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Abstract

Model-based Deep Reinforcement Learning for Robotic Systems

by

Anusha Nagabandi

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Ronald S. Fearing, Co-chair

Sergey Levine, Co-chair

Deep learning has shown promising results in robotics, but we are still far from having
intelligent systems that can operate in the unstructured settings of the real world, where
disturbances, variations, and unobserved factors lead to a dynamic environment. The
premise of the work in this thesis is that model-based deep RL provides an efficient and
effective framework for making sense of the world, thus allowing for reasoning and adaptation
capabilities that are necessary for successful operation in the dynamic settings of the world.

We first build up a model-based deep RL framework and demonstrate that it can indeed
allow for efficient skill acquisition, as well as the ability to repurpose models to solve a variety
of tasks. We then scale up these approaches to enable locomotion with a 6-DoF legged
robot on varying terrains in the real world, as well as dexterous manipulation with a 24-DoF
anthropomorphic hand in the real world. Next, we focus on the inevitable mismatch between
an agent’s training conditions and the test conditions in which it may actually be deployed,
thus illuminating the need for adaptive systems. Inspired by the ability of humans and animals
to adapt quickly in the face of unexpected changes, we present a meta-learning algorithm
within this model-based RL framework to enable online adaptation of large, high-capacity
models using only small amounts of data from the new task. We demonstrate these fast
adaptation capabilities in both simulation and the real-world, with experiments such as a
6-legged robot adapting online to an unexpected payload or suddenly losing a leg. We then
further extend the capabilities of our robotic systems by enabling the agents to reason directly
from raw image observations. Bridging the benefits of representation learning techniques
with the adaptation capabilities of meta-RL, we present a unified framework for effective
meta-RL from images. With robotic arms in the real world that learn peg insertion and
ethernet cable insertion to varying targets, we show the fast acquisition of new skills, directly
from raw image observations in the real world. Finally, we conclude by discussing the key
limitations of our existing approaches and present promising directions for future work in the
area of model-based deep RL for robotic systems.
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Chapter 1

Introduction

From carefully planned-out acrobatics and dynamic walking maneuvers (Kuindersma et al.
2016; Tajima, Honda, and Suga 2009), to precise perception-based manipulation for folding
towels (Miller et al. 2012) and reorienting cubes (Akkaya et al. 2019), robots these days
can demonstrate very impressive capabilities. Although both traditional control approaches
as well as deep learning approaches have demonstrated promising robotics results, we are
unfortunately still far from having intelligent robotic systems operating in the real world.

1.1 Motivation
To understand why we don’t yet have robotic systems deployed in real-world settings such
as homes, we must come to terms with the unstructured nature of the real world, where
disturbances, variations, and unobserved factors lead to an extremely dynamic environment.
Moving away from controlled and instrumented settings such as labs, what we really want
is a robot that can rely on its own on-board sensors (such as cameras) to perceive an
unstructured world without the strong assumption of perfect state estimation, and that can
very quickly adapt to a variety of new tasks as the situation demands, as opposed to being
overly specialized for a single task. For example, a robot that is only capable of moving a
certain object from one fixed position to another may be useful in a fixed factory setting
where no amount of variation ever occurs (Fig. 1.1), but it will rarely be useful anywhere else.

Figure 1.1: Robots in a Hyundai car factory (Narasimhan 2018), increasing factory efficiency through repeated
execution of pre-programmed commands.
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What we want instead is a robot that can be trained to sort boxes in a warehouse, for
instance, but can then adapt its behavior to heavy or slippery packages, to the presence of
an unexpected human arm during its operation, to the fact that the current stack of boxes
has fallen, or to the fact that the delivery truck has parked farther away than usual.

Centuries of research efforts have brought us to the point of being able to design complex
systems in controlled settings by reasoning through the specific mechanisms at hand; and
while we are surprisingly effective at enabling super-human types of capabilities such as
beating human Chess champions (Campbell, Hoane Jr, and F.-h. Hsu 2002) and winning
Jeopardy (Ferrucci 2012), we unfortunately cannot yet enable the robust and generalizable
capabilities of even a young child around the house. Although efforts such as RoboCup (Kitano
et al. 1997) and the Darpa Robotics Challenge (Krotkov et al. 2017) have taken steps toward
encouraging robots to operate in more realistic scenarios, there is still much progress to be
made. The real world is full of challenges for robots, including irregular terrains, the lack of
perfect state information for all objects in the world, the resulting difficultly of recognizing
or correcting for errors, and even small 1cm errors being enough to spill a coffee mug or
drop a bowl. Humans, on the other hand, can feel around their pocket to find a key and
then proceed to unlock a door entirely in the dark, without any sense of exactly where the
keyhole is. We can pour coffee into a mug regardless of its precise location, using our visual
perception. We can continue to move by hobbling on one foot after rolling an ankle. We
can walk on stairs or slopes or ice. The development of online reasoning is critical for these
types of capabilities, and will directly result in more generalizable and adaptable robots that
can be deployed into the world. The premise of the work in this thesis is that model-based
deep RL can provide an efficient and effective framework for making sense of the world; and
in turn, this ability to make sense of the world can allow for these types of reasoning and
adaptation capabilities that are necessary for successful operation in the dynamic settings of
the real world.

1.2 Online Reasoning and Decision Making for
Generalizable Systems

One way to understand why “hard” tasks such as beating world champions at chess are easy,
but “easy tasks” such as cleaning rooms are hard, is to think about the concept of specialists
versus generalists. For instance, although the chess robot does not need to know anything
other than chess, think about the amount of variations that we need to be able to address
when cleaning a room. First, it’s impossible for us to measure everything precisely in the real
world. Even if we give our robots vision and allow them to operate directly from image inputs,
what does a chair even look like? Although many types of chairs (wooden, red, velvet, stools,
etc.) are all clearly identifiable to humans as chairs, they may not actually look alike to a
robot that is trying to identify a chair. Even if we assume that computer vision approaches
can address this identification problem of knowing all the various forms of what a chair may
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look like, we still need to address the next problem of actually working with it. Consider
the task of putting away a chair. Where do I hold onto it? How do I pull it? The answer is
different for every specific instance. For instance, do I hold it at the top and pull on it? Do I
hold it in the middle and push on it? How will this type of chair slide on this type of floor?
Do I need to understand physics here? Will the chair scratch the floor? Should I try to lift
the chair up before moving it? What if the chair has things on top? Do I need to put away
all the clothes first? How do I pick up and fold flexible materials like a shirt? As you can see,
the difficulty of this problem escalated very quickly, and yet we have still only considered
one small task involved with cleaning a room, which is moving a chair. Now, consider a
robot that learns how to move a certain type of chair from exactly 1 fixed position to some
other goal position, in a lab. Unfortunately, that skill is entirely useless in the real world if it
cannot generalize to moving chairs from arbitrary positions, or moving a slightly different
type of chair, or moving the chair even when the floor is slightly different. In order words,
being a specialist is not nearly as important as being a generalist when we want something
that works in the real world. Furthermore, it has become clear over the years that it is not
sufficient to set rules or specific control laws to dictate what each actuator of a robot should
do; rather, this ability to generalize must arise from enabling robots to reason on their own
and act accordingly.

Much work has tried to enable generalization to new scenarios through approaches such
as training on large amounts of data, domain randomization (Tobin et al. 2017), and domain
adaptation (Bousmalis et al. 2018). Other work has instead emphasized the idea of learning
predictive models (Pathak 2019) as being the key mechanism for enabling adaptation to
scenarios past those seen during training. For example, general concepts such as object
permanence (Baillargeon, Spelke, and Wasserman 1985) and approximate physics (Hespos
and VanMarle 2012) are learned by kids at a very young age, and they display explicit shock
or confusion when faced with seemingly impossible situations that violate their internal
predictive models. Prior work in robotics has extended this idea, that “play” teaches infants
to use experimentation to learn a model of how things work (Agrawal 2018), which can then
be used to perform new tasks. This concept of creating generalist (as opposed to specialist)
agents by taking the time to develop good predictive models is further supported by the
link between long childhoods and the resulting intelligence of a species (Piantadosi and Kidd
2016). The work in this thesis is inspired by this idea of predictive models as a mechanism for
learning to generalize – that perhaps the most general level at which to learn is the predictive
level, and that these predictive models can be re-purposed downstream in the process of
learning other skills or re-planning in the face of uncertainty.

This observation that the format of predictive models allows us to re-use them for future
decision making is powerful, and further supported by evidence in both humans and animals.
Humans often perform “what if” types of reasoning by querying their internal predictive
models before making decisions; when choosing a future job, for example, we often imagine
the consequences and possible futures that may result from each choice, before assessing those
possible futures and making our decision. Relatedly, the firing patterns of place cells have
been shown (Johnson and Redish 2007) in rats to demonstrate “what if” types of reasoning
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when the rat comes to critical decision points in a maze. When examined at fine time scales,
these place cells, which normally encode concepts such as physical location, were shown to
demonstrate a looking-ahead type of firing pattern which scanned both of the possible turn
directions before making a decision at the T-junction of a maze. Having explicit predictive
mechanisms, then, seems to help both animals and humans to make sense of the world and
allow for explicit querying and reasoning in unfamiliar situations.

1.3 Overview, Organization, and Contributions
As alluded to above, a major challenge for deploying robots to real-world environments is that
they must be able to perform a wide variety of tasks and acquire new skills as the situation
demands, as opposed to repeatedly executing a single and specific fixed task. In other words,
we need to extend the current single-task specializations of deep RL into more generalizable
and adaptable ones that can succeed in dynamic and unstructured real-world environments.

Consider these definitions of generalization and human-level intelligence:

“A generalization is the formulation of general concepts from specific instances by
abstracting common properties” (Merriam-Webster dictionary)

“Generalization is the concept that humans and animals use past learning in
present situations of learning if the conditions in the situations are regarded
as similar.” (Gluck, Mercado, and Myers 2007)

“The most difficult problems for computers are informally known as AI-complete.
solving them is equivalent to the general aptitude of human intelligence. . . be-
yond the capabilities of a purpose-specific algorithm. AI-complete problems are
hypothesized to include. . . dealing with unexpected circumstances while
solving any real world problem” (Shapiro 1992)

With these in mind, we highlight three main concepts that will reappear in the contents of
this thesis: abstracting common properties, using past learning in present situations, and
going beyond purpose-specific algorithms to deal with unexpected circumstances. The first
concept of abstracting common properties is addressed in this thesis with the building of
predictive models; we learn models that can explain what they observe. The second concept is
addressed with meta-learning algorithms, which learn to use prior knowledge to quickly solve
new tasks. And the third concept of going “beyond purpose-specific” is addressed with work
in online adaptation, continual learning, and online inference from raw sensory observations
in an effort to succeed even in the face of unexpected circumstances.



CHAPTER 1. INTRODUCTION 5

Figure 1.2: Overview figure to visualize the flow and general contributions of each chapter of this thesis,
for the overall goal of enabling the deployment of robotic systems into the real world. The difficulty axis
here encompasses difficulty of the tasks (e.g., contacts), difficulty from state dimensionality (e.g., working
with images), difficulty from action dimensionality (e.g., working with high-DoF robots), as well as difficulty
induced from operating in the real world. The diversity axis, on the other hand, focuses on the generalization
aspect of getting robots into the real world. This axis encompasses the re-usability of learned knowledge, the
variety of achievable tasks, the capability of adapting online to address unexpected perturbations at run time,
and the ability to adjust behaviors as necessary to succeed in new and unseen situations.

We first build up a model-based deep RL framework in chapter 2 and demonstrate that
it can indeed allow for efficient and effective autonomous skill acquisition, as well as the
ability to repurpose models to execute a variety of paths at test time. Chapter 3 extends
this framework to enable locomotion with a 6-DoF legged robot in the real world by learning
image-conditioned models that are able to address various types of terrains. Chapter 4
scales up these approaches to address challenging dexterous manipulation tasks with a 24-DoF
anthropomorphic hand, both in simulation and in the real world.

At this point, we turn our focus to the inevitable mismatch between an agent’s training
conditions and the test conditions in which it may actually be deployed. Inspired by the
ability of humans and animals to adapt quickly in the face of unexpected changes, chapter
5 presents a meta-learning algorithm within this model-based RL framework to enable online
adaptation of large, high-capacity models using only small amounts of data from the new
task. These fast adaptation capabilities are shown both in simulation and the real-world,
with experiments such as a 6-legged robot adapting online to an unexpected payload or
suddenly losing a leg. Chapter 6 formulates an online learning approach as an expectation
maximization problem to construct and build a task distribution with a mixture of models;
this work allows generalization to tasks that are further away from the training distribution
while also allowing for task recall, generalization, and specialization.

Next, we further extend the capabilities of our robotic systems by enabling the agents to
reason directly from raw image observations. Taking the benefits of unsupervised learning
techniques for extracting meaningful representations from high-dimensional and partial
observations, and bridging them with the adaptation capabilities of meta-RL, chapter
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7 presents a unified framework for effective meta-RL from images. Robotic arms in the
real world that learn peg insertion and ethernet cable insertion to varying targets show
the fast acquisition of new skills, directly from raw image observations in the real world.
Finally, chapter 8 concludes by discussing the key limitations of our existing approaches
and presenting promising directions for future work in this area of model-based deep RL for
robotic systems.
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Chapter 2

MBRL: Learning Neural Network
Models for Control

Figure 2.1: Thesis outline, with
the current chapter indicated by
the last colored arrow.

Model-free deep RL algorithms have been shown to be capable
of learning a wide range of robotic skills, but typically require
a very large number of samples to achieve good performance.
Model-based algorithms, in principle, can provide for much
more efficient learning, but have proven difficult to extend to
expressive, high-capacity models such as deep neural networks.
In this chapter, we demonstrate that neural network dynamics
models can in fact be learned and combined with model predic-
tive control (MPC) to achieve excellent sample complexity in a
model-based reinforcement learning algorithm. After building
up this model-based RL framework and demonstrating its ability to quickly learn stable and
plausible gaits that accomplish various complex locomotion tasks, we then propose using those
deep neural network dynamics models to initialize a model-free learner as a way to bridge
the sample efficiency of model-based approaches with the high task-specific performance of
model-free methods. Videos of the experiments as well as the code are available online1.

2.1 Introduction
Model-free deep reinforcement learning algorithms have been shown to be capable of learning a
wide range of tasks, ranging from playing video games from images (V. Mnih, K. Kavukcuoglu,
et al. 2013; Oh et al. 2016) to learning complex locomotion skills (J. Schulman et al. 2015).
However, such methods suffer from very high sample complexity, often requiring millions of
samples to achieve good performance (J. Schulman et al. 2015). Model-based reinforcement
learning algorithms are generally regarded as being more efficient (M. P. Deisenroth, Neumann,
Peters, et al. 2013). However, to achieve good sample efficiency, these model-based algorithms

1https://sites.google.com/view/mbmf

https://sites.google.com/view/mbmf
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have conventionally used either simple function approximators (Lioutikov et al. 2014) or
Bayesian models that resist overfitting (M. Deisenroth and C. Rasmussen 2011) in order
to effectively learn the dynamics using few samples. This makes them difficult to apply
to a wide range of complex, high-dimensional tasks. Although a number of prior works
have attempted to mitigate these shortcomings by using large, expressive neural networks
to model the complex dynamical systems typically used in deep reinforcement learning
benchmarks (Brockman et al. 2016; Emanuel Todorov, Erez, and Tassa 2012a), such models
often do not perform well (S. Gu et al. 2016) and have been limited to relatively simple,
low-dimensional tasks (Mishra, Abbeel, and Mordatch 2017).

Figure 2.2: Our method learns a dy-
namics model that enables a simulated
quadrupedal robot to autonomously
follow user-defined waypoints. Train-
ing for this task uses 7×105 time steps
(collected without knowledge of test-
time navigation tasks), and the learned
model can be reused at test time to fol-
low arbitrary desired trajectories, such
as the U-turn shown above.

In this work, we demonstrate that multi-layer neural net-
work models can in fact achieve excellent sample complexity
in a model-based reinforcement learning algorithm. The
resulting models can then be used for model-based control,
which we perform using model predictive control (MPC)
with a simple random-sampling shooting method (Richards
2004). We demonstrate that this method can acquire effec-
tive locomotion gaits for a variety of MuJoCo benchmark
systems (Emanuel Todorov, Erez, and Tassa 2012a), includ-
ing the swimmer, half-cheetah, hopper, and ant. Fig. 7.3
shows that these models can be used at run-time to execute
a variety of locomotion tasks such as trajectory following,
where the agent executes a path through a given set of
sparse waypoints that represent desired center-of-mass posi-
tions. Additionally, each systems uses less than four hours
worth of data, indicating that the sample complexity of
our model-based approach is low enough to be applied in
the real world, and is dramatically lower than pure model-
free learners. In particular, when comparing this model-based approach’s ability to follow
arbitrary desired trajectories with a model-free approach’s ability to learn just a competent
moving forward gait, our results show that the model-based method uses only 3%, 10%, and
14% of the data that is used by a model-free approach (for half-cheetah, swimmer, and ant,
respectively). Relatedly, our model-based method can achieve qualitatively good forward
gaits for the swimmer, cheetah, hopper, and ant using 20− 80× fewer data points than is
required by a model-free approach.

Although such model-based methods are drastically more sample efficient and more flexible
than task-specific policies learned with model-free reinforcement learning, their asymptotic
performance is usually worse than model-free learners due to model bias. Model-free algo-
rithms are not limited by the accuracy of the model, and therefore can achieve better final
performance, though at the expense of much higher sample complexity (M. P. Deisenroth,
Neumann, Peters, et al. 2013; Kober, J. A. Bagnell, and Peters 2013). To address this issue,
we use our model-based algorithm, which can quickly achieve moderately proficient behavior,
to initialize a model-free learner, which can slowly achieve near-optimal behavior. The learned
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model-based controller provides good rollouts, which enable supervised initialization of a
policy that can then be fine-tuned with model-free algorithms, such as policy gradients.
We empirically demonstrate that the resulting hybrid model-based and model-free (Mb-Mf)
algorithm can accelerate model-free learning, achieving sample efficiency gains of 3− 5× on
the swimmer, half-cheetah, hopper, and ant.

The highlights of this chapter are as follows:

1. We demonstrate effective model-based RL with neural network models for several
contact-rich simulated locomotion tasks from standard deep reinforcement learning
benchmarks.

2. We empirically evaluate a number of design decisions for neural network dynamics
model learning.

3. We show how a model-based learner can be used to initialize a model-free learner to
achieve high rewards while significantly reducing sample complexity.

2.2 Related Work
Deep reinforcement learning algorithms based on Q-learning (Volodymyr Mnih, Koray
Kavukcuoglu, Silver, Rusu, et al. 2015; Oh et al. 2016; S. Gu et al. 2016), actor-critic
methods (T. Lillicrap et al. 2016; V. Mnih, Badia, et al. 2016; John Schulman, Moritz,
et al. 2016), and policy gradients (J. Schulman et al. 2015; Shixiang Gu, Timothy Lillicrap,
Ghahramani, et al. 2017) have been shown to learn very complex skills in high-dimensional
state spaces, including simulated robotic locomotion, driving, video game playing, and nav-
igation. However, the high sample complexity of purely model-free algorithms has made
them difficult to use for learning in the real world, where sample collection is limited by
the constraints of real-time operation. Model-based algorithms are known in general to
outperform model-free learners in terms of sample complexity (M. P. Deisenroth, Neumann,
Peters, et al. 2013), and in practice have been applied successfully to control both simulated
and real-world robotic systems, such as pendulums (M. Deisenroth and C. Rasmussen 2011),
legged robots (Morimoto and Atkeson 2003), swimmers (Meger et al. 2015), and manipula-
tors (M. P. Deisenroth, Carl Edward Rasmussen, and Fox 2011). However, the most efficient
model-based algorithms have used relatively simple function approximators, such as Gaussian
processes (M. Deisenroth and C. Rasmussen 2011; Boedecker et al. 2014; Ko and Fox 2008),
time-varying linear models (Lioutikov et al. 2014; Levine and Abbeel 2014; Yip and Camarillo
2014), and mixtures of Gaussians (Khansari-Zadeh and Billard 2011). PILCO (M. Deisenroth
and C. Rasmussen 2011), in particular, is a model-based policy search method which reports
excellent sample efficiency by learning probabilistic dynamics models and incorporating
model uncertainty into long-term planning. These methods have difficulties, however, in
high-dimensional spaces and with nonlinear dynamics. The most high-dimensional task
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demonstrated with PILCO that we could find has 11 dimensions (Meger et al. 2015), while
the most complex task in our work has 49 dimensions and features challenging properties
such as frictional contacts.

Although neural networks have been widely used in earlier work to model plant dynamics
(K. J. Hunt et al. 1992; Bekey and Goldberg 1992), more recent model-based algorithms have
achieved only limited success in applying such models to the more complex benchmark tasks
that are commonly used in deep reinforcement learning. Several works have proposed to use
deep neural network models for building predictive models of images (Watter et al. 2015), but
these methods have either required extremely large datasets for training (Watter et al. 2015)
or were applied to short-horizon control tasks (Wahlström, Schön, and M. P. Deisenroth 2015).
In contrast, we consider long-horizon simulated locomotion tasks, where the high-dimensional
systems and contact-rich environment dynamics provide a considerable modeling challenge.
(Mishra, Abbeel, and Mordatch 2017) proposed a relatively complex time-convolutional model
for dynamics prediction, but only demonstrated results on low-dimensional (2D) manipulation
tasks. (Gal, McAllister, and Carl Edward Rasmussen 2016) extended PILCO (M. Deisenroth
and C. Rasmussen 2011) using Bayesian neural networks, but only presented results on a
low-dimensional cart-pole swingup task, which does not include contacts.

Aside from training neural network dynamics models for model-based reinforcement
learning, we also explore how such models can be used to accelerate a model-free learner.
Prior work on model-based acceleration has explored a variety of avenues. The classic Dyna (R.
Sutton 1991) algorithm proposed to use a model to generate simulated experience that could
be included in a model-free algorithm. This method was extended (Silver, R. S. Sutton, and
Müller 2008; Asadi 2015) to work with deep neural network policies, but performed best
with models that were not neural networks (S. Gu et al. 2016). Model learning has also been
used to accelerate model-free Bellman backups (Heess, Wayne, et al. 2015), but the gains
in performance from including the model were relatively modest. Prior work has also used
model-based learners to guide policy optimization through supervised learning (Levine, Finn,
et al. 2017), but the models that were used were typically local linear models. In a similar
way, we also use supervised learning to initialize the policy, but we then fine-tune this policy
with model-free learning to achieve the highest returns. Our model-based method is more
expressive and flexible than local linear models, and it does not require multiple samples
from the same initial state for local linearization.

2.3 The Neural Network Dynamics Model
In the following few sections, we present our model-based deep reinforcement learning
framework, which we further build upon in future chapters. We first detail the learned
dynamics function fθ(st, at) and how to train it, and we then detail how to extract a policy
using this learned dynamics function.

We parameterize the learned dynamics function fθ(st, at) as a deep neural network,
where the parameter vector θ represents the weights of the network. A straightforward
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parameterization for fθ(st, at) would take as input the current state st and action at, and
output the predicted next state ŝt+1. However, this function can be difficult to learn when
the states st and st+1 are too similar and the action has seemingly little effect on the output;
this difficulty becomes more pronounced as the time between states ∆t becomes smaller.

We overcome this issue by instead learning a dynamics function that predicts the change
in state st over the time step duration of ∆t. Thus, the predicted next state is as follows:
ŝt+1 = st + fθ(st, at). Note that increasing this ∆t increases the information available from
each data point, and can help with not only dynamics learning but also with planning
using the learned dynamics model (Sec. 2.4). However, increasing ∆t also increases the
discretization and variation of the underlying continuous-time dynamics, which can make the
learning process more difficult.

2.3.1 Collecting training data

We collect training data by sampling starting configurations s0 ∼ p(s0), executing random
actions at each timestep, and recording the resulting trajectories τ = (s0, a0, · · · , aT−2, sT−1)
of length T . We note that these trajectories are very different from the trajectories the agents
will end up executing when planning with this learned dynamics model and a given reward
function r(st, at) (Sec. 2.4), showing that model-based methods learn from off-policy data.

2.3.2 Data preprocessing

We slice the trajectories {τ} into training data inputs (st, at) and corresponding output labels
st+1− st. We then subtract the mean of the data and divide by the standard deviation of the
data to ensure the loss function weights the different parts of the state (e.g., positions and
velocities) equally, regardless of their original scale. We also add zero mean Gaussian noise
to the training data (inputs and outputs) to increase model robustness. The training data is
then stored in the dataset D.

2.3.3 Training the model

We train the dynamics model fθ(st, at) by minimizing the error

E(θ) =
1

|D|
∑

(st,at,st+1)∈D

1

2
‖(st+1 − st)− fθ(st, at)‖2 (2.1)

using stochastic gradient descent. While training on the training dataset D, we also calculate
the mean squared error in Eqn. 2.1 on a validation set Dval, composed of trajectories not
stored in the training dataset.

Although this error provides an estimate of how well the learned dynamics function
predicts next state, we would in fact like to know how well the model can predict further into
the future because we will ultimately use this model for longer-horizon control (Sec. 2.4). We
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therefore calculate H-step validation errors by propagating the learned dynamics function
forward H times to make multi-step open-loop predictions. For each given sequence of
true actions (at, . . . at+H−1) from Dval, we compare the corresponding ground-truth states
(st+1, . . . st+H) to the dynamics model’s multi-step state predictions (ŝt+1, . . . ŝt+H), calculated
as

E (H)
val =

1

Dval
∑
Dval

1

H

H∑
h=1

1

2
‖st+h − ŝt+h‖2 :

ŝt+h =

{
st h = 0

ŝt+h−1 + fθ(ŝt+h−1, at+h−1) h > 0
(2.2)

In this work, we do not use thisH-step validation during training; however, this is a meaningful
metric that we keep track of, since the controller (introduced in the next section) uses such
H-step predictions when performing action selection.

2.4 Using the Learned Model for Control
In order to use the learned model fθ(st, at), together with a reward function r(st, at) that
encodes some task, we formulate a model-based controller that is both computationally
tractable and robust to inaccuracies in the learned dynamics model. We first optimize
the sequence of actions A

(H)
t = (at, · · · , at+H−1) over a finite horizon H, using the learned

dynamics model to predict future states:

A
(H)
t = arg max

A
(H)
t

t+H−1∑
t′=t

r(ŝt′ , at′) :

ŝt = st, ŝt′+1 = ŝt′ + fθ(ŝt′ , at′). (2.3)

Calculating the exact optimum of Eqn. 2.3 is difficult due to the dynamics and reward
functions being nonlinear, but many techniques exist for obtaining approximate solutions to
finite-horizon control problems that are sufficient for succeeding at the desired task. In this
work, we use a simple random-sampling shooting method (Rao 2009) in which K candidate
action sequences are randomly generated, the corresponding state sequences are predicted
using the learned dynamics model, the rewards for all sequences are calculated, and the
candidate action sequence with the highest expected cumulative reward is chosen. Rather
than have the policy execute this action sequence in open-loop, we use model predictive
control (MPC): the policy executes only the first action at, receives updated state information
st+1, and recalculates the optimal action sequence at the next time step. Note that for
higher-dimensional action spaces and longer horizons, random sampling with MPC may be
insufficient, and investigating other methods (W. Li and E. Todorov 2004) in future work
could improve performance.
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Algorithm 1 Model-based RL with MPC Controller
1: gather dataset Drand of random trajectories
2: initialize empty dataset Drl

3: randomly initialize fθ
4: for iter=1 to max_iter do
5: train fθ(s, a) via supervised learning (Eqn. 2.1) on mixture of Drand and Drl

6: for t = 1 to T do
7: get agent’s current state st
8: use fθ to select action sequence A

(H)
t by optimizing Eqn. 2.3

9: execute first action at from selected action sequence A
(H)
t

10: add (st, at) to Drl

11: end for
12: end for

Note that this combination of predictive dynamics model plus controller is beneficial in
that the model is trained only once, but by simply changing the reward function, we can
accomplish a variety of goals at run-time, without a need for live task-specific retraining.

To improve the performance of our model-based learning algorithm, we gather additional
on-policy data by alternating between gathering data with the current model and retraining
the model using the aggregated data. This on-policy data aggregation (i.e., reinforcement
learning) improves performance by mitigating the mismatch between the data’s state-action
distribution and the model-based controller’s distribution (Ross, G. J. Gordon, and D. Bagnell
2011). Alg. 1 and Fig. 2.3 provide an overview of our model-based reinforcement learning
algorithm.

Figure 2.3: Illustration of Algorithm 1. On the first iteration,
random actions are performed and used to initialize Drand.
On all following iterations, this iterative procedure is used
to train the dynamics model using the data in the datasets
Drand and Drl, run the MPC controller using the learned
model for action selection, aggregate collected data into Drl,
and retrain the model on updated data.

First, random trajectories are col-
lected and added to dataset Drand,
which is used to train fθ by perform-
ing gradient descent on the objective in
Eqn. 2.1. Then, the model-based MPC
controller (Sec. 2.4) gathers T new on-
policy datapoints and adds these data-
points to a separate dataset Drl. The
dynamics function fθ is then retrained
using data from both Drand and Drl.
Note that during retraining, the neu-
ral network dynamics function’s weights
are warm-started with the weights from
the previous iteration. The algorithm
continues alternating between training
the model and gathering additional data
until a predefined maximum number of
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iterations is reached. We evaluate design decisions related to data aggregation in experiments
below.

2.5 Model-based RL Results in Simulation
For this set of experiments, we evaluated our model-based RL approach (Alg. 1) on simulated
agents (Fig. 2.4) in the MuJoCo (Emanuel Todorov, Erez, and Tassa 2012a) physics engine.
The agents we used were swimmer (S ∈ R16,A ∈ R2), hopper (S ∈ R17,A ∈ R3), half-cheetah
(S ∈ R23,A ∈ R6), and ant (S ∈ R41,A ∈ R8). The code to run these experiments and
reproduce these results, as well as videos of all the experiments, are released online2.

(a) Swimmer (b) Cheetah (c) Ant (d) Hopper

Figure 2.4: Simulated MuJoCo benchmark systems used in these experiments.

2.5.1 Experimental Details and Hyperparameters

In this section, we detail the relevant parameter values and implementation details of our
model-based approach. In the tables of parameters listed below, F represents the task of
moving forward and TF represents the task of trajectory following.

2.5.1.1 Collecting the initial dataset Drand

We populated this initial dataset with rollouts that resulted from the execution of random
actions at ∼ Uniform[−1,1]. Each rollout started at some initial state s0, but to help with
further exploration of the state space, we added noise to this starting state. For all agents,
we added noise ∼ N (0, 0.001) to the spos

0 and svel
0 elements of the state. The only exception

to this starting state noise was for the swimmer on the task of trajectory following. To allow
enough exploration of the state space to be able to execute arbitrary trajectories in the future,
we found that we had to add more noise to the “heading” element of the swimmer state: We
swept this value across the full range of possible headings by adding noise ∼ Uniform(−π, π).
Tables 2.1 and 2.2 below list the number of rollouts and length of each rollout that we
collected during this initial random rollout collection, for each domain and task.

2https://sites.google.com/view/mbmf

https://sites.google.com/view/mbmf


CHAPTER 2. MBRL: LEARNING NEURAL NETWORK MODELS FOR CONTROL15

Table 2.1: Rollouts in initial random dataset: Trajectory following

Swimmer TF Half-Cheetah TF Ant TF
Number of rollouts 200 200 700
Length of each rollout 500 1000 1000

Table 2.2: Rollouts in initial random dataset: Moving forward

Swimmer F Half-Cheetah F Hopper F Ant F
Number of rollouts 25 10 20 700
Length of each rollout 333 1000 200 1000

2.5.1.2 Model Training and Control

For all agents, the neural network architecture for the dynamics function consists of two
hidden layers, each of dimension 500, with ReLU activations. We trained this dynamics
function using the Adam optimizer (Kingma and J. Ba 2014) with learning rate 0.001 and
batch size 512. Tables 2.3 and 2.4 below list the amount of training and aggregation performed
during the iterative training procedure.

Table 2.3: Training parameters: Trajectory following

Swimmer TF Half-Cheetah TF Ant TF
Training epochs

per aggregation iter
70 40 60

Aggregation iters 0 0 0

Table 2.4: Training parameters: Moving forward

Swimmer F Half-Cheetah F Hopper F Ant F
Training epochs

per aggregation iter
30 60 40 20

Aggregation iters 6 7 5 *N/A
Rollouts added

per aggregation iter
9 9 10 *N/A

Length of
aggregated rollouts

333 1000 **N/A *N/A

Drand-Drl split
for retraining

10-90 10-90 10-90 *N/A

*N/A : no aggregation performed

**N/A : rollout length varied due to agent’s termination conditions

Prior to training, both the inputs and outputs in the dataset were pre-processed to have
mean 0 and standard deviation 1. Furthermore, we normalize all environments such that all
actions fall in the range [−1,1]. Shown in tables 2.5 and 2.6 below are additional parameters



CHAPTER 2. MBRL: LEARNING NEURAL NETWORK MODELS FOR CONTROL16

for these tasks and domains, such as the duration of each environment timestep, the planning
horizon for the MPC controller, and the number of action sequences sampled by the controller
for each action selection step.

Table 2.5: Other parameters: Trajectory following

Swimmer TF Half-Cheetah TF Ant TF
Timestep dt 0.15s 0.01s 0.02s
Controller horizon H 5 10 15
Number actions

sampled K
5000 1000 7000

Table 2.6: Other parameters: Moving forward

Swimmer F Half-Cheetah F Hopper F Ant F
Timestep dt 0.15s 0.01s 0.02s 0.02s
Controller
horizon H

20 20 40 5

Num. actions
sampled K

5000 1000 1000 15000

2.5.1.3 Reward Function for Trajectory Following

As described above, the MPC controller is tasked with performing action selection at each
time step. To assign a notion of value to a given sequence of actions, for the task for following
arbitrarily given trajectories, we use the reward functions shown below.

We formulate this reward function to allow agents to follow trajectories, where the desired
trajectory is specified as sparse and lower-dimensional guidance in the form of desired (x, y)
center of mass positions. To do this, we first convert the set of desired waypoints into a set
of line segments for the agent to travel along. The reward function shown in Alg. 2 computes
the reward value R of the given action sequence A, and it does so by penalizing perpendicular
distance away from the desired trajectory while encouraging forward progress along the
trajectory. Note that this is only one example of a valid reward function for trajectory
following, so the reader is free to add other factors to the reward function as desired, such
as penalizing for jumping too high or for falling down. We note that the standard MuJoCo
reward functions have been similarly tuned to include components such as terminal conditions
(e.g., agent falling) and survival rewards.

2.5.2 Evaluating Design Decisions

We first evaluate various design decisions for model-based reinforcement learning with neural
networks using empirical evaluations with our model-based approach (Alg. 1). We explored
these design decisions for the task of running forward as quickly as possible with the swimmer
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Algorithm 2 Reward function for Trajectory Following
1: input: current true state st,

sequence of actions A={a0, a1, . . . , aH−1},
set of desired line segments to follow L={L0, . . . , Lx}

2: reward R← 0
3: for each action at in A do
4: get predicted next state ŝt+1 = f̂θ(ŝt, at)
5: Lc ← closest line segment in L to the point (ŝx

t+1, ŝ
y
t+1)

6: proj‖t , proj⊥t ← project point (ŝx
t+1, ŝ

y
t+1) onto Lc

7: R← R− α(proj⊥t ) + β(proj‖t − proj‖t−1)
8: end for
9: return: reward R

and half-cheetah agents; the other agents also exhibited similar trends. After each design
decision was evaluated, we used the best outcome of that evaluation for the remainder of the
evaluations.

(A) Training steps. Fig. 4.5a shows varying numbers of gradient descent steps taken
during each iteration of model learning. As expected, training for too few epochs negatively
affects learning performance, with 20 epochs causing swimmer to reach only half of the other
experiments’ performance.

(B) Dataset aggregation. Fig. 4.5b shows varying amounts of (initial) random data
versus (aggregated) on-policy data used within each mini-batch of stochastic gradient descent
when training the learned dynamics function. We see that training with at least some
aggregated on-policy rollouts significantly improves performance, revealing the benefits of
improving learned models with reinforcement learning. However, our method still works well
with even just 30% of each mini-batch coming from on-policy rollouts, showing the advantage
of model-based reinforcement learning being off-policy.

(C) Controller. Fig. 4.5c shows the effect of varying the horizon H and the number of
random samples K used at each time step by the model-based controller. We see that too
short of a horizon is harmful for performance, perhaps due to greedy behavior and entry into
unrecoverable states. Additionally, the model-based controller for half-cheetah shows worse
performance for longer horizons. This is further revealed below in Fig. 2.6, which illustrates a
single 100-step validation rollout (as explained in Eqn. 2.2). We see here that the open-loop
predictions for certain state elements, such as the center of mass x position, diverge from
ground truth. Thus, a large H leads to the use of an inaccurate model for making predictions,
which is detrimental to task performance. Finally, with regards to the number of randomly
sampled trajectories evaluated, we expect this value needing to be higher for systems with
higher-dimensional action spaces.

(D) Number of initial random trajectories. Fig. 4.5d shows varying numbers of
random trajectories used to initialize our model-based approach. We see that although a



CHAPTER 2. MBRL: LEARNING NEURAL NETWORK MODELS FOR CONTROL18

Figure 2.5: Analysis of design decisions for our model-based reinforcement learning approach. (a) Training
steps, (b) dataset training split, (c) horizon and number of actions sampled, (d) initial random trajectories.
Training for more epochs, leveraging on-policy data, planning with medium-length horizons and many action
samples were the best design choices, while data aggregation caused the number of initial trajectories that
have little effect.

Figure 2.6: We compare a true rollout (solid line) to its corresponding multi-step prediction from the learned
model (dotted line) on the half-cheetah. Although we learn to predict certain elements of the state space
well, note the eventual divergence of the open-loop predictions over time. Even so, the MPC controller can
successfully use the model to control an agent by performing short-horizon planning.
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higher amount of initial training data leads to higher initial performance, data aggregation
allows low-data initialization runs to reach a high final performance level, highlighting how
on-policy data from reinforcement learning improves sample efficiency.

2.5.3 Trajectory Following Results with the MPC Controller

For the task of trajectory following, we evaluated our model-based reinforcement learning
approach on the swimmer, ant, and half-cheetah environments (Fig. 2.7). Note that for these
tasks, the dynamics model was trained using only random initial trajectories and was trained
only once per agent, but the learned model was then used at run-time to accomplish different
tasks. These results show that the models learned using our method are general enough to
accommodate new tasks at test time, including tasks that are substantially more complex
than anything that the robot did during training, such as following a curved path or making
a U-turn. Furthermore, we show that even with the use of such a naïve random-sampling
controller, the learned dynamics model is powerful enough to perform a variety of tasks.

The reward function we use requires the robot to track the desired x/y center of mass
positions. This reward consists of one term to penalize the perpendicular distance away from
the desired trajectory, and a second term to encourage forward movement in the direction of
the desired trajectory. The reward function does not tell the robot anything about how the
limbs should be moved to accomplish the desired center of mass trajectory. The model-based
algorithm must discover a suitable gait entirely on its own. Details of this reward are included
in Sec. 2.7.1.4.

(a) Swimmer, left (b) Swimmer, right (c) Ant, left (d) Ant, right (e) Ant, u-turn

Figure 2.7: Trajectory following results for the swimmer and ant, with blue dots representing the center-of-
mass positions that were specified as the desired trajectory to follow. For each of these agents, we train the
dynamics model only once on random trajectories, but can then use it at run-time to execute various desired
trajectories.

2.6 Model-free Fine-tuning
The model-based reinforcement learning algorithm described in the previous sections was
able to learn complex gaits using very small numbers of samples, when compared to purely
model-free learners. However, on benchmark tasks, its final performance still lags behind
purely model-free algorithms. To achieve the best final results, we can combine the sample
efficiency of model-based learning with the high task-specific performance of model-free
learning by using the model-based learner to initialize a model-free learner. We propose
a simple but effective method for combining our model-based approach with off-the-shelf,
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model-free methods by training a policy to mimic the learned model-based controller, and
then using the resulting imitation policy as the initialization for a model-free reinforcement
learning algorithm.

2.6.1 Initializing the Model-free Learner

We first gather example trajectories with the MPC controller detailed in Sec. 2.4, which
uses the learned dynamics function f̂θ that was trained using our model-based reinforcement
learning algorithm (Alg. 1). We collect the trajectories into a dataset D∗, and we then train a
neural network policy πφ(at|st) to match these “expert” trajectories in D∗. We parameterize
πφ as a conditionally Gaussian policy πφ(at|st) ∼ N (µφ(st),Σπφ), in which the mean is
parameterized by a neural network µφ(s), and the covariance Σπφ is a fixed matrix. This
policy’s parameters are trained using the behavioral cloning objective

min
φ

1

2

∑
(st,at)∈D∗

||at − µφ(st)||22, (2.4)

which we optimize using stochastic gradient descent. To achieve desired performance and
address the data distribution problem, we applied DAGGER (Ross, G. J. Gordon, and
D. Bagnell 2011): This consisted of iterations of training the policy, performing on-policy
rollouts, querying the “expert” MPC controller for “true” action labels for those visited states,
and then retraining the policy.

2.6.2 Model-free RL

After initialization, we can use the policy πφ, which was trained on data generated by the
learned model-based controller, as an initial policy for a model-free reinforcement learning
algorithm. Specifically, we use trust region policy optimization (TRPO) (J. Schulman et al.
2015); such policy gradient algorithms are a good choice for model-free fine-tuning since they
do not require any critic or value function for initialization (Grondman et al. 2012), though
our method could also be combined with other model-free RL algorithms.

TRPO is also a common choice for the benchmark tasks we consider, and it provides
us with a natural way to compare purely model-free learning with our model-based pre-
initialization approach. Initializing TRPO with the learned expert policy πφ is as simple as
using πφ as the initial policy for TRPO, instead of a standard randomly initialized policy.
Although this approach of combining model-based and model-free methods is extremely
simple, we demonstrate the efficacy of this approach in our experiments.

2.7 Experimental Mb-Mf Results
We now compare our pure model-based approach with a pure model-free method on standard
benchmark locomotion tasks, which require a simulated robot (swimmer, half-cheetah, hopper,
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ant) to learn the fastest forward-moving gait possible. The model-free approach we compare
with is the rllab3 implementation of trust region policy optimization (TRPO) (J. Schulman
et al. 2015), which is know to be successful on these tasks. The code and videos of these
experiments are available online4.

2.7.1 Experimental Details and Hyperparameters

2.7.1.1 The Model-based Component

For the model-based results (which are later used to initialize the model-free policy), we use
the parameters listed above in Sec. 2.5.1 for the “forward” tasks of all environments. After
we train the model, we collect rollouts from the execution of the MPC controller. At each
time step during the collection of these rollouts, noise ∼ N (0, 0.005) is added to the optimal
action before execution in order to promote exploration while still achieving good behavior.

2.7.1.2 The Imitation Learning Component

After we collect rollouts from the model-based method, we then train a Gaussian neural
network policy to imitate these saved rollouts. We represent the mean of this policy as a
neural network composed of tanh nonlinearities and two hidden layers, each of dimension 64.
For the imitation learning component, we train this policy using the Adam optimizer (Kingma
and J. Ba 2014) with learning rate 0.0001 and batchsize 500. As mentioned in the methods
above, supervised learning alone was not enough for this policy, and we had to use the
DAGGER algorithm to iteratively improve the behavior cloning results. Table 2.7 below lists
relevant parameters for this imitation learning portion of our approach.

Table 2.7: Behavior cloning parameters

Swimmer Half-Cheetah Hopper Ant
Number of saved MPC rollouts 30 30 60 30
Avg rewards of saved MPC rollouts 30 600 100 110
Number of DAGGER iters 3 3 5 5
Training epochs per DAGGER iter 70 300 200 200
Rollouts aggregated per DAGGER iter 5 2 5 5
Avg rewards of resulting imitation policy 40 500 110 150

2.7.1.3 The Model-free Component

After training the policy to imitate the MPC rollouts, we initialize the model-free TRPO
algorithm with that policy and then continue to train it. In addition to training the mean
network of that policy initialization using the imitation learning procedure above, the standard

3https://github.com/rll/rllab
4https://sites.google.com/view/mbmf

https://github.com/rll/rllab
https://sites.google.com/view/mbmf
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deviation (std) is another parameter of importance. Optimizing this std parameter according
to the imitation learning loss function results in worse TRPO performance than arbitrarily
using a larger std, perhaps because a higher std on the initial policy leads to more exploration
and thus is more beneficial to TRPO. Therefore, we train our policy’s mean network using
the standard imitation learning loss function, but we manually select the std to be 1.0.

As mentioned above, we use rllab’s (Duan, X. Chen, et al. 2016) implementation of
the TRPO algorithm for the model-free RL algorithm. We run TRPO with the following
parameters for all agents: batch size 50000, base epsilon 10−5, discount factor 0.995, and step
size 0.5.

2.7.1.4 The Reward Functions

Table 2.8 below lists the standard reward functions r(st, at) provided online for the benchmark
tasks of moving forward with Mujoco agents, which we use in our experiments. As before,
the reward Rk corresponding to a given action sequence Ak of length H is calculated as

Rk =
H−1∑
t=0

r(st, a
k
t ), with r as defined below.

Table 2.8: Standard Mujoco reward functions for moving forward

Reward r

Swimmer sxvelt+1 − 0.5‖at
50
‖22

Half-Cheetah sxvelt+1 − 0.05‖at
1
‖22

Hopper sxvelt+1 + 1− 0.005‖ at
200
‖22

Ant sxvelt+1 + 0.5− 0.005‖ at
150
‖22

2.7.2 Model-free Fine-tuning Results

To compare model-based and model-free results on benchmark tasks, we used the OpenAI
gym (Brockman et al. 2016) standard reward functions shown in the previous section. These
reward functions primarily reward speed, and are especially difficult for a model-based method
due to the myopic nature of the short-horizon MPC that we employ for action selection;
therefore, the results of our model-based algorithm on all following plots are lower than would
be if we designed our own reward function (for instance, a more dense reward signal such as
a straight-line trajectory-following reward function).

Even with these simplistic standard reward functions, our method can very quickly learn a
gait that makes forward progress. The swimmer, for example, can quickly achieve qualitatively
good moving forward behavior at 20× faster than the model-free method. However, the final
achieved reward attained by the pure model-based variant of our approach does not match
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Figure 2.8: Plots show the mean and standard deviation over multiple runs and compare our model-based
approach, a model-free approach (TRPO, (J. Schulman et al. 2015)), and our hybrid model-based plus
model-free approach. Our combined approach shows a 3− 5× improvement in sample efficiency for all shown
agents. Note that the x-axis uses a logarithmic scale.

the final performance of state-of-the-art model-free learners, due to an imperfect learned
model and the previously discussed sources of suboptimality. When we integrate model-free
finetuning (Fig. 2.8), however, the asymptotic performance improves to the level of purely
model-free learning. In the case of the hopper, our pure model-based approach learns to
perform a double or triple hop very quickly in 1× 104 steps, but performance plateaus as
the reward signal of just forward velocity is not enough for the limited-horizon controller
to keep the hopper upright for longer periods of time. Our hybrid Mb-Mf approach takes
these quickly-learned gaits and performs model-free fine-tuning in order to achieve high task
rewards, achieving 3− 5× sample efficiency gains over pure model-free methods for all agents.

2.8 Discussion
In this chapter, we presented a model-based RL algorithm that is able to learn neural network
dynamics functions for simulated locomotion tasks using a small number of samples. We
described a number of important design decisions for effectively and efficiently training
neural network dynamics models, and we presented experiments that evaluated these design
parameters. Our method quickly discovered a dynamics model that led to an effective gait;
that model could be applied to different trajectory following tasks at run-time, or the initial
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gait could then be fine-tuned with model-free learning to achieve high task rewards on
benchmark Mujoco agents.

In addition to looking at the difference in sample complexity between our hybrid Mb-Mf
approach and a pure model-free approach, there are also takeaways from the model-based
approach alone. Our model-based algorithm cannot always reach extremely high rewards
on its own, but it offers practical use by allowing quick and successful discovery of complex
and realistic gaits. In general, our model-based approach can very quickly become competent
at a task, whereas model-free approaches can very slowly become experts. For example,
when we have a small legged robot with unknown dynamics and we want it to accomplish
tasks in the real-world (such as exploration, construction, search and rescue, etc.), achieving
reliable walking gaits that can follow any desired trajectory is a superior skill to that of just
running straight forward as fast as possible. Additionally, consider the ant: A model-free
approach requires 5 × 106 points to achieve a steady walking forward gait, but using just
14% of those data points, our model-based approach can allow for travel in any direction and
along arbitrary desired trajectories. Training such a dynamics model only once and applying
it to various tasks is compelling; especially when looking toward application to real robots,
this sample efficiency can bring these methods out of the simulation world and into the realm
of feasibility.
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Chapter 3

Scaling Up MBRL for Locomotion

Figure 3.1: Thesis outline, with
the current chapter indicated by
the last colored arrow.

The work in this chapter extends the model-based learning
techniques introduced in the previous chapter along the axis
of usefulness and applicability, by training image-conditioned
dynamics models and enabling real-world robotic locomotion
of legged millirobots on varying terrains.

Millirobots are a promising robotic platform for many ap-
plications due to their small size and low manufacturing costs.
Legged millirobots, in particular, can provide increased mobil-
ity in complex environments and improved scaling of obstacles.
However, controlling these small, highly dynamic, and underac-
tuated legged systems is difficult. Hand-engineered controllers can sometimes control these
legged millirobots, but they have difficulties with dynamic maneuvers and complex terrains.
In this chapter, we present an approach for controlling a real-world legged millirobot that is
based on learned neural network models. Using less than 17 minutes of data, our method
can learn a predictive model of the robot’s dynamics that can enable effective gaits to be
synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore,
by leveraging expressive, high-capacity neural network models, our approach allows for these
predictions to be directly conditioned on camera images, endowing the robot with the ability
to predict how different terrains might affect its dynamics. This enables sample-efficient and
effective learning for locomotion of a dynamic legged millirobot on various terrains, including
gravel, turf, carpet, and styrofoam. Videos of experiments are available online1.

3.1 Introduction
Legged millirobots are an effective platform for applications, such as exploration, mapping,
and search and rescue, because their small size and mobility allows them to navigate through
complex, confined, and hard-to-reach environments that are often inaccessible to aerial vehicles

1https://sites.google.com/view/imageconddyn

https://sites.google.com/view/imageconddyn
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and untraversable by wheeled robots. Millirobots also provide additional benefits in the form
of low power consumption and low manufacturing costs, which enables scaling them to large
teams that can accomplish more complex tasks. This superior mobility, accessibility, and
scalability makes legged millirobots some of the most mission-capable small robots available.
However, the same properties that enable these systems to traverse complex environments
are precisely what make them difficult to control.

Modeling the hybrid dynamics of underactuated legged millirobots from first principles
is exceedingly difficult due to complicated ground contact physics that arise while moving
dynamically on complex terrains. Furthermore, cheap and rapid manufacturing techniques
cause each of these robots to exhibit varying dynamics. Due to these modeling challenges,
many locomotion strategies for such systems are hand-engineered and heuristic. These
manually designed controllers impose simplifying assumptions, which not only constrain
the overall capabilities of these platforms, but also impose a heavy burden on the engineer.
Additionally, and perhaps most importantly, they preclude the opportunity for adapting and
improving over time.

Figure 3.2: VelociRoACH: our small, mobile,
highly dynamic, and bio-inspired hexapedal mil-
lirobot, shown with a camera mounted for terrain
imaging.

In this paper, we explore how learning can be
used to automatically acquire locomotion strate-
gies in diverse environments for small, low-cost,
and highly dynamic legged robots. Choosing an
appropriate learning algorithm requires consider-
ation of a number of factors. First, the learned
model needs to be expressive enough to cope with
the highly dynamic and nonlinear nature of legged
millirobots, as well as with high-dimensional sen-
sory observations such as images. Second, the
algorithm must allow the robot to learn quickly
from modest amounts of data, so as to make it
a practical algorithm for real-world application.
Third, the learned general-purpose models must
be able to be deployed on a wide range of naviga-
tional tasks in a diverse set of environments, with
minimal human supervision.

The primary contribution of the work work in this chapter is an approach for controlling
dynamic legged millirobots that learns an expressive and high-dimensional image-conditioned
neural network dynamics model, which is then combined with a model predictive controller
(MPC) to follow specified paths. Our sample efficient learning-based approach uses less than
17 minutes of real-world data to learn to follow desired paths in a desired environment, and
we empirically show that it outperforms a conventional differential drive control strategy
for highly dynamic maneuvers. Our method also enables adaptation to diverse terrains by
conditioning its dynamics predictions on its own observed images, allowing it to predict how
terrain features such as gravel or turf will alter the system’s response. The work in this
chapter leverages and builds upon recent advances in learning to achieve a high-performing
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and sample efficient approach for controlling dynamic legged millirobots on various terrains
in the real world.

3.2 Related Work
Controlling Legged Millirobots: Extensive prior work on controlling legged robots
includes larger legged robots such as Anymal (Hutter et al. 2016), ASIMO (Sakagami et al.
2002), and Big Dog (Raibert et al. 2008). These systems can achieve successful locomotion,
but they have multiple degrees of freedom per leg and a relatively slow stride frequency
that allows for more sophisticated control strategies of planned foot placement (Byl 2008;
Kolter, Abbeel, and Ng 2008; Kalakrishnan et al. 2010; Zucker et al. 2011). Other prior work
includes systems such as RHex (Altendorfer, N. Moore, et al. 2001), where each leg has an
independent actuator and can thus execute stable alternating tripod gaits to achieve desired
motion. Unlike these systems, however, we are interested in dynamic legged millirobots that
are underactuated; these descriptors imply that we cannot move each leg independently, that
we have neither the ability nor time to plan specific foot placement, and that we cannot strive
for static or quasi-static gaits where stability and well-behaved dynamics can be expected.
This realm of steering methods for dynamic running of underactuated legged millirobots
includes various methods (McClung III 2006; Zarrouk, Haldane, and Ronald S Fearing 2015),
such as actively changing leg kinematics (Clark et al. 2001; Kim, Clark, and Cutkosky
2006), modulating leg impedance (Hoover, Burden, et al. 2010), and executing roll oscillation
modulated turning (Haldane and Ronald S Fearing 2014). However, these approaches achieve
open-loop turning gaits, while we desire a closed-loop approach to precise path execution.
Other traditional methods for both control and modeling of legged systems make simplifying
assumptions, such as approximating a system as a spring loaded inverted pendulum (SLIP)
model (Komsuoglu, Sohn, et al. 2008; Komsuoglu, Majumdar, et al. 2014) or approximating
a system’s behavior with a differential drive control strategy. Although these approaches do
succeed in certain regimes (Altendorfer, Koditschek, and Holmes 2004), they fail when high
speeds or irregular environments lead to more complicated dynamics. In contrast, our neural
network learning-based approach can cope with complex dynamics, while also incorporating
high-dimensional environmental information in the form of images.

Gait Optimization: Instead of building on simplifying model assumptions to design
controllers, prior work has also explored various methods of automatic gait optimization (Da,
Hartley, and Grizzle 2017; Gay, Santos-Victor, and Ijspeert 2013). These methods include
stochastic gradient descent (Tedrake, T. W. Zhang, and Seung 2005), genetic algorithms (Cher-
nova and Veloso 2004), and Bayesian optimization (Calandra et al. 2014; Lizotte et al. 2007;
Tesch, Schneider, and Choset 2011) to reduce the time-consuming design process of manually
finding robust parameters. For instance, (Tedrake, T. W. Zhang, and Seung 2005) optimized
a control policy for bipedal walking online in less than 20 minutes on a simplified system with
6 joints, and (Gay, Santos-Victor, and Ijspeert 2013) learned model-free sensory feedback
controllers to supplement specified open-loop gaits. While these methods are sample efficient
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and can be applied to real systems, they have not yet been shown to work for high dimensional
systems or more complex systems, such as fast robots operating in highly dynamic regimes
on irregular surfaces with challenging contact dynamics.

Model-free Policy Learning: Rather than optimizing gaits, prior work in model-
free reinforcement learning algorithms has demonstrated the ability to instead learn these
behaviors from scratch. Work in this area, including Q-learning (Volodymyr Mnih, Koray
Kavukcuoglu, Silver, Rusu, et al. 2015; Oh et al. 2016), actor-critic methods (T. Lillicrap
et al. 2016; V. Mnih, Badia, et al. 2016), and policy gradients (J. Schulman et al. 2015), has
learned complex skills in high-dimensional state spaces, including skills for simulated robotic
locomotion tasks. However, the high sample complexity of such purely model-free algorithms
makes them difficult to use for learning in the real world, where sample collection is limited
by time and other physical constraints. Unlike these approaches, our model-based learning
method uses only minutes of experience to achieve generalizable real-world locomotion skills
that were not explicitly seen during training, and it further exemplifies the benefits in sample
complexity that arise from incorporating models with learning-based approaches.

Model Learning: Although the sample efficiency of model-based learning is appealing,
and although data-driven approaches can eliminate the need to impose restrictive assumptions
or approximations, the challenge lies in the difficulty of learning a good model. Relatively
simple function approximators such as time-varying linear models have been used to model
dynamics of systems (Lioutikov et al. 2014; Yip and Camarillo 2014), including our Ve-
lociRoACH (Buchan, Haldane, and Ronald S Fearing 2013) platform. However, these models
have not yet been shown to posses enough representational power (i.e., accuracy) to generalize
to complex locomotion tasks. Prior work has also investigated learning probabilistic dynamics
models (M. Deisenroth and C. Rasmussen 2011; Ko and Fox 2008), including Gaussian
process models for simulated legged robots (M. P. Deisenroth, Calandra, et al. 2012). While
these approaches can be sample efficient, it is intractable to scale them to higher dimensions,
as needed especially when incorporating rich sensory inputs such as image observations.
In contrast, our method employs expressive neural network dynamics models, which eas-
ily scale to high dimensional inputs. Other modeling approaches have leveraged smaller
neural networks for dynamics modeling, but they impose strict and potentially restrictive
structure to their formulation, such as designing separate modules to represent the various
segments of a stride (Crusea et al. 1998), approximating actuators as muscles and tuning
these parameters (Xiong, Worgotter, and Manoonpong 2014), or calculating equations of
motion and learning error terms on top of these specific models (Grandia, Pardo, and Buchli
2018). Instead, we demonstrate a sample efficient, expressive, and high-dimensional neural
network dynamics model that is free to learn without the imposition of an approximated
hand-specified structure.

Environment Adaptation: The dynamics of a robot depend not only on its own
configuration, but also on its environment. Prior methods generally categorize the problem of
adapting to diverse terrains into two stages: first, the terrain is recognized by a classifier trained
with human-specified labels (or, less often, using unsupervised learning methods (Leffler
2009)), and second, the gait is adapted to the terrain. This general approach has been
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used for autonomous vehicles (Thrun, Montemerlo, et al. 2006; Leffler 2009), larger legged
robots (Kolter, Abbeel, and Ng 2008; Kalakrishnan et al. 2010; Zucker et al. 2011; Xiong,
Worgotter, and Manoonpong 2014; Hoepflinger et al. 2010), and for legged millirobots (Wu
et al. 2016; Bermudez et al. 2012). In contrast, our method does not require any human labels
at run time, and it adapts to terrains based entirely on autonomous exploration: the dynamics
model is simply conditioned on image observations of the terrain, and it automatically learns
to recognize the visual cues of terrain features that affect the robot’s dynamics.

3.3 Image-Conditioned Models for Capturing the
Environment

This work proposes an automated method of acquiring locomotion strategies for small, low-
cost, dynamic legged millirobots. In this section, we build on the model-based RL framework
from the previous chapter to learn a neural network dynamics model, use the model as part
of a model predictive controller, and crucially, enable control on varying real-world terrains
by extending the model into an image-conditioned model using features from a pre-trained
convolutional neural network.

3.3.1 Overview

Figure 3.3: Image-conditioned model-based learning
for locomotion control: A closed-loop MPC controller
performs action selection by using predictions from the
learned dynamics model, which is conditioned on the
current state st, action at, and image It.

We provide an overview of our approach in
Fig. 3.3. Note that this model-based RL
framework is also the one shown in Fig. 2.3
of the previous chapter, and we will now
develop the dynamics model component.

Since we require a parameterization of
the dynamics model that can cope with high-
dimensional state and action spaces and the
complex dynamics of legged millirobots, we
represent the dynamics function fθ(st, at) as
a multilayer neural network, parameterized
by θ. As before, this function outputs the
predicted change in state that occurs as a
result of executing action at from state st,
over the time step duration of ∆t. Thus,
the predicted next state is given by: ŝt+1 =
st + fθ(st, at). While choosing too small of a
∆t leads to too small of a state difference to allow meaningful learning, increasing the ∆t too
much can also make the learning process more difficult because it increases the complexity
of the underlying continuous-time dynamics. As described in Algorithm 1 from Section 2.4,
initial training data is collected by placing the robot in arbitrary start states and executing
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random actions at each time step. Each resulting trajectory τ = (s0, a0, · · · , sT−2, aT−2, sT−1)
of length T is then sliced into training data inputs (st, at) and corresponding output labels
(st+1 − st). We preprocess the training data by normalizing it to be mean 0 and standard
deviation 1, which ensures equal weighting of different state elements, regardless of their
magnitudes. We then train the dynamics model on data from the training dataset D, using
stochastic gradient descent on Equation 2.1.

We formulate a model-based controller which uses the learned model fθ(st, at) together
with a cost function c(st, at) that encodes some task. Many methods could be used to perform
this action selection, and we use a random-sampling shooting method (Rao 2009) which we
introduced in the previous chapter, in Section 2.4. At each time step t, we approximate the
optimization problem stated in Equation 2.3 by randomly generating K candidate action
sequences consisting of H actions each, using the learned dynamics model to predict the
resulting states, and then using the cost function to select the action sequence with the lowest
cost.

The experiments in this work consist of following arbitrary desired waypoints; for this
task of path following, we formulate and use the following cost function:

c(st, at) = fp ∗ p+ fh ∗ h+ ff ∗ f, (3.1)

where the parameter fp penalizes perpendicular distance p away from the desired path,
parameter ff encourages forward progress f along the path, and parameter fh maintains
the heading h of the system toward the desired direction. Rather than executing the entire
sequence of selected optimal actions, we use model predictive control (MPC) to execute only
the first action at, and we then replan at the next time step, given updated state information.

As currently described, our model-based RL approach can successfully follow arbitrary
paths when trained and tested on a single terrain. However, in order to traverse complex
and varied terrains, it is necessary to adjust the dynamics to the terrain conditions; we will
develop such a model in the following section.

3.3.2 Image-Conditioned Dynamics Model

Taking terrain conditions into account is critical for a legged robot to traverse complex and
varied terrains in the real world; thus, the model must take environmental information into
account, and use that information to correctly be able to predict the future. One approach
to succeeding in multiple environments would be to train a separate dynamics model for each
terrain. However, in addition to requiring many separate models, this would lead to models
that would likely generalize poorly. Furthermore, this approach would require a person to
label the training data, as well as each run at test-time, with which terrain the robot is in.
All of these aspects are undesirable for an autonomous learning system.

Instead, we propose a simple and highly effective method for incorporating terrain
information, using only observations from a monocular color camera mounted on the robotic
platform. We formulate an image-conditioned dynamics model fθ(st, at, It) that takes as
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Figure 3.4: Our image-conditioned neural network dynamics model. The model takes as input the current
state st, action at, and image It. The image is passed through the convolutional layers of AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) pre-trained on ImageNet (Deng et al. 2009), which is then flattened and projected
into a lower dimension through multiplication with a random fixed matrix to obtain et. The image and
concatenated state-action vectors are passed through their own fully connected layers, fused via an outer
product, flattened, and passed through more fully connected layers to obtain a predicted state difference ∆ŝt.

input not only the current robot state st and action at, but also the current image observation
It. The model (Fig. 3.4) passes image It through the first eight layers of AlexNet (Krizhevsky,
Sutskever, and Hinton 2012). The resulting activations are flattened into a vector, and this
vector is then multiplied by a fixed random matrix in order to produce a lower dimensional
feature vector et. The concatenated state-action vector [st; at] is passed through a hidden
layer and combined with et through an outer product. As opposed to a straightforward
concatenation of [st; at; et], this outer product allows for higher-order integration of terrain
information terms with the state and action information terms. This combined layer is
then passed through another hidden layer and output layer to produce a prediction of state
difference ∆ŝt.

Training the entire image-conditioned neural network dynamics model with only minutes
of data—corresponding to tens of thousands of datapoints—and in only a few environments
would result in catastrophic overfitting. Thus, to perform feature extraction on the images,
we use the AlexNet (Krizhevsky, Sutskever, and Hinton 2012) layer weights optimized from
training on the task of image classification on the ImageNet (Deng et al. 2009) dataset,
which contains 15 million diverse images. Although gathering and labelling this large image
dataset was a significant effort, we note that such image datasets are ubiquitous and their
learned features have been shown to transfer well to other tasks (Razavian et al. 2014). By
using these pre-trained and transferable features, the image-conditioned dynamics model
is sample-efficient and can automatically adapt to different terrains without any manual
labelling of terrain information.

We show in our experiments that this image-conditioned dynamics model outperforms
a naïvely trained dynamics model that is trained simply on an aggregation of all the data.
Furthermore, the performance of the image-conditioned dynamics model is comparable, on
each terrain, to individual dynamics models that are specifically trained (and tested) on that
terrain.
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Figure 3.5: Over 15 teleoperated trials performed on rough terrain, a legged robot succeeded in navigating
through the terrain 90% of the time, whereas a wheeled robot of comparable size succeeded only 30% of the
time.

3.4 Real-World Results of MBRL for Locomotion of
Legged Millirobots

The goal of our experimental evaluation is to study how well our model-based learning
algorithm can control a real-world VelociRoACH to follow user-defined paths on various
surfaces. Videos of experiments are available online2.

3.4.1 System Description

The VelociRoACH (Figure 3.2) is a minimally actuated, small, legged, and highly dynamic
palm-sized robotic platform. It is 10 cm in length without the shell, can move up to 10-
20 body-lengths per second, and uses two motors to control all six legs. Compared to
wheeled/treaded robots of similar size (Fig. 3.5), this legged system is able to successfully
navigate over more complex terrains. Several design features on the VelociRoACH aim
to attain the dynamic performance of its biological inspiration, the American cockroach
Periplaneta americana. Details of design techniques and parameter selection can be found in
the original VelociRoACH paper (Haldane, Peterson, et al. 2013), and details of the newer
modular and more powerful transmission shown in Figure 3.6 can be found in Carlos Casarez’s
dissertation (Casarez 2018).

The VelociRoACH is constructed through a rapid manufacturing process known as smart
composite microstructure (SCM) process (Hoover and Ronald S Fearing 2008). This process
allows for the creation of lightweight linkages, enabling the rapid realization of fully functional
prototypes of folded flexure-based mobile millirobots. The general SCM process can be
thought of as creating flexures by embedding a layer of flexible material in between layers of
cut-out rigid material. The VelociRoACH’s robot chassis can be constructed for just $2, and
this rigid structural core houses the battery, two motors, transmission, microcontroller, and
all sensors. The core also provides mechanical grounding points for the kinematic linkages,
which couple each of the two motors to three legs in order to reduce the number of required
actuators. The custom transmission independently drives the left and right sets of legs, and

2https://sites.google.com/view/imageconddyn

https://sites.google.com/view/imageconddyn
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Figure 3.6: (a-d) Conceptual saggital plane drawing of robot leg positions as a function of crank angle, and (e)
isometric solid model view of the leg transmission model. Both of these images are borrowed with permission
from (Casarez 2018).

each transmission side is driven by a 3.6 ohm DC motor with a 21.3:1 gear reduction. As
shown in Fig. 3.6, the fore and aft legs are constrained to be 180◦ out of phase from the
middle leg. Similar to the design of the X2-VelociRoACH (Haldane and Ronald S Fearing
2015), this VelociRoACH uses two connected output cranks per side to transmit forces at
each leg contact.

The VelociRoACH carries an ImageProc embedded circuit board3, which includes a 40
MHz Microchip dsPIC33F microprocessor, a six axis inertial measurement unit (IMU), an
802.15.4 wireless radio (XBee), and motor control circuitry. We added a 14-bit magnetic rotary
encoders to the motors on each side of the robot to monitor absolute position. Additional
sensory information includes battery voltage and back-EMF signals from the motors.

The onboard microcontroller runs a low-level 1 kHz control loop and processes communi-
cation signals from the XBee. Due to computational limits of the microprocessor, we stream
data from the robot to a laptop for calculating controller commands, and then stream these
commands back to the microprocessor for execution. To bypass the problem of using only
on-board sensors for state estimation, we also use an OptiTrack motion capture system to
stream robot pose information during experiments. The motion capture system does not
provide any information about the environment terrain, so we also mounted a 3.4 gram
monocular color camera onto the VelociRoACH, which communicates directly with the laptop
via a radio frequency USB receiver.

3.4.2 Implementation Details

The learned dynamics function fθ(st, at, It) is the neural network depicted in Fig. 3.4. For all
experiments and results reported below, we use only 17 minutes (10,000 datapoints) worth
of data from each terrain to train the dynamics model: This consists of 200 rollouts, each
containing 50 data points that are collected at 10 Hz. We train each dynamics model for 50

3https://github.com/biomimetics/imageproc_pcb

https://github.com/biomimetics/imageproc_pcb
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epochs, using the Adam optimizer (Kingma and J. Ba 2014) with learning rate 0.001 and
batchsize 1000.

The process of using the neural network dynamics model and the cost function to select
the best candidate action sequence at each time step is done in real-time. Relevant parameters
for our model-based controller are the number of candidate action sequences sampled at each
time step N = 500, the horizon H = 4, and parameters fp = 50, ff = 10, and fh = 5 for the
perpendicular, forward, and heading components of the trajectory following cost function
from Eqn. 3.1.

Note that the training data is gathered entirely using random trajectories, and therefore,
the paths executed by the controller at run-time differ substantially from the training data.
This illustrates the use of off-policy training data, and that the model exhibits considerable
generalization. Furthermore, although the model is trained only once, we use it to accomplish
a variety of tasks at run-time by simply changing the desired path in the cost function. This
decoupling of the task from the dynamics eliminates the need for task-specific training, which
further improves overall sample efficiency.

We define the state st of the VelociRoACH to be [x, y, z, vx, vy, vz, cos(φr), sin(φr),
cos(φp), sin(φp), cos(φy), sin(φy), ωx, ωy, ωz, cos(aL), sin(aL), cos(aR), sin(aR), vaL ,
vaR , bemfL, bemfR, Vbat]

T . The center of mass positions (x, y, z) and the Euler angles to
describe the center of mass pose (φr, φp, φy) come from the OptiTrack motion capture system.
The angular velocities (ωx, ωy, ωz) come from the gyroscope onboard the IMU, and the motor
crank positions (aL, aR) come from the magnetic rotary encoders, which give a notion of
leg position. We include (bemfL, bemfR) because back-EMF provides a notion of motor
torque/velocity, and (Vbat) because the voltage of the battery affects the VelociRoACH’s
performance. Note that the state includes sin and cos of angular values, which is common
practice and allows the neural network to avoid wrapping issues.

Finally, we define the action space at of the VelociRoACH to represent the desired velocity
setpoints for the rotation of the legs, and we achieve these setpoints using a lower-level PID
controller onboard the system. We discuss two of the possible action abstraction choices
below in Section 3.4.3.

3.4.3 Action Abstraction

Our presented method allows users the freedom to vary the level of abstraction at which
they would like to control their robotic system. Two possible options, which we illustrate in
Fig. 3.7 as exhibiting comparable task performance, include directly controlling the motor
pulse width modulation (PWM) values or specifying desired velocity setpoints instead.

Directly sending motor commands, instead of velocity setpoints, precludes the need to
tune another layer of feedback control (i.e. lower-level PID controller) for calculating motor
commands. This method of directly sending commands, however, encounters problems
involved with the lack of a feedback loop. In the case of the VelociRoACH, for example, a
given PWM value can result in different amounts of leg movement, due to both variations in
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Figure 3.7: Trajectories executed by the model-based controller when the control outputs are (Top:) direct
motor PWM values and (Bottom:) leg velocity setpoints, which a lower-level controller is tasked with
achieving. Note that for each of these options, the corresponding dynamics model is trained using data where
the at represents the indicated choice of action abstraction.

the battery level, as well as due to the leg kinematics leading to different forces at different
stages of the leg rotation.

At the same time, outputting desired velocities and then designing a lower-level PID
controller to achieve those velocities involves an additional stage of parameter tuning, and one
concern includes unpredictable behavior caused by not achieving the desired velocity within
the time ∆t before the next setpoint is received. Each of these action abstraction options
has pros and cons that manifest themselves differently on different systems. Thus, it is an
enticing feature to have an algorithm easily adapt to the user’s choice of action abstraction,
since the best choice may change based on the available system’s details.

3.4.4 Improving Performance with More Data

Starting with an experiment on only one type of terrain, we first trained models with different
amounts of training data and investigated the effect of the quantity of training data on
trajectory following task performance. We trained one model with 50 rollouts (4 minutes), one
with 200 rollouts (17 minutes), and one with 400 rollouts (32 minutes). Table 3.1 indicates
that more training data can indeed improve task performance. This is an encouraging
indication that improvement can occur over time when using a data-driven approach, which
is not the case for hand-engineered solutions.

Table 3.1: Trajectory following cost incurred vs. amount of training data

Straight Left Right
50 rollouts (4 minutes) 14.4 16.6 29.4
200 rollouts (17 minutes) 10.3 13.6 17.1
400 rollouts (32 minutes) 10.8 11.3 11.5
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3.4.5 Comparing to Differential Drive

To provide a comparison for our model-based learning algorithm’s performance, we execute a
differential drive controller. This is a common steering method used for robots with wheel or
leg-like mechanisms on both sides. In this control scheme, the turn rate ωrobot of the robot
is proportional to the difference between left ωl and right ωr leg velocities. A differential
drive controller assumes the behavior that moving the right wheel would turn the robot to
the left, and moving the left wheel would turn the robot to the right. Note that this general
idea of a difference in leg velocities translating to heading change of the entire system can be
implemented in many ways, and we describe our implementation below merely as a guideline.

As described in Algorithm. 3, our implementation of a differential drive controller uses
robot heading, as well as perpendicular distance away from the desired path, in order to
set velocity setpoints for each side of robot. In addition to standard heading control where
the robot turns such that its heading matches the angle of the line, it also incorporates the
perpendicular error metric to say that its heading should be more or less than the heading
of the line, in order to actually move back toward the line. This controller outputs desired
leg velocities at a rate of 10 Hz. To enable the realization of these leg velocities, we also
implement a low-level PID controller that runs in the firmware at 1000 Hz. Encoder readings
of the leg positions provide feedback, and the PID controller monitors proportional, integral,
and derivative errors in order to output the PWM values required for achieving the desired
leg velocities.

Algorithm 3 A Differential Drive Algorithm for Trajectory Following
1: Inputs: Current state (x, y, z, roll, pitch, yaw),

Desired waypoints W = [w0, w1, . . . ],
Controller parameters f1 and f2

2: Line segment L← closest [wi, wi+1] to (x, y)
3: dline ← angle of L
4: p← perpendicular distance of (x, y) to line segment L
5: if (x, y) to right of L
6: then d = dline + f1 ∗ p
7: else d = dline − f1 ∗ p
8: left leg velocity ωl ← ωnom − d ∗ f2
9: right leg velocity ωr ← ωnom + d ∗ f2
10: Outputs: leg PID velocity setpoints ωl and ωr

In comparing our method to the differential drive controller, all cost numbers reported in
the tables below are calculated on the same cost function (Eqn. 3.1) that indicates how well
the executed path aligns with the desired path. Each reported number represents an average
over 10 runs. Fig. 3.8 illustrates that the model-based learning method and the differential
drive control strategy are comparable at low speeds, across different trajectories on carpet.
However, the learned model-based approach outperforms the differential drive strategy at
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Figure 3.8: An analysis of cost incurred during trajectory following,
as a function of the speed of the robot, shows that our model-
based learning method is comparable to a differential drive control
strategy at low speeds, but outperforms differential drive at high
speeds. Each point in these plots represents a separate run, and
all runs were conducted on carpet.

higher speeds; here, differential
drive performance deteriorates as
leg speeds increase, because trac-
tion decreases and causes the legs
to have less control over heading.
Also, at high speeds, the dynamics
of the legged robot can produce sig-
nificant roll oscillations of the entire
system, depending on the leg phas-
ing (Haldane and Ronald S Fearing
2014). Therefore, based on the tim-
ing of left and right foot contacts,
the system can produce turns incon-
sistent with a differential drive con-
trol strategy. Fig. 3.14 illustrates
that for different paths across vari-
ous surfaces, our model-based learn-
ing method outperforms the differ-
ential drive control strategy. Furthermore, we note that this difference in performance is
most pronounced on surfaces with less traction, such as styrofoam and carpet.

3.4.6 A Look at the Telemetry Data

Figure 3.9 shows saved telemetry data (including gyro data, accelerometer data, back EMF,
duty cycle, battery voltage, torque, leg positions, commanded actions, robot heading, x, y,
roll, pitch, yaw) from the execution of a “left” trajectory by our learned method. These plots
illustrate the types of data that are available from the robot and are used for control.

Figure 3.10 shows the distribution of commanded actions for the right vs. left side of the
robot during various “straight” and “left” path following runs. The relationship between right
and left motor cranks is clear for the differential drive data, and it follows the relationship
that we explicitly prescribed in the implementation. The learned approach, on the other
hand, exhibits a completely different relationship between the right and left motor commands.

Next, Figure 3.11 shows 4 “left” runs from the learned method (top), and from the
differential drive method (bottom). We see a clear correlation between desired robot heading
and resulting control commands for the differential drive strategy (as prescribed), but a less
clear pattern for the learned method, indicating that the learned approach is doing something
different.

Finally, Figure 3.12 shows histograms of the robot’s roll angle during the execution of
“straight,” “right,” and “left” trajectories. These histograms show more symmetric distributions
of roll angles for the differential drive method, and more skewed roll angles for the learned
method, perhaps indicating the enablement of less conservative movements.
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Figure 3.9: VelociRoACH telemetry data from the learned model performing a left turn. The
top plots show 1kHz data from on-board the robot, with zoomed-in plots on the right. The bottom plots
show 10Hz data from the motion capture system, during the same run.
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Figure 3.10: Distribution of commanded actions for the right vs. left side of the VelociRoACH, where the
commanded actions are velocity setpoints for the legs, in units of leg revolutions per second. The top plots
show values from multiple “straight” runs, and the bottom plots show values from multiple “left” runs.

Figure 3.11: Four “left” runs (top) from the learned method, and four “left” runs (bottom) from the differential
drive method on the VelociRoACH. The blue dots correspond to the right motor, and the black dots correspond
to the left motor. The differential drive runs show a clear correlation between heading error and resulting
control commands (as prescribed), whereas the learned model does something different.
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Figure 3.13: Top: Execution of our model-based learning method, using an image-conditioned dynamics
model, on various desired paths on four terrains (styrofoam, gravel, carpet, and turf). Note that the path
boundaries are outlined for visualization purposes only, and were not present during the experiments. Bottom:
Example images from the onboard camera during the runs (shaky images due to body motion).

3.4.7 Qualitative Results of Image-Conditioned Models for
Locomotion on Various Terrains

Figure 3.12: Histograms of the VelociRoACH’s
roll angles during the execution of “straight,”
“right,” and “left” trajectories, showing more sym-
metric distributions of roll angles for the differ-
ential drive method and more skewed roll angles
for the learned method.

We show in Fig. 3.13 the result of our model-
based learning method executing various paths
on different surfaces, as well as sample images
seen by the VelociRoACH’s onboard camera. The
demonstrated set of paths captures the key path
following primitives of straight lines, arcs, and
sharp changes of direction.

3.4.8 Quantitative Results
of Image-Conditioned Models
for Locomotion on Various Terrains

To analyze the effect of the learned model itself on
the controller’s performance, we conducted exper-
iments on two materials: a carpet material and a
slippery styrofoam material. The costs incurred in
Table 3.2 show that the baseline differential drive
controller performs relatively poorly on both sur-
faces. For the model-based approach, the model
trained on the carpet works well on the carpet,
and the model trained on the styrofoam works
well on the styrofoam. The poor performance of
either model on the other surface illustrates that
the learned dynamics model does in fact encode
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some knowledge about the surface. Also, performance diminishes when the model is trained
on data from both terrains, which indicates that naïvely combining data in order to learn a
joint dynamics model is insufficient.

Table 3.2: Costs incurred by the VelociRoACH while executing a straight line path. The model-based
controller has the best performance when executed on the surface that it was trained on, indicating that the
model incorporates knowledge about the environment. Performance deteriorates when the model is trained on
one terrain but tested on another, as well as when the model is jointly trained on all data from all surfaces.

Carpet Styrofoam
Differential Drive 13.85 15.45
Model trained on carpet 5.69 18.62
Model trained on styrofoam 22.25 8.15
Model trained on both 7.52 15.76

We have shown so far that when trained on data gathered from a single terrain, our
model-based approach is superior to the common differential drive approach, and that our
approach improves with more data. Furthermore, the experiment above demonstrated that
the robot’s dynamics depend on the environment. Thus, we would like our approach to be
able to control the VelociRoACH on a variety of terrains.

A standard approach for this would be to train a dynamics model using data from all
terrains. However, as shown above in Table 3.2 as well as below in Fig. 3.14, a model that is
naïvely trained on all data from multiple terrains and then tested on one of those terrains is
significantly worse than a model that is trained solely on that particular terrain. The main
reason that this naïve approach does not work well is that the dynamics themselves differ
greatly with terrain, and a dynamics model that takes only the robot’s current state and
action as inputs receives a weak and indirect signal about the robot’s environment.

To have a direct signal about the environment, our image-conditioned model takes an
additional input: an image taken from an onboard camera, as shown in Fig. 3.13. In
Figure 3.14, we compare the performance of this image-conditioned approach to that of
alternative approaches on the task of path following for four different paths (straight, left,
right, zigzag) on four different surfaces (styrofoam, carpet, gravel, turf). We compare the
image-conditioned learned dynamics approach to various alternate approaches:

1. Training a separate dynamics model on each terrain, and testing on that same terrain.

2. Naïvely training one joint dynamics model on all training data, with no images or labels
of which terrain the data came from.

3. Training one joint dynamics model using data with explicit terrain labels in the form of
a one-hot vector (where the activation of a single vector element directly corresponds
to a terrain).

The naïve approach of training one joint dynamics model using an aggregation of all data
performs worse than the other learning-based methods. The method of having a separate
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Figure 3.14: Comparison of our image-conditioned model-based approach vs. alternate methods, evaluated on
four different terrains, each with four different paths (straight, left, right, and zigzag) on the VelociRoACH.
The methods that we compare to include: a hand-engineered differential drive controller, a joint dynamics
model that is naïvely trained on all data from all terrains, an “oracle” approach that uses a separate dynamics
model on each terrain, and another “oracle” approach where the joint dynamics model is trained using all
data with extra one-hot vector labels of the terrain. Our method outperforms the differential drive method
and the naïve model-based controller, while performing similarly to the oracle baselines without needing any
explicit labels.

dynamics model for each terrain, as well as the method of training one joint dynamics
model using one-hot vectors as terrain labels, both perform well on all terrains. However,
both of these methods require human supervision to label the training data and to specify
which terrain the robot is on at test time. In contrast, our image-conditioned approach
performs just as well as the separate and one-hot models, but does not require any additional
supervision beyond an onboard monocular camera. Finally, our image-conditioned approach
also substantially outperforms the differential drive baseline on all terrains.

3.4.9 Discussion

In this chapter, we presented a sample-efficient model-based learning algorithm using image-
conditioned neural network dynamics models that enabled accurate locomotion of a low-cost,
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under-actuated, legged, and highly dynamic VelociRoACH robot in a variety of environments.
Using only 17 minutes of real-world data for each terrain, our method outperformed a
commonly used differential drive control strategy, showed improvement with more data, and
was able to use features from camera images in order to execute successful locomotion on
various terrains with human-provided labels or task-specific training.
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Chapter 4

Scaling Up MBRL for Dexterous
Manipulation

Figure 4.1: Thesis outline, with
the current chapter indicated by
the last colored arrow.

The work in this chapter extends the capabilities of model-based
learning techniques along the axis of task complexity. By scaling
up aspects of both the modeling and control techniques of the
model-based approach introduced in Chapter 2, the work in this
chapter enables efficient and effective learning of various flexible
contact-rich dexterous manipulation skills both in simulation
and in the real world.

Dexterous multi-fingered hands can provide robots with
the ability to flexibly perform a wide range of manipulation
skills. However, many of the more complex behaviors are also
notoriously difficult to control: Performing in-hand object manipulation, executing finger
gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely
balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining
control of unactuated objects. Learning-based techniques provide the appealing possibility
of acquiring these skills directly from data, but current learning approaches either require
large amounts of data and produce task-specific policies, or they have not yet been shown

Figure 4.2: PDDM can efficiently and effectively learn complex dexterous manipulation skills in both
simulation and the real world. Here, less than 4 hours of experience is needed for the Shadow Hand to learn
to rotate two free-floating Baoding balls in the palm, without any prior knowledge of system dynamics.
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to scale up to more complex and realistic tasks requiring fine motor skills. In this chapter,
we demonstrate that our method of online planning with deep dynamics models (PDDM)
addresses both of these limitations; we show that improvements in learned dynamics models,
together with improvements in online model-predictive control, can indeed enable efficient and
effective learning of flexible contact-rich dexterous manipulation skills – and that too, on a
24-DoF anthropomorphic hand in the real world, using just 4 hours of purely real-world data
to learn to simultaneously coordinate multiple free-floating objects. Videos of the experiments
as well as the code are available online1.

4.1 Introduction
Dexterous manipulation with multi-fingered hands represents a grand challenge in robotics:
the versatility of the human hand is as yet unrivaled by the capabilities of robotic systems,
and bridging this gap will enable more general and capable robots. Although some real-world
tasks can be accomplished with simple parallel jaw grippers, there are countless tasks in
which dexterity in the form of redundant degrees of freedom is critical. In fact, dexterous
manipulation is defined (Okamura, Smaby, and Cutkosky 2000) as being object-centric,
with the goal of controlling object movement through precise control of forces and motions –
something that is not possible without the ability to simultaneously impact the object from
multiple directions. Through added controllability and stability, multi-fingered hands enable
useful fine motor skills that are necessary for deliberate interaction with objects. For example,
using only two fingers to attempt common tasks such as opening the lid of a jar, hitting a
nail with a hammer, or writing on paper with a pencil would quickly encounter the challenges
of slippage, complex contact forces, and underactuation. Success in such settings requires a
sufficiently dexterous hand, as well as an intelligent policy that can endow such a hand with
the appropriate control strategy.

The principle challenges in dexterous manipulation stem from the need to coordinate
numerous joints and impart complex forces onto the object of interest. The need to repeatedly
establish and break contacts presents an especially difficult problem for analytic approaches,
which require accurate models of the physics of the system. Learning offers a promising
data-driven alternative. Model-free reinforcement learning (RL) methods can learn policies
that achieve good performance on complex tasks (Van Hoof et al. 2015; Levine, Finn, et al.
2016; Rajeswaran et al. 2017); however, we will show that these state-of-the-art algorithms
struggle when a high degree of flexibility is required, such as moving a pencil to follow
arbitrary user-specified strokes. Here, complex contact dynamics and high chances of task
failure make the overall skill much more difficult. Model-free methods also require large
amounts of data, making them difficult to use in the real world. Model-based RL methods, on
the other hand, can be much more efficient, but have not yet been scaled up to such complex
tasks. In this work, we aim to push the boundary on this task complexity; consider, for
instance, the task of rotating two Baoding balls around the palm of your hand (Figure 4.2).

1https://sites.google.com/view/pddm

https://sites.google.com/view/pddm
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We will discuss how model-based RL methods can solve such tasks, both in simulation and
on a real-world robot.

Figure 4.3: Task suite of simulated and real-
world dexterous manipulation: valve rotation,
in-hand reorientation, handwriting, and ma-
nipulating Baoding balls.

Algorithmically, we present a technique that com-
bines elements of recently-developed uncertainty-
aware neural network models with state-of-the-art
gradient-free trajectory optimization. While the in-
dividual components of our method are based heavily
on prior work, we show that their combination is
both novel and critical. Our approach, based on
deep model-based RL, challenges the general ma-
chine learning community’s notion that models are
difficult to learn and do not yet deliver control results
that are as impressive as model-free methods. In
this chapter, we push forward the empirical results
of model-based RL, in both simulation and the real
world, on a suite of dexterous manipulation tasks
starting with a 9-DoF three-fingered hand (Zhu et
al. 2019) rotating a valve, and scaling up to a 24-
DoF anthropomorphic hand executing handwriting
and manipulating free-floating objects (Figure 4.3).
These realistic tasks require not only learning about
interactions between the robot and objects in the
world, but also effective planning to find precise and
coordinated maneuvers while avoiding task failure
(e.g., dropping objects). The work in this chapter
demonstrates for the first time that deep neural net-
work models can indeed enable sample-efficient and
autonomous discovery of fine motor skills with high-
dimensional manipulators, including a real-world
dexterous hand trained entirely using just 4 hours of real-world data.

4.2 Related Work
In recent years, the mechanical and hardware development of multi-fingered robotic hands
has significantly advanced (Butterfaß et al. 2001; Xu and Emanuel Todorov 2016), but our
manipulation capabilities haven’t scaled similarly. Prior work in this area has explored a wide
spectrum of manipulation strategies: (Sundaralingam and Hermans 2018)’s optimizer used
geometric meshes of the object to plan finger-gaiting maneuvers, (Andrews and Kry 2013)’s
multi-phase planner used the help of offline simulations and a reduced basis of hand poses
to accelerate the parameter search for in-hand rotation of a sphere, (Dogar and Srinivasa
2010)’s motion planning algorithm used the mechanics of pushing to funnel an object into a
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stable grasp state, and (Bai and Liu 2014)’s controller used the conservation of mechanical
energy to control the tilt of a palm and roll objects to desired positions on the hand. These
types of manipulation techniques have thus far struggled to scale to more complex tasks
or sophisticated manipulators in simulation as well as the real world, perhaps due to their
need for precise characterization (Okada 1982) of the system and its environment. Reasoning
through contact models and motions cones (Chavan-Dafle, Holladay, and Rodriguez 2018;
Kolbert, Chavan-Dafle, and Rodriguez 2016), for example, requires computation time that
scales exponentially with the number of contacts, and has thus been limited to simpler
manipulators and more controlled tasks. With this work, we aim to significantly scale up the
complexity of feasible tasks, while also minimizing such task-specific formulations.

More recent work in deep RL has studied this question through the use of data-driven
learning to make sense of observed phenomenon (Andrychowicz, B. Baker, et al. 2018; Van
Hoof et al. 2015). These methods, while powerful, require large amounts of system interaction
to learn successful control policies, making them difficult to apply in the real world. Some
work (Rajeswaran et al. 2017; Zhu et al. 2019) has used expert demonstrations to improve
this sample efficiency. In contrast, our method is sample efficient without requiring any
expert demonstrations, and is still able to leverage data-driven learning techniques to acquire
challenging dexterous manipulation skills.

Model-based RL has the potential to provide both efficient and flexible learning. In fact,
methods that assume perfect knowledge of system dynamics can achieve very impressive
manipulation behaviors (Mordatch, Popović, and Emanuel Todorov 2012; Lowrey et al.
2018) using generally applicable learning and control techniques. Other work has focused
on learning these models using high-capacity function approximators (M. P. Deisenroth,
Neumann, Peters, et al. 2013; Lenz, Knepper, and Saxena 2015; Levine, Finn, et al. 2016;
Nagabandi, Yang, et al. 2017; Nagabandi, Kahn, Ronald S. Fearing, et al. 2018; Williams,
Wagener, et al. 2017; Chua et al. 2018a) and probabilistic dynamics models (M. Deisenroth
and C. Rasmussen 2011; Ko and Fox 2008; M. P. Deisenroth, Calandra, et al. 2012; Doerr et al.
2017). Our method combines components from multiple prior works, including uncertainty
estimation (M. Deisenroth and C. Rasmussen 2011; Chua et al. 2018a; Kurutach et al.
2018a), deep models and model-predictive control (MPC) (Nagabandi, Yang, et al. 2017),
and stochastic optimization for planning (Williams, Aldrich, and Theodorou 2015). Model-
based RL methods, including recent work in uncertainty estimation (A. Malik et al. 2019)
and combining policy networks with online planning (T. Wang and Jimmy Ba 2019), have
unfortunately mostly been studied and shown on lower-dimensional (and often, simulated)
benchmark tasks, and scaling these methods to higher dimensional tasks such as dexterous
manipulation has proven to be a challenge. As illustrated in our evaluation, the particular
synthesis of different ideas in this work allows model-based RL to push forward the task
complexity of achievable dexterous manipulation skills, and to extend this progress to even a
real-world robotic hand.
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4.3 PDDM: Online Planning with Deep Dynamics
Models

In order to leverage the benefits of autonomous learning from data-driven methods while also
enabling efficient and flexible task execution, we extend deep model-based RL approaches to
the domain of dexterous manipulation. Our method of online planning with deep dynamics
models (PDDM) builds on the model-based RL framework that we presented in the previous
chapters by improving both the modeling as well as the planning. As we illustrate in our
experiments, the particular combination of components is critical for the success of our
method on complex dexterous manipulation tasks and allows it to substantially outperform
these prior model-based algorithms as well as strong model-free baselines.

4.3.1 Learning Deep Dynamics Models

Recall the model-based RL problem that we introduced in the previous chapters, where
there is a Markov decision process (MDP) with a set of states S, a set of actions A, and
a state transition distribution p(s′|s, a) describing the result of taking action a from state
s. The task is specified by a bounded reward function r(s, a), and the goal of RL is to
select actions in such a way as to maximize the expected sum of rewards over a trajectory.
Model-based RL aims to solve this problem by first learning an approximate model p̂θ(s′|s, a),
parameterized by θ, that approximates the unknown transition distribution p(s′|s, a) of the
underlying system dynamics. The parameters θ can be learned to maximize the log-likelihood
of observed data D, and the learned model’s predictions can then be used to either learn a
policy or, as we do, to perform online planning to select optimal actions.

In our work, we use a deep neural network model to represent p̂θ(s′|s, a), such that
the model has enough capacity to capture the complex interactions involved in dexterous
manipulation. As in the previous chapters, we use a parameterization of the form p̂θ(s

′|s, a) =
N (fθ(s, a),Σ), where the mean fθ(s, a) is given by a neural network, and the covariance Σ
of the conditional Gaussian distribution can also be learned (although we found this to be
unnecessary for good results).

As prior work has indicated, capturing epistemic uncertainty in the network weights is
indeed important in model-based RL, especially with high-capacity models that are liable to
overfit to the training set and extrapolate erroneously outside of it. A simple and inexpensive
way to do this is to employ bootstrap ensembles (Chua et al. 2018a), which approximate the
posterior p(θ|D) with a set of E models, each with parameters θi. For deep models, prior
work has observed that bootstrap resampling is unnecessary, and it is sufficient to simply
initialize each model θi with a different random initialization θ0i and use different batches
of data Di at each train step (Chua et al. 2018a). We note that, as with the work in the
previous chapters, this supervised learning setup makes more efficient use of the data than
the counterpart model-free methods, since we get dense training signals from each state
transition and we are able to use all data (even off-policy data) to make training progress.
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4.3.2 Online Planning for Closed-Loop Control

In this work, we use the model predictions in an online planning setup where, at each time
step, we perform short-horizon trajectory optimization, as introduced in Equation 2.3. The
chosen optimizer will now perform action selection by using the mean predicted reward across
all models of the ensemble (instead of the predicted reward from a single model, as before),
thus allowing for uncertainty in the form of model disagreement to effect action selection.
For example, considering a distribution of reward value predictions as opposed to a single one
could discourage the exploitation of an overly-optimistic model. For the choice of optimizer
itself, we describe a few particular choices below, each of which builds on the previous ones
and ends with the most sophisticated optimizer – the one that is used by PDDM.

Random Shooting: The simplest gradient-free optimizer is the one used in the previ-
ous chapters of this work. It simply generates K independent random action sequences
{A0 . . .AK}, where each sequence Ak = {ak0 . . . akH−1} is of length H action. Given a reward
function r(st, at) that defines the task, and given future state predictions ŝt+1 = fθ(ŝt, at) + ŝt
from the learned dynamics model fθ, the optimal action sequence Ak∗ is selected to be
the one corresponding to the sequence with highest predicted reward: k∗ = arg maxk Rk =
arg maxk

∑t+H−1
t′=t r(ŝt′ , a

k
t′).We showed this approach to achieve success on continuous control

tasks with learned models in the previous chapters, but it does have numerous drawbacks: it
scales poorly with the dimension of both the planning horizon and the action space, and it
often is insufficient for achieving high task performance since a sequence of actions sampled
at random often does not directly lead to meaningful behavior.

Iterative Random-Shooting with Refinement: To address these issues, much prior
work (Botev et al. 2013) has instead taken a cross-entropy method (CEM) approach, which
begins as the random shooting approach, but then does this sampling for multiple iterations
m ∈ {0 . . .M} at each time step. The top J highest-scoring action sequences from each
iteration are used to update and refine the mean and variance of the sampling distribution
for the next iteration, as follows:

Ak = {ak0 . . . akH−1}, where akt ∼ N (µmt ,Σ
m
t ) ∀k ∈ K, t ∈ 0 . . . H − 1

Aelites = sort(Ak)[−J :]

µm+1
t = α ∗mean(Aelites) + (1− α)µmt ∀t ∈ 0 . . . H − 1

Σm+1
t = α ∗ var(Aelites) + (1− α)Σm

t ∀t ∈ 0 . . . H − 1 (4.1)

After M iterations, the optimal actions are selected to be the resulting mean of the action
distribution.

Filtering and Reward-Weighted Refinement: While CEM is a stronger optimizer
than random shooting, it still scales poorly with dimensionality and is hard to apply when
both coordination and precision are required. PDDM instead uses a stronger optimizer that
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considers covariances between time steps and uses a softer update rule that more effectively
integrates a larger number of samples into the distribution update. As derived by recent
model-predictive path integral work (Williams, Aldrich, and Theodorou 2015; Lowrey et al.
2018), this general update rule takes the following form for time step t, reward-weighting
factor γ, and reward Rk from each of the K predicted trajectories:

µt =

∑N
k=0(e

γ·Rk)(akt )∑N
j=0 e

γ·(Rj)
∀t ∈ {0 . . . H − 1}. (4.2)

Rather than sampling the action samples from a random policy or from iteratively refined
Gaussians, we instead apply a filtering technique to explicitly produce smoother candidate
action sequences. Given the iteratively updating mean distribution µt from above, we generate
K action sequences akt = nkt + µt, where each noise sample nkt is generated using filtering
coefficient β as follows:

ukt ∼ N (0,Σ) ∀k ∈ {0 . . . K − 1}, t ∈ {0 . . . H − 1} (4.3)
nkt = β · ukt + (1− β) · nkt−1 where nt<0 = 0 (4.4)

By coupling time steps to each other, this filtering also reduces the effective degrees of freedom
or dimensionality of the search space, thus allowing for better scaling with dimensionality.

4.3.3 Overview

After using the models and predicted rewards to perform action selection, we take one step
at of the selected action plan, receive updated state information st+1, and then replan at
the following time step. This closed-loop method of replanning using updated information
at every time step helps to mitigate some model inaccuraries by preventing accumulating
model error. Note that this control procedure also allows us to easily swap out new reward
functions or goals at run-time, independent of the trained model. Overall, the full procedure
of PDDM involves iteratively performing actions in the real world (through online planning
with the use of the learned model) and then using those observations to update that learned
model, as stated in Algorithm 1 from Section 2.4. Further implementation details of this
procedure are provided in the sections below.

4.4 Results of MBRL for Dexterous Manipulation
Our evaluations in this section aim to address the following questions:

1. Can PDDM autonomously learn to accomplish a variety of complex dexterous manipu-
lation tasks?

2. What is the effect of the various design decisions in PDDM?
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3. How does the performance as well as sample efficiency of PDDM compare to that of
other state-of-the-art algorithms?

4. How general and versatile is the learned model?

5. Can we apply these lessons learned from simulation to enable a 24-DoF humanoid hand
to manipulate free-floating objects in the real world?

All experiment videos as well as the released code can be found online on the project website2.

4.4.1 Task Suite

Figure 4.4: Successful executions of PDDM on simu-
lated and real-world dexterous manipulation tasks.

Some of the main challenges in dexterous
manipulation involve the high dimensional-
ity of the hand, the prevalence of complex
contact dynamics that must be utilized and
balanced to manipulate free floating objects,
and the potential for failure. We identified a
set of tasks (Figure 4.3) that specifically high-
light these challenges by requiring delicate,
precise, and coordinated movement. With
the final goal in mind of real-world experi-
ments on a 24-DoF hand, we first set up these
selected dexterous manipulation tasks in Mu-
JoCo (Emanuel Todorov, Erez, and Tassa
2012b) and conducted experiments in simula-
tion on two robotic platforms: a 9-DoF three-
fingered hand, and a 24-DoF five-fingered
hand. We show in Figure 4.4 the successful
executions of PDDM on these tasks, which
took between 1-2 hours worth of data for
simulated tasks and 2-4 hours worth of data
for the real-world experiments. We provide
brief task overviews below.

Valve Turning: This starter task for look-
ing into manipulation challenges uses a 9-
DoF hand (D’Claw) (Zhu et al. 2019) to turn a 1-DoF valve to arbitrary target locations.
Here, the fingers must come into contact with the object and coordinate themselves to make
continued progress toward the target.

2https://sites.google.com/view/pddm

https://sites.google.com/view/pddm
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In-hand Reorientation: Next, we look into the manipulation of free-floating objects,
where most maneuvers lead to task failures of dropping objects, and thus sharp discontinuities
in the dynamics. Successful manipulation of free-floating objects, such as this task of
reorienting a cube into a goal pose, requires careful stabilization strategies as well as re-
grasping strategies. Note that these challenges exist even in cases where system dynamics
are fully known, let alone with learned models.

Handwriting: In addition to free-floating objects, the requirement of precision is a further
challenge when planning with approximate models. Handwriting, in particular, requires
precise maneuvering of all joints in order to control the movement of the pencil tip and
enable legible writing. Furthermore, the previously mentioned challenges of local minima
(i.e., holding the pencil still), abundant terminal states (i.e., dropping the pencil), and the
need for simultaneous coordination of numerous joints still apply. This task can also test
flexibility of learned behaviors, by requiring the agent to follow arbitrary writing patterns as
opposed to only a specific stroke.

Baoding Balls: While manipulation of one free object is already a challenge, sharing the
compact workspace with other objects exacerbates the challenge and truly tests the dexterity
of the manipulator. We examine this challenge with Baoding balls, where the goal is to rotate
two balls around the palm without dropping them. The objects influence the dynamics of
not only the hand, but also each other; inconsistent movement of either one knocks the other
out of the hand, leading to failure.

4.4.2 Implementation and Hyperparameter Details

We implement the dynamics model as a neural network of 2 fully-connected hidden layers
of size 500 with ReLU nonlinearities and a final fully-connected output layer. For all tasks
and environments, we train this same model architecture with a standard mean squared
error (MSE) supervised learning loss, using the Adam optimizer (Kingma and J. Ba 2014)
with learning rate 0.001. This algorithm iteratively alternates between collecting R rollouts
of length T to put into the dataset D, and training the model for E epochs, where each
epoch consists of a single pass through the shuffled dataset D while taking a gradient step for
every sampled batch of size 500 data points. These hyperparameters, along with controller
parameters (H,K, γ, β) and the number of models in the ensemble M are listed below in
Table 4.1, referenced by task. For each of these tasks, we normalize the action spaces to
[−1, 1] and act at a control frequency of 1

dt
. Reward functions and other relevant task details

are listed in Table 4.2.

4.4.3 Ablations and Analysis of Design Decisions

In the first set of experiments (Fig. 4.5), we evaluate the impact of the design decisions
for the model and the online planning method. We use the Baoding balls task for these
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Table 4.1: Hyperparameters

R T H K γ β M E

Valve Turning 20 40 7 200 10 0.6 3 40

In-hand Reorientation 40 70 7 700 50 0.7 3 40

Handwriting 40 40 7 700 0.5 0.5 3 40

Baoding Balls 30 100 7 700 20 0.7 3 40

Table 4.2: Task details

dt (sec) Dim of s Dim of a Reward r(s,a)

Valve Turning

0.15 21 9 −10|valveθ − targetθ|

+1(|valveθ − targetθ| < 0.25)

+10 ∗ 1(|valveθ − targetθ| < 0.1)

In-hand Reorientation
0.1 46 24 −7||cuberpy − targetrpy||

−10001(isdrop)

Handwriting

0.1 48 24 −100||tipxy − targetxy||

−20||tipz||

−101(forwardtipping > 0)

Baoding Balls
0.1 40 24 −5||objectsxyz − targetsxyz||

−5001(isdrop)

experiments, though we observed similar trends on other tasks. In the first plot, we see
that a sufficiently large architecture is crucial, indicating that the model must have enough
capacity to represent the complex dynamical system. In the second plot, we see that the use
of ensembles is helpful, especially earlier in training when non-ensembled models can overfit
badly and thus exhibit overconfident and harmful behavior. This suggests that ensembles
are an enabling factor in using sufficiently high-capacity models. In the third plot, we see
that there is not much difference between resetting model weights randomly at each training
iteration versus warmstarting them from their previous values.

In the fourth plot, we see that using a planning horizon that is either too long or too
short can be detrimental: Short horizons lead to greedy planning, while long horizons
suffer from compounding errors in the predictions. In the fifth plot, we study the type of
planning algorithm and see that PDDM, with action smoothing and soft updates, greatly
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Figure 4.5: Baoding task performance (in simulation) for various design decisions: (Top) model architecture,
ensemble size, warmstarting model weights, and (Bottom) planning horizon, controller type, and reward-
weighting γ.

outperforms the others. In the final plot, we study the effect of the γ reward-weighting
variable, showing that medium values provide the best balance of dimensionality reduction
and smooth integration of action samples versus loss of control authority. Here, too soft of
a weighting leads to minimal movement of the hand, and too hard of a weighting leads to
aggressive behaviors that frequently drop the objects.

4.4.4 Comparisons

In this section, we compare our method to the following state-of-the-art model-based and
model-free RL algorithms: Nagabandi et. al (Nagabandi, Kahn, Ronald S. Fearing, et al.
2018) is the method introduced in the previous two chapters, which learns a deterministic
neural network model combined with a random shooting MPC controller; PETS (Kurutach
et al. 2018a) combines uncertainty-aware deep network dynamics models with sampling-
based uncertainty propagation; NPG (Kakade 2002) is a model-free natural policy gradient
method, and has been used in prior work on learning manipulation skills (Rajeswaran et al.
2017); SAC (Haarnoja, Zhou, Abbeel, et al. 2018) is an off-policy model-free RL algorithm;
MBPO (Janner et al. 2019) is a recent hybrid approach that uses data from its model to
accelerate policy learning. On our suite of dexterous manipulation tasks, PDDM consistently
outperforms prior methods both in terms of learning speed and final performance, even
solving tasks that prior methods cannot.
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Figure 4.6: Most methods learn this easier
task of valve turning, though our method
learns fastest.

Valve turning: We first experiment with a three-
fingered hand rotating a valve, with starting and goal
positions chosen randomly from the range [−π, π]. On
this simpler task, we confirm that most of the prior
methods do in fact succeed. We also see that even
on this simpler task, policy gradient approaches such
as NPG require prohibitively large amounts of data
(note the log scale of Figure 4.6).

In-hand reorientation: Next, we scale up our
method to a 24-DoF five-fingered hand reorienting
a free-floating object to arbitrary goal configurations
(Figure 4.7). First, we prescribe two possible goals of
either left or right 90◦ rotations; here, SAC behaves
similarly to our method (actually attaining a higher final reward), and NPG is slow as
expected, but does achieve the same high reward after 6 × 106 steps. However, when we
increase the number of possible goals to 8 different options (90◦ and 45◦ rotations in the left,
right, up, and down directions), we see that our method still succeeds, but the model-free
approaches get stuck in local optima and are unable to fully achieve even the previously
attainable goals. This inability to effectively address a “multi-task” or “multi-goal” setup is
indeed a known drawback for model-free approaches (and people have been working on this
area), and it is particularly pronounced in such goal-conditioned tasks that require flexibility.
These additional goals do not make the task harder for PDDM, due to the decoupling of task
and dynamics; even in learning 90◦ rotations, PDDM is building a model of its interactions
rather than specifically learning to get to those angles.
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Figure 4.7: In-hand reorientation of a cube. Our method achieves the best results for both (top) 2 and
(bottom) 8 goal angles, and model-free algorithms and methods that directly learn a policy, such as MBPO,
struggle with 8 goal angles.
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Figure 4.8: Left: Manipulating a pencil to make its tip follow a fixed
desired path, where PDDM learns substantially faster than SAC and
NPG. Right: Manipulating a pencil to make its tip follow arbitrary
paths, where only PDDM succeeds. Note that due to the decoupling of
dynamics from task, PDDM requires a similar amount of training data
in both of these scenarios.
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Figure 4.9: PDDM outperforms
prior model-based and model-free
methods on the simulated Baoding
balls task.

Handwriting: To further scale up task complexity, we experiment with handwriting, where
the base of the hand is fixed and all writing must be done through coordinated movement of
the fingers and the wrist. We perform two variations of this task: (a) the agent is trained
and tested on writing a single fixed trajectory, and (b) the agent is trained with the goal of
following arbitrary trajectories, but is evaluated on the fixed trajectory from (a). Although
even a fixed writing trajectory is challenging, writing arbitrary trajectories requires a degree
of flexibility that is exceptionally difficult for prior methods. We see in Figure 4.8 that prior
model-based approaches don’t actually solve this task (values below the grey line correspond
to holding the pencil still near the middle of the paper). Our method, SAC, and NPG solve
the task for a single fixed trajectory, but the model-free methods fail when presented with
arbitrary trajectories and become stuck in a local optima when trying to write arbitrary
trajectories. Even SAC, which has a higher entropy action distribution and therefore achieves
better exploration, is unable to extract the finer underlying skill due to the landscape for
successful behaviors being quite narrow.

Baoding Balls: This task is particularly challenging due to the inter-object interactions,
which can lead to drastically discontinuous dynamics and frequent failures from dropping
the objects. We were unable to get the other model-based or model-free methods to succeed
at this task (Figure 4.9), but PDDM solves it using just 100,000 data points, or 2.7 hours
worth of data. Additionally, we can employ the model that was trained on 100-step rollouts
to then run for much longer (1000 steps) at test time. The model learned for this task can
also be repurposed, without additional training, to perform a variety of related tasks (see
video3): moving a single ball to a goal location in the hand, posing the hand, and performing
clockwise rotations instead of the learned counter-clockwise ones.

3https://sites.google.com/view/pddm

https://sites.google.com/view/pddm
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Figure 4.10: Real-world Baoding balls hardware setup with the ShadowHand (left), Franka-Emika arm used
for the automated reset mechanism (middle), and the resulting success rates for 90◦ and 180◦ turns (right).

4.4.5 Learning Real-World Manipulation of Baoding Balls

Finally, we present an evaluation of PDDM on a real-world anthropomorphic robotic hand.
We use the 24-DoF Shadow Hand to manipulate Baoding balls, and we train our method
entirely with real-world experience, without any simulation or prior knowledge of the system.

Hardware setup: In order to run this experiment in the real world (Figure 4.10), we use
a camera tracker to produce 3D position estimates for the Baoding balls. The camera tracker
serves the purpose of providing low latency, robust, and accurate 3D position estimates of
the Baoding balls. To enable this tracking, we employ a dilated CNN modeled after the one
in KeypointNet (Suwajanakorn et al. 2018). The input to the system is a 280x180 RGB
stereo pair (no explicit depth) from a calibrated 12 cm baseline camera rig. The output is a
spatial softmax for the 2D location and depth of the center of each sphere in camera frame.
Standard pinhole camera equations convert 2D and depth into 3D points in the camera
frame, and an additional calibration finally converts it into the ShadowHand’s coordinate
system. Training of the model is done in sim, with fine-tuning on real-world data. Our
semi-automated process of composing static scenes with the spheres, moving the stereo rig,
and using VSLAM algorithms to label the images using relative poses of the camera views
substantially decreased the amount of hand-labelling that was requiring. We hand-labeled
only about 100 images in 25 videos, generating over 10,000 training images. We observe
average tracking errors of 5 mm and latency of 20 ms, split evenly between image capture
and model inference.

As shown in the supplementary video, we also implement an automated reset mechanism,
which consists of a ramp that funnels the dropped Baoding balls to a specific position and
then triggers a pre-preprogrammed 7-DoF Franka-Emika arm to use its parallel jaw gripper
to pick them up and return them to the Shadow Hand’s palm. The planner commands the
hand at 10Hz, which is communicated via a 0-order hold to the low-level position controller
that operates at 1kHz. The episode terminates if the specific task horizon of 10 seconds
has elapsed or if the hand drops either ball, at which point a reset request is issued again.
Numerous sources of delays in real robotic systems, in addition to the underactuated nature
of the real Shadow Hand, make the task quite challenging in the real world.
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Results: After less than 2 hours of real-world training, PDDM is able to learn 90◦ rotations
without dropping the two Baoding balls with a success rate of about 100%, and can achieve a
success rate of about 54% on the challenging 180◦ rotation task, as shown in Figure 4.10. An
example trajectory of the robot rotating the Baoding balls using PDDM is shown in Figure 4.2,
and videos on the project website 4 illustrate task progress through various stages of training.
Qualitatively, we note that performance improves fastest during the first 1.5 hours of training;
after this, the system must learn the more complex transition of transferring the control of
a Baoding ball from the pinky to the thumb (with a period of time in between, where the
hand has only indirect control of the ball through wrist movement). These results illustrate
that, although the real-world version of this task is substantially more challenging than its
simulated counterpart, our method can learn to perform it with considerable proficiency
using a modest amount of real-world training data.

4.5 Discussion
In this chapter, we presented a method for using deep model-based RL to learn dexterous
manipulation skills with multi-fingered hands. We demonstrated results on challenging non-
prehensile manipulation tasks, including controlling free-floating objects, agile finger gaits for
repositioning objects in the hand, and precise control of a pencil to write user-specified strokes.
As we showed in our experiments, our method achieves substantially better results than prior
deep model-based RL methods, and also demonstrates advantages over model-free RL: it
requires substantially less training data and results in a model that can be flexibly reused
to perform a wide variety of user-specified tasks. In addition to analyzing the approach on
our simulated suite of tasks using 1-2 hours worth of training data, we demonstrated PDDM
on a real-world 24 DoF anthropomorphic hand, showing successful in-hand manipulation of
objects using just 4 hours worth of entirely real-world interactions.

4https://sites.google.com/view/pddm/

https://sites.google.com/view/pddm/
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Chapter 5

Online Model Adaptation via
Meta-learning

Figure 5.1: Thesis outline, with
the current chapter indicated by
the last colored arrow.

Although reinforcement learning methods can achieve impres-
sive results in simulation, the real world presents a major chal-
lenges in the form of unexpected perturbations or unseen situa-
tions that cause proficient but specialized policies to fail at test
time. Given that it is impractical to train separate policies to
accommodate all situations the agent may see in the real world,
the work in this chapter proposes to learn how to quickly and
effectively adapt online to new tasks. The work in this chap-
ter extends the capabilities of model-based learning techniques
along the axis of usefulness and applicability, by going past the
paradigm of autonomous task learning and entering into the paradigm of online adaptation
of those learned skills to handle the diversity of variations that an agent is bound to face
when deployed in the world.

Figure 5.2: We implement our sample-efficient meta-reinforcement learning algorithm on a real legged
millirobot, enabling online adaptation to new tasks and unexpected occurrences such as losing a leg (shown
here), novel terrains and slopes, errors in pose estimation, and pulling payloads.
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Our approach uses meta-learning to train a dynamics model prior such that, when
combined with a small amount of recent data, this meta-learned prior can be rapidly adapted
to the local context. Our experiments demonstrate online adaptation for continuous control
tasks on both simulated and real-world agents. We first show simulated agents adapting their
behavior online to novel terrains, crippled body parts, and highly-dynamic environments. We
also illustrate the importance of incorporating online adaptation into autonomous agents
that operate in the real world by applying our method to a real dynamic legged millirobot.
We demonstrate the agent’s learned ability to quickly adapt online to a missing leg, adjust
to novel terrains and slopes, account for miscalibration or errors in pose estimation, and
compensate for pulling payloads. Videos of the experiments as well as the code are available
online1.

5.1 Introduction
Both model-based and model-free reinforcement learning (RL) methods generally operate in
one of two regimes: all training is performed in advance, producing a model or policy that can
be used at test-time to make decisions in settings that approximately match those seen during
training; or, training is performed online (e.g., as in the case of online temporal-difference
learning), in which case the agent can slowly modify its behavior as it interacts with the
environment. However, in both of these cases, dynamic changes such as failure of a robot’s
components, encountering a new terrain, environmental factors such as lighting and wind, or
other unexpected perturbations, can cause the agent to fail. In contrast, humans can rapidly
adapt their behavior to unseen physical perturbations and changes in their dynamics (Braun
et al. 2009): adults can learn to walk on crutches in just a few seconds, people can adapt
almost instantaneously to picking up an object that is unexpectedly heavy, and children that
can walk on carpet and grass can quickly figure out how to walk on ice without having to
relearn how to walk. How is this possible? If an agent has encountered a large number of
perturbations in the past, it can in principle use that experience to learn how to adapt. In
this work, we propose a meta-learning approach for learning online adaptation.

Motivated by the ability to tackle real-world applications, we specifically develop a model-
based meta-RL algorithm. In this model-based setting, data for updating the model is readily
available at every timestep in the form of recent experiences. Crucially, the meta-training
process for training such an adaptive model can be much more sample efficient than model-
free meta-RL approaches (Duan, John Schulman, X. Chen, Peter L. Bartlett, et al. 2016a;
J. X. Wang et al. 2016a; Finn, Abbeel, and Levine 2017c). Further, our approach foregoes
the episodic framework on which model-free meta-RL approaches rely on, where tasks are
pre-defined to be different rewards or environments, and tasks exist at the trajectory level
only. Instead, our method considers each timestep to potentially be a new “task”, where
any detail or setting could have changed at any timestep. This view induces a more general
meta-RL problem setting by allowing the notion of a task to represent anything from existing

1https://sites.google.com/berkeley.edu/metaadaptivecontrol

https://sites.google.com/berkeley.edu/metaadaptivecontrol
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in a different part of the state space, to experiencing disturbances, or attempting to achieve
a new goal.

Learning to adapt a model alleviates a central challenge of model-based RL: the problem
of acquiring a global model that is accurate throughout the entire state space. Furthermore,
even if it were practical to train a globally accurate dynamics model, the dynamics inherently
change as a function of uncontrollable and often unobservable environmental factors, such
as those mentioned above. If we have a model that can adapt online, it need not be
perfect everywhere a priori. This property has previously been exploited by adaptive control
methods (Åström and Wittenmark 2013; Sastry and Isidori 1989; P. Pastor et al. 2011; Meier,
Kappler, et al. 2016); but, scaling such methods to complex tasks and nonlinear systems is
challenging. Even when working with deep neural networks, which have been used to model
complex nonlinear systems (Kurutach et al. 2018b), it is exceptionally difficult to enable fast
adaptation, since such models typically require large amounts of data and many gradient
steps to learn effectively. By specifically training a neural network model to require only
a small amount of experience to adapt itself, we can enable effective online adaptation in
complex environments while putting less pressure on needing a perfect global model.

The primary contribution of our work is an efficient meta-RL approach that achieves
online adaptation in dynamic environments. To the best of knowledge, this is the first
meta-RL algorithm to be applied on a real robotic system. Our algorithm efficiently trains a
global model that is capable of using its recent experiences to quickly adapt, achieving fast
online adaptation in dynamic environments. We evaluate two versions of our approach, a
recurrence-based adaptive learner (ReBAL) and a gradient-based adaptive learner (GrBAL),
on stochastic and simulated continuous control tasks with complex contact dynamics (Fig. 5.3).
In our experiments, we show a quadrupedal “ant” adapting to the failure of different legs, as
well as a “half-cheetah” robot adapting to the failure of different joints, navigating terrains
with different slopes, and walking on floating platforms of varying buoyancy. Our model-based
meta-RL method attains substantial improvement over prior approaches, including standard
model-based methods (such as those introduced in the previous chapters), online model-
adaptive methods, model-free methods, and prior meta-RL methods, when trained with
similar amounts of data. In all experiments, meta-training across multiple tasks is sample
efficient, using only the equivalent of 1.5− 3 hours of real-world experience, roughly 10× less
than what model-free methods require to learn a single task. Finally, we demonstrate GrBAL
on a real dynamic legged millirobot (as introduced in Chapter 3, and also shown in Fig. 5.3).
To highlight not only the sample efficiency of our meta model-based RL approach, but also
the importance of fast online adaptation in the real world, we show the agent’s learned ability
to adapt online to tasks such as a missing leg, novel terrains and slopes, miscalibration or
errors in pose estimation, and new payloads to be pulled.
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5.2 Related Work
Advances in learning control policies have shown success on numerous complex and high di-
mensional tasks (John Schulman, Levine, et al. 2015; Timothy Lillicrap et al. 2015; Volodymyr
Mnih, Koray Kavukcuoglu, Silver, Rusu, et al. 2015; Levine, Finn, et al. 2016; Silver, Schrit-
twieser, et al. 2017). While RL algorithms provide a framework for learning new tasks,
they primarily focus on mastery of individual skills, rather than generalizing and quickly
adapting to new scenarios. Furthermore, model-free approaches (Peters and Schaal 2008)
require large amounts of system interaction to learn successful control policies, which often
makes them impractical for real-world systems. In contrast, model-based methods attain
superior sample efficiency by first learning a model of system dynamics, and then using
that model to optimize a policy (M. P. Deisenroth, Neumann, Peters, et al. 2013; Lenz,
Knepper, and Saxena 2015; Levine, Finn, et al. 2016; Nagabandi, Yang, et al. 2017; Williams,
Wagener, et al. 2017). Our approach alleviates the need to learn a single global model by
allowing the model to be adapted automatically to different scenarios online based on recent
observations. A key challenge with model-based RL approaches is the difficulty of learning
a global model that is accurate for the entire state space. Prior model-based approaches
tackled this problem by incorporating model uncertainty using Gaussian Processes (GPs) (Ko
and Fox 2009; Marc Deisenroth and Carl E Rasmussen 2011; Doerr et al. 2017). However,
these methods make additional assumptions on the system (such as smoothness), and do
not scale to high dimensional environments. (Chua et al. 2018b) has recently showed that
neural networks models can also benefit from incorporating uncertainty, and it can lead to
model-based methods that attain model-free performance with a significant reduction on
sample complexity. The work in this chapter is orthogonal to theirs, and can benefit from
incorporating such uncertainty.

Prior online adaptation approaches (Tanaskovic et al. 2013; Aswani, Bouffard, and Tomlin
2012) have aimed to learn an approximate global model and then adapt it at test time.
Dynamic evaluation algorithms (Rei 2015; Krause, Kahembwe, et al. 2017; Krause, Lu,
et al. 2016; Fortunato, Blundell, and Vinyals 2017), for example, learn an approximate
global distribution at training time and adapt those model parameters at test time to fit
the current local distribution via gradient descent. There exists extensive prior work on
online adaptation in model-based RL and adaptive control (Sastry and Isidori 1989). In
contrast from inverse model adaptation (Kelouwani et al. 2012; Underwood and Husain
2010; P. Pastor et al. 2011; Meier, Kappler, et al. 2016; Meier and Schaal 2016; Rai et al.
2017), we are concerned in the problem of adapting the forward model, closely related to
online system identification (Manganiello et al. 2014). Work in model adaptation (Levine
and Koltun 2013; Shixiang Gu, Timothy Lillicrap, Sutskever, et al. 2016; Fu, Levine, and
Abbeel 2015; Weinstein and Botvinick 2017) has shown that a perfect global model is not
necessary, and prior knowledge can be fine-tuned to handle small changes. These methods,
however, face a mismatch between what the model is trained for and how it is used at test
time. In this work, we bridge this gap by explicitly training a model for fast and effective
adaptation. As a result, our model achieves more effective adaptation compared to these
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prior works, as validated in our experiments.
Our problem setting relates to meta-learning, a long-standing problem of interest in

machine learning that is concerned with enabling artificial agents to efficiently learn new
tasks by learning to learn (Thrun and Pratt 1998b; Juergen Schmidhuber and Huber 1991;
Naik and Mammone 1992b; Lake, Salakhutdinov, and Tenenbaum 2015). A meta-learner can
control learning through approaches such as deciding the learner’s architecture (B. Baker et al.
2016), or by prescribing an optimization algorithm or update rule for the learner (Y. Bengio,
S. Bengio, and Cloutier 1990; Jürgen Schmidhuber 1992; Younger, Hochreiter, and Conwell
2001; Andrychowicz, Denil, et al. 2016; K. Li and J. Malik 2016; Ravi and Larochelle 2018).
Another popular meta-learning approach involves simply unrolling a recurrent neural network
(RNN) that ingests the data (Santoro et al. 2016b; Munkhdalai and H. Yu 2017b; Munkhdalai,
Yuan, et al. 2017; Mishra, Rohaninejad, et al. 2017a) and learns internal representations of
the algorithms themselves, one instantiation of our approach (ReBAL) builds on top of these
methods. On the other hand, the other instantiation of our method (GrBAL) builds on top
of MAML (Finn, Abbeel, and Levine 2017c). GrBAL differs from the supervised version
of MAML in that MAML assumes access to a hand-designed distribution of tasks. Instead,
one of our primary contributions is the online formulation of meta-learning, where tasks
correspond to temporal segments, enabling “tasks” to be constructed automatically from the
experience in the environment.

Meta-learning in the context of RL has largely focused on model-free approaches (Duan,
John Schulman, X. Chen, Peter L. Bartlett, et al. 2016a; J. X. Wang et al. 2016a; Sung et al.
2017; Al-Shedivat et al. 2017a). However, these algorithms present even more (meta-)training
sample complexity than non-meta model-free RL methods, which precludes them from
real-world applications. Recent work (Sæmundsson, Hofmann, and M. P. Deisenroth 2018)
has developed a model-based meta RL algorithm, framing meta-learning as a hierarchical
latent variable model, training for episodic adaptation to dynamics changes; the modeling
is done with GPs, and results are shown on the cart-pole and double-pendulum agents. In
contrast, we propose an approach for learning online adaptation of high-capacity neural
network dynamics models; we present two instantiations of this general approach and show
results on both simulated and real-world robots.

5.3 Preliminaries
In this section, we present model-based RL, introduce the meta-learning formulation, and
describe two main meta-learning approaches.

5.3.1 Model-Based Reinforcement Learning

As introduced in the previous chapters, RL agents aim to perform actions that maximize some
notion of cumulative reward. Concretely, consider a Markov decision process (MDP) defined
by the tuple (S,A, p, r, γ, ρ0, H). Here, S is the set of states, A is the set of actions, p(s′|s, a)
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is the state transition distribution, r : S ×A → R is a bounded reward function, ρ0 : S → R+

is the initial state distribution, γ is the discount factor, and H is the horizon. A trajectory
segment is denoted by τ(i, j) := (si, ai, ..., sj, aj, sj+1). Finally, the sum of discounted rewards
from a trajectory is the return. In this framework, RL aims to find a policy π : S → A that
prescribes the optimal action to take from each state in order to maximize the expected
return.

Model-based RL aims to solve this problem by learning the transition distribution
p(s′|s, a), which is also referred to as the dynamics model. This can be done using a
function approximator p̂θ(s′|s, a) to approximate the dynamics, where the weights θ are
optimized to maximize the log-likelihood of the observed data D. In practice, this model can
then be used in the process of action selection by either producing data from which to train a
policy, or by producing predictions and dynamics constraints to be optimized by a controller.

5.3.2 Meta-Learning

Meta-learning is concerned with automatically learning learning algorithms that are more
efficient and effective than learning each task from scratch. These algorithms leverage data
from previous tasks to acquire a learning procedure that can quickly adapt to new tasks.
These methods operate under the assumption that the previous meta-training tasks and the
new meta-test tasks are drawn from the same task distribution ρ(T ) and share a common
structure that can be exploited for fast learning. In the supervised learning setting, we aim
to learn a function fθ with parameters θ that minimizes a supervised learning loss L. Then,
the goal of meta-learning is to find a learning procedure, denoted as θ′ = uψ(Dtr

T , θ), that
can use just small amounts of data Dtr

T from each task T to generate updated or adapated
parameters θ′ such that the objective L is well optimized on other data Dtest

T from that same
task.

We can formalize this meta-learning problem setting as optimizing for the parameters of
the learning procedure θ, ψ as follows:

min
θ,ψ

ET ∼ρ(T )
[
L(Dtest

T , θ′)
]

s.t. θ′ = uψ(Dtr
T , θ) (5.1)

where Dtr
T ,Dtest

T are sampled without replacement from the meta-training dataset DT .
Once meta-training optimizes for the parameters θ∗, ψ∗, the learning procedure uψ(·, θ)

can then be used to learn new held-out tasks from small amounts of data. We will also refer
to this learned learning procedure u as the update function.

Gradient-based meta-learning. Model-agnostic meta-learning (MAML) (Finn, Abbeel,
and Levine 2017c) aims to learn the initial parameters of a neural network such that taking
one or several gradient descent steps from this initialization leads to effective generalization
(or few-shot generalization) to new tasks. Then, when presented with new tasks, the model
with the meta-learned initialization can be quickly fine-tuned using a few data points from
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the new tasks. Using the notation from before, MAML prescribed the learning algorithm
above to be gradient descent:

uψ(Dtr
T , θ) = θ − α∇θL(Dtr

T , θ) (5.2)

The learning rate α may be a learnable parameter (in which case ψ = α) or fixed as a
hyperparameter, leading to ψ = ∅. Despite the update rule being fixed, a meta-learned
initialization θ of an overparameterized deep network followed by gradient descent is as
expressive as update rules represented by deep recurrent networks (Finn and Levine 2017b).

Recurrence-based meta-learning. Another approach to meta-learning is to use recurrent
models. In this case, the update function is always learned, and ψ corresponds to the weights
of the recurrent model that update the hidden state. The parameters θ of the prediction
model correspond to the remainder of the weights of the recurrent model and the hidden
state. Both gradient-based and recurrence-based meta-learning methods have been used
for meta model-free RL (Finn, Abbeel, and Levine 2017c; Duan, John Schulman, X. Chen,
Peter L. Bartlett, et al. 2016a). We will build upon these ideas and instantiate them in
the model-based setting, to develop a meta model-based RL algorithm that not only is
sample-efficient in the meta-training process, but also enables effective online adaptation in
dynamic environments.

5.4 Meta-Learning for Online Model Adaptation
In this section, we present our approach for meta-learning for online model adaptation. As
explained in Section 5.3.2, standard meta-learning formulations require the learned model
θ∗, ψ∗ to learn using only Dtr

T from some new “task”. We will define this data to consist
of M data points. In prior gradient-based and model-based meta-RL approaches (Finn,
Abbeel, and Levine 2017c; Sæmundsson, Hofmann, and M. P. Deisenroth 2018), the M has
corresponded to M trajectories, leading to episodic adaptation.

Our notion of task is slightly more fluid, where every segment of a trajectory can be
considered to be a different “task,” and observations from the past M timesteps (rather than
the past M episodes) can be considered as providing information about the current task
setting. Since changes in system dynamics, terrain details, or other environmental changes
can occur at any time, we consider (at every time step) the problem of adapting the model
using the M past time steps to predict the next K timesteps. In this setting, M and K are
pre-specified hyperparameters.

In this work, we use the notion of environment E to denote different settings or configura-
tions of a particular problem, ranging from malfunctions in the system’s joints to the state
of external disturbances. We assume a distribution of environments ρ(E) that share some
common structure, such as the same observation and action space, but may differ in their
dynamics pE(s′|s, a). We denote a trajectory segment by τE(i, j), which represents a sequence
of states and actions (si, ai, ..., sj, aj, sj+1) sampled within an environment E . Our algorithm
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assumes that the environment is locally consistent, in that every segment of length j − i is
from the same environment. Even though this assumption is not always correct, it allows us
to learn to adapt from data without knowing when the environment has changed. Due to the
fast nature of our adaptation (less than a second), this assumption is seldom violated.

We pose the meta-RL problem in this setting as an optimization over (θ, ψ) with respect
to a maximum likelihood meta-objective. The meta-objective is the likelihood of the data
under a predictive model p̂θ′(s′|s, a) with parameters θ′, where θ′ = uψ(τE(t−M, t− 1), θ)
corresponds to model parameters that were updated using the pastM data points. Concretely,
this corresponds to the following optimization:

min
θ,ψ

EτE(t−M,t+K)∼D
[
L(τE(t, t+K), θ′E)

]
s.t.: θ′E = uψ(τE(t−M, t− 1), θ), (5.3)

where the τE(t−M, t+K) ∼ D corresponds to trajectory segments sampled from the replay
buffer, and the loss L corresponds to the negative log likelihood of the data under the model:

L(τE(t, t+K), θ′E) , −
1

K

t+K∑
k=t

log p̂θ′E (sk+1|sk, ak). (5.4)

In the meta-objective in Equation 5.3, note that the pastM points are used to adapt θ into θ′,
and the loss of this θ′ is evaluated on the future K points. Thus, at every time step t, we use
the past M timesteps to provide insight into how to adapt our model such that it performs
well for timesteps in the near future. As outlined in Algorithm 4 below, the update rule uψ
for the inner update and a gradient step on θ for the outer update allow us to optimize this
meta-objective of adaptation. By training with this objective during meta-train time, we
learn the ability to fine-tune the model using just M data points and thus achieve fast online
adaptation. Note that, in our experiments, we compare this approach to using the same M
data points to adapt a model that was not meta-learned, and we see that this meta-training
objective is indeed necessary to enable fast adaptation at test time. We instantiate two
versions of our algorithm below, using a recurrence-based meta-learner and a gradient-based
meta-learner.

(1) Gradient-Based Adaptive Learner (GrBAL). GrBAL uses a gradient-based meta-
learner to perform online adaptation; in particular, we use MAML (Finn, Abbeel, and Levine
2017c). In this case, our update rule is prescribed by gradient descent ( 5.5).

θ′E = uψ(τE(t−M, t− 1), θ) = θ + ψ∇θ
1

M

t−1∑
m=t−M

log p̂θ(sm+1|sm, am) (5.5)

(2) Recurrence-Based Adaptive Learner (ReBAL). ReBAL, instead, utilizes a recur-
rent model, which learns its own update rule (i.e., through its internal gating structure). In
this case, uψ corresponds to the weights of the recurrent model that update its hidden state.
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Algorithm 4 Model-Based Meta-RL (train
time)
Require: Distribution ρE over tasks
Require: Learning rate β ∈ R+

Require: Number of sampled tasks N ,
dataset D

Require: Task sampling frequency nS ∈ Z+

1: Randomly initialize θ
2: for i = 1, ... do
3: if i mod nS = 0 then
4: Sample E ∼ ρ(E)
5: Collect τE using Alg. 5
6: D ← D ∪ {τE}
7: end if
8: for j = 1 . . . N do
9: τE(t−M, t− 1), τE(t, t+K) ∼ D
10: θ′E ← uψ(τE(t−M, t− 1), θ)
11: Lj ← L(τE(t, t+K), θ′E)
12: end for

13: θ ← θ − β∇θ
1
N

N∑
j=1

Lj

14: ψ ← ψ − η∇ψ
1
N

N∑
j=1

Lj
15: end for
16: Return (θ, ψ) as (θ∗, ψ∗)

Algorithm 5 Online Model Adaptation
(test time)
Require: Meta-learned params θ∗, ψ∗
Require: controller(), H, r, nA, M
1: τ ← ∅
2: for each timestep t do
3: θ′∗ ← uψ∗(τ(t−M, t− 1), θ∗)
4: at ← controller(θ′∗, r,H, nA)
5: Execute at, add result to τ
6: end for
7: Return rollout τ

Figure 5.3: Two real-world and four simulated
environments on which our method is evalu-
ated and adaptation is crucial for success (e.g.,
adapting to different slopes and leg failures)

5.5 Model-Based Meta-Reinforcement Learning
Now that we have discussed our approach for enabling online adaptation, we next propose
how to build upon this idea to develop a model-based meta-reinforcement learning algorithm.
First, we explain how the agent can use the adapted model to perform a task, given parameters
θ∗ and ψ∗ from optimizing the meta-learning objective.

Given θ∗ and ψ∗, we use the agent’s recent experience to adapt the model parameters:
θ′∗ = uψ∗(τ(t −M, t − 1), θ∗). This results in a model p̂θ′∗ that better captures the local
dynamics in the current setting, task, or environment. This adapted model is then passed to
our controller, along with the reward function r and a planning horizon H. We use a planning
H that is smaller than the adaptation horizon K, since the adapted model is only valid
within the current context. We use model predictive path integral control (MPPI) (Williams,
Aldrich, and Theodorou 2015) as the choice of MPC controller for performing action selection,
but, in principle, our model adaptation approach is agnostic to the model predictive control



CHAPTER 5. ONLINE MODEL ADAPTATION VIA META-LEARNING 68

(MPC) method used.
As discussed in the previous chapters, the use of MPC compensates for model inaccuracies

by preventing accumulating errors, since we replan at each time step using updated state
information. MPC also allows for further benefits in this setting of online adaptation, because
the model p̂θ′∗ itself will also improve by the next time step. After taking each step, we
add the resulting state transition into our dataset, reset the model parameters back to the
meta-learned θ∗, and repeat the entire planning process for each timestep. See Algorithm 5
for this adaptation procedure. Finally, in addition to performing this model adaptation at
each time step during test-time, we also perform this online adaptation procedure during the
meta-training phase itself, to provide on-policy rollouts for meta-training. For the complete
meta-RL algorithm, see Algorithm 4.

5.6 Simulated Experimental Results of Online
Adaptation via Meta-learning

Before testing our approach on a real robot in the next section, we first perform extensive
evaluation in simulation to answer the following questions:

1. Is adaptation actually changing the model?

2. Does our approach enable fast adaptation to varying dynamics, tasks, and environments,
both inside and outside of the training distribution?

3. How does our method’s performance compare to that of other methods?

4. How do GrBAL and ReBAL compare?

5. How does meta model-based RL compare to meta model-free RL in terms of meta-
training sample efficiency and meta-test performance for these experiments?

Videos of these experiments as well as the code are available online2.

We first conduct a comparative evaluation of our algorithm on a variety of simulated
robots using the MuJoCo physics engine (Emanuel Todorov, Erez, and Tassa 2012a). For all
of our environments, we model the transition probabilities as Gaussian random variables with
mean parameterized by a neural network model (3 hidden layers of 512 units each and ReLU
activations) and fixed variance. In this case, maximum likelihood estimation corresponds
to minimizing the mean squared error. We now describe the setup of our environments
(Fig. 5.3), where each agent requires different types of adaptation to succeed at run-time, as
described below.

2https://sites.google.com/berkeley.edu/metaadaptivecontrol

https://sites.google.com/berkeley.edu/metaadaptivecontrol
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Half-cheetah (HC): disabled joint. For each rollout during meta-training, we randomly
sample a joint to be disabled (i.e., the agent cannot apply torques to that joint). At test
time, we evaluate performance in two different situations: (a) disabling a joint unseen during
training, to test generalization in the face of a new environment (referred to as “HC Dis.
Gen”), and (b) switching between disabled joints during a rollout, to test fast adaptation to
changing dynamics (referred to as “HC Dis. F.A.”).

HC: sloped terrain. For each rollout during meta-training, we randomly select an upward
or downward slope of low steepness. At test time, we evaluate performance on an unseen
setting of a steep hill that first goes up and then down (referred to as “HC Hill”).

HC: pier. In this experiment, the cheetah runs over a series of blocks that are floating on
water. Each block moves up and down when stepped on, and the changes in the dynamics
are frequent due to each block having different damping and friction properties. The HC is
meta-trained by varying these block properties, and tested on a specific (randomly-selected)
configuration of properties.

Ant: crippled leg. For each meta-training rollout, we randomly sample a leg to cripple
on this quadrupedal robot. This causes unexpected and drastic changes to the underlying
dynamics. We evaluate this agent at test time in two different situations: (a) crippling a leg
unseen during training, to test generalization in the face of a new environment (referred to
as “Ant Crip. Gen.”), and (b) switching between normal operation and having a crippled
leg within a rollout, to test fast adaptation to changing dynamics (referred to “Ant Crip. F.A.”).

In the following sections, we evaluate our model-based meta-RL methods (GrBAL and
ReBAL) in comparison to the prior methods described below.

• Model-free RL (TRPO): To evaluate the importance of adaptation, we compare to a
model-free RL agent that is trained across environments E ∼ ρ(E) using TRPO (John
Schulman, Levine, et al. 2015).

• Model-free meta-RL (MAML-RL): We compare to a state-of-the-art model-free meta-
RL method, MAML-RL (Finn, Abbeel, and Levine 2017c).

• Model-based RL (MB): Similar to the model-free agent, we also compare to a single
model-based RL agent, to evaluate the importance of adaptation. This model is trained
using supervised model-error and iterative model bootstrapping. This is the model-based
approach developed in the previous chapters.

• Model-based RL with dynamic evaluation (MB+DE): We compare to an agent
trained with model-based RL, as above. However, at test time, the model is adapted by
taking a gradient step at each timestep using the past M observations, akin to dynamic
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evaluation (Krause, Kahembwe, et al. 2017). This final comparison evaluates the benefit of
explicitly training for adaptability (i.e., meta-training).

All model-based approaches (MB, MB+DE, GrBAL, and ReBAL) use the same neural
network architecture, and use the same planner within experiments: MPPI (Williams, Aldrich,
and Theodorou 2015) for the simulated experiments and random shooting (RS) (Nagabandi,
Kahn, Ronald S Fearing, et al. 2017) for the real-world experiments.

5.6.1 Effect of Adaptation: Pre-update vs. Post-update Model
Prediction Errors

First, we analyze the effect of the model adaptation, and show results from test-time runs
on various environments. Figures 5.4 and 5.5 display the distribution shift between the
pre-update and post-update model prediction errors of three GrBAL runs. Across all tasks
and environments, the post-updated model p̂θ′∗ achieves lower prediction error than the
pre-updated model p̂θ∗ . This shows that using the past M timesteps to update θ∗ (pre)
into θ′∗ (post) does indeed reduce the model prediction error when querying the model for
predictions of the future K timesteps.

Figure 5.4: Histogram of the K step normalized
model prediction error across different tasks. Gr-
BAL achieves lower model error when using the
post-update parameters as given by the update
rule.

Figure 5.5: An alternate visualization of the infor-
mation from the previous figure. Here, at each
timestep, we show the K step normalized model
prediction error across different tasks. GrBAL
achieves lower model error when using the post-
update parameters as given by the update rule.

5.6.2 Test Performance and Meta-training Sample Efficiency

We first study the sample efficiency of the meta-training process. Figure 5.6 shows the
average return across test environments w.r.t. the amount of data used for meta-training.
We (meta-)train the model-free methods (TRPO and MAML-RL) until convergence, using
the equivalent of about two days of real-world experience. In contrast, we meta-train the
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model-based methods (including our approach) using the equivalent of 1.5-3 hours of real-
world experience. Our methods result in superior or equivalent performance to the model-free
agent that is trained with 1000× more data. Our methods also surpass the performance of
the non-meta-learned model-based approaches. Finally, our performance closely matches the
high asymptotic performance of the model-free meta-RL method for half-cheetah disabled,
and achieves a suboptimal performance for ant crippled but, again, it does so with the
equivalent of 1000× less data. Note that this suboptimality in asymptotic performance
is a known issue with model-based methods, and thus an interesting direction for future
efforts. The improvement in sample efficiency from using model-based methods matches prior
findings (Marc Deisenroth and Carl E Rasmussen 2011; Nagabandi, Kahn, Ronald S Fearing,
et al. 2017; Kurutach et al. 2018b); the most important evaluation, which we discuss in more
detail next, is the ability for our method to adapt online to drastic dynamics changes in only
a handful of timesteps.

Figure 5.6: Compared to model-free RL, model-free meta-RL, and model-based RL methods, our
model-based meta-RL methods achieve good performance with 1000× less data. Dotted lines indicate
performance at convergence. For MB+DE+MPPI, we perform dynamic evaluation at test time on
the final MB+MPPI model.

5.6.3 Test-time Performance: Online Adaptation & Generalization

In our second comparative evaluation, we evaluate final test time performance for both GrBAL
and ReBAL in comparison to the aforementioned methods. In the interest of developing
efficient algorithms for real-world applications, we operate all methods in the low data regime
for all experiments: the amount of data available for (meta-)training is fixed across methods,
and roughly corresponds to 1.5-3 hours of real-world experience depending on the domain.
We also provide the performance of a MB oracle, which is trained using unlimited data
from only the given test environment (rather than needing to generalize to various training
environments).
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Figure 5.7: Simulated results in a variety of dy-
namic test environments. GrBAL outperforms
other methods, even the MB oracle which is spe-
cialized to that particular test environment, in all
experiments where fast adaptation is necessary.
These results highlight the difficulty of training a
global model, and the importance of adaptation.

In these experiments, note that all
agents were meta-trained on a distribution of
tasks/environments (as detailed above), but
we then evaluate their adaptation ability on
new (i.e., unseen) environments at test time.
We test the ability of each approach to adapt
to sudden changes in the environment, as
well as to generalize beyond the training en-
vironments. We evaluate the fast adaptation
(F.A.) capability on the HC disabled joint,
ant crippled leg, and the HC pier. On the
first two, we cause a joint/leg of the robot to
malfunction in the middle of a rollout. We
evaluate the generalization component (Gen.)
also on the tasks of HC disabled joint and ant
crippled leg, but this time, the leg/joint that
malfunctions has not been seen as crippled
during training. The last environment that
we test generalization on is the HC slopped
terrain for a hill, where the agent has to run
up and down a steep slope, which is outside of the gentle slopes that it experienced during
training. The results, shown in Fig. 5.7, show returns that are normalized such that the MB
oracle achieves a return of 1.

In all experiments, due to low quantity of training data, TRPO performs poorly. Although
MB+DE achieves better generalization than MB, the slow nature of its adaptation causes it
to fall behind MB in the environments that require fast adaptation. On the other hand, our
approach surpasses all other approaches in all of the experiments. In fact, in the HC pier
and the fast adaptation of ant environments, our approach surpasses the model-based oracle.
This result showcases the importance of adaptation in stochastic environments, where even a
model trained with a lot of data cannot be robust to unexpected occurrences or disturbances.
ReBAL displays its strengths on scenarios where longer sequential inputs allow it to better
asses current environment settings, but overall, GrBAL seems to perform better for both
generalization and fast adaptation.

5.6.4 Effect of Meta-Training Distribution

To see how training distribution affects test performance, we ran an experiment that used
GrBAL to train models of a 7-DOF robotic arm, where each model was trained on the same
number of datapoints during meta-training, but those datapoints came from different ranges
of force perturbations. We observe in Fig. 5.8 that

1. Seeing a larger range of tasks during training is helpful during testing – a model that
saw a large range of force perturbations during training performed the best.
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Figure 5.8: Effect of the meta-training distribution on test performance

2. A model that saw no perturbation forces (e.g., trained on a single task) during training
did the worst at test time.

3. The middle 3 training ranges show comparable performance in the “constant force =
4” case, which is an out-of-distribution task for those models. Thus, there is not actually a
strong restriction on what needs to be seen during training in order for adaptation to occur
at train time (though there is a general trend that more is better).

5.6.5 Sensitivity of K and M

In this section we analyze how sensitive is our algorithm w.r.t the hyperparameters K and M .
In all experiments, we set K equal toM . Figure 5.9 shows the average return of GrBAL across
meta-training iterations of our algorithm for different values of K = M . The performance
of the agent is largely unaffected for different values of these hyperparameters, suggesting
that our algorithm is not particularly sensitive to these values. For different agents, the
optimal value for these hyperparameters depends on various task details, such as the amount
of information present in the state (e.g., a fully-informed state variable precludes the need for
additional past timesteps) and the duration of a single timestep (a longer timestep duration
makes it harder to predict more steps into the future).
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Figure 5.9: Learning curves, for different values of K = M , of GrBAL in the half-cheetah disabled
and sloped terrain environments. curves suggest that GrBAL performance is fairly robust to the
values of these hyperparameters.

5.6.6 Reward functions

For each MuJoCo agent, the same reward function is used in these experiments, across all
tasks. Table 5.1 shows the reward functions used for each agent. In this table, xt refers to
the x-coordinate of the agent at time t, eet refers to the position of the end-effector of the
7-DoF arm, and g corresponds to the position of the desired goal.

Table 5.1: Reward functions

Reward function

Half-cheetah xt+1−xt
0.01

− 0.05‖at‖22

Ant xt+1−xt
0.02

− 0.005‖at‖22 + 0.05

7-DoF Arm −‖eet − g‖22

5.6.7 Hyperparameters

Below, we list the hyperparameters of our experiments. In all experiments we used a single
gradient step for the update rule of GrBAL. The learning rate (LR) of TRPO in the table
below corresponds to the Kullback–Leibler divergence constraint. # Task/itr corresponds to
the number of tasks sampled while collecting new data, whereas # TS/itr is the total number
of times steps collected (across all tasks). T refers to the number of steps in each rollout, nA
is the number of actions sampled for each controller step of performing action selection, H is
the planning horizon for the MPC planner, and K = M is the number of past steps used for
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adapting the model as well as the number of future steps on which to validate the adapted
model’s prediction loss.

Table 5.2: Hyperparameters for the half-cheetah tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T nA Train H Train nA Test H Test

GrBAL 0.001 0.01 50 32 32 500 32 64000 1000 1000 10 2500 15

ReBAL 0.001 - 50 32 32 500 32 64000 1000 1000 10 2500 15

MB 0.001 - 50 - - 500 64 64000 1000 1000 10 2500 15

TRPO 0.05 - - - - 50000 50 50000 1000 - - - -

Table 5.3: Hyperparameters for the ant tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T nA Train H Train nA Test H Test

GrBAL 0.001 0.001 50 10 16 500 32 24000 500 1000 15 1000 15

ReBAL 0.001 - 50 32 16 500 32 32000 500 1000 15 1000 15

MB 0.001 - 70 - - 500 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -

Table 5.4: Hyperparameters for the 7-DoF arm tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T na Train H Train na Test H Test

GrBAL 0.001 0.001 50 32 16 1500 32 24000 500 1000 15 1000 15

ReBAL 0.001 - 50 32 16 1500 32 24000 500 1000 15 1000 15

MB 0.001 - 70 - - 10000 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -
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5.7 Real-world Results of Online Adaptation via
Meta-learning

To test our meta model-based RL method’s sample efficiency, as well as its ability to perform
fast and effective online adaptation, we applied GrBAL to a real legged millirobot, comparing
it to model-based RL (MB) and model-based RL with dynamic evaluation (MB+DE). Due
to the cost of running real robot experiments, we chose the better performing method (i.e.,
GrBAL) to evaluate on the real robot. This small 6-legged robot, as used in Chapter 3 and
shown in Figures 7.3 and 5.3, presents a modeling and control challenge in the form of highly
stochastic and dynamic movement. This robot is an excellent candidate for online adaptation
for many reasons: the rapid manufacturing techniques and numerous custom-design steps
used to construct this robot make it impossible to reproduce the same dynamics for each
manufactured robot, its linkages and other body parts deteriorate over time, and it moves
very quickly and dynamically with bounding-style gaits; hence, its dynamics are strongly
dependent on the terrain or task at hand.

The state space of the robot is a 24-dimensional vector, including center of mass positions
and velocities, center of mass pose and angular velocities, back-EMF readings of motors,
encoder readings of leg motor angles and velocities, and battery voltage. We define the action
space to be velocity setpoints of the rotating legs. The action space has a dimension of two,
since one motor on each side is coupled to all three of the legs on that side. Computation
is done on an external computer, and the velocity setpoints are streamed over radio at 10
Hz to be executed by a PID controller on the microcontroller on-board of the robot. All
experiments were conducted in a motion capture room to get center of mass position and
velocity of the robot.

We meta-train a dynamics model for this robot using the meta-objective described in
Equation 5.3, and we train it to adapt on entirely real-world data from three different training
terrains: carpet, styrofoam, and turf. We collect approximately 30 minutes of data from each
of the three training terrains. This data was entirely collected using a random policy, in
conjunction with a safety policy, whose sole purpose was to prevent the robot from exiting
the area of interest.

Our first set of results in Table 5.5 show that both (a) a model trained with a standard
supervised learning objective (MB, as introduced in the previous chapters) and (b) a GrBAL
model (which is trained with a meta-learning objective instead of a standard one) achieve
comparable performance for executing desired trajectories on terrains that were seen during
training.
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Figure 5.10: GrBAL significantly outperforms both MB and MB+DE, when tested on environments
that require online adaptation and/or were never seen during training.

Left Str Z-z F-8

Carpet GrBAL 4.07 3.26 7.08 5.28

MB 3.94 3.26 6.56 5.21

Styrofoam GrBAL 3.90 3.75 7.55 6.01

MB 4.09 4.06 7.48 6.54

Turf GrBAL 1.99 1.65 2.79 3.40

MB 1.87 1.69 3.52 2.61

Table 5.5: Trajectory following costs for real-world GrBAL and MB results when tested on three
terrains that were seen during training. Tested here for left turn (Left), straight line (Str), zig-zag
(Z-z), and figure-8 shapes (F-8). The methods perform comparably, indicating that online adaptation
is not needed in settings that are indeed seen during training, but including it is not detrimental.

Next, we test the performance of our method on what it is intended for: fast online
adaptation of the learned model to enable successful execution in new and changing environ-
ments at test time. Similar to the comparisons above, we compare GrBAL to a model-based
method (MB) that involves neither meta-training nor online adaptation, as well as a dynamic
evaluation method that involves online adaptation of that MB model (MB+DE). Our results
in Fig. 5.10 demonstrate that GrBAL substantially outperforms MB and MB+DE. Unlike
MB and MB+DE, GrBAL can quickly (1) adapt online to a missing leg, (2) adjust to novel
terrains and slopes, (3) account for miscalibration or errors in pose estimation, and (4)
compensate for pulling unepxected payloads.

None of these environments were seen during training time, but the agent’s ability to learn
how to learn enables it to quickly leverage its prior knowledge and fine-tune to adapt to these



CHAPTER 5. ONLINE MODEL ADAPTATION VIA META-LEARNING 78

Figure 5.11: The dotted black line indicates the desired trajectory in the xy plane. GrBAL adapts
online to prevent drift from a missing leg, prevents sliding sideways down a slope, accounts for
pose miscalibration errors, and adjusts to pulling payloads (left to right). Note that none of
these tasks/environments were seen during training time, and they require fast and effective online
adaptation for success.

new environments online (i.e., in less than a second). Furthermore, the poor performance of
the MB and MB+DE baselines demonstrate not only the need for adaptation, but also the
importance of meta-learning to give us good initial parameters to adapt from. The qualitative
results of these experiments, shown in Fig. 5.11, show that GrBAL allows the legged robot
to adapt online and effectively follow the target trajectories, even in the presence of new
environments and unexpected perturbations at test time.

5.8 Discussion
In this chapter, we presented an approach for model-based meta-RL that enabled fast, online
adaptation of large and expressive models in dynamic environments. We showed that meta-
learning a model for online adaptation resulted in a method that is able to adapt to unseen
situations or sudden and drastic changes in the environment, and is also sample efficient to
train. We provided two instantiations of our approach (ReBAL and GrBAL), and we provided
a comparison with other prior methods on a range of continuous control tasks. Finally, we
showed that (compared to model-free meta-RL approaches), our approach is practical for
real-world applications, and that this capability to adapt quickly is particularly important
under complex real-world dynamics.
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Chapter 6

Continual Model Adaptation via
Expectation Maximization

Figure 6.1: Thesis outline, with
the current chapter indicated by
the last colored arrow.

In the first few chapters, we presented model-based RL methods
for performing effective and sample-efficient learning, and we
demonstrated results in both simulation and the real world in
the areas of locomotion and dexterous manipulation. These
models already demonstrated some level of generalization in
that, due to the decoupling of the tasks from the dynamics, a
single model could be used to perform different tasks such as
the handwriting of different trajectories. Although this led to
a degree of generalization and flexibility that surpassed being
able to only solve a single task, the previous chapter showed
that those approaches to model-based RL were not quite sufficient for robots to be viable for
deployment in the real world. The previous chapter discussed the inevitable mismatch between
an agent’s training conditions and the test conditions in which it may actually be deployed,
and the need to address that mismatch. From the fact that a learned model will never be
perfectly correct, to the fact that the real world has numerous sources of perturbations (e.g.,
wind, lighting, unexpected payloads, etc.) or unexpected changes (e.g., motor malfunctions,
change of terrain, etc.), it becomes clear that online adaptation of our models is critical for
enabling systems to operate in more realistic and uncontrolled environments. Inspired by the
ability of humans and animals to adapt extremely quickly in the face of unexpected changes,
the work in the previous chapter enabled this fast adaptation for deep neural network models,
which normally lack this capacity for rapid online adaptation. By designing an effective and
efficient meta-learning algorithm, the work in the previous chapter enabled a learned model
to adapt online to previously unseen situations or changes in the environment.

The work in this chapter further extends those online adaptation capabilities along the axis
of usefulness and applicability by developing a more continual adaptation procedure at test
time. In this chapter, we present our meta-learning for online learning (MOLe) approach: We
formulate an online learning procedure that uses stochastic gradient descent to update model
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parameters, and an expectation maximization algorithm with a Chinese restaurant process
prior to develop and maintain a mixture of models to handle non-stationary task distributions.
This improved adaptation procedure allows for all models to be adapted as necessary, with
new models instantiated for task changes and old models recalled when previously seen tasks
are encountered again. By enabling specialization without sacrificing the generalization that
was introduced in the previous chapter, and thus allowing for adaptation to tasks that are
further outside of the training distribution, MOLe outperforms prior methods in enabling
effective continuous adaptation in non-stationary task distributions on various simulated
environments. Videos of the experiments are available online1.

6.1 Introduction
Human and animal learning is characterized not just by a capacity to acquire complex skills,
but also the ability to adapt rapidly when those skills must be carried out under new or
changing conditions. For example, animals can quickly adapt to walking and running on
different surfaces (Herman 2017) and humans can easily modulate force during reaching move-
ments in the presence of unexpected perturbations (Flanagan and Wing 1993). Furthermore,
these experiences are remembered, and can be recalled to adapt more quickly when similar
disturbances occur in the future (Doyon and Benali 2005). Since learning entirely new models
on such short time-scales is impractical, we can devise algorithms that explicitly train models
to adapt quickly from small amounts of data. Such online adaptation is crucial for intelligent
systems operating in the real world, where changing factors and unexpected perturbations are
the norm. In this chapter, we propose an algorithm for fast and continuous online learning
that utilizes deep neural network models to build and maintain a task distribution, allowing
for the natural development of both generalization as well as task specialization.

Our working example is continuous adaptation in the model-based reinforcement learning
(RL) setting, though our approach generally addresses any online learning scenario with
streaming data. We assume that each “trial” consists of multiple tasks, and that the
delineation between the tasks is not provided explicitly to the learner – instead, the method
must adaptively decide what “tasks” even represent, when to instantiate new tasks, and when
to continue updating old ones. For example, a robot running over changing terrain might
need to handle uphill and downhill slopes, and might choose to maintain separate models
that become specialized to each slope, adapting to each one in turn based on the currently
inferred surface.

We perform adaptation simply by using online stochastic gradient descent (SGD) on the
model parameters, while maintaining a mixture model over model parameters for different
tasks. The mixture is updated via the Chinese restaurant process (Stimberg, Ruttor, and
Opper 2012), which enables new tasks to be instantiated as needed over the course of a trial.
Although online learning is perhaps one of the oldest applications of SGD (Bottou 1998),
modern parametric models such as deep neural networks are exceedingly difficult to train

1https://sites.google.com/berkeley.edu/onlineviameta

https://sites.google.com/berkeley.edu/onlineviameta
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online with this method. They typically require medium-sized minibatches and multiple
epochs to arrive at sensible solutions, which is not suitable when receiving data in an online
streaming setting. One of our key observations is that meta-learning can be used to learn
a prior initialization for the parameters that makes such direct online adaptation feasible,
with only a handful of gradient steps. The meta-training procedure we use is based on
model-agnostic meta-learning (MAML) (Finn, Abbeel, and Levine 2017a), where a prior
weight initialization is learned for a model so as to optimize improvement on any task from a
meta-training task distribution after a small number of gradient steps.

Meta-learning with MAML has previously been extended to model-based RL (Nagabandi,
Clavera, et al. 2018), but only for the k-shot adaptation setting: The meta-learned prior
model is adapted to the k most recent time steps, but the adaptation is not carried forward in
time (i.e., adaptation is always performed from the prior itself). Note that this is the method
presented in the previous chapter. This rigid batch-mode setting is restrictive in an online
learning setup and is insufficient for tasks that are further outside of the training distribution.
A more natural formulation is one where the model receives a continuous stream of data and
must adapt online to a potentially non-stationary task distribution. This requires both fast
adaptation and the ability to recall prior tasks, as well as an effective adaptation strategy to
interpolate as needed between the two.

The primary contribution of this work is a meta-learning for online learning (MOLe)
algorithm that uses expectation maximization, in conjunction with a Chinese restaurant
process prior on the task distribution, to learn mixtures of neural network models that are
each updated with online SGD. In contrast to prior multi-task and meta-learning methods,
our method’s online assignment of soft task probabilities allows for task specialization to
emerge naturally, without requiring task delineations to be specified in advance. We evaluate
MOLe in the context of model-based RL on a suite of challenging simulated robotic tasks
including disturbances, environmental changes, and simulated motor failures. The simulated
experiments show a half-cheetah agent and a hexapedal crawler robot performing continuous
model adaptation in an online setting. Our results show online instantiation of new tasks,
the ability to adapt to out-of-distribution tasks, and the ability to recognize and revert back
to prior tasks. Additionally, we demonstrate that MOLe outperforms the state-of-the-art
prior method that was introduced in the previous chapter (which does k-shot model-based
meta-RL), as well as natural baselines such as continuous gradient updates for adaptation
and online learning without meta-training.

6.2 Related Work
Online learning is one of the oldest subfields of machine learning (Bottou 1998; Jafari et
al. 2001). Prior algorithms have used online gradient updates (Duchi, Hazan, and Singer
2011) and probabilistic filtering formulations (Murphy 2002; Hoffman, Bach, and Blei 2010;
Broderick et al. 2013). In principle, commonly used gradient-based learning methods, such
as SGD, can easily be used as online learning algorithms (Bottou 1998). In practice, their
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performance with deep neural network function approximators is limited (Sahoo et al. 2017):
such high-dimensional models must be trained with batch-mode methods, minibatches, and
multiple passes over the data. We aim to lift this restriction by using model-agnostic meta-
learning (MAML) to explicitly pretrain a model that enables fast adaptation, which we
then use for continuous online adaptation via an expectation maximization algorithm with a
Chinese restaurant process (Blei, Ng, and Michael I Jordan 2003) prior for dynamic allocation
of new tasks in a non-stationary task distribution.

Online learning is related to that of continual or lifelong learning (Thrun 1998), where
the agent faces a non-stationary distribution of tasks over time. However, unlike works that
focus on avoiding negative transfer, i.e. catastrophic forgetting (Kirkpatrick et al. 2017;
Rebuffi, Kolesnikov, and Lampert 2017; Zenke, Poole, and Ganguli 2017; Lopez-Paz et al.
2017; Nguyen et al. 2017), online learning focuses on the ability to rapidly learn and adapt in
the presence of non-stationarity. While some continual learning works consider the problem
of forward transfer, e.g. (Rusu et al. 2016; Aljundi, Chakravarty, and Tuytelaars 2017; Y.-X.
Wang, Ramanan, and Hebert 2017), these works and others in continual learning generally
focus on small sets of tasks where fast, online learning is not realistically possible, since there
are simply not enough tasks to recover structure that enables fast, few-shot learning in new
tasks or environments.

Our approach builds on techniques for meta-learning or learning-to-learn (Thrun and Pratt
1998a; Jurgen Schmidhuber 1987; S. Bengio et al. 1992; Naik and Mammone 1992a). However,
most recent meta-learning work considers a setting where one task is learned at a time, often
from a single batch of data (Santoro et al. 2016a; Ravi and Larochelle 2017; Munkhdalai and
H. Yu 2017a; J. X. Wang et al. 2016b; Duan, John Schulman, X. Chen, Peter L Bartlett, et al.
2016c). In our work, we specifically address non-stationary task distributions and do not
assume that task boundaries are known. Prior work (Jerfel et al. 2018) has also considered non-
stationary task distributions; whereas (Jerfel et al. 2018) use the meta-gradient to estimate
the parameters of a mixture over the task-specific parameters, we focus on fast adaptation
and accumulation of task-specific mixture components during run-time optimization. Other
meta-learning works have considered non-stationarity within a task (Al-Shedivat et al. 2017b)
and episodes involving multiple tasks at meta-test time (Ritter et al. 2018), but they do not
consider continual online adaptation with unknown task separation. Prior work has also
studied meta-learning for model-based RL (Nagabandi, Clavera, et al. 2018), as presented in
the previous chapter. This prior method updates the model every time step, but each update
is a batch-mode k-shot update, using exactly k prior transitions and resetting the model at
each step. This allows for adaptive control, but does not enable continual online adaptation,
since updates from previous steps are always discarded. In our comparisons, we find that our
approach substantially outperforms this prior method. To our knowledge, this work is the
first to apply meta-learning to learn streaming online updates.
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6.3 MOLe: Meta-learning for Online Learning
We formalize the online learning problem setting as follows: at each time step, the model
receives an input xt and produces a prediction ŷt. It then receives a ground truth label yt,
which must be used to adapt the model to increase its prediction accuracy on the next input
xt+1. The true labels are assumed to come from some task distribution P (Yt|Xt, Tt), where Tt
is the task at time t. The tasks themselves change over time, resulting in a non-stationary task
distribution, and the identity of the task Tt is unknown to the learner. In real-world settings,
tasks might correspond to unknown parameters of the system (e.g., whether there’s a motor
malfunction on a robot), unknown underlying user preferences, or other unexpected events.
This problem statement covers a range of online learning problems that all require continual
adaptation to streaming data and trading off between generalization and specialization.

In our experiments, we use model-based RL as our working example, where the input xt
is a state-action pair, and the output yt is the next state. We discuss this application to
model-based RL in Section 6.4, but we keep the following derivation of our method general
for the case of arbitrary online prediction problems.

6.3.1 Online Learning with a Mixture of Meta-Trained Networks

We discuss our meta-learning for online learning (MOLe) algorithm in two parts: online
learning in this section, and meta-learning in the next. In this section, we explain our
online learning method that enables effective online learning using a continuous stream of
incoming data from a non-stationary task distribution. We discuss the process of obtaining a
meta-learned prior in Sec. 6.3.2, but we first formulate in this section an online adaptation
algorithm using SGD with expectation maximization to maintain and adapt a mixture model
over task model parameters (i.e., a probabilistic task distribution).

6.3.1.1 Overview

Let pθ(Tt)(yt|xt) represent the predictive distribution of the model on input xt, for an unknown
task Tt at time step t. In our mixture model, each option Ti for the task Tt corresponds to its
own set of model parameters θ(Ti). Our goal is to estimate model parameters θt(Ti) for each
task Ti in the non-stationary task distribution: This requires inferring the distribution over
tasks at each step P (Tt = Ti|xt,yt) ∀Ti given some data observations, using that inferred
task distribution to make predictions ŷt = pθ(Tt)(yt|xt), and also using it to update model
parameters from θt(Ti) to θt+1(Ti) ∀Ti. In practice, the parameters θ(Ti) of each model will
correspond to the weights of a neural network fθ(Ti).

Each model begins with some prior parameter vector θ∗, which we will discuss in more
detail in Section 6.3.2. Since the number of tasks is also unknown, we begin with one task at
time step 0, where |T | = 1 and thus θ0(T ) = {θ0(T0)} = {θ∗}. From here, we continuously
update all parameters in θt(T ) at each time step (as explained below) and add new tasks
as needed, in the attempt to model the true underlying process P (Yt|Xt, Tt), which we only
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observe in the form of incoming xt and yt observations. Since underlying task identities Tt
are unknown, we must also estimate this P (Tt) at each time step.

Thus, the online learning problem consists of iteratively inferring task probabilities
P (Tt = Ti|xt,yt), and then using that inferred task distribution to adapt θt(Ti) ∀Ti at each
time step t. The process of inferring the task probabilities is described in further details
below, but the model update step under the current inferred task distribution is done by
optimizing the expected log-likelihood of the data, given by

L = −ETt∼P (Tt|xt,yt)[log pθt(Tt)(yt|xt)], . (6.1)

Intuitively, this objective for updating the model seeks model parameters that best explain the
observed data, under the current task distribution. Overall, the algorithm iterates between
(a) using observed data to infer posterior task probabilities and then (b) using the inferred
task probabilities to perform a soft update of model parameters for all tasks. This iterative
procedure is detailed below, along with a mechanism for automatically instantiating new
tasks as needed.

6.3.1.2 Approximate Online Inference

We use expectation maximization (EM) to update the model parameters. In our case, the E
step in EM involves estimating the task distribution P (Tt = Ti|xt,yt) at the current time step,
while the M step involves updating model parameters for all tasks T from θt(T ) to obtain
the new model parameters θt+1(T ). The parameters are always updated by one gradient step
per time step, according to the inferred task responsibilities.

We first estimate the expectations over all tasks Ti in the task distribution, where the
posterior of each task probability can be written as follows:

P (Tt = Ti|xt,yt) ∝ p(yt|xt, Tt = Ti)P (Tt = Ti). (6.2)

Here, the likelihood of the data p(yt|xt, Tt = Ti) is directly given by the model as
pθt(Ti)(yt|xt), and the task prior can be chosen as desired. In this work, we choose to
formulate the task prior P (Tt = Ti) using a Chinese restaurant process (CRP). The CRP is
an instantiation of a Dirichlet process. In the CRP, at time t, the probability of each task Ti
should be given by

P (Tt = Ti) =
nTi

t− 1 + α
(6.3)

where nTi is the expected number of datapoints in task Ti for all steps 1, . . . , t− 1, and α is
a hyperparameter that controls the instantiation of new tasks. The prior therefore becomes

P (Tt = Ti) =

∑t−1
t′=1 P (Tt′ = Ti|xt′ ,yt′)

t− 1 + α
and P (Tt = Tnew) =

α

t− 1 + α
. (6.4)

Intuitively, this prior induces a bias that says that tasks seen more often are more likely, and
α controls the possibility of a new task. Combining this choice of prior with the likelihood
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given by the predictive model, we derive the following posterior task probability distribution:

P (Tt = Ti|xt,yt) ∝ pθt(Ti)(yt|xt)
[
t−1∑
t′=1

P (Tt′ = Ti|xt′ ,yt′) + 1(Tt′ = Tnew)α

]
. (6.5)

Having estimated the latent task probabilities, we next perform the M step, which improves
the expected log-likelihood in Equation 6.1 based on the inferred task distribution. Since
each task starts at t = 0 from the prior θ∗, the values of all parameters after t+ 1 update
steps becomes θt+1(T ) as follows:

θt+1(Ti) = θ∗ − β
t∑

t′=0

Pt(Tt′ = Ti|xt′ ,yt′)∇θt′ (Ti)
log pθt′ (Ti)(yt′ |xt′) ∀ Ti. (6.6)

If we assume that all parameters of θt(T ) have already been updated for the previous time
steps 0, . . . , t, we can approximate the last iteration of this update by simply updating all
parameters from θt(T ) to θt+1(T ) on the newest data:

θt+1(Ti) = θt(Ti)− βPt(Tt = Ti|xt,yt)∇θt(Ti) log pθt(Ti)(yt|xt) ∀ Ti. (6.7)

Algorithm 6 Online Learning with Mixture of Meta-
Trained Networks
Require: θ∗ from meta-training

Initialize t = 0, θ0(T ) = {θ0(T0)} = {θ∗}
for each time step t do

Calculate pθt(Ti)(yt|xt) ∀Ti
Calculate Pt(Ti) = Pt(Tt = Ti|xt,yt) ∀Ti
Calculate θt+1(Ti) by adapting from θt(Ti) ∀Ti
Calculate θt+1(Tnew) by adapting from θ∗

if Pt(Tnew) > Pt(Ti) ∀Ti then
Add θt+1(Tnew) to θt+1(T )
Recalculate Pt(Ti) using θt+1(Ti) ∀Ti
Recalculate θt+1(Ti) using updated Pt(Ti) ∀Ti

end if
T ∗ = argmaxTi

pθt+1(Ti)(yt|xt)
Receive next data point xt+1

end for

This procedure is an approximation,
since updates to task parameters θt(T )
will in reality also change the corre-
sponding task probabilities at previous
time steps. However, this approxima-
tion removes the need to store previ-
ously seen data points and yields a fully
online, streaming algorithm. Finally, to
fully implement the EM algorithm, we
should alternate the E and M steps to
convergence at each time step, rolling
back the previous gradient update to
θt(T ) at each iteration. In practice, we
found it sufficient to perform the E and
M steps only once per time step. While
this is a crude simplification, successive
time steps in the online learning scenario are likely to be correlated, making this procedure
reasonable. However, it is also straightforward to perform multiple steps of EM while still
remaining fully online.

We now summarize this full online learning portion of MOLe, outline it in Alg. 6, and
illustrate it in Figure 6.2. At the first time step t = 0, the task distribution is initialized
to contain one entry: θ0(T ) = {θ0(T0)} = {θ∗}. At every time step after that, an E step is
performed to estimate the posterior task distribution and an M step is performed to update
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the model parameters corresponding to all tasks, weighted by the likelihood of that task. The
CRP prior also assigns, at each time step, the probability of adding a new task Tnew at the
given time step. The parameters θt+1(Tnew) of this new task are adapted from θ∗ on the latest
data, and this new task is added only if the posterior probability of the new task is greater
than that of all currently existing tasks. Recall that this posterior task probability depends
on both the likelihood of the observed data under that task, as well as the probability of that
task under the CRP prior. After all of these steps, the prediction on the next datapoint is
then made using the model parameters θt+1(T

∗) corresponding to the most likely task T ∗,
and the entire process repeats.

Figure 6.2: Overview of our algorithm for online learning with mixture of networks. The algorithm decides
“task” delineations on its own, starting with only the meta-learned prior θ∗ and adding new tasks as it deems
necessary for the overall objective of log-likelihood of the observed data. Each instantiated task has to its
own set of model parameters, and the algorithm alternates between an expectation (E) step of estimating the
posterior task probabilities, and a maximization (M) step of optimizing the log likelihood of data under that
inferred task distribution with respect to the model parameters.
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6.3.2 Meta-Learning the Prior

We formulated an algorithm above for performing online adaptation using continually incoming
data. For this method, we choose to meta-train the prior using the model-agnostic meta-
learning (MAML) algorithm. This meta-training algorithm is an appropriate choice, because
it results in a prior that is specifically intended for gradient-based fine-tuning. Before we
further discuss our choice in meta-training procedure, we first give an overview of MAML
and meta-learning in general.

Recall from the previous chapter that, given a distribution of tasks, a meta-learning
algorithm produces a learning procedure which can quickly adapt to a new task. MAML
optimizes for an initialization of a deep network θ∗ that achieves good k-shot task generaliza-
tion when fine-tuned using just a few (k) datapoints from that task. At train time, MAML
sees small amounts of data from a distribution tasks, where data DT from each task T can
be split into training and validation subsets (Dtr

T and Dval
T ). We will define Dtr

T as having
k datapoints. MAML optimizes for model parameters θ such that one or more gradients
steps on Dtr

T results in a minimal loss L on Dval
T . In our case, we will set Dtr

Tt
= (xt,yt) and

Dval
Tt

= (xt+1,yt+1), and the loss L will correspond to the negative log likelihood objective
introduced in the previous section.

The MAML meta-RL objective is defined as follows:

min
θ

∑
T

L(θ − η∇θL(θ,Dtr
T ),Dval

T ) = min
θ

∑
T

L(φT ,Dval
T ), (6.8)

where a good θ is one that uses a small amount of data Dtr
T to perform an inner update

φT = θ − η∇θL(θ,Dtr
T ) with learning rate η, such that this updated information φT is then

able to optimize the objective well on the unseen data Dval
T from that same task. After meta-

training with this objective, the resulting θ∗ acts as a prior from which effective fine-tuning
can occur on a new task Ttest at test-time. Here, only a small amount of recent experience
from Dtr

Ttest
is needed in order to update the meta-learned prior θ∗ into a φTtest that is more

representative of the current task at hand:

φTtest = θ∗ − η∇θ∗L(θ∗,Dtr
Ttest

). (6.9)

Although MAML (Finn, Abbeel, and Levine 2017a) demonstrated this fast adaptation of
deep neural networks and the work in the previous chapter (Nagabandi, Clavera, et al. 2018)
extended this framework to model-based meta RL, these methods address adaptation in the
k-shot setting, always adapting directly from the meta-learned prior and not allowing further
adaptation or specialization. In this work, we have extended these capabilities by enabling
more evolution of knowledge through a temporally-extended online adaptation procedure,
which was presented in the previous section. Note that our procedure for continual online
learning is initialized with this prior that was meta-trained for k-shot adaptation, with the
intuitive rational that MAML trains this model to be able to change significantly using only
a small number of datapoints and gradient steps – which is not true in general for a deep
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neural network. We show in Sec. 6.5 that our method for continual online learning with
a mixture of models (initialized from this meta-learned prior) outperforms both standard
k-shot adaptation with the same prior (where model parameters are updated at each step
from the prior itself), and also outperforms naively taking many adaptation steps away from
that prior (where model parameters are updated at each step directly from the parameters
values of the previous time step).

We note that it is quite possible to modify the MAML meta-training algorithm to optimize
the model directly with respect to the weighted updates discussed in Section 6.3.1.2. This
simply requires computing the task weights (the E step) on each batch during meta-training,
and then constructing a computation graph where all gradient updates are multiplied by
their respective weights. Standard automatic differentiation software can then compute the
corresponding meta-gradient. For short trial lengths, this is not substantially more complex
than standard MAML; for longer trial lengths, truncated backpropagation is an option.
Although such a meta-training procedure better matches the way that the model is used
during online adaptation, we found that it did not substantially improve our results. While
it’s possible that the difference might be more significant if meta-training for longer-term
adaptation, this observation does suggest that simply meta-training with MAML is sufficient
for enabling effective continuous online adaptation in non-stationary multi-task settings.

6.4 Application of MOLe to Model-Based RL
In our experiments, we apply MOLe to model-based reinforcement learning. RL in general
aims to act in a way that maximizes the sum of future rewards. At each time step t, the
agent executes action at ∈ A from state st ∈ S, transitions to the next state st+1 according
to the transition probabilities (i.e., dynamics) p(st+1|st, at) and receives rewards rt = r(st, at).
The goal at each step is to execute the action at that maximizes the discounted sum of future

rewards
∞∑
t′=t

γt
′−tr(st′ , at′), where discount factor γ ∈ [0, 1] prioritizes near-term rewards. In

model-based RL, in particular, the predictions from a known or learned dynamics model
are used to either learn a policy that selects actions, or are used directly inside a planning
algorithm to select actions that maximize reward.

In this work, the underlying distribution that we aim to model is the dynamics distribution
p(st+1|st, at, Tt), where the unknown Tt represents the underlying settings (e.g., state of the
system, external details, environmental perturbations, etc.). The goal for MOLe is to
estimate this distribution with a predictive model pθ. To instantiate MOLe in this context of
model-based RL, we follow Algorithm 6 with the following specifications:

(1) We set the input xt to be the concatenation of K previous states and actions, given
by xt = [st−K , at−K , . . . , st−2, at−2, st−1, at−1], and the output to be the corresponding next
states yt = [st−K+1, . . . , st−1, st]. This provides us with a slightly larger batch of data for each
online update, as compared to using only the data from the given time step. Since individual
time steps at high frequency can be very noisy, using the past K transitions helps to damp
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out the updates.
(2) The predictive model pθ represents each of these underlying transitions as an in-

dependent Gaussian such that pθ(yt|xt) =
∏t−1

t′=t−K p(st′+1|st′ , at′ ), where each p(st+1|st, at)
is parameterized with a Gaussian given by mean fθ(st, at) and constant variance σ2. We
implement this mean dynamics function fθ(st, at) as a neural network model with three
hidden layers each of dimension 500, and ReLU nonlinearities.

(3) To calculate the new task parameter θt+1(Tnew), which may or may not be added to
the task distribution θt+1(T ), we must use some data to adapt from θ∗ into this θ(Tnew).
For this, we use a set of K nearby datapoints that are not the set xt itself. This is done
to avoid calculating the parameter using the same dataset on which it is evaluated; since
Pt(Tnew|xt,yt) is calculated by evaluating the likelihood of that data under this new task,
the new task itself cannot be generated using that same data.

(4) Unlike standard online streaming tasks where the next data point xt+1 is just given
(independent of the current modeling), the incoming data point in this model-based RL case
is the next state of the system and is thus influenced by the predictive model itself. This
is because, after the most likely task T ∗ is selected from the possible tasks, the predictions
from the model pθt+1(T ∗) are used by the controller to plan over a sequence of future actions
a0, . . . , aH and select the actions that maximize future reward. Note that the planning
procedure is based on stochastic optimization, following prior work (Nagabandi, Clavera,
et al. 2018) as shown in the previous chapters. Since the estimated model parameters affect
the controller’s action choice, and since that controller’s action choice determines the next
state of the system (i.e., the next incoming data point), it is even more crucial in this setting
to appropriately adapt the model.

5) Finally, note that we attain θ∗ from meta-training using model-agnostic meta-learning
(MAML), as mentioned in the method above. However, in this case, MAML is performed in
the loop of model-based RL. In other words, the model parameters at a given iteration of
meta-training are used by the controller to generate on-policy rollouts, the data from these
rollouts is then added to the dataset for MAML, and this process repeats until the end of
meta-training. This meta-training process is exactly the same as the one proposed in the
previous chapter.

6.5 Results of Continual Online Adaptation with MOLe
The questions that we aim to study from our experiments include the following:

1. Can MOLe autonomously discover some task structure amid a stream of non-stationary
data?

2. Can MOLe adapt to tasks that are further outside of the task distribution than can be
handled by a k-shot learning approach?

3. Can MOLe recognize and revert to tasks it has seen before?
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4. Can MOLe avoid overfitting to a recent task, to prevent deterioration of performance
upon the next task switch?

5. Can MOLe outperform other methods?

To study these questions, we conduct experiments on agents in the MuJoCo physics
engine (Emanuel Todorov, Erez, and Tassa 2012a). The agents we use are a half-cheetah
(S ∈ R21,A ∈ R6) and a hexapedal crawler (S ∈ R50,A ∈ R12). Using these agents, we design
a number of challenging online learning problems that involve multiple sudden and gradual
changes in the underlying task distribution. These include tasks that are extrapolated from
those seen previously during training, where online learning is critical for success. Through
these experiments, we aim to build problem settings that are representative of the types of
disturbances and shifts that a real RL agent might encounter when deployed into the world.

We present results and analysis of our findings in the following three sections, and videos
can be found online2. In our experiments, we compare to several alternative methods, includ-
ing two approaches that leverage meta-training and two approaches that do not, as described
below:

(a) k-shot adaptation with meta-learning: Always adapt from the meta-trained prior
θ∗, as typically done with meta-learning methods (Nagabandi, Clavera, et al. 2018), including
the one introduced in the previous chapted. This method is often insufficient for adapting
to tasks that are further outside of the training distribution, and the adaptation is also not
carried forward in time for future use.

(b) continued adaptation with meta-learning: Always take gradient steps from the
previous time step’s parameters (without revert back to the meta-learning prior). This
method oftens overfits to recently observed tasks, so it should indicate the importance of our
method effectively identifying task structure to avoid overfitting and enable recall.

(c) model-based RL: Train a model on the same data as the methods above, using
standard supervised learning, and keep this model fixed throughout the trials (i.e., no meta-
learning and no adaptation). For context, this is the model-based RL framework that was
introduced in the first few chapters, containing no explicit meta-learning or adaptation
mechanisms.

(d) model-based RL with online gradient updates: Use the same model from
model-based RL (i.e., no meta-learning), but adapt it online at test using gradient-descent.
This is representative of commonly used dynamic evaluation methods (Rei 2015; Krause,
Kahembwe, et al. 2017; Krause, Lu, et al. 2016; Fortunato, Blundell, and Vinyals 2017).

2https://sites.google.com/berkeley.edu/onlineviameta

https://sites.google.com/berkeley.edu/onlineviameta


CHAPTER 6. CONTINUAL MODEL ADAPTATION VIA EXPECTATION
MAXIMIZATION 91

Table 6.1: Hyperparameters for train-time

Iters Epochs # Tasks/itr # TS/itr K outer LR inner LR (η)

Meta-learned approaches (3) 12 50 16 2000-3000 16 0.001 0.01

Non-meta-learned approaches (2) 12 50 16 2000-3000 16 0.001 N/A

Table 6.2: Hyperparameters for run-time

α (CRP) LR (model update) K (previous data)

MOLe (ours) 1 0.01 16

continued adaptation with meta-learning N/A 0.01 16

k-shot adaptation with meta-learning N/A 0.01 16

model-based RL N/A N/A N/A

model-based RL with online gradient updates N/A 0.01 16

6.5.1 Hyperparameters

In all experiments, we use a dynamics model consisting of three hidden layers, each of
dimension 500, with ReLU nonlinearities. The control method that we use is random-
shooting model predictive control (MPC) where 1000 candidate action sequences each of
horizon length H=10 are sampled at each time step, fed through the predictive model, and
ranked by their expected reward. The first action step from the highest-scoring candidate
action sequence is then executed before the entire planning process repeats again at the next
time step.

In Tables 6.1 and 6.2, we list relevant training and testing parameters for the various
methods used in our experiments. # Task/itr corresponds to the number of tasks sampled
during each iteration of collecting data to train the model, and # TS/itr is the total number
of times steps collected during that iteration (sum over all tasks). The inner and outer
learning rates control the sizes of the gradient steps during meta-training, where each iteration
out of the “Iters” iterations consists of “Epochs” epochs of model training, with each epoch
consisting of a full pass through the dataset.
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Figure 6.3: Half-cheetah robot, shown traversing a landscape with ‘basins’ that was not encountered during
training.

6.5.2 Terrain Slopes on Half-Cheetah

We start with the task of a half-cheetah (Fig. 6.3) robot, traversing terrains of varying
slopes. The prior model is meta-trained on data from terrains with random slopes of low
magnitudes, and the test trials are executed on difficult out-of-distribution tasks such as
basins, steep hills, etc. As shown in Fig. 6.4, neither model-based RL nor model-based RL
with online gradient updates perform well on these out-of-distribution tasks, even though
those models were trained using the same data that the meta-trained model received. The
bad performance of the model-based RL approach indicates the need for model adaptation
(as opposed to assuming that a single model can encompass everything), while the bad
performance of adaptive model-based RL (with online gradient updates) indicates the need
for a meta-learned initialization to enable effective online adaptation with neural networks.

For the three meta-learning and adaptation methods, we expect continued adaptation
with meta-learning to perform poorly due to continuous gradient steps causing it to overfit to
recent data; that is, we expect that experience on the upward slopes to lead to deterioration
of performance on downward slopes, or something similar. However, based on both our
qualitative and quantitative results, we see that the meta-learning procedure seems to have
initialized the agent with a parameter space in which these various “tasks” are not seen as
substantially different, where online learning by SGD performs well. This suggests that the
meta-learning process finds a task space where there is an easy skill transfer between slopes;
thus, even when MOLe is faced with the option of switching tasks or adding new tasks to
its dynamic latent task distribution, we see in Fig. 6.5 that it chooses not to do so. Unlike
findings that we will see later, it is interesting that the discovered task space here does not
correspond to human-distinguishable categorical labels of uphill and downhill. Finally, note
that these tasks of changing slopes are not naturally similar to each other, because the two
non-meta-learning baselines do indeed fail on these test tasks, despite having similar training
performance on the shallow training slopes.
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Figure 6.4: Results on half-cheetah terrain traversal. The poorly performing model-based RL shows that a
single model is not sufficient, and the poorly performing model-based RL with online gradient updates shows
that a meta-learned initialization is critical. The three meta-learning approaches perform similarly on these
tasks of different slopes. Note, however, that the performance of k-shot adaptation does deteriorate when the
tasks are further away from the training task distribution, such as the last column above where the test tasks
introduce crippling of joints. Since this unexpected perturbation is far from what was seen during training, it
calls for taking multiple gradient steps away from the prior in order to actually succeed. We see that MOLe
succeeds in all of these task settings.

Figure 6.5: Latent task distribution over time for two half-cheetah landscape traversal tasks, where encountered
terrain slopes vary within each run. Interestingly, we find that MOLe chooses to only use a single latent task
variable to describe varying terrain.

6.5.3 Half-Cheetah Motor Malfunctions

While the findings from the half-cheetah on sloped terrains illustrate that separate task
parameters aren’t always necessary for what might externally seem like separate tasks, we
also want to study agents that experience more drastically-changing non-stationary task
distributions during their experience in the world. For this set of experiments, we train all
models on data where a single actuator is selected at random to experience a malfunction
during the rollout. In this case, malfunction means that the polarity or magnitude of actions
applied to that actuator are altered. Fig. 6.6 shows the results of various methods on
drastically out-of-distribution test tasks, such as altering all actuators at once. The left of
Fig. 6.6 shows that when the task distribution during the test trials contains only a single
task, such as ‘sign negative’ where all actuators are prescribed to be the opposite polarity,
then continued adaptation performs well by repeatedly performing gradient updates on
incoming data. However, as shown in the other tasks of Fig. 6.6, the performance of this
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continued adaptation substantially deteriorates when the agent experiences a non-stationary
task distribution. Due to overspecialization on recent incoming data, such methods that
continuously adapt tend to forget and lose previously existing skills. This overfitting and
forgetting of past skills is also illustrated in the consistent performance deterioration shown in
Fig. 6.6(right). MOLe, on the other hand, dynamically builds a probabilistic task distribution
and allows adaptation to these difficult tasks, without forgetting past skills. We visualize
a dynamically built task distribution in Fig. 6.7, where the agent experiences alternating
periods of normal and crippled-leg operation. This plot shows the successful instantiation of
new tasks as well as recall of old tasks; note that both the recognition and adaptation are all
done online, without using a bank of past data to perform the adaptation, and without a
human-specified set of task categories.

Figure 6.6: Results on the motor malfunction trials, where different trials are shown task distributions that
modulate at different frequencies (or stay constant, in the first column). Here, online learning is critical for
good performance, k-shot adaptation is insufficient for these tasks that are very different from the tasks seen
during training, and continued gradient steps leads to overfitting to recently seen data. MOLe, however,
demonstrates high performance in all of these types of task distributions.

Figure 6.7: Latent task variable distribution over the course of an online learning trial where the underlying
motor malfunction changes every 500 timesteps. We find that MOLe is able to successfully recover the
underlying task structure by recognizing when the underlying task has changed, and even recalling previously
seen tasks. As such, MOLe allows for both specialization as well as generalization.
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6.5.4 Crippling of End Effectors on Six-Legged Crawler

Figure 6.8: Six-legged
crawler robot, shown
with crippled legs at
run time.

To further examine the effects of our continual online adaptation al-
gorithm, we study another, more complex agent: a 6-legged crawler
(Fig. 6.8). In these experiments, models are trained on random joints
being crippled (i.e., unable to apply actuator commands). In Fig. 6.9, we
present two illustrative test tasks: (1) the agent sees a set configuration
of crippling for the duration of its test-time experience, and (2) the agent
receives alternating periods of experience, between regions of normal
operation and regions of having crippled legs.

The first setting is similar to data seen during training, and thus,
we see that even the model-based RL and model based-RL with online
gradient updates baselines do not fail. The methods that include both
meta-learning and adaptation, however, do have higher performance.
Furthermore, we see again that continued gradient steps in this case of a single-task setting
is not detrimental.

The second setting’s non-stationary task distribution (when the leg crippling is dynamic)
illustrates the need for online adaptation (model-based RL fails), the need for a good meta-
learning prior to adapt from (failure of model-based RL with online gradient updates), the
harm of overfitting to recent experience and thus forgetting older skills (low performance of
continued gradient steps), and the need for further adaptation away from the prior (limited
performance of k-shot adaptation).

With MOLe, this agent is able to build its own representation of “task” switches, and
we see that this switch does indeed correspond to recognizing regions of leg crippling (left
of Fig. 6.10). The plot of the cumulative sum of rewards (right of Fig. 6.10) of each of the
three meta-learning plus adaptation methods includes this same task switch pattern every
500 steps: Here, we can clearly see that steps 500-1000 and 1500-2000 were the crippled
regions. Continued gradient steps actually performs worse on the second and third times
it sees normal operation, whereas MOLe is noticeably better as it sees the task more often.
Note this improvement of both skills with MOLe, where development of one skill actually
does not hinder the other.

Finally, we examine experiments where the crawler experiences (during each trial) walking
straight, making turns, and sometimes having a crippled leg. The performance during the
first 500 time steps of “walking forward in a normal configuration” for continued gradient
steps was comparable to MOLe (+/-10% difference), but its performance during the last 500
time steps of “walking forward in a normal configuration” was 200% lower (for continued
gradient steps). Note this detrimental effect of performing continual updates at each step
without allowing for separate task specialization/adaptation.
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Figure 6.9: Quantitative results on crawler. For a fixed task (left column), adaptation is not necessary and
all methods perform well. In contrast, when tasks change dynamically within the trial, only MOLe effectively
learns online.

Figure 6.10: Results on crawler experiments. Left: Online recognition of latent task probabilities for
alternating periods of normal/crippled experience. Right: MOLe improves from seeing the same tasks
multiple times; MOLe allows for improvement of both skills, without letting the development of one skill
hinder the other.

6.6 Discussion
In this chapter, we presented an online learning method for neural network models that
can handle non-stationary, multi-task settings within each trial. Our method adapts the
model directly with SGD, where an EM algorithm uses a Chinese restaurant process prior
to maintain a distribution over tasks and handle non-stationarity. Although SGD generally
makes for a poor online learning algorithm in the streaming setting for large parametric
models such as deep neural networks, we observed that, by (1) meta-training the model for
fast adaptation with MAML and (2) employing our online algorithm for probabilistic updates
at test time, we can enable effective online learning with neural networks.
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In our experiments, we applied this approach to model-based RL, and we demonstrated
that it could be used to adapt the behavior of simulated robots faced with various new and
unexpected tasks. The results showed that our method can develop its own notion of task,
continuously adapt away from the meta-learned prior as necessary (to succeed at tasks further
outside of the training distribution, which require more adaptation), and recall tasks it has
seen before. This ability to effectively adapt online and develop specializations as well as
maintain generalization is a critical step toward enabling the deployment of robots into the
real world, where the uncontrolled settings are never exactly what was seen during train time.
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Chapter 7

Adaptive Online Reasoning from Images
via Latent Dynamics Models

Figure 7.1: Thesis outline, with
the current chapter indicated by
the last colored arrow.

The work in the previous chapters has built up multiple concepts.
First, learning models introduced a significant improvement in
the sample efficiency of deep learning methods. Second, the
decoupling of tasks from dynamics gave us the ability to train
these models with even off-policy data and then use them
to solve multiple tasks at test time. Third, these efficient
learning approaches were extended further along the axis of
generalization and diversity by incorporating various meta-
learning techniques to enable online adaptation of these learned
models. We saw that these adaptation capabilities were critical
for addressing the inevitable mismatch between an agent’s training conditions and the test
conditions in which it may actually be deployed, and that this adaptation to new conditions
needed to happen quickly (i.e., it is not feasible to learn each new task from scratch). In this
chapter, we extend these capabilities further along the axis of difficulty; in particular, we

Figure 7.2: Our approach (MELD) enables meta-RL directly from raw image observations in the real
world, as shown here by the learned tasks of peg insertion and ethernet cable insertion. MELD allows for
sample-efficiency during meta-training time (enabling us to perform this training procedure in the real world),
as well as the learned ability to perform fast adaptation to new tasks at test time. This ability to perform
broad ranges of skills as necessitated by the changing conditions of test time settings is critical towards the
goal of deploying robots into the real world.
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address the difficulty of working from raw sensory observations such as a robot’s onboard
cameras. Unlike the previous chapters, whose methods operated directly from information
such as joint positions/velocities and object positions/velocities, we now scale up our learning
and adaptation capabilities to the more general setting of working directly from raw image
observations.

Operating from raw image observations introduces challenges in the form of high-
dimensional and partially observable inputs. Making sense of these pixel inputs adds a
representation learning burden on top of the already challenging task learning problem. Prior
work has demonstrated success in single-task RL from these types of inputs by explicitly
addressing the representation learning problem via the learning of latent dynamics models
to make sense of the inputs. Unlike the work in previous chapters which learned models
and then used the model predictions for action selection, the work in this chapter instead
uses models to address the representation learning and meta-learning aspects of the problem,
while allowing for model-free RL techniques to address the task learning problem within this
learned representation space.

We refer to the problem of making sense of incoming observations in order to understand
the underlying state of the system as performing “latent state estimation.” By learning a
latent dynamics model to address this representation learning problem, we still make use
of all of the benefits of models that we’ve seen thus far – their efficient training using even
off-policy data, their adaptability, and their generalization capabilities. Inspired by the use of
these latent state dynamics models to improve single-task RL from high dimensional inputs,
this work aims to extend these capabilities into the meta-RL regime of being able to perform
a broad range of skills. In this work, we posit that the task inference problem in meta-RL can
actually be cast into this same framework of latent state estimation, with the unknown task
variable viewed as part of the hidden variables that must be inferred. Leveraging this idea
of fusing both task and state inference into a unified framework, we present our algorithm
MELD, Meta-RL with Latent Dynamics: a practical algorithm for meta-RL from image
observations that quickly acquires new skills at test time via posterior inference in a learned
latent state model over joint state and task variables. We show that MELD outperforms prior
meta-RL methods on a range of simulated robotic locomotion and manipulation problems
including peg insertion and object placing. Furthermore, we demonstrate MELD on two real
robots, learning to perform peg insertion into varying target boxes with a Sawyer robot, and
learning to insert an ethernet cable into new locations after only 4 hours of meta-training on
a WidowX robot. Videos of the experiments are available online1.

7.1 Introduction
Robots that operate in unstructured environments, such as homes and offices, must be able
to perform a broad range of skills using only their on-board sensors. The problem of learning
from raw sensory observations is often tackled in the context of state estimation: building

1https://sites.google.com/view/meld-lsm/home

https://sites.google.com/view/meld-lsm/home
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Figure 7.3: Real-world cable insertion: At test time our algorithm (MELD) enables a 7-DoF WidowX
robot to insert the ethernet cable into novel locations and orientations within a single trial, operating from
image observations. MELD achieves this result by meta-training a latent dynamics model to capture task
and state information in the hidden variables, as well a policy that conditions on these variables, across 20
meta-training tasks with varying locations and orientations.

models that infer the unknown state variables from sensory readings (Thrun, Burgard, Fox,
et al. 2005; Barfoot 2017; Tremblay et al. 2018). In principle, deep reinforcement learning (RL)
algorithms can automate this process by directly learning to map sensory inputs to actions,
obviating the need for explicit state estimation. This automation comes at a steep cost in
sample efficiency since the agent must learn to interpret observations from reward supervision
alone. Fortunately, unsupervised learning in the form of general-purpose latent state (or
dynamics) models can serve as an additional training signal to help solve the representation
learning problem (Finn, X. Y. Tan, et al. 2016; Ghadirzadeh et al. 2017; A. X. Lee et al. 2019;
M. Zhang et al. 2019), substantially improving the performance of end-to-end RL. However,
even the best-performing algorithms in this class require hours of training to learn a single
task (Hafner et al. 2018; M. Zhang et al. 2019; A. X. Lee et al. 2019) and lack a mechanism
to transfer knowledge to subsequent tasks.

General purpose autonomous robots must be able to perform a wide variety of tasks and
quickly acquire new skills. For example, consider a robot tasked with assembling electronics
in a data center. This robot must be able to insert cables of varying shapes, sizes, colors,
and weights into the correct ports with the appropriate amounts of force. While standard
RL algorithms require hundreds or thousands of trials to learn a policy for each new setting,
meta-RL methods hold the promise of drastically reducing the number of trials required.
Given a task distribution, such as the variety of ways to insert electronic cables described
above, meta-RL algorithms leverage a set of training tasks to meta-learn a mechanism that
can quickly learn unseen tasks from the same distribution. Despite impressive results in
simulation demonstrating that agents can learn new tasks in a handful of trials (J. X. Wang
et al. 2016a; Duan, John Schulman, X. Chen, Peter L Bartlett, et al. 2016b; Finn, Abbeel,
and Levine 2017b; Rakelly et al. 2019), these model-free meta-RL algorithms remain largely
unproven on real-world robotic systems, largely due to the inefficiency of the meta-training
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process. In this paper, we show that the same latent dynamics models that greatly improve
efficiency in end-to-end single-task RL can also, with minimal modification, be used for
meta-RL by treating the unknown task information as a hidden variable to be estimated
from experience. We formalize the connection between latent state inference and meta-RL,
and leverage this insight in our proposed algorithm MELD, Meta-RL with Latent Dynamics.

To derive our algorithm, we cast meta-RL and latent state inference into a single partially
observed Markov decision process (POMDP) in which task and state variables are aspects
of a more general per-time step hidden variable. Concretely, we represent the agent’s belief
over the hidden variable as the variational posterior in a sequential VAE latent state model
that takes observations and rewards as input, and we condition the agent’s policy on this
belief. During meta-training, the latent state model and policy are trained across a fixed set
of training tasks sampled from the task distribution. The trained system can then quickly
learn to succeed on a new unseen task by using a small amount of data from the new task
to infer the posterior belief over the hidden variable, and then executing the meta-learned
policy conditioned on this belief.

We show in simulation that MELD substantially outperforms prior work on several
challenging locomotion and manipulation problems such as running at varying velocities,
inserting a peg into varying targets, and putting away mugs of unknown weights to varying
locations on a shelf. Next, we run MELD on a real Sawyer robot to solve the problem of peg
insertion into varying targets, verifying that MELD can reason jointly about state and task
information. Finally, we evaluate our method with a real WidowX robotic arm, where we
show that MELD is able to successfully perform ethernet cable insertion into ports at novel
locations and orientations after four hours of meta-training.

7.2 Related Work
Our approach can be viewed methodologically as a bridge between meta-RL methods for fast
skill acquisition and latent state models for state estimation. In this section, we discuss these
areas of work, as well as RL on real-world robotic platforms.

RL for Robotics. While prior work has obtained good results with geometric and
force control approaches for a wide range of manipulation tasks (Bicchi and Vijay Kumar
2000; Pereira, Campos, and Vijay Kumar 2004; Henrich and Wörn 2012), including insertion
tasks (Kronander, Burdet, and Billard 2014; Newman, Zhao, and Pao 2001) such as those
in our evaluation, such approaches typically require considerable manual design effort for
each task. RL algorithms offer an automated alternative that has been demonstrated on
a variety of robotic tasks (Kober, J. A. Bagnell, and Peters 2013) including balancing a
unicycle robot (Marc Deisenroth and Carl E Rasmussen 2011), pushing boxes (Mahadevan
and Connell 1992; Finn and Levine 2017a), playing hockey (Chebotar et al. 2017), opening
doors (Shixiang Gu, Holly, et al. 2017), valve turning and block stacking (Haarnoja, Zhou,
Hartikainen, et al. 2018; M. Zhang et al. 2019), grasping objects (Pinto and Abhinav Gupta
2016; Kalashnikov et al. 2018), throwing objects (Ghadirzadeh et al. 2017; Zeng, S. Song,
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J. Lee, et al. 2019), hand manipulation (Zhu et al. 2019), and including insertion (Gullapalli,
Franklin, and Benbrahim 1994; Levine, Finn, et al. 2016; Zeng, S. Song, Welker, et al. 2018;
M. A. Lee et al. 2018; Schoettler et al. 2019). Although these policies learn impressive skills,
they typically do not transfer to other tasks and must be re-trained from scratch for each
task.

Meta-RL. Meta-reinforcement learning algorithms learn how to acquire new skills quickly
by using experience from a large number of meta-training tasks. Current meta-RL methods
differ in how this acquisition procedure is represented, ranging from directly representing the
learned learning process via a black-box function approximator such as a recurrent (J. X.
Wang et al. 2016a; Duan, John Schulman, X. Chen, Peter L Bartlett, et al. 2016b) or
recursive (Mishra, Rohaninejad, et al. 2017b) deep network, to learning initial parameters for
gradient-based optimization (Finn, Abbeel, and Levine 2017b; Rothfuss et al. 2018; Houthooft
et al. 2018; Mendonca et al. 2019), and learning tasks via variational inference (Rakelly et al.
2019; Zintgraf et al. 2019; Perez, Such, and Karaletsos 2020). Some of these works have
formalized meta-RL as a special kind of POMDP in which the hidden state is held constant
throughout a task (Rakelly et al. 2019; Zintgraf et al. 2019; Humplik et al. 2019; Perez,
Such, and Karaletsos 2020). Taking a broader view, we show that meta-RL can be tackled
with a general POMDP algorithm that estimates a time-varying hidden state, allowing the
same algorithm to be used for problems with both stationary and non-stationary sources of
uncertainty.

Within this area, meta-learning approaches that enable few-shot adaptation have been
studied with real systems for imitation learning (Finn, T. Yu, et al. 2017; T. Yu et al. 2018;
James, Bloesch, and Davison 2018; Bonardi, James, and Davison 2019) and goal inference (Xie
et al. 2018), but direct meta-RL in the real world has received comparatively little attention.
Adapting to different environment parameters has been explored in the context of sim2real
for table-top hockey (Arndt et al. 2019) and legged locomotion (X. Song et al. 2020), and in
the model-based RL setting for millirobot locomotion (Nagabandi, Clavera, et al. 2018) (as
presented in the previous two chapters).

Latent State Inference in RL. A significant challenge in real-world robotic learning
is contending with the complex, high-dimensional, and noisy observations from the robot’s
sensors. To handle general partial observability, recurrent policies can persist information over
longer time horizons (Yadaiah and Sowmya 2006; Heess, J. J. Hunt, et al. 2015; Hausknecht
and Stone 2015), while explicit state estimation approaches maintain a probabilistic belief
over the current state of the agent and update it given experience (Kaelbling, Littman,
and Cassandra 1998; Pineau, G. Gordon, Thrun, et al. 2003; Ross, Pineau, et al. 2011;
M. P. Deisenroth and Peters n.d.; Karkus, D. Hsu, and W. S. Lee 2017; Igl et al. 2018;
Gregor and Besse 2018). In our experiments we focus on learning from image observations,
which presents a state representation learning challenge that has been studied in detail.
End-to-end deep RL algorithms can learn state representations implicitly, but currently suffer
from poor sample efficiency due to the added burden of representation learning (Volodymyr
Mnih, Koray Kavukcuoglu, Silver, Graves, et al. 2013; Levine, Finn, et al. 2016; Singh et al.
n.d.). Pre-trained state estimation systems can predict potentially useful features such as
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object locations and pose (Tremblay et al. 2018; Visak Kumar et al. 2019); however, these
approaches require ground truth supervision. On the other hand, unsupervised learning
techniques can improve sample efficiency without access to additional supervision (Lange,
Riedmiller, and Voigtlander 2012; Finn, X. Y. Tan, et al. 2016; Schmidt, Newcombe, and
Fox 2016; Ghadirzadeh et al. 2017; Florence, Manuelli, and Tedrake 2019; Yarats et al. 2019;
Sax et al. 2019). Latent dynamics models capture the time-dependence of observations and
provide a learned latent space in which RL can be tractably performed (Watter et al. 2015;
Karl et al. 2016; M. Zhang et al. 2019; Hafner et al. 2019; Gelada et al. 2019; A. X. Lee et al.
2019). In our work, we generalize the learned latent variable to encode not only the state but
also the task at hand, enabling efficient meta-RL from images.

7.3 Preliminaries
In this work, we leverage tools from latent state modeling to design an efficient meta-RL
method that can operate in the real world from image observations. In this section, we review
latent state models and meta-RL, developing a formalism that will allow us to derive our
algorithm in Section 7.4.

7.3.1 POMDPs and Latent State Models

We first define the RL problem, as also seen in the previous chapters. Recall a Markov
decision process (MDP), which consists of a set of states S, a set of actions A, an initial
state distribution p(s1), a state transition distribution p(st+1|st, at), a discount factor γ, and
a reward function r(st, at). We assume the transition and reward functions are unknown,
but can be sampled by taking actions in the environment. The goal of RL is to learn a
policy π(at|st) that selects actions that maximize the sum of discounted rewards. However,
robots operating in the real world do not have access to the underlying state st, and must
instead select actions using high-dimensional and often incomplete observations from cameras
and other sensors. Such a system can be described as a partially observed Markov decision
process (POMDP), where observations xt are a noisy or incomplete function of the unknown
underlying state st, and the policy is conditioned on a history of these observations as
π(at|x1:t).

While end-to-end RL methods can implicitly acquire representations of the incoming
observations from reward supervision alone (Levine, Finn, et al. 2016; Zeng, S. Song, Welker,
et al. 2018), this added burden of representation learning limits sample efficiency and
can make optimization more difficult. Methods that explicitly address this representation
learning problem have been shown to be more efficient and scale more effectively to harder
domains (Igl et al. 2018; Gelada et al. 2019; A. X. Lee et al. 2019). These approaches train
latent state models to learn meaningful representations of the incoming observations by
explicitly representing the unknown Markovian state as a hidden variable zt in a graphical
model, as shown in Figure 7.4 (a). The parameters of these graphical models can be trained
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by approximately maximizing the log-likelihood of the observations: log p(x1:T |a1:T−1) =
log
∫
p(xT |zT )p(zT |zT−1, aT−1)...p(z1)dz. Given a history of observations and actions seen

so far, the posterior distribution over the hidden variable captures the agent’s belief over
the current underlying state, and can be written as bt = p(zt|x1:t, a1:t−1). Then, rather
than conditioning the policy on raw observations, these methods learn a policy π(at|bt) as a
function of this belief state.

7.3.2 Meta-Reinforcement Learning

In this work, we would like a robot to learn to acquire new skills quickly. We formalize
this problem statement as meta-RL, where each task T from a distribution of tasks p(T )
is a POMDP as described above, with initial state distribution pT (s1), dynamics function
pT (st+1|st, at), observation function pT (xt|st), and reward function rT (rt|st, at). For example,
a task distribution that varies both dynamics and rewards across tasks may consist of
placing mugs of varying weights (dynamics) in different locations (rewards) on a kitchen
shelf. The meta-training process leverages a set of training tasks sampled from p(T ) to learn
an adaptation procedure that can adapt to a new task from p(T ) using a small amount of
experience. Similar to the framework in probabilistic inference-based and recurrence-based
meta-RL approaches (Zintgraf et al. 2019; Rakelly et al. 2019; Duan, John Schulman, X. Chen,
Peter L Bartlett, et al. 2016b; J. X. Wang et al. 2016a), we formalize the adaptation procedure
fφ as a function of experience (x1:t, r1:t, a1:t−1) that summarizes task-relevant information
into the variable ct. The policy is conditioned on this updated variable as πθ(at|xt, ct) to
adapt to the underlying task. By training the adaptation mechanism fφ and the policy πθ
end-to-end to maximize returns of the adapted policy, meta-RL algorithms can learn policies
that effectively modulate and adapt their behavior with small amounts of experience in new
tasks. We formalize this meta-RL objective as:

max
θ,φ

E
T ∼p(T )

E
xt∼pT (·|st)

at∼πθ(·|xt,bt)
st+1∼pT (·|st,at)
rt∼rT (·|st,at)

[
T∑
t=1

γtrt

]
where ct = fφ(x1:t, r1:t, a1:t−1). (7.1)

To put this formulation in context with the meta-learning formulations introduced in the
previous two chapters, there are two main aspects to look at. First, the objective here is the
direct optimization of rewards, unlike the previous chapters where the objective was model
prediction error. As discussed at the beginning of this chapter, this change corresponds
with the decision to allow a model-free RL algorithm to learn a policy, rather than taking a
model-based planning approach to action selection. Second, the adaptation mechanism (e.g.,
update rule) fφ was prescribed in the previous chapters to be gradient descent, whereas it is
now left to be a more general learned procedure.

In general, meta-RL methods may differ in how the adaptation procedure fφ is represented
(e.g., as probabilistic inference (Rakelly et al. 2019; Zintgraf et al. 2019), as a recurrent
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(a) Modeling latent dynamics in single-task RL

(a) latent space model for single-task RL (b) meta-RL (c\) MELD 

(b) Task controlling latent dynamics and rewards in meta-RL (c) MELDing (a) and (b) into unified latent state modelFigure 7.4: (a): When only partial observations of the underlying state are available, latent dynamics models
can glean state information zt from a history of observations. (b): Meta-RL considers a task distribution
where the current task T is an unobserved variable that controls dynamics and rewards. (c): We interpret T
as part of zt, allowing us to leverage latent dynamics models for efficient image-based meta-RL.

update (Duan, John Schulman, X. Chen, Peter L Bartlett, et al. 2016b; J. X. Wang et al.
2016a), as a gradient step (Finn, Abbeel, and Levine 2017b)), how often the adaptation
procedure occurs (e.g., at every timestep (Duan, John Schulman, X. Chen, Peter L Bartlett,
et al. 2016b; Zintgraf et al. 2019) or once per episode (Rakelly et al. 2019; Humplik et al.
2019)), and also in how the optimization is performed (e.g., on-policy (Duan, John Schulman,
X. Chen, Peter L Bartlett, et al. 2016b), off-policy (Rakelly et al. 2019)). Differences aside,
these methods all typically optimize this objective end-to-end, creating a representation
learning bottleneck when learning from image inputs that are ubiquitous in real-world robotics.

In the following section, we show how the latent state models discussed in Section 7.3.1
can be re-purposed for joint representation and task learning, and how this insight leads to a
practical algorithm for image-based meta-RL.

7.4 MELD : Meta-RL with Latent Dynamics Models
In this section, we present MELD: an efficient algorithm for meta-RL from images. We first
develop the algorithm in Section 7.4.1 and then describe its implementation in Section 7.4.2.

7.4.1 MELDing State and Task Inference for Meta-RL from
Images

To see how task inference in meta-RL can be cast as latent state inference, consider the
graphical models depicted in Figure 7.4. Panel (a) illustrates a standard POMDP with
underlying latent state zt and observations xt, and panel (b) depicts standard meta-RL,
where the hidden task variable T is assumed constant throughout the episode. In the meta-RL
setting, the policy must then be conditioned on both the observation and the task variable
in order to adapt to a new task (see Equation 7.1). Casting this task variable as part of
the latent state, panel (c) illustrates our graphical model, where the states zt now contain
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both state and task information. In effect, we cast the task distribution over POMDPs as a
POMDP itself, where the state variables now additionally capture task information. This
meld allows us to draw on the rich literature of latent state models discussed in Section 7.3.1,
and use them here to tackle the problem of meta-RL from sensory observations. Note that
the task is not explicitly handled since it is simply another hidden state variable, providing a
seamless integration of meta-RL with learning from sensory observations.

Concretely, we learn a latent state model over hidden variables by optimizing the log-
likelihood of the evidence (observations and rewards) in the graphical model in Figure 7.4c:

max
φ

E
T ∼p(T )

E
xt∼pT (·|st)
at∼πθ(·|bt)

st+1∼pT (·|st,at)
rt∼rT (·|st,at)

[log pφ(x1:T , r1:T |a1:T−1)] . (7.2)

Note that the only change from the latent state model from Section 7.3.1 is the inclusion of
rewards as part of the observed evidence, and while this change appears simple, it enables
meta-learning by allowing the hidden state to capture task information.

Posterior inference in this model then gives the agent’s belief bt = p(zt|x1:t, r1:t, a1:t−1)
over latent state and task variables zt. Conditioned on this belief, the policy πθ(at|bt) can
learn to modulate its actions and adapt its behavior to the task. Prescribing the adaptation
procedure fφ from Equation 7.1 to be posterior inference in our latent state model, the
meta-training objective in MELD is:

max
θ

E
T ∼p(T )

E
xt∼pT (·|st)
at∼πθ(·|bt)

st+1∼pT (·|st,at)
rt∼rT (·|st,at)

[
T∑
t=1

γtrt

]
where bt = p(zt|x1:t, r1:t, a1:t−1). (7.3)

By melding state and task inference into a unified framework of latent state estimation,
MELD inherits the same representation learning mechanism as latent state models discussed
in Section 7.3.1 to enable efficient meta-RL with images.

7.4.2 Implementing MELD

Exactly computing the posterior distribution over the latent state variable is intractable, so we
take a variational inference approach to maximize a lower bound on the log-likelihood objec-
tive (Wainwright and Michael Irwin Jordan 2008) in Equation 7.2. We factorize the variational
posterior as q(z1:T |x1:T , r1:T , a1:T−1) = q(zT |xT , rT , zT−1, aT−1) . . . q(z2|x2, r2, z1, a1)q(z1|x1, r1).
With this factorization, we implement each component as a deep neural network and optimize
the evidence lower bound of the joint objective, where Ez1:t∼qφ [log p(x1:T , r1:T |a1:T−1)] ≥
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Lmodel, with Lmodel defined as:

Lmodel(x1:T , r1:T , a1:T−1) = E
z1:T∼qφ

T∑
t=1

log pφ(xt|zt) + log pφ(rt|zt)

−DKL(qφ(z1|x1, r1)‖p(z1))−
T∑
t=2

DKL(qφ(zt|xt, rt, zt−1, at−1)‖pφ(zt|zt−1, at−1)). (7.4)

The first two terms encourage a rich latent representation zt by requiring it to reconstruct
observations and rewards, while the last term keeps the inference network consistent with
latent dynamics. The first timestep posterior qφ(z1|x1, r1) is modeled separately from the
remaining steps, and p(z1) is chosen to be a fixed unit Gaussian N (0, I). The learned
inference networks qφ(z1|x1, r1) and qφ(zt|xt, rt, zt−1, at−1), decoder networks pφ(xt|zt) and
pφ(rt|zt), and dynamics pφ(zt|zt−1, at−1) are all fully connected networks that predict the
output parameters of Gaussian distributions. We follow the architecture of the latent variable
model from SLAC (A. X. Lee et al. 2019), which models two layers of latent variables. Since
our observations consist of RGB camera images, we use convolutional layers in the observation
encoder and decoder. Both of these networks include the same convolutional architecture
(the decoder simply the transpose of the encoder) that consists of five convolutional layers.
The layers have 32, 64, 128, 256, and 256 filters and the corresponding filter sizes are 5, 3, 3,
3, 4. For environments in which the robot observes a two images (such as a fixed scene image
as well as a first-person image from a wrist camera), we concatenate the images together and
apply rectangular filters. All other model networks are fully connected and consist of 2 hidden

replay 
buffer

Figure 7.5: MELD meta-training alternates between collecting data with πθ, training the latent state model
using the collected data from the replay buffer, and training the actor πθ and critic Qζ conditioned on the
belief from the current model.
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layers of 32 units each. We use ReLU activations after each layer. We train all networks with
the Adam optimizer with learning rate 0.001. We use the soft actor-critic (SAC) (Haarnoja,
Zhou, Abbeel, et al. 2018) RL algorithm in this work, due to its high sample efficiency and
performance. The SAC algorithm maximizes discounted returns as well as policy entropy
via policy iteration. The actor πθ(at|bt) and the critic Qψ(bt, at) are conditioned on the
posterior belief bt, modeled as fully connected neural networks, and trained as prescribed by
the SAC algorithm. The critic is trained to minimize the soft Bellman error, which takes the
entropy of the policy into account in the backup. We instantiate the actor and critic as fully
connected networks with 2 hidden layers of 256 units each. We follow the implementation of
SAC, including the use of 2 Q-networks and the tanh actor output activation.

During meta-training, MELD alternates between collecting data with the current policy,
training the model by optimizing Lmodel, and training the policy with the current model.
Relevant hyper-parameters for meta-training can be found in Table 7.1. Meta-training and
meta-testing are described in Algorithm 7 and Algorithm 8 respectively.

Table 7.1: Meta-training hyper-parameters

Parameter Value

num. training tasks 30

num. eval tasks 10

actor, critic learning rates 3e-4

model learning rate 1e-4

size of per-task replay buffers Bi 1e5

num. tasks collect data 20

num. rollouts per task 1

num. train steps per epoch 640

num. tasks sample for update 20

model batch size 512

actor, critic batch size 512
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Algorithm 7 MELD Meta-training
Require: Training tasks {Ti}i=1...J from p(T )
Require: learning rates η1, η2, η3
1: Init. model pφ, qφ, actor πθ, critic Qζ

2: Init. replay buffers Bi for each train task
3: while not done do
4: for each task Ti do . collect data
5: Infer b1 = qφ(z1|x1, r1)
6: Step with a1 ∼ πθ(a|b1), get x2, r2
7: for t = 2, . . . T − 1 do
8: Infer bt = qφ(zt|xt, rt, zt−1, at−1)
9: Step at ∼ πθ(a|bt), get xt+1, rt+1

10: end for
11: Add data {x1:T , r1:T , a1:T−1} to Bi
12: end for
13: for step in train steps do
14: for each task Ti do
15: Sample {x1:T , r1:T , a1:T−1} ∼ Bi
16: Infer beliefs b1:T = {qφ(zt| . . . )}1:T
17: Predict reconstructions {x̂t, r̂t}1:T
18: Lim = Lmodel({xt, x̂t, rt, r̂t, at}1:T )
19: end for
20: φ← φ− η1∇φ

∑
i Lim . train model

21: Update θ, ζ with SAC(η2, η3) . train AC
22: end for
23: end while

Algorithm 8 MELD Meta-testing
Require: Test task T ∼ p(T )
1: Infer b1 = qφ(z1|x1, r1)
2: Step with a1 ∼ πθ(a|b1), get x2, r2
3: for t = 2, . . . , T − 1 do
4: Infer bt = qφ(zt|xt, rt, zt−1, at−1)
5: Step with at ∼ πθ(a|bt), get xt+1, rt+1

6: end for



CHAPTER 7. ADAPTIVE ONLINE REASONING FROM IMAGES VIA LATENT
DYNAMICS MODELS 110

0.0 0.5 1.0 1.5
Environment Steps 1e6

250

200

150

100

50

0

50

100

R
ew

ar
d

Episode 1
Episode 2

Figure 7.6: Image-based 2D navigation: trajectory traces (left) and rewards (right) of meta-learned exploration
to find goal in Episode-1 (red) and persisting information across episodes going directly there in Episode-2
(blue).

7.5 Simulated and Real-world Results of Meta-RL from
Images

In our experiments, we aim to answer the following questions:

1. Can MELD capture and propagate state and task information over time to explore
effectively in a new task?

2. How does MELD compare to prior meta-RL methods in enabling fast acquisition of
new skills at test time in challenging simulated control problems?

3. Can MELD enable real robots to quickly acquire skills via meta-RL from images?

7.5.1 Learning to Explore with MELD

We first present a didactic image-based 2D navigation problem to illustrate how MELD can
learn extended exploration strategies and adapt to a new task, within a single episode. The
task distribution consists of goal locations located along a semi-circle around the start state.
The agent receives inputs in the form of 64x64 image observations and rewards that are
non-zero only upon reaching the correct goal. Because meta-training with sparse rewards
is challenging, we make use of dense rewards (e.g., distance from goal at each step) during
meta-training, as in prior works (Abhishek Gupta et al. 2018; Rakelly et al. 2019; Mendonca
et al. 2019). In this hybrid instantiation of MELD, the reward input to the model is the sparse
reward, as during test time, but dense reward is used during training for the actor-critic and
reconstruction losses.

Intuitively, the latent state model objective encourages the belief to capture and propagate
uncertainty over task; for example, after exploring the right half of the semi-circle and receiving
no rewards, the belief should capture that the goal lies elsewhere. Conditioned on this belief,
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the agent can learn an exploration policy that searches regions until the goal is found. We
observe this behavior experimentally, see Figure 7.6a. By updating the posterior belief at
each step, MELD is able to find the goal within 10 − 20 steps of the first episode, rather
than requiring multiple full episodes, as in the case of posterior sampling methods that hold
the task variable constant across each episode (Rakelly et al. 2019; Abhishek Gupta et al.
2018). Once the goal is found, MELD can navigate to it immediately (Figure 7.6b) in the
next episode by persisting latent variables across episodes (as shown by the higher “episode-2”
rewards).

7.5.2 Fast Skill Acquisition at Test Time in Simulated
Environments

In our next set of experiments, we evaluate MELD on the four simulated image-based
continuous control problems in Figure 7.7. We describe the simulated experimental setup
below and then present the results of fast acquisition.

Figure 7.7: Simulated locomotion and manipulation meta-RL environments in the MuJoCo simulator (Emanuel
Todorov, Erez, and Tassa 2012a): running at different velocities, reaching to varying goals, inserting a peg
into varying boxes in varying locations, and putting away mugs of varying weights to varying locations.
The goal for each task is available to the robot only via per-timestep rewards, but is illustrated here for
visualization purposes.

7.5.2.1 Simulation Environment Details

In (a) Cheetah-vel, each task is a different target running velocity for the 6-DoF legged robot.
The remainder of the problems use a 7-DOF Sawyer robotic arm. In (b) Reacher, each task
is a different goal position for the end-effector. In (c) Peg-insertion, the robot must insert
the peg into the correct box, where each task varies the goal box as well as locations of all
four boxes. In (d) Shelf-placing, each task varies the weight (dynamics change) and target
location (reward change) of a mug that the robot must move from the table to the shelf.

In the Cheetah-vel environment, we control the robot by commanding the torques on the
robot’s 6 joints. The reward function consists of the difference between the target velocity
vtarget and the current velocity vx of the cheetah’s center of mass, as well a small control cost
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on the torques sent to the joints:

rcheetal-vel = −|vx − vtarget|+ 0.01||at||2. (7.5)

The episode length is 50 time steps, and the observation consists of a single 64x64 pixel image
from a tracking camera (as shown in Fig. 7.8a), which sees a view of the full cheetah.

In all three Sawyer environments, we control the robot by commanding joint delta-positions
for all 7 joints. The reward function indicates the difference between the current end-effector
pose xee and a goal pose xgoal, as follows:

rsawyer-envs = −(d2 + log(d+ 1e-5)), where d = ||xee − xgoal||2. (7.6)

This reward function encourages precision near the goal, which is particularly important for
the peg insertion task. We impose a maximum episode length of 40 time steps for these
environments. The observations for all three of these environments consist of two images
concatenated to form a 64x128 image: one from a fixed scene camera, and one from a
wrist-mounted first-person view camera. These image observations for each environment
are shown in Fig. 7.8b-d. The simulation time step and control frequency for each of these
simulated environments is listed in Table 7.2.

Table 7.2: Simulation Environments

Environment Sim. time step Control freq.

Cheetah-vel 0.01 10Hz

Reacher 0.0025 4Hz

Peg-insert 0.0025 4Hz

Shelf-placing 0.0025 4Hz

For all environments, we train with 30 meta-training tasks and evaluate on 10 meta-test
tasks from the same distribution that are not seen during training.
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Figure 7.8: 64x64 and 64x128 image observations, seen as input by MELD for (a) Cheetah-vel, (b) Reacher,
(c) Peg-insertion, and (d) Shelf-placing.

7.5.2.2 Comparisons

We compare MELD to two representative state-of-the-art meta-RL algorithms, PEARL (Rakelly
et al. 2019) and RL2 (Duan, John Schulman, X. Chen, Peter L Bartlett, et al. 2016b). PEARL
models a belief over a probabilistic latent task variable as a function of un-ordered batches of
transitions, and conditions the policy on both the current observation and this inferred task
belief. Unlike MELD, this algorithm assumes an exploration phase of several trajectories in
the new task to gather information before it adapting, so to get its best performance, we
evaluate only after this exploration phase. RL2 models the policy as a recurrent network
that directly maps observations, actions, and rewards to actions. To apply PEARL and RL2
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Figure 7.9: Rewards on test tasks versus meta-training environment steps, comparing MELD to prior methods.
See text for definitions of these success metrics, and discussion on the scale of these metrics.

to environments with image observations, we augment them with the same convolutional
encoder architecture used by MELD. We also compare MELD to the end-to-end RL algorithm
SAC (Haarnoja, Zhou, Abbeel, et al. 2018), with a sequence of observations and rewards
as input. This input provides SAC with enough information to solve these dense reward
tasks, so this comparison reveals the importance of the explicit representation learning and
meta-learning mechanisms in MELD. Finally, to verify the need for meta-learning on these
held-out tasks, we compare to SLAC (A. X. Lee et al. 2019), which infers a latent state from
observations but does not perform meta-learning.

7.5.2.3 Results of Fast Skill Acquisition

Figure 7.12 shows average performance on meta-test tasks over the course of meta-training,
across 3 random seeds per algorithm. We define a success metric for each environment that
correlates with qualitatively solving the task: Cheetah-vel: within 0.2m/s of target velocity,
Reacher: within 10cm of goal, Peg: complete insertion with 5cm variation possible inside the
site, Shelf: mug within 5cm of goal. Although these were selected thresholds, we emphasize
that all prior methods except PEARL on the reacher environment objectively failed on these
image-based meta-RL tasks; as can be seen in the videos on the project website 2, they were
not simply a threshold-choice away from success. We use these success metrics because task
reward is often misleading when averaged across a distribution of tasks; in peg-insertion, for
example, the numerical difference between always inserting the peg correctly versus never
inserting it can be as low as 0.1, since the distance between the center of the goal distribution
and each goal is quite small and accuracy is required.

MELD achieves the highest performance in each environment and is the only method
to fully solve Cheetah-vel, Peg-insertion, and Shelf-placing. Notably, end-to-end RL with
SAC performs poorly across all of these image-based meta-RL tasks. The SLAC baseline
also fails in this meta-RL setting, as expected, with qualitative behavior of always executing
a single “average” motion, such as reaching toward a mean goal location and running at a

2https://sites.google.com/view/meld-lsm/home

https://sites.google.com/view/meld-lsm/home
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medium speed. While PEARL infers a latent task variable, it relies on the current observation
alone for state information; thus it is able to succeed only on Reacher, which is the only
environment where enough information can be inferred from a single image. While RL2 is
capable of propagating both state and task information over time, we observe that it overfits
heavily to training tasks and struggles on evaluation tasks.
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Figure 7.10: MELD tracking changing ve-
locity targets for Cheetah-vel.

The experiments above consider the standard meta-
RL paradigm, where the agent adapts to one test
task at a time. However, many realistic scenarios
consist of a sequence of tasks. For example, consider
a robot moving a mug filled with liquid; if some of
the liquid spills, the robot must adapt to the new
dynamics of the lighter mug to finish the job. Unlike
previous methods that hold task variables constant
across episodes (Abhishek Gupta et al. 2018; Rakelly
et al. 2019), the ability to update its belief at each
step allows MELD to adapt quickly to task changes.
We evaluate MELD in the Cheetah-vel environment
on a sequence of 3 different target velocities within a single episode and observe in Figure 7.10
that MELD adapts to track each velocity within a few time steps.

7.5.3 MELD in the Real World

We now evaluate MELD on two real-world robotic systems: a 7-DoF Sawyer arm performing
peg insertion, and a 6-DoF WidowX arm performing ethernet cable insertion. The policy
sends joint velocity controls over a ROS interface to a low-level PID controller to move
the joints of each robot. The reward function for all tasks is the sum of the L2-norms of
translational and rotational distances between the pose of the object in the end-effector and
a goal pose. Note that the goal is not provided to the agent, but must be inferred from its
history of observations and rewards. The agent’s observations are concatenated images from
two webcams (Figure 7.11): one fixed view and one first-person view from a wrist-mounted
camera.

We first test if the latent state model learned by MELD can reason about state and task
information and perform challenging image-based control in the real world. On the Sawyer
robot, we learn precise peg insertion where the task distribution consists of three tasks, each
corresponding to a different target box. The robot succeeds on all three tasks after training
on 4 hours of data (60, 000 samples at 4Hz), as shown in Figure 7.13.

Next, to demonstrate the fast acquisition of new tasks via meta-learning with MELD in
the real world, we set up a more realistic problem of ethernet cable insertion, where the task
distribution consists of inserting the cable into different ports in a router that also varies
in location and orientation. To instrument these distinct tasks in the real world, we build
an automatic task reset mechanism that moves and rotates the router. This mechanism
controls the translational and rotational displacement of the network switch. The network
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Figure 7.11: (Left) The peg and ethernet cable insertion problems. (Right) 64x128 image observations seen
by the Sawyer for peg insertion and the WidowX for ethernet cable insertion.

switch(A) is mounted to a 3D printed housing(B) with gear attached. We control the rotation
of the housing through motor 1. This setup is then mounted on top of a linear rail(C) and
motor 2 controls its translational displacement through a timing pulley. In our experiments,
the training task distribution consisted of 20 different tasks, where each task was randomly
assigned from a rotational range of 16 degrees and a translational range of 2cm.

Figure 7.12: Automatic task reset mechanism for ethernet cable insertion: The network switch is rotated
and translated by a series of motors in order to generate different tasks for meta-learning. This allows our
meta-learning process to be entirely automated, without needing human intervention to reset either the robot
or the task at the beginning of each rollout.

After training across these 20 meta-training tasks using a total of 4 hours (50, 000 samples
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Figure 7.13: In red, rewards on train tasks during meta-training for Sawyer peg insertion (left) and WidowX
ethernet cable insertion (right). In blue, success rate of ethernet cable insertion on unseen eval tasks.

at 3.3Hz) worth of data, MELD achieves a success rate of 96% over three rounds of evaluation
in each of the 10 randomly sampled evaluation tasks that were not seen during training.
Videos and more experiments can be found online3.

7.6 Discussion
In this chapter, we drew upon the insight that meta-RL can be cast into the framework of
latent state inference. This allowed us to combine the adaptation and fast skill-acquisition
capabilities of meta-learning with the efficiency of unsupervised latent state models when
learning from raw image observations. Based on this principle, we designed MELD, a practical
algorithm for meta-RL with image observations. We showed that MELD outperforms prior
methods on simulated locomotion and manipulation tasks with image observations, and is
efficient enough to perform meta-RL directly from images in the real world. By operating
directly from raw image observations rather than assuming access to the underlying state
information, as well as by explicitly enabling the fast acquisition of new skills, the work in
this chapter takes a critical step toward the deployment of intelligent and adaptive robots
into the real world.

3https://sites.google.com/view/meld-lsm/home

https://sites.google.com/view/meld-lsm/home
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Chapter 8

Conclusion

In this thesis, we presented the idea that model-based deep RL provides an efficient and
effective framework for making sense of the world; and in turn, this ability to make sense
of the world allows for reasoning and adaptation capabilities that give rise to the general-
ization that is necessary for successful operation in the real world. We started in chapter
2 by building up a model-based deep RL framework and demonstrating that it allows for
efficient and effective autonomous skill acquisition for various agents in simulation. We also
demonstrated the ability to repurpose the learned models to execute a variety of paths at
test time. Next, in chapter 3, we extended this framework to enable locomotion with a 6-DoF
legged robot in the real world by learning image-conditioned models that are able to address
various types of terrains. Then, in chapter 4, we scaled up both modeling and control aspects
of our model-based deep RL framework and demonstrated efficient and effective learning
of challenging dexterous manipulation skills with a 24-DoF anthropomorphic hand, both
in simulation and in the real world. We then switched focus to the inevitable mismatch
between an agent’s training conditions and the test conditions in which it may actually be
deployed. In chapter 5, we presented a meta-learning algorithm within our model-based
deep RL framework to enable online adaptation of large, high-capacity models using only
small amounts of data from new tasks. We demonstrated these fast adaptation capabilities
in both simulation and the real-world, with experiments such as a 6-legged robot adapting
online to an unexpected payload or suddenly losing a leg. Next, in chapter 6, we further
improved these adaptation capabilities by formulating an online learning approach as an
expectation maximization problem. By maintaining and building a task distribution with a
mixture of models, this algorithm demonstrated both generalization as well as specialization.
Finally, in chapter 7, we further extended the capabilities of our robotic systems by enabling
the agents to reason directly from raw image observations. By combining efficiency benefits
from representation learning with the adaptation capabilities of meta-RL, we presented a
unified framework for effective meta-RL from images. This approach demonstrated not only
efficient meta-learning due to the learned latent dynamics model, but it also demonstrated
fast acquisition of new skills at test time due to the meta-learned procedure for performing
online inference. We demonstrated these results on robotic arms in the real world performing
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peg insertion and ethernet cable insertion to varying targets, thus showing the fast acquisition
of new skills directly from raw image observations in the real world.

Looking ahead, we see a few promising directions for future work in this area of model-based
deep RL for robotic systems. We discuss some open questions and future directions below.

Incorporating other sensing modalities: Thanks to the large amounts of prior work in
computer vision research, great strides have been made in learning directly from image inputs.
While there is still work to be done in that direction, there has been a relatively much smaller
effort in incorporating other sources of sensing modalities such as touch and sound. These
additional senses can be critical for many tasks in the real world, such as buttoning a shirt or
braiding our own hair, where most of the work happens without vision to guide our actions.
Even tasks that do incorporate vision can benefit from additional sensing modalities, includ-
ing operating in environments with occlusions, or reasoning further about details that are
not obvious from vision alone, such as the weight, composition, or interactions between objects.

What to model and predict: Throughout this thesis, we talked about the importance and
effectiveness of learning predictive models. However, in the real world, it’s often not obvious
what to predict. In most of the chapters in this thesis, we had some “state” representation and
thus formulated the problem as predicting the next state. However, knowing what to include
in this state ahead of time is a challenge in the real world; it is impossible to include the
position of every possible item that may be relevant, and then predict the future value of that
entry. Instead, the last chapter presented an algorithm that operated directly from image
inputs. As is common for representation learning approaches, however, we used pixel-based
reconstruction loss as part of the training objective. These types of pixel-based predictions
are unfortunately challenging as well as severely limiting. Consider, for example, a robot
arm that might push a bowl of cereal off of the edge of the table. In this case, what we
care to predict is that the bowl will break and the milk will splatter. Predicting each pixel
value of the resulting image is not at all appropriate in these types of situations, because
trying to figure out where every drop of milk or every piece of shattered glass might end up
is not only unimportant, but also impossible. Recent work has shown promising alternatives
for pixel-based reconstruction losses, such as contrastive learning (Srinivas, Laskin, and
Abbeel 2020; T. Chen et al. 2020) and other similarity-based (R. Zhang et al. 2018) learning
approaches. Additionally, there may also be effective ways to combine autonomous image
segmentation processes with predictive processes on those segments. The development and
integration of such approaches – to produce predictive models that don’t rely on fixed state
representations or on pixel-based predictions – are a promising direction for future work.

Planning over long horizons: RL can be described as decision making to control a system
in order to accomplish some given goal. This problem statement encompasses many types of
challenges, from flying a quadcopter to unloading a dishwasher. While we can reason over
short time horizons for tasks such as maneuvering a quadcopter to follow a given trajectory
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or figuring out in-hand manipulation of an object, we must reason over a much longer time
horizon to do multi-stage reasoning or tasks with sparse rewards. Consider setting a dinner
table or cleaning an entire room, where “success” cannot be achieved without reasoning over a
long time horizon and doing many intermediate things before actually achieving that success.
Although model-based deep RL algorithms can now solve tasks that are challenging in many
ways, from locomotion (M. P. Deisenroth, Calandra, et al. 2012; Hester, Quinlan, and Stone
2010; Morimoto and Atkeson 2003) to manipulation (M. P. Deisenroth, Englert, et al. 2014;
Depraetere et al. 2014; M. P. Deisenroth, Carl Edward Rasmussen, and Fox 2011; Atkeson
1998), these approaches still struggle with compounding model errors when trying to scale
to multi-step reasoning or long-horizon planning tasks. Work in the areas of gradient-based
optimization techniques (Mordatch, Emanuel Todorov, and Popović 2012; Ratliff et al. 2009),
generating sub-goals (McGovern and Barto 2001), learning options (Stolle and Precup 2002),
generating successor representations (Kulkarni et al. 2016), and hierarchical reinforcement
learning (Peng et al. 2017; Vezhnevets et al. 2017; Stulp and Schaal 2011; Kaelbling, Littman,
and A. W. Moore 1996) have shown promise in this area of addressing long-horizon tasks.
Integrating, developing, and applying these ideas to enable reasoning over varying time
horizons and autonomous behaviors in the dynamic conditions of real-world environments is
a critical direction for future work.
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