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Abstract
Explainable and Advisable Learning for Self-driving Vehicles
by
Jinkyu Kim
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor John Canny, Chair

Deep neural perception and control networks are likely to be a key component of self-driving
vehicles. These models need to be explainable - they should provide easy-to-interpret ra-
tionales for their behavior — so that passengers, insurance companies, law enforcement, de-
velopers, etc., can understand what triggered a particular behavior. Explanations may be
triggered by the neural controller, namely introspective explanations, or informed by the
neural controller’s output, namely rationalizations.

Our work has focused on the challenge of generating introspective explanations of deep
models for self-driving vehicles. In Chapter 3, we begin by exploring the use of visual
explanations. These explanations take the form of real-time highlighted regions of an image
that causally influence the network’s output (steering control). In the first stage, we use a
visual attention model to train a convolution network end-to-end from images to steering
angle. The attention model highlights image regions that potentially influence the network’s
output. Some of these are true influences, but some are spurious. We then apply a causal
filtering step to determine which input regions actually influence the output. This produces
more succinct visual explanations and more accurately exposes the network’s behavior. In
Chapter 4, we add an attention-based video-to-text model to produce textual explanations
of model actions, e.g. “the car slows down because the road is wet”. The attention maps
of controller and explanation model are aligned so that explanations are grounded in the
parts of the scene that mattered to the controller. We explore two approaches to attention
alignment, strong- and weak-alignment.

These explainable systems represent an externalization of tacit knowledge. The network’s
opaque reasoning is simplified to a situation-specific dependence on a visible object in the
image. This makes them brittle and potentially unsafe in situations that do not match
training data. In Chapter 5, we propose to address this issue by augmenting training data
with natural language advice from a human. Advice includes guidance about what to do and
where to attend. We present the first step toward advice-giving, where we train an end-to-end



vehicle controller that accepts advice. The controller adapts the way it attends to the scene
(visual attention) and the control (steering and speed). Further, in Chapter 6, we propose a
new approach that learns vehicle control with the help of long-term (global) human advice.
Specifically, our system learns to summarize its visual observations in natural language,

predict an appropriate action response (e.g. “I see a pedestrian crossing, so I stop”), and
predict the controls, accordingly.
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Chapter 1

Introduction

Whereas classical Al systems involved carefully-crafted features and representations, one
of the new powers of deep learning methods is the ability to learn very effective latent
representations from data. Deep neural perception and control networks are likely to be
a key component of self-driving vehicles. In Chapter 2, we first explore that these deep
learning methods can be integrated into a self-driving vehicle control model. Unfortunately,
whereas human-designed feature maps are often easy to understand, deep representations
may not be. While there have been some successes in visualizing deep models on image data,
many models remain cryptic. And even among the successes, success is partial: i.e. while
many individual features are interpretable, many others in the same network are not. A
deep network such as a visually-driven action policy embodies tacit, situated knowledge. It
is represented as a complex set of learned weights and produces action in response to inputs,
with a priori no other abstraction or higher explanation.

In Chapter 3, we first explore to make the model interpretable using visual attention. The
attention model weights different areas of the image differently and effectively ignores certain
areas completely. This can be visualized with a dynamic heatmap. We have observed that
visual attention can be integrated into a state-of-the-art vehicle control model without loss
of control accuracy. The collateral benefit of using spatial attention is that it is immediately
interpretable: areas that are “dark” in the attention map are masked in the middle of the
network and can have no effect on its control output. The converse assertion is not sound
however: “bright” areas in the attention map are not necessarily the most important for the
vehicle’s control behavior. Attention maps (human attention as well) must be conservative
in discarding visual input. The goal of attention is to focus on areas of the image that might
be important. Only after images are processed, we can infer the actual influence of those
images on the full network. So attention maps are likely to generate false positives (to be
concrete, the model often attends to foliage where there might be street signs). Therefore,
we add an extra layer of causal filtering: the attention map is clustered into spatio-temporal
blobs that roughly correspond to objects in the underlying images (they do not have perfect
correspondence with objects since we leave it to human observers to interpret them). We
then systematically remove each blob in the attention layer by setting the weights to zero
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over its support. If there is a significant change in controller output, then the blob is retained
in the attention map. If not, it is discarded. A typical reduction in the number of blobs is
more than 2x. By doing this we obtain a much more focused (specific) attention map and
we know that the blobs that remain do causally affect the controller.

In Chapter 4, we next move to textual explanations. We use the Berkeley DeepDrive-
eXplanation (BDD-X) dataset which is constructed the following way. Video from a number
of drivers in the United States was collected using small camera devices placed on the dash-
board just above the steering wheel. This data was subsequently annotated using Amazon
Mechanical Turk where the task was to view the video and provide both a description of
the drivers’ actions and then an explanation for them. The turker was asked to put them-
selves in the position of a driving instructor providing explanations to a student driver. The
explanations obtained in this way are pure rationalizations since they were generated by
an observer, not the driver. While it might be more desirable to use self-report data from
drivers themselves, the collection of such a dataset poses a number of challenges. For now we
have used the existing Berkeley DeepDrive-Video (BDD-V) dataset, which has the advantage
that we at least do not need to determine whether human explanations are based on true
introspection or rationalization since it is always the latter for this dataset. We use this data
to train an explanation generator. It remains for us to try to generate explanations that
are grounded in the model’s actual behavior even though there is no such information in
the training dataset. We return again to spatial attention — our controller has already high-
lighted regions in the image that affect its output using its own attention map augmented
by causal filtering. Spatial and temporal attention has also been successfully applied for
generating text annotations of videos. That is, the explanation module also highlights the
areas of the video that it used in its explanations. These two attention models should align
in an appropriate sense: The explanation module should not causally attend to regions of
the image that did not causally affect the controller output. In other words, the explanation
module’s causal attention map should be a subset of the controller’s. We have to take care in
dealing with time — the controller’s “time” is the same as the timestamp in the video stream.
A grammatical explanation will often generate words (and attend to corresponding image
regions) in a quite different order from their prominence for the controller. Thus our two
attention maps are compared using a metric which allows flexibility in temporal alignment.

These explainable systems represent an externalization of tacit knowledge. The network’s
opaque reasoning is simplified to a situation-specific dependence on a visible object in the
image. It is better considered as part of socialization, where explanations are offered in
a master-apprentice context with the control policy serving as an instructor. We explore
advisable Al systems that are built directly on our work on explanations. The explainable
driving model project has connected with a number of industry researchers through the
Berkeley Deep Drive initiative. From them, and from other prospective users we have had
a lot of feedback about the need for users not only to understand the driving controller,
but to influence it. Since users are typically not paying attention to the vehicle’s detailed
behavior, such influence should be high-level. We use the term “advisable AI” to convey
the notion of partnership between human and machine. It contrasts with commanding, or
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even constraining the robot’s actions. It is a form of user customization, although it is
typically quite dynamic since the user’s preferences for driving behavior are likely to change
frequently. Human-to-vehicle advice can take a variety of forms, with different levels of
urgency, e.g. “drive more slowly/gently”, “Avoid roads with speed bumps”. Some of these
are commands that should always be followed. Markers such as “always”, “don’t” “avoid”
indicate that the user expects their directions to be followed.

In Chapter 5, we observe that deep neural control networks, which are trained on large
datasets to imitate human actions, lack semantic understanding of image contents. This
makes them brittle and potentially unsafe in situations that do not match training data. We
propose to address this issue by augmenting training data with natural language advice from
a human. Advice includes guidance about what to do and where to attend. We present a
first step toward advice giving, where we train an end-to-end vehicle controller that accepts
advice. The controller adapts the way it attends to the scene (visual attention) and the
control (steering and speed). Attention mechanisms tie controller behavior to salient objects
in the advice. We evaluate our model on a novel advisable driving dataset with manually
annotated human-to-vehicle advice called Honda Research Institute-Advice Dataset (HAD).
We show that taking advice improves the performance of the end-to-end network, while
the network cues on a variety of visual features that are provided by advice. This was the
first paper on the use of advice, but this design is most appropriate for turn-by-turn (short
duration) advice. Since our data comprised short clips, advice was effective throughout the
clip. It will be worth exploring other styles of advice, such as per-ride advice (gentle, fast,
etc) and rule-based global advice.

In Chapter 6, we propose to use human advice in the form of observation-action rules.
Specifically, we propose a new approach that learns vehicle control with the help of human
advice. Specifically, our system learns to summarize its visual observations in natural lan-
guage, predict an appropriate action response (e.g. “I see a pedestrian crossing, so I stop”),
and predict the controls, accordingly. Moreover, to enhance interpretability of our system,
we introduce a fine-grained attention mechanism which relies on semantic segmentation and
object-centric Rol pooling. We show that our approach of training the autonomous system
with human advice, grounded in a rich semantic representation, matches or outperforms prior
work in terms of control prediction and explanation generation. Our approach also results in
more interpretable visual explanations by visualizing object-centric attention maps.



Chapter 2

Deep Traffic Light Detection for
Self-driving Cars from a Large-scale
Dataset

2.1 Problem Statement

Traffic lights detection problem is one of the key challenges for autonomous vehicle controllers
in urban areas. While a number of approaches for traffic light detection have been proposed,
these methods often require a prior knowledge of map and/or show high false positive rates.
Recent successes suggest that deep neural networks will be widely used in self-driving cars,
but current public datasets do not provide sufficient amount of labels for training such large
deep neural networks. In this paper, we developed a two-step computational method that
can detect traffic lights from images in a real-time manner. The first step exploits a deep
neural object detection architecture to fine true traffic light candidates. In the second step,
a point-based reward system is used to eliminate false traffic lights out of the candidates.
To evaluate the proposed approach, we collected a human-annotated large-scale traffic lights
dataset (over 60 hours). We also designed a real-world experiment with an instrumented
self-driving vehicle and observed that the proposed method was able to handle false traffic
lights substantially better compared with the baseline considered.

Self-driving vehicle control has recently made remarkable progress. These controllers in-
volve a variety of sophisticated algorithms for perception, behavioral/motion planner, and
dynamics controllers. Despite their recent success in some driving scenarios (i.e. highway
driving), there still remain new challenges for urban driving that involves more complex driv-
ing scenarios that need interaction with traffic controls, vehicles, pedestrians, etc. Especially,

*This work has been presented at the 20th IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2017.
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Figure 2.1: Our model detects traffic lights, e.g. a red circle, from an input raw image at each
timestep. Our model consists of two major steps: (1) coarse-grained detector that utilizes
deep neural object detection architecture and is tuned to discover as many true traffic lights
as possible. (2) the spatiotemporal filtering step that eliminates false traffic lights with
respect to features extracted from both spatial and temporal domains. The output of our
proposed detector is then fed into the vehicle motion planner and the PID controller that
computes corresponding acceleration and steering angle commands.

traffic lights pose a challenging (computer vision) problem when subject to varying lighting,
view distances, and weather conditions. Though its importance for automated driving in ur-
ban areas, conventional approaches showed insufficient reliability and robustness enough to
be used in autonomous systems in the urban environment without utilizing prior knowledge.

Recent successes suggest that deep neural networks will be widely used in self-driving
cars, especially for a perception part. Behrendt et al. [8] utilized the “You Only Look Once”
(YOLO) network architecture followed by a small classification convolutional network to
detect traffic lights. For obtaining a reliable and robust performance from such a large deep
neural network, a large amount of dataset is strongly required to provide a large variation in
environmental conditions. However, the current publicly available datasets show lacks such
variation. For example, the VIVA challenge [62] for traffic lights only provide 44 minutes
of data and the Bosch Small Traffic Lights Dataset [8] provides only about 5,000 images
(less than 3 hours), which is insufficient from the view of the conventional way of training
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such large deep neural networks. We, therefore, create a large dataset, which provides over
60 hours of driving images that cover diverse driving conditions (i.e. lighting and weather).
Thus, we argue this dataset will be ideal for further traffic light detection studies.

Collecting a large-scale dataset is only part of a story. Reliable traffic light detector
strongly requires low false negative (or discovering as many true traffic lights as possible)
and false positive (or eliminating false traffic lights) rates, while maintaining a high detection
accuracy. Here, we propose a new computational method for traffic light detection, which
consists of two major steps: (1) coarse-grained traffic light detection and (2) spatiotemporal
filtering of the detected traffic lights. The first step considers individual images and collects
traffic light candidates using a deep neural object detection architecture. The focus of this
step is to reduce false negatives (FNs) or to discover as many true traffic lights as possible.
The second step is then to eliminate false positives (FPs) by considering spatial and temporal
characteristics of traffic lights. To distinguish true and false traffic lights, we propose a point-
based reward system where each detected traffic lights earn rewards and the final decision
is made based on these rewards. To demonstrate the effectiveness of applying the proposed
method to self-driving vehicles, we test with an instrumented vehicle and successfully drive
6 kilometers on city streets in the San Francisco Bay Area, California, USA.

Our contributions can be summarized as follows: (i) We propose a new computational
method for accurately detecting traffic lights from a raw input image in a real-time manner.
(ii) We generated a large-scale traffic lights dataset with over 71,771 images (over 60 hours)
with human annotated bounding boxes. (iii) We demonstrate the effectiveness of applying
our proposed approach by conducting a real-world experiment (driving over 6 kilometers
including 17 intersections with traffic lights) with an instrumented vehicle.

2.2 Deep Traffic Light Detection Model

Here, we propose a method that accurately and reliably detects traffic lights from a stream
of images captured by a front-view dash-cam attached to the windshield. As we depicted in
Figure 2.2, the proposed method contains two major steps: (1) coarse-grained traffic light
detector and (2) spatiotemporal filtering of the traffic lights candidates. In the first step
(coarse-grained detector), traffic light candidates from each image are collected by utilizing
a deep neural object detection architecture. The main focus of this step is to discover
the true traffic lights as many as possible (i.e. reducing the number of false negatives).
Thus, it is possible that the traffic light candidate collection may contain false positives.
In the second step (spatiotemporal filtering), we eliminate such erroneously detected traffic
lights by simultaneously considering other traffic lights over time and space. To distinguish
between true and false traffic lights, we use a point-based reward system where each detected
traffic lights earn rewards with respect to features extracted from both spatial and temporal
domains.
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Figure 2.2: An overview of our proposed model. It can be understood in three parts: (i) a
coarse-grained detector that utilizes the deep neural perception network architecture called
SSD (Single-Shot multi-box Detector [50]), (ii) a spatiotemporal filtering, and (iii) a vehicle
controller. To demonstrate the feasibility of applying our model to self-driving cars, we use
an instrumented autonomous vehicle which uses the output of our model as an input to
control its dynamics.

2.2.1 Preprocessing

We use an input image that is resized to 288x512x3 with bilinear interpolation algorithm,
hence to reduce computational burdens for a real-time detection. For the images with dif-
ferent aspect ratios, we cropped the height to match the ratio. Following a common practice
in image classification tasks, we subtracted the mean RGB value to achieve zero-centered
inputs, which are originally in different scales. Note that our dataset contains images where
the camera gains are automatically calibrated to obtain high-quality images. During the
testing process, we also used a cropped image in the center part of the image, where traffic
lights are commonly observed in that area. Thus, a batch of two images (i.e. whole and
cropped images) are fed into our detector.
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2.2.2 Coarse-grained Traffic Light Detection

Traffic light detector strongly requires showing reliable performance in real-time and working
for both small (i.e. 3x9 pixels) and large objects with low false positive and low false negative
rates, while maintaining a high detection accuracy. For example, a false red traffic light will
lead the autonomous vehicle to abruptly stop while driving, while a missed red light will
cause the vehicle to go through an intersection originally with red lights in its course of
driving.

In this coarse-grained traffic light detection step, we focus to reduce false negative (FN)
rates or to collect as many true traffic lights as possible. We utilize the Single-Shot multi-
box Detector (SSD) [50] that has been shown to be an effective tool for an object detection
task. Note that we use the SSD architecture that has shown improved detection accuracy in
other benchmarks than YOLO network architecture, which was utilized in the existing work
by Behrendt et al. [8]. More modern architecture, such as Mask R-CNN [25], may provide
better detection accuracy, but we leave this comparison for future work. The SSD model
is based on a convolutional network and takes the whole image as an input and predicts a
fixed-size collection of bounding boxes and corresponding confident scores for the presence
of object instances in those boxes. The final detections are then produced followed by a non-
maximum suppression step — all detection boxes are sorted on the basis of their predicted
scores, and the detections with maximum score is then selected, while other detections with
a significant overlap are suppressed. As we described in Figure 2.2, we use a standard
VGG-16 network architecture [72] as a base convolutional network, which is pre-trained
on ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset [69]. Auxiliary
structures — convolutional predictor and the additional convolutional feature extractor — are
used following the work by Liu et al. [50].

2.2.2.1 Training Objective.

The loss function £ (= Lo+ Leons) is a weighted sum of two types of loss: (1) the localization
loss L;,. measures a Smooth L; loss between the predicted and the ground-truth bounding
box in a feature space. (2) The confidence loss L., is a softmax loss over multiple classes
confidences. For more rigorous details, refer to Lie et al. [50].

2.2.2.2 Data Augmentation.

To train a robust detector to various object sizes, we use random cropping (the size of each
sampled image is [0.5, 1] of the original image size with fixed aspect ratio) and flipping to
yield consistent improvement. Following the work by Liu et al. [50], we also sample an image
so that the minimum Jaccard overlap with the objects is {0.1, 0.3, 0.5, 0.7, 0.9}. Note that
each sampled image is then resized to a fixed size followed by photometric distortions with
respect to brightness, contrast, and saturation.
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2.2.3 Characterizing Traffic Lights

According to our analysis, the traffic lights appearing in the detection pipeline possess the
following characteristics:

(C.1) As the confidence of a traffic light candidate decreases, so does the possibility of this
being a true traffic light.

(C.2) The possibility of a traffic light candidate being true increases if the traffic light can-
didate is detected again in next timestep at almost the same location.

(C.3) If multiple traffic lights of the same category (i.e. red, yellow, and green) are detected
in a scene, then they are usually true traffic lights differently located (i.e. multiple
traffic lights are installed at an intersection).

(C.4) Traffic lights shall be located following the governmental guideline (i.e. at least one of
the signal faces shall be located at an intersection mounted on the mast arm.), hence
the possibility of a traffic light candidate being true increases as its location gets close
to the usual.

As is evident above, examining traffic lights individually is not sufficient, and multiple traffic
light candidates over space and time should be considered simultaneously.

2.2.4 Spatiotemporal Filtering
2.2.4.1 Fine-grained Detector

Recall from Section 2.2.1, we re-scaled images by 40% to reduce the computational burdens
for a real-time system. We observe that the classification performance of our coarse-grained
detector slightly decreases as we have smaller traffic lights (i.e. seen from a farther distance).
Thus, we utilize an additional small classification network, called fine-grained detector, that
has a high-resolution input. All bounding boxes from the coarse-grained detector are cropped
and rescaled to 100x100 pixels, they are then fed into the fine-grained detector. For train-
ing, we collect image patches that are cropped and rescaled from the ground-truth dataset.
Overall, we collect 24,991 and 6,248 patches for training and validation, respectively.

2.2.4.2 Score Function

According to our traffic light characterization (see C.1-C.4), we need to examine multiple
traffic light candidates simultaneously for accurate traffic light status recognition. In addi-
tion, we set the confidence threshold value of the coarse-grained detector so as to minimize
the number of FNs (i.e. the true traffic lights that are erroneously left undetected). Conse-
quently, it is likely that the traffic lights detected in the previous step contain false traffic
lights that further need to be filtered out. In this spatiotemporal filtering step, we seek to
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resolve these issues using a point-based reward system where each detected traffic lights earn
points with respect to the following characterizations:

(S.1) Each traffic light candidate has its own score for being true, and its score is accumulated
in the next timestep if detected again under our matching criterion (i.e. euclidean
distance between centers of each candidate).

(S.2) Every traffic light candidates from coarse-grained detector earn a reward R at each
timestep.

(S.3) Scores are discounted by a pre-specified discount rate v at each timestep.

Concretely, the score function s;(t) for a candidate j is defined as follows:
s;(t) = min(Spaz, Re;(t) + vs;(t — 1)) (2.1)

where ¢;(t) € [0,1] is the confidence value computed by the coarse-grained detector. A
maximum score is set to Spuz-

2.2.4.3 Decision

The output of this step is a tuple of the current traffic light status. For each type k of traffic
light signals (i.e. k €{turning left, going forward, turning right}) and each traffic light status
(i.e. unknown, red, yellow, and green), we accumulate scores over traffic light candidates and
output the status of the maximum score.

Ok (t) — arnga/xiE{1red7 yellow, green, unknown} Z ]l(Z, ])5](t> (22>
J
where 1(7,7) is an indicator function that is 1 if j-th candidate has the same status as 1,
otherwise 0.

2.3 Dataset

In order to effectively train and evaluate a deep neural perception approach, we have col-
lected a large-scale traffic lights dataset. Our dataset contains RGB color images captured
by a dashcam mounted behind the front mirror of the vehicle. Each image has the resolution
of 1280 x 720 pixels. We provide the dataset statistics in Table 2.1. Our dataset is composed
of over 60 hours of driving taken in diverse driving conditions, e.g. day/night, city/residential
ares, etc. We have collected 71,771 images mainly in the San Francisco Bay Area in Cali-
fornia, USA. To avoid high similarity between images, we sample images at every 3 seconds.
Overall, 34,604 are labeled, the minimum size of labeled traffic lights is approximately 3
(width)x9 (height) pixels. We also introduce a training and a test set, containing 64,607
and 7,164 images, respectively. In Figure 2.3, we illustrate the distribution of the different
traffic light states, which have eight categories: off, too small to annotate, green (circle), red
(circle), yellow (circle), green (left-turn), red (left-turn), and yellow (left-turn).
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2.4 Experiments

2.4.1 Training and Evaluation Details

For training a coarse-grained detection model, we use the stochastic gradient algorithm
(SGD). Unless stated, we use default hyper-parameters following the work by Liu [50]. Our
model took less than 3 days to train on three NVIDIA Titan X Pascal GPUs. Our imple-
mentation is based on a deep learning framework called Caffe [35].

2.4.2 Quantitative Analysis

As shown in Figure 2.4, we first measured the classification performance of our coarse-grained
traffic light detector in terms of recall and precision. We tested with different threshold
values in [0, 1]. Note that a good classifier will have higher precision and recall values. The
coarse-grained detector seeks to minimize the number of FNs (or undetected true traffic
lights) to maintain high recall — suggesting that few true traffic lights went undetected by
using this method. In the cases tested, maintaining a high recall increases the number of
FPs (or detected false traffic lights), which support the need to use the refinement step. The
numbers of training example for the yellow circle and left lights are smaller than other colors,
and we observe the classifier shows poor classification performance for the yellow circle and
left lights. It would also worth exploring the use of other types of more expressive neural
networks, which may give a performance improvement over our network configuration [32].
However, exploration of other architectures would be out of our scope.

Table 2.1: Dataset details with the comparison to other publicly available datasets: the
VIVA Challenge for traffic lights [62] and the Bosch Small Traffic Lights dataset [8].

VIVA [62] Bosch [§] Ours

Training Testing  Training Testing Training Testing

#Images 20,526 22,481 5,093 8,334 64,607 7,164
FPS 16 16 1/2 15.6 1/3 1/3
#Annotations 54,161 64,170 10,756 13,493 31,239 3,365
#Hours ~ 22min ~ 22min ~ 2.8 hours ~ 8.9min =~ 53 hours = 6 hours
Image Res. 1280960 1280x 720 1280x 720

Location San Diego, USA  The SF Bay Area, USA The SF Bay Area, USA




CHAPTER 2. DEEP TRAFFIC LIGHT DETECTION FOR SELF-DRIVING CARS

FROM A LARGE-SCALE DATASET 12
g 12.000 Training

-S ’ - B Testing

T 10,000

0

S 8,000 ]

< 6,000

8 4,000 -

£ 2000 — —
< 0

ao do O o @D dXD Too small
#Training 10,797 1,980 7,649 2790 143 977 4,445 2458
M #Testing 1,376 83 964 311 8 62 445 116

Figure 2.3: Traffic lights annotation statistics.

Recall from Section 2.2.4, we use a fine-grained detector that further examines the traffic
light candidates by using an additional small neural network with high-resolution inputs.
Table 2.2 shows the classification performance with and without the fine-grained detector.
In the cases tested except for two classes (i.e. red circle and red left), using a fine-grained
detector resulted in higher classification performance in F-measure values. The F-measure
is 3.44 - 17.03% higher as compared to the coarse-grained detector only.

2.4.3 Real-world Experiments

To demonstrate the feasibility of applying our traffic light detector for a real self-driving
car (see Figure 2.5 (A)), we utilize an instrumented vehicle equipped with the following
specifications:

(V.1) Vehicle: Hyundai Genesis G80

(V.2) Sensors: 2xVelodyne LiDAR sensors, 4xRadar sensors, and 1xvideo camera (resolu-
tion: 1280x720 pixels, frame rate: 10Hz, field of view (FOV): 60 degrees).

(V.3) PC: Intel i7 Quad-core processor, 16GB DDR3 memory, a 1TB SSD, a Titan X Pascal
GPU, and Linux OS.
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Figure 2.4: Performance evaluation of our coarse-grained detector in terms of two widely-
used metrics: precision and recall. For red, green, and yellow circles, see A. For others, see
B.

We use the Robot Operating System (ROS) for synchronizing the sensor data and for the
message passing of perception, motion planning, and control nodes. At each timestep, the
sensory data is consumed from raw sensors (camera, LIDAR, and Radar) and processed by
a collection of ROS nodes that all communicate with each other. We use the PID controller
for our control node, hence the final output control commands to the throttle, brake, and

Table 2.2: The effect of using fine-grained detector (see Section 2.2.4) is evaluated in terms
of precision, recall, and F-measure. Scores are reported in percentage (%).

without Fine-grained detector — with Fine-grained detector

Classes

Precision Recall F-measure Precision Recall F-measure
Red circle 70.20 29.70 41.74 68.00 29.50 41.15
Yellow circle 2.20 40.00 417 6.00 30.90 10.05
Green circle 37.60 87.80 52.65 60.80 81.60 69.68
Red left 84.20 27.70 41.69 62.40 29.00 39.60
Yellow left 14.30 8.30 10.50 66.70 16.70 26.71

Green left 32.30  50.00 39.25 36.40  51.60 42.69
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Figure 2.5: (A) Our instrumented vehicle with sensor layout for real-world evaluation of the
proposed traffic light detection pipeline. (B) Our testing route (in the San Francisco Bay
Area, CA, USA) for the real-world experiment. This route is over 6 kilometers including 17
intersections with traffic lights installed. Map credit: Google Maps. (C-D) Visualizations
for traffic light detection over time. Unseen consecutive input images are sampled at every 2
seconds (see bottom-right). Our final decisions are depicted on the top of each figure, while
detected traffic lights are highlighted by a white circle. (E) Additional examples of detected
traffic lights during the test scenario.
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steering wheel are provided through our drive-by-wire units. We depict major steps in
Figure 2.2.

We test our proposed traffic light detector with an instrumented vehicle on public roads
in Bay Area, California, USA. As shown in Figure 2.5 (C-E), the test runs were performed in
an unseen pre-specified testing route (over 6 kilometers), and the test scenario comprised the
following features: (1) The vehicle traversed 17 traffic light-controlled intersections where the
vehicle will follow the rules to stop on red and go on green. (2) Different lighting conditions
(day vs. night), weather (rainy vs. sunny), and different road traffic congestion levels are
tested. We build a visualization to show which traffic lights are detected and its the final
decision. We provide examples from our visualizer during the on-road driving test. Our
real-world experiments support that the proposed traffic light detector can be successfully
operated in a real-time manner.

2.5 Related Work

A number of approaches have been proposed for traffic light detection and classification for
autonomous vehicles and/or for driver assistance systems to navigate in urban areas. Most
of these approaches utilized a supervised learning approach with human-designated features.
This literature is too wide to survey here. For a thorough review of this literature, see [34].

These approaches usually depend on strong assumptions: (1) they are based on recog-
nizing human-designated features, which generally require demanding parameter tuning for
a balanced performance. (2) Some require the detailed maps that provide prior knowledge
about the specific locations of all installed traffic lights, which but demand high costs in
building such a map. Furthermore, other issues may include: (i) color-tone shifting due to
changes in atmospheric conditions and nearby light sources. (ii) Occlusion by other objects.
(iii) High false positive rates caused by brake lights, reflections, and pedestrian crossing
lights. (iv) Inconsistent traffic light lamps due to dirt, defects, over-saturation of the camera
(especially during night-time).

Recent approaches suggest that deep neural networks can be successfully used for the
traffic light detection task. Weber et al. [84] utilized a 7-layer convolutional neural network
to predict the multi-class probability map followed by bounding box regression. Behrendt et
al. [8] used the “You Only Look Once” (YOLO) network architecture to detect traffic lights,
and utilized a tiny convolutional neural network to classify the categories of each detected
traffic lights. They also provide a dataset, called the Bosch Small Traffic Lights Dataset,
which provides approximately 5,000 images (2.8 hours of driving) and 8,334 annotations.
Despite its potential, training these deep neural networks requires a large amount of anno-
tated dataset to train a reliable detector that can address challenges in traffic light detection
task. Though there exist some other open-sources of traffic light annotations, these datasets
are still insufficient for training deep neural networks in terms of diversity of scenes, quality
of annotations, and their limited volume. For example, the VIVA challenge dataset [62]
only provides approximately 40 minutes of scenes, while the Bosch [8] Small Traffic Lights
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dataset provides less than 3 hours (5,000 images). We, therefore, collect our own dataset,
which provides over 60 hours (over 71,771 images) of driving images that cover diverse driv-
ing conditions (i.e. day vs. night and sunny vs. raining). Thus, we argue this dataset will
be ideal for traffic light detection studies.
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Chapter 3

Interpretable Learning for
Self-Driving Cars by Visualizing
Causal Attention

3.1 Problem Statement

Self-driving vehicle control has made dramatic progress in the last several years, and many
auto vendors have pledged large-scale commercialization in a 2-3 year time frame. These
controllers use a variety of approaches but recent successes [9] suggest that neural networks
will be widely used in self-driving vehicles. Deep neural networks have been shown to be an
effective tool [9, 87] to learn vehicle controls for self-driving cars in an end-to-end manner.
Despite their effectiveness as a function estimator, DNNs operate as a black-box — both net-
work architecture and hidden layer activations may have no obvious relation to the function
being estimated by the network.

(i) Introspective explanations: A system is introspective through a series of under-
standable ways (i.e. Bob explains Bob’s actions).

(ii) Rationalizations: We want to justify or rationalize the system through a series of
logically consistent and understandable choices that can correlate model response
with physical observations (i.e. Alice watching a video of Bob, and then asking
Alice to justify Bob’s actions).

*This work has been presented at the 16th IEEE International Conference on Computer Vision (ICCV),
2017.
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Figure 3.1: Our model predicts steering angle commands from an input raw image stream
in an end-to-end manner. In addition, our model generates a heat map of attention, which
can visualize where and what the model sees. To this end, we first encode images with a
CNN and decode this feature into a heat map of attention, which is also used to control a
vehicle. We test its causality by scrutinizing each cluster of attention blobs and produce a
refined attention heat map of causal visual saliency.

To allow end-users understand what has triggered a particular behavior, hence to increase
trust, these models need to be self-explanatory. There exist two main types of philosophical
argument for explanations [2]: (i) Introspective explanations and (ii) rationalizations.

One way of achieving introspection is via visual attention mechanisms [88]. Visual at-
tention filters out non-salient image regions, hence the model visually fixates on important
image content that is relevant to the decision. These networks provide spatial attention maps
— areas of the image that the network attends to — that can be displayed in a way that is easy
for users to interpret. They provide their attention maps instantly on images that are input
to the network, and in this case on the stream of images from automobile video. Providing
visual attention to the user as a justification of a decision increases trust. As we show from
our examples later, visual attention maps lie over image areas that have an intuitive influence
on the vehicle’s control signal. Further, we show that state-of-the-art driving models can be
made interpretable without sacrificing accuracy, that attention models provide more robust
image annotation, and causal analysis further improves explanation saliency.

But attention maps are only part of the story. Attention is a mechanism for filtering
out non-salient image content. But attention networks need to find all potentially salient
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image areas and pass them to the main recognition network (a CNN here) for a final verdict.
For instance, the attention network will attend to trees and bushes in areas of an image
where road signs commonly occur. Just as a human will use peripheral vision to determine
that “there is something there”, and then visually fixate on the item to determine what
it actually is. We therefore post-process the attention network’s output, clustering it into
attention “blobs” and then mask (set the attention weights to zero) each blob to determine
the effect on the end-to-end network output. Blobs that have an causal effect on network
output are retained while those that do not are removed from the visual map presented to
the user.

Figure 3.1 shows an overview of our model. Our approach can be divided into three
steps: (1) Encoder: convolutional feature extraction, (2) Coarse-grained decoder by visual
attention mechanism, and (3) Fine-grained decoder: causal visual saliency detection and
refinement of attention map. Our contributions are as follows:

e We show that visual attention heat maps are suitable “explanations” for the behavior
of a deep neural vehicle controller, and do not degrade control accuracy.

e We show that attention maps comprise “blobs” that can be segmented and filtered to
produce simpler and more accurate maps of visual saliency.

e We demonstrate the effectiveness of using our model with three large real-world driving
datasets that contain over 1,200,000 video frames (approz. 16 hours).

e We illustrate typical spurious attention sources in driving video and quantify the re-
duction in explanation complexity from causal filtering.

3.2 Interpretable Driving Model

As we depicted in Figure 3.1, our model predicts continuous steering angle commands from
input raw images end-to-end. Our model can be divided into three steps: (1) Encoder:
convolutional feature extraction (Section ??) (2) Coarse-grained decoder by visual attention
mechanism (Section 3.2.3), and (3) Fine-grained decoder: causal visual saliency detection
and refinement of attention maps (Section 3.2.4).

3.2.1 Preprocessing

Our model predicts continuous steering angle commands from input raw pixels in an end-
to-end manner. As discussed by Bojarski et al. [9], our model predicts the inverse turning
radius 4; (= r; ', where r, is the turning radius) at every timestep ¢ instead of steering angle
commands, which depends on the vehicle’s steering geometry and also result in numerical
instability when predicting near zero steering angle commands. The relationship between
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the inverse turning radius u; and the steering angle command 6; can be approximated by
Ackermann steering geometry [64] as follows:

Ht - fsteers(ut) - utdwKs(]- + Kslipvt2> (31)

where 0; in degrees and v; (m/s) is a steering angle and a velocity at time ¢, respectively.
K, Kgp, and d,, are vehicle-specific parameters. K is a steering ratio between the turn of
the steering and the turn of the wheels. K, represents the relative motion between a wheel
and the surface of road. d, is the length between the front and rear wheels. Our model
therefore needs two measurements for training: timestamped vehicle’s speed and steering
angle commands.

To reduce computational cost, each raw input image is down-sampled and resized to
80x160x3 with nearest-neighbor scaling algorithm. For images with different raw aspect
ratios, we cropped the height to match the ratio before down-sampling. A common practice
in image classification is to subtract the mean RGB value computed on the training set from
each pixel simonyan2014very. This is effective to achieve zero-centered inputs which are
originally in different scales. Driving datasets, however, do not show that various scales. For
instance, the camera gains are (automatically or in advance) calibrated to capture such high-
quality images in a certain dynamic range. In our experiment, we could not obtain significant
improvement by the use of mean subtraction. Instead, we change the range of pixel intensity
values and convert to HSV colorspace, which is commonly used for its robustness in problems
where color description plays an integral role.

We utilize a single exponential smoothing method [33] to reduce the effect of human
factors-related performance variation and the effect of measurement noise. Formally, given a
smoothing factor 0 < a, < 1, the simple exponential smoothing method is defined as follows:

(0) = () 0= (0) 62

where ét and 0; are the smoothed time-series of 6, and v;, respectively. Note that they are
same as the original time-series when oy = 1, while values of oy closer to zero have a greater
smoothing effect and are less responsive to recent changes. The effect of applying smoothing
methods is summarized in Section 3.3.4.

3.2.2 Encoder: Convolutional Feature Extraction

We use a convolutional neural network to extract a set of encoded visual feature vector,
which we refer to as a convolutional feature cube z;. Each feature vectors may contain
high-level object descriptions that allow the attention model to selectively pay attention to
certain parts of an input image by choosing a subset of feature vectors.

As depicted in Figure 3.1, we use a 5-layered convolution network that is utilized by
Bojarski et al. [9] to learn a model for self-driving cars. As discussed by Lee et al. [45], we
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omit max-pooling layers to prevent spatial locational information loss as the strongest acti-
vation propagates through the model. We collect a three-dimensional convolutional feature
cube z; from the last layer by pushing the preprocessed image through the model, and the
output feature cube will be used as an input of the LSTM layers, which we will explain
in Section 3.2.3. Using this convolutional feature cube from the last layer has advantages
in generating high-level object descriptions, thus increasing interpretability and reducing
computational burdens for a real-time system.

Formally, a convolutional feature cube of size W x H x D is created at each timestep ¢
from the last convolutional layer. We then collect z;, a set of L = W x H vectors, each of
which is a D-dimensional feature slice for different spatial parts of the given input.

Ty = {xt,la Tt2y .- th,L} (33>

where z,; € RP for i € {1,2,...,L}. This allows us to focus selectively on different spatial
parts of the given image by choosing a subset of these L feature vectors.

3.2.3 Coarse-Grained Decoder: Visual Attention

The goal of soft deterministic attention mechanism 7({z¢1,2¢2, ...,z }) is to search for a
good context vector 1, which is defined as a combination of convolutional feature vectors
xt;, while producing better prediction accuracy. We utilize a deterministic soft attention
mechanism that is trainable by standard back-propagation methods, which thus has advan-
tages over a hard stochastic attention mechanism that requires reinforcement learning. Our
model feeds o weighted context y; to the system as discuss by several works [71, 88]:

Yt = fﬁatten(ﬁ({at,i}, {xtz}))
- fﬂatten({at,ixt,i})

where ¢ = {1,2,...,L}. oy, is a scalar attention weight value associated with a certain
grid of input image in such that ) . a;; = 1. These attention weights can be interpreted
as the probability over L convolutional feature vectors that the location ¢ is the important
part to produce better estimation accuracy. fhatten 18 @ flattening function. y, is thus Dx L-
dimensional vector that contains convolutional feature vectors weighted by attention weights.
Note that, our attention mechanism 7({cy;}, {z:;}) is different from the previous works [71,

(3.4)

88|, which use the o weighted average context y; = Zle oy ;% We observed that this
change significantly improves overall prediction accuracy. The performance comparison is
explained in Section 3.3.5.

3.2.3.1 Long Short-term Memory (LSTM).

As we summarize in Figure 3.1, we use a long short-term memory (LSTM) network [29] that
predicts the inverse turning radius 4, and generates attention weights {a;,} at each timestep
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t conditioned on the previous hidden state h;_; and a current convolutional feature cube ;.

The LSTM is defined as follows:

1 s1gm

el — [ s9m] 4 (h“) (3.5)
04 sigm Yi

gt tanh

where i, f;, o;, and ¢, € RM are the M-dimensional input, forget, output, memory state of
the LSTM at time ¢, respectively. Internal states of the LSTM are computed conditioned
on the hidden state h, € RM and an a-weighted context vector y, € R?. We use an affine
transformation A : R™M — R*M_ The logistic sigmoid activation function and the hyperbolic
tangent activation function are represented as sigm and tanh, respectively. The hidden state
h; and the cell state ¢; of the LSTM are defined as:

=[O 1+iuOg

3.6
hy = 0y ® tanh(c;) (3:6)

where © is element-wise multiplication.

3.2.3.2 Attention.

We use an additional hidden layer, denoted by fattn (%t 4, he—1), which is conditioned on the
previous LSTM state h;,_;, and the current feature vectors x;;. Then, we use multinomial
logistic regression (i.e. softmax regression) function to obtain the attention weight {ay;} as
follows:

Jattn (Zei, he—1) = Wa(Weay; + Wahye—q1 + ba) (3.7)

where W, € R?, W, € R¥>? and Wy, € R™*M which are learned parameters. The attention
weight oy ; for each spatial location ¢ is then computed by multinomial logistic regression
(i.e. softmax regression) function as follows:

. eXp(fattn<xt,ia ht—l))
tg —
> exp(faren (@0, heot))

(3.8)

3.2.3.3 Initialization.

To initialize memory state ¢; and hidden state h; of the LSTM, we use average of the
convolutional feature slices zo,; € R? for i € {0,1,...,l} and feed through two additional
hidden layers: finit,c and finit,h-

I I
1 1
o = finit,e (7 E xO,i) » ho = finitn (7 E SUo,i) (3.9)
=1 i=1
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3.2.3.4 Output.

The output of the vehicle controller is vehicle’s inverse turning radius u;. We use additional
hidden layer, denoted by fout(ys, he), which are conditioned on the current hidden state hy
and the spatially-attended context ;.

U = fout (yta ht)

3.10
= Wo(Wyy: + Wahy) (310)

where Wy € RY, Wy € R4 Wy, € R™*M which are learned parameters.

3.2.3.5 Loss Function and Regularization.

As discussed by [88], doubly stochastic regularization can encourage the attention model to
at different parts of the image. At each timestep t, our attention model predicts a scalar
Br=sigm(fs(h:—1)) with an additional hidden layer fs conditioned on the previous hidden
state h;—; such that

Yp = Sigm(fﬁ(ht—l))fﬂatten({at,ﬂt,i}) (3.11)

Concretely, we use the following penalized loss function L;:

T L T
La(upy i) =Y Jup =iy + A ) (1 = am> (3.12)
=1 t=1

t=1

where T is the length of time steps, and ) is a penalty coefficient that encourages the attention
model to see different parts of the image at each time frame. Section 3.3.3 describes the effect
of using regularization.

3.2.4 Fine-Grained Decoder: Causality Test

The last step of our pipeline is a fine-grained decoder, in which we refine a map of attention
and detect local visual saliencies. Though an attention map from our coarse-grained decoder
provides probability of importance over a 2D image space, our model needs to determine
specific regions that cause a causal effect on prediction performance. To this end, we assess
a decrease in performance when a local visual saliency on an input raw image is masked out.

We first collect a consecutive set of attention weights {ay;} and input raw images {Z,}
for a user-specified T' timesteps. We then create a map of attention, which we refer M, as
defined: M; = frap({az:}). Our 5-layer convolutional neural network uses a stack of 5 x 5
and 3 x 3 filters without any pooling layer, and therefore the input image of size 80 x 160 is
processed to produce the output feature cube of size 10 x 20 x 64, while preserving its aspect
ratio. Thus, we use fmap({ai}) as up-sampling function by the factor of eight followed by
Gaussian filtering [12] as discussed in [88] (see Figure 3.2 (A,B)).

To extract a local visual saliency, we first randomly sample 2D N particles with replace-
ment over an input raw image conditioned on the attention map M,. Note that, we also use
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Figure 3.2: Overview of our fine-grained decoder. Given an input raw pixels Z; (A), we
compute an attention map M, with a function fy., (B). (C) We randomly sample 3D
N = 500 particles over the attention map, and (D) we apply a density-based clustering
algorithm (DBSCAN [21]) to find a local visual saliency by grouping particles into clusters.
(E, F) For each cluster ¢ € C, we compute a convex hull H(c) to define its region, and mask
out the visual saliency to see causal effects on prediction accuracy (see E, F for clusters 1
and 5, respectively). (G, H) Warped visual saliencies for clusters 1 and 5, respectively.
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Algorithm 1: Fine-grained Decoder: Causality Check

Data: A consecutive set of {u;} and images {I;} and
Result: A set of visual saliencies S
Get a set of {ay;} and prediction errors {e;} by running Encoder and Decoder for
all images {I;};
P+ ¢, S+ ¢
for t =0 to T-1 do
Get a 2D attention map M; = fiap({at.i});
Get a set P; of randomly sampled 2D N points conditioned on M;;
Aggregate datasets: P < P U {P,, t};
end
Run clustering algorithm on P and get clusters {C;};
for t =0 to T-1 do
for each cluster ¢ € C; do
Get a convex hull H(c);
Masking out pixels on H(c) from I;;
Get a new prediction error &;
if |é; — &¢| > ¢ then
‘ Aggregate saliency S < S U H(c);
end

end

end

time-axis as the third dimension to consider temporal features of visual saliencies. We thus
store spatio-temporal 3D particles P <— P U {P,t} (see Figure 3.2 (C)).

We then apply a clustering algorithm to find a local visual saliency by grouping 3D
particles P into clusters {C} (see Figure 3.2 (D)). In our experiment, we use DBSCAN [21], a
density-based clustering algorithm that has advantages to deal with a noisy dataset because
they group particles together that are closely packed, while marking particles as outliers
that lie alone in low-density regions. For points of each cluster ¢ and each time frame t,
we compute a convex hull H(c) to find a local region of each visual saliency detected (see
Figure 3.2 (E, F)).

For points of each cluster ¢ and each time frame ¢, we iteratively measure a decrease of
prediction performance with an input image which we mask out a local visual saliency. We
compute a convex hull H(c) to find a local, and mask out each visual saliency by assigning
zero values for all pixels lying inside each convex hull. Each causal visual saliency is gen-
erated by warping into a fixed spatial resolution (=64x64) as shown in Figure 3.2 (G, H).
Algorithm 1 explains a pseudo-code for this step.

Feature-level Masking Approach. Along with devising the fine-grained decoder, we may
consider using feature-level masking approach. Masking out convolutional features of at-
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tended region can provide a computationally efficient way by removing multiple forward
passes of the convolutional network. This approach, however, may suffer from low decon-
volutional spatial resolution, which makes challenge to view as a unit apart and divide the
whole attention map into distinct attended objects, such as cars or lane markings.

3.3 Experiments

3.3.1 Datasets

As explained in Table 3.1, we obtain two large-scale datasets that contain over 1,200,000
frames (=16 hours) collected from Comma.ai [19], Udacity [78], and Hyundai Center of Ex-
cellence in Integrated Vehicle Safety Systems and Control (HCE) under a research contract.
These three datasets acquired contain video clips captured by a single front-view camera
mounted behind the windshield of the vehicle. Alongside the video data, a set of time-
stamped sensor measurement is contained, such as vehicle’s velocity, acceleration, steering
angle, GPS location and gyroscope angles. Thus, these datasets are ideal for self-driving
studies. Note that, for sensor logs unsynced with the time-stamps of video data, we use the
estimates of the interpolated measurements. Videos are mostly captured during highway
driving in clear weather on daytime, and there included driving on other road types, such as
residential roads (with and without lane markings), and contains the whole driver’s activities
such as staying in a lane and switching lanes. Note also that, we exclude frames when the
vehicle stops which happens when 0, <1 m/s.

3.3.2 Training and Evaluation Details

To obtain a convolutional feature cube x;, we train the 5-layer CNNs explained in Sec-
tion 3.2.2 by using additional 5-layer fully connected layers (i.e. # hidden variables: 1164,
100, 50, and 10, respectively), of which output predicts the measured inverse turning ra-
dius u;. Incidentally, instead of using addition fully-connected layers, we could also obtain
a convolutional feature cube x; by training from scratch with the whole network. In our
experiment, we obtain the 10x20x64-dimensional convolutional feature cube, which is then
flattened to 200x64 and is fed through the coarse-grained decoder. Other recent types of
more recent expressive networks may give a performance boost over our CNN configuration.
However, exploration of other convolutional architectures would be out of our scope.

We experiment with various numbers of LSTM layers (1 to 5) of the soft deterministic
visual attention model but did not observe any significant improvements in model perfor-
mance. Unless otherwise stated, we use a single LSTM layer in this experiment. For training,
we use Adam optimization algorithm [40] and also use dropout [73] of 0.5 at hidden state
connections and Xavier initialization [23]. We randomly sample a mini-batch of size 128,
each of batch contains a set Consecutive frames of length 7" = 20. Our model took less than
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Dataset
Comma.ai [19] HCE Udacity [78]
# frame 522,434 80,180 650,690
FPS 20Hz 20Hz/30Hz 20Hz
Hours ~ 7 hrs ~ 1hr ~ 8 hrs
Condition Highway/Urban Highway Urban
Location = CA, USA CA, USA CA, USA
Lighting  Day/Night Day Day

Table 3.1: Dataset details. Over 16 hours (>1,200,000 video frames) of driving dataset
that contains a front-view video frames and corresponding time-stamped measurements of
vehicle dynamics. The data is collected from two public data sources, Comma.ai [19] and

Udacity [78], and Hyundai Center of Excellence in Vehicle Dynamic Systems and Control
(HCE).

24 hours to train on a single NVIDIA Titan X Pascal GPU. Our implementation is based
on Tensorflow [1] and code will be publicly available upon publication.

Two datasets (Comma.ai [19] and HCE) we used were available with images captured
by a single front-view camera. This makes it hard to use the data augmentation technique
proposed by Bojarski et al. [9], which generated images with artificial shifts and rotations
by using two additional off-center images (left-view and right-view) captured by the same
vehicle. Data augmentation may give a performance boost, but we report performance
without data augmentation.

3.3.3 Effect of Choosing Penalty Coefficient \

Our model provides a better way to understand the rationale of the model’s decision by
visualizing where and what the model sees to control a vehicle. Figure 3.3 shows a consecutive
input raw images (with sampling period of 5 seconds) and their corresponding attention
maps (i.e. My = fmap({ni})). We also experiment with three different penalty coefficients
A € {0,10,20}, where the model is encouraged to pay attention to wider parts of the image
(see differences between the bottom 3 rows in Figure 3.3 ) as we have larger A\. For better
visualization, an attention map is overlaid by an input raw image and color-coded; for
example, red parts represent where the model pays attention. For quantitative analysis,
prediction performance in terms of mean absolute error (MAE) is explained on the bottom
of each figure. We observe that our model is indeed able to pay attention on road elements,
such as lane markings, guardrails, and vehicles ahead, which is essential for human to drive.
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Figure 3.3: Attention maps over time. Unseen consecutive input image frames are sampled
at every b seconds (see from left to right). (Top) Input raw images with human driver’s
demonstrated curvature of path (blue line) and predicted curvature of path (green line).
(From the bottom) We illustrate attention maps with three different regularization penalty
coefficients A € {0,10,20}. Each attention map is overlaid by an input raw image and
color-coded. Red parts indicate where the model pays attention. Data: Comma.ai [19]

3.3.4 Effect of Varying Smoothing Factors

Recall from Section 3.2.1 that the single exponential smoothing method [33] is used to
reduce the effect of human factors variation and the effect of measurement noise for two
sensor inputs: steering angle and velocity. A robust model for autonomous vehicles would
yield consistent performance, even when some measurements are noisy. Figure 3.4 shows
the prediction performance in terms of mean absolute error (MAE) on a comma.ai testing
data set. Various smoothing factors a, € {0.01,0.05,0.1,0.3,0.5, 1.0} are used to assess the
effect of using smoothing methods. With setting a;=0.05, our model for the task of steering
estimation performs the best. Unless otherwise stated, we will use a; as 0.05.

3.3.5 Quantitative Analysis

In Table 3.2, we compare the prediction performance with alternatives in terms of MAE. We

implement alternatives that include the work by Bojarski et al. [9], which used an identical
base CNN and a fully-connected network (FCN) without attention. To see the contribution
of LSTMs, we also test a CNN and LSTM, which is identical to ours but does not use the
attention mechanism. We also compare average pooled soft attention method [71]. Since
this model focuses on a classification problem, we modified the output layer as ours. We
use a single layer LSTM with A = 0. For our model, we test with three different values of
penalty coefficients A € {0, 10,20}.
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Figure 3.4: Effect of applying a single exponential smoothing method over various smoothing
factors from 0.1 to 1.0. We use two different penalty coefficients A € {0,20}. With setting
as = 0.05, our model performs the best. Data: Comma.ai [19]

Our model shows competitive prediction performance than alternatives. Our model shows
1.18-4.15 in terms of MAE on testing dataset. This confirms that incorporation of attention
does not degrade control accuracy. The average run-time for our model and alternatives
took less than a day to train each dataset.

3.3.6 Effect of Causal Visual Saliencies

Recall from Section 3.2.4, we post-process the attention network’s output by clustering it into
attention blobs and filtering if they have an causal effect on network output. Figure 3.5 (A)
shows typical examples of an input raw image, an attention networks’s output with spurious
attention sources, and our refined attention heat map. We observe our model can produce a
simpler and more accurate map of visual saliency by filtering out spurious attention blobs.
In our experiment, 62% and 58% out of all attention blobs are indeed spurious attention
sources on Comma.ai [19] and HCE datasets (see Figure 3.5 (B)). We provide additional
example sets in Figure 3.6.
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MAE in degree [SD]

Dataset Model Training Testing
CONN4FCN [9] 421 [0.82] 2.54 [3.19]
CNNH+LSTM 488 [1.20] 2.58 [3.44]
. Attention (A=0) 497 [1.32] 2.52 [3.25]
Comma.ai [1] o tion (A=10) 464 [1.29]  2.56 [3.51]
Attention (A=20) .463 [1.24] 2.44 [3.20]
CNN4FCN [9] 246 [400] 1.27 [1.57]
CNN+LSTM 568 [.977] 157 [2.27]
HCE Attention (A\=0)  .334 [.766] 1.18 [1.66]
Attention (A=10) .358 [.728] 1.25 [1.79]
Attention (A=20) .373 [.724] 1.20 [1.66]
CNN+FCN [9] 457 [870] 4.12 [4.83]
CNN+LSTM 481 [1.24] 4.15 [4.93]
| Attention (A=0) 491 [1.20] 4.15 [4.93]
Udacity [78] )\ (tontion (A=10) 489 [1.19] 4.17 [4.96]
Attention (A=20) .489 [1.26] 4.19 [4.93]

30

Table 3.2: Control performance comparison in terms of mean absolute error (MAE) in
degree and its standard deviation. Control accuracy is not degraded by incorporation of
attention compared to an identical base CNN without attention. Abbreviation: SD (standard
deviation)

3.4 Related Work

3.4.1 End-to-End Learning for Self-driving Cars

Self-driving vehicle control has made notable progress in the last several years. These con-
trollers use a variety of approaches, which can mainly be divided in the following two types:
(1) a mediated perception-based approach and (2) an end-to-end learning approach. The me-
diated perception-based approach depends on recognizing human-designated features, such
as lane markings, pedestrians, or cars. These approaches mainly use a controller with if-
then-else rules, which generally require demanding parameter tuning for achieving a bal-
anced performance. Notable examples may include Urmson et al. [79], Buehler et al. [11],
and Levinson et al. [46].

ALVINN (Autonomous Land Vehicle In a Neural Network) [63] was the first attempt
to use neural network for directly mapping images to navigate the direction of the vehicle.
Recent success [9] suggests that neural networks can be successfully applied to self-driving
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Figure 3.5: (A) We illustrate examples of (left) raw input images, their (middle) visual
attention heat maps with spurious attention sources, and (right) our attention heat maps
by filtering out spurious blobs to produce simpler and more accurate attention maps. (B)
To measure how much the causal filtering is simplifying attention clusters, we quantify the
number of attention blobs before and after causal filtering.

vehicle control in an end-to-end manner. Most of these approaches use a behavioral cloning
model to learn a vehicle controller by supervised regression to demonstrations by human
drivers. The training data comprise a stream of dash-cam images from one or more vehicle
cameras, and the control outputs (i.e. steering, acceleration, and braking) from the driver.
Bojarski et al. [9] used a deep neural network to directly map a stream of front-view
dashcam images to steering controls. Xu et al. [87] collected a large crowd-sourced driving
dataset, and predicted a sequence of discretized vehicle’s future ego-motion (i.e. go straight,
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Figure 3.6: We illustrate additional examples of (left) raw input images, their (middle) visual
attention heat maps with spurious attention sources, and (right) our attention heat maps by
filtering out spurious blobs to produce simpler and more accurate attention maps.

stop, left-turn, and right turn) given a series of dashcam images and prior vehicle states,
i.e. speed. Fernando et al. [22] presented a driving model that uses images and the steering
wheel trajectory so that the model gains a long-term planning capacity via neural memory
networks. Similarly, Chi et al. [17] proposed a Conv-LSTM framework to efficiently uti-
lize the spatio-temporal information to model a stateful process. These models show good
performance but their behavior is opaque and uninterpretable.

Chen et al. [13] explored an intermediate approach by defining human interpretable fea-
tures (i.e. the curvature of lane, distances to neighboring lane markings, and distance from
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the front-located vehicle) and training a CNN to predict these features. A simple vehicle
controller is then used to map these features to steering angle commands. They also gener-
ated deconvolution maps to show image areas that affected network output. However, there
were several difficulties with that work: (i) use of the intermediate layer may cause signifi-
cant degradation of control accuracy and (ii) the intermediate feature descriptors provide a
limited and ad-hoc vocabulary for explanations.

3.4.2 Visual Explanation

In a landmark work, Zeiler and Fergus [93] used “deconvolution” to visualize layer acti-
vations of convolutional networks. LeCun et al. [44] provides textual explanations of im-
ages as automatically-generated captions. Building on this work, Bojarski et al. [10] devel-
oped a richer notion of “contribution” of a pixel to the output. However a difficulty with
deconvolution-style approaches is the lack of formal measures of how the network output
is affected by spatially-extended features (rather than pixels). Attention-based approaches
like ours directly extract areas of the image that did not affect network output (because
they were masked out by the attention model), and causal filtering further removes spurious
image areas. Hendricks et al. [27] trains a deep network to generate species specific expla-
nation without explicitly identifying semantic features. Also, Justin Johnson [36] proposes
DenseCap which uses fully convolutional localization networks for dense captioning, their
paper achieves both localizing objects and describing salient regions in images using natural
langauge. In reinforcement learning, Zrihem et al. [92] proposes a visualization method to
interpret the agent’s action by describing Markov Decision Process model as a directed graph
on a t-SNE map.
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Chapter 4

Textual Explanations for Self-driving
Vehicles

4.1 Problem Statement

Deep neural networks are an effective tool [9, 87] to learn vehicle controllers for self-driving
cars in an end-to-end manner. Despite their effectiveness as function estimators, DNNs are
typically cryptic black-boxes. There are no explainable states or labels in such a network,
and representations are fully distributed as sets of activations. Explainable models that make
deep models more transparent are important for a number of reasons: (i) user acceptance —
self-driving vehicles are a radical technology for users to accept, and require a very high level
of trust, (ii) understanding and extrapolation of vehicle behavior — users ideally should be
able to anticipate what the vehicle will do in most situations, (iii) effective communication
— they help user communicate preferences to the vehicle and vice versa.

Explanations can be either rationalizations — explanations that justify the system’s be-
havior in a post-hoc manner, or introspective explanations — explanations that are based on
the system’s internal state. Introspective explanations represent causal relationships between
the system’s input and its behavior, and address all the goals above. Rationalizations can
address acceptance, (i) above, but are less helpful with (ii) understanding the causal behavior
of the model or (iii) communication which is grounded in the vehicle’s internal state (known
as theory of mind in human communication).

One way of generating introspective explanations is via visual attention [88, 37]. Visual
attention filters out non-salient image regions, and image areas inside the attended region
have potential causal effect on the output (those outside cannot). As shown in [37], additional
salience filtering can be applied so that the attention map shows only regions that causally
affect the output. Visual attention constrains the reasons for the controllers actions but does

*This work has been presented at the 15th European Conference on Computer Vision (ECCV), 2018.
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Ours: “The car is driving forward + because there are no other cars in its lane”
Human annotator: “The car heads down the street + because the street is clear.”

Figure 4.1: Our model predicts vehicle’s control commands, i.e. an acceleration and a change
of course, at each timestep, while an explanation model generates a natural language ex-
planation of the rationales, e.g. “The car is driving forward because there are no other cars
in its lane”, and a visual explanation in the form of attention — attended regions directly
influence the textual explanation generation process.

not e.g. tie specific actions to specific input regions e.g. “the vehicle slowed down because the
light controlling the intersection is red”. It is also likely to be less convenient for passengers
to replay the attention map vs. a (typically on-demand) speech presentation of a textual
explanation.

In this work, we focus on generating textual descriptions and explanations, such as the
pair: “vehicle slows down” and “because it is approaching an intersection and the light is
red” as in Figure 4.1. Natural language has an advantage of being inherently understandable
and does not require familiarity with the design of an intelligent system in order to provide
useful information. In order to train such a model, we collect explanations from human
annotators. Our explanation dataset is built on top of another large-scale driving dataset [87]
collected from dashboard cameras in human driven vehicles. Annotators view the video
dataset, compose descriptions of the vehicle’s activity and explanations for the actions that
the vehicle driver performed.

Obtaining training data for vehicle explanations is by itself a significant challenge. The
ground truth explanations are in fact often rationalizations (generated by an observer rather
than the driver), and there are additional challenges with acquiring driver data. But even
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Figure 4.2: Vehicle controller generates spatial attention maps a° for each frame, predicts
acceleration and change of course (¢, a;) that condition the explanation. Explanation gen-
erator predicts temporal attention across frames () and a spatial attention in each frame
(a?). SAA uses a°, WAA enforces a loss between o/ and .

more than that, it is currently impossible to obtain human explanations of what the vehicle
controller was thinking, i.e. a real ground truth. Nevertheless our experiments show that
using attention alignment between controller and explanation models generally improves the
quality of explanations, i.e. generates explanations which better match the human rational-
izations of the driving videos.

Our contributions are as follows. (1) We propose an introspective textual explanation
model for self-driving cars to provide easy-to-interpret explanations for the behavior of a
deep vehicle control network. (2) We integrate our explanation generator with the vehi-
cle controller by aligning their attentions to ground the explanation, and compare two ap-
proaches: attention-aligned explanations and non-aligned rationalizations. (3) We generated
a large-scale Berkeley DeepDrive eXplanation (BDD-X) dataset with over 6,984 video clips
annotated with driving descriptions, e.g. “The car slows down” and explanations, e.g. “be-
cause it is about to merge with the busy highway”. Our dataset provides a new test-bed for
measuring progress towards developing explainable models for self-driving cars.
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4.2 Explainable Driving Model

In this paper, we propose a driving model that explains how a driving decision was made
both (i) by visualizing image regions where the decision maker attends to and (ii) by generat-
ing a textual description and explanation of what has triggered a particular driving decision,
e.g. “the car continues (description) because traffic flows freely (explanation)”. As we sum-
marize in Figure 4.2, our model involves two parts: (1) a Vehicle controller, which is trained
to learn human-demonstrated vehicle control commands, e.g. an acceleration and a change
of course; our controller uses a visual (spatial) attention mechanism that identifies poten-
tially influential image regions for the network’s output; (2) a Textual explanation generator,
which generates textual descriptions and explanations controller behavior. The key to the
approach is to align the attention maps.

4.2.1 Preprocessing

Our model is trained to predict two vehicle control commands, ¢.e. an acceleration and a
change of course. At each time ¢, an acceleration, a;, is measured by taking the derivative of
speed measurements, and a change of course, ¢, is computed by taking a difference between
a current vehicle’s course and a smoothed value by using simple exponential smoothing
method [33]. We provide details in supplemental material. To reduce computational burden,
we down-sample to 10Hz and reduce the input dimensionality by resizing raw images to a
90x160x3 image with nearest-neighbor scaling algorithm. Each image is then normalized
by subtracting the mean from the raw input pixels and dividing by its standard deviation.
This preprocessing is applied to the latest 4 frames, which are then stacked to produce the
final input to the neural network.

4.2.2 Convolutional Feature Encoder

We use a convolutional neural network to encode the visual information into a set of visual
feature vectors at time t, i.e. convolutional feature cube X; = {x;1,242,...,2¢;} where
zy; € R for i € {1,2,...,1} and [ is the number of different spatial regions of the given
input. Each feature vector contains a high-level description of objects present in a certain
input region. This allows us to focus selectively on different regions of the given image by
choosing a subset of these feature vectors. We use a five-layered convolutional network as
in [9, 37] and omit max-pooling layers to prevent spatial information loss [45]. The output
is a three-dimensional feature cube X; and the feature block has the size wxhxd at each
time t.

4.2.3 Vehicle Controller

Our vehicle controller is trained in an end-to-end manner. Given a stream of dashcam
images and the vehicle’s (current) sensor measurements, e.g. speed, the controller predicts
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the acceleration and the change of course at each timestep. We utilize a deterministic
soft attention mechanism that is trainable by standard back-propagation methods. The soft
attention mechanism applies attention weights multiplicatively to the features and additively
pools the results through the maps 7. Our model feeds the context vectors y; produced by
the controller map 7¢ to the controller LSTM:

!
yi = ({af b fze) = ) af (4.1)
i=1

where i = {1,2,...,l}. af, is an attention weight map output by a spatial softmax and
satisfies ) , af; = 1. These attention weights can be interpreted as the probability over
convolutional feature vectors. A location with a high attention weight is salient for the task
(driving). The attention model f&,,(X¢, hy_;) is conditioned on the previous LSTM state
hi_,, and the current feature vectors X;. It comprises a fully-connected layer and a spatial
softmax to yield normalized {af,}.

The outputs of the vehicle controller are the vehicle’s acceleration a; and the change of
course ¢;. To this end, we use additional multi-layer fully-connected blocks with ReLLU non-
linearities, denoted by fa(ys, h$) and f.(yf, hY). We also add the entropy H of the attention
weight to the objective function:

Lo=) ((a— @)+ (e — &)* + \H(af)) (4.2)

t

The entropy is computed on the attention map as though it were a probability distribution.
Minimizing loss corresponds to minimizing entropy. Low entropy attention maps are sparse
and emphasize relatively few regions. We use a hyperparameter . to control the strength
of the entropy regularization term.

4.2.4 Attention Alignments

The controller attention map provides input regions that the network attends to, and these

regions have a direct influence on the network’s output. Thus, to yield “introspective”
explanation, we argue that the agent must attend to those areas. For example, if a vehicle
controller predicts “acceleration” by detecting a green traffic light, the textual justification
must mention this evidence, e.g. “because the light has turned green”. Here, we explain two
approaches to align the vehicle controller and the textual justifier such that they look at the
same input regions.

4.2.4.1 Strongly Aligned Attention (SAA)

A consecutive set of spatially attended input regions, each of which is encoded as a context
vector y; by the vehicle controller, can be directly used to generate a textual explanation
(see Figure 4.2, right-top). Thus, models share a single layer of an attention. As we detail in
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Section 4.2.5, our explanation module uses temporal attention with weights 3 to the controller
context vectors {y/,t = 1,...} directly, and thus allows flexibility in output tokens relative
to input samples.

4.2.4.2 Weakly Aligned Attention (WAA)

Instead of directly using vehicle controller’s attention, an explanation generator can have
its own spatial attention network (see Figure 4.2, right-bottom). A loss, i.e. the Kullback-
Leibler divergence (Dkr,), between the two attention maps makes the explanation generator
refer to the salient objects:

l

Lo=X) Dialefllad) =Xy Y af;(logaf, —loga;,) (4.3)
t

t =1

where o and o’ are the attention maps generated by the vehicle controller and the expla-
nation generator model, respectively. We use a hyperparameter A\, to control the strength
of the regularization term.

4.2.5 Textual Explanation Generator

Our textual explanation generator takes sequence of video frames of variable length and
generates a variable-length description/explanation. Descriptions and explanations are typ-
ically part of the same sentence in the training data but are annotated with a separator.
In training and testing we use a synthetic separator token <sep> between description and
explanation, but treat them as a single sequence. The explanation LSTM predicts the de-
scription/explanation sequence and outputs per-word softmax probabilities.

The source of context vectors for the description generator depends on the type of align-
ment between attention maps. For weakly aligned attention or rationalizations, the expla-
nation generator creates its own spatial attention map o’ at each time step ¢. This map
includes a loss against the controller attention map for weakly-aligned attention, but has no
such loss when generating rationalizations. The attention map o is applied to the CNN
output yielding context vectors yf .

Our textual explanation generator explains the rationale behind the driving model, and
thus we argue that a justifier needs the outputs from the vehicle motion predictor as an
input. We concatenate a tuple (a,¢;) with a spatially-attended context vector y{ and y;
respectively for weakly and strongly aligned attention approaches. This concatenated vector
is then used to update the LSTM for a textual explanation generation.

The explanation module applies temporal attention with weights S to either the con-
troller context vectors directly {yf,¢t = 1,...} (strong alignment), or to the explanation
vectors {y,t = 1,...} (weak alignment or rationalization). Such input sequence attention
is common in sequence-to-sequence models and allows flexibility in output tokens relative
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(2) The car is moving mt(_) the right lane because it is safe to do So. # Annotations 26,228
(3) The car moves back into the left lane begquse thg school bus in front Avg. # actions / videos 3.8
of it is stopping. #Videos 6.984
(4) The car drives in the left lane in order to pass the school bus. # Trainin 5588
The car moves into the right lane since it has now passed the school ining .
(%) # Validation / Testing 698

bus and it is taking the right fork.

Figure 4.3: (A) Examples of input frames and corresponding human-annotated action de-
scription and justification of how a driving decision was made. For visualization, we sample
frames at every two seconds. (B) BDD-X dataset details. Over 77 hours of driving with
time-stamped human annotations for action descriptions and justifications.

to input samples [6]. The result of temporal attention application is (dropping the ¢ or j
superscripts on ¥):

2 = T({Bre}s {ue}) = Zﬁk,tyt (4.4)

where ), B, = 1. The weight 5, at each time k (for sentence generation) is computed by
an attention model f&, ({v:}, hi_;), which is similar to the spatial attention as we explained
in previous section (see supplemental material for details).

To summarize, we minimize the following negative log-likelihood (for training our justi-

fier) as well as vehicle control estimation loss £. and attention alignment loss L,:

L=L.A+L,— Z log p(ok|ok—1, hy., k) (4.5)
k
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4.3 Berkeley DeepDrive eXplanation Dataset
(BDD-X)

In order to effectively generate and evaluate textual driving rationales we have collected
textual justifications for a subset of the Berkeley Deep Drive (BDD) dataset [87]. This
dataset contains videos, approximately 40 seconds in length, captured by a dashcam mounted
behind the front mirror of the vehicle. Videos are mostly captured during urban driving in
various weather conditions, featuring day and nighttime. The dataset also includes driving on
other road types, such as residential roads (with and without lane markings), and contains
all the typical driver’s activities such as staying in a lane, turning, switching lanes, etc.
Alongside the video data, the dataset provides a set of time-stamped sensor measurements,
such as vehicle’s velocity, course, and GPS location. For sensor logs unsynchronized with
the time-stamps of video data, we use the estimates of the interpolated measurements.

In order to increase trust and reliability, the machine learning system underlying self driv-
ing cars should be able to explain why at a certain time they make certain decisions. More-
over, a car that justifies its decision through natural language would also be user friendly.
Hence, we populate a subset of the BDD dataset with action description and justification for
all the driving events along with their timestamps. We provide examples from our Berkeley
Deep Drive eXplanation (BDD-X) dataset in Figure 4.3 (A).

4.3.1 Annotation

We provide a driving video and ask a human annotator in Amazon Mechanical Turk to
imagine herself being a driving instructor. Note that we specifically select human annotators
who are familiar with US driving rules. The annotator has to describe what the driver is
doing (especially when the behavior changes) and why, from a point of view of a driving
instructor. Each described action has to be accompanied with a start and end time-stamp.
The annotator may stop the video, forward and backward through it while searching for the
activities that are interesting and justifiable.

To ensure that the annotators provide us the driving rationales as well as descriptions,
we require that they separately enter the action description and the action justification:
e.q. “The car is moving into the left lane” and “because the school bus in front of it is
stopping.”. In our preliminary annotation studies, we found that giving separate annotation
boxes is helpful for the annotator to understand the task and perform better.

4.3.2 Our Amazon Mechanical Turk annotation interface

Our annotation prompt is demonstrated on Figure 4.4. To ensure that the annotators provide
us the driving rationales as well as descriptions, we require that they separately enter the
action description and the action justification e.g. : “The car is moving into the left lane” and
“because the school bus in front of it is stopping”. In our preliminary annotation studies,
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Instructions
Imagine you are a driving instructor.
Fill the two text boxes with the following.

(1) Describe WHAT the driver is doing, especially when the behavior changes.
The car is going down the highway
The car is passing another car while accelerating

(2) WHY is the driver doing that / changing behavior
... as the lane is free
... since the car in front is going slowly and the left lane is empty

- Do not mention objects that are not relevant to the action.
- Do not use proper nouns or names of the places.

- Do not use figures of speech.

- Do not presume what the driver is thinking

Please enter the time stamps as 2-digit whole numbers. No punctuation. I.e. 00 09

You'll note the examples always have a conjunction word such as “as, because,
since” etc. This is to indicate the justification for the action.

Y

Figure 4.4: Our Amazon Mechanical Turk annotation interface. Shown is a “dummy” input

(The car is stopping + Because the light is red), not an actual annotation.

we found that giving separate annotation boxes are helpful for the annotator to understand
the task and perform better.

4.3.3 Dataset Statistics

Our dataset (see Figure 4.3 (B)) is composed of over 77 hours of driving within 6,984 videos.
The videos are taken in diverse driving conditions, e.g. day/night, highway /city /countryside,
summer/winter etc. On an average of 40 seconds, each video contains around 3-4 actions,
e.g. speeding up, slowing down, turning right etc., all of which are annotated with a de-
scription and an explanation. Our dataset contains over 26K activities in over 8.4M frames.
We introduce a training, a validation and a test set, containing 5,588, 698 and 698 videos,
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respectively.

4.3.4 Inter-human agreement

Although we cannot have access to the internal thought process of the drivers, one can infer
the reason behind their actions using the visual evidence of the scene. Besides, it would be
challenging to setup the data collection process which enables drivers to report justifications
for all their actions, if at all possible. We ensure the high quality of the collected annotations
by relying on a pool of qualified workers (i.e. they pass a qualification test) and selective
manual inspection.

Further, we measure the inter-human agreement on a subset of 998 training videos, each
of which has been annotated by two different workers. Our analysis is as follows. In 72%
of videos the number of annotated intervals differs by less than 3. The average temporal
IoU across annotators is 0.63 (SD = 0.21). When IoU > 0.5 the CIDEr score across action
descriptions is 142.60, across action justifications it is 97.49 (random choice: 39.40/28.39,
respectively). When IoU > 0.5 and action descriptions from two annotators are identical
(165 clips') the CIDEr score across justifications is 200.72, while a strong baseline, selecting
a justification from a different video with the same action description, results in CIDEr score
136.72. These results show an agreement among annotators and relevance of collected action
descriptions and justifications.

4.3.5 Coverage of justifications

BDD-X dataset has over 26k annotations (77 hours) collected from a substantial random
subset of large-scale crowd-sourced driving video dataset, which consists of all the typical
driver’s activities during urban driving. The vocabulary of training action descriptions and
justifications is 906 and 1,668 words respectively, suggesting that justifications are more
diverse than descriptions. Some of the common actions are (frequency decreasing): moving
forward, stopping, accelerating, slowing, turning, merging, veering, pulling [in]. Justifications
cover most of the relevant concepts: traffic signs/lights, cars, lanes, crosswalks, passing,
parking, pedestrians, waiting, blocking, safety etc.

Table 4.1 includes word counts for the top-30 most frequent words (excluding stop-words)
used in the action descriptions and action explanations, respectively. Note, that word counts
are obtained but taking all word forms into account (slow, slows, slowing, slowed, slowly, etc).
Most common actions are related to changes in speed, driving forward and turning. However
many also include merging, pulling, changing lanes, veering, and less frequent actions like
reversing, parking or using wipers. Action explanations cover a diverse list of concepts
relevant to driving scenario, such as state of traffic/lanes, traffic lights/signs, pedestrians
crossing the street, passing other cars, etc. Although less frequent, many explanations

IThe number of video intervals (not full videos), where the provided action descriptions (not explanations)
are identical (common actions e.g. “the car slows down”).
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Table 4.1: BDD-X dataset details. We provide counts for top-30 words, where words are
counted along with all their forms, such as slow, slows, slowing, slowed, slowly, etc.

BDD-X action descriptions BDD-X action explanations
Word Count Word Count
stop 6879 traffic 7486
slow 6122 light 6116
forward 4322 red 3979
drive 3994 move 3915
move 3273 clear 3660
accelerate 2882 ahead 3629
right 2616 road 3528
left 2574 stop 3430
turn 1912 lane 3407
road 1907 turn 3333
lane 1832 front 2715
street 1704 green 1928
speed 1072 park 1523
come 1033 intersection 1513
merge 923 right 1464
pull 723 slow 1395
intersection 717 cars 1390
head 629 left 1272
continue 625 street 1225
slight 554 forward 984
make 539 sign 984
brake 517 make 718
travel 513 approach 702
highway 450 speed 681
maintain 390 down 658
steer 371 pedestrian 649
proceed 359 go 614
steady 329 Cross 588
complete 323 get 536
veer 214 pass 490
park 209 enter 488
roll 173 wait 468

speeding 140 way 423
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Input images Controller’s Attention heat maps

A=0 Ae=10 Ae=100

Figure 4.5: Vehicle controller’s attention maps in terms of four different entropy regulariza-
tion coefficient A.={0,10,100,1000}. Red parts indicate where the model pays more attention.
Higher value of \. makes the attention maps sparser. We observe that sparser attention maps
improves the performance of generating textual explanations, while control performance is
slightly degraded.

contain references to weather conditions (rain, snow), different types of vehicles (buses,
vans, trucks), road bumps and safety of the performed action.

We provide some additional examples in Table 4.2, showing, in particular, that some
explanations require complex reasoning (1,2,3) and illustrate attention to detail (4,5,6).

Description Explanation

1: The car is making its way carefully through the intersection because another car has cut it off and pedestrians are approaching the crosswalk.

2: The car stops behind the truck because it’s waiting for a car in the opposite lane to pass by.

3: The car slows to a stop next to a line of parked cars since there is no where available to park, but another car up ahead is also double parked.
4: The car slows down because it’s entering a school crossing zone.

5: The car pulls over to the left side of the street to avoid a large pothole on the right.

6: The car is moving at a constant slow pace because it is a single lane road with snow and ice on the road.

Table 4.2: Example annotations where explanations require complex reasoning (1,2,3) and
demonstrate attention to detail (4,5,6).

4.4 Experiments

Here, we first provide our training and evaluation details, then make a quantitative and
qualitative analysis of our vehicle controller and our textual justifier.
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Mean of absolute error (MAE) Mean of distance correlation
Model A
Acceleration (m/s?) Course (degree) Acceleration (m/s?) Course (degree)

CNN+FC [9]f - 6.92 [7.50] 12.1 [19.7] 0.17 [0.15] 0.16 [0.14]
CNN+FC [9]+P - 6.09 [7.73] 6.74 [14.9] 0.21 [0.18] 0.39 [0.33]
CNN+LSTM-+Attention [37]f - 6.87 [7.44] 10.2 [18.4] 0.19 [0.16] 0.22 [0.18]
CNN+LSTM+Attention+P (Ours) 1000 5.02 [6.32] 6.94 [15.4] 0.65 [0.25] 0.43 [0.33]
CNN+LSTM+Attention+P (Ours) 100 2.68 [3.73] 6.17 [14.7] 0.78 [0.28] 0.43 [0.34]
CNN+LSTM+Attention+P (Ours) 10 2.33 [3.38] 6.10 [14.7] 0.81 [0.27] 0.46 [0.35]
CNN-+LSTM+Attention+P (Ours) 0 2.29 [3.33] 6.06 [14.7] 0.82 [0.26] 0.47 [0.35]

Table 4.3: Comparing variants of our vehicle controller with different values of the entropy
regularization coefficient A\.={0,10,100,1000} and the state-of-the-art. High value of A.
produces low entropy attention maps that are sparse and emphasize relatively few regions.
f: Models use a single image frame as an input. The standard deviation is in braces.
Abbreviation: FC (fully connected layer), P (prior inputs)

4.4.1 Training and Evaluation Details

As the convolutional feature encoder, we use 5-layer CNN [9] that produces a 12x20x64-
dimensional convolutional feature cube from the last layer. The controller following the
CNN has 5 fully connected layers (i.e. #hidden dims: 1164, 100, 50, 10, respectively), which
predict the acceleration and the change of course, and is trained end-to-end from scratch.
Using other more expressive networks may give a performance boost over our base CNN
configuration, but these explorations are out of our scope. Given the obtained convolutional
feature cube, we first train our vehicle controller, and then the explanation generator (single
layer LSTM unless stated otherwise) by freezing the control network. For training, we
use Adam optimizer [40] and dropout [73] of 0.5 at hidden state connections and Xavier
initialization [23]. The standard dataset is split as 80% (5,588 videos) as the training set,
10% (698 videos) as the test, and 10% (698 videos) as the validation set. Our model takes
less than a day to train on a single NVIDIA Titan X GPU.

For evaluating the vehicle controller we use the mean absolute error (lower is better)
and the distance correlation (higher is better) and for the justifier we use BLEU [59], ME-
TEOR [43], and CIDEr-D [81], as well as human evaluation. The former metrics are widely
used for the evaluation of video and image captioning models automatically against ground
truth.
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4.4.2 Evaluating Vehicle Controller

We start by quantitatively comparing variants of our vehicle controller and the state of the
art, which include variants of the work by Bojarski et al. [9] and Kim et al. [37] in Table 4.3.
Note that these works differ from ours in that their output is the curvature of driving, while
our model estimates continuous acceleration and the change of course values. Thus, their
models have a single output, while ours estimate both control commands. In this experiment,
we replaced their output layer with ours. For a fair comparison, we use an identical CNN
for all models.

In this experiment, each model estimates vehicle’s acceleration and the change of course.
Our vehicle controller predicts acceleration and the change of course, which generally requires
prior knowledge of vehicle’s current state, .e. speed and course, and navigational inputs,
especially in urban driving. We observe that the use of the latest four consecutive frames
and prior inputs (i.e. vehicle’s motion measurement and navigational information) improves
the control prediction accuracy (see 3rd vs. 7th row), while the use of visual attention also
provides improvements (see 1st vs. 3rd row). Specifically, our model without the entropy
regularization term (last row) performs the best compared to CNN based approaches [9] and
[37]. The improvement is especially pronounced for acceleration estimation.

In Figure 4.5 we compare input images (first column) and corresponding attention maps
for different entropy regularization coefficients A\.={0, 10,100, 1000}. Red is high attention,
blue is low. As we see, higher \. lead to sparser maps. For better visualization, an attention
map is overlaid by its contour lines and an input image.

Quantitatively, the controller performance (error and correlation) slightly degrade as A.
increases and the attention maps become more sparse (see bottom four rows in Table 4.3).
So there is some tension between sparse maps (which are more interpretable), and controller
performance. An alternative to regularization, [37] use causal filtering over the controller’s
attention maps and achieve about 60% reduction in “hot” attention pixels. Causal filtering
is desirable for the present work not only to improve sparseness but because after causal
filtering, “hot” regions necessarily do have a causal effect on controller behavior, whereas
unfiltered attention regions may not. We will explore it in future work.

4.4.3 Evaluating Textual Explanations

In this section, we evaluate textual explanations against the ground truth explanation using
automatic evaluation measures, and also provide human evaluation followed by a qualitative
analysis.

For state-of-the-art comparison, we implement the S2VT [82] and its variants. Note
that in our implementation S2VT uses our CNN and does not use optical flow features. In
Table 4.4, we report a summary of our experiment validating the quantitative effectiveness
of our approach. Rows 5-10 show that best explanation results are generally obtained with
weakly-aligned attention. Comparing with row 4, the introspective models all gave higher
scores than the rationalization model for explanation generation. Description scores are more
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Control Explanations Descriptions
Type Model in- As Ac (e.g. “because the light is red”) (e.g. “the car stops”)
puts
BLEU-4 METEOR CIDEr-D BLEU-4 METEOR CIDEr-D
S2VT [82] - - 6.332 11.19 53.35 30.21 27.53 179.8
S2VT [82]4+SA - - 5.668 10.96 51.37 28.94 26.91 171.3
S2VT [82]+SA+TA - - 5.847 10.91 52.74 27.11 26.41 157.0

Rationalization Ours (no constraints) 0 0 6.515 12.04 61.99 31.01 28.64 205.0

Ours (with SAA)
with SAA)
)

(
( - 0 6.998 12.08 62.24 32.44 29.13 213.6
(
Introspective Ours (with SAA
(
(
(

10 6.760 12.23 63.36 29.99 28.26 203.6
- 100 7.074 12.23 66.09 31.84 29.11 214.8

Ours

explana-
tion Ours (with WAA)

Ours (with WAA)
Ours (with WAA)

10 0 6.967 12.14 64.19 32.24 29.00 219.7
10 10 6.951 12.34 68.56 30.40 28.57 206.6
10 100 7.281 12.24 69.52 32.34 29.22 215.8

T T I e

Table 4.4: Comparing generated and ground truth (columns 6-8) descriptions (e.g. “the car
stops”) and explanations (e.g. “because the light is red”). We implement S2VT [82] and
variants with spatial attention (SA) and temporal attention (TA) as a baseline. We tested
two different attention alignment approaches, i.e. WAA (weakly aligned attention) and SAA
(strongly aligned attention), with different combinations of two regularization coefficients:
A={0,10} for the attention alignment and A.={0, 10,100} for the vehicle controller. Ra-
tionalization baseline relies on our model (WAA approach) but has no attention alignment.
Note that we report all values as a percentage.

mixed, but most of the introspective model scores are higher. As we will see in the next
section, our rationalization model focuses on visual saliencies, which is sometimes different
from what controller actually “looks at”. For example, in Figure 5 (5th example), our
controller sees the front vehicle and our introspective models generate explanations such as
“because the car in front is moving slowly”, while our rationalization model does not see the
front vehicle and generates “because it’s turning to the right”.

As our training data are human observer annotations of driving videos, and they are
not the explanations of drivers, they are post-hoc rationalizations. However, based on the
visual evidence, (e.g. the existence of a turn right sign explains why the driver has turned
right even if we do not have access to the exact thought process of the driver), they reflect
typical causes of human driver behavior. The data suggest that grounding the explanations
in controller internal state helps produce explanations that better align with human third-
party explanations. Biasing the explanations toward controller state (which the WAA and
SAA models do) improves their plausibility from a human perspective, which is a good sign.
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Control
C tness rat

Type Model Y orrectness rate

puts Explanations Descriptions
Rationalization Ours (no constraints) Y 0 0 64.0% 92.8%
f”tzospec““e Ours (with SAA) Y - 100 62.4% 90.8%
explana-
I Ours (with WAA) Y 10 100 66.0% 93.5%

Table 4.5: Human evaluation of the generated action descriptions and explanations for ran-
domly chosen 250 video intervals. We measure the success rate where at least 2 human judges
rate the generated description or explanation with a score 1 (correct and specific/detailed)
or 2 (correct).

We further analyze human preference in the evaluation below.

4.4.4 Human Evaluation

In our first human evaluation experiment the human judges are only shown the descriptions,
while in the second experiment they only see the explanations (e.g. “The car ... because
< explanation >"), to exclude the effect of explanations/descriptions on the ratings, re-
spectively. We randomly select 250 video intervals and compare the Rationalization, WAA
(Aa=10, A\.=100) and SAA (A\.=100) predictions. The humans are asked to rate a descrip-
tion/explanation on the scale {1..4} (1: correct and specific/detailed, 2: correct, 3: minor
error, 4: major error). We collect ratings from 3 human judges for each task. Finally, we com-
pute the majority vote, i.e. at least 2 out of 3 judges should rate the description/explanation
with a score 1 or 2.

As shown in Table 4.5, our WAA model outperforms the other two, supporting the
results above. Interestingly, Rationalization does better than SAA on this subset, according
to humans. This is perhaps because the explanation in SAA relies on the exact same visual
evidence as the controller, which may include counterfactually important regions (i.e. there
could be a stop sign here), but may confuse the explanation module.

4.4.5 Qualitative Analysis of Textual Justifier

As Figure 4.6 shows, our proposed textual explanation model generates plausible descriptions
and explanations, while our model also provides attention visualization of their evidence. In
the first example of Figure 4.6, controller sees neighboring vehicles and lane markings, while
explanation model generates “the car is driving forward (description)” and “because traffic
is moving freely (explanation)”. In Figure 4.6, we also provide other examples that cover
common driving situations, such as driving forward (1st example), slowing/stopping (2nd,
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Human: The car steadily driving + now that the cars are moving. The car turns left + since there were no oncoming cars.
Ours (WAA): The car is driving forward + because traffic is moving freely. The car is turning left + to enter a road.

Ours (SAA): The car heads down the road + because traffic is moving at a steady pace. The car turns left + because the road is clear
Rationalization: The car slows down + because it's getting ready to a stop sign. The car is slowing down + because it’s turning to the left.
2] 5]

Human: The car slows down + since it is about to turn left. The car is slowing down + in preparation of a turn.
Ours (WAA): The car slows down + because it is preparing to turn to the road. The car is slowing down + because the car in front is moving slowly.
Ours (SAA): The car is slowing + because it is approaching a stop sign. The car is slowing down + because the car in front has stopped.

Rationalization: The car slows + because there is a stop sign. The car slows down + because it’s turning to the right.
El 6]
Human: The car is stopped + while it waits for traffic in front of it to move. The car is steering to the left and moving forward slowly
+ the car is negotiating a left hand corner.
Ours (WAA): The car is stopped + because traffic is stopped. The car slows down + because it’s turning to the left.
Ours (SAA): The car is stopped + because the car in front of it is stopped. The car heads down the road
+ because the traffic is moving at a steady speed.
Rationalization: The car is stopped + because it is parked in the left lane. The car is moving forward + because the road is clear

Figure 4.6: Example descriptions and explanations generated by our model compared to
human annotations. We provide (top row) input raw images and attention maps by (from
the 2nd row) vehicle controller, textual explanation generator, and rationalization model
(Note: (Ae, Ay) = (100,10) and the synthetic separator token is replaced by ‘+7).

3rd, and 5th), and turning (4th and 6th). We also observe that our explanations have
significant diversity, e.g. they provide various reasons for stopping: red lights, stop signs,
and traffic. We provide more diverse examples as supplemental materials.

In Figure 4.7 and 4.8, we provide more examples of explanations of the driving decisions
by exploiting both attention visualization and textual justification.

Our model is also able to generate novel explanations not present in the training set. We
provide some examples as follows: (1) “because there are no obstructions in the lane ahead”,
(2) “because the car ahead is slowing to make a stop”, (3) “because the car is turning onto
a different street”, (4) “as it is now making a turn to enter another street”, (5) “the car is
stopped at an intersection at a red light”, and (6) “because there are no other cars in the
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intersection”.

4.5 Related Work

In this section, we review existing work on end-to-end learning for self-driving cars as well
as work on visual explanation and justification.

4.5.1 End-to-End Learning for Self-Driving Cars:

Most of vehicle controllers for self-driving cars can be divided in two types of approaches [13]:
(1) a mediated perception-based approach and (2) an end-to-end learning approach. The me-
diated perception-based approach depends on recognizing human-designated features, such
as lane markings, traffic lights, pedestrians or cars, which generally require demanding pa-
rameter tuning for a balanced performance [58]. Notable examples include [79], [11], and
46].

As for the end-to-end approaches, recent works [9, 87] suggest that neural networks can be
successfully applied to self-driving cars in an end-to-end manner. Most of these approaches
use behavioral cloning that learns a driving policy as a supervised learning problem over
observation-action pairs from human driving demonstrations. Among these, [9] present a
deep neural vehicle controller network that directly maps a stream of dashcam images to
steering controls, while [87] use a deep neural network that takes input raw pixels and prior
vehicle states and predict vehicle’s future motion. Despite their potential, the effectiveness
of these approaches is limited by their inability to explain the rationale for the system’s
decisions, which makes their behavior opaque and uninterpretable. In this work, we propose
an end-to-end trainable system for self driving cars that is able to justify its predictions
visually via attention maps and textually via natural language.

4.5.2 Visual and Textual Explanations

The importance of explanations for an end-user has been studied from the psychological
perspective [51, 52|, showing that humans use explanations as a guide for learning and
understanding by building inferences and seeking propositions or judgments that enrich their
prior knowledge. They usually seek for explanations to fill the requested gap depending on
prior knowledge and goal in question.

In support of this trend, recently explainability has been growing as a field in computer
vision and machine learning. Especially, there is a growing interest in introspective deep
neural networks. [93] use deconvolution to visualize inner-layer activations of convolutional
networks. [44] propose automatically-generated captions for textual explanations of images.
[10] develop a richer notion of contribution of a pixel to the output. However, a difficulty
with deconvolution-style approaches is the lack of formal measures of how the network output
is affected by spatially-extended features (rather than pixels). Exceptions to this rule are
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attention-based approaches. [37] propose attention-based approach with causal filtering that
removes spurious attention blobs. However, it is also important to be able to justify the
decisions that were made and explain why they are reasonable in a human understandable
manner, i.e. a natural language. For an image classification problem, [27, 28] used an LSTM
[30] caption generation model that generates textual justifications for a CNN model. [61]
combine attention-based model and a textual justification system to produce an interpretable
model. To our knowledge, ours is the first attempt to justify the decisions of a real-time
deep controller through a combination of attention and natural language explanations on a
stream of images.
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1]

The car isn't moving + because the light hasn't turned green yet.

The car is stopped + because the light is red.
The car is stopped + because the light is red.
The car is stopped + because the car in front is stopped.

2]

The car is driving quickly + since the road is clear of obstacles.
The car is driving down the street + because the road is clear.
The car is is driving forward + because the light is green.

The car heads down the street
+ because traffic is moving at a steady pace.

3]

The car slows down + since the cars are not moving as fast.
The car slows to a stop + because traffic is stopped.

The car slows + because traffic is moving forward.

The car slows + because the car in front of it is turning.

7] 8] 9]

The car is slowing to a stop + so that it can park.

The car is stopped + because the car is parked on the road.
The car is stopped + because it is parked.

The car is stopped + because traffic is stopped.

8]

The car is slowing down + since there is a stop just ahead.
The car is slowing down + because there is a stop sign.
The car is slowing down + because it’s getting ready to turn.
The car slows down + because it’s turning to the left.

B

The car turns left

+ because the light is green and there are no obstructions.
The car is turning left

+ because the light turns green and the intersection is clear
The car is slowing + to enter another road.
The car turns left + because the light is green.

(4 (5] (6]

x
S

ERNTHENSTT-N

4]
The car extis to the right + because the car went two lanes to the right to exit.
The car is slowing down + because it is slowing to a right turn.

The car is driving forward + because there are no traffic in its lane.
The car is driving forward + because no cars are crossing.

5]
The car is stationary + since the cars in front are not moving.
The car is stopped + because it is parked in a parking lot.

The car is stopped + because it is parked on the side of the road.
The car is stopped + because the light is red.

6
The car head down highway + because traffic is moving at a steady speed.
The car is driving forward + because traffic is moving.

The car is driving down the street + because the lane ahead is clear.
The car is driving down the street + because the road is clear

EANTHENTY.

10
The car gains speed + since the light turned green.
The car is driving forward + because there are no other cars on the road.

The car is accelerates + because the road is clear.
The car is moving forward + because the light is green.

0
The car slows down + since there is a red ahead.
The car is slowing to a stop + because the traffic light ahead has turned red.

The car is slowing down + because the traffic light ahead is red.
The car is slowing to a stop + because there is a stop sign ahead.

12
The car is slowing significantly + traffic ahead in the lane is slowing.

The car slows to a rolling stop + because traffic is stopped.

The car slows to a stop + because traffic ahead is stopped.
The car is slowing down + because the car in front of it is slowing to a stop.

<
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Figure 4.7: Examples of descriptions and explanations. In this experiment, we use (A;,\,)
as (100,10). A synthetic separator token is replaced by '+’
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TEXTUAL EXPLANATIONS FOR SELF-DRIVING VEHICLES

14

13

The car is stopped at an intersection + as the light is red.

The car is stopped + because the light is red.
The car is moving slowly down the road
+ because the traffic in front is stopped at a red light.
The car accelerates + because the car in front is moving forward.

(14)
The car backs up
+ to let another car pull out of a parking space he wants.
The car is accelerating + because traffic is moving forward.
The car is stopped + because the light is red.
The car is moving slowly forward + to get around a car in the way.
15
The car is stopped + because it is parked.
The car is stopped + because it is parked.
The car is stopped + because the car is parked.
The car is stopped at an intersection + because the light is red.

The car is accelerating and turning right
+ the car is turning right through the intersection
The car is turning right + to enter another road.
The car is turning right + because the light turns green.

The car is slowing down + because it’s turning to the right.
17

The car is turning right + to enter another road.

The car is driving forward + because traffic is clear.

The car turns right + because the road is clear of traffic.
The car is driving down the road + because the road is clear.
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Figure 4.8: Additional examples of descriptions and explanations. In this experiment, we
use (As,Aq) as (100,10). A synthetic separator token is replaced by '+’
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Chapter 5

Grounding Human-to-Vehicle Advice
for Self-driving Vehicles

5.1 Problem Statement

Dramatic progress in self-driving vehicle control has been made in the last several years.
The recent achievements [9, 87] suggest that deep neural models can be applied to vehicle
controls in an end-to-end manner by effectively learning latent representations from data.
Explainability of these deep controllers has increasingly been explored via a visual attention
mechanism [37], a deconvolution-style approach [10], and a natural language model [39].
Such explainable models will be an important element of human-vehicle interaction because
they allow people and vehicles to understand and anticipate each other’s actions, hence to
cooperate effectively.

However, the network’s understanding of a scene is limited by the training data: image
areas are only attended to if they are salient to the (training) driver’s subsequent action. We
have found that this leads to semantically-shallow models that under-attend to important
cues (like pedestrians) that do not predict vehicle behavior as well as other cues, like the
presence of a stop light or intersection. We also believe its important for driving models
to be able to adapt the “style” of the journey to user input (fast, gentle, scenic route,
avoid freeways etc). We use the term “advice” to cover high-level instructions to the vehicle
controller about how to drive, including what to attend to. We distinguish advice from
explicit commands to the vehicle: which may be problematic if the passenger is not fully
attending to the vehicle’s environment.

The goal of this work is to augment imitation learning datasets with long-term advice
from humans (e.g. driving instructors) and in the shorter term, from passengers in the vehicle.

*This work has been presented at the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019.
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Figure 5.1: Our model takes human-to-vehicle advice as an input, i.e. “pedestrians are in
crosswalk”, and grounds it into the vehicle controller, which then predicts a sequence of
control commands, i.e. a steering wheel angle and a vehicle’s speed. Our driving model also
provides a visual explanation in the form of attention - highlighted regions have a direct
influence on the function being estimated. Visualizing attention maps helps the end-users
acknowledge the acceptance of their advice.

In full generality, advice might take the form of condition-action rules “if you see a child’s toy
on the sidewalk, slow down”. For the present paper, we study the simpler task of accepting
short-term textual advice about action or perception.

In this work, we propose a novel driving model that takes natural language inputs
(i.e. human-to-vehicle advice) from an end-user. Here, we focus on two forms of advice:
(1) goal-oriented advice (top-down signal) — to influence the vehicle in a navigation task
(e.g. “drive slow in a school zone”), (2) stimulus-driven advice (bottom-up signal) — conveys
some visual stimuli that the user expects their attention to be actively looked by the vehi-
cle controller (e.g. “there is a pedestrian crossing”). As shown in Figure 5.1, the controller
needs three main capabilities to handle such advice. (i) Perceptual primitives to evaluate
the controller’s behavior. (ii) The ability to understand the user’s utterance and to ground
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Figure 5.2: Our model consists of three main parts: (1) a visual encoder (CNN here), (2) an
advice encoder, which encodes end-user’s utterance (advice) and ground it into the vehicle
controller (see green arrows), and (3) an interpretable vehicle controller, which predicts two
vehicle control commands (i.e. a speed and a steering angle command) from an input raw
image stream in an end-to-end manner. Our model also utilizes a (spatial) visual attention
mechanism to visualize where and what the model sees (see yellow arrows).

it in the trained perceptual primitives. (iii) Explainability of the controller’s internal state
to communicate with the vehicle. We propose that such capabilities can be learned during
off-line training.

Our contributions are as follows. (1) We propose a novel advisable driving model that
takes human-to-vehicle advice and grounds it into the vehicle controller. (2) We internalize
the (stimulus-driven) advice — aligning its attention to make the model refer to the important
salient objects even when advice is not available. (3) We generated a large-scale dataset
called Honda Research Institute-Advice Dataset (HAD) with over 5,600 video clips (over
32 hours) with human-to-vehicle advice annotations, e.g. “there is a pedestrian pushing a
stroller through the crosswalk”. The dataset will be available and will provide a new test-bed
for measuring progress towards developing advisable models for self-driving cars.

5.2 Advisable Driving Model

As we summarized in Figure 5.2, our model involves three main parts: (1) a Visual encoder,
which extract high-level visual descriptions by utilizing the convolutional neural network
(CNN). (2) An Advice encoder, which is a natural language model that encodes end-user’s
utterance into a latent vector and ground it into the vehicle controller. (3) An Interpretable
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vehicle controller, which is trained to predict two control commands (widely used for self-
driving vehicle control) in an end-to-end manner, i.e. a vehicle’s speed and a steering wheel
angle. Our controller uses a visual (spatial) attention mechanism [37], which visualizes
controller’s internal state by highlighting image regions where the model fixates on for the
network’s output.

5.2.1 Preprocessing

Following [37], we use raw images that are down-sampled to 10Hz and are resized to have
input dimensionality as 90x160x3. For better generalization, each image is then normalized
by subtracting its mean from the raw pixels and dividing by its standard deviation. Fol-
lowing Liu et al. [50], we marginally change its saturation, hue, and brightness for achieving
robustness during a training phase.

5.2.2 Convolutional Feature Encoder

We utilize a convolutional neural network (CNN) to obtain a set of visually-descriptive latent
vectors at time t, where each vector contains a high-level visual description in certain input
region. In this paper, we refer these latent vectors to as a convolutional feature cube X;. By
feeding an image through the model at each time ¢, we collect a X; of size wxhxd. Note
that X, has [ (=wxh) (spatially) different vectors, each of which is a d-dimensional feature
slice corresponding to a certain input region. Choosing a subset of these vectors will allow
us to focus selectively on different parts of images (i.e. attention). Formally, X; = {x¢1, ¢,
.oy Ty}, where x,; € R for i € {1,2,...,1}.

5.2.3 Advice Encoder

Our advice encoder takes a variable-length advice and yields a latent vector, which then feeds
to the controller LSTM (called Control LSTM). Our advice-taking driving model needs
to understand the end-users utterance and to ground it into the vehicle controller. We
assume that advice will often be given offline, or at the beginning of a ride, e.g. “look out
for pedestrians” or “drive gently (occupant gets carsick)”. Thus, advice encoding will be
prepared ahead of the controller generates control commands.

We train our advice encoder to deal with both types of advice (i.e. the goal-oriented and
the stimulus-driven advice) without any input-level separation. We use a LSTM (called Ad-
vice LSTM, which is different from Control LSTM) to encode an input sentence (i.e. human-
to-vehicle advice) and to yield a fixed-size latent vector, which is common practice in
sequence-to-sequence models. Inspired by the knowledge from the Visual Question Answer-
ing (VQA) task, we follow the work by Park et al. [60] and use an element-wise multiplication
to combine the latent vector from our advice encoder and the visual feature vector from our
visual encoder.
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Formally, our advice LSTM yields a d-dimensional latent vector u € R%. By combining
this vector with the visual feature z;; using element-wise multiplication, we obtain a feature
vector z;; = x; © u, which is then fed into vehicle controller. Note that vehicle controller
takes a new image at every time ¢ (thus, update z;;) but the latent vector u remains the
same during a period of the event.

Note that we focus on two forms of advice: (i) stimulus-driven and (ii) goal-oriented
advice. The former advice (e.g. “watch out a pedestrian”) about perception can be grounded
into a context vy, via attention maps. We, however, argue that attention maps may not be
sufficient to ground the latter advice (e.g. “go straight”), which needs a more direct influence
to the controller via an additional element-wise multiplication.

5.2.3.1 Synthetic Token

We use a synthetic token <none> to indicate unavailable advice input. Since users will not
be aware of the full state of the vehicle (they are not driving), the controller should mainly
be in charge. Thus, we augment replicate of the dataset that however has a <none> token
as the advice input, which exposes the model to events that do not have advice as an input.

5.2.4 Interpretable Vehicle Controller

Providing a controller’s internal state is important for advisable systems since it will be
used as a ground or an acknowledgment of their advice taken. To this end, we utilize the
attention-based driving model [37] that provides the controller’s internal state by visualizing
attention maps — i.e. where the model visually fixates on image regions that are relevant to
the decision.

5.2.4.1 Visual Attention

Visual attention provides introspective explanations by filtering out non-salient image re-
gions, while image areas inside the attended region have potential causal effect on the out-
put. The goal of visual attention mechanism is to find a context Y; = {y1, Y2, ., Ye1}
by minimizing a loss function, where y;; = m(a;, 1) = auixe, for i = {1,2,...,1}. Note
that a scalar attention weight value a;; in [0, 1] is associated with a certain grid of input
image in such that >, a;; = 1. We use a multi-layer perceptron fun to generate oy,
i.e. at; = fattn(Tti, he—1) conditioned on the previous hidden state h;—;, and the current
feature vector x;;. Softmax regression function is then used to obtain the final attention
weight.

5.2.4.2 Outputs

The outputs of our model are two continuous values of a speed 0(t) and a steering wheel
angle §(t). We utilize additional hidden layers f, and fs, each of which are conditioned on
the current hidden state h; (of the control LSTM) and a context vector ¢;. We generate the
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context vector by utilizing a function f.oncar, which concatenates {ctyi}ﬁzl ={yi © ul_, to
output 1-D vector ¢;.

5.2.4.3 Internalizing Advice

Stimulus-driven advice provides rich messages about visual saliencies (e.g. traffic lights,
pedestrians, signs, etc) that the vehicle controller should typically see these objects while
driving. Thus, to internalize such advice, we argue that the driving model must attend to
those areas even when such advice is not available. We add a loss term, i.e. the Kullback-
Leibler divergence (D), between two attention maps (i.e. generated with and without
advice) to make the driving model refer to the same salient objects:

l w
Qy

Lo= Y Dicalaflaf) =2 >0 D" af(log o) (5.1)
t t =1 20

where o and a"° are the attention maps generated by the vehicle controller with and
without advice given, respectively. We use a hyperparameter A, to control the strength of
the regularization term.

5.2.4.4 Loss function

Existing models have been trained mainly by minimizing the proportional control error term
(i.e. the difference between human-demonstrated and predicted). However, these systems are
prone to suffer from two major issues. (i) Oscillation of control predictions — its prediction
has repeated variation against a target value. (ii) Variations in task performance between
drivers.

Inspired by proportional-integral-derivative (PID) controller [64], we use the following loss
function, which consists of three terms: (i) £,, which is proportional to the error (i.e. |e,(t)|+
les(t)]), where we use the error terms e, (t) = v(t) — 0(t) and e4(t) = s(t) —§(¢t). (ii) L4, which
is proportional to the derivative of the error (i.e. 4e,(t) and %e4(t)), and (iii) £;, which is
proportional to the integral of the error, which we use the difference in the vehicle’s future
course 6(t) — a cardinal direction in which a vehicle is to be steered. With the bicycle model
assumption [64] - which assumes that left and right front wheels are represented by one
front wheel, we can approximate a steering wheel angle s; ~ L/r, where L is the length of
wheelbase and r is the radius of the vehicle’s path. Then, we can approximate the vehicle’s
course 0(t) =~ @ ~ s(t)v(t) after the unit time 7 = 1. Thus, we use the following loss
function L:

Ly L;
—_——

[lea(t)] + [es(t)] +N: |0(t) — 6(t)]

1
L=Lot
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Table 5.1: Examples of processing annotated descriptions.

Type Step Textual Annotation

action desc. Initial annotation The driver went straight and stopped at an intersection.
— Present tense  The driver goes straight and stops at an intersection.

— Imperative Go straight and stop at an intersection.

attention desc. Initial Annotation There was a pedestrian pushing a stroller through the crosswalk.

— Present tense  There is a pedestrian pushing a stroller through the crosswalk.

where T is the number of timesteps. We use hyperparameters A\; and A; to control the
strength of the terms.

5.3 Honda Research Institute-Advice Dataset (HAD)

In order to evaluate the advisable driving model, we have collected Honda Research Institute-
Advice Dataset (HAD). In this section, we describe our dataset in terms of the driving videos
used to collect human-annotated textual advice, our annotation process, and analysis of the
advice collected.

5.3.1 Driving Videos and Vehicle Control Commands

We use 5,675 video clips (over 32 hours), each of which is on average 20 seconds in length.
Each video contains around 1-2 driving activities, e.g. passing through an intersection, lane
change, stopping, etc. These videos are randomly collected from a large-scale driving video
dataset called HDD [65]. This dataset contains camera videos — which are captured by a
single front-view camera mounted in a fixed position on the roof top of the vehicle. These
videos are mostly captured during urban driving near the San Francisco Bay Area, which
contain the typical driver’s activities (i.e. turning, merging, lane following, etc) on various
road types (i.e. highway, residential roads with and without lane markings, etc). Alongside
the video data, the dataset provides a set of time-stamped controller area network (CAN)
bus records, which contain human driver control inputs (i.e. steering wheel angle).

5.3.2 Annotations

We provide a 20 seconds driving video and ask a human annotator to describe, from a
point of view of a driving instructor, what the driver is doing (action description for goal-
oriented advice) and what the driver should pay attention (attention description for stimulus-
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Figure 5.3: (A) Examples of input images, which are sampled at every 5 seconds. We
also provide examples of the goal-oriented advice and the stimulus-driven advice, which are
collected from human annotators followed by a post-processing. We highlight a visual cue
(e.g. pedestrians), which are mentioned in advice, with a blue circle on the images. (B) The
counts of top-20 most frequent words used in both types of advice. (C) The distribution of
advice by their first four words for both types. The ordering of the words starts from the
center, and the length of the arc indicates the proportion of the number of advice containing
the word. Note that we remove areas where the number of words is too small (less than 1%)
to show.

driven advice). We require that the annotators enter the action description and attention
description separately, for example, “The driver crossed lanes from right to left lane” and
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“There was construction happening on the road”, respectively. Each video clip has 4-5 action
descriptions (25,549 in total) and 3-4 attention descriptions (20,080 in total). We then change
the descriptions into the present tense (e.g. “The driver crosses lanes from right to left lane”).
Especially for action descriptions, we change them to imperative sentences (e.g. “Cross lanes
from right to left lane”), which are used to offer advice. To ensure the quality of the collected
descriptions, we ask another human annotator to proofread the descriptions/advice to correct
typographical errors and mistakes in grammar and spelling. In our analysis of annotations,
we found that this two-stage annotation is helpful for the annotator to understand the task
and perform better. In Figure 5.3 (A), we provide examples of two types of advice collected
along with dashboard camera images (sampled at every 5 seconds).

5.3.3 Dataset Characteristics

Figure 5.3 (B) shows word counts of the top-20 most frequent words used in the goal-oriented
advice and the stimulus-driven advice, respectively. Note that we exclude prepositions,
conjunctions, and definite and indefinite articles. Most common goal-oriented advice is
related to changes in speed (i.e. stop, slow), driving (i.e. drive, straight, go, etc), and turning
(i.e. left, right, turns). Many also include a list of concepts relevant to a driving, such as traffic
light /sign, lane, intersection. The stimulus-driven advice covers a diverse list of concepts
relevant to the driving scenario, such as the state of traffic/lane, traffic light /sign, pedestrians
crossing the street, passing other parked/crossing cars, etc. Although less frequent, some
contain references to different types of vehicle (i.e. bus, truck, bike, van, etc), road bumps,
and weather conditions.

5.4 Experiments

5.4.1 Training and Evaluation Detalils

We use a single LSTM layer for all the components of our framework. Our model is trained
end-to-end using random initialization (i.e. no pre-trained weights). For training, we use
Adam optimization algorithm [40] and dropout [73] of 0.5 at hidden state connections and
Xavier initialization [23]. Our model takes 1-3 days (depending on types of CNN used) to
train and can process over 100 frames on average per second on a single Titan Xp GPU.
We use two mathematical criteria (the statistics of absolute errors and the correlation dis-
tance) to quantitatively evaluate their performance by comparing with ground-truth human-
demonstrated control commands.

5.4.2 Advisable vs. Non-advisable models

As shown in Table 5.2, we first compare the vehicle control prediction performance to see
our advice-taking driving model can outperform other existing driving models that do not
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Table 5.2: In order to see the effectiveness of our advice-taking model, we compare the
vehicle control prediction performance with other two existing models, which do not take
advice (the first two rows). For a fair comparison, we use the identical 5-layer base CNN [9].
We also share the same input and output layers trained with the same loss function (i.e. the
proportional error £, alone) used in [37]. We compare the control prediction performance in
terms of three different sets of advice (i.e. the goal-oriented advice (ADV¢) only, the stimulus-
driven advice (ADVg) only, and both). For evaluation, we use the mean of correlation distances
(Corr) and the median of absolute errors as well as the 1st (Q1) and 3rd (Q3) quartiles.

Advice input Speed (km/h) Steering Wheel Angle (deg)

Type Model
Training  Testing Median [Q1, Q3] Corr Median [Q1, Q3] Corr
Non-advisable ConvNet+FF (feed forward network) [9] - - 6.88 [3.13, 13.1] .597 4.63 [1.80, 12.4] .366
ConvNet+LSTM+Attention [37] (baseline) - - 3.98 [1.76, 8.10] .763 3.92 [1.54, 10.1] 469
Advisable CNN+LSTM+Attention+Advice (Ours) ADVg only  ADVe  4.25 [1.86, 8.46] .743 3.53 [1.37, 8.83] 516
CNN+LSTM+Attention+Advice (Ours) ADVg only  ADVg  3.28 [1.47, 6.46] .782 3.78 [1.45, 9.93] 484
CNN+LSTM+Attention+Advice (Ours) ~ ADVG+ADVg ADVe  3.78 [1.67, 7.50] .763 3.54 [1.36, 9.21] 512
CNN+LSTM+Attention+Advice (Ours) ~ ADVo+ADVg ADVg  3.78 [1.68, 7.46] .763 3.78 [1.41, 9.51] 511

take advice. To this end, we implemented two other existing models, i.e. (1) CNN+FF (Feed
forward network) [9] and (2) CNN+LSTM+Attention [37]. For a fair comparison, all models
used the identical 5-layer CNN [9] as the convolutional (visual) feature encoder trained by
minimizing the loss term £, only (same as used in [37]. See Equation 5.2). This visual
encoder produces a 12x20x64-dimensional feature cube from the last convolutional layer.
In the later section, we will also explore further potential performance improvements with
more expressive neural networks over this base CNN configuration.

In Table 5.2, we report a summary of our experiments validating the quantitative ef-
fectiveness of our advice-taking approach. Comparing with the non-advisable models (rows
1-2), our advisable models all gave better scores for vehicle control prediction. As we will see
in the next section, we observe that our advisable driving model focuses more on driving-
related objects (whether provided as advice or not) than others that do not take advice
during training and testing phases. For example, in Figure 5.4 and 5.5, our advisable model
pays more attention to pedestrians crossing, a car pulling out, and construction cones. More
importantly, advice like “stop at a stop sign” or “there is a person with a stroller crossing
the crosswalk’ may reflect typical links between visual causes and actions of human driver
behavior. The data suggests that taking advice in controller helps imitate more closely hu-
man driver behaviors. Biasing the controller by taking advice improves the plausibility of
its output from a human perspective.
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Figure 5.4: Attention heat maps comparison. We provide input raw images and attention
heat maps generated by the existing attention-based driving model [37] (Baseline column),
and our model trained with all types of advice together (Ours column). We highlight key
object-centric words (as appropriate row 1 & 2), e.g. cones and a white car pulling out, in
green as well as corresponding salient objects in a green circle overlaid on images.

5.4.3 Types of Advice Matter

We further examine the performance comparison with two different types of advice: the goal-
oriented advice (e.g. “stop at the intersection”) and the stimulus-driven advice (e.g. “there is
a pedestrian crossing”). In Table 5.2 (rows 3-4), we report vehicle control prediction accuracy
when each of which types of advice is given to the model. In our analysis, the goal-oriented
advice provides better control accuracy for predicting steering wheel angle commands. This
is mainly due to the fact that the goal-oriented advice conveys the more direct messages,
which may include navigational command on how the vehicle behaves (e.g. go/stop and
turn). The stimulus-driven advice, which conveys rich messages about visual saliencies
(e.g. red light, stop sign, and intersection), provides better predicting accuracy for vehicle’s
speed prediction.

5.4.4 Qualitative Analysis of Attention Maps

As shown in Figure 5.4, we qualitatively compared with our baseline by visualizing attention
heat maps - the highlighted image region has a potential influence on the network’s outputs.
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Table 5.3: We propose an advice internalization technique — which minimizes the difference
between two attention maps (generated with and without advice inputs) and thus makes the
driving model refer to the same salient objects. Note that we use a synthetic token <none> to
indicate when advice inputs are not available. We used \, as 50 (by the grid-search method).

Model Advice input Speed (km/h) Steering Wheel Angle (deg)
ode

Training Testing Median [Q1, Q3] Corr Median [Q1, Q3] Corr
no advice internalization =~ ADVg  <Nome> 3.55 [1.58, 7.12] .777 4.01 [1.59, 10.1] A79
w/ advice internalization =~ ADVg  <Nome> 3.36 [1.51, 6.62] .784 3.96 [1.55, 10.0] 480

While all models see driving-related common visual cues (i.e. lane markings), we observed
that our advice-taking model focuses more on both advice-related cues (i.e. pedestrian cross-
ing, construction cones, a car pulling out, etc) or visual objects relevant to the certain driving
scenario (i.e. vehicles, crosswalk, pedestrians, etc).

5.4.5 Internalizing Advice Taken

Users will not usually be aware of the full state of the vehicle (they are not driving), the
vehicle controller should mostly be in charge and the human-to-vehicle advice might occa-
sionally be unavailable. As summarized in Table 5.3, we further examine the performance
comparison with no advice available (we use a synthetic token <none> to indicate unavail-
able advice input) in a testing time. Interestingly, we observe that (i) the performance of a
model trained with the stimulus-driven advice is not degraded much whenever advice inputs
are not available in testing (its control performance is still better than other non-advisable
approaches), (ii) our advice internalization technique (see Equation 5.1) further improves
the control performance toward those having advice inputs.

In Figure 5.5, we further examine the effect of advice internalization by visualizing at-
tention heat maps. We first visualize attention maps generated with no advice provided
(i.e. using a <none> token, see middle row). Then, we visualize the attention map changes
when the model takes ground-truth advice as an input (see bottom row). Our result reveals
that our model is still able to see driving-related visual cues (i.e. traffic lights or lanes),
whereas advice inputs can bias the model to refer to objects, which is related to the advice
given.

5.4.6 Visual Encoder Comparison

We further examine variants of our proposed model using four different widely-used visual
feature encoders. We used the output of intermediate layers from Bojarski et al. [9], Inception
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Figure 5.5: We compared attention heat maps generated with and without advice as an input
in testing time. We visualize raw input images with salient objects marked by a green circle,
e.g. a bus pulling off, which is mentioned by an advice input (1st row). The provided advice
(1-6) is provided at the bottom of the figure. We visualize attention heat maps from our
trained model but with a synthetic token <none> (i.e. without advice, 2nd row). Attention
map differences between those with and without advice (3rd row), where red parts indicate
where the model (with advice) pays more attention.

v3 [75], MobileNet [31], and Inception-ResNet-v2 [74]. We trained all models in an end-to-
end manner using random initialization, and we used both types of advice as an input in
the training and testing phases (averaged scores are reported). As reported in Table 5.4,
the result reveals that control prediction accuracy can be generally expected to improve

Table 5.4: We compared the vehicle control prediction performance with four different visual
encoders. Except for the visual encoder part, we use the same training strategy.

CNN base Speed (km/h) Steering Wheel Angle (deg)

Median [Q1, Q3] Corr Median [Q1, Q3] Corr

MobileNet [31] 3.93 [1.73, 7.80] 753 4.20 [1.65, 10.7]  .463
Bojarski et al. [9] 3.78 [1.68, 7.49] 763 3.58 [1.39,9.34]  .512
Inception v3 [75] 2.89 [1.31, 5.59] .795 3.47 [1.34, 8.76] 525
Inception-ResNet-v2 [74] 2.93 [1.33, 5.63] .796 3.54 [1.36, 9.19] 491
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Figure 5.6: Control performance comparison with different sets of hyperparameters (Ag, \;)
(see Equation 5.2). Along with proportional prediction errors (green bar), we also visualize
derivative errors (blue line). We report the median value of absolute error.

when using a deeper CNN architecture, which learns more expressive visual features. Visual
features from the Inception v3-based architecture lead the best performance improvement
against other three architectures.

5.4.7 Effect of Regularization

We explored the loss function £, which contains three terms — £, (proportional error), L4
(derivative error), and £; (integral error). We use two hyperparameters Ay and \; to control
the strength of the corresponding terms. Figure 5.6 shows control command prediction errors
with different combinations of hyperparameters in terms of the median value of absolute
errors. We also visualize the error of the acceleration (the derivative of speed) and the
steering angle rate (the derivative of steering angle command). The impact of adding these
loss terms is dominant in the prediction of speed, whereas the performance in steering is
slightly degraded. We obtained marginal improvement by adding integral loss term ()\;) in
speed predictions, while derivative errors are reduced by adding derivative loss term (\y).

5.5 Related Work

5.5.1 End-to-End Learning for Self-driving Vehicles

Recent successes [9, 87] suggest that a driving policy can be successfully learned by neural
networks as a supervised learner over observation (i.e. raw images)-action (i.e. steering) pairs
collected from human demonstration. Bojarski et al. [9] trained a deep neural network to
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map a dashcam image to steering controls, while Xu et al. [87] explored a stateful model
using a dilated deep neural network and recurrent neural network so as to predict a vehicle’s
discretized future motion given input images. Other variants of deep neural architecture
have been explored [22, 16].

Explainability of deep neural networks has become a growing field in computer vision
and machine learning communities. Kim et al. [37] utilized a recurrent attention model
followed by a causal filtering that removes spurious attention blobs and visualizes causal
attention maps. We start our work with this attention-based driving model. Attention
model visualizes controller’s internal state by visualizing attention maps, which end-users
may use as a ground and an acknowledgment of their advice. Other approaches [10, 39] can
also be applied to provide richer explanations, but we leave it for future work.

5.5.2 Advice-taking models

Recognition of the value of advice-taking has a long history in Al community [54], but a few
attempts have been made to exploit textual advice. Several approaches have been proposed
to translate the natural language advice in formal semantic representations, which is then
used to bias actions for simulated soccer task [42], mobile manipulation tasks [56, 55, 76],
and a navigation task [4]. These approaches consider high-level action sequences to be given
in the task space of the agent. Instead, we consider the visual imitation learning setting,
where the model has its own perceptual primitives that are trained by observing third-person
demonstration and types of advice. Recent work suggests that incorporation of natural
language human feedback can improve a text-based QA agent [47, 85] and image captioning
task [49]. Despite their potential, there are various challenges (e.g. safety and liability)
with collecting human feedback on the actions taken by self-driving cars. Other notable
approaches (in the reinforcement learning setting) may include the work by Tung et al. [77]
that learns a visual reward detector conditioned on natural language action descriptions,
which is then used to train agents. To our best knowledge, ours is the first attempt to
take human-to-vehicle advice in natural language and ground it in a real-time deep vehicle
controller.
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Chapter 6

Advisable Learning for Self-driving
Vehicles by Internalizing
Observation-to-Action Rules

6.1 Problem Statement

Autonomous driving control has made dramatic progress in the last several years. The
proposed vehicle controllers use a variety of approaches; recent efforts [9] suggest that deep
neural networks can be effectively applied to the controllers in an end-to-end manner. These
models, however, are known to be opaque. One way to simplify and expose the underlying
reasoning, is via a situation-specific dependence on visible objects in the scene, i.e. by only
attending to image areas that are causally linked to the driver’s actions [37]. However, the
resulting attention maps are not always compelling or human interpretable. Another option
is to verbalize the autonomous vehicle’s behaviour with natural language [39], Figure 6.2
(B). The resulting textual explanations are human understandable, but tend to be rather
“shallow”, as they report the more common objects over the less common ones, which may
be more important (e.g. construction cones). Both approaches fall short of demonstrating
causal behaviour akin to a typical human driver.

To address this issue, [38] augment an imitation learning dataset with instantaneous
human advice (e.g. “there is a pedestrian ahead”, or “turn left”), see Figure 6.2 (A). They
show that providing such inputs helps more closely imitate a human driver’s behavior. While
promising, this method requires ground-truth human inputs at test time.

Humans learn to drive not only from practice and demonstration, but also from theory,
e.g. by studying the rules. We advocate for a more principled way of integrating human
advice during learning. We assume that at training time, human advice is available in the
form of observation-action rules (e.g. “if the road is wet, slow down”). Incorporating such
rules could help driving models learn more human-like behavior, see Figure 6.1.

A key requirement of an advisable driving model is its explainability — exposing the con-
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Figure 6.1: Our model consists of four main parts: (1) an object-centric visual encoder built
upon a semantic segmentation model, (2) an observation generator, which generates textual
observation about the scenes (“The road is wet”), (3) an observation-to-action module, which
maps a visual scene description to a (high-level) action command (“Slow down”), and (4) a
vehicle controller conditioned on the generated action command.

troller’s internal state is important for a user as an acknowledgement that the system is
following advice. As mentioned earlier, visual attention is often used in recent explainable
models [37, 39]. These models generate spatial attention maps, which are then displayed
over the original images. However, such attention maps are coarse and have limited inter-
pretability. They usually have a low spatial resolution (as the last convolutional layer) and
are upsampled with a 2D Gaussian kernel. This blurs out the details and makes it difficult
to determine what the model actually attends to. We advocate for using a richer represen-
tation, such as semantic segmentation, which provides pixel-wise prediction and delineates
object boundaries in images. The output of the last convolutional layer retains informa-
tion of the corresponding local image regions, which can be advantageous for obtaining more
fine-grained attention maps. We thus propose to use semantic segmentation as our input rep-
resentation, and tie the predicted attention maps to the output of the segmentation model.
To further improve the quality of the attention maps, we also use an instance segmentation
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Figure 6.2: (A) Existing goal-conditioned end-to-end driving models that takes (as an in-
put) discrete [18], natural language commands [38, 66], and intended navigational route [26].
(B) Existing explainable end-to-end driving models that transduce DNN states to natu-
ral language [39] or visual explanations [37]. (C) Combining two above-mentioned ideas,
we can create “Advisable” driving model that takes human-to-vehicle advice in the form
of observation-action rules. To incorporate such rules, our model involves a Sequence-to-
Sequence Observation-to-Action module, which generates a soft condition-action rule that
maps a textual observation to a high-level action command. For details see Section 6.2.

model, which allows us to distribute attention over individual objects.

Overall, we propose a novel self-driving model that is both advisable and explainable, see
Figure 6.2 (C). Our model learns advice from human inputs which convey global rules that the
user expects the vehicle to follow (e.g. “If a heavy fog interferes with your forward visibility,
drive slowly”). We can also provide both visual explanations — by producing fine-grained
attention maps, and textual explanations — by generating textual utterances (e.g. “the traffic
light ahead turned red”, thus “the car stopped”). We ground both functionalities in our
object-centric visual representation.

We evaluate our approach on the BDD-X dataset [39] and show that our model matches
or outperforms prior work in control prediction and textual observation generation. Our
attention maps, tied to the semantic segmentation, result in object-centric (and thus more
interpretable) visualization of internal states. Our human evaluation in a simulated environ-
ment (Carla [20]) further shows that our advisable system can increase user trust.
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Figure 6.3: The detailed overview of our Object-centric Visual Encoder that is built upon an
instance mask detector and a semantic segmentation model, both of which provide pixel-wise
category predictions from images along with delineating the boundaries of object.

6.2 Advisable Learning

In this paper, we propose a novel driving model that is both explainable and advisable. Our
model can provide the basis of its decision both by visualizing image regions that it attends
to and by verbalizing the observations of what it sees (e.g. “it is snowing”). Our model is also
advisable by incorporating general observation-action rules, which it is expected to follow.
To this end, our model needs four main capabilities: (i) perceptual primitives to manipulate
the vehicle’s behavior, (ii) the ability to control a vehicle conditioned on the determined
actions, (iii) the ability to verbalize what is happening while driving, and (iv) the ability to
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understand and respond to the observations with the corresponding high-level actions.

As shown in Figure 6.2 (C), our model includes four main components. Our Object-
centric Visual Encoder extracts visual (semantic) representations through a ConvNet that is
pretrained on the task of semantic segmentation (Section 6.2.1). The Vehicle Controller
is trained to predict control commands conditioned on the high-level action commands
(e.g. “stop at the crosswalk”) (Section 6.2.2). The Observation Generator produces variable-
length textual observations about the scenes (e.g. “pedestrians are waiting to cross”) (Sec-
tion 6.2.3). Finally, our Sequence-to-Sequence Observation-to-Action module generates soft
condition-action rules that map visual scene descriptions (e.g. “it is snowing”) to high-level
action commands (e.g. “maintain a slow speed”) (Section 6.2.4). Note that, our Vehicle
Controller utilizes a visual (spatial) attention mechanism, which can highlight image regions
the model fixates on for the network’s output. This attended feature is then fed into the
Observation Generator for the final prediction.

6.2.1 Object-centric Visual Encoder

We use images that are down-sampled to 10Hz and are resized to have dimensionality
144x256x3 by applying bi-linear interpolation. Each image is normalized by subtracting
the global mean from the raw pixels and dividing by the global standard deviation [68], see
Figure 6.3.

6.2.1.1 Segmentation as an Input Representation

Instead of training a ConvNet from scratch, we use a semantic segmentation model that is
pre-trained on the Mapillary Vistas street-view scene understanding dataset [57]. Our front-
end vision module is therefore trained to recognize pixel-wise category predictions from
images along with delineating the boundaries of each object. Here, we use the DeepLab v3
model [14], a state-of-the-art network that uses atrous spatial pyramid pooling to robustly
segment objects at multiple scales with various filters of different sampling rates and fields-
of-view. We obtain a high-level visual representation of an input image at each time step t.
This representation X; (of size 18 x32x256) contains a set of 256-dimensional latent vectors
over the spatial dimension, i.e. Xy = {2¢1,%¢2,..., 21}, where [ (= w x h) is the spatial
dimension. Note, that the use of semantic segmentation as the internal representation of
visual scenes is generally transferable between real-world and simulated setting.

6.2.1.2 Object-centric Rol Pooling

To further provide object-centric attention heat maps, which highlight more precise object
regions, we use an instance detection model, MaskRCNN model [25], and tie the predicted
instance masks to the feature X;. Here, we use the MaskRCNN model [25] as a region
proposal to obtain instance-level masks. Given the instance regions (Rols), a position-
sensitive Rol pooling layer is used to aggregate the latent vectors z;; for i = {1,2,...,(}
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Figure 6.4: The detailed overview of our goal-conditioned Vehicle Controller. We take an
action command in natural language as an input and ground it into the controller. Our model
adopts spatial attention mechanism 7, which guides where the controller looks. Conditioned
on the attended feature and the current speed v;, our model outputs future trajectory P and
speed v;. For details, see Section 6.2.2.

for each Rol. Note, that the pooled latent vector is then distributed equally to replace the
original representations. This provides a subset of feature slices that share the same latent
representation, and thus allows the model to equally attend to parts of Rol.

6.2.2 Goal-conditioned Vehicle Controller
6.2.2.1 Grounding Natural Language Action Command

Our vehicle controller is trained to predict control commands conditioned on the high-level
action command (e.g. “maintains a slow speed”). We use a textual encoder that takes a
variable-length textual command and grounds it into the vehicle controller. Following [38],
we use an LSTM to encode an input word sequence and yield a 256-dimensional latent vector
u¢. We combine this vector with the visual feature y;; by an element-wise multiplication and
obtain a feature vector z; = y;; ©® uy for ¢« = {1,2,...,1}, which is then fed into visual
attention module to generate attention maps. We provide detailed model architecture in
Figure 6.4.
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6.2.2.2 Visual Attention

Visual attention provides introspective (visual) explanations by filtering out non-salient im-
age regions, while the attended regions have a potential causal effect on the output. The
goal of visual attention mechanism is to find a context Cy = {ct1, ¢t 9, ..., ¢y} by minimizing
a loss function, where ¢;; = m(au;, 2ti) = ou2e; for i = {1,2,...,1}. Note that a scalar
attention weight value ay; is in [0, 1] such that ), oy ; = 1. We use a multi-layer perceptron
to compute these attention weights, i.e. aq; = fattn (214, he—1), conditioned on the previous
hidden state h;_; (of the Attention LSTM), and the current advice-grounded feature vector
2. Softmax regression function is used to obtain the final normalized attention weight.

6.2.2.3 Output

Inspired by the prior work [7, 94], our vehicle controller predicts a future trajectory P =
[Dt.asDroa, - - - Dena) along with speed 0. Each point p;ja for j = {1,2,..., N} is charac-
terized by its future longitudinal and latitudinal location after the time jA. This trajectory
can be converted into low-level driving control commands (i.e. steering, braking, and accel-
eration) by an optimizer within the constraints of the vehicle’s dynamics. Different types of
vehicles may utilize different control outputs to achieve the same driving trajectory, which
argues against training a network to directly output low-level steering and acceleration con-
trol.

To predict the future trajectory, we use additional hidden layers f,,; conditioned on the
latent representation Cy (from our Advice-grounded Visual Attention) and the current speed
v, .. P = four([faatten(Ct), fspeea(ve)]), Where fopeea denotes additional hidden layers to
encode the speed in a high-dimensional latent space. fyatten 18 @ flattening function. We use
A as 0.5 seconds and N as 6 (thus, we predict the future trajectory in the next 3 seconds).

6.2.2.4 Loss Function

We minimize the proportional control error (i.e. the difference between human-demonstrated
and predicted) to train our future trajectory predictor.

T N
1 « .
ot = 55 D2 D Aillpria = gl + ol — el (61)

t=1 j=1

L

where )\; and Ay control the strength of each term, chosen to be inversely proportional to
the global variance.

6.2.3 Textual Observation Generator

The main goal of our textual observation generator is to summarize visual observations,
which need to be considered while driving, e.g. “there is a school bus with lights flashing”
(this usually means the vehicle should pull over and remain stopped). Here, we use the term
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“observation” to convey the notion of the model’s ability to actively perceive and register
visual cues as being important for the vehicle controller. These observations can take a
variety of forms with different levels of urgency and will be provided to the vehicle controller
at every time step.

To generate such observations, our model involves a video-to-text module that takes a
sequence of video frames and generates variable-length textual observations. In order to im-
plement such a model, we start from the work of [39] that is originally designed to generate
textual descriptions/explanations such as a pair “vehicle slows down” (description) and “be-
cause it is approaching an intersection and the light is red” (explanation). Unlike [39], where
descriptions/explanations are predicted jointly as a single sequence (separated by a token),
we focus on generating the later part (i.e. explanations) and treat them as observations.
These observations are then used to predict the corresponding textual action commands,
directing the vehicle to behave in a certain way (e.g. go, pass, turn), in Section 6.2.4.

We collect the latent vector ¢; over the past T' timesteps by summing over the attended
feature vectors {c;}, i.e. ¢ = 2221 ¢ti. We then apply a temporal attention mechanism
with weights fi; to those vectors at each time step k (of sentence generation), i.e. gp =

EO:tO—T—H Br1C where tg is the current timestep and ), fr, = 1 with S, is in [0,1]. The
weight B+ is computed by an attention model, which is similar to the spatial attention. This
is common practice in sequence-to-sequence models and allows flexibility in output tokens
relative to input samples [6].

Our decoder outputs per-word softmax probabilities. We minimize the following negative
log-likelihood L gs:

'Cobs - _Zlogp(0k|0k—1agk)v (62)
k

6.2.4 Sequence-to-Sequence Observation-to-Action

We want our model to incorporate natural language human-to-vehicle advice. Such advice
is typically high-level, rather than low-level (where the vehicle controller operates). Recent
work [38] proposed a model that allows short-term (or local) textual advice from passengers
(e.g. “there are construction cones” or “slow down”). More generally, advice might take the
form of condition-action rules. In this work, we focus on such long-term (or global) advice
from humans (e.g. driving instructors).

We use a general encoder-decoder framework to incorporate the observation-action rules.
Our LSTM encoder takes a generated variable-length textual observation (“there is a sharp
turn ahead”) and yields a representative latent vector, while the decoder (another LSTM)
outputs an action command sequence (“slow down”). The model is trained by minimizing
the negative log-likelihood (similar to the observation generator). Our model is supervised
by human inputs in the form of observation-action rules that the user expects the vehicle to
follow. The predicted action commands are given as input to the vehicle controller.
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6.2.4.1 Human-to-Vehicle Instantaneous Advice

We currently assume that advice is given offline, rather than during online human-vehicle
interaction. Note, however, that our model can also take instantaneous human-to-vehicle
advice. As shown in Figure 6.2 (C), we use two multiplexers to accept observational and
navigational advice. The observational advice is mapped to an action command by our
model.

6.2.4.2 Loss function

Our Observation-to-Action module outputs per-word softmax probabilities and we minimize
the following negative log-likelihood L ps24ct:

Eobs2act = - Z logp(am|amfla {017 02, ... 70K}) (63)

We minimize the following loss function £ to train our entire driving model end-to-end,
L= ﬁobs + ‘Ctraj + ﬁoszact-

6.3 Experiments

6.3.1 Dataset

We use the Berkeley DeepDrive-eXplanation (BDD-X) dataset [39] to train and evaluate
our proposed model. BDD-X contains front-view dashcam videos (=~ 40 seconds) collected
during urban driving in the United States, covering all the typical driving events (lane
following, intersection passing, turning, etc). Alongside the video data, the dataset provides
corresponding time-stamped sensor measurements (i.e. IMU sensor measurements), which
we use as a ground-truth control signal. For sensor logs that are not synchronized with the
time-stamps of video data, we use the (linearly) interpolated measurements.

Moreover, the dataset provides textual (i) descriptions of the vehicle’s actions (what
the driver is doing), and (ii) explanations for the driver’s actions (why the driver took
that action from the point of view of a driving instructor), such as the pair: “the car
slows down” and “because it is approaching an intersection”. This dataset is collected from
human annotators in Amazon Mechanical Turk. We supervise our Textual Observation
Generator with the textual explanations, while our Sequence-to-Sequence Observation-to-
Action module is supervised with action descriptions (i.e. as navigational commands).

6.3.2 Training and Evaluation Details

Except for our object-centric visual encoder, we train other parts end-to-end using random
initialization (i.e. no pre-trained weights). Unless otherwise stated, we use a single LSTM
layer for all the components of our framework. For training, we use Adam optimization
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Table 6.1: We report the vehicle control prediction performance for our approach and existing
baselines. We compare the performance in terms of the median of average displacement errors
(ADEs) as well as the 1st (Q1) and 3rd (Q3) quartiles (lower is better), i.e. Median [Q1,
Q3]. "We used the following four discrete commands: lane following, turning, merging, and
parking.

ADE (in meters) |

Model
without speed inputs with speed inputs
A. CNN+FC [9] 2.36 [1.18, 4.61] -
B. A + LSTM [87] 3.29 [1.49, 6.93] -
C. B + Attention [37] 2.22 [1.17, 4.61] -

D. A + Discrete commands (w/ branched output) [18]F  2.28 [0.89, 4.56] 1.35 [0.66, 2.76]

E. C + (natural language) commands [38] 2.11 [0.84, 4.86] 1.35 [0.42, 2.94]
F. D + Long-term (global) Advice 2.14 [0.93, 4.57] 0.81 [0.45, 1.61]
G. F + Object-centric Visual Encoder (ours) 1.97 [0.95, 4.39] 0.65 [0.46, 1.43]

algorithm [40] and Xavier initialization [23]. Our model takes 2 days to train on two NVIDIA
Titan Xp GPUs. Our implementation is based on Tensorflow [1] and our code will be
available upon publication. For evaluation, we use the average displacement error (ADE)
to quantitatively evaluate control prediction performance by comparing to ground-truth
human-demonstrated control commands. To evaluate the textual utterances generated by
our model, we use popular automatic metrics: BLEU [59], METEOR [43], CIDEr-D [81],
and SPICE [3].

6.3.3 Driving Performance Evaluation

We report the vehicle control prediction performance for our model and a number of baselines
to evaluate the ability to control a vehicle conditioned on the determined actions. We
compare to end-to-end driving models, CNN + FC [9], CNN + FC + LSTM [87], and
CNN + FC + LSTM + Attention [37] and goal-conditioned driving models that ground
different types of goal: discrete commands [18], top-down view intended route [26], and
natural language commands [38]. For a fair comparison, we use the same base CNN [18] in
all cases except the model G, which uses our object-centric front-end visual encoder. All
models have the same output layer and are trained by minimizing the same loss function.
As explained in Section 6.2.2, our model uses the current vehicle’s speed as an input, but we
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Figure 6.5: (A) Example observations and action commands generated by our model. We
provide input raw images and attention maps of the vehicle controller. Our observation
generator predicts a textual observation (i.e. “Because the car in front is stopped”), while
our seq-to-seq observation-to-action module generates a textual action command (i.e. “The
car is stopped”). Such a (high-level) action command is then grounded into the vehicle
controller, which outputs control commands, i.e. future waypoints. (B) The distribution of
our top-100 generated observation/action pairs by their first four or three words, respectively.
The ordering of the words starts from the center, and the length of the arc indicates the
proportion of the number of words. Note that we remove areas where the number of words
is too small to show.

also evaluate models without speed inputs.

We report performance of the aforementioned models in Table 6.1 (lower is better). Con-
sistent with the prior work, goal-conditioned models [18, 38] (D and E) generally provide
better control prediction performance against the non-goal-conditioned models (top three
rows). We observe that our model is further improved by adding long-term (or global)
advising module (compare F vs. D). Our controller shares the attended feature with the
Observation Generator, and thus encourages the model to attend to important visual cues
(e.g. stop sign, traffic lights, pedestrians). Using our Object-centric Visual Encoder (in-
stead of training a ConvNet from scratch) further improves control prediction performance
(compare G vs. F).
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Table 6.2: We report the quality of the generated textual observations (top) and action
commands (bottom). We rely on standard automatic metrics: BLEU-4 [59], METEOR [43],
CIDEr-D [81], and SPICE [3]. T: reported by [39]

Textual Observation Generation

Model

BLEU-4 METEOR CIDEr-D SPICE
S2VT [82]+SA+TAT 5.84 10.9 52.7 14.3
S2VT+SA+TA+WAA [39] 7.28 12.2 69.5 17.5
Transformer-based Decoder [80]  9.90 13.6 70.1 17.5
Ours 12.2 16.0 104.4 21.7
Model Textual Action Commands Generation
S2VT [82]+SA+TAT 27.1 26.4 157.0 55.1
S2VT+SA+TA+WAA [39] 32.3 29.2 215.8 59.6
Ours 40.0 33.3 310.7 60.9

6.3.4 Analysis of Observation-to-Action Module

In Figure 6.5 (A), we provide qualitative examples of the textual observations (e.g. “be-
cause the car in front is stopped”) and corresponding high-level action commands (“the car
is stopped”) generated by our model. We also show the generated attention maps, which
highlight image regions that have influenced the network’s outputs (i.e. both textual obser-
vations and control commands). Our model attends to relevant visual cues and generates
corresponding textual sequences. The vehicle controller also looks at other driving-related
objects, e.g. lane markings. Importantly, our model is able to learn observation-action rules,
which are provided by humans at training time, and correctly reflect typical links between
visual causes and actions of human driving behavior.

To see the distribution of the learned observation-to-action rules, we cluster observa-
tion/action pairs based on the first few words (e.g. the-light-is-red-car-is-stopped from the
pair: “because the light is red” and “the car is stopped”) as shown in Figure 6.5 (B). Our
model generates a variety of observation-to-action pairs, which are compatible with the hu-
man driver’s general knowledge. For example, the observation starts with “the road is wet”
produces an action command starting with “the car maintains slow speed”.
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Figure 6.6: (A) The sum of normalized attention weights (blue) over the individual semantic
regions for the baseline [37] and our model; differences shown in red. Our model attends
more to road, car, pedestrian area, lane markings, and less to buildings, sky, vegetation.
(We chose the top-20 most frequently attended regions of our model.) (B) We provide input
images and compare attention maps from the baseline and our model. Attention maps are
overlaid by their contour lines and shown over the input images. Higher value (red) of
attention weight shows what the driving model attends to.

6.3.5 Towards Semantically Rich Driving Model

Analyzing the generated attention maps confirms that our model focuses more on important
object-related visual cues (e.g. vehicles, lane markings, etc). In contrast, a baseline model [37]
often attends to background (e.g. sky, trees, buildings, etc) but under-attends to important
visual cues. In Figure 6.6 (A), we provide the top 20 semantic segmentation labels where
our model attends to. Blue bars represent the sum of normalized attention weights for
each label. The top 5 attended regions for our model are road, ego-vehicle, pedestrian area,
tunnel, lane marking, while the baseline focuses on building, road, sky, tunnel, ego-vehicle.
To see the difference between those models, we also visualize the differences as a red bar.
Ours clearly focuses more on driving-related features, e.g. road, car, pedestrian area, lane
markings, snow, and less on buildings, sky, vegetation, etc. In Figure 6.6 (B), we further
compare the attention maps between ours and a baseline model [37]. We provide input
video frames (1st row), attention maps generated by the baseline model (2nd row), and our
attention maps (3rd row). Attention maps show that our model attends to important object-
related visual cues (e.g. vehicles, lane markings, etc) with delineated object boundaries (more
interpretable).

Note that, to see the effect of our front-end visual encoder, we use (i) DeepLab v3 [14] ar-
chitecture and (ii) MaskRCNN [25] architecture, which are state-of-the-art approaches in the
task of semantic segmentation and instance object detection, respectively. These networks
are pretrained on the large-scale Mapillary dataset [57] and Microsoft COCO dataset [48].
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Figure 6.7: (A) We report the failure rate with and without advice inputs in the following
three scenarios on a Carla simulator. (B-C) We also report the responses from our human
study for the questions: (B) “How much do you trust this system?”, and (C) “To what level
has the system improved with the human-to-vehicle advice?”. Answers were measured on a
1-5 Likert scale.

6.3.6 Generated Observation/Action Quality

Next we evaluate the quality of our generated observations and action commands, see Ta-
ble 6.2 (higher is better). Our Textual Observation Generator predicts natural language
observations based on the visual inputs. Some of our baselines are video captioning ap-
proaches, which do not take the vehicle control into account (S2VT [82]+SA (spatial atten-
tion)+TA (temporal attention) and Transformer-based approach [80]). At the same time,
our full system is trained end-to-end, including the loss on the predicted controls, thus our
textual observations are encouraged to be relevant to driving behavior. Therefore, we also
compare to the best version of [39], the WAA model (weakly-aligned attention). This model
generates action descriptions and explanations conditioned on predicted vehicle control, and
we interpret the latter as observations. This is unlike our approach, where, conversely, ve-
hicle control is predicted based on observations/action commands. Nevertheless, these are
meaningful reference numbers for our approach. As we see, our model obtains the highest
scores in all metrics both for generated observations and action commands.
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6.3.7 Simulation and Human Evaluation

Explainable and advisable driving models can increase user trust by providing effective com-
munication, which helps users convey their preferences/guidance to the vehicle and vice
versa. To verify this, we run a human evaluation. We first migrate our driving model from
the offline setting to a simulated environment, Carla [20], i.e. our model is trained on the
BDD-X dataset and tested in the Carla simulator. We choose three different driving sce-
narios: (i) stopping at red lights, (ii) stopping at red lights in heavy rain, and (iii) stopping
at a stop marking. In these experiments our driving model fails to stop for (ii) and (iii)
scenarios. We then test the model with the following advice: “the light is red” and “there is
a stop sign” for respective scenarios. We observe that the failure rate drops (see Figure 6.7
(A)). Further, we recruit 20 human judges and study the following three cases: (i) user only
observes the car’s behavior, (ii) user observes the model’s behavior along with the attention
and textual explanations, and (iii) user observes the model’s behavior, attention, and textual
explanations, before and after providing advice. As shown in Figure 6.7 (B), our explainable
and advisable system shows better responses for user-trust. Specifically, providing visual and
textual explanations slightly improves the user trust (blue vs. red). Further, showing users
an example where the driving model accepts human-to-vehicle advice significantly improves
the user-trust (red vs. yellow). In addition, we obtain feedback from the users by asking
“To what level has the system improved with the human-to-vehicle advice?”. Our evaluators
acknowledge that advice improves the driving system, see Figure 6.7 (C). We provide the
details of our evaluation in the Carla simulator in the supplemental material.

6.4 Related Work

6.4.1 End-to-End Learning for Self-driving Vehicles

Recent works [7, 26] suggest that a driving policy can be successfully learned by neural
networks through supervised learning over observation (e.g. video) and action (e.g. steering)
pairs, that are collected from human demonstration. Bojarski et al. [9] trained a 5-layer
ConvNet to predict steering controls from a dashcam image, while Xu et al.[87] utilized a
dilated ConvNet combined with an LSTM so as to predict vehicle’s discretized future mo-
tions. Recently, Hecker et al. [26] explored the extended model that takes a surround-view
multi-camera system, a route planner, and a CAN bus reader. Codevilla et al. [18] explored
a conditional end-to-end driving model that takes high-level command input (i.e. left- /right-
turn, lane following, and intersection passing) at test time, see Figure 6.2 (A). To reduce the
complexity, there is growing interest in end-to-mid [94] and mid-to-mid [7] driving models
that produce a mid-level output representation in the form of a drivable trajectory by con-
suming either raw sensor or an intermediate scene representation as input. These models
show good performance in simple driving scenarios (e.g. lane following). Their behavior,
however, is opaque and learning to drive in urban areas remains challenging. These driving
models are also known to be “black boxes” and thus lack of transparency may be a major



CHAPTER 6. ADVISABLE LEARNING FOR SELF-DRIVING VEHICLES BY
INTERNALIZING OBSERVATION-TO-ACTION RULES 85

drawback in self-driving applications where a high level of user trust is required to accept
such a radical technology.

6.4.2 Visual and Textual Explanations

Explainability of deep neural networks has become a growing field in computer vision and
machine learning communities [24]. In landmark work, [93] utilized deconvolution layers to
visualize the internal representation of a ConvNet. Other approaches [95, 70] have explored
synthesizing an image that highly activates a neuron. However, they lack formal measures
of how the function estimated by the network is affected by spatially-extended features.

Attention-based approaches may be exceptions to this rule. Kim et al[37] utilized an
attention model followed by additional salience filtering to show regions that causally affect
the output. Wang et al. [83] and Wu et al. [86] introduced an instance-level attention model
that finds objects (e.g. , cars, pedestrians) that the network needs to pay attention to.
However, such attention may be less convenient (especially in the driving domain) for users
to “replay”. It is also important to be able to justify the decisions that were made and explain
why they are reasonable in a human understandable manner, ¢.e. in natural language. For an
image classification problem, [27, 28] used an LSTM caption generation model that generates
textual justifications of a CNN model. [61, 86] combine an attention-based model and a
textual justification system to produce an interpretable model. Kim et al. [39] proposed
a textual explanation model to explain the rationales behind the vehicle controller, see
Figure 6.2 (B). Explainable models can help reveal what the model is doing and show the
basis for its decisions, which makes it easier to expose weaknesses and further improve. We
propose a model that is both explainable and advisable. Human-to-vehicle advice can take
a variety of forms, while natural language is an intuitive form of communication for humans.
Our approach is inspired by [39], but we incorporate advice through learning to generate
observations and corresponding actions in natural language.

6.4.3 Advice-taking Models

Recognition of the value of advice-taking has a long history in Al community [54], but few
attempts have been made to exploit textual advice. Several approaches have been proposed
to translate natural language advice to formal semantic representations, which are then used
to bias actions for simulated soccer [42], mobile manipulation [56, 55, 76], and navigation [4].
Recent work suggests that incorporating natural language human feedback can improve text-
based QA agents [47, 85] and image captioning performance [49]. Despite its potential, there
are various challenges with collecting human feedback on the actions taken by self-driving
cars (e.g. safety and liability). Other notable approaches (in the reinforcement learning set-
ting) include the work by Tung et al. [77] that learns a visual reward detector conditioned
on natural language action descriptions, which is then used to train agents. Kim et al. [3§]
introduced an approach to ground instantaneous human-to-vehicle advice w.r.t. perception
and action and showed that accepting such advice improves overall control prediction ac-
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curacy, while Roh et al. [66] focused on conditioning natural language instructions to the
driving model, see Figure 6.2 (A). Inspired by these work, we incorporate observation-action
rules at training time, and learn to recognize when to follow advice at test time, rather than
expecting such advice to be given by a “passenger” at test time.

6.4.4 Semantic Segmentation

Semantic segmentation is one of the fundamental building blocks of perception modules for
autonomous driving. Most of the recent ConvNet-based models are inspired by the fully
convolutional networks [53] and encoder-decoder architecture [5]. The recent models further
explore the idea of encoder-decoder with fully convolutional skip connections to generate
high-resolution outputs, such as U-Net [67], Feature Pyramid Network (FPN) [41], and
Deep Layer Aggregation (DLA) [91]. Meanwhile, dilation [89, 90], also known as atrous con-
volution [14], is another widely used building block to generate high resolution intermediate
feature maps, while enlarging the receptive field of a ConvNet. In order to obtain fine-grained
visual attention and better ground natural language inputs, we utilize the state-of-the-art
DeepLab v3 [15] network, which utilizes atrous convolutional filter with different dilation
rates in parallel, to handle the objects at different scales.
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