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Abstract

Analyzing 18th-20th Century Art and Music with Contrastive Cross-Modal Learning

by

Vivien Nguyen

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ren Ng, Chair

The relationship between art and music goes back at least as far as the depiction of
instruments and musicians on ancient walls and vases. In more recent centuries, some artists,
composers, and theorists have tried to define and explore the relationship between visual and
musical concepts more abstractly.

Why should two seemingly completely separate creative domains be related to one another at
all? It turns out that even the typical human is generally able to form relationships between
di↵erent sensory inputs, even when it is not always clear how those relationships are formed
or what they are based o↵ of.

In the world of artificial intelligence, this insight has led to a long line of work in exploring
multimodal machine learning. These works are built on the idea that, for machines to
more successfully reason about and navigate the human world, models need to be able to
process and interpret multimodal signals.

In this work, we are interested in exploring the relationship between art and music, and
more broadly, are motivated by questions of cross-modal perception. We apply techniques
from multimodal machine learning to a novel domain, paintings and classical music, in
order to learn a shared representation between two di↵erent creative modalities. Our results
demonstrate that such a representation can be achieved even with limited supervision.

Our embedding space is one that is chronologically organized; works that were created close
in time to one another lie close to one another in this embedding space, regardless of their
modality (paintings or music).

We hypothesize that future work can improve upon and use such a representation to pro-
pose relationships between works from these two domains. Doing so could provide valuable
insights about the shared culture two works come from, or about the basis of cross-modal
perception.
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Chapter 1

Introduction

Throughout history, people have turned to various forms of creative output such as painting,
music, literature and more to express everything from stories to emotions to ideologies.
The artwork produced by a particular culture is undoubtedly influenced by socioeconomic
circumstances, current politics, religion, philosophical beliefs, and so on. Indeed, these
influences may manifest themselves in various ways depending on the output media.

In the visual arts (painting, architecture, etc.), studying the style of a particular work, or
group of works from a particular period, cultural group, etc. is a common method of under-
standing those influences (Figure 1.1). Although this methodology has come under attack in
more recent decades, it dominated academic discussion in the 19th and 20th centuries and
remains a popular method of learning about art particularly for the general public.

(a) Venus and Adonis, Paul
Rubens, 1635.

(b) Ecstasy of Saint Teresa,
Gian Lorenzo Bernini, 1647-
1652

(c) Santa Maria della Salute,
Baldassare Longhena, 1631-
1687

Figure 1.1: Examples of visual works that are classified under the Baroque art style.

The notion of a “cross-media artistic style is one that can be hypothetically exhib-
ited by works of art in more than one medium” [26]. For example, the terms baroque or
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Figure 1.2: Images shown in the Kiki (generally associated with pointed shape on the left)
vs. Bouba (generally associated with pointed shape on the right) experiment

impressionist are applied to both painting and music, and is used to name historical periods
in both modalities.

But even within the visual arts, there has been debate on whether or not the same
style label can or should be applied to works from di↵erent media, such as painting and
architecture, let alone whether or not correspondences can be found between more distant
forms of media, such as painting and music.

That being said, it’s been shown that humans are generally able to form relationships
between inputs of di↵erent modalities, such as visual and audio signals. Sensory integration
can lead to synthesized cultural or emotional experiences, [20] [18]. These can become
standardized to the point of a feeling of “correctness”. Consider, for example, the colloquial
notion of a genre: the phrase “pop music” and “rock music” evoke distinct pairings of visuals
and sounds; to swap one with the other would induce some cognitive dissonance.

The interaction between visual and auditory elements that creates such experiences occurs
at a high level, making use of cultural understanding or emotional cues to associate, for
example, a song that “sounds sad” – perhaps a slow song in a lower tone – with an image
that “looks sad” – perhaps a rainy scene with dark figures.

However, the interaction between visual and auditory elements can also occur at a “low
level”. Multisensory illusions such as the McGurk e↵ect [22] or ventriloquism [13] show how
integrating these senses creates new perceptual experiences. Another example is the “Kiki
vs. Bouba” experiment [29]. This e↵ect, first demonstrated by Wolfgang Kohler in 1929
and replicated by Ramachandran and Hubbard in 2001, suggests that “there may be natural
constraints on the ways in which sounds are mapped on to objects” that is consistent across
people. Subjects are asked which shape (Figure 1.2) corresponds to the name “Kiki”, and
which corresponds to the name “Bouba”. Most people agree that the pointed shape on the
left should be paired with “Kiki”, while the rounder shape on the right should be paired
with “Bouba”

These interactions have a real e↵ect on the way people perceive and understand the world
around them.
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Whether cross-media styles truly exist due to combinations of underlying, low-level cross-
modal perception, only exist due to such high level cultural understanding, or don’t exist at
all, it remains true that a single culture outputs artifacts in multiple forms of media. The
same set of cultural, historical, or artistic developments can be manifested (consciously or
not) in di↵erent modes of human creative output.

For that reason, there may be unique insights revealed by studying, for example, visual
art, music, and literature not as separate and disjoint art forms, but as a related set of
creative outputs resulting at least in part from the same set of cultural inputs.

Meanwhile, deep learning and data science have been proven valuable tools in studying
and analyzing diverse modes of data. Depending on the capacity of our models or the labels
available to us, certain nuances and specifics may be lost in this process. For example, con-
ventional art analysis may rely on in-depth knowledge of culture or biographical information,
or depend on physically analyzing the object in question. Nevertheless, there is a di↵erent
kind of value to being able to analyze mass amounts of data at once. Data-driven methods
can be used to look for patterns across data that is both varied and large in scale. These
patterns can then be further analyzed in greater depth by specialists with domain knowl-
edge, or be used to provide quantifiable examples of qualitative labels originally provided by
human analysts.

In this work, we aim to explore methods for connecting two modes of creative output,
painting and music. In particular, our goal is to construct and explore a joint embedding
space that would allow us to take a data-driven approach to analyzing and understanding
the relationship between art and music.

Though there have been several successful methods for classifying either art or music
according to style, artist, or other features, we aim to explore these aesthetic forms cross-

modally. For example, we would like to understand the relationship between visual features
in art and auditory features in music as di↵erent styles emerge over time.

In this work we first collect a cross-modal dataset, gathering paintings and classical music
from the 18th - 20th centuries. We then use this dataset to explore a method for connecting
painting and music in the absence of explicit paired labels or one-to-one correspondences.
We examine the results of learning a coordinated embedding space for painting and music,
and compare to the results of single-modality learning. Finally, we discuss how such a
representation could be improved be useful for understanding the relationship between art
and music, and more generally, how that relationship could provide insights into the nature
of cross-modal perception.
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Chapter 2

Background and Related Work

2.1 Psychological Cross-modal Perception

Cross-modal or multisensory perception describes the ability of humans to combine informa-
tion from multiple inputs into a single representation. Cross-modal illusions such as the ones
described in [27] or the McGurk e↵ect. Show us how the synthesis of input signals results in
a unique perceptual experience.

However, many things seem to influence the process by which these various streams are
connected. In the literature, these are described (in a non-mutually exclusive manner) as
statistical, structural, semantic, or emotional correspondences.

Statistical correspondences result from “internalization of the statistical regularities of
the environment”. For example, the Kiki-Bouba illusion described in the Introduction is
often believed to result from the association of the spoken sounds to the visual appearance
of the mouth shape required to produce those sounds. Structural correspondences result from
the sensory processing systems we are born with to organize various stimuli in order of, for
example, increasing magnitude. Semantic correspondences, sometimes also called linguistic

correspondences, refer to stimuli that may result from our use of particular language terms
to refer to things from di↵erent modalities, i.e. a “bright” sound and a “bright” color [11]
[33].

Many psychophysical studies have explored the cross-modal correspondences of “low-
level” audio-visual features, i.e. loudness and brightness or loudness and size, that may fall
under the statistical or structural categorizations.

Studies show that participants have consistent cross-modal associations from intervals and
chords to colors as well as instrument timbres to colors [34] [37] [11]. Another line of work
explores how these associations may be semantic correspondences, developing the “Emotional
Mediation Hypothesis” [28]. According to this hypothesis, the relationship between sounds
and visuals is linked through the emotion. For example, a person may associate a particular
sound with a particular color because they associate them both with the emotion “happy”.
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2.2 The Relationship Between Art and Music

Both “low-level” features and “high-level” semantic concepts have a place in categorizing
and analyzing art and music. For example, in the field of art history, pieces of art may be
discussed in terms of aesthetic formalism, which is concerned with elements such as color,
line, shape or texture, or in terms of its iconography AKA how it depicts its content or a
particular meaning.

We might therefore expect a relationship between visual art and music that could also
be described by a combination of statistical and semantic correspondences.

For example, cultural context or emotions could create a semantic correspondence be-
tween visual images and music. Modern music videos are a strong example of this (though
this is by no means a modern phenomenon), where the combination of visuals, music, and
language create a powerful narrative and/or emotional experience.

Similar to the “Emotional Mediation Hypothesis” explored by Palmer in [18], several
studies explore the emotional connection between music and paintings specifically, as well as
the e↵ect of music and paintings on an observer’s mood. [24] [18]

Less often explored is how statistical correspondences may account for a perceived re-
lationship between a certain piece of music and an image. For example, the notion of a
“cross-media artistic style is one that can be hypothetically exhibited by works of art in
more than one medium”. Statistical correspondences could be the basis of a cross-media
artistic style. When describing a particular painting as baroque, for example, the analyst
may point to not necessarily a particular color, but the use of color combinations overall; or
to the use of a particular type of linework or textural detail, and the visual e↵ect or impact
created by these things. Similarly, when categorizing a particular musical composition as
baroque, the analyst may describe the musical “texture” of the piece or use of tones.

However, it’s unclear how (or if) these features correspond to one another across modali-
ties. Indeed, there is some skepticism on the existence of cross-media styles at all for example
by Merriman in [23] (summarized here by [26]):

the evidence generally given for the existence of cross-media styles is based on
“improper sampling, metaphorical transfer of terms, arbitrary conversion, sheer
subjectivity and more or less free associationalism.” Improper “pick and choose”
sampling is rampant among crossmedia theorists: Parallels between the arts are
“demonstrated” by choosing the two most similar works out of many thousands.
An example of metaphorical transfer of terms would be calling both the son-
nets and the sculptures of Michelangelo “jagged.” Free-associationalism refers
to the tendency to equate works in di↵erent media because they were created
contemporaneously.

While these criticisms are valid, [26] demonstrates that naive (untrained) participants
could often correctly group works of music, poetry, and art that were made in the same named
style period. This suggests that these “associations” or “transfers” are consistent across
people. Indeed, the long line of work in psychophysical cross-modal perception (discussed in
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Section 2.1 suggests that what Merriman calls the “metaphorical transfer of terms” actually
has a consistent perceptual e↵ect, i.e. semantic correspondence.

Similarly, [1] explores the existence of cross-modal associations between “highly complex
stimuli”, namely between materic painting and classical Spanish guitar. This study asks
subjects to match paintings and music clips to adjectives describing the stimuli, but also to
match paintings and music clips directly to one another.

2.3 Cross-modal Learning

There continues to be rapid growth in the amount and types of multimodal data (image,
video, audio, text, etc.) available. Cross-modal learning aims to combine and connect infor-
mation across these di↵erent modalities, motivated by the fact that humans often complete
complex tasks by making use of multisensory information.

Cross-modal methods include, for example: cross-modal representations, where “hetero-
geneous data” is projected into a common subspace organized by semantics rather than
data modality [12]; cross-modal generation, where data from one modality is generated from
another; or cross-modal learning as a method for unsupervised/weakly supervised learning.

Cross-modal applications commonly work with relating images and sketches, images and
text, text and speech audio, video and speech, and so on. In particular, the relationship
between images and music audio is not often explored. This is likely because there are
not many examples of paired or grouped images and music, which itself may be because of
limited interest in the relationship between generic images and music.

Prior work that does focus on the cross-modal relationship between image data and
music is typically related to music videos and cross-modal retrieval, which is useful in the
music industry for music similarity and recommendation algorithms [25]. It is also used as a
creative tool, for example to add semantically meaningful music in the background of a video
or photo slideshow [3]. In each of these cases, the model is typically able to learn from given
pairs of music and visuals due to the availability of paired data from existing music videos
or music album covers [2] [39]. This paired data (and the relationships learned from it) is
also directly meaningful for these end tasks. In this work, we try to learn a more general
relationship between the two modalities and without paired data for the specific domains we
are interested in.

2.4 Computational Art and Music Analysis

Prior work in computational art and music analysis have used a wide variety of techniques.
Studying the influences and development of various artists or composers is a common

question in art and music analysis. [8] is one such work that constructs “ecological” networks
based o↵ documented relationships and influences between composers. [30], on the other
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hand, uses a Bag of Words approach to encode a painting as a set of local, semantic-level
features.

Other works have demonstrated success in classifying paintings by style or classifying
objects in paintings using CNNs. [7][9] Similarly, CNNs have successfully been used to
classify music into genres or by emotion. [19][5]

There are of course other works that use domain knowledge to hand-pick features for
analysis. For example, [6] is a cross-modal work that attempts to explore the connection
between French painting and music, and Russian painting and music from 1870 - 1920.
They do this by measuring and comparing visual value (degree of brightness) to auditory
pitch. However, due to the limited number of features studied, it can be di�cult to find a
specific correlation. Hand picked features are challenging to explore exhaustively, and the
relationship across domains may only be explained by several features in combination.

While our goals are similar to those presented in [6], we aim to approach the problem
of finding a cross-modal relationship between music and art using learning-based techniques
discussed in Section 2.3.
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Chapter 3

Dataset

One contribution of this work is the collection and use of a cross-modal painting and classical
music dataset.

First, we define the scope of our dataset. We are interested in the domains of Western
painting and art music (often colloquially referred to as “classical music”) from roughly the
18th - 20th centuries. The time frame is chosen based on the greater availability of data and
information on works from this period.

Next, it is important to consider the metadata available or desired in each modality as
this determines the possible ways of connecting the two modalities. For example, since we
are interested in how di↵erent features emerge jointly in each modality over time, we want
to collect the year that each piece of art or music was created.

Another label that might be useful is the style classification of the art or music (Baroque,
Classical, etc.). While we do collect this information, we ultimately chose not to use it as
a supervisory training signal. Firstly, since we want to discover how di↵erent styles emerge
over time, we want to avoid the bias from directly using these pre-existing subjective labels.
Secondly, the granularity of style labels easily available di↵ers greatly between art and music.

Another aspect to consider, particularly when it comes to music, is how the data itself
will be represented. There are two main options for audio data: audio recordings of real
performances, or a symbolic representation of music such as MIDI. MIDI files explicitly
encode notes and other musical features such as tempo and volume. We ultimately decided
to use audio recordings of real performances as a more “real” representation of sound.

With all these aspects in mind, we want to collect a dataset that is at least roughly
balanced across time (i.e. style periods) and across modalities. That is, we want to ensure
there is su�cient data across the 200 year span we are interested in, and we want to ensure
that there is comparable amounts of data in both music and art modalities for each time
period.
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Figure 3.1: Distribution of data across time of WikiArt dataset

3.1 Data Collection

WikiPaintings

WikiPaintings[17] is a set of metadata collected from WikiArt.org. Since it already contains
information such as the title, artist, year, and style, we can immediately use this as our
metadata and use the included URLs to download the artwork.

Despite its name, the WikiPaintings metadata still contains works that are not paintings,
such as images of sculptures or conceptual art. We filter those out, along with works from
non-Western artistic traditions, such as traditional Chinese painting.

Figure 3.1 visualizes the distribution of resulting paintings across time. Notably, the
dataset contains significantly more paintings from after 1850 than before 1850.

MAESTRO Dataset

The MAESTRO dataset is a collection of 200 hours of piano performance recordings of
classical music from the International Piano-e-Competition [14]. This dataset is a great
place to start, as the recordings are very high quality.

The metadata associated with this dataset does not include the year the piece was com-
posed, nor the style of the piece. We use the International Music Score Library Project, or
IMSLP, database to find that information [16]. Several pieces only have an approximate date
or date range. Many pieces also do not have the style directly associated with it, so we use
the general style period associated with the composer, which we also collect from IMSLP.

Another issue with the MAESTRO dataset is that it is a relatively small dataset and is
not well-distributed throughout the time frame we’re working in.

Figure 3.2 visualizes the distribution of pieces in the MAESTRO dataset across time,
using the style period associated with the composer as a proxy for the composition’s style
to color the histogram.
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Figure 3.2: Distribution of data across time of original MAESTRO dataset

Yale-Classical Archives Corpus and YouTube

To supplement the MAESTRO dataset, we utilize the metadata from the Yale-Classical
Archives Corpus (YCAC), which contains information such as piece title, composer, and year
composed [38]. To obtain the style, we continue using the general style period associated
with the composer.

We then use the metadata to search and download audio from YouTube. Though we
don’t employ any rigorous data cleaning, in practice, we notice that the top search result is
typically a high quality album or live performance recording of the correct piece.

Aggregating the data

With these various data sources in mind, we can now aggregate our final, cross-modal dataset.
First, we must establish the time frame for which we have both painting and music data. It
is di�cult to find recordings of classical music composed before 1700, and after 1940. Thus,
though the WikiArt dataset is extensive, we will only consider paintings made between 1700
and 1940 to mirror the availability of music data.

We further resample the dataset in order to combat the imbalance between paintings
created before and after 1850. The resulting distribution is shown in Figure 3.3.

We use the YCAC metadata to supplement the MAESTRO dataset by adding pieces to
increase the overall amount of data, and also balance time periods that were rarer in the
original MAESTRO dataset. To avoid variable length inputs, we split each audio file into
30-second clips, which yields the final distribution shown in Figure 3.4.

While there are still some disparities between the distribution of music clips and paintings,
aggregating the dataset in this way alleviates the sparsity of data from some time periods
while maintaining aspects of the original data distribution.
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Figure 3.3: Distribution of data across time of final painting dataset

Figure 3.4: Distribution of data across time of aggregated music dataset. Note that the
y-axis now represents number of 30-second clips.

3.2 Data Pre-processing

This section explains the various ways our data is pre-processed for input into the neural
network architectures we use, which will be further are described in Chapter 4.

Splitting the Dataset

We divide our dataset into train, validation, and test splits following an 80-10-10 ratio for
music and art separately. This gives the dataset splits listed in Table 3.1.

Art Pre-processing

As originally described in [32] and implemented in [21], to obtain a fixed-size 224⇥224
image, training images are re-scaled and randomly cropped. Other data augmentations,
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Train Validation Test Total
Art (paintings) 6291 1161 1162 8714
Music (clips) 34888 4161 4162 43211

Table 3.1: Number of paintings for each split in art dataset and number of clips for each
split in music dataset.

such as flipping the image horizontally, applying a small rotation, and subtracting a mean
RGB value, are also applied.

Music Pre-processing

To preprocess data for MusicNet, starting from a 30 second audio clip, we first convert the
audio into a log-mel spectrogram. These spectrograms are computed by first dividing the 30
second audio clip into 960 ms frames, then applying a short-time Fourier transform using 25
ms windows every 10 ms and 64 frequency bands, as in the original work. This means a 30
second audio clip yields 31 96 ⇥ 64 log-mel spectrogram patches. The spectrogram can be
visualized by “stitching” together each of these patches, as seen in Figure 3.5.

The x-axis of the spectrogram is time (in seconds), while the y-axis of the spectrogram
represents the frequency bands used bin the spectrogram. VGGish specifies that there are
64 bands in the range 125 Hz to 7500 Hz.

It can be challenging to mentally “translate” between a spectrogram and the original
sound/audio, but some do have clearly visible melodic patterns and chords.

(a) L’Histoire du Soldat 3 Music to Scene II
Undeterminable, Stravinsky, 1918

(b) Concerto for 2 Clarinets and Orchestra in
Bb Edition for 2 Clarinets and Piano 2 Andante
Moderato F major, Stamitz, 1765

Figure 3.5: Spectrograms allow us to create 2D visualizations of audio signals.
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Chapter 4

Learning Cross-Modal Relationships

4.1 Goals: Learning a Chronological Embedding

Our goal is to learn about the relationship between music and paintings created during the
same time periods. We want to avoid trying to use a style label as supervision, for reasons
discussed in Chapter 3. We also don’t necessarily want to directly regress to the year the
music or painting was created, partly because our date labels are noisy and imperfect. We
also want to be able to encapsulate some notion of similarity between works, both within
and across modalities.

Constructing triples

For those reasons, we take a metric learning approach. This allows us to model the notion
of relative similarity or dissimilarity between two pieces of data. It also fits the roughly
continuous way that style changes over time.

Another design aspect of our network is how to construct triples consisting of an anchor,
positive example and negative example. By definition, the anchor and positive example are
meant to be semantically closer to one another or “more similar”, while the anchor and
negative example are meant to be “less similar”.

We chose to construct triplets based on the hypothesis that, stylistically, art and music
created in the same time period are more similar to one another than art and music from
di↵erent time periods. We defined a positive pair of works to be any two created within
10 years of one another, while a negative pair of works is any two created at least 20 years
apart from one another.

By allowing positive pairs to be created within a span of years, we account for slightly
mis-dated works as well as the fact that styles and techniques change gradually over time.

We combine subnetworks in order to process data from di↵erent modalities.
Sub-networks that take the inputs from the same data modality (art or music) will share

weights with one another, also known as “Siamese networks” [10]. At any given training
step, the same data input, whether it serves as the “positive” example in one triple or the
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(a) Messa da Requiem a tre voci d’uomo 4
Dies irae D minor, Perosi, 1892

(b) Landscape at Mid-
day, Cezanne, 1887

(c) Mademoiselle de
Clermont as a Sultana,
Nattier, 1733

Figure 4.1: Example of network inputs for a (music, art, art) triple

“negative” example in another triple, should be transformed into the same embedding by
the sub-network.

4.2 Network Architecture

Base networks

We need two types of sub-networks, one for each modality, which we will refer to as ArtNet
and MusicNet.

One of the challenges of deep learning with art or music is the limited amount of data.
Typical practice is to overcome this by finetuning pre-trained network. Thus, for both ArtNet
and MusicNet, we use a pre-trained state-of-the-art network as the base of the network that
will be finetuned according to our objective. On top of these pre-trained networks, we add a
few fully connected layers that will be trained from scratch and allow us to flexibly control
the final embedding size.

ArtNet

ArtNet uses VGG-16 [32] as its pre-trained base and three fully-connected layers with out-
put sizes 512, 256, and 16. VGG-16 has been used in prior work to classify artwork with
demonstrated success ([7]). To confirm this, we trained ArtNet by adding an additional
classification layer to predict the painting’s style label as a sanity-check task.

MusicNet

MusicNet uses VGGish [15] as its pre-trained base and three fully-connected layers with
output sizes 1024, 256, and 16. As with ArtNet, we validated the reasonableness of VGGish
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features by adding a classification layer to predict each music piece’s style label.
VGGish processes each of these 31 patches independently; they are combined back to-

gether before entering the additional fully connected layers.

Triplet Network

We chose to use a Triplet Network architecture, which can be seen as three sub-networks
representing an anchor, positive example, and negative example. The Triplet Network then
consists of three subnetworks, which can be any combination of ArtNets and/or MusicNets.

We construct cross-modal triplets for our main experiment, where the anchor comes
from one modality (art or music) and both the positive and negative examples come from
the other modality. This yields the two possible Triplet Network configurations shown in
Figure 4.2.

(a) Network architecture for (music, art, art)
triples.

(b) Network architecture for (art, music, music)
triples.

Figure 4.2: Network architectures for cross-modal triplet networks.

For comparisons, we also train networks based on single modality triples, where the
anchor, positive example, and negative example all come from the same modality, which
yields the two Triplet Network configurations shown in Figure 4.3.

Due to the Triplet Network’s modular construction, any particular painting or music
input will be embedded independently by the appropriate subnetwork. However, during
crossmodal training, both subnetworks jointly update their weights since the triplet loss
takes all three embeddings as input.

The Triplet Loss

To supervise the network, we use the triplet loss:

Loss =
1

N

NX

i=1

max{kembanci � embposi k22 � kembanci � embnegi k22 + ↵, 0}
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(a) Network architecture for (music, music, mu-
sic) triples.

(b) Network architecture for (art, art, art)
triples.

Figure 4.3: Network architectures for single-modality triplet networks.

where embanci , embposi , embnegi are the resulting embeddings from the anchor input, positive
input, and negative input respectively for the ith triplet in a batch size of N . This has the
e↵ect of encouraging the network to embed the anchor input and positive input closer to one
another than the anchor input and negative input.

The parameter ↵ is frequently referred to as the margin, and specifies how much closer
the anchor and positive embeddings should be to one another compared to the anchor and
negative embeddings. Thus, a loss value greater than the margin ↵ means the network ac-
tually embedded the anchor and positive example further away from one another than the
anchor and negative example. A non-zero loss less than ↵ means the network successfully
embedded the anchor and positive example closer to one another than the anchor and neg-
ative example, but not with the provided margin. Zero loss means the network embedded
the anchor and positive example at least ↵ closer together than the anchor and negative
example.

4.3 Training Details

For all the experiments listed in this chapter, we train our Triplet Network using a batch

size of 4, the Adam optimizer, an initial learning rate of 1�5.

Output Embeddings

We experiment with two formats for the cross-modal output embeddings. For both, we fix
the output embedding size to 128. For the first, we additionally constrain the embedding
to have unit `2-norm. Prior work have experienced empirical success with these parameters
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train loss val loss test loss
unconstrained cross-modal (music-art-art) 5.589 9.554 8.794

unconstrained cross-modal (art-music-music) 6.363 5.923 5.757
constrained cross-modal (music-art-art) 0.533 0.549 0.572

constrained cross-modal (art-music-music) 0.540 0.546 0.536
single-modality art 0.155 0.357 0.493

single-modality music 0.463 0.512 0.345

Table 4.1: Final loss values for each model (noisy due to the nature of triplet training).

for representation learning and discussed the benefits of having features lie on the unit
hypersphere [36] [35]. In this case, we use ↵ = 0.8 in the triplet loss (the margin).

The second format has no constraints on the output embedding, and uses an ↵ = 10 in
the triplet loss. (Note that this is the margin parameter of the loss function, and unrelated
to the ±10 year period from which “positive” examples are mined from to generate input
triplets).

We will refer to these two embedding spaces as the constrained and unconstrained

cross-modal embeddings, respectively.
For our single modality triplet networks, we only trained constrained embeddings.

Cross-modal Training Procedure

Our training process involves alternating between two configurations of the Triplet Network.
We alternate between triplets of the form art, music, music and music, art, art for the
anchor modality, positive example modality, and negative example modality, respectively.
Initial results suggested that in practice, this improves the network’s ability to learn a well-
formed embedding space for both modalities.

Since the art modality and music modality have di↵erent amounts of training data, we
set one “epoch” to be the number of iterations it takes to go through the smaller modality
(art) – approximately 2300 iterations.

4.4 Training Quantitative Results

Aside from standard loss curves, we compute additional quantitative metrics, described in
the following sections. All metrics are summarized in Tables 4.1, 4.2, and 4.3. Recall that
the loss value is dependent on the margin, which is set di↵erently for our constrained and
unconstrained embedding models.

Training loss curves from training the unconstrained and constrained cross-modal em-
beddings can be seen in Figures 4.4 and 4.5. Training loss curves from training constrained



CHAPTER 4. LEARNING CROSS-MODAL RELATIONSHIPS 18

(a) Training loss values from only the (art, mu-
sic, music) triples.

(b) Training loss values from only the (music,
art, art) triples.

(c) Training loss curve, interleaving values from the alternating training scheme.

Figure 4.4: Training curves for the cross-modal, unconstrained embeddings model.

single modality art embeddings can be seen in Figure 4.6, and training loss curves from
constrained single modality music embeddings can be seen in Figure 4.7.

After every epoch (as defined in the previous subsection), we validate our network’s
progress by holding the weights constant and embedding the entire validation dataset. This
is done by allowing each example from the validation dataset to serve as the anchor once
(rather than random sampling). However, to collect a meaningful loss value, we still require
that the positive example and negative example are sampled correctly.

Validation loss curves from training the unconstrained and constrained cross-modal em-
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(a) Training loss values from only the (art, mu-
sic, music) triples.

(b) Training loss values from only the (music,
art, art) triples.

(c) Training loss curve, interleaving values from the alternating training scheme.

Figure 4.5: Training curves from the cross-modal, constrained embeddings model.

beddings can be seen in Figures 4.8 and 4.9. Validation loss curves from training constrained
single modality art embeddings can be seen in Figure 4.10, and validation loss curves from
constrained single modality music embeddings can be seen in Figure 4.11.

Additional metrics

Aside from validation loss, we compute two other metrics, Precision @ K and Average
Di↵erence @ K. Both of these first require us to embed the entirety of our validation set
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Figure 4.6: Training loss curve for single-
modality art embeddings.

Figure 4.7: Training loss curve for single-
modality music embeddings.

art-art art-mus mus-art mus-mus
unconstrained cross-modal (validation) 0.201 0.208 0.204 0.305

unconstrained cross-modal (test) 0.202 0.216 0.191 0.300
constrained cross-modal (validation) 0.242 0.191 0.196 0.374

constrained cross-modal (test) 0.172 0.195 0.202 0.292
single-modality art (validation) 0.242 N/A N/A N/A

single-modality art (test) 0.242 N/A N/A N/A
single-modality music (validation) N/A N/A N/A 0.374

single-modality music (test) N/A N/A N/A 0.376

Table 4.2: Precision summary

(for all modalities involved). Then, we designate a source modality and search modality
(which can be either the same modality or the other modality). Each metric is therefore
computed 4 times: art to art, art to music, music to music, and music to art.

Both metrics involve finding the K nearest neighbors in the search modality for a given
embedding from the source modality. For each embedding in the search modality, we com-
pute the L2-distance to every embedding in the source modality, then take the closest K
embeddings.

Precision @ K

Our network is trained under the hypothesis that music and art created within 10 years of
one another are similar. It is encouraged to place such pairs close to one another in the
embedding space (by construction of the input triplets).

For a particular embedded work of music or art (the source), this metric measures the



CHAPTER 4. LEARNING CROSS-MODAL RELATIONSHIPS 21

art-art art-mus mus-art mus-mus
unconstrained cross-modal (validation) 39.05 35.41 41.36 34.62

unconstrained cross-modal (test) 39.44 35.44 41.79 35.04
constrained cross-modal (validation) 35.78 37.94 40.84 27.96

constrained cross-modal (test) 45.27 38.52 40.70 35.59
single-modality art (validation) 36.22 N/A N/A N/A

single-modality art (test) 35.85 N/A N/A N/A
single-modality music (validation) N/A N/A N/A 27.96

single-modality music (test) N/A N/A N/A 27.39

Table 4.3: Average Di↵erence summary

(a) Validation loss values over the course of
training, using art as the anchor.

(b) Validation loss values over the course of
training, using music as the anchor.

Figure 4.8: Validation loss values for the unconstrained embeddings. These are computed
using both the (art, music, music) and (music, art, art) configurations after every training
epoch.

percentage of K nearest-neighbors that were created within 10 years of the source. Precision
@ K is a metric frequently used by content retrieval and recommender systems, such as [39].

To compute this metric, for each embedding of the validation data, we find the K nearest
neighbors. We then count the number of embeddings n in the closest K embeddings that
were created within 10 years of the source, and compute the average over all possible source
embeddings.

Precisely, we define

P@K =
1

N

NX

i=1

ni

K

where N is the total number of source embeddings, and ni is the number of embeddings
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(a) Validation loss values over the course of
training, using art as the anchor.

(b) Validation loss values over the course of
training, using music as the anchor.

Figure 4.9: Validation loss values for the constrained embeddings. These are computed using
both the (art, music, music) and (music, art, art) configurations after every training epoch.

Figure 4.10: Validation loss curve for single-
modality art embeddings.

Figure 4.11: Validation loss curve for single-
modality music embeddings.

within the ith source embedding’s K nearest neighbors that has a creation date within 10
years of the ith embedding’s creation. A higher P@K value is better.

Note that since K is a fixed constant, even a perfect embedding may yield a value less
than 1, if there are not at least K other works created within 10 years of the source.

Figure 4.12 visualizes the Precision @ K=25 across training epochs for the unconstrained
embeddings, and Figure 4.13 visualizes the same metric for the constrained embeddings.
Figures 4.14 and 4.15 visualize Precision @ K=25 for training the constrained art and music
single-modality embeddings.
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Figure 4.12: Precision metric over the course
of training for unconstrained embeddings.

Figure 4.13: Precision metric over the course
of training for constrained embeddings.

Figure 4.14: Precision metric over the course
of training for single-modality art embed-
dings.

Figure 4.15: Precision metric over the course
of training for single-modality music embed-
dings.

Average Di↵erence @ K

A similar metric is to compute the average (absolute) di↵erence in years of creation between
the source embedding and each of its K nearest-neighbors, AD@K.

This allows us to see how localized to a particular time period a neighborhood of embed-
dings is. A lower AD@K value is better.

Figure 4.16 visualizes the Average Di↵erence @ K=25 across training epochs for the
unconstrained embeddings, and Figure 4.17 visualizes the same metric for the constrained
embeddings. Figures 4.18 and 4.19 visualize Average Di↵erence @ K=25 for training the
constrained art and music single-modality embeddings.
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Figure 4.16: Average di↵erence metric over
the course of training unconstrained embed-
dings.

Figure 4.17: Average di↵erence metric over
the course of training constrained embed-
dings.

Figure 4.18: Average di↵erence metric over
the course of training for single-modality art
embeddings.

Figure 4.19: Average di↵erence metric over
the course of training for single-modality
music embeddings.
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Chapter 5

Analysis and Discussion

5.1 Analysis

First, we observe that for all experiments, the training and validation loss curves and the
final test loss values are reasonable for a model that is learning to complete its task without
overfitting to the training set.

Comparing the cross-modal networks to the single-modality networks, we observe that
both single-modality networks seem to converge to better loss values than the cross-modality
network. In particular, the network trained only on music converges to a significantly lower
loss value.

This was not expected, partly since the art dataset was of more consistent quality. More-
over, the e↵ectiveness of VGGish as a general audio feature extractor, or the adaptability
of VGGish features to di↵erent domains has not been demonstrated to the same extent as
VGG. However, the music training dataset we used was of higher quantity than the art
dataset.

Similarly, within the cross-modal network, the precision and average di↵erence metrics
are best when using the music modality as both the source and search space. This suggests
that within the cross-modal embedding space, the music portions are “better organized”
compared to the art portions, or both put together.

5.2 Visualizing Our Chronological Embedding Space

To begin inspecting our learned embedding space, we can reduce the dimensionality of our
embeddings using principal components analysis (PCA), which allows us to visually inspect
which embeddings are nearby one another.

In Figure 5.1, we plot the results of reducing our constrained, 128-D embeddings into 2
components. The points are colored according to the year of creation, where colors close to
white represent works made close to 1700, while colors close to red or blue represent works
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Figure 5.1: Plotting the top two principal components for constrained cross-modal embed-
dings of validation data

made close to 1950 in the art and music modalities respectively. (For visualization purposes,
we plot only a random subset of our data points).

The plot also demonstrates that the di↵erence between modalities is not a significant
part of, or does not “explain”, at least 81.7% of variance in the joint embedding space. This
suggests that our triplet network indeed maps both modalities into a common representation
space.

In comparison, Figure 5.2 visualizes the embedding space of the unconstrained embed-
dings (again, after transformation into the top 2 principal components). We note that there
is less symmetry between the art embeddings and the music embeddings. This suggests that
modality specific features have more influence in the overall shape of the embedding space
under this training regime (compared to the constrained embeddings).
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Figure 5.2: Plotting the top two principal components for unconstrained cross-modal em-
beddings of validation data

5.3 Usefulness of Learned Embeddings for

Downstream Dating Tasks

Next, to see whether or not the network has learned a useful representation of the data in a
quantifiable way, we can fit a simple linear model to the learned embeddings.

To do so, we first embed the entire training set and validation set, for both art and
music modalities, using our cross-modal triplet network. Then, we fit three separate linear
regression models: (1) using the training set embeddings from both art and music, (2)
using the training set embeddings from just the art modality, and (3) using the training set
embeddings from just the music modality. Next, for each of these simple linear regression
models, we see how well it fits the validation set embeddings (1) from both art and music,
(2) from just the art modality, and (3) from just the music modality.

Finally, for comparison, we embed the entire training set and validation set using the
single-modality triplet networks. Then, we fit a linear regression model to the art embeddings
and a model to the music embeddings, and use these two models to predict their respective
validation embeddings.
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Test on cross Test on art (from cross) Test on mus (from cross)
Fit on cross 29.24 33.70 28.05
Fit on art 250.32 33.54 308.03
Fit on mus 29.22 33.66 28.03

Table 5.1: Using constrained embeddings from cross-modal network to regress to year. Values
represent mean absolute error of predictions on validation data.

Test on cross Test on art (from cross) Test on mus (from cross)
Fit on cross 27.20 30.41 26.35
Fit on art 212.43 29.36 261.17
Fit on mus 45.63 25.96 119.96

Table 5.2: Using unconstrained embeddings from cross-modal network to regress to year.
Values represent mean absolute error of predictions on validation data.

Test on art (from art) Test on music (from music)
Fit on art 27.78 N/A
Fit on mus N/A 23.76

Table 5.3: Using constrained embeddings from single modality networks to regress to year.
Values represent mean absolute error of predictions on validation data.

The goal of this comparison is to see whether or not the “support” of the additional
modality in the joint cross-modal representation helps generate embeddings that are more
generalizable.

Based on the results presented in Tables 5.1, 5.2, and 5.3, the embeddings generated by
the cross-modal network are not better than the single-modality network for regressing the
creation date, but they do yield similar results. The exception to this is the result from fitting
a linear regression model to the constrained art embeddings generated by the cross-modal
network, then trying to predict values for the constrained music embeddings generated by
the same cross-modal network.

In general, however, while we are not able to demonstrate an improvement over single-
modality learning, we are able to align the embedding spaces of art and music without losing
too much representation power.
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5.4 Visual Explanations: What Does the Network

See?

We want to be able to understand what features of the original data the network is utilizing
to embed each piece of music or art. These features are useful to look at, since they were
how the network determined that a particular piece of music and art were “similar” to one
another, according to the metric where two works are “similar” if created close in time to
one another. Thus, they could be good candidates for the basis of cross-media style.

Computing Activation Maps

We take the approach of [4] to generate activation maps. Typical gradient-weighted class
activation maps (Grad-CAMs) are used to visualize the “important” regions of the input
image to a CNN by using the gradients with respect to the target class [31]. With some
adaptation, we can generate activation maps for our embedding networks, even without class
labels.

To compute the activation map for a single anchor image (or spectrogram), we need the
k feature maps Ak output by the last layer of the internal CNN during the forward pass, as
well as the gradient of our loss function with respect to those feature maps,

g(Ak) =
�Ltri

�Ak

The “grad-weights” are then calculated exactly as in the original Grad-CAM work:

ak =
1

Z

X

i

X

j

g(Ak)i,j

where i and j are spatial positions in the feature map Ak and Z is the total number of spatial
positions (i.e. i⇥ j).

To create the final activation map for visualization, we multiply each feature map by its
corresponding grad-weight and sum these weighted maps together. The result is then scaled
(in resolution) to the size of the input image, and overlayed on the original input image as
a heat map.

In practice, and as described in [4], we take the 50 feature maps (out of the 512 output
by the CNN) with the highest corresponding grad-weights.

Additionally, since the triplet loss relies on the embeddings of all three inputs, not just the
anchor (for which we are computing the activation map), we compute an average activation
map by running this process 15 times.
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Visualizations

Figure 5.3 shows, for four input images, the activation map resulting from VGG (before
fine-tuning), the activation map resulting from the single-modality art network, and the
activation map resulting from the cross-modal network.

As a general trend, we see that the VGG network “looks” at high-level semantic features
wherever possible, which makes sense as it is initially trained for object detection. We can
also see that its activations make the most sense on paintings that have clearly depicted
objects (i.e. are more realistic).

In comparison, we see that the specifically trained art network and the cross-modal
network tend to focus less on looking at individual objects, and more either at regions where
objects meet one another (i.e. edges) or at background regions. We speculate that this is
because this is where the style of the artwork is most easily detectable, and style is a strong
signal for the time period a painting was created (even though style is not the signal the
network is explicitly trained on).

We are not always able to interpret the di↵erence between the activation maps from
the single modality network vs. the cross modal network, but we are able to note that
they frequently di↵er substantially. We acknowledge could simply be the result of variance,
but it is also possible that it demonstrates the cross-modal network is incorporating some
additional signals from the other modality (music).

There are of course still cases where the cross-modal network is less successful at embed-
ding the inputs, and where the resulting CAMs do not lend themselves to any immediate
potential conclusions. We visualize two such cases in Figure 5.4. In Figure 5.4a, the acti-
vation map from the cross-modal network essentially highlights the entire image, and the
highest value activations do not correspond to either any highly textured regions or any
semantically meaningful regions. Figure 5.4b is an example of a case where the activation
maps from VGG, the single-modality network, and the cross-modal network don’t di↵er sub-
stantially from one another, in addition to the cross-modal network not being particularly
successful at embedding this painting (given the loss value).

We can also visualize Grad CAMs on top of the input spectrograms for the music portion
of our network (Figures 5.5 and 5.6. Interpreting the activation maps on top of spectrograms
is even more challenging than interpreting it for paintings, since music is of course meant
to be listened to. However, we can still easily observe the trend that the activations from
the cross-modal network are substantially di↵erent from either not-finetuned VGGish or the
single-modality network. Though we still can’t say definitively whether or not this is a direct
result of incorporating features from the art domain, it supports the idea that learning a
joint embedding space impacts the specific features learned by the network.

Additionally, compared to not-finetuned VGGish, the trained single-modality music net-
work and cross-modal network show activations that are seem more related to musical
structure. Additionally, compared to the single-modality music network’s activations, the
cross-modal network’s activations seem more spatially coherent on the spectrogram, which
corresponds to more continuity in the temporal and frequency domains.
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5.5 Further Considerations and Future Work

Dataset

Cross-modal learning starts with the construction of a cross-modal dataset. For this work,
we compiled a cross-modal painting and classical music dataset as a first step to learning a
joint embedding of these two very di↵erent modalities.

Due to limited existing metadata and labels, we used a fairly weak link between the two
modalities (and therefore a fairly weakly supervised approach to this task). While that does
allow us to train a network that does not directly incorporate the biases of human labels, it
limits the analysis we are able to do on the results of our network.

For example, having better style labels across modalities would allow us to use classifi-
cation as a downstream task to validate the representation learned by our network.

Aside from the construction of the dataset itself, as mentioned in Section 5.1, di↵ering
amounts of data in one modality compared to another could impact the quality of the learned
embedding space. In future work, we might want to explore the impacts of this further by
intentionally limiting the amount of training data in one modality or the other. We could
see whether the joint embedding space would improve, or whether parts of it would simply
become weaker.

Generating Triples

We chose to generate triples where the anchor and positive inputs were created within 10
years of each other, and the anchor and negative inputs were created at least 20 years apart
from one another.

It would be interesting to explore how these “windows” impact the final representation.
At the extreme, what if we essentially binarized the dataset into works created before some
year and works created after that year?

Constrained `2-norm

While several works have empirically shown that constraining the embeddings to the unit
hypersphere is e↵ective, it is still not completely demonstrated why that is the case. Though
we experimented with it here and similarly noted that the training process seemed smoother
and more stable, it may not have been the correct decision for our specific data.

First, our work di↵ers from others in that we are trying to contrast between and learn
a representation of two completely di↵erent data types. Second, the nature of our triplet
generation does not encourage an embedding space that is spherical in nature – there is a
clear “start” and “end” to our data due to its chronological nature. This can be seen in
Figure 5.1: only approximately half of the sphere (or circle, projectected to 2D) is utilized.

However, there could be other types of constraints or regularizations to explore that
would increase training stability, while being more suited to our chronological data.
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(a) “ View of Venice from the sea”, Cottet,
1896. Loss value: 0.49

(b) “Road through Wooded Mountains”, Corot,
1830. Loss value: 0.32

(c) “Eurybates and Talthybios Lead Briseis to
Agammemnon”, Tiepolo, 1757. Loss value:
0.56

(d) “Portrait of an unknown man”, Kiprensky,
1811. Loss value: 0.56

Figure 5.3: Grad-CAMs for four di↵erent input images where the cross-modal triplet network
performed “well”. The reported loss value is the average loss value for the 15 sampled triples
used to compute the Grad-CAM. We visualize the resulting Grad-CAMs from un-finetuned
VGG, the single-modality art network, and the constrained cross-modal network.
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(a) “After Sunset, Georgian Bay”, MacDonald,
1931. Loss value: 1.02

(b) “Mars, Venus and Vulcan: the forge of Vul-
can”, Copley, 1754. Loss value: 1.02

Figure 5.4: Grad-CAMs for four di↵erent input images where the cross-modal triplet network
did not perform “well”. The reported loss value is the average loss value for the 15 sam-
pled triples used to compute the Grad-CAM. We visualize the resulting Grad-CAMs from
un-finetuned VGGish, the single-modality music network, and the constrained cross-modal
network.
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(a) “Prelude and Fugue in D-sharp Minor,
WTC II, BWV 877”, Bach, 1740. Loss value:
0.45

(b) “Piano Concerto No 26 in D, K 537 iii D
major”, Mozart, 1788. Loss value: 0.36

(c) “Sonata No. 18 in E-flat Major, Op. 31, No.
3 (Complete)”, Beethoven, 1802. Loss value:
0.44

(d) “Prelude, Choral et Fugue”, Franck, 1884.
Loss value: 0.42

Figure 5.5: Grad-CAMs for four di↵erent input images where the cross-modal triplet network
performed “well”. The reported loss value is the average loss value for the 15 sampled triples
used to compute the Grad-CAM. We visualize the resulting Grad-CAMs from un-finetuned
VGGish, the single-modality music network, and the constrained cross-modal network.
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(a) “Paganini Etude 3 S141 III Ab Minor”,
Liszt, 1851. Loss value: 1.43

(b) “Cosi fan tutte K588 No25 Aria E major”,
Mozart, 1790. Loss value: 1.04

Figure 5.6: Grad-CAMs for four di↵erent input images where the cross-modal triplet network
did not perform “well”. The reported loss value is the average loss value for the 15 sam-
pled triples used to compute the Grad-CAM. We visualize the resulting Grad-CAMs from
un-finetuned VGGish, the single-modality music network, and the constrained cross-modal
network.
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Chapter 6

Conclusion

Inspired by prior work in contrastive representation learning and cross-modal/cross-media
learning, in this work, we apply these state-of-the-art techniques to a novel domain, namely
classical painting and music.

To do so, we first collect an art-music dataset designed for cross-modal comparisons. We
hypothesize that paintings and music created during the same time period should be related
to one another, or at least more similar to one another than paintings and music created
from di↵erent time periods. This formulation lends itself to the metric learning task (via the
triplet loss). Under the limitations of available ground-truth labels, we learn a cross-modal
embedding space to align these two very di↵erent modalities of art and music.

In doing so, we demonstrate that it is possible to learn a common representation between
music and art modalities, even with this limited supervision.

We also visualize and propose a few interpretations of how di↵erent features are utilized
by a network trained cross-modally, as compared to a network trained for a single modality.

Broadly motivated by the idea that the cross-modal psychological perception that exists
in humans yields cross-modal expression, we hoped to see how analyzing cross-modal or cross-
media creative works could bring insights to how cross-modal correspondences are perceived
by people. However, it is evident that this itself is a “chicken and egg” type problem, and
one that requires a feedback loop that incorporates actual human perceptual studies.

Nevertheless, the fact that we can create a shared representation for these two modalities
is a useful tool for future studies. For example, the features extracted by our cross-modal
network could then be used to isolate specific regions of paintings, or specific portions of
a musical piece, and be used as part of a study on how humans perceive those features
specifically.

Alternatively, the shared representation could be used to answer questions about the
shared sociocultural context from which these works were created.

The flexibility of the triplet contrastive learning model allows us to use any labels that
may be available to us and that are suitable to the question that we are interested in. We
chose to use the year the work was created, which yielded an embedding space that we
interpret as chronologically organized.
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Other forms of supervision would yield embedding spaces organized in other ways. How-
ever, the nature of the triplet loss (or other metric learning losses) generates an embedding
space where distance in the resulting space relates well to the original semantic meaning tied
to the supervisory labels. Additionally, the notion of labeling inputs based on their similar-
ity or dissimilarity to other inputs is a generally accessible one. Thus, researchers without
specific computational knowledge, but with domain knowledge in art or music, for exam-
ple, can easily create example triplets for supervision without specific technical knowledge or
background. For that reason, we believe triplet-based supervision is intuitive and well-suited
to applications in the digital humanities. We hope to see future models and frameworks that
take advantage of this.
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Appendix A

Additional Activation Map

Visualizations

(a) “Shooting Cossack”, Surikov, 1895, Loss:
0.60

(b) “Side of the Valley of Saint-Vincent (Au-
vergne)”, Rousseau, 1830, Loss: 0.48
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(c) “Arab on Camel”, Vereshchagin, 1870, Loss:
0.82

(d) “Extreme Unction”, Waldmuller, 1846,
Loss: 0.83

(e) “The White Bridge”, Twachtwman, 1897,
Loss: 0.81

(f) “Portrait of Torsukov Ardalyon”,
Borovikovsky, 1795, Loss: 0.74
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(g) “Roman Capriccio: The Pantheon and
Other Monuments”, Panini, 1735, Loss: 1.07

(h) “Sunset at the Crimean coast”, Aivazovsky,
1856, Loss: 0.49

(i) “Hilly landscape, Auvergne”, Rousseau,
1830, Loss: 0.46

(j) “The Moat of the Zwinger in Dresden”, Bel-
lotto, 1750, Loss: 1.11
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(k) “Hibiscus”, Hiroshige, 1845, Loss: 0.74 (l) “View of the Pont au Change from Quai de
Gesvres”, Corot, 1830, Loss: 0.52

Figure A.1: Additional activation maps for art

(a) “String Quartet Op55 No2 i F major”,
Haydn, 1788, Loss: 0.84

(b) “Sonata No. 4 in F-sharp Major ,Op.30”,
Scriabin, 1903, Loss: 0.91
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(c) “String Quartet Op74 No3 iv G minor”,
Haydn, 1793, Loss: 0.54

(d) “Cavalleria Rusticana-Intemezzo F major”,
Mascagni, 1890, Loss: 0.66

(e) “Grandes Etudes de Paganini No. 3 La
Campanella, S. 141”, Liszt, 1851 Loss: 0.42

(f) “Piano Sonata No10 Hob16-1 iii C major”,
Haydn, 1760, Loss: 0.54

(g) “Allegro HWV 323 D Major”, Handel, 1739,
Loss: 0.62

(h) “Sonata for Flute and Piano ii Eb major”,
Haydn, 1764, Loss: 0.62



APPENDIX A. ADDITIONAL ACTIVATION MAP VISUALIZATIONS 46

(i) “In the South Alassio Overture Op50 Eb ma-
jor”, Elgar, 1903, Loss: 0.53

(j) “Six Trios Allegro Op82 F major”, Reicha,
1912, Loss: 1.23

(k) “Violin Concerto 3, K216 iii G major”,
Mozart, 1775, Loss: 0.58

(l) “Sonata 2 F-sharp Minor, Op. 2”, Brahms,
1852, Loss: 0.75

Figure A.2: Additional activation maps for music


