
On The Utility of Fine-Grained Complexity Theory

Manuel Sabin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-165
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-165.html

August 14, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On The Utility of Fine-Grained Complexity Theory

by

Manuel Sabin
(they/them)

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Shafi Goldwasser, Chair
Associate Professor Prasad Raghavendra

Assistant Professor Nikhil Srivastava

Summer 2020

On The Utility of Fine-Grained Complexity Theory

Copyright 2020
by

Manuel Sabin
(they/them)

1

Abstract

On The Utility of Fine-Grained Complexity Theory

by

Manuel Sabin
(they/them)

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Shafi Goldwasser, Chair

The nascent field of Fine-Grained Complexity Theory has emerged and grown rapidly
in the past decade. By studying “Hardness within P” and the connections of problems
computable in, say, n2 time versus n3 time, this field addresses the practical efficiency of
problems. However, while this more deeply quantitative approach better addresses practical
hardness problem-by-problem, we lose connection to key qualitative claims of classical com-
plexity theory such as the general ability to hide secrets (Cryptography), the ability to
show that a world where we have access to randomness is no more powerful computationally
than a deterministic one (Derandomization), and the ability to take a problem that is
hard in the worst-case scenario and turn it into one that is hard almost always (Hardness
Amplification).

We show that these connections can be recovered and that the problem-specific claims
of Fine-Grained Complexity Theory cannot exist in a vacuum without ramifications to clas-
sical structural Complexity Theory. Namely, we show that the core worst-case hardness
assumptions that define Fine-Grained Complexity Theory yield:
Hardness Amplification: We attain Fine-Grained problems that are hard on average (Ball
et al., STOC ’17). By achieving average-case hardness within the Fine-Grained world, we
use this as a stepping stone to achieve both Cryptographic primitives and Derandomization.
Cryptography: We obtain the first Proofs of Work (PoWs) from worst-case complexity
assumptions, thus finally placing these fundamental primitives on a rigorous theoretical
foundation (Ball et al., CRYPTO ’18). We further propose the concept of Fine-Grained
Cryptography and this call has now been answered in (LaVigne et al., CRYPTO ’20) where
some progress is made towards achieving Public-Key Fine-Grained Cryptography.
Derandomization: We construct complexity-theoretic Pseudorandom Generators (Car-
mosino et al., ICALP ’18). This both achieves the best known derandomizations from
uniform assumptions as well as connects the problem-centric Fine-Grained Complexity to
the resource-centric study in Complexity Theory of randomness as a resource.

i

To my Mom who taught me to breathe, my Dad who taught me to listen to the breath of
others, and to the Queer, Trans, and POC community who gave me room to breathe.

To all those with just as much potential but not enough room to breathe.

ii

Contents

Contents ii

1 Introduction 1

2 The Fine Grained World: Background 4
2.1 Fine-Grained Hardness: Hardness Within P 6
2.2 The Main Islands of Fine-Grained Complexity 8
2.3 Fine-Grained Easiness: Connecting to Classical Complexity Through Fine-

Grained Collapses . 10
2.4 Connecting the Fine-Grained and Classical Worlds 11

3 Average-Case Fine-Grained Hardness 13
3.1 Introduction . 14

3.1.1 Our Results . 15
3.1.2 Related Work . 17
3.1.3 Organization . 19

3.2 Worst-Case Conjectures . 19
3.2.1 Main Islands of Fine-Grained Complexity 19
3.2.2 Auxiliary Problems . 21

3.3 Average-Case Fine-Grained Hardness . 22
3.3.1 Orthogonal Vectors . 23
3.3.2 3SUM and All-Pairs Shortest Path 25
3.3.3 SETH, 3SUM, and All-Pairs Shortest Path 26

3.4 An Average-Case Time Hierarchy . 27
3.5 Towards Fine-Grained Cryptography . 29

3.5.1 Fine-Grained One-Way Functions . 29
3.5.2 Barriers and NSETH . 30
3.5.3 A Way Around . 31
3.5.4 An MA Protocol . 32
3.5.5 Proofs of Work . 33
3.5.6 On the Heuristic Falsifiability of Conjectures 35

3.6 Open Questions . 37

iii

4 Proofs of Work From Worst-Case Assumptions 39
4.1 Introduction . 40

4.1.1 On Security From Worst-Case Assumptions 41
4.1.2 Our Results . 41
4.1.3 Related Work . 43

4.2 Proofs of Work from Worst-Case Assumptions 44
4.2.1 Definition . 44
4.2.2 Orthogonal Vectors . 45
4.2.3 Preliminaries . 47
4.2.4 The PoW Protocol . 49

4.3 Verifying FOVk . 52
4.4 A Direct Sum Theorem for FOV . 54
4.5 Removing Interaction . 59
4.6 Zero-Knowledge Proofs of Work . 62

5 Fine-Grained Derandomization: From Problem-Centric to Resource-
Centric Complexity 66
5.1 Introduction . 67

5.1.1 Our Results . 68
5.1.2 Related Work . 70

5.2 Preliminaries . 71
5.2.1 Fine-Grained Hardness . 72
5.2.2 Derandomization . 75
5.2.3 Uniform Derandomization . 76

5.3 Fine-Grained Derandomization . 77
5.3.1 Counting k-OV from Distinguishers 78
5.3.2 Printing Distinguishers from Failed Derandomization 79

5.4 Open Questions . 85

Bibliography 87

A Appendix for Average-Case Fine-Grained Hardness 99
A.1 Evaluating Low Degree Polynomials . 99
A.2 Polynomials Computing Sums . 100
A.3 CONVOLUTION-3SUM . 101
A.4 A Tighter Reduction for FOV . 102
A.5 Isolating Orthogonal Vectors . 106

B Appendix for Proofs of Work From Worst-Case Assumptions 110
B.1 A Stronger Direct Sum Theorem for FOV 110

C Appendix for Fine-Grained Derandomization 114

iv

C.1 A Polynomial For k-CLIQUE . 114
C.2 Heuristics Imply Separations . 116

v

Acknowledgments

All that you touch
You Change.
All that you Change
Changes you.

– Octavia E. Butler,
Parable of the Sower

After being accepted to UC Berkeley, I went to their Visit Days where, at one point, all of
us new admits were gathered into a large auditorium and told all the great things that would
await us at Berkeley if we accepted the offer. One thing, that wasn’t Berkeley-specific, but
excited me immensely was being told “as different as you are now from when you graduated
high school, is as different as you will be from now when you graduate from here.” Feeling
that I had Changed dramatically since my high school years, I couldn’t begin imagining how
much different I could be finishing my PhD given that I already felt like I knew who I was
and what I wanted at that time, and this mystery excited me greatly. I proceeded to fight
Change tooth and nail for the next few years. This is likely because I didn’t actually have
a good sense of who I was or what I wanted. Or maybe they just Changed.

In either case, the prediction of massive Change was true and I was very right to be excited
for it. This journey has been long and often painful and I have learned and unlearned much
about academia and the world. So I’m going to take my time here as I look back on six
years of Change and Growth and acknowledge those that helped nurture it:

One thing I have learned in graduate school is that research is an emergent process. Course-
work and textbooks paint a picture of knowledge that is like building blocks: You start with
the fundamentals and then stack concepts like building blocks so that, if you’re understanding
the material, you can always see the bottom and the clear connections in-between to make a
clean, linear, bottom-up view of knowledge. But the social activity of “research” immediately
breaks this illusion. In any deep field of study, the myriad towers of building blocks are so
high and vast and maze-like that the bottom is always hazy to make out and each person
has a different internal heuristic map of this city of blocks in their head that they use to
navigate this research landscape.

In this way, research is a collectively shared vision of a landscape that we each have a
different segment of a hazy picture of. Because of the vastness of this landscape of knowledge,
we have to rely on the accounts of other researchers who have explored areas we haven’t
and we have to connect all these pieces together not through a bottom-up, linear, unified
proof of the facts spoken through the language of math but instead through an ever-changing
collection of narratives and social interactions through which the landscape of a field emerges.
Research is tied together by connotations and stories.

vi

Because of the social and narrative-based nature of research, it is impossible to sepa-
rate the research done in a field from the metaphors, analogies, terminology, and jokes of
a research community and the cultures we come from that make these metaphors, analo-
gies, terminology, and jokes salient. And it is impossible to separate research from our
writing conventions, dissemination styles, agreed upon ethics, and even what we consider
interesting and research-worthy. What body-language is used to communicate mathematical
concepts? What spatial and visual cues do we use to sketch an informal proof-by-pictures?
And what poetics do we imbue into research questions that help us conceptualize them into
the larger research landscape and research narrative? As these cultural practices propagate
and solidify a field’s conventions for understanding concepts, they become just as much a
driver of research (and just as much as an historical accident) as the small well-worn bag of
mathematical techniques we use to prove all that we’ve been able to so far.

This is all to say that all research that I’ve seen, along with my own research, has so
many unacknowledged, intangible, and untraceable influences that are often invisible to
the emergent process of research that I could never do justice to acknowledging them and
how important to me they’ve been. The intellectual and emotional journey that occurred
throughout my time at UC Berkeley and in the production of this work has deep influences
that are technical, cultural, emotional, etc. and has far too many people and communities to
thank. Know that if you think you have had some influence in my life, you probably have.
And it has likely affected my research and my future research. Beyond these platitudes, I’d
still like to attempt acknowledging those that have Changed me. Both “good” and “bad”
experiences, of course, have shaped me. And I won’t ever be able to do any of them justice.
So, for this thesis, I think it makes the most sense to just tell stories about people I have a
lot warmth for.

Coming to a massive elite research university like UC Berkeley from a commuter teaching
university was and continues to be a culture shock in many ways. There are some things at
UC Berkeley I got that I would never have been able to get at my undergraduate university,
California State University Sacramento, but there are some thing I got at Sacramento State
that I never would have gotten at UC Berkeley. The life-changing teaching in small class-
rooms at Sacramento State’s Math Department and the differential perspective to compare
elite academia and its communities to are things I could never trade. The first place to feel
like a home as a young adult was the Math Lab, where I tutored, talked math, and most
importantly found community. My partner compared my relationship with the Math Lab
with the TV series Cheers : Where everybody knows your name. There are many people to
name but Jacob Russell-Madonia was one of my first real math sparring partners and Janelle
Currey was my first teaching sparring partner and both are dear friends. My connection to
them is most clearly bolstered by the person that drew us together and was the first to allow
us to truly fall in love with math: Scott Farrand.

Like every math major at my undergraduate university, I had heard Scott was the pro-
fessor to have. Of course I didn’t have any sense of what that could mean except that he was
probably really really good at explaining stuff and might be a little funny, but that’s because
I had never seen what teaching could be before Scott. I could try to compare his teaching

vii

to mildly more familiar things like a good coach or a facilitator of play therapy or a camp
counsellor or an after-school activities organizer who is familiar with social work or some
other thing but since so many have never experienced his type of teaching nor had a good
transformative experience with any of my attempted comparisons, all of these analogies al-
ways feel inadequate (especially as people try to grasp how Abstract Algebra could be taught
in this way). A go-to quote of his I use when describing him (and many people inside and
outside of academia have heard descriptions of him now) is that when he was attempting to
get the class to see a pattern or make a conjecture he would sometimes encourage us to think
“If I were God, how would I design the universe so that the solution to this problem would
be as cool and beautiful as possible? And the answer is usually exactly that, or something
better than I could have imagined.” Before Scott’s courses I probably liked math mostly
because I was good at it. Afterwards, I was in love with math because it was an endlessly
bigger-than-me land to explore where unadulterated truth could be tasted while it consis-
tently exceeded my imagination in what I could hope for. Yet this transformative experience
still barely scratches the surface of the many ways Scott has Changed my life. Not only did
he Change my personal relationship with math, it was Scott who first showed me math as a
social activity. I can’t express how much these affected my academic life and research. But
most importantly, Scott completely transformed my understanding of teaching and, because
of his humanistic teaching style, the way I engage with and view people in general. Who I
am and how I move through the world will have deep roots with Scott and he set the path
I’m on in a very large way. I’m always excited when that path intersects with Scott again.

Coming from Sacramento State to UC Berkeley was daunting in many ways but my
first advisor, Christos Papadimitriou, welcomed and believed in me far before he had any
indication that it might be merited and long before I believed I deserved it. His kindness,
support, and belief was more necessary to me than I can grasp even now. His poetic and
philosophical bent set the cultural tone I was looking for in Theoretical Computer Science
(TCS) and I will continue to carry it with me. As sad as it was when Christos left to
Columbia University, I couldn’t have had been luckier with timing as Shafi Goldwasser was
just then planning to move back to Berkeley after decades of being at MIT. Shafi immediately
took me seriously as a researcher. After three years of finding my feet within TCS without
much time or a definitive milestone for me to look back on my progress and see myself as a
researcher, Shafi’s confidence in me as an accomplished self-sufficient researcher in the TCS
community came just when it was needed. Most importantly, Christos and Shafi’s inimitable
flavor of research and conceptual creativity will forever be goalposts for me and my work.

My real learning of TCS, though, began with the students at Berkeley. At Visit Day I met
Ben Caulfield and we decided then that, if we both accepted Berkeley’s offer, we would look
for housing together. We both accepted. Ben and I both entered graduate school together
excited and confused and scared and curious and we both fumblingly explored academia and
TCS and the Bay Area and music and life. I don’t know how I would have started graduate
school without Ben, and I can’t imagine how different a trajectory I would have been on if I
hadn’t. We lived together the first two years of my life in the Bay and those wide-eyed years
of newness and learning will always be a special point of time of real camaraderie. Jonah

viii

Brown-Cohen was two years senior to me when I entered and he set the tone for the culture
of the TCS community for me. Or at least it was the tone I was looking for: one that centers
the social aspect of research and is fun and doesn’t take itself to seriously. He was one of
the people I first took note of as an example of how well-rounded an academic could be (as
opposed to the harmful solipsistic genius trope of movies). One of the most important things
he passed on to me was how everything has a simple way of being said and to search for
ways to knock scary, complex ideas off of their pedestal. It turns out everything is simple,
there’s just a lot of it. In general, there are far too many people in the Berkeley Theory
group from when I entered to when I left that should be mentioned here, so I won’t try. But
this group provided a special community of peers and laidback environment that I was able
to feel comfortable and welcomed in in many ways as I waded into many unfamiliar waters.

I also had the privilege of becoming embedded in the UC San Diego and MIT Theory
groups thanks to Russell Impagliazzo and Ryan Williams hosting me at their universities
for a semester each, respectively. Both Russell and Ryan’s research has consistently been
the epitome of the flavor of research I love and emulate my own research after. And their
research is only matched by their personalities, injecting humor and poeticism into the social
endeavor of TCS to be some of Complexity Theory’s best storytellers. Being able to take
courses from, play boardgames and music with, and find food around Berkeley with them
as they visited the Simons Institute were excitements that I was extremely fortunate to
complement with full-semester visits to each of them. The UC San Diego and MIT Theory
groups were beyond welcoming and I was always sad I couldn’t bring them back to Berkeley
with me as well. I feel sad that so much of my time at MIT was spent writing job applications
but being able to join their Theory retreat, play music often with them, and join their end-
of-the-year talent show made up for it. Again, there are far too many people among these
two Theory groups to name (especially MIT’s giant group) but I want to acknowledge Rio
LaVigne who I shared my first attempt at research in elite academia with all the way back
in my undergraduate degree when I visited Stanford for Summer. During that Research
Experience for Undergraduates program Rio and I did our first research together and she
showed me what research at that level could look like. It has been an unexpected pleasure
how long our paths have intersected and it is always nourishing when we get a chance to
reflect on the ways we’ve grown and struggled since our first young meeting.

Despite all of the talent and community at my home university, I actually never worked
towards a publication with fellow students or professors there. While I’m partly saddened
by this, the reason is because there were simply too many people to meet and things to work
on at the Simons Institute, where experts from across the world would come each semester
and where I found all of my collaborators and many friends. This is where I met Andrej
Bogdonav, Russell Impagliazzo, Alon Rosen, and Ryan Williams, who I each visited at their
home universities for a semester each. It is also where I met Marshall Ball, Marco Carmosino,
and Prashant Nalini Vasudevan. Although some of these people I had already emailed with
before or others where I didn’t remember our meeting until we met again later, this is my
current full roster of co-authors, all of which I originally met at the Simons Institute. There
is far too much I could say about Andrej and the amazing food and math he showed me and

ix

Prashant in Hong Kong and his limitless hospitality in showing us the area and inviting us
into his home; or to say about Marshall and the limitless angles he will attack a problem
with armed with his encyclopedic knowledge of techniques and his gorgeous and lucid talks
that converted me to drawing my talks on an iPad; or to say about Russell and playing music
to his TCS-themed parody songs and joining him in improv scenes and boardgames and the
gems of technical knowledge that he constantly drops that are second only to his clarifying
interpretations of results that give them story and meaning; or to say about Ryan and the
music community he wills into existence where ever he goes and the amount of knowledge
I’ve gained from his explanations (and corrections). But this is already getting too long and
has much more to go, so I’ll talk about some of the people that have been some of my first
introductions to research and the indelible Change that will permeate through my life.

The first cutting of my teeth with research was with Alon Rosen. Alon’s role in the TCS
community is one my dream roles. He invites junior students to study with him over the
summer and serves as a mentor and community builder amongst them, putting his research
knowledge, intuitions, philosophies, and humor at his cohorts disposal and guides them as
they stretch their research legs for the first time. He is fully aware that these young adults
are newly exploring a foreign research domain with a foreign community in a foreign place
and treats them as peers while guiding them in these formative stages. He is an embodiment
of research being a social activity, and he aims to make it a fun one. Alon gave me my first
setting in graduate school where research can be for the love of the game.

If Alon was my first mentor in research, Prashant Nalini Vasudevan was my first peer. It
is generous to myself to use the word ‘peer’ here given how much knowledge and creativity
Prashant had compared to myself (or my perception of myself) when I first met him, but
his patience and firm intuitive grasp of so many concepts made it easy to ask him many
“basic” questions as a fellow student. I still take advantage of his insight. We were both
working with Alon when we met and have since explored large swaths of TCS and five
countries together. I have met few people so curious and non-presumptive as Prashant is as
he wades into unfamiliar areas of TCS along with unfamiliar cities and cultures. Prashant is
a complete wanderer. Most crucially, though, he has a tender heart and has zero knee-jerk
defenses for class, prestige, “work ethic,” etc. As my identities are very underrepresented
in academia along multiple axes, it has been a particularly painful journey but Prashant’s
unassuming openness throughout it has made his friendship invaluable to me. It has also
taken us into many unlikely places across the world from jazz shows in a much too cramped
after-hours barbershop in Hong Kong, to Queer underground wrestling events in the Oakland
Bay Area, to accidentally driving on train tracks to get to a hostel in Jerusalem, to standing
on a beach’s wave breakers to see what the big deal with the storm warning was about, and
so on and so forth and countless chocolate shops along the way. Our continually intersecting
lives through time, place, and topic seems to have our journeys intertwined and I hope it
stays that way.

I don’t think it’s possible to convey how much Marco Carmosino has influenced and
been a core part of my graduate life to anyone, least of all to Marco. In the years that
I’ve known him, I’ve become very familiar with how extremely generous he is with his time

x

and knowledge and how he immediately treats younger researchers, still finding their footing
in academia, as peers and guides them in their journey. But when I first met him and he
showed this generosity towards me, it felt unprecedented and unrepayable. It still does.
Part of this kindness does seem to have some ulterior motive of converting everyone he
can into Circuit Complexity Theorists, thus jeopardizing their research fundability and job
prospects, but I couldn’t be more grateful for this conversion. My understanding of TCS,
the TCS community, academia, and the practice of research is inextricable from Marco’s
influence. More crucially, his wide interests, depth of knowledge, and goals beyond TCS
showed me that not only can you be well-rounded in academia but that you don’t have to be
siloed to a research area or even academia itself (you can also become hyper-pedantic about
organization systems and music production audio quality and epistemological concerns of
meta-science and so on). As I’ve recently begun branching in new research directions and
interests, it has been with his freeing example as a guide. The most important thing he has
done for me, though, has been being endlessly empathetic, supportive, and validating as I’ve
quite painfully moved through academia as a Queer, Genderqueer, underrepresented Person
of Color. Since early on, he has given me and helped me dissect theories of systemic issues,
words and frameworks to contextualize my experience with, and his time and ear that has
helped me navigate academia and get a bird’s-eye view of my position within this system.
If I stay in academia in the longterm, it will be in no small part due to Marco.

The last cluster of people I want to mention that I met through the Simons Institute
have created a fully new branch of my research trajectory. I was worried about TCS’s new
subfield of Algorithmic Fairness before I attended the Simons Institute’s Summer clusters on
this young field but, after, it was clear that my critiques were shared and already explored in
depth. Finding community outside of TCS that shared similar concerns and critical analyses
has now started me down an interdisciplinary path that I am excited about and take as a
responsibility. Thinking routinely through these issues with Ezra Goss, Lily Hu, and Steph
Teeple has been both intellectually enriching and life-giving. Having my last big travel before
COVID-19 be to Barcelona to see them and run a a workshop with them on introducing
power analyses to Algorithmic Fairness couldn’t have been a better way to indefinitely end
my traveling. I also want to deeply thank the person who encouraged us three to run that
workshop and who has been so generously helpful to us and has given me so much career
path counseling: Sorelle Friedler. In general, I am indebted to Ruha Benjamin, Sorelle
Friedler, Nancy Krieger, and Timnit Gebru for encouraging me to help the TCS community
I am a part of to address the critiques of Algorithmic Fairness and starting me on this
interdisciplinary path. These influences have already had an immeasurable effect on the
direction of my life: my 3.5 year postdoc position is now with a team of lawyers and legal
philosophers and my TCS projects will be secondary. Lastly, in this big fork in my research
life I want to thank Natalia Bilenko and Ria Kalluri for creating community and philosophies
through the Queer in AI and Radical AI networks that provided the exact landing place I
needed in this transition and for being so welcoming as I embedded myself into these great
communities. I look deeply forward to continuing to co-create these communities with them
and for their involvement in the QTPOC Reclaiming Education and STEM (QTPRES)

xi

conference I co-organized with Salaine Ramirez and Cal Zielenski (indefinitely postponed
due to COVID-19). I am extremely excited for this new direction and the community I will
find along with the community I already have.

Lastly for academics, I want to thank deeply the the staff and administration who have
always been nothing but kind to me whether I was at the UC Berkeley EECS Department, the
Simons Institute, IDC Herzliya, the Chinese University of Hong Kong, UC San Diego, MIT,
or any place I visited even briefly. They have always been absolutely crucial to academia and
to my journey in it. I especially want to thank Shirley Salanio and Aimee Tabor. Shirley
has always been a very supportive and sympathetic constant. As I’ve felt detached from
academia, Shirley’s kindness has always helped me still feel tethered. Aimee guided me
through my REU program at Stanford, through my application process to graduate school
which was an absolute mystery to me beforehand, through fellowship applications including
the NSF GRFP fellowship I won, and through my first couple years as a constant support
in a bizarre journey for me. It was painful to discover her passing and I am sad that I didn’t
get to complete this part of my journey with her but I am so grateful she was able to start
it with me. My life would likely be in a very different place without her.

If the list of people that have helped me academically is long (and this has just been
a miniature version of it) then the people that have shaped me not explicitly within an
academic context is much much longer. So long, in fact, that the remaining portion of this
section will actually be shorter because I can not possibly try to be as individualized as I
was with my academic acknowledgments. I will leave far far too many people out but I want
to acknowledge some people that are inseparable from my academic journey.

Stacy Taniguchi has been my first therapist and I am now extremely zealous about the
importance of therapy. Or maybe I am just extremely zealous about the importance of
Stacy. And I am scared to have to find a new therapist as graduate school ends when I
know I will measure them with respect to her. In general, I pride myself on introspection,
reflection, and Change, but I wish I had complemented and assisted these processes with
therapy much much sooner. Over the past two years, Stacy has had an immeasurable effect
on my path through academia and the ways in which I move and take up space in it. It
had become repeatedly clear in many many ways that someone like me was never supposed
to “make it” into that level of academia. It continues to be. And I found Stacy just as I
was finding words for this experience and just starting to feel like I was losing my mind as I
began questioning the long-standing, prestige-based systems I was in. Stacy reframed this:
“It sounds like you’re using your voice.” Being voiceless in a community that you’re meant
to be a part of and joined purely for the social activity of research is not sustainable and
not healthy. It is still not clear if academia has room for me, but the importance of finding
my voice while in academia with Stacy was more than I could ever say here. If I find a
sustainable way for me to stay in academia, it will be in large part because of Stacy. And if
I don’t stay in academia, whatever sense of balance and sustainability in life I find will have
roots with her.

Of course my deepest roots to who I am come from my family. I’ve grown into adulthood
watching my siblings grow into adulthood (too quickly). I’ve learned so much about teaching,

xii

learning, communicating, fighting, and being a person from Michelle, Dulcinea, and Elias
Sabin. And I can’t even begin to unravel the influence on my life my cousin Rico Sabin has
had, my first non-parent role model. Much of childhood, pre-teens, and teens (and, thus,
my life in general) were shaped by Rico and our young explorations of what aspirations
mean. I’d be remiss if I didn’t name every single one of my family members, and so I must
be remiss. But I would like to acknowledge my grandpa Habib (Harold) Houshmand, my
uncle Darius Houshmand, my uncle David Sabin, and my other grandpa and the original
eponymous Manuel Allen Sabin who all got to see me start this journey but are not here
with me to see me end it.

This entire thesis could certainly be filled with ways to acknowledge my parents’ effect on
me and there’s no way to summarize it here. The privilege I’ve had with my parents cannot
be overstated and I would absolutely not be who I am or where I am without the stable
environment they’ve always held for me with unconditional support and love. I’m often
embarrassed by the amount of unearned privilege I have both materially and emotionally
by just being born to these two who always first-and-foremost center family. Thankfully,
they taught me how to question and use that privilege. They also taught me how to not be
reliant on their pride even though they are proud of me nonetheless. Most importantly, they
allowed me to dream free and high by always having visions of high possibility for me but
no expectations on what that would look like. So much Change has happened these past six
years and the freedom from expectations that allowed me to sit in that Change and Grow
has meant the world. My life and entire worldview is fundamentally rooted in their raising of
me in ways I’m still understanding. I mostly want to thank them for always encouraging me
to ask “Why?” even when it wasn’t in their best interest. Subjecting them to never-ending
strings of why’s to understand things to their fundamentals and constantly questioning their
authority and reasoning has served me well in research and, most crucially, made my life an
intentional one. Mostly, it has pushed me to tilt at windmills as I ride through this world.

There is never enough I would be able to say about Cal Zielenski. They are my friend,
partner, spouse, housemate, confidant, witness, advisor, and so on and so forth. As a
practice, we have tried to define what we consider special to our relationship and what we
consider or want considered unique to us, and it seems to boil down to the simple but pure
fact that we grew up together. We were children when we met and now we have shared a life
together and have much more life to go. My personality, who I am, what I have experienced,
how I have interpreted it, and so on is all inextricably tied to Cal and how they have shaped
me. I can’t imagine who I would be if I never met Cal because I would be different person; a
different career, a different philosophy, a different home, a different set of friends, a different
politics, a different history. A stranger. And I’ve learned so much about what it means
to love and own yourself from Cal that I have zero curiosity of who that stranger would
have been because I love the person I’ve become with Cal. I have learned and continue to
learn so much from them, and my logic to conceptualize and understand systemic issues and
harms is always playing catch-up to their human-centered intuitions. I am ashamed that it
took the pain of being marginalized within academia for me to search out the language and
frameworks to describe the issues that Cal already knew. Their strength and unapologetic

xiii

voice continues to inspire, challenge, and teach me. They have seen me at all my stages
of adolescence and adulthood so far and all my stages of academia and have held much of
the pain and excitement of it throughout. Life continues to be weird and uncertain and
unpredictable, especially now, but I’m very happy that our lives continue to wind through
this world together.

Lastly, I want to express the deepest gratitude I have for the QTPOC community, who
first showed me what community could mean. I have learned so much from you. About lan-
guage, ways of knowing, critical theories, recipes, systemic frameworks, ways of connecting,
the Bay Area, self-love, ways of experiencing, power, and on and on. But most importantly
I learned my voice from you. And how to use it. A while ago, I thought that in my ac-
knowledgments section I would say something to the extent that “If I have succeeded at all,
it is because far too many people have been far too kind to me far too often.” The QTPOC
community taught me to unlearn this. While many people have been kind to me, it was not
too many and it was not too often and there’s much of my own kindness to myself to credit
here as well. As Hannah Gadsby says “Do you understand what self-deprecating means
when it comes from somebody who already exists in the margins? It’s not humility. It’s
humiliation.” I learned from the QTPOC community how it is possible to be humble while
still taking up space and while still using your voice. This seems like it should be the place
with the longest length and the most names, but, compared to the finiteness of academia,
the list of friends, influences, partners, advocates, acquaintances, and so and and so forth is
practically endless and is inter-generational and is populated just as much by collectives and
memes as it is by individuals. Many would likely want to remain anonymous anyways. Just
know that I see all of you. And I want each of you to find joy. And I owe so much to all of
you. This world-wide community and its emergent culture and philosophies and humor and
politics is second only to the individual humans that populate it. I will always be rooting
for you and it will not be from the sidelines.

To finish, since this has become a long journal reflection entry anyways, I would like to
acknowledge myself. I have personally devalued degrees and the centralization of prestige and
the use-cases for much of research under capitalism-based academia, so it is hard for me to
value this milestone accomplishment for myself. So much of what “success” I have achieved
has roots in my unearned privilege and it feels gratuitous to feel proud of a Computer Science
degree which already arbitrarily wields so much political and social and economic power,
especially over “soft science” degrees or those that produce or organize without degrees.
But, as I mentioned with Hannah Gadsby, self-deprecation for those already in the margins
is humiliation, not humility. So, while knowing that others are kept from the ivory tower
despite having just as much potential and just as much hard work to put in, I still find pride
and accomplishment that I did put that work in. And that I have fought to include the
communities that are kept out. I am proud that I entered a field, community, and culture
that was fully foreign to me and learned it and became a part of, all while questioning it and
Changing it and continuing to Change it. I am proud that I was not passive in this journey.
I am proud to have listened more than I have talked and I am proud to have Changed.
Constantly. I am proud to be at a point where I can feel comfortable saying I am proud of

xiv

myself now and I am proud to have found a voice in these six years. I am proud to be a part
of the QTPOC community that helped me find that voice. I want to end here acknowledging
myself and, in that, acknowledging everyone that makes me. Because I am not an island.
Every person and community that has shaped me I carry with me and, while I may have had
enough stubbornness to push through this program without every person mentioned here,
ever person mentioned here has made this journey feel more like life and not a conveyor belt.
I have so much love for everyone who makes me me because I have learned to have a lot of
love for myself. You have all created me. Thank you so much.

1

Chapter 1

Introduction

From complete invention, Cosimo, I believe,
had arrived by successive approximations, at an
almost entirely truthful account of the facts.

– Italo Calvino, Baron in the Trees

[Complexity Theory is] not good at making
more answers, but we’re good at making less
questions.

– Christos Papadimitriou

Is it as easy to verify a problem’s solutions as it is to find them? Can we hide secrets
within computational hardness to achieve Cryptography? Can we find as many answers in
a world where we didn’t have access to randomness? The field of Complexity Theory deals
in asking profound questions that are fundamental to the nature of computation and what
they tell us about what we are able able to solve and know the solutions to in our world.
However this field is notorious for not being able to answer them. That is, thus far, we, as
a field, have been unable to provide definitive answers to our most fundamental and simply
stated questions or often even many of their supposedly easier sub-questions.

For someone who is unfamiliar with the results of the field, a natural question may be
what has Complexity Theory accomplished? Is all of its sustained effort kept steady and
vigilant just to celebrate the few unconditional theorems that are sporadically achieved?
While Complexity Theory would be certainly able to merit itself on its ability to formulate
and formalize fundamentally new and deep questions alone, it is not clear a field would be
able to maintain motivation and morale based solely on this.

Complexity Theory’s sustaining force and connective tissue that fills the field in between
its sparse unconditional theorems lies in its most impressive and consistent output: its ability
to connect its many disparate questions, showing that many of these questions are equivalent

CHAPTER 1. INTRODUCTION 2

or that their answers would imply partial answers to each other. Thus, Complexity Theory’s
strength is in showing that many of the core questions of the field, and of Theoretical
Computer Science (TCS) more generally, are simply different sides of a many-sided coin.

Indeed: the computational difficulty of problems in Number Theory would imply secrets
can be hidden to achieve Cryptography, e.g., [BM84, GM84]; the existence of Cryptography
would disallow an entire class of natural seeming proof styles from ever showing that it is
harder to verify a problem’s solution than it is to find it (i.e. P 6= NP) [RR97]; if we were
able to use these natural types of proofs to resolve easier questions, then computationally
learning what certain types of circuits look like would also be easy [CIKK16]; if there are
some problems that are hard for circuits to compute, then all problems that were easy to
solve using randomness are still easy when our access to randomness is taken away [NW94,
IW97, STV01]; and so on and so forth.

The continually emerging crown jewels of Complexity Theory results are often deep con-
nections between deep questions of Complexity Theory. These lay the foundations, reveal
the barriers, and populate the techniques of TCS in general, and when one of Complex-
ity Theory’s few unconditional results is achieved it usually from utilizing this vast web of
connections.

Understanding this crucial connective component of Complexity Theory’s ethos thus
makes it alarming when an area of Complexity Theory grows in isolation: The nascent field
of Fine-Grained Complexity Theory has emerged and grown rapidly in the past decade. By
studying “Hardness within P” (i.e. fine-grained levels of polynomial-time hardness within
the set of problems that already have polytomial-time solutions) and the connections of prob-
lems computable in, say, n2 time versus n3 time, this field addresses the practical efficiency
of problems. However, while this more deeply quantitative approach better addresses prac-
tical hardness problem-by-problem, we lose connection to key qualitative claims of classical
complexity theory such as the general ability to hide secrets (Cryptography), the ability to
show that a world where we have access to randomness is no more powerful computationally
than a deterministic one (Derandomization), and the ability to take a problem that is
hard in the worst-case scenario and turn it into one that is hard almost always (Hardness
Amplification).

That is, Fine-Grained Complexity Theory has, similar to Classical Complexity Theory,
few unconditional results and instead defines itself by constructing an intricate network
of connections between existing questions yet these questions are largely all self-contained
within Fine-Grained Complexity Theory with few connections to the pre-existing backdrop of
Classical Complexity Theory. This leaves Fine-Grained Complexity Theory in the uneasy
state of having interesting things to say but being uncertain if those interesting things are
actually true and, more importantly, not having the connective tissue relating these questions
back to the rest of TCS.

As we will discuss in Section 2.3, there have been some deep connections from Fine-
Grained Complexity Theory to Classical Complexity Theory found but, prior to the work
presented here, these connections are predicated on the collapse of Fine-Grained Complexity
– i.e. that the core conjectures of the field are false. If Fine-Grained Complexity Theory

CHAPTER 1. INTRODUCTION 3

doesn’t collapse then, does it stand on its own in isolation from Classical Complexity Theory?
The aim of this work is to show that the answer to this question is ‘No.’ We show

that the thriving of Fine-Grained Complexity Theory does not exist in a vacuum without
deep ramifications to the philosophical claims, applications, and core questions of Classical
Complexity Theory. Namely, we show that the core worst-case hardness assumptions that
define Fine-Grained Complexity Theory yield:
Hardness Amplification: We attain Fine-Grained problems that are hard on average in
[BRSV17a]. By achieving average-case hardness within the Fine-Grained world, we use this
as a stepping stone to achieve both Cryptographic primitives and Derandomization.
Cryptography: We obtain the first Proofs of Work (PoWs) from worst-case complexity
assumptions, thus finally placing these fundamental primitives on a rigorous theoretical
foundation [BRSV18]. We further propose the concept of Fine-Grained Cryptography and
this call has now been answered in [LLW19] where some progress is made towards achieving
Public-Key Fine-Grained Cyrptography.
Derandomization: We achieve complexity-theoretic Pseudorandom Generators [CIS18].
This both achieves the best known derandomizations from uniform assumptions as well
as connects the problem-centric Fine-Grained Complexity to the resource-centric study in
Complexity Theory of randomness as a resource.

To understand these connections we must first immerse ourselves in the Fine-Grained
and Classical Worlds.

4

Chapter 2

The Fine Grained World: Background

Every TCS graduate student should be able to
recite the “party line” answer that it has
happened again and again that once a problem
has been shown to be in polynomial time, people
managed to come up with algorithms with small
exponents

Boaz Barak, Windows On Theory

The study of Complexity Theory is, as Alan Cobham put it, “most directly indicated by
simply asking two questions: first, is it harder to multiply than to add? and second, why?”
[Cob65]. That is, Complexity Theory, at its core, simply seeks to understand the inherent
difficulty of solving computational problems and the relative computational complexity be-
tween these problems. As larger inputs are given for a computational problem, how many
steps are needed to reach a solution to the input – i.e. what is the minimum runtime, f(n),
required for any algorithm attempting to solve the problem as the input’s size, n, grows
larger? 1 Within his same seminal work [Cob65], Cobham seeks to quantitatively charac-
terize what should computationally be considered “easy” and what should be considered
“hard:” If a problem can be solved in polynomial time (i.e. f(n) = nk for some k) then it is
considered “easy,” all else is “hard.”

This principle, the Cobham-Edmonds thesis [Cob65, Edm65], is now widely accepted and
is formalized as the complexity class P: the set of all computational problems that have a
polynomial time solution [Gol08]. While a polynomial runtime certainly seems more easy to
handle than an exponential runtime, the polynomial itself may have a very large exponent or
a large leading constant: While a runtime of 2.00000001 n will absolutely overtake 99999 n200

1There are many possible measures of the complexity of computational problems including the amount
of time, memory, random bits, quantum bits, non-uniform advice, etc. that the problem may require to be
solved but, for exposition in introducing Fine-Grained Complexity Theory, we will focus on runtime here.

https://windowsontheory.org/2015/01/12/erdoss-book-and-the-asymptotic-religion/

CHAPTER 2. THE FINE GRAINED WORLD: BACKGROUND 5

asymptotically for very large input sizes n, for most practical inputs the polynomial runtime
is actually much more prohibitive than the exponential one.

Given this critique, there are three important justifications for this weighty assertion that
a class as broad as polynomial runtime is useful to consider as the set of “easy” problems:

P is a proof of concept for “easiness.” Once some polynomial runtime is found for a
problem, more efficient algorithms very often follow with smaller exponents (e.g. quadratic)
and smaller leading constants.

P makes useful qualitative and philosophical distinctions. Some computational
problems have so little structure in them to exploit algorithmically that finding a solution
can be done no faster than brute forcing every possible answer to check if it is the actual

solution. Understanding if SAT is one of these problems is the core of what P
?
= NP is often

meant to ask; if a solution can be represented with n bits, this amounts to brute forcing
a domain of size 2n. A polynomial-time algorithm for a problem then tells us something
deep about the structure of a computational problem: There is significant, e.g, algebraic
structure, graph structure, combinatorial structure, etc. in the problem and that this can be
exploited in an algorithm to achieve something fundamentally different than a näıve brute
force algorithm. This makes separations between polynomial time, quasi-polynomial time,
exponential time, etc. act as qualitative separations instead of just quantitative ones as they
create a taxonomy of hardness that can be seen as making distinctions between distinct
levels of the structural impoverishment of computational problems.

P plays well with our mathematical toolkit. Polynomial time has several useful prop-
erties for creating a taxonomy of computational complexity and for the techniques used in
doing so. For example, when considering a Turing Machine (TM) as a computational model
to measure a problem’s complexity with, the distinctions of how to define that TM all van-
ish when treating all of polynomial time as an equivalence class: Whether a TM has one
working tape versus two or many, whether the TM has RAM, which programming language
you write your algorithm in, whether you express your TM with circuits, etc. can all be
translated to one another within polynomial time and so a new theory of Complexity isn’t
needed for each distinct model. Thus, we can have one theory of computational complexity
that is robust polynomial time transformations and thus to arbitrary fluctuations in model
design choices. This allows a rich framework for Complexity Theory such that trivial model
discrepancies can be swept under the rug via a coarse-grained polynomial lens so that the
only model distinctions are those that introduce a genuinely new resource such as the ability
to manipulate quantum bits or considerations of memory or the use of randomness or non-
deterministic machines or machines that can receive advice, etc.; indeed, the power relations
amongst these different models remain among the core questions of the entire field. Further,
since the “bread and butter” of Complexity Theory is in algorithmically reducing computa-
tional problems to each other, it is very important that reductions can be chained together

CHAPTER 2. THE FINE GRAINED WORLD: BACKGROUND 6

meaningfully; this is guaranteed for polynomial-time reductions since function composition
of polynomials remains polynomial. This makes complexity classes defined via polynomial
time reductions amongst its problems hold together and easily manageable with our techni-
cal tools.

The latter two points here give us powerful philosophical and technical justification for
our use of polynomial-time reductions and for the existence of P as a proxy for “easiness.”
But these justifications may provide small comfort for practitioners in the world who have
a computational problem they need solved and may have more limiting resource constraints
on what they can accept as “easy.” Even the first justification may be vacuous for them if
they need faster solutions now or if even quadratic time is prohibitively expensive for them.
Indeed, while practical problems in DNA sequencing can be solved in “just” quadratic time,
they are still, when considering the human genome consists of roughly 3 billion base pairs
[BI15], prohibitively expensive on their large input sizes.

To contend not just with the philosophical insights of the coarse-grained, polynomial-time
equivalence classes of Classical Complexity Theory but with the practical concerns of real-
world computational problems with large inputs and limited resource constraints, a more
fine-grained lens needs to be applied to Complexity Theory.

2.1 Fine-Grained Hardness: Hardness Within P

With the real-world difficulty of handling cubic or even quadratic runtimes on practical prob-
lems, Fine-Grained Complexity Theory has rapidly blossomed in the last decade not just
for its novel insights but for its practical urgency. Classical Complexity Theory has used
membership or non-membership of complexity classes to understand a problem’s complexity
and has used the showing of a problem to be NP-complete (i.e. provably one of the hardest
problems within NP) as a “gold standard” for giving evidence of a problem’s computational
intractability. But these tactics are all too coarse-grained to distinguish the hardness of
polynomial-time problems to within, say, their exact exponent since such distinctions are
invisible to common tools like general polynomial-time reductions. Namely, such problems
with fixed polynomial-time solutions are lumped together as “easy” under Classical Com-
plexity Theory and the field lacks language and techniques to understand their fine-grained
hardness beyond that broad stamp of “easy.”

But how, then, do we discuss practical problems that can be solved in, say n2 or n3 time
but have resisted all attempts to speed them up further? What if n3 isn’t fast enough? Fine-
Grained Complexity Theory, thus, has emerged within the last decade to classify and explain
the moderate hardness of practical computational problems already inside of P. Indeed this
young field is sometimes referred to as “Hardness within P” (see [Wil15, Wil18] for great
surveys of the area).

Similar to Classical Complexity Theory, a main tool of this field is in the ability to
reduce computational problems to each other such that a faster solution to one problem

CHAPTER 2. THE FINE GRAINED WORLD: BACKGROUND 7

yields a faster solution to another (and so, by contrapositive, the, say, quadratic hardness
of one problem implies the quadratic hardness of another so long as the runtime of the
reduction itself is subquadratically “tight” enough).2 This creates a web of connections
between problems that yields a taxonomy of computational problems and reveals key players.

Unlike Classical Complexity Theory, though, this web doesn’t seem to reveal useful clus-
ters of complexity classes and models of computation that have typically structured and
defined Complexity Theory. Namely, we lose the aforementioned nice properties that Cob-
ham described [Cob65] to justify P: for general polynomial-time you had that polynomial
time reductions composed to become another polynomial-time reduction and you had that
you could have a largely model-independent Complexity Theory since all core computational
models could be transformed to one another in polynomial time. Both of these fail when
considering a more fine-grained analysis: composing quadratic-time reductions, for example,
is no longer quadratic time and transforming between basic computational models might
already take longer than solving your quadratic-time problem!

In this light, Fine-Grained Complexity Theory is model-dependent and, further, has a
difficult time defining complexity classes.3 Without a functioning notion of “completeness”
for a complexity class, which is most usually attained with reductions that compose, it
is especially difficult to define complexity classes that may give evidence of fine-grained
hardness. Thus, the main structures that have arisen out of Fine-Grained Complexity Theory
are not the usual complexity classes defined by a complete problem or by a resource-bounded
model of computation, but instead the web of connections between problems itself.

This has made the field of Fine-Grained Complexity Theory inherently problem-centric.
This is in contrast to the interplay between problems and resources afforded by notions
of completeness and complexity classes in Classical Complexity Theory (e.g. the resource-
centric lens of considering nondeterminism as a resource for polynomial time computation
via the complexity class NP coincides fully with the problem-centric view of considering
the efficiency of a problem like SAT since SAT is complete for NP under polynomial time
reductions) or the ability to connect general theories of hardness to general applications (e.g.
with theories of Cryptography and Randomness). In this work we will reconnect this field
to some of the resource-centric claims and the applications studied in Classical Complexity
Theory. But, before that, we should consider the life that Fine-Grained Complexity Theory
has enjoyed on its own. Despite the field’s landscape not being navigable by complexity
classes, the web of reductions has revealed some useful patterns and has illuminated some
core problems of the field. Out of this picture has emerged some clear and useful islands on
the Fine-Grained world.

2See [Wil18] for general definitions of fine-grained reductions. We do not need such a general framework
in this work to describe our results and prove our theorems.

3A fine-grained complexity class is defined in [GIKW17], although this is done in the spirit of Descriptive
Complexity Theory where classes are defined in terms of the expressiveness of the logic needed to describe
the computational problems in formal language.

CHAPTER 2. THE FINE GRAINED WORLD: BACKGROUND 8

2.2 The Main Islands of Fine-Grained Complexity

A large component of what is studied in Fine-Grained Complexity Theory is the gathering
and organizing of evidence of fine-grained hardness for practical problems. That is, problems
in string processing, computational geometry, dynamic graph problems, etc. that have long
hovered at state-of-the-art runtimes of n2 or n3 are now being given evidence that these
runtimes are in fact the best you could hope for and that, if this is still too slow in prac-
tice, heuristics should be used instead of hoping for a better worst-case algorithm. This is
achieved by conjecturing some minimal core set of problems to be fine-grained hard and then
showing fine-grained reductions from these core problems to the the many practical prob-
lems in question: If these conjectures hold, then the hardness of this small set of explanatory
problems props up the hardness of many practical problems.

Thus, in the current landscape of Fine-Grained Complexity Theory there are four main
islands, each upheld by one of the four key problems: Orthogonal Vectors, 3SUM, All-Pairs
Shortest Path, and k-CLIQUE. These problems define the “islands” of the field since they
partition what is known in the field: There are no known reductions between them but they
reduce to many other problems, thus comprising the basis for Hardness within P.

• Orthogonal Vectors: The OV problem on vectors of dimension d (denoted OVd) is to

determine, given two sets U , V of n vectors from {0, 1}d(n) each, whether there exist
u ∈ U and v ∈ V such that 〈u, v〉 = 0 (over Z). (If left unspecified, d is to be taken to
be
⌈
log2 n

⌉
.)

• 3SUM: The 3SUM problem is to determine whether a given set S ⊂ {−n3, . . . , n3} of
size n contains three distinct elements a, b, c such that a+ b = c.

• All-Pairs Shortest Path: Given an edge-weighted (undirected or directed) graph on
n vertices, the APSP problem is to find the distances between every pair of vertices,
where edge weights are in {1, . . . , nc} for some sufficiently large c.

• k-CLIQUE : Given an unweighted, undirected graph on n vertices, the k-CLIQUE prob-
lem is to determine whether there is a k-clique – i.e. whether there is a set of k vertices
such that every pair of vertices in that set has an edge between them.

These are each long-studied problems and, after extensive attempts to improve over the
(typically trivial) algorithms that are the state-of-the-art for each of these problems, the
following popular fine-grained hardness conjectures have been made:

• OV Conjecture: For any d = ω(log n), any algorithm for OVd requires n2−o(1) time.

• 3SUM Conjecture: Any algorithm for 3SUM requires n2−o(1) time.

• APSP Conjecture: Any algorithm for APSP requires n3−o(1) time.

• k-CLIQUE Conjecture: Any algorithm for k-CLIQUE requires nωk/3−o(1) time, where ω
is the matrix multiplication constant.

CHAPTER 2. THE FINE GRAINED WORLD: BACKGROUND 9

Remark 2.2.1. As Fine-Grained Complexity Theory is model-dependent as discussed earlier,
we will adopt the convention of the field so that all our discussion will be in the Word RAM
model of computation with O(log(n))-bit words. These conjectures are made in this model.
Later, in the technical portions of this work we will also define, conjecture, and justify these
to hold when the computation is randomized as well.

These conjectures are not only important because they help stratify P, but the truth or
falsity of each of them has many ramifications to practical problems (see [Wil15, Wil18] for
a more thorough survey of this):

OV Consequences. It has been shown that if the the OV conjecture is true, then many
string processing problems relevant to DNA sequencing and data comparison also have hard-
ness bounds (typically sub-quadratic) [AWW14, ABW15b, BI15, BK15]. On the other hand,
if a sub-quadratic algorithm for OV is found, Williams [Wil05] gave a reduction to show we
would achieve improved algorithms for SAT; more specifically, the well-known Strong Expo-
nential Time Hypothesis (SETH) (which states that there is no ε > 0 such that t-SAT can

be solved in time Õ(2n(1−ε)) for all values of t) would break. Thus, the island defined by the
OV conjecture is also supported by the stronger assumption of SETH.

3SUM Consequences. Similarly, if the 3SUM conjecture is true, problems in, for example,
computational geometry [GO95] and exact weighted subgraph problems [AL13] are hard.
Further, [AL13] shows that if the 3SUM conjecture is false, we get improved algorithms for
many of the same graph problems.

APSP Consequences. Further, the APSP conjecture’s truth would give lower bounds for
many problems in dense graphs [WW10] and for dynamic problems [RZ04]. [WW10] also
shows that the conjecture being false gives better algorithms for the dense graph problems.

k-CLIQUE Consequences. Finally, the fourth most recently emerging island seems to
based on explanatory power of the k-CLIQUE problem. The fastest known algorithm for
deciding if a graph has a k-CLIQUE (given its adjacency matrix) runs in time O(nωk/3), and
was discovered in 1985 [NP85] for k a multiple of three (for other k different ideas are needed
[EG04]). The parameterized version of the famous NP-hard MAX-CLIQUE problem [Kar72],
k-CLIQUE is one of the most heavily studied problems in theoretical computer science and
is the canonical intractable (W[1]-complete) problem in parameterized complexity and it is
known that refuting the k-CLIQUE conjecture deterministically would give a faster exact
algorithm for MAX-CUT [Wil05] (see [ABW15a] for a review of the copious evidence of
k-CLIQUE’s hardness and consequences of its algorithm’s exponent being improved). If,
on the other hand, the current running time can’t be improved and thus the k-CLIQUE
conjecture holds, recent work shows that the conjecture implies fine-grained hardness for

CHAPTER 2. THE FINE GRAINED WORLD: BACKGROUND 10

many practical problems such as parsing languages and RNA folding [ABW15a, BGL17,
BDT16, BT17].

These four problems are thus justified as core to Fine-Grained Complexity Theory since
their hardness props up the fine-grained hardness of many practical problems, yet remain
islands as they are not known to directly connect to each other (indeed, a barrier has been
shown for reducing OV to 3SUM or APSP as it would cause a surprising breakthrough in
Classical Complexity Theory [CGI+16]). Thus, as we attempt to connect Fine-Grained
Complexity Theory to the questions and applications considered in Classical Complexity
Theory, we will do so with respect to these four core problems and their conjectures.

2.3 Fine-Grained Easiness: Connecting to Classical

Complexity Through Fine-Grained Collapses

Either we win or we win, but we don’t know
which way we win.

Russell Impagliazzo

There is a precipice between two steep
mountains: the city is over the void, bound to
the two crests with ropes and chains and
catwalks... Suspended over the abyss, the life of
[the city’s] inhabitants is less uncertain than in
other cities. They know the net will last only so
long.

Italo Calvino, Invisible Cities

A common practice in Complexity Theory is “hedging our bets:” Since so few uncondi-
tional results are known in the field and much of our computational beliefs are suspended
by intricate webs of implications, we routinely plan for its possible collapse. By revealing
which interesting theorems would become unconditionally true if long-held popular conjec-
tures turned out to be false, we create “Win-Win” scenarios where either our conjectures
and all of their implications hold up or they collapse but leave us guaranteed breakthrough
theorems in their absence.

Fine-Grained Complexity Theory, since its recent inception, has been no different. In-
deed, one of the seminal works of the field shows that if the OV conjecture were false (thus
sinking one of Fine-Grained Complexity Theory’s four core islands along with all of the
fine-grained hardness for string processing problems it would have guaranteed) then we at
least have a breakthrough in Classical Complexity Theory as it would imply SETH is false

CHAPTER 2. THE FINE GRAINED WORLD: BACKGROUND 11

and thus that there are faster algorithms for the famous t-SAT problem [Wil05]. Further,
showing that OV or some of the fine-grained problems on its islands have faster algorithms
would yield circuit lower bounds [AHWW16, JMV15]. Thus, we see currently existing con-
nections from Fine-Grained Complexity Theory to Classical Complexity Theory in that if
fine-grained easiness occurs – that is, if the popular conjectures of fine-grained hardness that
prop up the field fail – then breakthroughs in Classical Complexity occur.

These types of results serve two purposes. The first purpose is one of hedging bets:
these results set up a Win-Win scenario so that either Fine-Grained Hardness and all of its
explanatory power for the hardness of practical problems exists or the young field and its
conjectures collapse yet leave surprising results in Classical Complexity. The second purpose
is supportive: the Classical Complexity Theory consequences that would occur if Fine-
Grained Complexity did collapse are not always ones we believe or are ones that we believe
are currently far out of our reach of proving, and thus Fine-Grained Complexity Theory is
not likely to collapse any time soon. This second purpose affords us even more explanatory
power for understanding why some practical polynomial problems have resisted speed-ups for
so long. For example, your attempts to get a slightly faster DNA sequencer have failed not
because you just need to be a little more clever in your isolated string processing problem,
but because if you succeeded you would have made a far-reaching breakthrough on long-
studied questions of Classical Complexity Theory. It further crucially allows us to use our
believed conjectures of Classical Complexity to support the core conjectures of Fine-Grained
Complexity.

But what about the other direction? Are the only connections achievable such that
Classical Complexity is, at worst, opportunistically banking on the fall of Fine-Grained
Complexity or, at best, playing a supportive role to it? Prior to the work presented in
this thesis, connections between Fine-Grained Complexity Theory and Classical Complexity
Theory have all been in one direction such that Classical Complexity supports Fine-Grained
Complexity (or, by contrapositive, would benefit from its collapse). But does Fine-Grained
Complexity Theory have anything to say about the conceptual and philosophical questions
posed by Classical Complexity Theory? What can be said within the Fine-Grained world of
the ability to launder computational hardness to attain more hardness? Or if this hardness
can be used to manufacture pseudorandomness? Or if it can be utilized for Cryptographic
purposes? Does the standing of the conjectures of the Fine-Grained world have any bearing
on the standing of those in the Classical one?

2.4 Connecting the Fine-Grained and Classical

Worlds

Thus far, we have seen that the utility of Fine-Grained Complexity Theory has either been
internal, where the field is interesting in its own right by connecting the computational
hardness of practical problems, or its utility lies in its collapse, where known connections to

CHAPTER 2. THE FINE GRAINED WORLD: BACKGROUND 12

Classical Complexity Theory are predicated on the suspect belief that the core conjectures
of the Fine-Grained world are actually false. What can we say if, as is increasingly believed,
the foundations of Fine-Grained Complexity hold steady and the field continues to flourish?
Is the field isolated to making claims about itself and can only draw connections within its
domain of “Hardness within P” with nothing to say about the Classical Complexity Theory
that precedes it and, indeed, that it is born out of?

We would like to make clear in this work that Fine-Grained Complexity Theory does
not exist in a vacuum (whether or not it is supported externally by Classical Complexity)
but instead that the hardness conjectures that it bases its entire field on have far-reaching
ramifications to both the deep questions about the nature of computation and the conjectures
of Classical Complexity Theory. More concretely, we will address the following fundamental
questions of Classical Complexity:

• Hardness Amplification: Can a problem that is hard in the worst-case scenario be
turned into one that is hard almost always?

• Cryptography: Can we utilize computational hardness to achieve a computational
advantage over adversaries?

• Derandomization: Can we decide the truth to as many questions in a world where we
didn’t have access to randomness as to one where we did?

The rest of this thesis will devote time to formalizing and addressing these questions from
the vantage point of Fine-Grained Complexity Theory.

– In Chapter 3 we will show that the core problems of the Fine-Grained world have fine-
grained hardness amplification schemes such that average-case hardness can be achieved
within P and we will discuss consequences of this.

– Chapter 4 will use the average-case fine-grained hardness to achieve the first Proofs of
Work, a core cryptographic primitive, that are guaranteed secure based on worst-case as-
sumptions – indeed, the assumptions will be core conjectures of Fine-Grained Complexity
Theory.

– Lastly, Chapter 5 will further use the average-case fine-grained hardness we achieved in
Chapter 3 to show that randomized polynomial computations can be significantly deran-
domized; this not only addresses the philosophical questions of the Classical world within
the Fine-Grained world, but shows core Fine-Grained conjectures imply core Classical
conjectures (e.g. the OV conjecture will have consequences for the ability to derandomize
BPP).

13

Chapter 3

Average-Case Fine-Grained Hardness

There is a large gap between a problem not
being easy and the same problem being difficult.
A problem could have no efficient worst-case
algorithm but still be solvable for “most”
instances, or on instances that arise in practice.

– Russell Impagliazzo [Imp95]

“We take some hard problems and try to make
them harder.” “You mean easier, right?” “No,
harder.”

– Andrej Bogdanov being asked by airport
security about his research, shortly
before being taken for questioning

In this chapter we present our work from [BRSV17a], which introduces functions that can
be computed in some fixed polynomial time but are hard on average for any algorithm that
runs in slightly smaller time, assuming widely-conjectured worst-case hardness for problems
from the study of fine-grained complexity. Unconditional constructions of such functions
are known from before [GGH94], but these have been canonical functions that have not
found further use, while our functions are closely related to well-studied problems and have
considerable algebraic structure.

We prove our hardness results in each case by showing fine-grained reductions from
solving one of three problems – namely, Orthogonal Vectors (OV), 3SUM, and All-Pairs
Shortest Paths (APSP) – in the worst case to computing our function correctly on a uniformly
random input.1 The conjectured hardness of OV and 3SUM then gives us functions that

1Since the writing of the work [BRSV17a] that is presented here, a similar result for k-CLIQUE has been
discovered in our work [CIS18] (which we will present in Chapter 5) and independently in [GR18a].

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 14

require n2−o(1) time to compute on average, and that of APSP gives us a function that
requires n3−o(1) time. Using the same techniques we also obtain a conditional average-case
time hierarchy of functions.

Based on the average-case hardness and structural properties of our functions, we outline
the construction of a Proof of Work scheme and discuss possible approaches to constructing
fine-grained One-Way Functions. We also show how our reductions make conjectures regard-
ing the worst-case hardness of the problems we reduce from (and consequently the Strong
Exponential Time Hypothesis) heuristically falsifiable in a sense similar to that of [Nao03].

3.1 Introduction

Since the 1970s we have had a notion of what we consider “easy” and what we consider
“hard.” Polynomial-time computable has long been synonymous to efficient and easy, while
showing a problem NP-complete was to condemn it as intractable. In our recent history,
however, this categorization has been called into question: SAT instances, the flagship of
NP-complete problems, are solved on the daily [BHvM09], while algorithms that run in as
little as quadratic time may be prohibitively expensive for some practical problems such as
DNA sequencing, due to large input sizes.

Thus, in the “real world,” our notions of easy and hard may not always align with our
classical views. The main problem here is our choice of analysis. For SAT, we classify it
as “hard” when it often may be more appropriately classified as “easy” because complexity
theory typically employs worst-case analysis. That is, we may be adhering to an overly-
pessimistc metric, when, in practice, the SAT instances we come across may be much more
benign. In part to combat this sort of problem, average-case complexity was introduced in
[Lev86]. By considering distributions over problem instances, we can at least hope to argue
about the performance of heuristic algorithms in practice.

Similarly, the practical hardness of a problem with quadratic time complexity is invisible
to our typical “coarse-grained” analysis that only distinguishes between polynomial and
not polynomial. Within the past decade, the field of fine-grained complexity has quickly
developed [Wil15, Wil18], mapping out (conditional) hardness of natural problems within P.
By introducing fine-grained reductions, a picture is emerging of a few main islands amongst
the web of reductions, giving us an increasingly clearer classification of the relative hardness
of fine-grained problems. Through such reductions, the more exact practical hardness of
problems, such as DNA sequencing’s quadratic time barrier [BI15], has been given evidence
for.

However, while average-case analysis and fine-grained analysis independently address
issues in classical complexity theory, average-case analysis is still coarse-grained and fine-
grained analysis is still worst-case. A more complete theory attempting to capture the
notion of “complexity” in our world should begin by marrying average-case and fine-grained
analysis.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 15

In this paper we do so by providing average-case fine-grained hardness conjectures and
show them to follow from widely conjectured worst-case assumptions on well-studied fine-
grained problems. Alternatively viewed, we give new routes for the falsifications of these
worst-case conjectures.

3.1.1 Our Results

We present fine-grained hardness amplification in the form of worst-case–to–average-case
fine-grained reductions from three main islands of fine-grained complexity theory (see Chap-
ter 5 for this achieved for a fourth island). We recall these three problems from Section 2.2
here to frame our work, and their relevance is discussed in Section 3.2.

• Orthogonal Vectors: The OV problem on vectors of dimension d (denoted OVd) is to

determine, given two sets U , V of n vectors from {0, 1}d(n) each, whether there exist
u ∈ U and v ∈ V such that 〈u, v〉 = 0 (over Z). (If left unspecified, d is to be taken to
be
⌈
log2 n

⌉
.)

• 3SUM: The 3SUM problem is to determine whether a given set S ⊂ {−n3, . . . , n3} of
size n contains three distinct elements a, b, c such that a+ b = c.

• All-Pairs Shortest Path: Given an edge-weighted (undirected or directed) graph on
n vertices, the APSP problem is to find the distances between every pair of vertices,
where edge weights are in {1, . . . , nc} for some sufficiently large c.

We give a family of polynomials over finite fields corresponding to each of these, called
FOV, F3SUM, and FZWT respectively, and conjecture these polynomials to be hard to
evaluate on uniformly chosen inputs. To support these conjectures we prove worst-case–to–
average-case fine-grained reductions from OV, 3SUM, and APSP to their respective families
of polynomials (where 3SUM reduces also to FZWT). Specifically, we show:

• If OV requires n2−o(1) time to decide in the worst-case, then FOV requires n2−o(1) time
to evaluate with probability 3/4 on uniformly chosen inputs.

• If 3SUM requires n2−o(1) time to decide in the worst-case, then F3SUM requires n2−o(1)

time to evaluate with probability 3/4 on uniformly chosen inputs.

• If APSP requires n3−o(1) time or 3SUM requires n2−o(1) time to decide in the worst-
case, then FZWT requires n3−o(1) time to evaluate with probability 3/4 on uniformly
chosen inputs.

Further, we conjecture a fourth family of polynomials, FTC, to also be average-case
hard and support this with fine-grained reductions from 3SUM, and APSP, and k-SAT.
The reduction from k-SAT makes FTC hard under the Strong Exponential Time Hypothesis
(SETH), which states that there is no ε > 0 such that k-SAT can be solved in time Õ(2n(1−ε))
for all values of k.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 16

• If either APSP requires n3−o(1) time, 3SUM requires n2−o(1) time, or SETH holds, then
FTC requires n3−o(1) time to evaluate with probability 3/4 on uniformly chosen inputs.

We note that SETH implies that OV requires n2−o(1) time to decide in the worst-case
and so FOV is also hard on average under the stronger assumption of SETH. Thus, FOV
and FTC are our mostly strongly supported average-case hardness results. FTC only can
become easy if SETH breaks and both 3SUM and APSP, while FOV, even with a broken
SETH, remains hard unless all first-order graph problems become easy since [GIKW17] shows
that all such problems reduce to OV.2

Our results crucially rely on the fact that the polynomials in FOV, F3SUM, FZWT,
and FTC have degree polylog(n), which is very low. This extremely low degree enables us
to invoke in a fine-grained way the classic random self-reducibility of evaluating low-degree
polynomials, first used to show the average-case hardness of computing the Permanent when
assuming its worst-case hardness [Lip89, FF91], or more generally to show local correctability
of Reed-Muller codes [GS92].

Beyond low degree, our polynomials are efficient to evaluate in time that tightly matches
their conjectured average-case hardness. These two properties are what distinguishes our
polynomials from näıvely representing a decision problem with a multilinear extension, which
has “low” degree n and, having exponentially many terms, can take exponential time to
compute, both of which are too large for our fine-grained analysis. Indeed, this technique
is generally thought of in resource-centric terms that considers hardness amplification for
exponential time complexity classes like E or EXP or for space-bounded classes like PSPACE
that have the resources to perform this näıve interpolation to attain a multilinear extension
[BFNW93]. The problem-centric nature of fine-grained complexity theory, then, steers us
to the main insight of this work of taking a very white-box look at the structure of spe-
cific problems from fine-grained complexity to tailor very low-degree efficiently-computable
polynomials to them. The matching upper and lower bounds are precisely what allows us
to capture the complexity of our problems in the fine-grained setting and open the door for
applications.

Extensions. We extend our results to a generalization of OV, called k-OV whose hardness
can also be based on the SETH. To this end, we define a corresponding polynomial FOVk
which is computable in Õ(nk) time in the worst-case. Using the same ideas as in the above
worst-case to average-case reductions we show:

• If k-OV requires nk−o(1) time to decide in the worst-case, then FOVk requires nk−o(1)

time to evaluate with probability 3/4 on uniformly chosen inputs.

We note that this yields a tight average-case time hierarchy: an average-case problem com-
putable in time nk but not much faster for every integer k (these can be extended to rational

2Technically this requires moderate-dimension OV, for which our results still apply to, and we need to
consider the generalization we introduce, FOVk, to account for all first-order graph properties.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 17

numbers through standard padding techniques). Unconditional average-case time hierar-
chies are known – e.g. [GGH94] – but these are based on canonical functions that have not
found further use than as a proof of this concept, while our functions are closely related to
well-studied problems and have considerable algebraic structure.

Building on [CPS99], we use local list decoding to show that our families of polynomials
remain hard even when asking for their successful evaluation on just a 1/polylog(n) fraction
of inputs. We extend this to attain a smooth trade-off between the running time and the
upper bound on the probability of success of any average-case solver. In subsequent work
[BRSV18], we extend this to prove a direct product theorem for the problem of evaluating
our polynomials. This is presented in Chapter 4.

We additionally show that FOV remains hard to evaluate even over very small field sizes
by applying an isolation lemma to OV, which may be of independent interest itself.

Applications. In achieving fine-grained average-case hardness, we pose the application of
creating fine-grained cryptography as an open problem but outline a structural barrier to
using the most natural methods of achieving them from our results. Despite not constructing
fine-grained one-way functions, we show that the structure of our problems can be leveraged
and combined with ideas from [Wil16] to create fine-grained cryptographic objects: we out-
line the construction of a Proof of Work scheme. This should be viewed as a proof of concept
for attaining Proofs of Work from worst-case hardness assumptions since the schemes pre-
sented here are very basic and don’t offer all the types of security one usually expects from
Proofs of Work. In subsequent work [BRSV18], we utilize the significant structure of our
fine-grained problems to achieve versatile and secure Proofs of Work. This is presented in
Chapter 4.

Finally, we note that these reductions set up a win-win scenario: either the worst-case
conjectures are true and we have average-case fine-grained hard problems or we can show
them easy and thus break our worst-case conjectures, allowing a breakthrough in fine-grained
complexity theory. We explore this notion further by considering the ideas introduced in
[Nao03] of falsifiable assumptions to show that our results make the OV, 3SUM, and APSP
conjectures falsifiable in a practical sense. Specifically, in Section 3.5.6 we show that empiri-
cally evaluating our polynomial for OV faster than we conjecture possible would give strong
heuristic evidence that SAT has faster worst-case algorithms – i.e. that the SETH is false.
In this sense, we discuss how our results allow for the heuristic falsifiability of conjectures.

Further applications of this work have been found and explored since the original publi-
cation of this work and we discuss some of them now in our Related Work section.

3.1.2 Related Work

Recently, and independently of our work, a sequence of papers [BK16b, GR18b, Wil16] has
also observed that a number of problems from the fine-grained world can be captured by
the evaluation of efficiently computable low-degree polynomials. The focus of these papers
has been on using the algebraic structure and low-degree of the polynomials to delegate

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 18

computation of fine-grained problems in quickly verifiable ways. The papers were not, how-
ever, concerned with the hardness aspects of complexity and made no average-case claims
or guarantees.

A key discovery, then, achieved here and independently in [BK16b, GR18b, Wil16], is the
utility of looking at the structure of specific computational problems to tailor very low-degree
polynomials that are efficiently computable to them. From the algorithmic perspective,
[BK16b, GR18b, Wil16] find utility for delegation of computation, while, from the hardness
perspective, we connect it to average-case complexity and applications thereof.

This gives a very rich framework that our results are applicable to, as our worst-case to
average-case reductions can be adapted in a straightforward way to work for any problem
appropriately expressible as a low-degree polynomial. Many other low-degree polynomials
for interesting practical problems are found in [BK16b, GR18b, Wil16], with [Wil16] inde-
pendently discovering our FOV polynomial and [BK16b] independently finding a polynomial
similar to our F3SUM. The work of [GR18b], in fact, identifies a natural class of “locally
characterizable sets” that contains problems admitting low-degree polynomials akin to the
ones considered here.

Our low-degree multilinear framework has spawned many works in the average-case hard-
ness of fine-grained problems and in delegating computation – e.g. [BBB19, Gol18, GR20,
GR18a] – and our posing of Fine-Grained Cryptography3 has led to work making progress
towards Fine-Grained Public-Key [LLW19].

Further, as average-case hardness is a precondition to attaining any sorts of cryptographic
objects or to laundering computational hardness into pseudorandomness for the purposes of
derandomization, the core results and frameworks of this paper have been used to achieve
strong Proofs of Work [BRSV18] and derandomization [CIS18] from worst-case fine-grained
assumptions. These are respectively discussed in Chapters 4 and 5 along with works related
to them.

Lastly, [GH16] recently shows that fine-grained problems related to DNA sequencing are
actually easy when given a batch of correlated instances. While these correlated instances
are not typically what we consider in average-case complexity, they are distributional notions
of inputs on fine-grained problems and so seems to be the closest existing work to average-
case fine-grained complexity that wasn’t directly inspired by the work presented here. The
techniques used, however, are very different and focused on attaining easiness for specific
problems with respect to specific distributions, whereas we focus on attaining hardness and
applications of hardness and do so within the emerging low-degree polynomial framework.
However, [GH16] can also be used to make claims similar to our notion of heuristic falsifia-
bility, suggesting that whenever the intersection of average-case complexity and fine-grained
complexity is considered it may immediately bear interesting fruit for this notion. We discuss
this further in Section 3.5.6.

3Here we mean Fine-Grained Cryptography in the sense of fixed polynomial time bounds, such as the
Hardness within P [Wil15] context this dissertation is rooted in. The term “Fine-Grained Cryptography”
has been used in different settings to talk about security against restricted circuit classes. This usage will
not be addressed in this work.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 19

3.1.3 Organization

For reference, our paper’s results are discussed as follows:

– Worst-case–to–average-case fine-grained reductions for the evaluation of our families of
polynomials FOV, F3SUM, FZWT, and FTC are in Section 3.3.1, Appendix A.3, Sec-
tion 3.3.2, and Section 3.3.3, respectively.

– An infinite average-case time hierarchy arising from the assumption of SETH and two other
hierarchies from the assumption of the k-SUM conjecture as discussed in Section 3.4.

– Definitions of fine-grained cryptography and one-way functions, a barrier to achieving
them from our results, and a possible way to bypass this barrier all in Section 3.5.

– Constructions of Proofs of Work guaranteed by worst-case hardness assumptions in Sec-
tion 3.5.5.

– Applications of our average-case results and Proofs of Work to the heuristic falsifiability
of worst-case assumptions, including SETH, in Section 3.5.6.

– Amplifying hardness of our average-case problems and smooth trade-offs between hardness
and running time in Appendix A.4.

– An isolation lemma for the Orthogonal Vectors problem that lets us perform our reductions
to polynomials over much smaller fields in Appendix A.5.

– Open problems in average-case fine-grained hardness, fine-grained cryptography, and the
heuristic falsifiability of assumptions in practice in Section 3.6.

3.2 Worst-Case Conjectures

We now recall the core problems of fine-grained complexity discussed in Section 2.2 and
conjectures about their worst-case hardness that we use to support our average-case hard-
ness conjectures. For a more comprehensive survey of fine-grained complexity, connec-
tions between problems, and formal definitions of concepts like fine-grained reductions,
see [Wil15, Wil18].

(All our discussion will be in the Word RAM model of computation with O(log(n))-
bit words. When we speak of randomized algorithms in a worst-case setting, we mean
algorithms that, for every input, output the correct answer with probability at least 2/3. And
unless specified otherwise, all algorithms and conjectures about algorithms are randomized
throughout the paper.)

3.2.1 Main Islands of Fine-Grained Complexity

First we recall the problems of OV, 3SUM, and APSP defined in Section 3.1.1. These problems
currently remain the three key problems of fine-grained complexity as they partition what is
known in the field. That is, there are no known reductions between them, but they reduce to

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 20

many other problems and, thus, give us the basis for what we generally call hardness within
P [Wil15]. This foundation is more formally given, after extensive attempts to find improved
algorithms for them, through the following popular hardness conjectures:

• OV Conjecture: For any d = ω(log n), any algorithm for OVd requires n2−o(1) time.

• 3SUM Conjecture: Any algorithm for 3SUM requires n2−o(1) time.

• APSP Conjecture: Any algorithm for APSP requires n3−o(1) time.

Remark 3.2.1. We note that while it is common to make these conjectures only for deter-
ministic algorithms, we see these as structural beliefs about the problems – that brute force
is essentially necessary as there is no structure to algorithmically exploit – and so there
is no reason to believe that allowing randomness will allow a significant speed-up. Indeed,
these conjecture are often made against randomized expected running time machines as in
[Wil15] and randomized one-sided error versions of SETH have been made in [DHW10] and
[CIKP03]. Further, [CFK+15] conjectures and argues for a SETH under randomized two-
sided error machines (as we apply to all of our conjectures for the use of worst-case to
average-case reductions).

These conjectures are not only important because they help stratify P, but the truth or
falsity of each of them has many ramifications to practical problems.

It has been shown that if the the OV conjecture is true, then many string processing
problems, hugely relevant to DNA sequencing and data comparison, also have hardness
bounds (typically sub-quadratic) [AWW14, ABW15b, BI15, BK15]. On the other hand, if a
sub-quadratic algorithm for OV is found, Williams [Wil05] gave a reduction to show we would
achieve improved algorithms for SAT; more specifically, the well-known Strong Exponential
Time Hypothesis (SETH) would break. Thus, as stated in Section 3.1.1, SETH implies the
OV conjecture.

(We note that the results in this paper still go through under a slightly weaker variant
of the OV conjecture: for all ε > 0, there is no O(n2−εpoly(d)) algorithm for OVd. This
problem, “Moderate Dimension” OV, was shown to be hard for the class of all first-order
graph problems in [GIKW17].)

Similarly, if the 3SUM conjecture is true, problems in computational geometry [GO95]
and exact weighted subgraph problems [AL13] are hard. Further, [AL13] shows that if the
3SUM conjecture is false, we get improved algorithms for many of the same graph problems.

Finally, the APSP conjecture’s truth would give lower bounds for many problems in dense
graphs [WW10] and for dynamic problems [RZ04]. [WW10] also shows that the conjecture
being false gives better algorithms for the dense graph problems.

Besides these three main islands of fine-grained complexity theory, a fourth seems to be
emerging based on the k-CLIQUE problem. With the current best algorithm solving the
problem in nωk/3 time [NP85], where ω is the matrix multiplication constant, there has been
recent work showing that conjecturing this to be optimal leads to interesting hardness results
for other important problems such as parsing languages and RNA folding [ABW15a, BGL17,

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 21

BDT16, BT17]. To explore delegating computation, [BK16b, GR18b, Wil16] all introduce
different families of polynomials to express the k-CLIQUE problem, yet none yield analysis
akin to those above. The polynomials either yield average-case hardness via our techniques
but cannot be computed efficiently enough to give matching upper bounds [GR18b, Wil16], or
they have too large of a degree for our worst-case to average-case reductions [BK16b]. In the
original publication of this work, we left open the problem of finding a family of polynomials
to represent k-CLIQUE that both are computable in time nωk/3 and have degree no(1). This
has now been solved in [CIS18], which will be presented in Chapter 5, and independently in
[GR18a].

3.2.2 Auxiliary Problems

For these practical connections, any reduction to or from the main island problems has
interesting consequences (see [Wil15, Wil18] for a more comprehensive treatment). In our
results we achieve reductions from these problems and, to help facilitate that, we recall two
more problems.

• Zero-Weight Triangle: Given an edge-weighted graph on n vertices, the ZWT problem
is to decide whether there exists a triangle with edge weights w1, w2, w3 such that
w1 + w2 = −w3, where edge weights are in {−nc, . . . , nc} for some sufficiently large c.

• Triangle-Collection: Given an graph on n vertices and a partition C of the vertices
into colors, the Triangle-Collection problem is to decide whether for each triple of three
colors a, b, c ∈ C, there exists vertices x, y, z in the graph that form a triangle and
x ∈ a, y ∈ b, and z ∈ c. That is, each triplet of colors is ‘collected’ by some triangle.

We will follow the approach in [CGI+16] of, at times, using ZWT as a proxy for both 3SUM
and APSP. That is, both reduce in a fine-grained way to ZWT: APSP reduces to (Negative
Weight Triangle [WW10] and then to) ZWT [VW09], and 3SUM has a randomized (which
suits our purposes) reduction to ZWT in [VW09, P1̌0]. Thus reducing from ZWT reduces
from both 3SUM and APSP simultaneously. It then follows that if either the 3SUM or APSP
conjecture are true, then ZWT requires n3−o(1) time.

Similarly, the Triangle-Collection problem is introduced in [AWY15] as a way to base hard-
ness on the believable conjecture that at least one of the SETH, 3SUM, or APSP conjectures
are true. To do this, they give fine-grained reductions from all three of k-SAT, 3SUM, and
APSP so that if any of their conjectures are true, then Triangle-Collection requires n3−o(1)

time.
In general, it is better to reduce from problems furthest down a chain of reductions, as

assuming those problems to be hard will then be the weakest assumption required - e.g.
assuming Triangle-Collection requires n3−o(1) time is a weaker assumption than assuming
that at least one of k-SAT, 3SUM, or APSP are hard. It is an interesting direction to base
average-case fine-grained hardness on increasingly weaker assumptions.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 22

For this reason, it would be desirable to reduce from some very practical DNA sequencing
problems (e.g. EDIT-DISTANCE and LCS) that are reduced to from OV (and thus k-SAT).
Further, there is mounting evidence that, regardless of the status of k-SAT’s complexity,
these DNA sequencing problems are in fact very likely to be hard [GIKW17, AHWW16].
We remark, however, that there is a barrier to representing these problems with low-degree
polynomials [Abb17]. Namely, representing them with low-degree polynomials would allow
for small speedups – i.e. by using the polynomial method [CW16] – but such speedups
(of just shaving some logarithmic factors off of the runtime) have been show to imply new
breakthroughs in circuit lower bounds [AHWW16].4

3.3 Average-Case Fine-Grained Hardness

We now define the notion of average-case complexity that we shall use and describe the
technique we use for our worst-case to average-case reductions. Then, we describe the prob-
lems we conjecture to be hard on average and show reductions from the worst-case problems
described in Section 3.2 in support of these conjectures.

Definition 1. A family of functions F = {fn} is computable in time t on average if there
is an algorithm that runs in t(n) time on the domain of fn and, for all large enough n,
computes fn correctly with probability at least 3/4 over the uniform distribution of inputs
in its domain.

For broader definitions that are more useful when one is concerned with whole classes of
problems rather than a handful of specific ones, and for extensive discussions of the merits
of the same, we refer the reader to Bogdanov and Trevisan’s survey [BT06a].

To achieve average-case hardness for our fine-grained problems, our main technique will
be to “express” these problems as low-degree polynomials and then use the random self-
reducibility of evaluating these polynomials to attain average-case hard problems.

We now recall the classic random self-reducibility of evaluating low-degree polynomials,
first used to show the average-case hardness of computing the Permanent when assuming its
worst-case hardness [Lip89, FF91]. We can more generally view this as the local correctability
of Reed-Muller codes first shown by Gemmell and Sudan [GS92] and get better error rates
using techniques from this perspective. We repeat the proof in Appendix A.1 in order to
accurately assess the running time of the algorithm involved.

Lemma 3.3.1. Consider positive integers N , D, and p, and an ε ∈ (0, 1/3) such that D > 9,
p is prime and p > 12D. Suppose that for some polynomial f : FNp → Fp of degree D, there

4Recent work seems to make make progress towards achieving average-case fine-grained hardness for
these sorts of string processing problems using techniques different from the ones used here [GK20], thus
bypassing the polynomial method barrier.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 23

is an algorithm A running in time t such that A is an average-case solver. That is,

Pr
x←FNp

[A(x) = f(x)] ≥ 1− ε

Then there is a randomized algorithm B that runs in time O(ND2 log2 p+D3 + tD) such
that B is a probabilistic worst-case solver. That is, for any x ∈ FNp :

Pr [B(x) = f(x)] ≥ 2

3

Remark 3.3.2. The range of ε being (0, 1/3) is arbitrary to some extent. It could be any
constant smaller than 1/2 at the cost of p having to be slightly larger.

Remark 3.3.3. An important thing to note here is how B’s runtime depends on f ’s degree
D. Assuming tD is the high-order term in the runtime, B runs in time O(tD). So if we want
our reductions to have low overhead, we will need D to be rather small. For our fine-grained
purposes, we need to be careful in what we consider “low” and we will see that we always
have D polylogarithmic in N .

We now introduce three families of polynomials that we conjecture average-case hard
to evaluate and then give evidence for this by reducing to them from the worst-case prob-
lems OV, ZWT, and Triangle-Collection, respectively, and then applying the random self-
reducibility of low-degree polynomials as just described. A fourth family of polynomials
arising from 3SUM can be seen in Appendix A.3. The landscape of these reductions is seen
in Figure 3.1.

3.3.1 Orthogonal Vectors

For any n, let p(n) be the smallest prime number larger than n2, and d(n) =
⌈
log2 n

⌉
(for

brevity, we shall write just p and d). We define polynomials fOVn : F2nd
p → Fp over 2nd

variables. We view these variables as representing the input to OV – we separate the variables
into two matrices U, V ∈ Fn×dp . The polynomial fOVn is then defined as follows:

fOVn(U, V) =
∑
i,j∈[n]

∏
`∈[d]

(1− ui`vj`)

A similar polynomial was used independently by Williams [Wil16] to construct coMA
proof systems for OV with efficient verifiers. Given an OV instance (U, V) ∈ {0, 1}2nd,
fOVn(U, V) counts the number of pairs of orthogonal vectors in it – for each pair i, j ∈ [n],
the corresponding summand is 1 if 〈ui, vj〉 = 0, and 0 otherwise (there is no modular wrap-
around of the sum as p > n2). Also, fOVn has degree at most 2d, which is rather low.

Define the family of polynomials FOV = {fOVn}. We show a worst-case to average-case
reduction from OV to FOV that, given an algorithm that computes fOVn well on average,
decides OV on instances of length n without much overhead. This is stated as the following
theorem.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 24

k-SAT

OV

FOV

3SUM

C3SUM

F3SUM

APSP

ZWT FZWT

TC

FTC

Figure 3.1: Arrows represent (fine-grained) reductions and dashed means they’re randomized.
Thus a dashed self-loop is a worst-case to average-case self-reduction. Our work introduces
FOV, F3SUM, FZWT, and FTC and the reductions involving them. See Appendix A.3 for
C3SUM and F3SUM.

Theorem 3.3.4. If FOV can be computed in O(n1+α) time on average for some α > 0, then

OV can be decided in Õ(n1+α) time in the worst case.

Proof. Suppose there were an algorithm A that ran in O(n1+α) time and computed fOVn
correctly on more than a 3/4 fraction of inputs for all large enough n.

In order to be able to use such an average-case algorithm, however, one has to be able
to write down inputs to run it on. These inputs to fOVn are in F2nd

p , and so to work with
them it is necessary to know p = p(n), the smallest prime number larger than n2. Further,
p would have to be computable from n rather efficiently for a reduction that uses A to be
efficient. As the following lemma states, this turns out to be possible to do.

Lemma 3.3.5 (Implied by [LO87]). The smallest prime number greater than m can be

computed deterministically in Õ(m1/2+α) time for any α > 0.

We will then use A and this lemma to decide OV as follows. Given an input (U, V) ∈
{0, 1}2nd, first compute p = p(n) – this can be done in Õ(n1+α) time by Lemma 3.3.5. Once p
is known, A can be used along with Lemma 3.3.1 to compute fOVn(U, V) in O(n(2d)2 log2 p+

(2d)3 + 2dn1+α) = Õ(n1+α) time, and this immediately indicates membership in OV as
observed above.

Corollary 3.3.6. If OV requires n2−o(1) time to decide, FOV requires n2−o(1) time to compute
on average.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 25

Note that our result is then tight under the OV conjecture in the sense that our polyno-
mial is computable in Õ(n2) time, but in no less (even on average) assuming sub-quadratic
hardness of OV. That is, we demonstrate a problem that is quadratic-computable but sub-
quadratic-hard on average. It should also be noted that our results can adapted the Moderate
Dimension OV problem (as mentioned in Section 3.2) and thus an appropriately parametrized
variant of FOV is average-case hard for the class of all first-order graph problems as defined
in [GIKW17].

3.3.2 3SUM and All-Pairs Shortest Path

Recall from Section 3.2 that both 3SUM and APSP have fine-grained reductions to ZWT,
and so we restrict our attention to ZWT. We now show a family of polynomials that can
count Zero Weight Triangles.

For any n, let p(n) denote the smallest prime number larger than n3 and let d =
dlog(2(2nc + 1))e + 3 (c being the constant from the definition of ZWT). We define the
polynomial fZWTn : Fn2d

p → Fp as taking in a set E of n2d variables where we split them
into n2 sets, wij, of d variables each for all i, j ∈ [n]:

fZWTn(E) =
∑

i,j,k∈[n]

∏
`∈[d]

(
1− (s` (wij, wjk)− s` (wik, 0 . . . 01))2

)
where s` : F2d

p → Fp is the polynomial such that if x, y ∈ {0, 1}d, then s`(x, y) equals
the `th bit of (x + y) as long as x and y represent numbers in [−nc, nc]. Such polynomials
exist, have degree at most 2d, and are computable in O(d log2 p) time – see Appendix A.2.
Further, wik represents the set of linear polynomials that toggle all the bits in a boolean
valued wij; so s` (wik, 0 . . . 01) effectively takes the one’s complement of wij and then adds
1, which is exactly the two’s complement of wij.

Now, considering a graph on n vertices with edges weighted from [−nc, . . . , nc]. We use
this polynomial to count zero weight triangles in it: For an edge-weight between nodes i and
j we decompose the value to its bit representation in two’s complement notation and now
have d boolean inputs for wij. If an edge does not exist between an i and j, we similarly put
the bit decomposition of the value 2nc+1 into wij (note that i = j is possible and we consider
there to not be an edge for this). Conceptually, we now have weights wij corresponding to a
complete graph on n vertices with the the non-edges added at weight 2nc+1. Note that each
triangle in it is zero weight if and only if it was a zero weight triangle in the original graph.
Thus, collecting these all together we have boolean input E ∈ {0, 1}n2d. This reduction
certainly takes sub-cubic time.

Then, given the binary representation of a ZWT instance, the `th term in the product
above checks whether the `th bit of the sum of wij and wjk equals that of the negation of wik.
If all d bits are equal, then, and only then, the summand is 1, otherwise it is 0. So the sum
counts the number of triples of distinct (i, j), (j, k), and (i, k) such that wij + wjk = −wik.
Also, the degree of fZWTn is at most 4d3 = O(log3 n).

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 26

Define the family of polynomials FZWT = {fZWTn}. The following theorem can be
proved identically to Theorem 3.3.4.

Theorem 3.3.7. If FZWT can be computed in O(n1.5+α) time on average for some α > 0,

then ZWT can be decided in Õ(n1.5+α) time in the worst case.

Corollary 3.3.8. If ZWT requires n3−o(1) time to decide, FZWT requires n3−o(1) time to
compute on average.

Thus, assuming the ZWT conjecture, using the fact that fZWTn has n3 terms and each
s` is computable in O(d) time, we again achieve tightness where FZWT is cubic-computable
but sub-cubic-hard. It is also worth noting that the following corollary frames our result in
the more familiar problems of 3SUM and APSP.

Corollary 3.3.9. If either 3SUM requires n2−o(1) time or APSP requires n3−o(1) time, then
FZWT takes n3−o(1) time to compute on average.

3.3.3 SETH, 3SUM, and All-Pairs Shortest Path

We now give our most encompassing worst-case–to–average-case result. Recall from Sec-
tion 3.2 that if any of k-SAT, 3SUM, or APSP are hard then the Triangle-Collection problem
is also hard [AWY15], thus so would be any polynomial based on it. We can hence focus
our attention on Triangle-Collection. More specifically, we will look at a restricted version
of the problem called Triangle-Collection∗ shown to be equivalent to Triangle-Collection in
[AWY15, Abb17], whose extra structure we will use to construct low-degree polynomials.

• Triangle-Collection*: Given an undirected tripartite node-colored graph G with n
colors and m = n log2 n+ 2n log4 n nodes and with partitions A,B,C of the form:

– A contains n log2 n nodes a`,i where i ∈ [n], ` ∈ [log2 n] and a`,i is colored with
color i.

– B (respectively C) contains n log4 n nodes b`,i,x (respectively c`,i,x) where i ∈
[n], ` ∈ [log2 n], x ∈ [log2 n] and b`,i,x (respectively c`,i,x) is colored with color i.

– For each node a`,i and colors j, k ∈ [n], there is exactly one edge from A to B of
the form (a`,i, b`,j,x) and exactly one edge from A to C of the form (a`,i, c`,k,y), for
some x, y ∈ [log2 n].

– A node b`,j,x can only be connected to nodes of the form c`,k,y in C. (There no
edges across disparate `’s.)

For all triples of distinct colors i, j, k, is there a triangle (u, v, w) in G where u has
color i, v has color j, and w has color k?

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 27

We now give a polynomial whose evaluation would allow us to decide Triangle-Collection∗.
For any n, let p(n) denote the smallest prime number larger than n3. We define the poly-
nomial fTCn : Fmp → Fp as taking in a set E of m = (n log2 n + 2n log4 n)2 variables
(corresponding to entries in the adjacency matrix of an input graph to the above problem):

fTCn(E) =
∑

1≤i<j<k≤n

∏
`,x,y∈[log2 n]
π∈S{i,j,k}

(
1− ea`,π(i),b`,π(j),xea`,π(i),c`,π(k),yeb`,π(j),x,c`,π(k),y

)

(Note that for a set X, SX denotes the set of permutations on X.)
Consider a tripartite graph as defined above with adjacency matrix E. For each triple

of colors, (i, j, k) ∈ [n]3, if there is a corresponding triangle in the graph then it zeroes out
that particular term, otherwise it will evaluate to one. Thus, fTCn counts the number of
colors not collected by a triangle – i.e. the number of violations to being a YES instance
– and so, for boolean E, fTCn(E) = 0 if and only if E corresponds to a YES instance of
Triangle-Collection∗. Moreover, the degree of fTCn is at most 18 log6 n.

Define the family of polynomials FTC = {fTCn}. The following theorem can be proved
identically to Theorem 3.3.4.

Theorem 3.3.10. If FTC can be computed in O(n1.5+α) time on average for some α > 0,

then TC can be decided in Õ(n1.5+α) time in the worst case.

Corollary 3.3.11. If TC requires n3−o(1) time to decide, FTC requires n3−o(1) time to com-
pute on average.

Thus, fTCn only having n3 many summands with each being computable in polylog(n)
time, it is easily seen that we again achieve tightness where FTC is cubic-computable but
sub-cubic-hard. More recognizably we attain the following.

Corollary 3.3.12. If either SETH holds, 3SUM takes n2−o(1) time, or APSP takes n3−o(1)

time, then FTC takes n3−o(1) time to compute on average.

Note that this does not subsume the hardness of FZWT as, even if SETH fails and 3SUM
and APSP become easy, the ZWT problem may still be hard and yield hardness for FZWT.

3.4 An Average-Case Time Hierarchy

In this section we present an infinite collection of generalizations of FOV that we conjecture
form an average-case time hierarchy. That is, for every rational number k the collection
contains a function FOVk such that FOVk is computable in Õ(nk) time, but (we conjecture)
requires nk−o(1) time to compute even on average. This conjecture is supported by SETH.
We describe these generalizations below and indicate how this follows from SETH for integer
values of k ≥ 2 and note that this can be extended to all rational numbers using standard
padding techniques.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 28

• k-Orthogonal Vectors: For an integer k ≥ 2, the k-OV problem on vectors of dimension
d is to determine, given k sets (U1, . . . , Uk) of n vectors from {0, 1}d(n) each, whether
there exist ui ∈ Ui for each i such that over Z,∑

`∈[d(n)]

u1` · · ·uk` = 0

(As with OV, if left unspecified, d is to be taken to be
⌈
log2 n

⌉
.)

Similar to how it implies the hardness of OV, (the randomized version of) SETH also
implies that for any integer k ≥ 2, any randomized algorithm for k-OV requires nk−o(1) time
– the proof is a natural generalization of that for OV [Wil05] and can be found in [Wil18].
We next take the same approach we did for OV and define for any integer k ≥ 2 a family of
polynomials FOVk =

{
fOVkn

}
, where with p being the smallest prime number larger than

nk and d =
⌈
log2(n)

⌉
, fOVkn : Fkndp → Fp is defined as:

fOVkn(U1, . . . , Uk) =
∑

u1∈U1,...,uk∈Uk

∏
`∈[d]

(1− u1` · · ·uk`)

Exactly as fOVn does, when fOVkn’s input is a k-OV instance from {0, 1}knd, then
fOVkn(U1, . . . , Uk) counts the number of sets of “orthogonal” vectors in it. Note that the
degree of fOVkn is at most kd. And also that by simply evaluating each summand and

adding them up, the polynomial can be evaluated in Õ(nk) time. The following theorem can
again be proven in a manner identical to Theorem 3.3.4.

Theorem 3.4.1. For any integer k ≥ 2, if FOVk can be computed in O(nk/2+α) time on

average for some α > 0, then k-OV can be decided in Õ(nk/2+α) time in the worst case.

Corollary 3.4.2. Suppose for every k ≥ 2, k-OV requires nk−o(1) time to decide. Then for
every such k, FOVk requires nk−o(1) to compute on average but can be computed in the worst
case in Õ(nk) time.

Thus, we can attain the hierarchy from an infinite number of conjectures, one for each k,
but, as noted earlier, the entire hierarchy is also implied by the single assumption SETH. We
note that for k-OV (and all other problems) we could näıvely express k-OV with a polynomial
via a multilinear extension, yet this polynomial, as discussed in Section 3.1.2, would have
exponentially many terms and degree n. Already the degree is too high for our purposes but
not by much: we may not be too disappointed with n(k−1)−o(1) average-case hardness that
degree n would still afford us. The main problem then is that the näıve polynomial may take
exponential time to compute and so the upper bound is very far from the lower bound. The
tightness of our hierarchy is a key feature then in capturing the hardness of our problems as
well as for use in applications such as in Section 3.5.5 and in [BRSV18].

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 29

Remark 3.4.3. We can also attain two semi-tight hierarchies from generalizations of the
3SUM problem. That is, if we assume the k-SUM conjecture proposed in [AL13], we get
hardness for two infinite hierarchies, with one based on generalizing FZWT and one from
generalizing a polynomial introduced in Appendix A.3, F3SUM (the proper generalizations
can be based on problems found in [AL13]). These hierarchies, however, are loose, in that
the k-SUM conjecture gives us

(
ndk/2e−o(1)

)
hardness at the kth level but, to our knowledge,

our generalized polynomials are only Õ(nk−1) computable (as they have nk−1 many terms).

3.5 Towards Fine-Grained Cryptography

Average-case hardness has frequently found use in cryptography, where it is in fact a necessity
– it is almost always required that a cryptographic object be hard to defeat on average for it to
be useful. In this light, it is a natural question to ask whether the worst-case to average-case
reductions presented here, along with the conjectured hardness of the worst-case problems,
can be used to do cryptography.

Of course, since these problems are actually computable in polynomial time, one cannot
expect to use them to construct standard cryptographic objects, which have to be secure
against all polynomial time adversaries. We hence consider fine-grained cryptography, where
we only ask for security against adversaries that run in some fixed polynomial time.

A major reason for interest in such notions is that a form of cryptography might be real-
izable even in Impagliazzo’s Pessiland (or Heuristica or even Algorithmica) [Imp95]. That is,
even if we live in a world where One-Way Functions or “coarse-grained” average-case hard-
ness do not exist, it may still be possible to construct fine-grained cryptographic objects and
salvage practical cryptography. Further, even if we do have standard cryptography, it may
be the case that fine-grained cryptography can use weaker assumptions as it only needs to
be secure against moderately powerful adversaries. Though not done so very extensively and
not done from the sort fine-grained complexity in [Wil15, Wil18], such notions have indeed
been considered several times before – see for instance [Mer78, H̊as87, Mau92, DVV16].

In this section we define a notion of fine-grained cryptography in Section 3.5.1, show a
structural barrier to achieving it in Section 3.5.2, and outline as an open problem a pos-
sible approach to circumventing this barrier in Section 3.5.3. While this outline has not
yet yielded fine-grained one-way functions, we use its techniques in Section 3.5.5 to give a
proof of concept that Proofs of Work can be achieved from worst-case fine-grained hardness
assumptions. We have since expanded on this in [BRSV18] to achieve versatile and strongly
secure PoWs which we will dedicate Chapter 4 to discussing.

3.5.1 Fine-Grained One-Way Functions

To illustrate the kinds of objects, approaches, and difficulties fine-grained cryptography
might involve, we consider the case of One-Way Functions (OWFs). A fine-grained OWF

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 30

would capture the same concept as a standard OWF – easy to compute yet hard to invert –
but with a more fine-grained interpretation of “easy” and “hard”.

Definition 2. We say a function f : {0, 1}∗ → {0, 1}∗ is (t, ε)-one-way if it can be computed
in O(t(n)1−δ) time for some δ > 0, but for any δ′ > 0, any O(t(n)1−δ

′
)-time algorithm A,

and all sufficiently large n,

Pr
x←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

]
≤ ε(n, δ′)

One approach to constructing such OWFs (that has perhaps been part of folklore for
decades) is as follows: Take one of our hard-on-average to evaluate polynomials – e.g. fOVn
– and suppose there was an input-output sampling algorithm S ≡ (S1, S2) that runs in
sub-quadratic time in n such that, on uniform input r, S1(r) is distributed uniformly over
the appropriate domain, and S2(r) = fOVn(S1(r)). By our results it can be seen that S1 is
(n2, 3/4)-one-way if we assume the OV conjecture (strengthened to assume hardness for all
sufficiently large input sizes).

3.5.2 Barriers and NSETH

However, as stated, there turn out to be certain barriers to this approach. For instance, if
S(r) = (x, y), then r would be a certificate that fOVn(x) = y that can be verified in sub-
quadratic time. In particular, if x ∈ {0, 1}2nd is a NO instance of OV, then r is a certificate
for this that is verifiable in deterministic sub-quadratic time – i.e. that fOVn(x) = 0.

Further, tracing this back through the reduction of k-SAT to OV (see [Wil18]), this gives
us a certificate for NO instances of k-SAT (for any k) that are verifiable in O(2n(1−ε)) time
for some ε > 0 – i.e. short and quickly verifiable certificates for CNF-UNSAT instances.
Interestingly, the impossibility of this was recently conjectured and formalized as NSETH
(the Non-deterministic Strong Exponential Time Hypothesis) in [CGI+16] along with the
establishment of its barrier status: its falsification would yield breakthroughs in both circuit
complexity and proof complexity.

An alternative view of matters would be that this presents another approach to break-
ing NSETH. In fact, something weaker would suffice for this purpose – one only needs a
sampler that runs in sub-quadratic time and samples (x, fOVkn(x)) for some k such that the
distribution of x has {0, 1}knd in its support.

Note that while a sampler based on OV would, because of its relation to k-SAT, break
NSETH, a sampler based on ZWT would only yield quick deterministic certification for
APSP instances (the reduction from 3SUM is randomized). So we are left with much weaker
“barriers” for F3SUM and FZWT samplers. Indeed, [CGI+16]’s introduction of NSETH was
in a direction opposite to ours: while we explore NSETH to argue that OV is unlikely to have
small co-nondeterministic complexity because of its relationship to SAT, they introduce it
to argue that 3SUM and APSP are unlikely to have a relationship to SAT (as OV does) by
showing them to actually have small co-nondeterministic complexities. Thus they explicitly
break both “barriers” for a F3SUM or FZWT sampler!

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 31

Still, FOV is much simpler algebraically and so seems to hold more hope for constructing
a fine-grained OWF in this manner. We now discuss ways in which we may still salvage a
sampler for FOV.

3.5.3 A Way Around

There are visible ways to skirt this NSETH barrier: Suppose that the sampler S was not
perfect – that with some small probability over r it outputs (x, y) such that fOVn(x) 6= y.
Immediately, NSETH no longer applies, as now an r such that S(r) = (x, y) may no longer
be a sound certificate that fOVn(x) = y. And, as explained below, such a sampler still gives
us a fine-grained distributional OWF based on the hardness of OV as long as the probability
that it is wrong is small enough.

Informally, a distributional OWF is a function f such that f(x) is easy to compute, but
for most y’s it is hard to sample a (close to) uniformly random x such that f(x) = y. A
distributional OWF might not be a OWF itself, but it is known how to derive a OWF from
any distributional OWF [IL89]. And further, this transformation works with quasi-linear
overhead using constructions of hash functions from [IKOS08].

We claim that S1 is now a fine-grained distributional OWF. Intuitively, if it were not, then
we would, for many x, be able to sub-quadratically sample r almost uniformly from those
obeying S1(r) = x. But, since the probability over r is low that S errs, the r we sampled is
likely a non-erring one. That is, it is likely that we would have sub-quadratically obtained an
r that gives us S2(r) = fOVn(x) and thus we likely can sub-quadratically compute fOVn(x).
So if fOVn is actually hard to compute on average, then such a distributional inverter cannot
exist.

While, as mentioned earlier, such an erring sampler would no longer give efficiently
verifiable certificates for NO instances of OV, it turns out that it would still yield a “barrier”
of a coAM protocol for OV with sub-quadratic verification.

First we note that we get an AM protocol with a sub-quadratic time verifier that takes
input (x, y) and proves that fOVn(x) = y, and is complete and sound for most values of x.
Since the sampler is wrong with only with a very small probability over r, most values of x’s
have the property that most values of r satisfying S1(r) = x also satisfy S2(r) = fOVn(x). In
the protocol with input (x, y), the verifier simply asks the prover to prove that for most r’s
such that S1(r) = x, it is also the case that S2(r) = y. If S1 is indeed distributed uniformly,
then this comes down to proving a lower bound on the number of r’s such that S1(r) = x
and S2(r) = y, and this can be done in AM using the protocol from [GS86], in a single round
(verifier sends a message and prover responds) and with the verifier running in sub-quadratic
time. With a little more analysis and appropriate setting of parameters, this protocol can
be shown to work even if S1 is only close to uniform.

Further, from this protocol one can get a protocol that works for all values of x by
following the approach in the proof of Lemma 3.3.1 – given an input (x, y), the verifier runs
the random self-reduction for x and, for each evaluation query to fOVn that comes up in its
course, it asks the prover for the answer along with an AM proof of its correctness. Thus,

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 32

done all at once, this gives a single-round coAM protocol for OV with a sub-quadratic time
verifer (this is when y = 0). This in turns leads to a single-round coAM protocol for k-SAT

with a verifier that runs in Õ(2n(1−ε)) time for some ε > 0.
The impossibility of the existence of such a protocol could be conjectured as a sort

of AM[2]SETH. Williams [Wil16] gives a non-interactive MA protocol that comes close to
breaking this conjecture, but standard approaches for converting MA protocols to AM pro-
tocols [Bab85] seem to incur a prohibitively large overhead in our fine-grained setting.

We next detail the MA protocol from [Wil16] to pose an open problem of efficiently
converting this to an AM protocol, thus breaking the barrier to an erring sampler (and thus
a fine-grained OWF) with the further hope such a sampler could be “reverse-engineered”
from an AM protocol. In Section 3.5.5, show how this MA protocol is already useful to our
framework by constructing Proofs of Work.

3.5.4 An MA Protocol

We briefly describe the MA protocol for fOVn achieved in [Wil16], where a more general
protocol and framework can be found. Recall that the objective of the prover is to convince
the verifier that, for given (x, y), fOVn(x) = y. We will expand x into (U, V) ∈ Fn×dp ×Fn×dp ,
which is the syntax we used when defining fOVn as:

fOVn(U, V) =
∑
i,j∈[n]

∏
`∈[d]

(1− ui`vj`)

For a fixed V , we define the supporting polynomial fOVV : Fdp → Fp as:

fOVV (x1, . . . , xd) =
∑
j∈[n]

∏
`∈[d]

(1− x`vj`)

Now we may write fOVn as:

fOVn(U, V) =
∑
i∈[n]

fOVV (ui1, . . . , uid)

Next let φ1, . . . , φd : Fp → Fp be the polynomials of degree (n − 1) such that for
i ∈ [n], φ`(i) = ui` (treating i as an element of Fp). Define the polynomial RU,V (x) =
fOVV (φ1(x), . . . , φd(x)). We can then write:

fOVn(U, V) =
∑
i∈[n]

RU,V (i)

The degree of RU,V is at most (n− 1)d. If the verifier knew the coefficients of RU,V , then

it could evaluate it on the points {1, . . . , n} in time Õ(nd) (using fast techniques for batch
evaluation on univariate polynomials [Fid72]) and thus compute fOVn(U, V). This suggests

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 33

the following protocol. The prover sends over the coefficients of a polynomial R∗ that it
claims to be RU,V .

To verify this claim, the verifier checks whether R∗(x) = RU,V (x) for a random x ∈ Fp.
This can be done because even though the verifier does not know the coefficients of RU,V ,

it can evaluate it at an input x in time Õ(nd) by first evaluating all the φ`(x)’s (these
polynomials can be found using fast interpolation techniques for univariate polynomials
[Hor72]), and then evaluating fOVV using these values. By the Schwartz-Zippel lemma,
since the field is considerably larger than the degree of R∗ and RU,V , if these are not the
same polynomial, the verifier will catch this with high probability. If this check passes, the
verifier uses R∗ to compute fOVn(U, V).

We pose the open problem of using the ideas of this protocol to construct an AM protocol
that does the same. Further we pose the problem of creating an erring sampler from such a
protocol, or more generally constructing a fine-grained OWF. We now show two applications
of our results. In Section 3.5.5, we show how to use the existing MA scheme to realize the
concept of Proofs of Work and in Section 3.5.6 we will use this to introduce the concept of
Heuristic Falsifiability. While we focus on FOV, these applications can similarly be made
for F3SUM, FZWT, and FTC (and FOVk from Section 3.4).

3.5.5 Proofs of Work

A Proof of Work (PoW) scheme is a means for one party (that we call the Prover) to prove
to another (called the Challenger) that it has expended a certain amount of computational
resources. These were introduced by Dwork and Naor [DN92] as a means to deter spam mail
and denial-of-service attacks, and have also found use in cryptocurrencies [Nak08]. Here we
formulate a simplified definition of a PoW scheme to illustrate how our results could be used
in this context. This will be for ease of exposition and as a proof of concept; for a more
detailed definition and a more robust and intricate construction, see Chapter 4. A PoW
scheme consists of three algorithms:

• Challenge(1n) takes a difficulty parameter n and produces a challenge c of this difficulty.

• Solve(c) solves the challenge c and produces a solution s.

• Verify(c, s) verifies that s is a valid solution to the challenge c.

The idea is that when the challenger wants the prover to work for a certain amount of time
(and prove that it has done so), it runs Challenge with the appropriate difficulty parameter
to generate a challenge c that it sends over. The prover is then required to produce a solution
s to the challenge that the challenger verifies using Verify.

Intuitively, our average-case hardness results for fOVn says that random inputs, thought
of as challenges, must require a certain amount of work for a prover to evaluate fOVn on.
Then, the MA protocol in Section 3.5.4 gives a quick way for the challenger to verify a
solution.

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 34

Definition 3. The triple of algorithms (Challenge, Solve,Verify) is a Proof of Work (PoW)
scheme if the following properties are satisfied:

• Challenge and Verify are computable in time s(n).

• Solve is computable in time t(n) and Verify(c, Solve(c)) = 1. (t(n) > s(n))

• There are constants ε, ε′ ∈ [0, 1] such that for any A and n satisfying:

Pr
c←Challenge(1n)

[Verify(c, A(c)) = 1] ≥ ε

it is the case that A takes time at least t′(n) on a ε′ fraction of challenges of difficulty
n. (t′(n) > s(n). Ideally, t′(n) ≈ t(n).)

We want Challenge and Verify to be efficiently computable so that the challenger does not
have to do too much work in this process. We want Solve to be more expensive but not by
too much so that the prover can indeed produce a valid solution, albeit with more work than
that done by the challenger. The lower bound on the difficulty of producing valid solutions
ensures that the prover actually has to spend a certain amount of time on this task and that
its production of a valid solution is proof that it has spent this time.

While above we use time as the computational resource of interest as we are working in
the Word RAM model, these specifications can be in terms of other resources such as space,
circuit size, etc. when working in other models. For different applications, there could also
be other properties that might be desirable in such schemes such as resistance to parallelism,
non-batchability, etc., but we shall ignore these for now.

The MA protocol for fOVn along with our average-case reductions can be used to con-
struct a PoW scheme based on the hardness of OV as follows.

• Challenge(1n) samples a random input (U, V) ∈ F2nd
p to fOVn.

• Solve((U, V)) outputs the coefficients of RU,V (as defined in Section 3.5.4).

• Verify((U, V), R∗) checks that R∗(x) = RU,V (x) for a random x ∈ Fp.

By the arguments in Sections 3.3.1 and 3.5.4 regarding the verifier in the MA protocol,
both Challenge and Verify above can be computed in Õ(n) time. Solve can be computed

in Õ(n2) time either by using the explicit expression for RU,V , or by evaluating RU,V on
sufficiently many points using the φ`’s and fOVV and interpolating to find its coefficients.

On the other hand, if any algorithm A produces R∗ that passes Verify with probability,
say, 5/6 (over the uniform distribution of (U, V)), then by the soundness of Verify it follows
that A is actually producing RU,V with almost the same probability. As noted earlier, given

the coefficients of RU,V , fOVn(U, V) can be computed in Õ(nd) time. So A can be used to

compute fOVn correctly on average with an additive Õ(nd) overhead.
Corollary 3.3.6 now implies that if OV is hard for sub-quadratic algorithms, then A cannot

be sub-quadratic and correct on more than a 3/4 fraction of inputs. This leaves at least a

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 35

5
6
− 3

4
= 1

12
fraction of inputs where A takes Ω(n2−o(1)) time. These numbers can be improved

by repetition and by considering the better reductions from Appendix A.4.
Thus, based on the conjectured hardness of OV, the above is a PoW scheme where a party

can prove to a challenger that it has run for a certain amount of time where the challenger
only has to run for about a square-root of this amount of time. This construction has since
been extended and strengthened in our work [BRSV18], which is the subject of Chapter 4.

Remark 3.5.1. We note that OV is non-batchable due to downward self-reducibility. For
instance, let `(n) = O(n1−ε) for some ε > 0. If there is a batch evaluation algorithm that can
solve `2(n) instances of size n/`(n) in time at most O(n2−δ) for some δ > 0, then OV on an
input (U, V) can be solved in sub-quadratic time by partitioning the U and V into `(n) sets
of size n/`(n) each and running this algorithm on all pairings of these partitions together.

[BRSV18] has generalized this to show that fOVn (as well as the above PoW) is non-
batchable in the average-case. This is done by showing a direct product theorem for FOV.
That is, multiple instances makes the probability of success drop exponentially, and so our
results are amenable to non-trivial hardness amplification techniques. This will be covered in
Chapter 4.

3.5.6 On the Heuristic Falsifiability of Conjectures

The above Proof of Work yields a Win-Win in the domain of algorithms and complex-
ity. Namely, either we have a PoW or we have the existence of a provably sub-quadratic
prover that can convince the challenger with sufficient probability which will in turn yield
breakthroughs: a randomized sub-quadratic time algorithm for OV and thus a randomized
2n(1−ε) time algorithm for k-SAT for some ε > 0. In particular, because the hardness of
the PoW is over random instances, even a prover that can be empirically demonstrated to
be sub-quadratic in practice will give heuristic evidence that the conjectured hardness of
OV or k-SAT is false. In other words, if the above PoW is empirically (after working out
the constants hidden by Big-Oh notation) insecure, then (randomized) SETH is heuristically
falsified.

This notion of heuristic falsifiability sits directly at the marriage of average-case and
fine-grained complexity that we accomplish: Without average-case results, a worst-case con-
jecture could not be broken without a full proof that an algorithm works on all inputs, and,
without fine-grained results, a conjecture on large time complexity like SETH could not be
feasibly be broken in practice. Thus, it is precisely average-case fine-grained hardness that
allows us to discuss the heuristic falsifiability of conjectures. While theory and practice
can often influence each other indirectly, this marks an interesting connection, akin to the
hard-sciences, in which empirical evidence can give concrete and parameterizable theoretical
evidence.

Remark 3.5.2. We note that while some may try to claim that SETH is already being fal-
sified in practice - e.g. that we might seem to run in 2

√
n time on practical inputs - there

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 36

are two main points in which this is different than our heuristic falsifiability. One point is
that, from our worst-case to average-case reductions, our notion would be heuristically break-
ing the worst-case version of SETH and achieve a complexity theoretic claim, as opposed to
heuristically breaking an average-case notion of SETH on “nature’s distribution” of “prac-
tical” inputs, which only says a heuristic claim on how we perform in practice. Secondly,
claims of breaking even such an average-case notion of SETH in practice cannot be given
too much confidence to since the input sizes must remain very small to be feasible and so
not many “data points” can be gathered to see the true shape of the exponential curve. In
contrast, our heuristic falsifiability reduces to a quadratic time problem, so that many more
“data points” can be gathered for runtimes on much larger input sizes, giving us much more
confidence as to if we heuristically break OV’s conjecture and thus SETH.

To put this observation in more concrete terms, we consider [Nao03] in which Moni
Naor introduced a stronger notion of falsifiable assumptions: Informally, an assumption A
is efficiently falsifiable if there is an efficiently samplable distribution of challenges and an
efficient verifier of solutions to these challenges such that, if and only if A is false (we consider
the “only if” case), there is an efficient algorithm which causes the verifier to accept with
high probability over the challenge distribution.

In our case, any algorithm that solves FOV in sub-quadratic time falsifies the conjectured
hardness of FOV and thus OV and thus SETH. The sampler simply uniformly draws a set
of inputs for fOVn, and the verifier simply evaluates fOVn on the instances and compares
with the sub-quadratic prover’s answer.

Further, the problem underlying the PoW (to output a polynomial for a given fOVn
instance) is falsifiable with the added property that both the sampler and the verifier run
in sub-quadratic time. Thus to heuristically falsify SETH, a challenger may deploy PoW
challenges out into the world and, if they’re often prematurely solved, we gather empirical
evidence against SETH. Note that this can similarly be done for 3SUM and APSP as their
polynomials can also be used for PoWs.

We note that interesting applications of heuristic falsifiability may be inherent to the
intersection of average-case complexity and fine-grained complexity: One of the only other
works we are aware of that might be considered average-case fine-grained analysis, [GH16],
immediately yields results that notions of heuristic falsifiability can apply to. That is, [GH16]
shows that fine-grained problems related to DNA sequencing are actually easy when given a
batch of correlated instances; thus, this analysis is average-case over a specific distribution
of correlated instances for a fine-grained problem. This distribution for which easiness is
achieved, however, is motivated to be “realistic” by the correlation of the instances attempt-
ing to match current evolutionary theory and how mutations occur within a phylogenetic
tree. Thus, if a distribution over correlated instances matches well a theory of evolution yet
[GH16]’s algorithm consistently under-performs on real-life data, this may suggest our cur-
rent theory of evolution is wrong. Again, we can (efficiently) test a hypothesis in a concretely
parameterizable way and gather evidence against it.

We find it interesting that combining average-case and fine-grained complexity seems to

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 37

almost immediately bear interesting fruit in the context of heuristic falsifiability. We pose it
as an open question to find more ways in which the “scientific method” can be introduced
into the highly theoretical field of complexity theory so that conjectures can tested to give
concrete parameters for our confidences for them.

3.6 Open Questions

To our knowledge, our work is the first to attain average-case results in the young field of
conditional fine-grained complexity as described in [Wil15, Wil18], and there are many ripe
questions to ask of average-case fine-grained complexity. Below we reproduce the list of open
questions posed in the publication of [BRSV17a], which this chapter is based on. We add a
note for partial answers that have been achieved since [BRSV17a]’s initial publication:

1. Can other low-degree polynomials be found for other interesting problems in the fine-
grained world to match conjectured worst-case lower bounds on them – e.g. can
k-CLIQUE reduce to evaluating a family of polynomials that are both computable
in time nωk/3 and have degree no(1)?

A polynomial for k-CLIQUE has since been found in both [GR18a] and [CIS18]. Chapter
5 will specifically cover the work of [CIS18] and the explicit construction of k-CLIQUE’s
polynomial appears in Appendix C.1. Finding a polynomial for k-SUM that is com-
putable in ndk/2e to match k-SUM’s efficiency is still an important open question.

2. Are there samplable distributions over which well-studied problems like 3SUM, OV,
etc. are hard on average? Towards this, is it possible to reduce any of our polyno-
mial families back to the problems they came from or to problems further down their
reduction chain?

While it still remains difficult to achieve average-case hardness for the original fine-
grained problems we’re concerned with themselves, [GK20] recently gives direct prod-
uct theorems for string processing problems like EDIT-DISTANCE and Longest Com-
mon Subsequence and [GR18a, BBB19] achieve average-case hard distributions for the
counting version of k-CLIQUE. Achieving average-case hardness for more of the prob-
lems from fine-grained complexity and doing so for their conventional decision-problem
form may still be very fruitful.

3. Are there any other worst-case to average-case reduction techniques that might be
interesting in the fine-grained world?

As mentioned above, [GK20] gives fine-grained direct product theorems for fine-grained
problems as does [BRSV18] which will be covered in Chapter 4. A larger toolkit of
worst-case–to–average-case reductions, especially in the fine-grained world, would still
be very useful.

4. Classically, generic derandomization from worst-case hardness assumptions proceeds
in two steps: Achieving average-case hardness from worst-case hardness, and achieving

CHAPTER 3. AVERAGE-CASE FINE-GRAINED HARDNESS 38

strong pseudorandom generators from average-case hardness. In this paper we achieve
the first step in a fine-grained way. Can pseduorandom generators be achieved in a
fine-grained way from our average-case hardness?

[CIS18] strongly answers this in the affirmative. This work is covered in Chapter
5 and, from core worst-case fined-grained assumptions, improves over the strongest
derandomizations possible under uniform assumptions at the time of its publication.
There is still a significant amount of room for improvement, however, as discussed in
the Open Questions of Section 5.4.

5. Is it possible to construct a single-round coAM protocol for OV (or for FOV) with a
sub-quadratic time verifier (or for k-SAT with a 2(1−ε)n-time verifier)?

6. Can we construct a fine-grained OWF from worst-case hardness assumptions? Is it
possible to realize it from an AM protocol for FOV as discussed in Section 3.5.3?

[LLW19] makes progress towards public-key fine-grained Cryptography, although using
very different techniques and using average-case fine-grained assumptions. This area
still has much room for exploration.

7. Standard OWFs are sufficient for secret-key cryptography as they are equivalent to
Pseudorandom Generators and Pseudorandom Functions [HILL99, GGM86]. What
similar equivalences hold in the fine-grained world and what fine-grained cryptography
can be accomplished from fine-grained OWFs? More generally, what standard crypto-
graphic results translate over to fine-grained cryptography and are there any that hold
only in the fine-grained world?

8. Can we heuristically falsify any of the three big worst-case fine-grained conjectures
(from Section 3.2)? Are there other ways in which we can develop techniques for
practice to influence theory and give concrete and parameterizable theoretical evidence?

39

Chapter 4

Proofs of Work From Worst-Case
Assumptions

While the NP complete problems show promise
for cryptographic use, current understanding of
their difficulty includes only worst case analysis.
For cryptographic purposes, [average-case]
computational costs must be considered.

– Whit Diffie and Martin Hellman [DH76]

The problem of good cipher design is essentially
one of finding difficult problems... This is a
rather unusual situation, since one is ordinarily
seeking the simple and easily soluble problems
in a field.

– Claude Shannon [Sha49]

In this chapter we present our work first published in [BRSV18], which expands on the
ideas of Chapter 3 and uses the average-case fine-grained hardness achieved there to construct
Proofs of Work (PoWs) whose hardness is based on well-studied worst-case assumptions
from fine-grained complexity theory. The past chapter, covering the work of [BRSV17a],
built PoWs that are based on the Orthogonal Vectors, 3SUM, and All-Pairs Shortest Path
problems. These, however, were presented as a ‘proof of concept’ of provably secure PoWs
and did not fully meet the requirements of a conventional PoW: namely, it was not shown
that multiple proofs could not be generated faster than generating each individually. We use
the considerable algebraic structure of these PoWs to prove that this non-amortizability of
multiple proofs does in fact hold and further show that the PoWs’ structure can be exploited
in ways previous heuristic PoWs could not.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 40

This creates full PoWs that are provably hard from worst-case assumptions (previously,
PoWs were either only based on heuristic assumptions or on much stronger cryptographic
assumptions (Bitansky et al., ITCS ’16)) while still retaining significant structure to enable
extra properties of our PoWs. Namely, we show that the PoWs of Chapter 3 can be modified
to have much faster verification time, can be proved in zero knowledge, and more.

Finally, as our PoWs are based on evaluating low-degree polynomials originating from
average-case fine-grained complexity, we prove an average-case direct sum theorem for the
problem of evaluating these polynomials, which may be of independent interest. For our
context, this implies the required non-amortizability of our PoWs.

4.1 Introduction

Proofs of Work (PoWs), introduced in [DN92], have shown themselves to be an invaluable
cryptographic primitive. Originally introduced to combat Denial of Service attacks and
email spam, their key notion now serves as the heart of most modern cryptocurrencies (when
combined with additional desired properties for this application).

By quickly generating easily verifiable challenges that require some quantifiable amount
of work, PoWs ensure that adversaries attempting to swarm a system must have a large
amount of computational power to do so. Practical uses aside, PoWs at their core ask a
foundational question of the nature of hardness: Can you prove that a certain amount of
work t was completed? In the context of complexity theory for this theoretical question, it
suffices to obtain a computational problem whose (moderately) hard instances are easy to
sample such that solutions are quickly verifiable.

Unfortunately, implementations of PoWs in practice stray from this theoretical question
and, as a consequence, have two main drawbacks. First, they are often based on heuristic
assumptions that have no quantifiable guarantees. One commonly used PoW is the problem
of simply finding a value s so that hashing it together with the given challenge (e.g. with
SHA-256) maps to anything with a certain amount of leading 0’s. This is based on the
heuristic belief that SHA-256 seems to behave unpredictably with no provable guarantees.

Secondly, since these PoWs are not provably secure, their heuristic sense of security stems
from, say, SHA-256 not having much discernible structure to exploit. This lack of structure,
while hopefully giving the PoW its heuristic security, limits the ability to use the PoW in
richer ways. That is, heuristic PoWs do not seem to come with a structure to support any
useful properties beyond the basic definition of PoWs.

This work, building on the techniques and the proof of concept of our results in [BRSV17a]
as discussed in Chapter 3, addresses both of these problems by constructing PoWs that are
based on worst-case complexity theoretic assumptions in a provable way while also having
considerable algebraic structure. This simultaneously moves PoWs in the direction of modern
cryptography by basing our primitives on well-studied worst-case problems and expands the
usability of PoWs by exploiting our algebraic structure to create, for example, PoWs that
can be proved in Zero Knowledge or that can be distributed across many workers in a way

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 41

that is robust to Byzantine failures. Our biggest use of our problems’ structure is in proving
a direct sum theorem to show that our proofs are non-amortizable across many challenges;
this was the missing piece of [BRSV17a] in achieving PoWs according to their usual definition
[DN92].

4.1.1 On Security From Worst-Case Assumptions

We make a point here that if SHA-256 is secure then it can be made into the aforementioned
PoW whereas, if it is not, then SHA-256 is broken. While tautological, we point out that
this is a Win-Lose situation. That is, either we have a PoW, or a specific instantiation of a
heuristic cryptographic hash function is broken and no new knowledge is gained.

This is in contrast to our provably secure PoWs, in which we either have a PoW, or
we have a breakthrough in complexity theory. For example, if we base a PoW on the
Orthogonal Vectors problem which we define in Section 4.1.2, then either we have a PoW or
the Orthogonal Vectors problem can be solved in sub-quadratic time which has been shown
[Wil05] to be sufficient to break the Strong Exponential Time Hypothesis (SETH), giving a
faster-than-brute-force algorithm for CNF-SAT formulas and thus a major insight to the P
vs NP problem.

In general, achieving Cryptography from the assumption that P 6= NP (or NP * BPP or
similar variants) is one of the most fundamental questions of Foundational Cryptography and
many structural barriers to answering this questions have been uncovered – e.g. [AGGM06,
BT06b, FF91]. In this chapter we show that cryptographic objects – i.e. PoWs – can be
achieved from the strengthening of NP * BPP to randomized SETH being false. Thus, more
fine-grained techniques seem to bypass many of the structural barriers posed to connecting
Cryptography and worst-case Complexity Theory.

By basing our PoWs on well-studied complexity theoretic problems, we position our
conditional results to be in the desirable position for cryptography and complexity theory: a
Win-Win. Orthogonal Vectors, 3SUM, All-Pairs Shortest Path, and k-CLIQUE are the central
problems of Fine-Grained Complexity Theory precisely because of their many quantitative
connections to many other computational problems and so breaking any of their associated
conjectures would give considerable insight into computation. Heuristic PoWs like SHA-
256, however, aren’t even known to have natural generalizations or asymptotics much less
connections to other computational problems and so a break would simply say that that
specific design for that specific input size happened to not be as secure as we thought.

4.1.2 Our Results

In this chapter we introduce PoWs based on the Orthogonal Vectors (OV), 3SUM, and
All-Pairs Shortest Path problems, which comprise the central problems of the field of fine-
grained complexity theory.1 Similar PoWs were introduced in [BRSV17a], although these

1We cover only three of the four islands in this chapter to keep the chronology of the results clear as this
chapter covers [BRSV18] and a polynomial for k-CLIQUE wasn’t discovered until later [GR18a, CIS18]. The

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 42

failed to prove non-amortizability of these PoWs: that many challenges take proportionally
more work, as is required by the definition of PoWs [DN92, BGJ+16]. We show here that
the PoWs of [BRSV17a] shown in Chapter 3 can be extended to exploit their considerable
algebraic structure to show non-amortizability via a direct sum theorem and, thus, that
they are genuine PoWs according to the conventional definition. Further, we show that this
structure to can be used to allow for much quicker verification and zero-knowledge PoWs.
We also note that our structure plugs into the framework of [BK16b] to obtain distributed
PoWs robust to Byzantine failure.

While all of our results and techniques will be analogous for 3SUM and APSP, we will
use OV as our running example for our proofs and results statements. Namely, OV (defined
in Section 4.2.2) is a well-studied problem that is conjectured to require n2−o(1) time in the
worst-case [Wil18]. Roughly, we show the following.

Informal Theorem 4.1.1. Suppose OV takes n2−o(1) time to decide for sufficiently large n.
A challenge c can be generated in Õ(n) time such that:

• A valid proof π to c can be computed in Õ(n2) time.

• The validity of a candidate proof to c can be verified in Õ(n) time.

• Any valid proof to c requires n2−o(1) time to compute.

This can be scaled to nk−o(1) hardness for all k ∈ N by a natural generalization of the OV
problem to the k-OV problem, whose hardness is also supported by SETH. Thus fine-grained
complexity theory props up PoWs of any complexity that is desired.

Further, we show that the verification can still be done in Õ(n) time for all of our nk−o(1)

hard PoWs, allowing us to tune hardness. The corresponding PoW for this is interactive but
we show how to remove this interaction in the Random Oracle model in Section 4.5.

We also note that a straightforward application of [BK16b] allows our PoWs to be dis-
tributed amongst many workers in a way that is robust to byzantine failure or errors and
can detect malicious party members. Namely, that a challenge can be broken up amongst a
group of provers so that partial work can be error-corrected into a full proof.

Further, our PoWs admit zero knowledge proofs such that the proofs can be simulated
in very low complexity – i.e. in time comparable to the verification time. While heuristic
PoWs can be proved in zero knowledge as they are NP statements, the exact polynomial
time complexities matter in this regime. We are able to use the algebraic structure of our
problem to attain a notion of zero knowledge that makes sense in the fine-grained world.

A main lemma which may be of independent interest is a direct sum theorem on evaluating
a specific low-degree polynomial fOVk.

polynomial for k-CLIQUE is discussed in Chapter 5 and it easily fits the framework discussed in this chapter
to attain PoWs.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 43

Informal Theorem 4.1.2. Suppose k-OV takes nk−o(1) time to decide. Then, for any
polynomial `, any algorithm that computes fOVk(xi)’s correctly on ` uniformaly random
xi’s with probability 1/nO(1) takes time `(n) · nk−o(1).

4.1.3 Related Work

As mentioned earlier, PoWs were introduced by Dwork and Naor [DN92]. Definitions similar
to ours were studied by Jakobsson and Juels [JJ99], Bitansky et al [BGJ+16], and (under
the name Strong Client Puzzles) Stebila et al [SKR+11] (also see the last paper for some
candidate constructions and further references).

We note that, while PoWs are often used in cryptocurrencies, the literature studying them
in that context have more properties than the standard notion of a PoW (e.g. [BK16a]) that
are desirable for their specific use within cryptocurrency and blockchain frameworks. We do
not consider these and instead focus on the foundational cryptographic primitive that is a
PoW.

In this chapter we build on the ideas introduced in Section 3.5.5, which covered the work
of [BRSV17a]. While [BRSV17a] introduced the PoWs as a proof-of-concept that PoWs can
be based on well-studied worst-case assumptions, they did not fully satisfy the definition
of a PoW in that the PoWs were not shown to be non-amortizable. That is, it was not
proven that many challenges could not be batch-evaluated faster than solving each of them
individually. We show here that these PoWs are in fact non-amortizable by proving a direct
sum theorem in Section 4.4. Further, the k-OV-based PoWs of [BRSV17a] have verification

times of Õ(nk/2) whereas we show how to achieve verification in time Õ(n), which makes the
PoWs much more realistic for use. These are both properties that are expected of a PoW
that were not included in [BRSV17a]. Beyond that, we show that our PoWs can be proved
in zero knowledge and note that our PoWs can be distributed across many worker in way
that is robust to Byzantine error, both of which are properties seemingly not achievable from
the current ‘structureless’ heuristic PoWs that are used.

Provably secure PoWs have been considered before in [BGJ+16] where PoWs are achieved
from cryptographic assumptions (even stronger than an average-case assumption). Namely,
they show that if there is a worst-case hard problem that is non-amortizable and succinct
randomized encodings exist, then PoWs are achievable. In contrast, our PoWs are based
on solely on worst-case assumptions on well-studied problems from fine-grained complexity
theory.

Subsequent to the work presented here, Goldreich and Rothblum [GR18a] constructed
(implicitly) a PoW protocol based on the worst-case hardness k-CLIQUE: they show a worst-
case to average-case reduction for this problem, a doubly efficient interactive proof, and that
the average-case problem is somewhat non-amortizable, which are the properties needed to
go from worst-case hardness to PoWs. Independently, [CIS18] also found a polynomial for
k-CLIQUE and noted its ability to fit the PoW framework presented here.

[LLW19] [GK20]

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 44

A previous version of the work presented here appeared under the title Proofs of Useful
Work [BRSV17b], where we had presented the same protocol as in this paper as a PoW
scheme where the prover’s work could be made “useful” by using it to perform independently
useful computation. However, it was pointed out to us (by anonymous reviewers) that a näıve
construction satisfied our definition of a “Useful PoW.”

4.2 Proofs of Work from Worst-Case Assumptions

In this section, we first define Proof of Work (PoW) schemes, and then present our con-
struction of such a scheme based on the hardness of Orthogonal Vectors (OV) and related
problems. In Section 4.2.1, we define PoWs; in Section 4.2.2, we introduce OV and related
problems; in Section 4.2.3, we describe an interactive proof for these problems that is used
in our eventual construction, which is presented in Section 4.2.4. Our PoWs, while similar,
will differ from those of [BRSV17a] in that we allow interaction to significantly speed the
verification time by exploiting the PoWs’ algebraic structure. We will show how to remove
interaction in the Random Oracle model in Section 4.5.

4.2.1 Definition

Syntactically, a Proof of Work scheme involves three algorithms:

• Gen(1n) produces a challenge c.

• Solve(c) solves the challenge c, producing a proof π.

• Verify(c,π) verifies the proof π to the challenge c.

Taken together, these algorithms should result in an efficient proof system whose proofs
are hard to find. This is formalized as follows.

Definition 4.2.1 (Proof of Work). A (t(n), δ(n))-Proof of Work (PoW) consists of three
algorithms (Gen, Solve,Verify). These algorithms must satisfy the following properties for
large enough n:

• Efficiency:

– Gen(1n) runs in time Õ(n).

– For any c← Gen(1n), Solve(c) runs in time Õ(t(n)).

– For any c← Gen(1n) and any π, Verify(c,π) runs in time Õ(n).

• Completeness: For any c← Gen(1n) and any π ← Solve(c),

Pr [Verify(c,π) = accept] = 1

where the probability is taken over Verify’s randomness.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 45

• Hardness: For any polynomial `, any constant ε > 0, and any algorithm Solve∗` that
runs in time `(n) · t(n)1−ε when given `(n) challenges of size n as input,

Pr

∀i : Verify(ci,πi) = acc

∣∣∣∣∣∣∣
(ci ← Gen(1n))i∈[`(n)]

π ← Solve∗`(c1, . . . , c`(n)) :
π = (π1, . . . ,π`(n))

 < δ(n)

where the probability is taken over Gen and Verify’s randomness.

The efficiency requirement above guarantees that the verifier in the Proof of Work scheme
runs in nearly linear time. Together with the completeness requirement, it also ensures that
a prover who actually spends roughly t(n) time can convince the verifier that it has done so.
The hardness requirement says that any attempt to convince the verifier without actually
spending the prescribed amount of work has only a small probability of succeeding, and
that this remains true even when amortized over several instances. That is, even a prover
who gets to see several independent challenges and respond to them together will be unable
to reuse any work across the challenges, and is effectively forced to spend the sum of the
prescribed amount of work on all of them.

In some of the PoWs we construct, Solve and Verify are not algorithms, but are instead
parties in an interactive protocol. The requirements of such interactive PoWs are the natural
generalizations of those in the definition above, with Verify deciding whether to accept after
interacting with Solve. And the hardness requirement applies to the numerous interactive
protocols being run in any form of composition – serial, parallel, or otherwise. We will,
however, show how to remove interaction in Section 4.5.

Heuristic constructions of PoWs, such as those based on SHA-256, easily satisfy efficiency
and completeness (although not formally, given their lack of asymptotics), yet their hardness
guarantees are based on nothing but the heuristic assumption that the PoW itself is a valid
PoW. We will now reduce the hardness of our PoW to the hardness of well-studied worst-case
problems in fine-grained complexity theory.

4.2.2 Orthogonal Vectors

For ease of readability, we now recall the Orthogonal Vectors (OV) problem and its general-
ization k-OV whose hardness we use to construct our PoW scheme. The properties possessed
by OV that enable this construction are also shared by other well-studied problems mentioned
earlier, including 3SUM and APSP as noted in [BRSV17a], and an array of other problems
[BK16b, GR18b, Wil16]. Consequently, while we focus on OV, PoWs based on the hardness
of these other problems can be constructed along the lines of the one here. Further, the
security of these constructions would also follow from the hardness of other problems that
reduce to OV, 3SUM, etc. in a fine-grained manner with little, if any, degradation of security.
Of particular interest, deciding graph properties that are statable in first-order logic all re-
duce to (moderate-dimensional) OV [GIKW17], and so we can obtain PoWs if any problem
statable as a first-order graph property is hard.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 46

As in Chapter 3, the algorithms we consider henceforth – reductions, adversaries, etc. –
are non-uniform Word-RAM algorithms (with words of size O(log n) where n will be clear
from context) unless stated otherwise, both in our hardness assumptions and our construc-
tions. Security against such adversaries is necessary for PoWs to remain hard in the presence
of pre-processing, which is typical in the case of cyrptocurrencies, for instance, where spe-
cialized hardware is often used. In the case of reductions, this non-uniformity is solely used
to ensure that specific parameters determined completely by instance size (such as the prime
p(n) in Definition 4.2.5) are known to the reductions.

Remark 4.2.2. All of our reductions, algorithms, and assumptions can easily be made uni-
form by having an extra Setup procedure that is allowed to run in t(n)1−ε for some ε > 0 for
a (t(n), δ(n))-PoW. In our setting, this will just be used to find a prime on which to base a
field extension for the rest of the PoW to satisfy the rest of its conditions. This makes sense
for a PoW scheme to do and, for all the problems we consider, this can be done be done so
that all the conjectures can be made uniformly. We leave everything non-uniform, however,
for exposition’s sake.

Definition 4.2.3 (Orthogonal Vectors). The OV problem on vectors of dimension d (denoted

OVd) is to determine, given two sets U , V of n vectors from {0, 1}d(n) each, whether there
exist u ∈ U and v ∈ V such that 〈u, v〉 = 0 (over Z). If left unspecified, d is to be taken to
be
⌈
log2 n

⌉
.

OV is commonly conjectured to require n2−o(1) time to decide, for which many conditional
fine-grained hardness results are based on [Wil18], and has been shown to be true if the Strong
Exponential Time Hypothesis (SETH) holds [Wil05]. This hardness and the hardness of its
generalization to k-OV of requiring nk−o(1) time (which also holds under SETH) are what we
base the hardness of our PoWs on. We now define k-OV.

Definition 4.2.4 (k-Orthogonal Vectors). For an integer k ≥ 2, the k-OV problem on vectors

of dimension d is to determine, given k sets (U1, . . . , Uk) of n vectors from {0, 1}d(n) each,
whether there exist us ∈ Us for each s ∈ [k] such that over Z,∑

`∈[d(n)]

u1` · · ·uk` = 0

We say that such a set of vectors is k-orthogonal. If left unspecified, d is to be taken to be⌈
log2 n

⌉
.

While these problems are conjectured worst-case hard, there are currently no widely-held
beliefs for distributions that it may be average-case hard over. [BRSV17a], however, defines
a related problem that is shown to be average-case hard when assuming the worst-case
hardness of k-OV. This problem is that of evaluating the following polynomial:

For any prime number p, we define the polynomial fOVkn,d,p : Fkndp → Fp as follows. Its
inputs are parsed in the manner that those of k-OV are: below, for any s ∈ [k] and i ∈ [n],
usi represents the ith vector in Us, and for ` ∈ [d], usi` represents its `th coordinate.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 47

fOVkn,d,p(U1, . . . , Uk) =
∑

i1,...,ik∈[n]

∏
`∈[d]

(
1− u1i1` · · ·u

k
ik`

)
When given an instance of k-OV (from {0, 1}knd) as input, fOVkn,d,p counts the number of

tuples of k-orthogonal vectors (modulo p). Note that the degree of this polynomial is kd; for
small d (e.g. d =

⌈
log2 n

⌉
), this is a fairly low-degree polynomial. The following definition

gives the family of such polynomials parameterized by input size.

Definition 4.2.5 (FOVk). Consider an integer k ≥ 2. Let p(n) be the smallest prime num-
ber larger than nlogn, and d(n) =

⌈
log2 n

⌉
. FOVk is the family of functions

{
fOVkn,d(n),p(n)

}
.

Remark 4.2.6. We note that most of our results would hold for a much smaller choice of
p(n) above – anything larger than nk would do. The reason we choose p to be this large is to
achieve negligible soundness error in interactive protocols we shall be designing for this family
of functions (see Protocol 4.1). Another way to achieve this is to use large enough extension
fields of Fp for smaller p’s; this is actually preferable, as the value of p(n) as defined now is
much harder to compute for uniform algorithms.

4.2.3 Preliminaries

Our final protocol and its security consists, essentially, of two components – the hardness of
evaluating fOVk on random inputs, and the the ability to certify the correct evaluation of
fOVk in an efficiently verifiable manner. We explain the former in the next subsection; here,
we describe the protocol for the latter (Protocol 4.1), which we will use as a sub-routine
in our final PoW protocol. This protocol is a (k − 1)-round interactive proof that, given
U1, . . . , Uk ∈ Fndp and y ∈ Fp, proves that fOVkn,d,p(U1, . . . , Uk) = y.

In the special case of k = 2, a non-interactive (MA) protocol for OV was shown in
[Wil16] and this MA protocol was used to construct a PoW scheme based on OV, 3SUM, and
APSP in [BRSV17a], albeit one that only satisfies a weaker hardness requirement (i.e. non-
batchability was not considered or proved). We introduce interaction to greatly improve the
verifier’s efficiency and show how interaction can be removed in Section 4.5. The following
interactive proof is essentially the sum-check protocol, but in our case we need to pay close
attention to the complexity of the prover and the verifier and so use ideas from [Wil16].

We will set up the following definitions before describing the protocol. For each s ∈ [k],
consider the univariate polynomials φs1, . . . , φ

s
d : Fp → Fp, where φs` represents the `th column

of Us – that is, for i ∈ [n], φs`(i) = usi`. Each φs` has degree at most (n − 1). fOVkn,d,p can

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 48

now be written as:

fOVkn,d,p(U1, . . . , Uk) =
∑

i1,...,ik∈[n]

∏
`∈[d]

(
1− u1i1` · · ·u

k
ik`

)
=

∑
i1,...,ik∈[n]

∏
`∈[d]

(
1− φ1

`(i1) · · ·φk` (ik)
)

=
∑

i1,...,ik∈[n]

q(i1, . . . , ik)

where q is defined for convenience as:

q(i1, . . . , ik) =
∏
`∈[d]

(
1− φ1

`(i1) · · ·φk` (ik)
)

The degree of q is at most D = k(n− 1)d. Note that q can be evaluated at any point in

Fkp in time Õ(knd log p), by evaluating all the φs`(is)’s (these polynomials can be found using
fast interpolation techniques for univariate polynomials [Hor72]), computing each term in
the above product and then multiplying them.

For any s ∈ [k] and α1, . . . , αs−1 ∈ Fp, define the following univariate polynomial:

qs,α1,...,αs−1(x) =
∑

is+1,...,ik∈[n]

q(α1, . . . , αs−1, x, is+1, . . . , ik)

Every such qs has degree at most (n− 1)d – this can be seen by inspecting the definition
of q. With these definitions, the interactive proof is described as Protocol 4.1 below. The
completeness and soundness of this interactive proof is then asserted by Theorem 4.2.7,
which is proven in Section 4.3.

Theorem 4.2.7. For any k ≥ 2, let d and p be as in Definition 4.2.5. Protocol 4.1 is a
(k − 1)-round interactive proof for proving that y = FOVk(x). This protocol has perfect

completeness and soundness error at most
(
knd
p

)
. The prover runs in time Õ(nkd log p), and

the verifier in time Õ(knd2 log p).

As observed earlier, Protocol 4.1 is non-interactive when k = 2. We then get the following
corollary for FOV.

Corollary 4.2.8. For k = 2, let d and p be as in Definition 4.2.5. Protocol 4.1 is an MA
proof for proving that y = FOV(x). This protocol has perfect completeness and soundness

error at most
(

2nd
p

)
. The prover runs in time Õ(n2), and the verifier in time Õ(n).

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 49

Interactive Proof for FOVk:
The inputs to the protocol are (U1, . . . , Uk) ∈ Fkndp (a valid input to fOVkn,d,p), and a
field element y ∈ Fp. The polynomials q are defined as in the text.

• The prover sends the coefficients of a univariate polynomial q∗1 of degree at most
(n− 1)d.

• The verifier checks that
∑

i1∈[n] q
∗
1(i1) = y. If not, it rejects.

• For s from 1 up to k − 2:

– The verifier sends a random αs ← Fp.
– The prover sends the coefficients of a polynomial q∗s+1,α1,...,αs

of degree at most
(n− 1)d.

– The verifier checks that
∑

is+1∈[n] q
∗
s+1,α1,...,αs

(is+1) = q∗s,α1,...,αs−1
(αs). If not, it

rejects.

• The verifier picks αk−1 ← Fp and checks that q∗k−1,α1,...,αk−2
(αk−1) =

qk−1,α1,...,αk−2
(αk−1), computed using the fact that qk−1,α1,...,αk−2

(αk−1) =∑
ik∈[n] qk,α1,...,αk−1

(ik). If not, it rejects.

• If the verifier hasn’t rejected yet, it accepts.

Protocol 4.1: Interactive Proof for FOVk.

4.2.4 The PoW Protocol

We now present Protocol 4.2, which we show to be a Proof of Work scheme assuming the
hardness of k-OV.

Theorem 4.2.9. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for all but
finitely many input lengths for any d = ω(log n). Then, Protocol 4.2 is an (nk, δ)-Proof of
Work scheme for any function δ(n) > 1/no(1).

Remark 4.2.10. As is, this will be an interactive Proof of Work protocol. In the special case
of k = 2, Corollary 4.2.8 gives us a non-interactive PoW. If we want to remove interaction
for general k-OV, however, we could use the MA proof in [Wil16] at the cost of verification

taking time Õ(nk/2) as was done in [BRSV17a]. To keep verification time at Õ(n), we instead
show how to remove interaction in the Random Oracle model in Section 4.5. This will allow
us to tune the gap between the parties – we can choose k and thus the amount of work,
nk−o(1), that must be done by the prover while always only needing Õ(n) time for verification.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 50

Proof of Work based on hardness of k-OV:

• Gen(1n):

– Output a random c ∈ Fkndp .

• (Solve,Verify) work as follows given c:

– Solve computes z = fOVkn,d,p(c) and outputs it.

– Solve and Verify run Protocol 4.1 with input (c, z), Solve as prover, and Verify
as verifier.

– Verify accepts iff the verifier in the above instance of Protocol 4.1 accepts.

Protocol 4.2: Proof of Work based on the hardness of k-OV.

Remark 4.2.11. We can also exploit this PoW’s algebraic structure on the Prover’s side.
Using techniques from [BK16b], the Prover’s work can be distributed amongst a group of
provers. While, cumulatively, they must complete the work required of the PoW, they can
each only do a portion of it. Further, this can be done in a way robust to Byzantine errors
amongst the group. See Remark 4.3.4 for further details.

We will use Theorem 4.2.7 to argue for the completeness and soundness of Protocol 4.2.
In order to prove the hardness, we will need lower bounds on how well the problem that
Solve is required to solve can be batched. We first define what it means for a function to be
non-batchable in the average-case in a manner compatible with the hardness requirement.
Note that this requirement is stronger than being non-batchable in the worst-case.

Definition 4.2.12. Consider a function family F = {fn : Xn → Yn}, and a family of distri-
butions D = {Dn}, where Dn is over Xn. F is not (`, t, δ)-batchable on average over D if, for
any algorithm Batch that runs in time `(n)t(n) when run on `(n) inputs from Xn, when it is
given as input `(n) independent samples from Dn, the following is true for all large enough
n:

Pr
xi←Dn

[
Batch(x1, . . . , x`(n)) = (fn(x1), . . . , fn(x`(n)))

]
< δ(n)

We will be concerned with the case where the batched time t(n) is less than the time it
takes to compute fn on a single instance. This sort of statement is what a direct sum theorem
for F ’s hardness would guarantee. Theorem 4.2.13, then, claims that we achieve this non-
batchability for FOVk and, as FOVk is one of the things that Solve is required to evaluate,
we will be able to show the desired hardness of Protocol 4.2. We prove Theorem 4.2.13 via

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 51

a direct sum theorem in Appendix B.1, and prove a weaker version for illustrative purposes
in Section 4.4.

Theorem 4.2.13. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for all but
finitely many input lengths for any d = ω(log n). Then, for any constants c, ε > 0 and
δ < ε/2, FOVk is not (nc, nk−ε, 1/nδ)-batchable on average over the uniform distribution
over its inputs.

We now put all the above together to prove Theorem 4.2.9 as follows.

Proof of Theorem 4.2.9. We prove that Protocol 4.2 satisfies the various requirements de-
manded of a Proof of Work scheme assuming the hardness of k-OV.

Efficiency:

• Gen(1n) simply samples knd uniformly random elements of Fp. As d = log2 n and

p ≤ 2nlogn (by Bertrand-Chebyshev’s Theorem), this takes Õ(n) time.

• Solve computes fOVkn,d,p(c), which can be done in Õ(nk) time. It then runs the prover

in an instance of Protocol 4.1, which can be done in Õ(nk) time by Theorem 4.2.7. So

in all it takes takes Õ(nk) time.

• Verify runs the verifier in an instance of Protocol 4.1, taking Õ(n) time, again by
Theorem 4.2.7.

Completeness: This follows immediately from the completeness of Protocol 4.1 as an
interactive proof for FOVk, as stated in Theorem 4.2.7, as this is the protocol that Solve and
Verify engage in.

Hardness: We proceed by contradiction. Suppose there is a polynomial `, an (interactive)
algorithm Solve∗, and a constant ε > 0 such that Solve∗ runs in time `(n)nk−ε and makes
Verify accept on `(n) independent challenges generated by Gen(1n) with probability at least
δ(n) > 1/no(1) for infinitely many input lengths n.

For each of these input lengths, let the set of challenges (which are fOV inputs) produced
by Gen(1n) be

{
c1, . . . , c`(n)

}
, and the corresponding set of solutions output by Solve∗ be{

z1, . . . , z`(n)
}

. So Solve∗ succeeds as a prover in Protocol 4.1 for all the instances {(ci, zi)}
with probability at least δ(n).

By the negligible soundness error of Protocol 4.1 guaranteed by Theorem 4.2.7, in order
to do this, Solve∗ has to use the correct values fOVkn,d,p(ci) for all the zi’s with probability
negligibly close to δ(n) and definitely more than, say, δ(n)/2. In particular, with this prob-
ability, it has to explicitly compute fOVkn,d,p at c1, . . . , c`(n), all of which are independent
uniform points in Fkndp for all of these infinitely many input lengths n. But this is exactly
what Theorem 4.2.13 says is impossible under our assumptions. So such a Solve∗ cannot
exist, and this proves the hardness of Protocol 4.2.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 52

We have thus proven all the properties necessary and hence Protocol 4.2 is indeed an
(nk, δ)-Proof of Work under the hypothesised hardness of k-OV for any δ(n) > 1/no(1).

4.3 Verifying FOVk

In this section, we prove Theorem 4.2.7 (stated in Section 4.2), which is about Protocol 4.1
being a valid interactive proof for proving evaluations of FOVk. We use here terminology
from the theorem statement and protocol description. Recall the the input to the protocol is
U1, . . . , Uk ∈ Fndp and y ∈ Fp, and the prover wishes to prove that y = fOVkn,d,p(U1, . . . , Uk).

Completeness. If indeed y = fOVkn,d,p(U1, . . . , Uk), then the prover can make the ver-
ifier in the protocol accept by using the polynomials (q1, q2,α1 , . . . , qk,α1,...,αk) in place of
(q∗1, q

∗
2,α1

, . . . , q∗k,α1,...,αk
). Perfect completeness is then seen to follow from the definitions of

these polynomials and their relation to q and hence fOVkn,d,p.

Soundness. Suppose y 6= fOVkn,d,p(U1, . . . , Uk). We now analyze the probability with
which a cheating prover could make the verifier accept.

To start with, note that the prover’s q∗1 has to be different from q1, as otherwise the check
in the second step would fail. Further, as the degree of these polynomials is less than nd,
the probability that the verifier will then choose an α1 such that q∗1(α1) = q1(α1) is less than
nd
p

.
If this event does not happen, then the prover has to again send a q∗2,α1

that is different

from q2,α1 , which again agree on α2 with probability less than nd
p

. This goes on for (k − 1)

rounds, at the end of which the verifier checks whether q∗k−1(αk−1) is equal to qk−1(αk−1),
which it computes by itself. If at least one of these accidental equalities at a random point
has not occurred throughout the protocol, the verifier will reject. The probability that no
violations occur over the (k − 1) rounds is, by the union bound, less than knd

p
.

Efficiency. Next we discuss details of how the honest prover and the verifier are imple-
mented, and analyze their complexities. To this end, we will need the following algorithmic
results about computations involving univariate polynomials over finite fields.

Lemma 4.3.1 (Fast Multi-point Evaluation [Fid72]). Given the coefficients of a univariate
polynomial q : Fp → Fp of degree at most N , and N points x1, . . . , xN ∈ Fp, the set of
evaluations (q(x1), . . . , q(xN)) can be computed in time O(N log3N log p).

Lemma 4.3.2 (Fast Interpolation [Hor72]). Given N + 1 evaluations of a univariate poly-
nomial q : Fp → Fp of degree at most N , the coefficients of q can be computed in time
O(N log3N log p).

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 53

To start with, both the prover and verifier compute the coefficients of all the φs`’s. Note
that, by definition, they know the evaluation of each φs` on n points, given by {(i, usi`)}i∈[n].
This can be used to compute the coefficients of each φs` in time Õ(n log p) by Lemma 4.3.2.

The total time taken is hence Õ(knd log p).
The proof of the following proposition specifies further details of the prover’s workings.

Proposition 4.3.3. The coefficients of the polynomial qs,α1,...,αs−1 can be computed in time

Õ((nk−s+1d+ nd2) log p) given the above preprocessing.

Proof. The procedure to do the above is as follows:

1. Fix some value of s, α1, . . . , αs−1.

2. For each ` ∈ [d], compute the evaluation of φs` on nd points, say {1, . . . , nd}.

• Since its coefficients are known, the evaluations of each φs` on these nd points can

be computed in time Õ(nd log p) by Lemma 4.3.1, for a total of Õ(nd2 log p) for
all the φs`’s.

3. For each setting of is+1, . . . , ik, compute the evaluations of the polynomial ρis+1,...,ik(x)
= q(α1, . . . , αs−1, x, is+1, . . . , ik), on the points {1, . . . , nd}.

• First substitute the constants α1, . . . , αs−1, is+1, . . . , ik into the definition of q.

• This requires computing, for each ` ∈ [d] and s′ ∈ [k]\{s}, either φs
′

` (αs) or φs
′

` (is).

All of this can be done in time Õ(knd log p) by direct polynomial evaluations since
the coefficients of the φs

′

` ’s are known.

• This reduces q to a product of d univariate polynomials of degree less than n,
whose evaluations on the nd points can now be computed in time Õ(knd log p) by
multiplying the constants computed in the above step with the evaluations of φs

′

`

on these points, and subtracting from 1.

• The product of the evaluations can now be computed in time Õ(nd2 log p) to get
what we need.

4. Add up the evaluations of ρis+1,...,ik pointwise over all settings of (is+1, . . . , ik).

• There are nk−s possible settings of (is+1, . . . , ik), and for each of these we have nd

evaluations. All the additions hence take Õ(nk−s+1d log p) time.

5. This gives us nd evaluations of qs,α1,...,αs−1 , which is a univariate polynomial of degree at

most (n−1)d. So its coefficients can be computed in time Õ(nd log p) by Lemma 4.3.2.

It can be verified from the intermediate complexity computations above that all these oper-
ations together take Õ((nk−s+1d+ nd2) log p) time. This proves the proposition.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 54

Recall that what the honest prover has to do is compute q1, q2,α1 , . . . , qk,α1,...,αk−1
for the

αs’s specified by the verifier. By the above proposition, along with the preprocessing, the
total time the prover takes is:

Õ(knd log p+ (nkd+ nd2) log p) = Õ(nkd log p)

The verifier’s checks in steps (2) and (3) can each be done in Õ(n log p) time using
Lemma 4.3.1. Step (4), finally, can be done by using the above proposition with s = k in time

Õ(nd2 log p). Even along with the preprocessing, this leads to a total time of Õ(knd2 log p).

Remark 4.3.4. Note the Prover’s work of finding coefficients of polynomials is mainly done
by evaluating the polynomial on many points and interpolating. Similarly to [BK16b], this
opens the door to distributing the Prover’s work. Namely, the individual evaluations can be
split amongst a group of workers which can then be recombined to find the final coefficients.
Further, since the evaluations of a polynomial is a Reed-Solomon code, this allows for error
correction in the case that the group of provers make errors or have some malicious members.
Thus, the Prover’s work can be distributed in a way that is robust to Byzantine errors and
can identify misbehaving members.

4.4 A Direct Sum Theorem for FOV
A direct sum theorem for a problem roughly states that solving m independent instances of
a problem takes m times as long as a single instance. The converse of this is attaining a
non-trivial speed-up when given a batch of instances. In this section we prove a direct sum
theorem for the problem of evaluating FOV and thus its non-batchability.

Direct sum are typically elusive in complexity theory and so our results, which we prove
for generic problems with a certain set of properties, may be of independent interest to the
study of hardness amplification. That our results show that batch-evaluating our multivariate
low-degree polynomials is hard may be particularly surprising since batch-evaluation for
univariate low-degree polynomials is known to be easy [Fid72, Hor72] and, further, [BK16b,
GR18b, Wil16] show that batch-evaluating multivariate low-degree polynomials (including
our own) is easy to delegate. For more rigorous definitions of direct sum and direct product
theorems, see [She12].

We now prove the following weaker version of Theorem 4.2.13 on FOV’s non-batchability
(Theorem 4.2.13 is proven in Appendix B.1 using an extension of the techniques employed
here). The notion of non-batchability used below is defined in Definition 4.2.12 in Section 4.2.

Theorem 4.4.1. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for all but
finitely many input lengths for any d = ω(log n). Then, for any constants c, ε > 0, FOVk is
not (nc, nk−ε, 7/8)-batchable on average over the uniform distribution over its inputs.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 55

Throughout this section, F , F ′ and G are families of functions {fn : Xn → Yn},
{f ′n : X ′n → Y ′n} and

{
gn : X̂n → Ŷn

}
, and D = {Dn} is a family of distributions where Dn

is over X̂n.
Theorem 4.4.1 is the result of two properties possessed by FOVk. We define these prop-

erties below, prove a more general lemma about functions that have these properties, and
use it to prove this theorem.

Definition 4.4.2. F is said to be (s, `)-downward reducible to F ′ in time t if there is a pair
of algorithms (Split,Merge) satisfying:

• For all large enough n, s(n) < n.

• Split on input an x ∈ Xn outputs `(n) instances from X ′s(n).

Split(x) = (x1, . . . , x`(n))

• Given the value of F ′ at these `(n) instances, Merge can reconstruct the value of F at
x.

Merge(x, f ′s(n)(x1), . . . , f
′
s(n)(x`(n))) = fn(x)

• Split and Merge together run in time at most t(n).

If F ′ is the same as F , then F is said to be downward self-reducible.

Definition 4.4.3. F is said to be `-robustly reducible to G in time t if there is a pair of
algorithms (Split,Merge) satisfying:

• Split on input an x ∈ Xn (and randomness r) outputs `(n) instances from X̂n.

Split(x; r) = (x1, . . . , x`(n))

• For such a tuple (xi)i∈[`(n)] and any function g∗ such that g∗(xi) = gn(xi) for at least
2/3 of the xi’s, Merge can reconstruct the function value at x as:

Merge(x, r, g∗(x1), . . . , g
∗(x`(n))) = fn(x)

• Split and Merge together run in time at most t(n).

• Each xi is distributed according to Dn, and the xi’s are pairwise independent.

The above is a more strict notion than the related non-adaptive random self-reducibility
as defined in [FF91]. We remark that to prove what we need, it can be shown that it would
have been sufficient if the reconstruction above had only worked for most r’s.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 56

Lemma 4.4.4. Suppose F , F ′ and G have the following properties:

• F is (sd, `d)-downward reducible to F ′ in time td.

• F ′ is `r-robustly reducible to G over D in time tr.

• G is (`a, ta, 7/8)-batchable on average over D, and `a(sd(n)) = `d(n).

Then F can be computed in the worst-case in time:

td(n) + `d(n)tr(sd(n)) + `r(sd(n))`d(n)ta(sd(n))

We note, that the condition `a(sd(n)) = `d(n) above can be relaxed to `a(sd(n)) ≤ `d(n)
at the expense of a factor of 2 in the worst-case running time obtained for F . We now show
how to prove Theorem 4.4.1 using Lemma 4.4.4, and then prove the lemma itself.

Proof of Theorem 4.4.1. Fix any k ≥ 2. Suppose, towards a contradiction, that for some
c, ε > 0, FOVk is (nc, nk−ε, 7/8)-batchable on average over the uniform distribution. In our
arguments we will refer to the following function families:

• F is k-OV with vectors of dimension d =
(

k
k+c

)2
log2 n.

• F ′ is k-OV with vectors of dimension log2 n.

• G is FOVk (over Fkndp for some p that definitely satisfies p > n).

Let m = nk/(k+c). Note the following two properties :

• n
mc/k

= m

• d =
(

k
k+c

)2
log2 n = log2m

We now establish the following relationships among the above function families.

Proposition 4.4.5. F is (m,mc)-downward reducible to F ′ in time Õ(mc+1).

Splitd, when given an instance (U1, . . . , Uk) ∈ {0, 1}k(n×d), first divides each Ui into mc/k

partitions Ui1, . . . , Uimc/k ∈ {0, 1}
m×d. It then outputs the set of tuples {(U1j1 , . . . , Ukjk) |

ji ∈ [mc/k]}. Each Uij is in {0, 1}m×d and, as noted earlier, d = log2m. So each tuple in the
set is indeed an instance of F ′ of size m. Further, there are (mc/k)c = mc of these.

Note that the original instance has a set of k-orthogonal vectors if and only if at least
one of the mc smaller instances produced does. So Merged simply computes the disjunction
of the F ′ outputs to these instances.

Both of these can be done in time O(mc · k ·md+mc) = Õ(mc+1).

Proposition 4.4.6. F ′ is 12kd-robustly reducible to G over the uniform distribution in time
Õ(m).

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 57

Notice that for any U1, . . . , Uk ∈ {0, 1}m×d, we have that k-OV(U1, . . . , Uk) =
fOVkm(U1, . . . , Uk). So it is sufficient to show such a robust reduction from G to itself. We
do this now.

Given input x ∈ Fkndp , Splitr picks two uniformly random x1,x2 ∈ Fkndp and outputs the
set of vectors {x+ tx1 + t2x2 | t ∈ {1, . . . , 12kd}}. Recall that our choice of p is much larger
than 12kd and hence this is possible. The distribution of each of these vectors is uniform
over Fkndp , and they are also pairwise independent as they are points on a random quadratic
curve through x.

Define the univariate polynomial gx,x1,x2(t) = fOVkm(x+tx1+t2x2). Note that its degree
is at most 2kd. When Merger is given (y1, . . . , y12kd) that are purported to be the evaluations
of fOVkm on the points produced by Split, these can be seen as purported evaluations of
gx,x1,x2 on {1, . . . , 12kd}. This can, in turn, be treated as a corrupt codeword of a Reed-
Solomon code, which under these parameters has distance 10kd.

The Berlekamp-Welch algorithm can be used to decode any codeword that has at most
5kd corruptions, and if at least 2/3 of the evaluations are correct, then at most 4kd eval-
uations are wrong. Hence Merger uses the Berlekamp-Welch algorithm to recover gx,x1,x2 ,
which can be evaluated at 0 to obtain fOVkn(x).

Thus, Splitr takes Õ(12kd · kmd) = Õ(m) time to compute all the vectors it outputs.

Merger takes Õ((12kd)3) time to run Berlekamp-Welch, and Õ(12kd) time to evaluate the

resulting polynomial at 0. So in all both algorithms take Õ(m) time.

By our assumption at the beginning, G is (nc, nk−ε, 7/8)-batchable on average over the
uniform distribution. Together with the above propositions, this satisfies all the requirements
in the hypothesis of Lemma 4.4.4, which now tells us that F can be computed in the worst-
case in time:

Õ(mc+1 +mc ·m+ 12kd ·mc ·mk−ε) = Õ(mc+1 +mc+k−ε)

= Õ(nk(c+1)/(k+c) + nk(k+c−ε)/(k+c))

= Õ(nk−ε
′
)

for some ε′ > 0. But this is what the hypothesis of the theorem says is not possible. So
FOVk cannot be (nc, nk−ε, 7/8)-batchable on average, and this argument applies for any
c, ε > 0.

Proof of Lemma 4.4.4. Given the hypothesised downward reduction (Splitd, Merged), robust
reduction (Splitr,Merger) and batch-evaluation algorithm Batch for F , fn can be computed
as follows (for large enough n) on an input x ∈ Xn:

• Run Splitd(x) to get x1, . . . , x`d(n) ∈ X ′sd(n).

• For each i ∈ [`d(n)], run Splitr(xi; ri) to get xi1, . . . , xi`r(sd(n)) ∈ X̂sd(n).

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 58

• For each j ∈ [`r(sd(n))], run Batch(x1j, . . . , x`d(n)j) to get the outputs y1j, . . . , y`d(n)j ∈
Ŷsd(n).

• For each i ∈ [`d(n)], run Merger(xi, ri, yi1, . . . , yi`r(sd(n))) to get yi ∈ Y ′sd(n).

• Run Merged(x, y1, . . . , y`d(n)) to get y ∈ Yn, and output y as the alleged fn(x).

We will prove that with high probability, after the calls to Batch, enough of the yij’s
produced will be equal to the respective gsd(n)(xij)’s to be able to correctly recover all the
f ′sd(n)(xi)’s and hence fn(x).

For each j ∈ [`r(sd(n))], define Ij as the indicator variable that is 1 if Batch(x1j, . . . , x`d(n)j)
is correct and 0 otherwise. Note that by the properties of the robust reduction of F ′ to G,
for a fixed j each of the xij’s is independently distributed according to Dsd(n) and further,
for any two distinct j, j′, the tuples (xij) and (xij′) are independent.

Let I =
∑

j Ij and m = `r(sd(n)). By the aforementioned properties and the correctness
of Batch, we have the following:

E[I] ≥ 7

8
m

Var[I] ≤ 7

64
m

Note that as long as Batch is correct on more than a 2/3 fraction of the j’s, Merger will
get all of the yi’s correct, and hence Merged will correctly compute fn(x). The probability
that this does not happen is bounded using Chebyshev’s inequality as:

Pr

[
I ≤ 2

3
m

]
≤ Pr

[
|I − E[I]| ≥

(
7

8
− 2

3

)
m

]
≤ Var[I]

(5m/24)2

≤ 63

25 ·m
<

3

m

As long as m > 9, this probability of failure is less than 1/3, and hence fn(x) is computed
correctly in the worst-case with probability at least 2/3. If it is the case that `r(sd(n)) = m
happens to be less than 9, then instead of using Merger directly in the above algorithm, we
would use Merge′r that runs Merger several times so as to get more than 9 samples in total
and takes the majority answer from all these runs.

The time taken is td(n) for the downward reduction, tr(sd(n)) for each of the `d(n) robust
reductions on instances of size sd(n), and `d(n)ta(sd(n)) for each of the `r(sd(n)) calls to
Batch on sets of `d(n) = `a(sd(n)) instances, summing up to the total time stated in the
lemma.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 59

4.5 Removing Interaction

All models are wrong, but some (like Random
Oracle Models) are useful.

– MrXOR

In this section we show how to remove the interaction in Protocol 4.2 via the Fiat-Shamir
heuristic and thus prove security of our non-interactive PoW in the Random Oracle model.

Remark 4.5.1. Recent papers have constructed hash functions for which the Fiat-Shamir
heuristic will provably succeed when the Random Oracle is replaced with these hash functions
[KRR17, CCRR18]. Both of these constructions require a variety of somewhat non-standard
sub-exponential security assumptions: [KRR17] uses sub-exponentially secure indistinguisha-
bility obfuscation, sub-exponentially secure input-hiding point function obfuscation, and sub-
exponentially secure one-way functions; [CCRR18] needs symmetric encryption schemes with
strong guarantees against key recovery attacks (they specifically propose two instantiating
assumptions that are variants on the discrete-log assumption and the learning with errors
assumption). While, for simplicity, we present our work in the context of the random oracle
model, [KRR17, CCRR18] give evidence that our scheme can be made non-interactive in the
plain model.

We also note that our use of a Random Oracle here is quite different from its possible
direct use in a Proof of Work similar to those currently used, for instance, in the cryptocur-
rency blockchains. There, the task is to find a pre-image to H such that its image starts (or
ends) with at least a certain number of 0’s. In order to make this only moderately hard for
PoWs, the security parameter of the chosen instantiation of the Random Oracle (which is
typically a hash function like SHA-256) is necessarily not too high. In our case, however,
there is no such need for such a task to be feasible, and this security parameter can be set
very high, so as to be secure even against attacks that could break the above kind of PoW.

It is worth noting that because of this use of the RO and the soundness properties of the
interactive protocol, the resulting proof of work is effectively unique in the sense that it is
computationally infeasible to find two accepting proofs. This is markedly different from proof
of work described above, where random guessing for the same amount of time is likely to
yield an alternate proof.

In what follows, we take H to be a random oracle that outputs an element of Fp, where p
is as in Definition 4.2.5 and n will be clear from context. Informally, as per the Fiat-Shamir
heuristic, we will replace all of the verifier’s random challenges in the interactive proof
(Protocol 4.1) with values output by H so that secure challenges can be gotten without
interaction. Using the definitions of the polynomials q(i1, . . . , ik) and qs,α1,...,αs−1(x) from
Section 4.2, the non-interactive proof scheme for FOVk is described as Protocol 4.3.

Overloading the definition, we now consider Protocol 4.2 as our PoW as before except
that we now use the non-interactive Protocol 4.3 as the the basis of our Solve and Verify

https://mrxor.github.io/cryptoquotes.html

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 60

Non-Interactive Proof for FOVk:
The inputs to the protocol are x = (U1, . . . , Uk) ∈ Fkndp (a valid input to

fOVkn,d,p), and a field element y ∈ Fp. The polynomials q are defined as
in the text.

Prover(x, y):

• Compute coefficients of q1. Let τ1 = (q1).

• For s from 1 to k − 2:

– Compute αs = H(x, y, τs).

– Compute coefficients of qs+1 = qs+1,α1,...,αs , with respect
to x.

– Set τs+1 = (τs, αs, qs+1).

• Output τk−1

Verifier(x, y, τ∗):

Given τ∗ = (q1, α1, q2, . . . , αk−2, qk−1), do the following:

• Check
∑

i1∈[n] q1(i1) = y. If check fails, reject.

• For s from 1 up to k − 2:

– Check that αs = H(x, y, q1, α1, . . . , αs−1, qs).

– Check that
∑

is+1∈[n] qs+1(is+1) = qs(αs). If check fails,
reject.

• Pick αk−1 ← Fp.

• Check that qk−1(αk−1) =
∑

ik∈[n] qk,α1,...,αk−1
(ik). If check

fails, reject.

If verifier has yet to reject, accept.

Protocol 4.3: A Non-Interactive Proof for FOVk

algorithms. The following theorem states that this substitution gives us a non-interactive
PoW in the Random Oracle model.

Theorem 4.5.2. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for all but
finitely many input lengths for any d = ω(log n). Then, Protocol 4.2, when using Protocol 4.3
in place of Protocol 4.1, is a non-interactive (nk, δ)-Proof of Work for k-OV in the Random
Oracle model for any function δ(n) > 1/no(1).

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 61

Efficiency and completeness of our now non-interactive Protocol 4.2 are easily seen to
follow identically as in the proof of Theorem 4.2.9 in Section 4.2. Hardness also follow
identically to the proof of Theorem 4.2.9’s hardness except that the proof there required
the soundness of Protocol 4.1, the interactive proof of FOVk that was previously used to
implement Solve and Verify. To complete the proof of Theorem 4.5.2, then, we prove the
following lemma that Protocol 4.3 is also sound.

Lemma 4.5.3. For any k ≥ 2, if Protocol 4.1 is sound as an interactive proof, then Proto-
col 4.3 is sound as a non-interactive proof system in the Random Oracle model.

Proof Sketch. Let P be a cheating prover for the non-interactive proof (Protocol 4.3) that
breaks soundness with non-negligible probability ε(n). We will construct a prover, P ′, that
then also breaks soundness in the interactive proof (Protocol 4.1) with non-negligible prob-
ability.

Suppose P makes at most m = poly(n) queries to the random oracle, H; call them
ρ1, . . . , ρm, and call the respective oracle answers β1, . . . , βm.

For each s ∈ [k− 2], in order for the check on αs to pass with non-negligible probability,
the prover P must have queried the point (x, y, q1, α1, . . . , qs). Hence, when P is able to
make the verifier accept, except with negligible probability, there are j1, . . . , jk−2 ∈ [m] such
that the query ρjs is actually (x, y, q1, α1, . . . , qs), and βjs is αs.

Further, for any s < s′, note that αs is part of the query whose answer is αs′ . So again,
when P is able to make the verifier accept, except with negligible probability, j1 < j2 <
· · · < jk−2. The interactive prover P ′ now works as follows:

• Select (k−1) of the m query indices, and guess these to be the values of j1 < · · · < jk−1.

• Run P until it makes the jth1 query. To all other queries, respond uniformly at random
as an actual random oracle would.

• If ρj1 is not of the form (x, y, q1), abort. Else, sent q1 to the verifier.

• Set the response to this query βj1 to be the message α1 sent by the verifier.

• Resume execution of P until it makes the jth2 query from which q2 can be obtained, and
so on, proceeding in the above manner for each of the (k− 1) rounds of the interactive
proof.

As the verifier’s messages α1, . . . , αk−2 are chosen completely at random, the oracle that
P ′ is simulating for P is identical to the actual random oracle. So P would still be producing
accepting proofs with probability ε(n). By the earlier arguments, with probability nearly
ε(n), there are (k − 1) oracle queries of P that contain all the qs’s that make up the proof
that it eventually produces. Whenever this is the case, if P ′ guesses the positions of these
oracle queries correctly, the transcript of the interactive proof that it produces is the same
as the proof produced by P , and is hence an accepting transcript.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 62

Hence, when all of the above events happen, P succeeds in fooling the verifier. The
probability of this happening is Ω(ε(n)/mk−1), which is still non-negligible as k is a constant.
This contradicts the soundness of the interactive proof, proving our lemma.

4.6 Zero-Knowledge Proofs of Work

In this section we show that the algebraic structure of the protocols can easily be exploited
with mainstream cryptographic techniques to yield new protocols with desirable properties.
In particular, we show that our Proof of Work scheme can be combined with ElGamal encryp-
tion and a zero-knowledge proof of discrete logarithm equality to get an non-repudiatable,
non-transferable proof of work from the Decisional Diffie-Hellman assumption on Schnorr
groups.

It should be noted that while general transformations are known for zero-knowledge
protocols, many such transformations involve generic reductions with (relatively) high over-
head. In the proof of work regime, we are chiefly concerned with the exact complexity of the
prover and verifier. Even efficient transformations that go through circuit satisfiability must
be adapted to this setting where no efficient deterministic verification circuit is known. That
all said, the chief aim of this section is to exhibit the ease with which known cryptographic
techniques used in conjunction the algebraic structure of the aforementioned protocols.

For simplicity of presentation, we demonstrate a protocol for FOV2, however the tech-
niques can easily be adapted to the protocol for general FOVk.

Preliminaries. We begin by introducing a notion of honest verifier zero-knowledge scaled
down to our setting. As the protocols under consideration have polynomial time provers,
they are, in traditional sense, trivially zero-knowledge. However, this is not a meaningful
notion of zero-knowledge in this setting, because we are concerned with the exact complexity
of the verifier. In order to achieve a meaningful notion of zero-knowledge, we must restrict
ourselves to considering simulators of comparable complexity to the verifier (in this case,
running in quasi-linear time). Similar notions are found in [Pas03, BDSKM17] and perhaps
elsewhere.

Definition 4.6.1. An interactive protocol, Π = 〈P, V 〉, for a function family, F = {fn},
is T(n)-simulatable, if for any fn ∈ F there exists a simulator, S, such that any x in the
domain of fn the following distributions are computationally indistinguishable,

ViewP,V (x) S(x),

where ViewP,V (x) denotes the distribution interactions between (honest) P and V on input
x and S is randomized algorithm running in time O(T (n)).

Given the exposition above it would be meaningful to consider such a definition where we
instead simply require the distributions to be indistinguishable with respect to distinguishers

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 63

running in time O(T (n)). However, given that our protocol satisfies the stronger, standard
notion of computational indistinguishability, we will stick with that.

Recall that El Gamal encryption consists of the following three algorithms for a group G
of order pλ with generator g.

Gen(λ; y) = (sk = y, pk = (g, gy)).

Enc(m, (a, b); r) = (ar,mbr).

Dec((c, d), y) = dc−y

El Gamal is a semantically secure cryptosystem (encryptions of different messages are
computationally indistinguishable) if the Decisional Diffie-Hellman assumption (DHH) holds
for the group G. Recall that DDH on G with generator g states that the following two
distributions are compuationally indistinguishable:

• (ga, gb, gab) where a, b are chosen uniformly,

• (ga, gb, gc) where a, b, c are chosen uniformly.

Protocol. Let Zp be a Schnorr group such of size p = qm + 1 such that DDH holds with
generator g. Let (E,D) denote an ElGamal encryption system on G.

In what follows, we will take RU,V (or R∗ for the honest prover) to be q (or q1) as defined
in Section 4.2.3

• Challenge is issued as before: (U, V)← Z2nd
q .

• Prover generates a secret key x← Zp−1, and sends encryptions of the coeffecients of the
challenge response over the subgroup size q to Verifier with the public key (g, h = gx):

E(R∗(·);S(·)) = E(mr∗0; s0), . . . ,E(mr∗nd−1; snd−1)

= (gs0 , gr
∗
0hxs0), . . . , (gsnd−1 , gmr

∗
nd−1hxsnd−1).

Prover additionally draws t← Zp−1 and sends a1 = gt, a2 = ht.

• Verifier draws random z ← Zq and challenge c← Z∗p and sends to Prover.

• Prover sends w = t+ cS(z) to verifier.

• Verifier evaluates y = fOVV (φ1(z), . . . , φd(z)) to get gmy. Then, homomorphically
evaluates E(R∗;S) on z so that E(R∗(z);S(z)) equals(

(gs0)(gs1)z · · · (gsnd−1)z
d

, (gr
∗
0hs0)(gmr

∗
1hs1)z · · · (gmr∗nd−1hsnd−1)z

d
)

= (u1, u2)

Then, Verifier accepts if and only if

gw = a1(u1)
c & hw = a2(u2/g

my)c.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 64

Recall that the success probability of a subquadratic prover (in the non-zero-knowledge
case) does not have negligible success probability.

Remark 4.6.2. Note that the above protocol is public coin. Therefore, we can apply the
Fiat-Shamir heuristic, and use a random oracle on partial transcripts to make the protocol
non-interactive.

More explicitly, let H be a random oracle. Then:

• Prover computes

(g, h),

E(R∗;S),

a1 = gt, a2 = ht,

z = H(U, V, g, h,E(R∗;S), a1, a2),

c = H(U, V, g, h,E(R∗;S), a1, a2, z),

w = t+ cS(z)

and sends (g, h,E(R∗;S), a1, a2, w).

• Verifier calls random oracle twice to get

z = H(U, V, g, h,E(R∗;S), a1, a2), c = H(U, V, g, h,E(R∗;S), a1, a2, z).

Then, the verifier homomorphically evaluates E(R∗;S)(z) = (u1, u2), it then computes
the value y = fOVV (φ1(z), . . . , φd(z)). Finally, accepts if and only if

gw = a1(u1)
c & hw = a2(u2/g

my)c.

Theorem 4.6.3. Suppose OV takes n2 time to decide for all but finitely many input lengths
for any d = ω(log n) and the DDH the holds in Schnorr groups, then the above protocol is a
Õ(n)-simulatable (n2, δ)-interactive Proof of Work scheme for any function δ(n) > 1/no(1).

Proof. Completeness. From before, if R∗ ≡ RU,V as is the case for an honest prover, then
for any z ∈ Zq we have R∗(z) = RU,V (z) = fOVV (φ1(z), . . . , φd(z)). Moreover

gw = gt+cS(z) = gt(gS(z))c = a1

(
(gs0)(gs1)z · · · (gsnd−1)z

d
)c
,

and

hw = ht+cS(z)

= ht(g0hS(z))c

= a2

(
(gr

∗
0hs0)(gmr

∗
1hs1)z · · · (gmr∗nd−1hsnd−1)z

d

g−fOVV (φ1(z),...,φd(z))
)c
.

CHAPTER 4. PROOFS OF WORK FROM WORST-CASE ASSUMPTIONS 65

Hardness. Suppose a cheating prover runs in subquadratic time, then by the hard-
ness of Protocol 4.2 with high probability R∗ 6≡ RU,V , and so for random z, R∗(z) 6=
fOVV (φ1(z), . . . , φd(z)) with overwhelming probability. Suppose this is the case in what
follows, namely: R∗(z) = y∗ 6= y = fOVV (φ1(z), . . . , φd(z)). In particular,

logg u1 6= logh u2/g
fOVV (φ1(z),...,φd(z)).

Note that u1, u2/g
fOVV (φ1(z),...,φd(z)) can be calculated from the Prover’s first message.

As is standard, we will fix the prover’s first message and (assuming y 6= y∗) rewind any
two accepting transcripts with distinct challenges to show that logg u1 = logh u2/g

y. Fix
a1, a2 as above and let (c, w), (c′, w′) be the two transcripts. Recall that if a transcript is
accepted, gw = a1u

c
1 and hw = a2(u2/g

y)c. Then,

gw−w
′
= uc−c

′

1 ⇒ logg u1 =
w − w′

c− c′
= logh u2/g

y ⇐ hw−w
′
= (u2/g

y)c−c
′
.

Therefore, because u1 6= u2/g
y there can be at most one c for which a Prover can convince

the verifier. Such a c is chosen with negligible probability.
Õ(nd)-simulation. Given the verifier’s challenge z, c, (which can simply be sampled

uniformly, as above) we can efficiently simulate the transcript with respect to an honest
prover as follows:

• Draw public key (g, h).

• Compute the ElGamal Encryption Eg,h(R
′;S) where R′ is the polynomial with constant

term fOVV (φ1(z), . . . , φd(z)) and zeros elsewhere.

• Draw random w.

• Compute a1 = gw

gcS(z)
and aw = hw

hcS(z)
.

• Output ((g, h), a1, a2, z, c, w).

Notice that do to the semantic security of ElGamal, the transcript output is computationally
indistinguishable from that of an honest Prover. Moreover, the simulator runs in Õ(nd) time,
the time to compute R′, encrypt, evaluate S and exponentiate. Thus, the protocol is Õ(nd)-
simulatable.

Efficiency. The honest prover runs in time Õ(n2), because the nd encryptions can be
performed in time polylog(n) each. The verfier takes Õ(nd) time as well. Note that the
homomorphic evaluation requires O(d log zd) = O(d2 log z) = polylog(d) exponentiations and
d = polylog(n) multiplications.

66

Chapter 5

Fine-Grained Derandomization: From
Problem-Centric to Resource-Centric
Complexity

[W]e call a function poly-random if no
polynomial-time algorithm...can distinguish a
computation during which it receives the true
values of the function, from a computation
during which it receives the outcome of
independent coin flips. Notice the analogy with
the Turing Test for intelligence.

– Oded Goldreich, Shafi Goldwasser, and Silvio
Micali [GGM84]

Pretend to be good always, and even God will be
fooled.

– Kurt Vonnegut, God Bless You, Mr.
Rosewater

In this chapter we present our work first published in [CIS18], which uses the average-
case fine-grained hardness attained in Chapter 3 to show that popular hardness conjectures
about problems from the field of fine-grained complexity theory imply structural results for
resource-based complexity classes. Namely, we show that if either k-Orthogonal Vectors or
k-CLIQUE requires nεk time, for some constant ε > 1/2, to count (note that these conjectures
are significantly weaker than the usual ones made on these problems) on randomized ma-
chines for all but finitely many input lengths, then we have the following derandomizations:

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 67

• BPP can be decided in polynomial time using only nα random bits on average over any
efficient input distribution, for any constant α > 0

• BPP can be decided in polynomial time with no randomness on average over the
uniform distribution

As noted in Section 3.6, this answers an open question of [BRSV17a] in the positive
of whether derandomization can be achieved from conjectures from fine-grained complexity
theory. More strongly, these derandomizations improve over all previous ones achieved from
worst-case uniform assumptions by succeeding on all but finitely many input lengths, as is
wanted for asymptotics. Previously, derandomizations from worst-case uniform assumptions
were only know to succeed on infinitely many input lengths. It is specifically the structure
and moderate hardness of the k-Orthogonal Vectors and k-CLIQUE problems that makes
removing this restriction possible.

Via this uniform derandomization, we connect the problem-centric and resource-centric
views of complexity theory by showing that exact hardness assumptions about specific prob-
lems like k-CLIQUE imply quantitative and qualitative relationships between randomized
and deterministic time. This can be either viewed as a barrier to proving some of the main
conjectures of fine-grained complexity theory lest we achieve a major breakthrough in un-
conditional derandomization or, optimistically, as route to attain such derandomizations by
working on very concrete and weak conjectures about specific problems.

5.1 Introduction

Computational complexity can be viewed through two main perspectives: problem-centric
or resource-centric. Problem-centric complexity theory asks what resources are required to
solve specific problems, while resource-centric complexity deals with the relative power of
different computational models given different resource budgets such as time, memory, non-
determinism, randomness, etc. (see [GI16] for a discussion). Through complete problems,
these two perspectives often coincide, so that a resource-centric view acts as a fine proxy for
answering questions about the complexity of specific problems – e.g. the complexity of SAT
can often stand in for asking about the power of NP since SAT is complete for NP under
polynomial time reductions. The rapidly progressing field of fine-grained complexity theory,
however, brings attention back to the problem-centric viewpoint, raising fine distinctions even
between problems complete for the same complexity class, and making connections between
problems at very different levels of complexity. To what extent are these two approaches
linked – i.e., to what extent can inferences about the fine-grained complexities of specific
problems be made from general assumptions about complexity classes, and vice versa?

Here, we examine such links between the fine-grained complexity of specific problems such
as the k-Orthogonal Vectors and k-CLIQUE problems and general results about derandom-
ization of algorithms. Derandomization has been a very fruitful study in complexity theory,
with many fascinating connections between lower bounds, showing that problems require

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 68

large amounts of resources to solve, and upper bounds, showing that classes of probabilis-
tic algorithms can be ‘derandomized’ by simulating them deterministically in a non-trivial
fashion. In particular, the hardness-to-randomness framework shows that in many cases,
the existence of any “hard” problem can be used to derandomize classes of algorithms. We
reconsider this framework from the fine-grained, problem-centric perspective. We show that
replacing a generic hard problem with specific hardness conjectures from fine-grained com-
plexity leads to quantitatively and qualitatively stronger derandomization results than one
gets from the analogous assumption about a generic problem. In particular, we show that
starting from these assumptions, we can simulate any polynomial-time probabilistic algo-
rithm (on any samplable distribution on inputs with a very small fraction of errors) by a
polynomial time probabilistc algorithm that uses only nα random coins, for any α > 0. This
type of derandomization previously either assumed the existence of cryptographic One-Way
Functions or exponential non-uniform hardness of Boolean functions.

Thus, the problem-centric conjectures of fine-grained complexity cannot live in isolation
from classical resource-centric consequences about the power of randomness. Viewed another
way, our results can be seen as a barrier to proving some of the key hardness assumptions used
by fine-grained complexity theory. That is, despite recent progress towards proving hardness
for k-Orthogonal Vectors, one of fine-grained complexity’s key problems, in restricted models
of computation [KW17], doing so for general randomized algorithms would immediately prove
all problems in BPP are easy on average (over, say, uniformly chosen inputs).

Previous derandomization results in the uniform setting ([IW01, GW02, TV07]) used
two properties of the hard problem: random self-reducibility and downward self-reducibility.
To obtain our results, we need problems that have stronger, “fine-grained” versions of both
(or can be reduced to problems that do). In particular, we need problems where not only
can instances of size n be reduced to smaller instances of the same problem, but that these
instances are much smaller, of size nε for ε < 1, and that the reduction is “fine-grained”, in
that any improvement in the time to solve the smaller instances yields a similar improvement
in the time to solve the larger ones.

5.1.1 Our Results

We obtain two main theorems about the power of BPP from uniform worst-case assumptions
about well-studied problems from the field of fine-grained complexity theory. Namely, we
consider the k-Orthogonal Vectors (k-OV) and the k-CLIQUE problems, where we recall
Section 2.2’s definitions and motivations in Section 5.2.1, and show that (even weaker versions
of) popular conjectures on their hardness give two flavors of average-case derandomization
that improve over the classical uniform derandomizations.

All previous derandomizations from uniform assumptions on worst-case hardness only
succeed on infinitely many input lengths. Our work is the first to use worst-case uniform
assumptions to derandomize BPP for all but finitely many input lengths, as is wanted for
asymptotics. The only other worst-case uniform assumptions known to imply such results
are those so strong as to imply cryptographic assumptions or circuit lower bounds, fitting

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 69

closer to the cryptographic or non-uniform derandomization literature. In contrast, our uni-
form derandomizations are from extremely weak worst-case uniform conjectures on simple,
natural, combinatorial problems. Informally, we prove the following.

Informal Theorem 5.1.1. If k-OV or k-CLIQUE requires nεk time, for some constant
ε > 1/2, to count on randomized machines in the worst-case for all but finitely many input
lengths, then BPP can be decided in polynomial time using only nα random bits on
average over any efficient input distribution, for any constant α > 0.

Randomness can be removed entirely by simply brute-forcing all random bits and taking
the majority of the outputs to give the following more familiar full derandomization.

Corollary. If k-OV or k-CLIQUE requires nεk time, for some constant ε > 1/2, to count
on randomized machines in the worst-case for all but finitely many input lengths, then BPP
can be decided with no randomness in sub-exponential time on average over any efficient
input distribution.

This conclusion is strictly stronger than the classic uniform derandomizations of [IW01,
TV07]. The weakest uniform assumption previously known to imply such a conclusion was
from those already strong enough to imply the cryptographic assumption of the existence of
One-Way Functions that are hard to invert for polynomial time adversaries [BM84, GKL93,
GL89, HILL99, Yao82] or those implying non-uniform circuit lower bounds [BFNW93].

Our second main theorem, using techniques from [KvMS12], shows how to remove all
randomness within polynomial time if the distribution over inputs is uniform. The only
stronger derandomization from uniform assumptions were, again, from those already strong
enough to imply circuit lower bounds or the cryptographic assumption of the existence of
One-Way Permutations that require exponential time to invert [BM84, GL89, Yao82].

Informal Theorem 5.1.2. If k-OV or k-CLIQUE require nεk time, for some constant ε >
1/2, to count on randomized machines in the worst-case for all but finitely many input
lengths, then BPP can be decided in polynomial time with no randomness on average over
the uniform distribution.

These results should be viewed through three main points: First, that we conceptually tie
problem-centric conjectures to resource-centric consequences, thus partly reconnecting the
two perspectives of complexity theory that separate in the fine-grained world. Secondly, we
add to the general derandomization literature by achieving quantitatively and qualitatively
stronger derandomization from weak uniform assumptions. Lastly, our results can be seen,
pessimistically, as demonstrating a barrier to proving even weak versions of some of fine-
grained complexity theory’s main conjectures lest we achieve a breakthrough in unconditional
derandomization or, optimistically, as providing a path to achieve such general resource-
centric results by instead considering extremely weak conjectures on very concrete, simple,
and structured combinatorial problems.

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 70

5.1.2 Related Work

We now discuss previous connections between problem-centric and resource-centric complex-
ity and previous derandomization results.

Connections Between Problem-Centric and Resource-Centric Complexity. Most
connections from problem-centric to resource-centric complexity show that faster algorithms
for OV or related problems give circuit lower bounds. For instance, improvements in EDIT-
DISTANCE algorithms imply circuit lower bounds [AHWW16] and solving OV faster (and
thus CNF-SAT [Wil05]) implies circuit lower bounds [JMV15]. These are all non-uniform
results, however, whereas in this paper we are concerned with machines and their resource-
bounds as opposed to circuits. On the uniform side, [GIKW17] recently showed that the
exact complexity of k-Orthogonal Vectors is closely related to the complexity of uniform AC0,
although a connection between more powerful machine models and fine-grained assumptions
was still not known until now. Further, most of these results follow from OV being easy. Our
work shows instead that there are interesting resource-centric consequences if our fine-grained
problems are hard.

Uniform Derandomization Framework. The uniform derandomization framework was
introduced in [IW01], a breakthrough paper that showed the first derandomization from a
uniform assumption (EXP 6= BPP) in the low-end setting: a weak assumption gives a slow
(subexponential-time) deterministic simulation of BPP. This is in contrast to our simulation
which retains small amounts of randomness but is fast (this is a strictly stronger result as it
recovers the [IW01] derandomization as a corollary).

We build on [TV07], which simplifies the proof of [IW01] to prove that PSPACE 6= BPP
implies a non-trivial deterministic simulation of BPP. The technique of [TV07] carefully
arithmetizes the PSPACE-complete problem TQBF and uses this as a hard function in
the generator of [IW01]. Our proof substitutes a carefully-arithmetized k-OV problem
from [BRSV17a]. Numerous other works study derandomization from uniform assumptions
([Kab01, Lu01, IKW02, GST03, SU09]), but these all focus on assumptions and consequences
about nondeterministic classes.

All worst-case uniform derandomizations, including [TV07] and [IW01], seem to only be
able to achieve simulations of BPP that succeed for infinitely many input lengths because of
how their proofs use downward self-reductions. Our is the first work to achieve simulations on
all but finitely many input lengths, because the k-OV and k-CLIQUE-inspired problems have
very parallelizable downward self reductions so that we can reduce to a single much smaller
input length rather than recurse through a chain of incrementally smaller input lengths in
our downward self-reduction.

Since the original publication of the work presented here in [CIS18], a new work shows
that conjecturing a randomized variant of the uniform assumption ETH (a weaker version of
SETH) achieves derandomization [CRTY19]. The average-case derandomization that they
achieve, which is comparable to the first “flavor” of derandomization we will achieve in this

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 71

chapter, is faster than ours but, as with previous uniform derandomizations, only guarantees
success on infinitely many input lengths. We note that using the ideas later sketched in
Remark 5.3.9 should allow us to us to relax our assumptions on OV to the point that we
can also achieve infinitely-often derandomization from assumptions on randomized variants of
ETH, although these will be slower than the ones found in [CRTY19]. Our weak assumptions
on problems from fine-grained complexity, however, may independently be true even if ETH
fails and further is the only uniform derandomization work that isn’t restricted to only
guaranteeing successful derandomizations for infinitely many input lengths.

Heuristics by Extracting Randomness From the Input. A separate line of work
began when [GW02] introduced the idea of using the input itself as a source of randomness to
heuristically simulate randomized algorithms over uniformly-distributed inputs. While their
assumptions contain oracles and are mostly non-uniform and average-case, they construct an
algebraic problem inside P whose worst-case uniform hardness can be used in the framework
of [IW01] to get an infinitely-often simulation of BPP in polynomial time. Our work differs
in that we achieve an almost-everywhere simulation, that our assumptions are based on
canonical fine-grained problems, and that our assumptions aren’t against machines with
SAT-oracles. Further, the downward self-reduction of their problem requires an expansion
by minors of the determinant and so they cannot also obtain an almost-everywhere heuristic
using our techniques without placing the determinant in NC1 (as our modification to [IW01]
exploits embarrassingly parallel downward self reductions).

The work of [KvMS12], generalizing [Sha11], removes the SAT-oracles needed in the as-
sumptions of [GW02] by showing that the Nisan-Wigderson generator (see [NW94]) remains
secure against non-uniform adversaries even if the seed is revealed to potential distinguish-
ers. In Section 5.3.2 we will show their arguments can be made uniform so we can de-
randomize from uniform assumptions. Seed-revealing Nisan-Wigderson generators are used
in [KvMS12] to obtain polynomial-time heuristics for randomized algorithms, where the
uniformly distributed input is used as a seed to the generator. The derandomizations in
[KvMS12] are achieved from non-uniform assumptions of polynomial average-case hardness.
From worst-case uniform assumptions we achieve the same derandomizations.

5.2 Preliminaries

Here we recall the relevant background given in Section 2.2 from fine-grained complexity
theory and motivate our assumptions, present standard tools from derandomization, and
give definitions of the peculiarities that arise specifically in derandomization from uniform
assumptions such as average-case tractability and infinitely-often qualifiers.

As with the previous chapters, all complexity measures of fine-grained problems will refer
to time on a randomized word RAM with O(log(n))-bit word length, as is standard for the
fine-grained literature [Wil15, BRSV17a]. Specifically, we will consider two-sided bounded
error as in [BRSV17a].

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 72

5.2.1 Fine-Grained Hardness

The problem-centric field of fine-grained complexity theory has had impressive success in
showing the fixed polynomial time (“fine-grained”) hardness of many practical problems
by assuming the fine-grained hardness of four “key” well-studied problems, as discussed in
Section 2.2. We obtain our results under hardness conjectures about two of these four key
problems: the k-Orthogonal Vectors (k-OV) problem and the k-CLIQUE problem. Evidence
continues to accumulate that these problems are actually hard. Thus, not only is the connec-
tion between problem-centric and resource-centric complexity of independent interest, but
the strong derandomizations of this paper are now supported by plausible conjectures about
concrete problems.

k-CLIQUE. Denote the matrix multiplication constant by ω. The fastest known algo-
rithm for deciding if a graph has a k-CLIQUE (given its adjacency matrix) runs in time
O(nωk/3), and was discovered in 1985 [NP85] for k a multiple of three (for other k different
ideas are needed [EG04]). It is conjectured that no algorithm can improve the exponent to
a better constant. The parameterized version of the famous NP-hard MAX-CLIQUE prob-
lem [Kar72], k-CLIQUE is one of the most heavily studied problems in theoretical computer
science and is the canonical intractable (W[1]-complete) problem in parameterized com-
plexity (see [ABW15a] for a review of the copious evidence of k-CLIQUE’s hardness and
consequences of its algorithm’s exponent being improved). Recent work has shown that con-
jecturing k-CLIQUE to require nωk/3−o(1) time, for k a multiple of three, leads to interesting
hardness results for other important problems such as parsing languages and RNA folding
[ABW15a, BGL17, BDT16, BT17], and it is known that refuting this conjecture determin-
istically would give a faster exact algorithm for MAX-CUT [Wil05]. Our results hold under
a much weaker version of the conjecture:

Definition 5.2.1 (Weak k-CLIQUE Conjecture). There exists an absolute constant ε0 > 1/2
such that, for all k ∈ N a multiple of three, any randomized algorithm that counts the
number of k-CLIQUE’s in an n node graph requires nε0k time.

Note that this conjecture gives leeway for the exponent of the k-CLIQUE algorithm to
be improved so long as it doesn’t get down to k/2; even finding a linear time algorithm for
Boolean matrix multipliaction (ω = 2) would not contradict this conjecture! Further, even if
it is possible to decide the k-CLIQUE problem that quickly, this conjecture still holds unless
it is possible to count all of the k-CLIQUE’s in that time. (With a more careful analysis
of our techniques to focus on k-CLIQUE we can actually use the even weaker conjecture of
ε0 > ω/(ω + 3), as argued in Appendix C.1).

k-Orthogonal Vectors. Although the k-CLIQUE problem is certainly at least as important
as the k-OV problem, for concreteness we will use the k-OV problem to demonstrate our
techniques throughout the paper. Proofs based on hardness of k-CLIQUE follow identically.

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 73

Definition 5.2.2 (k-Orthogonal Vectors Problem, k-OVn,d). For an integer k ≥ 2, the
k-OVn,d problem on vectors of dimension d is to determine, given k sets (U1, . . . , Uk) of n

vectors from {0, 1}d each, whether there exist ui ∈ Ui for each i such that over Z,∑
`∈[d]

u1` · · ·uk` = 0

If left unspecified, d is to be taken to be d(n) =
⌈
log2 n

⌉
.

Definition 5.2.3 (k-Orthogonal Vectors Conjecture). For any d = ω(log n), for all k ≥ 2,
any randomized algorithm for the k-OVn,d problem requires nk−o(1) time.

For k = 2 the Orthogonal Vectors conjecture for deterministic algorithms has been exten-
sively studied and is supported by the Strong Exponential Time Hypothesis (SETH) [Wil05],

which states that there is no ε > 0 such that t-SAT can be solved in time Õ(2n(1−ε)) for
all values of t. The natural generalization to k-OV is studied in [BRSV17a, GIKW17] and
its deterministic hardness is also supported by SETH. While SETH has been controversial
, the deterministic k-OV conjecture seems to be a much weaker assumption and is inde-
pendently believable and supported: it has been shown that it holds unless all first-order
graph properties become easy to decide [GIKW17] and the 2-OV conjecture has recently been
proven unconditionally when the model of computation is restricted to branching programs
[KW17]. This conjecture has also been used to support the hardness of many practical and
well-studied fine-grained problems [AWW14, BI15, BK15]. As with k-CLIQUE, our main
results will hold using a much weaker version of the randomized k-OV conjecture introduced
below.

Definition 5.2.4 (Weak k-Orthogonal Vectors Conjecture). For any d = ω(log n), there
exists an absolute constant ε0 > 1/2 such that, for all k ≥ 2, any randomized algorithm
counting the number of k-OVn,d solutions requires nε0k time.

Remark 5.2.5. For all of these conjectures we will also consider the strengthened versions
that assume that all algorithms running in time less than what is required will fail on all but
finitely many input lengths, as opposed to only on infinitely many input lengths. For
most natural problems, an ‘almost-everywhere’ assumption like this seems natural. That is,
we don’t expect that the problem becomes easy for, say, even input sizes and hard on odd input
sizes or other degenerate cases like this, but instead believe that the hardness comes from the
structure of the problem and will simply grow (as opposed to oscillate) asymptotically.

For the purposes of derandomization, for a given k, we will use the family of average-case
fine-grained hard polynomials introduced in Chapter 3 from [BRSV17a]. We will denote
them in this chapter as

{
fkn,d,p : Fkndp → Fp

}
n,d,p∈N and recall that the variables are grouped

into sets of size nd in the form of a matrix Ui ∈ F n×d
p where the n rows ui ∈ Ui are each

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 74

collections of d variables:

fkn,d,p(U1, . . . , Uk) =
∑

u1∈U1,...,uk∈Uk

∏
`∈[d]

(1− u1` · · ·uk`)

As covered in Chapter 3, the worst-case hardness of evaluating these polynomials was related
to the worst-case hardness of k-OVn in [BRSV17a].

Lemma 5.2.6. Let p be the smallest prime number larger than nk and d =
⌈
log2(n)

⌉
. If

fkn,d,p can be computed in O(nk/2+c) time for some c > 0, then k-OVn can be counted in

time Õ(nk/2+c)

Derandomization from uniform assumptions typically requires two other properties of
the assumed hard problem: random self-reducibility and downward self-reducibility. We
recall from Chapter 3 that fkn,d,p satisfies both of these properties. We give a polynomial for
k-CLIQUE and show that it also has the necessary properties in Appendix C.1.

Random Self-Reducible. fkn,d,p is random self-reducible by the following classical lemma

[Lip89, FF91] (see Chapter 3 or [BRSV17a] for a proof). Note that degree log2 n adds
negligibly to the random self-reduction time.

Lemma 5.2.7 (Random Self-Reducibility of Polynomials). If f : FNP → FP is a degree

9 < D < P/12 polynomial, then there exists a randomized algorithm that takes a circuit Ĉ
3/4-approximating f and produces a circuit C exactly computing f , such that the algorithm

succeeds with high probability and runs in time poly(N,D, logP, |Ĉ|).

Downward Self-Reducible. We will show that fkn,d,p is downward self-reducible in the

sense that, if we we have a way to produce an oracle for fk√
n,d,p

, we can quickly compute

fkn,d,p with it. Compare this to downward self-reducibility going from input size n to n− 1 in
previous uniform derandomizations. We exploit our more dramatic shrinkage and parallelism
to later give an almost-everywhere derandomization, instead of an infinitely-often one.

Lemma 5.2.8. If there exists an algorithm A that, on input 1n, outputs a circuit C comput-
ing fk√

n,d,p
, then there exists an algorithm that computes fkn,d,p in time O(nk/2|C|+TIME(A)).

Proof. Using A, we print a circuit C computing fk√
n,d,p

in time TIME(A). To solve an instance

of fkn,d,p, we break up its input as follows.
Intuitively, we break each Ui into

√
n chunks of

√
n rows each which partitions the sum of

fkn,d,p into
√
n
k

sub-summands. More formally, for j ∈
[√
n
]

let U j
i ∈ F

√
n×d be the submatrix

of Ui consisting of just the ((j−1)
√
n+1)th, ((j−1)

√
n+2)th, . . . , ((j−1)

√
n+
√
n)th rows.

Now we can feed U j1
1 , U

j2
2 , . . . , U

jk
k as input to C for all j1, j2, . . . , jk ∈

[√
n
]

and sum the

results that C gives. This will give the correct answer by inspection and makes
√
n
k

calls to
C.

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 75

5.2.2 Derandomization

We now define pseudorandom generators (PRGs) in terms of their distinguishers.

Definition 5.2.9 (Distinguishers). A test T : {0, 1}m` → {0, 1} is an ε-distinguisher against
G : {0, 1}m → {0, 1}m` , denoted T ∈ DIS(G, ε), if:∣∣∣∣ Pr

r∼U
m`

[T (r)]− Pr
z∼Um

[T (G(z))]

∣∣∣∣ > ε

We also will consider the seemingly weaker object of distinguishers that succeed if they
are also given the seed to the PRG. These were studied in [TV07] to relate uniform de-
randomization to average-case hardness and in [KvMS12] to derandomize over the uniform
distribution by using the random input itself as the seed to the PRG.

Definition 5.2.10 (Seed-Aware Distinguishers). A test T : {0, 1}m × {0, 1}m` → {0, 1} is
an ε-seed-aware distinguisher against G, denoted T ∈ DIS(G, ε), if:∣∣∣∣ Pr

x∼Um,r∼Um`
[T (x, r)]− Pr

x∼Um
[T (x,G(x))]

∣∣∣∣ > ε

Standard hardness-to-randomness arguments typically derandomize using generators that
are based on some ‘hard’ function by contrapositive: if derandomization fails, then a dis-
tinguisher for the generator can be produced. Further, from a distinguisher, we can create
a small circuit for the supposedly hard function that the generator was based on. For our
purposes, we require an algorithmic version of this argument for derandomization from uni-
form hardness assumptions. More specifically, we will use the following lemma which was
originally proved for distinguishers [TV07, IW01] but Lemma 2.9 of [KvMS12] proves that
it also holds for seed-aware distinguishers (while the proof of [KvMS12] is non-uniform, it is
easy to see that it can be made constructive, in the same way that [IW01] gave a constructive
version of [NW94]). Thus, DIS(G, ε) in the lemma below can be thought to refer to either
regular or seed-aware distinguishers (which justifies overloading this notation).

Lemma 5.2.11 (Algorithmic Distinguishers to Predictors ([TV07, IW01])). For every ran-
dom self-reducible f , there exists a function G with stretch m bits to m` bits and a constant
c such that

• G(z) can be computed in time (|z|`)c, given oracle access to f on inputs of length at
most |z|

• There exists a polynomial-time randomized algorithm A that, with high probability,
given as input circuit D ∈ DIS(G, ε) for ε at least inverse polynomial and an oracle for
f , prints a circuit computing f exactly.

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 76

5.2.3 Uniform Derandomization

Previous techniques for derandomizations from worst-case uniform assumptions seemed to
have inherent caveats: the derandomization only succeeds on average and, even then, only
for infinitely many input lengths. Our results will remove the infinitely-often caveat and so,
in this section, we pay careful attention to infinitely-often simulation. First, we give the
definitions of average-case tractability that arise in uniform derandomization.

Average-Case Tractability. We give standard definitions of average-case tractability (for
an extensive survey of these notions, see [BT06a]).

Definition 5.2.12 (t(n)-Samplable Ensemble). An ensemble µ = {µn} is t(n)-samplable if
there is a randomized algorithm A that, on input a number n, outputs a string in {0, 1}∗
and:

• A runs in time at most t(n) on input n, regardless of its internal coin tosses

• for every n and for every x ∈ {0, 1}∗, Pr[A(n) = x] = µn(x)

With this notion of samplable ensemble we can now consider heuristic algorithms that
perform well on some language L : {0, 1}∗ → {0, 1} over some µ. The pair (L, µ) is a
distributional problem.

Definition 5.2.13 (Heuristics for Distributional Problems). For t : N → N, δ : N → R+,
we say (L, µ) ∈ Heurδ(n)DTIME[t(n)] if there is a time t(n) deterministic algorithm A such
that, for all but finitely many n:

Pr
x∼µn

[A(x) 6= L(x)] ≤ δ(n)

For a class of languages C we say that,
(C, µ) ⊆ Heurδ(n)DTIME[t(n)] if (L, µ) ∈ Heurδ(n)DTIME[t(n)] for all L ∈ C.

As in [BT06a], HeurδP is defined as the union over all polynomials p of HeurδDTIME(p(n))
and HeurP is the intersection over all inverse polynomial δ(n) of HeurδP. HeurSUBEXP is
defined similarly where SUBEXP = ∩ε>0DTIME

[
2n

ε]
.

In other words, HeurP is the class of distributional problems that can be solved in deter-
ministic polynomial time for any inverse polynomial error. Thus, while saying (L, µ) ∈ HeurP
is not a worst-case guarantee on L being easy, HeurP still captures a very strong real-world
notion of tractability: L can be easily decided up to any inverse polynomial probability of
error over input distribution µ. It is then interesting to see over which input distributions a
language can be made tractable over.

Finally, to discuss the randomness-reduced simulations we construct, we define BPTIME
with a limited number of random coins in the natural way.

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 77

Definition 5.2.14 (Randomized Heuristics with Bounded Coins). For t : N → N, δ :
N → R+, and coin bound r : N → N we say (L, µ) ∈ Heurδ(n)BPTIME[r(n)][t(n)] if there is
randomized algorithm A running in time t(n) and flipping r(n) coins such that, for all but
finitely many n:

Pr
x∼µn

[
Pr

r∼Ur(n)
[A(x, r) 6= L(x)] > 1/3

]
≤ δ(n)

For example, HeurBPP[r(n)] denotes the class of distributional problems that, for every
inverse polynomial error, have a polynomial time randomized algorithm using only r(n)
random coins.

Infinitely-Often Simulation. As opposed to an algorithm that decides a language (pos-
sibly on average) “for all but finitely many n” as in Definition 5.2.13, an infinitely-often (io-)
qualifier can be added to any complexity class to specify that an algorithm need only succeed
on infinitely many input lengths within the time and error bounds. Thus, to derandomize
BPP into io-HeurP over the uniform distribution is to say that every language in BPP can be
simulated on average in polynomial time by an algorithm that is only guaranteed to succeed
for infinitely many input lengths. There is no guarantee on what those input lengths are or
how large the gaps could be between them. This is obviously a very undesirable notion of
‘tractability’.

Non-uniform hardness to randomness trade-offs can derandomize almost-everywhere (the
desired notion of tractability for asymptotics) by assuming almost-everywhere hardness:
that no algorithm works for all sufficiently large input lengths. That is, the ‘infinitely-often’
qualifier on the consequent can be flipped across the implication to be an ‘almost-everywhere’
qualifier on the assumption and vice-versa. Thus, the unrealistic ‘infinitely-often’ notion of
tractability can be dropped by slightly strengthening the assumption to the (as argued in
Remark 5.2.5) realistic ‘almost-everywhere’ hardness. For non-uniform derandomizations
this is possible.

Starting with [IW01] and the techniques it introduced, all uniform derandomizations
have been infinitely-often derandomizations without being able to flip the io- qualifier to
an ‘almost-everywhere’ assumption. Our work is the first that is able to do this in the
uniform derandomization framework, thus removing the ‘infinitely-often’ qualifier from our
derandomizations.

5.3 Fine-Grained Derandomization

We will prove our main derandomization results (Theorems 5.3.4 and 5.3.10) here. Under
either the (weak) k-OV or k-CLIQUE conjectures, we derandomize BPP on average, where
‘on average’ will have two different flavors. Although all techniques apply to k-CLIQUE, for
concreteness we will use k-OV throughout this section.

We show in Section 5.3.1 that if we base pseudorandom generators on fkn,d,p, then an
algorithm printing distinguishers for this PRG can be used to count k-OV solutions quickly.

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 78

We will then show in Section 5.3.2 how to attain these distinguisher-printing algorithms if
derandomization doesn’t work on average (for both flavors of on average). Thus, a failed
derandomization using these PRGs refutes the k-OV conjecture (similarly for k-CLIQUE).

More specifically, in Section 5.3.2 we will show that the amount of randomness needed
can be shrunk in polynomial time to only nα random bits for any constant α > 0 and still
succeed in deciding the language on average over any efficient distribution on inputs (which
implies a fully deterministic sub-exponential derandomization over all efficient distributions).
The second flavor of derandomization will be shown in Section 5.3.2, that we can fully
derandomize in polynomial time on average over the uniform distribution. Namely, we will
show that if either flavor of these derandomizations fail, we will have an algorithm that prints
distinguishers for infinitely many input lengths.

5.3.1 Counting k-OV from Distinguishers

In this section we show that any algorithm producing a distinguisher forGfkm,d,p (the generator
guaranteed to exist from Lemma 5.3.1, using the hard function fkm,d,p) can be used to quickly
count k-OV solutions.

First, Lemma 5.3.1 follows immediately by combining the distinguisher to predictor al-
gorithm of Lemma 5.2.11 with the fact that fkm,d,p is random self-reducible as in Lemma
5.2.7.

Lemma 5.3.1. There is a randomized algorithm Af
k
m,d,p that takes any circuit D that is

a distinguisher for Gfkm,d,p and produces a circuit C exactly computing fkm,d,p, such that A
succeeds with high probability and runs in time poly(m, d, log p, |D|)

As usual, having an oracle to fkm,d,p, the assumed hard function, is not desirable and our
algorithms dependence on it will need to be removed. We stray from the techniques of [IW01]
and worst-case uniform derandomization in general, however, as we use the fact that our
problems are from the fine-grained world, and thus polynomial-time computable, to simply
answer our oracle queries by brute force. This difference is in part how we can remove the
‘infinitely-often’ qualifier that plagues all previous worst-case uniform derandomizations.

As fkm,d,p is computable in time O(mkpoly(d, log p)), we get the following theorem without
an oracle by running the algorithm guaranteed in Lemma 5.3.1 with each oracle call answered
by the näıve brute force computation of fkm,d,p.

Lemma 5.3.2. There is a randomized algorithm B that takes any circuit D that is a dis-

tinguisher for Gfkm,d,p and produces a circuit C of size poly(m, d, log p, |D|) exactly computing
fkm,d,p. B succeeds with high probability and runs in time O(mkpoly(m, d, log p, |D|)).

Now we show that, if we have an algorithm producing a distinguisher, then we have
an algorithm counting k-OV. (In Sections 5.3.2 and 5.3.2 we will show how to attain such
uniform distinguisher-printing algorithms if either of our types of derandomization fail.)

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 79

Theorem 5.3.3. Let p be the smallest prime number larger than nk and d =
⌈
log2(n)

⌉
.

If there is an algorithm A that, on input 1n, outputs a distinguisher D of poly(n) size

for G
fk√

n,d,p, then there exists a randomized algorithm counting k-OVn that runs in time
O(nk/2+c + TIME(A)), where c only depends on |D|.

Proof. Using A, we print a distinguisher circuit D for G
fk√

n,d,p . Then, by Lemma 5.3.2, we
know there exists a randomized algorithm running in time O(nk/2poly(

√
n, d, log p, |D|)) =

O(nk/2+c1) that yields a circuit exactly computing fk√
n,d,p

of size only poly(
√
n, d, log p, |D|) =

O(nc2), where c1 and c2 only depend on |D|. Thus, by Lemma 5.2.8, there exists an algorithm
computing fkn,d,p in time O(nk/2+c2 + (nk/2+c1 + TIME(A))) = O(nk/2+c + TIME(A)) for c =

max{c1, c2}. Finally, this gives us an algorithm running in time Õ(nk/2+c + TIME(A)) to
count k-OVn by Lemma 5.2.6.

5.3.2 Printing Distinguishers from Failed Derandomization

We now show that, if either of two (shown in 5.3.2 and 5.3.2 respectively) types of deran-
domization fail, we can uniformly print the distinguishers needed in Section 5.3.1 and thus
count k-OV solutions.

Randomness-Reduced Heuristics Over Any Efficient Distribution

Our first main result in derandomizing BPP is to reduce the amount of randomness required
to arbitrarily small quantities, over any efficient distribution of inputs. This simulation
trades time for reduced randomness under fine-grained hardness assumptions.

Theorem 5.3.4. If the weak k-OV conjecture holds almost everywhere, then, for all polyno-
mially samplable ensembles µ and for all constants α > 0,

(BPP, µ) ⊆ HeurBPP[nα]

Thus, for any efficient distribution over inputs that nature might be drawing from and for
any inverse polynomial error rate we specify, we can simulate BPP using only nα random bits
for any constant α > 0 we want. By brute-forcing over all random bits and taking majority
answer over this randomness-reduced computation we can always trivially create a fully
deterministic simulation to achieve the following more traditional-looking derandomization
result.

Corollary 5.3.5. If the weak k-OV conjecture holds almost everywhere, then, for all poly-
nomially samplable ensembles µ,

(BPP, µ) ⊆ HeurSUBEXP

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 80

Remark 5.3.6. While we are able to remove the infinitely-often qualifier from our derandom-
ization, note that for each efficient distribution of inputs and each inverse polynomial error
rate we are guaranteed to have a derandomizing algorithm, whereas [IW01] is able to achieve
a single derandomizing algorithm that works for each efficient distribution. Nonetheless, our
result is a strictly stronger derandomization as it implies, for instance, EXP 6= BPP (shown
in Section C.2) which is the assumption used to achieve the derandomization of [IW01].

In contrast to typical full derandomizations which brute-force all seeds to a pseudorandom
generator and take majority answer, we now show that choosing a single random seed and
using the generator’s output as our randomness yields randomness-reduced simulations so
long as the generator is efficient enough. Typically, the generator is not fast enough for
this application; ‘quick’ complexity-theoretic PRGs are usually given exponential time in
their seed length as they construct pseudorandom strings via queries to problems that have
exponential hardness.

Definition 5.3.7 (Randomness-Reduced Simulations). Let A : {0, 1}N × {0, 1}N` → {0, 1}
be a randomized algorithm that uses N ` random bits and let G : {0, 1}Nα → {0, 1}N`

be a
function.
Then for constant α > 0, define the randomness-reduced simulation to be a randomized
algorithmB : {0, 1}N×{0, 1}Nα → {0, 1} using onlyNα random bits asB(x, r) = A(x,G(r)).

We now show that ifB does not work as a randomness-reduced heuristic, we can uniformly
print a distinguisher for the function G.

Lemma 5.3.8 (Failed Randomness-Reduction to Distinguishers). Let A, B, and G be as in
Definition 5.3.7 such that for language L : {0, 1}N → {0, 1},

Pr
r∼U

N`

[A(x, r) 6= L(x)] ≤ 1/10

That is, that A as a good randomized algorithm deciding L for all x ∈ {0, 1}N . Yet, also
assume that, for µ samplable in time Na1 and δ(n) = 1/Na2, it holds that

Pr
x∼µN

[
Pr

r∼UNα
[B(x, r) 6= L(x)] > 1/3

]
≥ δ(N)

That is, B as a (randomness-reduced) randomized algorithm does not decide L on average
over µ.
Then 1N 7→ DIS(G, 1/5) is in randomized time N c TIME(G) for c depending on a1 and a2.

Proof. Assume the antecedents of Lemma 5.3.8. This means that, with probability at least
δ(N), choosing x from µ will result in an x such that

Pr
r∼UNα

[B(x, r) 6= L(x)] > 1/3

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 81

If we find an x′ ∈ {0, 1}N that induces this “bad” performance of B on L, the test T (r) =
A(x′, r) will be in DIS(G, 1/5). That is, since x′ makes B perform poorly while A still
performs well on all x’s and since B(x′, z) = A(x′, G(z)), the distinguishing gap of T is∣∣∣∣ Pr

r∼U
N`

[T (r)]− Pr
z∼UNα

[T (G(z))]

∣∣∣∣ =

∣∣∣∣ Pr
r∼U

N`

[A(x′, r)]− Pr
z∼UNα

[B(x′, G(z))]

∣∣∣∣
> |1/10− 1/3| > 1/5

To find such an x′, we simply sample-and-test as in [IW01]: sample Õ(1/δ(N)) possible
xi ∈ {0, 1}N ’s from µ and, for each of them, define the test Ti(r) = A(xi, r). For each Ti,
in polynomial time we can estimate the fraction of r ∈ {0, 1}N`

that Ti accepts on and, by
making calls to G, we can estimate the fraction of G(z) for z ∈ {0, 1}Nα

that Ti accepts on
in polynomial time times TIME(G). Thus we can estimate the distinguishing gap for each
Ti.

With high probability one of these Ti is a 1/5-distinguisher for G and our estimation of
its distinguishing gap reveals it. Print this circuit.

Randomness-Reduced Simulations from k-OV. To finish defining a randomness-
reduced simulation, we need to use a specific pseudorandom generator G that, for input
length N , stretches Nα coins to N `. Thus, consider the family of simulations Bk using the

standard generators G
fk√

n,d,p of Lemma 5.2.11 that map
√
n
s

bits to
√
n
b

bits, for some fixed
s and any b we choose, using fk√

n,d,p
as our hard function, for d = log2 n and p the smallest

prime number larger than nk. Set b = s`/α and
√
n = Nα/s. Note that TIME(G

fk√
n,d,p) =

poly(N) nk/2 = poly(N) by näıvely evaluating fk√
n,d,p

at each oracle call, giving an efficient

randomness-reduced simulation. Further, since N = poly(n), TIME(G
fk√

n,d,p) also equals
nk/2+c for some constant c not depending on k (this will be useful in quickly counting k-OVn
using downward self-reducibility in the following proof). Thus, given an N `-coin machine A,

we have the Nα-coin machine Bk(x, r) = A
(
x,G

fk√
n,d,p(r)

)
.

We now prove our main Theorem 5.3.4 using this simulation and the above lemma.

Proof of Theorem 5.3.4. We proceed by contradiction. Assume that the weak k-OVn conjec-
ture holds for all but finitely many input lengths, where ε0 = 1/2+γ for some constant γ > 0,
but that there exists L ∈ BPP, a polynomially samplable distribution µ, constant α, and
an inverse polynomial function δ(N) such that any polynomial-time randomness-reduced
algorithm with coin bound Nα fails in deciding L on average over µ within δ(N) error for
infinitely many input lengths N .

Since L ∈ BPP there is a randomized algorithm A deciding L with probability of error at
most 1/10 over its randomness yet, since any polynomial-time randomness-reduced algorithm
fails to decide L on average, Bk, the randomness-reduced simulation of A described above,
fails on average infinitely often, for any constant k. Thus, the antecedents of Lemma 5.3.8

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 82

are satisfied and we can uniformly print D ∈ DIS(G
fk√

n,d,p , 1/5) in time nc1 TIME
(
G
fk√

n,d,p

)
=

nc1 nc2nk/2.
This uniform printing of D allows us to apply Theorem 5.3.3 to count k-OVn in time

O(nk/2+c3 + nk/2+c1+c2) = O(nk/2+c) = O(n(1
2
+ c
k)k) for any k, where c = max{c1 + c2, c3}.

Setting k such that c
k
< γ yields our contradictions: on the infinitely many input lengths

where Bk fails to derandomize L, the algorithm counts k-OV faster than nε0k time.

Remark 5.3.9. Note the bottleneck of why our “weak” conjectures require ε0 > 1/2 is

not because of our use of the technique of [BRSV17a] of spending time Õ(nk/2+c) for any
c > 0 to find a prime for fkn,d,p; indeed, since choosing random primes is much faster than
finding the single large prime, we could instead use the randomness in our contrapositive
derandomization arguments to choose many random primes so that an evaluation of the
polynomial over each prime will be able reconstruct the true count via the Chinese Remainder
Theorem. The bottleneck is then actually because of the downward self-reducibility, as seen
in the above proof, where max{nε0k+c3 , n(1−ε0)k+c1+c2} must occur and so ε0 = 1/2 minimizes
the overall runtime of the reduction (where ε0 can be set to the desired degree of severity of
the downward self-reduction). Using a downward self-reduction of n to n − 1 as is done in
[IW01], however, is possible and would allow us to weaken our assumption all the way to
just requiring ε > 0, however we would lose our the key ability of our massive downward
self-reduction to get rid of the io- qualifier in our derandomization.

Fast Heuristics for BPP Over the Uniform Distribution

Here we present our second flavor of derandomization: a fully deterministic heuristic for BPP
when inputs are sampled according to the uniform distribution.

Theorem 5.3.10. If the weak k-OV conjecture holds almost everywhere, then

(BPP,U) ⊆ HeurP

This strictly improves previous uniform derandomizations over the uniform distribution.
Specifically, [GW02] can be seen to achieve our derandomization identically from a worst-
case uniform assumption if combined with techniques from [KvMS12] except only on infinitely
many input lengths.

We proceed by showing that if a PRG fails to give a good heuristic for BPP over the
uniform distribution, a seed-aware distinguisher for the PRG can be produced uniformly and
efficiently, which can then be used to count k-OV solutions quickly using Theorem 5.3.3.

Definition 5.3.11 (Input-As-Seed Heuristics). Let A : {0, 1}N × {0, 1}N` → {0, 1} be a
polynomial-time randomized algorithm using N ` random bits. Let G : {0, 1}N → {0, 1}N`

be a deterministic function. Define the heuristic B : {0, 1}N → {0, 1} that uses its input as
G’s seed as B(x) = A(x,G(x)).

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 83

Now recall the Main Lemma of [KvMS12] giving the consequences of failed heuristics in
the non-uniform setting:

Lemma 5.3.12 (Main Lemma of [KvMS12]). Let A : {0, 1}N × {0, 1}N` → {0, 1} and
L : {0, 1}N → {0, 1} be functions such that

Pr
x∼UN ,r∼UN`

[A(x, r) 6= L(x)] ≤ ρ

Let B be the seed-as-input heuristic for A using function G. Then, if B does not succeed on
a (3ρ+ ε) fraction of the inputs of a given length, there exists an r′ ∈ {0, 1}N`

such that the
test Tr′(x, r) = A(x, r)⊕ A(x, r′) is in DIS(G, ε).

The proof of the above lemma uses non-uniformity to obtain a good r′ for distinguishing,
but we can instead uniformly obtain good strings r′ via a sample-and-test procedure. There
is some loss in the accuracy of the resulting simulation, but this can be made an arbitrarily
small inverse polynomial via standard error reduction.

Intuitively, if B is a bad heuristic for L, then we could use B(x) = A(x,G(x)) as a seed-
aware distinguisher for G by comparing B(x) to L(x). Unfortunately we cannot afford to
print distinguishers with L-oracles. But since we are guaranteed that A is a good heuristic
for L, we can obtain a deterministic circuit close to L from A, by fixing a string of good
random bits r′. If we compare B(x) and the fixed-coin algorithm A(x, r′), they will also tend
to disagree, giving the necessary distinguishing gap. We can find and fix a good r′ uniformly
by showing that they are dense and then sampling and testing for goodness. Formally:

Lemma 5.3.13 (Failed Heuristics to Distinguishers). Let A, L, G, and B be as in Lemma
5.3.12 above. Then, if B does not succeed on a (5ρ + ε) fraction of the inputs of a given
length, the map 1N 7→ DIS(G, ε) is uniform and in randomized polynomial time, for infinitely
many N .

Proof. By the assumption that A succeeds on a ρ fraction of input-coin pairs, we know that
many fixings of the coins of A produce an algorithm close to L. We can obtain in polynomial
time and with high probability a string r′ ∈ {0, 1}N`

such that

Pr
x∼UN

[A(x, r′) 6= L(x)] ≤ 2ρ

by repeatedly sampling and testing such fixings of A’s coins. This is the first of several
“constructive averaging arguments” used in this proof. As above, define the tests,

Tr′(x, r) = A(x, r)⊕ A(x, r′)

which output ‘1’ when, for input x, A on fixed coins r′ disagrees with A run on input coins r.
To output a distinguisher, we simply find an appropriate string r′ and then print the circuit
Tr′ . This only takes polynomial time. To show that with high probability Tr′ ∈ DIS(G, ε),
consider two cases.

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 84

1. T (x,G(x)): We have by definition of B = A(x,G(x)) and the assumption that B is
not a good heuristic that A(x,G(x)) will tend to disagree with L. So A(x,G(x)) will
also tend to disagree with A(x, r′). Thus, the test will be biased towards printing 1
when run with generator output.

2. T (x,UN`): The algorithm A(x,UN`) will tend to agree with A(x, r′) by our constructive
averaging above. So the test will tend to output 0 when run with true random bits.

These cases correspond to the first and second terms of the distinguishing gap equation
(Definition 5.2.10), which we substitute the test into below:∣∣∣∣ Pr

x∼UN
[A(x,G(x)) 6= A(x, r′)]− Pr

x∼UN ,R∼UN`
[A(x, r) 6= A(x, r′)]

∣∣∣∣
An upper bound on term 2 is straightforward by union bound and Fréchet inequality: it is at
most 3ρ. For term 1, observe that we have these bounds on the relative Hamming distance
from A(x,G(x)) to L, and from A(x, r′) to L:

d(A(x,G(x)), L) ≥ 5ρ+ ε by assumption on B

d(A(x, r′), L) ≤ 2ρ by constructive averaging

So, by triangle inequality, we obtain a lower bound of 3ρ+ ε on the first term of the distin-
guisher equation. Therefore, if our constructive averaging succeeds in finding a good r′, we
have Tr′ ∈ DIS(G, ε). The time to print Tr′ is just the polynomial time to find a good r′ by
repeatedly sampling and running A to test, plus the time to print A as a circuit. Thus the
size of the distinguisher printed is only Õ(TIME(A)) — it does not depend on the runtime
of the constructive averaging argument.

Fully Deterministic Heuristics from k-OV. Here we specify a family of heuristics Bk,
by specifying the generator G, that stretches a seed of length N to N `, as the generators

G
fk√

n,d,p of Lemma 5.2.11. These map
√
n
s

bits to
√
n
b

bits, for some fixed s and any b
we choose, using fk√

n,d,p
, for d = log2 n and p the smallest prime number larger than nk.

Set b = s` and
√
n = N1/s. All comments about the runtime of the randomness-reduced

heuristic in Section 5.3.2 also apply to this fully deterministic heuristic. Thus, given an

N `-coin machine A, we have the deterministic machine Bk(x) = A
(
x,G

fk√
n,d,p(x)

)
.

We now prove our main Theorem 5.3.10 using this simulation and the above lemma.

Proof of Theorem 5.3.10. We proceed by contradiction. Assume that the weak k-OVn con-
jecture holds for all but finitely many input lengths, where ε0 = 1/2 + γ for some constant
γ > 0, but that there exists L ∈ BPP and an inverse polynomial function δ(N) such that
any polynomial-time deterministic algorithm fails in deciding L on average over µ within
δ(N) error for infinitely many input lengths N .

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 85

Namely, since L ∈ BPP there is a randomized algorithm A deciding L with probability of
failing over its coins at most ρ(N) for any inverse polynomial (by standard error reduction),
yet it must be the case that our Bk simulation of A described above fails on average infinitely
often as well, for any constant k. Thus, choose inverse polynomial ε(N) and ρ(N) such that
5ρ + ε ≤ δ(N) and this failure satisfies the preconditions of Lemma 5.3.13 and thus we can

uniformly print D ∈ DIS(G
fk√

n,d,p , ε) in time nk/2+c1 .
Again this allows us to apply Theorem 5.3.3, which counts k-OV in time O(nk/2+c2 +

nk/2+c1) = O(n(1
2
+ c
k)k) for any k, where c = max{c1, c2}. Setting k such that c

k
< γ yields

our contradiction: on the infinitely many input lengths where B fails to derandomize L, the
algorithm counts k-OVn faster than nε0k time.

5.4 Open Questions

• We derandomize under hardness conjectures about two of four ‘key’ problems in fine-
grained complexity: k-OV and k-CLIQUE. What about k-SUM and APSP? APSP
doesn’t seem to have a natural hierarchy and so doesn’t fit our framework (although
it does reduce to ZERO-TRIANGLE which generalizes to ZERO-k-CLIQUE and should
easily work in our framework using polynomials similar to those in [BRSV17a]). k-SUM
however is actually computable in O(ndk/2e) time and so our downward self-reducibility
techniques are not fast enough to break this conjecture in the contrapositive. The ideas
mentioned in Remark 5.3.9 would allow us to derandomize from k-SUM, but these
would be io- derandomizations. The clearest path we see to getting derandomization
without reintroducing the io- qualifier is to find a polynomial for k-SUM that is also
computable in Õ(ndk/2e) time (unlike the one discussed in Chapter 3).

• Our derandomizations hold under (randomized) SETH, since SETH implies the k-OV
conjecture. Can a better derandomization be obtained directly from SETH, the
stronger assumption? A stumbling block here is the random self-reduction, an ingredi-
ent in all known uniform derandomization techniques: If t-SAT has a straightforward
and efficient random-self-reduction, PH collapses [FF93, BT06b]. So derandomizing
from SETH directly could require new ideas, or a strange random self-reduction. An
inefficient random self-reduction for t-SAT shouldn’t collapse PH except to say that
t-SAT has a mildly exponential MA proof which is already known to be true [Wil16], al-
though most random self-reductions we know are through arithmetization which seems
to always have ‘low’ degree to the point that such a polynomial would still collapse
PH. A recent work achieves nearly polynomial derandomization from the weaker as-
sumption of (randomized) ETH [CRTY19]. Can full polynomial derandomizations be
achieved from SETH?

• Is a strong “derandomization to hardness” converse possible for these heuristic simula-
tions of BPP? In appendix C.2, we show a weak converse: our simulation is impossible

CHAPTER 5. FINE-GRAINED DERANDOMIZATION 86

without separting DTIME[nω(1)] from BPP. But this is a very different statement from
the k-OV or k-CLIQUE conjectures. In [KvMS12], they show that herusitic simulations
of BPP with inverse-subexponential error rates imply circuit lower bounds, by gen-
eralizing techniques of [KI04]. Do the efficient inverse-polynomial error heuristics we
obtain imply any circuit lower bounds?

87

Bibliography

[Abb17] Amir Abboud. Personal communication, 2017.

[ABW15a] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the cur-
rent clique algorithms are optimal, so is valiant’s parser. In Venkatesan Gu-
ruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 98–117.
IEEE Computer Society, 2015.

[ABW15b] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-
time hardness of LCS and other sequence similarity measures. CoRR,
abs/1501.07053, 2015.

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On bas-
ing one-way functions on np-hardness. In Jon M. Kleinberg, editor, Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA,
USA, May 21-23, 2006, pages 701–710. ACM, 2006.

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Ryan Williams. Simulating branching programs with edit distance and friends:
or: a polylog shaved is a lower bound made. In Daniel Wichs and Yishay
Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 375–388. ACM, 2016.

[AL13] Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum conjec-
ture. In International Colloquium on Automata, Languages, and Programming,
pages 1–12. Springer, 2013.

[AWW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Conse-
quences of faster alignment of sequences. In Javier Esparza, Pierre Fraigni-
aud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes
in Computer Science, pages 39–51. Springer, 2014.

BIBLIOGRAPHY 88

[AWY15] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Match-
ing triangles and basing hardness on an extremely popular conjec-
ture. Manuscript: https://dl.dropboxusercontent.com/u/14999836/

publications/MatchTria.pdf, 2015.

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 421–429, 1985.

[BBB19] Enric Boix-Adserà, Matthew Brennan, and Guy Bresler. The average-case
complexity of counting cliques in erdős-rényi hypergraphs. In David Zuckerman,
editor, 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1256–
1280. IEEE Computer Society, 2019.

[BDSKM17] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-
malleable codes from average-case hardness: Ac0, decision trees, and streaming
space-bounded tampering. Cryptology ePrint Archive, Report 2017/1061, 2017.
https://eprint.iacr.org/2017/1061.

[BDT16] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness re-
sults for maximum weight rectangles. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 81:1–81:13. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has
subexponential time simulations unless EXPTIME has publishable proofs.
Computational Complexity, 3:307–318, 1993.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
Madhu Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016,
pages 345–356. ACM, 2016.

[BGL17] Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for
regular expression membership testing. In Chris Umans, editor, 58th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 307–318. IEEE Computer Society, 2017.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,
volume 185. ios press, 2009.

https://dl.dropboxusercontent.com/u/14999836/publications/MatchTria.pdf
https://dl.dropboxusercontent.com/u/14999836/publications/MatchTria.pdf
https://eprint.iacr.org/2017/1061

BIBLIOGRAPHY 89

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Ru-
binfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 51–58. ACM, 2015.

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds
for string problems and dynamic time warping. In Venkatesan Guruswami,
editor, IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97. IEEE
Computer Society, 2015.

[BK16a] Alex Biryukov and Dmitry Khovratovich. Egalitarian computing. In Thorsten
Holz and Stefan Savage, editors, 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., pages 315–326. USENIX
Association, 2016.

[BK16b] Andreas Björklund and Petteri Kaski. How proofs are prepared at camelot. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Comput-
ing, pages 391–400. ACM, 2016.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[BRSV17a] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Average-case fine-grained hardness. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 483–496. ACM, 2017.

[BRSV17b] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Proofs of useful work. IACR Cryptology ePrint Archive, 2017:203, 2017.

[BRSV18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Proofs of work from worst-case assumptions. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer Science,
pages 789–819. Springer, 2018.

[BT06a] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations
and Trends in Theoretical Computer Science, 2(1), 2006.

[BT06b] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions
for NP problems. SIAM J. Comput., 36(4):1119–1159, 2006.

BIBLIOGRAPHY 90

[BT17] Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better run-
times imply faster clique algorithms. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 311–321. PMLR, 2017.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D Rothblum. Fiat-shamir
and correlation intractability from strong kdm-secure encryption. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 91–122. Springer, 2018.

[CFK+15] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer Interna-
tional Publishing, 2015.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamo-
han Paturi, and Stefan Schneider. Nondeterministic extensions of the strong
exponential time hypothesis and consequences for non-reducibility. In Madhu
Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations in The-
oretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages
261–270. ACM, 2016.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In Ran Raz, editor,
31st Conference on Computational Complexity, CCC 2016, May 29 to June 1,
2016, Tokyo, Japan, volume 50 of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

[CIKP03] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Pa-
turi. The complexity of unique k-sat: An isolation lemma for k-cnfs. In 18th
Annual IEEE Conference on Computational Complexity (Complexity 2003),
7-10 July 2003, Aarhus, Denmark, page 135, 2003.

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. Fine-grained de-
randomization: From problem-centric to resource-centric complexity. In Ioan-
nis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of
LIPIcs, pages 27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua
Bar-Hillel, editor, Logic, Methodology and Philosophy of Science: Proceedings
of the 1964 International Congress (Studies in Logic and the Foundations of
Mathematics), pages 24–30. North-Holland Publishing, 1965.

BIBLIOGRAPHY 91

[CPS99] Jin-yi Cai, Aduri Pavan, and D. Sivakumar. On the hardness of permanent. In
Christoph Meinel and Sophie Tison, editors, STACS 99, 16th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Trier, Germany, March 4-6,
1999, Proceedings, volume 1563 of Lecture Notes in Computer Science, pages
90–99. Springer, 1999.

[CRTY19] Lijie Chen, Ron Rothblum, Roei Tell, and Eylon Yogev. On exponential-time
hypotheses, derandomization, and circuit lower bounds. Electronic Colloquium
on Computational Complexity (ECCC), 26:169, 2019.

[CW16] Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal vectors,
and more: Quickly derandomizing razborov-smolensky. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1246–1255. Society for Industrial and Applied Mathematics, 2016.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976.

[DHW10] Holger Dell, Thore Husfeldt, and Martin Wahlén. Exponential time complexity
of the permanent and the tutte polynomial. In International Colloquium on
Automata, Languages, and Programming, pages 426–437. Springer, 2010.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk
mail. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer
Science, pages 139–147. Springer, 1992.

[DVV16] Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan.
Fine-grained cryptography. In Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III, pages 533–562, 2016.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17:449–467, 1965.

[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed pa-
rameter clique and dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004.

[FF91] Joan Feigenbaum and Lance Fortnow. On the random-self-reducibility of com-
plete sets. In Proceedings of the Sixth Annual Structure in Complexity Theory
Conference, Chicago, Illinois, USA, June 30 - July 3, 1991, pages 124–132.
IEEE Computer Society, 1991.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete
sets. SIAM J. Comput., 22(5):994–1005, 1993.

BIBLIOGRAPHY 92

[Fid72] Charles M. Fiduccia. Polynomial evaluation via the division algorithm: The fast
fourier transform revisited. In Proceedings of the 4th Annual ACM Symposium
on Theory of Computing, May 1-3, 1972, Denver, Colorado, USA, pages 88–93,
1972.

[GGH94] Mikael Goldmann, Per Grape, and Johan H̊astad. On average time hierarchies.
Inf. Process. Lett., 49(1):15–20, 1994.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions (extended abstract). In 25th Annual Symposium on Foundations of
Computer Science, West Palm Beach, Florida, USA, 24-26 October 1984, pages
464–479. IEEE Computer Society, 1984.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GH16] Shafi Goldwasser and Dhiraj Holden. On the fine grained complexity of poly-
nomial time problems given correlated instances. In Innovations in Theoretical
Computer Science (ITCS), 2016.

[GI16] Jiawei Gao and Russell Impagliazzo. Orthogonal vectors is hard for first-order
properties on sparse graphs. Electronic Colloquium on Computational Com-
plexity (ECCC), 23:53, 2016.

[GIKW17] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams.
Completeness for first-order properties on sparse structures with algorithmic
applications. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 2162–2181. SIAM, 2017.

[GK20] Elazar Goldenberg and Karthik C. S. Hardness amplification of optimization
problems. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington,
USA, volume 151 of LIPIcs, pages 1:1–1:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[GKL93] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseu-
dorandom generators. SIAM J. Comput., 22(6):1163–1175, 1993.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In David S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton,
USA, pages 25–32. ACM, 1989.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

BIBLIOGRAPHY 93

[GO95] Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in
computational geometry. Computational geometry, 5(3):165–185, 1995.

[Gol08] Oded Goldreich. Computational Complexity - a conceptual perspective. Cam-
bridge University Press, 2008.

[Gol18] Oded Goldreich. On doubly-efficient interactive proof systems. Foundations
and Trends in Theoretical Computer Science, 13(3):158–246, 2018.

[GR18a] Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-case to
average-case reductions and direct interactive proof systems. In Mikkel Thorup,
editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 77–88. IEEE Computer
Society, 2018.

[GR18b] Oded Goldreich and Guy N. Rothblum. Simple doubly-efficient interactive
proof systems for locally-characterizable sets. In Anna R. Karlin, editor, 9th
Innovations in Theoretical Computer Science Conference, ITCS 2018, January
11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 18:1–18:19.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[GR20] Oded Goldreich and Guy N. Rothblum. Worst-case to average-case reductions
for subclasses of P. In Oded Goldreich, editor, Computational Complexity and
Property Testing - On the Interplay Between Randomness and Computation,
volume 12050 of Lecture Notes in Computer Science, pages 249–295. Springer,
2020.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in inter-
active proof systems. In Proceedings of the eighteenth annual ACM symposium
on Theory of computing, pages 59–68. ACM, 1986.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials.
Information processing letters, 43(4):169–174, 1992.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon
and algebraic-geometry codes. IEEE Trans. Information Theory, 45(6):1757–
1767, 1999.

[GST03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness vs.
randomness tradeoffs for arthur-merlin games. In 18th Annual IEEE Confer-
ence on Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus,
Denmark, pages 33–47, 2003.

[GW02] Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong
from short advice that is typically good. In José D. P. Rolim and Salil P.

BIBLIOGRAPHY 94

Vadhan, editors, Randomization and Approximation Techniques, 6th Interna-
tional Workshop, RANDOM 2002, Cambridge, MA, USA, September 13-15,
2002, Proceedings, volume 2483 of Lecture Notes in Computer Science, pages
209–223. Springer, 2002.

[H̊as87] Johan H̊astad. One-way permutations in NC0. Information Processing Letters,
26(3):153–155, 1987.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[Hor72] Ellis Horowitz. A fast method for interpolation using preconditioning. Inf.
Process. Lett., 1(4):157–163, 1972.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography
with constant computational overhead. In Proceedings of the fortieth annual
ACM symposium on Theory of computing, pages 433–442. ACM, 2008.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an
easy witness: exponential time vs. probabilistic polynomial time. J. Comput.
Syst. Sci., 65(4):672–694, 2002.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for com-
plexity based cryptography (extended abstract). In 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October - 1 November 1989, pages 230–235, 1989.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings
of the Tenth Annual Structure in Complexity Theory Conference, Minneapolis,
Minnesota, USA, June 19-22, 1995, pages 134–147, 1995.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Frank Thomson Leighton and
Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
220–229. ACM, 1997.

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomiza-
tion under a uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

[JJ99] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols.
In Bart Preneel, editor, Secure Information Networks: Communications and
Multimedia Security, IFIP TC6/TC11 Joint Working Conference on Commu-
nications and Multimedia Security (CMS ’99), September 20-21, 1999, Leuven,

BIBLIOGRAPHY 95

Belgium, volume 152 of IFIP Conference Proceedings, pages 258–272. Kluwer,
1999.

[JMV15] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Au-
tomata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 749–760, 2015.

[Kab01] Valentine Kabanets. Easiness assumptions and hardness tests: Trading time
for zero error. J. Comput. Syst. Sci., 63(2):236–252, 2001.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Proceedings of a symposium on the
Complexity of Computer Computations, held March 20-22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York., The IBM
Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial iden-
tity tests means proving circuit lower bounds. Computational Complexity, 13(1-
2):1–46, 2004.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfus-
cation to the security of fiat-shamir for proofs. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part II, volume 10402 of Lecture Notes in Computer Sci-
ence, pages 224–251. Springer, 2017.

[KvMS12] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom gener-
ators, typically-correct derandomization, and circuit lower bounds. Computa-
tional Complexity, 21(1):3–61, 2012.

[KW17] Daniel M. Kane and R. Ryan Williams. The orthogonal vectors conjecture for
branching programs and formulas. CoRR, abs/1709.05294, 2017.

[Lev86] Leonid A. Levin. Average case complete problems. SIAM J. Comput.,
15(1):285–286, 1986.

[Lin18] Andrea Lincoln. Personal communication, 2018.

[Lip89] Richard J. Lipton. New directions in testing. In Joan Feigenbaum and Michael
Merritt, editors, Distributed Computing And Cryptography, Proceedings of a
DIMACS Workshop, Princeton, New Jersey, USA, October 4-6, 1989, volume 2
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 191–202. DIMACS/AMS, 1989.

BIBLIOGRAPHY 96

[LLW19] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-key
cryptography in the fine-grained setting. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-
22, 2019, Proceedings, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 605–635. Springer, 2019.

[LO87] Jeffrey C Lagarias and Andrew M. Odlyzko. Computing π (x): An analytic
method. Journal of Algorithms, 8(2):173–191, 1987.

[Lu01] Chi-Jen Lu. Derandomizing arthur-merlin games under uniform assumptions.
Computational Complexity, 10(3):247–259, 2001.

[Mau92] Ueli M Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology, 5(1):53–66, 1992.

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Commun.
ACM, 21(4):294–299, 1978.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, volume 2729 of Lecture Notes in Computer Science, pages 96–109.
Springer, 2003.

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–
419, 1985.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to proto-
col composition. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Crypto-
graphic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656
of Lecture Notes in Computer Science, pages 160–176. Springer, 2003.

[P1̌0] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In
Proceedings of the Forty-second ACM Symposium on Theory of Computing,
STOC ’10, pages 603–610, New York, NY, USA, 2010. ACM.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst.
Sci., 55(1):24–35, 1997.

BIBLIOGRAPHY 97

[RR00] Ron M. Roth and Gitit Ruckenstein. Efficient decoding of reed-solomon
codes beyond half the minimum distance. IEEE Trans. Information Theory,
46(1):246–257, 2000.

[RZ04] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In European
Symposium on Algorithms, pages 580–591. Springer, 2004.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech.
J., 28(4):656–715, 1949.

[Sha11] Ronen Shaltiel. Weak derandomization of weak algorithms: Explicit versions
of yao’s lemma. Computational Complexity, 20(1):87–143, 2011.

[She12] Alexander A Sherstov. Strong direct product theorems for quantum communi-
cation and query complexity. SIAM Journal on Computing, 41(5):1122–1165,
2012.

[SKR+11] Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and Juan
Manuel González Nieto. Stronger difficulty notions for client puzzles and denial-
of-service-resistant protocols. In Aggelos Kiayias, editor, Topics in Cryptology
- CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011,
San Francisco, CA, USA, February 14-18, 2011. Proceedings, volume 6558 of
Lecture Notes in Computer Science, pages 284–301. Springer, 2011.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators
without the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SU09] Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus ran-
domness tradeoffs for AM. SIAM J. Comput., 39(3):1006–1037, 2009.

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction
bound. J. Complexity, 13(1):180–193, 1997.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case com-
plexity via uniform reductions. Computational Complexity, 16(4):331–364,
2007.

[VV85] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique
solutions. In Proceedings of the 17th Annual ACM Symposium on Theory of
Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 458–463,
1985.

[VW09] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. In In Proceedings of the Fourty-First Annual ACM Sym-
posium on the Theory of Computing, pages 455–464, 2009.

BIBLIOGRAPHY 98

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block
codes, December 30 1986. US Patent 4,633,470.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its
implications. Theor. Comput. Sci., 348(2-3):357–365, 2005.

[Wil15] Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness
on popular conjectures such as the strong exponential time hypothesis (invited
talk). In Thore Husfeldt and Iyad A. Kanj, editors, 10th International Sympo-
sium on Parameterized and Exact Computation, IPEC 2015, September 16-18,
2015, Patras, Greece, volume 43 of LIPIcs, pages 17–29. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

[Wil16] Richard Ryan Williams. Strong ETH breaks with merlin and arthur: Short non-
interactive proofs of batch evaluation. In Ran Raz, editor, 31st Conference on
Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan,
volume 50 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[Wil18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms
and complexity. In Proceedings of the ICM, 2018.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences be-
tween path, matrix and triangle problems. 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, 00(undefined):645–654, 2010.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982, pages 80–91. IEEE Com-
puter Society, 1982.

99

Appendix A

Appendix for Average-Case
Fine-Grained Hardness

A.1 Evaluating Low Degree Polynomials

Here we recall and prove Lemma 3.3.1.

Lemma 3.3.1. Consider positive integers N , D, and p, and an ε ∈ (0, 1/3) such that D > 9,
p is prime and p > 12D. Suppose that for some polynomial f : FNp → Fp of degree D, there
is an algorithm A running in time t such that:

Pr
x←FNp

[A(x) = f(x)] ≥ 1− ε

Then there is a randomized algorithm B that runs in time O(ND2 log2 p+D3 + tD) such
that for any x ∈ FNp :

Pr [B(x) = f(x)] ≥ 2

3

Proof. The algorithm B works as follows on input x:

1. Draw two random points y1,y2 ∈ FNp and define the curve c(w) = x+wy1 +w2y2 for
w ∈ Fp.

2. For a value of m (< p) to be determined later, compute (A(c(1)), . . . , A(c(m))) to get
(z1, . . . , zm) ∈ Fp.

3. Run Berlekamp-Welch [WB86] on (z1, . . . , zm). If it succeeds and outputs a polynomial
ĝ, output ĝ(0). Otherwise output 0.

To see why the above algorithm works, define the polynomial g(w) = f(c(w)). g is a
polynomial of degree 2D over the single variable w, with the property that g(0) = f(x). So

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 100

if we had (2D+1) evaluations of g at different points in Fp, we could retrieve g and compute
f(x). While we may not be able to obtain these evaluations directly (since they involve
computing f), we do have access to A, which promises to be correct about the value of f on
a random point with probability 2/3.

So we replace the values g(w) = f(c(w)) with A(c(w)), which will hopefully be correct
at several points. Now our problem is to retrieve g given a set of its alleged evaluations at
m points, some of which may be wrong.

We do this by interpreting (g(1), g(2), . . . , g(m)) as a Reed-Solomon encoding of g and
running its decoding algorithm on (A(c(1)), . . . , A(c(m))), which now corresponds to a cor-
rupt codeword. The Berlekamp-Welch algorithm [WB86] can do this as long as less than
(m − 2D)/2 of the m values of A(c(w)) are wrong. We now bound the probability of too
many of these values being wrong.

Let Qw be an indicator variable such that Qw = 1 if and only if A(c(w)) 6= f(c(w)). Let
Q =

∑m
w=1Qw. We note at this point the fact that over the randomness of y1 and y2, the

distributions of c(w) and c(w′) for any two distinct w,w′ ∈ Fp are uniform and independent.
This gives us the following statistics:

E[Q] = εm

Var[Q] = mε(1− ε)

Thus, by the Chebyshev inequality, we have that the probability that more than a δ (> ε)
fraction of A(c(w))’s disagree with f(c(w)) is:

Pr [Q > δm] ≤ Pr [|Q− εm| > (δ − ε)m]

≤ ε(1− ε)
(δ − ε)2m

≤ 1

4(δ − ε)2m

We are interested in δ = m−2D
2m

= 1
2
− D

m
. So if we set, for instance, m = 12D, the bound

on the probability above is at most 1/3 if D > 9 and ε < 1/3.
So except with this small probability, the decoding algorithm correctly recovers g as ĝ,

and consequently B computes f(x) correctly.
Generating each c(w) and running A on it takes O(ND log2 p+ t) time. The Berlekamp-

Welch algorithm then takes O(m3) time, and the final evaluation of ĝ takes O(D log2 p)
[WB86]. Hence, given A with the above properties, the running time of B is:

O(m(ND log2 p+ t) +m3 +D log2 p) = O(ND2 log2 p+D3 + tD)

A.2 Polynomials Computing Sums

In this section we write down polynomials that compute the bits of the sum of a pair of
numbers that are given to them in bits. Without loss of generality, we will represent numbers

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 101

in the two’s complement form. In both cases where such representations are required (3SUM
and ZWT), there are apriori bounds on the sizes of the numbers that come up – these are
either numbers in the input or sums of pairs of these numbers. So we can assume that we
always have enough bits to be able to represent these numbers. Under this assumption,
addition in the two’s complement representation is the same as adding unsigned numbers
in the standard place-value representation (and ignoring the final carry). So we will present
the polynomials {s`}`∈[d] that correspond to unsigned addition (and are easier to describe)
and these are the polynomials that will be used.

We label the bits of a d-bit number from 1 to d starting from the least significant bit.
We then translate the semantics of the ripple-carry adder into polynomials. The polynomial
s1 : F2d

p → Fp corresponding to the first bit of the sum is:

s1(x, y) = x1(1− y1) + (1− x1)y1

The carry from this operation is given by the following polynomial:

c1(x, y) = x1y1

For every other `, this pair of polynomials can be computed from earlier polynomials and
the inputs as follows (hiding the arguments x and y for convenience):

s` = (1− x`)(1− y`)c`−1 + (1− x`)y`(1− c`−1) + x`(1− y`)(1− c`−1) + x`y`c`−1

c` = x`y`(1− c`−1) + x`(1− y`)c`−1 + (1− x`)y`c`−1 + x`y`c`−1

It can now be seen that deg(s`) = deg(c`) = deg(c`−1) + 2. Along with the fact that
deg(c1) = 2, this implies that deg(s`) = 2` ≤ 2d.

These polynomials can also be computed very easily by evaluating them in order. Given
c`−1, both s` and c` take only a constant number of operations to compute. Hence all the
s`’s can be computed is O(d log2 p) time.

A.3 CONVOLUTION-3SUM

Here we give another average-case fine-grained hard problem based on the hardness of 3SUM.
While Section 3.3.2 already has a polynomial whose average-case hardness is based on the
3SUM conjecture, we include this one for completeness as it is possible that either is indepen-
dently hard even if the other is shown to be easy. We first recall the CONVOLUTION-3SUM
(C3SUM) problem introduced by [P1̌0] where it was shown that 3SUM has a (randomized)
fine-grained reduction to C3SUM, thus allowing us to restrict our attention to it.

• C3SUM: Determine whether, when given three n-element arrays, A, B, and C, with
entries in {−n3, . . . , n3}, there exist i, j ∈ [n] such that A[i] +B[j] = C[i+ j].

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 102

We now define a family of polynomials that can count solutions to a C3SUM instance
(when given in binary) and refer the reader to Section 3.3.2 for all notation and discussion
due to its similarity to FZWT.

For any n, let p(n) denote the smallest prime number larger than n2 and let d = d3 log ne+
3. We define the polynomial f3SUMn : F3nd

p → Fp as taking in sets A, B, and C of nd
variables each and where we split each set into n groups of d variables – e.g. A[i] is the ith

group of d variables of the nd variables in A.

f3SUMn(A,B,C) =
∑
i,j∈[n]

∏
`∈[d]

(
1− (s` (A[i], B[j])− C[i+ j]`)

2)
From the same arguments in Section 3.3.2, we get the following theorem for F3SUM =

{f3SUMn}.

Theorem A.3.1. If F3SUM can be computed in O(n1+α) time on average for some α > 0,

then 3SUM can be decided in Õ(n1+α) time in the worst case.

Corollary A.3.2. If 3SUM requires n2−o(1) time to decide, F3SUM requires n2−o(1) time to
compute on average.

Note that if we did not use C3SUM, we would have had n3 terms from a more näıve
construction from 3SUM and thus a gap between F3SUM’s computability and its hardness.
But, with our current construction having only n2 terms, we achieve tightness where F3SUM
is quadratic-computable but sub-quadratic-hard.

A.4 A Tighter Reduction for FOV

We show that sub-quadratic algorithms cannot compute fOVn on even a 1/polylog(n)-
fraction of inputs, assuming OV is hard on the worst case. Moreover, the techniques yield
a tradeoff between adversarial complexity and provable hardness: less time implies lower
success probability. Similar results can be achieved for our other polynomials, but we do not
present them here.

Recall that the worst-case to average-case reduction used in Section 3.3 (as Lemma 3.3.1)
works roughly as follows for a function f . Given an input x, the reduction produces a set of
inputs y1, . . . , ym such that (f(x), f(y1), . . . , f(ym)) is a Reed-Solomon codeword. Then we
said that if an algorithm is correct on a (1− δ) fraction of inputs, then it is correct on close
to a (1− δ) fraction of the yi’s, and so only about a δ fraction of this codeword is erroneous.
As long as δ is somewhat smaller than 1/2, we can correct these errors to recover the whole
codeword and hence f(x). But notice that if δ is more than 1/2, then there is no hope of
correcting the codeword, and the reduction will not work.

Because of this, the approach used in Section 3.3 is limited in that it cannot show, for
instance, that sub-quadratic algorithms cannot compute fOVn on more than a 1/3 fraction

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 103

of inputs. One thing that can be done even if more than half the codeword is corrupted,
however, is list decoding. And the Reed-Solomon code turns out to have rather efficient
list decoding algorithms [Sud97, GS99]. This fact was used by Cai, Pavan, and Sivaku-
mar [CPS99] to show rather strong average-case hardness results for the Permanent using
its downward self-reducibility properties.

We use their techniques to prove that sub-quadratic algorithms cannot compute fOVn
on even a 1/polylog(n) fraction of inputs. The primary issue that one has to deal with when
using list decoding instead of decoding is that it will yield many candidate polynomials.
The insight of [CPS99], building on previous work regarding enumerative counting, is that
downward self-reducibility can be used to isolate the true polynomial via recursion. And
fOVn turns out to have the properties necessary to do this. And, although we do not show
it here, the same methodology works for fOVkn and fZWTn.

Before we begin, we will present a few Lemmas from the literature to make certain bounds
explicit.

First, we present an inclusion-exclusion bound from [CPS99] on the polynomials consis-
tent with a fraction of m input-output pairs, (x1, y1), . . . , (xm, ym). We include a laconic
proof here with the given notation for convenience.

Lemma A.4.1 ([CPS99]). For any polynomial q over Fp, define Graph(q) := {(i, q(i)) | i ∈
[p]}. Let c > 2, δ/2 ∈ (0, 1), and m ≤ p such that m > c2(d−1)

δ2(c−2) for some d. Finally, let

I ⊆ [p] such that |I| = m. Then, for any set S = {(i, yi) | i ∈ I}, there are less than dc/δe
polynomials q of degree at most d that satisfy |Graph(q) ∩ S| ≥ mδ/2.

Corollary A.4.2. Let S be as in Lemma B.1.3 with I = {m + 1, . . . , p}, for any m < p.
Then for m > 9d/δ2, there are at most 3/δ polynomials, q, of degree at most d such that
|Graph(q) ∩ S| ≥ mδ/2.

Proof. Reproduced from [CPS99] for convenience; see original for exposition.
Suppose, for contradiction, that there exists at least dc/δe such polynomials. Consider a

subset of exactly N = dc/δe such polynomials, F . Define Sf := {(i, f(i)) ∈ Graph(f) ∩ S},

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 104

for each f ∈ F .

m ≥

∣∣∣∣∣⋃
f∈F

Sf

∣∣∣∣∣ ≥∑
f∈F

|Sf | −
∑

f,f ′∈F :f 6=f ′
|Sf ∩ Sf ′ |

≥ N
mδ

2
− N(N − 1)(d− 1)

2

>
N

2

(
mδ − c(d− 1)

δ

)
≥ c

2δ

(
mδ − c(d− 1)

δ

)
=
cm

2
− c2(d− 1)

2δ2

= m+
1

2

(
(c− 2)m− c2(d− 1)

δ2

)
> m.

Now, we give a theorem based on an efficient list-decoding algorithm, related to Sudan’s,
from Roth and Ruckenstein. [RR00]

Lemma A.4.3 ([RR00]). List decoding for [n, k]-Reed-Solomon (RS) codes over Fp given a

code word with almost n−
√

2kn errors (for k > 5), can be performed in

O
(
n3/2k−1/2 log2 n+ (n− k)2

√
n/k + (

√
nk + log q)n log2(n/k)

)
operations over Fq.

Plugging in specific parameters and using efficient list decoding, we get the following
corollary which will be useful below.

Corollary A.4.4. For parameters n ∈ N and δ ∈ (0, 1), list decoding for [m, k]-RS codes
over Fp where m = Θ(d log n/δ2), k = Θ(d), p = O(n2), and d = Ω(log n) can be performed
in time

O

(
d2 log5/2 nArith(n)

δ5

)
,

where Arith(n) is a time bound on arithmetic operations over prime fields size O(n).

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 105

Finally, we present a more explicitly parametrized variant of FOV, denoted GOV =
{gOVn,d,p}n,d,p∈Z3 , where

gOVn,d,p : F2nd
p → Fp

such that

gOVn,d,p

U =

 u1
...
un

 ,V =

 v1...
vn

 :=

∑
(ui,vj)∈U×V

∏
`∈[d]

(1− ui`vj`).

Theorem A.4.5. If there is an algorithm that runs in time t(n, d, p) for gOVn,d,p with success
probability δ on the uniform distribution, then there is an algorithm that runs in time

t′(n, d, p) = O(n1+γ + td log2 n/δ2 + d2/δ5 log7/2 nArith(n2))

for gOVd with failure probility at most ε < 4δ log n/d for any input. Arith(n) is defined to
be time bound on arithmetic operations over prime fields of size O(n).

Before jumping into the proof, we observe the following corollary that essentially provides
a tradeoff between runtime and hardness. Moreover, it gives a tighter hardness result on
algorithms allowed to run in slightly quadratic time.

Corollary A.4.6. Assume t = Ω(d/δ3 log3 n). If OV takes time Ω(n2−o(1)) time to decide,
then any algorithm for GOV that runs in time t with success probility δ on the uniform
distribution must obey

t/δ2 = Ω(n2−o(1)).

In particular, assuming OV takes time Ω(n2−o(1)), any algorithm for GOV running in
time t = O(n2−ε), cannot succeed on a 1/nγ fraction of the instances for any γ such that
0 < γ < ε/2.

Proof. Let (U, V) ∈ {0, 1}2n×d be an instance of boolean-valued orthogonal vectors. Now,
consider splitting these lists in half, U = (U0, U1) and V = (V0, V1), such that (Ua, Vb) ∈
{0, 1}n×d for a, b ∈ {0, 1}. Then, define the following four sub-problems:

A1 = (U0, V0), A2 = (U0, V1), A3 = (U1, V0), A4 = (U1, V1).

Notice that given solutions to GOVd on A1, A2, A3, A4 we can trivially construct a solution
to OVd on (U, V).

Now, draw random B,C ∈ Fn×dp and consider the following degree 4 polynomial in x:

D(x) =
4∑
i=1

δi(x)Ai + (B + xC)
4∏
i=1

(x− i),

where δi is the unique degree 3 polynomial over Fp that takes value 1 at i ∈ {1, 2, 3, 4} and
0 on all other values in {1, 2, 3, 4}. Notice that D(i) = Ai for i = 1, 2, 3, 4.

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 106

Let m > 8d/δ2 log n. D(5), D(6), . . . , D(m + 4). By the properties of A and because
the D(i)’s are pairwise independent, A(D(i)) = gOV(D(i)) for δm/2 i’s with probability
> 1− 4

δm
= 1− 1/polylog(n), by a Chebyshev bound.

Now, because δm/2 >
√

16dm, we can run the list decoding algorithm of Roth and
Ruckenstein, [RR00], to get a list of all polynomials with degree ≤ 8d that agree with at
least δm/2 of the values. By Corollary B.1.4, there are at most L = 3/δ such polynomials.

By a counting argument, there can be at most 4d
(
L
2

)
= O(dL2) points in Fp on which

any two of the L polynomials agree. Because p > n2 > 4d
(
L
2

)
, we can find such a point,

j, by brute-force in O(L · dL2 log3(dL2) log p) time, via batch univariate evaluation [Fid72].
Now, to identify the correct polynomial gOV(D(·)), one only needs to determine the value
gOV(D(j)). To do so, we can recursively apply the above reduction to D(j) until the number
of vectors, n, is constant and gOV can be evaluated in time O(d log p).

Because each recursive iteration cuts n in half, the depth of recursion is log(n). Addi-
tionally, because each iteration has error probability < 4/(δm), taking a union bound over
the log(n) recursive steps yields an error probability that is ε < 4 log n/(δm).

As noted above, we can find the prime p in time O(n1+γ), for any constant γ > 0,
by binary searching {n2 + 1, . . . , 2n2} with calls to [LO87]. Taking m = 8d log n/δ2, Roth
and Ruckenstein’s algorithm takes time O(d2/δ5 log5/2 nArith(n2)), by Corollary B.1.6, in
each recursive call. The brute force procedure takes time O(d/δ3 log3(d/δ2) log n), which is
dominated by list decoding time. Reconstruction takes time O(log n) in each round, and is
also dominated.

t′ = O(n1+γ + td log2 n/δ2 + d2/δ5 log7/2 nArith(n2)),

with error probability ε < 4 log nδ/d.

A.5 Isolating Orthogonal Vectors

In this section, we describe a randomized reduction from OV to uOV (unique-OV), which is
the Orthogonal Vectors problem with the promise that there is at most one pair of orthogonal
vectors in the given instance.

While interesting by itself, such a reduction is also relevant to the rest of our work for
the following reason. Recall that the polynomial fOVn is defined over the field Fp where
p > n2. The reason p had to be more than n2 was so that fOVn would count the number
of orthogonal vectors when given a boolean input, and this number could be as large as n2.
If we wanted a polynomial that did this for uOV, this restriction on the characteristic of the
field wouldn’t exist. p would have still to be Ω(d) for the random self-reduction to work, but
this is much smaller than n2 in our setting, and this could possibly allow applications of our
results that would not be viable otherwise.

Recall that an important reason for believing that there is no sub-quadratic algorithm
for OV is that such an algorithm would break SETH due to a fine-grained reduction from

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 107

k-SAT [Wil05]. If all one wanted was a similar reason to believe that uOV was hard, one
could attempt to reduce k-SAT to uOV. A natural approach to doing so would be to first
reduce k-SAT to unique-k-SAT and then apply the reduction from [Wil05], as it translates
the number of satisfying assignments to the number of orthogonal vectors.

However, the isolation lemma for k-SAT due to Valiant and Vazirani [VV85] turns out to
not work for this purpose because it blows up the number of variables in the k-SAT instance
it operates on, and the resulting reduction would not be fine-grained enough to provide the
requisite lower bounds for uOV based on SETH. One way to circumvent this is that Calabro
et al. [CIKP03] provide an alternative that does preserve the number of variables and shows
that SETH implies an analogous conjecture for unique-k-SAT, and this can be used in the
first step of the reduction so that the reduction chain would go from k-SAT to unique-k-SAT
to uOV.

We instead start with OV itself and apply techniques from [VV85] directly to it, so a
reduction chain of k-SAT to OV to uOV can be achieved. Throughout this section, we will
use OVd (uOVd) to denote the OV (respectively uOV) problem over vectors of dimension d.
We start by describing a search-to-decision reduction for OV/uOV.

Lemma A.5.1. If, for some c, c′ ≥ 1, there is an (ncdc
′
)-time algorithm for OVd, then there

is an O(ncdc
′
)-time algorithm that finds a pair of orthogonal vectors in any OVd instance (if

it exists) except with negligible probability. Further, the same is true for uOVd.

Proof. Let A be an algorithm for deciding OVd that has negligible error and runs in time
ncdc

′
. Given a YES instance (U, V) of OVd, where U and V have n vectors each, our search

algorithm starts by dividing U and V into halves (U0, U1) and (V0, V1), where each half has
roughly bn/2c vectors. Since there was a pair of orthogonal vectors in (U, V), at least one
of (U0, V0), (U0, V1), (U1, V0), and (U1, V1) must contain a pair of orthogonal vectors. Run A
on all four of these to identify one that does, and recurse on that one until the instance size
reduces to a constant, at which point try all pairs of vectors and find an orthogonal pair. If
at some point in this process A says that none of the four sub-instances contains a pair of
orthogonal vectors, or if at the end there are no orthogonal pairs, give up and fail.

Since the size of the instances reduces by a constant factor each time, the number of
calls made to A is O(log n). So since A makes mistakes with negligible probability, by union
bound, the whole search algorithm fails only with a negligible probability. Copying over
inputs to run A on takes only linear time in the input size. Accounting for this, the running
time of the algorithm is:

T (n) ≤ 8
(n

2

)c
dc
′
+ 8

(n
4

)c
dc
′
+ · · ·+ 8 ·O(dc

′
)

≤ 8ncdc
′

(
∞∑
k=0

1

2ck

)
= O(ncdc

′
)

It can be seen that the same proof goes through for uOVd as well.

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 108

Theorem A.5.2. If, for some c, c′ ≥ 1, there is an (ncdc
′
)-time algorithm for uOVd′, then

there is an Õ(ncdc
′
)-time algorithm for OVd, where d′ = d+ 4 log n+ 2.

The reduction is along the lines of that from SAT to unique-SAT from [VV85], and makes
use of the following lemma, which is a special case of the one used there.

Lemma A.5.3. Let S ⊆ {0, 1}d × {0, 1}d be a set such that 2k−1 ≤ |S| < 2k for some k.

With constant probability over randomly chosen M 0,M 1 ∈ {0, 1}(k+1)×n and b ∈ {0, 1}(k+1),
there is a unique (x,y) ∈ S such that M 0x+ b = M 1y (over F2).

The above lemma follows from the observation that over all M 0, M 1 and b, the set

{hM0,M1,b(x,y) = M 0x+ b−M 1y}

is a universal family of hash functions. We refer the reader to [VV85] for the proof.

Proof of Theorem A.5.2. Let A be an O(ncdc
′
)-time search algorithm for uOVd′ – such an

algorithm exists by our hypothesis and Lemma A.5.1. We would like to use it to decide an
instance (U, V) of OVd. What are the instances of uOVd′ that we could run A on to help us
in our task?

Suppose we knew that in (U, V) there were exactly m pairs of orthogonal vectors. Let k

be such that 2k−1 ≤ m < 2k. Lemma A.5.3 says that if we choose M 0,M 1 ∈ {0, 1}(k+1)×d

and b ∈ {0, 1}(k+1) at random, then with some constant probability, there is exactly one pair
of vectors u ∈ U , v ∈ V such that 〈u,v〉 = 0 and M 0u + b = M 1v. If we could somehow
encode the latter condition as part of the orthogonal vector problem, we could hope to get
a uOV instance from (U, V).

Consider the encoding schemes E0 and E1 described next. For any vector x, E0(x) is a
vector twice as long as x, where each 0 in x is replaced by “0 1” and each 1 is replaced by
“1 0”. E1(x) is similar, but here a 0 is replaced by “1 0” and a 1 is replaced by “0 1”. The
property of these encodings that make them useful for us is that 〈E0(x), E1(y)〉 = 0 if and
only if x = y.

Putting ideas from the above two paragraphs together, consider the process where we
pick M 0,M 1, b at random, and to each u ∈ U , we append the vector E0(M 0u+ b), and to
each v ∈ V , we append E1(M 1v). Let the entire resulting instance be (U ′, V ′).

For any u′ ∈ U and v′ ∈ V , 〈u′,v′〉 = 〈u,v〉 + 〈E0(M 0u + b), E1(M 1v)〉 = 0 if and
only if 〈u,v〉 = 0 and M 0u+ b = M 1v. So it follows that with some constant probability,
(U ′, V ′) has a unique pair of orthogonal vectors.

Generalising slightly, if we knew that an instance (U, V) had either between 2k−1 and 2k

pairs of orthogonal vectors or none, then to decide which is the case, all we need to do is to
do the above conversion to (U ′, V ′), pad the vectors with 0’s to get them to dimension d′, and
run A on it. If there were no orthogonal vectors, A can never return a valid answer, and in
the other case, with a constant probability there will be a unique pair of orthogonal vectors
that A will find. This can be repeated, say, log2 n times to get a negligible probability of
failure.

APPENDIX A. APPENDIX FOR AVERAGE-CASE FINE-GRAINED HARDNESS 109

But we do not actually know much about the number of pairs of orthogonal vectors
in an instance that is given to us. This is easy to deal with, though – simply run the
above algorithm for all possible values of k, from 0 to 2 log n. If there are indeed some
pairs of orthogonal vectors, then one of these values of k was the right one to use and the
corresponding iteration would give us a pair of orthogonal vectors, except with negligible
probability. If there are no orthogonal vectors, then we will never find such a pair.

Each (U ′, V ′) takes at most O(nd log n) time to prepare, and an execution of A takes
O(ncdc

′
) time. This is done log2 n times for each value of k, which is from [2 log n]. So the

total time taken by the above algorithm is O(log3 n(nd log n+ ncdc
′
)) = Õ(ncdc

′
).

110

Appendix B

Appendix for Proofs of Work From
Worst-Case Assumptions

B.1 A Stronger Direct Sum Theorem for FOV
In this section, we prove a stronger direct sum theorem (and, thus, non-batchable evaluation)
for FOVk. That is, we prove Theorem 4.2.13.

In particular, it is sufficient to define a notion of batchability for parametrized families
of functions with a monotonicity constraint. In our case, monotonicity will essentially say
“adding more vectors of the same dimension and field size does not make the problem easier.”
This is a natural property of most algorithms. Namely, it is the case if for any fixed d, p,
FOVkn,d,p is (n, t, δ)− batchable.

Instead, we generalize batchability in a parametrized fashion for FOVkn,d,p.

Definition B.1.1. A parametrized class, Fρ, is not (`, t, δ)-batchable on average over Dρ,
a parametrized family of distributions if, for any fixed parameter ρ and algorithm Batchρ
that runs in time `(ρ)t(ρ) when it is given as input `(ρ) independent samples from Dρ, the
following is true for all large enough n:

Pr
xi←Dρ

[
Batch(x1, . . . , x`(ρ)) = (fρ(x1), . . . , fρ(x`(ρ)))

]
< δ(ρ).

Remark B.1.2. We use a more generic parameterization of Fρ by ρ rather than just n since
we need the batch evaluation procedure to have the property that it should still run quickly as
n shrinks, as we use downward self-reducibility of FOVkn,d,p, even when p and d remain the
same.

We now show how a generalization of the list decoding reduction of [BRSV17a] described
in Appendix A.4 yields strong batch evaluation bounds. Before we begin, we will present a
few Lemmas from the literature to make certain bounds explicit.

APPENDIX B. APPENDIX FOR PROOFS OF WORK FROM WORST-CASE
ASSUMPTIONS 111

First, we present an inclusion-exclusion bound from [CPS99] on the polynomials consis-
tent with a fraction of m input-output pairs, (x1, y1), . . . , (xm, ym). We include a laconic
proof here with the given notation for convenience.

Lemma B.1.3 ([CPS99]). Let q be a polynomial over Fp, and define Graph(q) := {(i, q(i)) |
i ∈ [p]}. Let c > 2, δ/2 ∈ (0, 1), and m ≤ p such that m > c2(d−1)

δ2(c−2) for some d. Finally, let

I ⊆ [p] such that |I| = m. Then, for any set S = {(i, yi) | i ∈ I}, there are less than dc/δe
polynomials q of degree at most d that satisfy |Graph(q) ∩ S| ≥ mδ/2.

Corollary B.1.4. Let S be as in Lemma B.1.3 with I = {m + 1, . . . , p}, for any m < p.
Then for m > 9d/δ2, there are at most 3/δ polynomials, q, of degree at most d such that
|Graph(q) ∩ S| ≥ mδ/2.

Proof. Reproduced from [CPS99] for convenience; see original for exposition.
Suppose there exist at least dc/δe such polynomials. Consider a subset of exactly N =

dc/δe such polynomials, F . Define Sf := {(i, f(i)) ∈ Graph(f) ∩ S}, for each f ∈ F .

m ≥

∣∣∣∣∣⋃
f∈F

Sf

∣∣∣∣∣ ≥∑
f∈F

|Sf | −
∑

f,f ′∈F :f 6=f ′
|Sf ∩ Sf ′ |

≥ N
mδ

2
− N(N − 1)(d− 1)

2
>
N

2

(
mδ − c(d− 1)

δ

)
≥ c

2δ

(
mδ − c(d− 1)

δ

)
=
cm

2
− c2(d− 1)

2δ2

= m+
1

2

(
(c− 2)m− c2(d− 1)

δ2

)
> m.

Now, we give a theorem based on an efficient list-decoding algorithm, related to Sudan’s,
from Roth and Ruckenstein. [RR00]

Lemma B.1.5 ([RR00]). List decoding for [n, k] Reed-Solomon (RS) codes over Fp given a

code word with almost n−
√

2kn errors (for k > 5), can be performed in

O
(
n3/2k−1/2 log2 n+ (n− k)2

√
n/k + (

√
nk + log q)n log2(n/k)

)
operations over Fq.

Plugging in specific parameters and using efficient list decoding, we get the following
corollary which will be useful below.

APPENDIX B. APPENDIX FOR PROOFS OF WORK FROM WORST-CASE
ASSUMPTIONS 112

Corollary B.1.6. For parameters n ∈ N and δ ∈ (0, 1), list decoding for [m, k] RS over Fp
where m = Θ(d log n/δ2), k = Θ(d), p = O(n2), and d = Ω(log n) can be performed in time

O

(
d2 log5/2 nArith(n)

δ5

)
,

where Arith(n) is a time bound on arithmetic operations over prime fields size O(n).

Theorem B.1.7. For some k ≥ 2, suppose k-OV takes nk−o(1) time to decide for all but
finitely many input lengths for any d = ω(log n). Then, for any positive constants c, ε > 0
and 0 < δ < ε/2, FOVk is not

(ncpoly(d, log(p)), nk−εpoly(d, log(p)), n−δpoly(d, log(p)))

-batchable on average over the uniform distribution over its inputs.

Proof. Let k = 2c′ + c and p > nk. Suppose for the sake of contradiction that FOVn,d,p
is (ncpoly(d, log(p)), n2c′+c−εpoly(d, log(p)), n−c

′
poly(d, log(p)))-batchable on average over the

uniform distribution.
Let m = nk/(k+c), as before. By Proposition 4.4.5, k-OV with vectors of dimension

d = (k
k+c

))2 log2 n is (m,mc)-downward reducible to k-OV with vectors of dimension log2(n),

in time Õ(mc+1).
For each j ∈ [mc] Xj = (U j1, . . . , U jk) ∈ {0, 1}kmd is the instance of boolean-valued

orthogonal vectors from the above reduction. Now, consider splitting these lists in half,
U ji = (U ji

0 , U
ji
1) (i ∈ [k]), such that (U j1

a1
, . . . , U jk

ak
) ∈ {0, 1}kmd/2 for a ∈ {0, 1}k. Interpret a

as binary number in {0, . . . , 2k − 1}. Then, define the following 2k sub-problems:

Aa = ((U j1
a1
, . . . , U jk

ak
)),∀a ∈ {0, . . . , 2k − 1}

Notice that given solutions to fOVkd on {Aa}a∈{0,1}k we can trivially construct a solution to

OVkd on Xj.

Now, draw random Bj, Cj ∈ Fkmd/2p and consider the following degree 2k polynomial in
x:

Dj(x) =
2k∑
i=1

δi(x)Ai−1 + (Bj + xCj)
2k∏
i=1

(x− i),

where δi is the unique degree 2k − 1 polynomial over Fp that takes value 1 at i ∈ [2k] and 0
on all other values in [2k]. Notice that Dj(i) = Ai−1 for i ∈ [2k].

Let r > 2k+1d/δ2 logm. Dj(2
k + 1), Dj(6), . . . , Dj(r + 2k). By the properties of Batch

and because the Dj(·)’s are independent, D1(i), . . . , Dmc(i) are independent for any fixed i.
Thus,

Batch(D1(i), . . . , Dmc(i)) = fOVk(D1(i)), . . . , fOV
k(Dmc(i))

for δr/2 i’s with probability at least 1− 4
δr

= 1− 1/polylog(m), by Chebyshev.

APPENDIX B. APPENDIX FOR PROOFS OF WORK FROM WORST-CASE
ASSUMPTIONS 113

Now, because δr/2 >
√

16dr, we can run the list decoding algorithm of Roth and Ruck-
enstein, [RR00], to get a list of all polynomials with degree ≤ 2k+1d that agree with at least
δr/2 of the values. By Corollary B.1.4, there are at most L = 3/δ such polynomials.

By a counting argument, there can be at most 2kd
(
L
2

)
= O(dL2) points in Fp on which

any two of the L polynomials agree. Because p > nk > 2kd
(
L
2

)
, we can find such a point,

`, by brute-force in O(L · dL2 log3(dL2) log p) time, via batch univariate evaluation [Fid72].
Now, to identify the correct polynomials fOVk(Dj(·)), one only needs to determine the value
fOVk(Dj(`)). To do so, we can recursively apply the above reduction to all the Dj(`)s until
the number of vectors, m, is constant and fOVk can be evaluated in time O(d log p).

Because each recursive iteration cuts m in half, the depth of recursion is log(m). Addi-
tionally, because each iteration has error probability < 4/(δr), taking a union bound over
the log(m) recursive steps yields an error probability that is ε < 4 logm/(δr).

We can find the prime p via O(logm) random guesses in {mk + 1, . . . , 2mk} with over-
whelming probability. By Corollary B.1.6, taking r = 8d logm/δ2, Roth and Ruckenstein’s
algorithm takes time O(d2/δ5 log5/2mArith(mk)) in each recursive call. The brute force
procedure takes time O(d/δ3 log3(d/δ2) logm), which is dominated by list decoding time.
Reconstruction takes time O(logm) in each round, and is also dominated. Thus the total
run time is

T = O(mc(mk−εd log2m/δ2 + d2/δ5 log7/2mArith(mk))),

with error probability ε < 4 logmδ/d.

114

Appendix C

Appendix for Fine-Grained
Derandomization

C.1 A Polynomial For k-CLIQUE

We now introduce a polynomial for k-CLIQUE that will, under the weak k-CLIQUE conjecture,
achieve the same results as k-OV does. We will also discuss how our results hold under an
even weaker version of the k-CLIQUE conjecture. This polynomial is independently found in
[GR18a]. We first define the k-partite k-CLIQUE problem.

Definition C.1.1 (k-partite k-CLIQUE problem). For an integer k ≥ 3, the k-CLIQUEn
problem is to, given k graphs on n nodes such that all the edges are only between the graphs,
decide if there is a k-CLIQUE among them. The input is given as

(
k
2

)
biadjacency matrices

between the k graphs.

The k-partite k-CLIQUE problem is equivalent to the common k-CLIQUE problem on one
graph (i.e. they reduce to each other in O(n2) time). We now introduce a polynomial that
can count k-CLIQUE’s.

For a given k, consider the family of polynomials
{
gkn,p : (Fn×np)(

k
2) → Fp

}
n,p∈N

. Over-

loading notation, let
(
k
2

)
= {(i, j) : 1 ≤ i < j ≤ k}. Then,

gkn,p(A
(1,2), A(1,3), . . . , A(k−1,k)) =

∑
v1,...,vk∈[n]

∏
(i,j)∈(k2)

A(i,j)
vi,vj

Note that boolean input corresponds to biadjacency matrices that comprise a k-partite
k-CLIQUE instance and that the polynomial counts the number of k-CLIQUE’s so long as p
is prime larger than nk. Now, instead of following the technique of [BRSV17a] to find such

a prime in time Õ(nk/2+c) for any c > 0, we can use the randomness in our contrapositive
derandomization arguments to choose many random primes so that an evaluation of the
polynomial over each prime will be able reconstruct the count via the Chinese Remainder

APPENDIX C. APPENDIX FOR FINE-GRAINED DERANDOMIZATION 115

Theorem. Since choosing random primes is much faster than finding the single large prime,
this along with following remark will allow us to make a weaker k-CLIQUE conjecture.

Remark C.1.2. gkn,p is guaranteed to be nωk/3−o(1) hard under k-CLIQUE’s hardness for k

a multiple of three but a näıve evaluation takes Õ(nk) time. However, interpreting each
matrix of field elements as the biadjacency matrix of a weighted graph, the polynomial can
be evaluated by the methods of [NP85] as shown in [Lin18]. This faster evaluation solves
an open problem of [BRSV17a] of finding a polynomial whose computability is tight to its
hardness for k-CLIQUE. Importantly, this will speed up the oracle calls in our downward self-
reduction in our derandomization arugments, allowing for a weaker k-CLIQUE conjecture.

We now show that gkn,p is random self-reducible and downward self-reducible as needed
in our results. Random self-reducibility is automatic as with fkn,d,p from Lemma 5.2.7 (note

that our degree is the constant
(
k
2

)
and so adds negligibly to the random self-reduction time),

and we will show gkn,p reduces to gk
nδ,p

similarly to fkn,d,p (we choose δ different than 1/2 since

we can now evaluate the polynomial quick enough to make weaker conjectures). Namely, we
will show the following lemma.

Lemma C.1.3. If there exists an algorithm A that, on input 1n, outputs a circuit C comput-
ing gk

nδ,p
, then there exists an algorithm that computes gkn,p in time O(n(1−δ)k|C|+TIME(A)),

for any δ > 0.

Proof. Using A, we print a circuit C computing gk
nδ,p

in time TIME(A). To solve an instance

A(i,j), (i, j) ∈
(
k
2

)
, of gkn,p, we break up its input as follows.

Let P =
{
{(j−1)nδ +1, (j−1)nδ +2, . . . , (j−1)nδ +nδ} : j ∈ n1−δ} be a partitioning of

[n] into n1−δ sets of size nδ each. Then we can see gkn,p breaks into sub-summands as follows.

gkn,p(A
(1,2), A(1,3), . . . , A(k−1,k)) =

∑
P1,...,Pk∈P

 ∑
v1∈P1,...,vk∈Pk

∏
(i,j)∈(k2)

A(i,j)
vi,vj

 (C.1)

We claim the inner sum can be computed by gk
nδ,p

if given the right inputs. Namely, lets

say we have P1, . . . , Pk ∈ P . Now we can make new matrices B(i,j) ∈ Fnδ×nδp , (i, j) ∈
(
k
2

)
as

new input for gk
nδ,p

for C to solve for us:

To create B(i,j) we consider Pi and Pj and fill B(i,j)’s entries in as A(i,j) restricted to the
submatrix on row indices Pi and column indices Pj. By inspection, these B(i,j) passed as
input to gk

nδ,p
will yield the inner summand for P1, . . . , Pk.

Thus, feeding these inputs to C for all P1, . . . , Pk and summing the results that C gives
will give the evaluation of gkn,p on A(i,j), (i, j) ∈

(
k
2

)
. This takes n(1−δ)k calls to C.

Remark C.1.4. Since constructing circuit C (from broken derandomization) for the above

lemma takes time Õ(nδωk/3+c2) time by using the fast/tight evaluation of gk
nδ,p

from Remark

APPENDIX C. APPENDIX FOR FINE-GRAINED DERANDOMIZATION 116

C.1.2, then evaluating gkn,p using the lemma will take Õ(n(1−δ)k+c1 + nδωk/3+c2) time in total,

for constants c1 and c2. Setting δ = 3/(ω+3) is optimal and yields an Õ(n
ω
ω+3

k+c) algorithm
for k-CLIQUE for some constant c. Thus the k-CLIQUE conjecture can be made with ε0 >
ω/(ω + 3) instead of ε > 1/2.

C.2 Heuristics Imply Separations

We now show that, if a deterministic simulation of BPP succeeds infinitely-often and on
average, then BPP doesn’t contain any deterministic time class larger than P. Compare this
to Corollary 7 of [IW01].

Theorem C.2.1. If (BPP,U) ⊆ io-Heur1/3P then, for all t(n) = nω(1) time-constructible:

DTIME[t(n)] * BPP

Intuitively, if we were able to get good enough derandomization to say that BPP ⊆ P,
then we would know that DTIME[nω(1)] * BPP by the time-hierarchy theorem. Thus, proving
a time-hierarchy theorem that is robust to the io- and Heur qualifiers suffices to concluding
DTIME[nω(1)] * BPP from a (BPP,U) ⊆ io-HeurP derandomization. We expand ideas from
[IW01] to prove the following sufficient lemma for simplicity.

Lemma C.2.2 (Robust Time Hierarchy Theorem). For all time-constructible t(n):

io-Heur1/3DTIME[t(n)] ⊂ DTIME[t(n)3]

Proof. We give a deterministic machine M that runs in time t(n)3 but whose language it
decides is not also in io-Heur1/3DTIME[t(n)]:

Let `(n) = log t(n). On input x = u||v, where u is the first n− `(n) bits and v is the last
`(n) bits, M simulates all Turing machines of description length .5`(n) on every n-bit input
that begins with u for t(n) steps. This creates 2.5`(n) =

√
t(n) strings of length t(n) which

are the truth tables of each .5`(n)-size Turing machines that runs in t(n) steps on all of the
2`(n) = t(n) inputs that begin with u.

It is easy to see with Chebyshev that a random string of length t(n) agrees with any fixed
t(n)-length string on at least 2/3 of its values only with probability 1/O(t(n)). Since there
are only

√
t(n) < O(t(n)) strings that are our truth tables though, by union bound there

must exist a t(n)-length string that disagrees with all of our truth tables on at least 1/3 of
each of their values. Of course this string might have high complexity to generate but, since
our analysis here only involved a Chebyshev bound, a pairwise independent hash family will
fool this analysis and have the same conclusion.

Namely, considering a random string from the pairwise independent hash family H =
{〈r, ·〉 : r ∈ {0, 1}`(n)} is sufficient for the analysis and so we have that there must exist a
specific 〈ru, ·〉 that disagrees with all of the truth tables on at least 1/3 of their values. Thus,

APPENDIX C. APPENDIX FOR FINE-GRAINED DERANDOMIZATION 117

since H is relatively small and its functions are easy to compute, M can find that ru by
brute force and outputs its final binary value as 〈ru, v〉.

Thus, this whole process of M on x = u||v of simulating
√
t(n) Turing Machines on t(n)

inputs for t(n) time and checking all t(n) r’s for the one that fools all of the truth tables
adequately enough takes at most t(n)3 time for large enough n. However, by construction,
all time t(n) Turing machines fail in deciding this language on at least 1/3 of its inputs for
all sufficiently large n.

	Contents
	Introduction
	The Fine Grained World: Background
	Fine-Grained Hardness: Hardness Within ¶
	The Main Islands of Fine-Grained Complexity
	Fine-Grained Easiness: Connecting to Classical Complexity Through Fine-Grained Collapses
	Connecting the Fine-Grained and Classical Worlds

	Average-Case Fine-Grained Hardness
	Introduction
	Our Results
	Related Work
	Organization

	Worst-Case Conjectures
	Main Islands of Fine-Grained Complexity
	Auxiliary Problems

	Average-Case Fine-Grained Hardness
	Orthogonal Vectors
	3SUM and All-Pairs Shortest Path
	SETH, 3SUM, and All-Pairs Shortest Path

	An Average-Case Time Hierarchy
	Towards Fine-Grained Cryptography
	Fine-Grained One-Way Functions
	Barriers and NSETH
	A Way Around
	An MA Protocol
	Proofs of Work
	On the Heuristic Falsifiability of Conjectures

	Open Questions

	Proofs of Work From Worst-Case Assumptions
	Introduction
	On Security From Worst-Case Assumptions
	Our Results
	Related Work

	Proofs of Work from Worst-Case Assumptions
	Definition
	Orthogonal Vectors
	Preliminaries
	The PoW Protocol

	Verifying FOVk
	A Direct Sum Theorem for FOV
	Removing Interaction
	Zero-Knowledge Proofs of Work

	Fine-Grained Derandomization: From Problem-Centric to Resource-Centric Complexity
	Introduction
	Our Results
	Related Work

	Preliminaries
	Fine-Grained Hardness
	Derandomization
	Uniform Derandomization

	Fine-Grained Derandomization
	Counting k-OV from Distinguishers
	Printing Distinguishers from Failed Derandomization

	Open Questions

	Bibliography
	Appendix for Average-Case Fine-Grained Hardness
	Evaluating Low Degree Polynomials
	Polynomials Computing Sums
	CONVOLUTION-3SUM
	A Tighter Reduction for FOV
	Isolating Orthogonal Vectors

	Appendix for Proofs of Work From Worst-Case Assumptions
	A Stronger Direct Sum Theorem for FOV

	Appendix for Fine-Grained Derandomization
	A Polynomial For k-CLIQUE
	Heuristics Imply Separations

