tests helped them
write better code and that unit tests could help
them understand the code when they inherit it from
others or need to debug it. Similarly Google’s Clus-
terFuzz tool, which generates randomized inputs
into software has identified 16,000 bugs in Chrome
and 11,000 bugs spread across 160 open source soft-
ware packages.

Given this, a lack of unit testing, or reliance on
end-to-end testing should undermine confidence in
software. This is especially true of scientific soft-
ware, since we are often unsure what the outputs
should be. Unit tests are not easily added unless
software has been built in a modular way and are
most easily added by those familiar with the de-
sign of the software, so downstream users are not
well-positioned to fill this gap.

As an alternative, end-to-end testing can be used

in conjunction with an implementation which is
known to be correct. This may not be possible
if sequences are too long to be aligned with other
software, as is the case with MASA [71] and CUD-
ALIGN [72], making their lack of unit tests more
remarkable. Regardless, end-to-end testing fails
to detect if the right answer is obtained for the
wrong reasons. As Table 2 shows, many of the
implementations do not include a traceback. As
a result, the only signal to judge the success of an
end-to-end test may be the alignment score; since
the same score can appear many times in the H
matrix, this is not a good verification. End-to-
end testing may also suffer from insufficient sample
diversity. For instance, the PyPaSWAS [87] end-
to-end test compares only two pairs of sequences.
GASAL2 [1] is accompanied by an example dataset
containing 20,000 pairs of sequences. These could
be converted to an end-to-end test; however, all of
the A sequences are 150 base pairs while the tar-
get sequences range from 152–277 base pairs. This
dataset may be insufficient to detect bugs in shorter
or longer sequences. A better end-to-end test would
compare sequences with a variety of lengths and
bases against each other, similar to our performance
comparison in § 9.

It is easy for code to run quickly if it doesn’t need to
produce correct results. Race conditions and com-
munication problems underlie many bugs in paral-
lel code. Preventing these classes of bugs often re-
quires synchronization and barriers, both of which
can reduce performance, sometimes dramatically.
The upshot is that a lack of tests should also un-
dermine confidence in performance results.

A final reason for tests is that they increase perfor-
mance portability and future-proof software. With-
out tests, it would have been much more difficult
to upgrade NVBIO (see § 7.1) to working state.
Having tests allowed us to easily and progressively
verify that the changes we made did not affect cor-
rectness.

7.4. Is it a library?

Software is useful insofar as it integrates well with
other software. In the high-performance context in
which GPU aligners are used, this means that useful
code will expose an API for integration as a library.
Table 2 shows that most of the code we review was
not designed with this use-case in mind. Instead,
many of the implementations deeply entangle their

9



Barnes Smith-Waterman GPU Landscape

user interface with their alignment kernels. The ef-
fect is that substantial, error-prone work may be
necessary to incorporate the implementations into
other projects, reducing their impact and useful-
ness. SSW [96] is a notable exception and, perhaps
as a result, is used in several of the CPU+GPU
implementations as the CPU-side aligner.

7.5. Design coverage

As mentioned above, the design of an SW imple-
mentation depends on the underlying hardware,
choice of gap penalty, motif, substitution matrix,
and whether or not tracebacks are calculated. Ta-
ble 2 shows that nearly all development work has
gone into affine gap penalties, leaving obvious room
for further work on double affine, logarithmic, con-
vex, and general penalty functions.

Research has been done on both full substitu-
tion matrices and match-mismatch penalties, but
choices made on this axis represent a point of di-
vergence in the literature. As discussed in § 3,
these substitution systems typically don’t intercon-
vert well. MM penalties allow for data compres-
sion schemes which would need to be rewritten to
support full substitution while full substitution has
higher computational costs than simple substitu-
tion.

While most research has considered many-to-one
alignments, the sequence lengths involved are het-
erogeneous. In early work, query sequences were
short—in the hundreds of base pairs and few in
number. More recent work has mapped sequences
of 100–2000 bases against references of up to a bil-
lion bases. For the longer references, a Burrows-
Wheeler transform [6] is used as a compression
strategy and GPU implementations of this exist
(e.g. [55, 93]); NVBIO’s BWT claims an 8.5 x speed-
up versus the BowTie2 [38] CPU implementation.

The one-to-one motif has been explored in three
contexts. (1) The näıve SW implementation as well
as SIMD implementations such as [17] and [84].
Such implementations can achieve greater paral-
lelism by running multiple threads at once, but the
algorithms themselves are designed around pairs of
sequences. (2) Single long-sequence comparisons.
The long comparison work has been driven by the
MASA [71] and CUDAlign [72] package families.
Using multi-GPU clusters these compare sequences
of up to 200 million bases on matrices of up to

60 petacells relying on a host of techniques includ-
ing block pruning [75] and speculative fill-in which
may be too expensive to apply to shorter sequences.
(3) Many short-sequence comparisons.

This final motif is an emerging area of research
driven by the desire to leverage GPU-based align-
ment as an intermediate stage in systems like
metagenome sequencers (e.g. DiBella [16] and
HipMCL [4]). GASAL2 [1] and GPU-BSW [92] op-
timize specifically for this use case.

In our review, we did not find any algorithms built
around the All-Pairs (AP) motif. This could be
because it makes the strongest assumptions about
which alignments need to be performed. While an
M1:1 aligner can freely align any two pairs an AP
aligner must align all pairs while likely having over-
heads an M1:1 aligner would not, these overheads
would make the AP aligner undesirable outside of
its use case.

8. Boilerplate

Many of the implementations we consider follow a
standard pattern:

1. Parse command-line arguments
2. Read data
3. Pack data onto GPU, if one is being used
4. Apply alignment kernels in parallel streams
5. Unpack results from GPU, if one is being used
6. Print performance metrics

For most implementations, the only part of the
above that is unique and worth spending time on
are the kernels. Every other piece is boilerplate;
that is, code which is essentially the same from one
implementation to the next. Furthermore, this boil-
erplate was often tightly integrated with other parts
of the implementations making it difficult to apply
unit tests to or refactor any part of the code.

In response, we have developed a library Alignment
Boilerplate (ALBP, https://github.com/r-bar
nes/alignment boilerplate) which abstracts this
code into a reusable, unit-tested API. We describe
this library in greater detail below. When we used
this library to simplify GASAL2 [1] it reduced lines
of code from 3,230 to 2,357 (27% reduction); using
it on GPU-BSW [92] reduced lines of code from
1,608 to 468 (71% reduction). Performance was not
reduced as a result.

10

https://github.com/r-barnes/alignment_boilerplate
https://github.com/r-barnes/alignment_boilerplate


Barnes Smith-Waterman GPU Landscape

The library provides abstractions for each of the
steps in the pattern above:

• Command-line Argument Parser. As
noted in § 7.2, a common cause of segfaults
was a failure to check command-line argu-
ments. Relatedly, a common cause of code
bloat was parsing command-line arguments.
ALBP solves both these problems by expos-
ing the CLI11 command-line parser [76], which
handles the full range of command-line func-
tionality and provides easy methods for vali-
dating input.

• FASTA handling. ALBP provides func-
tions for reading and interpreting FASTA files.
In addition, it includes functions for packing
FASTA data into the compressed forms needed
by the GPU by producing start-index, end-
index, and sequence-length arrays.

• Invertible Sorts. Sorting data by length to
avoid hot-thread tail effects is an optimiza-
tion strategy employed by several of the imple-
mentations we review. If a structure-of-arrays
(SoA) data layout is used, the same sort may
need to be applied to several arrays. Accord-
ingly, ALBP includes functionality to deter-
mine the sorted positions of input data. These
positions can then be used to accelerate sub-
sequent sorts. They can also be used to invert
the sorting when returning results to a user.

• Ranges. Many of the algorithms we re-
view consider their inputs in batches. These
batches, consisting of potentially thousands of
sequences, are farmed out to GPU streams or
CPU threads. Creating evenly-sized batches
and handling leftovers leads to both code bloat
and the potential for off-by-one errors. ALBP
handles this by providing functions to create
and manage ranges of indices corresponding to
the lower and upper ends of batches.

• Memory. Writing safe CUDA code requires
checking each API call for errors, ensuring
that data types are propagated safely despite
the CUDA API’s extensive use of the void

type, and freeing memory at appropriate times.
ALBP simplifies this by using smart pointers
(which automatically free memory) and tem-
plated, error-checking constructors. In con-
trast to the CUDA Thrust library, pointers are
still the primary data structure. In addition,

ALBP couples ranges and memory to provide
a safe, succinct way of moving memory to and
from the GPU. ALBP also provides ways of
handling page-locked memory.

• Timer. ALBP provides a Timer class for mea-
suring the performance of code.

• Stream Manager. After FASTA data has
been read it needs to be transferred to the
GPU, used for computation, and results need
to be transferred back. This occurs in batches
and each batch is typically delegated to a
separate stream. ALBP abstracts this pro-
cess. A simple load balancer creates manager-
threads for each GPU stream and/or CPU
work-thread. The streams and work-threads
themselves are managed by C++ functors
which can hold and manage state specific to
the stream. The Stream Manager assigns
work in the form of Ranges (see above) to the
manager-threads in round-robin fashion and
the manager-threads pass this work off to their
respective functors. Since the manager threads
act only as delegators, over oversubscribing
the CPU in this fashion does not affect per-
formance while abstracting the need for the
user to explicitly manage CPU threads to han-
dle GPU streams. The functors themselves do
not require an inheritance pattern since the
C++ functional library allows functors to be
stored based only on their input and return
type. In the case, the input is a Range of data
to be processed and no return is necessary: it
is assumed that returns are written to mem-
ory and each functor has sole ownership of the
region of memory referenced by the Range.

• Unit Tests. ALBP exposes the doctest [35]
unit testing framework in addition to providing
examples of the framework in use through its
own unit tests.

• CUDA Error Handling. CUDA error han-
dling often takes place through complex macro
functions. ALBP simplifies the error handling
process through a minimal set of macros that
delegate quickly back to C++ code.

• Simple Smith Waterman. ALBP provides
a näıve implementation of the SW algorithm.
The correctness of this implementation is unit
tested and is easily verified via visual inspec-
tion. A series of accompanying functions pro-

11



Barnes Smith-Waterman GPU Landscape

vide ways to slice and dice the näıve implemen-
tation’s output matrices. These tools make it
easier to quickly write unit tests for new SW
implementations.

ALBP also provides a couple of convenience pro-
grams:

• FASTA Analyzer. Extract sequence statis-
tics from a FASTA file.

• Random Sequence Generator. Generates
random datasets; useful for performance test-
ing.

It is tempting to eliminate abstraction barriers to
pursue full-stack optimization in search of addi-
tional performance, but SW is a poor candidate for
this. The preparatory work the CPU does is always
O(N) (or O(N logN) if a comparison-based sort is
used) in the number of sequences considered while
the alignment itself takes approximately O(Nmn)
time in the number of sequences N and their lengths
m and n. Since this is orders-of-magnitude more
work, accelerating the alignments is a much bet-
ter target for optimization effort. ALBP abstracts
non-kernel functionality so that time can be spent
on this.

9. Performance Comparison

Here, we compare the performance of several of
the implementations listed in Table 2. Our per-
formance comparison differs from previous ones in
the literature in several respects:

• Many implementations. We compare per-
formance across a large number of implemen-
tations. Most previous comparisons have ei-
ther used authors’ self-reported performance or
compared against only one or two other imple-
mentations.

• Many input sizes. We compare performance
across a large range of input data sizes. Since
GPU shared memory sizes and CPU cache sizes
are limited, algorithms which work well for one
length of data may perform much worse at
other lengths. Most previous comparisons have
focused on sequences that fall either within a
narrow length range or have binned short and
long sequences together making it impossible
to separate their performance in reported num-
bers.

• Reproducible. None of the works reviewed
include sufficient resources to reproduce their
performance comparison tests. In contrast, we
include an automated performance test rig and
appropriately-modified source code for the im-
plementations we test.

Since the Smith-Waterman algorithm fills in the
cells of a dynamic programming matrix, we measure
speed in billions of cells filled per second: GCUPS.
We have modified the implementations’ code in our
repository (https://github.com/r-barnes/sw c

omparison) to output timing information in a stan-
dard format. Where possible, the timing excludes
the time to read in the data. We have also built a
benchmarking option which disables most file and
command-line output, since this may vary consider-
ably between programs. Under some conditions the
CUDA compiler generates an intermediate repre-
sentation which is converted to architecture-specific
code the first time a program is run. We ensure this
conversion doesn’t affect timing results by doing a
warm-up run before each timing run. For GPU-only
implementations we permit the use of 8 stream-
management threads. For CPU-only implementa-
tions we use one thread. For mixed implementa-
tions, we explore GPU-only and CPU-only options
when available. As a result, the performance values
reflect GCUPS/GPU and GCUPS/thread.

We run our tests on a machine with an Intel
Xeon CPU (2.20 GHz, 2 sockets, 4 cores/socket,
2 threads/core), 52 GB RAM, a 500 GB SSD hard
drive, and 1 Nvidia V100 GPU.

To perform our tests we explore how different com-
binations of the lengths of the query and reference
sequences affect performance. We adaptively vary
the number of sequences tested to target a 15–20s
test time by doubling the number of sequences in
the test data until the test time falls beyond this
band. This target test time is long enough to av-
erage out short-term speed variations within the
test, but still short enough to be able to run all
the tests in a reasonable amount of time. This also
ensures that the GPU algorithms don’t experience
data starvation.

Results of the performance comparisons are shown
in Figure 1 and Figure 2. The black squares indi-
cate benchmarks which failed because the underly-
ing software crashed. We apply the black square
if the crash happens for any amount of data con-
sidered, so it is possible that some of the software

12

https://github.com/r-barnes/sw_comparison
https://github.com/r-barnes/sw_comparison


Barnes Smith-Waterman GPU Landscape

would work for smaller datasets, even though the
performance is likely to be lower due to data star-
vation.

Perhaps the most important result is that the CPU-
based SSW [96] out-performs all of the other CPU-
based methods we were able to test. This is sur-
prising, given that it was released in 2013 and uses
the SSE2 instruction set. New sets with additional
primitives and wider vectors, such as SSE4 and
AVX, have since become available. This suggests
that additional research into CPU methods is likely
warranted. SWIMM 2.0 [65] uses the AVX instruc-
tion set and claims to compare favorably against
CUDASW++ 2.0 and 3.0, but we have not yet been
able to verify these results because it only compiles
with the (non-free) Intel compiler.

A second result is that SSW compares favorably
against the GPU implementations. The results
shown in Figure 2 are on a per-CPU-thread and
per-GPU basis. Assuming, linear scaling on a 16-
thread CPU, SSW’s single-thread performance of
2–7.1 GCUPS translates to 32–113.6 GCUPS. Even
with sub-linear scaling, this still gives performance
on-par with a single GPU. Thus, GPUs will be most
beneficial for sequencing (a) if there are multiple of
them, (b) the CPU can be engaged in other tasks,
(c) they can be used in conjunction with the CPU,
or (d) they can be used to save energy. If such con-
ditions don’t hold, it likely makes more sense to use
the CPU to handle sequencing tasks.

10. Future Work

Our review reveals several directions for future
work.

Foremost is the need for aligners built with bet-
ter software engineering. Of the implementations
we reviewed, very few were designed for integra-
tion into other software; very few had unit tests;
very few ran without crashing or raising errors in-
terpretable to non-experts. All of these issues limit
these implementations’ impact and usefulness. In
addition to these basics, amenities such as wall-time
estimates (§ 6) would be useful.

Of the implementations we review, the majority are
built around an affine gap penalty while the rest
are built around the special case of a linear penalty.
This raises a question of whether the affine gap is so
popular because it is the most biologically relevant

choice, or because the availability of increasingly
performant algorithms using it creates a feedback
cycle where no other option can be easily explored.
The double-affine, convex, and general gap penal-
ties are all open for exploration.

The M:1 motif has been explored by a number
of groups. In contrast, the long S1:1 motif has
been explored only the CUDAlign/MASA family
and SW#. Additional attention may uncover bet-
ter performance. The M1:1 motif is new, having
only been explored by GASAL2 and GPU-BSW,
so work here may also be fruitful. The AP mo-
tif is entirely unexplored. Beyond this, the ideas
raised in § 5.1 regarding combining motifs to im-
proved performance are unexplored. Relatedly, Ta-
ble 2 and Figures 1 and 2 show that most align-
ers make strong assumptions about the number and
lengths of their inputs. Were aligners designed as
well-tested libraries, it would be possible to begin to
combine them into meta-aligners which adaptively
choose the algorithm and motif best suited to the
input data.

While most performance metrics and comparisons
to date, including ours, focus on GCUPS, instruc-
tion/integer roofline models are becoming available
in GPUs [13] and may see adoption for easy use in
profiling software. These profiling techniques offer
an attractive way of determining which parts of an
aligner are under-performing versus the theoretical
capabilities of the GPU. In the future, wall-time
may not even be the most important metric: the
energy efficiency of algorithms is also becoming a
concern (e.g. [59]).

Our performance comparison also reveals that a
circa-2013 CPU implementation is competitive with
the GPU implementations. This suggests that addi-
tional research on CPU implementations leveraging
new instruction sets is likely worthwhile.

Finally, looking beyond GPUs, the future is full
of exotic and apparently special-purpose hardware
waiting to be leveraged, including FPGAs, APUs,
quantum computers, nanophotonic accelerates, and
more [18, 37, 52, 58, 64, 64, 66, 80, 97].

11. List of abbreviations

AA: Amino Acid, 20 of them comprise the building
blocks of proteins, a kind of biological hardware;
ALBP: Alignment Boilerplate (library); CPU:

13



Barnes Smith-Waterman GPU Landscape

310 2092 2351 1257 185

287 129 133 1759 130

301 132 135 1845 135

35 39 25

26 35 48 50

36 27 45 48

264 48 44

25 49 47

260 2106 2325 167 176

254 123 129 1742 129

262 128 133 1822 134

35 40 26

26 35 48 50

36 27 45 48

268 48 44

25 50 48

552 79

174 77 79

182 79 81

GPU−BSW AA GPU−BSW DNA

GASAL2 Score Only GASAL2 Start GASAL2 Traceback

100 500 1000 5000 10000 100 500 1000 5000 10000

100 500 1000 5000 10000

100

500

1000

5000

10000

100

500

1000

5000

10000

Reference Length

Q
ue

ry
 L

en
gt

h

50 100 200 300
GCUPS

Figure 1: M1:1 performance comparison. Redder is better; bigger numbers are better. Numbers indicate GCUPS.
Black squares indicate runs which crashed for some reason (see § 9 and § 15). Grey squares indicate test combinations
which were not performed; GPU-BSW, for instance, has length limits on its inputs.

14



Barnes Smith-Waterman GPU Landscape

58.752.1

3

6.2

2 3.3

5.9

7.1

2.5 2.4

2.5

1.81.50.8

309.5

1964.9 290.9

344.8

302

287.1

16.7

2.5 2.3

2.5

1.81.50.8

71.9

78

74.8

51.6

51.3

59.7

72.5

78.1

75

51.6

51.4

59.8

2.8

7.4

3.63.5

6.66.5

9191.5

78.376.460.8

74.3

1.2

2.1

2

1.20.9

1.9

SW# no db, cpu−only SW# no db, gpu−only SWIPE SWPS3

SSW DNA Traceback SW# db, cpu−only SW# db, gpu−only SW# db, gpu+8 cpu

CUDASW++ 3.0 qprf=1, 0 threads CUDASW++ 3.0 qprf=1, 8 threads Sjoluand2016 SSW DNA Score Only

CUDASW++ 2.0 simd CUDASW++ 2.0 simt CUDASW++ 3.0 qprf=0, 0 threads CUDASW++ 3.0 qprf=0, 8 threads

100 500 1000 100 500 1000 100 500 1000 100 500 1000

100

500

1000

100

500

1000

100

500

1000

100

500

1000

Reference Length

Q
ue

ry
 L

en
gt

h

25 50 75 100
GCUPS

Figure 2: M:1 performance comparison. Redder is better; bigger numbers are better. Numbers indicate GCUPS.
Black squares indicate runs which crashed for some reason (see § 9 and § 15). Grey squares indicate test combinations
which were not performed; for instance, tests are constrained such that query lengths are always equal to or shorter
than reference lengths.

15



Barnes Smith-Waterman GPU Landscape

Central Processing Unit; CUDA: Compute Uni-
fied Device Architecture (programming language);
DNA: A fault-tolerant biological data storage for-
mat represented digitally with the characters A,
C, G, T; DP: Dynamic Programming, the fine art
of filling in matrices; FASTA: A file format used
for storing DNA and RNA data; FPGA: Field-
Programmable Gate Array; GCUPS: Billion Cell
Updates per Second; GPU: Graphics Processing
Unit; OpenGL: Open Graphics Library; RAM:
Random Access Memory; RNA: A fault-prone bio-
logical data storage format used to encode proteins;
SIMD: Single Instruction Multiple Data; SIMT:
Single-instruction, Multiple-Thread; SM: Stream-
ing Multiprocessor; SSD: Solid-State Hard-Drive;
SSE2: Streaming SIMD Extensions 2; SW: Smith-
Waterman

12. Software Availability

We have compiled the source code for 22 of the pa-
pers discussed here into a single repository. Many
of the repositories include minor to major changes
necessary to get the code to compile on a modern
(Lubuntu 20.04) operating system. Each reposi-
tory has been modified to use the cmake build sys-
tem and benchmarking code has been added. The
repository is available at: https://github.com

/r-barnes/sw comparison. In addition, we
have developed Alignment Boilerplate (https://
github.com/r-barnes/alignment boilerplate),
a well-documented, unit-tested package to reduce
boilerplate in alignment software.

13. Acknowledgments

RB was supported by the Department of En-
ergy’s Computational Science Graduate Fellowship
(Grant No. DE-FG02-97ER25308) and, through the
Berkeley Institute for Data Science’s PhD Fellow-
ship, by the Gordon and Betty Moore Foundation
(Grant GBMF3834) and by the Alfred P. Sloan
Foundation (Grant 2013-10-27).

Empirical tests were performed on the Titan
and Summitdev supercomputers managed by Oak
Ridge National Laboratory’s Leadership Comput-
ing Facility; the Cori supercomputer managed by
the National Energy Research Scientific Comput-
ing Center (NERSC), a U.S. Department of En-
ergy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231; and XSEDE’s

Comet supercomputer [86], which is supported by
the National Science Foundation (Grant No. ACI-
1053575) and was available to RB through the NSF
Graduate Research Fellowship.

Katherine Yelick and Aydın Buluç provided valu-
able input on the development of this project, as
did Marquita Ellis and Muuaz Awan. Fernanda
Foertter helped us upstream our modifications to
NVBIO; Miheer Vaidya helped with these modifi-
cations. Kelly Kochanski helped proof the work.

14. Bibliography

References

[1] Ahmed, N., Lévy, J., Ren, S., Mushtaq, H., Bertels,
K., Al-Ars, Z., Dec. 2019. GASAL2: a GPU acceler-
ated sequence alignment library for high-throughput
NGS data. BMC Bioinformatics 20 (1), 520. doi:
10.1186/s12859-019-3086-9

[2] Akoglu, A., Striemer, G. M., Sep. 2009. Scalable and
highly parallel implementation of Smith-Waterman on
graphics processing unit using CUDA. Cluster Comput-
ing 12 (3), 341–352. doi: 10.1007/s10586-009-0089-8

[3] Aluru, S., Futamura, N., Mehrotra, K., 2003. Parallel
biological sequence comparison using prefix computa-
tions. Journal of Parallel and Distributed Computing
63 (3), 264 – 272. doi: 10.1016/S0743-7315(03)00010-8

[4] Azad, A., Pavlopoulos, G. A., Ouzounis, C. A.,
Kyrpides, N. C., Buluç, A., 01 2018. HipMCL:
a high-performance parallel implementation of the
Markov clustering algorithm for large-scale net-
works. Nucleic Acids Research 46 (6), e33–e33. doi:
10.1093/nar/gkx1313

[5] Benner, S. A., Cohen, M. A., Gonnet, G. H., 1993.
Empirical and structural models for insertions and
deletions in the divergent evolution of proteins. Jour-
nal of Molecular Biology 229 (4), 1065 – 1082. doi:
10.1006/jmbi.1993.1105

[6] Burrows, M., Wheeler, D. J., 1994. A block-sorting loss-
less data compression algorithm. Tech. rep.

[7] Bustamam, A., Ardaneswari, G., Lestari, D., Sep.
2013. Implementation of CUDA GPU-based parallel
computing on Smith-Waterman algorithm to sequence
database searches. In: 2013 International Conference on
Advanced Computer Science and Information Systems
(ICACSIS). IEEE, Sanur Bali, Indonesia, pp. 137–142.
doi: 10.1109/ICACSIS.2013.6761565

[8] Cartwright, R. A., Dec. 2006. Logarithmic gap costs de-
crease alignment accuracy. BMC Bioinformatics 7 (1),
527. doi: 10.1186/1471-2105-7-527

[9] Czumaj, A., 1996. Very fast approximation of the
matrix chain product problem. Journal of Algorithms
21 (1), 71 – 79. doi: 10.1006/jagm.1996.0037

[10] David, M., Dzamba, M., Lister, D., Ilie, L., Brudno,
M., Apr. 2011. SHRiMP2: Sensitive yet practical short
read mapping. Bioinformatics 27 (7), 1011–1012. doi:
10.1093/bioinformatics/btr046

[11] Dayhoff, M., Schwartz, R., Orcutt, B., 1978. Chap-
ter 22: A model of evolutionary change in proteins.

16

https://github.com/r-barnes/sw_comparison
https://github.com/r-barnes/sw_comparison
https://github.com/r-barnes/alignment_boilerplate
https://github.com/r-barnes/alignment_boilerplate
http://dx.doi.org/10.1186/s12859-019-3086-9
http://dx.doi.org/10.1007/s10586-009-0089-8
http://dx.doi.org/10.1016/S0743-7315(03)00010-8
http://dx.doi.org/10.1093/nar/gkx1313
http://dx.doi.org/10.1006/jmbi.1993.1105
http://dx.doi.org/10.1109/ICACSIS.2013.6761565
http://dx.doi.org/10.1186/1471-2105-7-527
http://dx.doi.org/10.1006/jagm.1996.0037
http://dx.doi.org/10.1093/bioinformatics/btr046


Barnes Smith-Waterman GPU Landscape

In: Atlas of Protein Sequence and Structure. National
Biomedical Research Foundation, pp. 345–352.

[12] Dicker, A., Sibandze, B., Kelly, C., Mache, D.,
2014. Viability of the parallel prefix algorithm for se-
quence alignment on massively parallel GPUs. Pro-
ceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applica-
tions (PDPTA), 1–4. URL https://search.proques

t.com/docview/1649687963

[13] Ding, N., Williams, S., 2019. An instruction roofline
model for gpus. In: 2019 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS). pp. 7–18.

[14] Döring, A., Weese, D., Rausch, T., Reinert, K., Jan
2008. Seqan an efficient, generic c++ library for se-
quence analysis. BMC Bioinformatics 9 (1), 11. doi:
10.1186/1471-2105-9-11

[15] Eddy, S. R., Aug 2004. Where did the BLOSUM62
alignment score matrix come from? Nature Biotech-
nology 22 (8), 1035–1036. doi: 10.1038/nbt0804-1035

[16] Ellis, M., Guidi, G., Buluç, A., Oliker, L., Yelick, K.,
2019. DiBELLA: Distributed long read to long read
alignment. In: Proceedings of the 48th International
Conference on Parallel Processing. ICPP 2019. Associ-
ation for Computing Machinery, New York, NY, USA.
doi: 10.1145/3337821.3337919

[17] Farrar, M., Jan. 2007. Striped Smith-Waterman speeds
database searches six times over other SIMD im-
plementations. Bioinformatics 23 (2), 156–161. doi:
10.1093/bioinformatics/btl582

[18] Fei, X., Dan, Z., Lina, L., Xin, M., Chun-
lei, Z., Mar. 2018. FPGASW: Accelerating Large-
Scale Smith–Waterman Sequence Alignment Applica-
tion with Backtracking on FPGA Linear Systolic Array.
Interdisciplinary Sciences: Computational Life Sciences
10 (1), 176–188. doi: 10.1007/s12539-017-0225-8

[19] Galil, Z., Giancarlo, R., 1989. Speeding up dynamic
programming with applications to molecular biology.
Theoretical Computer Science 64 (1), 107 – 118. doi:
10.1016/0304-3975(89)90101-1

[20] Gotoh, O., 1982. An improved algorithm for match-
ing biological sequences. Journal of Molecular Biology
162 (3), 705 – 708. doi: 10.1016/0022-2836(82)90398-9

[21] Gotoh, O., Mar. 2000. Homology-based gene structure
prediction: simplified matching algorithm using a trans-
lated codon (tron) and improved accuracy by allow-
ing for long gaps. Bioinformatics 16 (3), 190–202. doi:
10.1093/bioinformatics/16.3.190

[22] Gu, X., Li, W.-H., Apr. 1995. The size distribution of
insertions and deletions in human and rodent pseudo-
genes suggests the logarithmic gap penalty for sequence
alignment. Journal of Molecular Evolution 40 (4), 464–
473. doi: 10.1007/BF00164032

[23] Guidi, G., Ellis, M., Rokhsar, D., Yelick, K., Buluç, A.,
2020. BELLA: Berkeley efficient long-read to long-read
aligner and overlapper. bioRxiv. doi: 10.1101/464420

[24] Gupta, P., 2012. Swift: A GPU-based Smith-Waterman
sequence alignment program.

[25] Hains, D., Cashero, Z., Ottenberg, M., Bohm, W.,
Rajopadhye, S., May 2011. Improving CUDASW++,
a parallelization of Smith-Waterman for CUDA en-
abled devices. In: 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and
Phd Forum. IEEE, Anchorage, AK, USA, pp. 490–501.
doi: 10.1109/IPDPS.2011.182

[26] He, S., Malfatti, S. A., McFarland, J. W., Anderson,
F. E., Pati, A., Huntemann, M., Tremblay, J., Glav-
ina del Rio, T., Waldrop, M. P., Windham-Myers,
L., Tringe, S. G., 2015. Patterns in wetland microbial
community composition and functional gene repertoire
associated with methane emissions. mBio 6 (3). doi:
10.1128/mBio.00066-15

[27] Henikoff, S., Henikoff, J. G., Nov 1992. Amino acid
substitution matrices from protein blocks. Proceed-
ings of the National Academy of Sciences of the
United States of America 89 (22), 10915–10919. doi:
10.1073/pnas.89.22.10915

[28] Hess, M., Keul, F., Goesele, M., Hamacher, K., Apr
2016. Addressing inaccuracies in BLOSUM compu-
tation improves homology search performance. BMC
Bioinformatics 17, 189–189. doi: 10.1186/s12859-016-
1060-3

[29] Hu, T. C., Shing, M. T., 1982. Computation of matrix
chain products. Part I. SIAM Journal on Computing
11 (2), 362–373. doi: 10.1137/0211028

[30] Huang, L.-T., Wu, C.-C., Lai, L.-F., Li, Y.-J.,
2015. Improving the Mapping of Smith-Waterman
Sequence Database Searches onto CUDA-Enabled
GPUs. BioMed Research International 2015, 1–10. doi:
10.1155/2015/185179

[31] Jia, Z., Maggioni, M., Smith, J., Scarpazza, D. P., 2019.
Dissecting the Nvidia Turing T4 GPU via microbench-
marking. arXiv:1903.07486.

[32] Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D. P.,
2018. Dissecting the Nvidia Volta GPU architecture via
microbenchmarking. arXiv: 1804.06826.

[33] Jones, D. T., Taylor, W. R., Thornton, J. M., 06 1992.
The rapid generation of mutation data matrices from
protein sequences. Bioinformatics 8 (3), 275–282. doi:
10.1093/bioinformatics/8.3.275

[34] Khajeh-Saeed, A., Poole, S., Blair Perot, J., Jun.
2010. Acceleration of the Smith–Waterman algorithm
using single and multiple graphics processors. Journal
of Computational Physics 229 (11), 4247–4258. doi:
10.1016/j.jcp.2010.02.009

[35] Kirilov, V., 2020. doctest: C++ testing framework. ht
tps://github.com/onqtam/doctest, v2.4.0, 1c8da00.

[36] Klus, P., Lam, S., Lyberg, D., Cheung, M., Pullan,
G., McFarlane, I., Yeo, G. S., Lam, B. Y., 2012. Bar-
raCUDA - a fast short read sequence aligner using
graphics processing units. BMC Research Notes 5 (1),
27. doi: 10.1186/1756-0500-5-27

[37] Krommydas, K., Feng, W.-c., Antonopoulos, C. D.,
Bellas, N., Dec. 2016. OpenDwarfs: Characterization
of Dwarf-Based Benchmarks on Fixed and Reconfig-
urable Architectures. Journal of Signal Processing Sys-
tems 85 (3), 373–392. doi: 10.1007/s11265-015-1051-z

[38] Langmead, B., Salzberg, S. L., 2012. Fast gapped-read
alignment with Bowtie 2. Nature Methods 9 (4), 357–
359. doi: 10.1038/nmeth.1923

[39] Ligowski, L., Rudnicki, W., May 2009. An ef-
ficient implementation of Smith Waterman algo-
rithm on GPU using CUDA, for massively par-
allel scanning of sequence databases. In: 2009
IEEE International Symposium on Parallel & Dis-
tributed Processing. IEEE, Rome, Italy, pp. 1–8. doi:
10.1109/IPDPS.2009.5160931

[40] Ling, C., Benkrid, K., Hamada, T., Jul. 2009. A pa-
rameterisable and scalable Smith-Waterman algorithm
implementation on CUDA-compatible GPUs. In: 2009

17

https://search.proquest.com/docview/1649687963
https://search.proquest.com/docview/1649687963
http://dx.doi.org/10.1186/1471-2105-9-11
http://dx.doi.org/10.1038/nbt0804-1035
http://dx.doi.org/10.1145/3337821.3337919
http://dx.doi.org/10.1093/bioinformatics/btl582
http://dx.doi.org/10.1007/s12539-017-0225-8
http://dx.doi.org/10.1016/0304-3975(89)90101-1
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://dx.doi.org/10.1093/bioinformatics/16.3.190
http://dx.doi.org/10.1007/BF00164032
http://dx.doi.org/10.1101/464420
http://dx.doi.org/10.1109/IPDPS.2011.182
http://dx.doi.org/10.1128/mBio.00066-15
http://dx.doi.org/10.1073/pnas.89.22.10915
http://dx.doi.org/10.1186/s12859-016-1060-3
http://dx.doi.org/10.1186/s12859-016-1060-3
http://dx.doi.org/10.1137/0211028
http://dx.doi.org/10.1155/2015/185179
http://dx.doi.org/10.1093/bioinformatics/8.3.275
http://dx.doi.org/10.1016/j.jcp.2010.02.009
https://github.com/onqtam/doctest
https://github.com/onqtam/doctest
http://dx.doi.org/10.1186/1756-0500-5-27
http://dx.doi.org/10.1007/s11265-015-1051-z
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1109/IPDPS.2009.5160931


Barnes Smith-Waterman GPU Landscape

IEEE 7th Symposium on Application Specific Pro-
cessors. IEEE, San Francisco, CA, pp. 94–100. doi:
10.1109/SASP.2009.5226343

[41] Liu, Y., Huang, W., Johnson, J., Vaidya, S., 2006.
GPU Accelerated Smith-Waterman. In: Hutchison, D.,
Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F.,
Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Ran-
gan, C., Steffen, B., Sudan, M., Terzopoulos, D., Ty-
gar, D., Vardi, M. Y., Weikum, G., Alexandrov, V. N.,
van Albada, G. D., Sloot, P. M. A., Dongarra, J.
(Eds.), Computational Science – ICCS 2006. Vol. 3994.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 188–
195. doi: 10.1007/11758549 29

[42] Liu, Y., Maskell, D. L., Schmidt, B., 2009. CU-
DASW++: optimizing Smith-Waterman sequence
database searches for CUDA-enabled graphics pro-
cessing units. BMC Research Notes 2 (1), 73. doi:
10.1186/1756-0500-2-73

[43] Liu, Y., Schmidt, B., Mar. 2015. GSWABE:
faster GPU-accelerated sequence alignment with op-
timal alignment retrieval for short DNA sequences:
GSWABE: faster GPU-accelerated sequence alignment
with optimal alignment retrieval for short DNA se-
quences. Concurrency and Computation: Practice and
Experience 27 (4), 958–972. doi: 10.1002/cpe.3371

[44] Liu, Y., Schmidt, B., Maskell, D. L., Dec. 2010.
CUDASW++2.0: enhanced Smith-Waterman protein
database search on CUDA-enabled GPUs based on
SIMT and virtualized SIMD abstractions. BMC Re-
search Notes 3 (1), 93. doi: 10.1186/1756-0500-3-93

[45] Liu, Y., Wirawan, A., Schmidt, B., Dec. 2013. CU-
DASW++ 3.0: accelerating Smith-Waterman protein
database search by coupling CPU and GPU SIMD
instructions. BMC Bioinformatics 14 (1), 117. doi:
10.1186/1471-2105-14-117

[46] Luo, R., Wong, T., Zhu, J., Liu, C.-M., Zhu, X., Wu,
E., Lee, L.-K., Lin, H., Zhu, W., Cheung, D. W., Ting,
H.-F., Yiu, S.-M., Peng, S., Yu, C., Li, Y., Li, R., Lam,
T.-W., May 2013. SOAP3-dp: Fast, Accurate and Sen-
sitive GPU-Based Short Read Aligner. PLoS ONE 8 (5),
e65632. doi: 10.1371/journal.pone.0065632

[47] Manavski, S. A., Valle, G., Mar. 2008. CUDA compat-
ible GPU cards as efficient hardware accelerators for
Smith-Waterman sequence alignment. BMC Bioinfor-
matics 9 (S2), S10. doi: 10.1186/1471-2105-9-S2-S10

[48] Marcos, N., 2014. Efficient GPU implementation of
bioinformatics applications. Master’s thesis, Instituto
Superior Técnico, Department of Information Systems
and Computer Engineering, Lisbon, Portugal.

[49] Miller, W., Myers, E. W., Mar. 1988. Sequence
comparison with concave weighting functions. Bul-
letin of Mathematical Biology 50 (2), 97–120. doi:
10.1007/BF02459948

[50] Munekawa, Y., Ino, F., Hagihara, K., Oct. 2008. De-
sign and implementation of the Smith-Waterman al-
gorithm on the CUDA-compatible GPU. In: 2008 8th
IEEE International Conference on BioInformatics and
BioEngineering. IEEE, Athens, Greece, pp. 1–6. doi:
10.1109/BIBE.2008.4696721

[51] Myers, E. W., Miller, W., 03 1988. Optimal align-
ments in linear space. Bioinformatics 4 (1), 11–17. doi:
10.1093/bioinformatics/4.1.11

[52] Müller, A., Schmidt, B., Hildebrandt, A., Mem-
barth, R., Leißa, R., Kruse, M., Hack, S., Feb. 2020.
AnySeq: A high performance sequence alignment li-

brary based on partial evaluation. arXiv:2002.04561
[cs]ArXiv: 2002.04561.

[53] Okada, D., Ino, F., Hagihara, K., Dec. 2015. Accel-
erating the Smith-Waterman algorithm with interpair
pruning and band optimization for the all-pairs com-
parison of base sequences. BMC Bioinformatics 16 (1),
321. doi: 10.1186/s12859-015-0744-4

[54] Okonechnikov, K., Golosova, O., Fursov, M., The
UGENE Team, Feb. 2012. Unipro UGENE: a uni-
fied bioinformatics toolkit. Bioinformatics 28 (8), 1166–
1167. doi: 10.1093/bioinformatics/bts091

[55] Pantaleoni, J., Subtil, N., Barnes, R., Vaidya, M.,
Chen-Zhihui, Foertter, F., Rehfeld, H., 2015. Nvbio.
https://github.com/NVlabs/nvbio.

[56] Peltonen, L., McKusick, V. A., 2001. Dissecting hu-
man disease in the postgenomic era. Science 291 (5507),
1224–1229. doi: 10.1126/science.291.5507.1224

[57] Prasad, D. V. V., Jaganathan, S., Jul. 2019. Improv-
ing the performance of Smith–Waterman sequence al-
gorithm on GPU using shared memory for biological
protein sequences. Cluster Computing 22 (S4), 9495–
9504. doi: 10.1007/s10586-018-2421-7

[58] Prousalis, K., Konofaos, N., 2017. Quantum pattern
recognition for local sequence alignment. In: 2017 IEEE
Globecom Workshops (GC Wkshps). IEEE, pp. 1–5.

[59] Pérez-Serrano, J., Sandes, E. F., Magalhaes Alves de
Melo, A. C., Ujaldón, M., Nov. 2018. DNA se-
quences alignment in multi-GPUs: acceleration and en-
ergy payoff. BMC Bioinformatics 19 (S14), 421. doi:
10.1186/s12859-018-2389-6

[60] Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf,
K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez,
F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li,
D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y.,
Tap, J., Lepage, P., Bertalan, M., Batto, J.-M., Hansen,
T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pel-
letier, E., Renault, P., Sicheritz-Ponten, T., Turner, K.,
Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y.,
Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak,
S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O.,
Parkhill, J., Weissenbach, J., Antolin, M., Artiguenave,
F., Blottiere, H., Borruel, N., Bruls, T., Casellas, F.,
Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G.,
Dervyn, R., Forte, M., Friss, C., van de Guchte, M.,
Guedon, E., Haimet, F., Jamet, A., Juste, C., Kaci, G.,
Kleerebezem, M., Knol, J., Kristensen, M., Layec, S.,
Le Roux, K., Leclerc, M., Maguin, E., Melo Minardi,
R., Oozeer, R., Rescigno, M., Sanchez, N., Tims, S.,
Torrejon, T., Varela, E., de Vos, W., Winogradsky, Y.,
Zoetendal, E., Bork, P., Ehrlich, S. D., Wang, J., Con-
sortium, M., Mar 2010. A human gut microbial gene
catalogue established by metagenomic sequencing. Na-
ture 464 (7285), 59–65. doi: 10.1038/nature08821

[61] Rice Genome Sequencing Project International, 2005.
The map-based sequence of the rice genome. Nature
436 (7052), 793.

[62] Rognes, T., Dec. 2011. Faster Smith-Waterman
database searches with inter-sequence SIMD par-
allelisation. BMC Bioinformatics 12 (1), 221. doi:
10.1186/1471-2105-12-221

[63] Rucci, E., De Giusti, A., Naiouf, M., Botella, G., Gar-
cia, C., Prieto-Matias, M., Sep. 2014. Smith-Waterman
algorithm on heterogeneous systems: A case study. In:
2014 IEEE International Conference on Cluster Com-
puting (CLUSTER). IEEE, Madrid, Spain, pp. 323–

18

http://dx.doi.org/10.1109/SASP.2009.5226343
http://dx.doi.org/10.1007/11758549_29
http://dx.doi.org/10.1186/1756-0500-2-73
http://dx.doi.org/10.1002/cpe.3371
http://dx.doi.org/10.1186/1756-0500-3-93
http://dx.doi.org/10.1186/1471-2105-14-117
http://dx.doi.org/10.1371/journal.pone.0065632
http://dx.doi.org/10.1186/1471-2105-9-S2-S10
http://dx.doi.org/10.1007/BF02459948
http://dx.doi.org/10.1109/BIBE.2008.4696721
http://dx.doi.org/10.1093/bioinformatics/4.1.11
http://dx.doi.org/10.1186/s12859-015-0744-4
http://dx.doi.org/10.1093/bioinformatics/bts091
https://github.com/NVlabs/nvbio
http://dx.doi.org/10.1126/science.291.5507.1224
http://dx.doi.org/10.1007/s10586-018-2421-7
http://dx.doi.org/10.1186/s12859-018-2389-6
http://dx.doi.org/10.1038/nature08821
http://dx.doi.org/10.1186/1471-2105-12-221


Barnes Smith-Waterman GPU Landscape

330. doi: 10.1109/CLUSTER.2014.6968784
[64] Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf,

M., Prieto-Matias, M., Nov. 2018. SWIFOLD: Smith-
Waterman implementation on FPGA with OpenCL for
long DNA sequences. BMC Systems Biology 12 (S5),
96. doi: 10.1186/s12918-018-0614-6

[65] Rucci, E., Garcia Sanchez, C., Botella Juan, G., Giusti,
A. D., Naiouf, M., Prieto-Matias, M., Apr. 2018.
SWIMM 2.0: Enhanced Smith–Waterman on Intel’s
Multicore and Manycore Architectures Based on AVX-
512 Vector Extensions. International Journal of Paral-
lel Programming 47 (2), 296–316. doi: 10.1007/s10766-
018-0585-7

[66] Rucci, E., Garćıa, C., Botella, G., De Giusti, A., Naiouf,
M., Prieto-Mat́ıas, M., Dec. 2015. An energy-aware per-
formance analysis of SWIMM: Smith-Waterman imple-
mentation on intel’s multicore and manycore architec-
tures. Concurrency and Computation: Practice and Ex-
perience 27 (18), 5517–5537. doi: 10.1002/cpe.3598

[67] Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M.,
Sidow, A., Brudno, M., May 2009. SHRiMP: Accu-
rate mapping of short color-space reads. PLoS Com-
putational Biology 5 (5), e1000386. doi: 10.1371/jour-
nal.pcbi.1000386

[68] Sandes, E. F., de Melo, A. C. M., May 2011.
Smith-Waterman Alignment of Huge Sequences with
GPU in Linear Space. IEEE, pp. 1199–1211. doi:
10.1109/IPDPS.2011.114

[69] Sandes, E. F., de Melo, A. C. M., May 2013. Re-
trieving Smith-Waterman Alignments with Optimiza-
tions for Megabase Biological Sequences Using GPU.
IEEE Transactions on Parallel and Distributed Systems
24 (5), 1009–1021. doi: 10.1109/TPDS.2012.194

[70] Sandes, E. F., Melo, A. C. M. d., 2010. CUDAlign: us-
ing GPU to accelerate the comparison of megabase ge-
nomic sequences. p. 10. doi: 10.1145/1693453.1693473

[71] Sandes, E. F., Miranda, G., Martorell, X., Ayguade, E.,
Teodoro, G., De Melo, A. C. M. A., Feb. 2016. MASA:
A Multiplatform Architecture for Sequence Aligners
with Block Pruning. ACM Transactions on Parallel
Computing 2 (4), 1–31. doi: 10.1145/2858656

[72] Sandes, E. F., Miranda, G., Martorell, X., Ayguade,
E., Teodoro, G., Melo, A. C. M., Oct. 2016. CU-
DAlign 4.0: Incremental speculative traceback for
exact chromosome-wide alignment in GPU clusters.
IEEE Transactions on Parallel and Distributed Systems
27 (10), 2838–2850. doi: 10.1109/TPDS.2016.2515597

[73] Sandes, E. F., Miranda, G., Melo, A. C., Mar-
torell, X., Ayguade, E., 2014. Fine-grain parallel
megabase sequence comparison with multiple het-
erogeneous GPUs. ACM Press, pp. 383–384. doi:
10.1145/2555243.2555280

[74] Sandes, E. F., Miranda, G., Melo, A. C. d., Martorell,
X., Ayguade, E., May 2014. CUDAlign 3.0: Parallel
biological sequence comparison in large GPU clusters.
IEEE, pp. 160–169. doi: 10.1109/CCGrid.2014.18

[75] Sandes, E. F., Teodoro, G. L. M., Walter, M. E. M. T.,
Martorell, X., Ayguade, E., Melo, A. C. M. A., May
2018. Formalization of block pruning: Reducing the
number of cells computed in exact biological sequence
comparison algorithms. The Computer Journal 61 (5),
687–713. doi: 10.1093/comjnl/bxx090

[76] Schreiner, H., 2020. CLI11: Command line parser for
C++11. https://github.com/CLIUtils/CLI11, v1.9.1,
5cb3efa.

[77] Sjölund, E., Lindahl, E., 2016. diagonalsw. https://gi
thub.com/eriksjolund/diagonalsw.

[78] Smith, T., Waterman, M., Mar. 1981. Identification
of common molecular subsequences. Journal of Molec-
ular Biology 147 (1), 195–197. doi: 10.1016/0022-
2836(81)90087-5

[79] States, D. J., Gish, W., Altschul, S. F., 1991. Im-
proved sensitivity of nucleic acid database searches us-
ing application-specific scoring matrices. Methods 3 (1),
66 – 70. doi: 10.1016/S1046-2023(05)80165-3

[80] Steinfadt, S., Dec. 2013. Fine-grained parallel im-
plementations for SWAMP+ Smith–Waterman align-
ment. Parallel Computing 39 (12), 819–833. doi:
10.1016/j.parco.2013.08.008

[81] Striemer, G., Akoglu, A., May 2009. Sequence align-
ment with GPU: Performance and design challenges.
In: 2009 IEEE International Symposium on Parallel
& Distributed Processing. IEEE, Rome, pp. 1–10. doi:
10.1109/IPDPS.2009.5161066

[82] Styczynski, M. P., Jensen, K. L., Rigoutsos, I.,
Stephanopoulos, G., Mar 2008. BLOSUM62 miscalcu-
lations improve search performance. Nature Biotechnol-
ogy 26 (3), 274–275. doi: 10.1038/nbt0308-274

[83] Sung, W.-K., 2009. Algorithms in Bioinformatics: A
Practical Introduction. Chapman and Hall/CRC.

[84] Szalkowski, A., Ledergerber, C., Krähenbühl, P., Dessi-
moz, C., 2008. SWPS3 – fast multi-threaded vectorized
Smith-Waterman for IBM Cell/B.E. and x86/SSE2.
BMC Research Notes 1 (1), 107. doi: 10.1186/1756-
0500-1-107

[85] Tatusova, T. A., Madden, T. L., 1999. BLAST 2 se-
quences, a new tool for comparing protein and nu-
cleotide sequences. FEMS microbiology letters 174 (2),
247–250.

[86] Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither,
K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka,
D., Peterson, G. D., Roskies, R., Scott, J. R., Wilkins-
Diehr, N., Sep. 2014. XSEDE: Accelerating Scientific
Discovery. Computing in Science & Engineering 16 (5),
62–74. doi: 10.1109/MCSE.2014.80

[87] Warris, S., Timal, N. R. N., Kempenaar, M., Poortinga,
A. M., van de Geest, H., Varbanescu, A. L., Nap,
J.-P., Jan. 2018. pyPaSWAS: Python-based multi-core
CPU and GPU sequence alignment. PLOS ONE 13 (1),
e0190279. doi: 10.1371/journal.pone.0190279

[88] Warris, S., Yalcin, F., Jackson, K. J. L., Nap, J. P., Apr.
2015. Flexible, Fast and Accurate Sequence Alignment
Profiling on GPGPU with PaSWAS. PLOS ONE 10 (4),
e0122524. doi: 10.1371/journal.pone.0122524

[89] Waterman, M. S., Jun. 1984. Efficient sequence
alignment algorithms. Journal of Theoretical Biology
108 (3), 333–337. doi: 10.1016/S0022-5193(84)80037-5

[90] Williams, L., Kudrjavets, G., Nagappan, N., 2009. On
the effectiveness of unit test automation at Microsoft.
In: 2009 20th International Symposium on Software
Reliability Engineering. pp. 81–89. doi: 10.1109/IS-
SRE.2009.32

[91] Wirawan, A., Kwoh, C. K., Hieu, N. T., Schmidt,
B., Sep 2008. CBESW: Sequence alignment on the
playstation 3. BMC Bioinformatics 9 (1), 377. doi:
10.1186/1471-2105-9-377

[92] Yelick, K. A., Oliker, L., Awan, M. G., 2020. GPU ac-
celerated Smith-Waterman for performing batch align-
ments (GPU-BSW) v1.0. https://www.osti.gov/bib
lio/1580217. doi: 10.11578/dc.20191223.1

19

http://dx.doi.org/10.1109/CLUSTER.2014.6968784
http://dx.doi.org/10.1186/s12918-018-0614-6
http://dx.doi.org/10.1007/s10766-018-0585-7
http://dx.doi.org/10.1007/s10766-018-0585-7
http://dx.doi.org/10.1002/cpe.3598
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://dx.doi.org/10.1109/IPDPS.2011.114
http://dx.doi.org/10.1109/TPDS.2012.194
http://dx.doi.org/10.1145/1693453.1693473
http://dx.doi.org/10.1145/2858656
http://dx.doi.org/10.1109/TPDS.2016.2515597
http://dx.doi.org/10.1145/2555243.2555280
http://dx.doi.org/10.1109/CCGrid.2014.18
http://dx.doi.org/10.1093/comjnl/bxx090
https://github.com/CLIUtils/CLI11
https://github.com/eriksjolund/diagonalsw
https://github.com/eriksjolund/diagonalsw
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/S1046-2023(05)80165-3
http://dx.doi.org/10.1016/j.parco.2013.08.008
http://dx.doi.org/10.1109/IPDPS.2009.5161066
http://dx.doi.org/10.1038/nbt0308-274
http://dx.doi.org/10.1186/1756-0500-1-107
http://dx.doi.org/10.1186/1756-0500-1-107
http://dx.doi.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1371/journal.pone.0190279
http://dx.doi.org/10.1371/journal.pone.0122524
http://dx.doi.org/10.1016/S0022-5193(84)80037-5
http://dx.doi.org/10.1109/ISSRE.2009.32
http://dx.doi.org/10.1109/ISSRE.2009.32
http://dx.doi.org/10.1186/1471-2105-9-377
https://www.osti.gov/biblio/1580217
https://www.osti.gov/biblio/1580217
http://dx.doi.org/10.11578/dc.20191223.1


Barnes Smith-Waterman GPU Landscape

[93] Yongchao Liu, Schmidt, B., Feb. 2014. CUSHAW2-
GPU: Empowering faster gapped short-read alignment
using GPU computing. IEEE Design & Test 31 (1), 31–
39. doi: 10.1109/MDAT.2013.2284198

[94] Zeni, A., Guidi, G., Ellis, M., Ding, N., Santambrogio,
M. D., Hofmeyr, S., Buluç, A., Oliker, L., Yelick, K.,
2020. LOGAN: High-performance GPU-based X-Drop
long-read alignment. arXiv:2002.05200.

[95] Zhang, Z., Schwartz, S., Wagner, L., Miller, W., 2000.
A greedy algorithm for aligning dna sequences. Jour-
nal of Computational Biology 7 (1-2), 203–214, pMID:
10890397. doi: 10.1089/10665270050081478

[96] Zhao, M., Lee, W.-P., Garrison, E. P., Marth,
G. T., Dec. 2013. SSW Library: An SIMD Smith-
Waterman C/C++ Library for Use in Genomic Appli-
cations. PLOS ONE 8 (12), e82138. doi: 10.1371/jour-
nal.pone.0082138

[97] Zou, H., Tang, S., Yu, C., Fu, H., Li, Y., Tang,
W., 2019. ASW: Accelerating Smith-Waterman algo-
rithm on coupled CPU-GPU architecture. International
Journal of Parallel Programming 47 (3), 388–402. doi:
10.1007/s10766-018-0617-3

20

http://dx.doi.org/10.1109/MDAT.2013.2284198
http://dx.doi.org/10.1089/10665270050081478
http://dx.doi.org/10.1371/journal.pone.0082138
http://dx.doi.org/10.1371/journal.pone.0082138
http://dx.doi.org/10.1007/s10766-018-0617-3


B
a
r
n
e
s

S
m
it
h
-W

a
t
e
r
m
a
n
G
P
U

L
a
n
d
sc

a
p
e

Table 2: Aspects of CPU and GPU sequencing software

Name Year Tech H
a
s

C
o
d

e?

C
o
m

p
il
es

?

H
a
s

T
es

ts
?

L
ib

ra
ry

?

K
n

o
w

n
to

C
ra

sh
?

P
en

a
lt

y

M
o
ti

f

M
a
tr

ix

T
ra

ce
b

a
ck

?

L
en

g
th

s

F-2007* [17] 2007 SSE2 7 affine S1:1 BLS 7 ((1H–6H)v364)x208K
F SWPS3 [84] 2008 SSE2 3 3 7 3 affine S1:1 BLS 7 ((1H–4K)v359)x360K
SHRiMP [67] 2009 SIMD 7 affine M:1 MM 7 (35v??)x135M
SHRiMP2 [10] 2011 SIMD 3 3 7 7 affine M:1 MM 3 (75v??)x6M
F SWIPE [62] 2011 SSSE3 3 3 7 7 affine M:1 BLS 7 (375v326)x5M

C
P

U

bowtie2 [38] 2012 3 3 7 7
F SSW [96] 2013 SIMD 3 3 7 3 affine S1:1 BLS 3 (1Hv100M)x1K
SWIMM [63] 2014 Xeon Phi 7 affine M:1 BLS 7 ((1H–5K)v355)x541K
SWIMM [66] 2015 Xeon Phi 3 3 7 7 affine BLS 7
F DiagonalSW [77] 2016 SSE4/AltiVec 3 3 7 7 affine M:1 BLS 7 ??

SWIMM2.0 [65] 2018 AVX512 3 7§15.15 7 7 affine M:1 BLS 7 ((1H–5K)v335)x710K
LHJV-2006* [41] 2006 OpenGL 7 double M:1 BLS 3 (16Kv471)x983
MIH-2008* [50] 2008 CUDA 7 linear§15.2 M:1 ?? 7 ((63–511)v362)x90M
SWCUDA [47] 2008 CUDA 3 7 7 7 affine M1:1 BLS 7 ((63–5H)v366)x250K
Liu2009* [42] 2009 CUDA 7 affine M:1 BLS 7 ((144–59K)v??)x??
AS-2009* [2] 2009 CUDA 7 linear M:1 BLS 7 ((4–1K)v??)x393K
LR-2009* [39] 2009 CUDA 7 affine M:1 BLS 7 ((10–1K)v1K)x389K
GSW [81] 2009 CUDA 3 3 7 7 3§15.10 linear M:1 BLS 7 ((4–1K)v??)x393K
LBH-2009* [40] 2009 CUDA 7 linear M:1 BLS 7 ((63–4K))v??)x400K
CUDAlign1.0 [70] 2010 CUDA 7 affine S1:1 MM 7 ((2H–33M)v(2H–47M))x1
F CUDASW++ 2.0 [44] 2010 CUDA 3 3 7 7 3§15.11 affine M:1 BLS 7 ((1H–5K))v??)x406K
KPP-2010* [34] 2010 CUDA 3 3 7 7 3§15.14 affine S1:1 MM 3 1Kv(10M–10G)
HBR-2011* [25] 2011 CUDA 7 linear M:1 BLS 7 ((10–5K))v??)x400K
CUDAlign2.0 [68] 2011 CUDA 7 affine S1:1 MM 3 ((2H–33M)v(2H–47M))x1
BarraCUDA [36] 2012 CUDA 3 3 7 7 affine M:1 MM 7 ((37–67)v102M
SWIFT [24] 2012 CUDA 3 3* 3 7 3§15.9 affine ?? MM 7 (1Hv3B)x14M

G
P

U

BAL-2013* [7] 2013 CUDA 7 affine M:1 BLS 7 ((1H–2K)v??)x400K
CUDAlign2.1 [69] 2013 CUDA 7 affine S1:1 MM 3 ((162K–59M)v(162K–59M))x1
CUSHAW2-GPU [93] 2014 CUDA 3 3 7 7 affine M:1 MM 3 ((1H–2H)v3G)x1M
MASA [73] 2014 CUDA 7 affine S1:1 MM 3 ((46M–64M)v(46M–64M))x1
CUDAlign3.0 [74] 2014 CUDA 7 affine S1:1 MM 3 (228M v 228M)x1
PaSWAS [88] 2015 CUDA 3 3* 7 7 linear M:1 BLS 3 (5v360)x402K
F SW# [53] 2015 CUDA 3 3 7 3 3§15.12 affine S1:1 MM 7 ((5M–64M)v(5M–64M))x1
HWLL-2015* [30] 2015 CUDA 7 affine M:1 BLS 7 ??
F NVBIO [55] 2015 CUDA 7§15.7 3 3 3 3§15.7 affine M:1 BLS 3
CUDAlign4.0 [72] 2016 CUDA 7 affine S1:1 MM 3 (249M v 249M)x1
MASA/CUDAlign [71] 2016 CUDA 3 3 7 3 affine S1:1 MM 3

F GASAL2 [1] 2019 CUDA 3 3 7 3 3§15.4 affine M1:1 MM 3 ((1H–3H)v(2H–6H))x10M
PJ-2019* [57] 2019 CUDA 7 affine§15.3 M:1 ?? 3 ((60–10K)v(3K–20K))x14K
F GPU-BSW [92] 2020 CUDA 3 3 7 7 3§15.5 affine M1:1 BLS 7 (1Kv1K)x30K
ugene [54] 2020 CUDA 3 3 3 7 3§15.8 affine M:1 BLS 3 ??

21



B
a
r
n
e
s

S
m
it
h
-W

a
t
e
r
m
a
n
G
P
U

L
a
n
d
sc

a
p
e

Table 2 (continued) — Aspects of CPU and GPU sequencing software

Name Year Tech H
a
s

C
o
d

e?

C
o
m

p
il
es

?

H
a
s

T
es

ts
?

L
ib

ra
ry

?

K
n

o
w

n
to

C
ra

sh
?

P
en

a
lt

y

M
o
ti

f

M
a
tr

ix

T
ra

ce
b

a
ck

?

L
en

g
th

s

AnySeq [52] 2020 AnyDSL 3 7§15.1 7 7 affine M/S 1:1 MM 3 (50Mv50M) & (1Hv1H)x13M

F CUDASW++ 3.0 [45] 2013 SSE/CUDA 3 3 7 7 3§15.6 affine M:M BLS 7 ((1H–5K)v355)x539K
SOAP3 [46] 2013 3 3 7 3 affine M:1?
M-2014* [48] 2014 7 ?? ?? ?? ??

C
P

U
+

G
P

U

pyPaSWAS [87] 2018 Python 3 3 3 7 affine M:M BLS ??

Table 2: Implementation summary. Names marked with a star (F ) are included in the performance comparison in § 9. Names labeled with asterisks (*)
correspond to works without a specific name; in this case, names have been generated based on the first authors’ last names and the year of publication.
Tech refers to the primary hardware or language features exploited by the implementation. Penalty refers to the gap penalties listed in § 2. Motif (§ 5) is
either Many-to-One (M:1), Single One-to-One (S1:1), or Many One-to-One (M1:1). Matrix refers to the substitution matrix (§ 3) which is either BLOSUM
(BLS) or Match-Mismatch (MM). Length denotes the lengths of the sequences compared. Suffices represent metric multipliers (H=Hundred, K=Thousand,
M=Million, G=Billion). Alignments between sequences of different lengths are denoted AvB where A and B are lengths or length ranges. The number N
of such alignments performed is denoted by xN. Averages are denoted with an overbar. “??” implies a value which could not be determined from either
the publication or the associated code.

22



Barnes Smith-Waterman GPU Landscape

15. Appendix: Software Issues

15.1. AnySeq

Reference: Müller et al. [52]

Builds for standard CPU.

Fails to build for AVX unless LLVM is recompiled
from source with RV support from https://gith

ub.com/cdl-saarland/rv. While doing so might
resolve the issue, this is likely too much effort for
most users to consider it feasible.

Fails to build for CUDA, raising the error mes-
sage: anyseq/src/traceback.impala:90 col 9

- 27: currently only pointers to arrays

supported as kernel argument; argument has

different type: qs32*

15.2. MIH-2008

Reference: Munekawa et al. [50]

Uses a linear penalty gap hard-coded to 1.

15.3. PJ-2019

Reference: Prasad and Jaganathan [57]

This algorithm seems to use the SW without the E
and F matrices, unacceptably increasing its com-
putational complexity.

15.4. GASAL2

Reference: Ahmed et al. [1]

b9addb6 crashes with CUDA errors when perform-
ing a traceback; this appears to be a memory allo-
cation issue. See https://github.com/nahmedraj

a/GASAL2/issues/5.

In both the score-only and find-start modes
CUDA illegal memory errors were returned when
trying to sequence (5Kv10K)x1M, (5Kv5K)x1M,
(10Kv10K)x1M, (5Kv10K)x1K, (5Kv5K)x1K,
(10Kv10K)x1K. During Traceback CUDA out-
of-memory errors were returned for both 1K
and 1M datasets of (100v5000), (100v10000),
(500v1000), (500v5000), (500v10000), (1000v5000),
(1000v10000), (5000v10000), (1000v1000),
(5000v5000), (10000v10000).

15.5. GPU-BSW

Reference: Yelick et al. [92]

cbe9ddd doesn’t describe its input format, leading
to immediate segfaults upon running. Compilation
targets a specific Nvidia Compute Capability re-
sulting in silent kernel failures on GPUs with other
compute capabilities due to unchecked errors. Dif-
ferences between the AA and DNA kernel suggest
a bug, though this does not manifest in an obvious
way. Sequences that are too long are silently trun-
cated. We fix these issues in a forked repository at
https://github.com/r-barnes/GPU-BSW.

15.6. CUDASW++3.0

Reference: Liu et al. [45]

Running with qprf=1 and no threads for
(1Kx10)v(10Kx1) and (1Kx10)v(5Kx10) gave
a CUDA invalid configuration argument er-
ror. Running with qprf=0 and no threads
for (1Kx10)v(10Kx1), (1Kx10)v(5Kx10), and
(100x1K)v(100x200) gave a CUDA invalid config-
uration argument and an invalid argument error.
For qprf=1 and 8 threads (1Kx100)v(100x200)
gave a malloc invalid next size error. A
number of other sizes were similarly affected.

15.7. NVBIO

Reference: Pantaleoni et al. [55]

9ea05dedd only compiles with CUDA 6.5 and GCC
4.8.2, making this difficult to compile on many mod-
ern operating systems. We made a large number of
changes (since upstreamed) to produce 5916f3ea,
which compiles with CUDA10 and GCC8. Unex-
pected inputs can lead to segfaults. Non-existent
input files give segfaults.

15.8. UGENE

Reference: Okonechnikov et al. [54]

bd87ca4 crashes when the UI is run, complaining
about missing language files. The CLI seems to run
fine.

15.9. SWIFT

Reference: Gupta [24]

Segfaults when run as swift -m 1 -M -4 -O -6

-E -1 -o /dev/null -q QUERYFILE -r REFFILE

where QUERYFILE and REFFILE are FASTA
files each of which contain 1,000 sequences of 300
bases.

23

https://github.com/cdl-saarland/rv
https://github.com/cdl-saarland/rv
https://github.com/nahmedraja/GASAL2/issues/5
https://github.com/nahmedraja/GASAL2/issues/5
https://github.com/r-barnes/GPU-BSW


Barnes Smith-Waterman GPU Landscape

15.10. GSW

Reference: Striemer and Akoglu [81]

Runs without crashing, but the query sequence is
hard-coded.

15.11. CUDASW++ 2.0

Reference: Liu et al. [44]

Raises a CUDA invalid argument error in SIMT
mode for (1Kx10)v(5Kx10) and (1Kx10)v(10Kx1).
Every attempt to use SIMD mode results in a
CUDA illegal argument error.

15.12. SW#

Reference: Okada et al. [53]

Trying to perform a GPU-only alignment between
to 5M base sequences gives a CUDA invalid argu-
ment error.

15.13. SWIMM

Reference: Rucci et al. [66]

Requires a Xeon Phi, which we did not have avail-
able during testing.

15.14. KPP-2010

Reference: Khajeh-Saeed et al. [34]

The program takes no inputs and ran for a half hour
before we manually terminated it.

15.15. SWIMM 2.0

Reference: Rucci et al. [65]

Requires the (non-free) Intel compiler, which was
not available to us at the time of testing.

24


	Introduction
	The Smith-Waterman Algorithm
	Constant/Linear Gap Penalty
	Affine Gap Penalty
	Double affine gap penalty
	Double affine gap penalty (another one)
	Logarithmic gap penalty
	Log-affine gap penalty
	General gap penalty
	Convex gap penalty

	Substitution Costs
	GPUs
	Memory
	Branching
	Page-Locked/Pinned Memory
	Streams
	Latency hiding and data starvation

	Motifs
	Combining Motifs

	Optimizations Employed
	Implementation Review
	Compilation
	Known to crash?
	Tests
	Is it a library?
	Design coverage

	Boilerplate
	Performance Comparison
	Future Work
	List of abbreviations
	Software Availability
	Acknowledgments
	Bibliography
	Appendix: Software Issues
	AnySeq
	MIH-2008
	PJ-2019
	GASAL2
	GPU-BSW
	CUDASW++3.0
	NVBIO
	UGENE
	SWIFT
	GSW
	CUDASW++ 2.0
	SW#
	SWIMM
	KPP-2010
	SWIMM 2.0


