
Optimization, Robustness and Risk-Sensitivity in Machine
Learning: A Dynamical Systems Perspective

Kamil Nar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-154
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-154.html

August 13, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Optimization, Robustness and Risk-Sensitivity in Machine Learning:
A Dynamical Systems Perspective

by

Kamil Nar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor S. Shankar Sastry, Chair
Professor Murat Arcak
Professor Anil Aswani

Summer 2020

Optimization, Robustness and Risk-Sensitivity in Machine Learning:
A Dynamical Systems Perspective

Copyright 2020
by

Kamil Nar

1

Abstract

Optimization, Robustness and Risk-Sensitivity in Machine Learning:
A Dynamical Systems Perspective

by

Kamil Nar

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Training models that are multi-layer or recursive, such as neural networks or dynamical system
models, entails solving a nonconvex optimization problem in machine learning. These nonconvex
problems are usually solved with iterative optimization algorithms, such as the gradient descent
algorithm or any of its variants. Once an iterative algorithm is involved, the dynamics of this
algorithm will become critical in determining the specific solution obtained for the optimization
problem. In this dissertation, we use tools from nonlinear and adaptive control theory to analyze
and understand how the dynamics of the training procedures affects the solutions obtained, and we
synthesize new methods to facilitate optimization, to provide robustness for the trained models, and
to help explain observed outcomes in a more accurate way.

By studying Lyapunov stability of the fixed points of the gradient descent algorithm, we show that
this algorithm can only yield a solution from a bounded class of functions when training multi-layer
models. We establish a relationship between the learning rate of the algorithm and the Lipschitz
constant of the function estimated by the multi-layer model. We also show that keeping every layer
of the model close to the identity operation boosts the stability of the optimization algorithm and
allows the use of larger learning rates.

We use a classical concept in system identification and adaptive control, namely, the persistence
of excitation, to study the robustness of multi-layer models. We show that when trained with the
gradient descent algorithm, robust estimation of the unknown parameters in a multi-layer model
requires not only the richness of the training data, but also the richness of the hidden-layer activations
throughout the training procedure. We derive necessary and sufficient richness conditions for the
signals in each layer of the model, and we show that these conditions are usually not satisfied by
models that have been naively trained with the gradient descent algorithm, since the signals in their
hidden layers become low-dimensional during training. By revisiting the common regularization
methods for single-layer models, reinterpreting them in terms of enhancing the richness of the
training data, and drawing an analogy for multi-layer models, we design a training mechanism

2

that provides the required richness for the signals in the hidden-layers of multi-layer models. This
training procedure leads to similar margin distributions for the training and test data for a neural
network trained for a classification task, indicating its effectiveness as a regularization method.

We study the dynamics of the gradient descent algorithm on dynamical systems as well. We show
that when learning the unknown parameters of an unstable dynamical system, the observations
taken from the system at different times influence the dynamics of the gradient descent algorithm
in substantially different degrees. In particular, the observations taken from the system near the
end of the time horizon imposes an exponentially strict constraint on the learning rate that could be
used for the gradient descent algorithm, whereas such small learning rates cannot recover the stable
modes of the system. We show that warping the observations of the system in a particular way and
creating risk-sensitivity in the observations remedies this imbalance and allows learning both the
stable and the unstable modes of a linear dynamical system.

The results in this dissertation lay out the strong connection between the machine learning problems
involving nonconvex optimization and the classical tools in nonlinear and adaptive control theory.
While analyses with Lyapunov stability and persistence of excitation are able to help understand and
enhance the machine learning models trained with iterative optimization algorithms, the major effect
of altering the training dynamics on multi-layer machine learning models indicates the potential for
improving system identification for dynamical systems by designing alternative loss functions.

i

To my parents, my sister Iraz, and my brother Ilgın.

ii

Contents

Contents ii

List of Figures iv

1 Introduction 1
1.1 Optimization for Learning . 2
1.2 Robustness for Learning . 4
1.3 Risk-Sensitivity for Learning . 10
1.4 Overview of Chapters . 11

2 Lyapunov Analysis for Training Multi-Layer Models 13
2.1 Introduction . 13
2.2 Upper Bounds on the Step Size for Training Deep Linear Networks 16
2.3 Identity Initialization for Estimating Symmetric Positive Definite Matrices 18
2.4 Effect of Step Size on Training Two-Layer Networks with ReLU Activations 19
2.5 Discussion . 21
2.6 Proofs . 21

3 Persistency of Excitation for Robustness of Multi-Layer Models 27
3.1 Introduction . 27
3.2 Deep Linear Networks . 29
3.3 Nonlinear Networks . 30
3.4 Reinterpreting Regularization for Single-layer and Multi-layer Models 32
3.5 Experimental Results . 34
3.6 Discussion . 35
3.7 Conclusion . 37
3.8 Proofs and Further Remarks . 38

4 Robustness of Models Trained with the Cross-Entropy Loss 49
4.1 Introduction . 49
4.2 Classification of Two Points with the Cross-Entropy Loss 51
4.3 Margins of Linear Classifiers Trained with the Cross-Entropy Loss 53

iii

4.4 Two-Layer Nonlinear Network Trained with the Cross-Entropy Loss 56
4.5 Low-Dimensionality of Hidden-Layer Activations 57
4.6 Differential Training for Linear Classifiers . 58
4.7 Experiments . 60
4.8 Discussion . 61
4.9 Proofs . 63

5 Learning Linear Dynamical Systems 78
5.1 Introduction . 78
5.2 Problem Formulation . 80
5.3 Learning with Squared-Error Loss . 82
5.4 Learning with Time-Weighted Logarithmic Loss 84
5.5 Experiments . 85
5.6 Discussion . 86
5.7 Conclusion . 88
5.8 Proofs and Further Remarks . 89

6 Learning Risk-Sensitive Value Functions with Sequential Decisions 98
6.1 Introduction . 98
6.2 Formulation of the Decision Problem . 99
6.3 Deriving Optimal Actions from the Value Function 100
6.4 Learning Parameters from a Hidden Markov Model 103
6.5 Learning Parameters for Nonnegative Actions . 106
6.6 Analysis of New York City Taxi Drivers . 106
6.7 Conclusion . 110

7 Conclusion and Future Directions 111

Bibliography 115

iv

List of Figures

1.1 Training error of a 20-layer and a 56-layer neural network on CIFAR-10 dataset. The
deeper network leads to a significantly larger training error. Step size of the gradient
descent is divided by 10 at iterations 32k and 48k; these instants are shown with the
dashed lines. Right after the step size is decreased, the training error plummets. It
cannot be the case that the parameters are slowly converging to a local optimum before
the step size is changed, nor can they be stuck near a local optimum or a saddle point,
because decreasing the step size would have further slowed down the convergence in
those cases. This behavior can only be explained by the fact that the initial step size is
too large for certain regions in the parameter space and the parameters keep oscillating
around a local optimum until the step size is changed. Once the step size is decreased,
the magnitude of the oscillations around the local optimum diminishes, and so does the
training error. The figure is adapted from (He et al., 2015). 2

1.2 The decision boundaries of a two-layer network trained with the cross-entropy loss and
the squared-error loss. The task is binary classification in R2; the orange clusters form
one class and the blue cluster represents the other class. Each plot shows the decision
boundaries for a different initialization, corresponding to a different random seed. The
network architecture, the optimization algorithm, and the training data are identical
within each plot; only the training loss functions are different. The networks trained
with the cross-entropy loss consistently have a substantially poorer margin. 6

1.3 Two different data sets on which a linear classifier is trained by minimizing the cross-
entropy loss using the gradient descent algorithm. The solid lines represent the decision
boundary of the classifier, which lie very close to the training data. Standard ingredients
of neural network training seem to cause extremely poor margin and lack of robustness
for linear classifiers as well. 7

1.4 Closed-loop representation of the dynamics of neural network training. Function fθ
represents the true mapping that we want to estimate, while fθ̂ represents the mapping
estimated via the gradient descent algorithm. Signal e denotes the training error of the
model estimated, and function h gives the update rule for the parameter estimates. . . . 9

1.5 Value function of an agent in prospect theory . 10

v

2.1 The function f(x) = (x2 + 1)(x − 1)2(x − 2)2 of Example 2. Since the smoothness
parameter of f at x = 1 is smaller than that at x = 2, the gradient descent algorithm
cannot converge to x = 2 but can converge to x = 1 for some values of the step size. If,
for example, the algorithm converges to an equilibrium from a randomly chosen initial
point with step size 0.3, then this equilibrium is almost surely x = 1. 14

2.2 Estimates of the function f obtained by training a two-layer neural network with two
different step sizes. [Top] When the step size of the gradient descent is δ = 2 · 10−4, the
algorithm converges to a fixed point, which provides an estimate f̂ close to f . [Bottom]
When the step size is δ = 3 · 10−4, the algorithm converges to an oscillation and not to
a fixed solution. That is, after sufficient training, the estimate keeps switching between
f̂odd and f̂even at each iteration. 20

3.1 Principal component analysis for the activations in the hidden layers of a 5-layer
convolutional neural network trained with the squared error loss. The plot displays the
variance explained by the first 80 principal components for each layer. The layers have
4704, 1800, 120 and 84 nodes, respectively. The rank of the activation patterns in the
upper layers are much lower than the number of nodes in those layers. 33

3.2 The effect of training with persistent excitation as described in Algorithm 1. Small
perturbations during training improves the margin for the training data. The larger
perturbations prevent the training error from reaching zero; however, they yield larger
margins on the test data. 36

3.3 The same network is trained in two different ways: by perturbing every layer of the
network as described in Algorithm 1 in order to boost the richness of the hidden-layer
activations, and by perturbing only the training data (the first layer) similar to adversarial
training. Perturbing only the first layer substantially increases the margin for the training
data; however, this is not reflected in the test data. In contrast, when all layers are
perturbed for improving the richness of the hidden-layer activations as outlined in
Algorithm 1, the margin of the training data becomes a good indicator of the margin of
the test data. 37

4.1 Orange and blue points represent the data from two different classes in R2. Cross-
entropy minimization for a linear classifier on the given training points leads to the
decision boundary shown with the solid line, which attains a very poor margin and is
almost orthogonal to the solution given by the SVM. 50

4.2 Classification boundaries obtained via differential training and cross-entropy minimiza-
tion. The margin recovered by cross-entropy minimization is worse than that is obtained
by differential training even when the training dataset is not low-dimensional. 61

4.3 The activations feeding into the soft-max layer could be considered as the features for a
linear classifier. Plot shows the cumulative variance explained for these features as a
function of the number of principal components used. Almost all the variance in the
features is captured by the first 20 principal components out of 84, which shows that
the input to the soft-max layer resides predominantly in a low-dimensional subspace. . 62

vi

4.4 Principal component analysis for all layers of the network trained with the cross-entropy
loss. The plot shows the variance explained versus number of principal components
used for each layer. 62

4.5 Stationary points of function f . 67

5.1 Typical plots of training error when mean-squared-error is used [top] and when time-
weighted logarithmic loss function is used [bottom]. 86

5.2 A linear system with three-dimensional state space is trained with mean-squared-error
loss [left] and time-weighted logarithmic loss [right]. The red stars show the eigenvalues
of the real system, whereas the green dots show the eigenvalues of the estimated system.
Earlier estimates of the eigenvalues are depicted with faded colors. Mean-squared-error
loss is able to find only the unstable mode, whereas the logarithmic loss function
discovers all three modes correctly. 87

5.3 A linear system with three-dimensional state space is trained with mean-squared-error
loss [left] and time-weighted logarithmic loss [right]. The red stars show the eigenvalues
of the real system, whereas the green dots show the eigenvalues of the estimated system.
Earlier estimates of the eigenvalues are depicted with faded colors. 88

5.4 A linear system with four-dimensional state space is trained with mean-squared-error
loss [left] and time-weighted logarithmic loss [right]. The red stars show the eigenvalues
of the real system, whereas the green dots show the eigenvalues of the estimated system.
Earlier estimates of the eigenvalues are depicted with faded colors. 89

6.1 Value function of prospect theory . 99
6.2 U(x; r1, r2) with p = 0.5, a = 1.5, b = 2, c = 1 when (r1, r2) = (1, 4) [top] and

(r1, r2) = (3, 2) [bottom]. 101
6.3 Graphical representation of sequential decision making 104
6.4 Work time and earning rate of the driver with ID No. 2010001271 for the week 20-26

April 2010 . 109
6.5 The estimate of the probability transition matrix . 110

7.1 Closed-loop dynamical system created by the iterative optimization algorithms em-
ployed during training of a machine learning model. 111

7.2 Exogenous perturbations injected into the dynamical system during identification of its
unknown parameters. 112

7.3 Exogenous perturbations injected into the layers of a neural network during training of
its parameters. 113

vii

Acknowledgments

First and foremost, I thank my advisor Shankar Sastry. His vision for research has molded my
research interests over the past six years, and his enthusiasm has been a constant source of motivation
during this time. It was his guidance that has helped me build the connection between the classical
tools in adaptive control and contemporary problems in machine learning, and this connection has
formed the backbone of this dissertation.

I thank my thesis and qualification examination committee, Murat Arcak, Anil Aswani and Peter
Bartlett, for their inputs and their support while working on this dissertation.

I am fortunate to have worked with Tamer Başar during my years at the University of Illinois.
This dissertation would not have been possible without the depth of understanding of control theory
and dynamical systems that I was exposed to while working with him at Illinois.

I am thankful for having had the support and encouragement of Lillian Ratliff and Roy Dong in
my first years at Berkeley. Our joint work with Lillian on prospect theory has become one of the
chapters in this dissertation.

Having the chance to teach a class on convex optimization and random processes undoubtedly
gave a deeper understanding on these subjects. It was pleasure to work with great professors while
teaching these classes: Kannan Ramchandran, Gireeja Ranade, Alex Bayen, and Laurent El Ghaoui.

I am also thankful for having had the chance to work with Yuan Xue and Andrew Dai during my
internship at Google Health. They introduced me to various interesting problems that were being
studied at Google, and they encouraged me to bring my own perspective to address these problems.
Our joint work produced as a result of this internship has also become one of the chapters in my
dissertation.

I also want to acknowledge the grants that financially supported my doctoral research. I
acknowledge the support received by the U.S. Office of Naval Research MURI grant N00014-16-1-
2710. I also acknowledge the support received by the Defense Advanced Research Projects Agency
award number FA8750-18-C-0101 for the design of high-confidence learning-enabled systems. I
am grateful for having worked along with Radha Poovendran and Claire Tomlin on these grants.

I also thank the members of my research group at Berkeley. The feedback I received from Eric
Mazumdar and Tyler Westenbroek has been very valuable in most projects I have worked on. I also
thank Oladapo Afolabi, Joseph Menke, Dexter Scobee, Joshua Achiam, David McPherson, Dorsa
Sadigh, Jaime Fernandez Fisac, Sam Burden, and all other members of the Semiautonomous group.

I also want to thank Shirley Salanio, Jessica Gamble and Yovana Gomez as they have helped me
navigate the graduate school throughout the past six years.

I am lucky to have had the support of great friends during my years at Berkeley. I cannot thank
enough to Orhan Ocal and Tugce Gurek for their constant support and encouragement for the past
six years. I also thank Ebru Toprak, Burak Eminoglu, Soner Sonmezoglu and Alper Ozgurluk.

Lastly, I am grateful for my parents, my sister Iraz, and my brother Ilgın. I would not have made
it this far if it was not for their love, support and encouragement.

1

Chapter 1

Introduction

A large class of supervised and unsupervised learning tasks in machine learning involves solving an
optimization problem (Hastie et al., 2009). For example, training a model for a supervised learning
task usually entails minimizing an objective defined as the empirical risk:

R(θ) =
1

N

N∑
i=1

`(yi, fθ(xi)),

where fθ is the model being used, θ is the parameters of the model, ` is the loss function that
quantifies the mismatch between the true labels and the estimated labels, and {(xi, yi)}Ni=1 is the
training data. Such optimization problems are in general solved with iterative algorithms, such as
the gradient descent algorithm, Newtons methods, or any of their variants.

When an iterative optimization algorithm is involved, there are a set of questions that naturally
arise:

1. Is there a fixed point of the algorithm?

2. If there is a fixed point of the algorithm, is it unique and under what conditions does the
algorithm converge to it?

3. If there are multiple fixed points, which point does the algorithm converge to?

If the optimization problem is strictly convex over a bounded region, the answers to these questions
are clear: there is a unique fixed point for the algorithm, and the algorithm converges to this unique
point from every initialization. This is the case, for example, when the parameters of fθ appear
linearly inside the model and the loss function ` is strictly convex.

On the other hand, when the objective function is nonconvex, as in the case of training neural
networks or dynamical system models, there will typically be multiple local optima, and each of
these local optima will be a fixed point for the optimization algorithm. In this case, the initialization
and the dynamics of the optimization algorithm will determine the solution obtained. Consequently,
properties of the model learned will depend on the dynamics of the optimization algorithm, and
conversely, the dynamics of the algorithm will be influenced by the model to be estimated.

CHAPTER 1. INTRODUCTION 2

In this dissertation, we look closely into the relationship between dynamical systems, machine
learning models, optimization, robustness, and risk-sensitivity.

1.1 Optimization for Learning
As a model whose training requires solving a nonconvex optimization problem, consider a neural
network. The depth of the neural network determines the size of the class of functions that it can
represent. As the depth is increased, this class of functions expands provided that the new layers are
able to express the identity mapping. Therefore, the minimum training error that can be achieved by
a network diminishes as its depth is increased. However, the training error of most neural networks
degrades in practice once the number of layers exceeds a certain value; and deeper networks start
to perform worse than their shallower counterparts, as shown in Figure 1.1 (He et al., 2015). This
deterioration in the training error with increased depth indicates a problem with the method used
for training the neural network; namely, a problem with the convergence of the gradient descent
algorithm.

0 10 20 30 40 50 60
Iteration (1e3)

5

10

15

20

Tr
ai

ni
ng

 e
rr

or
 (%

)

20-layer
56-layer

Figure 1.1: Training error of a 20-layer and a 56-layer neural network on CIFAR-10 dataset. The
deeper network leads to a significantly larger training error. Step size of the gradient descent is
divided by 10 at iterations 32k and 48k; these instants are shown with the dashed lines. Right after
the step size is decreased, the training error plummets. It cannot be the case that the parameters
are slowly converging to a local optimum before the step size is changed, nor can they be stuck
near a local optimum or a saddle point, because decreasing the step size would have further slowed
down the convergence in those cases. This behavior can only be explained by the fact that the initial
step size is too large for certain regions in the parameter space and the parameters keep oscillating
around a local optimum until the step size is changed. Once the step size is decreased, the magnitude
of the oscillations around the local optimum diminishes, and so does the training error. The figure is
adapted from (He et al., 2015).

CHAPTER 1. INTRODUCTION 3

When gradient descent is used to minimize a function, say f : Rn → R, it leads to a discrete-time
dynamical system:

x[k + 1] = x[k]− δ∇f(x[k]), (1.1)

where x[k] is the state of the system, which consists of the parameters updated by the algorithm,
and δ is the step size of the algorithm. Every fixed point of the system (1.1) is called an equilibrium
of the system, and they correspond to the critical points of the function f .

Unless f is a quadratic function of the parameters, the system described by (1.1) is either
a nonlinear system or a hybrid system that switches from one dynamics to another over time.
Consequently, the system (1.1) can exhibit behaviors that are typically observed in nonlinear and
hybrid systems, such as convergence to an orbit but not to a fixed point, or dependence of the
convergence on the initialization. The step size of the gradient descent algorithm has a critical effect
on these behaviors, as shown in the following two examples.

Example 1. Convergence to a periodic orbit: Consider the continuously differentiable and
convex function f(x) = 2

3
|x|3/2, which has a unique local minimum at the origin. The gradient

descent algorithm on this function yields

x[k + 1] =

{
x[k]− δ

√
x[k], x[k] ≥ 0,

x[k] + δ
√
−x[k], x[k] < 0.

As expected, the origin is the only equilibrium of this system. Interestingly, however, x[k] converges
to the origin only when the initial state x[0] belongs to a countable set S:

S =

{
0, δ2,−δ2,

3 +
√

5

2
δ2,−3 +

√
5

2
δ2, . . .

}
.

For all other initializations, x[k] converges to an oscillation between δ2/4 and −δ2/4. This implies
that, if the initial state x[0] is randomly drawn from a continuous distribution, then almost surely,
x[k] does not converge to the origin, yet |x[k]| converges to δ2/4. In other words, with probability
1, the state x[k] does not converge to a fixed point, such as a local optimum or a saddle point, even
though the estimation error converges to a finite non-optimal value.

Example 2. Dependence of convergence on the initialization: Consider the function f(x) =
xL where L ∈ N is an even number larger than 2. The gradient descent results in the system

x[k + 1] = x[k]− δLx[k]L−1.

The state x[k] converges to the origin if the initial state satisfies x[0]L−2 < (2/Lδ) and x[k] diverges
if x[0]L−2 > (2/Lδ).

These two examples demonstrate:

1. the convergence of training error does not imply the convergence of the gradient descent
algorithm to a local optimum or a saddle point,

2. the step size determines the magnitude of the oscillations if the algorithm converges to an
orbit but not to a fixed point,

CHAPTER 1. INTRODUCTION 4

3. the step size influences the convergence of the algorithm differently for each initialization.

Note that these are consequences of the nonlinear dynamics of the algorithm and not of the convexity
or nonconvexity of the function to be minimized. While both of the functions used in the examples
are convex, the identical behaviors are observed during the minimization of nonconvex cost functions
of neural networks as well. In fact, only these behaviors can provide a satisfactory explanation
for the phenomenon observed in Figure 1.1: right after the step size of the algorithm is decreased,
the training error plummets. It cannot be the case that the parameters are slowly converging to an
equilibrium right before the step size is changed, nor can they be stuck near a local optimum or a
saddle point, because if either were the case, decreasing the step size would have further slowed
down the convergence. These sharp falls can only be explained by the fact that the initial step size
is too large for some regions in the parameter space, and the parameters are oscillating around a
local optimum right before the step size is changed. Once the step size is decreased, the radius of
the oscillations around the equilibrium point diminishes, the distance to the equilibrium point in the
parameter space falls sharply, and consequently, so does the training error.

While training a deep neural network, the dynamical system created by the gradient descent will
usually have multiple equilibria, which coincide with the critical points of the training cost function.
Convergence to these equilibria is in general affected unequally by the step size. For example, for
a given step size, the algorithm might be able to converge to a subset of the local optima but not
to the others independent of the initializations. Therefore, the step size also plays a critical role in
understanding why some solutions are more likely to be obtained instead of the others when the
gradient descent algorithm is used.

1.2 Robustness for Learning
State-of-the-art neural networks provide high accuracy for plenty of machine learning tasks, but
their performance has proven vulnerable to small perturbations in their inputs (Szegedy et al., 2013).
This lack of robustness prohibits the use of neural networks in safety-critical applications such as
computer security, control of cyber-physical systems, self-driving cars, and medical prediction and
planning (Kurakin et al., 2016).

Given the combination of large number of training parameters, nonlinearity of the model,
nonconvexity of the optimization problem used for training, involvement of an iterative algorithm
for optimization, and high-dimensionality of the commonly used data sets, it is challenging to
pinpoint what particularly causes the lack of robustness in neural networks. It has been speculated
that the high nonlinearity of neural networks gives rise to this vulnerability (Szegedy et al., 2013),
but the fact that support vector machines with nonlinear feature mappings remain much more robust
against similar perturbations readily invalidates this claim (Goodfellow et al., 2015).

It has been observed that the lack of robustness is not a consequence of the depth of the network;
even networks with few layers are shown to produce drastically different outputs for almost identical
inputs. Comparison of this observation with the robustness of support vector machines has led to
the belief that neural networks might in fact not be introducing sufficient level of nonlinearity to

CHAPTER 1. INTRODUCTION 5

execute the learning tasks involved — since shallow networks function as an affine mapping in most
of their domains, whereas most feature mappings used in support vector machines are unarguably
nonlinear (Goodfellow et al., 2015). Although this belief still prevails, the level of nonlinearity is
not the only aspect that neural networks and support vector machines differ in. There are many other
factors these two structures do not share in common, and these factors might also account for their
dissimilarity in robustness.

One of the important yet overlooked differences between neural networks and support vector
machines is the first-line loss functions used in their training. For classification tasks, neural
networks are almost always trained with the cross-entropy loss, whereas training support vector
machines involves the hinge loss function (Hastie et al., 2009). This raises the question whether
the choice of training loss function, and in particular the cross-entropy loss function, is one of the
factors leading to the lack of robustness in neural networks. To provide a preliminary answer to this
question, we train a two-layer neural network for a binary classification task with two different loss
functions: the cross-entropy loss and the squared-error loss. Figure 1.2 demonstrates the decision
boundaries of the network trained with the two loss functions for different initializations. Even
though the network architecture, the training data, and the optimization algorithm are kept identical,
Figure 1.2 shows that the network trained with the cross-entropy loss consistently has a much
smaller margin than the network trained with the squared-error loss, and hence, it is less robust.

Figure 1.2 confirms that at least some ingredients of neural network training procedure have an
influence on the robustness of networks. Naturally, the next question to ask is whether the identical
training procedure could lead to a similar vulnerability in models that are different than neural
networks. Figure 1.3 illustrates two examples of a linear classifier trained with the cross-entropy
loss function and the gradient descent algorithm. It appears that the decision boundary of a linear
classifier could also have an extremely poor margin when it is trained in exactly the same way as
neural networks are trained.

To understand the observations in Figure 1.2 and Figure 1.3, we will first look into a concept
called persistency of excitation, and then explain how it relates to training neural networks.

1.2.1 Persistency of Excitation
Consider the training of a linear model with the squared-error loss:

min
θ

∑
i∈I
‖x>i θ − yi‖

2

2,

where {xi}i∈I is the set of training data in Rn and {yi}i∈I is the set of target values in R. This
problem is convex, and if the set {xi}i∈I spans whole Rn, the optimal value for θ will be unique.
We can use the gradient descent algorithm to find this optimal value:

θ ← θ − δ
∑

i∈I
xi(x

>
i θ − yi), (1.2)

where δ is some fixed step size. As long as δ is sufficiently small, the parameter estimate is
guaranteed to converge to the optimal value of θ.

CHAPTER 1. INTRODUCTION 6

0 15 30

0

15

30

cross-entropy loss
squared-error loss

0 15 30

0

15

30

cross-entropy loss
squared-error loss

0 15 30

0

15

30

cross-entropy loss
squared-error loss

0 15 30

0

15

30

cross-entropy loss
squared-error loss

0 15 30

0

15

30

cross-entropy loss
squared-error loss

0 15 30

0

15

30

cross-entropy loss
squared-error loss

Figure 1.2: The decision boundaries of a two-layer network trained with the cross-entropy loss
and the squared-error loss. The task is binary classification in R2; the orange clusters form one
class and the blue cluster represents the other class. Each plot shows the decision boundaries
for a different initialization, corresponding to a different random seed. The network architecture,
the optimization algorithm, and the training data are identical within each plot; only the training
loss functions are different. The networks trained with the cross-entropy loss consistently have a
substantially poorer margin.

CHAPTER 1. INTRODUCTION 7

100 0 100

100

0

100

30 0 30

30

60

90

Figure 1.3: Two different data sets on which a linear classifier is trained by minimizing the cross-
entropy loss using the gradient descent algorithm. The solid lines represent the decision boundary
of the classifier, which lie very close to the training data. Standard ingredients of neural network
training seem to cause extremely poor margin and lack of robustness for linear classifiers as well.

Now, assume for some reason the measurements are attenuated at each iteration of the gradient
descent algorithm. That is, the update rule (1.2) is followed at each iteration by

(xi, yi)← (αxi, αyi) ∀i ∈ I,

for some α ∈ (0, 1). In this case, the gradient descent algorithm will lose its ability to find the true
value of θ. For every initialization, the algorithm will still converge, the error term will still become
zero, but the parameters will not necessarily converge to the optimal θ.

This might seem like a contrived example, but it is a fundamental problem that arises in
various settings, such as identification and adaptive control of dynamical systems, optimization with
stochastic gradient methods, and exploration in multi-armed bandits.

• System identification and adaptive control: Consider a discrete-time linear dynamical
system:

xt+1 ← θxt + ut ∀t ∈ N, (1.3)

where xt ∈ R and ut ∈ R are the state and the input of the system at time t, and θ ∈ (0, 1) is
the unknown parameter of the system. Assume an estimator system of the form

x̂t+1 ← θ̂x̂t + ut ∀t ∈ N

is used to identify the value of θ by decreasing the distance between xt and x̂t over time with
the gradient descent algorithm. Then both xt and x̂t can decay to zero while θ̂ converges to
some value different than θ (Kumar and Varaiya, 1986).

CHAPTER 1. INTRODUCTION 8

• Stochastic gradient methods: Consider a convex function f(θ), which can be decomposed
as
∑

i∈I fi(θ), where each fi is also a convex function. Assume we use the following
stochastic gradient method with a fixed step size δ:

1. Randomly choose i ∈ I,

2. θt+1 ← θt − δ ∂
∂θ
fi(θ),

3. Scale down f(θ); in other words, set fi ← αtfi for all i ∈ I for some αt ∈ (0, 1),

4. Return to 1.

This algorithm does not necessarily converge to the optimal value for θ if αt attenuates f(θ)
too quickly (Bottou et al., 2018).

• Multi-armed bandits: Consider a two-armed bandit problem where the arms produce the
independent and identically distributed random processes {Xt}t∈N and {X̃t}t∈N with distinct
means; that is, EXt 6= EX̃t. Assume we try to solve

max
{dt}t∈N∈{0,1}N

E

(
lim
T→∞

1

T

T∑
t=1

(
dtXt + (1− dt)X̃t

))

by using a causal feedback mechanism f : N2 × R2 7→ {0, 1} that prescribes a decision at
time t ∈ N as:

dt = f
(
t,
∑t−1

t′=1
dt′ ,
∑t−1

t′=1
dt′Xt′ ,

∑t−1

t′=1
(1− dt′)X̃t′

)
.

If the feedback policy f decreases the frequency of pulling the arm with the lower average of
observed rewards too quickly, then the algorithm can fail to discover the arm with the higher
mean (Bubeck and Cesa-Bianchi, 2012).

In these three examples, there is an input, a signal, or an action that excites the unknown parame-
ters; that is, something that forces the parameters to release some information about themselves. We
observe that when this excitation decays too quickly, the online learning algorithm cannot receive
necessary amount of information about the parameters and fail to estimate them correctly. This
leads to a concept called persistency of excitation. For online algorithms to learn the unknown
parameters of a model correctly, the signals interacting with the parameter estimates need to remain
persistently exciting during the estimation procedure (Kumar and Varaiya, 1986; Sastry and Bodson,
1989). If this persistency of excitation condition is not satisfied, the error terms inside the learning
algorithm can become zero even if the parameters converge to a wrong value or do not converge at
all.

1.2.2 Connection Between Persistency of Excitation and Neural Networks
During training of a feedforward neural network, the iterative optimization algorithm involved
creates the dynamics of an online learning problem as shown in Figure 1.4. The function fθ

CHAPTER 1. INTRODUCTION 9

represents the true mapping with the ideal parameters, whereas fθ̂ denotes the estimate obtained
with the gradient descent algorithm. Assume that the neural network has L layers, and it is described
as

fθ(x) = fθL ◦ fθL−1
◦ · · · ◦ fθ1(x),

where fθk represents the operation the k-th layer of the network performs and θk stands for the
parameters of that particular layer for each k ∈ [L] = {1, 2, . . . , L}. Given a set of training data
{xi}i∈I , the parameters of the k-th layer, θk, are excited by the signals of the preceding layer
throughout the training, which are given as {fθk−1

◦ · · · ◦ fθ1(xi)}i∈I . Note that no matter how
large the training data set is, there is no strong reason for these signals in the intermediate layers
to remain persistently exciting during training, and we will show that they indeed do not remain
persistently exciting with standard training procedures. The consequence is that even if the training
error converges to zero, the estimated parameters may not be the same as the ideal parameters of the
true mapping, and they may not predict the output of the network accurately for unseen data.

u

✓̂

e
+

�

x

x̂

x = f✓(u)

x̂ = f✓̂(u)

✓̂ h(✓̂, e)

Figure 1.4: Closed-loop representation of the dynamics of neural network training. Function fθ
represents the true mapping that we want to estimate, while fθ̂ represents the mapping estimated
via the gradient descent algorithm. Signal e denotes the training error of the model estimated, and
function h gives the update rule for the parameter estimates.

We will see in the following chapters that there exist some conditions on the training data and
the hidden-layer activations which ensure the persistent excitation of the network parameters. Given
these conditions, convergence of training error to zero will imply the convergence of the estimate θ̂
to an optimal parameter θ that will induce the network to produce similar outputs for similar inputs.

The concept of persistency of excitation already provides an interpretation of Figure 1.2 and
Figure 1.3. Different training loss functions give rise to different dynamics for the gradient descent
algorithm; hence, they involve different conditions on the training data for the persistent excitation
of the parameters — some of which are easier to satisfy than the others. Moreover, for some loss
functions, even the linear models are not exempted from the restrictiveness of these conditions.

CHAPTER 1. INTRODUCTION 10

1.3 Risk-Sensitivity for Learning
Risk-sensitivity is an important concept in microeconomics and finance (Rubinstein, 2012). When
faced with uncertainty, the choices or actions of an agent could be risk-averse, risk-seeking or
risk-neutral. Given two choices with equal expected rewards but with different uncertainties, a
risk-averse agent chooses the choice with the less uncertainty, whereas a risk-seeking agent chooses
the one with the more uncertainty.

If the value of different outcomes for an agent is described by a utility function, the convexity
of this function reflects the risk-sensitivity of the agent. For risk-averse agents, this function is
concave; for risk-seeking agents, it is convex; and for risk-neutral agents, it is linear.

The classical decision models in economics, such as the expected utility theory (Rubinstein,
2012), assume that the values an agent assigns to different outcomes is not affected by the way the
outcomes are presented to the agent, and therefore, the risk-sensitivity of the agent is definite. On
the other hand, there exist models in behavioral economics, such as the prospect theory (Kahneman
and Tversky, 1979), which posit that the risk-sensitivity of the agent is affected by how the choices
are presented to the decision-makers and how the choice problem is framed by the decision-makers
with respect to their references. For example, the prospect theory argues that the risk attitudes of
people are also influenced by their reference point, and people tend to act more risk-averse when
making a choice between positive outcomes and more risk-seeking when making a choice between
negative outcomes. Consequently, the utility or the value function of the agent becomes concave in
the region for positive outcomes and convex in the region for negative outcomes, as demonstrated in
Figure 1.5.

Loss Gain

V
a

lu
e

0

Reference

Point

Figure 1.5: Value function of an agent in prospect theory

When an agent tries to maximize its reward over a time horizon, the utility, and consequently,
the risk-sensitivity of the agent affects the dynamics of the optimization procedure. For example,

CHAPTER 1. INTRODUCTION 11

consider the following problem:

max
θ∈Θ

T∑
t=1

U(xt)

subject to xt+1 = fθ(xt),

where U is the utility function of the agent, xt is the outcome observed by the agent at time t, T is
the length of the time horizon, Θ is the set of parameters the agent could choose from, and fθ is the
mapping describing the evolution of the outcomes based on the actions of the agent. Depending
on the mapping fθ, the outcomes observed by the agent could potentially grow exponentially large
towards the end of the horizon; and any slight change in the parameter θ could cause drastic changes
in the outcomes near the end of the horizon. In such a case, the concave or convex structure of
the utility U could balance the growth of xt, thereby improving the stability of the optimization
algorithm, or it could further magnify the changes in the outcome and render the convergence of the
algorithm to a fixed point challenging.

1.4 Overview of Chapters
In Chapter 2, we analyze the dynamics of the gradient descent algorithm when it is used for training
multi-layer models. By studying the Lyapunov stability of the distinct equilibria of the algorithm,
we establish a relationship between the learning rate of the algorithm and the set of solutions the
algorithm can converge to. We then show that keeping layers of the model close to the identity
mapping enables convergence of the algorithm with learning rates close to the maximum step size
allowed.

In Chapter 3, we study the robustness of neural networks trained with the squared-error loss
from the perspective of system identification. We analyze the relationship between the richness in
training data and hidden-layer activations during training and the robustness of the model obtained
at the end of training. We establish necessary and sufficient richness conditions on the training data
and the hidden-layer activations in order for the convergence of the gradient descent algorithm to
imply the boundedness of the model trained. We then demonstrate that these richness conditions are
not satisfied by naively trained networks as the signals in the hidden-layers of the network easily
become low-dimensional. To understand regularization of neural networks better, we revisit the
classical regularization methods for single-layer linear models and reinterpret them in terms of
boosting the richness of training data. Based on this analogy, and in light of the richness conditions
derived, we propose a new training algorithm for neural networks that improves the richness of the
signals passing through the parameters of the network during training. Lastly, we demonstrate that
the proposed algorithm yields comparable margin characteristics on the training and test data for a
network trained for classification with CIFAR-10 dataset.

In Chapter 4, we study the robustness of single-layer and multi-layer models trained with the
cross-entropy loss. We demonstrate that the removal of correctly classified training data from the
dynamics of the gradient descent algorithm exponentially quickly leads to extremely poor margins

CHAPTER 1. INTRODUCTION 12

for the classifiers trained with the cross-entropy loss. Similar to Chapter 3, we derive richness
conditions on the training data to ensure robustness of the models trained with the cross-entropy
loss.

In Chapter 5, we study the dynamics of the gradient descent algorithm when it is used for
training a dynamical system model with time-series data. By analyzing the Lyapunov stability
of the fixed points of the gradient descent algorithm, we reveal how differently the stable and
unstable modes of the dynamical system influence the stability of the gradient descent algorithm.
For unstable dynamical systems, we show that the observations collected from the system near the
end of the time horizon impose an exponentially strict bound on the learning rate that could be used
for the gradient descent algorithm. We then demonstrate that employing risk-sensitive observations
can address this imbalance and enable training unstable dynamical systems as well.

In Chapter 6, we study learning risk-sensitive utilities of an agent in a dynamic context. We build
a hidden Markov model to represent the evolution of the reference values of the agent, and estimate
their risk-sensitivity and the transition probabilities for their reference values by the expectation-
maximization algorithm. We then test the suggested algorithm on the data set of New York City taxi
drivers, and we demonstrate its ability to explain the trade-off the taxi drivers make when deciding
how long they drive each day based on their references.

Finally in Chapter 7, we summarize the key results in this dissertation and discuss possible
directions for future research.

13

Chapter 2

Lyapunov Analysis for Training
Multi-Layer Models

2.1 Introduction
Consider the nonconvex function f(x) = (x2 + 1)(x− 1)2(x− 2)2, which has two local minima
at x = 1 and x = 2 as shown in Figure 2.1. Note that these local minima are also the two of the
isolated equilibria of the dynamical system created by the gradient descent algorithm. The stability
of these equilibria in the sense of Lyapunov is determined by the step size of the algorithm. In
particular, since the smoothness parameter of f around these equilibria is 4 and 10, they are stable
only if the step size is smaller than 0.5 and 0.2, respectively, and the gradient descent algorithm can
converge to them only when these conditions are satisfied. Due to the difference in the largest step
size allowed for different equilibria, step size conveys information about the solution obtained by
the gradient descent algorithm. For example, if the algorithm converges to an equilibrium with step
size 0.3 from a randomly chosen initial point, then this equilibrium is almost surely x = 1.

Based on this observation, in this chapter, we study the gradient descent algorithm as a discrete-
time dynamical system during training deep neural networks, and we show the relationship between
the step size of the algorithm and the solutions that can be obtained with this algorithm. In particular,
we achieve the following:

1. We analyze the Lyapunov stability of the gradient descent algorithm on deep linear networks
and find different upper bounds on the step size that enable convergence to each solution. We
show that for every step size, the algorithm can converge to only a subset of the local optima,
and there are always some local optima that the algorithm cannot converge to independent of
the initialization.

2. We establish that for deep linear networks, there is a direct connection between the smoothness
parameter of the training loss function and the largest singular value of the estimated linear
function. In particular, we show that if the gradient descent algorithm can converge to a

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 14

f(x)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

0.0

0.1

0.2

0.3

0.4

f 2
(x

)

Figure 2.1: The function f(x) = (x2 + 1)(x − 1)2(x − 2)2 of Example 2. Since the smoothness
parameter of f at x = 1 is smaller than that at x = 2, the gradient descent algorithm cannot
converge to x = 2 but can converge to x = 1 for some values of the step size. If, for example, the
algorithm converges to an equilibrium from a randomly chosen initial point with step size 0.3, then
this equilibrium is almost surely x = 1.

solution with a large step size, the function estimated by the network must have small singular
values, and hence, the estimated function must have a small Lipschitz constant.

3. We show that symmetric positive definite matrices can be estimated with a deep linear network
by initializing the weight matrices as the identity, and this initialization allows the use of the
largest step size. Conversely, the algorithm is most likely to converge for an arbitrarily chosen
step size if the weight matrices are initialized as the identity.

4. We show that symmetric matrices with negative eigenvalues, on the other hand, cannot be
estimated with the identity initialization, and the gradient descent algorithm converges to the
closest positive semidefinite matrix in the Frobenius norm.

5. For 2-layer neural networks with ReLU activations, we obtain an explicit relationship between
the step size of the gradient descent algorithm and the output of the solution that the algorithm
can converge to.

The results in this chapter have appeared in (Nar and Sastry, 2018a).

2.1.1 Related work
It is a well-known problem that the gradient of the training cost function can become disproportionate
for different parameters when training a neural network. Several works in the literature tried
to address this problem. For example, changing the geometry of optimization was proposed in
(Neyshabur et al., 2017) and a regularized descent algorithm was proposed to prevent the gradients
from exploding and vanishing during training.

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 15

Deep residual networks, which is a specific class of neural networks, yielded exceptional results
in practice with their peculiar structure (He et al., 2016). By keeping each layer of the network
close to the identity function, these networks were able to attain lower training and test errors
as the depth of the network was increased. To explain their distinct behavior, the training cost
function of their linear versions was shown to possess some crucial properties (Hardt and Ma, 2016).
Later, equivalent results were also derived for nonlinear residual networks under certain conditions
(Bartlett et al., 2018a).

The effect of the step size on training neural networks was empirically investigated in (Daniel
et al., 2016). A step size adaptation scheme was proposed in (Rolinek and Martius, 2018) for the
stochastic gradient method and shown to outperform the training with a constant step size. Similarly,
some heuristic methods with variable step size were introduced and tested empirically in (Magoulas
et al., 1997) and (Jacobs, 1988).

Two-layer linear networks were first studied in (Baldi and Hornik, 1989). The analysis was
extended to deep linear networks in (Kawaguchi, 2016), and it was shown that all local optima of
these networks were also the global optima. It was discovered in (Hardt and Ma, 2016) that the only
critical points of these networks were actually the global optima as long as all layers remained close
to the identity function during training. The dynamics of training these networks were also analyzed
in (Saxe et al., 2013) and (Gunasekar et al., 2017) by assuming an infinitesimal step size and using
a continuous-time approximation to the dynamics.

Lyapunov analysis from the dynamical system theory (Khalil, 1996; Sastry, 2013), which is the
main tool for our results in this work, was used in the past to understand and improve the training of
neural networks – especially that of the recurrent neural networks (Michel et al., 1988; Matsuoka,
1992; Barabanov and Prokhorov, 2002). State-of-the-art feedforward networks, however, have not
been analyzed from this perspective.

We summarize the major differences between our contributions and the previous works as
follows:

1. We relate the vanishing and exploding gradients that arise during training feedforward
networks to the Lyapunov stability of the gradient descent algorithm.

2. Unlike the continuous-time analyses given in (Saxe et al., 2013) and (Gunasekar et al., 2017),
we study the discrete-time dynamics of the gradient descent with an emphasis on the step size.
By doing so, we obtain upper bounds on the step size to be used, and we show that the step
size restricts the set of local optima that the algorithm can converge to. Note that these results
cannot be obtained with a continuous-time approximation.

3. For deep linear networks with residual structure, (Hardt and Ma, 2016) shows that the gradient
of the cost function cannot vanish away from a global optimum. This is not enough, however,
to suggest the fast convergence of the algorithm. Given a fixed step size, the algorithm may
also converge to an oscillation around a local optimum. We rule out this possibility and
provide a step size so that the algorithm converges to a global optimum with a linear rate.

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 16

4. The convergence of the gradient descent algorithm was also studied in (Bartlett et al., 2018b)
for symmetric positive definite matrices independently of and concurrently with our prelimi-
nary work (Nar and Sastry, 2018b). However, unlike (Bartlett et al., 2018b), we explicitly
give a step size value for the algorithm to converge with a linear rate, and we emphasize the
fact that the identity initialization allows convergence with the largest step size.

2.2 Upper Bounds on the Step Size for Training Deep Linear
Networks

Deep linear networks are a special class of neural networks that do not contain nonlinear activations.
They represent a linear mapping and can be described by a multiplication of a set of matrices, namely,
WL · · ·W1, where Wi ∈ Rni×ni−1 for each i ∈ [L] := {1, 2, . . . , L}. Due to the multiplication of
different parameters, their training cost is never a quadratic function of the parameters, and therefore,
the dynamics of the gradient descent algorithm is always nonlinear during training of these networks.
For this reason, they provide a simple model to study some of the nonlinear behaviors observed
during neural network training.

Given a cost function `(WL · · ·W1), if point {Ŵi}i∈[L] is a local minimum, then {αiŴi}i∈[L] is
also a local minimum for every set of scalars {αi}i∈[L] that satisfy α1α2 · · ·αL = 1. Consequently,
independent of the specific choice of `, the training cost function have infinitely many local optima,
none of these local optima is isolated in the parameter space, and the cost function is not strongly
convex at any point in the parameter space.

Although multiple local optima attain the same training cost for deep linear networks, the
dynamics of the gradient descent algorithm exhibits distinct behaviors around these points. In
particular, the step size required to render each of these local optima stable in the sense of Lyapunov
is very different. Since the Lyapunov stability of a point is a necessary condition for the convergence
of the algorithm to that point, the step size that allows convergence to each solution is also different,
which is formalized in Theorem 2.1.

Theorem 2.1. Given a nonzero matrix R ∈ RnL×n0 and a set of points {xi}i∈[N] in Rn0 that satisfy
1
N

∑N
i=1 xix

>
i = I , assume that R is estimated as a multiplication of the matrices {Wj}j∈[L] by

minimizing the squared error loss

1

2N

∑N

i=1
‖Rxi −WLWL−1 . . .W2W1xi‖2

2 (2.1)

where Wj ∈ Rnj×nj−1 for all j ∈ [L]. Then the gradient descent algorithm with random initializa-
tion can converge to a solution {Ŵj}j∈[L] only if the step size δ satisfies

δ ≤ 2∑L
j=1 p

2
j−1q

2
j+1

(2.2)

where
pj =

∥∥Ŵj · · · Ŵ2Ŵ1v
∥∥, qj =

∥∥u>ŴLŴL−1 · · · Ŵj

∥∥ ∀j ∈ [L],

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 17

and u and v are the left and right singular vectors of R̂ = ŴL · · · Ŵ1 corresponding to its largest
singular value.

Considering all the solutions {αiŴi}i∈[L] that satisfy α1α2 · · ·αL = 1, the bound in (2.2)
can be arbitrarily small for some of the local optima. Therefore, given a fixed step size δ, the
gradient descent can converge to only a subset of the local optima, and there are always some
solutions that the gradient descent cannot converge to independent of the initialization.

Remark 2.1. Theorem 1 provides a necessary condition for convergence to a specific solution. It
rules out the possibility of converging to a large subset of the local optima; however, it does not
state that given a step size δ, the algorithm converges to a solution which satisfies (2.2). It might be
the case, for example, that the algorithm converges to an oscillation around a local optimum which
violates (2.2) even though there are some other local optima which satisfy (2.2).

As a necessary condition for the convergence to a global optimum, we can also find an upper
bound on the step size independent of the weight matrices of the solution, which is given next.

Corollary 2.1. For the minimization problem in Theorem 1, the gradient descent algorithm with
random initialization can converge to a global optimum only if the step size δ satisfies

δ ≤ 2

Lρ(R)2(L−1)/L
, (2.3)

where ρ(R) is the largest singular value of R.

Remark 2.2. Corollary 2.1 shows that, unlike the optimization of the ordinary least squares problem,
the step size required for the convergence of the algorithm depends on the parameter to be estimated,
R. Consequently, estimating linear mappings with larger singular values requires the use of a
smaller step size. Conversely, the step size used during training gives information about the solution
obtained if the algorithm converges. That is, if the algorithm has converged with a large step size,
then the Lipschitz constant of the function estimated must be small.

Corollary 2.2. Assume that the gradient descent algorithm with random initialization has converged
to a local optimum R̂ = ŴL . . . Ŵ1 for the minimization problem in Theorem 1. Then the largest
singular value of R̂ satisfies

ρ(R̂) ≤
(

2

Lδ

)L/(2L−2)

almost surely.

The smoothness parameter of the training cost function is directly related to the largest step size
that can be used, and consequently, to the Lyapunov stability of the gradient descent algorithm. The
denominators of the upper bounds (2.2) and (2.3) in Theorem 2.1 and Corollary 2.1 necessarily
provide a lower bound for the smoothness parameter of the training cost function around corre-
sponding local optima. As a result, Theorem 2.1 implies that there is no finite Lipschitz constant for
the gradient of the training cost function over the whole parameter space.

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 18

2.3 Identity Initialization for Estimating Symmetric Positive
Definite Matrices

Corollary 2.1 provides only a necessary condition for the convergence of the gradient descent
algorithm, and the bound (2.3) is not tight for every estimation problem. However, if the matrix to
be estimated is symmetric and positive definite, the algorithm can converge to a solution with step
sizes close to (2.3), which requires a specific initialization of the weight parameters.

Theorem 2.2. Assume that R ∈ Rn×n is a symmetric positive semidefinite matrix, and given a set
of points {xi}i∈[N] which satisfy 1

N

∑N
i=1 xix

>
i = I , the matrix R is estimated as a multiplication of

the square matrices {Wj}j∈[L] by minimizing

1

2N

N∑
i=1

‖Rxi −WL . . .W1xi‖2
2.

If the weight parameters are initialized as Wi[0] = I for all i ∈ [L] and the step size satisfies

δ ≤ min

{
1

L
,

1

Lρ(R)2(L−1)/L

}
,

then each Wi converges to R1/L with a linear rate.

Remark 2.3. Theorem 2.2 shows that the algorithm converges to a global optimum despite the
nonconvexity of the optimization, and it provides a case where the bound (2.3) is almost tight.
The tightness of the bound implies that for the same step size, most of the other global optima are
unstable in the sense of Lyapunov, and therefore, the algorithm cannot converge to them independent
of the initialization. Consequently, using identity initialization allows convergence to a solution
which is most likely to be stable for an arbitrarily chosen step size.

Remark 2.4. Given that the identity initialization on deep linear networks is equivalent to the zero
initialization of linear residual networks (Hardt and Ma, 2016), Theorem 2.2 provides an explanation
for the exceptional performance of deep residual networks as well (He et al., 2016).

When the matrix to be estimated is symmetric but not positive semidefinite, the bound (2.3)
is still tight for some of the global optima. In this case, however, the eigenvalues of the estimate
cannot attain negative values if the weight matrices are initialized with the identity.

Theorem 2.3. Let R ∈ Rn×n in Theorem 2.2 be a symmetric matrix such that the minimum
eigenvalue of R, λmin(R), is negative. If the weight parameters are initialized as Wi[0] = I for all
i ∈ [L] and the step size satisfies

δ ≤ min

{
1

1− λmin(R)
,

1

L
,

1

Lρ(R)2(L−1)/L

}
,

then the estimate R̂ = ŴL · · · Ŵ1 converges to the closest positive semidefinite matrix to R in
Frobenius norm.

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 19

From the analysis of symmetric matrices, we observe that the step size required for convergence
to a global optimum is largest when the largest singular vector of R is amplified or attenuated
equally at each layer of the network. If the initialization of the weight matrices happens to affect this
vector in the opposite ways, i.e., if some of the layers attenuate this vector and the others amplify
this vector, then the required step size for convergence could be very small.

2.4 Effect of Step Size on Training Two-Layer Networks with
ReLU Activations

In Section 2.2, we analyzed the relationship between the step size of the gradient descent algorithm
and the solutions that can be obtained by training deep linear networks. A similar relationship exists
for nonlinear networks as well. The following theorem, for example, provides an upper bound
on the step size for the convergence of the algorithm when the network has two layers and ReLU
activations.

Theorem 2.4. Given a set of points {xi}i∈[N] in Rn, let a function f : Rn → Rm be estimated by a
two-layer neural network with ReLU activations by minimizing the squared error loss:

min
W,V

1

2

∑N

i=1
‖Wg(V xi − b)− f(xi)‖2

2,

where g(·) is the ReLU function, b ∈ Rr is the fixed bias vector, and the optimization is only over
the weight parameters W ∈ Rm×r and V ∈ Rr×n. If the gradient descent algorithm with random
initialization converges to a solution (Ŵ , V̂), then the estimate f̂(x) = Ŵg(V̂ x− b) satisfies

max
i∈[N]

‖xi‖2‖f̂(xi)‖2 ≤
1

δ

almost surely.

Theorem 2.4 shows that if the algorithm is able to converge with a large step size, then the
estimate f̂(x) must have a small magnitude for large values of ‖x‖.

Similar to Corollary 2.1, the bound given by Theorem 2.4 is not necessarily tight. Nevertheless,
it highlights the effect of the step size on the convergence of the algorithm. To demonstrate that small
changes in the step size could lead to significantly different solutions, we generated a piecewise
continuous function f : [0, 1]→ R and estimated it with a two-layer network by minimizing∑N

i=1
|Wg (V xi − b)− f (xi)|2

with two different step sizes δ ∈ {2 · 10−4, 3 · 10−4}, where W ∈ R1×20, V ∈ R20, b ∈ R20,
N = 1000 and xi = i/N for all i ∈ [N]. The initial values of W,V and the constant vector b were
all drawn from independent standard normal distributions; and the vector b was kept the same for
both of the step sizes used. As shown in Figure 2.2, training with δ = 2 · 10−4 converged to a fixed

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 20

solution, which provided an estimate f̂ close the original function f . In contrast, training with
δ = 3 · 10−4 converged to an oscillation and not to a fixed point. That is, after sufficient training, the
estimate kept switching between f̂odd and f̂even at each iteration of the gradient descent. The code
for the experiment is available at https://github.com/nar-k/NIPS-2018.

0 0.2 0.4 0.6 0.8 1.0
x

1.8

2.3

2.8

3.3

3.8
δ= 2 · 10−4

f(x)

f̂(x)

0 0.2 0.4 0.6 0.8 1.0
x

1.8

2.3

2.8

3.3

3.8
δ= 3 · 10−4

f(x)

f̂odd(x)

f̂even(x)

Figure 2.2: Estimates of the function f obtained by training a two-layer neural network with two
different step sizes. [Top] When the step size of the gradient descent is δ = 2 · 10−4, the algorithm
converges to a fixed point, which provides an estimate f̂ close to f . [Bottom] When the step size
is δ = 3 · 10−4, the algorithm converges to an oscillation and not to a fixed solution. That is, after
sufficient training, the estimate keeps switching between f̂odd and f̂even at each iteration.

https://github.com/nar-k/NIPS-2018

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 21

2.5 Discussion
When gradient descent algorithm is used to minimize a function, typically only three possibilities
are considered: convergence to a local optimum, to a global optimum, or to a saddle point. In
this chapter, we considered the fourth possibility: the algorithm may not converge at all – even
in the deterministic setting. The training error may not reflect the oscillations in the dynamics,
or when a stochastic optimization method is used, the oscillations in the training error might be
wrongly attributed to the stochasticity of the algorithm. We underlined that, if the training error of
an algorithm converges to a non-optimal value, that does not imply the algorithm is stuck near a bad
local optimum or a saddle point; it might simply be the case that the algorithm has not converged at
all.

We showed that the step size of the gradient descent algorithm influences the dynamics of the
algorithm substantially. It renders some of the local optima unstable in the sense of Lyapunov, and
the algorithm cannot converge to these points independent of the initialization. It also determines
the magnitude of the oscillations if the algorithm converges to an orbit around an equilibrium point
in the parameter space.

In Corollary 2.2 and Theorem 2.4, we showed that the step size required for convergence to
a specific solution depends on the solution itself. In particular, we showed that there is a direct
connection between the smoothness parameter of the training loss function and the Lipschitz
constant of the function estimated by the network. This reveals that some solutions, such as linear
functions with large singular values, are harder to converge to. Given that there exists a relationship
between the Lipschitz constants of the estimated functions and their generalization error (Bartlett
et al., 2017), this result could provide a better understanding of the generalization of deep neural
networks.

The analysis in this chapter was limited to the gradient descent algorithm. It remains as an
important open problem to investigate if the results in this work have analogs for the stochastic
gradient methods and the algorithms with adaptive step sizes.

2.6 Proofs
This section provides the proofs for the theorems and the corollaries of this chapter.

2.6.1 Proof of Theorem 2.1 and Corollary 2.1
Lemma 2.1. Let A,B ∈ Rn×n be symmetric and positive semidefinite. Then, 〈A,B〉 ≥ 0.

Proof. We can write B as B =
∑n

i=1 λiuiu
>
i , where λi ≥ 0 for all i ∈ [n] and u>i uj = 0 if i 6= j.

Then,
〈A,B〉 = trace {AB} = trace

{
A
∑n

i=1
λiuiu

>
i

}
=
∑n

i=1
λiu
>
i Aui ≥ 0. �

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 22

Lemma 2.2. Let f : Rm×n → Rm×n be a linear map defined as f(X) =
∑L

i=1AiXBi, where
Ai ∈ Rm×m and Bi ∈ Rn×n are symmetric positive semidefinite matrices for all i ∈ [L]. Then, for
every nonzero u ∈ Rm and v ∈ Rn, the largest eigenvalue of f satisfies

λmax(f) ≥ 1

‖u‖2
2‖v‖2

2

∑L

i=1
(u>Aiu)(v>Biv).

Proof. First, we show that f is symmetric and positive semidefinite. Given two matrices X, Y ∈
Rm×n, we can write

〈X, f(Y)〉 = trace
{∑

i
X>AiY Bi

}
= trace

{∑
i
BiY

>AiX
}

= 〈Y, f(X)〉,

〈X, f(X)〉 = trace
{∑

i
X>AiXBi

}
=
∑

i
〈X>AiX,Bi〉 ≥ 0,

where the last inequality follows from Lemma 2.1. This shows that f is symmetric and positive
semidefinite. Then, for every nonzero X ∈ Rm×n, we have

λmax(f) ≥ 1

〈X,X〉〈X, f(X)〉.

In particular, given two nonzero vectors u ∈ Rm and v ∈ Rn,

λmax(f) ≥ 1

〈uv>, uv>〉〈uv
>, f(uv>)〉 =

1

‖u‖2
2‖v‖2

2

∑L

i=1
(u>Aiu)(v>Biv). �

Proof of Theorem 2.1. The cost function (2.1) in Theorem 2.1 can be written as

1

2
trace

{
(WL · · ·W1 −R)>(WL · · ·W1 −R)

}
.

Let E denote the error in the estimate, i.e. E = WL · · ·W1 −R. The gradient descent yields

Wi[k + 1] = Wi[k]− δW>
i+1[k] · · ·W>

L [k]E[k]W>
1 [k] · · ·W>

i−1[k] ∀i ∈ [L]. (2.4)

By multiplying the update equations of Wi[k] and subtracting R, we can obtain the dynamics of E
as

E[k + 1] = E[k]− δ
∑L

i=1
Ai[k]E[k]Bi[k] + o(E[k]), (2.5)

where o(·) denotes the higher order terms, and

Ai = WLWL−1 · · ·Wi+1W
>
i+1 · · ·W>

L−1W
>
L ∀i ∈ [L],

Bi = W>
1 W

>
2 · · ·W>

i−1Wi−1 · · ·W2W1 ∀i ∈ [L].

Lyapunov’s indirect method of stability (Khalil, 1996; Sastry, 2013) states that given a dynamical
system x[k + 1] = F (x[k]), its equilibrium x∗ is stable in the sense of Lyapunov only if the
linearization of the system around x∗

(x[k + 1]− x∗) = (x[k]− x∗) +
∂F

∂x

∣∣∣∣
x=x∗

(x[k]− x∗)

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 23

does not have any eigenvalue larger than 1 in magnitude. By using this fact for the system defined
by (2.4)-(2.5), we can observe that an equilibrium {Ŵj}j∈[L] with ŴL · · · Ŵ1 = R̂ is stable in the
sense of Lyapunov only if the system(

E[k + 1]− R̂ +R
)

=
(
E[k]− R̂ +R

)
− δ

∑L

i=1
Ai

∣∣∣
{Ŵj}

(
E[k]− R̂ +R

)
Bi

∣∣∣
{Ŵj}

does not have any eigenvalue larger than 1 in magnitude, which requires that the mapping

f(Ẽ) =
∑L

i=1
Ai

∣∣∣
{Ŵj}

ẼBi

∣∣∣
{Ŵj}

(2.6)

does not have any real eigenvalue larger than (2/δ). Let u and v be the left and right singular vectors
of R̂ corresponding to its largest singular value, and let pj and qj be defined as in the statement of
Theorem 2.1. Then, by Lemma 2.2, the mapping f in (2.6) does not have an eigenvalue larger than
(2/δ) only if ∑L

i=1
p2
i−1q

2
i+1 ≤

2

δ
,

which completes the proof. �
Proof of Corollary 2.1. Note that

qi+1pi = ‖u>WLWL−1 · · ·Wi+1‖2‖Wi · · ·W2W1v‖2 ≥ ‖u>WL · · ·W1v‖2 = ρ(R).

As long as ρ(R) 6= 0, we have pi 6= 0 for all i ∈ [L], and therefore,

p2
i−1q

2
i+1 ≥

p2
i−1

p2
i

ρ(R)2. (2.7)

Using inequality (2.7), the bound in Theorem 2.1 can be relaxed as

δ ≤ 2

(∑L

i=1

p2
i−1

p2
i

ρ(R)2

)−1

. (2.8)

Since
∏L

i=1(pi/pi−1) = ρ(R) 6= 0, we also have the inequality

∑L

i=1

p2
i−1

p2
i

ρ(R)2 ≥
∑L

i=1

ρ(R)2

(ρ(R)1/L)
2 = Lρ(R)2(L−1)/L,

and the bound in (2.8) can be simplified as

δ ≤ 2

Lρ(R)2(L−1)/L
. �

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 24

2.6.2 Proof of Theorem 2.2
Lemma 2.3. Let λ > 0 be estimated as a multiplication of the scalar parameters {wi}i∈[L] by
minimizing 1

2
(wL · · ·w2w1 − λ)2 via gradient descent. Assume that wi[0] = 1 for all i ∈ [L]. If the

step size δ is chosen to be less than or equal to

δc =

{
L−1λ−2(L−1)/L if λ ∈ [1,∞),
(1− λ)−1(1− λ1/L) if λ ∈ (0, 1),

then |wi[k]− λ 1
L | ≤ β(δ)k|1− λ 1

L | for all i ∈ [L], where

β(δ) =

{
1− δ(λ− 1)(λ1/L − 1)−1 if λ ∈ (1,∞),
1− δLλ2(L−1)/L if λ ∈ (0, 1].

Proof. Due to symmetry, wi[k] = wj[k] for all k ∈ N for all i, j ∈ [L]. Denoting any of them by
w[k], we have

w[k + 1] = w[k]− δwL−1[k](wL[k]− λ).

To show that w[k] converges to λ1/L, we can write

w[k + 1]− λ1/L = µ(w[k])(w[k]− λ1/L),

where
µ(w) = 1− δwL−1

∑L−1

j=0
wjλ(L−1−j)/L.

If there exists some β ∈ [0, 1) such that

0 ≤ µ(w[k]) ≤ β for all k ∈ N, (2.9)

then w[k] is always larger or always smaller than λ1/L, and its distance to λ1/L decreases by a factor
of β at each step. Since µ(w) is a monotonic function in w, the condition (2.9) holds for all k if it
holds only for w[0] = 1 and λ1/L, which gives us δc and β(δ). �

Proof of Theorem 2.2. There exists a common invertible matrix U ∈ Rn×n that can diagonalize
all the matrices in the system created by the gradient descent: R = UΛRU

>, Wi = UΛWi
U> for all

i ∈ [L]. Then the dynamical system turns into n independent update rules for the diagonal elements
of ΛR and {ΛWi

}i∈[L]. Lemma 2.3 can be applied to each of the n systems involving the diagonal
elements. Since δc in Lemma 2.3 is monotonically decreasing in λ, the bound for the maximum
eigenvalue of R guarantees linear convergence. �

2.6.3 Proof of Theorem 2.3
Lemma 2.4. Assume that λ < 0 and wi[0] = 1 is used for all i ∈ [L] to initialize the gradient
descent algorithm to solve

min
(w1,...,wL)∈RL

1

2
(wL . . . w2w1 − λ)2 .

Then, each wi converges to 0 unless δ > (1− λ)−1.

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 25

Proof. We can write the update rule for any weight wi as

w[k + 1] = w[k]
(
1− δσwL−2[k]

(
wL[k]− λ

))
which has one equilibrium at w∗ = λ1/L and another at w∗ = 0. If 0 < δ ≤ 1/σ(1− λ) and
w[0] = 1, it can be shown by induction that

0 ≤ 1− δσwL−2[k]
(
wL[k]− λ

)
< 1

for all k ≥ 0. As a result, w[k] converges to 0. �

Proof of Theorem 2.3. Similar to the proof of Theorem 2.2, the system created by the gradient
descent can be decomposed into n independent systems of the diagonal elements of the matrices
ΛR and {ΛWi

}i∈[L]. Then, Lemma 2.3 and Lemma 2.4 can be applied to the systems with positive
and negative eigenvalues of R, respectively. �

2.6.4 Proof of Theorem 2.4
To find a necessary condition for the convergence of the gradient descent algorithm to (Ŵ , V̂), we
analyze the local stability of that solution in the sense of Lyapunov. Since the analysis is local and the
function g is fixed, for each point xi we can use a matrix Gi that satisfies Gi(V̂ xi− b) = g(V̂ xi− b).
Note that Gi is a diagonal matrix and all of its diagonal elements are either 0 or 1. Then, we can
write the cost function around an equilibrium as

1

2

∑N

i=1
trace

{
[WGi(V xi − b)− f(xi)]

> [WGi(V xi − b)− f(xi)]
}
.

Denoting the error WGi(V xi − b)− f(xi) by ei, the gradient descent gives

W [k + 1] = W [k]− δ
∑N

i=1
ei[k](V [k]xi − b)>G>i ,

V [k + 1] = V [k]− δ
∑N

i=1
G>i W [k]>ei[k]x>i .

Let e denote the vector (e>1 . . . e>N)>. Then we can write the update equation of ej as

ej[k + 1] = ej[k]− δW [k]Gj

∑
i
G>i W [k]>ei[k]x>i xj

−δ
∑

i
ei[k](V [k]xi − b)>G>i Gj(V [k]xj − b) + o(e[k]).

Similar to the proof of Theorem 1, the equilibrium (Ŵ , V̂) can be stable in the sense on Lyapunov
only if the system

ej[k+ 1] = ej[k]− δ
∑

i
ŴGjG

>
i Ŵ

>ei[k]x>i xj− δ
∑

i
ei[k](V̂ xi− b)>G>i Gj(V̂ xj− b) (2.10)

CHAPTER 2. LYAPUNOV ANALYSIS FOR TRAINING MULTI-LAYER MODELS 26

does not have any eigenvalue larger than 1 in magnitude. Note that the linear system in (2.10) can
be described by a symmetric matrix, whose eigenvalues cannot be larger in magnitude than the
eigenvalues of its sub-blocks on the diagonal, in particular those of the system

ej[k + 1] = ej[k]− δŴGjG
>
j Ŵ

>ej[k]x>j xj − δej[k](V̂ xj − b)>G>j Gj(V̂ xj − b). (2.11)

The eigenvalues of the system (2.11) are less than 1 in magnitude only if the eigenvalues of the
system

h(u) = ŴGjG
>
j Ŵ

>ux>j xj + u(V̂ xj − b)>G>j Gj(V̂ xj − b)

are less than (2/δ). This requires that for all j ∈ [N] for which f̂(xj) 6= 0,

2

δ
≥ 〈f̂(xj), h(f̂(xj))〉

〈f̂(xj), f̂(xj)〉
=

1

‖f̂(xj)‖2

(
‖G>j Ŵ>f̂(xj)‖2‖xj‖2 + ‖f̂(xj)‖2‖Gj(V̂ xj − b)‖2

)
≥ 1

‖f̂(xj)‖2

‖(V̂ xj − b)>G>j G>j Ŵ>f̂(xj)‖2

‖(V̂ xj − b)>G>j ‖2
‖xj‖2 + ‖Gj(V̂ xj − b)‖2

=
1

‖Gj(V̂ xj − b)‖2
‖f̂(xj)‖2‖xj‖2 + ‖Gj(V̂ xj − b)‖2

≥ 2‖f̂(xj)‖‖xj‖.

As a result, Lyapunov stability of the solution (Ŵ , V̂) requires

1

δ
≥ max

i
‖f̂(xi)‖‖xi‖. �

27

Chapter 3

Persistency of Excitation for Robustness of
Multi-Layer Models

3.1 Introduction
When a linear model is trained for a supervised learning task, the training data set needs to span
the whole input space for the model parameters to be learned accurately. If this condition is not
satisfied, the model will not be trained on a subspace in its domain, and the response of the model
will be unpredictable for inputs containing any component in this subspace. If the model is trained
by an iterative optimization algorithm, this richness condition on the training data set must be
satisfied throughout the training procedure. Fulfilling such a richness requirement is in general not
difficult for single-layer models with fixed input data, but it is a nontrivial problem when identifying
unknown parameters of dynamical systems (Kumar and Varaiya, 1986; Sastry and Bodson, 1989),
and as we will show in this chapter, when training multi-layer models.

Consider, for example, a linear dynamical system in Rn:

ht+1 = Aht +Bxt ∀t ∈ N (3.1a)
yt = Cht ∀t ∈ N (3.1b)

with internal state ht ∈ Rn, input xt ∈ R, output yt ∈ R, and unknown parameters A ∈ Rn×n,
B ∈ Rn and C ∈ R1×n. Assume we feed a constant input {xt}t∈N into this system, that is, we set
xt = x0 for all t ∈ N, and we try to learn the input-output relationship of the system by observing
{yt}t∈N while the internal state of the system evolves. Note that as time increments, the eigenvalues
of A with magnitude less than 1 cause the internal state ht to lose its components in the eigenspaces
corresponding to these eigenvalues. In other words, the stable eigenspaces of A vanish from {ht}t∈N
exponentially fast, and consequently, not enough information is received about how the system
behaves in these eigenspaces. As a result, the accurate input-output relationship of the system
cannot be recovered.

This is a classical problem in system identification: when parameters of a dynamical system
is estimated while the internal state of the system evolves, the input fed into the system needs to

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 28

satisfy a certain richness condition. In particular, for successful identification of the system in (3.1),
the input signal {xt}t∈N needs to contain a certain number of frequencies (Boyd and Sastry, 1983,
1986). As this example shows, training a dynamical model in an online fashion necessitates the
injection of sustained perturbations into the system throughout the training procedure.

In this chapter, we show that similar requirements arise while training multi-layer models, even
though there does not appear a dynamical model. As a preamble, consider a fixed data set {xi}i∈I
and an L-layer feedforward neural network:

F (x) = fL(fL−1(· · · (f2(f1(x))))),

where fk represents the operation of the k-th layer of the network. The parameters of the k-th
layer are excited by the activations of the previous layer, {fk−1(· · · (f1(xi)))}i∈I . Therefore, robust
estimation of these parameters rely on whether this set is rich enough and whether this richness is
maintained throughout the training procedure.

3.1.1 Outline and Contributions
By analyzing the dynamics of the of the gradient descent algorithm on feedforward neural networks
trained with the squared-error loss, we achieve the following.

1. For deep linear networks, we show that having a full-rank data set is enough to ensure implicit
regularization; that is, the convergence of the gradient descent algorithm provides a Lipschitz
bound for the mapping represented by the network.

2. For a two-layer network with ReLU activations, we establish a richness condition on the
activation signals such that the convergence of the algorithm provides a Lipschitz bound
for the function represented by the network. In particular, we show that each node in the
hidden-layer being activated by a set of points with full rank is a necessary condition.

3. For multi-layer networks with ReLU activations, we provide a richness condition on the
hidden-layer activations that is sufficient for building a connection between the convergence
of the gradient descent algorithm and the boundedness of the trained parameters. Then we
show that this condition may not be satisfied by networks trained with the gradient descent
algorithm naively. This is expected given the existence of adversarial examples for naively
trained models.

4. We reinterpret the classical regularization terms for single-layer linear models in terms of
boosting the richness of the training data. By building an analogy, and in light of the sufficient
richness conditions derived in this chapter, we introduce a training algorithm that improves
the richness of the hidden-layer activations of multi-layer networks. Lastly, we demonstrate
that this algorithm leads to similar margin characteristics on the training and test data when a
network is trained for a classification task with CIFAR-10 data set.

The results in this chapter have appeared in (Nar and Sastry, 2019) and (Nar and Sastry, 2020).

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 29

3.1.2 Related Work
Implicit regularization effect of the gradient descent algorithm on matrix factorization, deep linear
networks and multi-layer structures has recently been studied in (Arora et al., 2019; Gidel et al.,
2019; Gunasekar et al., 2017, 2018; Du et al., 2018; Ji and Telgarsky, 2019). Our work also addresses
the same subject, but the emphasis is on the necessary and sufficient richness requirements on the
training data and hidden-layer activations for implicit regularization to take place. Furthermore,
our analysis uses a non-vanishing learning rate, thereby elucidating the effect of learning rate on
regularization.

Robustness of a model against small perturbations in its input is closely tied to presence of an
effective regularization during its training. State-of-the-art neural networks, however, are known to
lack this robustness; imperceptibly small perturbations can change their outputs drastically (Szegedy
et al., 2013; Kurakin et al., 2016; Goodfellow et al., 2015). We demonstrate in this work that naively
trained networks will fail to fulfill the richness requirements on the hidden-layer activations for
implicit regularization, which provides an alternative understanding for the lack of robustness in
these models.

We discuss other related subjects in Section 3.6, after presenting our results.

3.2 Deep Linear Networks
Deep linear networks are feedforward networks with no nonlinear activations. Although they can
represent only linear mappings, analysis of the gradient descent algorithm on these models reveals
the importance of having multiple layers for implicit regularization. The following theorem shows
that when a deep linear network is trained with the gradient descent algorithm, the mapping learned
will necessarily have a bounded Lipschitz constant, provided that the training data set is rich enough.

Theorem 3.1. Given a set of points {xi}i∈I in Rn0 and corresponding target values {yi}i∈I in RnL ,
assume an L-layer deep linear network is trained by minimizing the squared-error loss via the
gradient descent algorithm:

min
W1,...,WL

1

2

∑
i∈I
‖WL · · ·W2W1xi − yi‖2

2

where Wj ∈ Rnj×nj−1 is the weight matrix of the j-th layer of the network for j ∈ [L] = {1, . . . , L}.
For almost every initialization, convergence of the gradient descent algorithm to the solution
(Ŵ1, . . . , ŴL) with learning rate δ implies that

ρ(ŴL · · · Ŵ1) ≤
(

2

δσ

)L/(2L−2)

where σ is the minimum eigenvalue of
∑

i∈I xix
>
i and ρ(·) denotes the largest singular value of its

argument. �

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 30

Note that what is bounded in Theorem 3.1 is the Lipschitz constant of the mapping learned; it is
not the Lipschitz constant of the gradient of the loss function, nor is it the smoothness of the loss
function. In this respect, the result of Theorem 1 does not have an analogue for single-layer linear
models trained with the squared-error loss.

Theorem 3.1 provides a necessary and sufficient condition for the implicit regularization of
deep linear networks: full-rankness of the training data. There is no additional requirement for the
hidden-layers, and this is peculiar to deep linear networks. This is caused by the fact that as inputs
pass through the layers of the linear network, they can only lose rank; and

span
(
{Ŵj · · · Ŵ1xi}i∈I

)
= span

(
{Ŵj · · · Ŵ1x}x∈Rn0

)
∀j ∈ [L]

provided that {xi}i∈I is a full-rank data set. Therefore, ensuring the richness of the signals at the
input layer suffices to ensure the richness of the signals in all layers of a deep linear network. We
will see in the next section that when nonlinear activations are introduced into the network, the
requirement on the richness of the hidden-layer signals will become more explicit.

3.3 Nonlinear Networks
In this section, we consider feedforward networks with ReLU activations, which are denoted with
the element-wise operation

(z)+ =

{
z z > 0,
0 z ≤ 0.

The following theorem provides a Lipschitz bound for a two-layer ReLU network trained with the
gradient descent algorithm and the squared-error loss.

Theorem 3.2. Given a set of points {xi}i∈I in Rn and corresponding target values {yi}i∈I in Rm,
assume that a two-layer neural network with parameters W ∈ Rm×r, V ∈ Rr×n, b ∈ Rr and ReLU
activations is trained by minimizing the squared error loss

min
W,V,b

1

2

∑
i∈I
‖W (V xi + b)+ − yi‖2

2 (3.2)

via the gradient descent algorithm. Let Vk and bk denote the k-th rows of V and b for each k ∈ [r].
For almost every initialization, convergence of the algorithm with learning rate δ to a solution
(Ŵ , V̂ , b̂) implies that the Lipschitz constant of f(x) = Ŵ (V̂ x+ b̂)+ is upper bounded by

nmax
active

(√
2

δλ

)(
2µ‖b̂‖∞

λ
+

√
1

λ

∣∣∣∣2δ − ‖b̂‖2
∞

∣∣∣∣
)

(3.3)

where nmax
active is the maximum number of nodes that can be simultaneously activated in the hid-

den layer:
nmax

active = maxx∈Rn
∑r

k=1
I{V̂kx+ b̂k > 0},

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 31

λ is a lower bound for the minimum eigenvalue of the covariance matrices of the training points
that activate the same hidden-layer node:

λ = mink∈[r] λmin

(∑
i∈I

xix
>
i I{V̂kx+ b̂k > 0}

)
,

and µ is an upper bound for the `2 norm of the summation of the training points that activate the
same hidden-layer node:

µ = maxk∈[r]

∥∥∥∑
i∈I

xiI{V̂kx+ b̂k > 0}
∥∥∥

2
. �

Before we discuss Theorem 3.2 in detail, note that the bound provided in (3.3) is valid only
when each node in the hidden layer is activated by a set of training points with full-rank. This,
in fact, is a necessary condition for the convergence of the gradient descent algorithm to imply a
bound on the parameters of the learned model via implicit regularization — provided that there is
no assumption on the initialization of the parameters.

Corollary 3.1. Assume a two-layer neural network with ReLU activations is trained by minimizing
the squared error loss with the gradient descent algorithm. For the convergence of the algorithm to
imply a bound on the parameters of the estimated function, it is necessary that each hidden-layer
node be activated by a set of points with full rank at equilibrium. �

Theorem 3.2 reveals the following:

1. Similar to the result for deep linear networks in Theorem 3.1, convergence with a larger step
size implies a smaller Lipschitz constant for the mapping represented by the ReLU network,
from its input to its output.

2. If the set of points activating any one of the hidden layer nodes has a large bias, then µ will
be large, and so will the upper bound for the Lipschitz constant.

The term nmax
active in Theorem 3.2 is needed for the worst-case analysis. For an example of a data

set and a network for which this multiplier is required, see Appendix 3.8.3. Note that we do not
make any assumption about the initialization about the weight parameters, nor do we impose an
explicit regularization.

Similar to Theorem 3.2, we can state a sufficient richness condition for multi-layer networks
with ReLU activations. This is given next.

Theorem 3.3. Consider an L-layer network with ReLU activations:

h0(x) = x,

hj(x) = (Wjhj−1(x))+ j = 1, 2, · · · , L− 1,

hL(x) = WLhL−1(x)

with nj nodes in its j-th hidden layer, and assume it has been trained by minimizing the squared-error
loss with the gradient descent algorithm on the data set {xi}i∈I . Let Ŵj and ĥj denote the weight

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 32

matrix and the output of the j-th layer after the training, and define I ′ = {i ∈ I : ĥL(xi) 6= 0}. If
all hidden-layer activations are bounded over the training data set:

maxi∈I′ maxj∈[L] ‖ĥj(xi)‖2 <∞,

and if every hidden-layer node is activated by a set of signals with full-rank in the preceding layer:∑
i∈I′

I{e>r Ŵjĥj−1(xi) > 0} · ĥj−1(xi)ĥ
>
j−1(xi) � 0 ∀r ∈ [nj],∀j ∈ [L],

then the convergence of the gradient descent algorithm implies the boundedness of Ŵj for all
j ∈ [L] for almost every initilization. �

Please refer to Appendix 3.8.4 for a detailed description of the bound on the trained parameters.
Theorem 3.3 states that the convergence of the gradient descent algorithm guarantees the bounded-
ness of the weight parameters if every hidden-layer node is activated by a set of activation patterns
with a full rank in the preceding layer. This condition, however, is not easily satisfied, particularly
by the networks trained naively by the gradient descent algorithm.

To demonstrate this, we trained a 5-layer convolutional neural network for a binary classification
task. The training data was chosen as the two classes corresponding to the planes and the horses
in CIFAR-10 data set. The network was trained with the squared-error loss. Figure 3.1 shows
the principal component analysis of the signals in the hidden layers of the network after training.
Note that the signals in the upper layers of the network can be explained by the first few principal
components, which indicates that these signals are very low dimensional; and more importantly,
the rank of these signals are lower than the width of corresponding layers. This shows that the
richness condition described in Theorem 3.3 is not satisfied by this network. Note, however, this is
no surprise given that this naively-trained network is susceptible to adversarial examples; that is,
minute changes in its input can change the output of the network drastically. In the next section, we
will develop an alternative training method to produce richer sets of activations in the hidden-layers
of the network.

3.4 Reinterpreting Regularization for Single-layer and
Multi-layer Models

When a linear model is trained on a rank-deficient data set, or when a linear model is desired to be
robust against small perturbations in its input, the classical procedure is introducing a regularization
term to the training loss function. This regularization typically involves penalizing some norm of
the model parameters, and it is considered to assign a prior distribution on the values the parameters
can take or to limit the class of functions that can be learned.

We can provide a dual interpretation for these regularization terms in terms of boosting the
richness of the training data, as stated in the following theorem.

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 33

0 20 40 60 80
Number of principal components

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

nc
e

ex
pl

ai
ne

d

PCA of Hidden-Layer Signals (Squared Error)

1st layer
2nd layer
3rd layer
4th layer

Figure 3.1: Principal component analysis for the activations in the hidden layers of a 5-layer
convolutional neural network trained with the squared error loss. The plot displays the variance
explained by the first 80 principal components for each layer. The layers have 4704, 1800, 120 and
84 nodes, respectively. The rank of the activation patterns in the upper layers are much lower than
the number of nodes in those layers.

Theorem 3.4. Given a set of points {xi}i∈I in Rn and corresponding target values {yi}i∈I in R,
consider the following two problems:

min
w

∑
i∈I

(yi − w>xi)2 + λ‖w‖mp , (3.4a)

min
w

∑
i∈I

1

2

(
yi − min

d:‖d‖q≤ε
w>(xi + d)

)2

+
1

2

(
yi − max

d:‖d‖q≤ε
w>(xi + d)

)2

, (3.4b)

where ‖ · ‖p and ‖ · ‖q are dual norms, m ∈ [1,∞) is some fixed number, and λ, ε ∈ (0,∞) are
hyperparameters. For each λ, there exists some ε such that the solutions of the two problems are
identical. Conversely, for each ε, there exists some λ such that the solutions of the two problems are
identical. �

Problem (3.4b) shows that for each training point, perturbing the input of a linear mapping in
two directions such that the output of the mapping is maximized and minimized creates a richness
in the training data that is equivalent to penalizing the norm of the parameters. An analogous
procedure for multi-layer neural networks is inserting perturbations to every hidden-layer of the
network preceding the affine operations. To illustrate, consider an L-layer feedforward network:

h0(x) = x, (3.5a)
hj(x) = (Wjhj−1(x) + bj)+ j = 1, 2, . . . , L, (3.5b)

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 34

where {Wj}j∈[L] and {bj}j∈[L] are the weight and bias parameters of the network, and (·)+ is the
ReLU operation. The parameter Wj corresponds to a linear operation in the j-th layer of the
network, such as a matrix multiplication or a convolution. We can insert perturbations to this
network as

h̃0(x; d) = x, (3.6a)

h̃j(x; d) = (Wj[h̃j−1(x; d) + dj] + bj)+ j = 1, 2, . . . , L, (3.6b)

where d = (d1, d2, . . . , dL) is the concatenation of the perturbations applied to each layer of the
network. Then, solving the regression problem with the cost function∑

i∈I

1

2

(
yi −min

d∈D
h̃L(xi; d)

)2

+
1

2

(
yi −max

d∈D
h̃L(xi; d)

)2

,

where D is the allowed set of perturbations, should force the output of the network to remain close
to the target values despite changes in the input and in the activations in the hidden layers.

Before proceeding to the next section, we summarize in Algorithm 1 the procedure for training a
neural network while ensuring persistent excitation of the parameters. For simplicity, the algorithm
is described for the stochastic gradient method with momentum.

Algorithm 1 Training with Persistent Excitation

1: input: training data {(xi, yi)}i∈I ,
neural network fθ(x; d) ≡ h̃L(x; d) in (3.6),
set of allowed perturbations D,
learning rate η, momentum parameter γ

2: initialize: ∆θ ← 0
3: repeat
4: randomly choose i ∈ I
5: d1 ← argmaxd∈D fθ(xi; d)
6: d2 ← argmind∈D fθ(xi; d)
7: ∆θ ← γ∆θ + (1− γ)∇θ [(fθ(xi; d1)− yi)2 + (fθ(xi; d2)− yi)2]
8: θ ← θ − η∆θ
9: until training is complete

3.5 Experimental Results
In this section, we test Algorithm 1 on a binary classification task. Only two classes of images, the
horses and the planes, have been chosen from the CIFAR-10 data set for the classification task. The
same network architecture is used in all of the experiments: two convolutional layers followed by
three fully-connected layers with leaky-ReLu activations. Neither batch-normalization nor dropout
is implemented in the experiments.

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 35

The first experiment is to see the effectiveness of Algorithm 1. We train the convolution network
described with Algorithm 1 by using three different sets of perturbation, which are `∞ balls with
radii 0.005, 0.010 and 0.020 on all layers. The plots in Figure 3.2 show the percentage of points the
network misclassify versus the amount of disturbance needed in the input of the network to cause
misclassification at evaluation phase, which is computed by using the projected gradient attack
algorithm (Madry et al., 2018; Rauber et al., 2017). In this sense, the plots represent the cumulative
distribution of the margin of the data; and the lower the plot, the more robust the network.

We observe that applying a small perturbation during training phase increases the margin of the
training data conspicuously. We also observe that the training error is not able to reach zero when
the perturbation is relatively large, as shown by the curve for 0.020 perturbation1. Nevertheless, the
same magnitude of perturbation attains the largest margin on the test data.

The second experiment is to demonstrate the necessity of perturbing all layers, and not only
the first layer, in order to ensure robustness of the network against small perturbations in its
input. Figure 3.3 shows the margin distribution of the same network trained in two different ways:
perturbing all layers of the network as described in Algorithm 1 and perturbing only the input of
the network during training, similar to adversarial training (Madry et al., 2018). For both cases,
the perturbations are restricted to be in `∞ ball with radius 0.020. We observe that perturbing only
the first layer of the network during training substantially increases the margin of the training data;
however, this does not correspond to an improvement for the margin of the test data. In contrast,
when all layers are perturbed as described in Algorithm 1 to improve the richness of the activations
in the hidden layers, the margin of the training data becomes a good indicator of the margin of the
test data.

3.6 Discussion
In this section, we compare our results to closely related works.

Dropout. Using dropout in the hidden-layer neurons, that is, setting the output of random
subsets of neurons to zero during training, is known to prevent overfitting (Srivastava et al., 2014).
This can be reinterpreted based on the richness of hidden-layer activations. Randomly setting
some of the neurons in the hidden layers during training increases the variety in the hidden-layer
activations, thereby improving the richness of the signals that excite the parameters during training.
Nevertheless, the space where the random perturbations is needed is very high-dimensional (it is
equal to the dimension of the input space plus the total number of hidden-layer nodes in all layers
of the network), and it is difficult to fill up the neighborhood of the training data in this space with
random perturbations.

Importance of low-dimensional activations. The fact that the activations in the hidden layers
of a naively-trained neural network will become low-dimensional is critical in realizing that aug-
menting the training data set may not help achieving robustness in neural networks. This is because
adding more training data will not necessarily be effective for attaining the required richness in the

1The size of the network was fixed for all magnitudes of perturbations.

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 36

0.00 0.05 0.10 0.15 0.20
 norm of the disturbance applied

0

20

40

60
Pe

rc
en

ta
ge

 o
f p

oi
nt

s m
is

cl
as

si
fie

d

Margin on training data

pert. mag. 0.005
pert. mag. 0.010
pert. mag. 0.020

0.00 0.05 0.10 0.15 0.20
 norm of the disturbance applied

20

40

60

Pe
rc

en
ta

ge
 o

f p
oi

nt
s m

is
cl

as
si

fie
d

Margin on test data

pert. mag. 0.005
pert. mag. 0.010
pert. mag. 0.020

Figure 3.2: The effect of training with persistent excitation as described in Algorithm 1. Small
perturbations during training improves the margin for the training data. The larger perturbations
prevent the training error from reaching zero; however, they yield larger margins on the test data.

hidden layers, and consequently, the parameters may not be trained robustly. However, if the low-
dimensionality of the hidden-layer activations is overlooked, the conclusion will be different. For
example, Schmidt et al. (2018) analyzes the robustness of classifiers with full-rank, non-degenerate
data sets and single-layer, linear models, and arrives at the conclusion that the robustness could be
achieved with more training data.

Adversarial training. Madry et al. (2018) proposed adversarial training to ensure robustness
of neural networks by adding adversarial perturbations to the training data. It was observed that this

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 37

0.00 0.05 0.10 0.15 0.20
 norm of the disturbance applied

0

20

40

60

Pe
rc

en
ta

ge
 o

f p
oi

nt
s m

is
cl

as
si

fie
d

Perturbing all layers vs. only the first layer

pert. first; margin on train
pert. first; margin on test
pert. all; margin on train
pert. all; margin on test

Figure 3.3: The same network is trained in two different ways: by perturbing every layer of the
network as described in Algorithm 1 in order to boost the richness of the hidden-layer activations,
and by perturbing only the training data (the first layer) similar to adversarial training. Perturbing
only the first layer substantially increases the margin for the training data; however, this is not
reflected in the test data. In contrast, when all layers are perturbed for improving the richness of the
hidden-layer activations as outlined in Algorithm 1, the margin of the training data becomes a good
indicator of the margin of the test data.

method substantially increased the margin of the neural networks between their decision boundaries
and the training data points, but not the margin of the test data. Note that adversarial training
emulates augmenting the training data set — and only the training data set. This strategy does
not necessarily prevent the activations in the hidden layers of the network from becoming low
dimensional during training, and consequently, richness requirements on the hidden-layer activations
of the network cannot be guaranteed.

All-layer margin and generalization. Wei and Ma (2020) recently showed that a new concept
of margin, which is computed for multi-layer models by allowing perturbations in the hidden-layers
as well as in the inputs, can be used for obtaining generalization bounds for these models. This is
closely aligned with our results involving the richness requirements on the hidden-layer activations
of multi-layer models and the effect of boosting this richness by injecting perturbations into the
hidden layers during training.

3.7 Conclusion
For models with parameters that act on the fixed features of training data linearly, augmenting the
training data set, adding random or adversarial perturbations to the training data, or using robust
optimization techniques are effective methods to achieve robustness against small perturbations
in the inputs of these models (El Ghaoui and Lebret, 1997; Bertsimas et al., 2011). Note that

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 38

all of these methods could be considered as an approach to meet the richness condition on the
training data set. In this chapter, we showed that for multi-layer structures, the richness condition
required for implicit regularization is not only on the training data set, but also on the activations
in the intermediate layers of the model. Understanding these distinct requirements on the richness
of activations on multi-layer structures could open up a direction to find effective regularization
methods for neural networks and improve their robustness.

3.8 Proofs and Further Remarks
In this section, we provide the proofs for the theorems and corollaries of this chapter and elaborate
on some of the remarks.

3.8.1 Proof of Theorem 3.1
Given {xi}i∈I , define Σ =

∑
i∈I xix

>
i . Define the training loss function

`(W1, . . . ,WL) =
1

2

∑
i∈I

‖WL · · ·W2W1xi − yi‖2
2.

The gradient descent algorithm can be written as

Wj ← Wj − δ
∂`(W1, . . . ,WL)

∂Wj

∀j ∈ [L], (3.7)

where δ is the learning rate of the algorithm.
For the iterations of the gradient descent algorithm to converge to the solution (Ŵ1, . . . , ŴL)

from almost every point in its neighborhood, it is necessary that the solution (Ŵ1, . . . , ŴL) be
stable in the sense of Lyapunov (Sastry, 2013). For nonlinear dynamical systems like (3.7), a
necessary condition for the Lyapunov stability of (Ŵ1, . . . , ŴL) is given by the dynamics of the
linear approximation of (3.7) around that equilibrium. Consider the linearization of (3.7) around
(Ŵ1, . . . , ŴL):

W̃j ← W̃j − δ
∑
i∈[L]

fi,j(W̃i) ∀j ∈ [L], (3.8)

where fi,j denotes the Jacobian with respect to Wi of the gradient with respect to Wj of the
loss function ` at (Ŵ1, . . . , ŴL). Then, for (Ŵ1, . . . , ŴL) to be a stable equilibrium of (3.7), all
eigenvalues of the mapping in (3.8) must be less than or equal to 1 in magnitude (Sastry, 2013).
Note that fi,j and fj,i are the derivatives of the same function with respect to the same variables in
different orders; consequently, the linear system (3.8) can be represented by a symmetric matrix.

Since system (3.8) can be represented by a symmetric matrix, its eigenvalues being less than 1
in magnitude implies that all eigenvalues of its diagonal blocks are also less than 1 in magnitude. In
other words, Lyapunov stability of (Ŵ1, . . . , ŴL) implies that the eigenvalues of

W̃j ← W̃j − δfj,j(W̃j)

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 39

are less 1 in magnitude for all j ∈ [L]. Equivalently, it implies that the eigenvalues of

W̃j ← fj,j(W̃j)

are less than 2
δ

for all j ∈ [L].
To obtain a more explicit expression for fj,j , note that the update for the gradient descent

algorithm is:

Wj ← Wj − δ
∑
i∈I

W>
j+1 · · ·W>

LWL · · ·W1xix
>
i W

>
1 · · ·W>

j−1

+ δ
∑
i∈I

W>
j+1 · · ·W>

L yix
>
i W

>
1 · · ·W>

j−1,

and fj,j is given by

W̃j ←
∑
i∈I

Ŵ>
j+1 · · · Ŵ>

L ŴL · · · Ŵj+1W̃jŴj−1 · · · Ŵ1xix
>
i Ŵ

>
1 · · · Ŵ>

j−1

←
(
Ŵ>
j+1 · · · Ŵ>

L ŴL · · · Ŵj+1

)
W̃j

(
Ŵj−1 · · · Ŵ1ΣŴ>

1 · · · Ŵ>
j−1

)
for all j ∈ [L], where the last line follows from the fact that

∑
i∈I xix

>
i = Σ. The largest eigenvalue

of this linear mapping is given by

λmax(fj,j) = λmax

(
Ŵ>
j+1 · · · Ŵ>

L ŴL · · · Ŵj+1

)
λmax

(
Ŵj−1 · · · Ŵ1ΣŴ>

1 · · · Ŵ>
j−1

)
.

Note that the last term can be lower bounded:

λmax

(
Ŵj−1 · · · Ŵ1ΣŴ>

1 · · · Ŵ>
j−1

)
≥ λmax

(
Ŵj−1 · · · Ŵ1Ŵ

>
1 · · · Ŵ>

j−1

)
λmin(Σ).

Therefore, if λmax(fj,j) ≤ 2
δ

for all j ∈ [L], we have

2

δ
≥ λmax(fj,j)

= λmax

(
Ŵ>
j+1 · · · Ŵ>

L ŴL · · · Ŵj+1

)
λmax

(
Ŵj−1 · · · Ŵ1ΣŴ>

1 · · · Ŵ>
j−1

)
≥ λmax

(
Ŵ>
j+1 · · · Ŵ>

L ŴL · · · Ŵj+1

)
λmax

(
Ŵj−1 · · · Ŵ1Ŵ

>
1 · · · Ŵ>

j−1

)
λmin(Σ)

= ρ2
(
ŴL · · · Ŵj+1

)
ρ2
(
Ŵj−1 · · · Ŵ1

)
λmin(Σ) ∀j ∈ [L],

where ρ(·) represents the largest singular value of its argument. This shows that the Lyapunov
stability of (Ŵ1, . . . , ŴL) implies that√

2

δλmin(Σ)
≥ ρ(ŴL · · · Ŵj+1)ρ(Ŵj−1 · · · Ŵ1) ∀j ∈ [L].

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 40

Since
ρ(ŴL · · · Ŵ1) ≤ ρ(ŴL · · · Ŵj+1)ρ(Ŵj)ρ(Ŵj−1 · · · Ŵ1),

we also have √
2

δλmin(Σ)
≥ ρ(ŴL · · · Ŵ1)

ρ(Ŵj)
∀j ∈ [L].

This implies√
2

δλmin(Σ)
≥ ρ(ŴL · · · Ŵ1)

minj∈[L] ρ(Ŵj)
≥ ρ(ŴL · · · Ŵ1)

ρ1/L(ŴL · · · Ŵ1)
= ρ(L−1)/L(ŴL · · · Ŵ1).

As a result, we obtain

ρ(ŴL · · · Ŵ1) ≤
(

2

δλmin(Σ)

)L/(2L−2)

. �

3.8.2 Proof of Theorem 3.2 and Corollary 3.1
Proof of Theorem 3.2

To begin with, assume b is fixed and not updated by the gradient descent algorithm. Let (Ŵ , V̂)
denote the local optimum that the algorithm has converged to. For point xi, let Gi ∈ {0, 1}r×r be
the diagonal matrix that satisfies

W (V xi + b)+ = WGi(V xi + b).

The update rule for the gradient descent algorithm calculated with automatic differentiation is given
as

W ← W − δ
{∑

i∈I
[WGi(V xi + b)− f(xi)] (V xi + b)>G>i

}
, (3.9a)

V ← V − δ
{∑

i∈I
G>i W

> [WGi(V xi + b)− f(xi)]x
>
i

}
, (3.9b)

followed by

(Gi)kk ← I{Vkxi + bk > 0} ∀k ∈ [r], ∀i ∈ I, (3.9c)

where (Gi)kk denotes the k-th diagonal element of the matrix Gi, and Vk and bk represent the k-th
rows of V and b, respectively. If the algorithm has converged, switching between 1 and 0 must have
ended in a finite time. Therefore, at an equilibrium point (Ŵ , V̂) with activations {Ĝi}i∈I , we will
assume Ĝi is fixed for all i ∈ I.

Like all dynamical systems, the gradient descent algorithm (3.9) can converge to an equilibrium
from randomly chosen close neighbors of this point only if the equilibrium is stable in the sense of
Lyapunov (Sastry, 2013). A necessary condition for an equilibrium of a nonlinear dynamical system
to be stable is that the linear approximation of this dynamical system not be unstable around the

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 41

same equilibrium. We will use this fact to obtain a necessary condition for the algorithm to converge
to an equilibrium from any randomly chosen initial point.

Linearization of the system (3.9) around the equilibrium (Ŵ , V̂) gives

W̃ ← W̃ − f1(W̃)− f2(Ṽ), (3.10a)

Ṽ ← Ṽ − f3(W̃)− f4(Ṽ), (3.10b)

where

f1(W̃) = δ
∑
i∈I

W̃ Ĝi(V̂ xi + b)(V̂ xi + b)>Ĝ>i ,

f2(Ṽ) = δ
∑
i∈I

Ŵ ĜiṼ xix
>
i V̂ Ĝ

>
i + δ

∑
i∈I

[Ŵ Ĝi(V̂ xi + b)− f(xi)]x
>
i Ṽ
>Ĝ>i ,

f3(W̃) = δ
∑
i∈I

Ĝ>i Ŵ
>W̃ Ĝi(V̂ xi + b)x>i + δ

∑
i∈I

Ĝ>i W̃
>[Ŵ Ĝi(V̂ xi + b)− f(xi)]x

>
i ,

f4(Ṽ) = δ
∑
i∈I

Ĝ>i Ŵ
>Ŵ ĜiṼ xix

>
i .

We have the equality

〈W̃ , f2(Ṽ)〉 = 〈f3(W̃), Ṽ 〉 ∀W̃ ∈ Rm×r, ∀Ṽ ∈ Rr×n;

therefore, the linearized system (3.10) can be represented by a symmetric matrix2, and the system
(3.10) is stable in the sense of Lyapunov only if the matrix corresponding to the system

W̃ ← W̃ − f1(W̃) (3.11a)

Ṽ ← Ṽ − f4(Ṽ) (3.11b)

has all of its eigenvalues inside the unit circle. This implies that the convergence of the system
(3.10) requires the largest eigenvalues of the mappings f1(·) and f4(·) to be smaller than 2.

The largest eigenvalue of the mapping f1(·) being smaller than 2 implies that

e>k
∑

i∈I
Ĝi(V̂ xi + b)(V̂ xi + b)>Ĝ>i ek ≤

2

δ
∀k ∈ [r],

where ek denotes the standard basis vector with 1 in its k-th element. Then,

e>k
∑

i∈Ik
(V̂ xi + b)(V̂ xi + b)>ek ≤

2

δ
∀k ∈ [r]

where Ik denotes the set of indices of the points that activate node k at equilibrium, i.e.,

Ik = {i ∈ I : e>k (V̂ xi + b) > 0}.
2This is also a direct consequence of the fact that f2 and f3 are the Jacobians of the gradient of the training loss

function with respect to the same parameters in different orders.

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 42

Let V̂k and bk denote the k-th rows of V̂ and b. Then we need∑
i∈Ik

(V̂kxi + bk)(x
>
i V̂
>
k + bk) ≤

2

δ
,

or equivalently,

V̂ >k

(∑
i∈Ik

xix
>
i

)
V̂k + 2bkV̂

>
k

(∑
i∈Ik

xi

)
+ b2

k −
2

δ
≤ 0.

This is a quadratic inequality in V̂k, and the largest value
∥∥V̂k∥∥2

can take is upper bounded by the
larger root of

λmin

(∑
i∈Ik

xix
>
i

)∥∥V̂k∥∥2

2
− 2 |bk|

∥∥∥∑
i∈Ik

xi

∥∥∥
2

∥∥V̂k∥∥2
+ b2

k −
2

δ
= 0.

Therefore, we have

∥∥V̂k∥∥2
≤ |bk|µk

λmin
k

+
1

λmin
k

√
b2
k(µk)

2 + λmin
k

(
2

δ
− b2

k

)
where

µk =
∥∥∥∑

i∈Ik
xi

∥∥∥
2
,

λmin
k = λmin

(∑
i∈Ik

xix
>
i

)
.

As an upper bound independent of k, we can write

∥∥V̂k∥∥2
≤ µ‖b‖∞

λ
+

√
µ2‖b‖2

∞

λ2 +
1

λ

(
2

δ
− ‖b‖2

∞

)
∀k ∈ [r]

where µ = maxk∈[r] µk and λ = mink∈[r] λ
min
k .

So far we have only used the fact that the largest eigenvalue of f1(·) is less than 2. Similarly, the
largest eigenvalue of f4(·) being less than 2 implies that∑

i∈Ik
e>k Ŵ

>Ŵek · λmin

(∑
i∈Ik

xix
>
i

)
≤ 2

δ
.

If Ŵk denotes the k-th column of Ŵ , we have∥∥Ŵk

∥∥
2
≤
√

2

δλ
∀k ∈ [r].

Given the estimates Ŵ and V̂ , for every x ∈ Rn, the function estimated by the network is
Ŵ (V̂ x+ b)+, and the Lipschitz constant of this estimate is bounded by

max
x∈Rn

∑r

k=1
I
{
V̂kx+ bk > 0

}∥∥∥ŴkV̂k

∥∥∥
F
,

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 43

which is further bounded by

nmax
active

(√
2

δλ

)(
µ‖b‖∞
λ

+

√
µ2‖b‖2

∞

λ2 +
1

λ

(
2

δ
− ‖b‖2

∞

))
and

nmax
active

(√
2

δλ

)(
2µ‖b‖∞

λ
+

√
1

λ

∣∣∣∣2δ − ‖b‖2
∞

∣∣∣∣
)

where nmax
active is the maximum number of nodes that a point in Rn can activate, i.e.,

nmax
active = max

x∈Rn

∑r

k=1
I
{
V̂kx+ bk > 0

}
.

To complete the proof, now assume that b is not fixed and it is also updated by the gradient
descent algorithm. We can write the linearization of the update rule for (W,V, b) as[

W
V >

]
←
[
W
V >

]
− g1

([
W
V >

])
− g2 (b) , (3.12a)

b← b− g3

([
W
V >

])
− g4 (b) , (3.12b)

where g1, g2, g3 and g4 are the linear operators obtained by taking Jacobians of the gradients of
the training loss function with respect to W , V and b. Similar to f2 and f3 in system (3.10), the
operators g2 and g3 are the Hermitian of each other, and therefore, the matrix corresponding to
the system (3.12) is still symmetric. As a result, its eigenvalues are less than 1 in magnitude only
if its diagonal sub-blocks have eigenvalues less than 1 in magnitude, which leads to the identical
condition for the case with fixed b. �

Proof of Corollary 3.1

Given the training data set {xi}i∈I in Rn, assume that the parameters of the two-layer neural network
in Theorem 3.2 have converged to (Ŵ , V̂ , b̂) with activations {Ĝi}i∈I . Without loss of generality,
assume the first node in the hidden layer is not activated by a full-rank data set at equilibrium:

rank
{
xi : i ∈ I, e>1 (V̂ xi + b̂) > 0

}
< n.

Let η ∈ Rn be a nonzero vector orthogonal to this set of points activating the first node in the
hidden-layer:

〈η, x〉 = 0 ∀x ∈
{
xi : i ∈ I, e>1 (V̂ xi + b̂) > 0

}
.

Then, at the equilibrium, the first row of V̂ could have arbitrarily large component in the direction
of η. In other words, convergence of the gradient descent algorithm does not provide a bound for
|e>1 V̂ η|. �

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 44

3.8.3 Dependence of Implicit Regularization on Width of Nonlinear
Networks

Consider, for example, a two-layer network with r hidden-layer nodes and the parameters W ∈
Rm×r, V ∈ Rr×n, b ∈ Rr, and the following training data set in Rn:

x1 = e1,

xj = cos(θ)e1 + sin(θ)ej ∀j ∈ {2, . . . , r},
x̃i = ei+1 ∀i ∈ {1, . . . , n− 1},

where ei denotes the i-th standard basis vector of Rn for each i ∈ [n], and θ is some small angle
satisfying 0 < θ � π/2. Assume that at the end of training, the parameters of the network become
(Ŵ , V̂ , b̂), the column space of Ŵ attains rank 1, and the j-th node in the hidden-layer is activated
only by {xj} ∪ {x̃i}i∈[n−1] for all j ∈ [r]:

V̂jxj + b̂j > 0 ∀j ∈ [r],

V̂jxi + b̂j ≤ 0 ∀i ∈ [r]\{j}, ∀j ∈ [r],

V̂jx̃i + b̂j > 0 ∀i ∈ [n− 1], ∀j ∈ [r].

As θ is close to zero, there will be a point in the direction of e1 that simultaneously activates all
of the hidden-layer nodes — although there was no point in the training data set that activated all
of the nodes and that was aligned with e1. Consequently, the change in the network output with
respect to change in the input around this point will require a multiplier of r, which stands for nmax

active
in Theorem 3.2.

3.8.4 Proof of Theorem 3.3
Restatement of Theorem 3.3. Consider an L-layer network with ReLU activations:

h0(x) = x,

hj(x) = (Wjhj−1(x))+ j = 1, 2, · · · , L− 1,

hL(x) = WLhL−1(x)

with nj nodes in its j-th hidden layer, and assume it has been trained by minimizing the squared-error
loss with the gradient descent algorithm on the data set {xi}i∈I . Let Ŵj and ĥj denote the weight
matrix and the output of the j-th layer after the training, and define I ′ = {i ∈ I : ĥL(xi) 6= 0}.
Define Ikj as the set of points that activate the k-th node in the j-th layer of the network after
training:

Ikj = {i ∈ I ′ : e>k ĥj(xi) > 0} ∀k ∈ [nj], ∀j ∈ [L− 1].

Assume all hidden-layer activations are bounded over the training data set:

maxi∈I′ maxj∈[L] ‖ĥj(xi)‖2 <∞,

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 45

and every hidden-layer node is activated by a set of signals with full-rank in the preceding layer:∑
i∈Ikj

ĥj−1(xi)ĥ
>
j−1(xi) � 0 ∀k ∈ [nj],∀j ∈ [L].

Then the convergence of the gradient descent algorithm from almost every initialization implies that

‖Ŵj‖
2

2 ≤
2

δ

∑
k∈[nj]

1

λmin(
∑

i∈Ikj
ĥj−1(xi)ĥ>j−1(xi))

∑
i∈Ikj

‖ĥj(xi)‖2
2

‖ĥL(xi)‖2
2

∀j ∈ [L− 1],

and
‖ŴL‖

2

2 ≤
2

δ

∑
k∈[nL−1]

1

maxi∈IkL−1
‖ĥL−2(xi)‖2

2

. �

Similar to the proof of Theorem 3.2, given the neural network

h0(x) = x,

hj(x) = (Wjhj−1(x))+ j = 1, 2, . . . , L− 1,

hL(x) = WLhL−1(x),

for each point in {xi}i∈I and for each layer j ∈ [L− 1], define the diagonal activation matrix Gi
j as

(Gi
j)kk =

{
1 if e>kWjhj−1(xi) > 0,
0 otherwise,

where ek is the k-th standard basis vector in Rnj for each k ∈ [nj]. Then we can write

hL(xi) = WLG
i
L−1WL−1G

i
L−2WL−2 · · ·Gi

1W1xi ∀i ∈ I.

The training loss function is
1

2

∑
i∈I

‖hL(xi)− yi‖2
2 ,

where {yi}i∈I is the set of target values corresponding to the input points. For each weight matrix
Wj , can write the gradient descent algorithm calculated with automatic differentiation as

Wj ← Wj − δ
∑

i∈I

(
Gi
jW

>
j+1G

i
j+1 · · ·W>

LWL · · ·Gi
j+1Wj+1G

i
jWjG

i
j−1Wj−1 · · ·

· · ·Gi
1W1xix

>
i W

>
1 G

i
1 · · ·W>

j−1G
i
j−1

)
+ δ

∑
i∈I

(
Gi
jW

>
j+1G

i
j+1 · · ·W>

L yix
>
i W

>
1 G

i
1 · · ·W>

j−1G
i
j−1

)
followed by the updates of the activation matrices:

(Gi
j)kk ← I(Wjhj−1(xi) > 0) ∀k ∈ [nj], ∀j ∈ [L− 1], ∀i ∈ I.

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 46

Let {Ŵj}j∈[L] and {Ĝi
j}i∈I,j∈[L−1] denote the parameters and the activation matrices at equi-

librium. Similar to the proof of Theorem 3.2, Lyapunov stability of this equilibrium implies
that

λmax

(
Ĝi
jŴ

>
j+1Ĝ

i
j+1 · · · Ŵ>

L ŴL · · · Ĝi
j+1Ŵj+1Ĝ

i
j

)
λmax

(
ĥj−1(xi)ĥ

>
j−1(xi)

)
<

2

δ
. (3.13)

Note that
ŴL · · · Ĝi

j+1Ŵj+1Ĝ
i
jĥj(xi) = ĥL(xi),

and therefore,

‖ĥL(xi)‖2
2

‖ĥj(xi)‖2
2

≤ λmax

(
Ĝi
jŴ

>
j+1Ĝ

i
j+1 · · · Ŵ>

L ŴL · · · Ĝi
j+1Ŵj+1Ĝ

i
j

)
∀i ∈ I ′. (3.14)

Combining (3.13) and (3.14), we obtain

λmax

(
ĥj−1(xi)ĥ

>
j−1(xi)

)
<

2

δ

‖ĥj(xi)‖2
2

‖ĥL(xi)‖2
2

∀i ∈ I ′.

On the other hand,

λmax

(
ĥj−1(xi)ĥ

>
j−1(xi)

)
≥ e>k Ĝ

i
j−1Ŵj−1ĥj−2(xi)ĥ

>
j−2(xi)Ŵ

>
j−1Ĝ

i
j−1ek ∀k ∈ [nj−1].

Let Ikj denote the set of points that activates the k-th node of the j-th layer at equilibrium:

Ikj = {i ∈ I ′ : e>k ĥj(xi) > 0} ∀k ∈ [nj], ∀j ∈ [L− 1].

Then we can write

λmax

(
ĥj−1(xi)ĥ

>
j−1(xi)

)
≥ e>k Ŵj−1ĥj−2(xi)ĥ

>
j−2(xi)Ŵ

>
j−1ek ∀i ∈ Ikj−1,

which implies

e>k Ŵj−1ĥj−2(xi)ĥ
>
j−2(xi)Ŵ

>
j−1ek ≤

2

δ

‖ĥj(xi)‖2
2

‖ĥL(xi)‖2
2

∀i ∈ Ikj−1.

By summing over all points activating the k-th node of the (j − 1)-th layer:

e>k Ŵj−1

(∑
i∈Ikj−1

ĥj−2(xi)ĥ
>
j−2(xi)

)
Ŵ>
j−1ek ≤

∑
i∈Ikj−1

2

δ

‖ĥj(xi)‖2
2

‖ĥL(xi)‖2
2

.

This gives a bound on the k-th row of Ŵj−1:

‖e>k Ŵj−1‖
2

2 ≤
1

λmin

(∑
i∈Ikj−1

ĥj−2(xi)ĥ>j−2(xi)
)∑

i∈Ikj−1

2

δ

‖ĥj(xi)‖2
2

‖ĥL(xi)‖2
2

.

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 47

As a result, if∑
i∈I′

I{e>k Ŵj−1ĥj−2(xi) > 0} · ĥj−2(xi)ĥ
>
j−2(xi) � 0 ∀k ∈ [nj−1],

all rows of Ŵj−1 are bounded, for j = 2, 3, . . . , L.
To bound the norm of ŴL, consider the gradient update for WL−1. Similar to (3.13), we have

λmax

(
Ĝi
L−1Ŵ

>
L ŴLĜ

i
L−1

)
λmax

(
ĥL−2(xi)ĥ

>
L−2(xi)

)
<

2

δ
∀i ∈ I ′.

For every point activating the k-th node in the (L−1)-th layer, we have

Ĝi
L−1ek = ek,

which yields
e>k Ŵ

>
L ŴLek ≤ λmax

(
Ĝi
L−1Ŵ

>
L ŴLĜ

i
L−1

)
∀i ∈ IkL−1.

Therefore, we can write

‖ŴLek‖
2

2 ≤
2

δ‖ĥL−2(xi)‖
2

2

∀i ∈ IkL−1,

which implies

‖ŴLek‖
2

2 ≤
2

δmaxi∈IkL−1
‖ĥL−2(xi)‖

2

2

.

This proves that k-th column of ŴL is bounded in norm. �

3.8.5 Proof of Theorem 3.4
By duality of the norms ‖ · ‖p and ‖ · ‖q, we have

min
d:‖d‖q≤ε

w>(xi + d) = w>xi − ε‖w‖p,

max
d:‖d‖q≤ε

w>(xi + d) = w>xi + ε‖w‖p.

Then problem (3.4b) can be written as

min
w

∑
i∈I

1

2

(
yi − w>xi + ε‖w‖p

)2
+

1

2

(
yi − w>xi − ε‖w‖p

)2
,

which can be simplified to
min
w

∑
i∈I

(
yi − w>xi

)2
+ ε2‖w‖2

p.

CHAPTER 3. PERSISTENCY OF EXCITATION FOR MULTI-LAYER MODELS 48

This is a convex problem in w, and we can introduce a slack variable to bring the second term into a
constraint form:

minimize
w,t

∑
i∈I

(
yi − w>xi

)2
+ ε2t (3.15)

subject to ‖w‖2
p ≤ t.

Fix ε > 0, and assume that (w0, t0) is the solution of (3.15). Then w0 is also a solution to the
problem

minimize
w

∑
i∈I

(yi − w>xi)2

subject to ‖w‖2
p ≤ t0,

as well as

minimize
w

∑
i∈I

(yi − w>xi)2 (3.16)

subject to ‖w‖mp ≤ t
m/2
0 .

If t0 = 0, then w0 is also zero, and this solution can be obtained by (3.4a) by choosing λ large
enough. Therefore, without loss of generality assume t0 6= 0. Then problem (3.16) satisfies the
Slater’s condition, and strong duality holds (Boyd and Vandenberghe, 2004). Then we can find its
solution by solving

min
w

∑
i∈I

(yi − w>xi)2 + λ∗(‖w‖mp − tm/20)

where λ∗ is the dual solution. Note that this problem is strictly convex in w, and therefore, its
solution is unique, for which the only candidate is w0. We conclude that

w0 = argmin
w

∑
i∈I

(yi − w>xi)2 + λ∗‖w‖mp .

This completes the one direction of the proof, and the other direction is identical. �

49

Chapter 4

Robustness of Models Trained with the
Cross-Entropy Loss

4.1 Introduction
Training neural networks is challenging and involves making several design choices. Among these
are the architecture of the network, the training loss function, the optimization algorithm used for
training, and their hyperparameters, such as the learning rate and the batch size. Most of these
design choices influence the solution obtained by the training procedure and have been studied in
detail (Kingma and Ba, 2014; Hardt et al., 2015; He et al., 2016; Wilson et al., 2017; Nar and Sastry,
2018a; Smith et al., 2018). Nevertheless, one choice has been mostly taken for granted when the
network is trained for a classification task: the training loss function.

Cross-entropy loss function is almost the sole choice for classification tasks in practice. Its
prevalent use is backed theoretically by its association with the minimization of the Kullback-Leibler
divergence between the empirical distribution of a dataset and the confidence of the classifier for
that dataset. Given the particular success of neural networks for classification tasks (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016), there seems to be little motivation to
search for alternatives for this loss function, and most of the software developed for neural networks
incorporates an efficient implementation for it, thereby facilitating its further use.

Recently there has been a line of work analyzing the dynamics of training a linear classifier with
the cross-entropy loss function (Soudry et al., 2018; Nacson et al., 2018a,b; Ji and Telgarsky, 2018).
They specified the decision boundary that the gradient descent algorithm yields on linearly separable
datasets and claimed that this solution achieves the maximum `2 margin. However, these claims
were observed not to hold in the simple experiments we ran. For example, Figure 4.1 displays a
case where the cross-entropy minimization for a linear classifier leads to a decision boundary which
attains an extremely poor margin and is nearly orthogonal to the solution given by the hard-margin
support vector machine (SVM).

We set out to understand this discrepancy between the claims of the previous works and our
observations on the simple experiments. We can provide an outline for this chapter as follows.

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 50

SVM decision boundary
(largest margin)

Cross-entropy min.
decision boundary

(poor margin)

Figure 4.1: Orange and blue points represent the data from two different classes in R2. Cross-entropy
minimization for a linear classifier on the given training points leads to the decision boundary shown
with the solid line, which attains a very poor margin and is almost orthogonal to the solution given
by the SVM.

1. We analyze the minimization of the cross-entropy loss for a linear classifier by using only
two training points, i.e., only one point from each of the two classes, and we show that the
dynamics of the gradient descent algorithm could yield a poor decision boundary, which
could be almost orthogonal to the boundary with the maximum margin.

2. We identify the source of discrepancy between our observations and the claims of the recent
works as the misleading abbreviation of notation in the previous works. We clarify why the
solution obtained with cross-entropy minimization is different from the SVM solution.

3. We show that for linearly separable datasets, if the features of the training points lie in an
affine subspace, and if the cross-entropy loss is minimized by a gradient method with no
regularization to train a linear classifier, the margin between the decision boundary of the
classifier and the training points could be much smaller than the optimal value. We verify that
when a neural network is trained with the cross-entropy loss to classify two classes from the
CIFAR-10 dataset, the output of the penultimate layer of the network indeed produces points
that lie on an affine subspace.

4. We show that if there is no explicit and effective regularization, the weights of the last layer of
a neural network could grow to infinity during training with a gradient method. Even though
this has been observed in recent works as well, we are the first to point out that this divergence
drives the confidence of the neural network to 100% at almost every point in the input space if
the network is trained for long. In other words, the confidence depends heavily on the training
duration, and its exact value might be of little significance as long as it is above 50%.

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 51

5. We introduce differential training, which is a training paradigm that uses a loss function
defined on pairs of points from each class – instead of only one point from any class. We
show that the decision boundary of a linear classifier trained with differential training indeed
produces the SVM solution with the maximum hard margin.

The results in this chapter have appeared in (Nar et al., 2019a,b; Nar and Sastry, 2019).

4.2 Classification of Two Points with the Cross-Entropy Loss
We start with a simple binary classification problem. Given two points x ∈ Rd and −y ∈ Rd from
two different classes, we can find a linear classifier by minimizing the cross-entropy loss function

min
w∈Rd,b∈R

{
− log

(
1

e−w>x−b + 1

)
− log

(
ew
>y−b

ew>y−b + 1

)}
,

or equivalently, by solving

min
w̃∈Rd+1

{
log(e−w̃

>x̃ + 1) + log(e−w̃
>ỹ + 1)

}
, (4.1)

where x̃ = [x> 1]>, −ỹ = [−y> 1]> and w̃ = [w> b]>. Unless the two points x and −y are equal,
the function (4.1) does not attain its minimum at a finite value of w̃. Consequently, if the gradient
descent algorithm is used to minimize (4.1), the iterate at time k, w̃[k], diverges as k increases. The
following theorem characterizes the growth rate of w̃[k] and its direction in the limit by using a
continuous-time approximation to the gradient descent algorithm.

Theorem 4.1. Given two points x ∈ Rd and −y ∈ Rd, let x̃ and −ỹ denote [x> 1]> and [−y> 1],
respectively. Without loss of generality, assume ‖x‖ ≤ ‖y‖. If the two points are in different classes
and we minimize the cross-entropy loss

min
w̃∈Rd+1

log(1 + e−w̃
>x̃) + log(1 + e−w̃

>ỹ)

by using the continuous-time approximation to the gradient descent algorithm

dw̃

dt
= x̃

δe−w̃
>x̃

1 + e−w̃>x̃
+ ỹ

δe−w̃
>ỹ

1 + e−w̃>ỹ

with the initialization w̃(0) = 0 and the learning rate δ, then

lim
t→∞

w̃(t)

log(t)
=

{
σy−σxy
σxσy−σ2

xy
x̃+ σx−σxy

σxσy−σ2
xy
ỹ if σxy < σx,

1
σx
x̃ if σxy ≥ σx,

(4.2)

where σx = ‖x̃‖2, σxy = x̃>ỹ and σy = ‖ỹ‖2.

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 52

Note that first d coordinates of (4.2) represent the normal vector of the decision boundary
obtained by minimizing the cross-entropy loss (4.1). This vector is different from x+y, which is the
direction of the maximum-margin solution given by the SVM. In fact, the direction in (4.2) could
be almost orthogonal to the SVM solution in certain cases, which implies that the margin between
the points and the decision boundary could be much smaller than the optimal value. Corollary 4.1
describes a subset of these cases.

Corollary 4.1. Given two points x and −y in Rd, let ψ denote the angle between the solution given
by (4.2) and the solution given by the SVM, i.e., (x+ y). If x>y = 1, then

cos2 ψ ≤ 4

2 + σy
σx

(
1− 1

σx

) ,
where σx = ‖x‖2+1 and σy = ‖y‖2+1. Consequently, as ‖x‖/‖y‖ approaches 0 while maintaining
the condition x>y = 1, the angle ψ converges to π/2.

Remark 4.1. Corollary 4.1 shows that if x and −y have disparate norms, the minimization of
the cross-entropy loss with gradient descent algorithm could lead to a direction which is almost
orthogonal to the maximum-margin solution. It may seem like this problem could be avoided
with preprocessing the data so as to normalize the data points. However, this approach will not be
effective for neural networks: if we consider an L-layer neural network, w>φL−1(x), and regard the
first L− 1 layers, φL−1(·), as a feature mapping, preprocessing a dataset {xi}i∈I will not produce a
normalized set of features {φL−1(xi)}i∈I . Note that we could not normalize {φL−1(xi)}i∈I directly
either, since the mapping φL−1(·) evolves during training.

Remark 4.2. Theorem 4.1 shows that the norm of w keeps growing unboundedly as the training
continues. The same behavior will be observed for larger datasets in the next sections as well. Since
the “confidence” of the classifier for its prediction at a point x is given by

max

(
1

e−w>x−b + 1
,

e−w
>x−b

e−w>x−b + 1

)
,

this unbounded growth of ‖w‖ drives the confidence of the classifier to 100% at every point in the
input space, except at the points on the decision boundary, if the algorithm is run for long. Given
the lack of effective regularization for neural networks, a similar unbounded growth is expected to
be observed in neural network training as well, which is mentioned in (Bartlett et al., 2017). As a
result, the confidence of a neural network might be highly correlated with the training duration, and
whether a neural network gives 99% or 51% confidence for a prediction might be of little importance
as long as it is above 50%. In other words, regarding this confidence value as a measure of similarity
between an input and the training dataset from the most-likely class should be reconsidered.

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 53

4.3 Margins of Linear Classifiers Trained with the
Cross-Entropy Loss

In this section, we examine the binary classification of a linearly separable dataset by minimizing
the cross-entropy loss function. Recently, this problem has also been studied in (Soudry et al., 2018;
Nacson et al., 2018b,a; Ji and Telgarsky, 2018). We restate an edited version of the main theorem of
(Soudry et al., 2018), followed by the reason of the edition.

Theorem 4.2. [Adapted from Theorem 3 of (Soudry et al., 2018)] Given two sets of points {xi : i ∈
I} and {xj : j ∈ J } that are linearly separable in Rn, let x̃i and x̃j denote [x>i 1]> and [x>j 1]>,
respectively, for all i ∈ I, j ∈ J . Then the iterate of the gradient descent algorithm, w̃(t), on the
cross-entropy loss function

min
w̃∈Rn+1

∑
i∈I

log(1 + e−w̃
>x̃i) +

∑
j∈J

log(1 + ew̃
>x̃j)

with a sufficiently small step size will converge in direction:

lim
t→∞

w̃(t)

‖w̃(t)‖ =
w

‖w‖ ,

where w is the solution to

minimize
z∈Rn+1

‖z‖2 (4.3)

subject to 〈z, x̃i〉 ≥ 1 ∀i ∈ I,
〈z, x̃j〉 ≤ −1 ∀j ∈ J .

The solution (4.3) given in Theorem 4.2 was referred in (Soudry et al., 2018), and consequently
in the other works, as the maximum-margin solution. However, due to the absence of the bias term
in the notation, this claim is not completely accurate. Given the linearly separable sets of points
{xi}i∈I and {−yj}j∈J , the maximum-margin solution given by the SVM solves

minimize
w,b

‖w‖2
2

subject to 〈w, xi〉+ b ≥ 1 ∀i ∈ I,
〈w,−yj〉+ b ≤ −1 ∀j ∈ J.

(P1)

On the other hand, the solution given by Theorem 4.2 corresponds to

minimize
w,b

‖w‖2
2 + b2

subject to 〈w, xi〉+ b = 〈w̃, x̃i〉 ≥ 1 ∀i ∈ I,
〈w,−yj〉+ b = 〈w̃,−ỹj〉 ≤ −1 ∀j ∈ J,

(P2)

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 54

where we define w̃ = [w> b]>, x̃i = [x>i 1]> and ỹj = [y>j − 1]> for all i ∈ I, j ∈ J . Even though
the sets of constraints for both problems are identical, their objective functions are different, and
consequently, the solutions are different. As a result, the decision boundary obtained by cross-
entropy minimization does not necessarily attain the maximum hard margin. In fact, as the following
theorem shows, its margin could be arbitrarily worse than the maximum margin.

Theorem 4.3. Assume that the points {xi}i∈I and {xj}j∈J are linearly separable, and a linear
classifier is trained by minimizing the cross entropy loss:

min
w,b

∑
i∈I

log
(

1 + e−w
>xi−b

)
+
∑

j∈J
log
(

1 + ew
>xj+b

)
,

via the gradient descent algorithm. Let 〈w, ·〉+B = 0 denote the decision boundary obtained, and
assume that w and B are scaled such that

min
i∈I
〈w, xi〉 −max

j∈J
〈w, xj〉 = 2.

Define the set of indices for the support vectors as

Isup =
{
i ∈ I : 〈w, xi〉 ≤ 〈w, xi′〉 ∀i′ ∈ I

}
,

Jsup =
{
j ∈ J : 〈w, xj〉 ≥ 〈w, xj′〉 ∀j′ ∈ J

}
.

If the support vectors lie in an affine subspace, that is, if there exist a set of orthonormal vectors
{rk}k∈K and a set of scalars {∆k}k∈K such that

〈rk, xi〉 = 〈rk, xj〉 = ∆k ∀i ∈ Isup, ∀j ∈ Jsup, ∀k ∈ K,

then the minimization of the cross-entropy loss yields a margin smaller than or equal to

1√
1

γ2
OPT

+B2
∑

k∈K ∆2
k

where γOPT denotes the optimal hard margin in the input space given by the SVM solution.

Theorem 4.3 points out that the margin of the classifier is determined by only the support vectors,
which are the training points that are closest to the decision boundary of the classifier. The points
that are further to the decision boundary have no effect on the margin, and there is a reason for
this: their excitation of the parameters do not persist as the gradient descent algorithm continues to
update the parameters. Once these points are correctly classified, their contribution to the gradient
of the loss function is removed exponentially fast, and consequently, the dynamics of the algorithm
is dominated by the other points.

Remark 4.3. Theorem 4.3 shows that if the training points lie in an affine subspace, the margin
obtained by the cross-entropy minimization will be smaller than the optimal margin value. As
the dimension of this affine subspace decreases, the cardinality of the set K increases and the

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 55

term
∑

k∈K ∆2
k could become much larger than 1/γ2. Therefore, as the dimension of the subspace

containing the training points gets smaller compared to the dimension of the input space, cross-
entropy minimization with a gradient method becomes more likely to yield a poor margin. Note that
this argument also holds for classifiers of the form w>φ(x) with the fixed feature mapping φ(·).

It is essential to note that the bias term B in Theorem 4.3 is not the bias of the training data set;
it is the bias of the support vectors. It is likely that the training data points have zero mean, whereas
the support vectors have non-negligible bias.

Note also that making the bias term B zero requires the a priori knowledge of the set of support
vectors — which is not available until the algorithm has completed and the optimization problem
is solved. Therefore, the term B can not be made zero simply by preprocessing the data and
removing its mean. This is the primary reason why having a poor margin is unavoidable when the
cross-entropy loss is used for low-dimensional data sets.

The next theorem relaxes the condition of Theorem 4.3 and allows the training points to be
near an affine subspace instead of being exactly on it. Note that the ability to compare the margin
obtained by cross-entropy minimization with the optimal value is lost. Nevertheless, it highlights
the fact that same set of points could be assigned a different margin by cross-entropy minimization
if all of them are shifted away from the origin by the same amount in the same direction.

Theorem 4.4. Assume that the points {xi}i∈I and {xj}j∈J in Rn are linearly separable and there
exist a set of orthonormal vectors {rk}k∈K and a set of scalars {∆k}k∈K such that

〈rk, xi〉 ≥ ∆k, 〈rk, xj〉 ≤ ∆k ∀i ∈ Isup, ∀j ∈ Jsup, ∀k ∈ K.

Let 〈w, ·〉+B = 0 denote the decision boundary obtained by minimizing the cross-entropy loss, as
in Theorem 4.3. Then the minimization of the cross-entropy loss yields a margin smaller than or
equal to

1√
B2
∑

k∈K ∆2
k

.

Remark 4.4. Both Theorem 4.3 and Theorem 4.4 consider linearly separable datasets. If the dataset
is not linearly separable, (Ji and Telgarsky, 2018) predicts that the normal vector of the decision
boundary, w, will have two components, one of which converges to a finite vector and the other
diverges. The diverging component still has the potential to drive the decision boundary to a
direction with a poor margin. In fact, the margin is expected to be small especially if the points
intruding into the opposite class lie in the same subspace as the optimal normal vector for the
decision boundary. Nevertheless, we have focused on the case of separable datasets as this case
provides critical insight into the issues of state-of-the-art neural networks, given they can easily
attain zero training error even on randomly generated datasets, which indicates the linear separability
of the features obtained at their penultimate layers (Zhang et al., 2017).

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 56

4.4 Two-Layer Nonlinear Network Trained with the
Cross-Entropy Loss

When a two-layer neural network is trained via the gradient descent algorithm, the dynamics of the
algorithm will be nonlinear. If, in addition, the cost function used for training is the cross-entropy
loss, the parameters of the network will grow unboundedly — provided that there are enough
parameters to classify every training point correctly with a proper initialization (Zhang et al., 2017).
However, most analysis tools for nonlinear dynamical systems primarily focus on the behaviors of
these systems around their equilibria, which are the fixed points of their dynamics, or their limiting
behaviors inside bounded regions (Khalil, 1996; Sastry, 2013). Therefore, the common tools in
nonlinear analysis will become inapplicable for the analysis of the cross-entropy loss. In this case,
instead of studying the convergence of the actual values of the parameters, we can analyze the
convergence of the ratio of the parameters. This leads us to consider an alternative concept of
convergence: convergence in direction.

Definition 4.1. (Convergence in direction) Given a set of functions, Wk : [0,∞) 7→ Rmk×nk

for k ∈ [L], assume limt→∞ ‖Wk(t)‖F = ∞ for some k ∈ [L]. The set (W1, . . . ,WL) is said to
converge in direction to (W 1, . . . ,WL) if

lim
t→∞

‖Wk(t)− h(t)W k‖F
h(t)

= 0 ∀k ∈ [L]

for some function h : [0,∞) 7→ (0,∞) diverging to +∞, where W k ∈ Rmk×nk is a matrix with
bounded elements for each k ∈ [L], and W k 6= 0 at least for some k ∈ [L].

With this concept of convergence, we are ready to state the next theorem.

Theorem 4.5. Assume that a two-layer neural network is trained to classify the sets {xi}i∈I and
{xj}j∈J by minimizing the cross-entropy loss∑

i∈I
log
(

1 + e−w
>(V xi+b)+

)
+
∑

j∈J
log
(

1 + ew
>(V xj+b)+

)
via the continuous-time gradient descent algorithm, where w ∈ Rr, V ∈ Rr×n and b ∈ Rr. Assume
all the training points are correctly classified1, and the parameters (w, V, b) converge in direction
to (w, V , b) as defined above. Let (w, V , b) be scaled such that

w>(V xi + b)+ ≥ 1 ∀i ∈ I, (4.4a)

w>(V xj + b)+ ≤ −1 ∀j ∈ J (4.4b)
1State-of-the-art neural networks are able to achieve zero training error even on randomly generated and randomly

labeled data sets (Zhang et al., 2017).

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 57

with either equality holding for at least one point. Let Isup and Jsup denote the points that achieve
equality in (4.4a) and (4.4b), respectively. Then the Lipschitz constant of the mapping x 7→
w>(V x+ b)+ is upper bounded by

nmin
node
√
nmax

sup√
λ

,

where nmax
sup is the maximum number of support vectors that activate the same hidden layer node:

nmax
sup = max

k∈[r]
max

S⊆Isup∪Jsup

{
|S| : V kxs + bk > 0 ∀s ∈ S

}
,

nmin
node is the minimum number of nodes that are activated by all of the support vectors:

nmin
node = min

K⊆[r]

{
|K| : maxk∈K V kxs + bk > 0 ∀s ∈ Isup ∪ Jsup

}
,

and λ is a lower bound for the minimum eigenvalue of X>k Xk, where the columns of Xk are the
support vectors activating node k.

Theorem 4.5 reveals a new notion of richness for the data set that is markedly different than
the full-rankness of the data or of the support vectors; it is the linear independence of the support
vectors. If the support vectors activating any one of the hidden-layer nodes are linearly dependent,
then λ in Theorem 4.5 will be zero, and the bound will become void. Note that this notion of
richness also reinforces the result of Theorem 4.3.

4.5 Low-Dimensionality of Hidden-Layer Activations
As seen in Section 3.3 and Section 4.4, robustness guarantees for neural networks seem to require
certain amount of richness in the training data set and the hidden-layer activations. While the full
rankness of the training data activating each hidden-layer node provides persistency of excitation for
a network trained with the squared-error loss, the use of cross-entropy loss necessitates the linear
independence of all support vectors activating the same hidden-layer nodes. These two conditions
are different, but both of them are likely to be violated if the training data is large in number and the
features of the data are low-dimensional in some layer of the network. Even though this appears to
be a degenerate case, there are two main reasons why it is also the prevalent case:

1. The raw image, audio, and video data are low-dimensional by nature; this is the funda-
mental fact that has enabled data compression for decades by discovering and utilizing
low-dimensional representations specific to different applications.

2. Even if the input data is full rank, the use of the gradient descent algorithm for training
multiple-layer networks induces low-rank signals in the intermediate layers of the network.

The latter item has been observed in several empirical works, for example, in (Martin and
Mahoney, 2019). The following theorem confirms its validity for deep linear networks.

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 58

Theorem 4.6. Assume that a deep linear network with L layers is trained to classify the points in
the sets {xi}i∈I and {xj}j∈J by minimizing

`(W1, . . . ,WL) =
∑

s∈I∪J
d(WL · · ·W1xs, ys) +

∑
k∈[L]

µk‖Wk‖2
F (4.5)

where {ys : s ∈ I ∪ J } is the set of labels, d(·, ·) is any loss function differentiable in its first
argument, Wk ∈ Rnk×nk−1 for all k ∈ [L] and nL = 1, i.e., the output of the network is scalar, and
µk > 0 for all k ∈ [L]. If the gradient descent algorithm converges from a random initialization to
a solution (W 1, . . . ,WL), then each weight matrix W k has rank 1, almost surely.

Theorem 4.6 shows that adding the Frobenius norms of the weight parameters, which is
commonly referred to as adding weight-decay, causes all signals in the hidden layers to have
rank 1 — independently of the loss function used for training. The following theorem shows that
when the cross-entropy loss is used, the result is the same even without the addition of weight-decay.

Theorem 4.7. Assume that the sets {xi}i∈I and {xj}j∈J are separable by a hyperplane passing
through the origin, and a deep linear network with L layers is trained to classify them by minimizing
the cross-entropy loss:

`(W1, . . . ,WL) =
∑

i∈I
log
(
1 + eWL···W1xi

)
+
∑

j∈J
log
(
1 + e−WL···W1xj

)
(4.6)

via the continuous-time gradient descent algorithm:

dWk(t)

dt
= −∂`(W1(t), . . . ,WL(t))

∂Wk(t)
∀k ∈ [L].

If the weight matrices converge in direction to (W 1, . . . ,WL) from a random initialization, then
each W k has rank 1 almost surely.

Theorem 4.6 and Theorem 4.7 show that the conditions given in the previous sections for the
persistency of excitation are easily violated when the model has multiple layers and the gradient
descent algorithm is used for training.

4.6 Differential Training for Linear Classifiers
In previous sections, we saw that the cross-entropy minimization could lead to poor margins, and the
main reason for this was the appearance of the bias term in the objective function of (P2). In order
to remove the effect of the bias term, consider the SVM problem (P1) and note that this problem
could be equivalently written as

minimize
w

‖w‖2
2

subject to 〈w, xi + yj〉 ≥ 2 ∀i ∈ I, ∀j ∈ J
(P3)

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 59

if we only care about the weight parameter w. This gives the hint that if we use the set of differences
{xi + yj : i ∈ I, j ∈ J} instead of the individual sets {xi}i∈I and {−yj}j∈J , the bias term could
be excluded from the problem. This was also noted in (Keerthi et al., 2000; Ishibashi et al., 2008)
previously. Indeed, this approach allows obtaining the SVM solution with a loss function similar to
the cross-entropy loss, as the following theorem shows.

Theorem 4.8. Given two sets of points {xi}i∈I and {−yj}j∈J that are linearly separable in Rd, if
we solve

min
w∈Rd

∑
i∈I

∑
j∈J

log(1 + e−w
>(xi+yj)) (4.7)

by using the gradient descent algorithm with a sufficiently small learning rate, the direction of w
converges to the direction of maximum-margin solution, i.e.

lim
t→∞

w(t)

‖w(t)‖ =
wSVM

‖wSVM‖
, (4.8)

where wSVM is the solution of (P3).

Proof. Apply Theorem 4.2 by replacing the sets {xi}i∈I and {−yj}j∈J with {xi + yj}i∈I,j∈J
and the empty set, respectively. Then the minimization of the loss function (4.7) with the gradient
descent algorithm leads to

lim
t→∞

w

‖w‖ =
w

‖w‖
where w satisfies

w = arg min
w
‖w‖2 such that 〈w, xi + yj〉 ≥ 1 ∀i ∈ I, ∀j ∈ J.

Since wSVM is the solution of (P3), we obtain w = 1
2
wSVM, and the claim of the theorem holds. �

Remark 4.5. Theorem 4.8 is stated for the gradient descent algorithm, but the identical statement
could be made for the stochastic gradient method as well by invoking the main theorem of (Nacson
et al., 2018).

Minimization of the cost function (4.7) yields the weight parameter ŵ of the decision boundary.
The bias parameter, b, could be chosen by plotting the histogram of the inner products {〈ŵ, xi〉}i∈I
and {〈ŵ,−yj〉}j∈J and fixing a value for b̂ such that

〈ŵ, xi〉+ b̂ ≥ 0 ∀i ∈ I, (4.9a)

〈ŵ,−yj〉+ b̂ ≤ 0 ∀j ∈ J. (4.9b)

The largest hard margin is achieved by

b̂ = −1

2
min
i∈I
〈ŵ, xi〉 −

1

2
max
j∈J
〈ŵ,−yj〉. (4.10)

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 60

However, by choosing a larger or smaller value for b̂, it is possible to make a tradeoff between the
Type-I and Type-II errors.

The cost function (4.7) includes a loss defined on every pair of data points from the two classes.
This cost function can be considered as the cross-entropy loss on a new dataset which contains
|I| × |J | points. There are two aspects of this fact:

1. When standard loss functions are used for classification tasks, we need to oversample or
undersample either of the classes if the training dataset contains different number of points
from different classes. This problem does not arise when we use the cost function (4.7).

2. Number of pairs in the new dataset, |I| × |J |, will usually be much larger than the original
dataset, which contains |I|+ |J | points. Therefore, the minimization of (4.7) might appear
more expensive than the minimization of the standard cross-entropy loss computationally.
However, if the points in different classes are well separated and the stochastic gradient
method is used to minimize (4.7), the algorithm achieves zero training error after using only
a few pairs, which is formalized in Theorem 4.9. Further computation is needed only to
improve the margin of the classifier. In addition, in our experiments to train a neural network
to classify two classes from the CIFAR-10 dataset, only a few percent of |I| × |J | points were
observed to be sufficient to reach a high accuracy on the training dataset.

Theorem 4.9. Given two sets of points {xi}i∈I and {−yj}j∈J that are linearly separable in Rd,
assume the cost function (4.7) is minimized with the stochastic gradient method. Define

Rx = max{‖xi − xi′‖ : i, i′ ∈ I}, Ry = max{‖yj − yj′‖ : j, j′ ∈ J}

and let γ denote the hard margin that would be obtained with the SVM:

2γ = maxu∈Rd mini∈I,j∈J 〈xi + yj, u/‖u‖〉.

If 2γ ≥ 5 max(Rx, Ry), then the stochastic gradient algorithm produces a weight parameter, ŵ,
only in one iteration which satisfies the inequalities (4.9a)-(4.9b) along with the bias, b̂, given by
(4.10).

4.7 Experiments
In this section, we present numerical experiments supporting our claims.

Differential training. In Figure 4.2, we show the decision boundaries of two linear classifiers,
where one of them is trained by minimizing the cross-entropy loss, and the other through differential
training. Unlike the example shown in Figure 4.1, here the data do not exactly lie in an affine
subspace. In particular, one of the classes is composed of 10 samples from a normal distribution
with mean (2, 12) and variance 25, and the other class is composed of 10 samples from a normal
distribution with mean (40, 50) and variance 25. As can be seen from the figure, the cross-entropy
minimization yields a margin that is smaller than differential training, even though when the training
dataset is not low-dimensional, which is predicted by Theorem 4.4.

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 61

Differential training
boundary

Cross-entropy min.
boundary

Figure 4.2: Classification boundaries obtained via differential training and cross-entropy mini-
mization. The margin recovered by cross-entropy minimization is worse than that is obtained by
differential training even when the training dataset is not low-dimensional.

Low-dimensionality. We empirically evaluated if the features obtained at the penultimate
layer of a neural network indeed lie in a low-dimensional affine subspace. For this purpose, we
trained a convolutional neural network architecture to classify horses and planes from the CIFAR-10
dataset (Krizhevsky and Hinton, 2009). Figure 4.3 shows the cumulative variance explained for the
features that feed into the soft-max layer as a function of the number of principal components used.
Similarly, Figure 4.4 displays the principal component analysis for all layers of the network trained
with the cross-entropy loss. We observe that the features, which are the outputs of the penultimate
layer of the network, lie in a low-dimensional affine subspace, and this holds for a variety of training
modalities for the network. This observation is relevant to Remark 4.3. The dimension of the
subspace containing the training points is at most 20, which is much smaller than the dimension of
the feature space, 84. Consequently, cross-entropy minimization with a gradient method is expected
to yield a poor margin on these features.

4.8 Discussion
We compare our results with related works and discuss their implications for the following subjects.

Adversarial examples. State-of-the-art neural networks have been observed to misclassify
inputs that are slightly different from their training data, which indicates a small margin between
their decision boundaries and the training dataset (Szegedy et al., 2013; Goodfellow et al., 2015;
Moosavi-Dezfooli et al., 2017; Fawzi et al., 2017). Our results reveal that the combination of

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 62

0 20 40 60 80
number of principal components used

0.0

0.2

0.4

0.6

0.8

1.0

va
ria

nc
e

ex
pl

ai
ne

d
Adam+BatchNorm
Adam
momentum

Figure 4.3: The activations feeding into the soft-max layer could be considered as the features for a
linear classifier. Plot shows the cumulative variance explained for these features as a function of the
number of principal components used. Almost all the variance in the features is captured by the
first 20 principal components out of 84, which shows that the input to the soft-max layer resides
predominantly in a low-dimensional subspace.

0 20 40 60 80
Number of principal components

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

nc
e

ex
pl

ai
ne

d

PCA of Hidden-Layer Signals (Cross-Entropy)

1st layer
2nd layer
3rd layer
4th layer

Figure 4.4: Principal component analysis for all layers of the network trained with the cross-entropy
loss. The plot shows the variance explained versus number of principal components used for each
layer.

gradient methods, cross-entropy loss function and the low-dimensionality of the training dataset (at
least in some domain) has a responsibility for this problem. Note that SVM with the radial basis
function was shown to be robust against adversarial examples, and this was attributed to the high
nonlinearity of the radial basis function in (Goodfellow et al., 2015). Given that the SVM uses
neither the cross entropy loss function nor the gradient descent algorithm for training, we argue that

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 63

the robustness of SVM is no surprise – independent of its nonlinearity.
Low-dimensionality of the training dataset. As stated in Remark 4.3, as the dimension of

the affine subspace containing the training dataset gets very small compared to the dimension of
the input space, the training algorithm will become more likely to yield a small margin for the
classifier. This observation confirms the results of (Marzi et al., 2018), which showed that if the set
of training data is projected onto a low-dimensional subspace before feeding into a neural network,
the performance of the network against adversarial examples is improved – since projecting the
inputs onto a low-dimensional domain corresponds to decreasing the dimension of the input space.
Even though this method is effective, it requires the knowledge of the domain in which the training
points are low-dimensional. Because this knowledge will not always be available, finding alternative
training algorithms and loss functions that are suited for low-dimensional data is still an important
direction for future research.

Robust optimization. Using robust optimization techniques to train neural networks has been
shown to be effective against adversarial examples (Madry et al., 2018; Athalye et al., 2018). Note
that these techniques could be considered as inflating the training points by a presumed amount and
training the classifier with these inflated points. Consequently, as long as the cross-entropy loss is
involved, the decision boundaries of the neural network will still be in the vicinity of the inflated
points. Therefore, even though the classifier is robust against the disturbances of the presumed
magnitude, the margin of the classifier could still be much smaller than what it could potentially be.

Differential training. We introduced differential training, which allows the feature mapping
to remain trainable while ensuring a large margin between different classes of points. Therefore,
this method combines the benefits of neural networks with those of support vector machines.
Even though moving from 2N training points to N2 seems prohibitive, it points out that a true
classification should in fact be able to differentiate between the pairs that are hardest to differentiate,
and this search will necessarily require an N2 term. Some heuristic methods are likely to be
effective, such as considering only a smaller subset of points closer to the boundary and updating
this set of points as needed during training. If a neural network is trained with this procedure, the
network will be forced to find features that are able to tell apart between the hardest pairs.

Nonseparable data. What happens when the training data is not linearly separable is an open
direction for future work. However, as stated in Remark 4.4, this case is not expected to arise for
the state-of-the-art networks, since they have been shown to achieve zero training error even on
randomly generated datasets (Zhang et al., 2017), which implies that the features represented by the
output of their penultimate layer eventually become linearly separable.

4.9 Proofs
This sections provides the proofs for the theorems and the corollaries in this chapter.

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 64

4.9.1 Proof of Theorem 4.1
Theorem 4.1 could be proved by using Theorem 4.2, but we provide an independent proof here.
Gradient descent algorithm with learning rate δ on the cross-entropy loss (4.1) yields

dw̃

dt
= δx̃

e−w̃
>x̃

1 + e−w̃>x̃
+ δỹ

e−w̃
>ỹ

1 + e−w̃>ỹ
.

If w̃(0) = 0, then w̃(t) = p(t)x̃+ q(t)ỹ for all t ≥ 0, where

ṗ = δ
e−p‖x̃‖

2−q〈x̃,ỹ〉

1 + e−p‖x̃‖2−q〈x̃,ỹ〉
, q̇ = δ

e−q‖ỹ‖
2−p〈x̃,ỹ〉

1 + e−q‖ỹ‖2−p〈x̃,ỹ〉
.

Define
α = p‖x̃‖2 + q〈x̃, ỹ〉, β = q‖ỹ‖2 + p〈x̃, ỹ〉,

a = δ‖x̃‖2 = δσx, c = δ‖ỹ‖2 = δσy, b = δ〈x̃, ỹ〉 = δσxy.

Then we can write

α̇ = a
e−α

1 + e−α
+ b

e−β

1 + e−β
,

β̇ = c
e−β

1 + e−β
+ b

e−α

1 + e−α
.

Finally, define z = eα and v = eβ so that

ż =
z

z + 1

(
a+ b

z + 1

v + 1

)
,

v̇ =
v

v + 1

(
c+ b

v + 1

z + 1

)
.

Without loss of generality, assume c ≥ a. Before we proceed, note that

d

dt

(z
v

)
=
c− b
z + 1

z

v

(
a− b
c− b −

z + 1

v + 1

)
,

d

dt

(
z + 1

v + 1

)
=

z

(v + 1)2

[
v + 1

z + 1
a− v

z
b−

(
v

z

z + 1

v + 1
c− b

)]
.

Let u and w denote z
v

and z+1
v+1

, respectively. Then,

u̇ < 0 if w >
a− b
c− b

u̇ > 0 if w <
a− b
c− b

ẇ < 0 if
(a
w

+ b
)
u < cw + b

ẇ > 0 if
(a
w

+ b
)
u > cw + b

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 65

Lemma 4.1. If b = 0, then

lim
t→∞

w̃(t)

log(t)
=

1

‖x̃‖ x̃+
1

‖ỹ‖ ỹ.

Proof. Note that

d(z + log(z))

dt
= a =⇒ z(t)− z0 + log(z(t)/z0) = at,

d(v + log(v))

dt
= c =⇒ v(t)− v0 + log(v(t)/v0) = ct.

Then,

lim
t→∞

α(t)

log(t)
= lim

t→∞

log(z(t))

log(t)
= 1 = lim

t→∞

log(v(t))

log(t)
= lim

t→∞

β(t)

log(t)
,

and

lim
t→∞

w̃(t)

log(t)
=

x̃

‖x̃‖2
+

ỹ

‖ỹ‖2
. �

Lemma 4.2. If b < 0, then there exists t0 ∈ (0,∞) such that

−b
c
≤ z + 1

v + 1
≤ a

−b ∀t ≥ t0.

Proof. Note that −b
c
≤ a−b

c−b ≤ a
−b because b < 0. First assume z0+1

v0+1
≥ a
−b . Then, ż ≤ 0 and

v̇ =
v

v + 1

(
c+ b

v + 1

z + 1

)
≥ v

v + 1

(
c− b2

a

)
≥ v0

v0 + 1

ac− b2

a
,

which implies that
z + 1

v + 1
≤ (z0 + 1)

(
v0

v0 + 1

ac− b2

a
t+ 1

)−1

as long as z+1
v+1
≥ a
−b , and this can be satisfied only for a finite time. Now assume z0+1

v0+1
≤ −b

c
. Then,

v̇ ≤ 0 and

ż =
z

z + 1

(
a+ b

z + 1

v + 1

)
≥ z0

z0 + 1

ac− b2

c
,

which implies
z + 1

v + 1
≥
(

z0

z0 + 1

ac− b2

c
t+ 1

)
(v0 + 1)−1

as long as z+1
v+1
≤ −b

c
, and this can be satisfied only for a finite time as well. �

Lemma 4.3. If b < 0, then

0 ≤ ż ≤ ac− b2

c
, 0 ≤ v̇ ≤ ac− b2

a
∀t ≥ t0,

where t0 is given by Lemma 4.2.

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 66

Proof.

ż =
z

z + 1

(
a+ b

z + 1

v + 1

)
≤ z

z + 1

ac− b2

c
≤ ac− b2

c

v̇ =
v

v + 1

(
c+ b

v + 1

z + 1

)
≤ v

v + 1

ac− b2

a
≤ ac− b2

a
�

Lemma 4.4. If b < 0, then

lim
t→∞

log(z)

log t
= lim

t→∞

log(v)

log t
= 1

Proof. From Lemma 4.3,

v̇ ≤ 0 ⇐⇒ c+ b
v + 1

z + 1
≥ 0,

and

v ≤ ac− b2

a
t+ v′0.

Combining these two inequalities, we have

c+
b

a

[
(ac− b2)t+ v′0 + 1

] 1

z + 1
≥ 0 ⇐⇒ z + 1 ≥ −b

ac
[(ac− b2)t+ v′0 + 1]

As a result,

(−b)(ac− b2)

ac
t+ z1 ≤ z(t) ≤ ac− b2

c
t+ z2 ∀t ≥ t0 =⇒ lim

t→∞

log(z)

log(t)
= 1.

By using Lemma 4.2,

log(−b/c) ≤ log(z + 1)− log(v + 1) ≤ log(−a/b) =⇒ lim
t→∞

log(v)

log(t)
= 1. �

Lemma 4.5. If b < 0, then

lim
t→∞

w̃(t)

log(t)
= δ

c− b
ac− b2

x̃+ δ
a− b
ac− b2

ỹ =
σy − σxy
σxσy − σ2

xy

x̃+
σx − σxy
σxσy − σ2

xy

ỹ

Proof. Solving the set of equations

1 = lim
α

log(t)
=
a

δ
lim

p

log(t)
+
b

δ
lim

q

log(t)
,

1 = lim
β

log(t)
=
c

δ
lim

q

log(t)
+
b

δ
lim

p

log(t)
,

we obtain
lim
t→∞

p

log(t)
= δ

c− b
ac− b2

, lim
t→∞

q

log(t)
= δ

a− b
ac− b2

�

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 67

Lemma 4.6. If b > 0, then

lim
t→∞

z

v
= lim

t→∞

z + 1

v + 1
=

{
0 if a ≤ b
a−b
c−b if a > b

Proof. Note that ż ≥ a/2 and v̇ ≥ c/2; therefore,

lim
t→∞

z + 1

v + 1
= lim

t→∞

z

v
=⇒ lim

t→∞
u = lim

t→∞
w

if either side exists. Remember that

ẇ < 0 ⇐⇒ u <
cw2 + bw

a+ bw
=: f(w).

We can compute

f ′(w) =
2acw + bcw2 + ab

b2w2 + 2abw + a2
.

The function f is strictly increasing and convex for w > 0. We have

f(0) = 0,

f

(
a− b
c− b

)
=
a− b
c− b .

Therefore, when b ≥ a, the only fixed point of f over [0,∞) is the origin, and when a > b, 0 and
(a− b)/(c− b) are the only fixed points of f over [0,∞).

w

u
u = f(w)

a−b
c−b

a−b
c−b

Figure 4.5: Stationary points of function f .

Figure 4.5 shows the curves over which u̇ = 0 and ẇ = 0. Since limt→∞ u = limt→∞w, the
only points (u,w) can converge to are the fixed points of f . Remember that

u̇ =
c− b
z + 1

u

(
a− b
c− b − w

)
,

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 68

so when a > b, the origin (0, 0) is unstable in the sense of Lyapunov, and (u,w) cannot converge to
it. Otherwise, (0, 0) is the only fixed point, and it is stable. As a result,

lim
t→∞

z

v
= lim

t→∞

z + 1

v + 1
=

{
0 if a ≤ b
a−b
c−b if a > b

�

Lemma 4.7. If a > b > 0, then

lim
t→∞

w̃(t)

log(t)
= δ

c− b
ac− b2

x̃+ δ
a− b
ac− b2

ỹ =
σy − σxy
σxσy − σ2

xy

x̃+
σx − σxy
σxσy − σ2

xy

ỹ.

Proof. From Lemma 4.6,

lim
t→∞

z

t
= lim

t→∞
ż = lim

t→∞

z

z + 1

(
a+ b

z + 1

v + 1

)
= a+ b

a− b
c− b =

ac− b2

c− b ,

lim
t→∞

v

t
=
ac− b2

a− b .

Consequently,

lim
t→∞

log(z)

log(t)
= lim

t→∞

log(v)

log(t)
= 1

which gives the same solution as Lemma 4.5:

lim
t→∞

p

log(t)
= δ

c− b
ac− b2

, lim
t→∞

q

log(t)
= δ

a− b
ac− b2

. �

Lemma 4.8. If b ≥ a, then

lim
t→∞

w̃(t)

log(t)
=

1

‖x̃‖ x̃

Proof.

lim
t→∞

z

t
= a, lim

t→∞

log(z)

log(t)
= 1,

lim
t→∞

v

t
= lim

t→∞
v̇ =∞

lim
t→∞

log(v)

log(t)
= lim

t→∞

v̇

v
t = lim

t→∞

1

v + 1

(
c+ b

v + 1

z + 1

)
t = lim

t→∞

ct

v + 1
+ lim

t→∞

bt

z + 1
=
b

a

lim
t→∞

p

log(t)
=

1

‖x̃‖2
, lim

t→∞

q

log(t)
= 0 =⇒ lim

t→∞

px+ qy

log(t)
=

1

‖x̃‖2
x̃ �

Proof of Theorem 4.1. Lemma 4.1, Lemma 4.5, Lemma 4.7 and Lemma 4.8 prove all cases of
Theorem 4.1. �

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 69

4.9.2 Proof of Corollary 4.1
Since x>y = 1, we have σxy = x̃>ỹ = x>y − 1 = 0 < a. Then the normal vector of the decision
boundary is proportional to 1

σx
x+ 1

σy
y. For the angle between this vector and the solution of the

SVM, we can write

cosψ =
〈 1
σx
x+ 1

σy
y, x+ y〉∥∥∥ 1

σx
x+ 1

σy
y
∥∥∥∥∥x+ y

∥∥ =
2∥∥∥ 1

σx
x+ 1

σy
y
∥∥∥√σx + σy

.

We can obtain a lower bound for square of the denominator as∥∥∥ 1

σx
x+

1

σy
y
∥∥∥2

(σx + σy) ≥
(

2 +
σy
σx
− σy
σ2
x

)
+

(
1

σx
+

1

σy
+
σx
σy
− σx
σ2
y

)
≥ 2 +

σy
σx

(
1− 1

σx

)
.

As a result,

cos2 ψ ≤ 4

2 + σy
σx

(
1− 1

σx

) . �

4.9.3 Proof of Theorem 4.3
Assume that w = u +

∑
k∈K αkrk, where u ∈ Rn and 〈u, rk〉 = 0 for all k ∈ K. By denoting

z = [w> b]>, the Lagrangian of the problem (4.3) can be written as

1

2
‖w‖2 +

1

2
b2 +

∑
i∈I

µi(1− 〈w, xi〉 − b) +
∑

j∈J
νj(−1 + 〈w, xj〉+ b),

where µi ≥ 0 for all i ∈ I and νj ≥ 0 for all j ∈ J . KKT conditions for the optimality of w and B
requires that

w =
∑
i∈I

µixi −
∑
j∈J

νjxj, B =
∑
i∈I

µi −
∑
j∈J

νj,

and consequently, for each k ∈ K,

〈w, rk〉 =
∑

i∈I
µi〈xi, rk〉 −

∑
j∈J

νj〈xj, rk〉

=
∑

i∈I
∆kµi −

∑
j∈J

∆kνj = B∆k.

Then, we can write w as
w = u+

∑
k∈K

B∆krk.

Let 〈wSVM, ·〉+ bSVM = 0 denote the hyperplane obtained as the solution of maximum hard-margin
SVM in the original space — not in the augmented space. Then wSVM solves

minimize
w

‖w‖2 (4.11)

subject to 〈w, xi − xj〉 ≥ 2 ∀i ∈ I,∀j ∈ J .

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 70

Since the vector u also satisfies 〈u, xi − xj〉 = 〈w, xi − xj〉 ≥ 2 for all i ∈ I, j ∈ J , we have
‖u‖ ≥ ‖wSVM‖ = 1

γOPT
. As a result, the margin obtained by minimizing the cross-entropy loss is

1

‖w‖ =
1√

‖u‖2 +
∑ ‖B∆krk‖2

≤ 1√
1

γ2
OPT

+B2
∑

∆2
k

.

�

4.9.4 Proof of Theorem 4.4
If B < 0, we could consider the hyperplane 〈w, ·〉 −B = 0 for the points {−xi}i∈I and {−xj}j∈J ,
which would have the identical margin due to symmetry. Therefore, without loss of generality,
assume B ≥ 0. As in the proof of Theorem 4.3, KKT conditions for the optimality of w and B
requires

w =
∑
i∈I

µixi −
∑
j∈J

νjxj, B =
∑
i∈I

µi −
∑
j∈J

νj

where µi ≥ 0 and νj ≥ 0 for all i ∈ I, j ∈ J . Note that for each k ∈ K,

〈w, rk〉 =
∑

i∈I
µi〈xi, rk〉 −

∑
j∈J

νj〈xj, rk〉

= B∆k +
∑

i∈I
µi(〈xi, rk〉 −∆k)

−
∑

j∈J
νj(〈−xj, rk〉 −∆k) ≥ B∆k.

Since {rk}k∈K is an orthonormal set of vectors,

‖w‖2 ≥
∑

k∈K
〈w, rk〉2 ≥

∑
k∈K

B2∆2
k.

The result follows from the fact that ‖w‖−1 is an upper bound on the margin. �

4.9.5 Proof of Theorem 4.5
Lemma 4.9. The direction parameters w, V and b satisfy

‖w‖2
2 = ‖V ‖2

F + ‖b‖2
2.

Proof The continuous-time gradient descent algorithm gives

dw

dt
=
∑
i∈I

Gi(V xi + b)
e−w

>Gi(V xi+b)

1 + e−w>Gi(V xi+b)
−
∑
j∈J

Gj(V xj + b)
ew
>Gj(V xj+b)

1 + ew>Gj(V xj+b)
(4.12a)

dV

dt
=
∑
i∈I

Giwx
>
i

e−w
>Gi(V xi+b)

1 + e−w>Gi(V xi+b)
−
∑
j∈J

Gjwx
>
j

ew
>Gj(V xj+b)

1 + ew>Gj(V xj+b)
(4.12b)

db

dt
=
∑
i∈I

Giw
e−w

>Gi(V xi+b)

1 + e−w>Gi(V xi+b)
−
∑
j∈J

Gjw
ew
>Gj(V xj+b)

1 + ew>Gj(V xj+b)
(4.12c)

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 71

Note that, for all t ≥ 0 we have

d

dt
〈w(t), w(t)〉 =

d

dt
〈V (t), V (t)〉+

d

dt
〈b(t), b(t)〉.

Consequently, for all t ≥ 0:

‖w(t)‖2
2 − ‖w(0)‖2

2

h2(t)
=
‖V (t)‖2

F − ‖V (0)‖2
F

h2(t)
+
‖b(t)‖2

2 − ‖b(0)‖2
2

h2(t)
,

which proves that
‖w‖2

2 = ‖V ‖2
F + ‖b‖2

2.

�

Lemma 4.10. The solution obtained by the continuous-time gradient descent algorithm satisfies

w =
∑
i∈I

µiGi(V xi + b)−
∑
j∈J

µjGj(V xj + b)

V =
∑
i∈I

µiGiwx
>
i −

∑
j∈J

µjGjwx
>
j

b =
∑
i∈I

µiGiw −
∑
j∈J

µjGjw

for some set of nonnegative scalars {µs : s ∈ I ∪ J }.

Proof Given the dynamics (4.12) of the gradient descent algorithm, define the set of support vectors
as

Isup =

{
i ∈ I : lim

t→∞

e−w
>(V xi′+b)+

e−w>(V xi+b)+
<∞ ∀i′ ∈ I, lim

t→∞

ew
>(V xj′+b)+

e−w>(V xi+b)+
<∞ ∀j′ ∈ J

}
,

J sup =

{
j ∈ J : lim

t→∞

e−w
>(V xi′+b)+

ew>(V xj+b)+
<∞ ∀i′ ∈ I, lim

t→∞

ew
>(V xj′+b)+

ew>(V xj+b)+
<∞ ∀j′ ∈ J

}
.

Note that the points corresponding to these indices dominate the dynamics of the algorithm as the
training continues. Let bs1 , bs2 be two nonzero coordinates of b, let xS be any of the support vectors.
Then,

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 72

bs1
bs2

= lim
t→∞

bs1(t)

bs2(t)

= lim
t→∞

dbs1
dt
dbs2
dt

= lim
t→∞

∑
i∈I e

>
s1
Giw

e−w
>Gi(V xi+b)

1+e−w
>Gi(V xi+b)

−∑j∈J e
>
s1
Gjw

ew
>Gj(V xj+b)

1+ew
>Gj(V xj+b)∑

i∈I e
>
s2
Giw

e−w
>Gi(V xi+b)

1+e−w
>Gi(V xi+b)

−∑j∈J e
>
s2
Gjw

ew
>Gj(V xj+b)

1+ew
>Gj(V xj+b)

= lim
t→∞

∑
i∈I e

>
s1
Giw

e−w
>Gi(V xi+b)

ew
>GS(V xS+b)

−∑j∈J e
>
s1
Gjw

ew
>Gj(V xj+b)

ew
>GS(V xS+b)∑

i∈I e
>
s2
Giw

e−w
>Gi(V xi+b)

ew
>GS(V xS+b)

−∑j∈J e
>
s2
Gjw

ew
>Gj(V xj+b)

ew
>GS(V xS+b)

=

∑
i∈I e

>
s1
Giwµi −

∑
j∈J e

>
s1
Gjwµj∑

i∈I e
>
s2
Giwµi −

∑
j∈J e

>
s2
Gjwµj

where

µi ∝ lim
t→∞

e−w
>Gi(V xi+b)

ew>GS(V xS+b)
∀i ∈ I,

µj ∝ lim
t→∞

e−w
>Gj(V xj+b)

ew>GS(V xS+b)
∀j ∈ J .

Similarly, if e>s1b and e>s2V es3 are two nonzero elements of b and V , then

e>s1b

e>s2V es3
= lim

t→∞

e>s1b

e>s2V es3

= lim
t→∞

e>s1
db
dt

e>s2
dV
dt
es3

= lim
t→∞

∑
i∈I e

>
s1
Giw

e−w
>Gi(V xi+b)

ew
>GS(V xS+b)

−∑j∈J e
>
s1
Gjw

ew
>Gj(V xj+b)

ew
>GS(V xS+b)∑

i∈I e
>
s2
Giwxies3

e−w
>Gi(V xi+b)

ew
>GS(V xS+b)

−∑j∈J e
>
s2
Gjwxjes3

ew
>Gj(V xj+b)

ew
>GS(V xS+b)

=

∑
i∈I e

>
s1
Giwµi −

∑
j∈J e

>
s1
Gjwµj∑

i∈I e
>
s2
Giwxies3µi −

∑
j∈J e

>
s2
Gjwxjes3µj

.

As a result, we have

V =
∑
i∈I

µiGiwx
>
i −

∑
j∈J

µjGjwx
>
j

b =
∑
i∈I

µiGiw −
∑
j∈J

µjGjw

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 73

for some set of nonnegative scalars {µs : s ∈ I ∪ J }.
An identical analysis of ws1/ws2 for two nonzero coordinates of w shows that

w =
∑
i∈I

αµiGi(V xi + b)−
∑
j∈J

αµjGj(V xj + b)

for some α ∈ (0,∞). In order to find the value of α, note that

〈w,w〉 =

〈
w,
∑
i∈I

αµiGi(V xi + b)−
∑
j∈J

αµjGj(V xj + b)

〉

= α

〈∑
i∈I

µiGiwx
>
i −
∑
j∈J

µjGjwx
>
j , V

〉
+ α

〈∑
i∈I

µiGiw −
∑
j∈J

µjGjw, b

〉
= α〈V , V 〉+ α〈b, b〉

which shows that α must be 1 due to Lemma 4.9. This completes the proof. �
Proof of Theorem 4.5. For any k ∈ [r], let wk, V k and bk denote the k-th row of w, V and b,
respectively. From Lemma 4.9, we have that

w2
k = ‖V k‖2

2 + b
2

k.

Let Ik ⊆ I and J k ⊆ J denote the support vectors that activate the j-th node in the hidden layer,
i.e.,

Ik =
{
i ∈ I : V kxi + bk > 0, w>(V xi + b)+ = 1

}
,

J k =
{
j ∈ J : V kxj + bk > 0, w>(V xj + b)+ = −1

}
.

Then we have

wk =
∑

i∈Ik
µi(V kxi + bk)−

∑
j∈J k

µj(V kxj + bk)

V k =
∑

i∈Ik
µiwkx

>
i −

∑
j∈J k

µjwkx
>
j

bk =
∑

i∈Ik
µiwk −

∑
j∈J k

µjwk.

Plugging the expressions for V k and bk into that of wk:

wk = wkµ
>X>k Xkµ+

1

wk
b

2

k,

which gives

µ>X>k Xkµ = 1− b
2

k

w2
k

=⇒ λmin(X
>
k Xk)‖µ‖2

2 ≤ 1− b
2

k

w2
k

,

=⇒ λmin(X
>
k Xk)

‖µ‖2
1

nk
≤ 1− b

2

k

w2
k

,

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 74

where Xk is a matrix with columns {xi : i ∈ Ik} and {−xj : j ∈ J k}, µ is a column vector with
elements {µs : s ∈ Ik ∪ J k}, and nk is the number of support vectors that activate node k. Note
that if the columns of Xk are not linearly independent, then µs can be arbitrarily large for any
support vector xs. From the last inequality, we have∑

s∈Ik∪J k
µs ≤

√
|Ik|+ |J k|√
λmin(X>k Xk)

.

From the definition of the support vectors, we also have that∑
k∈[r]

w2
k =

∑
k∈[r]

(∑
i∈Ik

µiwk(V kxi + bk)−
∑

j∈J k
µjwk(V kxj + bk)

)
=
∑

s∈I∪J
µs

due to complementary slackness condition.
Our goal is to bound the Lipschitz constant of the estimate f̂(x) = w>(V x+ b)+:∑

k∈[r]
|wk|‖V k‖2 ≤

∑
k∈[r]

w2
k

=
∑

s∈I∪J
µs

≤
nmin

node
√
nmax

sup

mink∈[r]

√
λmin(X>k Xk)

where nmin
node denotes the minimum number of nodes that are activated by all of the support vectors:

nmin
node = min

K⊆[r]

{
|K| : ∀s ∈ Isup ∪ J sup ∃k ∈ K such that V kxs + bk > 0

}
.

�

4.9.6 Proof of Theorem 4.6
The first order stationarity condition implies that

∂`

∂Wk

= 0 ∀k ∈ [L],

which yields

0 =
∑

s∈I∪J
W
>
k+1 · · ·W

>
L

∂d(z, ys)

∂z

∣∣∣∣
z=WL···W 1xs

x>sW
>
1 · · ·W

>
k−1 + 2µkW k

= W
>
k+1 · · ·W

>
L

(∑
s∈I∪J

∂d(z, ys)

∂z

∣∣∣∣
z=WL···W 1xs

x>s

)
W
>
1 · · ·W

>
k−1 + 2µkW k.

Since the first term has rank 1, so does W k, for each k ∈ [L]. �

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 75

4.9.7 Proof of Theorem 4.7
For brevity in notation, define

x̃i = xi ∀i ∈ I,
x̃j = −xj ∀j ∈ J ,

and S = I ∪ J . Then the cost function (4.6) could be written as

`(W1, . . . ,WL) =
∑

s∈S
log
(
1 + eWL···W1x̃s

)
.

Note that at least one of the weight matrices must diverge to∞ in norm since the loss function
does not attain its minimum at a finite point. In addition, we have

d‖Wk(t)‖2
F

dt
= 2

〈
Wk(t),

dWk(t)

dt

〉
= 2

〈
Wk(t),−

∂`

∂Wk

〉
=
d‖Wk′(t)‖2

F

dt
∀k, k′ ∈ [L],

and consequently,

‖Wk(t)‖2
F − ‖Wk′(t)‖2

F = ‖Wk(0)‖2
F − ‖Wk′(0)‖2

F ∀t ≥ 0, ∀k, k′ ∈ [L].

Therefore, all of the weight matrices must diverge to∞ in norm.
We can define the set of indices for the support vectors:

Ssup =

{
s ∈ S : lim

t→∞

exp(WL · · ·W1x̃s′)

exp(WL · · ·W1x̃s)
<∞ ∀s′ ∈ S

}
,

which is a nonempty set. For any k ∈ [L], remember that W k ∈ Rnk×nk−1 . Let i1, i2 ∈ [nk] and
j1, j2 ∈ [nk−1] be such that e>i1W kej1 , e>i2W kej1 and ei2W kej2 are nonzero. Note that if such a tuple
of (i1, i2, j1) does not exist, then the matrix W k has rank 1 already, and the following analysis is
not needed. Given such a tuple of (i1, i2, j1), we have

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 76

e>i1W kej1

e>i2W kej1
= lim

t→∞

e>i1Wk(t)ej1
e>i2Wk(t)ej1

= lim
t→∞

e>i1
dWk

dt
ej1

e>i2
dWk

dt
ej1

= lim
t→∞

∑
s∈S e

>
i1

(
W>
k+1 · · ·W>

L x̃
>
sW

>
1 · · ·W>

k−1

)
ej1e

WL···W1x̃s∑
s∈S e

>
i2

(
W>
k+1 · · ·W>

L x̃
>
sW

>
1 · · ·W>

k−1

)
ej1e

WL···W1x̃s

=
e>i1W

>
k+1 · · ·W

>
L

e>i2W
>
k+1 · · ·W

>
L

lim
t→∞

∑
s∈Ssup

(
x̃>sW

>
1 · · ·W

>
k−1

)
ej1e

WL···W1x̃s−WL···W1x̃ssup∑
s∈Ssup

(
x̃>sW

>
1 · · ·W

>
k−1

)
ej1e

WL···W1x̃s−WL···W1x̃ssup

=
e>i1W

>
k+1 · · ·W

>
L

e>i2W
>
k+1 · · ·W

>
L

lim
t→∞

∑
s∈Ssup

(
x̃>sW

>
1 · · ·W

>
k−1

)
ej2e

WL···W1x̃s−WL···W1x̃ssup∑
s∈Ssup

(
x̃>sW

>
1 · · ·W

>
k−1

)
ej2e

WL···W1x̃s−WL···W1x̃ssup

= lim
t→∞

e>i1
dWk

dt
ej2

e>i2
dWk

dt
ej2

=
e>i1W kej2

e>i2W kej2

where x̃ssup denotes any point in the set {xs}s∈Ssup . Note that this equality shows that all columns of
W k are in the span of the same single vector in Rnk , which proves that W k has rank 1. �

4.9.8 Proof of Theorem 4.9
In order to achieve zero training error in one iteration of the stochastic gradient algorithm, it is
sufficient to have

mini′∈I〈xi′ , xi + yj〉 > maxj′∈J〈−yj′ , xi + yj〉 ∀i ∈ I, ∀j ∈ J,

or equivalently,
〈xi′ + yj′ , xi + yj〉 > 0 ∀i, i′ ∈ I, ∀j, j′ ∈ J. (4.13)

By definition of the margin, there exists a vector wSVM ∈ Rd with unit norm which satisfies

2γ = mini∈I,j∈J〈xi + yj, wSVM〉.

Note that wSVM is orthogonal to the decision boundary given by the SVM. Then we can write every
xi + yj as

xi + yj = 2γwSVM + δxi + δyj ,

CHAPTER 4. ROBUSTNESS WITH THE CROSS-ENTROPY LOSS 77

where δxi , δ
y
j ∈ Rd and ‖δxi ‖ ≤ Rx and ‖δyj ‖ ≤ Ry. Then, condition (4.13) is satisfied if

〈2γwSVM + δxi + δyj , 2γwSVM + δxi′ + δyj′〉 > 0 ∀i, i′ ∈ I, ∀j, j′ ∈ J,

or equivalently if

4γ2 + 2γ〈wSVM, δ
x
i + δyj + δxi′ + δyj′〉+ 〈δxi + δyj , δ

x
i′ + δyj′〉 > 0 ∀i, i′ ∈ I, ∀j, j′ ∈ J. (4.14)

If we choose γ > 5
2

max(Rx, Ry), we have

4γ2 − 2γ(2Rx + 2Ry)− (Rx +Ry)
2 > 0,

which guarantees (4.14) and completes the proof. �

78

Chapter 5

Learning Linear Dynamical Systems

5.1 Introduction
Systems with memories that evolve over time require the use of a dynamical model for their
representation. This model describes how the memory, or the state, of this system changes over
time, how its state is affected by inputs to the system, and how it generates observable outputs.
System identification corresponds to the task of learning the unknown parameters of this dynamical
model from the known inputs and the observed outputs of the system.

Identification of dynamical systems from time-series data is an important problem for various
applications, such as model prediction in reinforcement learning (Lambert et al., 2019; Zhang et al.,
2016), analysis of medical health records (Rubanova et al., 2019) and prediction with financial
time-series data (Tsay, 2014; Ganeshapillai et al., 2013). However, the identification problems that
arise in these applications pose some theoretical challenges:

1. Unless the state of the system is observed with a known noiseless mapping, the identification of
the system model is coupled with the state estimation. Consequently, the system identification
task is in general a nonconvex problem (Hardt et al., 2018). To circumvent this nonconvexity,
the initial state can be assumed to be zero in control settings, and a known input can be used
to drive the state of the system (Sastry, 1984; Sastry and Bodson, 1989). However, in medical
and financial settings, the initial state of the system is typically not known a priori, and the
deviations of the initial state from a nominal value cannot be neglected. Therefore, a joint and
nonconvex optimization procedure is unavoidable in these settings to estimate the initial state
of the system along with the unknown model parameters (Frigola et al., 2014; Duncker et al.,
2019).

2. For control of a dynamical system in a reinforcement learning task, it is most critical that the
unstable1 modes of the system be discovered and stabilized properly. Similarly, financial data

1The term stability refers to bounded-input bounded-output stability. For continuous-time linear time-invariant
systems, this corresponds to the condition where the eigenvalues of the state transition matrix have strictly negative real
parts.

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 79

and medical health records usually exhibit sudden changes in their pattern, which call for
potentially unstable dynamics in their representation and estimation. However, the primary
tools for nonconvex optimization, namely, the gradient methods, fail to converge and find an
accurate model representation for unstable systems (Hardt et al., 2018).

3. Especially in medical and financial data sets, the data are sampled irregularly; that is, the
observations are not periodically sampled. The common heuristic approach to handle this
situation is imputing the absent observations by interpolating the observed values of the output
(Che et al., 2018). This approach, however, might fail to capture the correct dynamics of the
underlying system. An alternative is to use a model that can take account for the evolution of
the state of the system during unobserved intervals without requiring periodic observations
(Chen et al., 2018).

In this chapter, we use the gradient descent algorithm to identify the unknown parameters of a
linear dynamical system from its observed outputs. We look into the dynamics of this algorithm and
try to pinpoint what causes the inability of the gradient methods to converge when they are used to
identify an unstable dynamical system. Similar to the work of Chen et al. (2018), our analysis uses
a continuous-time model so that it directly applies to irregularly sampled data sets with no need for
imputation.

By analyzing the dynamics of the gradient descent algorithm during identification of a linear
dynamical system, we achieve the following.

1. We obtain an upper bound on the learning rate of the gradient descent algorithm so that it can
converge while learning a dynamical system with the squared-error loss. This upper bound
explicitly depends on the eigenvalue of the system with the largest real part, and it shows
that identifying a system becomes harder as the system becomes unstable. Furthermore, the
upper bound on the learning rate shows that the samples taken at different times affect the
convergence of the gradient descent algorithm in substantially different degrees.

2. To enable the convergence of the gradient descent algorithm even when learning unstable
systems, we introduce a new loss function which balances the influence of the samples taken
at different times on the convergence of the algorithm. Then we demonstrate the effectiveness
of this loss function while estimating linear dynamical systems.

The results in this chapter have appeared in (Nar et al., 2020). Note that the primary question
our work addresses is about the use of the gradient descent algorithm while learning a dynamical
system: can this algorithm converge at all while learning the parameters of a dynamical system
model? This is a different problem than whether a specific algorithm, or a specific model can learn
the dynamical system of interest more accurately than the state-of-the-art.

5.1.1 Related works
Hardt et al. (2018) studied the convergence of the gradient descent algorithm while learning linear
dynamical systems. They demonstrated the failure of this algorithm to learn even stable systems,

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 80

and proposed a projected gradient method that fixed the issue for linear stable systems. Learning
an unstable system, however, was considered to be infeasible. In contrast, we retain the standard
gradient descent algorithm in this work, and we introduce a new loss function that allows learning
even unstable systems with no necessity for projection.

If the state of a linear system is directly accessed, that is, if the output of the system is equal to
the state of the system possibly with some additive noise, learning the system parameters can be
formulated as an ordinary least squares problem. Alaeddini et al. (2018) and Sarkar and Rakhlin
(2019) make this assumption and arrive at a convex optimization problem. By doing so, they avoid
the use of gradient descent algorithm, and therefore, they do not suffer from the issues pointed out
by Hardt et al. (2018). However, as mentioned earlier, the assumption of having an access to the
true internal state is unrealistic in many application domains, such as, health and finance.

Using variational inference is a common approach to estimate the initial state jointly with the
dynamical model parameters in a Bayesian setting (Frigola et al., 2014; Archer et al., 2015; Krishnan
et al., 2017; Eleftheriadis et al., 2017; Duncker et al., 2019; Gregor et al., 2019). In this approach, a
separate model is employed to estimate the initial state from the whole observed trajectory. One
of the models that we will consider in this work is a simpler, deterministic counterpart of this
approach. We show that convergence issues of the gradient descent algorithm are also valid for this
deterministic counterpart of variational inference.

Neural ordinary differential equations (Chen et al., 2018; Rubanova et al., 2019) use a neural
network to represent a continuous-time dynamical system. Since these models are also trained with
the gradient descent algorithm, they also suffer from the stability issues of the gradient descent
algorithm while learning the parameters of a dynamical model. Indeed, the training data of all the
examples outlined in these works involve trajectories that converge to either a stable equilibrium or
a stable limit cycle of the system.

5.2 Problem Formulation
For each k ∈ K = {1, . . . , K}, let zk : [0,∞) 7→ Rn denote a continuous-time process representing
the state of a linear time-invariant dynamical system:

dzk(t)

dt
= Azk(t) ∀t ≥ 0, ∀k ∈ K,

where A ∈ Rn×n denotes the state transition dynamics of the system. Then the evolution of the
process is described by zk(t) = eAtzk(0) for all t ≥ 0 for each k ∈ K (Callier and Desoer, 1991).
Let {xk(t)}t∈Tk be the set of samples obtained from zk at time instants t ∈ Tk via an observation
matrix C ∈ Rm×n:

xk(t) = Czk(t) = CeAtzk(0) ∀t ∈ Tk, ∀k ∈ K.
Define the initial state of the trajectory of zk as sk ∈ Rn; that is, let sk = zk(0) for all k ∈ K.
We will look for a linear dynamical system model that fits all the trajectories, and we will use the
gradient descent algorithm to reveal the difficulty of its convergence. In particular, our goal is to

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 81

study whether the gradient descent algorithm is able to converge to a solution while solving the
problem

minimize
A,C

∑
k∈K

∑
t∈Tk

`
(
xk(t), Ce

Atsk
)

(5.1a)

where ` is a differentiable loss function. We consider two choices for ` in the following sections:
the squared-error loss as it is used both in classical works (Åström and Eykhoff, 1971) and in recent
works (Hardt et al., 2018), and the time-weighted logarithmic loss introduced in Section 5.4.

The set of initial states {sk}k∈K is left arbitrary in the statement of (5.1); we consider three
possible cases for these initial states, and our analysis in the following sections applies to all of
these three cases.

1. Each sk is known or has a fixed value. In other words, the set {sk}k∈K is not updated by the
gradient descent algorithm.

2. Each sk is also a variable, and the gradient descent algorithm optimizes over {sk}k∈K as well:

minimize
A,C,{sk}k∈K

∑
k∈K

∑
t∈Tk

`
(
xk(t), Ce

Atsk
)

(5.2)

3. Each sk is output of a state estimator:

sk = gφ ({t, xk(t)}t∈Tk) ∀k ∈ K,

where φ is the parameters of this estimator, and the gradient descent algorithm solves the
problem

minimize
A,C,φ

∑
k∈K

∑
t∈Tk

`
(
xk(t), Ce

Atsk
)

+ L (φ) (5.3a)

subject to sk = gφ ({t, xk(t)}t∈Tk) ∀k ∈ K, (5.3b)

where L is an additional loss term associated with the estimation of the initial state, and it
satisfies

∂L
∂A

= 0,
∂L
∂C

= 0.

This case can be considered as the deterministic counterpart of the framework used in
variational inference of state space models (Jordan et al., 1999; Archer et al., 2015). This
comparison is discussed further in Section 5.6.

In the following sections, we will demonstrate the analysis and state the theorems for problem
(5.2) in the second case. The statements are identically valid for the other two cases, as explained in
Appendix 5.8.4.

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 82

5.3 Learning with Squared-Error Loss
In this section, we consider problem (5.2) with the squared-error loss:

minimize
A,C,{sk}k∈K

∑
k∈K

∑
t∈Tk

‖xk(t)− CeAtsk‖2

2

If we use the gradient descent algorithm to solve problem (5.2), the learning rate of the algorithm
needs to be sufficiently small for the algorithm to converge (Bertsekas, 1999). The next theorem
gives an upper bound on the learning rate as a necessary condition for the convergence of the
algorithm.

Theorem 5.1. Let {zk}k∈K be a set of trajectories, and let sk denote the initial state for trajectory
zk for each k ∈ K. Define the set of sampling instants of zk as Tk, and denote the samples taken
from this trajectory by {xk(t)}t∈Tk . Assume that the gradient descent algorithm is used to solve the
problem

min
A,C,{sk}k∈K

∑
k∈K

∑
t∈Tk

∥∥xk(t)− CeAtsk∥∥2

2
. (5.4)

Then for almost every initialization, the learning rate of the gradient descent algorithm, δ, must
satisfy

δ ≤ 2

λmin

(
ρ2
∑

k∈K
∑

t∈Tk t
2e2Re(Λ)tŝkŝ>k

)
so that the algorithm can converge to the solution

(
Â, Ĉ, {ŝk}k∈K

)
achieving zero training error,

where λmin(·) denotes the minimum eigenvalue of its argument, Λ is the eigenvalue of Â with the
largest real part, ρ2 = maxu∈U ‖Ĉu‖2

2, and U is the set of eigenvectors of Â corresponding to Λ.

Proof. See Appendix 5.8.1. �

Note that the eigenvalues of a linear dynamical system have a particular meaning in control
theory: they describe the stability of the system (Callier and Desoer, 1991). If any eigenvalue of
Â has a real part that is strictly positive, then the state of the system will grow unboundedly large
from almost all initial points; and the system is called unstable in this case. If, on the other hand, all
eigenvalues of Â has a negative real part, then the state of the system will converge to a fixed point
from all initial points, and the system will be stable.

The condition about reaching zero training error might be somewhat restrictive, but the main
purpose of Theorem 5.1 is not to prescribe a learning rate for all possible cases; it is to reveal
that the samples taken at different times affect the convergence of the algorithm very differently.
Indeed, Theorem 5.1 shows that if the gradient descent algorithm is used to learn an unstable system,
samples taken at later times impose a bound on the required learning rate exponentially more strict,
which renders learning an unstable dynamical system infeasible.

Note that if the set of initial states {ŝk}k∈K does not span the whole state space, then the bound
given in Theorem 5.1 will be void. This suggests that it will be easier to train a dynamical model if

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 83

the initial states of the trajectories given in the training data do not have a large variance. However,
this does not mean the learned model will be accurate. Since there is no information available about
how the system evolves for the initial states in the nullspace of

∑
k∈K ŝkŝ

>
k , the model learned will

fail to predict the behavior of the system for the initial states with a nonzero component in this
unlearned subspace as well.

The appearance of ρ in Theorem 5.1 reflects the notion of observability (Callier and Desoer,
1991). Based on the relationship between the matrices Â and Ĉ, it may not be possible to observe
certain eigenvalues, or modes, of the learned system in its output; these modes are called unobserv-
able modes. As these modes do not appear in the output of the learned system, they cannot affect
the gradient descent algorithm.

Remark 5.1. The analysis for Theorem 5.1 shows that, for the Hessian H of the loss function (5.4)
at (Â, Ĉ), the ratio of the largest eigenvalue to the smallest eigenvalue of H satisfies

λmax(H)

λmin(H)
≥
λmin

(
ρ2

1

∑
k∈K

∑
t∈Tk t

2e2Re(λ1)tŝkŝ
>
k

)
λmax

(
ρ2

2

∑
k∈K

∑
t∈Tk t

2e2Re(λ2)tŝkŝ>k
)

for any pair of eigenvalues (λ1, λ2) of Â, where ρ1 = ‖Cu1‖2, ρ2 = ‖Cu2‖2, and u1, u2 are the
right eigenvectors of Â corresponding to λ1, λ2, respectively. This implies that, if the loss function
can be represented well by its second order approximation around (Â, Ĉ), local convergence rate
for estimating the eigenvalue λ2 will require

O

log

(1− β
∑

k∈K
∑

t∈Tk t
2e2Re(λ2)t∑

k∈K
∑

t∈Tk t
2e2Re(λ1)t

)−1
−1

iterations of the gradient descent algorithm, where β is some constant depending on ρ1, ρ2 and∑
k∈K ŝkŝ

>
k . This shows that learning the stable modes of a system can become infeasible when the

system is unstable. See Appendix 5.8.3 for more details.

The necessary condition given in Theorem 5.1 implies that the convergence of the algorithm
gives us information about the rightmost eigenvalue of the dynamical system that is being estimated.
This is stated in Corollary 5.1.

Corollary 5.1. Assume that the observation matrix C = I , the gradient descent algorithm is used
to solve the problem (5.4) and the algorithm has converged from a random2 initialization to the
solution

(
Â, {ŝk}k∈K

)
achieving zero training error. Then the eigenvalue of Â with the largest real

part, Λ, almost surely satisfies

Re(Λ) ≤ inf
τ>0

1

2τ
log

[
1

δτ 2

2

λmin

(∑
k∈K

∑
t∈Tk ŝkŝ

>
k 1{t≥τ}

)] if Re(Λ) > 0,

Re(Λ) ≤ inf
τ2>τ1>0

1

2τ2

log

[
1

δτ 2
1

2

λmin

(∑
k∈K

∑
t∈Tk ŝkŝ

>
k 1{τ1≤t≤τ2}

)] if Re(Λ) < 0.

2The random distribution is assumed to assign zero probability to every set with Lebesgue measure zero.

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 84

5.4 Learning with Time-Weighted Logarithmic Loss
Theorem 5.1 shows that when the gradient descent algorithm is used to learn the parameters of an
unstable dynamical system, the effect of the samples taken at later times are exponentially more
weighted around a global minimum. It is important to note that this is the case for the choice of
squared-error loss as the training loss function. In this section, we introduce a new loss function in
order to balance the effects of all samples on the dynamics of the algorithm. This new loss function
greatly relaxes the necessary condition given in Theorem 1, and it enables training even unstable
linear systems with the gradient descent algorithm.

For any ε > 0, define Fε : R→ R as

Fε(ξ) =

{
log(ε+ ξ)− log(ε) ξ ≥ 0,
− log(ε− ξ) + log(ε) ξ < 0.

(5.5)

Given two trajectories {x(t)}t∈T and {y(t)}t∈T in Rn, consider the loss function defined as

`(x, y) =
∑
t∈T

n∑
j=1

1

t2
(
Fε(e

>
j x(t))− Fε(e>j y(t))

)2
,

where ej denotes the j-th standard basis vector with a 1 in its j-th coordinate and 0 in all other
coordinates. Note that `(x, y) is zero if and only if x(t) = y(t) for all t ∈ T ; and it is strictly
positive otherwise. Similar to Section 5.3, we will analyze this loss functions for learning linear
dynamical systems.

Theorem 5.2. Let {zk}k∈K be a set of trajectories, and let sk denote the initial state for trajectory
zk for each k ∈ K. Define the set of sampling instants of zk as Tk, and denote the samples taken
from this trajectory by {xk(t)}t∈Tk . Assume that the gradient descent algorithm is used to solve

min
A,C,{sk}k∈K

∑
k∈K

∑
t∈Tk

n∑
j=1

1

t2
(
Fε(e

>
j xk(t))− Fε(e>j CeAtsk)

)2
, (5.6)

where Fε is as defined in (5.5). Then for almost every initialization, the learning rate δ of the
gradient descent algorithm must satisfy

δ ≤ 2

λmin

(∑
k∈K

∑
t∈Tk

ρ2e2Re(Λ)t

(‖ĈeÂtŝk‖∞+ε)
2 ŝkŝ>k

)
so that the algorithm can converge to the solution (Â, Ĉ, {ŝk}k∈K) achieving zero training error,
where Λ is the eigenvalue of Â with the largest real part, ρ2 = maxu∈U ‖Ĉu‖2

2, and U is the set of
right-eigenvectors of Â corresponding to its eigenvalue Λ.

Proof. See Appendix 5.8.2. �

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 85

The necessary conditions on the step size given in Theorem 5.2 and in Theorem 5.1 are obtained
by following the identical analysis procedure. Theorem 5.2 shows that the loss function (5.6)
substantially relaxes the necessary condition given in Theorem 5.1, and it balances the weights of all
the sampling instants on the dynamics of the gradient descent algorithm. In other words, it makes it
easier for the gradient descent algorithm to converge to the global minima. This is demonstrated in
the next section.

5.5 Experiments
To check if the time-weighted logarithmic loss function introduced in Theorem 5.2 allows learn-
ing linear dynamical systems with the gradient descent algorithm, we generated a set of output
trajectories from randomly generated linear systems and trained a linear model with this data set by
using the logarithmic loss function. We also trained the model with the same data set by using the
mean-squared-error loss to compare the two estimates.

For the experiments, we considered the discretized version of the dynamical systems. In other
words, we used

zk(t) = Atzk(0) ∀t ∈ N, ∀k ∈ K.
Note that with this discrete-time representation, the stability of the system is described based on the
position of the eigenvalues relative to the unit circle. The system is stable if all of its eigenvalues
are inside the unit circle.

We randomly generated A ∈ Rn×n and C ∈ Rn to produce a set of observation sequences. In
particular, we generated A as A = I + ∆A, where ∆A is a matrix whose entries are independent
and uniformly distributed between [−0.5, 0.5]. The elements of C were drawn from independent
standard normal distributions. We obtained 50 trajectories from the generated system by providing
different initial states, and each trajectory consisted of 50 observations.

For training a linear model on this data set, we used the stochastic gradient method with
momentum. Both for the mean-squared-error loss and for the time-weighted logarithmic loss, the
gradients were normalized to unit norm if their `2 norm exceeded 1. Figure 5.1 shows a typical
plot for the training error of an unstable system for each of these loss functions. We observe that
the gradient descent algorithm is not able to decrease the mean-squared error loss, whereas the
time-weighted logarithmic loss function is diminished easily.

To check if this decrease in the loss function corresponds to an effective learning of the actual
model, we computed the eigenvalues of the estimated system throughout training and compared
them with the eigenvalues of the actual system. Figure 5.2 demonstrates an example of how the
estimates for the eigenvalues evolve during training. The state space of the system in Figure 5.2
is three dimensional, and the system is unstable as one of its eigenvalues is outside of the unit
circle. When the mean-squared-error loss is used, only the unstable mode of the system is estimated
correctly. In contrast, the time-weighted logarithmic loss function is able to discover all three modes
of the system.

Figure 5.3 and Figure 5.4 demonstrate the comparison of the estimated eigenvalues for a different
initialization and for a system with a four-dimensional state space, respectively. Note that we were

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 86

0 10 20 30 40 50
Epoch

109

1010

1011

M
ea

n-
sq

ua
re

d-
er

ro
r

0 10 20 30 40 50
Epoch

0

1

2

3

4

Ti
m

e-
w

ei
gh

te
d

lo
ga

ri
th

m
ic

 lo
ss

Figure 5.1: Typical plots of training error when mean-squared-error is used [top] and when time-
weighted logarithmic loss function is used [bottom].

not able to enable the gradient descent algorithm to learn any of the eigenvalues correctly when
the training loss is mean-squared error despite the fact that we used various learning rates for these
experiments.

5.6 Discussion
Variational inference. Variational inference is a Bayesian approach to handle the unknown param-
eters and the unobserved states of a dynamical system simultaneously (Jordan et al., 1999; Archer
et al., 2015). For variational inference, the system is described by a generative model: pθ(x, z),
where x = {x(t)}t∈T and z = {z(t)}t∈T are the sequence of observations and hidden states of the
system, and θ is the parameters of the model. Given the observations, the posterior is approximated
by another model: gφ(·|x). Then, the objective function to be minimized is described as (Archer

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 87

2 1 0 1 2
Real

2

1

0

1

2

Im
ag

in
ar

y

true eigenvalues
eigenvalue estimates

(a) Eigenvalues with mean-squared-error

2 1 0 1 2
Real

2

1

0

1

2

Im
ag

in
ar

y

true eigenvalues
eigenvalue estimates

(b) Eigenvalues with logarithmic loss

Figure 5.2: A linear system with three-dimensional state space is trained with mean-squared-error
loss [left] and time-weighted logarithmic loss [right]. The red stars show the eigenvalues of the real
system, whereas the green dots show the eigenvalues of the estimated system. Earlier estimates of
the eigenvalues are depicted with faded colors. Mean-squared-error loss is able to find only the
unstable mode, whereas the logarithmic loss function discovers all three modes correctly.

et al., 2015)
−H(gφ(z|x))− Egφ(z|x)[log(pθ(x, z)], (5.7)

whereH is the entropy of its argument. Assume the stochasticity of the initial state and the state
transitions is removed, and each observation x(t) is obtained through an observation mapping with
an additive Gaussian noise:

x(t) = c(z(t)) + ξt,

where {ξt}t∈T is an independent and identically distributed sequence. Then the minimization of the
loss function (5.7) reduces to the problem

minimize
θ,φ

∑
t∈T
‖x(t)− c(z(t))‖2

2

subject to z(0) = argmax
z̃

gφ(z̃|x),

and the system identification problem becomes equivalent to problem (5.3). This is the reason why
we referred to (5.3) as the deterministic counterpart of the variational inference formulation.

Random initial states. In our analyses, we treated the initial states as unknown but deterministic
values that could be learned during training. With this deterministic viewpoint, Theorem 5.1 and
Theorem 5.2 assumed that the observations could be matched to the latent state of the system
perfectly and the training loss function could be made identically zero. It is not possible in general

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 88

1 0 1
Real

1

0

1

Im
ag

in
ar

y

true eigenvalues
estimated eigenvalues

(a) Eigenvalues with mean-squared-error

1 0 1
Real

1

0

1

Im
ag

in
ar

y

true eigenvalues
estimated eigenvalues

(b) Eigenvalues with logarithmic loss

Figure 5.3: A linear system with three-dimensional state space is trained with mean-squared-error
loss [left] and time-weighted logarithmic loss [right]. The red stars show the eigenvalues of the real
system, whereas the green dots show the eigenvalues of the estimated system. Earlier estimates of
the eigenvalues are depicted with faded colors.

to satisfy this requirement with an expected loss over a set of random initial states. Therefore,
Theorem 5.1 and Theorem 5.2 do not apply to the formulations with random initial states verbatim.

Convergence of policy gradient. Even though the focus of this work has been on system
identification, the gradient descent algorithm will exhibit similar convergence problems when
maximizing an objective over a time horizon while altering the dynamics of a dynamical system.
Note that policy gradient methods in reinforcement learning (Sutton and Barto, 2018) fall into this
category. This is why our analysis in this work can potentially be used for studying and improving
the stability of policy gradient methods.

5.7 Conclusion
To understand the hardness of learning dynamical systems from observed trajectories, we analyzed
the dynamics of the gradient descent algorithm while training the parameters of a dynamical
model, and we observed that samples taken at different times affect the dynamics of the algorithm
in substantially different degrees. To balance the effect of samples taken at different times, we
introduced the time-weighted logarithmic loss function and demonstrated its effectiveness.

In this chapter, we focused on learning linear dynamical systems. Whether a similar loss
function improves training of nonlinear models is an important direction for future research. In
addition, we considered a deterministic framework for our problem formulation with a dynamical

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 89

1 0 1
Real

1

0

1

Im
ag

in
ar

y

true eigenvalues
estimated eigenvalues

(a) Eigenvalues with mean-squared-error

1 0 1
Real

1

0

1

Im
ag

in
ar

y

true eigenvalues
estimated eigenvalues

(b) Eigenvalues with logarithmic loss

Figure 5.4: A linear system with four-dimensional state space is trained with mean-squared-error
loss [left] and time-weighted logarithmic loss [right]. The red stars show the eigenvalues of the real
system, whereas the green dots show the eigenvalues of the estimated system. Earlier estimates of
the eigenvalues are depicted with faded colors.

system. An interesting question is whether allowing randomness in the state of the system or the
state transitions could trade off the accuracy of the estimated model for the efficiency of the training
procedure.

5.8 Proofs and Further Remarks
In this section, we provide the proofs for the theorems and corollaries of this section and elaborate
on some of the remarks.

5.8.1 Proof of Theorem 5.1
To begin with, assume that C is a fixed matrix, and consider only one trajectory z with only one
sample taken at time t. Then the loss function to be minimized is

`(A, s) =
1

2
‖x− CeAts‖2

2,

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 90

where s denotes the initial state of the trajectory. The update rule for the gradient descent algorithm
gives

A← A− δ

2

∂

∂A
〈CeAts− x,CeAts− x〉 (5.8a)

s← s− δ

2

∂

∂s
〈CeAts− x,CeAts− x〉 (5.8b)

This update rule creates a nonlinear dynamical system where the state of the system is the parameters
(A, s).

A dynamical system can converge to its equilibrium only if that equilibrium is stable in the sense
of Lyapunov. A standard tool to analyze the stability for nonlinear systems is given by Lyapunov’s
direct method: an equilibrium of a nonlinear system can be stable only if the linearization of the
system around that equilibrium has no unstable mode (Khalil, 1996). If, on the other hand, the
linearized model has an eigenvalue larger than 1 in magnitude, then the nonlinear system is definitely
unstable — which rules out the possibility of convergence to this equilibrium from its neighbors,
except for a set on a low-dimensional manifold, which has Lebesgue measure zero. This shows
that the system (5.8) can converge to an equilibrium only if all eigenvalues of the linearized model
around that equilibrium are less than 1 in magnitude.

We can write the linearization of (5.8) around an equilibrium (Â, ŝ) as

Ã← Ã− δf1(Ã)− δf2(s̃),

s̃← s̃− δf3(Ã)− δf4(s̃),

where

• f1 is the Jacobian with respect to A of the gradient with respect to A of the loss function ` at
(Â, ŝ),

• f2 is the Jacobian with respect to s of the gradient with respect to A of the loss function ` at
(Â, ŝ),

and f3 and f4 are defined similarly. Note that f2 and f3 are the Jacobians of the gradients of the
same function with respect to the same parameters in different orders; therefore, they are hermitian
of each other:

〈Ã, f2(s̃)〉 = 〈f3(Ã), s̃〉 ∀Ã, ∀s̃.
This shows that the linearized model can be associated with a symmetric matrix; and consequently,
all of its eigenvalues are real-valued, and its eigenvalues can be less than 1 only if all of its diagonal
blocks have eigenvalues less than 1. In other words, a necessary condition for the solution (Â, ŝ) to
be stable is that the mappings

Ã← Ã− δf1(Ã) (5.9)
s̃← s̃− δf4(s̃) (5.10)

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 91

have eigenvalues less than 1 in magnitude, or equivalently, the functions f1 and f4 have eigenvalues
less than 2/δ. Note that this conclusion would be identical if C was also updated via the gradient
descent algorithm. In particular, we would need the eigenvalue of the mapping f1 to be less than 1
in magnitude around the equilibrium (Â, Ĉ, {ŝk}k∈K).

Finding a lower bound for the largest eigenvalue of the mapping f1 will be easier with the
following lemma.

Lemma 5.1. Let fi : Rn → R be a twice-differentiable function for all i ∈ I, and define

F (x) =
1

2

∑
i∈I

f 2
i (x).

If F (x0) = 0, then the Hessian of F at x0 satisfies

∇2F (x0) =
∑
i∈I

∇fi(x0)∇fi(x0)>.

Proof. We can write the gradient and the Hessian of F , respectively, as

∇F (x0) =
∑
i∈I

(∇fi(x0))fi(x0),

∇2F (x0) =
∑
i∈I

∇fi(x0)∇fi(x0)> + fi(x0) · ∇2fi(x0).

Note that F (x0) = 0 implies that fi(x0) = 0 for all i ∈ I. Then we have

∇2F (x0) =
∑
i∈I

∇fi(x0)∇fi(x0)>.

�

Remember that f1(A) is the Jacobian with respect A of the gradient with respect to A of the
loss function

`(A,C, s) =
1

2

〈
CeAts− x, CeAts− x

〉
.

Given A ∈ Rn×n, we can write

`(A,C, s) =
1

2

n∑
j=1

(
e>j Ce

Ats− e>j x
)2
,

where ej is the j-th standard basis vector with a 1 in its j-th coordinate and 0 in all other coordinates.
Then, by using Lemma 5.1, the largest eigenvalue of the mapping f1 can be lower bounded by

max
Y :‖Y ‖F=1

n∑
j=1

∣∣〈Y,∇A(e>j Ce
Ats− e>j x)

〉∣∣2 . (5.11)

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 92

To find the gradient, we can expand the matrix exponential:

∇A

(
e>j C

∞∑
k=0

tk

k!
Aks

)
=
∞∑
k=1

k−1∑
r=0

tk

k!
(A>)

r
C>ejs

>(A>)
k−1−r

.

If we choose Ỹ = uv>, where u and v are the unit-norm right and left eigenvectors of A corre-
sponding to its eigenvalue Λ with the largest real part, we obtain〈

Ỹ ,∇A

(
e>j C

∞∑
k=0

tk

k!
Aks

)〉
=
∞∑
k=1

k−1∑
r=0

tk

k!
Λk−1〈u,C>ej〉〈v, s〉

=
∞∑
k=1

tk

(k − 1)!
Λk−1〈u,C>ej〉〈v, s〉

= teΛt〈u,C>ej〉〈v, s〉
= teΛt〈Cu, ej〉〈v, s〉.

Remember that (5.11) is a lower bound for the largest eigenvalue of f1, and so is
n∑
j=1

∣∣∣〈Ỹ ,∇A(e>j Ce
Ats− e>j x)

〉∣∣∣2 =
n∑
j=1

t2e2Re(Λ)t |〈Cu, ej〉|2 |〈v, s〉|2

= ρ2t2e2Re(Λ)t |〈v, s〉|2 ,

where Re(Λ) is the largest real part of the eigenvalues of A and ρ2 = ‖Cu‖2
2. If we have multiple

trajectories, this lower bound will become∑
k∈K

∑
t∈Tk

ρ2t2e2Re(Λ)t |〈v, sk〉|2 ,

where {sk}k∈K is the set of initial states of the trajectories.
As a result, for convergence of the gradient descent algorithm to a solution (Â, Ĉ, ŝ), it is

necessary that ∑
k∈K

∑
t∈Tk

ρ2t2e2Re(Λ)t |〈v, ŝk〉|2 ≤
2

δ
.

Without making any assumptions about the eigenvectors of Â, we can obtain the final necessary
condition as

λmin

(∑
k∈K

∑
t∈Tk

ρ2t2e2Re(Λ)tŝkŝ
>
k

)
≤ 2

δ
,

or equivalently as

δ ≤ 2

λmin
(
ρ2
∑

k∈K
∑

t∈Tk t
2e2Re(Λ)tŝkŝ>k

) .
This completes the proof. �

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 93

5.8.2 Proof of Theorem 5.2
Similar to the proof of Theorem 5.1, we will use Lemma 5.1 to find a lower bound for the largest
eigenvalue of the linearized system around (Â, Ĉ, {ŝk}k∈K). Note that

∇A log
(
e>j Ce

Ats+ ε
)

= ∇A log

(
e>j C

∞∑
k=0

tk

k!
Aks+ ε

)

=
1

e>j Ce
Ats+ ε

∞∑
k=1

k−1∑
r=0

tk

k!
(A>)rC>ejs

>(A>)k−1−r.

For the matrix Ỹ = uv>, where u and v are the right and left eigenvectors of A corresponding to its
eigenvalue Λ with the largest real part, we have〈

Ỹ ,∇A log
(
e>j Ce

Ats+ ε
)〉

=
1

e>j Ce
Ats+ ε

∞∑
k=1

tk

(k − 1)!
Λk−1〈u,C>ej〉〈v, s〉

=
teΛt

e>j Ce
Ats+ ε

〈u,C>ej〉〈v, s〉.

By using Lemma 5.1, we obtain a lower bound for the largest eigenvalue of the linearization of the
gradient descent algorithm around (Â, Ĉ, {ŝk}k∈K) as

∑
k∈K

∑
t∈Tk

n∑
j=1

1

t2

∣∣∣∣∣ teΛt

e>j Ce
Atsk + ε

〈Cu, ej〉〈v, sk〉
∣∣∣∣∣
2

.

We can write a further lower bound for this expression as∑
k∈K

∑
t∈Tk

n∑
j=1

e2Re(Λ)t

(‖CeAtsk‖∞ + ε)2 |〈Cu, ej〉|
2 |〈v, sk〉|2

=
∑
k∈K

∑
t∈Tk

ρ2e2Re(Λ)t

(‖CeAtsk‖∞ + ε)2 |〈v, sk〉|
2 ,

and finally,

λmin

(∑
k∈K

∑
t∈Tk

ρ2e2Re(Λ)t

(‖CeAtsk‖∞ + ε)2 sks
>
k

)
,

where ρ2 = ‖Ĉu‖2
2 and u is the right-eigenvector of Â corresponding to its eigenvalue Λ. For

stability of the algorithm around the equilibrium point (Â, {ŝk}k∈K), we need

λmin

∑
k∈K

∑
t∈Tk

ρ2e2Re(Λ)t(
‖ĈeÂtŝk‖∞ + ε

)2 ŝkŝ
>
k

 ≤ 2

δ
,

where δ is the step size of the algorithm.

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 94

5.8.3 Remarks on Convergence Rate
In the proof of Theorem 5.1, we considered the mapping

Ã← Ã− δf1(Ã),

where f1 is the Jacobian of the gradient of the loss function

`(A, s) =
1

2
‖x− CeAts‖2

2

with respect to A at the point (Â, Ĉ, ŝ). For Theorem 5.1, we computed the largest learning rate at
which the algorithm can still converge to the specified equilibrium. Note that this was equivalent
to computing a lower bound for the largest eigenvalue of the mapping f1. Similar to the proof of
Theorem 5.1, we can compute an upper bound for the smallest eigenvalue of f1 around the solution
(Â, Ĉ, ŝ).

By using Lemma 5.1, the smallest eigenvalue of the mapping f1 can be upper bounded by

min
Y :‖Y ‖F=1

n∑
j=1

∣∣〈Y,∇A(e>j Ce
Ats− e>j x)

〉∣∣2 . (5.12)

Similar to the proof of Theorem 5.1, we can expand the matrix exponential:

∇A

(
e>j C

∞∑
k=0

tk

k!
Aks

)
=
∞∑
k=1

k−1∑
r=0

tk

k!
(A>)

r
C>ejs

>(A>)
k−1−r

.

If we choose Ỹ = uv>, where u and v are the unit-norm right and left eigenvectors of A corre-
sponding to its eigenvalue λ2, we obtain〈

Ỹ ,∇A

(
e>j C

∞∑
k=0

tk

k!
Aks

)〉
=
∞∑
k=1

k−1∑
r=0

tk

k!
λk−1

2 〈u,C>ej〉〈v, s〉

=
∞∑
k=1

tk

(k − 1)!
λk−1

2 〈u,C>ej〉〈v, s〉

= teλ2t〈u,C>ej〉〈v, s〉
= teλ2t〈Cu, ej〉〈v, s〉.

Remember that (5.12) is an upper bound for the smallest eigenvalue of f1, and so is

n∑
j=1

∣∣∣〈Ỹ ,∇A(e>j Ce
Ats− e>j x)

〉∣∣∣2 =
n∑
j=1

t2e2Re(λ2)t |〈Cu, ej〉|2 |〈v, s〉|2

= ρ2t2e2Re(λ2)t |〈v, s〉|2 ,

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 95

where ρ2 = ‖Cu‖2
2. If we have multiple trajectories, this upper bound will become∑

k∈K

∑
t∈Tk

ρ2t2e2Re(λ2)t |〈v, sk〉|2 ,

where {sk}k∈K is the set of initial states of the trajectories. We can bring this upper bound into a
form independent of v:

λmax

(∑
k∈K

∑
t∈Tk

ρ2t2e2Re(λ2)tsks
>
k

)
.

This shows that the ratio of the largest eigenvalue to the smallest eigenvalue of f1 satisfies

λmax(f1)

λmin(f1)
≥
λmin

(
ρ2

1

∑
k∈K

∑
t∈Tk t

2e2Re(λ1)tŝkŝ
>
k

)
λmax

(
ρ2

2

∑
k∈K

∑
t∈Tk t

2e2Re(λ2)tŝkŝ>k
)

for any pair of eigenvalues (λ1, λ2) of Â, where ρ1 = ‖Cu1‖2, ρ2 = ‖Cu2‖2, and u1, u2 are the
right eigenvectors of Â corresponding to λ1, λ2. If H denotes the Hessian of the loss function ` at
the point (Â, Ĉ, {ŝk}k∈K), we have λmax(H) ≥ λmax(f1) and λmin(H) ≤ λmin(f1). Therefore, we
also have

λmax(H)

λmin(H)
≥
λmin

(
ρ2

1

∑
k∈K

∑
t∈Tk t

2e2Re(λ1)tŝkŝ
>
k

)
λmax

(
ρ2

2

∑
k∈K

∑
t∈Tk t

2e2Re(λ2)tŝkŝ>k
) . (5.13)

To understand the relationship of (5.13) to the convergence rate, consider a quadratic function
h : Rn 7→ R defined as

h(w) =
1

2
(w − w∗)>H(w − w∗),

where H is the Hessian of h and w∗ is the point where h attains its minimum. For the gradient
descent algorithm

w ← w − δH(w − w∗)
to converge to the minimum of h from arbitrary initializations, we need the learning rate δ to be
smaller than 2

λmax(H)
. Assume (w0 − w∗), where w0 is the initial point where the algorithm starts, is

in the direction of the eigenvector of H corresponding to its minimum eigenvalue. In other words,

H(w0 − w∗) = λmin(H)(w0 − w∗).

Then the iterations of the gradient descent algorithm becomes

(wk − w∗)← (wk−1 − w∗)− δH(wk−1 − w∗)
← (wk−1 − w∗)− δλmin(H)(wk−1 − w∗)
← (1− δλmin(H))(wk−1 − w∗)
← (1− δλmin(H))k(w0 − w∗).

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 96

Attaining ‖wk − w∗‖2 ≤ ε for any ε > 0 will require

(1− δλmin(H))k‖w0 − w∗‖2 ≤ ε =⇒ k log(1− δλmin(H)) + log(‖w0 − w∗‖2) ≤ log(ε),

which gives a lower bound for the number of iterations needed:

k ≥ 1

log
(

1
1−δλmin(H)

) (log

(
1

ε

)
+ log(‖w0 − w∗‖2)

)
.

As a result, convergence of the gradient descent algorithm to the minimum of h in the direction of
the bottom eigenvector of H requires

O
([

log
(
(1− δλmin(H))−1

)]−1
)

(5.14)

iterations. Remember that for convergence of the algorithm, we require δ < 2
λmax(H)

; therefore,

δλmin(H) < 2 λmin(H)
λmax(H)

. Combining (5.13) and (5.14) gives the local convergence rate for the loss

function `, if we assume the second approximation of ` represents it well around (Â, Ĉ, {ŝk}k∈K).

5.8.4 Alternatives for Initial States
For the proof of Theorem 5.1 and Theorem 5.2, we considered the loss function

`(A,C, s) =
1

2

∑
t∈T

‖x(t)− CeAts‖2
2,

and analyzed the linearization of the dynamics of the gradient descent algorithm around the solution
(Â, Ĉ, ŝ):

Ã← f1,1(Ã) + f1,2(C̃) + f1,3(s̃) (5.15a)

C̃ ← f2,1(Ã) + f2,2(C̃) + f2,3(s̃) (5.15b)

s̃← f3,1(Ã) + f3,2(C̃) + f3,3(s̃), (5.15c)

where {fi,j}i∈[3],j∈[3] are the Jacobians of the partial derivatives of ` with respect to A, C and
s, evaluated at the point (Â, Ĉ, ŝ). We used the fact that system (5.15) can be represented by a
symmetric matrix to use only the eigenvalues of f1,1 in order to obtain a lower bound for the largest
eigenvalue of the system (5.15).

Note that fixing the initial state s and not updating it with the gradient descent algorithm will
not affect the eigenvalues of f1,1. Therefore, the results for Theorem 5.1 and Theorem 5.2, which
only depend on the largest eigenvalues of f1,1, will still hold when the initial state is fixed.

Now assume the initial state is obtained via a state estimator:

s = gφ({t, x(t)}t∈T),

CHAPTER 5. LEARNING LINEAR DYNAMICAL SYSTEMS 97

where T is the set of sampling instants for the trajectory and {xt}t∈T is the set of samples obtained.
While solving the problem

minimize
A,C,φ

∑
t∈T

`
(
x(t), CeAtgφ ({t, x(t)}t∈T)

)
+ L (φ) ,

the linear approximation to the gradient descent algorithm can be written as

Ã← f̂1,1(Ã) + f̂1,2(C̃) + f̂1,3(φ̃), (5.16a)

C̃ ← f̂2,1(Ã) + f̂2,2(C̃) + f̂2,3(φ̃), (5.16b)

φ̃← f̂3,1(Ã) + f̂3,2(C̃) + f̂3,3(φ̃), (5.16c)

where {f̂i,j}i∈[3],j∈[3] are the Jacobians of the partial derivatives of ` with respect to A, C and φ,
evaluated at the point (Â, Ĉ, φ̂). Note that system (5.16) can still be represented by a symmetric
matrix; therefore, the largest eigenvalues of f̂1,1 can be used to obtain an upper bound on the learning
rate of the algorithm. Furthermore, given that ∂L

∂A
= 0, f1,1 in (5.15) and f̂1,1 in (5.16) are identical,

with the substitution s = gφ ({t, x(t)}t∈T). For this reason, the results of Theorem 5.1 and Theorem
5.2 still hold for systems with a state estimator gφ, provided that the estimation error at equilibrium
is zero; that is, ∑

t∈T

`
(
x(t), ĈeÂtgφ̂ ({t, x(t)}t∈T)

)
= 0,

which is needed only to allow the use of Lemma 5.1.

98

Chapter 6

Learning Risk-Sensitive Value Functions
with Sequential Decisions

6.1 Introduction
Utility functions are used to represent the preferences of a person for a set of outcomes. They assign
larger values to the outcomes which are more preferable to the person than the others. Having these
functions enables understanding and predicting the decisions of people.

In the traditional economics literature, based on some rationality and consistency axioms, people
are assumed to make their decisions by maximizing their utility function or its expectation if the
consequences of their decision are stochastic (Rubinstein, 2012). However, people are observed
to deviate from these axioms of rationality in real life (Kahneman and Tversky, 1979). Prospect
theory provides one of the first and most acknowledged decision models capable of explaining the
observed behavior of people (Kahneman and Tversky, 1979).

According to prospect theory, given a decision problem, people first create a reference point in
their mind. This reference point could depend on several factors, such as the status quo (Tversky
and Kahneman, 1991) or the recent expectations of the person about the future (Kőszegi and Rabin,
2006). After determining a reference point, the outcomes that are more preferable compared to the
reference point are considered as gain, and the others are considered as loss. It has been observed
that the effect of a loss is greater on decisions than that of an equal amount of gain, which is called
loss aversion (Tversky and Kahneman, 1991).

Risk attitudes of people are also influenced by their reference point. People become more risk
averse when making a choice between gains and more risk seeking when making a choice between
losses. Consequently, to express the effect of the reference point on the decisions, prospect theory
replaces the utility function of a person with a value function, which is a function of both the
outcome and the reference point.

If U(x; r) denotes the value function of a person for the outcome x given the reference point r,
and if larger x values correspond to better outcomes, then the risk averse and risk seeking behavior
of the person can be reflected in U(x; r) as concavity for x > r and convexity for x < r. In addition,

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 99

loss aversion causes U(x; r) to change more sharply for losses than it does for gains. As a result, a
value function has the S-shape as shown in Figure 6.1.

Loss Gain

V
a

lu
e

0

Reference

Point

Figure 6.1: Value function of prospect theory

Learning the utility function of a decision maker is well studied in the literature with rationality
axioms and expected utility theory; e.g., (Ng and Russell, 2000), (Chajewska et al., 2001). Despite
their stronger ability to describe the behavior of people in real life, the literature on estimation of
value functions and reference points, on the other hand, is rather limited. In particular, reference
points are usually chosen heuristically as the median, average, best or worst values of possible
outcomes (Avineri and Bovy, 2008; Gao et al., 2010; Zhou et al., 2014). An iterative algorithm is
suggested in (Hu et al., 2012) that shifts the estimate of the reference point until the person exhibits
loss aversion around that estimate. This algorithm produces a fixed reference point for the person.

In this chapter, we assume that a person is given a decision problem repeatedly and the person
chooses an action to maximize her value function. We allow the reference point of the person to
change over time, and we learn the value function and the dynamics of the reference point from
the observed actions. The organization of the paper is as follows. The next section introduces the
type of decision problems we consider and presents the problem formulation. The relation between
the optimal actions and the value functions is obtained in Section 5.3. A hidden Markov model
is constructed for the sequential decision problem and expectation-maximization (EM) is used to
learn the value function and the reference point of the decision maker in Section 5.4. Section 5.5
extends the results of Section 5.3 to nonnegative actions. In Section 5.6, the algorithm suggested is
tested on the data of New York City taxi drivers. Section 5.7 discusses some future directions and
concludes this chapter. The results in this chapter have appeared in (Nar et al., 2017).

6.2 Formulation of the Decision Problem
We consider a certain group of decision problems which involve determining a balance between
two contrasting factors. Many decision problems belong to this group; for example, when buying a

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 100

product, the buyer needs to find a middle point between the price and the quality of the product.
Similarly, while using a service, increase in the speed of the service might require or lead to decrease
in the quality or the safety, and one needs to decide how much to compromise on one or the other.

We will assume that the decision maker has a separate value function for each of the contrasting
factors, and their values are added for the decision:

U(x; r1, r2) = U1(x; r1) + U2(x; r2).

The variables r1 and r2 denote the reference points of the decision maker for each factor. We
assume that larger x values correspond to better outcomes for the factor represented by U1 and
worse outcomes for the factor represented by U2. Therefore, U1(x; r1) and U2(x; r2) are increasing
and decreasing functions of x, respectively, for every r1 and r2.

When a person is going to buy a computer, for example, she has in mind some desired features
for the computer, r1, and she sets some price amount that she is willing to pay, r2. Increasing the
price, x, improves the features of the computer, which can be reflected with U1. On the other hand,
buying a computer for a price higher than r2 feels like a loss, which can be described by U2. As
another example, when a person is driving a car, she may want to increase the speed of the car
to arrive at her destination earlier, but increasing the speed will decrease her safety. In this case,
U1 and U2 correspond to the values of the duration and the safety of the trip, respectively, and the
chosen speed will depend on how soon she needs to be at her destination, r1, and on how risky a
driver she is, r2.

A value function as shown in Figure 6.1 can be approximated as

U(x; r) =

{
|x− r|p if x ≥ r

Λ|x− r|q if x < r

where p, q ∈ (0, 1) and Λ > 1 is the loss aversion coefficient (Tversky and Kahneman, 1992). In
this paper, we use

U1(x; r1) =

{
(x− r1)p if x ≥ r1

−a(r1 − x)p if x < r1

U2(x; r2) =

{
−b(x− r2)p if x ≥ r2

c(r2 − x)p if x < r2

for some fixed p ∈ (0, 1), b > c > 0 and a > 1. The choice of p = q will help elicit an explicit
relation between the reference points of the decision maker and her actions in the following sections.

Our goal is to learn the parameters a, b, c for a person and the reference points r1 and r2, along
with their dynamics, when the person is given the same decision problem repeatedly and the actions
of the person are observed.

6.3 Deriving Optimal Actions from the Value Function
Let r denote the pair of reference points (r1, r2) ∈ R, where R ⊂ R2 is a finite set, and let x ∈ R
denote the action of the decision maker. An optimal action x∗ is assumed to maximize the function

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 101

U(x; r):
x∗ = arg max

x∈R
U(x; r).

In order to guarantee the existence of an optimal action in this section, we assume a > c and b > 1
so that

lim
x→±∞

U(x; r) 6=∞.
Note that due to loss aversion, we also have a > 1 and b > c.

Depending on the reference points (r1, r2), the optimal action of the person will change. Figure
6.2 illustrates U(x; r1, r2) with p = 0.5, a = 1.5, b = 2 and c = 1 for two different pairs of
reference points: (r1, r2) = (1, 4) and (r1, r2) = (3, 2). The markers on the plots denote the optimal
actions.

x
0 r

1
=1 2 3 r

2
=4 5

U
(x

;r
1
,r

2
)

0

0.5

1

1.5

2

2.5

3

x
0 1 r

2
=2 r

1
=3 4 5

U
(x

;r
1
,r

2
)
-3

-2.5

-2

-1.5

-1

-0.5

x
0 r

1
=1 2 3 r

2
=4 5

U
(x

;r
1
,r

2
)

0

0.5

1

1.5

2

2.5

3

x
0 1 r

2
=2 r

1
=3 4 5

U
(x

;r
1
,r

2
)

-3

-2.5

-2

-1.5

-1

-0.5

Figure 6.2: U(x; r1, r2) with p = 0.5, a = 1.5, b = 2, c = 1 when (r1, r2) = (1, 4) [top] and
(r1, r2) = (3, 2) [bottom].

We want to find the point, x∗, at which the function U is maximized. Since U is not differentiable
at some points, we are going to consider each possible case separately:

1a) x∗1 < r1 ≤ r2

U(x; r1, r2) = −a(r1 − x)p + c(r2 − x)p

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 102

∂U

∂x
=

pa

(r1 − x)(1−p) −
pc

(r2 − x)(1−p)

Since a > c and (r1 − x) ≤ (r2 − x), U is monotonically increasing in x, and there is no
local maximum in this region.

1b) r1 ≤ x∗2 ≤ r2

U(x; r1, r2) = (x− r1)p + c(r2 − x)p

U is strictly concave in this region:

∂U

∂x
=

p

(x− r1)(1−p) −
cp

(r2 − x)(1−p) = 0

x∗2 =
c1/(1−p)

c1/(1−p) + 1
r1 +

1

c1/(1−p) + 1
r2 ∈ (r1, r2)

1c) r1 ≤ r2 < x∗3
U(x; r1, r2) = (x− r1)p − b(x− r2)p

∂U

∂x
=

p

(x− r1)(1−p) −
b

(x− r2)(1−p)

Since b > 1 and (x − r2) ≤ (x − r1), U is monotonically decreasing in x, and there is no
local maximum in this region.

2a) x∗4 ≤ r2 < r1

U(x; r1, r2) = −a(r1 − x)p + c(r2 − x)p

∂U

∂x
= 0 =⇒ x∗4 = r2 −

c1/(1−p)

a1/(1−p) − c1/(1−p) (r1 − r2)

U(x∗4; r1, r2) = −(a1/(1−p) − c1/(1−p))(1−p)(r1 − r2)p

2b) r2 < x∗5 < r1

U(x; r1, r2) = −a(r1 − x)p − b(x− r2)p

U is strictly convex in this region, so there is no local maximum.

2c) r2 < r1 ≤ x∗6
U(x; r1, r2) = (x− r1)p − b(x− r2)p

∂U

∂x
= 0 =⇒ x∗6 = r1 +

1

b1/(1−p) − 1
(r1 − r2)

U(x∗6; r1, r2) = −(b1/(1−p) − 1)(1−p)(r1 − r2)p

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 103

We observe that if r1 ≤ r2, there is a unique local maximum at x∗2, and hence, it is the global
maximum. On the other hand, if r1 > r2, there are two local maxima at x∗4 and x∗6. However,
for fixed values of a, b and c, the relation between U(x∗4; r1, r2) and U(x∗6; r1, r2) is also fixed and
independent of (r1, r2). Therefore, a person with fixed parameters always chooses either x∗4 or x∗6
whenever her reference point satisfies r1 > r2.

If we define λ ∈ (0, 1), β1 ∈ (0,∞) and β2 ∈ (0,∞) as

λ =
c1/(1−p)

c1/(1−p) + 1
,

β1 =
c1/(1−p)

a1/(1−p) − c1/(1−p) ,

β2 =
1

b1/(1−p) − 1
,

we can summarize the computation of x∗ as in Table I.

Table 6.1: Optimal actions

C1: β1(1−λ)
λ

> β2

r1 ≤ r2 x∗ = λr1 + (1− λ)r2

r1 > r2 x∗ = r2 − β1(r1 − r2)

C2: β1(1−λ)
λ
≤ β2

r1 ≤ r2 x∗ = λr1 + (1− λ)r2

r1 > r2 x∗ = r1 + β2(r1 − r2)

Case C1 and C2 correspond to people who choose x∗4 and x∗6, respectively, when r1 > r2. Since
either C1 or C2 is going to hold for a specific person, it is clear that either β1 or β2 will not appear
in the optimal actions, and the segment of the utility function that is related to this unobserved
parameter will never be used, nor will it be needed. We will obtain a bound on this parameter,
however, by the condition of C1 or C2.

6.4 Learning Parameters from a Hidden Markov Model
Let the person be given the same decision problem repeatedly. We assume that the reference point
r of this person evolves as a time-homogeneous Markov chain, which has a probability transition
matrix A. Our goal is to estimate the parameters λ, β1, β2 and the matrix A from the observed
actions {yk}Nk=0 of this person from time 0 to N .

First, consider the case C1. Given the reference point r, we are going to model the action y of
the person as a Gaussian with mean µ(r) = x∗ and variance σ2:

p(y|r) ∼ N (µ(r), σ2),

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 104

where

µ(r) =

{
λr1 + (1− λ)r2 if r1 ≤ r2,
−β1r1 + (1 + β1)r2 if r1 > r2.

The graphical representation of this hidden Markov model is given in Figure 6.3.

r0 r1 r2 rN

y0 y1 y2 yN

Figure 6.3: Graphical representation of sequential decision making

We can write the complete loglikelihood for this model as

L(r, y) = log p(r0) +
N−1∑
k=0

log p(rk+1|rk) +
N∑
k=0

log p(yk|rk).

Let arr′ denote p(rk+1 = r′|rk = r) and πr denote p(r0 = r). In addition, let

zkr = I(rk = r) =

{
1 if rk = r,
0 if rk 6= r.

Then, the complete loglikelihood can be expressed as

L(r, y) =
∑
r∈R

z0
r log(πr) +

N−1∑
k=0

∑
r,r′∈R

zkr z
k+1
r′ log(arr′)

−
N∑
k=0

∑
r∈R

zkr
1

2σ2
(yk − λr1 − (1− λ)r2)2I(r1 ≤ r2)

−
N∑
k=0

∑
r∈R

zkr
1

2σ2
(yk + β1r1 − (1 + β1)r2)2I(r1 > r2)

−1

2

N∑
k=0

(
log(2π) + log(σ2)

)
.

To estimate the unknown parameters, we implement the EM algorithm (Hastie et al., 2009). At the
E step, we compute

E[zkr |y] = p(rk = r|y) = γrk,

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 105

E[zkr z
k+1
r′ |y] = p(rk = r, rk+1 = r′|y) = ξr,r

′

k,k+1,

where γrk and ξr,r
′

k,k+1 could be obtained by α − γ algorithm (Hastie et al., 2009). At M step,
maximization over each parameter leads to

π̂r = γr0, ârr′ =

∑N−1
k=0 ξ

r,r′

k,k+1∑N−1
k=0 γ

r
k

,

λ̂ =

∑
r∈R(r2 − r1)I(r1 ≤ r2)

∑N
k=0 γ

r
k(r2 − yk)∑

r∈R(r2 − r1)2I(r1 ≤ r2)
∑N

k=0 γ
r
k

,

β̂1 =

∑
r∈R(r1 − r2)I(r1 > r2)

∑N
k=0 γ

r
k(r2 − yk)∑

r∈R(r1 − r2)2I(r1 > r2)
∑N

k=0 γ
r
k

,

σ̂2 =
∑
r∈R

I(r1 ≤ r2)

N + 1

N∑
k=0

γrk(y
k − λ̂r1 − (1− λ̂)r2)2

+
∑
r∈R

I(r1 > r2)

N + 1

N∑
k=0

γrk(y
k + β̂1r1 − (1 + β̂1)r2)2.

After estimating the parameters and computing the loglikelihood, we repeat the same procedure
for the case C2 and choose the case with the higher loglikelihood. For case C2, the actions are
modeled as

p(y|r) ∼ N (µ(r), σ2),

where

µ(r) =

{
λr1 + (1− λ)r2 if r1 ≤ r2,
(1 + β2)r1 − β2r2 if r1 > r2.

The E step and the M step are similar to the previous case with the modification

β̂2 =

∑
r∈R(r1 − r2)I(r1 > r2)

∑N
k=0 γ

r
k(y

k − r1)∑
r∈R(r1 − r2)2I(r1 > r2)

∑N
k=0 γ

r
k

,

σ̂2 =
∑
r∈R

I(r1 ≤ r2)

N + 1

N∑
k=0

γrk(y
k − λ̂r1 − (1− λ̂)r2)2

+
∑
r∈R

I(r1 > r2)

N + 1

N∑
k=0

γrk(y
k − (1 + β̂2)r1 − β̂2r2)2.

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 106

6.5 Learning Parameters for Nonnegative Actions
It is usually the case that the action space is bounded from below and/or above. For instance, the
price of a computer mentioned in Section 6.2 cannot take a negative value, and choosing zero
as the action corresponds to opting-out and not buying a computer. In this section, we assume
r1, r2 ∈ [0,∞) and restrict the action space to be [0,∞), so the optimal action becomes

x∗ = arg max
x∈[0,∞)

U(x; r1, r2).

Again, to guarantee the existence of an optimal action, we require b > 1. Depending on the relation
between a and c, the possible cases for optimal actions will change. Since the computation of the
optimal action x∗ is similar to that in Section 6.3, we only provide the results in Table 6.2.

In some cases, value of the function U at zero needs to be compared with its local maxima
elsewhere, and this leads to the dependence of some conditions both on the unknown parameters
and on the reference points. As a result, the number of cases for which we need to run an EM
algorithm becomes much larger than that in Section 6.4.

6.6 Analysis of New York City Taxi Drivers
New York City (NYC) Taxi and Limousine Commission has been collecting the data of all taxi
trips in NYC since 2010 (Donovan and Work, 2014). The collected data set contains the date, time
and location of pick-up and drop-off of passengers, the fare amount of trips, and the identification
number of the drivers and the vehicles (which are reassigned each year for anonymity of the drivers).
The data set has attracted much attention for the information it has provided for labor economics
(Kőszegi and Rabin, 2006; Camerer et al., 1997; Farber, 2008; Crawford and Meng, 2011) and
transportation problems (Donovan and Work, 2015; Terelius and Johansson, 2015).

In (Camerer et al., 1997), for example, some drivers were shown to drive for a shorter time in
the afternoon than usual if they earned a larger amount in the morning than they had anticipated.
This was attributed to taxi drivers having a reference amount to earn each day. If the drivers earned
less than they had expected, they continued driving; and they quit earlier if they earned more than
what they had expected.

The decision of the taxi drivers about when to stop driving belongs to the group of decision
problems involving two contrasting factors. The drivers want to have a large earning each day,
which requires working for longer time; but on the other hand, they value their free time as well.
Therefore, we can express the value of these factors with two terms: daily earning amount with U1,
and daily work time with U2.

We selected 7 drivers from the data set and analyzed their daily earning and work time over
the time interval from April 1st 2010 until June 30th 2010. The drivers were chosen such that 3 of
them had negative correlation, 3 of them had positive correlation and 1 of them had little correlation
between their daily earning rate and work time. In addition, the chosen drivers worked at least 60
consecutive days in the three-month interval, and the amount of time they worked each day had no
conspicuous periodicity, such as working extra hours on Mondays or on weekends.

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 107

Table 6.2: Optimal nonnegative actions

a < c and r1 ≤ r2 :

x∗ =

 λr1 + (1− λ)r2 if (c
1

(1−p) + 1)1−p >
crp2−ar

p
1

(r2−r1)p

0 otherwise

a < c and r1 > r2 :

x∗ =

 (1 + β2)r1 − β2r2 if (b
1

(1−p) − 1)1−p <
arp1−cr

p
2

(r1−r2)p

0 otherwise

a > c and r1 ≤ r2 :

x∗ = λr1 + (1− λ)r2

a > c and r1 > r2 :

x∗ =



(1 + β2)r1 − β2r2 if b
1

(1−p) − 1 < a
1

(1−p) − c 1
(1−p)

or b
1

(1−p) − 1 > a
1

(1−p) − c 1
(1−p)

and r1/r2 ≤ a
1

(1−p)/c
1

(1−p)

and (b
1

(1−p) − 1)1−p <
arp1−cr

p
2

(r1−r2)p

r2 − β1(r1 − r2) if b
1

(1−p) − 1 > a
1

(1−p) − c 1
(1−p)

and r1/r2 > a
1

(1−p)/c
1

(1−p)

0 otherwise

The daily earning of each driver was calculated by subtracting the toll fees from the total
payment to the driver in that day.1 The work time was computed by summing up the trip durations

1The beginning of the day was decided based on what time the driver started to drive every day.

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 108

in a day and adding the time intervals between dropping off a passenger and picking up the next
passenger as long as they did not exceed 20 minutes. That is, any interval exceeding 20 minutes
without a fare was regarded as a break and not included in the work time. Finally, the daily earning
rate was calculated as the ratio of the earning amount on a day to the work time on that day.

After computing the earning, the work time and the earning rate of all drivers for each day, we
determined their set of reference points for earning amount and work time based on the histogram
of their data. Specifically, for each driver, we chose 3 reference points {r1L, r1M , r1H} for the
daily earning amount as the 10th, 50th and 90th percentile of their earning amounts in the 60-90
day interval over which their data were analyzed. Then we obtained 3 other reference points
{r2L, r2M , r2H} for their work time in the same way. As a result, the set of reference points for a
driver was

R =
{

(r1, r2)
∣∣r1 ∈ {r1L, r1M , r1H}, r2 ∈ {r2L, r2M , r2L}

}
.

In the derivation of the optimal actions from the value functions in Section III, the functions
U1(· ; r1) and U2(· ; r2) had the same variable as their argument. To analyze the data of the drivers,
we needed to express the earning amount for each day in terms of the work time on that day, or vice
versa. We assumed the earning rate of the driver to be a constant for each day, and built a linear
relation between the earning amount and the work time. As a result, the value function of the driver
on the kth day was described as

U (k)(x; r1, r2) = U
(k)
1

(
x;

r1

E(k)

)
+ U

(k)
2

(
x; r2

)
,

where E(k) is the earning rate of the driver on the kth day.
We used the EM algorithm suggested in Section 6.4 to learn the parameters of the chosen drivers,

along with the transition probabilities of their reference points. The estimated parameters are given
in Table 6.3.

Table 6.3: Estimated parameters for the chosen drivers

Driver ID Correlation c1/(1−p) a1/(1−p) days
2010001271 -0.38 3.16 12.21 90
2010002704 -0.29 0.82 2.23 90
2010007579 -0.18 8.09 25.30 60
2010007519 0.04 0.41 1.65 90
2010007770 0.09 0.43 1.31 90
2010003240 0.20 0.61 1.10 77
2010002920 0.23 0.32 1.16 60

The results given in Table 6.3 suggest that the drivers who had negative correlation between
their daily earning rate and daily work time had larger a and c values, provided that all the drivers
had comparable values for p. Larger a and c values give us two interpretations:

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 109

1. These drivers were highly loss averse about their daily earning, which would require them to
drive longer if they could not earn their reference earning amount.

2. These drivers assigned higher value for their free time than the other drivers; therefore, they
chose to stop driving earlier even if their earning rate was high.

Note that both of these interpretations explain why these drivers had negative correlation between
their daily earning rate and daily work time.

The EM algorithm yields the likelihood of each reference point for each day as well. As an
example, the daily work time and the daily earning rate of the driver with ID number 2010001271
over the week 20-26 April 2010 are plotted in Figure 6.4. Estimated reference points with the
highest likelihood for each day of that week are also given in Table 6.4 for comparison. We observe
that the driver worked longer on the first five days, and the estimated reference point for daily
earning was medium or high on those days.

April 2010

20 21 22 23 24 25 26

300

400

500

600

700

800

900

work time (min)
1000 x earning rate ($/min)

Figure 6.4: Work time and earning rate of the driver with ID No. 2010001271 for the week 20-26
April 2010

The transition probabilities of the reference points of the driver are also calculated in the EM
algorithm. The estimated probability transition matrix, A, where Aij denotes the probability of
going from reference point i to reference point j, is given in Figure 6.5.

The transition probability matrix provides a means to predict the behavior of the driver. For
example, we observe from the 7th and 8th rows of the estimated matrix that if the driver had a large
reference point for daily earning on a day and planned not to work for long on that day, then she
expected to work for long on the next day.

CHAPTER 6. LEARNING RISK-SENSITIVE VALUE FUNCTIONS 110

Table 6.4: Estimated reference points of the driver

Date Reference point
20 April (r1M , r2M)
21 April (r1H , r2H)
22 April (r1M , r2H)
23 April (r1H , r2H)
24 April (r1H , r2H)
25 April (r1L, r2L)
26 April (r1L, r2M)

(r
1L

,r
2L

)

(r
1L

,r
2M

)

(r
1L

,r
2H

)

(r
1M

,r
2L

)

(r
1M

,r
2M

)

(r
1M

,r
2H

)

(r
1H

,r
2L

)

(r
1H

,r
2M

)

(r
1H

,r
2H

)

(r
1L

,r
2L

)

(r
1L

,r
2M

)

(r
1L

,r
2H

)

(r
1M

,r
2L

)

(r
1M

,r
2M

)

(r
1M

,r
2H

)

(r
1H

,r
2L

)

(r
1H

,r
2M

)

(r
1H

,r
2H

)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6.5: The estimate of the probability transition matrix

6.7 Conclusion
We introduced a specific class of decision problems and analyzed the relation between the optimal
actions of a person for these problems and her value function. Using this relation, we built a hidden
Markov model with the reference point of the person as the hidden state and the observed actions as
the output of the model. Then we estimated the value function and the reference points of the person
along with their transition probabilities using expectation-maximization. We tested the suggested
method on the data set of NYC taxi drivers. We observed that the estimated parameters were able to
explain and give insight about the behavior of the drivers.

Given a sequential decision problem, reference point of a person could also depend on the
outcome of her previous decisions in addition to her last reference point. Using an input/output
hidden Markov model to include these dependencies and the effect of external factors is a future
direction of research.

111

Chapter 7

Conclusion and Future Directions

Training machine learning models with iterative optimization methods, such as the gradient descent
algorithm and its variants, creates a closed-loop dynamical system, as demonstrated in Figure 7.1.
In this dissertation, we relied on this fact to establish a relationship between the optimization and
robustness of machine learning models trained with the gradient descent algorithm, and the classical
tools in control theory and dynamical systems.

✓̂

e
+

�
✓̂ h(✓̂, e)x

y = f✓(x)

ŷ = f✓̂(x)
ŷ

y

Figure 7.1: Closed-loop dynamical system created by the iterative optimization algorithms employed
during training of a machine learning model.

We used Lyapunov analysis to study the dynamics of the gradient descent algorithm when it
is being used for nonconvex optimization with multiple local optima. We showed the effect of
learning rate of the gradient descent algorithm on the solutions when training multi-layer models.
We demonstrated that the optimization algorithm itself limited the class of functions that could
be estimated by the multi-layer structure, thereby introducing an implicit regularization. We also
showed that keeping every layer close to the identity operation facilitated the convergence of the
gradient descent algorithm.

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 112

We studied robustness of neural networks with the concepts in system identification and adaptive
control literature, namely, sufficient richness of inputs injected into the models and persistent
excitation of the estimated parameters during training. We showed that robust estimation of
parameters in multi-layer models required not only the richness of the training data but also the
richness of the hidden-layer activations, and we derived necessary and sufficient richness conditions
for these signals.

We showed that neural networks naively-trained for image classification tasks failed to satisfy
the richness requirements in their hidden-layer activations. To find a remedy, we studied the classical
methods of regularization for single-layer linear models in terms of the richness of the training data.
We demonstrated that penalizing the norms of the parameters in a linear model was equivalent to
training the model under random or adversarial perturbations. In models with high-dimensional
input space and large number of parameters, however, mere random perturbations would not be
able to provide an effective regularization in practice. For this reason, we introduced an algorithm
that would provide the persistent excitation for the parameters of a neural network by injecting
adversarial perturbation into its each layer.

The training algorithm with persistent excitation further displayed the connection between the
training of neural networks and the identification of dynamical systems. In system identification, it
was well-known that identifying the unknown parameters in the system required injecting sinusoidal
signals into the system; in other words, maintaining the perturbations of the parameters as long as
the system operated, as demonstrated in Figure 7.2. Similarly, the training algorithm with persistent
excitation provided a mechanism to inject sustained perturbations into all layers of the neural
network as long as the training procedure continued, as demonstrated in Figure 7.3.

+ ... +A +

Bu0

x0

Bu1

A A

BuT�1

xT

Figure 7.2: Exogenous perturbations injected into the dynamical system during identification of its
unknown parameters.

Logistic regression is one of the most common methods for classification in machine learning.
By analyzing the dynamics of the gradient descent algorithm on the cross-entropy loss function, we
demonstrated that the removal of correctly classified points from the training dynamics exponentially
quickly had in fact deleterious effects on the robustness of the classifier obtained. This effect was
particularly explicit when the training data were low-dimensional.

We also studied learning dynamical systems with the gradient descent algorithm. We showed
that a common loss function such as the squared-error loss would not be able to discover stable
modes of a stable system. We revealed that for unstable systems the influence of observations

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 113

x + f1 +

d1

f2 ... + fL y

d2 dL

Figure 7.3: Exogenous perturbations injected into the layers of a neural network during training of
its parameters.

collected at different times would be substantially different on the dynamics of the gradient descent
algorithm. We showed that bringing the observations into a risk-sensitive form could stabilize the
gradient descent algorithm and render learning unstable dynamical systems also possible.

As one of the risk-sensitive decision models, we studied the prospect theory in a dynamical
context. We introduced a hidden Markov model to express the transitions in the reference frames of
a decision maker when they are given a choice problem sequentially. We demonstrated the ability
of the model introduced in expressing the decisions of New York City taxi drivers about when they
would stop driving in each day based on their daily earnings.

Our Lyapunov analyses in most chapters relied on the deterministic dynamics of the full-
batch gradient descent algorithm. The deterministic dynamics allowed us to use a non-vanishing
learning rate while studying the convergence of the gradient descent algorithm, and this allowed the
relationship between the learning rate and the class of functions learned by the algorithm to manifest
itself. Nevertheless, the deterministic algorithms are neither practical for most applications, nor do
they yield better solutions. Instead, stochastic algorithms such as the mini-batch gradient descent
algorithm are preferred in most applications. Analysis of these stochastic algorithms with Lyapunov
stability for stochastic dynamical processes (Kushner, 1965, 1972) remains an open direction for
future research.

We provided a reinterpretation for regularization by showing the equivalence of penalizing
the norms of the parameters and introducing random or adversarial perturbations into the training
data. As adding random perturbations would not be practical in high-dimensional spaces with large
number of parameters, we introduced a training algorithm that computed adversarial perturbations
during the training procedure, which led to a bilevel optimization problem. Designing methods or
alternative loss functions to improve the stability of this bilevel optimization problem is another
important direction for research.

We showed that the cross-entropy loss function combined with the soft-max function can lead
to extremely suboptimal solutions for classification tasks. This was mainly caused by the soft-max
function. Similar to the fact that decaying the learning rate in stochastic gradient methods and
the exploration rate in reinforcement learning algorithms is not suitable, removing the correctly
classified points from the dynamics of the gradient descent algorithm was not appropriate. Designing
alternative functions to convert the Euclidian space into a probability simplex and analyzing their
effect on robustness is an open problem.

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 114

We analyzed the dynamics of the gradient descent algorithm while learning deterministic linear
dynamical systems, and we showed that the stable and unstable modes of the system affect the
dynamics of the algorithm substantially differently. Whether introducing randomness into the state
transitions helps or exacerbates the problem of instability of the gradient descent algorithm remains
an open problem. When the state transitions are nonlinear, the required change in the time-weighting
and the specific shape of the risk-sensitive warping function for the observations of the system is
also an open direction for future research.

115

Bibliography

A. Alaeddini, S. Alemzadeh, A. Mesbahi, and M. Mesbahi. Linear model regression on time-series
data: non-asymptotic error bounds and applications. In IEEE Conference on Decision and
Control, pages 2259–2264, 2018.

Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. Black box
variational inference for state space models. arXiv preprint arXiv:1511.07367, 2015.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In Advances in Neural Information Processing Systems, pages 7411–7422, 2019.

Karl Johan Åström and Peter Eykhoff. System identification — a survey. Automatica, 7(2):123–162,
1971.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

Erel Avineri and Piet HL Bovy. Identification of parameters for a prospect theory model for travel
choice analysis. Transportation Research Record, 2082(1):141–147, 2008.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural Networks, 2(1):53–58, 1989.

Nikita E Barabanov and Danil V Prokhorov. Stability analysis of discrete-time recurrent neural
networks. IEEE Transactions on Neural Networks, 13(2):292–303, 2002.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249,
2017.

Peter L Bartlett, Steven N Evans, and Philip M Long. Representing smooth functions as composi-
tions of near-identity functions with implications for deep network optimization. arXiv preprint
arXiv:1804.05012, 2018a.

Peter L Bartlett, Dave Helmbold, and Philip Long. Gradient descent with identity initialization effi-
ciently learns positive definite linear transformations by deep residual networks. In International
Conference on Machine Learning, pages 521–530, 2018b.

BIBLIOGRAPHY 116

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and applications of robust
optimization. SIAM Review, 53(3):464–501, 2011.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Stephen Boyd and Shankar Sastry. On parameter convergence in adaptive control. Systems &
Control Letters, 3(6):311–319, 1983.

Stephen Boyd and Shankar Sastry. Necessary and sufficient conditions for parameter convergence
in adaptive control. Automatica, 22(6):629–639, 1986.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

Frank M. Callier and Charles A. Desoer. Linear System Theory. Springer-Verlag, 1991.

Colin Camerer, Linda Babcock, George Loewenstein, and Richard Thaler. Labor supply of new
york city cabdrivers: One day at a time. The Quarterly Journal of Economics, 112(2):407–441,
1997.

Urszula Chajewska, Daphne Koller, and Dirk Ormoneit. Learning an agent’s utility function by
observing behavior. In International Conference on Machine Learning, pages 35–42, 2001.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific Reports, 8(1):6085,
2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, pages 6571–6583,
2018.

Vincent P Crawford and Juanjuan Meng. New york city cab drivers’ labor supply revisited:
Reference-dependent preferences with rational-expectations targets for hours and income. Ameri-
can Economic Review, 101(5):1912–32, 2011.

Christian Daniel, Jonathan Taylor, and Sebastian Nowozin. Learning step size controllers for robust
neural network training. In AAAI Conference on Artificial Intelligence, 2016.

Brian Donovan and Daniel B Work. Using coarse gps data to quantify city-scale transportation
system resilience to extreme events. arXiv preprint arXiv:1507.06011, 2015.

BIBLIOGRAPHY 117

Brian Donovan and DB Work. New york city taxi data (2010-2013), 2014. URL http://dx.
doi.org/10.13012/J8PN93H8.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. In Advances in Neural Information Processing
Systems, pages 384–395, 2018.

Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. Learning interpretable
continuous-time models of latent stochastic dynamical systems. In International Conference on
Machine Learning, volume 97, pages 1726–1734, 2019.

Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with uncertain
data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–1064, 1997.

Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, and James Hensman. Identification of
gaussian process state space models. In Advances in Neural Information Processing Systems,
pages 5309–5319, 2017.

Henry S Farber. Reference-dependent preferences and labor supply: The case of new york city taxi
drivers. American Economic Review, 98(3):1069–82, 2008.

A. Fawzi, S. Moosavi-Dezfooli, and P. Frossard. The robustness of deep networks: A geometrical
perspective. IEEE Signal Processing Magazine, 34(6):50–62, Nov 2017.

Roger Frigola, Yutian Chen, and Carl Edward Rasmussen. Variational gaussian process state-space
models. In Advances in Neural Information Processing Systems, pages 3680–3688, 2014.

Gartheeban Ganeshapillai, John Guttag, and Andrew Lo. Learning connections in financial time
series. In International Conference on Machine Learning, pages 109–117, 2013.

Song Gao, Emma Frejinger, and Moshe Ben-Akiva. Adaptive route choices in risky traffic networks:
A prospect theory approach. Transportation Research Part C: Emerging Technologies, 18(5):
727–740, 2010.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. In Advances in Neural Information Processing Systems,
pages 3196–3206, 2019.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and Theophane Weber. Tempo-
ral difference variational auto-encoder. In International Conference on Learning Representations,
2019.

http://dx.doi.org/10.13012/J8PN93H8
http://dx.doi.org/10.13012/J8PN93H8

BIBLIOGRAPHY 118

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. In Advances in Neural Information Processing
Systems, pages 6151–6159, 2017.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. In Advances in Neural Information Processing Systems, pages
9461–9471, 2018.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231,
2016.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems.
Journal of Machine Learning Research, 19(29):1–44, 2018.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, 2nd edition, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

Guotao Hu, Aruna Sivakumar, and John W Polak. Modelling travellers’ risky choice in a revealed
preference context: A comparison of EUT and non-EUT approaches. Transportation, 39(4):
825–841, 2012.

Kosuke Ishibashi, Kohei Hatano, and Masayuki Takeda. Online learning of approximate maximum
p-norm margin classifiers with bias. In Conference on Learning Theory, 2008.

Robert A Jacobs. Increased rates of convergence through learning rate adaptation. Neural networks,
1(4):295–307, 1988.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. CoRR,
abs/1803.07300, 2018.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations, 2019.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction
to variational methods for graphical models. Machine Learning, 37(2):183–233, 1999.

BIBLIOGRAPHY 119

Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. Econo-
metrica, 47(2):263–291, 1979.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural information
processing systems, pages 586–594, 2016.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast iterative nearest point
algorithm for support vector machine classifier design. IEEE Transactions on Neural Networks,
11(1):124–136, 2000.

Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 2nd edition, 1996.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Botond Kőszegi and Matthew Rabin. A model of reference-dependent preferences. The Quarterly
Journal of Economics, 121(4):1133–1165, 2006.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
pages 2101–2109, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

P. R. Kumar and Pravin Varaiya. Stochastic Systems: Estimation, Identification and Adaptive
Control. Prentice-Hall, Upper Saddle River, NJ, USA, 1986.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Harold J Kushner. On the stability of stochastic dynamical systems. Proceedings of the National
Academy of Sciences of the United States of America, 53(1):8, 1965.

Harold J Kushner. Stochastic stability. In Stability of stochastic dynamical systems, pages 97–124.
Springer, 1972.

Nathan O Lambert, Daniel S Drew, Joseph Yaconelli, Sergey Levine, Roberto Calandra, and
Kristofer SJ Pister. Low-level control of a quadrotor with deep model-based reinforcement
learning. IEEE Robotics and Automation Letters, 4(4):4224–4230, 2019.

BIBLIOGRAPHY 120

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

George D Magoulas, Michael N Vrahatis, and George S Androulakis. Effective backpropagation
training with variable stepsize. Neural Networks, 10(1):69–82, 1997.

Charles H. Martin and Michael W. Mahoney. Traditional and heavy tailed self regularization in
neural network models. In International Conference on Machine Learning, 2019.

Z. Marzi, S. Gopalakrishnan, U. Madhow, and R. Pedarsani. Sparsity-based Defense against
Adversarial Attacks on Linear Classifiers. ArXiv e-prints, 2018.

Kiyotoshi Matsuoka. Stability conditions for nonlinear continuous neural networks with asymmetric
connection weights. Neural networks, 5(3):495–500, 1992.

Anthony N Michel, Jay A Farrell, and Wolfgang Porod. Stability results for neural networks. In
Neural Information Processing Systems, pages 554–563, 1988.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 86–94, 2017.

M. Shpigel Nacson, J. Lee, S. Gunasekar, P. H. P. Savarese, N. Srebro, and D. Soudry. Convergence
of Gradient Descent on Separable Data. ArXiv e-prints, 2018a.

M. Shpigel Nacson, N. Srebro, and D. Soudry. Stochastic Gradient Descent on Separable Data:
Exact Convergence with a Fixed Learning Rate. ArXiv e-prints, 2018b.

Kamil Nar and S Shankar Sastry. Persistency of excitation for robustness of neural networks. arXiv
preprint arXiv:1911.01043, 2019.

Kamil Nar and S Shankar Sastry. Richness of training data does not suffice: Robustness of neural
networks requires richness of hidden-layer activations. Workshop on Uncertainty and Robustness
in Deep Learning, International Conference on Machine Learning, 2020.

Kamil Nar and Shankar Sastry. Step size matters in deep learning. In Advances in Neural Information
Processing Systems, pages 3436–3444, 2018a.

Kamil Nar and Shankar Sastry. Residual networks: Lyapunov stability and convex decomposition.
arXiv preprint arXiv:1803.08203, 2018b.

Kamil Nar, Lillian J Ratliff, and Shankar Sastry. Learning prospect theory value function and
reference point of a sequential decision maker. In IEEE Conference on Decision and Control,
pages 5770–5775, 2017.

BIBLIOGRAPHY 121

Kamil Nar, Orhan Ocal, S Shankar Sastry, and Kannan Ramchandran. Cross-entropy loss and
low-rank features have responsibility for adversarial examples. arXiv preprint arXiv:1901.08360,
2019a.

Kamil Nar, Orhan Ocal, S. Shankar Sastry, and Kannan Ramchandran. Cross-entropy loss leads to
poor margins. Openreview, 2019b.

Kamil Nar, Yuan Xue, and Andrew M Dai. Learning unstable dynamical systems with time-weighted
logarithmic loss. arXiv preprint arXiv:2007.05189, 2020.

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of
optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071, 2017.

Andrew Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, 2000.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark
the robustness of machine learning models. arXiv preprint arXiv:1707.04131, 2017.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning.
In Advances in Neural Information Processing Systems, pages 6433–6443, 2018.

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent ODEs for irregularly-sampled
time series. In Advances in Neural Information Processing Systems, 2019.

Ariel Rubinstein. Lecture Notes in Microeconomic Theory: The Economic Agent. Princeton
University Press, 2012.

Tuhin Sarkar and Alexander Rakhlin. Near optimal finite time identification of arbitrary linear
dynamical systems. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pages 5610–5618, 2019.

S Shankar Sastry. Model-reference adaptive control – stability, parameter convergence, and robust-
ness. IMA Journal of Mathematical Control and Information, 1(1):27–66, 1984.

Shankar Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer-Verlag, 2013.

Shankar Sastry and Marc Bodson. Adaptive Control: Stability, Convergence and Robustness.
Prentice Hall, 1989.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry.
Adversarially robust generalization requires more data. In Advances in Neural Information
Processing Systems, pages 5014–5026, 2018.

BIBLIOGRAPHY 122

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018.

D. Soudry, E. Hoffer, M. Shpigel Nacson, S. Gunasekar, and N. Srebro. The Implicit Bias of
Gradient Descent on Separable Data. ArXiv e-prints, 2018.

Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on separable
data. In International Conference on Learning Representations, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

Håkan Terelius and Karl Henrik Johansson. An efficiency measure for road transportation networks
with application to two case studies. In 54th IEEE Conference on Decision and Control, pages
5149–5155, 2015.

Ruey S Tsay. Financial time series. Wiley StatsRef: Statistics Reference Online, 2014.

Amos Tversky and Daniel Kahneman. Loss aversion in riskless choice: A reference-dependent
model. The Quarterly Journal of Economics, 106(4):1039–1061, 1991.

Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and Uncertainty, 5(4):297–323, 1992.

Colin Wei and Tengyu Ma. Improved sample complexities for deep neural networks and robust
classification via an all-layer margin. In International Conference on Learning Representations,
2020.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pages 4148–4158, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

BIBLIOGRAPHY 123

Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep control policies for
autonomous aerial vehicles with MPC-guided policy search. In IEEE International Conference
on Robotics and Automation, pages 528–535, 2016.

Lizhen Zhou, Shiquan Zhong, Shoufeng Ma, and Ning Jia. Prospect theory based estimation of
drivers’ risk attitudes in route choice behaviors. Accident Analysis and Prevention, 73:1–11,
2014.

	Contents
	List of Figures
	Introduction
	Optimization for Learning
	Robustness for Learning
	Risk-Sensitivity for Learning
	Overview of Chapters

	Lyapunov Analysis for Training Multi-Layer Models
	Introduction
	Upper Bounds on the Step Size for Training Deep Linear Networks
	Identity Initialization for Estimating Symmetric Positive Definite Matrices
	Effect of Step Size on Training Two-Layer Networks with ReLU Activations
	Discussion
	Proofs

	Persistency of Excitation for Robustness of Multi-Layer Models
	Introduction
	Deep Linear Networks
	Nonlinear Networks
	Reinterpreting Regularization for Single-layer and Multi-layer Models
	Experimental Results
	Discussion
	Conclusion
	Proofs and Further Remarks

	Robustness of Models Trained with the Cross-Entropy Loss
	Introduction
	Classification of Two Points with the Cross-Entropy Loss
	Margins of Linear Classifiers Trained with the Cross-Entropy Loss
	Two-Layer Nonlinear Network Trained with the Cross-Entropy Loss
	Low-Dimensionality of Hidden-Layer Activations
	Differential Training for Linear Classifiers
	Experiments
	Discussion
	Proofs

	Learning Linear Dynamical Systems
	Introduction
	Problem Formulation
	Learning with Squared-Error Loss
	Learning with Time-Weighted Logarithmic Loss
	Experiments
	Discussion
	Conclusion
	Proofs and Further Remarks

	Learning Risk-Sensitive Value Functions with Sequential Decisions
	Introduction
	Formulation of the Decision Problem
	Deriving Optimal Actions from the Value Function
	Learning Parameters from a Hidden Markov Model
	Learning Parameters for Nonnegative Actions
	Analysis of New York City Taxi Drivers
	Conclusion

	Conclusion and Future Directions
	Bibliography

