
Safe and Data-Efficient Learning for Robotics: A Control
Theoretic Approach

Somil Bansal

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-186
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-186.html

November 24, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Safe and Data-Efficient Learning for Robotics: A Control Theoretic Approach

by

Somil Bansal

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Claire Tomlin, Chair
Professor Sanjit Seshia

Professor Koushil Sreenath

Fall 2020



The dissertation of Somil Bansal, titled Safe and Data-Efficient Learning for Robotics: A
Control Theoretic Approach, is approved:

Chair Date

Date

Date

University of California, Berkeley



Safe and Data-Efficient Learning for Robotics: A Control Theoretic Approach

Copyright 2020
by

Somil Bansal



1

Abstract

Safe and Data-Efficient Learning for Robotics: A Control Theoretic Approach

by

Somil Bansal

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Tomlin, Chair

For successful integration of autonomous systems such as drones and self-driving cars in
our day-to-day life, they must be able to quickly adapt to ever changing environments, and
actively reason about their safety and that of other users and autonomous systems around
them. Even though control theoretic approaches have been used for decades now for the con-
trol and safety analysis of autonomous systems, these approaches typically operate under the
assumption of a known system dynamics model and the environment in which the system is
operating. To overcome these challenges, machine learning approaches have been explored to
operate autonomous systems intelligently and reliably in unpredictable environments based
on prior data. However, learning techniques widely used today are extremely data inefficient,
making it challenging to apply them to real-world physical systems. Moreover, unlike con-
trol theoretic approaches, these techniques lack the necessary mathematical framework to
provide guarantees on correctness, causing safety concerns as data-driven physical systems
are integrated in our society.

This dissertation aims to combine the control theoretic perspective with the modern
learning approaches to enable autonomous systems to safely adapt to unknown environments.
It first introduces a suite of core tools from dynamical system theory and robust control
that permits the safety analysis of single and multi-agent autonomous systems under the
assumption of known system model and environment. In the remainder of the dissertation,
we discuss how we can go past these assumptions with the help of machine learning, while
minimizing the data requirement for learning and maintaining the safety guarantees for the
autonomous system.

To that end, we first discuss how we can learn inaccuracies in the dynamics model of
the system, such as unknown ground effects for quadrotors, and use the learned model along
with optimal control tools to improve the control performance. Our particular focus is on
learning task-specific models that allow for a quick adaptation for the task at hand; these
techniques are showcased on physical quadrotors and robotic arms. We next present mod-
ular architectures that use a learning-based perception module for the environment level
reasoning and a dynamics model-based module for system level reasoning to solve challeng-



2

ing perception and control problems in a priori unknown environments in a data-efficient
fashion. Moreover, due to their modularity, these architectures are amenable to simulation-
to-real transfer, and can be used for different robotic systems without any retraining. These
approaches are demonstrated on a variety of ground robots navigating in unknown buildings
around humans based only on onboard visual sensors.

Next, we discuss how we can use dynamics models not only for data-efficient learning, but
also to monitor and recognize the learning system’s failures, and to provide online corrective
safe actions when necessary. This allows us to provide safety assurances for learning-enabled
systems in unknown and human-centric environments, which has remained a challenge to
date. Together these techniques enable autonomous systems to learn to operate in unknown
environments, but do so in a data-efficient and safe fashion. The dissertation ends with a
discussion of future challenges and opportunities at the intersection of learning and control,
including the safety analysis in online learning settings and the need to close the loop between
the design of learning systems and their safety analysis for developing resilient and continually
improving autonomous systems.



i

To my parents, Sh. Raman and Punam Bansal, and to my grandma Sh. Kasturi Mahipal.



ii

Contents

Contents ii

List of Figures v

List of Tables xv

1 Introduction 1

2 Background and Preliminaries 5
2.1 System Dynamics and Feedback Control . . . . . . . . . . . . . . . . . . . . 5
2.2 Optimal Control and Dynamic Games . . . . . . . . . . . . . . . . . . . . . 9
2.3 Hamilton-Jacobi Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Gaussian Processes and Bayesian Optimization . . . . . . . . . . . . . . . . 30

I Safety Analysis for Robotic Systems 33

3 Scaling Safety Analysis: Algorithmic and Computational Fronts 34
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Reachability Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Run-Time Reachability in Dynamic Environments: Warm Start and Local

Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 The Berkeley Efficient API in C++ for Level Set Methods (BEACLS) . . . . 74
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Provably Safe and Scalable Multi-Vehicle Trajectory Planning 80
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Safe Multi-Vehicle Trajectory Planning . . . . . . . . . . . . . . . . . . . . . 83
4.3 Sequential Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Sequential Trajectory Planning With An Adversarial Intruder . . . . . . . . 103
4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



iii

II Going Beyond Known Dynamics Models and Environments:
Learning-Based Control for Unknown Models and Environ-
ments 116

5 Learning for Unknown Dynamics Models: Indirect Learning-Based Con-
trol 117
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Identification of Unmodeled Dynamics Using Deep Neural Networks . . . . . 122
5.4 Experiments: Learning Quadrotor Dynamics Using DNN . . . . . . . . . . . 123
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Learning for Unknown Dynamics Models: Direct Learning-Based Control136
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Goal-Driven Dynamics Learning (aDOBO) . . . . . . . . . . . . . . . . . . . 141
6.4 Going Beyond Linear Models: Learning Task-Driven Gaussian Process (GP)

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 Combining Indirect and Direct Learning-Based Control . . . . . . . . . . . . 163
6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7 Learning for Unknown Environments: Perception-Based Control 174
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.3 Learning-Based Perception with Model-Based Control for Visual Navigation 179
7.4 Visual Navigation in Dynamic, Human-Centric Environments . . . . . . . . 195
7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

III Safety for Learning-Enabled Control Systems 209

8 Safety Analysis Using Learning-Based Dynamics Models 210
8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.3 SPEC: Specification Centric Simulation Metric . . . . . . . . . . . . . . . . . 217
8.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9 Safe Learning-Enabled Perception Components 235
9.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.3 Reachability-Based Safety Monitor in Unknown Environments . . . . . . . . 239



iv

9.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
9.5 Hardware Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10 Towards a Synergistic Learning and Control Future 251

Bibliography 254



v

List of Figures

2.1 The neural network architecture for a 3 layer feed-forward ReLU network. The
NN consists of three layers: an input layer, a hidden ReLU layer, and an output
layer. The parameters to be learned during the training process are θ = (W,w,B, b). 30

3.1 This figure shows the back-projection of sets in the x1-xc plane S1 and the x2-
xc plane (S2) to the 3D space to form the intersection shown as the black cube
(S). The figure also shows projection of a point x onto the lower-dimensional
subspaces in the x1-xc and x2-xc planes. . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Comparison of the Dubins Car BRS A(t = −0.5) computed using the full for-
mulation and via decomposition. Left top: The BRSs in the lower-dimensional
subspaces and how they are combined to form the full-dimensional BRS. Top
right: The BRS computed via decomposition. Bottom left: The BRSs computed
using both methods, superimposed, showing that they are indistinguishable. Bot-
tom right: The BRS computed using the full formulation. . . . . . . . . . . . . . 46

3.3 The Dubins Car BRS A(t = −0.5) computed using the full formulation and via
decomposition, other view angles. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Computation times of the two methods in log scale for the Dubins Car. The
time of the direct computation in 3D increases rapidly with the number of grid
points per dimension. In contrast, computation times in 2D with decomposition
are negligible in comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Comparison of the R(t) computed using our decomposition method and the full
formulation. The computation results are indistinguishable. Note that the surface
shows the boundary of the set; the set itself is on the “near” side of the left subplot,
and the left side of the right subplot. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 3D slices of the 10D BRSs over time (colored surfaces) and the BRT (black
surface) for the Near-Hover Quadrotor. The slices are taken at the 7D points at
(vx, vy, vz) = (−1.5,−1.8, 1.2), θx = θy = ωx = ωy = 0 (Left) and (px, py, pz) =
(−1.5, 0, 1), (vx, vy) = (1.2,−0.6), ωx = ωy = −0.5 (Right). . . . . . . . . . . . . 52

3.7 Minimal BRTs computed directly in 3D and via decomposition in 2D for the
Dubins Car under disturbances with shared components. The reconstructed BRT
is an over-approximation of the true BRT. The over-approximated regions of the
reconstruction are indicated by the arrows. . . . . . . . . . . . . . . . . . . . . . 59



vi

3.8 Minimal BRTs computed directly in 3D and via decomposition in 2D for the
Dubins Car under disturbances without shared components. In this case, the
BRT computed using decomposition matches the true BRT. . . . . . . . . . . . 60

3.9 Left: 3D positional slices of the reconstructed 6D BRSs at vx = vy = 1, ω = 0 at
different points in time. The BRT cannot be seen in this image because it encom-
passes the entire union of BRSs. Right: 3D velocity slices of the reconstructed
6D BRSs at x, y = 1.5, φ = 1.5 at different points in time. The BRT can be seen
as the transparent gray surface that encompasses the sets. . . . . . . . . . . . . 61

3.10 Visualization of the numerical example using a double integrator model. The
target set L and corresponding function l(x) are in green. We initialize V (0, x) =
l(x), and update the function using (3.57) by optimizing over the inner product
between the spatial gradients (seen for V (0, x) as black arrows) and the system
dynamics (whose flow field is seen as blue arrows). The converged BRT V∗ and
value function V ∗(x) are in cyan. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11 The top row shows the target sets and backward reachable tubes, which are the
subzero level sets of the target and value functions (bottom row). For all ex-
amples shown, green is the target set and function, cyan is the true BRT and
converged value function, blue is the warm-start initialization, and black is the
warm-start converged value function. (a) conservative warm-start initialization
that converges exactly. (b) somewhat unrealistic conservative warm-start ini-
tialization that gets stuck in a local solution and results in a conservative value
function (K and V∗k are not visualized because they include the entire state space).
(c) initializing at zero everywhere (K not visualized because it includes the entire
state space) results in a slightly conservative BRT. (d) to demonstrate how well
this algorithm works in practice, we initialize with the complement of random
circles, resulting in exact convergence. . . . . . . . . . . . . . . . . . . . . . . . 67

3.12 For all examples shown, the region between the green lines is the target set.
Similarly cyan marks the boundary of the original BRT, red marks the BRT based
on new conditions, and black is the boundary of the warm-start converged BRT.
The left column shows cases in which the exact solution (red) can be achieved by
warm-starting (black) from a previous solution (cyan). The right column shows
cases in which warm-starting (black) is guaranteed to at worst remain at the
initialization (cyan) or at best will achieve the exact solution (red). In practice
we generally achieve the exact solution. . . . . . . . . . . . . . . . . . . . . . . . 70

3.13 Correspondence between the Matlab and BEACLS implementations of reachabil-
ity toolbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.14 BEACLS splits multi-dimensional arrays representing the value function V (t, x)
into appropriate overlapping chunks according to processor configuration. Nu-
merical gradients and the Hamiltonian values of each chunk are computed in
parallel to produce the updated value function at the previous time step (in the
case of backward reachability). Finally, the chunks are combined together to form
the updated value function over the entire computational domain. . . . . . . . . 76



vii

3.15 Summary of computation times for a benchmark 3D HJI VI. A 50-UAV simulation
takes less than 2 minutes with the CUDA implementation in BEACLS using
two GPUs, compared to 27 minutes with a non-CUDA C++ implementation in
BEACLS or 2.8 hours with helperOC and the level set toolbox in MATLAB. . . 78

4.1 City environment multiple UAV simulation setup. A 25 km2 area in the City of
San Francisco is used as the space for the 50-vehicle simulation. Vehicles originate
from the blue star and go to one of the four destinations, denoted by circles. Tall
buildings in the downtown area are used as static obstacles, represented by the
black contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Snapshots of vehicle trajectories at approximately a) 1 minute, b) 3 minutes, c)
4 minutes, and d) 5 minutes after the first vehicle departs. The wind speed is
uniformly random with a bound of dr = 6 m/s. The vehicles remain clear of all
static obstacles and of each other despite the disturbance in the dynamics. . . . 95

4.3 Effect of the disturbance magnitude and the scheduled times of arrival on vehicle
trajectories. All trajectories are simulated under uniformly random disturbance.
The relative separation in the scheduled times of arrival of vehicles determines
the number of lanes between a pair of origin and destination, and more and
more trajectories become time-separated as this relative separation increases. The
disturbance magnitude determines the relative separation between different lanes,
and more and more trajectories become state-separated as the disturbance increases. 96

4.4 Zoomed-in version of vehicle trajectories near the red target in Fig. 4.3a. The
STP algorithm ensures that the vehicles are outside each other’s danger zones,
i.e., the centers of any two intersecting circles are not within the same circle. . . 97

4.5 Trajectories of 50 vehicles for Case 4: dr = 11 m/s, tSTA
i = 10(i − 1). Since

different vehicles have different scheduled times of arrival, there is a single lane
between every origin-destination pair. . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Multi-city simulation setup. A 300 km2 area of San Francisco Bay Area is used as
the state-space for vehicles. STP vehicles fly to and from the four cities indicated
by the four disks. The simulations are performed under the strong winds condition
with dr = 11 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 (a) Trajectories obtained from the STP algorithm for the multi-city simulation
with dr = 11 m/s, tSTA

i = 5(i − 1). (b) Zoomed-in version of the central area.
A high density of vehicles is achieved at the center because of the intersection of
several trajectories; however, the STP algorithm still ensures that vehicles do not
enter each other’s danger zones and reach their destinations. . . . . . . . . . . . 103

4.8 Vehicle trajectories for dr = 11 m/s, tSTA
i = 0. Since different vehicles have same

scheduled times of arrival, a multiple-lane behavior is observed between every
pair of cities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



viii

4.9 Buffer regions for different k̄ (best visualized with colors). As k̄ decreases, a larger
buffer is required between vehicles to ensure that the intruder spends more time
traveling through this buffer region so that it forces fewer vehicles to apply an
avoidance maneuver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.10 Nominal trajectories and induced obstacles by different vehicles. The nominal
trajectories (solid lines) are well separated from each other to ensure that the
intruder cannot force more than 3 vehicles to apply an avoidance maneuver. . . 113

4.11 The trajectory of a STP vehicle when it applies the nominal controller vs when
it applies the avoidance control. The vehicle is forced to apply the avoidance
maneuver in the presence of an intruder, which can cause vehicle’s deviation
from its nominal trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 A picture of Crazyflie 2.0 quadrotor flying during one of our experiments. . . . . 124
5.2 Control block diagram used to stabilize Crazyflie during experiments. At the

ground station, LQR is running at 100Hz. On-board the Crazyflie, PD controller
is running at 250Hz. Together they are able to stabilize the Crazyflie. . . . . . . 126

5.3 Observed and predicted values for the roll and y accelerations. The NNs are able
to learn the acceleration models fairly accurately even with just the current state
and input, indicating that the past states and inputs may not be required to learn
the dynamics, and hence are avoided in this work to keep the control design simple.129

5.4 The reference, NN model and model-free trajectories obtained during the experi-
ments. The NN model track the desired trajectory closely even though it involves
both translational and rotational motion at the same time, which the NNs were
not explicitly trained on, indicating the generalization capabilities of deep neural
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 (Absolute) Tracking error for model-free and NN model trajectories. Model-free
trajectory has a significantly higher tracking error compared to the NN model,
especially in the translational motion, indicating that nonlinear coupling between
translational and rotational motions should be taken into account while designing
a controller, which in this work is captured by training a NN model that accurately
represents the system dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 aDOBO: A Bayesian optimization-based active learning framework for optimizing
the dynamics model for a given cost function, directly based on the observed cost
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Dubins car: mean and standard deviation of η during the learning process (over 10
trials). aDOBO reaches within the 10% of the optimal cost in just 100 iterations,
starting from a random dynamics model. Using a log warping on the cost function
further accelerates the learning. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Dubins car: state and control trajectories for the learned and the true system.
The two trajectories are very similar, indicating that the learned dynamics model
represents the system behavior accurately around the desired state. . . . . . . . 145



ix

6.4 Cost of the actual system in (6.9) as a function of the linearization parameters
(θ1, θ2). The parameters obtained by aDOBO (the pink X) yield to performance
very close to the true system parameters (the green ∗). Note that aDOBO does
not necessarily converge to the true parameters. . . . . . . . . . . . . . . . . . 146

6.5 Cart-pole System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6 Cart-pole system: mean and standard deviation of η during the learning process.

The learned controller reaches within 20% of the optimal cost in 250 iterations,
demonstrating the applicability of aDOBO to highly non-linear systems. . . . . 148

6.7 Performance obtained via learning (A,B) through state and input trajectories.
When the underlying system is non-linear, this approach can result in a poor
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.8 Mean and standard deviation of η obtained via directly learning the feedback
controller K [67] and aDOBO for different cost functions. (a) Comparison for the
quadratic cost function of Eq. (6.7). Directly learning K converges to the optimal
performance faster because fewer parameters are to be learned. (b) Comparison
for the non-quadratic cost function of Eq. (6.11). Since the optimal controller for
the actual system is not necessarily linear in this case, directly learning K leads
to a poor performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.9 Dubins car: Comparison between tuning the penalty matrices (Q,R) [208] (dashed
curves), and aDOBO (solid curves) for different noise levels in (A∗, B∗), the nom-
inal linear dynamics around the desired goal state. When nominal dynamics are
accurate, the (Q,R) tuning method outperforms aDOBO because fewer param-
eters are to be learned. Its performance, however, drops significantly as noise
increases, rendering the method impractical for the scenarios where a good nom-
inal dynamics model is not known to a good accuracy. . . . . . . . . . . . . . . 153

6.10 Crazyflie: percentage error between the learned and the nominal controller. The
nominal controller is obtained by using the full 12D non-linear dynamics model
of the quadrotor. As learning progresses, aDOBO outperforms the nominal con-
troller by 12% on the actual system, indicating the capability of aDOBO to
overcome modeling errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.11 Crazyflie: tracking error for the learned and nominal controllers. The final learned
controller does a better tracking of pz state, which results in an overall better
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.12 Stirring viscous liquid with the 3-dof SCARA robot CARBO using aDOBO. . . 160
6.13 Minimum of the cost function over the number of trials for the closed-loop model.

The closed-loop model is optimized using aDOBO. . . . . . . . . . . . . . . . . 162
6.14 Comparison of the root square position error of all joints for the open-loop and

closed-loop models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



x

6.15 The mean (curves) and the standard deviation (shaded regions) of the cost ob-
tained for different approaches for the 2D point mass system. Each iteration
corresponds to one trial on the actual system. A pure MF approach is unable to
perform well. A pure MB approach continues to improve, but is outperformed
by the MBMF, indicating the utility of blending MB and MF approaches. . . . 167

6.16 The mean cost obtained for different switching points K for the MB+MF ap-
proach for the 2D point mass system. Switching from MB to MF results in a
flat learning curve in this case, indicating that a naive switching between the two
may not be sufficient for the policy improvement. . . . . . . . . . . . . . . . . . 168

6.17 The mean cost obtained for different prior update frequencies F for the MBMF
approach for the 2D point mass system. The learning efficiency of MBMF depends
on the choice of the prior update frequency. Switching too often makes MBMF
too sensitive to the changes in the dynamics model, which can “mis-guide” the
policy exploration. On the other hand, if the prior update frequency is too small
(F is large), then the MBMF lags behind the pure model-based approach, as it
is not fully leveraging the dynamics model information. In this case, the optimal
update frequency turns out to be F = 10; however, MBMF is at least as good as
the best baseline for all update frequencies. . . . . . . . . . . . . . . . . . . . . 169

6.18 Trajectories obtained via executing the learned controller for the point mass sys-
tem after 25 iterations. Each trial corresponds to different initial data, but was
same across all approaches. The optimal trajectory requires the system to over-
come the obstacles (the Grey cylinders) to reach from the initial position (the
Red circle) to the goal position (the Green circle). MB and MF approaches have
different behavior across different trials and they often get stuck in the obstacles.
MBMF, on the other hand, is able to learn how to overcome the obstacles and
consistently reaches the goal position. . . . . . . . . . . . . . . . . . . . . . . . 170

6.19 The mean (curves) and the standard deviation (shaded regions) of the cost ob-
tained for different approaches for the three DoF robotic arm. MBMF leverages
the advantages of both MB and MF approaches to design a better policy, indicat-
ing the data-efficiency of the MBMF approach, as well as its ability to overcome
the model bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.20 The mean cost obtained for different switching points K for the MB+MF ap-
proach for the robotic arm. Switching from MB to MF results in a slower learning
compared to a pure MB approach. . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.21 The mean cost obtained for different prior update frequencies F for the MBMF
approach for the robotic arm. If the prior update frequency is too small (F is
large), then the MBMF lags behind the pure MB approach in this case, as it is
not fully leveraging the dynamics model information. In this case, the optimal
update frequency turns out to be F = 1. Nevertheless, systematically finding the
optimal prior update frequency is an important future direction. . . . . . . . . . 172



xi

6.22 (a) Trajectory obtained via executing the learned controller for the MBMF ap-
proach. The Red box represents the object, which needs to be moved to the
Green box. MBMF is able to push the object fairly close to the goal position. (b)
Trajectory obtained via executing the learned controller for the pure model-based
approach. A pure MB approach struggles with accomplishing this task, with the
final position of the object end up being very far from the goal position. . . . . 173

7.1 Overview: We consider the problem of navigation from a start position to a goal
position. Our approach (LB-WayPtNav) consists of a learning-based perception
module and a dynamics model-based planning module. The perception module
predicts a waypoint based on the current first-person RGB image observation.
This waypoint is used by the model-based planning module to design a controller
that smoothly regulates the system to this waypoint. This process is repeated for
the next image until the robot reaches the goal. . . . . . . . . . . . . . . . . . . 181

7.2 We visualize the spline trajectories produced by our planner for different way-
point angles (θ̂), starting from the same initial state, initial speed and to the
same waypoint position. The gray region denotes an obstacle. Due to the dy-
namics constraints, θ̂ significantly affects the shape of the vehicle trajectory, and
hence needs to be chosen appropriately to obtain a collision-free trajectory. In
particular, the line of sight trajectory to the waypoint (the Blue trajectory) leads
to a collision in this case, whereas if θ̂ is chosen appropriately, a smooth, agile
trajectory that goes around the obstacle can be obtained. . . . . . . . . . . . . . 185

7.3 Some representative images of the buildings from which the training and the test
data was collected. Even though the test environments are also office buildings,
their layouts and appearances are different than the training buildings. However,
our framework is still able to generalize to the domain shift. . . . . . . . . . . . 186

7.4 Examples of several image distortions that have been randomly applied during
the training phase. The actual undistorted image is shown in (a). Adding these
distortions significantly improves the generalization capability of our framework
to unseen environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.5 Trajectory Visualization: We visualize the trajectories produced by the model-
based planning approach (top row) and the end-to-end (E2E) learning approach
(bottom row) for sample test tasks. The E2E learning approach struggles to
navigate around the tight corners or narrow hallways, whereas LB-WayPtNav
is able to produce a smooth, collision-free trajectory to reach the target posi-
tion. Even though both approaches are able to reach the target position for task
3, LB-WayPtNav takes only 10s to reach the target whereas the E2E learning
approach takes about 17s. Moreover, the control profile produced by the E2E
learning approach is significantly more jerky than LB-WayPtNav, which is often
concerning for real robots as they are power inefficient, can lead to significant
errors in sensors and cause hardware damage. . . . . . . . . . . . . . . . . . . . 190



xii

7.6 LB-WayPtNav is able to learn the appropriate navigation cues, such as entering
the room through the doorway for a goal inside the room, continuing down the
hallway for a farther goal. Such cues enable the robot to navigate efficiently in
novel environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.7 Our Turtlebot 2 hardware platform uses a Yujin Kobuki base, Gigabyte Aero
Laptop, and Orbbec Astra camera. . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.8 Some representative images of the buildings in which the experiments were con-
ducted. None of these buildings were used for training/testing purposes in simu-
lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.9 We visualize the RGB images captured by the robot and corresponding depth
estimation. The black pixels in the depth images correspond to the regions where
the depth estimator fails to accurately estimate the depth. The depth estimation
is inaccurate when the robot encounters shiny, thin, or transparent objects, or
in the presence of strong ambient lighting, such as sunlight. This results in a
significant decline in the performance of a mapping-based approach. . . . . . . . 194

7.10 LB-WayPtNav can adapt to dynamic environments. . . . . . . . . . . . . . . . . 194
7.11 We consider the problem of autonomous visual navigation in a priori unknown,

indoor environments with humans. Our approach, LB-WayPtNav-DH, consists
of a learning-based perception module and a model-based planning and control
module. To learn navigational behavior around humans, we create the HumANav
dataset which allows for photorealistic renderings in simulated buildings environ-
ments with humans. We use an MPC-based expert along with HumANav to
train LB-WayPtNav-DH entirely in simulation. At test time, LB-WayPtNav-DH
navigates efficiently in never-before-seen buildings based only on monocular RGB
images and demonstrates zero-shot, sim-to-real transfer to novel, real buildings
around real humans (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.12 Representative images from training and testing scenarios using the HumANav
dataset. The buildings used at training and test time are visually dissimilar
and have substantially different layouts. We also keep a held-out set of human
identities for our test scenarios. LB-WayPtNav-DH is able to generalize well to
novel environments with never-before-seen humans at test time. . . . . . . . . . 199

7.13 (left) The robot starts at the dark blue circle. Its goal it to move to the green
goal region without colliding with static obstacles (dark gray) or humans (ma-
genta). LB-WayPtNav follows the light-blue, dashed trajectory until the light
blue dot, planning a path to the right of the human (in its direction of motion),
leading to collision. LB-WayPtNav-DH follows the red trajectory until the red
circle, planning a trajectory (transparent red) to the left the of the human which
accounts for the its future motion, and ultimately leads to success. (middle &
right) Corresponding RGB images seen by the robot. . . . . . . . . . . . . . . . 200



xiii

7.14 Topview of the trajectories taken by Mapping-WC and LB-WayPtNav-DH from
the same state and the corresponding RGB image with the trajectories superim-
posed. Mapping-WC reaches the goal faster than LB-WayPtNav-DH as it has
access to precise geometry of the scene and the human state and thus plans a path
between the human and the wall which narrowly avoids collision. LB-WayPtNav-
DH, on the other hand, takes a more cautious path as it does not have access to
the human state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.15 Topview of the trajectories taken by LB-WayPtNav-DH from the same state with
a static human (light blue, dashed line) and a dynamic human (red, solid line),
and the corresponding RGB images. HumANav enables LB-WayPtNav-DH to
leverage cues, such as spread of humans legs and direction of human toes, to infer
that the left RGB image likely corresponds to a static human and the right one
to a moving human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.16 LB-WayPtNav-DH trained on images from HumANav with realistic textures
(clothing, hair, skin color, facial features) (left) leads to a better generalization
than training on human figures with gray textures (right). . . . . . . . . . . . . 203

7.17 Navigation around multiple humans. LB-WayPtNav-DH successfully turns a cor-
ner while avoiding two humans walking side by side (left), navigates a long hall-
way with multiple humans walking down the hallway (middle). LB-WayPtNav-
DH attempts to traverse a room, crossing the path of two different humans that
are moving in opposing directions (right). LB-WayPtNav-DH is unable to rea-
son about the future trajectory of both humans simultaneously which ultimately
leads to a collision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.18 Some representative images of the experiment scenarios. Neither of these build-
ings were used for training/testing purposes in simulation. . . . . . . . . . . . . 205

7.19 Two examples from the experiments. Top: executed trajectory. Purple dot is
the human with an arrow depicting its direction. Bottom: RGB images from
the robot. The robot selects the trajectories in the opposite direction from the
human to avoid a collision, even if is means diverging from the optimal path to
the goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.1 The avoid set is expanded and the reach set is contracted with the simulation
metric da. If the abstraction trajectory (ξM) stays clear of the expanded avoid
set and reaches the contracted reach set, the system trajectory (ξS) also stays
clear of the original avoid set and reaches the original reach set. . . . . . . . . . 211

8.2 Different reachable sets when the quadrotor abstraction is conservative. The
distance metric db only considers the distance between trajectories that violates
the specification on the system and satisfies it on the abstraction, leading to a
less conservative estimate of the distance, and a better approximation of ES . . . 228

8.3 Different reachable sets when the quadrotor abstraction is overly optimistic. The
distance metric db achieves a far less conservative under-approximation of ES
compared to the other distance metrics. . . . . . . . . . . . . . . . . . . . . . . 229



xiv

8.4 Hybrid controller for lane keeping. lane means a lane is detected by the perception
system. The dashed line represents the transitions taken on initialization based
on the value of lane. To closely follow the center of the lane, we synthesize a LQR
controller in each mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.5 The lane detection fails for (a) and (b) and S car tries to slow down. When lane
is correctly detected (c), the LQR controller tries to follow the lane . . . . . . . 232

8.6 The green lines represent the boundaries of the original reach set. The yellow
region is the contracted reach set for the model computed using d̂ε. The model’s
trajectory shown in blue is entirely contained within the yellow region. Conse-
quently, the system’s trajectory (shown in dotted red) leaves the yellow region
but is contained within the original reach set at all times. . . . . . . . . . . . . . 233

8.7 An example of the environment scenario that contributes to the distance between
the model and the system. The environment samples used for computing SPEC
can be used to identify the reasons behind the violation of the safety specification
by the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.1 The initial setup for the running example. The goal is to safely reach the goal
(center of the green area) from the initial position (black marker) in the presence
of an unknown obstacle (the grey square). We also show the initial sensing region
for the LiDAR and camera sensors. . . . . . . . . . . . . . . . . . . . . . . . . . 240

9.2 The vehicle trajectories for the problem setting in Figure 9.1 for both planners
(RRT and Spline planners) and both sensors (LiDAR and Camera sensors) with
the safety controller computed from each of the three candidate safety approaches.
The proposed framework is able to safely navigate the vehicle to the goal in all
cases. When the planner makes unsafe decisions, the safety controller intervenes
(the states marked in red) to ensure safety. . . . . . . . . . . . . . . . . . . . . . 245

9.3 (a) The sensed region by the vehicle at different states in time for the camera
sensor. (b) The overall free space sensed by the vehicle and the corresponding
safe set (interior of the red boundary). Since the vehicle is at the boundary of
the safe set, the safety controller u∗ is applied to steer the robot inside the safe
set and ensure collision avoidance. . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.4 The proposed framework can be exploited to provide safety guarantees around
vision-based planners that incorporate learning in the loop. The vision-based
planner plans a path through the doorway. Without safety control (a) this results
in collision, however with safety (b) the robot avoids collision and reaches the goal.248

9.5 (Left) We show an application of our approach on a Turtlebot using a vision-
based planner. When the robot is at risk of colliding, the safe controller (u∗)
keep the system safe. (Right) We show the top-view of our experiment setting,
and the corresponding system trajectories with and without the proposed safety
framework. Without the safety framework, the robot collides into the chair. In
contrast, our safety framework is able to safely navigate the robot to its goal by
intervening when the vehicle is too close to the obstacles. . . . . . . . . . . . . . 249



xv

List of Tables

2.1 A summary of some relevant concepts, as denoted in reinforcement learning and
control communities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Summary of possible decompositions of the BRS and the BRT, whether they
are possible, and if so whether they are exact or conservative. Exact means
that no additional approximation errors are introduced. Note that in the cases
marked “no” for shared control (or shared disturbance), the results hold for both
decoupled control (or disturbance) and for no control (or disturbance). All cases
shown are for scenarios with shared states, with the shared states being xc in
(3.2); in the case that there are no shared states this becomes a straightforward
decoupled system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 BRS reconstruction from self-contained subsystems when they have shared control
but no shared disturbance (Section 3.2.2.1) . . . . . . . . . . . . . . . . . . . . . 45

3.3 The BRS reconstruction from self-contained subsystems when they do not have
shared control or disturbance (Section 3.2.2.2). . . . . . . . . . . . . . . . . . . . 50

3.4 The BRS reconstruction from self-contained subsystems when they have shared
control and shared disturbance (Section 3.2.2.3) . . . . . . . . . . . . . . . . . . 53

3.5 The BRS reconstruction from self-contained subsystems when they have no shared
control but shared disturbance components (Section 3.2.2.4) . . . . . . . . . . . 54

3.6 The BRT reconstruction from self-contained subsystems. . . . . . . . . . . . . . 58
3.7 Runtime analysis for reachability methods as the problem parameters change. We

compare standard reachability, warm-start formulation, and discounted reacha-
bility formulation [13]. We compare both the runtime and the number of iteration
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Numerical comparison of average compute time and relative volume of over-
conservative states for different BRS update methods. Local updates compute
an almost exact BRS in ≈ 1 second, and are significantly faster than both the
standard HJI VI and the warm-start reachability. . . . . . . . . . . . . . . . . . 73

6.1 Dubins car: mean and standard deviation of η obtained via learning (A,B)
through least squares (LS), and through aDOBO. . . . . . . . . . . . . . . . . . 150



xvi

6.2 System in (6.13): mean and standard deviation of η for aDOBO, and for directly
learning the control sequence. Since the space of control sequence is huge, the
error is substantial even after 600 iterations. . . . . . . . . . . . . . . . . . . . . 152

6.3 Relative advantages and limitations of different methods for task-specific con-
troller design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Comparison between open-loop and closed-loop optimization for learning dynam-
ics inaccuracies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.1 Quantitative Comparisons in Simulation: Various metrics for different ap-
proaches across the test navigation tasks: success rate (higher is better), average
time to reach goal, jerk and acceleration along the robot trajectory (lower is
better) for successful episodes. LB-WayPtNav conveys the robot to the goal lo-
cation more often, faster, and produces considerably less jerky trajectories than
E2E learning approach. Since LB-WayPtNav only uses the current RGB image,
whereas the geometric mapping and planning approach integrates information
from perfect depth images, it outperforms LB-WayPtNav in simulation. How-
ever, performance is comparable when the mapping based approach only uses the
current image (like LB-WayPtNav, but still depth vs. RGB). . . . . . . . . . . . 188

7.2 Experiment setups, with top-views (obtained offline only for visualization), and
sample images. Robot starts at the blue dot, and has to arrive at the green dot.
Path taken by LB-WayPtNav is shown in red. . . . . . . . . . . . . . . . . . . . 193

7.3 Quantitative Comparisons for Hardware Experiments: We deploy LB-
WayPtNav and baselines on a TurtleBot 2 hardware testbed for four navigation
tasks for 5 trials per task. We report the success rate (higher is better), average
time to reach goal, jerk and acceleration along the robot trajectory (lower is better).193

7.4 Performance of LB-WayPtNav-DH (ours) and the baselines in simulation. Best
results shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.5 Comparison between LB-WayPtNav-DH (ours) and LB-WayPtNav-DH-FOV meth-
ods on 150 test episodes. Average time taken, jerk, and acceleration numbers are
reported on the scenarios where both methods succeed. . . . . . . . . . . . . . . 204

7.6 Experimental results, averaged over 10 trials (5 trials per experiment). LB-
WayPtNav and Mapping-SH lack the understanding of the dynamic nature of
the human, ultimately leading to a collision with the human. . . . . . . . . . . . 207

9.1 Numerical comparison of average compute time and relative volume of over-
conservative states for each planner and sensor across different BRS update meth-
ods. Local updates compute an almost exact BRS in ≈1 second, and are signifi-
cantly faster than both a standard HJI VI and warm-start. . . . . . . . . . . . . 246



xvii

Acknowledgments

The research work presented in this dissertation is far from just being my achievement, but
rather that of all the amazing collaborators, teachers and professors, mentors, friends, and
family members that I am fortunate to have in my life.

First and foremost, I am grateful to my wonderful PhD advisor, Prof. Claire Tomlin,
for her mentorship. I can write pages and pages on how lucky I am to have Claire as
my advisor, but unfortunately, I am constrained to express my gratitude in just a few
sentences here. Claire kept me going through the highs and the lows of my PhD journey –
she always supported me during my research adventures whether it is trying to steer through
the unknown territory of learning and control, or setting up a hardware testbed from scratch
for an entire year. Claire is the kind of advisor who makes you believe in yourself and sees
your strengths that you yourself can’t see. She is not just an excellent mentor, but also an
excellent teacher and above all a wonderful human being. As I start my own journey as an
assistant professor, I can only hope to be an advisor like Claire one day, and help others
grow in a similar fashion.

I also owe gratitude to the other two members of my dissertation committee: Sanjit, for
teaching me how to always keep the bigger picture in mind; and Koushil, for nurturing my
fascination with control theory and answering my million questions about Lyapunov theory.

Achieving the objectives of this dissertation has required bridging different areas of re-
search. This goes beyond understanding the fundamentals of control theory to its intersection
with computer vision, formal methods, reinforcement learning, and robotics. This would not
have been possible without the support of Shankar, for always encouraged me to think outside
the box; Jitendra, for nurturing my excitement with computer vision; Sanjit and Alberto,
for helping me understand the beautiful world of formal methods; Sergey, Pieter, and Anca,
for being patient with me as I pick their brain about robotics.

The insights that I have obtained during my research are the results of the phenomenal
collaborations that I have had over years. I am thankful to Mo and Sylvia for exploring
the world of Hamilton-Jacobi reachability with me, for proving and disproving each other’s
conjectures, for countless lunches together on Euclid Avenue, for all the conference travels
together, for their genuine friendship that I can always count on, and for our virtual tea
parties during these strange time of COVID-19 pandemic. Thanks to Andrea Bajcsy for some
of the best collaborations I have ever had, for the energy that she brings to a project, for the
stimulating walks around the campus, for her aesthetic touches to my research presentations,
and last but not the least, for introducing me to the fine bakeries of Berkeley. I am grateful
to the robot whisperers, Andrea Bajcsy, Ellis Ratner, Varun Tolani, Forrest Laine, and Frank
Jiang who made working on real robots so much fun; to Kene Akametalu, for exploring the
intersection of learning and control with me, for all the late night philosophical discussions,
and for always having my back; to Shromona Ghosh, for teaching me the basics of formal
methods and for helping me understand the core safety problems in AI; to Jaime Fisac, for
the discussions about multi-agent systems, learning, safety, humans, and how to bring them
all together; to Saurabh Gupta, for being patient with me and answering my questions about



xviii

the basics of computer vision; and to Roberto Calandra, for helping me getting started with
the intersection of learning and control. Thanks also to Thomas Beckers for coping with
my spotty presence in the last year and yet making me feel like an equal contributor, and
for introducing me to the nice beer gardens of Freiburg. I am also thankful to the younger
students who coped with my crazy ideas and very far from perfect research guidance: Varun
Tolani, Anjian Li, Ted Xiao, Eli Bronstein, Georgios Giovanis, Khalil Sarwari, Lucas Medino,
Nathan Blair, Jonathan Lee, Frank Jiang, Chuck Tang, and Jingqi Li – it was a wonderful
experience to work with these extremely talented and smart people.

I have been fortunate to have wonderful mentors during my PhD years: Adam Bry, Katie
Driggs-Campbell, Aleksandra Faust, Hayk Martiros, Nikolai Matni, Ian Mitchell, Lillian
Ratliff, Dorsa Sadigh, and Insoon Yang have all held my hand through the ups and downs
of the graduate school life, academic job applications, and research direction uncertainties.
It is such a relief to know that I can still count on the guidance of these wonderful people
even after my graduation. Special thanks to my mentor and collaborator, Melanie Zeilinger,
whose guidance is one of the primary reasons for why I even considered applying to the
graduate school.

I cannot even imagine how hard my graduate student life would have been without the
three angels – Shirley Salanio, Jessica Gamble, and Angie Abbatecola. They have made my
life so much easier, often at the expense of making their own life harder, be it helping me
with my countless petitions and getting them approved, helping me with the immigration
stuff, setting up meetings, filing reimbursements, or managing my recommendation letters.
And the most remarkable thing about them is that they always did all these things with a
smile on their face. Thank you so much for all your support in my PhD journey.

As I leave Berkeley for my next steps, I will dearly miss these amazing friends that I
am fortunate to share my graduate school journey with – Eric Mazumdar, Roel Dobbe,
Anusha Nagabandi, Carlos Florensa, Carolyn Matl, Matthew Matl, Nick Antipa, Esther
Rolf, Ashish Kumar, David Fouhey, Angjoo Kanazawa, Amir Zamir, Pulkit Agrawal, Deepak
Pathak, Niladri Chatterji, Patricia Hidalgo-Gonzalez, David Fridovich-Keil, Vicenç Rubies-
Royo, Joe Menke, Greg Kahn, and the rest of the TRUST, SDH7, and Cory 301 inhabitants;
thanks to all of them for great discussions about life, research, Berkeley, and really just about
everything. Also, thanks to the members of Hybrid Systems group, Semiautonomous group,
and Compvision group – our weekly research discussions was one of the things that I looked
forward to most during my PhD. A special shout-out to our Indian gang who has been my
family away from home over these past eight years – Abhinav Prateek, Varun Mishra, Sakshi
Jain, Vivek Mishra, Abhishek Kar, Sonam Gupta, Garvit Juniwal, Tanvi Lall, Julia Nee,
Smeet Bhatt, Varsha Padhee, Avani Goyal, and Shubham Tulsiani. It is even hard for me
to imagine my life here without you all.

And this journey wouldn’t have even started without the support of my family. I am from
a background in India where higher education is an exception rather than a norm – I am ever
grateful to my parents Raman and Poonam Bansal, and my uncle Niraj Khadaria for their
unconditional support towards my dreams. To my four grandparents for their selfless love.
To my brother Ritesh Bansal for always helping me think through my problems; talking to



xix

him constantly reminds me that he probably understands me better than myself. To my
sister-in-law Shanaya Bansal for never failing to cheer me up whenever I am feeling down.
To Vijay Bansal (Ramu Bhaiya) for working tirelessly since my middle school to make sure
that I have access to the best education. Without the selfless love of these people and their
constant encouragement, I wouldn’t have even dreamt of pursuing a PhD.



1

Chapter 1

Introduction

The era of autonomous systems will transform our lives in more ways than one – autonomous
cars will drive us from our homes to offices; autonomous drones will deliver our Amazon
packages; assistive robots will clean our houses, and the list goes on and on. Other than
these civil applications that will increase human efficiency and productivity, autonomous
systems can drastically improve safety for employees in high-risk work environments. For
example, an autonomous drone can easily inspect bridges and nuclear reactors, whereas the
same tasks might pose a high risk for humans.

Even though autonomous systems present a vast range of opportunities for our society,
their successful integration in our day-to-day life pose some key challenges. First, future
autonomous systems will need to constantly operate in and adapt to a priori unknown
environments. For example, an autonomous car will need to drive around construction sites
and blocked lanes in the city, in crowded city downtowns around humans, and in different
types of weathers such as sunny, rainy, and snowy. And all these environment conditions
cannot be known beforehand. Second, a lot of these autonomous systems are safety-critical
systems, and deploying them in the real-world without a diligent safety analysis can lead to
catastrophic failures. So an important question to answer is “how can autonomous systems
quickly and safely adapt to a priori unknown environments to achieve their goal?”

If we think from a historical perspective, robots and autonomous systems are not any new
concepts for humans – thermostats in our homes all the way to the car assembly lines and
highly safety-critical systems such as aeroplanes are all autonomous systems. In fact, control
theoretic approaches have been used for decades now for control and safety analysis of such
autonomous systems. However, to develop these control and safety algorithms, we often need
to have a very good understanding of the environment and conditions in which these systems
will operate. Once these conditions are known, control theoretic approaches make sure that
the system objective is safely achieved under those conditions. But these approaches are
challenged when the autonomous system must operate outside of the assumptions of known
system model and environment and need to adapt to their environments, as is the case for
future autonomous systems.

One way to enable this adaptation in an autonomous system is based on its prior data



CHAPTER 1. INTRODUCTION 2

and experience in similar environments. Data-driven adaptation, studied primarily under
the banner of machine learning, has led to tremendous progress in domains such as computer
vision, speech recognition, and natural language processing. Fueled by these advances, ma-
chine learning approaches are now being explored to develop autonomous systems that can
operate intelligently and reliably in new, unknown environments. However, learning tech-
niques widely used today are extremely data inefficient, making it challenging to apply them
to real-world physical systems. Moreover, they lack the necessary mathematical framework
to provide guarantees on correctness, causing safety concerns as data-driven physical systems
are integrated in our society.

The key philosophical foundation of this thesis is that we should certainly leverage the
adaptability of the modern data-driven approaches, but marry them with the classical, control
theoretic approaches that have been used for decades to control autonomous systems reliably
in controlled environments. In this dissertation, we demonstrate how we can combine tools
from robust optimal control theory with machine learning and computer vision to develop
data-efficient and provably safe learning-based control algorithms for physical robotic sys-
tems. The presence of learning in our algorithms will enable adaptability in a priori unknown
and hard-to-model environments; the presence of control theoretic tools will allow us to re-
duce the sample complexity of the learning component and to actively reason about safety
of the system.

Part 1: Safety Analysis for Robotic Systems. The first part of this dissertation focuses
on developing robust control algorithms for scalable safety analysis of autonomous systems.
This safety analysis is primarily based on Hamilton-Jacobi-Isaacs (HJI) reachability analysis.
The HJI reachability analysis is an important formal verification method for guaranteeing
safe operation of dynamical systems that provides both the set of safe states and the cor-
responding safe controller for general nonlinear system dynamics. The main challenge is to
scale the HJI analysis to real-world autonomous systems because of its exponential com-
putational complexity with respect to the number of state variables. In the first part, we
will address this challenge on multiple fronts by leveraging (a) the structure in dynamics
and control strategy, (b) smart offline computations, and (c) modern computational tools
to perform the HJI analysis tractably for single and multi-agent autonomous systems. For
example, on the computation front, we introduce the Berkeley Efficient API in C++ for
Level Set methods (BEACLS), a C++-based reachability toolbox that can leverage mod-
ern computational tools such as GPUs to improve computation speed of HJI reachability
by nearly 100 times compared to existing implementations (Chapter 3). On the algorithmic
front, rather than restarting the safety analysis from scratch, we propose a method of “warm-
start” reachability, which uses a user-defined initialization (typically a previously computed
solution). By warm-starting an HJI value function, convergence may take significantly fewer
iterations (Chapter 3). We demonstrate the potential of these advances for safe, large-scale,
multi-vehicle trajectory planning problems, through a problem in autonomous drone delivery
(Chapter 4).



CHAPTER 1. INTRODUCTION 3

Part 2: Going Beyond Known Dynamics Models and Environments: Learning-
Based Control for Unknown Models and Environments. The safety analysis al-
gorithms in the first part are developed under the assumption of known system dynamics
models and known environments in which this system is operating. In this part of the thesis,
we focus on developing mathematical tools and algorithms that combine learning and control
theoretic methods for controlling autonomous systems when a system dynamics model is not
fully known and/or when the system is operating in an unknown environment and needs to
make decisions based on onboard perception sensors.

To capture inaccuracies in the dynamics model, we discuss indirect and direct learning-
based control algorithms, very much motivated by direct and indirect adaptive control algo-
rithms. Indirect learning-based control approaches use machine learning tools, such as Deep
Neural Networks (DNNs) and Gaussian Processes (GPs), to learn a residual dynamics model
of the system directly based on the data collected on the system (Chapter 5). This dynamics
model is then used with optimal control schemes to improve the control performance. Di-
rect learning-based approaches take a task-specific approach to dynamics modeling, wherein
we combine Bayesian optimization and optimal-control in a closed-loop to develop aDOBO
(Dynamics Optimization via Bayesian Optimization), a framework for learning unmodeled
effects that are specific to control task at hand (Chapter 6). Unlike traditional system iden-
tification approaches, aDOBO does not necessarily find the most accurate dynamics model;
instead, it learns a “coarse” model that can be learned with a small amount of data, and
yet yields the best closed-loop controller performance when provided to the optimal con-
trol method used. We demonstrate aDOBO on 3-DoF robotic arm, which is tasked to stir
jelly in a given pattern. Rather than accurately modeling the complex nonlinear fluid dy-
namics, which can be quite challenging, aDOBO leverages learning and optimal control for
efficiently completing the task with a very high accuracy. We finally combine direct and
indirect learning-based control approaches to obtain a high-performing and robust dynamics
model for the system.

In many applications of interest, simple and well understood dynamics models are suffi-
cient for control, and it is rather the vision and perception components that require learning,
such as to navigate in a priori unseen environments. Typically, a geometric map of the en-
vironment is used for navigation; however, real-time map generation can be challenging in
texture-less environments or in the presence of transparent, shiny objects, or strong ambient
lighting. In contrast, pure learning approaches, such as end-to-end learning, side-step this
explicit map estimation step, but suffer from data inefficiency and lack of robustness. We
take a factorized approach to robot navigation that uses a deep learning-based perception
module for environment level reasoning and a dynamics model-based module for system
level reasoning. More specifically, we train a Convolutional Neural Network (CNN) that
uses the RGB image observations obtained from the onboard camera to produce a sequence
of intermediate waypoints, which are used as targets for a model-based optimal controller
to generate smooth, dynamically feasible, and collision-free trajectories to be executed on
the robot (Chapter 7). Leveraging learning allows the robot to navigate in completely new
buildings based only on the onboard RGB camera. Leveraging underlying dynamics and



CHAPTER 1. INTRODUCTION 4

feedback-based control not only accelerates learning, but also leads to trajectories that are
robust to variations in physical properties and noise in actuation. Through simulations and
experiments on a mobile robot, we demonstrate that this modular approach is better (more
successful at reaching the goals), more efficient at reaching the goals (takes less time), and
results in smoother trajectories (less jerk), as compared to end-to-end learning. Due to
the real-world imperfections in depth measurements, the proposed approach is more reliable
(more successful) than geometric mapping-based approaches, as it does not explicitly rely on
a map. Thanks to the presence of the visual and model-based feedback in the closed-loop,
this modular approach can be directly transferred from simulation to unseen, real-world,
human-centric environments without any finetuning or data collection in the real-world.

Part 3: Safety for Learning-Enabled Control Systems. The previous part of this
dissertation focuses on the “control aspect” of autonomous systems that are operating in
unknown environments. By combining learning and control approaches, we design data-
efficient learning-based control algorithms for autonomous systems. In the last part of this
dissertation, we bring back safety into the picture.

As the autonomous system evolves via learning-in-the-loop, the safety assurances need
to be evaluated and updated at operation-time. This becomes particularly challenging when
the system is operating in an unknown environment where even the unsafe states (such as
obstacles) are not known a priori, such as navigation in an unseen environment. In such
cases, rather than verifying the learning-enabled perception component explicitly, which can
be quite challenging, we develop a HJI reachability-based framework to monitor the output
of the perception module to recognize any failure and provide a corrective safe action when
necessary (Chapter 9). Building on the scalable HJI analysis tools that we developed in the
first part of this dissertation, we update both the monitor as well as the corrective actions in
real-time as the system is operating in the environment. We deploy this framework on the
mobile robot with the learning-based perception-action loop presented in the previous part,
but now also actively ensure safety of the system.

The safety analysis of the system is still only as accurate as the dynamics model of the
system. To close the gap between the system and the model, we also propose a data-driven
verification approach that can provide both probabilistic safety guarantees and a safety con-
troller for the actual system based on that for the model and the collected data (Chapter 8).

Together, these three parts present contributions that enable autonomous systems to adapt
to unknown environments, but do so in a data-efficient and safe fashion. The research
outlined in this dissertation has also opened many promising future research directions. I
conclude this dissertation with a discussion on some of these directions, including how we can
bridge the model-based and statistical verification techniques for scalable safety analysis of
data-driven systems; how we can ensure the safety of data-driven systems in online learning
settings where the control-loop itself might change over time; and finally, how we can close
the loop between the design and analysis of learning-enabled systems by using model-based
control not only for the analysis, but also for actively gathering safety-critical data samples.



5

Chapter 2

Background and Preliminaries

The goal of this chapter is to set up the mathematical preliminaries and definitions that
will form the basis for combining learning and control. My hope is to present the relevant
background content from the learning and control literature in a unifying light to further
highlight the connections between the two. Throughout the chapter, I mark some sections
with a star (*). These can be skipped based on reader’s interest without affecting the overall
flow.

2.1 System Dynamics and Feedback Control

At its core, control theory is the theory of manipulating a system to achieve a desired
behavior out of the system. Let’s try to understand the basic idea behind control theory
through a very simple system that we all use on a regular basis: a room heater. Here our
system that we want to manipulate is the heater and the desired behavior is to maintain a
given temperature in the room. To achieve the objective, a thermostat (controller) employs
a very simple control strategy – turn on the heater if the temperature drops below the desired
temperature and turn it off if the temperature in the room is higher than the desired. Even
though a thermostat employs a very simple switching control strategy to achieve the desired
behavior in this case, these strategies become more and more complex as the system and the
situations they operate in become more complex. For example, another control system that
we might have experienced at some point is adaptive cruise control in a car. The objective
of a cruise control system is to maintain a desired speed. To do this, the cruise system
constantly adjusts the speed of the car depending on the curves or bumps in the road, such
as accelerating when going uphill to counter gravity and decelerating when going downhill.

Over decades, control theorists have developed general representations to describe such
systems, designing control strategies for manipulating these systems, as well as tools to
analyze the resulting control strategies. One such representation for dynamical systems that
is particularly conducive for describing robotic systems is the state-space representation.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 6

2.1.1 State-Space Representation for Dynamical Systems

In state-space form, a dynamical system consists of a state x ∈ Rnx , a control input u ∈ Rnu ,
and a disturbance input d ∈ Rnd . Here, Rnx is called the state-space of the system and
nx is the dimension of the state-space. In general, the state could include the position and
orientation of a ground vehicle or the joint angles of a human torso and robot manipulator.
The evolution of these states over time can be described by an ordinary differential equation:

ẋ = f(x, u, d), (2.1)

where f is a map from Rnx × Rnu × Rnd → Rnx . ẋ represent the time derivative of state,
u ∈ Rnu is system’s control input, and d ∈ Rnd is disturbance in the state evolution. In
general, d can either represent actual external disturbances, such as winds in case of aerial
vehicles, or any unmodeled physical effects that are not explicitly taken into account in f .
For example, a simple model of a ground robot may not model friction between its tires and
the ground. Such effects can then be taken into account by modeling them as disturbances
in system dynamics. When no disturbances are present in system dynamics, we simply omit
d from the arguments of f in (2.1).

A note on time and trajectories. Note that state, control, and disturbance in (2.1)
are all functions of time. To make the dependence on time explicit, we sometime denote
the state at time t as x(t) or xt. The former is typically more common for continuous time
systems and the latter for discrete time systems; however, they are often used interchange-
ably as well. u(t) (or ut) and d(t) (or dt) are similarly defined. Whenever the dependence
on time is clear, we omit the time argument for brevity purposes. Often times, we will be
interested in defining the state and control trajectories over time. In such cases, we use
x(·) (respectively u(·)) to denote a general state (respectively control) trajectory over time.
More formally, the trajectory of a system over time is represented as ξ(τ ;x0, t, u(·), d(·)).
This notation can be read as the state achieved at time τ by starting at initial state x0

and initial time t, and applying control input u(·) and disturbance input d(·) over the time
interval [t, τ ]. For compactness we will refer to trajectories using ξu,dx,t (τ). Note that as per

the above notation x(τ), ξ(τ ;x0, t, u(·), d(·)), and ξu,dx,t (τ) are all equivalent ways of denoting
the system state at time τ ; the latter simply contain more information on the initial state,
control input, and the disturbance experienced by the system while getting to the state x(τ).

Existence and uniqueness of the state trajectory*. There are some important theo-
retical questions that beg our attention at this point. For example, does there always exist
a solution to the differential equation in (2.1)? If not, what does it even mean to define the
state trajectory? In other words, when is the model in (2.1) well posed?

To address these questions recall that f is a map from Rnx × Rnu × Rnd → Rnx . It can
be shown that if f is uniformly continuous in its arguments and Lipschitz continuous in x
for any given u and d, then there exists a unique solution of these system dynamics for a
given control and disturbance trajectory u(·), d(·) [85]. In other words, the system (state)



CHAPTER 2. BACKGROUND AND PRELIMINARIES 7

trajectory is well defined under these assumptions. Moreover, the resultant state trajec-
tory ξ(·;x0, t, u(·), d(·)) : R → Rnx is differentiable and satisfies (2.1) almost everywhere.
Mathematically, the following conditions are satisfied by the state trajectory:

d

ds
ξ(s;x0, t, u(·), d(·)) = f (ξ(s;x0, t, u(·), d(·)), u(s), d(s)) , (2.2)

ξ(t;x0, t, u(·), d(·)) = x0 (2.3)

From here on, we assume that these well posedness assumptions are satisfied by f , unless
stated otherwise.

2.1.2 Discrete-Time Dynamical Systems

In Sec. 2.1.1, we discussed the state-space representation of dynamical systems in continuous
time. However, discrete time notation is more widely used in reinforcement learning (RL)
and robotics communities. The dynamics in discrete time can be represented as:

xk+1 = f(xk, uk, dk), k ∈ N. (2.4)

As before, xk, uk, and dk represent the state, control, and disturbance of the system at
timestep k.

It is also a common practice in RL/robotics to obtain the discrete time dynamics using
an Euler approximation of the continuous time dynamics in (2.1) with some time step ∆T .
In particular, the discretized dynamics fdiscrete can be obtained as:

fdiscrete(xk, uk, dk) = xk + ∆T.fcontinuous(xk, uk, dk). (2.5)

This process is often referred to as “discretization of dynamics” colloquially. The dis-
cretized system in this case is sometimes also referred to as sampled data system. In (2.5),
we have obtained a first order discretization of system dynamics; however, higher order
discretizations can also be used for more accuracy.

In discrete time, it is more common to use the word state and control sequences rather
than trajectories. In particular, we use xTk to denote the state sequence starting from timestep
k through T , i.e., xTk = [xk, xk+1, . . . , xT ]. uTk is similarly defined. When the final timestep
is clear, we omit T from xTk .

2.1.3 The Magic of Feedback

Feedback control is one of the foundational concepts in control theory. A dynamics model
of the system allows us to find a controller (a control sequence or trajectory) to achieve a
desired system response. There are several ways to design such a controller, some of which
we will discuss later in this chapter and throughout this dissertation. However, more often
than not, when this controller is applied on the actual system, one may not necessarily get



CHAPTER 2. BACKGROUND AND PRELIMINARIES 8

the desired response, simply because of inevitable modeling errors or presence of external
disturbances. Feedback is a mechanism to counter the effect of these inaccuracies in the
dynamics model to still achieve the desired system performance.

The concept of feedback can probably be best understood through an example. Imagine
walking from point A to point B through a cluttered living room in your house without
bumping into anything, except that now you can only see the room once at point A and
then you need to walk with your eyes closed. Since you can see the room at point A, in
theory, you can plan a path (or “state” trajectory) that is collision free. For simplicity,
let’s assume that the planned path is represented as steps, i.e., 5 steps forward, 2 steps left,
6 steps forward, and so on. However, once you start walking along this path with your
eyes closed, it is very likely that you will not take the desired steps exactly and thus you
will deviate from the planned path over time, and may ultimately collide into something or
reach some other position. This control mechanism is called open-loop control, wherein a
control trajectory or sequence is determined at the initial time and followed for the rest of
the duration, completely ignoring the actual system state during the controller execution.

Now imagine doing the same task with your eyes open. Why are we more likely to
succeed in this case? It is simply because if we take the first 5 steps and observe that
we are not at the location that we should be at, we take additional steps to get to that
desired location. In control theory language, we observe (through eyes in this case) our state
(position in this case), and if we are not at the desired state, we apply control (steps in this
case) based on this state feedback. This control mechanism is called feedback or closed-loop
control, wherein a control trajectory is adapted during the execution based on the received
observations. Feedback control is what making it possible to fly our aircraft or drones in
sky, where they will inevitably experience unmodeled wind flows and turbulence that would
otherwise deviate the vehicle from its desired path. How often we need to apply feedback
depends heavily on the system and the inaccuracies in the dynamics model; for example, a
faster feedback is often required for unstable systems such as bipedal robots and helicopters,
whereas a slower feedback is often sufficient for wheeled robots.

There are two different feedback mechanisms that are popular in control community:
state feedback and output feedback. In output feedback, the observations (also called system
output) are directly used to adapt the control commands. In contrast, in state feedback, the
observations are first used to estimate the state of the system (also called state estimation)
and then the control commands are adapted based on the estimated state. In some cases,
however, it is non-trivial to estimate the state from the observations, particularly when
observations are high-dimensional such as camera images or videos. In fact, developing
algorithms for processing these high-dimensional perceptual observations for feedback control
is one of the major contributions of this dissertation; we will discuss this further in Chapter
7.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 9

2.2 Optimal Control and Dynamic Games

The optimal control problem refers to the problem of optimal decision making for a dynamical
system. When there are multiple decision makers (also called players) in the system, the
problem of optimal decision making takes the form of a dynamic game (Section 2.2.4).

Optimal control and dynamic games formulations can be posed both in continuous time
as well as in discrete time. Here, we provide their overview primarily in continuous time,
but arguably, it is more common in the robotics literature to formulate and solve optimal
control problems in discrete time. In fact, we also heavily leverage discrete-time optimal
control throughout this work. We will comment on discrete-time optimal control problem as
well as a popular approach to solve this problem called Model Predictive Control (MPC) in
Section 2.2.3.1.

2.2.1 The Optimal Control Problem

The problem of optimal decision making, or optimal control problem, arises naturally in a
variety of control and robotic settings. For example, the problem of a robot navigating
from point A to point B as quickly as possible, finding minimum energy walking gaits for
a bipedal robot, or performing an acrobatic maneuver on an autonomous helicopter can all
be (and have been) formulated as optimal control problems. Mathematically, the optimal
control problem consists of minimizing a cost function subject to the dynamics, state, and
control constraints. To understand this, let’s go back to the problem of a robot navigating
from point A to point B as quickly as possible. Here, the cost function is the time taken by
the robot trajectory. The robot has some physical constraints that it needs to satisfy; these
constraints define its dynamics. The motors that are controlling the robot have limited power
so there are some control input constraints. Finally, there might be some obstacles in the
environment that the robot should avoid; these obstacles define some position constraints (or
state constraints more generally) for the robot.1 We now formally define an optimal control
problem using the state-space framework discussed in Section 2.1.1. For the discussion of
optimal control in this section, we assume that there are no disturbances in the system
dynamics. We will add the disturbance back in the dynamics in Section 2.2.4.

As we discussed, the goal of optimal control problem is to minimize a cost function,
subject to the dynamics and the control constraints. Mathematically, we are interested in
solving the following optimization problem:

inf
u(·)

Jt(x0, u(·)) ≡
∫ T

t

L(x(s), u(s))ds+M(x(T )), (2.6)

subject to ẋ(s) = f(x(s), u(s)), ∀s ∈ [t, T ] (2.7)

u(s) ∈ U (2.8)

1In fact, this particular problem is so common in robotics that it has a special name and research subfield
dedicated to it – the trajectory planning problem.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 10

Here, Jt is the cost accumulated over the time horizon [t, T ] starting from state x0 at time t
and applying the control trajectory u(·). L(·) is called running cost and is accumulated over
the entire time horizon. M(·) is referred to as terminal cost, as it is only dependent on the
terminal state. When there is no terminal cost, M(·) can be set to zero. Similarly, if there is
no running cost, L(·) can be set to zero. The cost function should be minimized subject to
the dynamics constraints (Equation (2.7)). Additionally, there might be control bounds or
constraints imposing a constraint of the form (2.8), where U is the set of feasible controls.

Remark 1 Note that even though we have an additive structure to the cost function in (2.6),
many optimal control problems of interest, including Hamilton-Jacobi reachability problem,
do not adhere to that structure. In other cases, the control bounds can be time and state
dependent time well. Finally, there might be some state constraints. We are ignoring these
generalizations for brevity. Nevertheless, the discussion to follow is quite general and can be
applied to the “non-standard” optimal control problems as well.

2.2.2 Dynamic Programming and Hamilton-Jacobi-Bellman PDE

Many different methodologies have been developed over years to solve optimal control prob-
lems. I cannot possibly even attempt to provide a comprehensive overview of these ap-
proaches here; however, intuitively, there are two predominant views to solve optimal control
problems: the calculus of variations or “optimization” viewpoint and the dynamic program-
ming viewpoint.

The calculus of variations treats optimal control problem as an optimization problem.
Intuitively, this process is as follows: first, the constraints are used to form a Lagrangian,
which then results in an unconstrained optimization problem over control trajectory. Next,
the first order necessary conditions are obtained for this unconstrained optimization problem.
The Lagrange multipliers as well as the optimal control trajectories can be obtained by
solving these first order conditions. The advantage of the calculus of variations is that it
allows us to use tools from the optimization community to solve optimal control problems.
However, the solution obtained by the calculus of variations is only locally optimal, unless
the optimal control problem is convex2 and the duality gap is zero.

We now discuss another approach to solving optimal control problems, dynamic program-
ming, which overcomes this limitation of calculus of variations at the expense of a higher
computational complexity. In dynamic programming, the optimal control trajectory (and
the corresponding optimal cost function) is obtained recursively starting from the terminal
time T to the initial time t. The dynamic programming approach is based on the following
principle of optimality which was first observed by Richard Bellman in 1952 in his seminal
paper On the Theory of Dynamic Programming [52]:

2Note that since the dynamics appear as equality constraints in the optimal control problem, the problem
can be convex only if the dynamics are linear.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 11

In an optimal sequence of decisions or choices, each subsequence must also be optimal.
Thus, if we take any state along the optimal state trajectory, then the remaining subtrajectory
is also optimal.

In other words, the principle of optimality allows us to find the optimal solution to a
problem using a combination of optimal solutions to some of its subproblems. To understand
this mathematically, we define the value function, which is the optimal cost-to-go starting
at state x at time t under dynamics and control constraints:

V (t, x) = inf
u(·)

∫ T

t

L(x(s), u(s))ds+M(x(T )), (2.9)

Note that solving the optimal control problem in (2.6) is thus equivalent to finding the value
function and the corresponding optimal control trajectory. Using the principle of optimality,
we can divide the value function at time t into two subcomponents: choosing optimal control
over the time interval [t, t+ δ) and the optimal solution over the time interval [t+ δ, T ]:

V (t, x) = inf
u(·)

[∫ t+δ

t

L(x(s), u(s))ds+ V (t+ δ, x(t+ δ))

]
, (2.10)

where x(t + δ) is the system state at time t + δ when the control input u(·) is applied to
the system. Even though this integral form doesn’t seem particularly useful at first glance,
using this form it can be shown the V (t, x) in (2.10) is the viscosity solution to the Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE):

∂V

∂t
(t, x) +H(t, x, V (t, x)) = 0 V (T, x) = M(x), (2.11)

where H(t, x, V (t, x)) is called Hamiltonian. The Hamiltonian encodes the role of dynamics
in the value function and is given as

H(t, x, V (t, x)) = inf
u∈U

(
L(x, u) + 〈∂V

∂x
(t, x), f(x, u)〉

)
, (2.12)

where 〈·〉 represent the inner product operation (dot product in Rn). Using Dt and Dx to
represent the partial derivatives of V (t, x) with respect to time and state respectively, we
can write the HJB PDE compactly as:

DtV (t, x) +H(t, x, V (t, x)) = 0 V (T, x) = M(x), (2.13)

The HJB PDE is a final-value PDE which can be solved backwards starting from the terminal
time to obtain the value function at any time and state.3 Once the value function is obtained,
the optimal control at any state and time is given as:

u∗(t, x) = arg inf
u∈U

(
L(x, u) + 〈∂V

∂x
(t, x), f(x, u)〉

)
, (2.14)

3We will go further in the computational aspects of the HJB PDE in Section 2.3.3.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 12

which is a state feedback policy that minimizes the cost function.
Intuitively, the HJB PDE can be thought of as the continuous-time version of the Bellman

equation in discrete-time. To gain intuition, here we present an informal derivation of the
HJB PDE based on finite element analysis of Equation (2.10)4. For very small δ > 0,
Equation (2.10) can be written as

V (t, x(t)) ≈ inf
u(t)∈U

[L(x(t), u(t))δ + V (t+ δ, x(t+ δ))] . (2.15)

On the other hand, the Taylor expansion of V (t+ δ, x(t+ δ)) can be written as:

V (t+ δ, x(t+ δ)) = V (t, x(t)) +DtV (t, x(t))δ +DxV (t, x(t))δx+ h.o.t, (2.16)

where δx is change in the state and can be approximated as f(x, u)δ. Ignoring the higher
order terms in (2.16), we have

V (t+ δ, x(t+ δ)) ≈ V (t, x(t)) +DtV (t, x(t))δ +DxV (t, x(t)) · f(x, u)δ. (2.17)

Finally, plugging in this Taylor approximation in Equation (2.15), we have

V (t, x(t)) ≈ V (t, x(t)) +DtV (t, x(t))δ + inf
u(t)∈U

[L(x(t), u(t))δ +DxV (t, x(t)) · f(x, u)δ] ,

(2.18)
where we have separated terms that do not depend on u. Cancelling out the redundant
terms and noting that δ > 0, we achieve the HJB PDE:

DtV (t, x(t)) + inf
u(t)∈U

[L(x(t), u(t)) +DxV (t, x(t)) · f(x, u)] ≈ 0, (2.19)

which allows propagating the value function backwards in time from the terminal condition
V (T, x) = M(x).

Existence of The Value Function - A Note on Viscosity Solution*. Equipped with
the HJB PDE, we can compute the value function and hence solve the optimal control
problem. But an important question to ask at this point is that does there always exist a
solution to the PDE in (2.11). If so, what can we say about the properties of the resulting
value function? For example, is value function always differentiable? If not, is it at least
continuous in x and t? These questions are not only interesting from a theoretical viewpoint,
but the answers to these questions immediately influence the plausible numerical methods to
solve the HJB PDE. For example, if we cannot expect the value function to be differentiable,
we should not expect to be able to compute the value function using a numerical method
that relies on gradients and smoothness. In fact, it can be shown that the value function in
general may not be differentiable everywhere in the state space. Thus, there may not exist
a classical solution to the HJB PDE. However, the good news is that it can be shown that

4I thank Jaime F. Fisac for sharing this intuitive proof of the HJB PDE from the integral form.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 13

there exists a unique viscosity solution to the HJB PDE [88] which is uniformly continuous in
x and t, as long as L(·), M(·), and f are all Lipschitz continuous in x, u, and t (see Chapter
10 in [106]. In fact, the non-existence of a classical solution to the HJB PDE was one of the
motivations to develop a level set approach for computing approximations to the viscosity
solution of the HJB PDE. In the level set approach, the value function is represented as an
implicit surface function. Sophisticated methods, that do not require differentiability of the
underlying surface function, have been developed to propagate this entire surface function
in time. We will further discuss the advantages and mathematical formulation of level set
approach in Section 2.3.1.

2.2.3 Discrete Time Optimal Control Problem

So far we have discussed the optimal control problem in continuous time; however, as we
discussed earlier, the discrete time formulations are more popular in RL and robotic commu-
nities. In discrete time optimal control problem, we are interested in solving the following
optimization problem:

inf
u
Jt(x0,u) ≡

T∑
k=t

L(xk, uk) +M(xT ), (2.20)

subject to xk+1 = f(xk, uk), ∀k ∈ {t, t+ 1, . . . , T} (2.21)

uk ∈ U (2.22)

Similar to continuous time optimal control problems, we can compute the optimal value
function in discrete time using the principle of dynamic programming

Vk(x) = inf
u

[L(x, u) + Vk+1(xk+1)] , VT (x) = M(x), (2.23)

where xk+1 is the state of the system when the control input u is applied to the system at
state x, i.e., xk+1 = f(x, u). VT (x) is the terminal value function. Unlike continuous time,
the dynamic programming for discrete time does not result into a PDE, but rather a value
function “backup” or iteration. Consequently, the equation (2.23) is referred as Bellman
equation, Bellman backup, or value iteration equation. One particularly popular method to
solve optimal control problem in discrete time is receding horizon Model Predictive Control
(MPC), which is what we discuss next.

2.2.3.1 Model Predictive Control (MPC) Approach to Optimal Control

Model Predictive Control (MPC) is an optimization-based approach to design a state feed-
back controller for a dynamical system so as to minimize a cost function of the form (2.20).
MPC is a rather broad and an active area of research and I won’t be able to do a justice to
this approach in the few pages that I have; however, I will attempt to discuss a specific MPC



CHAPTER 2. BACKGROUND AND PRELIMINARIES 14

approach called receding horizon control that is widely used in the robotics community to
solve optimal control problems. Consider the optimal control problem in (2.20) over the time
horizon {0, 1, . . . , T}. In receding horizon MPC, at time step t, the following optimization
problem is solved starting from the system’s current state xt:

inf
u
Jt(xt,u) ≡

t+Hp∑
k=t

L(xk, uk), (2.24)

subject to xk+1 = f(xk, uk), ∀k ∈ {t, t+ 1, . . . , t+Hp − 1} (2.25)

uk ∈ U (2.26)

The optimal control problem in (2.24) is for a smaller horizon of Hp (also referred to as
planning horizon). The intuition here is that the full optimal control problem might be
very challenging to solve; on the other hand, the problem in (2.24) can be a much smaller
optimization problem depending on the ratio Hp

T
, and can be solved with significantly fewer

computational resources. In fact, there are a variety of computational tools available for
solving receding horizon MPC problems, such as YALMIP [201], that makes it a popular
approach to solve optimal control problem.

Once the optimal control sequence u
t+Hp
t is obtained, it is applied on the system for a

horizon of H < Hp, and the new system state is obtained. The rest of the control sequence
is discarded and the MPC problem is solved again (called replanning) starting from the new

state. Typically, H = 1, i.e., only the first control is applied from the sequence u
t+Hp
t , and

then the control sequence is replanned.
More general formulations of receding horizon MPC also include a special cost function,

as well as a terminal state constraint set at the timestep (t+Hp). We omitted those details
here for simplicity and refer the interested readers to [202] for further discussion on the
receding horizon MPC.

2.2.4 From Optimal Control to Robust Optimal Control:
Zero-Sum Dynamic Games

So far we have considered optimal decision-making in the absence of disturbance. Now we
will add the disturbance back in to discuss what is called a robust optimal control problem.
Recall that the disturbance can represent actual environmental effects or model uncertainty.
Robust optimal control aims to find a control strategy that leads to a desirable behavior
(offer measured in terms of a cost function) despite the worst-case disturbance or model
uncertainty. Mathematically, we are interested in solving the following optimization problem:

inf
u(·)

sup
d(·)

Jt(x0, u(·), d(·)) ≡
∫ T

t

L(x(s), u(s), d(s))ds+M(x(T )), (2.27)

subject to ẋ(s) = f(x(s), u(s), d(s)), ∀s ∈ [t, T ] (2.28)

u(s) ∈ U , d(s) ∈ D, (2.29)



CHAPTER 2. BACKGROUND AND PRELIMINARIES 15

Thus, we want to find the control strategy that minimizes the worst-case cost function, when
the disturbance tries its best to maximize the cost function.

The notion of a game. Note that the decision making process in (2.27) is a game between
control (Player 1) and disturbance (Player 2) – Player 1 (or control) tries its best to mini-
mize the cost function whereas Player 2 (or disturbance) tries it best to maximize the cost
function. This game can be alternatively thought as of two different optimization problems,
one for each player. Player 1 tries to minimize the cost function Jt(x0, u(·), d(·)) subject
to dynamics and control constraints. On the other hand, Player 2 tries to minimize the
negative of the cost function subject to dynamics and disturbance bounds. However, unlike
a traditional optimal control problem, these two optimization problems are coupled through
dynamics, thus coupling their decision making process. Such games are also referred to as
minimax or zero-sum games5. Moreover, here the decision making process evolves over time,
hence it is a dynamic zero-sum game. Finally, this game evolves over time in the context
of a dynamical system, where the state variables evolve over time according to a differential
equation; such dynamic games are referred to as differential games.

Information pattern and non-anticipative strategies. In a differential game setting,
it is important to address what information the players know about each other’s decisions
which directly affects their strategies, and consequently, the outcome of the game. As written
in Equation (2.27), the control needs to declare its entire trajectory first and the disturbance
can declare its own trajectory taking into account the control trajectory. This open-loop
information structure is particularly conservative for control since control cannot adapt its
decisions at all while the system is evolving. On the other hand, the disturbance has all
the information it needs to make an optimal decision beforehand. Such strategies are overly
conservative for dynamical systems, except when state feedback is not possible during the
system evolution.

To allow adaptability in decision making during the system evolution, we assume that
Player 2 (or disturbance) uses only non-anticipative strategies Γ(·) [298], defined as follows:

γ ∈ Γst :={N : Us
t → Ds

t : u(r) = û(r) a. e. r ∈ [t, s]

⇒ N [u](r) = N [û](r) a. e. r ∈ [t, s]∀u(·), û(·)},
(2.30)

where Us
t is the space of all control trajectories over the time interval [t, s]. Ds

t is similarly
defined. Intuitively, Equation (2.30) states that Player 2 cannot respond differently to two
Player 1 controls until they become different. Thus, Player 2 cannot change its strategy in the
anticipation of a change in u(·) until that change actually begins. Yet, in this setting, Player

5When the cost of one player is not the same as the negative of the cost of the other player, we refer
to the game between the players as a general sum game. In this work, we are primarily interested in zero-
sum games; however, general sum games are also a popular choice for modeling several multi-agent robotic
systems, particularly in human-centric environments. We refer the interested readers to [42] to learn more
about general sum games.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 16

2 has the advantage of factoring in Player 1’s choice of input at every instant t and adapting
its own accordingly. Thus, Player 2 has an instantaneous informational advantage, which
allows us to obtain the robust control (Player 1) with respect to the worst-case disturbance
(Player 2) (not because this disturbance is in fact reacting to the controller’s input, but
rather, because out of all possible disturbances there will be one that will happen to be the
worst possible given the chosen control).

With non-anticipative information pattern, the zero-sum differential game can be more
formally written as:

sup
d(·)∈ΓTt

inf
u(·)

Jt(x0, u(·), d(·)) ≡
∫ T

t

L(x(s), u(s), d(s))ds+M(x(T )), (2.31)

subject to ẋ(s) = f(x(s), u(s), d(s)), ∀s ∈ [t, T ] (2.32)

u(s) ∈ U , d(s) ∈ D, (2.33)

that is, disturbance first chooses a strategy from the set of non-anticipative strategies6 and
then the control optimizes for its strategy.

Value of the game. We can now solve the robust optimal control problem using the
dynamic programming principle, much like optimal control problem. In particular, the value
function is given by

V (t, x) = sup
d(·)∈ΓTt

inf
u(·)

Jt(x0, u(·), d(·)), (2.34)

which can be shown to be the unique viscosity solution to the Hamilton-Jacobi-Isaacs (HJI)
partial differential equation (PDE)7:

DtV (t, x) +H(t, x, V (t, x)) = 0 V (T, x) = M(x). (2.35)

The Hamiltonian is given by

H(t, x, V (t, x)) = inf
u∈U

sup
d∈D

(L(x, u, d) + 〈DxV (t, x), f(x, u, d)〉) (2.36)

Given the value function, optimal control and disturbance can be obtained as:

u∗(t, x) = arg inf
u∈U

sup
d∈D

(L(x, u, d) + 〈DxV (t, x), f(x, u, d)〉) , (2.37)

d∗(t, x) = inf
u∈U

arg sup
d∈D

(L(x, u, d) + 〈DxV (t, x), f(x, u, d)〉) , (2.38)

6Here, the disturbance is only committing to a non-anticipative strategy; however, it can still adapt its
action based on the applied control.

7Note that the PDE in (2.35) is called Hamilton-Jacobi-Isaacs and not Hamilton-Jacobi-Bellman to
honor Rufus Isaacs who studied pursuit-evasion games and proposed a principle of optimality for dynamic
games around the same time Richard Bellman proposed it for optimal control problems. In fact, they both
were working in RAND corporation at that time.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 17

2.3 Hamilton-Jacobi Reachability

Hamilton-Jacobi (HJ) reachability analysis is a verification method for guaranteeing per-
formance and safety properties of systems. In reachability theory, we are often interested
in computing the backward reachable set (BRS) of a dynamical system. This is the set of
states such that the trajectories that start from this set can reach some given target set.
If the target set consists of those states that are known to be unsafe, then the BRS con-
tains states which are potentially unsafe and should therefore be avoided. As an example,
consider collision avoidance protocols for two aircraft in En-Route airspace. The target set
would contain those states that are already “in loss of separation,” such as those states in
which the aircraft are within the five mile horizontal separation distance mandated by the
Federal Aviation Administration. The backward reachable set contains those states which
could lead to a collision, despite the best possible control actions. We typically formulate
such safety-critical scenarios in terms of a two-player game, with Player 1 and Player 2 being
control inputs. For example, Player 1 could represent one aircraft, Player 2 another, with
Player 1’s control input being treated as the control input of the joint system, and with
Player 2’s control input being treated as the disturbance.

Consider the dynamics in Equation 2.1. Mathematically, a BRS represents the set of
states x ∈ Rnx from which the system can be driven into some set L ⊆ Rnx at the end of
a time horizon, despite the best control efforts. We call L the “target set”. We assume
that Player 1 (or control) will try to steer the system away from the target with her input,
and Player 2 (or disturbance) will try to steer the system toward the target with her input.
Consequently, we want to compute the following set:

V(t) = {x : ∀u(·) ∈ UT
t , ∃d(·) ∈ ΓTt , ξ(T ;x, t, u(·), d(·)) ∈ L}, (2.39)

where Γ(·) denotes the set of non-anticipative strategies as defined in (2.30), and UT
t is the

space of all control trajectories over the time interval [t, T ]. Intuitively, Equation (2.39)
computes the set of all states starting from which no matter what control does, there exists
a non-anticipative disturbance strategy that will drive the system to the target set at the
end of the time horizon.

2.3.1 The Level Set Approach: From Games of Kind to Games
of Degree

The computation of the BRS in (2.39) requires solving a differential game between Player 1
and Player 2. However, this differential game is a “game of kind” rather than a “game of
degree”, i.e., games in which the outcome is Boolean: the system either reaches the target
set or not under specified constraints at any time within the duration of the game. On the
other hand, our discussion on differential games in Section 2.2.4 was limited to the game
of degree, where the outcome of the game is continuous defined by the value function. The
good news is that an approach known as the level set method can transform these games of



CHAPTER 2. BACKGROUND AND PRELIMINARIES 18

kind into games of degree in an analytically sound and computationally tractable way. For
example, if we consider Jt(·) as the distance between the system state and the target region
at the terminal state of the system, it is easy to determine whether the system reached the
target by comparing this distance to some threshold value (simply 0 in this case). This
allows us to find the solution to a game of kind by posing an auxiliary game of degree whose
solution encodes that of the original problem: this is, in essence, the level set approach.

In particular, one can always find a Lipschitz function l(x) such that L (the target set)
is equal to the subzero level set of l, that is, x ∈ L ⇔ l(x) ≤ 0. The Lipschitz function l can
always be found, since one can always choose the signed distance to the respective sets. If
we define the cost function to be

Jt(x, u(·), d(·)) = l(x(T )), (2.40)

then the system reaches the target set under controls u and d if and only if Jt(x, u(·), d(·)) ≤ 0.
Since Player 2 (or disturbance) wants to drive the system to the target, it wants to minimize
the cost in (2.40), and Player 1 (or control) wants to maximize this cost. Comparing, (2.40)
with (2.27), the reachability problem can be formulated as a robust control problem by
setting the terminal cost M(x) ≡ l(x) and the running cost L ≡ 0.

We can now compute the value function V (t, x) for this differential game in a similar
fashion to Section 2.2.4. Consequently, the BRS can be obtained as

V(t) = {x : V (t, x) ≤ 0}, (2.41)

where V (t, x) satisfies the following HJI PDE:

DtV (t, x) +H(t, x, V (t, x)) = 0 V (T, x) = l(x), (2.42)

and the Hamiltonian is given by

H(t, x, V (t, x)) = sup
u∈U

inf
d∈D
〈DxV (t, x), f(x, u, d)〉. (2.43)

Note the change of the role of supremum and infimum in the above equation. Since control
is now trying to keep the system away from the target set, it is maximizing the cost function
and the disturbance is minimizing the cost function.

The interpretation of V(t) is that if x(t) ∈ V(t), then Player 2 has a control sequence
that will drive the system to the target at time T starting from the state x(t) at time t,
irrespective of the control of Player 1. If x(t) ∈ ∂V(t), where ∂V(t) denotes the boundary of
V(t), then Player 1 will barely miss the target at time T if it applies the optimal control

u∗(t, x) = arg sup
u∈U

inf
d∈D
〈DxV (t, x), f(x, u, d)〉. (2.44)

Finally, if x(t) ∈ V(t)C8, then Player 1 has a control sequence (given by (2.44)) that will
keep the system out of the target set, irrespective of the control applied by Player 2. In par-
ticular, when the target set L represents unsafe/undesired states of the system and Player 2

8V(t)C represents the complement of the set V(t).



CHAPTER 2. BACKGROUND AND PRELIMINARIES 19

represents the disturbances in the system, then V(t) represents the effective unsafe set, i.e.,
the set of states from which the disturbance can drive the system to the actual unsafe set
despite the best control efforts. Thus, reachability analysis gives us the safe set (in this case
V(t)C) as well as a controller (in this case u∗(t, x)) that will keep the system in the safe set,
given that the system starts in the safe set.

Advantages of Level Set Approach. We conclude this section by discussing some of
the advantages of using level set approach to compute the BRS, i.e., recovering the BRS
as a subzero level of a value function as in (2.41). First, the level set approach allows us
to cast the reachability problem as a differential game which can then be solved using the
tools developed for such games in the robust control community. A second advantage of
the level set method is that there are well developed numerical methods that can propagate
the level functions on a fixed Cartesian grid without having to parameterize these objects
(this is called the Eulerian approach). Finally, the level-set method makes it very easy to
follow shapes that change topology, for example, when a reachable set splits in two, develops
holes, or the reverse of these operations [240]. All these make the level-set method a great
tool for modeling time-varying value functions. Nevertheless, several other approach have
been proposed in literature to compute the BRS. We discuss the relative advantages and
limitations of these different approaches in Chapter 3.

2.3.2 Variations of Reachability

So far, we have presented the computation of BRSs, but reachability analysis is not limited
to BRSs. One can compute various other kinds of sets that may be more useful, depending
on the verification problem at hand. In this section, we provide a brief overview of some of
these sets.

2.3.2.1 Roles of the Control and Disturbance.

Depending on the role of Player 1 and Player 2, we may need to use different inf-sup combi-
nations in Equation (2.43). For example, suppose L represents the set of destination states
for an aircraft that it wants to reach despite the disturbances, such as wind. Consequently,
we want to compute the following BRS:

V(t) = {x : ∀d(·) ∈ ΓTt ,∃u(·) ∈ UT
t , ξ(T ;x, t, u(·), d(·)) ∈ L}, (2.45)

In this case, the control is trying to steer the system towards the target, and the disturbance
can be modeled as steering the system away from the target to obtain a robust controller
for the system. Thus, the control will minimize the Hamiltonian and the disturbance will
maximize it.

As a rule of thumb, whenever the existence of a control (“∃u”) is sought, the optimiza-
tion is a minimum over the set of controls in the corresponding Hamiltonian. Whenever a
set/tube characterizes the behavior of the system for all controls (“∀u”), the optimization



CHAPTER 2. BACKGROUND AND PRELIMINARIES 20

is a maximum. For example, for the BRS in (2.39), we seek the existence of a Player 2
controller for all Player 1 controls, so we use minimum for Player 2 and maximum for Player
1 in the Hamiltonian (see (2.43)). When the target set represents the set of the desired
states that we want the system to reach and Player 2’s control represents the disturbance,
then we are interested in verifying if there exists a control of Player 1 such that the system
reaches its target despite the worst-case disturbance. In this case, we should use maximum
for Player 2’s control and minimum for Player 1’s control in the corresponding Hamiltonian.

2.3.2.2 Reachable Sets vs. Tubes.

Another important aspect in reachability is that of reachable tubes. The reachable set is the
set of states from which the system can reach a target at exactly time T . Perhaps a more
useful notion is to compute the set of states from which the system can reach a target within
the time interval [t, T ]. For example, for safety analysis, we are interested in verifying if a
disturbance can drive the system to the unsafe states ever within a horizon, and not just at
the end of the horizon. This notion is captured by reachable tubes. Formally, the backward
reachable tube (BRT) can be defined as:

V(t) = {x : ∀u(·) ∈ UT
t ,∃d(·) ∈ ΓTt ,∃s ∈ [t, T ], ξ(s;x, t, u(·), d(·)) ∈ L}. (2.46)

Intuitively, to compute the BRT, we need to compute the distance between the system
state and the target set not only at the end of the time horizon, rather we need to keep
track of the minimum distance between them over the entire time horizon. In particular, if
we define the cost function to be

Jt(x, u(·), d(·)) = inf
s∈[t,T ]

l(x(s)), (2.47)

then a negative cost implies that the system state must have entered the target set at some
point during the time horizon.

Note that the cost function in (2.47) does not satisfy the standard form in (2.31) as the
cost seeks the minimum of a function over the time horizon, rather than its integral. Never-
theless, we can still use the principle of dynamic programming to compute the optimal value
function, which is given as the viscosity solution of the following final-value HJI variational
inequality (VI):

min{DtV (t, x) +H(t, x, V (t, x)), l(x)− V (t, x)} = 0 ∀x, t V (T, x) = l(x), (2.48)

where the Hamiltonian is given by

H(t, x, V (t, x)) = sup
u∈U

inf
d∈D
〈DxV (t, x), f(x, u, d)〉. (2.49)

Finally, the BRT is given by:

V(t) = {x : V (t, x) ≤ 0}, (2.50)



CHAPTER 2. BACKGROUND AND PRELIMINARIES 21

To gain intuition, let’s again go through an informal derivation of the HJI VI based on
finite element analysis. For very small δ > 0, the dynamic programming principle for the
cost function in (2.47) implies that

V (t, x(t)) ≈ sup
u∈U

inf
d∈D

min{l(x(t)), V (t+ δ, x(t+ δ))}, (2.51)

= min{l(x(t)), sup
u∈U

inf
d∈D

V (t+ δ, x(t+ δ))}, (2.52)

On the other hand, the Taylor expansion of V (t+ δ, x(t+ δ)) can be written as:

V (t+ δ, x(t+ δ)) = V (t, x(t)) +DtV (t, x(t))δ +DxV (t, x(t))δx+ h.o.t, (2.53)

where δx is change in the state and can be approximated as f(x, u, d)δ. Ignoring the higher
order terms in (2.53), we have

V (t+ δ, x(t+ δ)) ≈ V (t, x(t)) +DtV (t, x(t))δ +DxV (t, x(t)) · f(x, u, d)δ. (2.54)

Finally, plugging in this Taylor approximation in Equation (2.51), we have

V (t, x(t)) ≈ min{l(x(t)), V (t, x(t)) +DtV (t, x(t))δ + sup
u∈U

inf
d∈D

DxV (t, x(t)) · f(x, u, d)δ},

(2.55)
where we have separated terms that do not depend on u and d. Subtracting V (t, x(t)) on
both sides, we get

min{l(x(t))− V (t, x(t)), δ

[
DtV (t, x(t)) + sup

u∈U
inf
d∈D

DxV (t, x(t)) · f(x, u, d)

]
} ≈ 0, (2.56)

Since (2.56) holds for all δ > 0, we must have that

min{l(x(t))− V (t, x(t)), DtV (t, x(t)) + sup
u∈U

inf
d∈D

DxV (t, x(t)) · f(x, u, d)} ≈ 0, (2.57)

which results into the desired HJI VI.

2.3.2.3 Reachable Tubes vs. Viability Kernel.

Reachability theory is also strongly connected with viability theory. The basic problem of
viability theory is to find the “viability kernel” of a system: the subset of initial states of the
system such that there exists at least one “viable” evolution of the system, in the sense that
at each time, the state of the evolution remains confined to a given set L. This is important
when for example there are obstacles in the environment and we want the system to remain
clear of all the obstacles at each time step. Formally, the viability kernel can be defined as:

K(t) = {x : ∀d(·) ∈ ΓTt ,∃u(·) ∈ UT
t ,∀s ∈ [t, T ], ξ(s;x, t, u(·), d(·)) ∈ L}, (2.58)



CHAPTER 2. BACKGROUND AND PRELIMINARIES 22

Note that unlike a typical BRS or BRT computation, here we are interested in keeping the
system state within L at all times in the horizon [t, T ]. Thus, the viability kernel can at
most be as big as L (otherwise the viability kernel requirement will be violated at the initial
time).

Interestingly, the viability kernel computation can be formulated as a BRT computation.
In particular, consider the complement of the set in Equation (2.58):

K(t)C = {x : ∀u(·) ∈ UT
t ,∃d(·) ∈ ΓTt ,∃s ∈ [t, T ], ξ(s;x, t, u(·), d(·)) ∈ LC}, (2.59)

Comparing equations (2.59) and (2.46), it is easy to note that K(t)C is same as the BRT
V(t) of LC . This BRT can be computed by solving the following HJI VI:

min{DtV (t, x) +H(t, x, V (t, x)), − l(x)− V (t, x)} = 0 ∀x, t V (T, x) = −l(x), (2.60)

where the Hamiltonian is given by Equation (2.49). As before, L is given as the subzero
level of l(x). Note that instead of l(x) we are using −l(x) in (2.60) since we are computing
the BRT of LC . Consequently, the BRT is given by:

K(t)C ≡ V(t) = {x : V (t, x) ≤ 0} (2.61)

Thus, the viability kernel is given by:

K(t) ≡ V(t)C = {x : V (t, x) > 0}, (2.62)

that is, the superzero level of the value function.

2.3.2.4 Forward vs. Backward Reachable Set.

In some cases, we might be interested in computing a forward reachable set (FRS): the set
of all states that a system can reach from a given initial set of states after a given time
duration. Formally, we want to compute the following set:

W(t) = {y : ∀u(·) ∈ UT
t ,∃d(·) ∈ ΓTt , ξ(T ;x0, t, u(·), d(·)) = y, x0 ∈ L}, (2.63)

Here, L represents the set of initial states of the system. W(t) is the set of all states that
the system can reach at time T when it starts at state x ∈ L at time t while Player 1 applies
the control to keep the system in L and Player 2 applies the control to drive the system out
of L. To avoid confusion between a FRS and a BRS, we will denote the FRS by W(t) and
the BRS by V(t). The corresponding value functions are denoted by W (t, x) and V (t, x)
respectively.

The FRS can be computed in a similar fashion as the BRS. The only difference is that
an initial value HJI PDE needs to be solved instead of a final value PDE:

DtW (t, x) +H(t, x,W (t, x)) = 0 W (0, x) = l(x), (2.64)



CHAPTER 2. BACKGROUND AND PRELIMINARIES 23

and the Hamiltonian is given by

H(t, x,W (t, x)) = sup
u∈U

inf
d∈D
〈DxW (t, x), f(x, u, d)〉. (2.65)

Here, 0 represents the initial time. Once the value function is computed, the FRS can be
obtained as the subzero level set of the value function:

W(t) = {x : W (t, x) ≤ 0}, (2.66)

One can similarly define forward reachable tubes (FRT), which can be computed by solving
the following initial value HJI VI:

max{DtW (t, x) +H(t, x,W (t, x)), W (t, x)− l(x)} = 0 ∀x, t W (0, x) = l(x), (2.67)

Note that the initial value PDE in (2.64) can be converted into an equivalent final value
PDE by change of time variables [106, 221]. This conversion can also be seen by drawing
a parallel between a FRS and a BRS – the FRS W (T, x) starting at the initial time t is
same as the BRS V (t, x) obtained using the dynamics −f instead of f . Intuitively, −f just
reverses the flow field of f so the system is “evolving” backwards in time instead of forward
in time. The corresponding final value HJI PDE for the BRS is given by:

DtV (t, x) + inf
u∈U

sup
d∈D
〈DxV (t, x),−f(x, u, d)〉 = 0 V (T, x) = l(x), (2.68)

where an infimum is taken over control in Hamiltonian since it is trying to keep the system
inside L. In other words, it is trying to minimize the growth of the BRS. The above equation
can be rewritten as:

DtV (t, x)− sup
u∈U

inf
d∈D
〈DxV (t, x), f(x, u, d)〉 = 0 V (T, x) = l(x), (2.69)

By substituting s = T − t in the above PDE, we get:

−DsV (T − s, x)− sup
u∈U

inf
d∈D
〈DxV (T − s, x), f(x, u, d)〉 = 0 V (0, x) = l(x), (2.70)

Denoting W (s, x) ≡ V (T − s, x), we get the following PDE:

DsW (s, x) + sup
u∈U

inf
d∈D
〈DxW (s, x), f(x, u, d)〉 = 0 W (0, x) = l(x), (2.71)

which is same as the initial value PDE for computing FRS in (2.64).



CHAPTER 2. BACKGROUND AND PRELIMINARIES 24

2.3.2.5 Presence of State Constraints and Time-Varying Target Sets.

Another interesting problem that arises in verification is the reachability to and from a
target set subject to some state constraints. For example, an aircraft may want to reach a
destination while avoiding any tall buildings on its way. Avoiding these obstacles (buildings
in this case) can be written as state constraints, i.e., the system state should never be in
any obstacle at any time. In such scenarios, we are interested in computing what is called
a backward reach-avoid set. Intuitively, the BRS represents the set of states from which a
vehicle can reach the target set L at the end of a time horizon while avoiding the obstacles
G(t) at all times t. The reach-avoid set can be formally defined as:

V(t) = {x : ∀d(·) ∈ ΓTt ,∃u(·) ∈ UT
t ,∀s ∈ [t, T ], ξ(s;x, t, u(·), d(·)) /∈ G(s), (2.72)

ξ(T ;x, t, u(·), d(·)) ∈ L}. (2.73)

To compute this BRS, we define implicit surface functions for representing both the
target set and the time-varying obstacles. As before, the function l(x) is the implicit surface
function representing the target set L = {x : l(x) ≤ 0}. Similarly, the function g(t, x) is the
implicit surface function representing the time-varying obstacles G(t) = {x : g(t, x) ≤ 0}.
The corresponding value function can be obtained as a solution to the following final-value
HJI VI:

max {DtV (t, x) +H(t, x, V (t, x)), − g(t, x)− V (t, x)} = 0 ∀x, t (2.74)

V (T, x) = max {l(x),−g(T, x)} , (2.75)

where the Hamiltonian is same as in equation (2.43), and the backward reach-avoid set is
given as the subzero level set of the value function. One can similarly compute reach-avoid
tubes, which is the set of states from which a vehicle can reach the target set L within a time
horizon while avoiding the obstacles G(t) at all times t. The corresponding value function
can be obtained by solving the following final value HJI VI:

max {min{DtV (t, x) +H(t, x, V (t, x)), l(x)− V (t, x)}, − g(t, x)− V (t, x)} = 0 ∀x, t
(2.76)

V (T, x) = max {l(x),−g(T, x)} , (2.77)

These reach-avoid sets can be computed efficiently for even time-dependent target sets
[209, 115]. The HJI VI now has a time argument for l(x). For example, the HJI VI in
Equation (2.76) is now given by:

max {min{DtV (t, x) +H(t, x, V (t, x)), l(t, x)− V (t, x)}, − g(t, x)− V (t, x)} = 0 ∀x, t
(2.78)

V (T, x) = max {l(T, x),−g(T, x)} , (2.79)

The HJI VI for a reach-avoid FRS and a reach-avoid BRS can be similarly obtained by
adding a time argument in l(x) and adding the outer min in the HJI VI in the presence of
an obstacle.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 25

Remark 2 Viability kernel of a target set L can also be computed by treating LC as an
obstacle (i.e., the state constraint of keeping the system state within L). We leave it to the
reader to show that the HJI VI for the negative of the value function in (2.60) results in the
HJI VI in (2.74) with g(x) = −l(x). This is not surprising because the problem of viability
kernel is exactly same as the state constraint of keeping the state within L at all times, or
equivalently, never let the system state be in LC at any time.

Remark 3 In general, any combination of the four variants discussed in this section can be
solved using the HJ reachability formulation. Partially, it is this flexibility of the reachability
framework that has facilitated its use in various safety-critical applications, some of which
we will discuss more in this work.

2.3.3 Level Set Toolbox

A major practical appeal of Hamilton-Jacobi reachability stems from the availability of mod-
ern numerical tools, which can compute various definitions of reachable sets [275, 239, 220,
219]. For example, these numerical tools have been successfully used to solve a variety of dif-
ferential games, path planning problems, and optimal control problems. Concrete practical
applications include aircraft auto-landing [43], automated aerial refueling [97], model predic-
tive control (MPC) of quadrotors [59, 25], multiplayer reach-avoid games [158], large-scale
multiple-vehicle path planning [73, 77], and real-time safe motion planning [151].

One such computational tool is the level set toolbox (ToolboxLS) which was developed by
Professor Ian Mitchell [219] to solve partial differential equations using level set methods,
and is the foundation of the HJ reachability code. The toolbox is implemented in MATLAB
and is equipped to solve any final-value HJ PDE. Since different reachable set computations
can be ultimately posed as solving a final-value HJ PDE (see Section 2.3.2), the level set
toolbox is fully equipped to compute various types of reachable sets. Information on how
to install and use ToolboxLS can be found on Prof. Ian Mitchell’s website9. This toolbox
can be further augmented by the Hamilton-Jacobi optimal control toolbox (or helperOC ). A
quick-start guide to using toolboxLS and helperOC is presented in [34] and is also available
at helperOC website10.

However, traditionally, reachable set computations using level set toolbox involve solving
an HJ partial differential equation (PDE) on a grid representing a discretization of the
state space, resulting in an exponential scaling of computational complexity with respect to
system dimensionality; this is often referred to as the “curse of dimensionality.” Thus, HJ
reachability becomes computationally intractable as the state space dimension increases. In
Part 1 of this dissertation, we will present various ways to overcoming curse of dimensionality
using algorithmic and computational advances.

9 ToolboxLS Website: https://www.cs.ubc.ca/ mitchell/ToolboxLS/
10 helperOC Website: http://www.github.com/HJReachability/helperOC

https://www.cs.ubc.ca/~mitchell/ToolboxLS/
http://www.github.com/HJReachability/helperOC


CHAPTER 2. BACKGROUND AND PRELIMINARIES 26

2.4 Reinforcement Learning

At its core, RL and optimal control are very similar in that they both aim to solve the
following optimization problem (also referred to as optimal control problem hereon):

inf
u
Jt(x0,u) ≡

T∑
k=t

L(xk, uk) +M(xT ), (2.80)

subject to xk+1 = f(xk, uk), ∀k ∈ {t, t+ 1, . . . , T} (2.81)

uk ∈ U (2.82)

However, there are three key differences between RL and optimal control: first, in RL one is
interested in maximizing a reward function whereas in control one is interested in minimizing
a cost function; second, in RL one is interested in solving the above optimization problem
when the dynamics model f is not available; and third, typically a discount factor γ < 1 is
involved in the cost function, i.e., the cost function is of the form

inf
u
Jt(x0,u) ≡

T∑
k=t

γtL(xk, uk) + γTM(xT ) (2.83)

The first difference is not that significant because minimizing a cost function can always
be thought of as maximizing the negative of the cost function. Without loss of generality,
from here on we will assume that in RL we are minimizing a cost function. However, the
other two differences between RL and optimal control have huge implications for the kind
of approaches taken into the two communities (RL community and control community) to
solve the optimal control problem, some of which we discuss here.

Since RL approaches do not require a dynamics model of the system, they can be applied
in scenarios where constructing a model can be quite challenging. Imagine for example a
controller for tying your shoe laces. It is non-trivial to even define a reasonable state space
for this problem, let alone come up with a dynamics model. Since the dynamics model
is unknown, the optimal control problem in RL is solved in a data-driven fashion. These
RL approaches can be broadly classified as: model-based RL and model-free RL. In model-
based RL, first a system dynamics model is learned using the data collected on the system.
Typically, the model is optimized so as to maximize the log likelihood of the observed data.
For forward dynamics model, the model is optimized to minimize the prediction error of the
next state given the current state and input. The learned model is then used to design the
optimal controller for the system using traditional optimal control tools, such as MPC. In
contrast, model-free RL approaches do not explicitly maintain a system dynamics model and
directly optimize the controller (typically parameterized) to improve the control performance.
Intuitively, this optimization process starts with trial and error and over time the trials that
lead to good performance (i.e., low cost or high reward) are positively reinforced to further
improve the control performance over time, hence the name reinforcement learning. Of
course, this is a very simplistic view at RL; over the past few years, very sophisticated



CHAPTER 2. BACKGROUND AND PRELIMINARIES 27

algorithms have been developed both for model-based and model-free RL that can solve
complex optimal control problems even when the system state is not directly observable,
and only high-dimensional observations are available. I should mention that data-driven
control is also studied in the control community; in fact, the entire field of adaptive control
is dedicated to this endeavor. Nevertheless, there are some key differences between RL and
adaptive control. We discuss the relative advantages and limitations of model-based and
model-free approaches further, as well as their connection to adaptive control and system
identification approaches in Chapters 5 and 6.

As we discussed earlier, the second key difference is the presence of a discount factor
in RL. Even though it might seem like a insignificant difference at first, it is actually of
vital importance. To understand this, recall that the dynamic programming principle for
discrete-time optimal control problem leads to following value iteration equation:

Vk(x) = inf
u

[
γkL(x, u) + Vk+1(xk+1)

]
, (2.84)

This value iteration equation is typically solved backwards in time starting from the terminal
value function. The presence of a discount factor gives the value function a contraction
property, wherein at any timestep, future costs matter exponentially less compared to the
current cost. Thus, even when one starts with an inaccurate value function VT at the
terminal time, the value iteration equation above will lead to the correct value function
after sufficient iterations. This is because the error in the terminal value function decays
exponentially due to the presence of a discount factor. This is particularly important for
model-free RL approaches that do not maintain a dynamics model of the system, and try to
directly optimize the control performance through learning a value function either implicitly
and explicitly. The above contraction property ensures that even when we start with a
wrong estimate of the value function, which is inevitable when we do not have a model of
the system, over time we will be able to recover the correct value function. This contraction
property also means that the value function eventually converges and hence we can now
define time-independent value functions. A corollary of this property is that we can learn
value functions from data without necessarily any time synchronization (e.g., a method that
simply minimize the Bellman error between a state pair), which in general can be very
challenging.

As we discussed earlier, there are a lot of similarities between RL and optimal control;
however, different terminologies are used to represent the same quantities in the two com-
munities which sometimes make these similarities rather opaque. In the hope to bridge this
gap, we conclude this section with Table 2.1, which provides a summary of some relevant
concepts as denoted in different communities.

2.5 Neural Networks

As more and more data is being produced, and more and more computational power con-
tinues to become available, an important opportunity lies in harnessing data towards auton-



CHAPTER 2. BACKGROUND AND PRELIMINARIES 28

Table 2.1: A summary of some relevant concepts, as denoted in reinforcement learning and
control communities.

Control Reinforcement Learning
System Environment

Controller Agent
Dynamics Transition
State (x) State (s)

Control input (u) Action (a)
Control law (u(·)) Policy (π(·))

Output (y) Observation (O)
Cost (minimize J) Reward (maximize R)

omy. In recent years, the fields of computer vision and speech processing have not only made
significant leaps forward, but also rapidly increased their rate of progress, largely thanks to
developments in deep learning [179, 192]. The success of deep learning is primarily attributed
to the reemergence of Deep Neural Networks (DNN) as the key function approximator in
machine learning. DNNs are known to be universal function approximators; their struc-
ture allows them to model highly nonlinear functions directly from the observed data. Here
we discuss some of the DNN architectures that are widely popular in the machine learning
community.

2.5.1 Feed-Forward Neural Networks

A feed-forward neural network model is a multi-layer NN, consisting of an input layer,
multiple hidden layers, and an output layer. Given input x ∈ Rn, the output of the NN
model can be written as:

f(x; θ) := ΦN ◦ΦN−1 ◦ . . .Φ0(x), (2.85)

where Φ0 represents the output of the input layer, ΦN represent the output of the output
layer, and Φ1,Φ2, . . . ,ΦN−1 represent the outputs of N − 1 hidden layers of the NN. Each
hidden layer i typically consists of Mi hidden units with weight matrix Wi ∈ RMi−1×Mi , a
bias vector bi ∈ RMi , and a non-linearity (also called transfer or activation function) φ(·) at
each hidden unit. Thus, the output of the ith hidden layer, Φi, is given as:

Φi(z) := φ(W T
i z + bi), (2.86)

where z ∈ RMi−1 is the input to the ith layer. The non-linearity φ in (2.86) is applied com-
ponentwise. A popular choice for non-linearity is to use the rectified-linear (ReLU) transfer
function in the hidden layer. The corresponding NN is called ReLU network. The ReLU
activation function is given by φ(z) = max(0, z), where maximum is taken componentwise.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 29

It is also a common practice to not use any nonlinearity and weights at the input layer, and
to not use any nonlinearity at the output layer, i.e.,

Φ0(z) := z, ΦN(z) := W T
Nz + bN (2.87)

The weights and biases of all the layers together form the parameters of the neural network,
i.e., θ = (W0,W1, . . . ,WN , b0, b1, . . . , nN).

Example 1 With the notation above, the output of a 3-layer feedforward neural net-
work, consisting of one hidden layer is given as:

f(β; θ) := wTφ(W Tβ +B) + b. (2.88)

The input to the NN is given by x ≡ β ∈ R|β|. The NN has a hidden layer (i.e., N = 2)
with M1 units with weight matrix W1 ≡ W ∈ R|β|×M1 and bias vector b1 ≡ B ∈ RM1,
and a linear output layer of M2 units with a weight matrix W2 ≡ w ∈ RN×M2 and a
bias vector b2 ≡ b ∈ R3. φ represents the ReLU activation (or transfer) function of
hidden units.
The architecture of the NN is presented in Figure 2.1, which can be interpreted as
follows: the input layer takes in the input of the system. Each of M1 hidden units
computes the inner product of β and one of the columns of W . The hidden units add
a bias B to the inner product and rectify this value at zero. The output layer is a
linear combination of the hidden units, plus a final bias b. Intuitively, each hidden
unit linearly partitions the input space into two parts based on W and B. In one part
the unit is inactive with zero output, while in the other it is active with positive output.
Together, all hidden units partition the state space into polytopes. In each of these
polytopes, the NN model has flexibility to learn the local function structure.

The goal of the training process is to determine (or “learn”, “train”) the parameters θ
that minimize a given objective function (also called loss function). One popular learning
procedure to train NNs is through supervised learning, which is what we discuss next.

2.5.2 Supervised Learning

Thus far the impact of deep learning has largely been in supervised learning. In supervised
learning, each (training) example is a pair consisting of an input value (e.g., images) and
a desired output value (e.g., ‘cat’, ‘dog’, etc. depending on what is in the image). After
learning on the training data, the system is expected to make correct predictions for future
(unseen) inputs. Supervised learning can thus also be thought as a direct high dimensional
regression (or classification).

In supervised learning, the optimal parameters θ∗ can be obtained by solving the following



CHAPTER 2. BACKGROUND AND PRELIMINARIES 30

β	 	WT	

fv	

	Hidden	Layer	 	Output	Layer	

		

WTβ	+	B	

B	

wTΦ(WTβ	+	B)	+	b	

	
	
	
	
	
	
	
	
	
	

	wT	

b	

	
	
	
	
	
	
	
	
	
	

Figure 2.1: The neural network architecture for a 3 layer feed-forward ReLU network. The
NN consists of three layers: an input layer, a hidden ReLU layer, and an output layer. The
parameters to be learned during the training process are θ = (W,w,B, b).

optimization problem:

θ∗ = min
θ

|D|∑
i=1

l (f(xi; θ), yi) , (2.89)

given the dataset D = {(x1, y1), (x2, y2), . . . , (x|D|, y|D|)}. Here xi represent the input vector,
yi represent the corresponding true output (also called labels), and |D| is the number of
datapoints in the dataset. A popular choice of loss function in supervised learning is mean
squared error (MSE), which is given as:

θ∗ = min
θ

|D|∑
i=1

‖f(xi; θ)− yi‖2, (2.90)

2.6 Gaussian Processes and Bayesian Optimization

2.6.1 Gaussian Process (GP)

Gaussian Processes (GPs) are a state-of-the-art probabilistic non-parametric regression meth-
ods [253]. Similar to a typical regression task, the goal is to find a nonlinear map, f(x) :
Rn → R, from an input vector x ∈ Rn to the function value f(x).

In GP regression, we assume that function values f(x), associated with different values
of x, are random variables and that any finite number of these random variables have a joint



CHAPTER 2. BACKGROUND AND PRELIMINARIES 31

Gaussian distribution dependent on the values of x [253]. Thus, a GP is a distribution over
functions

f ∼ GP (m, k) , (2.91)

fully defined by a prior mean function m and a covariance function (or kernel) k. The
covariance function, k(xi, xj), defines the covariance between any two function values, f(xi)
and f(xj). The prior mean function is typically assumed to be zero without loss of generality.

The choice of kernel is often problem-dependent and encodes general assumptions such as
smoothness of the unknown function. For example, one popular choice is squared exponential
kernel, given by

k(xi, xj) = σ2
f exp

(
−1

2
(xi − xj)TΛ−1(xi − xj)

)
, (2.92)

with Λ = diag([l21, ..., l
2
D]). Both the characteristic length-scales li, and the variance σ2

f are
open hyperparameters ϕ = [l1, ..., lD, σ

2
f ] to be selected. This selection is typically performed

by minimizing the negative log marginal likelihood (NLML) of the observed data. In partic-
ular, given observations D = {xi, f(xi)}ni=1, the NLML can be written as:

NLML(ϕ) = − log p(f |X, ϕ) (2.93)
·

= 1
2
fT (K + σ2

wI)−1f + 1
2

log |K + σ2
wI| − n

2
log 2π .

where X is the input matrix consisting of data points {xi}ni=1, K is the kernel matrix with
Kij = k(xi, xj), and f = [f(x1), . . . , f(xn)]. Using the chain-rule, the gradients of the NLML
can be computed analytically,

∂NLML(ϕ)

∂ϕ
=
∂NLML(ϕ)

∂K

∂K

∂ϕ
, (2.94)

which allows to optimize the hyperparameters using standard gradient descent optimization
[253]. Note that K depends on hyperparameters ϕ through k.

The GP framework can be used to predict the distribution of the performance func-
tion f(x∗) at an arbitrary input x∗ based on the past observations. Conditioned on D, the
mean and variance of the prediction are

µ(x∗) = kK−1f ; σ2(x∗) = k(x∗, x∗)− kK−1kT , (2.95)

where K is the kernel matrix as before, and k = [k(x1, x
∗), . . . , k(xn, x

∗)]. Thus, the GP
provides both the expected value of the performance function at any arbitrary point x∗ as
well as a notion of the uncertainty of this estimate.

2.6.2 Bayesian Optimization (BO)

Bayesian optimization aims to find the global minimum of an unknown function f(x) [184,
238, 276]. BO is particularly suitable for the scenarios where evaluating the unknown func-
tion is expensive, which is often the case in robotics as evaluating a function in real-world



CHAPTER 2. BACKGROUND AND PRELIMINARIES 32

experiments is often time consuming. At each iteration, BO uses the past observations D to
model the objective function, and uses this model to determine informative sample locations.

A common model used in BO for the underlying objective is Gaussian process (see Sec.
2.6.1). Using the mean and variance predictions of the GP from (2.95), BO computes the next
sample location by optimizing the so-called acquisition function, α (·). Different acquisition
functions are used in the literature to trade off between exploration and exploitation during
the optimization process [276]. For example, the next evaluation for expected improvement
(EI) acquisition function [226] is given by x∗ = arg minx α (x) where

α (x) = σ(x)[uΦ(u) + φ(u)]; u = (µ(x)− T )/σ(x). (2.96)

Φ(·) and φ(·) in (2.96), respectively, are the standard normal cumulative distribution and
probability density functions. The target value T is the minimum of all explored data so far.
µ(x) and σ(x) are the mean and variance of the GP that models the objective function f(x)
based on the data obtained so far. Intuitively, EI selects the next parameter point where
the expected improvement over T is maximal. Repeatedly evaluating the system at points
given by (2.96) thus improves the observed performance.

Note that optimizing α (x) in (2.96) does not require physical interactions with the sys-
tem, but only evaluation of the GP model. When a new set of optimal parameters x∗ is
determined, they are finally evaluated on the real objective function f(x).



33

Part I

Safety Analysis for Robotic Systems



34

Chapter 3

Scaling Safety Analysis: Algorithmic
and Computational Fronts

This chapter is based on the papers “Hamilton-Jacobi Reachability: A Brief Overview and Re-

cent Advances” [34], “Decomposition of Reachable Sets and Tubes for a Class of Nonlinear Sys-

tems” [75], “FaSTrack: a Modular Framework for Fast and Guaranteed Safe Motion Planning”

[151], “Reachability-Based Safety Guarantees using Efficient Initializations” [150], “An Efficient

Reachability-Based Framework for Provably Safe Autonomous Navigation in Unknown Environ-

ments” [29], and “Provably Safe and Scalable Multi-Vehicle Trajectory Planning” [35] written in

collaboration with Mo Chen, Sylvia Herbert, Jaime Fisac, Andrea Bajcsy, Shromona Ghosh, Varun

Tolani, Eli Bronstein, Mahesh Vashishtha, SooJean Han, and Claire Tomlin.

As the robotic systems we design grow more complex, determining whether they work
according to specification and within given constraints is important. This is particularly
important for safety-critical systems such as autonomous aircrafts, self-driving cars, drones.
Consequently, we need algorithms that can actively reason about the safety of these systems
as they work alongside other robots and humans.

Verification or safety analysis of robotic systems is challenging for many reasons. First,
all possible system behaviors must be accounted for. This makes most simulation-based
approaches insufficient, and thus formal verification methods are needed. Second, many
practical systems are affected by disturbances in the environment, which can be unpre-
dictable, and may even contain adversarial agents. In addition, these systems often have
high dimensional state spaces and evolve in continuous time with complex, nonlinear dy-
namics. Third, during the operation time, the autonomous system may experience changes
in system dynamics, external disturbances, and/or the surrounding environment, requiring
updated safety guarantees.

Hamilton-Jacobi (HJ) reachability analysis is a verification method for guaranteeing per-
formance and safety properties of systems, overcoming some of the above challenges. How-
ever, as we discussed in Section 2.3.3, HJ reachability becomes computationally intractable
as the state space dimension increases (referred to as curse of dimensionality). In particu-



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 35

lar, its computational complexity scales exponentially with respect to the number of state
variables. This makes it particularly challenging to run reachability computations online
even for low-dimensional systems. In this chapter, we will discuss our work on over-
coming the curse of dimensionality in reachability analysis on multiple fronts
by leveraging (a) the structure in dynamics to decompose a high-dimensional
reachability problem into a number of smaller reachability problems [75], mak-
ing computations of reachable sets orders of magnitude faster; (b) smart offline
computations (or precomputations) that allow us to compute reachable sets ef-
ficiently in real time [151, 150, 29]; and (c) modern computational tools such as
GPUs to parallelize the reachability computations, achieving a 100 fold speedup
compared to existing implementations [35].

3.1 Related Work

In this section, we discuss the related work on computing an approximation of reachable sets
in an efficient fashion, both using HJ reachability as well as other verification approaches.

Verification of Dynamical Systems. An extensive body of research deals with verification
of dynamical systems. We cannot hope to summarize all these works here, but we attempt
to discuss several of the representative approaches.

In particular, satisfaction of properties such as safety, liveness, and fairness in computer
software and in discrete-time dynamical systems can be verified by checking whether runs
of a transition system, or words of a finite automaton satisfy certain desired properties [28,
53]. These properties may be specified by a variety of logical formalisms such as linear
temporal logic. For specifications of properties of interest in autonomous robots, richer
formalisms have been proposed. For example, propositional temporal logic over the reals
[255, 108] allows specification of properties such as time in terms of real numbers, and
chance-constrained temporal logic [160] allows specification of requirements in the presence of
uncertainty. Besides autonomous cars and robots, verification approaches based on discrete
models have also been successfully used in the context of intelligent transportation systems
[87] and human-automation interaction [58].

For continuous and hybrid systems, safety properties can be verified by checking whether
the forward reachable set or an over-approximation of it intersects with a set of undesir-
able states, akin to checking runs of transition systems. Numerous tools such as SpaceEx
[119], Flow* [79], CORA [15], C2E2 [105, 109], and dReach [176] have been developed for
this purpose; the authors in [104] present a tutorial on combining different tools for hybrid
systems verification. In addition, methods that utilize semidefinite programming to search
for Lyapunov functions can be used to verify safety [246, 287]. This is done, for example, by
constructing barrier certificates [41] or funnels [205, 206] with Lyapunov properties.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 36

Safety Analysis Using Backward Reachable Set. Outside of the realm of checking
whether the set of possible future states of a system includes undesirable states, safety can
also be verified by starting from known unsafe conditions and computing backward reachable
sets, which the system should avoid. In general, the challenges facing verification methods
include computational tractability, generality of system dynamics, existence of control and
disturbance variables, and representation of sets [40, 222, 57, 115]. For example, the methods
presented in [141, 119, 182, 183, 204, 135, 18] have had success in analyzing relatively high-
dimensional affine systems using sets of pre-specified shapes, such as polytopes, hyperplanes,
ellipsoids, and zonotopes. Other potentially less scalable methods are able to handle systems
with the more complex dynamics [79, 15, 119, 207, 99, 149]. [207, 99, 149] are particularly
well-suited to systems with polynomial dynamics. Computational scalability varies among
these different methods, with the most scalable methods requiring that the system dynamics
do not involve control and disturbance variables. The work in [236] accounts for both control
and disturbances, but is only applicable to linear systems. Methods that can account for
general nonlinear systems such as [16] also sometimes represent sets using simple shapes such
as polytopes, potentially sacrificing representation fidelity in favor of the other aspects men-
tioned earlier. Hamilton-Jacobi (HJ) formulations [40, 222, 209, 57] excel in handling general
nonlinear dynamics, control and disturbance variables, and flexible set representations via
a grid-based approach; however, these methods are the least computationally scalable. Still
other methods make a variety of other assumptions to make desirable trade offs [90, 145, 86].
In addition, under some special scenarios, it may be possible to obtain small computational
benefits while minimizing trade offs in other axes of consideration by exploiting system or
controller structure [217, 115, 223, 74, 171, 170].

Efficient Update of Backward Reachable Set. For real-time update of the reachable
set in dynamic environment conditions, such as changes in system dynamics, external dis-
turbances, and/or the surrounding environment, researchers have looked into warm-starting
the reachable set computation. Warm-starting in the optimization community involves using
an initialization that acts as a “best guess” of the solution, and therefore may converge in
fewer iterations (if convergence can be achieved). Recent work applied this warm-starting
idea to create a “discounted reachability” formulation for infinite-time horizon problems [13,
116]. By using a discount factor, this formulation guarantees convergence regardless of the
initialization. However, convergence rates using this discount factor can be very slow, and
in practice the analysis may not converge numerically when convergence thresholds are too
tight, or may converge incorrectly when convergence thresholds are too lenient. In addi-
tion, parameter tuning of the discount factor can be time-intensive. These issues reduce the
computational benefit of warm-start reachability.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 37

Contributions and Chapter Organization

In Section 3.2, we present a system decomposition method for computing backward reachable
sets (BRSs) and tubes (BRTs) of a class of nonlinear systems. Our method first computes
BRSs for lower-dimensional subsystems, and then reconstructs the full-dimensional BRS
without incurring additional approximation errors other than those arising from the lower
dimensional computations. The computation of a BRS and a BRT now becomes orders of
magnitude faster. Crucially, the subsystems can be coupled through common states, controls,
and disturbances. The treatment of this coupling distinguishes our method from others which
consider completely decoupled subsystems, potentially obtained through transformations, or
achieve approximate reachable sets. Furthermore, we also provide the conditions under which
the BRT computation can be decomposed into smaller subproblems.

To enable reachability computations online, we propose a method of “warm-start” reach-
ability in Section 3.3. The proposed method uses a user-defined initialization (typically the
previously computed solution) while computing the value function. By starting with a value
function that is closer to the solution than the standard initialization, convergence takes
significantly fewer iterations. Equipped with the warm starting technique, we then discuss
how we can reduce computation time further by only locally updating the value function
rather than in the entire state space.

In Section 3.4, we present BEACLS, a C++-based toolbox that parallelizes the numerical
algorithms for solving the HJI PDE using graphics processing units (GPUs). This speeds
up the computation time by nearly 100 times compared to state-of-the-art MATLAB im-
plementations. GPU parallelization allows us to tractably solve many HJI PDEs, especially
when they are required to be solved in real-time.

3.2 Reachability Decomposition

In this section, we seek to obtain the BRSs and the BRTs via computations in lower-
dimensional subspaces under the assumption that the system dynamics ẋ = f(x, u, d) in
Equation (2.1) can be decomposed into self-contained subsystems (SCS) (3.2). Intuitively
in self-contained subsystems, the evolution of each subsystem depends only on the subsys-
tem states. Such a decomposition is common, since many systems involve components that
are loosely coupled. In particular, the evolution of position variables in vehicle dynamics is
often weakly coupled though other variables such as heading. We show that for SCS one
can independently compute the reachable set for each subsystem and then “stitch” them
together to obtain the reachable set for the original high-dimensional system. Since the
reachability computation scales exponentially with the number of state variables, this de-
composition allows us to compute a high-dimensional reachable set at a significantly lower
complexity. In fact, we present several examples, such as a 10D quadrotor system, where
it remains intractable to compute the exact high-dimensional reachable set without using a
decomposition.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 38

We will particularly focus on computing minimal and maximal BRSs and BRTs in this
section. Recall, that a BRS represents the set of states x ∈ Rnx from which the system
can be driven into some set L ⊆ Rnx at the end of a time horizon, despite the best control
efforts. Mathematically, the BRS is given by (Equation (2.39)):

A(t) = {x : ∀u(·) ∈ UT
t ,∃d(·) ∈ ΓTt , ξ(T ;x, t, u(·), d(·)) ∈ L}, (Minimal BRS)

The above BRS is sometimes also called minimal BRS. We are using A(t) to denote the
minimal BRS instead of our standard notation of V(t) to distinguish it from what is called
a maximal BRS :

R(t) = {x : ∀d(·) ∈ ΓTt ,∃u(·) ∈ UT
t , ξ(T ;x, t, u(·), d(·)) ∈ L}, (Maximal BRS)

The minimal BRS is typically useful when the target set represents some undesirable states
that the system should avoid at all times (such as obstacles) and we want to compute from
which states the system has a “chance” of avoiding these states. On the other hand, the
maximal BRS is useful when the target set represents some desirable states, such as the goal
states, and we are interested in computing from which states we can reach those goal states.
Unsurprisingly, the complement of the minimal BRS of L is same as the maximal BRS of
LC . Thus, the tools for computing a minimal BRS can be used to compute a maximal BRS
as well. We refer the readers to Section 2.3.2 for more details on the computation of minimal
and maximal BRSs.

One can similarly define minimal and maximal BRTs.

Ā(t) = {x : ∀u(·) ∈ UT
t ,∃d(·) ∈ ΓTt ,∃s ∈ [t, T ], ξ(s;x, t, u(·), d(·)) ∈ L}, (Minimal BRT)

R̄(t) = {x : ∀d(·) ∈ ΓTt ,∃u(·) ∈ UT
t , ∃s ∈ [t, T ], ξ(s;x, t, u(·), d(·)) ∈ L}. (Maximal BRT)

Note that unlike a BRS, the complement of the minimal BRT of L is not same as the maximal
BRT of LC1.

We now proceed with formal definitions of self-contained subsystems that are required
to precisely state our main results regarding the computation of minimal and maximal
BRS/BRT of a high-dimensional system.

3.2.1 Definitions

3.2.1.1 Subsystem Dynamics

Let the state x ∈ Rnx be partitioned as x = (x1, x2, xc), with x1 ∈ Rn1 , x2 ∈ Rn2 , xc ∈
Rnc , n1, n2 > 0, nc ≥ 0, n1 + n2 + nc = nx. Note that nc could be zero. We call x1, x2, xc
“state partitions” of the system. Intuitively, x1 and x2, are states belonging to subsystems

1In fact, the complement of the minimal BRT of L is same as the viability kernel of LC (see Section
2.3.2).



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 39

1 and 2, respectively, and xc states belong to both subsystems. Under the above notation,
the system dynamics (2.1) become

ẋ1 = f1(x1, x2, xc, u, d)

ẋ2 = f2(x1, x2, xc, u, d)

ẋc = fc(x1, x2, xc, u, d)

(3.1)

In general, depending on how the dynamics f depend on u and d, some state partitions may
be independent of the control and/or disturbance.

We group these states into two subsystems by defining states z1 = (x1, xc) ∈ Rn1+nc and
z2 = (x2, xc) ∈ Rn2+nc , where z1 and z2 in general share the “common” states in xc. Note
that our theory is applicable to any finite number of subsystems defined in the analogous
way, with zi = (xi, xc); however, without loss of generality (WLOG), we assume that there
are just two subsystems.

Definition 1 Self-contained subsystem. Consider the following special case of (3.1):

ẋ1 = f1(x1, xc, u, d)

ẋ2 = f2(x2, xc, u, d)

ẋc = fc(xc, u, d)

(3.2)

We call each of the subsystems with states defined as zi = (xi, xc) a “self-contained subsys-
tem” (SCS), or just “subsystem” for short.

Intuitively (3.2) means that the evolution of each subsystem depends only on the subsys-
tem states: żi depends only on zi = (xi, xc). Explicitly, the dynamics of the two subsystems
are as follows:

ẋ1 = f1(x1, xc, u, d) ẋ2 = f2(x2, xc, u, d)

ẋc = fc(xc, u, d) ẋc = fc(xc, u, d)

(Subsystem 1) (Subsystem 2)

Note that the two subsystems are coupled through the common state partition xc, control u,
and disturbance d. When the subsystems are coupled through u, we say that the subsystems
have “shared control”. Similarly, when the subsystems are coupled through d, we say that
the subsystems have “shared disturbance”.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 40

Example 2 An example of a system that can be decomposed into SCSs is the Dubins
Car with constant speed v: ṗx

ṗy
θ̇

 =

 v cos θ + dx
v sin θ + dy

ω

 , ω ∈ U , (dx, dy) ∈ D (3.3)

with state x = (px, py, θ) representing the x − y position and heading, control u = ω
representing the turn rate, and d = (dx, dy) representing the disturbance. The state
partitions are simply the system states: x1 = px, x2 = py, xc = θ. The subsystem states
zi and the subsystem dynamics are

ż1 =

[
ẋ1

ẋc

]
=

[
ṗx
θ̇

]
=

[
v cos θ + dx

ω

]
ż2 =

[
ẋ2

ẋc

]
=

[
ṗy
θ̇

]
=

[
v sin θ + dy

ω

]
u = ω

(3.4)

where the overlapping state is θ, and the subsystem controls and their shared component
is the control u itself. In this example, there is no shared disturbance between the two
subsystems.

Although there may be common or overlapping states in z1 and z2, the evolution of each
subsystem does not depend on the other explicitly. In fact, if we for example entirely ignore
the subsystem z2, the evolution of the subsystem z1 is well-defined and can be considered a
full system on its own; hence, each subsystem is self-contained.

3.2.1.2 Projection Operators

For the projection operators, it will be helpful to refer to Fig. 3.1. Define the projection of
a state x = (x1, x2, xc) onto a subsystem state space Rni+nc as

Pi(x) = zi = (xi, xc) (3.5)

This projects a point in the full dimensional state space onto a point in the subsystem state
space. Also define the back-projection operator to be

P−1(zi) = {x ∈ Rnx : (xi, xc) = zi} (3.6)

This back-projection lifts a point from the subsystem state space to a set in the full dimen-
sional state space. We will also need the ability to apply the back-projection operator on
sets. In this case, we overload the back-projection operator:

P−1(Si) = {x ∈ Rnx : ∃zi ∈ Si, (xi, xc) = zi} (3.7)



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 41

𝑥!𝑥"

𝑥#

𝑥
𝑃! 𝑥

𝑃" 𝑥

𝑆!

𝑆"

𝑃$!(𝑆!)

𝑃$!(𝑆")

𝑆 = 𝑃$! 𝑆" ∩ 𝑃$! 𝑆"

Figure 3.1: This figure shows the back-projection of sets in the x1-xc plane S1 and the x2-xc
plane (S2) to the 3D space to form the intersection shown as the black cube (S). The figure
also shows projection of a point x onto the lower-dimensional subspaces in the x1-xc and
x2-xc planes.

3.2.2 Decomposition of Backward Reachable Sets Using
Self-Contained Subsystems

We are now ready to formalize the conditions under which we can compute the BRS of a
high-dimensional system using self-contained subsystems, and how to actually obtain the
BRS of the high-dimensional system from the BRSs of SCS. We start with the following two
assumptions that are required to decompose the reachability problem.

Assumption 1 The system dynamics f(x, u, d) can be decomposed into self-contained sub-
systems as defined in (3.2) with subsystem states z1 ∈ Rn1+nc and z2 ∈ Rn2+nc.

Assumption 2 We assume that the full system target set L ∈ Rnx can be written in terms
of the subsystem target sets L1 ⊆ Rn1+nc ,L2 ⊆ Rn1+nc in one of the following ways:

L = P−1(L1) ∩ P−1(L2) (3.8)

where the full target set is the intersection of the back-projections of subsystem target sets,
or

L = P−1(L1) ∪ P−1(L2) (3.9)

where the full target set is the union of the back-projections of subsystem target sets.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 42

Fig. 3.1 helps provide intuition for Assumption 2: applying (3.8) to S1 and S2 results in the
black cube. Applying (3.9) would result in the cross-shaped set encompassing both P−1(S1)
and P−1(S2).

Equipped with Assumptions 1 and 2, we now discuss what the BRS reconstruction pro-
cess looks like depending on whether the target set is decomposed as a union or a intersection,
whether there is a shared control among SCS or not, and whether there is a shared distur-
bance. We will discuss all possible combinations of the above three factors. The key results
of this section are summarized in Table 3.1.

Table 3.1: Summary of possible decompositions of the BRS and the BRT, whether they are
possible, and if so whether they are exact or conservative. Exact means that no additional
approximation errors are introduced. Note that in the cases marked “no” for shared control
(or shared disturbance), the results hold for both decoupled control (or disturbance) and for
no control (or disturbance). All cases shown are for scenarios with shared states, with the
shared states being xc in (3.2); in the case that there are no shared states this becomes a
straightforward decoupled system.

Shared Controls Yes No Yes No
Shared Disturbance No No Yes Yes
Target Intersection Union Intersection Union Intersection Union Intersection Union
Recover Maximal BRS? No Yes, exact Yes, exact Yes, exact No Yes, cons Yes, cons Yes, cons
Result: Maximal BRS N/A Thm 1 Prop 1 Thm 1 N/A Prop 3 Prop 5 Prop 3

Recover Minimal BRS? Yes, exact No Yes, exact Yes, exact Yes, cons No Yes, cons Yes, cons
Result: Minimal BRS Thm 2 N/A Thm 2 Prop 2 Prop 4 N/A Prop 4 Prop 6

Recover Maximal BRT?2 No Yes, cons Yes, cons Yes, cons No Yes, cons Yes, cons Yes, cons
Result: Maximal BRT N/A Thm 1, Prop 7 Prop 1, 7 Thm 1, Prop 7 N/A Prop 3, 7 Prop 5, 7 Prop 3, 7

Recover Minimal BRT?3 Yes, exact No Yes, exact Yes, exact Yes, cons No Yes, cons Yes, cons
Result: Minimal BRT Thm 2, 3 N/A Thm 2, 3 Prop 2, Thm 3 Prop 4, Thm 3 N/A Prop 4, Thm 3 Prop 6, Thm 3

3.2.2.1 Shared Control, No Shared Disturbance

When the SCS share control but not disturbance, the dynamics in (3.2) can be specialized
as:

ẋ1 = f1(x1, xc, u, d1)

ẋ2 = f2(x2, xc, u, d2)

ẋc = fc(xc, u)

(3.10)

where the subsystem disturbance do not have any shared components, so that we have d =
(d1, d2). In this scenario, the full-dimensional BRS can be reconstructed without incurring
additional approximation errors from lower-dimensional BRSs in the situations stated in
Theorem 1 and 2.

If L represents states the system aims to reach, then R(t) represents the set of states
from which L can be reached. If the system goal states are the union of subsystem goal

2If additionally the disturbance is zero in the cases when the subsystems do not have a shared disturbance
components, the conservative results become exact.

3The solution here can be found only if the minimum BRSs are non-empty for the entire time period.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 43

states, then it suffices for any subsystem to reach its subsystem goal states, regardless of any
coupling that exists between the subsystems. Theorem 1 states this intuitive result.

Theorem 1 Suppose that the full system dynamics ẋ = f(x, u, d) can be decomposed
into the form of (3.10). Moreover, suppose that the target set L can be written as a
union of the subsystem target sets then the maximal BRS can be written as a union of
subsystems’ maximal BRSs, i.e.,

L = P−1(L1) ∪ P−1(L2) ⇒ R(t) = P−1(R1(t)) ∪ P−1(R2(t)) (3.11)

Proof: We will prove the following equivalent statement:

x̄ ∈ R(t)⇔ x̄ ∈ P−1(R1(t)) ∪ P−1(R2(t)) ∀x̄ (3.12)

Define z̄i = Pi(x̄) and ξi(T ; z̄i, t, u(·), di(·)) = Pi(ξ(T ; x̄, t, u(·), d(·)). We first prove the
backward direction.

If x̄ ∈ P−1(R1(t)) ∪ P−1(R2(t)), we must have

z̄1 ∈ R1(t) ∨ z̄2 ∈ R2(t),

where ∨ represents an or operator. Without loss of generality, assume z̄1 ∈ R1(t). By
the subsystem maximal BRS definition, this is equivalent to

∀d1(·),∃u(·), ξ1(T ; z̄1, t, u(·), d1(·)) ∈ L1

Since d1(·) and d2(·) have no common components, the above statement is equivalent to

∀d(·),∃u(·), ξ1(T ; z̄1, t, u(·), d1(·)) ∈ L1

Considering the backprojection operator, we have:

∀d(·),∃u(·),P−1 (ξ1(T ; z̄1, t, u(·), d1(·))) ∈ P−1(L1),

which can be equivalently written as

∀d(·),∃u(·), ξ(T ; x̄, t, u(·), d(·)) ∈ P−1(L1), (3.13)

Noting that L ⊆ P−1(L1), (3.13) is equivalent to x̄ ∈ R(t)). This proves the backward
direction.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 44

For the forward direction, we begin with x̄ ∈ R(t), which by the definition of a
maximal BRS is equivalent to

∀d(·),∃u(·), ξ(T ; x̄, t, u(·), d1(·)) ∈ L, (3.14)

which in turn can be written as

∀d1(·), d2(·),∃u(·), ξ1(T ; z̄1, t, u(·), d1(·)) ∈ L1 ∨ ξ2(T ; z̄2, t, u(·), d2(·)) ∈ L2, (3.15)

Finally, distributing “∃u(·)” gives x̄ ∈ P−1(R1(t)) ∪ P−1(R2(t)). �

Now, we turn our attention to the minimal BRS. If L represents the set of unsafe states,
then A(t) is the set of states from which the system will be driven into danger. Thus outside
of A(t), there exists a control for the system to avoid the unsafe states. For the system to
avoid L, it suffices to avoid the unsafe states in either subsystem, regardless of any coupling
that exists between the subsystems. Theorem 2 formally states this intuitive result.

Theorem 2 Suppose that the full system dynamics ẋ = f(x, u, d) can be decomposed
into the form of (3.10). Moreover, suppose that the target set L can be written as an
intersection of the subsystem target sets then the minimal BRS can be written as an
intersection of subsystems’ minimal BRSs, i.e.,

L = P−1(L1) ∩ P−1(L2) ⇒ A(t) = P−1(A1(t)) ∩ P−1(A2(t)) (3.16)

Proof: The proof of Theorem 2 follows that of Theorem 1. In particular, we will prove
the following equivalent statement:

x̄ /∈ A(t)⇔ x̄ /∈ P−1(A1(t)) ∩ P−1(A2(t)) ∀x̄ (3.17)

The above statement is equivalent to

x̄ ∈ AC(t)⇔ x̄ ∈
[
P−1(A1(t))

]C ∪ [P−1(A2(t))
]C

(3.18)

By noting that the complement of the minimal BRS is same as the maximal BRS of
LC, we can proceed in the same fashion as the proof of Theorem 1, with “R(t)” replaced

with “AC(t)”, “P−1(Ri(t))” replaced with “
[
P−1(Ai(t))

]C
”, and “L”, “Li” replaced with

“LC”, “LCi ”, respectively in Equation (3.18). �

The conditions for reconstruction of the maximal BRS for an intersection of targets, as
well as the minimal BRS for a union of targets, are more complicated. Consider for example
the case where we are interested in computing the minimal BRS using that of subsystems’
minimal BRSs. By computing the minimal BRS of each subsystem, we can obtain the
optimal control such that the subsystem state will avoid the corresponding target set. If we



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 45

are interested in avoiding the intersection of the target sets, we can simply apply optimal
control obtained from any of the subsystem BRS because avoiding any of the target sets
is sufficient. However, when we want to avoid the union of the target states, we need to
avoid both target sets. Consequently, there might be the states of the actual system where
applying optimal control from one subsystem push the system towards the target set of the
other. Such states are called “leaky corners”, which make the reconstruction results non-
trivial. We defer studying the effects of leaky corners on the BRS reconstruction to future
work. Table 3.2 summarizes the results from this section.

Table 3.2: BRS reconstruction from self-contained subsystems when they have shared control
but no shared disturbance (Section 3.2.2.1)

Shared Controls Yes
Shared Disturbance No
Target Intersection Union
Recover Maximal BRS? No Yes, exact
Recover Minimal BRS? Yes, exact No
Result Theorem 2 Theorem 1

Remark 4 Even though we focus on computing the BRS in this section, since the FRS
computation can be posed as a BRS computation (see Section 2.3.2), the ideas presented in
this section can also be applied to compute FRS.

Numerical Example: The Dubins Car The Dubins Car is a well-known system whose
dynamics are given by (3.3). This system is only 3D, and its BRS can be tractably computed
in the full-dimensional space, so we use it to compare the full formulation with our decompo-
sition method. The Dubins Car dynamics can be decomposed according to (3.4). For illus-
tration purposes, we assume that there are no disturbance in dynamics, i.e., dx = 0, dy = 0.
For this example, we computed the BRS from the target set representing positions near the
origin in both the px and py dimensions:

L = {(px, py, θ) : |px|, |py| ≤ 0.5} (3.19)

Such a target set L can be used to model an obstacle that the vehicle must avoid. Given
L, the interpretation of the BRS A(t) is the set of states from which a collision with the
obstacle may occur after a duration of |T − t|. Without loss of generality, we set T = 0.
From L, we computed the BRS A(t) at t = −0.5. The resulting full BRS is shown in Fig.
3.2 as the red surface which appears in the bottom subplots. To compute the BRS using our
decomposition method, we write the unsafe set L as

L1 = {(px, θ) : |px| ≤ 0.5},L2 = {(py, θ) : |py| ≤ 0.5}
L = P−1(L1) ∩ P−1(L2)

(3.20)



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 46

Figure 3.2: Comparison of the Dubins Car BRS A(t = −0.5) computed using the full
formulation and via decomposition. Left top: The BRSs in the lower-dimensional subspaces
and how they are combined to form the full-dimensional BRS. Top right: The BRS computed
via decomposition. Bottom left: The BRSs computed using both methods, superimposed,
showing that they are indistinguishable. Bottom right: The BRS computed using the full
formulation.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 47

Figure 3.3: The Dubins Car BRS A(t = −0.5) computed using the full formulation and via
decomposition, other view angles.

From L1 and L2, we computed the lower-dimensional BRSs A1(t) and A2(t), and then re-
constructed the full-dimensional BRSA(t) using Theorem 2: A(t) = P−1(A1(t))∩P−1(A2(t)).
The subsystem BRSs and their back-projections are shown in magenta and green in the top
left subplot of Fig. 3.2. The reconstructed BRS is shown in the top left, top right, and
bottom left subplots of Fig. 3.2 (black mesh). In the bottom left subplot of Fig. 3.2, we
superimpose the full-dimensional BRS computed using the two methods. We show the com-
parison of the computation results viewed from two different angles in Fig. 3.3. The results
are indistinguishable.

Theorem 2 allows the computation to be performed in lower-dimensional subspaces, which
is significantly faster. Another benefit of the decomposition method is that in the numerical
methods for solving the HJI PDE, the amount of numerical dissipation increases with the
number of state dimensions. Thus, computations in lower-dimensional subspaces lead to a
slightly more accurate numerical solution.

The computation benefits of using our decomposition method can be seen from Fig. 3.4.
The plot shows, in log-log scale, the computation time in seconds versus the number of grid
points per dimension in the numerical computation. One can see that the direct computation
of the BRS in 3D becomes very time-consuming as the number of grid points per dimension
is increased, while the computation via decomposition hardly takes any time in comparison.
Directly computing the BRS with 251 grid points per dimension in 3D took approximately
80 minutes, while computing the BRS via decomposition in 2D only took approximately 30
seconds! The computations were timed on a computer with an Intel Core i7-2600K processor
and 16GB of random-access memory.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 48

0 50 100 150 200 250 300
0

2000

4000

6000

C
o
m

p
u
ta

tio
n
 t
im

e
 (

s)

Decomposition

Full formulation

101 102 103

Number of grid points per dimension

10-2

100

102

104

C
o
m

p
u
ta

tio
n
 t
im

e
 (

s)

Figure 3.4: Computation times of the two methods in log scale for the Dubins Car. The
time of the direct computation in 3D increases rapidly with the number of grid points
per dimension. In contrast, computation times in 2D with decomposition are negligible in
comparison.

Figure 3.5: Comparison of the R(t) computed using our decomposition method and the full
formulation. The computation results are indistinguishable. Note that the surface shows the
boundary of the set; the set itself is on the “near” side of the left subplot, and the left side
of the right subplot.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 49

Fig. 3.5 illustrates Theorem 1. We chose the target set to be L = {(px, py, θ) : px ≤
0.5 ∨ py ≤ 0.5}, and computed the BRS R(t), t = −0.5 via decomposition. No additional
approximation error is incurred in the reconstruction process. The target set can be written
as L = P−1(L1) ∪ P−1(L1) where L1 = {(px, θ) : px ≤ 0.5},L2 = {(py, θ) : py ≤ 0.5}.

3.2.2.2 No Shared Control, No Shared Disturbance

When the SCS do not share control or disturbance, the dynamics in (3.2) can be specialized
as:

ẋ1 = f1(x1, xc, u1, d1)

ẋ2 = f2(x2, xc, u2, d2)

ẋc = fc(xc)

(3.21)

where in addition to disturbance the subsystem control do not have any shared components,
so that we have u = (u1, u2).

In addition to the results of Sec. 3.2.2.1, we can additionally obtain the maximal BRS
even when the target set is the intersection of subsystem target sets, as well as the minimal
BRS when the target set is the union of subsystem target sets. The following propositions
formalize these results:

Proposition 1 Suppose that the full system dynamics ẋ = f(x, u, d) can be decomposed
into the form of (3.21). Moreover, suppose that the target set L can be written as an
intersection of the subsystem target sets then the maximal BRS can be written as an
intersection of subsystems’ maximal BRSs, i.e.,

L = P−1(L1) ∩ P−1(L2) ⇒ R(t) = P−1(R1(t)) ∩ P−1(R2(t)) (3.22)

Proof: We will prove the following equivalent statement:

x̄ ∈ R(t)⇔ x̄ ∈ P−1(R1(t)) ∩ P−1(R2(t)) ∀x̄ (3.23)

By the definition of a maximal BRS, we have

x̄ ∈ R(t)⇔ ∀d(·),∃u(·), ξ(T ; x̄, t, u(·), d(·)) ∈ L,

or equivalently

⇔ ∀(d1(·), d2(·)),∃(u1(·), u2(·)), ξ(T ; x̄, t, u(·), d(·)) ∈ L.

Since L = P−1(L1) ∩ P−1(L2), the above statement can equivalently be written as

⇔ ∀(d1(·), d2(·)),∃(u1(·), u2(·)), ξ1(T ; z̄1, t, u1(·), d1(·)) ∈ L1∧ξ2(T ; z̄2, t, u2(·), d2(·)) ∈ L2.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 50

Finally, noting that since (u1(·), u2(·)) and (d1(·), d2(·)) have no shared components, we
have

⇔ ∀d1(·),∃u1(·), ξ1(T ; z̄1, t, u1(·), d1(·)) ∈ L1 ∧ ∀d2(·),∃u2(·), ξ2(T ; z̄2, t, u2(·), d2(·)) ∈ L2

⇔ z̄1 ∈ R1(t) ∧ z̄2 ∈ R2(t),

⇔ x̄ ∈ P−1(R1(t)) ∩ P−1(R2(t)).

�

Proposition 2 Suppose that the full system dynamics ẋ = f(x, u, d) can be decomposed
into the form of (3.21). Moreover, suppose that the target set L can be written as a
union of the subsystem target sets then the minimal BRS can be written as a union of
subsystems’ minimal BRSs, i.e.,

L = P−1(L1) ∪ P−1(L2) ⇒ A(t) = P−1(A1(t)) ∪ P−1(A2(t)) (3.24)

Proof: This proof follows the same arguments as Proposition 1, but with “R”, “∩”, “∃”
replaced with “A”, “∪”, “∀”, respectively. �

Intuitively, when the subsystem controls have shared components, the control chosen by each
subsystem may not agree with the other. This is the intuition behind why the results of
Propositions 1 and 2 only hold true when there are no shared components in the subsystem
controls. Note that the theorems hold despite the state coupling between the subsystems.
The results from this section are summarized in Table 3.3.

Table 3.3: The BRS reconstruction from self-contained subsystems when they do not have
shared control or disturbance (Section 3.2.2.2).

Shared Controls No
Shared Disturbance No
Target Intersection Union
Recover Maximal BRS? Yes, exact Yes, exact
Recover Minimal BRS? Yes, exact Yes, exact

Result
Proposition 1
Theorem 2

Theorem 1
Proposition 2

Numerical Example: The 10D Near-Hover Quadrotor The 10D Near-Hover Quadro-
tor was used for experiments involving learning-based MPC [59]. Its dynamics are



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 51



ṗx
v̇x
θ̇x
ω̇x
ṗy
v̇y
θ̇y
ω̇y
ṗz
v̇z


=



vx + dx
g tan θx
−d1θx + ωx
−d0θx + n0Sx

vy + dy
g tan θy
−d1θy + ωy
−d0θy + n0Sy

vz + dz
kTTz − g


(3.25)

where (px, py, pz) denotes the position, (vx, vy, vz) denotes the velocity, (θx, θy) denotes the
pitch and roll, and (ωx, ωy) denotes the pitch and roll rates. The controls of the system
are (Sx, Sy), which respectively represent the desired pitch and roll angle, and Tz, which
represents the vertical thrust. The system experiences the disturbance (dx, dy, dz) which
represents wind in the three axes. g denotes the acceleration due to gravity. The parameters
d0, d1, n0, kT , as well as the control bounds U , that we used were d0 = 10, d1 = 8, n0 =
10, kT = 0.91, |ux|, |uy| ≤ 10 degrees, 0 ≤ uz ≤ 2g, |dx|, dy ≤ 0.5 m/s, |dz| ≤ 1 m/s. The
system can be fully decoupled into three subsystems of 4D, 4D, and 2D, respectively:

z1 = (px, vx, θx, ωx), z2 = (py, vy, θy, ωy), z3 = (pz, vz) (3.26)

The target set is chosen to be

L = {(px, vx, θx, ωx, py, vy, θy, ωy, pz, vz) :

|px|, |py| ≤ 1, |pz| ≤ 2.5}
(3.27)

This target set can be written as L =
⋂3
i=1P−1(Lzi), where P−1(Lzi), i = 1, 2, 3 are given

by

L1 = {(px, vx, θx, ωx) : |px| ≤ 1}
L2 = {(py, vy, θy, ωy) : |py| ≤ 1}
L3 = {(pz, vz) : |pz| ≤ 2.5}

(3.28)

Since the subsystems do not have any common controls or disturbances, and L =⋂3
i=1P−1(Lzi), we can compute the full-dimensional R(t) and R̄(t) by reconstructing lower-

dimensional BRSs and BRTs. Again, without loss of generality, we set T = 0.
From the target set, we computed the 10D BRS and the BRT, R(s), R̄(s), s ∈ [−1, 0].

In the left subplot of Fig. 3.6, we show a 3D slice of the BRS and the BRT sliced at
(vx, vy, vz) = (−1.5,−1.8, 1.2), θx = θy = ωx = ωy = 0. The colored sets show the slice of the
BRSs R(s), s ∈ [−1, 0], with the times color-coded according to the legend. The slice of the
BRT is shown as the black surface; the BRT is the union of BRSs by Proposition 7.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 52

Figure 3.6: 3D slices of the 10D BRSs over time (colored surfaces) and the BRT (black
surface) for the Near-Hover Quadrotor. The slices are taken at the 7D points at (vx, vy, vz) =
(−1.5,−1.8, 1.2), θx = θy = ωx = ωy = 0 (Left) and (px, py, pz) = (−1.5, 0, 1), (vx, vy) =
(1.2,−0.6), ωx = ωy = −0.5 (Right).

The right subplot of Fig. 3.6 shows the BRS and the BRT in (θx, θy, vz) space, sliced
at (px, py, pz) = (−1.5, 0, 1), (vx, vy) = (1.2,−0.6), ωx = ωy = −0.5. To the best of our
knowledge, such a slice of the exact BRS and the BRT is not possible to obtain using
previous methods, since a high-dimensional system model like (3.25) is needed for analyzing
the angular behavior of the system.

3.2.2.3 Shared Control, Shared Disturbance

The system dynamics in this case can be written as:

ẋ1 = f1(x1, xc, u, d)

ẋ2 = f2(x2, xc, u, d)

ẋc = fc(xc, u, d)

(3.29)

When the SCS share control and disturbance components, the results from Section 3.2.2.1
carry over with some modifications. Theorems 1 and 2 need to be changed slightly, and the
reconstructed BRS is now an approximation conservative in the right direction.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 53

Proposition 3 Suppose that the full system dynamics ẋ = f(x, u, d) can be decomposed
into the form of (3.29). Moreover, suppose that the target set L can be written as a
union of the subsystem target sets then the maximal BRS is a superset of the union of
subsystems’ maximal BRSs, i.e.,

L = P−1(L1) ∪ P−1(L2) ⇒ R(t) ⊇ P−1(R1(t)) ∪ P−1(R2(t)) (3.30)

Proof: The proof follows similarly to that of Theorem 1, except that we can no longer
distribute disturbance in (3.15). This make the reconstructed BRS a conservative approx-
imation of the true BRS in the right direction. By conservative in the right direction,
we mean that a state x in the reconstructed BRS is guaranteed to be able to reach the
target. �

Proposition 4 Suppose that the full system dynamics ẋ = f(x, u, d) can be decomposed
into the form of (3.29). Moreover, suppose that the target set L can be written as
an intersection of the subsystem target sets then the minimal BRS is a subset of the
intersection of subsystems’ minimal BRSs, i.e.,

L = P−1(L1) ∩ P−1(L2) ⇒ A(t) ⊆ P−1(A1(t)) ∩ P−1(A2(t)) (3.31)

Proof: The proof of Proposition 4 follows that of Theorem 1, except that it involves
complements of sets instead. Again, the reconstructed BRS is a conservative approx-
imation of the true BRS in the right direction, meaning that a state x outside of the
reconstructed BRS is guaranteed to be able to avoid the target. �

Table 3.4 summarizes the results from this section.

Table 3.4: The BRS reconstruction from self-contained subsystems when they have shared
control and shared disturbance (Section 3.2.2.3)

Shared Controls Yes
Shared Disturbance Yes
Target Intersection Union
Recover Maximal BRS? No Yes, conservative
Recover Minimal BRS? Yes, conservative No
Result Proposition 4 Proposition 3



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 54

3.2.2.4 No Shared Control, Shared Disturbance

The system dynamics in this case can be written as:

ẋ1 = f1(x1, xc, u1, d)

ẋ2 = f2(x2, xc, u2, d)

ẋc = fc(xc, d)

(3.32)

When the SCS do not share control but share disturbance components, the results from
Section 3.2.2.3 still hold since the system dynamics structure is a special case of that in
Section 3.2.2.3. In addition, results from Section 3.2.2.2 hold with some modifications.
Propositions 1 and 2 need to be modified, and again the reconstructed BRS is now an
approximation conservative in the right direction.

Proposition 5 Suppose that the full system dynamics ẋ = f(x, u, d) can be decomposed
into the form of (3.32). Moreover, suppose that the target set L can be written as an
intersection of the subsystem target sets then the maximal BRS is a superset of the
intersection of subsystems’ maximal BRSs, i.e.,

L = P−1(L1) ∩ P−1(L2) ⇒ R(t) ⊇ P−1(R1(t)) ∩ P−1(R2(t)) (3.33)

Proposition 6 Suppose that the full system dynamics ẋ = f(x, u, d) can be decomposed
into the form of (3.29). Moreover, suppose that the target set L can be written as a
union of the subsystem target sets then the minimal BRS is a subset of the union of
subsystems’ minimal BRSs, i.e.,

L = P−1(L1) ∪ P−1(L2) ⇒ A(t) ⊆ P−1(A1(t)) ∪ P−1(A2(t)) (3.34)

The proofs of Propositions 5 and 6 follow that of Propositions 1 and 2 respectively, except
noting that we can no longer distribute disturbances in trajectories. Table 3.5 summarizes
the results from this section.

Table 3.5: The BRS reconstruction from self-contained subsystems when they have no shared
control but shared disturbance components (Section 3.2.2.4)

Shared Controls No
Shared Disturbance Yes
Target Intersection Union
Recover Maximal BRS? Yes, conservative Yes, conservative
Recover Minimal BRS? Yes, conservative Yes, conservative
Result Proposition 4, 5 Proposition 3, 6



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 55

3.2.2.5 Reconstruction of BRT

We now turn our attention to computing minimal and maximal BRTs. Intuitively, it may
seem like the results related to BRSs outlined in previous sections trivially carry over to
BRTs, and the relationship between BRSs and BRTs are relatively simple; however, this is
only partially true. The results related to BRSs presented so far in this paper only easily
carry over for BRTs if L = P−1(L1) ∪ P−1(L2) (see [75] for details).

However, if L = P−1(L1) ∩ P−1(L2), the BRT cannot be directly reconstructed from
lower-dimensional BRTs because when computing with BRTs, we lose information about
the exact time that a trajectory enters a set. For the intersection scenario, both subsystem
trajectories must be in the corresponding subsystem target sets at the same time. The time
intervals during which each subsystem trajectory is in Li may not overlap for the different
subsystems, making it harder to reconstruct the high-dimensional BRT from that of the
subsystems’. Instead, we provide a general method of obtaining the BRT that can also be
used for the intersection scenarios: we first compute the BRSs, and then take their union
to obtain the BRT. This allows us to reconstruct the BRT from subsystem decomposition
results developed for BRS in Sections 3.2.2.1 through 3.2.2.4.

In particular, we show that when the system dynamics do not have disturbance compo-
nents, R̄(t) =

⋃
s∈[t,T ]R(s), and Ā(t) =

⋃
s∈[t,T ]A(s) when A(s) 6= ∅ ∀s ∈ [t, T ]. On the

other hand, a conservative approximation is obtained when the disturbance is present in the
system. These results related to the indirect reconstruction of BRTs are given in Proposition
7 and Theorem 3

Proposition 7 Consider the full system dynamics ẋ = f(x, u, d). Then, the union of
maximal BRSs of the system is a superset of the BRT, i.e.,⋃

s∈[t,T ]

R(s) ⊆ R̄(t) (3.35)

In addition, if there is no disturbance in dynamics, i.e., d = 0, then the relation in (3.35)
holds with equality: ⋃

s∈[t,T ]

R(s) = R̄(t) (3.36)

Proof: We will first show the result in (3.36), i.e., when there is no disturbance in
dynamics. As per the definition of maximal BRS:

R(t) = {x : ∃u(·) ∈ UT
t , ξ(T ;x, t, u(·)) ∈ L}

If some state x is in the union
⋃
s∈[t,T ]R(s), then there is some s ∈ [t, T ] such that



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 56

x ∈ R(s). Therefore, the union can be written as⋃
s∈[t,T ]

R(s) = {x : ∃s ∈ [t, T ],∃u(·), ξ(T ;x, s, u(·)) ∈ L} (3.37)

Suppose x ∈
⋃
s∈[t,T ]R(s), then equivalently

∃s ∈ [t, T ], ∃u(·) ∈ U, ξ(T ;x, s, u(·)) ∈ L (3.38)

Using the time-invariance of the system ẋ = f(x, u, d), we can shift the trajectory time
arguments by t− s to get

∃s ∈ [t, T ], ∃u(·) ∈ U, ξ(T + t− s;x, t, u(·)) ∈ L (3.39)

Since s ∈ [t, T ]⇔ T + t− s ∈ [t, T ], we can equivalently write

∃s ∈ [t, T ],∃u(·) ∈ U, ξ(s;x, t, u(·)) ∈ L (3.40)

We can swap the expressions ∃s ∈ [t, T ] and ∃u(·) ∈ U without changing meaning since
both quantifiers are the same:

∃u(·) ∈ U,∃s ∈ [t, T ], ξ(s;x, t, u(·)) ∈ L (3.41)

which is equivalent to x ∈ R̄(t) by the definition of a maximal BRT.
When the disturbance is present in the dynamics, the union of the BRSs becomes an

under-approximation of the BRT in general. To show this, all arguments in the proof
for zero disturbance remain the same, except (3.37) no longer implies (3.41). Instead,
the implication is unidirectional:

∃s ∈ [t, T ], ∀d(·) ∈ ΓTt ,∃u(·), ξ(T ;x, s, u(·), d(·)) ∈ L
⇒ ∀d(·) ∈ ΓTt ,∃u(·),∃s ∈ [t, T ], ξ(s;x, t, u(·), d(·)) ∈ L

(3.42)

This is due to the switching of the order of the expressions “∃s ∈ [t, T ]” and “d(·) ∈
ΓTt ”. Therefore, the union of the BRSs becomes an under-approximation of the BRT,
a conservatism in the right direction: a state in the under-approximated BRT is still
guaranteed to be able to reach the target. �

Theorem 3 Consider the full system dynamics ẋ = f(x, u, d). Then, the union of
minimal BRSs of the system is a subset of the BRT, i.e.,⋃

s∈[t,T ]

A(s) ⊆ Ā(t) (3.43)



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 57

In addition, if ∀s ∈ [t, T ],A(s) 6= ∅, then⋃
s∈[t,T ]

A(s) = Ā(t). (3.44)

Proof: We first establish
⋃
s∈[t,T ]A(s) ⊆ Ā(t). As per the definition of a minimal BRS,

we have:
A(t) = {x : ∀u(·), ∃d(·) ∈ ΓTt , ξ(T ;x, t, u(·), d(·)) ∈ L}

If some state x is in the union
⋃
s∈[t,T ]A(s), then ∃s ∈ [t, T ] such that x ∈ A(s). Thus,

the union can be written as⋃
s∈[t,T ]

A(s) = {x : ∃s ∈ [t, T ], ∀u(·),∃d(·) ∈ ΓTt , ξ(T ;x, s, u(·), d(·)) ∈ L} (3.45)

Suppose x ∈
⋃
s∈[t,T ]A(s), then

∃s ∈ [t, T ],∀u(·),∃d(·) ∈ ΓTt , ξ(T ;x, s, u(·), d(·)) ∈ L (3.46)

Using the time-invariance of the system ẋ = f(x, u, d), we can shift the trajectory time
arguments by t− s to get

∃s ∈ [t, T ],∀u(·),∃d(·) ∈ ΓTt , ξ(T + t− s;x, t, u(·), d(·)) ∈ L (3.47)

Since s ∈ [t, T ]⇔ T + t− s ∈ [t, T ], we can equivalently write

∃s ∈ [t, T ],∀u(·),∃d(·) ∈ ΓTt , ξ(s;x, t, u(·), d(·)) ∈ L (3.48)

Let such an s ∈ [t, T ] be denoted s̄, then

∀u(·), ∃d(·) ∈ ΓTt , ξ(s̄;x, t, u(·), d(·)) ∈ L
⇒ ∀u(·),∃d(·) ∈ ΓTt ,∃s ∈ [t, T ], ξ(s;x, t, u(·), d(·)) ∈ L

(3.49)

By the definition of a minimal BRT, we have x ∈ Ā(t).
Next, given ∀s ∈ [t, T ],A(s) 6= ∅, we show

⋃
s∈[t,T ]A(s) ⊇ Ā(t). Equivalently, we

show
x /∈

⋃
s∈[t,T ]

A(s)⇒ x /∈ Ā(t) (3.50)

Given x /∈
⋃
s∈[t,T ]A(s), for all d(·) ∈ ΓTt , there exists some control ū(·) such that

∀s ∈ [t, T ], ξ(T ;x, s, ū(·)) /∈ L. Since otherwise, for all u(·) we would have a ŝ ∈ [t, T ]
and d̄(·) ∈ ΓTt such that

ξ(T ;x, ŝ, u(·), d̄(·)) ∈ L ⇒ x ∈ A(ŝ) (3.51)



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 58

which contradicts x /∈
⋃
s∈[t,T ]A(s). Using time-invariance of the system dynamics, we

have
∀d(·) ∈ ΓTt ,∃ū(·), ∀s ∈ [t, T ], ξ(T + t− s;x, t, ū(·), d(·)) /∈ L,

which is equivalent to

∀d(·) ∈ ΓTt ,∃ū(·),∀s ∈ [t, T ], ξ(s;x, t, ū(·)) /∈ L,

which in turn implies that x /∈ Ā(t). �

Remark 5 We note that Proposition 7 and the first part of Theorem 3 are known [219],
but we present them here in greater detail for clarity and completeness. The second part of
Theorem 3 is the main new result related to obtaining the BRT from BRSs.

Equipped with Proposition 7 and Theorem 3, we can now reconstruct the BRT of a
high-dimensional system using the BRSs of subsystems. The conservativeness or exactness
of the reconstructed BRT now depends on (a) whether the high-dimensional BRS itself can
be reconstructed exactly or not, and (b) whether the BRT can be reconstructed exactly from
the BRS or not. Table 3.6 summarizes these results.

Table 3.6: The BRT reconstruction from self-contained subsystems.

Shared Controls Yes No Yes No
Shared Disturbance No No Yes Yes
Target Intersection Union Intersection Union Intersection Union Intersection Union
Recover Maximal BRT?4 No Yes, cons Yes, cons Yes, cons No Yes, cons Yes, cons Yes, cons
Result: Maximal BRT N/A Thm 1, Prop 7 Prop 1, 7 Thm 1, Prop 7 N/A Prop 3, 7 Prop 5, 7 Prop 3, 7

Recover Minimal BRT?5 Yes, exact No Yes, exact Yes, exact Yes, cons No Yes, cons Yes, cons
Result: Minimal BRT Thm 2, 3 N/A Thm 2, 3 Prop 2, Thm 3 Prop 4, Thm 3 N/A Prop 4, Thm 3 Prop 6, Thm 3

Numerical Example: Dubins Car With Disturbance. Under disturbances, the Dubins
Car dynamics are given by  ṗx

ṗy
θ̇

 =

 v cos θ + dx
v sin θ + dy
ω + dθ


ω ∈ U , (dx, dy, dθ) ∈ D

(3.52)

with state x = (px, py, θ), control u = ω, and disturbances d = (dx, dy, dθ). The state
partitions are x1 = px, x2 = py, xc = θ. The subsystems states zi, controls, and disturbances

4If additionally the disturbance is zero in the cases when the subsystems do not have a shared disturbance
components, the conservative results become exact.

5The solution here can be found only if the minimum BRSs are non-empty for the entire time period.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 59

are

ż1 =

[
ẋ1

ẋc

]
=

[
ṗx
θ̇

]
=

[
v cos θ + dx
ω + dθ

]
ż2 =

[
ẋ2

ẋc

]
=

[
ṗy
θ̇

]
=

[
v sin θ + dy
ω + dθ

]
uc = ω = u

d1 = (dx, dθ), d2 = (dy, dθ)

(3.53)

where the overlapping state is θ = xc. We assume that each component of disturbance is
bounded in some interval centered at zero: |dx| ≤ d̄x, |dy| ≤ d̄y, |dθ| ≤ d̄θ. The subsystem
disturbances d1 and d2 have the shared component dθ.

We compute the BRT of Dubins car dynamics assuming T = 0. Fig. 3.7 compares
the BRT Ā(t), t = −0.5 computed directly from the target set in (3.19), and using our
decomposition technique from the subsystem target sets in (3.20). For this computation, we
chose d̄x, d̄y = 1, d̄θ = 5.

Since there is a shared component in the disturbances, the BRT computed using our
decomposition technique becomes an over-approximation of the true BRT. One can see the
over-approximation by noting that the black set is not flush against the red set, as marked
by the arrows in Fig. 3.7.

Fig. 3.8 shows the same computation with d̄θ = 0, so that subsystem disturbances
effectively have no shared components. In this case, one can see that the BRTs computed
directly in 3D and via decomposition in 2D are the same.

Figure 3.7: Minimal BRTs computed directly in 3D and via decomposition in 2D for the
Dubins Car under disturbances with shared components. The reconstructed BRT is an over-
approximation of the true BRT. The over-approximated regions of the reconstruction are
indicated by the arrows.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 60

Figure 3.8: Minimal BRTs computed directly in 3D and via decomposition in 2D for the
Dubins Car under disturbances without shared components. In this case, the BRT computed
using decomposition matches the true BRT.

Numerical Example: The 10D Near-Hover Quadrotor. We now show numerical re-
sults for the 6D Acrobatic Quadrotor, a system whose exact BRSs and BRTs were intractable
to compute with previous methods to the best of our knowledge. In [134], a 6D quadrotor
model used to perform backflips was simplified into a series of smaller models linked together
in a hybrid system. The Quadrotor has state x = (px, vx, py, vy, φ, ω), and dynamics

ṗx
v̇x
ṗy
v̇y
φ̇
ω̇

 =



vx
− 1
m
Cv
Dvx − T1

m
sinφ− T2

m
sinφ

vy
− 1
m

(mg + Cv
Dvy) + T1

m
cosφ+ T2

m
cosφ

ω

− 1
Iyy
Cφ
Dω − l

Iyy
T1 + l

Iyy
T2

 (3.54)

where x, y, and φ represent the quadrotor’s horizontal, vertical, and rotational positions,
respectively. Their derivatives represent the velocity with respect to each state. The control
inputs T1 and T2 represent the thrust exerted on either end of the quadrotor, and the constant
system parameters are m for mass, Cv

D for translational drag, Cφ
D for rotational drag, g for

acceleration due to gravity, l for the length from the quadrotor’s center to an edge, and Iyy
for moment of inertia. There are no disturbance in the dynamics.

We decompose the system into the following subsystems:

z1 = (px, vx, φ, ω), z2 = (py, vy, φ, ω) (3.55)

For this example we will compute A(t) and Ā(t), which describe the set of initial conditions
from which the system may enter the target set despite the best possible control to avoid the



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 61

Figure 3.9: Left: 3D positional slices of the reconstructed 6D BRSs at vx = vy = 1, ω = 0 at
different points in time. The BRT cannot be seen in this image because it encompasses the
entire union of BRSs. Right: 3D velocity slices of the reconstructed 6D BRSs at x, y = 1.5,
φ = 1.5 at different points in time. The BRT can be seen as the transparent gray surface
that encompasses the sets.

target. We define the target set as a square of length 2 centered at (px, py) = (0, 0) described
by L = {(px, vx, py, vy, φ, ω) : |px|, |py| ≤ 1}. This can be interpreted as a positional box
centered at the origin that must be avoided for all angles and velocities. From the target set,
we define l(x) such that l(x) ≤ 0⇔ x ∈ L. This target set is then decomposed as follows:

L1 = {(px, vx, φ, ω) : |px| ≤ 1}
L2 = {(py, vy, φ, ω) : |py| ≤ 1}

The BRS of each 4D subsystem is computed and then recombined into the 6D BRS. To
visually depict the 6D BRS, 3D slices of the BRS along the positional and velocity axes were
computed. The left image in Fig. 3.9 shows a 3D slice in (px, py, φ) space at vx = vy = 1, ω =
0. The yellow set represents the target set L, with the BRS in other colors. Shown on the
right in Fig. 3.9 are 3D slices in (vx, vy, ω) space at px, py = 1.5, φ = 1.5 through different
points in time. The sets grow darker as time propagates backward. The union of the BRSs
is the BRT, shown as the gray surface.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 62

3.3 Run-Time Reachability in Dynamic

Environments: Warm Start and Local Updates

Decomposition methods discussed in Section 3.2 allows us to significantly alleviate the com-
putational complexity of Hamilton-Jacobi reachability analysis. The HJI reachability anal-
ysis is based on assumptions about system dynamics, external disturbances, and the sur-
rounding environment. However in reality the dynamics, the disturbance bounds, or the
environment may differ from the assumptions, or they may simply change online as the
system is operating in its environment. In these situations the safety analysis must be up-
dated. Restarting the safety analysis, even with the decomposition methods, is typically
prohibitive for such run-time updates. In this section, we propose a method of “warm-start”
reachability, which uses a user-defined initialization (typically the previously computed so-
lution). By starting with a value function that is closer to the solution than the standard
initialization, the analysis may take fewer iterations. We additionally prove that warm-start
reachability will in general result in guaranteed conservative safety analyses and controllers
(i.e. the analysis over-approximates the set of states that are unsafe to enter). Moreover, if
the initialization is over-optimistic and therefore dangerous (i.e. the initialization underesti-
mates the set of states that are unsafe to enter), we prove that warm-starting is guaranteed
to converge exactly to the true solution (here we use “exact” to mean numerically convergent
[219]). In addition to these proofs, we provide several common problem classes for which we
can prove this exact convergence, and illustrate these ideas on some numerical examples.

Equipped with our results from warm-start reachability, we propose a novel, real-time
algorithm that only locally updates the warm-start value function in the parts of the en-
vironment where new information has been obtained, rather than everywhere in the state
space. This further reduces the computational complexity of the warm-start reachability,
which as we will show later, can enable updating the reachable sets during runtime on real
autonomous systems (Chapter 9).

3.3.1 Warm-Start Reachability

When there are minor changes to the problem formulation, such as changes to the model
parameters, external disturbances, or target sets, computing V (t, x) requires recomputing
the entire value function starting with the target function (V (T, x) = l(x)). Instead, we
initialize with a previous computed (converged) value function.

The theory in this section applies to BRTs with infinite-time horizons. Typically, for
the safety analysis of robotic systems, we are more interested in the avoid case (or minimal
BRT), where the system seeks to avoid an unsafe set of states forever, and will therefore be
the focus of this section.

We define this warm-starting function as k(x), with subzero level set K = {x : k(x) ≤
0}6. To develop the theory, we revisit the cost function (2.47) for the differential game

6Note that we are overloading the notation K in this section. It no longer represents the viability kernel,



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 63

corresponding to computing the BRT:

Jt(x, u(·), d(·)) = inf
τ∈[t,T ]

l(x(τ)),

To make the dependence on l explicit, we add the time as an argument to the cost function
and use l as subscript. We also make dependence on the trajectory explicit, which will later
be convenient in stating our key results. In particular, we rewrite the above cost function as

Jl(x, t, u(·), d(·)) = min
{

inf
τ∈[t,0)

l(ξu,dx,t (τ)), l(ξu,dx,t (0))
}
.

Recall that ξu,dx,t (τ) represent the state achieved at time τ by starting at initial state x and
initial time t, and applying input functions u(·) and d(·) over [t, τ ]. We similarly define the
value function corresponding to the cost function Jl as Vl(t, x). From the definition of the
value function, we have:

Vl(t, x) = inf
d(·)∈ΓTt

sup
u(·)

Jl(x, t, u(·), d(·))

= inf
d(·)∈ΓTt

sup
u(·)

min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), Vl(T, ξ
u,d
x,t (T ))

}
,

= inf
d(·)∈ΓTt

sup
u(·)

min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), l(ξu,dx,t (T ))
}
,

(3.56)

Vl(t, x) is the solution to the following HJI VI,

min{DtVl(t, x) +Hl(t, x, , Vl(t, x)), l(x)− Vl(t, x)} = 0 ∀x, t,
Hl(t, x, , Vl(t, x)) = max

u
min
d
〈DxVl(t, x), f(x, u, d)〉,

Vl(T, x) = l(x).

(3.57)

The converged value function is defined as V ∗l (x) = limt→−∞ Vl(t, x). When we warm-start
the computation of value function using k, the cost function is given by:

Jk(x, t, u(·), d(·)) = min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), k(ξu,dx,t (T ))
}
. (3.58)

Vk can be defined as in (3.56) with J = Jk, i.e

Vk(x, t) = inf
d(·)∈ΓTt

sup
u(·)

Jk(x, t, u(·), d(·))

= inf
d(·)∈ΓTt

sup
u(·)

min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), k(ξu,dx,t (T ))
}
.

(3.59)

Vk is the solution to the HJI VI defined similarly as in (3.57) with Vk(T, x) = k(x). The
converged value function is defined as V ∗k (x) = limt→−∞ Vk(t, x).

but rather the warm-starting target set.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 64

In this section we prove that the converged value function V ∗k (x) that is initialized as
above Vk(T, x) = k(x) will always be more negative than the value function V ∗l (x) achieved
by standard reachability (i.e. initialized as Vl(T, x) = l(x)). For the case of avoiding an
unsafe set, this means that the relationship between the functions’ BRTs (i.e. subzero level
sets) is V∗k ⊇ V∗l . In other words, V∗k is a conservative over-approximation of V∗l . We will
prove that for certain conditions (i.e. when k(x) ≥ V ∗l (x)), we can guarantee the resulting
value function and BRT will be exact.

3.3.1.1 Conservative Warm-Start Reachability

If [Vk(T, x) = k(x)] ≤ V ∗l (x), a contraction mechanism is required to raise V ∗k (x) towards
the true solution V ∗l (x). Recall the HJI VI from (3.57). Contraction may happen naturally,
when the left hand side of the minimization (the HJI PDE) “pulls the system up” due to
the Hamiltonian. However, there are no guarantees that this contraction will happen, and
the new value function may get stuck in a local solution, V ∗k (x) ≤ V ∗l (x). This will result in
a conservative BRT.

Theorem 4 For all initializations of Vk(T, x) = k(x), the resultant value function will
be a conservative approximation of the true value function,i.e.,

Vk(t, x) ≤ Vl(t, x), ∀x, t < T

Proof: We prove that Vk(t, x) ≤ Vl(t, x) for two cases, (a) k(x) < l(x) and (b)
k(x) ≥ l(x).

(a) k(x) < l(x) For ∀x, t < T , let Vl(t, x) be defined as (3.56) and Vk(t, x) be defined

as (3.59). At t = T , we have
[
Vk(T, x) = k(x)

]
<
[
l(x) = Vl(T, x)

]
⇒ Vk(T, x) <

Vl(T, x). For any t < T :

Vk(x, t) = inf
d(·)∈ΓTt

sup
u(·)

min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), k(ξu,dx,t (T ))
}
,

≤ inf
d(·)∈ΓTt

sup
u(·)

min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), l(ξu,dx,t (T ))
}
,

= Vl(t, x).

(3.60)

The second inequality follows from the fact that k(x) < l(x) ∀x ∈ Rnx. Hence, ∀t, x, we
have Vk(t, x) ≤ Vl(t, x). Finally, t→ −∞, we have V ∗k (x) ≤ V ∗l (x).

(b) k(x) ≥ l(x) When t = T ,
[
Vk(T, x) = k(x)

]
≥
[
l(x) = Vl(T, x)

]
. For a time instance

t = T−,



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 65

Vk(t, x) = inf
d(·)∈ΓTt

sup
u(·)

min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), k(ξu,dx,t (T ))
}

= min{l(ξu,dx,t (T−)), k(ξu,dx,t (T )}
= l(ξu,dx,t (T−)) = Vl(t, x).

(3.61)

We can re-write (3.56) and (3.59) by replacing T by T−. The rest follows from proof of
case (a). Here T− implies an infinitesimally small change in time and we are effectively
computing Vk(T, x

−) = min(k(x), l(x)) and treating Vk(T, x) = Vk(T, x
−). One could

derive the same result by considering Vk(T, x) = min(k(x), l(x)). �

In other words, the converged warm-starting solution will never be more conservative
than the initialization, and at least as conservative as the exact solution. We now present a
numerical example that uses the result in Theorem 4 to efficiently update the reachable set
as the problem parameters change.

Numerical Example: Double Integrator. Double integrator is a canonical benchmark-
ing example in control theory. Its system dynamics are:

ẋ =

[
ṗ
v̇

]
=

[
v + d
ub

]
, (3.62)

with states position p and velocity v, where u ∈ [−1, 1] is acceleration. By default the
disturbance is d = 0, and there is a default model parameter of b = 1. In later examples we
will change the disturbance bound and model parameter.

The target set is L = {(p, v) : |p| ≤ 2, |v| <∞}. Without loss of generality, we set T = 0.
This set and its corresponding target function l(x) can be seen in Fig. 3.10 in green. The
initial spatial gradients for V (0, x) = l(x) can be seen as black arrows. The Hamiltonian will
optimize over the inner product between these gradients and the flow field of the dynamics
f(x, u, d), seen as blue arrows. The converged BRT V∗ and value function V ∗(x) are in
cyan. If the system starts inside V∗, it will eventually enter the unsafe target set even while
applying the optimal control (i.e. decelerating/accelerating as much as possible).

We now change the problem parameters and apply warm-start reachability to get the
updated BRT. In practice we find that frequently the value function converges to the exact
solution even when initialized below the converged value function, i.e. when k(x) < V ∗l (x).
Fig. 3.11a demonstrates one such example. The warm-start function k(x) (seen in blue)
is initialized to be the original value function acquired when u ∈ [−.7, .7]. If the control
authority increases to u ∈ [−1, 1], standard reachability converges to the cyan value function
V ∗l (x). In black is the value function under V ∗k (x) that was initialized by k(x) instead of
l(x). Convergence occurs due to the Hamiltonian in (3.57) contracting the value function
until the solution has been reached.

To find a result that does not converge exactly and instead results in a conservative
solution, we initialize with k(x) < V ∗l (x) that has incorrect gradients everywhere, as shown
in blue in Fig 3.11b. This is a fairly unrealistic initial estimate for the true value function,



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 66

Figure 3.10: Visualization of the numerical example using a double integrator model. The
target set L and corresponding function l(x) are in green. We initialize V (0, x) = l(x), and
update the function using (3.57) by optimizing over the inner product between the spatial
gradients (seen for V (0, x) as black arrows) and the system dynamics (whose flow field is
seen as blue arrows). The converged BRT V∗ and value function V ∗(x) are in cyan.

as as the subzero level set K is the entire state space. As the Hamiltonian contracts the
function, convergence occurs at a local solution when the gradients of the value function
approach zero. In black we see that V ∗k (x) < V ∗l (x), and the BRT V∗k is the entire state
space.

In Fig. 3.11c we initialize the warm-starting function as [Vk(x, 0) = k(x)] = 0 (blue) so
that k(x) ≥ V ∗l (x) for a subset of the state space. Where k(x) ≥ V ∗l (x) convergence is nearly
exact (black), with slight conservativeness introduced at the boundary where k(x) = V ∗l (x).
Where k(x) < V ∗l (x) the warm-start solution remains flat at V ∗k (x) = 0. The resulting BRT
V∗k is a slight over-approximation of V∗l .

Though we are able to find cases that lead to conservative results, these cases are hard
to come by. In almost all initializations the correct value function was achieved exactly. Fig.
3.11d demonstrates this by initializing Vk with randomly spaced and sized circles. Similar
exact results were found for a variety of system dynamics and problem formulations.

Numerical Example: The 10D Near-Hover Quadrotor. The strength of warm-
starting in reducing computation time is best seen in high-dimensional examples. In this
example we perform reachability analysis to provide safety guarantees for a 10D nonlinear
near-hover quadcopter model. When the quadcopter experiences changes to its constraints
or dynamics (e.g. changes in mass or disturbances), it must update its safety guarantees
appropriately.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 67

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

a) conservative initialization, 
exact results

b) conservative initialization, 
conservative results

c) mixed initialization, 
conservative results 

d) random initialization, 
exact results 

-10 0 10
-10

-5

0

5

10

Figure 3.11: The top row shows the target sets and backward reachable tubes, which are the
subzero level sets of the target and value functions (bottom row). For all examples shown,
green is the target set and function, cyan is the true BRT and converged value function,
blue is the warm-start initialization, and black is the warm-start converged value function.
(a) conservative warm-start initialization that converges exactly. (b) somewhat unrealistic
conservative warm-start initialization that gets stuck in a local solution and results in a
conservative value function (K and V∗k are not visualized because they include the entire
state space). (c) initializing at zero everywhere (K not visualized because it includes the
entire state space) results in a slightly conservative BRT. (d) to demonstrate how well this
algorithm works in practice, we initialize with the complement of random circles, resulting
in exact convergence.

The dynamics of the 10D quadrotor are given by (3.25). The parameters d0, d1, n0, kT ,
as well as the control bounds U that we used were d0 = 10, d1 = 8, n0 = 10, kT =
4.55, |ux|, |uy| ≤ 10 degrees, 0 ≤ uz ≤ 2g. As discussed in Section 3.2.2.2, we can decompose
this system into two 4D systems and one 2D system.

In this example the initial mass is m = 5 and initial disturbances are |dx|, |dy| ≤ 1, |dz| ≤
1. As the quadcopter is flying, the mass increases to m = 5.25 (say, due to rain accumulation
or picking up a package), effectively decreasing the control bounds. In addition, disturbance
bounds go up: |dx|, |dy| ≤ 1.5. In this scenario we can warm-start from the previously
computed value function to update the safety guarantees exactly. The value function con-
verges to the true solution (max error of 0.189 in px, py and 0.003 in pz) in 66 steps (2.8
hours) instead of 87 steps (3.65 hours) for standard reachability. An important aspect of
warm-starting is that even before convergence, every iteration of dynamic programming will
provide a safer and more accurate value function, continuously bringing the system closer to



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 68

the true safety guarantees.
If the mass and disturbances instead go down (say, to m = 4.8, |dx|, |dy| ≤ .95), we can

guarantee that the warm-start solution will at best be exactly the new solution, and at worst
will be a conservative solution. As demonstrated in the previous example, in practice we
almost always converge to the correct solution, and this 10D example converges correctly as
well (max error of 2.7e − 05 in the px, py subsystems and .074 in the pz subsystem). Our
warm-starting method took 48 steps, compared to 50 for standard reachability. Though
warm-starting does not provide much computational benefit in this case, every iteration
toward convergence provides a guaranteed safe over-approximation of the BRT, which is not
true for standard reachability.

3.3.1.2 Exact Warm-Start Reachability

In the case in which k(x) ≥ V ∗l (x), we are additionally guaranteed to recover the exact
solution.

Theorem 5 If we warm-start with Vk(T, x) = k(x), such that ∀x k(x) ≥ V ∗l (x), then
the resultant value function will converge to the true value function, i.e.,

V ∗k (x) = V ∗l (x)

Proof: We will first show that if ∀x k(x) ≥ V ∗l (x), we have,

Vk(t, x) ≥ V ∗l (x) ∀x, t < T (3.63)

To prove this result, let us consider k′(x) = V ∗l (x). For t < T , using dynamic program-
ming we have,

Vk′(t, x) = inf
d(·)∈ΓTt

sup
u(·)

min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), Vk′(T, ξ
u,d
x,t (T ))

}
,

= inf
d(·)∈ΓTt

sup
u(·)

min
{

inf
τ∈[t,T )

l(ξu,dx,t (τ)), k′(ξu,dx,t (T ))
}
.

(3.64)

For any t < T , we can follow the same logic as in (3.60). Hence, ∀x, t, we have
Vk′(t, x) ≤ Vk(t, x). Moreover, since Vk′(T, x) = V ∗l (x), we know that Vk′(t, x) =
V ∗l (x) ∀t since V ∗l (x) is the converged value function corresponding to l(x). Hence,
Vk(t, x) ≥ V ∗l (x) ∀x, t < T . Since this holds for all time, it also holds for t → −∞:
V ∗k (x) ≥ V ∗l (x).



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 69

To prove Theorem 5, we have ∀x,

V ∗k (x) ≤ V ∗l (x) (Theorem 4)

V ∗k (x) ≥ V ∗l (x) (Equation (3.63))

⇒ V ∗k (x) = V ∗l (x)

(3.65)

�

Numerical Example: Double Integrator. Though in general we may not know if
k(x) ≥ V ∗l (x), there are some cases in which this can be proved, and therefore the exact so-
lution can be recovered. For all following examples, V ∗l (x) is the original value function and
V∗l is the corresponding BRT acquired from standard reachability using the double integrator
example introduced in Section 3.3.1.1. We introduce several changes to the problem formu-
lations, resulting in a new V ∗l′ (x),V∗l′ acquired from standard reachability. Finally, V ∗k (x),V∗k
are the value function and BRT acquired by warm-starting with k(x) = V ∗l (x) with the
changed problem formulation. We further show what happens when the conditions that lead
to exact results are reversed. In these cases we cannot guarantee exact convergence, but can
guarantee that in each iteration the function will either reduce conservativeness or remain in
a local solution (i.e. k ≤ Vk(t, x) ≤ V ∗l (x) ∀x, t). We show in Table 3.7 a time comparison for
each example to standard and discounted reachability, shown both in runtime and number
of iteration steps. For the exact cases we find that warm-starting is consistently faster. For
comparison to discounted reachability, we used a discount factor of 0.999 and annealed to a
discount factor of 1 once convergence was reached (see [13] for details).

(a) Changing Target Set: When the target set increases (L′ ⊇ L), setting the initializa-
tion to the previously converged value results in [k(x) = V ∗l (x)] ≥ V ∗l′ (x) and therefore exact
convergence is guaranteed. We demonstrate this in Fig. 3.12a, where the target sets are in
green (solid for L, dashed for L′). When warm-starting from the original BRT V∗l (cyan),
we are able to recover the new BRT V∗l′ (red) exactly, resulting in V∗k (black). We similarly
show the reverse case for a decreasing target set in Fig. 3.12b.

(b) Changing Control Authority: In many applications the control authority can change
over time. This can happen because of several reasons; for example, increasing the mass of
a quadrotor leads to a reduction in its effective control authority. We can explicitly modify
U when there is a change in the control bounds or in a model parameter which updates the
effective control authority. When the control space is decreased, i.e. U ′ ⊆ U , initializing with
the previously converged value function will lead to [k(x) = V ∗l (x)] ≥ V ∗l′ (x) and therefore
exact convergence is guaranteed.

To demonstrate this case of reduced control authority we vary the parameter b in the sys-
tem model (3.62). When b decreases, the effective control authority decreases. In Fig. 3.12c
we compute the value function for b = 1 (cyan). We then compute the value function for
b = .8 (red). Finally, we warm-start from the original cyan value function and reach the



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 70

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

e) increasing disturbance authority

a) increasing target set

c) decreasing control authority

-10 -5 0 5 10
-10

-5

0

5

10

f) decreasing disturbance authority

b) decreasing target set

-10 0 10
-10

-5

0

5

10

d) increasing control authority

-10 0 10
-10

-5

0

5

10

Larger Target Set

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

-10 0 10
-10

-5

0

5

10

Figure 3.12: For all examples shown, the region between the green lines is the target set.
Similarly cyan marks the boundary of the original BRT, red marks the BRT based on new
conditions, and black is the boundary of the warm-start converged BRT. The left column
shows cases in which the exact solution (red) can be achieved by warm-starting (black) from
a previous solution (cyan). The right column shows cases in which warm-starting (black) is
guaranteed to at worst remain at the initialization (cyan) or at best will achieve the exact
solution (red). In practice we generally achieve the exact solution.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 71

new red value function exactly, as shown in black. We similarly show the reverse case for an
increasing control authority in Fig. 3.12d.

Table 3.7: Runtime analysis for reachability methods as the problem parameters change.
We compare standard reachability, warm-start formulation, and discounted reachability for-
mulation [13]. We compare both the runtime and the number of iteration steps.

Standard Warm-Start Discounted
a) Increasing L (exact) 6.4s, 115 steps 6.0s, 109 steps 12.5s, 231 steps

b) Decreasing L (conserv) 6.0s 110 steps 9.3s, 169 steps 21.2s, 385 steps

d) Decreasing U (exact) 6.5s, 124 steps 6.0s, 111 steps 20.3s, 374 steps

e) Increasing U (conserv) 6.8s, 124 steps 6.1s, 111 steps 20.5s, 374 steps

c) Increasing D (exact) 21.4s, 311 steps 7.7s, 112 steps 13.3s, 195 steps

d) Decreasing D (conserv) 6.0s, 110 steps 11.7s, 213 steps 19.0s, 346 steps
e) 10D quad, increasing m, D (exact) 3.7hr, 86 steps 2.8hr, 65 steps >18 hr, >401 steps
f) 10D quad, decreasing m, D (conserv) .68hr, 50 steps .67hr, 48 steps 1.12hr, 82 steps

(c) Changing Disturbance Authority: Following similar logic to the previous example,
we find that increasingD to a largerD′ has the same effect on the value function as decreasing
U to U ′. To demonstrate this, we change the disturbance bounds in our model (3.62). In
Fig. 3.12e we compute the value function for d ∈ [0, 0], shown in blue. We then compute the
value function for d ∈ [−4, 4]. Finally, we warm-start from the original cyan value function
and reach the new red value function exactly, as shown in black. We similarly show the
reverse case for a decreasing disturbance authority in Fig. 3.12f.

3.3.2 Local Update of Backward Reachable Tubes

In the last section, we discussed how warm-starting the value function computation might
lead to a faster convergence of the value function; however, the value function is still com-
puted over the entire state space. In this section, we present a more practical algorithm that
leverages the advantages of warm-starting by computing and updating the value function
only locally at the states for which new information has been obtained since the last value
function computation.

Similar to the last section, we will focus on computing infinite-horizon minimal BRTs,
which are often desirable in safety-critical applications. Additionally, we will specifically
focus on the scenarios, where the target set changes during the runtime and we are interested
in computing the updated minimal BRT. This scenario is particularly common in robotic
applications, where for example, the robot might have discovered a new obstacle in the
environment and hence may want to update its safe set.

Suppose that the target set of the system changes from L to L′, and we warm-start the
value function computation with k(x). Now, instead of updating the value function using
the HJI VI everywhere, at each step of the HJI VI iteration, we maintain a list of states Q at



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 72

which the value function needs to be updated in light of the new environment observations.
Q is initialized to be the set of states which are recently included/excluded from the target
set, i.e., Q = L − L′. Here, − represents the set difference between L and L′. Since the
change in the value of the states in Q (compared to V ∗l (x)) would also cause a change in
the value of the neighboring states, N (Q), we also add them to Q. Thus, Q = Q ∪ N (Q).
Typically, the value function in the HJI VI is computed by discretizing the state-space into
a grid and solving the VI over that grid (see Sec. 2.3.3 for example). In such cases, the
spatial derivative of the value function (required to compute the Hamiltonian in the HJI VI
in (3.57)) is computed numerically using the neighboring grid points. This spatial derivative
is precisely responsible for the propagation of the change in the value function at a state to
its neighboring states. In such cases, N (Q) might represent the neighboring grid points used
to compute the spatial derivative of the value function for the states in Q; however, other
neighboring criteria can be used.

Once the neighbors are added to Q, the value for all the states in Q is initialized using
V ∗l (x). There are multiple good candidates for warm-starting the value function here. One
possibility is to initialize the computation with the previously converged value function, i.e.,
k(x) = V ∗l (x). Another good candidate for initialization is:

k(x) =

{
l′(x), if x ∈ L − L′

V ∗l (x), otherwise
(3.66)

where L′ = {x : l′(x) ≤ 0}. Intuitively, instead of initializing the value function with V ∗l (x) or
l′(x) everywhere in the state space, (3.66) initializes it with the last computed value function
for the states where no new information has been obtained since the last computation, and
with l′(x) only at the states which were previously assumed to be unsafe but are actually
safe, or vice versa. This leads to a much faster computation of the BRT because the value
function needs to be updated only for a much smaller number of states that are newly found
out to be safe (or unsafe). At all the other states, the value function is already almost
accurate and only small refinements are required. Given k(x), the value of the states in Q
is updated using the HJI VI in (3.57) for some time step ∆T . Again, this computation is
much faster than a classical HJI VI computation since it is typically performed for many
fewer states. Next, we remove all those states from Q whose value function hasn’t changed
significantly over this ∆T , as these states won’t cause any change in the value function for
any other state. The neighbors of the remaining states are next added to Q and the entire
procedure is repeated until the value function is converged for all states. We outline this
procedure in Algorithm 1.

Note that Algorithm 1 still maintains the conservatism of the safe set since it is just a
different computational procedure for computing the warm-started value function. Hence
the results in Theorem 4 and Theorem 5 can still be used to establish the conservatism (or
exactness) of the value function obtained using local update procedure. The key intuition
behind the local update algorithm is that if we warm-start with a previously converged value
function in the parts of the state space where the target function has not changed, then the



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 73

Algorithm 1: Local update methods to compute the Minimal BRT

1 Q ←− L−L′: Initialize list of states for which the value function should be updated
2 Q ←− Q∪N (Q): Add neighboring states to Q
3 Warm-start the value for states in Q, V (0,Q), using k(x)
4 Vold ←− V (0,Q): The last computed value function for states in Q
5 while Q is not empty do
6 Vupdated ←− Update the value function Vold for a time step ∆T
7 ∆V = ‖Vupdated − Vold‖: Change in the value function
8 Qremove ←− {x ∈ Q : ∆V = 0}: States with unchanged value
9 Q ←− Q−Qremove: Remove states with unchanged value

10 Q ←− Q∪N (Q): Add neighboring states to Q
11 Vold ←− Vupdated

HJI VI would not induce any change in the value function at a state until the value function
has been changed for some state in the neighborhood of that state. Thus, it is sufficient
to start the warm-start computation only at the states which have recently been included
in/excluded from the target set. This, somewhat straightforward, modification in the warm-
start reachability leads to significant savings in computation. Table 3.8 summarizes the
computation time for the BRT for the 3D Dubins car model with dynamics (3.52). Warm-
start reachability is able to compute the BRT 3 times faster than a standard HJI VI. The
computed solution is almost exact with only 0.41% conservative volume. Local update
method is able to reduce the computation time of the warm-start method by a factor of 13,
leading to a 40 times faster computation of the BRT compared to the standard reachability
initialization.

Table 3.8: Numerical comparison of average compute time and relative volume of over-
conservative states for different BRS update methods. Local updates compute an almost
exact BRS in ≈ 1 second, and are significantly faster than both the standard HJI VI and
the warm-start reachability.

Metric Standard HJI VI Warm-Start Reachability Local Update
Average Compute Time (s) 35.97 12.16 0.94
% Over-conservative States 0.0 0.41 0.39

3.3.2.1 Practical Considerations

When implementing a safety framework on real systems, there are many practical consider-
ations that should be acknowledged. Below we discuss some of the main practical consider-
ations we think are worth noting when using our proposed framework:



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 74

• Since the value function is computed over a discretized state space, it might incur some
numerical inaccuracies. Using a finer discretization and a higher order approximation
for the spatial derivative is often helpful in alleviating these issues; however, the com-
putation time also increases consequently. In our experience, we have found the 3rd or
higher order approximations schemes to work pretty well.

• Since we are interested only in the zero level of the value function for the BRT compu-
tation, we can obtain further computational saving by leveraging narrow-band level-set
methods [9] within the local update method proposed here. Narrow-band methods up-
date the value function only around the zero level set boundary, thus reducing the
computational complexity of the value function. One can use the local update method
only around the zero-level, thus combining the advantages of both methods.

3.4 The Berkeley Efficient API in C++ for Level Set

Methods (BEACLS)

In the previous sections, we have seen how warm-starting the reachability computation
and/or locally updating the reachable set can lead to a significant decrease in the compu-
tation time. However, even with these algorithms, reachability analysis is not suitable for
real-time applications. For example, even for a 3D system, we still need ≈ 1 second to up-
date the reachable set (Table 3.8), which is still not enough for highly dynamic autonomous
systems which might require us to update the reachable sets at the order of milliseconds.
To meet these requirements, algorithmic advancements alone are not sufficient, we also have
to leverage computational advances. In this section, we introduce BEACLS, a C++-based
reachability toolbox that can leverage GPU parallelization to improve computation speed
of HJ reachability by nearly 100 times compared to existing MATLAB implementations.
BEACLS combined with local update allows us to update the reachable set of 3D Dubins
car within 10ms for instance! As we will see later, this enables us to use HJ reachability to
maintain safety guarantees in dynamic environments, which otherwise is very challenging.
Similarly, we need efficient computational tools for HJ reachability for large-scale autonomous
systems, involving, for example hundreds to thousands of robots (see Chapter 4 for instance).

BEACLS is an implementation of existing Matlab toolboxes (Level set toolbox [219]
and helperOC library [286]) in C++ and CUDA. However, it has two key features that
allow enable parallel computation of reachable sets: (a) approximate computation of the
dissipation term in Lax-Friedrichs scheme and (b) splitting of multi-dimensional grids into
smaller chunks.

As with the level set toolbox [219], the Hamiltonian is approximated using the Lax-
Friedrichs scheme while solving PDEs and VIs. The Lax-Friedrichs scheme stabilizes the
numerical integration by adding a dissipation term into the approximation of the Hamiltonian



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 75

[239]. For example, in a 2D state space, this is written as follows:

Ĥ = H(
V̂ −x + V̂ +

x

2
,
V̂ −y + V̂ +

y

2
)− αx( V̂

+
x − V̂ −x

2
)− αy(

V̂ +
y − V̂ −y

2
) (3.67)

where V̂ −x , V̂
+
x , V̂

−
y , V̂

+
y are respectively left and right finite difference approximations of

partial derivatives of V , and αx, αy are dissipation coefficients, given by

αx = max
λ
|∂H(x, λ)

λx
|, αy = max

λ
|∂H(x, λ)

λy
|, (3.68)

The above formulas trivially generalize to higher-dimensional state spaces. Note that dissi-
pation coefficients α require maximization of the costate λ (or gradient of the value function)
over the entire grid. Previously, in the Matlab implementation, the costate is stored over the
entire grid to take advantage of Matlab’s accelerated vectorized computations at the cost of
memory usage. Thus, previously maximizing over λ was trivial.

In BEACLS, we chose to only store the value function during computations to greatly
improve space efficiency, since each component of the costate would require the same amount
of memory as the value function itself. This optimization is important for computations using
CPU due to the use of lower-level cache and for computations using GPU due to the lax
of video random-access memory (VRAM) as described later. However, since λ is not stored
over the entire grid, maximizing over λ would require a second pass over the entire grid,
which would drastically reduce computation speed. To address this, we observed that α
typically does not change quickly, which allows us to use the value of α from the previous
integration time step. We have observed no stability issues in our computations. In the
worst case, instabilities can typically be resolved by scaling α by a constant less than 1.

In place of the native MATLAB functionalities and toolboxes used by the level set toolbox
and helperOC library, BEACLS uses several open source C++ libraries. These libraries
include MATIO for loading and saving .mat files which store value functions and trajectories,
OpenCV for visualizations, and several others for computation, as depicted in Fig. 3.13.

The another key feature that allows parallelized computation is the splitting of multi-
dimensional grids into smaller chunks. These smaller chunks fit into the cache of multi-core
CPUs, in which each CPU core only has access to its own cache. The chunks are much
larger when computation is done on multiple GPUs; in this case, the chunks need to fit into
the VRAM of each GPU. Fig. 3.14 depicts the general procedure of splitting up a grid into
appropriate chunks, computing partial derivatives, and recombining the chunks. A few other
notable features are as follows:

• To allow parallel computation, the chunks have sufficient overlap to allow correct gra-
dient computations at the boundaries of each chunk.

• Unlike the MATLAB libraries, the computational grid is not explicitly stored in a
multi-dimensional array, an implementation that is necessary to improve computation



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 76

Problem
definition in

Matlab

helperOC

Matlab

Matlab implementation

helperOC in C++

Level set 
methods in C++

MATIO

HDF5

C++ standard 
library

OpenCV

Boost

Problem 
definition in 

C++

toolboxLS

BEACLS 
(C++ implementation)

One-to-one 
correspondence

Problem 
definition

Optimal control 
wrapper library

Numerical methods 
for solving PDEs

3rd party and 
native libraries

Figure 3.13: Correspondence between the Matlab and BEACLS implementations of reacha-
bility toolbox.

𝑉𝑁

𝑉𝑘

𝑉1

∇𝑛𝑉𝑘

∇2𝑉𝑘

∇1𝑉𝑘

𝐻𝑘 𝑉𝑘 𝑡 − Δ𝑡, 𝑥

𝑉 𝑡, 𝑥

𝑉2

𝑉 𝑡 − Δ𝑡, 𝑥

Figure 3.14: BEACLS splits multi-dimensional arrays representing the value function V (t, x)
into appropriate overlapping chunks according to processor configuration. Numerical gra-
dients and the Hamiltonian values of each chunk are computed in parallel to produce the
updated value function at the previous time step (in the case of backward reachability). Fi-
nally, the chunks are combined together to form the updated value function over the entire
computational domain.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 77

time through vectorized computations in MATLAB. Instead, BEACLS stores only the
value function (and not the grid) in multi-dimensional arrays, which greatly reduces
memory usage.

Figure 3.15 shows at a glance the computation times for implementations of the level
set methods used to solve a benchmark 3D HJI VI (different than the one presented in Sec.
3.3.2), which provides the BRS and the optimal trajectory for the system. The software im-
plementations are the MATLAB level set toolbox in [219], a C++ implementation of [219] in
BEACLS, and [286], and a Compute Unified Device Architecture (CUDA) implementation
of [219] and [286] in BEACLS with the C++ interface. The MATLAB and C++ implemen-
tations are run on a Core i7-5820K CPU, and the CUDA implementation was run on one or
two Geforce GTX Titan X GPUs. When run on two GPUs, BEACLS is approximately 100
times faster compared to the MATLAB implementation.

This improvement in computation time greatly facilitates case studies such as city-level
airspace design, which may involve testing different initial and goal positions at different
vehicle densities and wind speeds, as we demonstrate in Chapter 4. Trajectory planning
with 50 vehicles takes less than 2 minutes, compared to 27 minutes for a non-CUDA C++
implementation or 2.8 hours for the MATLAB implementation. For even larger-scale case
studies, a GPU-parallelized implementation such as BEACLS may be necessary to keep the
computation tractable. For example, in the study presented in Chapter 4 involving multiple
cities and 200 vehicles, computation for each vehicle was approximately 4 minutes on average
using two GPUs. This is because a much finer grid was needed to maintain positional
accuracy over a much larger geographical area. The entire simulation took approximately
13.3 hours. Extrapolating the computation time comparison in Fig. 3.15, even a non-CUDA
C++ implementation would take prohibitively long – approximately 10 days.

BEACLS, along with more detailed documentation, is available at the BEACLS website7.

3.5 Chapter Summary

This chapter introduce several algorithmic and computational frameworks to combat the ex-
ponentially scaling computational complexity of Hamilton-Jacobi reachability analysis. We
first present a method that decomposes a high-dimensional reachability problem into a num-
ber of small-dimensional reachability problems. These small dimensional reachable sets are
then projected back to the full state space and combined together to get the reachable set for
high-dimensional systems. We also present the conditions under which such decomposition
can be performed. Using the proposed method, we are able to compute the reachable sets
for some high-dimensional systems for the first time.

We then turn our attention to the scenarios where these reachable sets must be updated
during run-time due to potential changes in the problem parameters or due to new envi-
ronment information. We propose a method of warm-start reachability that can update

7 BEACLS website: https://github.com/HJReachability/beacls

https://github.com/HJReachability/beacls


CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 78

200.00

33.00

3.00 2.00

helperO
C in

 M
ATLAB

C++ in
 BEACLS

CUDA in
 BEACLS, 1

 G
PU

CUDA in
 BEACLS, 2

 G
PUs

Software implementation

0

50

100

150

200

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Figure 3.15: Summary of computation times for a benchmark 3D HJI VI. A 50-UAV simula-
tion takes less than 2 minutes with the CUDA implementation in BEACLS using two GPUs,
compared to 27 minutes with a non-CUDA C++ implementation in BEACLS or 2.8 hours
with helperOC and the level set toolbox in MATLAB.



CHAPTER 3. SCALING SAFETY ANALYSIS: ALGORITHMIC AND
COMPUTATIONAL FRONTS 79

reachable set faster compared to recomputing the reachable set from scratch by using a
smart initialization while still maintaining safety guarantees. Building upon the warm-start
reachability, we propose a method to locally update the reachable set in the regions of the
state space where new environment information has been acquired. As we will see in Chap-
ter 9, these methods will be crucial in maintaining safety guarantees when an autonomous
system operates in a priori unknown environment.

Finally, we present BEACLS, a C++-based computational tool for computing reachable
sets. BEACLS can leverage modern computational tools such as GPUs to parallelize the
reachable set computation, achieving a 100 fold speedup compared to state-of-the-art reach-
ability libraries. As we will see in Chapter 4, this allows us to develop highly scalable schemes
for provably safe trajectory planning for large scale, multi-vehicle systems.



80

Chapter 4

Provably Safe and Scalable
Multi-Vehicle Trajectory Planning

This chapter is based on the papers “Safe Sequential Path Planning of Multi-Vehicle Systems Under

Disturbances and Imperfect Information” [33], “Robust Sequential Path Planning Under Distur-

bances and Adversarial Intruder ” [73], and “Provably Safe and Scalable Multi-Vehicle Trajectory

Planning” [35] written in collaboration with Mo Chen, Jaime Fisac, and Claire Tomlin.

Recently, there has been an immense surge of interest in the use of unmanned aerial
systems (UASs) in urban environments. UASs have great potential in civil applications such
as package delivery, aerial surveillance, disaster response, among many others [289, 92, 20, 27,
44]. Unlike previous uses of UASs for military purposes, these civil applications will involve
unmanned aerial vehicles (UAVs) flying in urban environments, potentially in close proximity
of humans, other UAVs, and other important assets. As a result, government agencies
such as the Federal Aviation Administration (FAA) and National Aeronautics and Space
Administration (NASA) of the United States are urgently trying to develop new scalable
ways to organize an airspace in which potentially thousands of UAVs can fly simultaneously
in the same region [161, 250]. One essential question that needs to be answered for enabling
such applications is that of multi-vehicle trajectory planning: how a group of vehicles in
the same vicinity can reach their destinations while avoiding situations which are considered
dangerous, such as collisions? Providing an answer to the above question is the focus of this
chapter.

Trajectory planning is one of the core problems in robotics, and thanks to the ubiquity
of autonomous systems in industrial applications, a significant progress has been made on
this problem in the past two decades. Traditionally, the problem of trajectory planning has
been studied in the context of a single robot operating in a static environment. However
trajectory planning problem becomes significantly more complex for multi-robot systems,
since the robot’s success in safely completing its task is not only determined by its own
decisions, but also by the actions of other robots or agents present in its environment.
Safe decision making only becomes more complex when external disturbances and potential



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 81

adversarial agents are present in the environment.
One way to solve multi-vehicle trajectory planning problem is to assume no knowledge

about the intent or behavior of the other agents, and safeguard against all possible behaviors
of other agents. However, this leads to an overly pessimistic robot behavior and often results
into a “frozen” robot. In this chapter, we will focus on the cooperative trajectory planning
case, in which the multiple agents navigating the environment have the ability to share infor-
mation and compute a coordinated solution. Thus, individual agents (such as autonomous
mobile robots or vehicles) may forgo part or all of their decision authority in exchange
for the safety assurances obtained from coordination. We propose a Hamilton-Jacobi
reachability-based approach for safe cooperative trajectory planning for multi-
vehicle systems. Our approach guarantees both goal satisfaction and safety for
vehicles with general nonlinear dynamics while taking into account disturbances
and potential adversarial agents. Towards the end of this chapter, we will discuss
how to perform safe multi-vehicle trajectory planning when the vehicles are not necessarily
cooperative.

4.1 Related Work

Reactive Collision Avoidance Approaches. One popular class of approaches for multi-
vehicle trajectory planning is reactive feedback-based collision avoidance. Reactive methods
seek to achieve collision avoidance by implementing real-time decision rules for the different
agents based on their current state (or observations). These methods include those using
virtual potential fields [237, 83], which discourage collisions by modifying vehicle control
actions so that there is an effective repulsive force between the vehicles. Other methods
use velocity obstacles [113, 295, 305, 133], which anticipate the future positions of vehicles
based on their current speeds. Collision avoidance among vehicles with kinematics Dubins
Car dynamics has also been analyzed in [241], in which the authors propose reserving local
regions around each vehicle to allow for predetermined maneuvers; this framework is formal-
ized using a hybrid automaton. The authors of [310] proposed a Voronoi-based method that
guarantees collision avoidance under decentralized planning for holonomic vehicles. While
reactive methods provide computationally cheap feedback-based rules to resolve local con-
flicts, it is not usually possible to derive safety guarantees from them, at least without strong
assumptions on vehicle dynamics or control strategy.

Planning-Based Approaches. In contrast to reactive approaches, planning-based ap-
proaches explicitly reason about the future motion of all vehicles in the environment, which
is then used to plan collision-free trajectory for the vehicle. Many existing methods for path
planning come from the robotics literature; these methods are primarily based on building
probabilistic and sampling-based roadmaps [190], or leveraging differential flatness to plan in
a reduced state space [300, 213]. We will provide a more detailed overview of path planning
literature in robotics in Chapter 9.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 82

Path planning literature for multi-vehicle systems include methods for real-time trajec-
tory generation [197], for path planning for vehicles with linear dynamics in the presence of
obstacles with known motion [12], and for cooperative path planning via waypoints which do
not account for vehicle dynamics [51] or which indirectly account for dynamics via smoothing
through a mixed integer program [214]. Other related work include those which consider
only the collision avoidance problem without path planning. These results include those that
assume the system has a linear model [46, 268, 281], rely on a linearization of the system
model [212, 17], assume a simple positional state space [198], and many others [187, 156,
78]. However, scalable methods to flexibly plan provably safe and dynamically feasible tra-
jectories without making strong assumptions on the vehicles’ dynamics and other vehicles’
motion are still lacking.

The problem of trajectory planning and collision avoidance for safety-critical systems
that overcome some of the above limitations has been studied using Hamilton-Jacobi (HJ)
reachability analysis. In particular, a reach-avoid set is computed in the joint state-space of
all vehicles with the target and the obstacle sets being the intersection of individual target
and obstacle sets (projected to the full state space) respectively. Reachability analysis has
been successfully used in applications involving systems with no more than two vehicles [222,
97, 158, 43]. One of the main challenges of managing the next generation of airspace is the
density of vehicles that needs to be accommodated [250]. Such a large-scale system has a
high-dimensional joint state space, making a direct application of dynamic programming-
based approaches such as reachability analysis intractable.

Contributions and Chapter Organization

In this chapter, we propose the sequential trajectory planning (STP) method to tackle the
cooperative, multi-vehicle trajectory planning problem. Our approach can be best char-
acterized as a planning-based approach; however, it provides hard guarantees on both the
goal satisfaction and safety of all vehicles even in the presence of disturbances and a single
intruder vehicle that could potentially be adversarial. In addition, our method scales only
linearly with the number of vehicles when there is no intruder, and quadratically with the
number of vehicles when there is a single intruder. On a high level, STP assigns a strict
priority ordering to vehicles under consideration. Higher-priority vehicles plan trajectories
without accounting for lower-priority vehicles. Lower-priority vehicles treat higher-priority
vehicles as time-varying (or moving) obstacles. Under this assumption, time-varying HJ
reachability [57, 115] (also see Sec. 2.3.2) can be used to obtain optimal and provably safe
trajectories for each vehicle, starting from the highest-priority vehicle.

In a sense, the STP method reserves a portion of “space-time” in the airspace for each
vehicle. The reserved space-time portion is recorded so that lower-priority vehicles can take
it into account. Besides planning around the reserved space-time portions of higher-priority
vehicles, no other communication between the vehicles is needed at execution time, even
when disturbances and an intruder are present. Almost all computation is done offline to



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 83

produce a value function, corresponding to an appropriate differential game, for each vehicle.
The gradient of the value function can be stored in a look-up table, which is used online
to synthesize the optimal controller. Controller synthesis amounts to evaluating an analytic
expression, is the only online computation, and therefore can be done in real-time.

We formally state the problem of multi-vehicle trajectory planning in Section 4.2. We
discuss a HJ reachability-based algorithm for sequential trajectory planning in the presence
of disturbances but in the absence of an intruder in Section 4.3. Under the STP algorithm,
each vehicle declares a nominal trajectory which can be robustly tracked under disturbances.

In scenarios where there could potentially be single, possibly adversarial intruder in the
airspace, each vehicle needs extra space around other vehicles in order to be able to perform
avoidance maneuvers. Assuming the intruder may be present for some maximum duration,
we use use reachability analysis to determine precisely the amount of space-time needed for
each vehicle to be able to avoid the intruder under the presence of disturbances, making our
proposed method sufficiently robust to most practical scenarios. STP in the presence of a
single intruder is formally presented in Section 4.4.

4.2 Safe Multi-Vehicle Trajectory Planning

Consider N vehicles which participate in the STP process and denote these vehicles as the
STP vehicles Qi, i = 1, . . . , N . We assume their dynamics are given by

ẋi = fi(xi, ui, di), t ≤ tSTA
i

ui ∈ Ui, di ∈ Di, i = 1 . . . , N
(4.1)

where xi ∈ Rnxi represents the state of vehicle Qi, ui ∈ Ui the control of Qi, and di ∈ Di the
disturbance experienced by Qi. For convenience, we partition the state xi into the position
component pi ∈ Rnp and the non-position component hi ∈ Rnxi−np : xi = (pi, hi). Note that
here we are overloading the notation xi – it represents the state of Qi and not the state at
time i.

Each vehicle Qi has initial state x0
i , and aims to reach its target Li by some scheduled

time of arrival tSTA
i . The target in general represents some set of desirable states, for example

the destination of Qi. In some situations, we may find that it is infeasible for Qi to get to
Li at or before tSTA

i . Whenever unsure, we may first determine the earliest feasible tSTA
i for

the vehicle.
On its way to Li, Qi must avoid a set of static obstacles Ostatic

i ⊂ Rnxi . The interpretation
of Ostatic

i could be a tall building, a region around an airport, or any set of states that are
forbidden for each STP vehicle. In addition to the static obstacles, each vehicle Qi must also
avoid the danger zones with respect to every other vehicle Qj, j 6= i. The danger zones in
general can represent any joint configurations between Qi and Qj that are considered to be
unsafe. In this paper, we define the danger zone of Qi with respect to Qj to be

Zij = {(xi, xj) : ‖pi − pj‖2 ≤ Rc} (4.2)



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 84

whose interpretation is that Qi and Qj are considered to be in an unsafe configuration when
they are within a distance of Rc of each other. For concreteness, we will call Zij the collision
set, and if (xi, xj) ∈ Zij, then Qi and Qj are said to have collided. Note that there may
exist an inevitable danger zone given the position-based danger zone Zij (for example the
states from which wind can push an aerial vehicle into Zij irrespective of control applied by
the vehicle). Reachability analysis presented in this chapter by definition guarantees that
vehicles avoid such inevitable danger zones. Finally, if the vehicles are not particles (as often
is the case), the danger zone Zij can be defined to include the effective sizes of the vehicles.

Given the set of STP vehicles, their targets Li, the static obstacles Ostatic
i , and the

vehicles’ danger zones with respect to each other Zij, we would like, for each vehicle Qi,
to synthesize a controller which guarantees that Qi reaches its target Li at or before the
scheduled time of arrival tSTA

i , while avoiding the static obstacles Ostatic
i as well as the danger

zones with respect to all other vehicles Zij, j 6= i. In addition, we would like to obtain the
latest departure time tLDT

i such that Qi can still arrive at Li on time.
Note that as long as it is feasible a vehicle to reach its target in the absence of all

other vehicles, producing a safe and timely trajectory is always feasible using our proposed
algorithms, since the latest departure time tLDT

i is obtained. Indeed, if the environment is
expected to be crowded, a vehicle can simply depart early enough (and potentially arrive
very early) to “avoid traffic”. In practice, if departing at or before the latest departure time
tLDT
i is not possible, then arriving on time is infeasible.

4.3 Sequential Trajectory Planning

In general, the optimal trajectory planning problem posed in Sec. 4.2 must be solved in
the joint space of all N STP vehicles. However, due to the high joint dimensionality, a
direct dynamic programming-based solution is intractable. Therefore, we propose to assign
a priority to each vehicle, and perform STP given the assigned priorities. Without loss of
generality, let Qj have a higher priority than Qi if j < i. Under the STP scheme, higher-
priority vehicles can ignore the presence of lower-priority vehicles, and perform trajectory
planning without taking into account the lower-priority vehicles’ danger zones. A lower-
priority vehicle Qi, on the other hand, must ensure that it does not enter the danger zones
of the higher-priority vehicles Qj, j < i; each higher-priority vehicle Qj induces a set of
time-varying obstacles Oji (t), which represents the possible states of Qi such that a collision
between Qi and Qj could occur.

It is straight-forward to see that if each vehicle Qi is able to plan a trajectory that takes
it to Li while avoiding the static obstacles Ostatic

i and the danger zones of higher-priority
vehicles Qj, j < i, then the set of STP vehicles Qi, i = 1, . . . , N would all be able to reach
their targets safely. With the STP scheme, the additional structure provided by the vehicle
priorities allows us to reduce the complexity of the joint trajectory planning problem. As we
will see, under the STP scheme, trajectory planning can be done sequentially in descending
order of vehicle priority in the state space of only a single vehicle. Thus, STP provides



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 85

a solution whose complexity scales linearly with the number of vehicles in the presence of
disturbances, as opposed to exponentially with a direct application of dynamic programming
approaches. In the presence of a single intruder, the computation complexity scaling becomes
quadratic. In general, the priorities of vehicles may be assigned in a first-come-first-serve
basis through, for example, an air navigation service provider [250] which manages a region
of the low altitude airspace.

In the following sections, we will explore STP under different assumptions. We begin
with the basic STP algorithm in which disturbances are ignored and perfect information of
vehicles’ positions is assumed. This simplification allows us to clearly establish the basic STP
algorithm. Next, we show how the basic STP approach can be made robust to disturbances.
Finally, we further robustify the STP approach by considering how the set of STP vehicles
may respond to the presence of an intruder vehicle which may be adversarial. All of our
methods use time-varying reachability analysis (Sec. 2.3.2) to provide goal satisfaction and
safety guarantees.

4.3.1 Sequential Trajectory Planning Without Disturbances

In this section, we introduce the basic STP algorithm assuming that there is no disturbance
affecting the vehicles, and that each vehicle knows the exact position of higher-priority vehi-
cles. Although in practice, such assumptions do not hold, the description of the basic STP
algorithm will introduce the notation needed for describing the subsequent, more realistic
versions of STP. We also show simulation results for the basic STP algorithm.

Recall that the STP vehicles Qi, i = 1, . . . , N , are each assigned a strict priority, with Qj

having a higher priority than Qi if j < i. In the absence of disturbances, we can write the
dynamics of the STP vehicles as

ẋi = fi(xi, ui), t ≤ tSTA
i , ui ∈ Ui, i = 1 . . . , N (4.3)

In STP, each vehicle Qi plans the trajectory to its target set Li while avoiding static obstacles
Ostatic
i and the obstacles Oji (t) induced by higher-priority vehicles Qj, j < i. Path planning

is done sequentially starting from the first vehicle and proceeding in descending priority,
Q1, Q2, . . . , QN so that each of the trajectory planning problems can be done in the state
space of only one vehicle. During its trajectory planning process, Qi ignores the presence of
lower-priority vehicles Qk, k > i, and induces the obstacles Oik(t) for Qk, k > i.

From the perspective of Qi, each higher-priority vehicles Qj, j < i induces a time-varying
obstacle denoted Oji (t) that Qi needs to avoid1. Therefore, each vehicle Qi must plan its
trajectory to Li while avoiding the union of all the induced obstacles as well as the static
obstacles. Let Gi(t) be the union of all the obstacles that Qi must avoid on its way to Li:

Gi(t) = Ostatic
i ∪

i−1⋃
j=1

Oji (t) (4.4)

1Note that the index k in Oi
k denotes vehicles with lower priority than Qi, and the index j in Oj

i (t)
denotes vehicles with higher priority than Qi.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 86

With full position information of higher priority vehicles, the obstacle induced for Qi by Qj

is simply
Oji (t) = {xi : ‖pi − pj(t)‖2 ≤ Rc} (4.5)

Each higher priority vehicle Qj plans its trajectory while ignoring Qi. Since trajectory
planning is done sequentially in descending order or priority, the vehicles Qj, j < i would
have planned their trajectories before Qi does. Thus, in the absence of disturbances, pj(t)
is a priori known, and therefore Oji (t), j < i are known, deterministic moving obstacles,
which means that Gi(t) is also known and deterministic. Therefore, the trajectory planning
problem for Qi can be solved by first computing the reach-avoid BRT, Vbasic

i (t), defined as
follows:

Vbasic
i (t) = {x : ∃ui(·) ∈ UtSTA

i
t ,∀s ∈ [t, tSTA

i ], ξ(s;x, t, ui(·)) /∈ Gi(s),
∃s ∈ [t, tSTA

i ], ξ(s;x, t, ui(·)) ∈ Li}.
(4.6)

Here, ξ(·) represent the system trajectory corresponding to the dynamics in (4.3). The BRS
Vbasic
i (t) can be obtained by solving the following HJI VI

max {min{DtV (t, x) +H(t, x, V (t, x)), li(x)− V (t, x)}, − g(t, x)− V (t, x)} = 0 ∀x, t
(4.7)

V (tSTA
i , x) = max

{
li(x),−g(tSTA

i , x)
}
, (4.8)

where Li and Gi(t) are given by the subzero level sets of functions li(x) and g(t, x) respectively.
The Hamiltonian is given by

H(t, x, V (t, x)) = inf
ui∈Ui
〈DxV (t, x), fi(x, ui)〉 (4.9)

Given the value function V (t, x), the BRT Vbasic
i (t) can be obtained as a subzero level set of

the value function. Note that Vbasic
i (t), by definition, does not contain any states from which

it is inevitable to avoid the danger zone Zij (and Gi in general). Given Vbasic
i (t), the optimal

control for reaching Li while avoiding Gi(t) is then given by

ubasic
i (t, x) = arg inf

ui∈Ui
〈DxV (t, x), fi(x, ui)〉 (4.10)

from which the trajectory xi(·) can be computed by integrating the system dynamics, which
in this case are given by (4.3). In addition, the latest departure time tLDT

i can be obtained
from the BRT Vbasic

i (t) as tLDT
i = arg supt{x0

i ∈ Vbasic
i (t)}. The basic STP algorithm is

summarized in Algorithm 2.
Note that Step 1, which determines the total obstacle set, can be updated recursively by

adding a new set of induced obstacles for each next vehicle: Gi+1(t) = Gi(t) ∪ Oii+1(t). As
previously mentioned, the basic STP algorithm, as well as all subsequent variants of STP
algorithms, will always return a feasible trajectory that arrives at the target on time, as long
as a feasible trajectory exists in the absence of other vehicles. This is because a vehicle can
simply depart early enough to avoid being blocked by higher-priority vehicles. In fact, the
latest departure time tLDT

i quantifies exactly when each vehicle needs to depart to arrive on
time.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 87

Algorithm 2: STP algorithm in the absence of disturbances and intruders.

input : STP vehicles Qi, their dynamics (4.3), initial states x0
i , destinations Li,

static obstacles Ostatic
i

output: Provably safe trajectories to destinations, goal-satisfaction controllers
ubasic
i (·), and the latest departure time tLDT

i

1 for i = 1 : N do
2 Trajectory planning for Qi

3 compute the total obstacle set Gi(t) given by (4.4). If i = 1, Gi(t) = Ostatic
i ∀t;

4 compute the BRT Vbasic
i (t) defined in (4.6);

5 Latest departure time for Qi

6 the latest departure time tLDT
i is given by arg supt{x0

i ∈ Vbasic
i (t)};

7 Trajectory and controller of Qi

8 compute the optimal controller ubasic
i (·) given by (4.10);

9 determine the trajectory xi(·) using vehicle dynamics (4.3) and the control
ubasic
i (·);

10 output the trajectory and optimal controller for Qi.
11 Obstacles induced by Qi

12 given the trajectory xi(·), compute the induced obstacles Oik(t) given by (4.5) for
all k > i.

4.3.2 Sequential Trajectory Planning With Disturbances:
Robust Trajectory Tracking (RTT)

Disturbances and incomplete information significantly complicate STP. The main difference
is that the vehicle dynamics satisfy (4.1) as opposed to (4.3). Committing to exact trajec-
tories is therefore no longer possible, since the disturbance di(·) is a priori unknown. Thus,
the induced obstacles Oji (t) are no longer just the danger zones centered around positions.

Even though it is impossible to commit to and track an exact trajectory in the presence
of disturbances, it may still be possible to robustly track a feasible nominal trajectory with a
bounded error at all times. The tracking error bound can be used to determine the induced
obstacles. Here, computation is done in two phases: the planning phase and the disturbance
rejection phase. In the planning phase, we compute a nominal trajectory xr,j(·) that is
feasible in the absence of disturbances. In the disturbance rejection phase, we compute a
bound on the maximum deviation from the reference trajectory due to the disturbances (also
referred to as a bound on the tracking error here on). Thus, instead of directly accounting
for disturbances when planning trajectories, one first augments the time-varying obstacle
by this bound to obtain the augmented obstacles, which ensures that Qi will not collide
with the obstacles in the presence of disturbances. One then reduces the size of Li by the
same amount to obtain L̃i, which ensures that the vehicle safely reaches its goal despite any
trajectory tracking errors resulting from disturbances.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 88

It is important to note that the planning phase does not make full use of a vehicle’s
control authority, as some margin is needed to reject unexpected disturbances while tracking
the nominal trajectory. Therefore, in this method, planning is done for a reduced control
set Upi ⊂ Ui. The resulting trajectory reference will not utilize the vehicle’s full control
capability; additional maneuverability is available at execution time to counteract external
disturbances.

In the disturbance rejection phase, we determine the error bound independently of the
nominal trajectory by finding a robust controlled-invariant set in the joint state space of
the vehicle and a tracking reference that may “maneuver” arbitrarily in the presence of an
unknown bounded disturbance. Taking a worst-case approach, the tracking reference can be
viewed as a virtual evader vehicle that is optimally avoiding the actual vehicle to enlarge
the tracking error. We therefore can model trajectory tracking as a pursuit-evasion game in
which the actual vehicle is playing against the coordinated worst-case action of the virtual
vehicle and the disturbance.

Disturbance rejection phase: Computation of tracking error bound. Let xj and
xr,j denote the states of the actual vehicle Qj and the virtual evader, respectively. Following
[278], we define the relative state between xj and xr,j, which puts the virtual evader at
the origin: ej = φ(xj, xr,j)(xj − xr,j). For many dynamical systems, differentiating ej with
respect to time and choosing the appropriate φ(·, ·) leads to the following relative dynamics,
which is defined in the same dimensional space as the state space of the vehicle:

ėj = fej(ej, uj, ur,j, dj),

uj ∈ Uj, ur,j ∈ Upj , dj ∈ Dj, t ≤ 0
(4.11)

In the case that both vehicles have dynamics of the form in (4.24), φ(xj, xr,j) = R(−θj).
In general, reference [278] presents examples of coordinate transforms for obtaining relative
dynamics between pairs of systems.

To obtain bounds on the tracking error, we first conservatively estimate the error bound
around any reference state xr,j, denoted Ej:

Ej = {ej : ‖pej‖2 ≤ REB}, (4.12)

where pej denotes the position coordinates of ej and REB is a design parameter. We next
compute the viability kernel of the set Ej – the set of relative states from which the tracking
error bound is not violated at any time. This set is formally defined as:

KEB
j (t) ={ej : ∀dj(·) ∈ Γ,∀ur,j(·) ∈ Up

j ,∃uj(·) ∈ Uj,

∀s ∈ [t, 0], ξ(s; ej, t, uj(·), ur,j(·), dj(·)) ∈ Ej},
(4.13)

Here, ξ(·) represent the system trajectory corresponding to the dynamics in (4.11). We also
set the time horizon T = 0 without loss of generality. The viability kernel in (4.13) can be



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 89

computed by the superzero level set of the value function obtained by solving the following
HJI VI:

min{DtV (t, x) +H(t, x, V (t, x)), − l′j(x)− V (t, x)} = 0 ∀x, t V (0, x) = −l′j(x), (4.14)

where Ej is given by the subzero level set of l′j. The Hamiltonian to compute the value
function is given by:

H(t, x, V (t, x)) = sup
uj∈Uj

inf
ur,j∈Upj ,dj∈Dj

〈DxV (t, x), fej(x, uj, ur,j, dj)〉. (4.15)

Finally, the viability kernel is given by:

KEB
j (t) = {x : V (t, x) > 0}. (4.16)

For more details on the computation of the viability kernel, please refer to Section 2.3.2.
Letting t→ −∞, we obtain the infinite-horizon control-invariant set Ωj := limt→−∞KEB

j (t).
If Ωj is nonempty, then the tracking error ej at flight time is guaranteed to remain within
Ωj ⊆ Ej provided that the vehicle starts inside Ωj and subsequently applies the feedback
control law

uj(x) = arg sup
uj∈Uj

inf
ur,j∈Upj ,dj∈Dj

〈DxV (−∞, x), fej(x, uj, ur,j, dj)〉. (4.17)

Planning phase: Computation of nominal/reference trajectory. Given the tracking
error bound, the induced obstacles by each higher-priority vehicle Qj can be obtained by

Oji (t) = {xi : ∃y ∈ Pj(t), ‖pi − y‖2 ≤ Rc}
Pj(t) = {pj : ∃hj, (pj, hj) ∈Mj(t)}
Mj(t) = Ωj + xr,j(t),

(4.18)

where the “+” in (4.18) denotes the Minkowski sum2. Intuitively, ifQj is tracking xr,j(t), then
it will remain within the error bound Ωj around xr,j(t) ∀t. This set is mathematically given
by the “tube” obtained by augmenting the error bound Ωj around the reference trajectory
xr,j(·). This is precisely the set Mj(t) (and Pj(t) for the position states). The induced
obstacles can then be obtained by augmenting a danger zone around this set. Finally, we
can obtain the total obstacle set Gi(t) using (4.4).

Since each vehicle Qj, j < i, can only be guaranteed to stay within Ωj, we must make
sure during the trajectory planning of Qi that at any given time, the error bounds of Qi and
Qj, Ωi and Ωj, do not intersect. This can be done by augmenting the total obstacle set by
Ωi:

G̃i(t) = Gi(t) + Ωi. (4.19)

2The Minkowski sum of sets A and B is the set of all points that are the sum of any point in A and B.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 90

Finally, given Ωi, we can guarantee that Qi will reach its target Li if Ωi ⊆ Li. Thus, in the
trajectory planning phase, we modify Li to be L̃i := {xi : Ωi+xi ⊆ Li}, and compute a BRT,
with the control authority Upi , that contains the initial state of the vehicle. Mathematically,

Vrtt
i (t) = {x : ∃ui(·) ∈ Up

i ,∀s ∈ [t, tSTA
i ], ξ(s;x, t, ui(·)) /∈ G̃i(s),

∃s ∈ [t, tSTA
i ], ξ(s;x, t, ui(·)) ∈ L̃i}.

(4.20)

Here, ξ(·) represent the system trajectory corresponding to the disturbance-free dynamics
in (4.3), except the control authority is changed to Upi . The BRT Vrtt

i (t) can be computed
in an analogous fashion to Vbasic

i (t) using the HJI VI in (4.7). The corresponding optimal
control for reaching L̃i is

urtt
i (t, x) = arg inf

ui∈Upi
〈DxV (t, x), fi(x, ui)〉. (4.21)

The nominal trajectory xr,i(·) can thus be obtained by using vehicle dynamics (4.3), with
the optimal control urtt

i (·) given by (4.21). From the resulting nominal trajectory xr,i(·), the
overall control policy to reach Li can be obtained via (4.17). The robust trajectory tracking
method-based STP is summarized in Algorithm 3.

A note on the computation of tracking error bound. In this work, the reduced
control authority Up and the parameter REB are selected by trial and error such that the
the tracking error bound Ωj is nonempty. However, the value function obtained by solving
the HJI VI in (4.14) can be used to compute the tracking error bound even when the Ωj is
empty, provided that the value function converges. When the value function converges, an
empty Ωj will often mean that the radius REB was not chosen conservatively enough to have
a non-empty positive level. Since the value function is invariant to additive constants, one
can simply find any nonempty level of the value function (say α < 0) and then increase the
value of REB to REB + |α|. The super-α set of the value function corresponding to radius
REB now becomes a non-empty super-zero level set corresponding to radius REB + |α|, and
can serve as tracking error bound. This procedure also highlights a mechanism to choose
the smallest possible tracking error bound. In particular, one can pick α = maxx V (−∞, x)
to obtain the smallest error bound Ωj.

Finally, it might be useful to use simple shapes like circles, sphere to bound the tracking
error for computational reasons during the planning phase. For example, it is much easier
to do an obstacle augmentation by a fixed radius. Thus, one may want to project Ωj in the
position space and find a circle that circumscribe the projected set. The radius of this circle
(sphere in 3D) is given by

R∗EB = max
x∈Ωj
‖p(x)‖, (4.22)

where p(x) is the position component of the state x.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 91

Algorithm 3: Robust trajectory tracking algorithm for STP in the presence of
disturbances but in the absence of intruders.

input : STP vehicles Qi, their dynamics (4.1), initial states x0
i , destinations Li,

static obstacles Ostatic
i

output: Provably safe trajectories to destinations, goal-satisfaction controllers
urtt
i (·), and the latest departure time tLDT

i .
1 for i = 1 : N do
2 Tracking error bound computation for Qi

3 decide on a reduced control authority Upi for the planning phase, and choose a
parameter REB to conservatively bound the tracking error;

4 compute the viability kernel KEB
i (t) using (4.13) and compute the infinite

horizon control invariant set Ωi := limt→−∞KEB
i (t);

5 the error bound on the tracking error is given by Ωi;
6 Trajectory planning for Qi

7 compute the total obstacle set Gi(t) given by (4.4). If i = 1, Gi(t) = Ostatic
i ∀t;

8 using Ωi, determine the augmented obstacle set G̃i(t), given in (4.19);
9 compute the BRS Vrtt

i (t) defined in (4.20);
10 Latest departure time for Qi

11 the latest departure time tLDT
i is given by arg supt{x0

i ∈ Vrtt
i (t)};

12 Trajectory and controller of Qi

13 compute the optimal controller urtt
i (·) given by (4.21);

14 compute the nominal trajectory xr,i(·) using vehicle dynamics in (4.3) and
optimal control given in (4.21);

15 Obstacles induced by Qi

16 compute the induced obstacles Oik(t) via (4.18) for all k > i.

4.3.3 Large-Scale Multiple UAV Simulations: City Environment

We now combine BEACLS (Sec. 3.4) with the STP algorithm for the safe trajectory plan-
ning for a 50-UAV system in which the vehicles are flying over the city of San Francisco.
This setup can be representative of many UAV applications, such as package delivery, aerial
surveillance, etc. Using this simulation, we investigate the resulting trajectories of vehicles
as a function of the amount of traffic and wind speed. Videos of the city environment simu-
lation with various vehicle densities and wind speeds can be found on YouTube3.

Simulation setup. We grid the City of San Francisco (SF) in California, USA, and use it as
our position space, as shown in Fig. 4.1. Each box in Fig. 4.1 represents a 1 km2 area of SF.
The origin point for the vehicles is denoted by the blue star. This origin point may represent
an exit of an air highway connecting SF to other cities in the Bay Area [76]. In general there

3 Video link: https://youtu.be/1ocaBGZqSAE

https://youtu.be/1ocaBGZqSAE


CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 92

48

0 1 2 3 4 5 km

0

1

2

3

4

5 km

Figure 4.1: City environment multiple UAV simulation setup. A 25 km2 area in the City of
San Francisco is used as the space for the 50-vehicle simulation. Vehicles originate from the
blue star and go to one of the four destinations, denoted by circles. Tall buildings in the
downtown area are used as static obstacles, represented by the black contours.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 93

may be multiple origin points; we will demonstrate this other case in Section 4.3.4. Four
different areas in the city are chosen as the destinations for the vehicles. Mathematically,
the target sets Li of the vehicles are circles of radius r in the position space, i.e. each vehicle
is trying to reach some desired set of positions. In terms of the state space xi, the target
sets are defined as

Li = {xi : ‖pi − ci‖2 ≤ r} (4.23)

where ci are centers of the target circles. In this simulation, we use r = 100 meters. The
four targets are represented by four circles in Fig. 4.1. The destination of each vehicle is
chosen randomly from these four destinations. Finally, some areas in downtown SF and the
city hall are used as representative static obstacles for the STP vehicles, denoted by black
contours in Fig. 4.1.

For this simulation, we use the following Dubins car dynamics for each vehicle:

ṗx,i = vi cos θi + dx,i

ṗy,i = vi sin θi + dy,i

θ̇i = ωi,

v ≤ vi ≤ v̄, |ωi| ≤ ω̄,

‖(dx,i, dy,i)‖2 ≤ dr

(4.24)

where xi = (px,i, py,i, θi) is the state of vehicle Qi, pi = (px,i, py,i) is the position, θi is the
heading, and d = (dx,i, dy,i) represents Qi’s disturbances, for example wind, that affect its
position evolution. The control of Qi is ui = (vi, ωi), where vi is the speed of Qi and ωi is the
turn rate; both controls have a lower and upper bound. To make our simulations as close
as possible to real scenarios, we choose velocity and turn-rate bounds as v = 0 m/s, v̄ = 25
m/s, ω̄ = 2 rad/s, aligned with the modern UAV specifications [1, 232].

For planning, we choose the reduced control authority to be Upj = {(vr,j, ωr,j) : 11 m/s ≤
vr,j ≤ 13 m/s, |ωr,j| ≤ 1.2 rad/s}. Given this reduced control authority, we obtain a tracking
error bound as well as a disturbance rejection controller using the robust trajectory tracking
method (see Section 4.3.2). In the case that both vehicles have dynamics of the form in
(4.24), φ(xj, xr,j) = R(−θj).

The disturbance bounds are chosen to be either dr = 6 m/s or dr = 11 m/s. These
conditions correspond to moderate breeze and strong breeze respectively on the Beaufort scale
[303]. In our simulations, we use random wind speeds (within above bounds) and directions
which can constantly and discontinuously change. We also repeated the simulation using
the worst-case disturbance. The results are qualitatively the same; here, we only present the
results for random disturbances.

The scheduled times of arrival for all vehicles are chosen to be same for all vehicles (0
without loss of generality) for a high UAV density condition. For medium and low density
conditions, we separated the arrival times by 5 seconds and 10 seconds respectively, with
the latest tSTA

i being 0. Note that we have used same dynamics and input bounds across all
vehicles for clarity of illustration; however, STP can easily handle more general systems of
the form in which the vehicles have different control bounds, tSTA

i and dynamics.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 94

The goal of the vehicles is to reach their destinations while avoiding a collision with the
other vehicles or the static obstacles. The joint state space of this 50-vehicle system is 150-
dimensional (150D), making the joint trajectory planning and collision avoidance problem
intractable for direct analysis. Therefore, we assign a priority ordering to vehicles and solve
the trajectory planning problem sequentially. For this simulation, we assign a random pri-
ority order to fifty vehicles.

High UAV Density with 6 m/s Wind. We start with Q1 and sequentially compute the optimal
control policy and the latest departure time tLDT

j for each vehicle. In presence of moderate
winds, the obtained tracking error bound is 5 meters. This means that given any trajectory
(which is a sequence of states over time) of vehicle, winds can at most cause a deviation of 5
meters from this trajectory at all times. Consequently, the vehicle will be within a distance
of 5 meters from the planned trajectory. Note that since all vehicles have same dynamics, the
error bound is also same for all vehicles. This error bound is used to obtain the augmented
obstacles and the reduced target set L̃i. Note that since disturbance directly impacts the
computation of tracking error bound, in general the size of augmented obstacles increases as
disturbance magnitude increases. We will illustrate the effect of disturbance magnitude on
the trajectories of vehicles later in this Section.

The nominal trajectory can now be obtained using a reduced control authority starting
from the initial state x0

j . The resulting trajectories of vehicles for dr = 6 m/s and tSTA
j = 0 ∀j

at different times are shown in Fig. 4.2. As is evident from the figures, the vehicles remain
clear of all the static obstacles (the black contours) and make progress towards reaching
their destinations, according to their planned trajectories. The vehicles whose destinations
are relatively close need less time to travel to their destinations and thus they depart later.

The full trajectories of vehicles from their departure to arrival are shown in Fig. 4.3a. All
vehicles reach their respective destinations. A zoomed-in version of Fig. 4.3a near the red
target (Fig. 4.4) illustrates that vehicles are also outside each other’s danger zones (circles
around the vehicles) as required.

It is interesting to note that the vehicles going to the same destination take different tra-
jectories. This is because all vehicles have the same scheduled time of arrival, and hence the
lower-priority vehicles do not have the flexibility to wait for the higher-priority vehicles. In
order to ensure that they reach their destinations on time, they must depart earlier and take
alternative trajectories to their destinations, forming different “traffic lanes”. Thus, the ve-
hicles’ trajectories are state-separated trajectories, i.e., they follow different state trajectories
but at the same time.

The average trajectory computation time per vehicle is 2 seconds using the CUDA im-
plementation of the level set method in BEACLS. Computations were run on a desktop
computer with a Core i7 5820K processor and two GeForce GTX Titan X graphics pro-
cessing units. Computations were done on a 101 × 101 × 15 grid, which corresponds to a
spatial resolution of 50 meters and an angular resolution of 24 degrees over a 5 kilometer ×
5 kilometer area over the city.

Recall that all of the computation is done offline and the resulting BRS and corresponding



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 95

(a) (b)

(c) (d)

Figure 4.2: Snapshots of vehicle trajectories at approximately a) 1 minute, b) 3 minutes,
c) 4 minutes, and d) 5 minutes after the first vehicle departs. The wind speed is uniformly
random with a bound of dr = 6 m/s. The vehicles remain clear of all static obstacles and of
each other despite the disturbance in the dynamics.

control policy are obtained as lookup tables. In real time, computation and communication
between vehicles is not required. Only a lookup table query is required, and this can be



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 96

(a) Case 0: dr = 6m/s, tSTA
i = 0 (b) Case 1: dr = 11m/s, tSTA

i = 0

(c) Case 2: dr = 6m/s, tSTA
i = 5(i− 1) (d) Case 3: dr = 11m/s, tSTA

i = 5(i− 1)

Figure 4.3: Effect of the disturbance magnitude and the scheduled times of arrival on ve-
hicle trajectories. All trajectories are simulated under uniformly random disturbance. The
relative separation in the scheduled times of arrival of vehicles determines the number of
lanes between a pair of origin and destination, and more and more trajectories become time-
separated as this relative separation increases. The disturbance magnitude determines the
relative separation between different lanes, and more and more trajectories become state-
separated as the disturbance increases.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 97

2800 2900 3000 3100 3200 3300 m

3700

3800

3900

4000

4100

4200 m

Figure 4.4: Zoomed-in version of vehicle trajectories near the red target in Fig. 4.3a. The
STP algorithm ensures that the vehicles are outside each other’s danger zones, i.e., the
centers of any two intersecting circles are not within the same circle.
Here the smallest distance between vehicles is just over 100 meters (blue and red vehicles

below the letter “H”).

performed very quickly in real time. This illustrates the capability of STP as a provably safe
trajectory planning algorithm for large multi-vehicle systems.

Without the CUDA implementation in BEACLS, the approximate computation time per
vehicle is 33 seconds using the C++ implementation of the level set toolbox without CUDA,
and 200 seconds using the level set toolbox and helperOC in MATLAB. A comparison of



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 98

the total computation time for all 50 vehicles is shown in Figure 3.15. Trajectory planning
with 50 vehicles takes less than 2 minutes, compared to 27 minutes for a non-CUDA C++
implementation or 2.8 hours for the MATLAB implementation. This improvement in com-
putation time greatly facilitates case studies such as city-level airspace design presented in
this section, which more generally may involve testing different initial and goal positions at
different vehicle densities and wind speeds.

For even larger-scale case studies, a GPU-parallelized implementation such as BEACLS
may be necessary to keep the computation tractable. For example, in the study presented
in Section 4.3.4 involving multiple cities and 200 vehicles, computation for each vehicle was
approximately 4 minutes on average using two GPUs. This is because a much finer grid was
needed to maintain positional accuracy over a much larger geographical area. The entire
simulation took approximately 13.3 hours. Extrapolating the computation time comparison
in Fig. 3.15, even a non-CUDA C++ implementation would take prohibitively long – ap-
proximately 10 days.

Effects of Disturbance and Scheduled Time of Arrival. We now illustrate how the disturbance
bound dr in (4.24) and the relative tSTA’s of vehicles affect the vehicle trajectories. For this
purpose, we simulate the STP algorithm in five scenarios:

• Case 0: dr = 6 m/s, tSTA
i = 0 ∀i (moderate breeze, high UAV density; the simulation

also shown in Figure 4.2)

• Case 1: dr = 11 m/s, tSTA
i = 0 ∀i (strong breeze, high UAV density)

• Case 2: dr = 6 m/s, tSTA
i = 5(i− 1) ∀i (moderate breeze, medium UAV density)

• Case 3: dr = 11 m/s, tSTA
i = 5(i− 1) ∀i (strong breeze, medium UAV density)

• Case 4: dr = 11 m/s, tSTA
i = 10(i− 1) ∀i (strong breeze, low UAV density)

The interpretation of tSTA
i = 5(i − 1) is that the scheduled time of arrival of any two

consecutive vehicles is separated by 5 seconds, which represents a medium vehicle density
scenario; a separation of 10 seconds represents a low vehicle density scenario. dr = 6 m/s and
dr = 11 m/s correspond to the moderate breeze and strong breeze respectively on Beaufort
wind force scale [303].

Intuitively, as dr increases, it is harder for a vehicle to closely track a particular nominal
trajectory, which results in a higher tracking error bound. As mentioned previously, with
a 6 m/s wind speed, the tracking error bound is 5 meters; however, with an 11 m/s wind
speed, the tracking error bound becomes 35 meters. Thus, the vehicles need to be separated
more from each other in space, compared to with a 6 m/s wind speed, to ensure that they
do not enter each other’s danger zones. This is also evident from comparing the results
corresponding to Case 0 (Fig. 4.3a) and Case 1 (Fig. 4.3b). As the disturbance magnitude
increases from dr = 6 m/s (moderate breeze) to dr = 11 m/s (strong breeze), the vehicles’



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 99

trajectories get farther apart from each other. Since tSTA is same for all vehicles, the vehicles’
trajectories are still predominately state-separated.

We next compare Case 0 (Fig. 4.3a) and Case 2 (Fig. 4.3c). The difference between
these two cases is that vehicles have a 5-second separation in their schedule times of arrival
in Case 2. When vehicles Qi and Qj (j > i) have same scheduled time of arrival as in
Case 0, and are going to the same destination, they are constrained to travel at the same
time to make sure they reach the destination by the designated tSTA. However, since Qi is
high-priority, it is able to take an optimal trajectory (in terms of the total time of travel to
destination) and Qj has to settle for a relatively sub-optimal trajectory. Thus, all vehicles
going to a particular destination take different trajectories, creating a “band” of trajectories
between the origin and the destination, as shown in Fig. 4.3a; the high-priority vehicles
take a relatively straight trajectory between the origin and the destination whereas the low-
priority vehicles take a (relatively sub-optimal) curved trajectory. If we think of an air
highway between the origin and the destination, then vehicles take different lanes of that
highway to reach the destination in Case 0. Thus, the trajectories of vehicles in this case
are state-separated. However, when tSTA

j > tSTA
i , then Qj is not bound to travel at the same

time as Qi; it can wait for Qi to depart and take a shorter trajectory later on. Thus, vehicles
travel in a single lane in this case, as shown in Fig. 4.3c. In other words, they take the same
trajectory to the destination, but at different times. Thus, the trajectories of vehicles in this
case are time-separated.

Note that the exact number of lanes depends on both the disturbance (wind speed) and
separation of scheduled times of arrival (vehicle density). As the disturbance increases,
vehicles need to be separated more from each other to ensure safety. A larger arrival time
difference between vehicles is also able to ensure this separation even if the vehicles were to
take the same lane. As shown in Fig. 4.3d, a difference of 5 seconds in the tSTA’s is not
sufficient to achieve a single lane behavior for stronger 11 m/s wind conditions. However, the
number of lanes is significantly fewer than that in Case 1 (Fig. 4.3b). Finally, a separation
of 10 seconds in tSTA’s ensure that we get the single lane behavior even in the presence of
11 m/s winds, leading to time-separated trajectories, as shown in Fig. 4.5. Videos of the
simulations can be found on YouTube4.

Given our observations about the simulations presented, one can conclude, more gener-
ally, that the relative magnitude of disturbance and scheduled times of arrival separation
determines the number of lanes and type of trajectories that emerge out of the STP al-
gorithm. For a fixed disturbance magnitude, as the separation in the scheduled times of
arrival of vehicles increases, the number of lanes between a pair of origin and destination
decreases, and more and more trajectories become time-separated. On the other hand, for a
fixed separation in the scheduled times of arrival of vehicles, as the disturbance magnitude
increases, the number of lanes between a pair of origin and destination increases, and more
and more trajectories become state-separated.

4 Video link: https://youtu.be/1ocaBGZqSAE

https://youtu.be/1ocaBGZqSAE


CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 100

Figure 4.5: Trajectories of 50 vehicles for Case 4: dr = 11 m/s, tSTA
i = 10(i − 1). Since

different vehicles have different scheduled times of arrival, there is a single lane between
every origin-destination pair.

4.3.4 Large-Scale Multiple UAV Simulations: Multi-City
Environment

We next use STP to design trajectories for a 200-UAV system where UAVs are flying through
a multi-city region.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 101

Simulation setup. We use a part of the San Francisco Bay Area in California, USA as our
position space, as shown in Fig. 4.6. We consider the UAVs flying to and from four cities:
Richmond, Berkeley, Oakland, and San Francisco. The blue region in Fig. 4.6 represents
bay (water). This environment is different from the city environment in the previous section
in that here the UAVs need to fly for longer distances and through a high-density vehicle
environment with strong winds, but have no static obstacles like tall buildings. Due to the
much larger number of vehicles and longer trajectory time horizons, many more reachable
sets need to be computed, and, even more crucially, each computation must be done on a
much larger computational domain. Therefore, the use of GPU parallelization is essential
for making this simulation possible. Each box in Fig. 4.6 represents a 25 km2 area. The
vehicles are flying to and from the four cities indicated by the four circles. The origin and
destination of each vehicle is chosen randomly from these four cities. The vehicle dynamics
are given by (4.24). We choose velocity and turn-rate bounds as v = 0 m/s, v̄ = 25 m/s,
ω̄ = 2 rad/s. The disturbance bound is chosen as dr = 11 m/s, which corresponds to “strong
breeze” on Beaufort wind force scale [303]. The scheduled time of arrival tSTA for vehicles
are chosen as 5(i− 1) seconds.

The goal of the vehicles is to reach their destinations while avoiding a collision with the
other vehicles. The joint state space of this 200-vehicle system is 600-dimensional, making
the joint trajectory planning and collision avoidance problem intractable for direct analysis.
Therefore, we again use STP and assign a priority order to vehicles to solve the trajectory
planning problem sequentially.

Results. The resulting trajectories of vehicles are shown in Fig. 4.7a. Once again, the
vehicles remain clear of all other vehicles and reach their respective destinations. Since the
vehicles’ scheduled times of arrival are separated by 5 seconds, the trajectories are predomi-
nately time-separated, with roughly two lanes for each pair of cities (one for going from city A
to city B and another for from city B to city A). A high density of vehicles is achieved in the
center since the 4 trajectories are intersecting in the center (Richmond-Oakland, Oakland-
Richmond, Berkeley-San Francisco, San Francisco-Berkeley), but the STP algorithm ensures
safety despite this high-density, as shown in the zoomed-in version of the center at an inter-
mediate time when a large number of vehicles are passing through the central region (Fig.
4.7b).

We also simulated the system for the case in which tSTA
i = 0 ∀i. As is evident from Fig.

4.8, we get multiple lanes between each pair of cities in this case and trajectories become
predominately state-separated, as we expect based on the discussion in Section 4.3.3.

The average computation time per vehicle is 4 minutes using BEACLS on a desktop
computer with a Core i7 5820K processor and two GeForce GTX Titan X graphics processing
units. The computation time is much longer than in the previous simulation in SF because
of the larger space over which planning is done. Computations were done on a 209×329×15
grid, which corresponds to a spatial resolution of 50 meters and an angular resolution of 24
degrees over a 10 kilometer × 15 kilometer area over the bay.

Once again all the computation is done offline and only a look-up table query is required



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 102

0 5 10 15 km

0

5

10

15 km

Figure 4.6: Multi-city simulation setup. A 300 km2 area of San Francisco Bay Area is used
as the state-space for vehicles. STP vehicles fly to and from the four cities indicated by the
four disks. The simulations are performed under the strong winds condition with dr = 11
m/s.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 103

(a) (b)

Figure 4.7: (a) Trajectories obtained from the STP algorithm for the multi-city simulation
with dr = 11 m/s, tSTA

i = 5(i−1). (b) Zoomed-in version of the central area. A high density of
vehicles is achieved at the center because of the intersection of several trajectories; however,
the STP algorithm still ensures that vehicles do not enter each other’s danger zones and
reach their destinations.

in real-time, which can be performed very efficiently. Extrapolating the computation time
comparison in Fig. 3.15, the MATLAB implementation would take prohibitively long –
approximately 90 days for the entire simulation. This simulation illustrates the scalability
and the potential of deploying the STP algorithm with BEACLS for provably safe trajectory
planning for large multi-vehicle systems.

4.4 Sequential Trajectory Planning With An

Adversarial Intruder

In Section 4.3, we discussed the basic STP algorithm that is robust to external disturbances.
However, if a vehicle not in the set of STP vehicles enters the system, or even worse, if this
vehicle is an adversarial intruder, the original plan can lead to vehicles entering into another
vehicle’s danger zone. If vehicles do not plan with an additional safety margin that takes a
potential intruder into account, a vehicle trying to avoid the intruder may effectively become
an intruder itself, leading to a domino effect. In this section, we propose a method that can



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 104

Figure 4.8: Vehicle trajectories for dr = 11 m/s, tSTA
i = 0. Since different vehicles have same

scheduled times of arrival, a multiple-lane behavior is observed between every pair of cities.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 105

account for an intruder vehicle QI in the system while maintaining the STP structure.
An intruder vehicle may simply be a non-participating vehicle that could accidentally

collide with other vehicles, or it could be one with malicious intent. This general definition
of intruder allows us to develop algorithms that can also account for vehicles who are not
communicating with the STP vehicles or do not know about the STP structure. In this
section, our goal is to design a control policy for each vehicle that ensures separation with
the intruder and other STP vehicles, and a successful transit to the destination.

4.4.1 Problem Setup and Solution Approach for Intruder
Avoidance

In general, the effect of intruders on vehicles in structured flight can be unpredictable, since
the intruders in principle could be adversarial in nature, and the number of intruders could be
arbitrary. Therefore, to make our analysis tractable, we make the following two assumptions.

Assumption 3 At most one intruder affects the STP vehicles at any given time. The
intruder is removed after a duration of tIAT.

This assumption can be valid in situations where intruders are rare, and that some fail-safe or
enforcement mechanism exists to force the intruder out of the planning space. Practically,
over a large region of the unmanned airspace, this assumption implies that there would
be one intruder vehicle per “planning region”. Each planning region would perform STP
independently from the others. The entire large region would be composed of several planning
regions, and possibly several intruder vehicles. Note that we do not pose any restriction on
the time at which intruder appears in the system; we only assume that once the intruder
appears, it stays for a maximum duration of tIAT.

Assumption 4 The dynamics of the intruder are known and given by ẋI = fI(xI , uI , dI).

Assumption 4 is required for HJ reachability analysis. In situations where the dynamics of
the intruder are not known exactly, a conservative model of the intruder may be used instead.
We also denote the initial state of the intruder as x0

I . Note that we only assume that the
dynamics of the intruder are known, but its initial state x0

I , control uI and disturbance dI it
experiences are unknown.

Under the above assumptions, we present an intruder avoidance algorithm that ensures
that only a small and fixed number of vehicles, k̄, needs to replan their trajectories due to
the intruder, regardless of the total number of vehicles, resulting in a constant replanning
time. This is often an important considerations for real-world systems, since the replanning
neeeds to be done during the runtime. Moreover, k̄ is a design parameter, which can be
chosen based on the resources available during run time.

Our algorithm consists of two phases: the planning phase and the replanning phase. In
the planning phase, it is ensured that any two vehicles are sufficiently far enough from each
other such that an intruder can be in the vicinity of at most k̄ vehicles within the duration of



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 106

tIAT. This division of the flight space guarantees that the intruder can affect the trajectory
of at most k̄ vehicles despite its best efforts, resulting in at most k̄ replanning problems.
In the replanning phase, we replan the trajectories of the affected vehicles by assigning the
affected vehicles the lowest priority and using the STP algorithm presented in Section 4.3.

To design the flight space during the planning phase, we compute a separation region for
each vehicle such that the vehicle needs to react to the intruder if and only if the intruder
is inside this separation region. We then compute a buffer region between the separation
regions of any two vehicles such that the intruder requires at least a duration of tBRD = tIAT

k̄

to travel through this region. Thus, within the duration of tIAT, the intruder can force at
most k̄ STP vehicles to deviate from their trajectories.

Remark 6 For brevity, we present all our analyses and results in this section assuming that
all STP vehicles have same dynamics and control constraints, and the intruder has the same
state space as STP vehicles. However, the analysis to follow is more general and can easily be
extended to the scenarios where the above assumptions do not hold. We refer the interested
readers to the extended version of this section [36] for more details.

4.4.2 Computation of Separation and Buffer Regions

The separation region, Si(t), denotes the set of states of the intruder for which the vehicle
Qi is forced to apply an avoidance maneuver. Si(t) is given by the set of states from which
the joint states of QI and Qi can enter the danger zone ZiI despite the best efforts of Qi to
avoid QI .

Following [278], we define the relative state between QI and Qi, which puts Qi at the
origin: xIi = φ(xI , xi)(xI−xi). For many dynamical systems, differentiating xIi with respect
to time and choosing the appropriate φ(·, ·) leads to the following relative dynamics, which
is defined in the same dimensional space as the state space of each vehicle:

ẋIi = fr(xIi, ui, uI , di, dI) (4.25)

In relative state space, the set of potentially unsafe states is given by the backward reachable
set VA

i (t) with horizon T = tIAT and t ∈ [0, tIAT]:

VA
i (t) ={xIi : ∃di(·) ∈ Γi,∃dI(·) ∈ ΓI ,∀ui(·) ∈ Ui, ∃uI(·) ∈ UI ,

∃s ∈ [t, tIAT], ξ(s;xIi, t, ui(·), uI(·), di(·), dI(·)) ∈ LA
i },

LA
i ={xIi : ‖pIi‖2 ≤ Rc}.

(4.26)

Here, LA
i represent the collision states between Qi and QI , and ξ(·) represent the trajectory

corresponding to the dynamics in (4.25). For brevity purposes, we have dropped the time
arguments from Γ and U, and used the subscript to refer to the vehicle index. VA

i can be
computed by solving the following HJI VI

min{DtV (t, x) +H(t, x, V (t, x)), l′i(x)− V (t, x)} = 0 ∀x, t V (0, x) = l′i(x), (4.27)



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 107

where LA
i is given by the subzero level set of l′i. The Hamiltonian to compute the value

function is given by:

H(t, x, V (t, x)) = sup
ui∈Ui

inf
uI∈UI ,
dI∈DI ,
di∈Di

〈DxV (t, x), fr(x, ui, uI , di, dI)〉. (4.28)

The interpretation of VA
i (t) is that if Qi starts inside this set, i.e., xIi(t) ∈ VA

i (t), then the
intruder can force Qi to enter the danger zone ZiI within a duration of (tIAT− t), regardless
of the control applied by the vehicle. If Qi starts at the boundary of this set (denoted as
∂VA

i (t)), i.e., xIi(t) ∈ ∂VA
i (t), it can barely avoid the intruder for a duration of (tIAT − t)

using the optimal avoidance control, uA
i , that maximizes the Hamiltonian

uA
i (x) = arg sup

ui∈Ui
inf

uI∈UI ,
dI∈DI ,
di∈Di

〈DxV (t, x), fr(x, ui, uI , di, dI)〉. (4.29)

Finally, if Qi starts outside VA
i , then Qi and QI cannot instantaneously enter the danger zone

ZiI , irrespective of the control applied by them at time t. In fact, Qi can safely apply any
control as long as it is outside the boundary of this set, but will have to apply the avoidance
control once it reaches the boundary. Thus, if the intruder starts outside the separation
region, the vehicle is guaranteed to avoid the intruder for at least a duration of tIAT. Given
VA
i , the separation region is given by

Si(t) =Mi(t) + VA
i (0, tIAT), (4.30)

where the “+” in (4.30) denotes the Minkowski sum. Here, Mi(t) represents all possible
states of Qi at time t.

Remark 7 In practice, vehicles are often sampled data systems, for which control signals
can only be sent at regular time intervals. Thus, the control law in (4.29) is often hard to
realize exactly on a system. Several papers in the literature [224, 89] formally addressing
this issue. However, for most practical system, we can simply apply the avoidance controller
when vehicle Qi is within some positive distance of ∂VA

i (0).

We now compute a buffer region between the separation regions of any two vehicles such
that the intruder requires at least a duration of tBRD to travel through this region. This
ensures that it can deviate at most k̄ STP vehicles from their trajectories within a duration
of tIAT. In relative state space, the buffer region is given by the BRS, VB

i (0), corresponding
to the target set VA

i (tBRD):

VB
i (0) ={xIi : ∃di(·) ∈ Γi,∃dI(·) ∈ ΓI ,∃ui(·) ∈ Ui,∃uI(·) ∈ UI ,

∃s ∈ [0, tBRD], ξ(s;xIi, 0, ui(·), uI(·), di(·), dI(·)) ∈ VA
i (tBRD)}.

(4.31)



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 108

VB
i (0) can be computed by solving a HJI VI similar to (4.27) with the Hamiltonian

H(t, x, V (t, x)) = inf
ui∈Ui,uI∈UI ,
di∈Di,dI∈DI

〈DxV (t, x), fr(x, ui, uI , di, dI)〉. (4.32)

Intuitively, VB
i (0) represents the set of all relative states xIi from which it is possible to reach

the boundary of VA
i (tBRD) within a duration of tBRD. Thus, as long as the initial relative

state is outside VB
i (0), Qi does not need to deviate from its path to avoid the intruder for at

least a duration of tBRD. Given VB
i (0), the buffer region Bij(t) at time t between vehicle Qi

and a higher-priority vehicle Qj is given by

Bij(t) = ∂Sj(t) +
(
−VB

i (0)
)
. (4.33)

Intuitively, if the intruder is affecting Qj at time t, its state must be within the set Sj(t).
Thus, Qi should be at least VB

i (0) farther from the boundary of Sj(t). Bij(t) formally
captures this intuition.

4.4.3 Trajectory Planning for Intruder Avoidance

In addition to maintaining the buffer between Qi and a higher priority vehicle, Qj, we need
to make sure that any two STP vehicles accidentally do not come too close to each other
while applying the avoidance maneuver. Consequently, it is sufficient to ensure that their
relative state remains outside the BRS, VC

ij(0), representing the set of all relative states xij
from which the vehicles Qi and Qj can enter the set Zij within a time horizon of tIAT. Thus,
the lower priority vehicle should avoid the set

Oji (t) =Mj(t) + VC
ij(0). (4.34)

Finally, we compute the set of states from which Qi can collide with any static obstacle,
Ostatic
i . This set is given by the BRS VS

i (t), representing the set of all states of Qi at time
t that can lead to a collision with a static obstacle for some time τ ∈ [t, t + tIAT] for some
control strategy of Qi. For the detailed definitions of VC

ij and VS
i , we refer the interested

readers to the equations (50) and (32) respectively in [36].
Thus, the overall set of states that Qi needs to avoid is:

Gi(t) = VS
i (t)

⋃
∪i−1
j=1O

j
i (t)

⋃
∪i−1
j=1Bij(t). (4.35)

To account for robustness to disturbances, we augment the total obstacle set by Ωi:

G̃i(t) = Gi(t) + Ωi. (4.36)

Finally, we modify Li to be L̃i := {xi : Ωi + xi ⊆ Li}, and compute a BRS VPP
i (t) for

trajectory planning that contains the initial state of Qi and avoids G̃i(t):

VPP
i (t) = {x : ∃ui(·) ∈ Up

i ,∀s ∈ [t, tSTA
i ], ξ(s;x, t, ui(·)) /∈ G̃i(s),

∃s ∈ [t, tSTA
i ], ξ(s;x, t, ui(·)) ∈ L̃i},

(4.37)



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 109

Here, ξ(·) represent the system trajectory corresponding to the disturbance-free dynamics in
(4.3), except the control authority is changed to Upi . The BRT VPP

i (t) can be computed in an
analogous fashion to Vbasic

i (t) using the HJI VI in (4.7). VPP
i (·) ensures goal satisfaction for

Qi in the absence of intruder and disturbance. The corresponding goal satisfaction controller
is given by:

urtt
i (t, x) = arg inf

ui∈Upi
〈DxV (t, x), fi(x, ui)〉. (4.38)

The nominal trajectory xr,i(·) can thus be obtained by using vehicle dynamics (4.3), with
the optimal control given by (4.38). From the resulting nominal trajectory xr,i(·), the overall
control policy to reach Li in the absence of intruder is given by:

uPP
i (t, xi) = arg sup

ui∈Ui
inf

ur,i∈Upi ,di∈Di
〈DxV (−∞, ei), fei(ei, ui, ur,i, dj)〉. (4.39)

where ei is the error state (with respect to the nominal trajectory) as defined in (4.11).
When intruder is not present in the system, Qi applies the control uPP

i to safely reach
its target. Once intruder appears in the system, Qi applies the avoidance control uA

i and
hence might deviate from its nominal trajectory. The overall control policy for avoiding the
intruder and collision with other vehicles is thus given by:

u∗i (t, xi, xI) =

{
uPP
i (t, xi) t < t̂i
uA
i (t, xIi) otherwise

(4.40)

where t̂i denote the time at which Qi is first forced to apply an avoidance maneuver. Math-
ematically, t̂i = min{t : xIi(t) ∈ VA

i (t)}.
If Qi starts within VPP

i and uses the control u∗i , it is guaranteed to avoid collision with
the intruder and other STP vehicles, regardless of the control strategy of QI . Finally, since
we use separation and buffer regions as obstacles during the trajectory planning of Qi, it is
guaranteed that at most k̄ vehicles are forced to deviate from their path due to the intruder.

Note that after an intruder forces an STP vehicle to apply the avoidance controller, the
STP vehicle will continue to apply this controller until the intruder leaves the system, at
which time replanning will be done.

The planning phase for the intruder avoidance is summarized in Algorithm 4.

4.4.4 Replanning after Intruder Avoidance

After the intruder disappears, we have to replan the trajectories of the vehicles that were
affected by QI . Let NRP denote the set of all vehicles for whom replanning is required. NRP

can be obtained by checking if a vehicle Qi applied any avoidance control during [t, t+ tIAT],
i.e.,

NRP = {Qi : ∃t ∈ [t, t+ tIAT], xIi(t) ∈ VA
i (t)}, (4.41)

where t denote the time at which the intruder was first detected in the system. Recall that
due to the presence of separation and buffer regions, at most k̄ vehicles can be affected by



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 110

Algorithm 4: The intruder avoidance algorithm: Planning-phase (performed of-
fline)

input : Set of vehicles Qi in the descending priority order, their dynamics (4.1)
and initial states x0

i ;
Vehicle destinations Li and static obstacles Ostatic

i ;
Intruder dynamics fI and the maximum avoidance time tIAT ;
Maximum number of vehicles allowed to re-plan their trajectories k̄.

output: The nominal controller uPP and the avoidance controller uA for all vehicles.
1 for i = 1 : N do
2 Avoidance control uAi for Qi

3 compute the avoid region VA
i (t) using (4.26);

4 compute the avoidance controller uA
i using (4.29);

5 if i 6= 1 then
6 for j = 1 : i− 1 do
7 Computation of separation region for Qi

8 given the base obstacles Mj(·) and the avoid region VA
j , compute the

separation region in (4.30);
9 Computation of buffer region for Qi

10 given the separation region, compute the buffer regions Bij(·) in (4.33);
11 Computation of obstacles for Qi

12 given the base obstacles Mj(·), compute the obstacle Oji (·) in (4.34)

13 compute the effective obstacle G̃i(t) for Qi in (4.36);
14 Trajectory planning for Qi

15 given the total obstacle set G̃i(t), compute the BRS VPP
i (t) defined in (4.37);

16 The nominal controller of Qi

17 compute the nominal controller uPP
i (·) given by (4.39);

18 Base obstacle induced by Qi

19 given the nominal controller uPP
i (·) and the BRS VPP

i (t), compute the base
obstacles Mi(·) using (4.18).

QI , i.e., |NRP| ≤ k̄. It is important to note that the intruder may re-introduce the coupling
among the vehicles in the set NRP. However, once the intruder disappears from the system,
we assign these vehicles the lowest priority and again use STP to decouple their planning
process. In fact, one of the motivations for designing an algorithm for a fixed k̄ is to ensure
that this decoupling and replanning can be performed efficiently during the run-time based
on the available computation resources.

We also note that there could be potential delays in the scheduled arrival of these vehi-
cles depending on their state after the intruder disappears from the system; however, our
algorithm ensures that at most k̄ vehicles will be delayed.



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 111

Figure 4.9: Buffer regions for different k̄ (best visualized with colors). As k̄ decreases, a larger
buffer is required between vehicles to ensure that the intruder spends more time traveling
through this buffer region so that it forces fewer vehicles to apply an avoidance maneuver.

Remark 8 In this work, we assume worst-case scenarios in terms of the behavior of the
intruder, the effect of disturbances, and the planned trajectories of each STP vehicle. Con-
sequently, we are able to guarantee safety and goal satisfaction of all vehicles in all possible
scenarios given the bounds on intruder dynamics and disturbances. To achieve denser op-
eration of STP vehicles, known information about the intruder, disturbances, and specifies
of STP vehicle trajectories may be incorporated; however, we defer such considerations to
future work.

4.4.5 City Environment Simulations in the Presence of an
Intruder

We now illustrate the proposed intruder avoidance algorithm using the fifty-vehicle example
introduced in Section 4.3.3.

Simulation setup. In addition to the setup in Section 4.3.3, the vehicles now also need
to account for the possibility of the presence of an intruder for a maximum duration of
tIAT =10 s. The intruder dynamics are given by (4.24).

Results. We present the simulation results for k̄ = 3. The resultant buffer region is shown
in Blue in Figure 4.9. For the comparison purposes, we also compute the buffer regions for



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 112

k̄ = 2 and k̄ = 4. As shown in Figure 4.9, a bigger buffer is required between vehicles when
k̄ is smaller. Intuitively, when k̄ is smaller, a larger buffer is required to ensure that the
intruder spends more time “traveling” through this buffer region so that it can affect fewer
vehicles within the same duration of tIAT =10 s.

These buffer region computations along with the induced obstacle computations are per-
formed sequentially for each vehicle to obtain G(·) in (4.35). This overall obstacle set is
then used during their trajectory planning and the control policy uPP(·) is computed, as
defined in (4.39). Finally, the corresponding nominal trajectories are obtained by executing
control policy uPP(·). The time for planning for each vehicle is approximately 15 minutes on
a MATLAB implementation on a desktop computer with a Core i7 5820K processor. With
BEACLS using two GeForce GTX Titan X graphics processing units, this computation time
is reduced to approximately 9 seconds per vehicle.

The nominal trajectories and the overall obstacles for different vehicles are shown in Fig-
ure 4.10. The numbers in the figure represent the vehicle numbers. The nominal trajectories
(solid lines) are well separated from each other to ensure collision avoidance even during a
worst-case intruder “attack”. At any given time, the vehicle density is low to ensure that the
intruder cannot force more than three vehicles to apply an avoidance maneuver. This is also
evident from large obstacles induced by vehicles for the lower priority vehicles (dashed cir-
cles). This lower density of vehicles is the price that we pay for ensuring that the replanning
can be done efficiently in real-time.

In Figure 4.11, we plot the distance between an STP vehicle and the intruder when the
vehicle applies the control policies uPP(·) (Red line) and uA (Blue line) in the presence of the
intruder. Black dashed line represents the collision radius r =100 m between the vehicle and
the intruder. If the vehicle continues to apply the control policy uPP(·) in the presence of
an intruder, the intruder enters in its danger zone. Thus, it is forced to apply the avoidance
control, which can cause a deviation from the nominal trajectory, but will successfully avoid
the intruder, as indicated by the Blue curve.

The relative buffer region between vehicles is computed under the assumption that both
the STP vehicle and the intruder are trying to collide with each other; this is to ensure that
the intruder will need at least a duration of tBRD to reach the boundary of the avoid region
of the next vehicle, irrespective of the control applied by the vehicle. However, a vehicle
will be applying the control policy uPP(·) unless the intruder forces it to apply an avoidance
maneuver, which may not necessarily correspond to the policy that the vehicle will use to
deliberately collide with the intruder. Therefore, it may not be able to affect k̄ vehicles even
with its best strategy to affect maximum vehicles. In this simulation, the intruder is able to
force only two vehicles to apply an avoidance maneuver. The set of vehicles that will need to
replan their trajectories is given by NRP = {Q1, Q2}. After the intruder disappears, Q1 and
Q2 replan their trajectories. The replanning process using BEACLS takes approximately 18
seconds (9 seconds per vehicle).

However, 18 seconds is likely still too slow for several practical applications. Since reach-
ability computations are highly parallelizable, with computations on each grid point being
independent of others, replanning should be possible to do within a fraction of a second with



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 113

5048

47

49

46

43

44

42

40

0 1 2 3 4 5 km

0

1

2

3

4

5 km

Figure 4.10: Nominal trajectories and induced obstacles by different vehicles. The nominal
trajectories (solid lines) are well separated from each other to ensure that the intruder cannot
force more than 3 vehicles to apply an avoidance maneuver.

more computational resources. For example, an off-board server could utilize many GPUs
for the computations, and transmit the plans back to the vehicles in real time. However,
the real-world scalability of the computation speed with the number of GPUs still needs to
be tested; memory bandwidth could be a potential issue when a large number of GPUs is
used. Alternatively, a smaller k̄ can be used during the planning phase to make sure that
the replanning needs to be done for fewer vehicles.

Discussion. The simulations illustrate the effectiveness of reachability in ensuring that the
STP vehicles safely reach their respective destinations even in the presence of an intruder.
However, they also highlight some of the conservatism in the worst-case reachability analysis.
For example, in the proposed algorithm, we assume the worst-case disturbances and intruder
behavior while computing the buffer region and the induced obstacles, which results in a



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 114

0 2 4 6 8 10

Time (s)

0

50

100

150

200

250

D
is

ta
n

c
e

 t
o

 i
n

tr
u

d
e

r 
(m

)

Collision below this distance

Avoiding

Not avoiding

Figure 4.11: The trajectory of a STP vehicle when it applies the nominal controller vs when
it applies the avoidance control. The vehicle is forced to apply the avoidance maneuver in
the presence of an intruder, which can cause vehicle’s deviation from its nominal trajectory.

large separation between vehicles and hence a lower vehicle density overall, as evident from
Figure 4.10. Similarly, while computing the buffer region, we assumed that a vehicle is
deliberately trying to collide with the intruder so we once again consider the worst-case
scenario, even though the vehicle will only be applying the nominal control strategy uPP(·),
which is usually not be same as the worst-case control strategy. This worst-case analysis
is essential to guarantee safety regardless of the actions of STP vehicles, the intruder, and
disturbances, given no other information about the intruder’s intentions and no model of
disturbances except for the bounds. However, the conservatism of our results illustrates the
need and the utility of acquiring more information about the intruder and disturbances, and
of incorporating knowledge of the nominal strategy uPP(·) in future work. One particularly
promising direction might be to use online reachability methods, such as [150, 29], to update
the reachable sets during the run-time as the new information about the intruder dynamics
or strategy is acquired.

4.5 Chapter Summary

Provably safe multi-vehicle trajectory planning in an important problem that needs to be
addressed to ensure that vehicles can fly in close proximity of each other. In this chapter,
we propose a Sequential Trajectory Planning (STP) algorithm for provably safe, cooperative
multi-vehicle trajectory planning in the presence of external disturbances. The proposed
method assigns a strict priority ordering to vehicles to offer a tractable and practical approach



CHAPTER 4. PROVABLY SAFE AND SCALABLE MULTI-VEHICLE TRAJECTORY
PLANNING 115

to the multi-vehicle path planning problem that scales linearly with the number of vehicles.
Under the proposed method, a portion of “space- time” is reserved for vehicles in the airspace
in descending priority order to allow for dense vehicle configurations. We also demonstrate
how different types of space-time trajectories emerge naturally out of the STP algorithm for
different disturbance conditions and other problem parameters.

We also propose an algorithm to account for an adversarial intruder in sequential tra-
jectory planning. The proposed method ensures that only a fixed number of vehicles need
to replan their trajectories once the intruder disappears, irrespective of the total number
of vehicles. Thus, the replanning process is feasible in real-time. Finally, we demonstrate
how we can combine the linear scaling of the STP framework with BEACLS, that can lever-
age the computation power of GPUs, for efficient and provably safe large-scale multi-vehicle
trajectory planning problems in urban and multi-city environments.



116

Part II

Going Beyond Known Dynamics
Models and Environments:

Learning-Based Control for Unknown
Models and Environments

In Part 1 of this thesis, we discussed how we can design safe controllers for single and
multi-agent systems using tools from robust optimal control. However, to perform this
safety analysis, we often need to have a very good understanding of the environment and
conditions in which these systems will operate. For example, for multi-vehicle trajectory
planning problem discussed in Chapter 4, we need to know a dynamics model for each
vehicle, the knowledge of all the static and dynamic obstacles in the environment, and even
a dynamics model of the adversarial intruder. However, having this information beforehand
is simply not possible for future autonomous systems. For example, a future autonomous
car will need to drive around construction sites and blocked lanes in the city, in crowded city
downtowns around humans, and in different types of weather such as sunny, rainy, and snowy.
On the one hand, it is important to know these conditions for the safety analysis; on the other
hand, it is not tractable to have that knowledge until the car actually goes out and drive on
the road. As humans, we can drive reliably in the aforementioned uncertain conditions by
leveraging our prior driving experience. So a natural question to ask is “can we use prior
data to also operate autonomous systems in uncertain and unknown environments?”

In this part of the thesis, we will discuss how we can use data and tools from machine
learning to go past the assumptions typically required for the control and safety analysis of
the system. We will first discuss the scenarios where the dynamics of the system itself are
not available (Chapter 5 and 6); we will then discuss the scenarios where a dynamics model
is available, but the system is operating in a priori unknown environment (Chapter 7).



117

Chapter 5

Learning for Unknown Dynamics
Models: Indirect Learning-Based
Control

This chapter is based on the paper “Learning Quadrotor Dynamics Using Neural Network for Flight

Control” [30] written in collaboration with Anayo K. Akametalu, Frank Jiang, Forrest Laine, and

Claire Tomlin.

First principles-based dynamics models have been successfully used for decades within the
control community for designing and analyzing controllers for autonomous systems. These
models form the basis for the control of our chemical plants, thermostats, all the way to highly
unstable system such as aircrafts. In previous chapters, we also saw how we can also use these
models for the safety analysis of autonomous systems. However, as autonomous systems will
operate in unstructured environments, they will inevitably experience additional external
effects that are hard to model using first principles. For example, a quadrotor experiences
blade flapping at high speeds; similarly, its aerodynamics change near ground (also referred
to as ground effects). These inaccuracies in the model appear to the controller as external
disturbances; thus, they can significantly affect the quadrotor performance, particularly when
the system is operated near its limits.

One can take a robust control approach to account for these model inaccuracies – a
bound on the inaccuracies is estimated and then the controller is designed to perform well
despite the worst-case inaccuracy. However, a robust controller spend the controller energy
to counter the inaccuracies, rather than leveraging these dynamic effects to its advantage.
This can significantly limit controller’s capabilities in countering the actual disturbances in
the environment and/or satisfactorily completing the desired control task, as a part of the
control authority is now being spent on countering the model inaccuracies.

To circumvent these issues, one can use data-driven methods to explicitly model these
inaccuracies, directly from the data collected on the actual system. This identified model
can then be used to design a controller for the system, in the hope that a more accurate



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 118

dynamics model will also lead to better control performance. This two-step approach to
controller design is somewhat indirect compared to a direct approach wherein a controller
is directly designed to improve the control performance, rather than identifying the model
inaccuracies first. The main advantage of indirect methods is that learning a model tends to
be more sample efficient than directly optimizing the controller; moreover, the learned model
is task-agnostic and thus can generalize the control performance to new tasks. Motivated by
this, this chapter focuses on indirect learning-based control methods; we will discuss direct
learning-based control methods in Chapter 6.

Within indirect learning-based control methods, one potential approach can be to model
the inaccuracies using deep neural networks (DNN). DNNs are known to be universal func-
tion approximators; their structure allows them to model highly nonlinear functions and
unobserved states directly from the observed data, which might in general be hard to model
[192]. In this work, we investigate “can we use DNNs to model the dynamics model inaccu-
racies, and more importantly, can we use the identified model for controller design?”

Remark 9 A notational shift that is worth noting starting from this chapter is that we will
primarily pose the control problem in discrete-time. Discrete-time notation is particularly
suitable for data-driven control methods because of the inherently discrete nature of the most
datasets collected on the real systems. Furthermore, the discrete-time notation is more pop-
ular in reinforcement learning (RL) literature, which allows us to draw parallels between
RL and control methods. Nevertheless, most of the algorithms that we will discuss can be
straightforwardly extended to the continuous time, and we will comment on this extension
wherever relevant.

5.1 Related Work

System Identification (SysID). System identification (SysID) [199], the mathematical
modeling of a system’s dynamics using data, is one of the most basic and important compo-
nents of control. Roughly speaking, the field of system identification uses statistical methods
to fit a given set of basis functions (also called features) to approximate the system dynamics
For example, the features could be monomials and the SysID process identifies the coeffi-
cient of these monomials to apprximate the overall system dynamics by a polynomial in state
space. In other cases, a linear basis is used, resulting in a linear approximation of non-linear
dynamics. SysID also includes the optimal design of experiments for efficiently generating
informative data for fitting these features.

In other cases, the functional form of the dynamics is known (for example through first
principles) and SysID is used to identify unknown parameters in the first principle models
from the measured data. For example, these parameters could be mass and inertia for a
quadcopter, or friction coefficients for a ground robot, that are unknown beforehand.

However, when an autonomous system is operating in unstructured environments, it
might be challenging to even come up with the functional form or features for the unmod-



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 119

eled dynamics, making it challenging to apply traditional SysID approaches. In contrast, one
of the advantages of the modern learning approaches is that they can automatically learn
the appropriate features from the data.

Model-Based Reinforcement Learning (RL). In model-based RL, a system dynamics
model is learned directly using the data collected on the system. Typically, the model is
optimized so as to maximize the log likelihood of the observed data. For forward dynamics
model, the model is optimized to minimize the prediction error of the next state given the
current state and input. Model-based RL is a relatively younger field, which has evolved (and
continue to evolve) significantly since this work was conducted in 2015. Here, we attempt to
provide a sense of the current state of the field rather than a historical snapshot.

One popular regression tool used within model-based RL community to learn dynamics
models is Gaussian Processes (GP) [94, 235, 233, 269, 242]. GPs are particularly suitable for
learning dynamics models because GP is a probabilistic regression method and thus it also
provides an uncertainty measure for the underlying function. In other words, GPs provide
an estimate of where the learned dynamics model can be trusted and where it cannot be.
This uncertainty measure can be used to avoid overoptimistic behaviors during the planning
process. However, GP inference time scales cubically with the number of training samples
[253], making it challenging to use for high-dimensional systems, where we often need a large
number of data samples to learn a good model.

To overcome the challenges associated with GP-based dynamics models, DNN-based
dynamics models have been explored for learning dynamics models for manipulators [193,
121], helicopters [251], microrobots [231], and even for learning dynamics models via high-
dimensional observations such as images [301, 11]. However, DNN-based dynamics models
typically struggle with long horizon planning because, unlike GPs, DNNs do not provide an
estimate of the accuracy of the learned dynamics model, leading it to confidently predict
inaccurate dynamics. To overcome this challenge, Bayesian Neural Networks (BNNs) [124]
as well as several approximations of BNNs that provide an estimate of uncertainty in the
NN output have been considered [82]; however, it remains a challenge to reliably estimate
uncertainty in the outputs of DNNs.

Model-Free Reinforcement Learning. A natural way to optimize the control perfor-
mance is through model-free RL methods or direct adaptive control methods, wherein con-
troller parameters are directly optimized to improve the control performance without nec-
essarily maintaining an intermediate dynamics model. For example, in [67], the authors
directly learn the parameters of a linear feedback controller using BO to obtain walkimng
gait for a bipedal microrobot. However, a typical controller might be non-linear and can
contain hundreds of parameters; it is not feasible to optimize such high-dimensional con-
trollers using BO [276]. Other model-free approaches such as Deep-Q learning [297], TRPO
[271], and PPO [272] are very effective at learning complex, high-dimensional policies, but
the convergence might require millions of trials and often lack the robustness of the model-
based controllers [254]. Finally, unlike model-based approaches, learned controllers are task



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 120

specific, and often, learning needs to be performed from scratch for a new task.

Indirect Adaptive Control. Another approach to deal with model inaccuracies during the
controller design is through adaptive control [24, 264]. In adaptive control, a plant model
or controller parameters are varied in real-time based on the observed data to improve
the overall control performance. Unlike traditional SysID approaches which are typically
performed offline, adaptive control mechanisms are performed in real-time, as the system
operates in the environment, allowing it to adapt to changing conditions.

Adaptive control methods can be broadly classified as direct and indirect methods. Direct
methods are ones wherein the controller parameters are directly adapted to improve the
control performance. In contrast, indirect methods are those in which plant parameters are
adapted, and then the adapted plant model is used to obtain a controller or to calculate
required controller parameters. Hybrid methods rely on both estimation of plant parameters
and direct modification of the control law.

At this point, it is important to comment on the similarities and differences between
adaptive control, system identification, and reinforcement learning (RL). Direct adaptive
control methods are closely related to model-free reinforcement learning algorithms, in that
both aim to adjust the controller parameters directly to improve the control performance.
The main distinction comes from the metrics and properties that are considered during this
adaptation process. When designing adaptive control systems, special consideration is given
to convergence, stability, and robustness issues. In particular, adaptive control emphasizes
fast convergence without failure, whereas RL algorithms are permitted to fail during the
process of learning. Thus, adaptive control mechanisms are more widely used when the
stringent performance constraints are required to be met during the learning process, e.g.,
as needed in safety-critical systems like airplanes. However, this emphasis on convergence
without failure in adaptive control often comes in the form of more assumptions and re-
strictions on the underlying system and controller, compared to very few assumptions made
in model-free RL [267]. Another distinction between the two comes from the optimization
objective: model-free RL can have rather general optimization objectives – not just, e.g.,
minimal tracking error. A final distinction comes from the communities in which these meth-
ods were developed and the applications that motivated their development – adaptive control
methods have been primarily developed in control community, with primary motivation be-
ing improved control performance for aircrafts as its mass changes online (due to reduction
in fuel); whereas, RL was primarily developed in artificial intelligence and computer science
communities to understand the psychology of animal learning through trial and error [284].

Similarly, system identification and model-based reinforcement learning are closely re-
lated concepts as well, wherein a system dynamics model is identified using data from the
actual system. Once again, the main distinction comes from the properties that are desirable
in the identified model – SysID provides stronger claims about the identified model and the
estimation uncertainty, but often it comes in the form of more assumptions on the underlying
model class. One such example is the assumption of known feature basis (e.g., monomials or
linear bases) which the true system model belongs from. In contrast, model-based RL aims



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 121

to use recent advances in machine learning and computation to automatically learn the re-
quired model features. When the system dynamics model is additionally adapted or learned
in an online fashion, it can be thought of as an indirect adaptive control method (sometimes
also referred to as online system identification or online model-based RL). For example, a
particular class of indirect adaptive control methods called model identification adaptive
controllers (MIACs) can also be thought of as an online SysID approach, wherein SysID is
performed while the system is running. However, other indirect adaptive control mechanisms
exist as well that use a reference model for adaptation; therefore, indirect adaptive control
can be thought of as a broader umbrella which online SysID or online model-based RL is a
part of. Nevertheless, similar to SysID, indirect adaptive control methods also make strong
assumptions about the underlying system in order to provide performance guarantees, mak-
ing them challenging to apply directly in unstructured environments.

Contributions and Chapter Organization

In this work, we demonstrate how DNNs can be used to learn the dynamics inaccuracies
in a system model. We focus on three practically important questions and investigate (i)
whether a highly nonlinear dynamics model given by a DNN can be effectively used to
design a controller for the system, (ii) whether it is general enough to be used to design a
controller for the tasks that the network was not trained on, and (iii) what some important
consideration are when using DNN-based dynamics models for a system.

For this purpose, we collect state-input data of a nano-quadrotor Crazyflie 2.0 by flying it
on the trajectories that consist of translational or rotational motion, but not both. We next
train a feed-forward Rectified-Linear Unit (ReLU) NN to learn the state-space dynamics
of Crazyflie. To test the generalization capabilities of the trained NN, we use the learned
NN model to control the quadrotor on a trajectory that consists of a simultaneous transla-
tional and rotational motion, requiring NN to infer highly nonlinear couplings between the
rotational and translational dynamics.

5.2 Problem Formulation

Consider a general, time-invariant, non-linear dynamical system

xt+1 = f(xt, ut), (5.1)

= fnom(xt, ut) + funknown(xt, ut), (5.2)

where the dynamics f are not completely known. In particular, a nominal dynamics model
of fnom the system is known beforehand, which for example could be a first principle
model. However, there are inaccuracies in the dynamics model or unmodeled dynamics



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 122

effects funknown which are unknown beforehand. Furthermore, functional form or bounds on
funknown are not known either.

The goal is to solve an optimal control problem for dynamics in (5.1), i.e., to design a
controller such that it minimizes the following cost function:

Jt(x0,u) =
T∑
k=t

L(xk, uk, k) +M(xT ), (5.3)

where u ≡ [ut, ut+1, . . . , uT ] represents the sequence of control over the time horizon [t, T ].
There are two primary methods to design such a controller: one is to directly find the
optimal control sequence u; the other approach is to explicitly identify the model inaccuracies
funknown first and then use the identified model for the controller design. In this work, we
focus on the latter approach, which we refer to as indirect learning-based control approach.
The main advantage of identifying the unknown dynamics first is that the identified model is
task agnostic – it can be used to design a controller for a variety of optimal control problems,
and not just for a specific cost function.

5.3 Identification of Unmodeled Dynamics Using

Deep Neural Networks

In this section, we will discuss how modeling the dynamics inaccuracies funknown can be
posed as a regression problem. We will then discuss how this regression problem can be
solved using deep neural networks.

5.3.1 Identifying model inaccuracies using parametric regression

One potential approach to identify funknown is to parameterize it using a function approxi-
mator, and then identifying the parameters that best fits the observed data. In particular,
let f̂unknown(x, u; θ) denote a parameterized approximation of funknown(x, u), parameterized
by vector θ. The system identification task then becomes to find, given input and state
data, parameters θ that minimize the prediction error in funknown. Note that for a physics-
based model, θ generally captures the physical properties of the system (for example, mass,
moment of inertia, etc. for a quadrotor); for a DNN-based model, the parameters can be
thought of as degrees of freedom a DNN has to learn different nonlinear function.

Suppose our dataset consists of N state-input trajectories, collected on the real system,
with T number of data points per trajectory. The optimal parameters θ∗ can be obtained
by solving the following optimization problem:

θ∗ = min
θ

N∑
i=1

T∑
t=1

l
(
f̃unknown(xit, u

i
t)− f̂unknown(xit, u

i
t; θ)

)
, (5.4)



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 123

where f̃unknown(xit, u
i
t) represent the observed values of funknown at state xit and control uit.

In particular, given a state-input trajectory, f̃unknown can be computed using Equation
(5.1):

f̃unknown(xit, u
i
t) = xit+1 − fnom(xit, u

i
t) (5.5)

l in (5.4) represent the prediction error function that we want to minimize. A popular choice
of prediction error function is mean squared prediction error (MSE) over a training set of
collected data, solving

θ∗ = min
θ

N∑
i=1

T∑
t=1

‖f̃unknown(xit, u
i
t)− f̂unknown(xit, u

i
t; θ)‖2, (5.6)

Depending on the form of f̂unknown, (5.6) results in a linear or a nonlinear least squares
problem. For rich function approximators, such as deep neural networks, (5.6) often results
into a non-linear least square problem. For the DNN-based dynamics model, we can find the
optimal parameters using supervised learning.

5.3.2 Identifying model inaccuracies using DNNs

In this work, we use a deep neural network (DNN) to represent f̂unknown. One of the moti-
vations behind using a DNN to parameterize f̂unknown is their ability to represent complex,
high-dimensional non-linear functions.

The input to the neural network is current state xt and control input ut, and the output of
the neural network is an estimate of the unknown dynamics, f̂unknown(xt, ut). In particular,
we can construct the following dataset:

D = {
(

(x1
1, u

1
1), f̃unknown(x1

1, u
1
1)
)
,
(

(x1
2, u

1
2), f̃unknown(x1

2, u
1
2)
)
, . . . ,(

(xNT , u
N
T ), f̃unknown(xNT , u

N
T )
)
}

Given dataset D, the parameters of the neural network θ can be learned using supervised
learning with loss function given by the MSE in (5.6) (see Sec. 2.5.1 for more details).

Once the training process is complete, the obtained parameters can be used to evaluate
f̂unknown at new state and control pairs, including the ones that were not observed during
the training time. The learned model can also be used along with fnom to design a controller
for the system, which is our main focus in this chapter.

5.4 Experiments: Learning Quadrotor Dynamics

Using DNN

We will now use the framework in Sec. 5.3 to learn the unmodeled dynamics of a quadrotor,
Crazyflie 2.0 (see Fig. 5.1). The Crazyflie 2.0 is an open source nano quadrotor platform



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 124

Figure 5.1: A picture of Crazyflie 2.0 quadrotor flying during one of our experiments.

developed by Bitcraze. The nano quadrotor nominally weighs 27g and has a motor to motor
length of 65mm. Its small size, low cost, and robustness make it an ideal platform for testing
new control paradigms. Recently it has been used to exemplify aggressive flight in cluttered
environments and for human robot interaction research [188, 157]. Crazyflie is equipped
with an on-board inertial measurement unit (IMU) that provides orientation and angular
velocity measurements at 250 Hz. We use Crazyflie to collect the training data for the NN
model, as well as to test the resulting controller.

5.4.1 Crazyflie Dynamics and Onboard Controller

The quadrotor system is modeled as a rigid body with a twelve dimensional state vector
x :=

[
p v ζ ω

]
, which includes the position p = (px, py, pz) in a North-East-Down inertial

reference frame I, linear velocities v = (vx, vy, vz) in I, attitude (orientation) represented
by Euler angles ζ = (φ, θ, ψ), and angular velocities ω = (ωx, ωy, ωz) expressed in the body-
fixed coordinate frame B of the quadrotor1. The Euler angles parameterize the coordinate
transformation from I to B with the standard yaw-pitch-roll convention, i.e. a rotation by

1Note that in this section we are overloading the notation θ to represent both the pitch angle of the
quadrotor, as well as parameters of the DNN model. We clarify this distinction wherever unclear.



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 125

ψ about the z-axis in the inertial frame, followed by a rotation of θ about the y-axis of the
body-fixed frame, and finally another rotation of φ about the x-axis in the new body-fixed
frame. This is written compactly as

B
I R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ), (5.7)

where Rx,Ry, and Rz are basic 3× 3 rotation matrices about their respective axes.
The system is controlled via four inputs u :=

[
u1 u2 u3 u4

]
, where u1 is the thrust

along the z-axis in B, and u2, u3 and u4 are rolling, pitching, and yawing moments respec-
tively, all in B2. The system evolves according to dynamics:

xt+1 =


pt+1

vt+1

ζt+1

ωt+1

 = f(xt, ut; θ) = fnom(xt, ut) + funknown(xt, ut; θ) (5.8)

=


pt + ∆T · vt

0

ζt + ∆T · R̂ωt
0

+


0

fv(xt, ut; θ1)
0

fω(xt, ut; θ2)

 , (5.9)

where the system model is parameterized by θ := (θ1, θ2), which will eventually represent the
parameters of a DNN. ∆T represent a small discretization time step. The known nominal
component of dynamics here simply represent the definition of linear and angular velocities –
they are given by the derivatives of linear and angular displacements respectively. However,
note that ζ̇ 6= ω in general. ζ̇, or Euler rates as they are called, can be obtained by rotating
the angular velocities to the inertial frame [45, 155]. The rotation matrix is given by:

R̂ =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 . (5.10)

The unknown components in (5.8) are fv and fω, the linear (or translational) and angular (or
rotational) acceleration that the quadrotor undergoes, which we aim to approximate with a
NN as a function of state, control, and model parameters. The system identification task for
the quadrotor is thus to determine the NN parameters θ1 (resp. θ2), given observed values
of fv (resp. fω), x, and u.

Onboard PD Controller. To run any state-feedback control law on Crazyflie, we need
the full state x. However, in practice, this information is obtained from different sensors
which might run at different frequencies and hence the control update rate is limited by the

2These inputs are generated by varying the angular speeds of the four propellers, which map linearly to
the inputs.



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 126

Controller	Block	Diagram	

IMU	
Sensors	

LQR	
Controller	

VICON	

PD	
Controller	Motors	

Crazyflie	2.0	 Ground	Sta4on	

100	Hz	

250	Hz	

250	Hz	 100	Hz	

100	Hz	

Reference	
Trajectory	

Figure 5.2: Control block diagram used to stabilize Crazyflie during experiments. At the
ground station, LQR is running at 100Hz. On-board the Crazyflie, PD controller is running
at 250Hz. Together they are able to stabilize the Crazyflie.

frequency of the slowest sensor. This frequency, however, might not be enough to effectively
control the system, and a low-level controller is thus required in practice to control the
system between the two updates of the state feedback loop. In this section, we provide more
details about the low-level PD controller onboard Crazyflie to control the system between
the feedback updates.

We use the on-board PD controller developed by [188], which takes into account only the
angular position and angular velocities that are available at a higher frequency of 250 Hz
from the onboard IMU sensor:u2

u3

u4

 = Kp

φ− φdesθ − θdes
ψ − ψdes

+Kd

ωx − ωx,desωy − ωy,des
ωz − ωz,des

 , (5.11)

whereKp andKd are 3×3 matrices, (φdes, θdes, ψdes) is the desired attitude, and (ωx,des, ωy,des, ωz,des)
is the desired angular rate. This PD control law provides stabilization around a desired tra-
jectory. Note that we also did the same augmentation on our system in (5.8) so that the new
inputs to the system are now û := (u1, φdes, θdes, ψdes, ωx,des, ωy,des, ωz,des), where mapping
between inputs is given by (5.11). The control commands as well as the state feedback law
are thus computed for the augmented system. The onboard PD controller is shown in left
in our overall controller block diagram (Figure 5.2).



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 127

5.4.2 Data Collection

To collect data for training, we flew Crazyflie autonomously on a variety of trajectories, for
example sinusoids in XY, XZ and YZ planes (but no yaw), and fixed position yaw-rotations,
as well as manually on unstructured flights. For these flights, we recorded the state (x) and
input (û) data. For the autonomous flights during the training phase, we assume that a linear
near-hover model of the quadrotor is available during the training time. An approximate
linear model that accurately represents the quadrotor dynamics for small perturbations from
the hover state is presented in [59, 45]. We use this linear model to design a linear feedback
controller (LQR) to fly quadrotor on various trajectories. However, in general, the entire
data can also be collected manually with experts flying the system, when such a linear model
is not available.

A picture of Crazyflie flying during one of our experiments is shown in Figure 5.1. One of
the autonomous flight videos during the data collection procedure can be found at YouTube3.
For communication between the ground station and Crazyflie, we use the Robot Operating
System (ROS) framework [252, 154]. In total there are 2400 seconds of flight time recorded,

which correspond to 240, 000
(

(x, û), f̃unknown(x, û)
)

data samples. Note that since we aug-

ment the system with a PD controller, we collect û during the flights, as opposed to u. We
flew the Crazyflie in a VICON environment, a motion capture system, which allowed us
to capture the position and velocity of the Crazyflie at 100Hz. We retrofit the Crazyflie
with reflective markers to allow for accurate position and velocity estimation. Furthermore,
Crazyflie is equipped with an on-board inertial measurement unit (IMU) that provides ori-
entation and angular velocity measurements at 250 Hz. VICON and IMU together thus
provide the 12 dimensional state of the system

5.4.3 Training Details

Neural Network Architecture. We use two three layer ReLU DNNs, one for each un-
known dynamics components fv and fω. Each NN consists of an input layer, one hidden
layer, and an output layer. We next train the two NNs (denoted as NN1 and NN2 here on)
using the collected data to learn the linear and angular acceleration components fv and fω
such that the MSE in (5.6) is minimized.

The input to NN1 is (v, ω, sin(ζ), cos(ζ), u1) and is (v, ω, sin(ζ), cos(ζ), u2, u3, u4) for
NN2. Note that we do not include u2, u3, u4 in the input to NN1 because our experiments
indicate that including them as inputs result in over-fitting. Moreover, the physics of a
quadrotor hints that the translational acceleration should not depend on these inputs [45].
The same argument holds for u1 and NN2.

Note that we only feed the current state and input in the network, and not any infor-
mation on the past states and inputs. Although providing the past state-input information
will allow the NN to learn a more complex (and potentially more accurate) system dynamics

3 Video link: https://www.youtube.com/watch?v=QREeZvHg0lQ

https://www.youtube.com/watch?v=QREeZvHg0lQ


CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 128

model, it will also make it harder to design a controller for the resultant dynamics. So a
simple input structure is chosen to make sure that the NN can be effectively employed to
design a feedback controller for the downstream task.

Data Preprocessing. Before training the NNs, we follow a few data pre-processing steps:

• Since we collect û (input to the PD-augmented system), we first derive u (input to the
quadrotor system in (5.8)) from û using (5.11), and use it as the input to the NNs along
with the state information. This is to make sure that the learned system dynamics are
independent of the control scheme.

• Instead of providing orientation angles as the input to the NNs, we provide sines and
cosines of the angles. This is to make sure that NNs can take into account the periodic
nature of angles.

• We do not provide position as the input to any of the neural networks, as the trans-
lational and rotational accelerations should be position independent. We notice that
including position in the NN inputs leads to overfitting.

• For each NN, we scale the observed outputs (for example, x, y, z components of trans-
lational acceleration) such that each of them has zero mean and unity standard devi-
ation. This is to make sure that the NNs give equal weightage to MSE in the three
components.

Training Hyperparameters. 60% of the total collected data was used for training, 25%
was used for validation purposes and for tuning hyper parameters, and the rest was used
for testing purposes. All weight and bias parameters were initially sampled from normal
Gaussian distribution. For training the networks, we use the Neural Network Toolbox of
MATLAB. We use the Resilient backpropagation learning algorithm. The learning rate,
momentum constant, regularization factor and the number of hidden units were set at 0.01,
0.95, 0.1 and 100 respectively, but later tuned using the validation data. Overall, the learning
algorithm makes about 100 passes through the data, and optimize the weights and biases to
minimize the loss function. Once the training is complete, the optimal weights and biases
are obtained, which can be substituted in (5.8) to get the full dynamics model.

5.4.4 Prediction Performance of the DNN Model

We now illustrate the performance of the learned models at predicting the next state given
the current state and input. The (normalized) MSE numbers obtained for the training and
the test data after learning fv are 0.134 and 0.135 respectively, and that for fω are 0.341
and 0.344. Since the MSE numbers are very close for training and testing, it indicates
that the NNs do an accurate prediction on the unseen data as well, meaning that our NNs
are not overfitting on the training data. In Figure 5.3, we show the observed values and
the predicted outputs of the trained NNs for roll and y accelerations. As evident from the



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 129

0 2 4 6 8 10
time(s)

-2

-1

0

1

2

R
ol

l a
cc

el
er

at
io

n 
(ra

d/
s2 ) Model Error

Measured
NN output

0 2 4 6 8 10
time(s)

-4

-2

0

2

4

Y 
ac

ce
le

ra
tio

n 
(m

/s
2 )

Figure 5.3: Observed and predicted values for the roll and y accelerations. The NNs are able
to learn the acceleration models fairly accurately even with just the current state and input,
indicating that the past states and inputs may not be required to learn the dynamics, and
hence are avoided in this work to keep the control design simple.

figure, the NNs have been successfully able to learn the dynamics to a good accuracy. This
indicates that a simple three-layer feed-forward NN structure used in this paper is sufficient
to learn quadrotor dynamics to a good accuracy. Moreover, only the current state and
input information is sufficient to learn the dynamics models, and hence past state and input
information, which will potentially make the model as well as control design more complex,
has not been used as an input to the NNs.



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 130

5.4.5 Controller Design Using Learned Dynamics

Once NN1 and NN2 are trained, the full quadrotor model is available through (5.8). In this
section, our goal is to use this model to track a sinusoid-yaw trajectory, where quadrotor
is undergoing a sinusoidal motion in the XY plane while yawing at the same time. Since
the desired trajectory consists of a simultaneous translational and rotational movement, the
learned NN models must capture the nonlinear couplings between these two movements to
accurately track the trajectory.

Using the full model, we first compute a dynamically feasible reference that is as close as
possible to the desired sinusoid-yaw trajectory (shown in Figure 5.4), using the sequential
convex programming method. The reference trajectory is then tracked using a near-hover
LQR controller along with a yaw rotation. Our experiment video can be found at YouTube4.

Reference Trajectory Computation. Given a horizon NH and a desired trajectory
over that horizon xdNH := {xd0, xd1, . . . , xdNH}, our goal is to find a control signal uNH :=
{u0, u1, . . . , uNH} that will achieve the desired trajectory when applied to the quadrotor
model.

In most cases the desired trajectory may not be dynamically feasible, so no such control
signal exists. Instead, we look for a dynamically feasible trajectory that is “as close as
possible” to the desired trajectory. We thus want to solve the following optimization problem:

argmin
xNH ,uNH

NH∑
n=0

‖xn − xdn‖2

s. t. xn+1 = fnom(xn, un) + funknown(xn, un; θ), n = 0, . . . , NH − 1

(5.12)

In other words, we want to find the trajectory that minimizes the Euclidean distance to
the desired trajectory, and the control that achieves such a trajectory. Since the NN out-
put is nonlinear in general, funknown is nonlinear; therefore, the above optimization problem
is a non-convex problem. In this work, we use the sequential convex optimization (SCP)
procedure proposed in [270] to solve this non-convex optimization problem. SCP solves a
non-convex problem by repeatedly constructing a convex subproblem – an approximation
to the problem around the current iterate xNH . A local convex approximation of the non-
convex constraints is added along with a penalty co-efficient in the objective function. This
subproblem can be efficiently solved using convex solvers and used to generate a step ∆xNH
that makes progress on the original problem. The penalty co-efficient is then adjusted during
the optimization to ensure that the constraint violation is driven to zero. For more details
on the optimization procedure, we refer the interested readers to [270].

LQR Tracking Controller. Let us define the solution to (5.12) as x∗NH and u∗NH . In
practice, applying the control signal u∗NH could yield a trajectory that significantly differs
from x∗NH due to (any remaining) mismatch between the model used in the optimization and

4 Video link: https://www.youtube.com/watch?v=AeIfZbkjWPA

https://www.youtube.com/watch?v=AeIfZbkjWPA


CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 131

0 1 2 3 4
time(s)

-1

0

1

2

3

x 
(m

)

0 1 2 3 4
time(s)

-1

-0.5

0

0.5

1

y 
(m

)

0 1 2 3 4
time(s)

-1.1

-1

-0.9

-0.8

z 
(m

)

0 1 2 3 4
time(s)

-2

0

2

4

6

8
ya

w
 (r

ad
)

NN Model
Model Free
Desired

Figure 5.4: The reference, NN model and model-free trajectories obtained during the ex-
periments. The NN model track the desired trajectory closely even though it involves both
translational and rotational motion at the same time, which the NNs were not explicitly
trained on, indicating the generalization capabilities of deep neural networks.

actual dynamics of the quadrotor and unmodeled disturbances. This can be mitigated via
feedback.

To stabilize the quadrotors on a (feasible) reference trajectory, we use a LQR feedback
controller designed for the near hover model of quadrotor, along with a reference rotation be-
fore applying the feedback to correct for a non-zero yaw. The feed-forward control command
is given by the reference control trajectory, providing the closed loop controller

un = u∗n +K(xn − x∗n), (5.13)

where u∗n and x∗n are the reference control (feed-forward control) and reference state respec-
tively. K is the feedback gain obtained using LQR.



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 132

Since the quadrotor hover dynamics are derived around zero yaw, they no longer accu-
rately represent the dynamics of the quadrotor for non-zero yaw states. Consequently, the
near hover model is no longer valid and hence state feedback law given in (5.13) will no
longer be able to stabilize the system. One possible solution to mitigate this issue is to
rotate the inertial frame at every time step to another inertial frame in which yaw is zero.
In particular, let the state error at timestep n is given by x̄n := (xn− x∗n). Also, let the yaw
at time n be ψn. The rotation of the inertial frame is thus equivalent to rotating the error
in the position and velocity vectors by a rotation matrix as follows:[

p̄x
R

p̄y
R

]
= Rn

[
p̄x
p̄y

]
,

[
v̄x
R

v̄y
R

]
= Rn

[
v̄x
v̄x

]
, (5.14)

where p̄x and p̄y is the error in x and y position respectively. v̄x and v̄y are similarly defined.
The rotation matrix R is given by

Rn =

[
cos(ψn) sin(ψn)
−sin(ψn) cos(ψn)

]
. (5.15)

The corresponding rotated error vector is x̄Rn := (p̄Rn , v̄
R
n , ζ̄n, ω̄n). Our overall state feedback

control is thus given by:
un = u∗n +Kx̄Rn . (5.16)

Finally, we can use the feedback control in (5.16) along with the onboard PD controller to
stabilize the Crazyflie around the reference trajectory.

Note that the state feedback control law in (5.16) is good at error correction only when
an accurate open-loop state x∗n and control u∗n are provided. Since the open-loop control
depends heavily on the system model, the tracking with (5.16) can only be as good as the
system dynamics model itself. In particular, for sinusoid-yaw reference trajectories, the NN
should be able to learn the couplings between translational and rotational motion for a good
tracking.

Performance of the Controller Designed Using the Learned Dynamics. The desired
trajectory and the obtained trajectory using the NN model along with the tracking controller
in (5.16) are shown in Figure 5.4. As evident from the figure, the NN model trajectory is
able to track the desired trajectory closely. This illustrates that:

• the trained NNs are able to generalize the dynamics beyond the training data. In
particular, the NN models capture the nonlinear couplings between translational and
rotational accelerations, and can be used to track the trajectories they were not trained
on.

• even simple NN architectures, such as one used in this paper, have good generalization
capabilities and can be used to control a quadrotor on complex trajectories.



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 133

From the results thus far it is not clear how much of the control performance is due to the
feedforward signal derived from the NN model, since the LQR control may be correcting for
model inconsistency. Therefore, we opted to fly Crazyflie using an LQR controller designed
on the near-hover model of the quadrotor that was used during the training phase to fly
Crazyflie autonomously. We label the results corresponding to this experiment as the ‘model-
free’ trajectory. In Figure 5.5, we show the (absolute) tracking error for the NN model and

0 1 2 3 4
time(s)

0

0.2

0.4

0.6

x 
er

ro
r (

m
)

0 1 2 3 4
time(s)

0

0.2

0.4

0.6

y 
er

ro
r (

m
)

0 1 2 3 4
time(s)

0

0.05

0.1

0.15

0.2

z 
er

ro
r (

m
)

0 1 2 3 4
time(s)

0

0.5

1

1.5

ya
w

 e
rro

r (
ra

d)

NN Model
Model Free

Figure 5.5: (Absolute) Tracking error for model-free and NN model trajectories. Model-free
trajectory has a significantly higher tracking error compared to the NN model, especially
in the translational motion, indicating that nonlinear coupling between translational and
rotational motions should be taken into account while designing a controller, which in this
work is captured by training a NN model that accurately represents the system dynamics.

model-free trajectories. The NN model has a significantly lower tracking error compared
to the model-free trajectory, indicating that the feedforward control derived from the NN
model results in better tracking of the desired trajectory.



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 134

5.5 Discussion

Even though DNNs are able to capture the unmodeled complex, nonlinear inaccuracies in
dynamics, they also pose several practical challenges:

• We found it challenging to use traditional optimal control/MPC methods for DNN-
based dynamics models. This is primarily for two reasons. First, the DNN-based
models are inherently complex, especially when there are multiple hidden layers, mak-
ing it challenging to solve optimization problems involving DNN-based dynamics con-
straints. Second, and perhaps more importantly, the DNN-based dynamics models
do not reliably predict the gradients of the dynamics function funknown. This makes
it challenging to use any optimal control method that relies on these gradients, for
example for linearization of dynamics in iLQR or SQP.

• DNN-based dynamics models typically struggle with long horizon planning because,
unlike GPs, DNNs do not provide an estimate of the accuracy of the learned dynamics
model, leading it to confidently make inaccurate predictions. This inaccuracy in one-
step prediction compounds over the planning horizon, leading to biased controllers. To
overcome these challenges, Bayesian Neural Networks (BNNs) [124] as well as several
approximations of BNNs that provide an estimate of uncertainty in the NN output
have been considered [82]. An alternative is to learn a multi-step dynamics model
instead of a single-step dynamics model, for example using Recurrent Neural Networks
(RNNs).

• We noticed that using a nominal model and known information during the learning
process were crucial for avoiding overfitting and ensuring data-efficient learning. For
example, during the learning of the quadrotor model, we do not provide position as the
input to any of the neural networks, as the translational and rotational accelerations
should be position independent. Indeed, using position as an input to the DNN results
in a significant overfitting, which otherwise might require significant more data to
mitigate. Similarly, we do not learn the dynamics of position states (that are known
very well, thanks to calculus), which further improve the sample complexity of the
learning process.

5.6 Chapter Summary

As autonomous systems will operate in unstructured environments, they will inevitably
experience additional external effects that are hard to model using first principles. In this
chapter, we discuss how we can use deep neural networks to learn these dynamics inaccuracies
directly using the data collected on the system. Our experiments indicate that even simple
DNNs such as feed-forward networks can also have good generalization capabilities and can
learn the dynamics to a good accuracy. More importantly, we demonstrate that the learned



CHAPTER 5. LEARNING FOR UNKNOWN DYNAMICS MODELS: INDIRECT
LEARNING-BASED CONTROL 135

dynamics can be used effectively to control the system. We also discuss several practical
challenges associated with DNN-based dynamics models.



136

Chapter 6

Learning for Unknown Dynamics
Models: Direct Learning-Based
Control

This chapter is based on the papers “Goal-Driven Dynamics Learning via Bayesian Optimization”

[32], “Closed-Loop Model Selection for Kernel-Based Models Using Bayesian Optimization” [47],

and “MBMF: Model-Based Priors for Model-Free Reinforcement Learning” [31] written in collabo-

ration with Thomas Beckers, Roberto Calandra, Ted Xiao, Kurtland Chua, Sergey Levine, Sandra

Hirche, and Claire Tomlin.

Given the system dynamics, optimal control schemes such as LQR, MPC, and feed-
back linearization can efficiently design a controller that maximizes a performance criterion.
However, depending on the system complexity, it can be quite challenging to model its true
dynamics using the first principles. In Chapter 5, we discussed how we can use DNNs to
model the dynamic inaccuracies, and subsequently, leverage the learned model for controller
design. However, for a given task, a globally accurate dynamics model is not always re-
quired to design a controller. Often, partial knowledge of the dynamics is sufficient, e.g., for
trajectory tracking purposes a local linearization of a non-linear system is often sufficient.

In this chapter, we argue that for complex systems, if we are interested in designing a
controller for a specific task, it might be preferable to adapt the controller design process
to learn a system dynamics model that is sufficient to achieve a desired performance on
that task, rather than learning a globally accurate dynamics model. This approach to the
controller design is somewhere between indirect and direct learning-based control methods.
It is not indirect because we are not explicitly optimizing the model for minimizing the
prediction error. It is also not direct because we are not directly optimizing the controller.
However, it is closer to a direct approach than an indirect approach because similar to
the task-specific nature of the learned controller in direct approaches, the learned model is
task-specific and optimized to maximize the resulting controller performance for the task at
hand.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 137

This direct approach to controller design has two advantages over indirect approaches,
which first learn an accurate dynamics model and subsequently use it for controller design.
First, if the actual dynamics do not belong to the class of models that is being considered
during the learning process, the learned model might actually deteriorate the control perfor-
mance rather than improving it. This is because the learning process will try to balance-off
the prediction error of the model in different parts of the state-space so as to achieve an
overall low prediction error. However, a “good” model (good in terms of prediction error)
in the parts of the state space that concern the task at hand and “bad” in others might
lead to an overall better control performance on the task, compared to an average model
everywhere. In other words, for limited capacity models, it might be desirable to focus the
model representation capabilities on the relevant parts of the state space. Second, even when
the model class is rich, it may not be easy to design a controller for the learned model. For
example, we discussed a few challenges associated with designing a controller on a highly
nonlinear, DNN-based dynamics model in Chapter 5. Thus, using simple models that are
only locally accurate but enable efficient controller design might be more useful in certain
scenarios, especially when planning needs to be performed in real-time.

6.1 Related Work

System Identification (SysID), Model-Based RL, and Indirect Adaptive Control.
Traditional system identification approaches are divided into two stages: 1) creating a dy-
namics model by minimizing some prediction error (e.g., using least squares) 2) using this
dynamics model to generate an appropriate controller. Similar approaches have also been
studied under the banner of model-based RL. In these approaches, modeling the dynamics
can be considered an offline process as there is no information flow between the two design
stages.

SysID and model-based RL methods can also be online, and have been studied extensively
both in control and RL commuities, under the banner of indirect adaptive control and
online (or on-policy) model-based RL approaches respectively1. In online methods, the
dynamics model is instead iteratively updated using the new data collected by evaluating
the controller (see [98, 94, 235, 233, 269, 242] for representative references from the RL
community and [24, 142, 84, 229, 264] for references from the adaptive control community).
Both for the online and the offline cases, creating a dynamics model based only on minimizing
the prediction error can introduce sufficient inaccuracies that might lead to suboptimal
control performance [162, 98, 26, 7, 129, 152]. In particular, if the model is inaccurate
(e.g., due to intrinsic limitations of the models or the compounding of the inaccuracies
over trajectory propagation) the expected cost might be wrong, even if the cost has been
measured for the considered policy, leading to a sub-optimal control performance. This
issue is often referred to as model bias [93]. Using machine learning techniques, such as

1For more details on these approaches and connections between them, we refer the interested readers to
Sec. 5.1 in Chapter 5.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 138

Gaussian processes, does not alleviate this issue [233]. Instead, authors in [162] proposed to
optimize the dynamics model directly with respect to the controller performance, but since
the dynamics model is optimized offline, the resultant model is not necessarily optimal for
the actual system.

To mitigate the issues of the poor control performance with indirect methods, previous
studies have also considered tuning the cost function (or performance criterion) in an on-
line fashion. For example, in [208, 294, 258], the authors tuned the penalty matrices in an
LQR problem for performance improvement using Bayesian Optimization (BO). Although
interesting results emerge from these studies, tuning penalty matrices may not achieve the
desired performance when a sufficiently accurate system dynamics model is not available.

Model-Free RL and Direct Adaptive Control. A natural way to optimize the control
performance for a specific task is through model-free RL methods or direct adaptive con-
trol methods, wherein controller parameters are directly optimized to improve the control
performance.

In [67], the authors directly learn the parameters of a linear feedback controller using BO.
However, a typical controller might be non-linear and can contain hundreds of parameters;
it is not feasible to optimize such high-dimensional controllers using BO [276]. Other model-
free approaches such as Deep-Q learning [297], TRPO [271], and PPO [272] are very effective
at learning complex, high-dimensional policies, but the convergence might require millions
of trials and often lack the robustness of the model-based controllers [254].

Another model-free RL approach that has shown a lot of promise in data-efficient learn-
ing of a good controller is apprenticeship learning. In apprenticeship learning, a system
is provided with expert trajectories that successfully complete the task, and a controller is
learned to mimic the expert. [6] presents an apprenticeship learning approach to successfully
perform advanced aerobatics on a helicopter under autonomous control. One limitation of
the apprenticeship learning approach is that it requires expert trajectories, which may not
be available.

A task-specific approach that is widely popular in adaptive control community is Iter-
ative Learning Control (ILC), particularly because of its impressive performance within a
handful of trials. ILC is a method of improving the tracking control using data for systems
that work in a repetitive mode [309], [148]. Repetition allows the system to improve tracking
accuracy from repetition to repetition, in effect learning the required input needed to track
the reference exactly. The learning process uses information from previous repetitions to
improve the control signal ultimately enabling a suitable control action can be found itera-
tively. However, ILC often requires a priori known, good nominal tracking controller, which
can be challenging to obtain.

Combining Model-Based and Model-Free RL. Several prior works have also sought
to combine model-based (MB) and model-free (MF) reinforcement learning, typically with
the aim of accelerating MF learning while minimizing the effects of model bias on the final
policy. These approaches range from using models for generating synthetic experience for MF



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 139

approaches to reduce their data requirements [283, 143, 147] to produce a good initialization
for the MF component [111, 230, 70, 304]. However, we still lack principled approaches
that combine MB and MF approaches into a single RL method that does not inherit the
inaccuracies of a model, yet is able to use the model structure across the entire policy space.

Contributions and Chapter Organization

In this chapter, we propose Dynamics Optimization via Bayesian Optimization (aDOBO), a
Bayesian Optimization (BO) based active learning framework to learn the dynamics model
that achieves the best performance for a given task based on the performance observed in
experiments on the physical system (Section 6.3). This active learning framework takes into
account all past experiments and suggests the next experiment in order to learn the most
about the relationship between the performance criterion and the model parameters. Specif-
ically, we use BO to optimize the dynamics model with respect to the desired task, where the
dynamics model is updated after every experiment so as to maximize the performance on the
physical system. This procedure corresponds to optimizing a linear dynamics model with
the purpose of maximizing the performance of the final controller. Hence, unlike traditional
system identification approaches, it does not necessarily correspond to finding the most ac-
curate dynamics model, but rather the model yielding the best controller performance when
provided to the optimal control method used. Moreover, since we learn a linear dynamics
model, the planning can be done very efficiently. Since aDOBO does not aim at directly
learning the controller, it is agnostic to the dimensionality of the controller. It can leverage
the low-dimensional structure of the dynamics to optimize the high-dimensional controllers.
Therefore, it bypass the typical data-inefficiency issues associated with direct learning-based
control methods. To overcome the limited capacity of linear models, we also demonstrate
how aDOBO can be extended to a richer class of models, such as Gaussian Processes (Sec-
tion 6.4). To the best of our knowledge, aDOBO the first method that optimizes a dynamics
model to maximize the control performance on the actual system.

Finally, we propose an algorithm that combines the complimentary advantages of indirect
and direct learning-based control approaches, such as data-efficiency of indirect approaches
and high performance of direct approaches, which overcoming their respective limitations,
such as model bias of indirect approaches and data-inefficiency of direct approaches (Section
6.5).

6.2 Problem Formulation

We recall the problem setup from Chapter 5. Consider a general, time-invariant, non-linear
dynamical system

xt+1 = f(xt, ut), (6.1)

= fnom(xt, ut) + funknown(xt, ut), (6.2)



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 140

where fnom is the known nominal component of the dynamics, and funknown is the unknown
component. When no information about system dynamics is available beforehand, fnom = 0.

Given an initial state x0, the goal is to solve an optimal control problem for dynamics in
(5.1), i.e., to design a controller such that it minimizes the following cost function:

Jt(xt,ut) =
T−1∑
k=t

L(xk, uk, k) +M(xT ),

subject to xk+1 =f(xk, uk),

(6.3)

where ut ≡ [ut, ut+1, . . . , uT−1] represent the sequence of control over the time horizon [0, T ].
One of the key challenges in designing such a controller is the modeling of the unknown
system dynamics in (6.1).

In this work, we model the unknown dynamics component in (6.1) as a linear time-
invariant (LTI) system with system matrices (Aθ , Bθ). The system matrices are parameter-
ized by θ ∈M ⊆ Rd, which is to be varied during the learning procedure.

For a given θ and the current system state xk, let πk(xk, θ) denote the optimal control
sequence for the system with linear unknown component (Aθ , Bθ) for the horizon {k, k +
1, . . . , T}, i.e.,

πk(xk, θ) := ūk = arg min
uk

Jk(xk,uk) ,

subject to xj+1 =fnom(xj, uj) + Aθxj +Bθuj.
(6.4)

The key difference between (6.3) and (6.4) is that the controller is designed for the param-
eterized linear model as opposed to the true system. As θ is varied, different matrix pairs
(Aθ , Bθ) are obtained, which result in different controllers π(·, θ). Our aim is to find, among
all linear models, the linear model (Aθ∗ , Bθ∗) whose controller π(·, θ∗) minimizes J0 (ideally
achieves J∗0 ) for the actual system, i.e.,

θ∗ = arg min
θ∈M

J0(x0,u0) ,

subject to xk+1 = f(xk, uk) , uk = π1
k(xk, θ),

(6.5)

where π1
k(xk, θ) denotes the 1st control in the sequence πk(xk, θ). To make the dependence

on θ explicit, we refer to J0 in (6.5) as J(θ) here on. Note that (Aθ∗ , Bθ∗) in (6.5) may
not correspond to an actual linearization of the system, but simply to the linear model that
gives the best performance on the actual system when its optimal controller is applied in a
closed-loop fashion on the actual physical plant.

We choose LTI modeling to reduce the number of parameters used to represent the
system, and make the dynamics learning process data efficient. Linear modeling also allows
to efficiently design the controller in (6.4) for general cost functions (e.g., using MPC for
any convex cost J). In general, the effectiveness of linear modeling depends on both the
system and the control objective. If f is linear, a linear model is trivially sufficient for any
control objective. If f is non-linear, a linear model may not be sufficient for all control tasks;



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 141

however, for regulation and trajectory tracking tasks, a linear model is often adequate, as
will illustrate later in this chapter. A linear parameterization is also used in adaptive control
for similar reasons [264]. Nevertheless, we will demonstrate how the proposed framework
can easily be extended to other dynamics models, such as Gaussian Process-based dynamics
models in Sec. 6.4.

Since f is unknown, the shape of the cost function, J(θ), in (6.5) is unknown. The
cost is thus evaluated empirically in each experiment, which is often expensive as it involves
conducting an experiment. Thus, the goal is to solve the optimization problem in (6.5) with
as few evaluations as possible. In this work, we do so via Bayesian Optimization (BO). We
refer the reader to Section 2.6 for a quick overview of Gaussian Processes and BO.

6.3 Goal-Driven Dynamics Learning (aDOBO)

This section presents the technical details of aDOBO, a novel framework for Dynamics
Optimization via Bayesian Optimization (BO) for maximizing the resultant controller per-
formance. In this work, θ ∈ Rnx(nx+nu), i.e., each dimension in θ corresponds to an entry of
the Aθ or Bθ matrices. This parameterization is chosen for simplicity, but other parameter-
izations can easily be used.

Since the function J(θ) in (6.5) is unknown a priori, we use nonparametric Gaussian
Process (GP) model to approximate it over its domain M (see Sec. 2.6.1 for more details
on GP). This GP model is used by BO to optimize (Aθ , Bθ). Our approach is illustrated in
Figure 6.1 and summarized in Algorithm 5.

Actual	SystemCurrent	Linear	
Dynamics Controller	

Cost	Function

Bayesian	
Optimization

Cost	
Evaluator

Output

Cost
New	Linear	
Dynamics

Optimal	Control	
Scheme

Figure 6.1: aDOBO: A Bayesian optimization-based active learning framework for optimizing
the dynamics model for a given cost function, directly based on the observed cost values.

Given an initial state of the system x0 and the current model of the unknown dynamics
component (Aθ′ , Bθ′ ), we design an optimal control sequence π0(x0, θ

′
) that minimizes the



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 142

Algorithm 5: aDOBO algorithm for learning a task (or goal) driven dynamics
model.
1 D ←− if available: {θ, Jθ}
2 Prior ←− if available: Prior of the GP hyperparameters
3 Initialize GP with D
4 while optimize do
5 Find θ∗ = arg minθ α (θ); θ

′ ←− θ∗

6 x0 = {}, u0 = {}
7 for i = 0 : T − 1 do
8 Given xi and (Aθ′ , Bθ′ ), compute πi(xi, θ

′
)

9 Apply π1
i (xi, θ

′
) on the real system and measure xi+1

10 x0 ←− (x0, xi+1)

11 u0 ←− (u0, π
1
i (xi, θ

′
))

12 Evaluate J(θ
′
) := J0(x0,u0) using (6.3)

13 Update GP and D with {θ′ , J(θ
′
)}

cost function J0(x0,u0), i.e., we solve the optimal control problem in (6.4). The first control
of this control sequence is applied on the actual system and the next state x1 is measured. We
then similarly compute π1(x1, θ

′
) starting at x1, apply the first control in the obtained control

sequence, measure x2, and so on until we get xT . Once the state and control trajectories
x0 and u0 are obtained, we compute the true performance of u0 on the actual system by
analytically computing J0(x0,u0) using (6.3). We denote this cost by J(θ

′
) for simplicity.

We next update the GP based on the collected data sample {θ′ , J(θ
′
)}. Finally, we compute

θ∗ that minimizes the corresponding acquisition function α (θ) and repeat the process for
(Aθ∗ , Bθ∗).

Intuitively, aDOBO directly learns the shape of the cost function J(θ) as a function
of linearizations (Aθ , Bθ). Instead of learning the global shape of this function through
random queries, it analyzes the performance of all the past evaluations and by optimizing
the acquisition function, generates the next query that provides the maximum information
about the minima of the cost function. This direct minima-seeking behavior based on the
actual observed performance ensures that our approach is data-efficient. Thus, in the space of
all linearizations, we efficiently and directly search for the linearization whose corresponding
controller minimizes J0 on the actual system.

Note that the GP in our algorithm can be initialized with dynamics models whose con-
trollers are known to perform well on the actual system. This generally leads to a faster
convergence. For example, when a good linearization of the unknown dynamics components
is available, it can be used to initialize D. When no information is known about the unknown
component a priori, the initial models are queried randomly. Finally, note that aDOBO can
also be used when the real system is stochastic. In this case, aDOBO will minimize the



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 143

expected cost.

6.3.1 Numerical Simulations

In this section, we present some simulation results on the performance of the proposed
method for controller design.

6.3.1.1 Dubins Car System

For the first simulation, we consider a three dimensional non-linear Dubins car whose dy-
namics are given as

xk+1 = xk + ∆Tvk cos θk ,

yk+1 = yk + ∆Tvk sin θk ,

θk+1 = θk + ∆Tωk ,

(6.6)

where (xk, yk, θk) is the state of system, pk = (xk, yk) is the position, θk is the heading, vk
is the speed, and ωk is the turn rate at time k. The input (control) to the system is uk :=
(vk, ωk). ∆T represents the sampling time and is chosen to be 0.1s in our simulations. Our
goal is to design a controller that steers the system to the equilibrium point x∗ = 0, u∗ = 0
starting from the state x0 := (1.5, 1, π/2). In particular, we want to minimize the cost
function

J0(x0,u0) =
T−1∑
k=0

(
xTkQxk + uTkRuk

)
+ xTTQfxT . (6.7)

We choose T = 30. Q, Qf and R are all chosen as identity matrices of appropriate sizes.
We also assume that the dynamics model in 6.6 are not known beforehand and fnom = 0;
hence, we cannot directly design a controller to steer the system to the desired equilibrium.
Instead, we use aDOBO to find a linearization of dynamics in (6.6) that minimizes the cost
function in (6.7), directly from the experimental data.

In particular, we represent the system in (6.6) by a parameterized linear system xk+1 =
Aθxk+Bθuk, design a controller for this system. The resulting controller is applied in closed-
loop on the actual system and performance is recorded. Based on the observed performance,
BO suggests a new linearization and the process is repeated. Since the cost function is
quadratic in this case, the optimal control problem for a particular θ is an LQR problem,
and can be solved efficiently.

For BO, we use the MATLAB library BayesOpt [210]. Since there are 3 states and 2
inputs, we learn 15 parameters in total, one corresponding to each entry of the Aθ and
Bθ matrices. The bounds on the parameters are chosen randomly as M = [−2, 2]15. As
acquisition function, we use EI (see eq. (2.96)). Since no information is assumed to be
known about the system, the GP was initialized with a random θ. We also warp the cost
function J using the log function before passing it to BO. Warping makes the cost function
smoother while maintaining its monotonic properties, which makes the sampling process in
BO more efficient and leads to a faster convergence.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 144

Figure 6.2: Dubins car: mean and standard deviation of η during the learning process (over
10 trials). aDOBO reaches within the 10% of the optimal cost in just 100 iterations, starting
from a random dynamics model. Using a log warping on the cost function further accelerates
the learning.

For comparison, we compute the true optimal controller that minimizes (6.7) subject to
the dynamics in (6.6) using the non-linear solver fmincon in MATLAB to get the minimum
achievable cost J∗0 across all controllers. We use the percentage error between the true
optimal cost J∗0 and the cost achieved by aDOBO as our comparison metric in this work

ηn = 100× (J∗0 − J(θn))

J∗0
, (6.8)

where J(θn) is the best cost achieved by aDOBO by iteration n. In Fig. 6.2, we plot ηn
for Dubins car. As learning progresses, aDOBO gathers more and more information about
the minimum of J0 and reaches within 10% of J∗0 in just 100 iterations, demonstrating its
effectiveness in designing a controller for an unknown system just from the experimental
data. Fig. 6.2 also highlights the effect of warping in BO. A well warped function converges
faster to the optimal performance.

We also compared the control and state trajectories obtained from the learned controller
with the optimal control and state trajectories. As shown in Fig. 6.3, the learned system
matrices not only achieve the optimal cost, but also follow the optimal state and control
trajectories very closely. Even though the trajectories are very close to each other for the
true system and its learned linearization, this linearization may not correspond to any actual
linearization of the system. The next simulation illustrates this key property of aDOBO
more clearly.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 145

0 10 20 30
-2

-1

0

v

Control inputs

0 10 20
Horizon (N)

-2

-1!

Learned Optimal

0 10 20 30

0.5
1

1.5

x

States

0 10 20 30
Horizon (N)

0.5

1

y

Figure 6.3: Dubins car: state and control trajectories for the learned and the true system.
The two trajectories are very similar, indicating that the learned dynamics model represents
the system behavior accurately around the desired state.

6.3.1.2 A Simple 1D Linear System

For this simulation, we consider a simple 1D linear system

xk+1 = xk + uk , (6.9)

where xk and uk are the state and the input of the system at time k. Although the dynamics
model is very simple, it illustrates some key insights about the proposed method. Our goal
is to design a controller that minimizes (6.7) starting from the state x0 = 1. We choose
T = 30 and R = Q = Qf = 1. We assume that the dynamics are unknown and use aDOBO
to learn the dynamics, where θ := (θ1, θ2) ∈ R2 are the dynamics parameters to be learned.

The learning process converges in 45 iterations to the true optimal performance (J∗0 =
1.61), which is computed using LQR on the real system. The converged parameters are
θ1 = 1.69 and θ2 = 2.45, which are vastly different from the true parameters θ1 = 1 and
θ2 = 1, even though the actual system is a linear system. To understand this, we plot
the cost obtained on the true system J0 as a function of linearization parameters (θ1, θ2) in
Fig. 6.4. Since the performances of the two sets of parameters are very close to each other, a
direct performance based learning process (e.g., aDOBO) cannot distinguish between them
and both sets are equally optimal for it. More generally, a wide range of parameters lead to



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 146

Figure 6.4: Cost of the actual system in (6.9) as a function of the linearization parameters
(θ1, θ2). The parameters obtained by aDOBO (the pink X) yield to performance very close to
the true system parameters (the green ∗). Note that aDOBO does not necessarily converge
to the true parameters.

similar performance on the actual system. Hence, we can expect the proposed approach to
recover the optimal controller and the actual state trajectories, but not necessarily the true
dynamics or its true linearization. This simulation also suggests that the true dynamics of
the system may not even be required as far as the control performance is concerned.

6.3.1.3 Cart-pole System

We next apply aDOBO to a cart-pole system in Fig. 6.5

(M +m)ẍ−mlψ̈ cosψ +mlψ̇2 sinψ = F ,

lψ̈ − g sinψ = ẍ cosψ ,
(6.10)



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 147

where x denotes the position of the cart with mass M , ψ denotes the pendulum angle, and
F is a force that serves as the control input. The massless pendulum is of length l with a
mass m attached at its end. Define the system state as (x, ẋ, ψ, ψ̇) and the input as u := F .
Starting from the initial state (0, 0, π

6
, 0), the goal is to keep the pendulum straight up, while

keeping the state within given lower and upper bounds. In particular, we want to minimize
the cost

J0(x0,u0) =
T−1∑
k=0

(
xTkQxk + uTkRuk

)
+ xTTQfxT

+ λ
T∑
i=0

max(0, x− xi, xi − x),

(6.11)

where λ penalizes the deviation of state xi below x and above x. We assume that the
dynamics are unknown and use aDOBO to optimize the dynamics.

m

M
F

l

!
y

x

Figure 6.5: Cart-pole System

For simulation, we discretize the dynamics at a frequency of 10Hz. We choose N = 30,
M = 1.5Kg, m = 0.175Kg, λ = 100 and l = 0.28m. The Q = Qf = diag([0.1, 1, 100, 1])
and R = 0.1 matrices are chosen to penalize the angular deviation significantly. We use
x = [−2,−∞,−0.1,−∞] and x = [2,∞,∞,∞], i.e., we are interested in controlling the
pendulum while keeping the cart position within [−2, 2], and limiting the pendulum overshoot
to 0.1. The optimal control problem for a particular linearization is a convex MPC problem
and solved using YALMIP [201]. The true J∗0 is computed using fmincon.

As shown in Fig. 6.6, aDOBO reaches within 20% of the optimal performance in 250
iterations and continue to make progress towards finding the optimal controller. This sim-



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 148

Figure 6.6: Cart-pole system: mean and standard deviation of η during the learning process.
The learned controller reaches within 20% of the optimal cost in 250 iterations, demonstrating
the applicability of aDOBO to highly non-linear systems.

ulation demonstrates that the proposed method (a) is also applicable to highly non-linear
systems even though the system dynamics are approximated as a linear system, (b) can
handle general convex cost functions that are not necessarily quadratic, and (c) different op-
timal control schemes can be used within the proposed framework. Since an MPC controller
can in general be non-linear, this implies that the proposed method can also design complex
non-linear controllers with an LTI parametrization.

6.3.2 Comparisons With Other Online Learning Methods

In this section, we compare our approach with some other online learning schemes for con-
troller design, and discuss their relative advantages and disadvantages.

6.3.2.1 Indirect Learning-Based Control vs aDOBO

In this work, we aim to directly find the best linearization based on the observed performance.
Another approach is to learn a linearization of the system based on the observed state and
input trajectory during the experiments. The underlying hypothesis is that as more and
more data is collected, a better linearization is obtained, eventually leading to an improved
control performance. This approach is in-line with the traditional system identification
approaches and indirect learning-based control approach discussed in Chapter 5, except that
the identification is performed online. Thus, this approach can also be thought of as an
indirect adaptive control algorithm.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 149

Figure 6.7: Performance obtained via learning (A,B) through state and input trajectories.
When the underlying system is non-linear, this approach can result in a poor performance.

We record the state and input trajectories in each experiment. Let (xj0,u
j
0) denotes

the state and input trajectories for experiment j. We also let Di = ∪ij=1(xj0,u
j
0). After

experiment i, we fit an LTI model of the form xk+1 = Aixk + Biuk using least squares on
data in Di and then use this model to obtain a new controller for experiment i+1. We apply
the approach on the linear system in (6.13) and the non-linear system in (6.6) with the cost
function in (6.7).

For the linear system, the approach converges to the true system dynamics in 5 itera-
tions. However, this approach performs rather poorly on the non-linear system, as shown in
Figure 6.7 and Table 6.1. When the underlying system is non-linear, all state and input tra-
jectories may not contribute to the performance improvement. A good linearization should
be obtained from the state and input trajectories in the region of interest, which depends
on the task. For example, if we want to regulate the system to the equilibrium (0, 0), a
linearization of the system around (0, 0) should be obtained. Thus, it is desirable to use the
system trajectories that are close to this equilibrium point. However, a naive prediction error
based approach has no means to select these “good” trajectories from the pool of trajectories
and hence can lead to a poor performance. In contrast, aDOBO does not suffer from these
limitations, as it explicitly utilizes a performance based optimization.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 150

Iteration aDOBO Learning via LS
200 6 ± 3.7% 166.7 ± 411%
400 2.2 ± 1.1% 75.9 ± 189%
600 1.8 ± 0.7% 70.7 ± 166%

Table 6.1: Dubins car: mean and standard deviation of η obtained via learning (A,B)
through least squares (LS), and through aDOBO.

6.3.2.2 Direct Adaptive Control vs aDOBO

Another potential approach to obtain the optimal controller for the task at hand is to directly
parameterize and optimize the controller, such as the feedback matrix K ∈ Rnxnu for linear
controllers [67]. For linear controllers, this optimization problem can be written as

θ∗ = arg min
θ∈M

J0(x0,u0) ,

sub. to xk+1 = f(xk, uk), uk = Kθxk .
(6.12)

The advantage of this approach is that only nxnu parameters are learned compared to nx(nx+
nu) parameters in aDOBO, which is also evident from Fig. 6.8a, wherein the learning process
for K converges much faster than that for aDOBO. However, a linear controller might not
be sufficient for general cost functions, and non-linear controllers are required to achieve a
desired performance. As shown in Sec. 6.3.1.3, aDOBO is not limited to linear controllers;
hence, it outperforms the K learning method in such scenarios. Consider, for example, the
linear system

xk+1 = xk + yk, yk+1 = yk + uk , (6.13)

and the cost function in Eq. (6.11) with state xk = (xk, yk), T = 30, x = [0.5,−0.4] and
x = [∞,∞]. Q, Qf and R are all identity matrices of appropriate sizes, and λ = 100.

As evident from Fig. 6.8b, directly learning a feedback matrix performs poorly with an
error as high as 80% from the optimal cost. Since the cost is not quadratic, the optimal
controller is not necessarily linear; however, since the controller in (6.12) is restricted to
a linear space, it performs rather poorly in this case. In contrast, aDOBO continues to
improve performance and reaches within 20% of the optimal cost within few iterations,
because we implicitly parameterize a much richer controller space via learning A and B.
In this example, we capture non-linear controllers by using a linear dynamics model with
a convex MPC solver. Since the underlying system is linear, the true optimal controller is
also in our search space. Our algorithm makes sure that we make a steady progress towards
finding that controller. However, aDOBO is not restricted to learning a linear controller K.

One can also directly learn the actual control sequence to be applied to the system (which
also captures the optimal controller) or use a rich parameterization for controller, such as a
DNN. This approach may not be data-efficient compared to aDOBO as the parameter space
can be very large depending on the problem cost function and horizon, and will require a
large number of experiments. We demonstrate the performance of the direct adaptive control



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 151

(a) Dubins car

(b) System of Eq. (6.13)

Figure 6.8: Mean and standard deviation of η obtained via directly learning the feedback
controller K [67] and aDOBO for different cost functions. (a) Comparison for the quadratic
cost function of Eq. (6.7). Directly learning K converges to the optimal performance faster
because fewer parameters are to be learned. (b) Comparison for the non-quadratic cost
function of Eq. (6.11). Since the optimal controller for the actual system is not necessarily
linear in this case, directly learning K leads to a poor performance.

approach that directly learns the optimal control sequence in Table 6.2. The performance
error is more than 250% even after 600 iterations, rendering the method impractical for real
systems.

6.3.2.3 Tuning Penalty Matrices vs aDOBO

In this section, we consider the case in which the cost function J0 is quadratic (see Eq.
(6.7)). Suppose that the nominal linearization of the system around x∗ = 0 and u∗ = 0 is
known and given by (A∗, B∗). To design a controller for the actual system in such a case,
it is a common practice to use an LQR controller for the linearized dynamics. However, the



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 152

Iteration aDOBO Learning Control Sequence
200 53 ± 50% 605 ± 420%
400 27 ± 12% 357 ± 159%
600 17 ± 7% 263 ± 150%

Table 6.2: System in (6.13): mean and standard deviation of η for aDOBO, and for directly
learning the control sequence. Since the space of control sequence is huge, the error is
substantial even after 600 iterations.

resultant controller may be sub-optimal for the actual non-linear system. To overcome this
problem, authors in [208, 294] propose to optimize the controller by tuning penalty matrices
Q and R in (6.7). In particular, we solve

θ∗ = arg min
θ∈M

J0(x0,u
)
0 ,

sub. to xk+1 = f(xk, uk), uk = K(θ)xk ,

K(θ) = LQR(A∗, B∗,WQ(θ),WR(θ), Qf ) ,

(6.14)

where K(θ) denotes the LQR feedback matrix obtained for the system matrices (A∗, B∗) with
WQ and WR as state and input penalty matrices, and can be computed analytically. For
further details of LQR method, we refer interested readers to [54]. The difference between
optimization problems (6.5) and (6.14) is that now we parameterize penalty matrices WQ and
WR instead of system dynamics, and optimize them to achieve the optimal performance on
the actual non-linear system directly using the experimental data. The optimization problem
in (6.14) is solved using BO in a similar fashion as we solve (6.5) [208]. The parameter θ,
in this case, can be initialized by the actual penalty matrices Q and R, instead of a random
query, which generally leads to a much faster convergence. An alternative approach is to
use aDOBO, starting from the nominal linear model. Actual penalty matrices Q and R are
used for aDOBO.

When (A∗, B∗) are known to a good accuracy, (Q,R) tuning method is expected to
converge quickly to the optimal performance compared to aDOBO as it needs to learn fewer
parameters, i.e., (nx + nu) (assuming diagonal penalty matrices) compared to nx(nx + nu)
parameters for aDOBO. However, when there is error in (A∗, B∗) (or more generally if
nominal dynamics are unavailable), the performance of the (Q,R) tuning method can degrade
significantly as it relies on an accurate linearization of the system dynamics, rendering the
method impractical for control design purposes. To compare the two methods we use the
Dubins car model in Eq. (6.6). The rest of the simulation parameters are same as Section
6.3.1.1. We compute the linearization of Dubins car around x∗ = 0 and u∗ = 0 using
(6.6) and add random matrices (Ar, Br) to them to generate A′ = (1 − α)A∗ + αAr and
B′ = (1 − α)B∗ + αBr. We then initialize both methods with (A′, B′) for different αs. As
shown in Fig. 6.9, the (Q,R) tuning method outperforms aDOBO, when there is no noise in
(A∗, B∗). But as α increases, its performance deteriorates significantly. In contrast, aDOBO



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 153

0 100 200 300 400 500
Iteration

0

10

20

30

40
Pe

rc
en

ta
ge

 e
rro

r i
n 

J 0

,= 0
,= 0.1
,= 0.2

Figure 6.9: Dubins car: Comparison between tuning the penalty matrices (Q,R) [208]
(dashed curves), and aDOBO (solid curves) for different noise levels in (A∗, B∗), the nom-
inal linear dynamics around the desired goal state. When nominal dynamics are accurate,
the (Q,R) tuning method outperforms aDOBO because fewer parameters are to be learned.
Its performance, however, drops significantly as noise increases, rendering the method im-
practical for the scenarios where a good nominal dynamics model is not known to a good
accuracy.

is fairly indifferent to the noise level, as it does not assume any accurate prior knowledge of
system dynamics. The only information assumed to be known is penalty matrices (Q,R),
which are generally designed by the user and hence are known a priori. Another limitation
of this tuning process is that it is unclear which cost parameters should be tuned when the
cost function is not quadratic, whereas aDOBO can be used for more general cost functions
as shown in Sec. 6.3.1.3.

A summary of the advantages and limitations of different methods is provided in Table
6.3.

6.3.3 Hardware Experiments: Quadrotor Position Control

We now present the results of our experiments on Crazyflie 2.0, which is an open source
nano quadrotor platform developed by Bitcraze (see Fig. 5.1). Its small size, low cost, and
robustness make it an ideal platform for testing new control paradigms.

For small yaw, the quadrotor system is modeled as a rigid body with a ten dimensional
state vector x :=

[
p, v, ζ, ω

]
, which includes the position p = (px, py, pz) in an inertial frame

I, linear velocities v = (vx, vy, vz) in I, attitude (orientation) represented by Euler angles ζ,
and angular velocities ω. The system is controlled via three inputs u :=

[
u1, u2, u3

]
, where

u1 is the thrust along the z-axis, and u2 and u3 are rolling, pitching moments respectively.
The full non-linear dynamics of a quadrotor are derived in [3] using first principles, and its
physical parameters are computed in [188].



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 154

Method Advantages Limitations
(Q,R) learning
[208]

Only (nx + nu) parameters are
to be learned so learning will be
faster.

Performance can degrade significantly if
nominal dynamics are not known to a
good accuracy.

K learning [67] Only nxnu parameters are to be
learned so learning will be faster.

Approach may not perform well for non-
quadratic cost functions.

(A,B) learning
via least squares

Can lead to a faster convergence
when the underlying system is lin-
ear.

Approach is not suitable for non-linear
system.

aDOBO Does not require any prior knowl-
edge of system dynamics. Appli-
cable to general cost functions.

Number of parameters to be learned is
higher, i.e., (n2

x + nxnu).

Table 6.3: Relative advantages and limitations of different methods for task-specific controller
design.

0 10 20 30 40 50 60
Iteration

-10

0

10

%
 im

pr
ov

em
en

t i
n 

J Percentage error in cost wrt the nominal controller

Figure 6.10: Crazyflie: percentage error between the learned and the nominal controller.
The nominal controller is obtained by using the full 12D non-linear dynamics model of the
quadrotor. As learning progresses, aDOBO outperforms the nominal controller by 12% on
the actual system, indicating the capability of aDOBO to overcome modeling errors.

Our goal in this experiment is to track a desired position p∗ starting from the initial
position p0 = [0, 0, 1]. Formally, we minimize

J0(x0,u0) =
T−1∑
k=0

(
x̄TkQx̄+ uTkRuk

)
+ x̄TTQf x̄T , (6.15)

where x̄ :=
[
p− p∗, v, ζ, ω

]
. Given the dynamics in [3], the desired optimal control problem



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 155

can be solved using LQR; however, the resultant controller may still not be optimal for the
actual system because (a) true underlying system is non-linear and (b) the actual system
may not follow the dynamics in [3] exactly due to several unmodeled effects, as we discussed
in Chapter 5. Hence, we use the linearized model obtained from the first principle model as
the nominal dynamics model, and model the unknown dynamics of vx and vy as[

fvx
fvy

]
= Aθ

[
φ
ψ

]
+Bθu1 , (6.16)

where A and B are parameterized through θ. Our goal is to learn the parameter θ∗ that
minimizes the cost in (6.15) for the actual Crazyflie using aDOBO.

We use T = 400; the penalty matrix Q is chosen to penalize the position deviation. In
our experiments, Crazyflie was flown in presence of a VICON motion capture system, which
along with on-board sensors provides the full state information at 100Hz. The optimal
control problem for a particular linearization in (6.16) is solved using LQR. For comparison,
we compute the nominal optimal controller using the linear nominal dynamics obtained from
[3].

Figure 6.10 shows the performance of the controller from aDOBO compared with the
nominal controller during the learning process. The nominal controller outperforms the
learned controller initially, but within a few iterations, aDOBO performs better than the
controller derived from the known dynamics model of Crazyflie. This is because aDOBO
optimizes controller based on the performance of the actual system and hence can account for
unmodeled effects. In 45 iterations, the learned controller outperforms the nominal controller
by 12%, demonstrating the performance potential of aDOBO on real systems. Figure 6.11
shows the error trajectories (from p∗) of px, py and pz for the learned controller and the
nominal controller. Although the px and py tracking is similar for the both controllers, the
actual system is able to track the desired z position much better with the learned controller,
resulting in its lower cost compared to the nominal controller.

6.4 Going Beyond Linear Models: Learning

Task-Driven Gaussian Process (GP) Models

Even though we have seen how aDOBO enables controlling nonlinear systems through simple
linear models, the linear models are still limited in their capacity to learn complex, nonlinear
dynamics effects, which might be required to taken into account to satisfactorily complete
the task at hand. In this section, we will discuss how we can extend aDOBO to Gaussian
Process (GP)-based dynamics models.

Unlike linear models, GPs are non-parametric models so we can’t directly optimize any
parameters. However, using non-parametric, kernel-based approaches for modeling a system
(e.g., a GP) requires the selection of an appropriate kernel function and a set of hyperparam-
eters for that function. Typically, these selections are data-based, e.g. through minimizing



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 156

50 100 150 200 250 300 350 400
0.2
0.6x

State Error

50 100 150 200 250 300 350 400

0.2

0.6

y

50 100 150 200 250 300 350 400
Horizon

0.05

0.15

z

Nominal
Learned

Figure 6.11: Crazyflie: tracking error for the learned and nominal controllers. The final
learned controller does a better tracking of pz state, which results in an overall better per-
formance.

a loss function that is often a trade-off between the prediction error and the complexity of
the model. However, as discussed earlier, a low prediction error might not necessarily lead
to a better control performance. Instead, we will use aDOBO to optimize the kernel and its
hyperparameters directly with respect to the performance of the closed-loop rather than the
prediction error.

6.4.1 Problem Setup

Our goal is to optimize the kernel and its hyperparameters of a GP model with respect to
the cost functional J0(x0,u0). Thus, in contrast to the classical kernel selection problem,
where the kernel is selected to minimize the state prediction error, our goal here is not to



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 157

get the most accurate model but the one that achieves the best closed-loop behavior.
We define a set K = {K1, . . . ,KnK} of nK ∈ N kernel candidates Kj that we want to

choose the kernel from for our GP model. BO will be used to select the kernel with the best
closed-loop performance in this set.

Remark 10 The selection of possible kernels can be based on prior knowledge about the
system, e.g. smoothness with the Matérn kernel or number of equlibria using a polynomial
kernel, see [48] and [56] for general properties, respectively.

In addition, each kernel depends on a set of hyperparameters. Since the number of hyper-
parameters could be different for each kernel, we define a set of sets P = {Φ1, . . . ,ΦnK} such
that Φj ⊂ Rn

Φj is a closed set. Here, nΦj represents the number of hyperparameters for the
kernel Kj. Moreover, we assume that Φj is a valid hyperparameter set.

Definition 2 The set Φ is called a valid hyperparameter set for a kernel function K if and
only if the set Φ is a domain for the hyperparameters of K.

For example, for the squared exponential kernel, the lengthscale hyperparameters are always
positive. The hyperparameter set Φ takes into account this non-negativity constraint to
define a valid domain for the hyperparameters.

Given K and P our goal is to solve the following optimization problem:

K∗, ϕ∗ = arg min
K∈K,ϕ∈Φ

J0(x0,u0) ,

subject to xk+1 = f(xk, uk) , uk = π1
k(xk,K, ϕ),

(6.17)

where the controller π1
k(xk,K, ϕ) is obtained through solving the optimal control problem on

the GP model:
πk(xk,K, ϕ) := ūk = arg min

uk
Jk(xk,uk) ,

subject to xj+1 =fnom(xj, uj) +M(xj, uj,K, ϕ).
(6.18)

Since the GP regression is a probabilistic regression, the learned dynamics M is stochastic
in general; however, it is a common practice to use just the mean of the GP model during
the controller design process. In this work, M refers to the mean of the GP model, unless
stated otherwise.

6.4.2 Closed-Loop Kernel and Hyperparameter Selection

We now describe the proposed overall procedure for the kernel selection to optimize the
closed-loop behavior. We start with an initial kernel K with hyperparameters ϕ for the GP
model, and obtain the control law for the system as per (6.18). This control law is then
applied to the actual system, and the cost function J0(x0,u0) is evaluated after performing
the control task. Depending on the obtained cost value, BO suggests a new kernel and
corresponding hyperparameters for the GP model in order to minimize the cost function on



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 158

the actual system. With this model, the control task is repeated and, based on the cost
evaluation, BO suggests the next kernel and hyperparameters. This procedure is continued
until a maximum number of task evaluations is reached or the user rates the closed-loop
performance as sufficient enough. We now describe the above three steps, i.e. initialization,
evaluation and optimization, in detail.

6.4.2.1 Initialization

For the first evaluation of the closed-loop, the kernel-based model M is created with an
initial kernel Kj of the set K and hyperparameters ϕj ∈ Φj with j ∈ {1, . . . , nK}. One
potential way to select the initial kernel and hyperparameters is to set them equal to the
kernel and hyperparameters of a prediction model that is optimized with respect to a loss
function, e.g., using cross-validation or maximization of the likelihood function [56].

6.4.2.2 Bayesian Optimization

In the next step, we use BO to minimize the cost function with respect to the kernel and
its hyperparameters. This problem involves both continuous (i.e., the hyperparameters) and
discrete variables (i.e., the kernel) in the optimization task whereas classical BO assumes
continuous variables only. To overcome this restriction, a modified version of BO is used
where the kernel function is transformed in a way such that integer-valued inputs are properly
included [128].

Based on previous evaluations of the cost function, BO updates the prior and minimizes
the acquisition function to provide the next kernel and the hyperparameters to evaluate on
the real system.

6.4.2.3 Task Evaluation

For the i-th task evaluation, BO determines an index value j ∈ {1, . . . , nK} and a ϕj ∈ Φj.
The control law (6.18) for the kernel-based model M, with the determined kernel Kj and
hyperparameters ϕj, is applied to the actual system. The corresponding input and state
sequences x0 and u0, respectively, are recorded. Afterwards, the cost function J0(x0,u0) is
evaluated. The procedure is repeated until a maximum number of task evaluations has been
reached or a sufficient performance level has been achieved.

Remark 11 We focus here on a single, fixed initial state x0. However, multiple (close by)
initial states can be considered by using the expected cost across all initial states.

6.4.3 Hardware Experiments: End Effector Tracking of a
Robotic Arm in Viscous Liquid

In this section, we present an example with a 3-DOF robot that demonstrates the ap-
plicability of the proposed approach to hardware testbeds. BO is used with the expected-



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 159

improvement-plus as acquisition function because of its satisfactory performance in practical
applications, see [64].

6.4.3.1 Setup

For the experimental evaluation, we use the 3-DoF SCARA robot CARBO as pictured in
6.12. The links between the joints have a length of 0.3 m and a spoon is attached at the
end effector of the robot. The goal is to follow a given trajectory as precisely as possible in
a viscous liquid (jelly in this case), without using high feedback gains, which might result
in several practical disadvantages, see [234]. Therefore, a precise model of the system’s dy-
namics is necessary. Since the modeling of the nonlinear fluid dynamics with a parametric
model would be very time consuming, we use a computed torque control method based on
a GP model which allows high performance tracking control. Underlying, a low level PD-
controller enforces the generated torque by regulating the voltage based on a measurement
of the current. The controller is implemented in MATLAB/Simulink on a Linux real-time
system with a sample rate of 1 ms. For the implementation of the GP model, we use the
GPML toolbox 2. The desired trajectory follows a circular stirring movement through the
fluid with a frequency of 0.5 hz.

Modeling: The state of the robot consists of the position and velocity of all joints [q, q̇] and
the corresponding torque for the i-th joint, τi. Here, we use a first principle model of the
robotic arm as the nominal model. The parameters for the nominal model are physically
measured; however, they do not take into account the change in dynamics due to the presence
of the viscous liquid. To compensate for these dynamics inaccuracies, we learn a GP model.

We learn two different GP models: an open-loop model that minimizes the prediction
error (negative log likelihood of the data) based on collected state-input pairs, and a closed-
loop model that optimizes the closed-loop performance using aDOBO. The data for the
nominal model is collected around the desired trajectory using a high gain controller. The
placement of the training points heavily influences the control performance of the open-loop
model; however, the proposed approach focuses on improving the performance based on
existing data rather than designing the optimal experiment to collect the data for the open-
loop model. Since the GP produces one-dimensional outputs only, 3 GPs are used in total
for the modeling of the robot’s dynamics. Each GP i = 1, . . . , 3 uses a squared exponential
kernel

K(x, x′) = ϕ2
i exp

(
−‖x− x′‖2

ϕ2
i+3

)
, ϕi ∈ R \ {0}, (6.19)

with the lengthscales [ϕ1, . . . , ϕ6] and the signal noise σn ∈ R3 as the kernel hyperparam-
eters, see [253]. Thus, a total number of 9 hyperparameters must be optimized. In these
experiments, the kernel is fixed to reduce the optimization space and thus, the number of

2http://www.gaussianprocess.org/gpml/code



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 160

Figure 6.12: Stirring viscous liquid with the 3-dof SCARA robot CARBO using aDOBO.

task evaluations.

Control law: The control input, i.e. the torque τ(q̇, q) for all joints, is generated based on
the nominal model, the mean prediction of the GP model as feed-forward component, and
a low gain PD-feedback part

τd = Ĥq̈d + Ĉq̇d + ĝ +M(q̇, q)−Kdė−Kpe. (6.20)

Here, the desired trajectory is given by qd, q̇d, and q̈d, with the error e = (qd − q) and ė =
(q̇d−q̇). The feedback matrices are given by Kp = diag([60, 40, 10]) and Kd = diag([1, 1, 0.4]).
For the discretization of the control input, a zero-order method is used. For more details on
the discretization of control, we refer the interested readers to [49].



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 161

Table 6.4: Comparison between open-loop and closed-loop optimization for learning dynam-
ics inaccuracies.

Value Data-based Closed-loop
σn [0.10, 3× 10−3, 6× 10−4] [0.20, 4× 10−3, 3× 10−4]
ϕ1,2,3 [3.49, 1.42, 2.87] [2.61, 1.68, 5.70]
ϕ4,5,6 [1.21, 0.25, 0.27] [0.80, 0.27, 0.29]
Log. likelihood [89,−121,−176] [115,−113,−136]
Cost (Tracking error) 1.49 1.05

6.4.3.2 Evaluation

The evaluation of the performance of the closed-loop is based on the cost function

C =
1

2000

2000∑
k=0

eTk ek (6.21)

with a discretization timestep of ∆T = 1 ms. Therefore, the cost function is a measure
for the tracking accuracy of the stirring movement. We consider as kernel candidate the
squared exponential kernel, such that only the hyperparameters σn, σf , ϕ are optimized. For
the open-loop model, the hyperparameters are optimized based on a gradient method to
minimize the log likelihood function. In contrast, aDOBO is used to minimize the tracking
error in the closed-loop model. The initial values of the hyperparameters for aDOBO are
set to the values obtained my minimizing teh log-likelihood function. The lower and the
upper bounds for the hyperparameters are defined as the 0.5 and 2 times of the initial values
respectively. Table 6.4 shows the comparison between the open-loop and the closed-loop
models. Even though the open-loop model leads to a lower prediction error (higher negative
log likelihood), it leads to a higher tracking error.

The evolution of the minimum cost over the trials for the closed-loop model, where each
trial is a single stirring movement, is shown in Fig. 6.13. After 100 trials, the tracking
error is decreased by 30% through the optimization of the GP model using aDOBO. Even if
the resulting hyperparameters are sub-optimal with respect to the likelihood function, the
performance of the closed-loop is significantly improved.

The comparison of the joint position error for the open and closed-loop models is shown
in Fig. 6.14. The open-loop model leads to a larger tracking error. We note that the
performance of the open-loop model can be improved further by collecting more training
data; however consequently, the inference time of the GP model also increases significantly.
In contrast, the proposed method does not increase the computational burden of the Gaussian
process prediction which is often critical in real-time applications.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 162

Figure 6.13: Minimum of the cost function over the number of trials for the closed-loop
model. The closed-loop model is optimized using aDOBO.

Figure 6.14: Comparison of the root square position error of all joints for the open-loop and
closed-loop models.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 163

6.5 Combining Indirect and Direct Learning-Based

Control

In previous sections, we discussed how a direct learning-based control approach like aDOBO
can lead to a better task-specific controller than an indirect approach. However, such a direct
approach has some disadvantages too – the designed controller is task-specific and may not
be robust to any changes in the task; whereas, a model learned through indirect approach
is task-agnostic and can be used to design controllers for a variety of tasks.

Moreover, as the task gets more complex (or when the controller requires a significantly
higher number of parameters), the direct learning-based approaches can be highly data
inefficient. This dichotomy between direct and indirect approaches can be best understood
through the lens of the amount of data available for learning. Whenever an experiment is
conducted on the system, we obtain a state-input trajectories and an overall reward/cost for
the trajectory. Since a state-input trajectory typically consists of several state-action pairs,
which is what typically used in indirect approaches to learn a dynamics model, an experiment
typically provides significantly more number of data points for an indirect approach than
for a direct approach. Thus, from a data standpoint, indirect approaches tend to be more
data efficient. The same argument also highlights the respective limitations of the two
approaches: indirect approaches typically completely ignore the reward data and only use
the state-input trajectories for learning, leading to a disconnect between the accuracy of the
learned model and its control performance; on the other hand, direct approaches completely
ignore the state-input trajectories and only use the reward data for learning, leading to a
task-specific and data-inefficient learning. Thus, a natural question to ask is “can we combine
the respective advantages of indirect and direct learning-based approaches?” This question
is the focus of our discussion in this section.

In this section, we propose a probabilistic framework, Model-Based priors for Model-
Free learning (MBMF), that integrates indirect (typically model-based) and direct (typically
model-free) approaches. This bridging is achieved by using the cost estimated by the model
learned by the indirect approach as the prior for the policy optimization via a direct approach.
In particular, we learn a dynamics model from scratch which is used to compute the trajectory
distribution corresponding to a given policy, which in turn can be used to estimate the cost of
the policy. This estimate is used by a Bayesian Optimization-based model-free (MF) policy
search to guide the policy exploration. In essence, this probabilistic framework allows us to
model and combine the uncertainty in the cost estimates of the two methods, using both
the state-input trajectories as well as the observation of the actual cost/reward during the
learning process. The advantage of doing so is to exploit the structure and generality of the
dynamics model throughout the entire state-action space. At the same time, the evidence
provided by the observation of the actual cost can be integrated into the estimation of the
posterior.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 164

6.5.1 Model-Based Priors for Model-Free Learning (MBMF)

We now present our novel approach to incorporating a model-based (MB) prior in a di-
rect, model-free (MF) method, which we term MBMF. As with most MB approaches, our
algorithm starts with training a forward dynamics model funknown from single-step state
transition data D1 := {(xk, uk), xk+1}. This model can be linear or non-linear and can be
learned in a variety of ways, e.g., using linear regression, GP regression, etc. Once the
dynamics model is trained, for any given policy parameterization π(·, θ), we can predict
the corresponding trajectory distribution by iteratively computing the distribution of states
xk := f̃(xk−1, uk−1) ≡ fnom(xk−1, uk−1) + funknown(xk−1, uk−1) for k = 1 . . . T . Given the tra-
jectory distribution, we compute the predicted distribution of the cost as a function of the
policy parameters using (6.3). We denote the expected value of this predicted cost function
as J̃(θ)

At the same time, similarly to BO, we train a GP-based performance function, Ĵ(θ), that
predicts J(θ) given the measured tuples of D2 = {θ, J(θ)}. Here, J(θ) denotes the observed
cost corresponding to the policy π(·, θ) for the given horizon, as defined in (6.3). However,
unlike plain BO, we employ the prediction of the cost distribution from the dynamics model
as the prior mean of the performance function3. This modified performance function is then
used to optimize the acquisition function α to compute the next policy parameters θ

′
to

evaluate on the real system. The policy π(·, θ′) is then rolled out on the actual system.
The observed state-input trajectories and the realized cost data is next added to D1 and
D2 respectively, and the entire process is repeated again. A summary of our algorithm is
provided in Algorithm 6.

Intuitively, the learned dynamics model has the capability to estimate the cost corre-
sponding to a particular policy; however, it suffers from any unmodeled inaccuracies (also
referred to as the model bias) which translates into a bias in the estimated cost. The BO
performance function, on the other hand, can predict the true cost of a policy in the regime
where it has observed the training samples, as it was trained directly on the observed per-
formances. However, it can have a huge uncertainty in the cost estimates in the unobserved
regime. Incorporating the model-based cost estimates as the prior allows it to leverage the
structure of the dynamics model to guide its exploration in this unobserved regime. Thus,
using the model-based prior in BO leads to a sample-efficient exploration of the policy space,
and at the same time overcomes the biases in the model-based cost estimates, leading to the
optimal performance on the actual system.

Note that we collect trajectory data at each iteration so, in theory, we can update the
dynamics model, and hence the performance function prior, at each iteration. However, it
might be desirable to update the prior every F iterations instead, as the dynamics model
might change significantly between consecutive iterations, especially when the dataset D1 is
small. We will demonstrate the effect of F on the learning progress in Section 6.5.2.

3A more correct, but computationally harder approach would be to treat the full cost distribution as a
prior for the performance function.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 165

Algorithm 6: MBMF Algorithm for combing indirect and direct learning-based
control approaches.

1 init: Sample policy parameters θ ∼ N(0, I)
2 Apply sampled policies on the system and record resultant state-input trajectory

and cost data
3 Initialize D1 ← {(xk, uk), xk+1}; D2 ← {θ, J(θ)}
4 Train dynamics model funknown : xk, uk → xk+1 using D1

5 Define J̃(·): Computed by evaluating the trajectory distribution corresponding to π

using Monte-Carlo on f̃ and computing the expected cost in (6.3)
6 while optimize do

7 Train GP-based performance function Ĵ : θ → J(θ) using D2 and J̃(θ) as the
prior mean

8 Minimize the acquisition function α : θ
′
= minθ α(Ĵ , θ)

9 Evaluate θ
′

on the real system f

10 Collect trajectory data (xk, uk, xk+1) and the observed cost J(θ
′
)

11 Add {θ′ , J(θ
′
)} to D2 and trajectory data to D1

12 Every F iterations:
13 Update the dynamics model funknown based on D1

14 Redefine J̃(·) based on the updated GP dynamics

It should also be noted that indirect learning-based algorithms like PILCO [94] can
be thought of as a special case of our approach, where the performance function consists
exclusively of the prior mean provided from a GP-based dynamics model, without any con-
sideration of the evidences (i.e., the measured costs). In other words, PILCO does not take
the dataset D2 into account. Leveraging D2 allows the BO to learn an accurate performance
function by accounting for the differences between the “belief” cost based on the dynamics
model and the actual cost observed on the system.

Remark 12 It is important to note that we do not explicitly compute the function J̃(θ).
The function is only computed for specific θ that are queried by the optimization algorithm
during the optimization of the acquisition function (Line 8 of Algorithm 6).

Remark 13 The proposed approach is agnostic to the function approximator used to learn
the dynamics model; thus, different dynamics models, e.g., linear models, neural networks,
GPs, Bayesian neural networks, etc. can easily be used in the proposed framework.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 166

6.5.2 Numerical Simulations

In this section, we compare the performance of MBMF with a pure MB (or indirect) method,
a pure MF (or direct) method, as well as a combination of the two where the model is used
to “warm start” the MF method.

6.5.2.1 Experimental Setting

Task details. We apply the proposed approach as well as the baseline approaches on two
different tasks. In the first task, a 2D point mass is moving in the presence of obstacles. The
setup of the task is shown in Fig. 6.18. The agent has no information about the position and
the type of the obstacles (the Grey cylinders). The goal is to reach the goal position (the
Green circle) from the starting position (the Red circle). For the cost function, we penalize
the squared distance from the goal position.

In the second task, an under-actuated three degree-of-freedom (DoF) robotic arm (only
two of the three joints can be controlled) is trying to push an object from one position to
another. The setup of the task is shown in Fig. 6.22. The Red box represents the object
which needs to be moved to the goal position, denoted by the Green box. As before, the
squared distance from the goal position of the object is used as the cost function.

These tasks pose challenging learning problem because they are under-observed, under-
actuated, and have both contact and non-contact modes, which result in discontinuous dy-
namics.

Implementation details. For the GP regression, we use the GPy package [140]. We use
the Dividing Rectangles (DIRECT) algorithm [123] for all policy searches in this paper. For
simulating the tasks, we use OpenAI Gym [61] environments and the Mujoco [290] physics
engine. In our experiments, we employ linear policies, but more complex policies can be
easily incorporated as well.

Baselines details. For the MB method, we learn a dynamics model and use this dynamics
model to perform policy search. In particular, we start with some initial random state-action,
next-state pairs. A GP-based one-step forward dynamics model is learned using this data.
Given the dynamics model and the cost function, we learn a linear policy using DIRECT.
The resultant policy is then executed on the real system and the corresponding state and
action trajectories, as well as the resultant cost are obtained. The observed trajectories are
then added to the training set, and the entire process is repeated again. We denote this
baseline as MB in our plots.

For the MF method, we use BO to directly find the optimal policy parameters, and denote
it as MF in plots. In the final variant, we use the MB method above to optimize the policy
for a given number of iterations, after which we switch to BO and continue the optimization.
The cost observations obtained during the executions of MB method were used to initialize
the BO. We denote it as MB+MF in the plots. We will simulate this baseline for different



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 167

5 10 15 20 25
Iteration

2.0

2.5

3.0

3.5
Co

st
 (L

og
)

MF
MB+MF

MB
MBMF

Figure 6.15: The mean (curves) and the standard deviation (shaded regions) of the cost
obtained for different approaches for the 2D point mass system. Each iteration corresponds
to one trial on the actual system. A pure MF approach is unable to perform well. A pure MB
approach continues to improve, but is outperformed by the MBMF, indicating the utility of
blending MB and MF approaches.

switching points, which corresponds to the number of iterations after which we switch from
MB to MF approach. We denote this number by K in our plots. Finally, we denote our
approach as MBMF and also simulate it for multiple prior update frequencies F .

6.5.2.2 2D Point Mass

The goal of this experiment is to demonstrate how leveraging the MB prior in the MF
method can reduce the model-bias and yet maintains the data-efficiency. We use a GP-based
dynamics model for this simulation, where we learn a separate GP for every dimension of
the state. We use Monte-Carlo simulation to find the trajectory distribution which is highly
parallelizable and known to be very effective for GPs [181]. Nevertheless, other schemes can
be used to compute a good approximation of this distribution [94].

The optimal mean cost (curve) and the standard deviation (shaded area) obtained for
different approaches (across thirty trials) as learning progresses are shown in Fig. 6.15, where
each iteration corresponds to one execution on the real system. The MF approach (the dot-
dashed Blue curve) improves as the learning progresses, but is still significantly outperformed
by all other approaches, indicating the data-inefficiency of a pure MF approach. The pure
MB approach (the Green curve) continues to improve as learning progresses; however, it
is outperformed by MBMF very early on. Interestingly, in this case, using MB method
to warm start the MF method (with K=5) doesn’t improve the performance, as evident
from the dotted Orange curve, indicating that using the MB component to initialize the
MF component may not be sufficient for the policy improvement. In contrast, using model



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 168

information as a prior for the MF method (with F=10) outperforms the other approaches
and is able to learn a good policy roughly within 15 iterations, indicating the utility of
systematically incorporating the model information during policy exploration. We note
that MBMF also has a smaller variance compared to all the other baselines, indicating the
consistency in its performance.

We also simulated MB+MF and MBMF for different K and F respectively. A naive
switching from MB to MF fails to improve the policy even for different switching points, and
thus are outperformed by the pure MB approach (Fig. 6.16). The frequency F at which the

5 10 15 20 25
Iteration

2.0

2.5

3.0

3.5

Co
st

 (L
og

)

MF
MB+MF(K=5)

MB+MF(K=10)
MB+MF(K=15)

MB+MF(K=20)
MB

MBMF

Figure 6.16: The mean cost obtained for different switching points K for the MB+MF
approach for the 2D point mass system. Switching from MB to MF results in a flat learning
curve in this case, indicating that a naive switching between the two may not be sufficient
for the policy improvement.

prior is updated in the MBMF approach, however, affects the learning process (Fig. 6.17).
We found that switching the model prior too frequently or too slowly both might lead to a
suboptimal performance. Switching too often makes MBMF too sensitive to the changes in
the dynamics model, which can change significantly especially early-on in the learning, and
can “mis-guide” the policy exploration. On the other hand, switching too slowly may strip
it of the full potential of the dynamics model. In this particular case, the optimal frequency
turns out to be F = 10 (i.e., the MB prior is updated every 10 iterations). It might also
be interesting to note that the MBMF approach is at least as good as the best baseline
for all values of F . Nevertheless, systematically finding the optimal update frequency is an
interesting future direction.

We also plot the trajectories obtained by executing the learned controller on the actual
system for the MB, MF and MBMF approaches in Fig. 6.18. The initial and the goal posi-
tions are denoted by the Red and the Green circles respectively. For comparison purposes,
the globally optimal trajectory (the dotted Red curve) was also computed, using the actual



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 169

5 10 15 20 25
Iteration

2.0

2.5

3.0

3.5
Co

st
 (L

og
)

MF
MB

MBMF(F=1)
MBMF(F=5)

MBMF(F=10)

Figure 6.17: The mean cost obtained for different prior update frequencies F for the MBMF
approach for the 2D point mass system. The learning efficiency of MBMF depends on the
choice of the prior update frequency. Switching too often makes MBMF too sensitive to the
changes in the dynamics model, which can “mis-guide” the policy exploration. On the other
hand, if the prior update frequency is too small (F is large), then the MBMF lags behind the
pure model-based approach, as it is not fully leveraging the dynamics model information. In
this case, the optimal update frequency turns out to be F = 10; however, MBMF is at least
as good as the best baseline for all update frequencies.

system dynamics obtained through MuJoCo; however, the dynamics are unknown to any
of the learning method. We plot the trajectories for different trials, which correspond to
different (but same across all methods) initial data. As evident from the figure, the MBMF
approach is consistently able to reach the goal state, whereas the MB and MF approaches
fail to achieve a consistent good performance. In particular, the optimal trajectory requires
the system to overcome the obstacle next to the starting position. A pure MB approach is
unable to consistently learn this behavior, potentially because it requires learning a discon-
tinuous dynamics model. Consequently, it is often unable to reach the goal position and gets
stuck in the obstacles (Figures 6.18a, 6.18d). Similarly, a pure MF approach is unable to
learn to overcome the obstacles within 25 iterations. MBMF approach, however, can take
evidence into account and is able to overcome this challenge to reach the goal state consis-
tently, demonstrating its robustness to the training data, which is also evident from a lower
variance in the performance of MBMF.

6.5.2.3 Three DoF Robotic Arm

We again employ a GP-based dynamics model in this simulation. As evident from Fig.
6.19, MBMF(F=1) outperforms the other approaches and is continue to improve policy over
iterations; however, due to the computational complexity of a GP-based dynamics model,



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 170

1.0 1.5 2.0 2.5 3.0
X-position

1.0

0.5

0.0

0.5

1.0

1.5

Y-
po

sit
io

n

MF
MB
MBMF- F=10
Optimal

(a) Trial 1

1.0 1.5 2.0 2.5 3.0
X-position

1.0

0.5

0.0

0.5

1.0

1.5

Y-
po

sit
io

n

MF
MB
MBMF- F=10
Optimal

(b) Trial 2

1.0 1.5 2.0 2.5 3.0
X-position

1.0

0.5

0.0

0.5

1.0

1.5

Y-
po

sit
io

n

MF
MB
MBMF- F=10
Optimal

(c) Trial 3

1.0 1.5 2.0 2.5 3.0
X-position

1.0

0.5

0.0

0.5

1.0

1.5
Y-

po
sit

io
n

MF
MB
MBMF- F=10
Optimal

(d) Trial 4

Figure 6.18: Trajectories obtained via executing the learned controller for the point mass
system after 25 iterations. Each trial corresponds to different initial data, but was same
across all approaches. The optimal trajectory requires the system to overcome the obstacles
(the Grey cylinders) to reach from the initial position (the Red circle) to the goal position
(the Green circle). MB and MF approaches have different behavior across different trials
and they often get stuck in the obstacles. MBMF, on the other hand, is able to learn how
to overcome the obstacles and consistently reaches the goal position.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 171

we stop the learning process after 20 iterations. MB+MF approach(K=15) continues to
improve after switching from MB to MF; however, it is still outperformed by the pure MB
approach. We also note that MBMF has a significantly smaller variance compared to all
other baselines, indicating that the MBMF approach is robust to the initial training data

5 10 15 20
Iteration

40

50

60

70

Co
st

MF
MB+MF

MB
MBMF

Figure 6.19: The mean (curves) and the standard deviation (shaded regions) of the cost
obtained for different approaches for the three DoF robotic arm. MBMF leverages the
advantages of both MB and MF approaches to design a better policy, indicating the data-
efficiency of the MBMF approach, as well as its ability to overcome the model bias.

We also simulate the MB+MF and MBMF approaches for different Ks and F s (see Fig.
6.20 and 6.21 respectively.) Interestingly, in this case, if the prior update frequency is
too small (F is large), then the MBMF lags behind the pure MB approach, as it is not
fully leveraging the dynamics model information. However, if the right update frequency
is chosen, then MBMF can leverage the advantages of both MB and MF approaches and
outperforms the two.

The corresponding trajectory comparison between MB and MBMF approaches in Figure
6.22 also highlight the efficacy of MBMF in leveraging the advantages of both the MB and
MF components to quickly learn the optimal policy. A pure MB approach struggles with
learning to move the object vertically in a straight line, potentially due to the complexity
of the dynamics given the contact-rich nature of the task. The MBMF approach, on the
other hand, has the capability to trade-off the observed costs and the predicted cost. As a
result, it has been able to move the object closer to the goal position within a small number
of iterations (20 in this case).



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 172

5 10 15 20
Iteration

40

50

60

70
Co

st
MF
MB+MF(K=5)

MB+MF(K=10)
MB+MF(K=15)

MB MBMF

Figure 6.20: The mean cost obtained for different switching points K for the MB+MF ap-
proach for the robotic arm. Switching from MB to MF results in a slower learning compared
to a pure MB approach.

5 10 15 20
Iteration

40

50

60

70

Co
st

MF
MB

MBMF(F=1)
MBMF(F=5)

MBMF(F=10)

Figure 6.21: The mean cost obtained for different prior update frequencies F for the MBMF
approach for the robotic arm. If the prior update frequency is too small (F is large), then
the MBMF lags behind the pure MB approach in this case, as it is not fully leveraging
the dynamics model information. In this case, the optimal update frequency turns out to
be F = 1. Nevertheless, systematically finding the optimal prior update frequency is an
important future direction.



CHAPTER 6. LEARNING FOR UNKNOWN DYNAMICS MODELS: DIRECT
LEARNING-BASED CONTROL 173

(a) MBMF

(b) MB

Figure 6.22: (a) Trajectory obtained via executing the learned controller for the MBMF
approach. The Red box represents the object, which needs to be moved to the Green box.
MBMF is able to push the object fairly close to the goal position. (b) Trajectory obtained via
executing the learned controller for the pure model-based approach. A pure MB approach
struggles with accomplishing this task, with the final position of the object end up being
very far from the goal position.

6.6 Chapter Summary

Real-world robots are becoming increasingly complex and commonly act in poorly under-
stood environments where it is extremely challenging to model their dynamics from first
principles. Even learning a model via indirect learning-based approaches can be prohibitive
depending on the available data and the complexity of the underlying model. Therefore, it
might be desirable to take a task-specific approach in such cases, wherein the focus is on ex-
plicitly learning the dynamics model which achieves the best control performance for the task
at hand, rather than learning the true dynamics. In this chapter, we propose aDOBO, an
active learning framework to learn a system dynamics model with the intent of maximizing
the controller performance. Unlike traditional system identification approaches, the model is
updated directly based on the performance observed in experiments on the physical system
in an iterative manner until a desired performance is achieved. We demonstrate the efficacy
of the proposed approach through simulations and experiments on a quadrotor testbed.

We then discuss how we can combine the complimentary advantages of indirect and direct
learning-based approaches. To that end, we propose MBMF, that achieves this bridging by
using the cost estimated by the model-based component as the prior for the model-free
component. Our results show that the proposed approach can overcome the model bias and
inaccuracies in the dynamics model, and yet retain the data-efficiency and generalization
capabilities of model-based approaches.



174

Chapter 7

Learning for Unknown Environments:
Perception-Based Control

This chapter is based on the papers “Combining optimal control and learning for visual navigation

in novel environments” [38] and “Visual Navigation Among Humans with Optimal Control as a

Supervisor” [291] written in collaboration with Varun Tolani, Saurabh Gupta, Aleksandra Faust,

Jitendra Malik, and Claire Tomlin.

In Chapter 5 and 6, we discussed how we can use indirect and direct learning-based meth-
ods to capture the inaccuracies in the dynamics model of the system, and leverage learning to
improve the control performance despite these inaccuracies. However, in many applications
of interest, simple and well understood dynamics models are sufficient for control, and it is
rather the vision and perception components that require learning. When a system operates
in a priori unknown environment, such as an autonomous car operating around unknown
construction sites in the city, perception enables the robot to interact with its environment
and to decide how to act to complete the task they are supposed to. One such application
that we will focus on in this chapter is that of autonomous navigation in a priori unseen
environments based on onboard visual sensors.

Autonomous robot navigation, that is, how to convey a robot from one location to an-
other, is one of the most fundamental and well-studied problems in robotics. Developing a
fully autonomous robot that can navigate in a priori unknown environments is difficult due
to challenges that span dynamics modeling, on-board perception, localization and mapping,
trajectory generation, and optimal control.

One way to approach this problem is to generate a globally-consistent geometric map of
the environment, and use it to compute a collision-free trajectory to the goal using optimal
control and planning schemes. This approach is the basis of how a number of real physical
systems are controlled, such as airplanes, autonomous cars, and industrial robots. However,
the real-time generation of a globally consistent map tends to be computationally expensive,
and can be challenging in texture-less environments or in the presence of transparent, shiny
objects, or strong ambient lighting [14]. Moreover, explicit knowledge of the environment



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 175

geometry or map may not even be required for navigation. When operating in dynamic
environments, such as among humans, this approach additionally requires identification of
the humans in the scene and prediction of their future motion. However, human recognition
can be difficult because people come in different shapes and sizes, and might even be partially
occluded. Human motion prediction, on the other hand, is challenging because the human’s
navigational goal (intent) is not known to the robot, and people have different temperaments
and physical abilities which affect their motion (speed, paths etc.) [260, 308].

An alternative approach, that has gained a lot of traction recently in the learning com-
munity, employs end-to-end learning to side-step this explicit map estimation step. In end-
to-end learning, navigation policies are learned to directly map on-board sensor readings
to motor torques (or control commands in general) via imitation learning or reinforcement
learning. The lack of any assumptions makes this research very attractive: policies can
be learned without knowing anything about the underlying system, and policies can work
in uninstrumented environments merely via partial views of the environment as obtained
through inexpensive on-board sensors. However, such approaches tend to be extremely sam-
ple inefficient and highly specialized to the system they were trained on [254].

In this chapter, we will address the respective shortcomings of mapping-based approaches
and learning-based approaches by coupling model-based control with learning-based percep-
tion. The use of learning in our pipeline will allow us to navigate in previously unseen
buildings without any explicit map creation, thus bypassing the challenges associated with
geometric maps. At the same time, the use of model-based control within the navigation
pipeline addresses the data-inefficiency and lack of generalization issues associated with
monolithic, end-to-end learning approaches. For navigation among humans, we will demon-
strate that our modular navigation pipeline can navigate around humans in unknown indoor
environments based only on monocular RGB images and does not require explicit state
estimation and trajectory prediction of the human.

7.1 Related Work

An extensive body of research studies autonomous navigation. We cannot possibly hope
to summarize all these works here, but we attempt to discuss the most closely related ap-
proaches.

Classical Robot Navigation. Classical robotics has made significant progress by factor-
izing the problem of robot navigation into sub-problems of mapping and localization [288,
122], path planning [190], and trajectory tracking. Mapping estimates the 3D structure of
the world (using RGB / RGB-D images / LiDAR scans), which is used by a planner to
compute paths to goal. However, such purely geometric intermediate representations do not
capture navigational affordances (such as: to go far away, one should step into a hallway,
etc.). Furthermore, mapping is challenging with just RGB observations, and often unreliable
even with active depth sensors (such as in presence of shiny or thin objects, or in presence



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 176

of strong ambient light) [14]. This motivates approaches that leverage object and region
semantics during mapping and planning [60, 180]; however, such semantics are often hand-
coded. Our work is similarly motivated, but instead of using geometry-based reasoning or
hand-crafted heuristics, we aim to employ learning to capture such semantics without ex-
plicit map-building.

End-to-End (E2E) Learning for Navigation. There has been a recent interest in em-
ploying end-to-end learning for training policies for goal-driven navigation [311, 144, 173,
174]. The typical motivation here is to incorporate semantics and common-sense reasoning
into navigation policies. While [311] learn policies that work well in training environments,
the authors in [144] and [173] design policies that generalize to previously unseen environ-
ments. Most such works abstract out dynamics and work with a set of macro-actions (going
forward x cm, turning θ◦). Such ignorance of dynamics results in jerky and inefficient poli-
cies that exhibit stop-and-go behavior on a real robot. Several works also use end-to-end
learning for navigation using laser scans [80, 285, 308], for training and combining a lo-
cal planner with a higher level roadmap for long range navigation [126, 112, 72, 22], or
for visual servoing [261]. Numerous other works have tackled navigation in synthetic game
environments [216, 266, 245], and largely ignore considerations of real-world deployment,
such as dynamics and state estimation. Researchers have also employed learning to tackle
locomotion problems [125, 165, 262, 166]. These works learn policies for collision-avoidance,
i.e., how to move around in an environment without colliding. [165] uses motion primitives,
while [125] and [262] use velocity control for locomotion. Other works such as [194] and
[243] combine optimal control and end-to-end learning, by training neural network policies
to mimic the optimal control-based control commands on the raw images. While all of these
works implement policies for collision avoidance via lower level control, our work studies how
policy learning itself should be modified to improve the data efficiency and generalization
capabilities of E2E learning.

Combining Optimal Control and Learning for Navigation. A number of papers seek
to combine the best of learning with optimal control for high-speed navigation [257, 102, 169,
164, 203]. For example, authors in [102, 103] learn a cost function from monocular images
for aggressive race-track driving via Model Predictive Control (MPC). Instead, [168, 169] use
learning to predict waypoints that are used with model-based control for drone racing. The
focus of these works is on aggressive control in training race-track environments, with very
few or no obstacles in the environment. This renders their approach for waypoint generation
for learning (that does not reason about obstacles explicitly) ineffective in completely novel,
cluttered real world testing environments. Authors in [228] predict waypoints from semanti-
cally segmented images and a user provided command for outdoor navigation, and use a PID
controller for control. However, they do not explicitly handle obstacles and focuses primarily
on lane keeping and making turns. Instead, rich, agile, and explicitly dynamically feasible
and collision-free control behaviors are required for navigating in cluttered real-world indoor
environments. Other works have used Riemannian motion policies [215] to handle dynamics



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 177

constraints.

Visual Navigation Among Humans. The above methods primarily focus on navigation
in static environments. For the problem of navigation in dynamic environments, such as
among humans, the classical navigation pipeline is factorized into sub-problems of detection
and tracking [62], human motion prediction [260], and planning [190]. However, reliable state
estimation of the human might be challenging, especially when the robot is using narrow
field-of-view sensors such as a monocular RGB camera. Moreover, human motion prediction
itself can be quite challenging [117, 37] and is an active area of research [260].

Learning-based approaches have also been explored for navigation in dynamic environ-
ments. [248, 112, 80] use classical planning in static environments as the higher level planner,
along with reinforcement learning for adaptive local planning and path tracking in dynamic
environments, or train in photorealistic static environments [126] and evaluate in dynamic
environments. This approach limits their ability to reason about the dynamic nature of
human and planning optimal paths around it.

Other methods use RL to produce socially-compliant motion among humans [196]; how-
ever, the method requires human trajectories, and relies on detection and tracking algorithms
to locate the humans. Yet other line of work uses depth sensors [247, 110, 71, 265, 107] to
navigate in crowded spaces. These methods do not require high visual fidelity, but require
expensive wide-field of view LiDAR sensors. However, it still remains a challenge to navigate
around humans using only a monocular RGB image, without explicitly estimating human
state or motion.

One of the challenges with learning-based approaches for navigation in dynamic envi-
ronments is the lack of the availability of rich datasets. [211] proposes a dataset on multi-
modal social visual navigation, collected in real environments using real humans, manual
annotation, and non-goal oriented navigation. Another benchmark on navigation [110] uses
simulation for training, but is unsuitable for RGB-based visual navigation because humans
in the scene have no visual texture and features, which are known to be important for clos-
ing the sim-to-real gap reliably [299]. However, we still lack the datasets that can simulate
visually realistic humans and their motion, and where the data is collected in a goal-oriented
navigation setting to enable rich human-robot interactions.

Contributions and Chapter Organization

In this chapter, we present a framework for autonomous, vision-based navigation in novel
cluttered indoor environments based only on monocular RGB images received from an on-
board camera. We take a factorized approach to navigation that uses learning to make
high-level navigation decisions in unknown environments and leverages optimal control to
produce smooth trajectories and a robust tracking controller. In particular, we train a
Convolutional Neural Network (CNN) that incrementally uses the current RGB image ob-
servations to produce a sequence of intermediate states or waypoints. These waypoints are



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 178

produced to guide the robot to the desired target location via a collision-free path in previ-
ously unknown environments, and are used as targets for a model-based optimal controller
to generate smooth, dynamically feasible control sequences to be executed on the robot. We
refer to our approach as LB-WayPtNav (Learning-Based WayPoint approach to Navigation).

LB-WayPtNav benefits from the advantages of classical control and learning-based ap-
proaches in a way that addresses their individual limitations. Learning can leverage statisti-
cal regularities to make predictions about the environment from partial views (RGB images)
of the environment, allowing generalization to unknown environments. Leveraging underly-
ing dynamics and feedback-based control leads to smooth, continuous, and efficient trajec-
tories that are naturally robust to variations in physical properties and noise in actuation,
allowing us to deploy our framework directly from simulation to real-world. Furthermore,
learning now does not need to spend interaction samples to learn about the dynamics of
the underlying system, and can exclusively focus on dealing with generalization to unknown
environments.

To train the CNN, we propose a self-supervision method that uses Model Predictive Con-
trol (MPC) to generate rendered RGB images and corresponding optimal waypoints entirely
using simulation environments. To deal with the challenges of obtaining the training data in
the presence of humans, we additionally propose the Human Active Navigation Dataset (Hu-
mANav), consisting of photo-realistic renderings of humans moving in indoor environments.
We then demonstrate the zero-shot, simulation-to-reality transfer of the learned navigation
policies, without requiring any expensive demonstrations by an expert or causing any privacy
and logistical challenges associated with human subjects.

To summarize our key contributions are:

• an autonomous visual navigation method that combines learning and optimal control to
robustly maneuver the robot in novel, cluttered static and dynamic environments using
only a single on-board RGB camera, and does not require explicit state estimation and
trajectory prediction of the human;

• self-supervised training scheme via MPC for learning navigation policies without re-
quiring any expensive demonstrations by an expert;

• through simulations and experiments on a mobile robot, we demonstrate that our ap-
proach is better and more efficient at reaching the goals, results in smoother trajecto-
ries, as compared to End-to-End learning, and more reliable than geometric mapping-
based approaches;

• we demonstrate that our approach leads to a zero-shot transfer of learned policies from
simulation to reality; and

• HumANav, an active dataset to benchmark visual navigation algorithms around hu-
mans.



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 179

The rest of the chapter is organized as follows. In Sec. 7.2, we formally define the problem
of autonomous visual navigation in unknown environments. In Sec. 7.3, we discuss how we
can combine learning and control to deal with this problem in static environments. In Sec.
7.4, we extend our approach to dynamic, human-centric environments.

7.2 Problem Formulation

In this work, we study the problem of autonomous navigation of a ground vehicle in pre-
viously unknown indoor environments. In this section, we focus only on static, unknown
environments; dynamic environments will be discussed in Sec. 7.4.

We assume that the robot odometry is perfect (i.e., the exact vehicle state is available).
Dealing with imperfect odometry is a problem in its own right, and we defer it to future
work. We model our ground vehicle as a three-dimensional non-linear Dubins car system
with dynamics:

ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω , (7.1)

where zt := (xt, yt, φt) is the state (or pose) of the vehicle, pt = (xt, yt) is the position, φt is
the heading, vt is the speed, and ωt is the turn rate at time t. The input (control) to the
system is ut := (vt, ωt). The linear and angular speeds vt and ωt are bounded within [0, v̄]
and [−ω̄, ω̄] respectively. We use a discretized version of the dynamics in Eqn. (7.1) for all
planning purposes.

The robot is equipped with a monocular RGB camera mounted at a fixed height, oriented
at a fixed pitch and pointing forwards. The goal of this paper is to learn control policies
for goal-oriented navigation tasks: the robot needs to go to a target position, p∗ = (x∗, y∗),
specified in the robot’s coordinate frame (e.g., 11m forward, 5m left), without colliding with
any obstacles. These tasks are to be performed in novel environments whose map or topology
is not available to the robot. In particular, at a given time step t, the robot with state xt
receives as input an RGB image of the environment, It, and the target position p∗t = (x∗t , y

∗
t )

expressed in the current coordinate frame of the robot. The objective is to obtain a control
policy that uses these inputs to guide the robot to the target as quickly as possible.

7.3 Learning-Based Perception with Model-Based

Control for Visual Navigation

We use a learning-based waypoint approach to navigation (LB-WayPtNav) for visual navi-
gation in unseen, cluttered, static environments. The LB-WayPtNav framework is demon-
strated in Figure 7.1 and summarized in Algorithm 9. In this section, we will provide more
details on the architecture of LB-WayPtNav, as well as how we can train the learning com-
ponents in this architcture.



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 180

Algorithm 7: Learning-Based WayPoint approach to Navigation (LB-WayPtNav)

1 Require p∗ := (x∗, y∗) // Goal location

2 for t = 0 to T do
3 zt := (xt, yt, φt); ut := (vt, ωt) // Measured robot pose, and

linear/angular speed

4 Every H steps do // Replan every H steps

5 p∗t := (x∗t , y
∗
t ) // Goal location in the robot’s coordinate frame

6 ŵt = ψ(It, ut, p
∗
t ) // Predict next waypoint

7 {z∗, u∗}t:t+Hp = FitSpline(ŵt, ut) // Plan spline-based smooth

trajectory

8 {k,K}t:t+Hp = LQR(z∗t:t+Hp , u
∗
t:t+Hp

) // Tracking controller

9 ut+1 = Kt(zt − z∗t ) + kt // Apply control

7.3.1 Learning-Based WayPoint approach to Navigation
(LB-WayPtNav)

LB-WayPtNav makes use of two submodules: perception and planning. The learning-based
perception module produces a series of waypoints that guide the robot to the goal via a
collision-free path. These waypoints are used by the model-based planning module to gen-
erate a smooth and dynamically feasible trajectory that is executed on the physical system
using feedback control. We now describe each of these modules in more detail.

7.3.1.1 Perception Module

The goal of the perception module is to analyze the image and provide a high-level plan
for the planning and control module. We implement the perception module using a CNN
that takes as input a 224 × 224 pixel RGB image, It, captured from the onboard camera,
the target position, p∗t , specified in the vehicle’s current coordinate frame, and vehicle’s
current linear and angular speed, ut, and outputs the desired next state or a waypoint
ŵt := (x̂t, ŷt, θ̂t) = ψ(It, ut, p

∗
t ) (Line 6 in Algorithm 9).

Intuitively, the network can use the presence of surfaces and furniture objects like floors,
tables, and chairs in the scene, alongside the learned priors about their shapes to generate
an estimate of the next waypoint, without explicitly building an accurate map of the envi-
ronment. This allows a more guided and efficient exploration in novel environments based
on the robot’s prior experience with similar scenes and objects. The CNN is trained using
an automatically generated expert policy (Sec. 7.3.2).

7.3.1.2 Planning and Control Module

Given a waypoint ŵt, and the current linear and angular speed ut, the planning module uses
the system dynamics in Eqn. (7.1) to design a smooth trajectory, satisfying the dynamics and



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 181

Dynamics-based 
Planning Module

Perception Module

Goal Position
𝑝"∗ = 𝑥"∗, 𝑦"∗

Waypoint
𝑤)" = 𝑥*", 𝑦*", 𝜃,"

 Trajectory Tracking 
Feedback Controller

  Desired 
Trajectory

Linear & angular speed
𝑢" = 𝑣",𝜔"

𝑰𝒕

State feedback

 Image taken once 
every 𝐻	time steps 

 Control applied 
for 𝐻	time steps 

Figure 7.1: Overview: We consider the problem of navigation from a start position to a
goal position. Our approach (LB-WayPtNav) consists of a learning-based perception module
and a dynamics model-based planning module. The perception module predicts a waypoint
based on the current first-person RGB image observation. This waypoint is used by the
model-based planning module to design a controller that smoothly regulates the system to
this waypoint. This process is repeated for the next image until the robot reaches the goal.

control constraints, from the current vehicle state to the waypoint. In this work, we represent
the x and y trajectories using third-order splines, whose parameters can be obtained using
ŵt and ut [300]. This corresponds to solving a set of linear equations, and thus, planning
can be done efficiently onboard. Since the heading of the vehicle can be determined from
the x and y trajectories, a spline-based planner ultimately provides the desired state and
control trajectories, {z∗, u∗}t:t+Hp = FitSpline(ŵt, ut), that the robot can follow for the time
horizon [t, t+Hp] to reach the waypoint ŵt (Line 7).

Since the splines are third-order, the generated speed and acceleration trajectories are
smooth. This is an important consideration for real robots, since jerky trajectories might
lead to compounding sensor errors, poor tracking, or hardware damage [139]. While we use
splines in this work for computational efficiency, other model-based planning schemes can
also be used for trajectory planning.

To track the generated trajectory {z∗, u∗}, we design a LQR-based linear feedback



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 182

controller [54], {k, K}t:t+Hp = LQR(z∗t:t+Hp , u
∗
t:t+Hp

) (Line 8). Here k and K represent
the feed-forward and feedback terms respectively. The LQR controller is obtained using the
dynamics in Eqn. (7.1), linearized around the trajectory {z∗, u∗}. LQR is a widely used
feedback controller in robotic systems to make planning robust to external disturbances
and mismatches between the dynamics model and the actual system [296]. This feedback
controller allows us to deploy the proposed framework directly from simulation to a real robot
(provided the real-world and simulation environments are visually similar), even though the
model in Eqn. (7.1) may not capture the true physics of the robot.

The control commands generated by the LQR controller are executed on the system over
a time horizon of H seconds (Line 8), and then a new image is obtained. Consequently, a
new waypoint and plan is generated. This entire process is repeated until the robot reaches
the goal position.

7.3.2 Data Generation Procedure and Training Details

We train the perception module entirely in simulation with self-supervision, using auto-
matically generated RGB images and optimal waypoints as a source of supervision. The
waypoints are generated so as to avoid the static obstacles and make progress towards the
goal. To generate these waypoints, we assume that the location of all obstacles is known
during training time. This is possible since we train the CNN in simulation. Under this
assumption, we propose an MPC-based expert policy to generate optimal robot trajectories
and waypoints. The proposed method does not require any human labeling and can be used
to generate supervision for a variety of ground and aerial vehicles. Given first-person images
and relative goal coordinates as input, the perception module is trained to predict these
optimal waypoints. However, we note that the obstacle locations are not known during the
test time and the robot relies only on an RGB image and other on-board sensors.

7.3.2.1 MPC-Based Expert Policy

To generate supervision for training the perception network, we use a Model Predictive
Control (MPC) scheme to find a sequence of dynamically feasible waypoints and the corre-
sponding spline trajectories that navigate the robot from the starting state to the goal state.
This can be done during the training phase because a map of the environment is available
during the training time. However, no such privileged information is used during the test
time.

To generate the expert trajectory, we first sample a start position z0 and a goal position
p∗ for the robot. Without loss of generality, we set the start state to be at origin. Given the
start and the goal positions, at time t, we solve an MPC problem to determine the optimal
trajectory of the robot over the time horizon [t, t+Hp], denoted as {z∗, u∗}t:t+Hp .

For the MPC problem, we define a cost function that trades-off the distance from the
target position and the nearest obstacle, and optimize for the waypoint such that the re-
sultant spline trajectory to the waypoint minimizes this cost function. More specifically,



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 183

given the map of the environment, we compute the signed distance function to the obstacles,
dobs(x, y), at any given position (x, y). Given the goal position, p∗, of the vehicle, we compute
the minimum collision-free distance to the goal, dgoal(x, y) (also known as the FMM distance
to the goal). The overall cost function for the MPC problem is then given by:

J(z,u) =
T∑
i=0

Ji(zi, ui), (7.2)

Ji(zi, ui) :=
(
max{0, λ1 − dobs(xi, yi)}

)3
+ λ2

(
dgoal(x, y)

)2
, (7.3)

where z := (z0, z1, . . . , zT ) is the state trajectory, u is the corresponding control trajectory, T
is the maximum time horizon, and λ2 trades-off the distance from the goal position and the
obstacles. We only penalize for the obstacle cost when the corresponding robot trajectory is
within a distance of λ1 to an obstacle. Moreover, the obstacle cost is penalized more heavily
compared to the goal distance (a cubic penalty vs a quadratic penalty). This is done to
ensure that the vehicle trajectory does not go too close to the obstacles. We empirically
found that it is significantly harder to learn to accurately predict the waypoints when the
vehicle trajectory goes too close to the obstacles, as the prediction error margin for the
neutral network is much smaller in such a case, leading to a much higher collision rate.

Given the cost function in (7.2), the overall MPC problem is given as

min
z,u

J(z,u) (7.4)

subject to xi+1 = xi + ∆Tvi cosφi, yi+1 = yi + vi sinφi, φi+1 = φi + ∆Tωi , (7.5)

vi ∈ [0, v̄], ωi ∈ [−ω̄, ω̄] , (7.6)

z0 = (0, 0, 0), (7.7)

where ∆T is the discretization step for the dynamics in (7.1), and the initial state and speed
are assumed to be zero without loss of generality.

Starting from i = 0, we solve the MPC problem in (7.4) in a receding horizon fashion.
In particular, at any timestep i = t, we find a waypoint such that the corresponding spline
trajectory respects the dynamics and the control constraints in (7.5) and (7.6) (and hence
is a dynamically feasible trajectory), and minimizes the cost in (7.4) over the time horizon
[t, t+Hp]. Thus, we solve the following optimization problem:

min
ŵt

t+Hp∑
i=t

Ji(zi, ui) (7.8)

subject to {z, u}t:t+Hp = FitSpline(ŵt, ut), (7.9)

zt+Hp = ŵt, (7.10)

zt, ut - Given (7.11)

where ŵt := (x̂t, ŷt, θ̂t) is the waypoint, and {z, u}t:t+H1 are the corresponding state and
control spline trajectories that satisfy the dynamics and the control constraints in (7.5) and



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 184

(7.6), and respect the boundary conditions on the trajectories imposed by zt, ut and ŵt.
Such spline trajectories can be computed for a variety of aerial and ground vehicles (see
[177, 213] for more details on the aerial vehicles and [300] for the ground vehicles).

Note that as per the above MPC problem, the feasible waypoints must be reachable from
the current state and speed of the vehicle while respecting the vehicle’s control bounds. For
example, a pure rotation waypoint (i.e., ŵt = (0, 0, θ̂)) is not feasible for the system if it has
a non-zero linear speed at time t, and thus will not be considered as a candidate solution
of (7.8). These dynamics considerations are often ignored in the learning-based methods
in literature which work with a set of macro-actions. This often results in an undesirable,
jerky, and stop-and-go behavior on a real robot. In this work, we use third-order polynomial
splines, whose coefficients are computed using the values of zt, ut and ŵt (see [300] for more
details). Use of third-order splines make sure that the velocity and acceleration profiles of
the vehicle are smooth, and respect the control bounds.

Given the low dimension of the waypoint (three in our case), we use a sampling-based
approach to compute the optimal waypoint in (7.8). We sample the waypoints within
the ground-projected field-of-view of the vehicle (ground projected assuming no obstacles).
Note, even though we use a sampling-based approach to obtain the optimal waypoint, other
gradient-based optimization schemes can also be used, especially when the state space of the
vehicle is high-dimensional.

Let the optimal waypoint corresponding to the optimization problem in (7.8) be ŵ∗t , and
the corresponding optimal trajectories be {z∗, u∗}t:t+Hp . The image obtained at state z∗t , It,
the relative goal position p∗t , the speed of the robot u∗t , and the optimal waypoint ŵ∗t thus
constitutes one data point for the training.

We next apply the control sequence u∗t:t+Hp for the time horizon [t, t+Hp] to obtain the
state z∗t+H , and repeat the entire procedure in (7.8) starting from time t + H. We continue
this process until the robot reaches the goal position. In our work, we use λ1 = 0.3m,∆T =
0.05s,Hp = 6s, H = 1.5s, and λ2 = 0.00064. The parameter tuning was done manually in
our work.

The procedure outlined in this section allows us to compute large training datasets using
optimal control without requiring any explicit human labeling. Moreover, the generated
waypoints are guaranteed to satisfy the dynamics and control constraints. Finally, the cost
function in (7.2) allows us to explicitly ensure that the robot trajectory to the waypoint is
collision-free, which is crucial in cluttered indoor environments. It is also worthwhile to note
that this procedure can be applied to a variety of ground vehicles and aerial vehicles that
are differentially flat. For differentially flat systems, the path planning can be done with
respect to a much lower-dimensional state space (or waypoint) using spline trajectories [177,
300, 213], which makes the path planning tractable in real-time.

Remark 14 Intuitively the waypoint in our framework summarizes the local obstacle in-
formation in the environment, and hence, its representation choice is a very crucial design
choice. For example, the choice of θ̂ in ŵ affects the shape of the trajectory the vehicle takes
to the waypoint (see Figure 7.2). Typically, θ̂ is chosen as the line of sight angle between



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 185

the robot’s current position and the desired position (x̂, ŷ) [169, 228]. However, θ̂ is an extra
degree-of-freedom that can be chosen appropriately to generate rich, agile and collision-free
trajectories in cluttered environments.

Figure 7.2: We visualize the spline trajectories pro-
duced by our planner for different waypoint angles (θ̂),
starting from the same initial state, initial speed and
to the same waypoint position. The gray region de-
notes an obstacle. Due to the dynamics constraints, θ̂
significantly affects the shape of the vehicle trajectory,
and hence needs to be chosen appropriately to obtain a
collision-free trajectory. In particular, the line of sight
trajectory to the waypoint (the Blue trajectory) leads
to a collision in this case, whereas if θ̂ is chosen appro-
priately, a smooth, agile trajectory that goes around
the obstacle can be obtained.

7.3.2.2 Training Details

As discussed earlier, we train the perception module in LB-WayPtNav entirely in simulation.
We use scans of real world buildings (from the Stanford large-scale 3D Indoor Spaces dataset
[23]) and the MPC-based expert policy (see Sec. 7.3.2.1). Scans from 2 buildings were used
to generate the training data. We illustrate some representative scenes from the test and the
training buildings from the S3DIS dataset in Figure 7.3a. Note that the navigation tasks
were not limited to these scenes and are spread across the entire building.

Implementation Details. We used a pre-trained ResNet-50 [146], pre-trained for Ima-
geNet Classification, as the CNN backbone for the perception module in LB-WayPtNav,
and finetuned it for waypoint prediction with MSE loss using the Adam optimizer. We re-
move the top layer of the ResNet, and use a downsampling convolution layer, followed by 5
fully connected layers with 128 neurons each to regress to the optimal waypoint. The image
features obtained at the last convolution layer are concatenated with the egocentric target
position and the current linear and angular speed before passing them to the fully connected
layers (see Figure 7.1). During training, the ResNet layers are finetuned along with the fully
connected layers to learn the features that are relevant to the navigation tasks.

We train the CNN on 125K data points generated by our expert policy (Section 7.3.2.1).
All our models are trained with a single GPU worker using TensorFlow [2]. We use MSE loss
on the waypoint prediction for training the CNN in our perception module. We use Adam
optimizer to optimize the loss function with a batch size of 64. We train the CNN for 35K



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 186

(a) Training

(b) Test

Figure 7.3: Some representative images of the buildings from which the training and the
test data was collected. Even though the test environments are also office buildings, their
layouts and appearances are different than the training buildings. However, our framework
is still able to generalize to the domain shift.

iterations with a constant learning rate of 10−4 and use a weight decay of 10−6 to regularize
the network.

We use standard techniques used to avoid overfitting including dropout following each
fully connected layer except the last (with dropout probability 20%) [280]. During training,
we also apply a variety of random distortions to images, such as adding blur, removing
some pixels, adding some superpixels, changing image saturation, sharpness, contrast and
brightness [277]. We also apply perspective distortions to images, such as varying the field-
of-view and tilt (pitch) of the camera. For adding these distortions, we use the imgaug
python library.

Some examples of sample distortions are shown in Figure 7.4. Adding these distortions
significantly improves the generalization capability of our framework to unseen environments.
We will discuss the quantitative benefit of adding these distortions in Section 7.3.3.

7.3.3 Simulation Results

LB-WayPtNav is aimed at combining classical optimal control with learning for interpreting
images. In this section, we present experiments in simulation, and compare to representative



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 187

(a) Undistorted image (b) Adding superpixels (c) Gaussian blur (d) Adding motion blur

(e) Image sharpening (f) Gaussian noise (g) Brightness change (h) Dropping pixels

(i) Changing saturation (j) Changing contrast (k) Changing FoV (l) Camera tilt change

Figure 7.4: Examples of several image distortions that have been randomly applied during
the training phase. The actual undistorted image is shown in (a). Adding these distortions
significantly improves the generalization capability of our framework to unseen environments.

methods that only use E2E learning (by ignoring all knowledge about the known system),
and that only use geometric mapping and path planning (and no learning).

Simulation Setup: Our simulation experiments are conducted in environments derived
from the Stanford large-scale 3D Indoor Spaces dataset [23]. Scans from 2 buildings were
used to generate training data to train LB-WayPtNav. 185 test episodes (start, goal po-
sition pairs) in a 3rd held-out building were used for testing the different methods. Test
episodes are sampled to include scenarios such as: going around obstacles, going out of the
room, going from one hallway to another. Though training and test environments consists



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 188

Table 7.1: Quantitative Comparisons in Simulation: Various metrics for different ap-
proaches across the test navigation tasks: success rate (higher is better), average time to
reach goal, jerk and acceleration along the robot trajectory (lower is better) for successful
episodes. LB-WayPtNav conveys the robot to the goal location more often, faster, and pro-
duces considerably less jerky trajectories than E2E learning approach. Since LB-WayPtNav
only uses the current RGB image, whereas the geometric mapping and planning approach
integrates information from perfect depth images, it outperforms LB-WayPtNav in simula-
tion. However, performance is comparable when the mapping based approach only uses the
current image (like LB-WayPtNav, but still depth vs. RGB).

Agent Input Success (%) Time taken (s) Acceleration (m/s2) Jerk (m/s3)

Expert Full map 100 10.78 ±2.64 0.11 ±0.03 0.36 ±0.14

LB-WayPtNav (our) RGB 80.65 11.52 ±3.00 0.10 ±0.04 0.39 ±0.16
End To End RGB 58.06 19.16 ±10.45 0.23 ±0.02 8.07 ±0.94
Mapping (memoryless) Depth 86.56 10.96 ±2.74 0.11 ±0.03 0.36 ±0.14

Mapping Depth + Spatial Memory 97.85 10.95 ±2.75 0.11 ±0.03 0.36 ±0.14

of indoor offices and labs, their layouts and visual appearances are quite different (see Fig.
7.3 for some images).

Comparisons: We compare to two alternative approaches. E2E Learning: This approach
is trained to directly output the velocity commands corresponding to the optimal trajecto-
ries produced by the spline-based planner. This represents a purely learning-based approach
that does not explicitly use any system knowledge at test time. For E2E learning, we use
u∗t:t+Hp instead of ŵ∗t for training the CNN; moreover, we use the same trajectories used to
generate supervision for LB-WayPtNav. Geometric Mapping and Planning: This approach
represents a learning-free, purely geometric approach. As inferring precise geometry from
RGB images is challenging, we provide ideal depth images as input to this approach. These
depth images are used to incrementally build up an occupancy map of the environment, that
is used with the same spline-based planner, that was used to generate the expert supervision
(see Sec. 7.3.2.1), to output the velocity controls. Results reported here are with control
horizon, H = 1.5s. We also tried H = 0.5, 1.0, but the results and trends were the same.

Metrics: We make comparisons via the following metrics: success rate (if the robot reaches
within 0.3m of the goal position without any collisions), the average time to reach the goal
(for the successful episodes), and the average acceleration and jerk along the robot trajectory.
The latter metrics measure execution smoothness and efficiency with respect to time and
power.



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 189

7.3.3.1 Results

Comparison with the End-to-End learning approach. Table 7.1 presents quantita-
tive comparisons. We note that LB-WayPtNav conveys the robot to the goal location more
often (22% higher success rate), much faster (40% less time to reach the goal), and with
less power consumption (50% less acceleration). Figure 7.5(left) shows top-view visualiza-
tion of trajectories executed by the two methods. Top-views maps are being only used for
visualization, both methods operate purely based on first-person RGB image inputs. As
LB-WayPtNav uses a model-based planner to compute exact controls, it only has to learn
“where to go” next, as opposed to the E2E method that also needs to learn “how to go” there.
Consequently, LB-WayPtNav is able to successfully navigate through narrow hallways, and
make tight turns around obstacles and corners, while E2E method struggles. This is further
substantiated by the velocity control profiles in Figure 7.5(right). Even though the E2E
method was trained to predict smooth control profiles (as generated by the expert policy),
the control profiles at test time are still discontinuous and jerky. We also experimented with
adding a smoothing loss while training the E2E policy; though it helped reduce the average
jerk, there was also a significant decline in the success rate. This indicates that learning
both an accurate and a smooth control profile can be a hard learning problem. In contrast,
as LB-WayPtNav uses model-based control for computing control commands, it achieves
average acceleration and jerk that is as low as that of an expert.1 This distinction has a
significant implication for actual robots since the consumed power is directly proportional
to the average acceleration. Hence, for the same battery capacity, LB-WayPtNav will drive
the robot twice as far as compared to E2E learning.

Comparison with Geometric Mapping and Planning Approach. We note that an
online geometric mapping and planning approach, when used with ideal depth image ob-
servations, achieves near-expert performance. This is not surprising as perfect depth and
egomotion satisfies the exact assumptions made by such an approach. Since LB-WayPtNav
is a reactive planning framework, we also compare to a memory-less version that uses a
map derived from only the current depth image. Even though the performance of memory-
less planner is comparable to LB-WayPtNav, it still outperforms slightly due to the perfect
depth estimation in simulation. However, since real-world depth sensors are neither perfect
nor have an unlimited range, we see a noticeable drop in the performance of mapping-based
planners in real-world experiments as discussed in real world experiments in Section 7.3.4.

Visualization of Learned Navigation Affordances. We conducted some analysis to
understand what cues LB-WayPtNav leverages in order to solve navigation tasks. Figure 7.6
shows two related navigation tasks where the robot is initialized in the same state, but is
tasked to either go inside a close by room (Case A), or to a far away room that is further
down the hallway (Case B). LB-WayPtNav correctly picks appropriate waypoints, and is

1For a fair comparison, we report these metrics only over the test tasks that all approaches succeed at.



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 190

LB
-W

ay
Pt

N
av

E2
E

Velocity Profiles for Task 3Task 1 Task 2 Task 3

Figure 7.5: Trajectory Visualization: We visualize the trajectories produced by the
model-based planning approach (top row) and the end-to-end (E2E) learning approach (bot-
tom row) for sample test tasks. The E2E learning approach struggles to navigate around
the tight corners or narrow hallways, whereas LB-WayPtNav is able to produce a smooth,
collision-free trajectory to reach the target position. Even though both approaches are able
to reach the target position for task 3, LB-WayPtNav takes only 10s to reach the target
whereas the E2E learning approach takes about 17s. Moreover, the control profile produced
by the E2E learning approach is significantly more jerky than LB-WayPtNav, which is of-
ten concerning for real robots as they are power inefficient, can lead to significant errors in
sensors and cause hardware damage.

Case BCase A

Figure 7.6: LB-WayPtNav is able to learn the appropriate navigation cues, such as entering
the room through the doorway for a goal inside the room, continuing down the hallway for
a farther goal. Such cues enable the robot to navigate efficiently in novel environments.

able to reason that a goal in a far away room is better achieved by going down the hallway
as opposed to entering the room currently in front of the robot.

We also conduct an occlusion sensitivity analysis [307], where we measure the change in
the predicted waypoint as a rectangular patch is zeroed out at different locations in the input
image. We overlay the magnitude of this change in prediction on the input image in Red.
LB-WayPtNav focuses on the walls, doorways, hallways and obstacles such as trash-cans as
it predicts the next waypoint, and what the network attends to depends on where the robot
is trying to go. Furthermore, for Case A, we also show the changed waypoint (in pink) as



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 191

we zero out the wall pixels. This corresponds to a shorter path to the goal in the absence of
the wall. More such examples can be found in [38].

Effect of distortions. Adding perspective and image distortions during training signif-
icantly improves the generalization of the trained network to unseen environments. For
example, for LB-WayPtNav, adding distortions increases the success rate from 47.94% to
80.65%. Adding perspective distortions particularly improves the generalization to the real-
world systems, for which the camera tilt will inevitably change as the robot is moving through
the environment.

Failure Modes. Even though LB-WayPtNav is able to perform navigation tasks in novel
environments, it can only do local reasoning (there is no memory in the network) and gets
stuck in some situations. The most prominent failure modes are: a) when the robot is too
close to an obstacle, and b) situations that require ‘backtracking’ from an earlier planned
path.

7.3.4 Hardware Experiments

Figure 7.7: Our Turtlebot
2 hardware platform uses
a Yujin Kobuki base, Gi-
gabyte Aero Laptop, and
Orbbec Astra camera.

We next test LB-WayPtNav on a TurtleBot 2 hardware
testbed. The TurtleBot 2 is a low-cost, open source differen-
tial drive robot, which we equip with an Orbbec Astra RGB-D
camera. However, for LB-WayPtNav and E2E learning exper-
iments, we only used the RGB image. For geometric mapping
and planning-based schemes, we additionally use the depth im-
age. A snapshot of our testbed is shown in Figure 7.7.

We use the network trained in simulation, as described in
Section 7.3.3, and deploy it directly on the TurtleBot with-
out any additional training or finetuning. We tested the robot
in two different buildings, neither of which is in the training
dataset (in fact, not even in the S3DIS dataset). We show
some representative images of our experiment environments in
Figure 7.8.

The bulk of computation, including the deep network and
the planning, runs on an onboard computer (Nvidia GTX
1060). The camera is attached to the onboard computer
through a USB and supplies the RGB images. Given an image
and the relative goal position, the onboard computer predicts
the next waypoint for the robot, plans a spline trajectory to
that waypoint, as well as computes the low-level control com-
mands and the corresponding feedback controller. The desired
speed and angular speed commands are sent to the Kobuki



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 192

base, which then converts them to PWM signals to execute on the robot. For state mea-
surement, we use the on-board odometry sensors on the TurtleBot.

Figure 7.8: Some representative images of the buildings in which the experiments were
conducted. None of these buildings were used for training/testing purposes in simulation.

Test environments for the experiments are described in Table 7.2. We repeat each ex-
periment for our method and the three baselines: E2E learning, mapping-based planner,
and a memoryless mapping-based planner, for 5 trials each. Results across all 20 trials are
summarized in Table 7.3, where we report success rate, time to reach the goal, acceleration
and jerk. Our experiment videos can be found on the project website2.
Comparison to E2E learning are consistent with our conclusions from simulation exper-
iments. LB-WayPtNav results in more reliable, faster, and smoother robot trajectories.

Comparison to Geometric Mapping and Planning. Geometric mapping and planning
is implemented using the RTAB-Map package [185]. RTAB-Map uses RGB-D images as
captured by an on-board RGB-D camera to output an occupancy map that is used with
the spline-based planner to output motor commands. As our approach only uses the current
image, we also report performance of a memory-less variant of this baseline where occupancy
information is derived only from the current observation. While LB-WayPtNav is able to
solve 95% of the trials, this memory-less baseline completely fails. It tends to convey the
robot too close to obstacles, and fails to recover. In comparison, the map building scheme
performs better, with a 40% success rate. This is still a lot lower than performance of our
method (95%), and near perfect performance of this scheme in simulation. We investigated
the reason for this poor performance, and found that this is largely due to imperfections in
depth measurements in the real world. For example, the depth sensor fails to pick-up shiny
bike-frames and helmets, black bike-tires and monitor screens, and thin chair legs and power
strips on the floor. In Figure 7.9, we illustrate some examples of inaccurate depth estimations
that we encounter during our experiments. These systematically missing obstacles cause the
robot to collide in experiment 1 and 2. Map quality also substantially deteriorates in the
presence of strong ambient light, such as when the sunlight comes in through the window
in experiment 4. These are known fundamental issues with depth sensors, that limit the
performance of classical navigation stacks that crucially rely on them.

2 Project Website: https://smlbansal.github.io/LB-WayPtNav/

https://smlbansal.github.io/LB-WayPtNav/


CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 193

Table 7.2: Experiment setups, with top-views (obtained offline only for visualization), and
sample images. Robot starts at the blue dot, and has to arrive at the green dot. Path taken
by LB-WayPtNav is shown in red.

Experiment 1 and 2 Experiment 3 Experiment 4

Navigation through clut-
tered environments: This
tests if the robot can skillfully
pass through clutter in the real
world: a narrow hallway with
bikes on a bike-rack on one side,
and an open space with chairs
and sofas.

Leveraging navigation affor-
dances: This tests use of seman-
tic cue for effective navigation.
Robot starts inside a room fac-
ing a wall. Robot needs to real-
ize it must exit the room through
the doorway in order to reach the
target location.

Robustness to lighting con-
ditions: Experiment area is sim-
ilar to that used for experiment
1, but experiment is performed
during the day when sunlight
comes from the windows. Robot
needs to avoid objects to get to
the goal.

Table 7.3: Quantitative Comparisons for Hardware Experiments: We deploy LB-
WayPtNav and baselines on a TurtleBot 2 hardware testbed for four navigation tasks for 5
trials per task. We report the success rate (higher is better), average time to reach goal, jerk
and acceleration along the robot trajectory (lower is better).

Agent Input Success (%) Time taken (s) Acceleration (m/s2) Jerk (m/s3)

LB-WayPtNav (our) RGB 95 22.93 ±2.38 0.09 ±0.01 3.01 ±0.38
End To End RGB 50 33.88 ±3.01 0.19 ±0.01 6.12 ±0.18
Mapping (memoryless) RGB-D 0 N/A N/A N/A
Mapping RGB-D + Spatial Memory 40 22.13 ±0.54 0.11 ±0.01 3.44 ±0.21



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 194

Case 1 Case 2 Case 3 Case 4 Case 5

R
G

B
D

ep
th

Figure 7.9: We visualize the RGB images captured by the robot and corresponding depth
estimation. The black pixels in the depth images correspond to the regions where the depth
estimator fails to accurately estimate the depth. The depth estimation is inaccurate when
the robot encounters shiny, thin, or transparent objects, or in the presence of strong ambient
lighting, such as sunlight. This results in a significant decline in the performance of a
mapping-based approach.

1

2

3

1 2 3

Figure 7.10: LB-WayPtNav
can adapt to dynamic envi-
ronments.

Performance of LB-WayPtNav: In contrast, our pro-
posed learning-based scheme that leverages robot’s prior ex-
perience with similar objects, operates much better without
need for extra instrumentation in the form of depth sensors,
and without building explicit maps, for the short-horizon
tasks that we considered. LB-WayPtNav is able to precisely
control the robot through narrow hallways with obstacles (as
in experiment 1 and 2) while maintaining a smooth trajec-
tory at all times. This is particularly striking, as the dynam-
ics model used in simulation is only a crude approximation of
the physics of a real robot (it does not include any mass and
inertia effects, for example). The LQR feedback controller
compensates for these approximations, and enables the robot
to closely track the desired trajectory (to an accuracy of 4cm
in experiment 1). LB-WayPtNav also successfully leverages
navigation cues (in experiment 3 when it exits the room through a doorway), even when such
a behavior was never hard-coded. Furthermore, thanks to the aggressive data augmentation,
LB-WayPtNav is able to perform well even under extreme lighting conditions as in Experi-
ment 4. This demonstrates zero-shot, sim-to-real transfer capabilities of LB-WayPtNav.

Furthermore, LB-WayPtNav is agile and reactive. It can adapt to changes in the environ-



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 195

ment. In an additional experiment (shown in Figure 7.10), we change the environment as the
robot executes its policy. The robot’s goal is to go straight 6m. It must go around the brown
chair. As the policy is executed, we move the chair to repeatedly block the robot’s path (we
show the new chair locations in blue and purple, and mark the corresponding positions of
the robot at which the chair was moved by same colors). We decrease the control horizon to
0.5s for this experiment to allow for a faster visual feedback. The robot successfully reacts
to the moving obstacle and reaches the target without colliding.

7.4 Visual Navigation in Dynamic, Human-Centric

Environments

In Section 7.3, we discussed how we can combine a learning-based perception module and
a dynamics model-based planning and control module to navigate in unknown static en-
vironments. We now discuss how we can extend the proposed framework for navigation
among humans whose trajectories are unknown to the robot. We call this framework LB-
WayPtNav-DH, where DH stands for Dynamic Human. Similar to LB-WayPtNav, we will
train the perception module in LB-WayPtNav-DH to predict a waypoint that avoids the
static obstacles and make progress towards the goal, but it now additionally anticipates
the future human motion and react to it. As before, this training will be done entirely in
simulation, and the learned policies will be transferred directly to real robots.

7.4.1 Data Generation Procedure for LB-WayPtNav-DH

Generating supervision for training the CNN in dynamic environments in challenging as
(a) it requires simulation of visually realistic humans and their motion, and (b) the robot
motion affects the future scenes so the dataset needs to be active (or on-policy) to enable
rich human-robot interactions. To address the above challenges, we introduce the HumANav
dataset that allows for photorealistic renderings of indoor environment scenes with humans
in them. In this section, we provide more details about HumANav and how we can use this
dataset along with the MPC-based expert policy in Sec. 7.3.2.1 to generate the training
data for the CNN.

7.4.1.1 The Human Active Navigation Dataset (HumANav)

The HumANav Dataset, shown in Figure 7.11, is an active dataset incorporating human
meshes from the SURREAL dataset [299] and indoor office building meshes from the SD3DIS
building dataset [23]. The key component of HumANav is a rendering engine that automati-
cally fuses these meshes in order to allow a user to load a human, specified by gender, texture
(clothing, skin color, facial features), and body shape, into a desired building, at a specified
position, orientation, speed, and angular speed. Additionally, the user can manipulate the
human pose and render photo-realistic visuals (RGB, disparity, surface normals, etc.) of the



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 196

Figure 7.11: We consider the problem of autonomous visual navigation in a priori un-
known, indoor environments with humans. Our approach, LB-WayPtNav-DH, consists of
a learning-based perception module and a model-based planning and control module. To
learn navigational behavior around humans, we create the HumANav dataset which allows
for photorealistic renderings in simulated buildings environments with humans. We use an
MPC-based expert along with HumANav to train LB-WayPtNav-DH entirely in simulation.
At test time, LB-WayPtNav-DH navigates efficiently in never-before-seen buildings based
only on monocular RGB images and demonstrates zero-shot, sim-to-real transfer to novel,
real buildings around real humans (right).

human and building from arbitrary viewpoints using a standard perspective projection cam-
era. Crucially, HumANav renders images with visual cues relevant for path planning (i.e. if
the human is walking quickly the humans legs will be far apart in the image), ensuring that
visual cues for downstream planning are present in imagery. Note that even though we use
the SD3DIS dataset in HumANav, our rendering engine is independent of the meshes used
and textured meshes from any office buildings can be used.

Once we generate the optimal human and robot trajectories using our MPC-based expert,
we use HumANav to render the RGB images along those trajectories. The rendered RGB
images along with the optimal waypoints can then be used to train the CNN in our perception
module with supervised learning.

7.4.1.2 MPC-Based Expert Policy

We modify the expert policy discussed in Sec. 7.3.2.1 to additionally take into account the
future motion of humans. In particular, we use MPC both to generate realistic human tra-
jectories, as well as optimal waypoints for the robot. We now describe the human trajectory
and optimal waypoint generation process.

To generate realistic human trajectories, we model the human as a goal-driven agent with
state zH and dynamics given by (7.1). We additionally make the simplifying assumption



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 197

that the human follows a piecewise constant velocity trajectory. This assumption is often
used in human-robot interaction literature to obtain a reasonable approximation of human
trajectories [260].

The human and robot are both modeled as cylindrical agents. To generate the training
data, we first sample the start positions (p0

V , p0
H) and the goal positions (p∗V , p∗H) for the robot

and the human respectively, as well as a unique identity for the human (body shape, texture,
gender). We then use receding horizon MPC to plan paths for both the robot and human
for a horizon of Hp. In particular, at time t, the human solves for the optimal trajectory z∗H
that minimizes the following cost function

JH(zH ,uH) =

t+Hp∑
i=t

JHi (zHi , u
H
i ) (7.12)

JHi (zHi , u
H
i ) :=

(
max{0, λH1 − dobs(zHi )}

)3
+ λH2

(
dgoalH (zHi )

)2

+ λH3 ‖uHi ‖2 (7.13)

As before, dgoalH (zHi ) represents the minimum collision-free distance between zHi and the
human goal position p∗H (also known as the FMM distance). dobs represents the signed
distance to the nearest static obstacle. The control penalty is added to encourage variety in
the human trajectories. The coefficients λH1 , λ

H
2 , λ

H
3 are chosen to weight the different costs

with respect to each other.
Given the optimal human trajectory for time horizon [t, t+Hp], z∗H , the robot optimizes

for the waypoint, ŵt, such that the corresponding trajectory to that waypoint minimizes the
following cost function:

JV (zV ,uV ) =

t+Hp∑
i=t

JVi (xi, ui) (7.14)

JVi (zVi , u
V
i ) :=

(
max{0, λV1 − dobs(zVi )}

)3
+ λV2

(
dgoalV (zVi )

)2

+

λV3
(
max{0, λV4 − dhuman(zVi , z

H
i )}

)3
(7.15)

Similar to the human’s cost function, dgoalV represents the collision-free distance to robot’s
goal, p∗V . dobs represents the signed distance to the nearest obstacle, and dhuman represents
the signed distance to the human at time i. The coefficients λV1 , λ

V
2 , λ

V
3 are chosen to weight

the different costs with respect to each other.
Both the robot and human plan paths in a receding horizon fashion, repeatedly planning

(for a horizon of Hp) and executing trajectories (for a horizon of H) until the robot reaches
its goal position. We then render the image seen at each of the robot’s intermediate states
(using HumANav) and save the corresponding pair [(It, p

∗
t , u

V
t ), ŵt] for training.

Data Sampling Heuristics: We found that training on data with rich interaction between
the robot and both static obstacles and humans was crucial to success in test scenarios,



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 198

especially on our hardware setup; this includes episodes where the robot must navigate
around chairs, through doorways, behind a slowly moving human, cut across a human’s
path, etc. To this end, we designed several heuristics to stimulate such interaction. First,
we choose the human’s initial state, p0

H , such that it lies approximately along the robot’s
optimal path to its goal position in the absence of the human. Second, we penalize for
proximity to the human only when the human is visible in the robot’s current RGB image,
i.e., λV3 is nonzero only when the human is visible in the robot’s current RGB image. This
facilitates downstream learning as it ensures the human is visible when information about
the human is used for planning. We will present quantitative results in the importance of
these sampling heuristics in Section 7.4.2.

7.4.2 Simulation Results

We now present simulation results to investigate the following two key questions: (1) Can LB-
WayPtNav-DH effectively plan goal-driven trajectories in novel environments while reasoning
about the dynamic nature of humans? (2) What are the merits of combining model-based
control with learning for perceptual understanding of humans, compared to fully learning-
based methods and purely geometry-based, learning-free methods?

Simulation Setup: Our simulation experiments are conducted using the HumANav dataset
described in Section 7.4.1.1. Scans from 3 buildings and 4800 human identities are used to
generate training data. 150 test episodes (start, goal position pairs) in a 4th held out building
and held out human identities (texture, body shape, etc.) are used to evaluate all methods.
Some representative RGB images from our training and testing environments are shown in
Figure 7.12. Even though both the training and the test environments are indoor office
spaces, their layout and appearance differ significantly, but LB-WayPtNav-DH adapts well
to the new environments. Train and test scenarios are sampled to stimulate rich interaction
between the human and the robot as described in Section 7.4.1.2.

Implementation Details: The implementation details for LB-WayPtNav-DH are same as
that of LB-WayPtNav, except that LB-WayPtNav-DH is trained on HumANav using the
modified MPC-based expert policy. We refer the interested readers to Sec. 7.3.2.2 for the
implementation details.

Comparisons: We compare LB-WayPtNav-DH with four baselines. LB-WayPtNav : the
CNN is trained on the SD3DIS dataset with no humans (Sec. 7.3). Mapping-SH (Static
Human): the known robot’s camera parameters are used to project its current depth im-
age to an occupancy grid (treating the human as any other static obstacle), which is then
used for model-based planning. End-to-End (E2E) learning : CNN trained on the same
data as LB-WayPtNav-DH, but instead of a waypoint directly regress to control commands
corresponding to the optimal robot trajectory. Mapping-WC (Worst Case Human): same
as Mapping-SH, but if the human is visible in the current frame, Mapping-WC plans a



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 199

(a) Sample training environments

(b) Sample test environments

Figure 7.12: Representative images from training and testing scenarios using the HumANav
dataset. The buildings used at training and test time are visually dissimilar and have sub-
stantially different layouts. We also keep a held-out set of human identities for our test
scenarios. LB-WayPtNav-DH is able to generalize well to novel environments with never-
before-seen humans at test time.

path around all possible future human behaviors assuming that the human’s current state,
[xHt , y

H
t , φ

H
t ], is perfectly known and that the human moves at any speed in [0, v̄H ] for the

entire planning horizon. We use a control horizon of H = 0.5s for fast replanning around
humans.

Metrics: As before, we compare the success rate across all methods, as well as episode
specific metrics computed over the subset of goals where all methods succeed, such as the
average time to reach the goal, average robot jerk, and acceleration (Acc) along the successful
trajectories (lower is better).

7.4.2.1 Results

Comparison with LB-WayPtNav: LB-WayPtNav-DH reaches the goal on average 13%
more than LB-WayPtNav (Table 7.4). As expected, LB-WayPtNav tends to fail in scenarios
where anticipating future human motion plays a pivotal role in planning a collision-free path.
LB-WayPtNav takes a greedy approach in such scenarios, treating the human like any other



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 200

Table 7.4: Performance of LB-WayPtNav-DH (ours) and the baselines in simulation. Best
results shown in bold.

Agent Input Success (%) Time Taken (s) Acc (m/s2) Jerk (m/s3)

Expert Full map 100

Learning Based Methods

LB-WayPtNav-DH RGB 80.52 12.27 ±1.99 .09 ±.02 .612 ±.14
LB-WayPtNav RGB 67.53 13.97 ±2.68 .10 ±.02 .71 ±.13
E2E RGB 52.60 14.95 ±5.27 .15 ±.02 3.95 ±1.04

Mapping Methods (memoryless)

Mapping-SH Depth 76.63 11.85 ±1.60 .11 ±.03 .76 ±.26
Mapping-WC Depth + Human State 94.81 11.83 ±2.09 .11 ±.03 .72 ±.21

static obstacle, ultimately leading to a collision with the human. In Fig. 7.13 we analyze
one such representative test scenario.

Figure 7.13: (left) The robot starts at the dark blue circle. Its goal it to move to the green
goal region without colliding with static obstacles (dark gray) or humans (magenta). LB-
WayPtNav follows the light-blue, dashed trajectory until the light blue dot, planning a path
to the right of the human (in its direction of motion), leading to collision. LB-WayPtNav-
DH follows the red trajectory until the red circle, planning a trajectory (transparent red) to
the left the of the human which accounts for the its future motion, and ultimately leads to
success. (middle & right) Corresponding RGB images seen by the robot.

Comparison with End-to-End learning: Our findings (Table 7.4) are consistent with
results observed for static environments (see Table 7.1) – the use of model-based control in
the navigation pipeline significantly improves the success rate of the agent as well as the
overall trajectory efficiency and smoothness (see the Jerk column in Table 7.4). We note
that E2E learning particularly fails in the scenarios where a precise control of the system is
required, such as in narrow hallways or openings, since even a small error in control com-
mand prediction can lead to a collision in such scenarios.



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 201

Comparison with Mapping-SH: Similar to LB-WayPtNav, Mapping-SH fails to account
for the dynamic nature of the human. Indeed, in episodes where inferring the dynamic nature
of the human is crucial to success, Mapping-SH achieves a 0% success rate. LB-WayPtNav-
DH, however, succeeds on 58.33% of these episodes, indicating that it can reason about the
dynamic nature of the human.

It is important to note that Mapping-SH has access to the ground-truth depth (and
consequently occupancy) and hence can avoid static obstacles perfectly. In contrast, LB-
WayPtNav-DH learns to avoid collision with both static obstacles and dynamic humans
based on a RGB image, and as a result, its failure modes include collision with static obstacles
as well. Despite these collisions with static humans (which Mapping-SH does not suffer from),
LB-WayPtNav-DH still overall outperforms Mapping-SH slightly. However, since real-world
depth sensors are neither perfect nor have an unlimited range, we see a noticeable drop in
the performance of Mapping-SH in real-world experiments as discussed in Sec. 7.4.3. On the
other hand, LB-WayPtNav-DH is trained to be robust to sensor noise and exhibits similar
error profiles on real and synthetic imagery (see Sec. 7.4.3).

On the goals where both methods succeed, Mapping-SH is approximately 9% faster than
LB-WayPtNav-DH, since it has access to perfect scene geometry and can plan a path which
barely avoids the human. LB-WayPtNav-DH, on the other hand, is trained to take conser-
vative trajectories which avoid the human’s potential future behavior.

Comparison with Mapping-WC: Mapping-WC unsurprisingly achieves near perfect (95%)
success as it assumes perfect depth and human state estimation. Mapping-WC fails (5%)
due to the receding horizon nature of its MPC planner, which might lead the robot to a
future state from which it cannot avoid collision.

Interestingly, we found that in many cases, Mapping-WC reaches the goal faster than LB-
WayPtNav-DH (Table 7.4) by exploiting precise geometry of the scene and human, taking
an aggressive trajectory which barely avoids collision with the human (see Fig. 7.14 for an
example). However, as expected, in other cases Mapping-WC takes overly conservative paths,
planning a path that avoids all possible human trajectories regardless of their likelihood. In
contrast, LB-WayPtNav-DH is trained to reason about the human’s likely trajectory and
thus plans more efficient paths and reaches the goal on average 6% faster than Mapping-
WC.

Mapping-WC performance is also affected by noise in human state estimation. To quan-
tify this, we add zero-centered, uniformly random noise to [xHt , y

H
t , φ

H
t ] in Mapping-WC. As

a result, the success rate of Mapping-WC drops by 7%, indicating the challenges associated
with this approach, especially when the human state needs to be inferred from a monocular
RGB image.

Learned Navigational Cues and Importance of Photorealism: We designed Hu-
mANav such that relevant visual cues for navigation are rendered in imagery; i.e. a human’s
legs will be spread apart if they are moving quickly and will stay closed if they are not mov-
ing. LB-WayPtNav-DH is able to incorporate these visual cues to anticipate future human



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 202

Figure 7.14: Topview of the trajectories taken by Mapping-WC and LB-WayPtNav-DH
from the same state and the corresponding RGB image with the trajectories superimposed.
Mapping-WC reaches the goal faster than LB-WayPtNav-DH as it has access to precise
geometry of the scene and the human state and thus plans a path between the human and
the wall which narrowly avoids collision. LB-WayPtNav-DH, on the other hand, takes a
more cautious path as it does not have access to the human state.

motion and accordingly plan the robot’s trajectory (Fig. 7.15).
To understand the importance of photorealistic images, we also trained LB-WayPtNav-

DH on images of humans that are colored in gray (see Fig. 7.16). Consequently, we see a
drop of 6% in the success rate, indicating that training LB-WayPtNav-DH with photorealistic
textures (clothing, skin color, hair color, etc.) generalizes better to novel humans.

Effect of Sampling Heuristics: To understand the importance of our data sampling pro-
cedure, we train an additional baseline LB-WayPtNav-DH-FOV. In this baseline, the CNN
is trained to predict waypoints which always avoid the human, regardless of whether the
human is visible in the robot’s current image or not. To generate optimal waypoints for
training the CNN, the robot cost function always penalizes the proximity with a human
even when the human in not within the field-of-view (FOV) at the current time. The results
are presented in Table 7.5. LB-WayPtNav-DH reaches the goal on average 12% more than
LB-WayPtNav-DH-FOV and on average 5% faster than LB-WayPtNav-DH-FOV. This in-
dicates that restricting our expert to choose waypoints only considering information within
its current field of view, as described in 7.4.1.2, facilitates downstream learning and ulti-
mately the performance for LB-WayPtNav-DH. Intuitively, since the perception module is
reactive, it has limited capabilities to reason about the human motion when the human is



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 203

Figure 7.15: Topview of the trajectories taken by LB-WayPtNav-DH from the same state
with a static human (light blue, dashed line) and a dynamic human (red, solid line), and the
corresponding RGB images. HumANav enables LB-WayPtNav-DH to leverage cues, such as
spread of humans legs and direction of human toes, to infer that the left RGB image likely
corresponds to a static human and the right one to a moving human.

Figure 7.16: LB-WayPtNav-DH trained on images from HumANav with realistic textures
(clothing, hair, skin color, facial features) (left) leads to a better generalization than training
on human figures with gray textures (right).

not in robot’s FOV. Thus, reasoning about the human motion when the human is not within
the FOV can overconstrain the learning problem. In future, we will explore adding mem-
ory to the CNN (such as using LSTM or RCNN) that can overcome some of these challenges.



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 204

Table 7.5: Comparison between LB-WayPtNav-DH (ours) and LB-WayPtNav-DH-FOV
methods on 150 test episodes. Average time taken, jerk, and acceleration numbers are
reported on the scenarios where both methods succeed.

Agent Input Success (%) Time Taken (s) Acc (m/s2) Jerk (m/s3)

LB-WayPtNav-DH RGB 80.52 12.94 ±3.06 .09 ±.02 .64 ±.13
LB-WayPtNav-DH-FOV RGB 68.18 13.57 ±3.52 .09 ±.02 .66 ±.13

Navigation Around Multiple Humans: LB-WayPtNav-DH is trained on environments
with single human; however, we find that it can generalize to settings with multiple humans
(Fig. 7.17). LB-WayPtNav-DH is able to successfully navigate around multiple humans
walking side by side or separately in a narrow hallway. We hypothesize that LB-WayPtNav-
DH succeeds in these scenarios as it reduces the multi-human avoidance problem to a single
human avoidance problem (i.e. by treating both humans as a single large ”meta-human”
in the first scenario and by solving two smaller, single-human avoidance problems in the
second scenario). The third scenario, on the other hand, is specifically designed to test
whether LB-WayPtNav-DH can reason about multiple, distinct future human trajectories
at once. LB-WayPtNav-DH, struggles to accurately infer both humans’ future motion, and
thus collides. In fact, the same scenario, when run without the second human, leads to
LB-WayPtNav-DH successfully reaching the goal.

Failure Modes: LB-WayPtNav-DH successfully navigates around dynamic and static ob-
stacles in novel environments, however it is primarily limited in its ability to recognize and
predict the long-term motion of humans. These issues are tightly coupled with the robot’s
reactive nature (uses only the current RGB image) and limited field of view (forward facing
camera) as humans may approach the robot from outside or on the fringe of its field of view.

7.4.3 Hardware Experiments

We directly deploy the LB-WayPtNav-DH framework, trained in simulation, onto a Turtle-
bot 2 hardware platform without any finetuning or additional training. Our algorithm is
tested in two never-before-seen buildings. Representative images of our experiment environ-
ments are shown in Figure 7.18. Importantly, we note that our robot has only been trained
on synthetic humans from the SURREAL dataset [299], constrained to piecewise constant
velocity trajectories. Humans in our experiments, however, do not have such dynamical
constraints. For robot state measurement, we use the Turtlebot’s encoder based odometry.

Our experiment setups are shown in Fig. 7.19. The static clutter in these environments is
limited as the experiments are designed to evaluate whether the robot has learned to reason
about the dynamic nature of humans. In experiment 1, the human walks parallel to the
robot but in the opposite direction; however, the human suddenly takes a turn towards the
robot, requiring it to anticipate the human behavior to avoid a collision. In experiment 2, the



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 205

Figure 7.17: Navigation around multiple humans. LB-WayPtNav-DH successfully turns
a corner while avoiding two humans walking side by side (left), navigates a long hallway
with multiple humans walking down the hallway (middle). LB-WayPtNav-DH attempts to
traverse a room, crossing the path of two different humans that are moving in opposing
directions (right). LB-WayPtNav-DH is unable to reason about the future trajectory of
both humans simultaneously which ultimately leads to a collision.

Figure 7.18: Some representative images of the experiment scenarios. Neither of these
buildings were used for training/testing purposes in simulation.



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 206

robot and the human move in opposite directions, but cross each other near a tight corner,
requiring the robot to take a cautious trajectory around the human to avoid a collision.

Figure 7.19: Two examples from the experiments. Top: executed trajectory. Purple dot is
the human with an arrow depicting its direction. Bottom: RGB images from the robot. The
robot selects the trajectories in the opposite direction from the human to avoid a collision,
even if is means diverging from the optimal path to the goal.

We compare the performance of LB-WayPtNav-DH, LB-WayPtNav, and Mapping-SH
on our hardware platform across two experimental settings for five trials each (Table 7.6).
We do not compare to End-To-End or Mapping-WC on our hardware setup as the simu-
lation performance of End-To-End is already very low and Mapping-WC requires access to
the ground truth state information of the human, which was not reliable using our narrow
field-of-view monocular RGB camera. Our experiment videos can be found on the project
website3.

Comparison With LB-WayPtNav: LB-WayPtNav succeeds in only 3 trials out of 10
(Table 7.6). In both experiments LB-WayPtNav attempts to avoid the human, treating it
as a static obstacle, however the human advances towards the robot before it can correct
course. This is unsurprising as this method is trained purely on static obstacles and these
experiments are specifically designed to test the agent’s understanding of the dynamic nature
of humans. In cases where treating the human as a static obstacle does succeed however,
the robot is approximately 20% more efficient than LB-WayPtNav-DH as it does not take

3 Project Website: https://smlbansal.github.io/LB-WayPtNav-DH/

https://smlbansal.github.io/LB-WayPtNav-DH/


CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 207

longer, cautious paths which allow for more human avoidant behavior.

Table 7.6: Experimental results, averaged over 10 trials (5 trials per experiment). LB-
WayPtNav and Mapping-SH lack the understanding of the dynamic nature of the human,
ultimately leading to a collision with the human.

Agent Success (%) Time taken (s) Acceleration (m/s2) Jerk (m/s3)

LB-WayPtNav-DH 100.00 19.15 ±1.25 0.06 ±0.01 2.62 ±0.26
LB-WayPtNav 30.00 15.56 ±0.08 0.06 ±0.01 2.47 ±0.11
Mapping-SH 20.00 11.38 ±0.23 0.22 ±0.05 10.45 ±0.10

Comparison With Mapping-SH: To implement Mapping-SH on the Turtlebot, we project
the robot’s current depth image onto an occupancy grid on the ground plane using the known
camera intrinsic and extrinsic parameters. Similar to LB-WayPtNav, the performance of
Mapping-SH deteriorates even further in our hardware experiment, succeeding in only 2
trials. Performance of Mapping-SH is further impacted by its exact reliance on the geometry
of the scene, which can lead to failure when the depth sensor gives erroneous readings.

In cases where Mapping-SH does succeed, it reaches the goal approximately 40% faster
than LB-WayPtNav-DH. This is expected as Mapping-SH is designed to exploit the exact
geometry of the scene, barely avoiding obstacles on its way to the goal. Given the reactive
nature of Mapping-SH and lack of understanding of the dynamic nature of the human, when
Mapping-SH does succeed it does so by executing a last-resort, aggressive turn or stop to
avoid imminent collision with the human. This behavior is reflected in the exceptionally
high jerk in trajectories (10.45 m/s3).

Performance of LB-WayPtNav-DH: LB-WayPtNav-DH succeeds in all 10 trials by ex-
hibiting behavior which takes into account the dynamic nature of the human agent. These
results demonstrate the capabilities of a learning algorithm trained entirely in simulation
on the HumANav dataset to generalize to navigational problems in real buildings with real
people.

In experiment 1, LB-WayPtNav-DH navigates around the human by moving contrary
to its direction of motion, which allows it to reliably avoid collision. LB-WayPtNav and
Mapping-SH, however, treat the human as a static obstacle and attempt to avoid it by
moving in its direction of motion. Similarly, in experiment 2, while navigating through
hallways, LB-WayPtNav-DH takes a larger radius turn around a corner to leave space for
the human moving in the other direction. LB-WayPtNav and Mapping-SH exhibit greedy
behavior, trying to navigate around the tight corner in hope for a shorter path to the goal,
but ultimately failing more often as they cannot react quickly enough to maneuver around
the human.

Similar to our simulation results, when all three methods succeed (2 out of 10 trials),
LB-WayPtNav-DH is noticeably less efficient than Mapping-SH and LB-WayPtNav because



CHAPTER 7. LEARNING FOR UNKNOWN ENVIRONMENTS:
PERCEPTION-BASED CONTROL 208

the trajectories it takes around the human are more cautious, and thus less-efficient as it has
been trained to avoid the human’s current position and short-term future trajectory.

7.5 Chapter Summary

Visual navigation in a priori unknown environments is an important problem in robotics. In
this chapter, we proposed LB-WayPtNav, an autonomous visual navigation framework that
combines learning-based perception with model-based control for goal-driven navigation in
novel indoor environments. LB-WayPtNav is better and more reliable at reaching unseen
goals compared to an End-to-End learning or a geometric mapping-based approach. Use
of a model-based feedback controller allows LB-WayPtNav to successfully generalize from
simulation to physical robots.

We next extend the capabilities of LB-WayPtNav to dynamic environments. The new
framework, LB-WayPtNav-DH, can autonomously navigate in a priori unknown indoor en-
vironments with humans. To train the perception module in LB-WayPtNav-DH, we also
create a photorealistic dataset, HumANav, that can render rich indoor environment scenes
with humans. The dataset consists of synthetic humans and can be fully autonomously
generated, avoiding privacy and logistic difficulties present when working with real human
subjects. We demonstrate that LB-WayPtNav-DH trained on HumANav can successfully
learn to navigate around humans and transfer the learned policies from simulation to reality.



209

Part III

Safety for Learning-Enabled Control
Systems

In Part 2 of this thesis, we discussed how we can use machine learning to control autonomous
systems when their dynamics model or the environment is unknown. In this part, we will
focus on how we can provide safety guarantees for the system when learning is involved in
the control loop. In Chapter 8, we will focus on how to provide safety guarantees using the
learned dynamics models. In Chapter 9, we will focus on providing safety guarantees when
the system is operating in an unknown environment and using learning-based perception for
control.



210

Chapter 8

Safety Analysis Using Learning-Based
Dynamics Models

This chapter is based on the paper “A New Simulation Metric to Determine Safe Environments and

Controllers for Systems with Unknown Dynamics” [131] written in collaboration with Shromona

Ghosh, Sanjit Seshia, Alberto Sangiovanni-Vincentelli, and Claire Tomlin.

In Chapter 5 and 6, we discussed how we can use indirect and direct learning-based
methods to capture the inaccuracies in the dynamics model of an autonomous system, and
leverage learning to improve the control performance despite these inaccuracies. Since many
of these autonomous systems are safety-critical, it is important to design provably-safe con-
trollers while determining environments in which safety can be guaranteed. In Part-1 of this
dissertation we discussed how dynamics models can be used for the safety analysis of a sys-
tem. However, unlike traditional dynamical systems, one of the many verification challenges
for ML-based systems [273] is that learned abstractions (i.e. a model, used interchangeably
here on) cannot be directly used for verification, since it is not clear a priori how repre-
sentative the abstraction is of the actual system. Hence, to use the abstraction to provide
guarantees for the system, we need to first quantify the differences between it and the system.

In this chapter, we focus on providing safety guarantees for the actual system based on
a learned dynamics model for reach-avoid objectives. Recall that in a reach-avoid problem,
the goal is to design a controller to reach a target set of states (referred to as reach set)
while avoiding unsafe states (avoid set) at all times. Reach-avoid problems are common for
autonomous vehicles in the real world; for example, for the Crazyflie system discussed in
Chapter 5, the reach set could be a desired goal position and the avoid set could be the set
of the obstacles. In such a setting, it is important to determine the environments in which
the drone can safely navigate, as well as the corresponding safe controllers.

The key idea behind our approach is to compute an estimate of the “distance” between
the actual system and its learned abstraction. One such distance could be the maximal
Euclidean distance between the system and the abstraction output trajectories over all finite
horizon control sequences. The estimated distance is then used to expand the unsafe set (or



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS211

Figure 8.1: The avoid set is expanded and the reach set is contracted with the simulation
metric da. If the abstraction trajectory (ξM) stays clear of the expanded avoid set and
reaches the contracted reach set, the system trajectory (ξS) also stays clear of the original
avoid set and reaches the original reach set.

avoid set) and contract the reach set, as shown in Figure 8.1. If we can synthesize a safe
controller that ensures the abstraction trajectory avoids the expanded avoid set and reaches
the contracted reach set, then the system trajectory is guaranteed to avoid and reach the
original avoid set and reach set respectively. Consequently, the set of safe environments for
the system can be obtained by finding the set of environments for which we can design a safe
controller for the abstraction with the modified specification, which in turn can be computed
using model-based safety analysis methods such as Hamilton-Jacobi reachability.

8.1 Related Work

Model Validation. The problem of computing mismatch between a system and its ab-
straction is studied extensively in the literature under the banner of model validation. The
key idea of these approaches is to use model identification techniques that explicitly pro-
vide bounds on the mismatch either in time or frequency domain (see [130, 153, 200] and
references therein). This bound is then used to design a provably stabilizing controller for



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS212

the system. These approaches, however, have largely been limited to linear abstractions
and systems, and the focus has been on designing asymptotically stabilizing controllers, as
approach to reach-avoid specifications.

Simulation Metric. Another way to quantify the difference between a general non-linear
system and its abstraction relies on the notion of a (approximate) simulation metric [19,
136, 28]. Such a metric measures the maximal distance between the system and the ab-
straction output trajectories over all finite horizon control sequences. Standard simulation
metrics (referred to as SSM here on) have been used for a variety of purposes such as safety
verification [137], abstraction design for discrete [189], nonlinear [249], switched [138] sys-
tems, piecewise deterministic and labelled Markov processes [96, 282], and stochastic hybrid
systems [5, 127, 163, 63], model checking [28, 167], and model reduction [91, 244]. As shown
in Figure 8.1, the SSM is used to expand the unsafe set (or avoid set) and contract the reach
set. A safe controller for the abstraction for the modified reach-avoid problem is guaranteed
to be safe for the actual system. This follows from the property that SSM captures the worst
case distance between the trajectories of the system and the abstraction.

Even though powerful in its approach, SSM computes the maximal distance between the
system and the abstraction trajectories across all possible controllers. This is unnecessary
and might lead to a conservative bound on the quality of the abstraction for the purposes
of controller synthesis. In particular, the larger the distance between the system and the
abstraction, the larger the expansion (contraction) of the avoid (reach) set. In many cases,
this results in unrealizability wherein there does not exist a safe controller for the abstraction
for the modified specification. In this chapter, we propose a new distance metric to overcome
these challenges.

Scenario Optimization. Another challenge with SSM is its computation when the dynam-
ics of the system are not available. Several approaches have been proposed in the literature
for computing SSM [4, 136, 163]; however, restrictive assumptions on the dynamics of the
systems are often required to compute it. More recently, a randomized approach has been
proposed to compute SSM [5, 127] for finite-horizon properties that relies on “scenario op-
timization”, which was first introduced for solving robust convex programs via randomiza-
tion [66] and then extended to semi-infinite chance-constrained optimization problems [68].
Scenario optimization is a sampling-based method to solve semi-infinite optimization prob-
lems, and has been used for system and control design [65, 69]. In this work, we will leverage
scenario optimization to compute the distance metric between the system and its abstrac-
tion.

Contributions and Chapter Organization

In this paper, we propose SPEC, SPEcification-Centric simulation metric, a novel distance
metric between the system and its abstraction. SPEC is also motivated by the key insight



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS213

behind SSM, in that, if the reach-avoid specification is changed using SPEC in a similar
fashion as that for SSM, it is guaranteed that a safe controller for the abstract model remains
safe for the system. However, SPEC does not inherit the conservative nature of SSM, and
can be used to design safe controllers for the system for a broader range of reach-avoid
specifications. In fact, we show that, among all uniform distance bounds (i.e., a single
distance bound is used to modify the specification in all environments), SPEC provides the
largest set of environments such that a safe controller for the abstraction is also safe for the
system. SPEC achieves this by computing the distance across

1. only those controllers that can be synthesized by a particular control scheme and that
are safe for the abstraction (in the context of the original reach-avoid specification) —
these are the only potential safe controllers for the system;

2. only those abstraction and system trajectories for which the system violates the reach-
avoid specification, and

3. only between the abstraction trajectory and the reach and the avoid sets.

To compute SPEC, we propose a scenario optimization-based approach that has general
applicability and is not restricted to a specific class of systems. Indeed, the only assumption
is that the system is available as an oracle, with known state and control spaces, which we can
simulate to determine the corresponding output trajectory. Given that the distance metric
is obtained via randomization and, hence, is a random quantity, we provide probabilistic
guarantees on the performance of SPEC. However, this confidence is a design parameter and
can be chosen as close to 1 as desired (within a simulation budget).

8.2 Problem Formulation

Let S be an unknown, discrete-time, potentially non-linear, dynamical system with state
space Rnx and control space Rnu . Let M be a (learned) abstraction of S with the same
state and control spaces as S, i.e., a dynamics model of S. We also assume that the bounds
between the dynamics of M and S are not available beforehand (i.e., we cannot a priori
quantify how different the two are). As before, ξS(t;x0,u) denotes the trajectory of S at time
t starting from the initial state x0 at time 0 and applying the controller u. ξM is similarly
defined. For ease of notation, we drop u and x0 from the trajectory arguments wherever
convenient.

We define by E := X0 × A × R the set of all reach-avoid scenarios (also referred to as
environment scenarios here on), for which we want to synthesize a controller for S. A reach-
avoid scenario e ∈ E is a three-tuple, (x0, A(·), R(·)), where x0 ∈ X0 ⊂ Rnx is the initial
state of S. A(·) ∈ A, A(·) ⊂ Rnx and R(·) ∈ R, R(·) ⊂ Rnx are (potentially time varying)
sequences of avoid and reach sets respectively. We leave A and R abstract except where
necessary. If the sets are not time varying, we can replace R(·) (respectively A(·)) by the



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS214

stationary R (respectively A). Similarly, if there is no avoid or reach set at a particular time,
we can represent A(t) = ∅ and R(t) = Rnx .

For each e ∈ E , we define a reach-avoid specification, ϕ(e)

ϕ(e) := {ξ(·) : ∀t ∈ T ξ(t) /∈ A(t) ∧ ξ(t) ∈ R(t)}, (8.1)

where T denote the time-horizon {0, 1, . . . , T}. We say ξ(·) satisfies the specification ϕ(e),
denoted ξ(·) |= ϕ(e), if ξ(·) ∈ ϕ(e). For mathematical brevity, we define the reach-avoid
specification such that the output trajectory must remain within the reach set at all times.
In cases where we are interested in eventually reaching a desired set of states, R(t) can
represent the backwards reachable tube corresponding to the desired set of states.

Finally, we define UΠ(e) ⊆ UT
0 to be the space of all permissible controllers for e, and

UT
0 to be the space of all finite horizon control sequences over T . For example, if we restrict

ourselves to linear feedback controllers, UΠ represents the set of all linear feedback controllers
that are defined over the time horizon T . We are now ready to formally state our problem.

Given the set of reach-avoid scenarios E , the controller scheme UΠ, and the abstraction
M, our goal is two-fold:

1. to find the environment scenarios for which it is possible to design a controller such
that ξS(·) satisfies the corresponding reach-avoid specification ϕ(e),

2. to find a corresponding safe controller for each scenario in (1).

Mathematically, we are interested in computing the set ES

ES = {e ∈ E : ∃u ∈ UΠ(e) , ξS(·;x0,u) |= ϕ(e)}, (8.2)

and the corresponding set of safe controllers US(e) for each e ∈ ES

US(e) = {u ∈ UΠ(e) : ξS(·;x0,u) |= ϕ(e)}. (8.3)

When an accurate dynamics model of S is known, several methods have been studied in
literature to compute the sets ES and US(e) for reach-avoid problems [293, 225, 292]. We
discussed several such methods in Part-1 of this dissertation as well. In this work as well, we
have a model of S (i.e., M), except that it may not be accurate. For the analysis to follow,
we make the following assumptions on S and M:

Assumption 5 S is available as an oracle that can be simulated, i.e., we can run an exe-
cution (or experiment) on S and obtain the corresponding system trajectory ξS(·).

Assumption 6 For any e ∈ E, we can determine if there exist a controller such that ξM |=
ϕ(e) and can compute such a controller.



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS215

Assumption 1 states that even though we do not know the dynamics of S, we can run an
execution of S. Assumption 2 states that it is possible to verify whetherM satisfies a given
specification ϕ(e) or not. Although it is not a straightforward problem, since the dynamics
ofM are known, several existing methods can be used for obtaining a safe controller forM.

Under these assumptions, we show that we can convert a verification problem on S to a
verification problem on M. In particular, we compute a distance bound, SPEC, between S
and M which along with M allows us to compute a conservative approximation of ES and
US(e).



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS216

Example 3 We now introduce a very simple example that we will use to illustrate our
approach, a 2 state linear system in which the system and the abstraction differ only
in one parameter. Although simple, this example illustrates several facets of SPEC.
Consider a system S whose dynamics are given as

x(t+ 1) =

[
x1(t+ 1)
x2(t+ 1)

]
=

[
2 0
0 0.1

] [
x1(t)
x2(t)

]
+

[
1
0

]
u(t). (8.4)

We are interested in designing a controller for S to regulate it from the initial state
x(0) := x0 = [0, 0] to a desired state x∗ = [x∗1, 0] over a time-horizon of 20 steps, i.e,
T = 20. In particular, we have

X0 = {[0, 0]}, A = ∅, R =
⋃

−4≤x∗1≤4

R(·;x∗),

where

R(t;x∗) =R2, t ∈ {0, 1, . . . , T − 1},
R(T ;x∗) ={x : ‖x− x∗‖2 < γ}.

We use γ = 0.5 in our simulations. Thus, each e ∈ E consists of a final state x∗ (equiv-
alently, a reach set R(T ;x∗)) to which we want the system to regulate, starting from
the origin. Consequently, the system trajectory satisfies the reach-avoid specification
in this case if ξS(T ;x0,u) ∈ R(T ;x∗).
For the purpose of this example, we assume that the system dynamics in (8.4) are
unknown; only the dynamics of its abstraction M are known and given as

x(t+ 1) =

[
x1(t+ 1)
x2(t+ 1)

]
=

[
2 0
0 0.1

] [
x1(t)
x2(t)

]
+

[
1

0.1

]
u(t). (8.5)

In this example, we use the class of linear feedback controllers as UΠ(e), although other
control schemes can very well be used. In particular, for any given environmental
scenario e, the space of controllers UΠ(e) is given by

UΠ(e) = {LQR(q, x∗) : 0.1 ≤ q ≤ 100},

where LQR(q, x∗) is a Linear Quadratic Regulator (LQR) designed for the abstraction
dynamics in (8.5) to regulate the abstraction trajectory to x∗ a, with the state penalty
matrix Q = qI and the control penalty coefficient R = 1. Here, I ∈ R2×2 is an identity
matrix. Thus, for different values of q we get different controllers, which affect the
various characteristics of the resultant trajectory, such as overshoot, undershoot, and
final state. Our goal thus is to use the dynamics in (8.5) to find the set of final states
to which S can be regulated and the corresponding regulator in UΠ(e).

aThat is, we penalize the trajectory deviation to the desired state x∗ in the LQR cost function.



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS217

8.3 SPEC: Specification Centric Simulation Metric

8.3.1 Computing Approximate Safe Sets Using M and
Simulation Metric

Computing sets ES and US exactly can be challenging since the dynamics of S are unknown
a priori. Generally, we use the abstraction M as a replacement for S to synthesize and
analyze safe controllers for S. However, to provide guarantees on S usingM, we would need
to quantify how different the two are.

We quantify this difference through a distance bound, d, between S andM. d is used to
modify the specification ϕ(e) to a more stringent specification ϕ(e; d) such that if ξM(·) |=
ϕ(e; d) then ξS(·) |= ϕ(e). Thus, the set of safe controllers for M for ϕ(e; d) can be used as
an approximation for US(e). In particular, if we define the sets Uϕ(e;d) and Eϕ(d) as

Uϕ(e;d) := {u ∈ UΠ(e) : ξM(·;x0,u) |= ϕ(e; d)}
Eϕ(d) := {e ∈ E : Uϕ(e,d) 6= ∅},

(8.6)

then Uϕ(e;d) and Eϕ(d) can be used as an approximation of US(e) and ES respectively. Con-
sequently, a verification problem on S can be converted into a verification problem on M
using the modified specification.

One such distance bound d is given by the simulation metric, SSM, between M and S
defined as

da = max
e∈E

max
u∈UΠ(e)

‖ξS(·;x0,u)− ξM(·;x0,u)‖∞ (8.7)

Here, the ∞-norm is the maximum distance between the trajectories across all timesteps.
Typically SSM is computed over the space of all finite horizon controls U instead of UΠ(e) [137].
Since we are interested in a given control scheme, we restrict this computation to UΠ(e). In
general, da is difficult to compute, because it requires searching over (the potentially infi-
nite) space of controllers and environments. An approximate technique to compute da was
presented for systems whose dynamics were unknown with probabilistic guarantees in [5].

However, if da can be computed then it can be used to modify a specification ϕ(e) to
ϕ(e; da) as follows: “expand” the avoid set A(·) to get the augmented avoid set A(·; da) =
A(·) ⊕ da, and “contract” the reach set R(·) to obtain a conservative reach set R(·; da) =
R(·) 	 da (see Figure 8.1). Here, ⊕ (	) is the Minkowski sum(difference)1. Consequently,
ϕ(e; da) is the set of trajectories which avoid A(·; da) and are always contained in R(·; da),

ϕ(e; da) := {ξ(·) : ξ(t) /∈ A(t; da), ξ(t) ∈ R(t; da)∀t ∈ T }. (8.8)

Then it can be shown that any controller that satisfies the specification ϕ(e; da) for M also
ensures that S satisfies the specification ϕ(e).

1The Minkowski sum of a set K and a scalar d is the set of all points that are the sum of any point in
K and B(d), where B(d) is a disc of radius d around the origin.



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS218

Proposition 8 For any e ∈ E and controller u ∈ UΠ(e), we have ξM(·;x0,u) |= ϕ(e; da)
implies ξS(·;x0,u) |= ϕ(e).

Proof: Let us consider for a given environment e ∈ E and control u ∈ UΠ(e),
ξM(·;x0,u) |= ϕ(e; da). We would like to prove that ξS(·;x0,u) |= ϕ(e). From (8.7), we
have

‖ξS(t)− ξM(t)‖ ≤ da ∀t ∈ T . (8.9)

From the definition of specification in (8.8), we have ξM(·) |= ϕ(e; da) if and only if
ξM(·) ∈ ϕ(e; da). Therefore, ξM(t) /∈ A(t) ⊕ da and ξM(t) ∈ R(t) 	 da ∀t ∈ T . Since
ξM(t) /∈ A(t)⊕ da,

‖ξM(t)− a‖ > da ,∀t ∈ T ,∀a ∈ A(t). (8.10)

Combining (8.9) and (8.10) implies that

‖ξS(t)− a‖ > 0 ,∀t ∈ T ,∀a ∈ A(t). (8.11)

Equation (8.11) implies that ξS(t) /∈ A(t) for any t ∈ T . Similarly, it can be shown that

‖ξS(t)− r‖ > 0 , ∀t ∈ T ,∀r ∈ R(t)c,

where R(t)c denotes the complement of the set R(t). Therefore, ξS(t) ∈ R(t) ∀t ∈ T .
Since ξS(t) /∈ A(t) and ξS(t) ∈ R(t) for all t ∈ T , we have ξS(·;x0,u) |= ϕ(e). �

Proposition 8 implies that Eϕ(da) and Uϕ(e;da) can be used as approximations of ES and US(e)
respectively. However, the distance bound in (8.7) does not take into account the reach-
avoid specification (environment) for which a controller needs to be synthesized. Thus, da

can be quite conservative. As a result, the modified specification can be so stringent that
the set of environments Eϕ(da) for which we can synthesize a provably safe controller for
the abstraction (and hence for the system) itself will be very small, resulting in a very
conservative approximation of ES .

8.3.2 Specification-Centric Simulation Metric (SPEC)

To overcome these limitations, we propose SPEC,

db = max
e∈E

max
u∈Uϕ(e)

d(ξS(·), ξM(·)), (8.12)

where

d(ξS(·), ξM(·)) = min
t∈T

(min{h (ξM(t;x0,u), A(t)) ,−h (ξM(t;x0,u), R(t))})1(ξS(·) 6|=ϕ(e))

(8.13)



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS219

Here Uϕ(e) := {u ∈ UΠ : ξM(·;x0,u) |= ϕ(e)} is the set of all controls such that M satisfies
the specification ϕ(e). 1l represents the indicator function which is 1 if l is true and 0
otherwise, and h(x,K) is the signed distance function defined as

h(x,K) :=

{
infk∈K ‖x− k‖, if x 6∈ K
− infk∈KC ‖x− k‖, otherwise.

If for any e ∈ E , Uϕ(e) is empty, we define the distance function d(ξS(·), ξM(·)) to be zero.
Similarly, if there is no A(·) or R(·) at a particular t, the corresponding signed distance
function is defined to be ∞. There are four major differences between (8.7) and (8.12):

1. To compute the db we only consider the feasible set of controllers that can be synthe-
sized by the control policy, Uϕ(e) ⊆ UΠ(e), as all other controllers do not help us in
synthesizing a safe controller for S (as they are not even safe for M).

2. To compute the distance between S andM, we only consider those trajectories where S
violates the specification. This is because a non-zero distance between the trajectories
of S and M, where the ξS |= ϕ(e) does not give us any additional information in
synthesizing a safe controller.

3. Within a falsifying ξS , we compute the minimum distance of the abstraction trajectory
from the avoid and reach sets rather than the system trajectory, as that is sufficient to
obtain a margin to discard behaviors that are safe for the abstraction but unsafe for
the system.

4. Finally, a minimum over time of this distance is sufficient to discard an unsafe trajec-
tory, as the trajectory will be unsafe if it is unsafe at any t.

These considerations ensure that db is far less conservative compared to da and allows us to
synthesize a safe controller for the system for a wider set of environments. We first prove
that db can be used to compute an approximation of ES .

Proposition 9 If Uϕ(e;db) ⊆ Uϕ(e), then ξM(·;x0,u) |= ϕ(e; db) implies ξS(·;x0,u) |=
ϕ(e) ∀e ∈ E ,u ∈ UΠ(e).

Proof: We prove the desired result by contradiction. Suppose there exists an envi-
ronment e ∈ E and a controller u ∈ Uϕ(e,db) such that ξM(·;x0,u) |= ϕ(e; db) but
ξS(·;x0,u) 6|= ϕ(e).

Since ξM(·;x0,u) |= ϕ(e; db), we have that,

∀t ∈ T ξM(t;x0,u) /∈ A(t; db) = A(t)⊕ db (8.14)

∀t ∈ T ξM(t;x0,u) ∈ R(t; db) = R(t)	 db (8.15)

Since db is the solution to (8.12), and u ∈ Uϕ(e) (as Uϕ(e;db) ⊆ Uϕ(e)) is such that



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS220

ξM(·) 6|= ϕ(e), (8.12) and (8.13) imply that,

min
t∈T

(min{h (ξM(t), A(t)) ,−h (ξM(t), R(t))}) ≤ db. (8.16)

Therefore, ∃t′ ∈ T such that

min{h (ξM(t′), A(t′)) ,−h (ξM(t′), R(t′))} ≤ db, (8.17)

which implies that either

1. h (ξM(t′), A(t′)) ≤ db, or

2. h (ξM(t′), R(t′)) ≥ −db

If h (ξM(t′), A(t′)) ≤ db, ∃a ∈ A(t′) such that

‖ξM(t′)− a‖ ≤ db.

Therefore, ξM(t′) ∈ A(t′)⊕ db, which contradicts (8.14). Similarly, if h (ξM(t′), R(t′)) ≥
−db, ∃r ∈ R(t′)c such that

‖ξM(t′)− r‖ ≤ db,

which implies that ξM(t′) 6∈ R(t′)	 db, which contradicts (8.15).
When Uϕ(e,db) 6⊆ Uϕ(e), for any controller u ∈ Uϕ(e,db) \Uϕ(e) such that ξM(·;x0,u) |=

ϕ(e; db), we can no longer comment on the behavior of the corresponding system trajec-
tory. This is because while computing db, these controllers were not taken into account.
�

Thus, if we define Uϕ(e;db) and Eϕ(db) as in (8.6) then they can be used as approximations of
US(e) and ES respectively. Note that Proposition 9 requires that the set of controllers that
satisfy the modified specification, Uϕ(e;db), is a subset of the set of the controllers that satisfy
the actual specification, Uϕ(e). When UΠ(e) = U, this condition is trivially satisfied as the
modified specification is more stringent than the actual specification. Other control schemes,
such as the set of linear feedback controllers and feasibility-based optimization schemes also
satisfy this condition. In fact, in such cases, the proposed metric, db, quantifies the tightest
(largest) approximation of ES , i.e., @d < db, such that Eϕ(d) ⊆ ES .

Theorem 6 Let UΠ be such that Uϕ(e;d1) ⊆ Uϕ(e;d2) whenever d1 > d2. Let d ∈ R+ be
any distance bound such that

∀e ∈ E ,∀u ∈ UΠ(e) , ξM(·) |= ϕ(e; d)→ ξS(·) |= ϕ(e). (8.18)

Then ∀e ∈ E ,Uϕ(e;d) ⊆ Uϕ(e;db) ⊆ US(e). Moreover, Eϕ(d) ⊆ Eϕ(db) ⊆ ES . Hence, Eϕ(db)
and Uϕ(e;db) quantify the tightest (largest) approximations of ES and US(e) respectively



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS221

among all uniform distance bounds d.

Proof: Consider any d > db. From the statement of Theorem 6, we have that Uϕ(e;d) ⊆
Uϕ(e;db). Hence, Eϕ(d) ⊆ Eϕ(db) follows from the definition of Eϕ(d) in (8.6). Uϕ(e;db) ⊆
US(e) and Eϕ(db) ⊆ ES is already ensured by Proposition 9, and hence Theorem 1 follows.

We now prove that for all 0 < d < db, ∃ e ∈ E such that (8.18) does not hold,
and hence the result of Theorem 1 trivially holds. We prove the result by contradiction.
Suppose 0 < d < db be such that (8.18) holds. Let (e∗,u∗) be the environment, controller
pair where d(ξM(·;x∗0,u∗), ξS(·;x∗0,u∗)) = db. Equation (8.12) and (8.13) thus imply
that

min
t∈T

(min{h (ξM(t;x∗0,u
∗), A∗(t)) ,−h (ξM(t;x∗0,u

∗), R∗(t))}) = db, (8.19)

and ξS(·;x∗0,u∗) 6|= ϕ(e∗). Equation (8.19) implies that

∀t ∈ T , h (ξM(t;x∗0,u
∗), A∗(t)) ≥ db (8.20)

∀t ∈ T , h (ξM(t;x∗0,u
∗), R∗(t)) ≤ −db. (8.21)

Equations (8.20) and (8.21) imply that

∀t ∈ T , ξM(t;x∗0,u
∗) 6∈ A∗(t)⊕ d, ξM(t;x∗0,u

∗) ∈ R∗(t)	 d. (8.22)

Consequently, we have ξM(·;x∗0,u∗) |= ϕ(e∗; d). This contradicts (8.18) since
ξS(·;x∗0,u∗) 6|= ϕ(e∗). Therefore, for all 0 < d < db, ∃ e ∈ E ,u ∈ UΠ(e) , ξM(·) |=
ϕ(e; d) 6→ ξS(·) |= ϕ(e). �

Theorem 6 states that db is the smallest among all (uniform) distance bounds between M
and S, such that a safe controller synthesized onM is also safe for S. Even though this is a
stricter condition than we need for defining ES , where we care about the existence of at least
one safe controller for S, it allows us to use any safe controller forM as a safe controller for
S. Formally, db ≤ d, for all d ∈ R+ such that ∀e ∈ Eϕ(d) ,∀u ∈ Uϕ(e;d) , ξS(·) |= ϕ(e).

Intuitively, to compute (8.12), we collect all ξM(·), ξS(·) pairs (across all e ∈ E and
u ∈ Uϕ(e)) where ξM(·) |= ϕ(e) and ξS(·) 6|= ϕ(e). We then evaluate (8.13) for each pair
and take the maximum to compute db. By expanding (contracting) every A(·) ∈ A (R(·) ∈
R) uniformly by db, we ensure that none of the ξM(·) collected above is feasible once the
specification is modified, and hence, ξS(·) will never falsify ϕ(e). To ensure this, we prove
that db is the minimum distance by which the avoid sets should be augmented (or the reach
sets should be contracted). Thus, db can also be interpreted as the minimum d by which the
specification should be modified to ensure that Uϕ(e;d) ⊆ US(e) for all e ∈ E .

Corollary 1 Let d ∈ [0, db] satisfies (8.18), then ξM(·) |= ϕ(e; d) implies ξM(·) |=



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS222

ϕ(e; db).

Proof: To prove the corollary, we first prove that if d1 > d2, then ξM(·) |= ϕ(e; d1)
implies ξM(·) |= ϕ(e; d2) ,∀e ∈ E. Since ξM(·) |= ϕ(e; d1), we have

∀t ∈ T , ξM(t) /∈ A(t)⊕ d1, ξM(t) ∈ R(t)	 d1

Since d1 > d2, the above equation implies that

∀t ∈ T , ξM(t) /∈ A(t)⊕ d2, ξM(t) ∈ R(t)	 d2.

Therefore, ξM(·) |= ϕ(e; d2). The corollary now follows from noting that for all 0 < d <
db, ∃ e ∈ E ,u ∈ UΠ(e) , ξM(·) |= ϕ(e; d) 6→ ξS(·) |= ϕ(e). �

We conclude this section by discussing the relative advantages and limitations of SPEC and
SSM, and a few remarks.

Comparing SPEC and SSM SSM is specification-independent (and hence environment-
independent); and hence can be reused across different tasks and environments. This is en-
sured by computing the distance between trajectories across all input control sequences; how-
ever, the very same aspect can make SSM overly-conservative. Making SPEC specification-
dependent trades in generalizability for a less conservative measure. Although environment-
dependent, the set of safe environments obtained using SPEC is larger compared to SSM.
This is an important trade-off to make for any distance metric–the utility of a distance metric
could be somewhat limited if it is too conservative.

The computational complexities for computing SPEC and SSM are the same since they
both can be computed using Algorithm 8. To compute SSM we sample from a domain of
all finite horizon controls. To compute SPEC we additionally need to be able to define and
sample from the set of environment scenarios, but we believe that some representation of
the environment scenarios is important for practical applications.

Remark 15 Note that the proposed framework can also be used in the scenarios where there
is a deterministic controller for each environment. In such cases, UΠ(e) (and Uϕ(e)) is a
singleton set for every environment e (see Section 8.4.2 for an example). However, from
a control theory perspective, it might be useful to have a set of safe controllers that have
different transient behaviors, that the system designer can choose from without recomputing
the distance metric.

Remark 16 Note that SPEC does not strictly meet the requirements for a metric because
of the indicator function within its definition. However, it is possible to remove the indicator
function from the definition and constrain the space of feasible environments and controls
instead; i.e, we can replace u ∈ Uϕ(e) by u ∈ Uϕ(e)∧ξS(·) 2 ϕ(e) in (8.12). The two definitions
are equivalent, and SPEC would no longer be zero for two distinct input arguments; thus, it
satisfies the properties of a metric.



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS223

8.3.3 Distance Metric Computation Using Scenario Optimization

Since a dynamics model of S is not available, the computation of the distance bound db is
generally difficult. Interestingly, this computational issue can be resolved using a randomized
approach, such as scenario optimization [65]. Scenario optimization has been used for a
variety of purposes [69, 68], such as robust control, model reduction, as well as for the
computation of SSM [5].

Computing db by scenario optimization is summarized in Algorithm 8. We start by
(randomly) extracting N realizations of the environment ei, i = 1, 2, . . . , N (Line 2). Each
realization ei consists of an initial state xi0, and a sequence of reach and avoid sets, Ai(t)
and Ri(t). For each ei, we extract a controller ui ∈ Uϕ(ei) (Line 5). If such a controller does
not exist, we denote ui to be a null controller uφ. ui (if not = uφ) is then applied to both
the system as well as the abstraction to obtain the corresponding trajectories ξiS(·;xi0,ui)
and ξiM(·;xi0,ui) (Line 6). We next compute the distance between these two trajectories,
di, using (8.13) (Line 7). If ui = uφ, no satisfying controller exists for M, and hence

d(ξS(·;xi0,un), ξM(·;xi0,un)) is trivially 0. The maximum across all these distances, d̂ε, is
then used as an estimate for db (Line 10).

Although simple in its approach, scenario optimization provides provable approximation
guarantees. In Algorithm 8, we have to sample both an e ∈ E and a corresponding controller
u ∈ Uϕ(e). We define a joint sample space

D = {(e× Uϕ(e)) : e ∈ E ,Uϕ(e) 6= ∅} ∪ {(e,uφ) : e ∈ E ,Uϕ(e) = ∅} (8.23)

D contains all feasible (e,u) pairs for M. We create a dummy sample (e,uφ) for all e
where a satisfying controller does not exist. We next define a probability distribution on
D, p(e,u) = p(e) · p(u | e) where p(e) is probability of sampling e ∈ E and p(u | e) is the
probability of sampling u ∈ Uϕ(e) given e. This distribution is key to capture the sequential
nature of sampling u only after sampling e. For e ∈ E where Uϕ(e) = ∅, p(uφ | e) = 1 since
D has only a single entry for e, i.e, (e,uφ). In Algorithm 8, in Line 2, we sample ei ∼ p(e).
In Line 5, we sample ui ∼ p(u | ei).

Proposition 10 Let D be the joint sample space as defined in (8.23), with the probability
distribution pD = p(e,u). Select a ‘violation parameter’ ε ∈ (0, 1) and a ‘confidence
parameter’ β ∈ (0, 1). Pick N such that

N ≥ 2

ε

(
ln

1

β
+ 1

)
, (8.24)

then, with probability at least 1−β, the solution d̂ε to Algorithm 8 satisfies the following
conditions:

1. P((e,u) ∈ D : d(ξS(·;x0,u), ξM(·;x0,u)) > d̂ε) ≤ ε



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS224

2. P
(

(e,u) ∈ D : ξM(·;x0,u) |= ϕ(e; d̂ε)→ ξS(·;x0,u) |= ϕ(e)
)
> 1− ε provided

Uϕ(e,d̂ε)
⊆ Uϕ(e).

Proof: Statement (1) of Proposition 10 follows directly from the guarantees provided by
Scenario Optimization (Theorem 1 in [69]). To use the result in [69], we need to prove:
(a) computing db can be converted into a standard Scenario Optimization problem and
(b) Algorithm 8 samples i.i.d from D with probability pD.

(8.12) can be re-written as db = max(e,u)∈D d(ξS(·), ξM(·)) which can be formalized as
the following optimization problem,

min g

s.t. ∀(e,u) ∈ D , d(ξS(·), ξM(·)) ≤ g

This is semi-infinite optimization problem where the constraints are convex (in fact,
linear) in the optimization variable g for any given (e,u). Statement (1) now follows
from Theorem 1 in [69] by replacing c = 1, γ by g, ∆ by D, and f by d(ξS(·), ξM(·))− g.
Theorem 1 in [69], however, requires that i.i.d samples are chosen from the distribution
pD. This can be proved by noticing that, in Algorithm 8, we first sample ei ∼ p(e) (in
Line 2), and then sample ui ∼ p(u | e) (in Line 4.) Hence, every (ei,ui) is sampled from
pD = p(e) · p(u | e). Since each i = 1, . . . , N is sampled randomly and independent of
each other, the (ei,ui) pairs are indeed sampled i.i.d from pD.

Algorithm 8 returns an estimate d̂ε for db. We have already established that d̂ε satisfies
the probabilistic guarantees provided by scenario optimization (Statement (1)). From
Proposition 9, we have ∀(e,u) ∈ D where d(ξS(·), ξM(·)) ≤ d̂ε, ξM(·;x0,u) |= ϕ(e; d̂ε)→
ξS(·;x0,u) |= ϕ(e), provided Uϕ(e;d̂ε)

⊆ Uϕ(e). Therefore,

P
(

(e,u) ∈ D : ξM(·;x0,u) |= ϕ(e; d̂ε)→ ξS(·;x0,u) |= ϕ(e)
)
> 1− ε.

�

Intuitively, Proposition 10 states that d̂ε is a high confidence estimate of db, if a large enough
N is chosen. If we discard the confidence parameter β for a moment, this proposition states
that the size of the violation set (the set of (e,u) ∈ D where the corresponding distance is
greater than d̂ε) is smaller than or equal to the prescribed ε value. As ε tends to zero, d̂ε
approaches the desired optimal solution db. In turn, the simulation effort grows unbounded
since N is inversely proportional to ε.

As for the confidence parameter β, one should note that d̂ε is a random quantity that
depends on the randomly extracted (e,u) pairs. It may happen that the extracted samples
are not representative enough, in which case the size of the violation set will be larger than
ε. Parameter β controls the probability that this happens; and the final result holds with
probability 1− β. Since N in (8.24) depends logarithmically on 1/β; β can be pushed down
to small values such as 10−16, to make 1− β so close to 1 to lose any practical importance.



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS225

Algorithm 8: Scenario optimization for estimating SPEC

1 set d̂ε = 0
2 extract N realizations of the environment ei, i = 1, 2, . . . , N
3 for i = 0 : N − 1 do
4 if Uϕ(ei) 6= ∅ then
5 extract a realization of a feasible controller ui ∈ Uϕ(ei)

6 run the controller ui on S and M, and obtain ξiS(·) and ξiM(·)
7 compute di = d(ξiS(·), ξiM(·))
8 else
9 ui = uφ and di = 0

10 set d̂ε = maxi∈{1,2,...,N} di

Finally, once we have a high confidence estimate of db, we can use it with Proposition 9
to provide guarantees on the safety of a controller for the system, provided that it is safe for
the abstraction. (Statement (2) in Proposition 10)

Note that the controller ui is extracted randomly from the set Uϕ(ei) (Line 5). Obtaining
Uϕ(ei) and randomly sampling from it can be challenging in itself depending on the control
scheme, Π, and the specification, ϕ(ei). However, one way to randomly extract ui is using
rejection sampling, i.e., we randomly sample controllers from the set UΠ until we find a
controller that satisfies the specification for the model. Since the controller performance is
evaluated only on the model during this process, it is often cheap and does not put the system
at risk. Nevertheless, choosing a good control scheme makes this process more efficient, as
the number of samples rejected before a feasible controller is found will be fewer (see Example
4 below for further discussion on this). Rejection sampling, however, poses a problem when
Uϕ(ei) = ∅ and there is no way of knowing that beforehand. In such cases, one can impose a
limit on the number of rejected samples to make sure the algorithm terminates. This problem
can also be overcome easily when there is a single safe controller for each environment, i.e.,
Uϕ(ei) is a singleton set (see Remark 1).

Remark 17 Even though we have presented scenario optimization to estimate db, alternative
derivative free optimization approaches such as Bayesian optimization, simulated annealing,
evolutionary algorithms, and covariance matrix adaptation can be used as well. However, for
a lot of these algorithms, it might be challenging to provide formal guarantees on the quality
of the resultant estimate of the distance bound.



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS226

Example 4 We now apply the proposed algorithm to compute db for the setting de-
scribed in Example 3. Uϕ(e) in this case is given as

Uϕ(e) ={u ∈ UΠ(e) : ‖ξM(T ;x0,u)− x∗‖2 < γ},

where UΠ(e) is the set of LQR controllers (see Example 3). To illustrate the im-
portance of the choice of distance metric, we compute two different distance metrics
between S and M: da in (8.7) and db in (8.12). To compute db, we use Algorithm 8.
To compute da, we modify Algorithm 8 to sample a random controller from UΠ(e) in
Line 5 and compute di using (8.7) in Line 7.

According to the scenario approach with ε = 0.01 and β = 10−6, we extract N = 2964
different reach-avoid scenarios (i.e., N different final states to reach). For each
ei, i ∈ {1, 2, . . . , 2964}, we obtain a feasible LQR controller ui ∈ Uϕ(ei) using rejection
sampling. In particular, we randomly sample a penalty parameter q, solve the corre-
sponding Riccati equation to obtain LQR(q), and apply it on M. If the corresponding
ξM(·) satisfies ϕ(ei), we use ui as our feasible controller sample; otherwise, we sample
a new q and repeat the procedure until a feasible controller is found. This procedure
tends to be really fast and requires simulating only M. A feasible controller was found
within 3 samples of q for all ei in this case. For da, we randomly sample a penalty
parameter q and use LQR(q) as the controller.

The obtained distance metrics are da = 0.43, db = 0. Since da < γ, it can be used
to synthesize a safe controller for S; however, we can synthesize controller only for
those reach-avoid scenarios whereM satisfies a much stringent specification: ξM must
reach within a ball of radius 0.07 around the target state. Consequently, the set Eϕ(da)
is likely to be very small. In contrast, db = 0; thus, Proposition 10 ensures that
any controller designed on M that satisfies ϕ(e) is guaranteed to satisfy it for S as
well. In particular, the dynamics of S andM are same for the state x1, and state x2 is
uncontrollable for S and remain 0 at all times. Thus, any controller that reaches within
a ball of radius γ around a desired state x∗1 for M, if applied on S, also ensures that
the system state reaches within the same ball. Even though this relationship between
S and M is unknown, db is able to capture it only through simulations of S. This
example also illustrates that db significantly reduces the conservativeness in SSM, and
does not unnecessarily contract the set of safe environments.

8.4 Numerical Simulations

We now demonstrate how SPEC can be used to obtain the safe set of environments and
controllers for an autonomous quadrotor and an autonomous car. In Section 8.4.1, we



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS227

demonstrate how SPEC provides much larger safe sets compared to SSM. In Section 8.4.2,
we demonstrate how SPEC not only captures the differences between the dynamics of S and
M, but also other aspects of the system, in particular the sensor error, that might affect the
satisfiability of a specification.

8.4.1 Safe Altitude Control for Quadrotor

Our first example illustrates how the proposed distance metric behaves when the only differ-
ence between the system and the abstraction is the value of one parameter. However, unlike
the running example, the system and the abstraction dynamics are non-linear. Moreover,
we illustrate how SPEC can be used in the cases where all safe controllers for M may not
be safe for S.

We use the reach-avoid setting described in [114], where the authors are interested in
controlling the altitude of a quadrotor in an indoor setting while ensuring that it does not
go too close to the ceiling or the floor, which are obstacles in our experiments.

A dynamic model of quadrotor vertical flight can be written as:

z(t+ 1) =z(t) + ∆Tvz(t)

vz(t+ 1) =vz(t) + ∆T (ku(t) + g),
(8.25)

where z is the vehicle’s altitude, vz is its vertical velocity and u is the commanded average
thrust. The gravitational acceleration is g = −9.8m/s2 and the discretization step ∆T is
0.01. The control input u(t) is bounded to [0, 1]. We are interested in designing a controller
for S that ensures safety over a horizon of 100 timesteps. In particular, we have X0 =
{(z, vz) : 0.5 ≤ z ≤ 2.5 ∧ −3 ≤ vz ≤ 4}, A = {A(·)}, and R = R2. The avoid set at any
time t is given as A(t) = {(z, vz) ∈ R2 : 0.5m ≤ z(t) ≤ 2.5m}. We again assume that the
dynamics in (8.25) are unknown. Consider an abstraction of S with same dynamics as (8.25)
except that the value of parameter k in the abstraction dynamics, kM, is different.

The space of controllers UΠ(e) is given by all possible control sequences over the time
horizon (i.e., UΠ(e) = U.) For computing Uϕ(e), we use the Level Set Toolbox [218] that
gives us both the set of initial states from which there exist a controller that will keep
the ξM(·) outside the avoid set at all times (also called the reachable set), as well as the
corresponding least restrictive controller. In particular, we can apply any control when the
abstraction trajectory is inside the reachable set and the safety-preserving control (given by
the toolbox) when the trajectory is near the boundary of the reachable set. For computation
of the distance bounds, we sample a random controller sequence according to this safety-
preserving control law. If any initial state lies outside the reachable set, then it is also
guaranteed that Uϕ(e) = ∅ so we do not need to do any rejection sampling in this case.

When kM < k,M has strictly less control authority compared to S. Thus, any controller
that satisfies the specification for M will also satisfy the specification for S, so Eϕ(0) itself
is an under approximation of ES . SPEC is again able to capture this behavior. Indeed, we
computed an estimate for the distance bound using Algorithm 8 and the obtained numbers



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS228

-3 -1.5 0 1.5 3

vz

0

1

2

3

z
ES

Eϕ(d
a2)

Eϕ(d
b)

Figure 8.2: Different reachable sets when the quadrotor abstraction is conservative. The
distance metric db only considers the distance between trajectories that violates the spec-
ification on the system and satisfies it on the abstraction, leading to a less conservative
estimate of the distance, and a better approximation of ES .

are da = 0.30 and db = 0. Note that not only is da conservative, it may not be particularly
useful in synthesizing a safe controller for S. da computed using Algorithm 8 ensures that
a safe controller designed on M for ϕ(e; da) is also safe for S with high probability, only
when this controller is randomly selected from the set UΠ. However, a random controller
selected from UΠ is unlikely to satisfy ϕ(e; da) for M itself, and thus nothing can be said
about S either. Thus, it is hard to actually compute an approximation of ES . In contrast, db

samples a controller from the set Uϕ(e) in Algorithm 8. Therefore, to synthesize a controller,
we randomly select a controller from the set Uϕ(e;db), which is guaranteed to be safe on both
M and S with high probability. Therefore, it might be better to compare db to da2, which
is defined similar to da, except the inner maximum in (8.7) is computed over Uϕ(e) instead.



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS229

-3 -1.5 0 1.5 3

vz

0

1

2

3

z
ES

Eϕ(d
a2)

Eϕ(d
b)

Figure 8.3: Different reachable sets when the quadrotor abstraction is overly optimistic. The
distance metric db achieves a far less conservative under-approximation of ES compared to
the other distance metrics.

da2 in this case turns out to be 0.5.
Note that if we could instead compute the distance metrics exactly, da2 ≤ da, since

Uϕ(e) ⊂ UΠ. However, random sampling based estimate of da2 can be greater than that of
da if the controllers corresponding to a large distance between the ξS(·) and ξM(·) are sparse
in UΠ compared to that in Uϕ(e).

For illustration purposes, we also compute the reachable set Eϕ(db), by augmenting the
avoid set by db and recomputing the reachable sets using the Level Set Toolbox. As shown
in Figure 8.2, Eϕ(0) (the area withing the blue contour) is indeed contained within ES (the
area within the red contour). Here, ES has been computed using the system dynamics.
Even though Eϕ(da2) (the area within the magenta contour) is also contained in ES , it is
significantly smaller in size compared to Eϕ(db).



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS230

When kM > k, S has strictly less control authority compared to M. Consequently,
there might exist some environments for which it is possible to synthesize a safe controller
for M, but the same controller when deployed on S might lead to an unsafe behavior.
We again compute the distance bounds using Algorithm 8 and the obtained numbers are
da = 0.30, da2 = 0.49, db = 0.1. The corresponding reachable sets are shown in Figure 8.3.
Even though we start with an overly optimistic abstraction, both da2 and db are able to
compute an under approximation of ES ; however, the set estimated by da2 is, once again,
overly conservative.

8.4.2 Safe Lane Keeping for An Autonomous Car

We now show the application of the proposed metric for designing a safe lane keeping con-
troller for an autonomous car. In this example, we use the Webots simulator [302]. The car
model within the simulator is our S. For the abstraction M we consider the bicycle model,

ẋ = v · sin θ
ẏ = v · cos θ

v̇ = a

θ̇ =
v

l
tanω

(8.26)

where [x, y, v, θ] is the state, representing perpendicular deviation from the center of the lane,
position along the road, speed, and heading respectively. The maximum speed is limited to
vmax = 10 km/hr. We have two inputs, (1) a discrete acceleration control a = {−ā, 0, ā};
and (2) a continuous steering control ω ∈ [−π/4, π/4] rad/s. For our experiments, we use
H = 200, which translates to about 6 seconds of simulated trajectory. The dynamics of S
are typically much more complex than M and include the physical effects like friction and
slip on the road.

In this case, X0 = {(x0, θ0) : ‖x‖ ≤ 0.2m ∧ ‖θ‖ ≤ π/4rad}; the initial y0 and v0 is set to
zero. R(t) = {[x(t), y(t), v(t), θ(t)] ∈ R4 : ‖x(t)‖ ≤ 0.5m}∀t ∈ T . The reach set corresponds
to keeping the car within the 0.5m of the center of the lane. For keeping the car in the lane,
the car is equipped with two sensors, a camera (to capture the lane ahead) and compass
(to measure the heading of the car). There is an on board perception module, which first
captures the image of the road ahead; and processes it to detect the lane edges and provide
an estimate of the deviation of the car from the center of the lane.

There is another car (referred to as the environment car hereon) driving in the front of
S, which might obstruct the lane and cause the perception module to incorrectly detect the



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS231

�̇� = 𝑣	sin	𝜃
�̇� = 𝑣	cos	𝜃
�̇� = 𝑎.

�̇� =
𝑣
𝑙 tan	𝜔

�̇� = 𝑣	sin	𝜃
�̇� = 𝑣	cos	𝜃
�̇� = 0

�̇� =
𝑣
𝑙 tan	𝜔

�̇� = 𝑣	sin	𝜃
�̇� = 𝑣	cos	𝜃
�̇� = −𝑎.

�̇� =
𝑣
𝑙 tan	𝜔

�̇� = 0
�̇� = 0
�̇� = 0
�̇� = 0

𝑣 = 𝑣567 ∧ 𝑙𝑎𝑛𝑒 𝑣 = 0 ∧¬𝑙𝑎𝑛𝑒

𝑙𝑎𝑛𝑒

¬𝑙𝑎𝑛𝑒

𝑙𝑎𝑛𝑒

¬𝑙𝑎𝑛𝑒

1

2 3

4

𝑙𝑎𝑛𝑒 ¬𝑙𝑎𝑛𝑒

Figure 8.4: Hybrid controller for lane keeping. lane means a lane is detected by the per-
ception system. The dashed line represents the transitions taken on initialization based on
the value of lane. To closely follow the center of the lane, we synthesize a LQR controller in
each mode.

lane center. For each e ∈ E , the set of possible initial states of the environment car is given
by P = {(xe, ye) : ‖xe − x0‖ ≤ 2.0m ∧ 6.25m ≤ ye − y0 ≤ 8m}. We set the initial speed ve
and heading θe of the environment car to vmax and 0 respectively. We want to make sure
that S remains within the lane despite all possible initial positions of the environment car.
For this purpose, we compute the worst-case db across all p ∈ P .

If the environment car or its shadow covers the lane edges (see Figure 8.5 for some possible
scenarios), then the lane detection fails. Technically speaking, if such a scenario occurs, then
S should slow down and come to stop until the image processing starts detecting the lane
again. Consequently, our control scheme UΠ, is a hybrid controller shown in Figure 8.4, where
in each mode the controller is given by an LQR controller (with a fixed Q and R matrix)
corresponding to the (linearized) dynamics in that mode. In this example, our controller
is a deterministic controller since the Q and R matrices are fixed, and hence |UΠ| = 1. In
Figure 8.4, in mode (1), the lane is detected and v(t) < vmax. When the v(t) = vmax we
transition to mode (2) given the lane is still detected. When the lane is no longer detected,
we transition to mode (3) if v(t) > 0, or mode (4) if v(t) = 0. In modes (3) and (4), the car
slows down until the lane is detected again.

By setting ε = 0.01 and β = 1e − 6 we get N ≥ 2964. We used Algorithm 8, to sample
N different initial states of the S, (x0, θ0) ∈ X0; and environment car in the simulator,



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS232

(a) Environment car covers left lane.

(b) Shadow of environment car covers left lane.

(c) Lane detected correctly.

Figure 8.5: The lane detection fails for (a) and (b) and S car tries to slow down. When lane
is correctly detected (c), the LQR controller tries to follow the lane



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS233

Figure 8.6: The green lines represent the boundaries of the original reach set. The yellow
region is the contracted reach set for the model computed using d̂ε. The model’s trajectory
shown in blue is entirely contained within the yellow region. Consequently, the system’s
trajectory (shown in dotted red) leaves the yellow region but is contained within the original
reach set at all times.

p ∈ P . Since the controller is deterministic, the set of feasible controllers is a singleton set,
and hence we do not need to sample a feasible controller (Line 5 in Algorithm 8). Among
these environment scenarios, the controller on M is also able to safely control S for 2519
scenarios. d̂ε is determined entirely by the remaining 445 controller, and computed to be
0.34m. We show the application of the the computed d̂ε for a sample environment scenario
in Figure 8.6. The green lines represent the original reach set. The yellow shaded region
represents the contracted reach set for the model computed using d̂ε. The model’s trajectory
(shown in blue) is contained in the yellow region and hence satisfies the more constrained
specification. As a result, even though the system’s trajectory (shown in dotted red) leaves
the yellow region, it is contained within the original reach set at all times.

We also analyze these 445 environmental scenarios that contribute to d̂ε, and notice that
the fault lies within the perception module. In Figure 8.7, we show one such scenario. In this
case, θ0 = −π/4. Because of the left rotation of the car, the rightmost lane appears smaller
and farther due to the perspective distortion. Furthermore, the presence of the environment
car completely cover the rightmost lane in the image. The image processing module now
detects the leftmost lane as the center lane and the center lane as the rightmost lane. Con-
sequently, the module returns an inaccurate estimation of the center of the lane, causing S
to go outside the center lane. This example illustrates that the samples in Algorithm 8 that



CHAPTER 8. SAFETY ANALYSIS USING LEARNING-BASED DYNAMICS MODELS234

Figure 8.7: An example of the environment scenario that contributes to the distance between
the model and the system. The environment samples used for computing SPEC can be used
to identify the reasons behind the violation of the safety specification by the system.

contributed to d̂ε could also be used to analyze the reasons behind the violation of the safety
specification by S.

8.5 Chapter Summary

Determining safe environments and synthesizing safe controllers for autonomous systems is
an important problem. Typically, we rely on an abstraction of the system to synthesize
controllers in different environments. However, when a data-driven model is used to control
the system, the relationship between the dynamics of the model and the actual system is not
known; and hence it is difficult to provide safety guarantees for the system using this model.
In this chapter, we propose a specification-centric simulation metric SPEC that can be used
to determine the set of safe environments; and to synthesize a safe controller using such data-
driven abstractions. We also present an algorithm to compute this metric using executions on
the system without knowing its true dynamics. The proposed metric is less conservative and
allows controller synthesis for reach-avoid specifications over a broader range of environments
compared to the standard simulation metric. Case studies using simulators for quadrotors
and autonomous cars illustrate the advantages of SPEC for determining safe environment
sets and controllers using incorrect models.



235

Chapter 9

Safe Learning-Enabled Perception
Components

This chapter is based on the paper “An Efficient Reachability-Based Framework for Provably Safe

Autonomous Navigation in Unknown Environments” [29] and “Generating Robust Supervision for

Learning-Based Visual Navigation Using Hamilton-Jacobi Reachability” [195] written in collabora-

tion with Andrea Bajcsy, Anjian Li, Eli Bronstein, Georgios Giovanis, Varun Tolani, Mo Chen,

and Claire Tomlin.

The previous chapter focused on the safety of autonomous system when learned models
are used for controlling the system. In this chapter, we will consider the case when learn-
ing is used to deal with the unknown environment component instead. Indeed, autonomous
vehicles operating in the real world often need to navigate through a priori unknown environ-
ments using on-board, limited-range sensors. Even though deep learning-based perception
approaches can combine this on-board sensor information with robot’s prior experience to
navigate in completely new buildings, these perception modules inevitably make prediction
errors when they encounter out-of-distribution images. Since most of these autonomous sys-
tems are safety-critical, it is important to ensure that they operate safely despite the error
in the learning module.

Broadly speaking, there are two different ways to ensure safe navigation despite the errors
in the perception module: first, one can formally verify the perception module, i.e., find all
the input RGB images that may lead to a prediction error. This verification problem can be
very challenging due to the high-dimensionality of RGB images and complexity of the modern
CNN-based perception modules [273], especially when input images are not generated from
a low-dimensional latent distribution. An alternative approach could be to monitor the
output of the perception module to recognize a failure and provide a corrective safe action
when necessary. This latter approach bypasses the need for an explicit verification of the
perception module, while still maintaining system-level safety guarantees.

For both of the above two approaches, the system-level safety analysis is further com-
plicated by the fact that the system is navigating in a priori unknown environment; thus,



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 236

even the unsafe states (for example, all the obstacles in the environment) are not known
beforehand. In this chapter, we will present a Hamilton-Jacobi reachability based approach
to compute a monitor for the learning-based perception module, as well as a corrective safe
action. To deal with the environment uncertainty, we will present an algorithm to update
this monitor and safe action during run time, as new environment information is acquired.

9.1 Related Work

An extensive body of research deals with motion planning and safe exploration for robots in
unknown environments, some of which focuses on safety guarantees despite modeling error
and external disturbances. However, these approaches often do not deal with the limited
sensing horizon of perception sensors, especially that of RGB cameras. They also often do
not deal with deep learning-based perception modules in the navigation pipeline. Approaches
that focus on system-level safety analysis with learning-based perception module in the loop
have also been proposed. We cannot hope to summarize all these works here, but we attempt
to discuss several of the most closely related approaches.

Verification of Systems with Learning-Based Perception Modules. In the past few
years, a significant progress has been made towards verification of autonomous systems with
complex, CNN-based perception modules in the feedback loop. A core principle behind sev-
eral of these approaches is system-level specification, wherein a desired end-to-end behavior
of the system is formally specified [273, 274]. Subsequently, the system containing the CNN
is verified, rather than an explicit verification of the CNN. A key advantage of system-level
specification is that it allows for a compositional approach to verification, wherein the inputs
to the perception module that might lead to unsafe behavior for the overall system are de-
termined (see e.g., [100, 132]). The same approach forms the basis of VerifAI [101], a formal
verification toolkit for learning-enabled feedback loops. To perform the falsification of the
perception module within VerifAI, a probabilistic programming language, Scenic [120], has
been developed. Scenic acts as a low-dimensional representation of the scene (i.e., the RGB
image); thus, falsification of the CNN can be performed in a tractable fashion. However, one
limitation of this approach is that the falsification of CNN can be very challenging when an
underlying low-dimensional representation of the input images is not available, which is often
the case for indoor navigation datasets such as SD3DIS and Matterport building datasets
[23]. In this work, we overcome this challenge by instead relying on the multi-modality of
the perception sensor to construct a runtime monitor for the perception module.

Safe Motion Planning. Methods that ensure safety despite modeling error and distur-
bances are largely motivated by the trade-off between safety and efficiency during real-time
planning. A popular approach is to perform offline computations that quantify disturbances
and modeling error which can be used online to determine collision-free trajectories [206,
151, 279]. Alternatively, [10, 21] use control barrier functions to design provably stable con-



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 237

trollers while satisfying given state-space constraints. However, these methods assume that
a recursively feasible collision-free path can be obtained despite the unknown environment,
which may not be possible in real-world environments. Several works address this problem
for single-agent scenarios within a model predictive control framework [256, 259], as well as
for multiple vehicles using sequential trajectory planning [268, 36]. However, these works
assume a priori knowledge of all obstacles, whereas we are interested in a framework that
guarantees safety in an a priori unknown environments for potentially high-order nonlinear
dynamics.

Ensuring safety with respect to both modeling error and limited sensing horizons have
been studied using sum-of-squares [178], linear temporal logic [186], reactive synthesis ap-
proaches [263], graph-based kinodynamic planner [172] among others. These works typically
impose restrictions on sensors or planners to ensure safety with respect to the unknown
environment. In contrast, the proposed framework is sensor and planner agnostic, provided
that the sensor can accurately identify the obstacles within its sensing region.

Safe Exploration. The problem of finding feasible trajectories to a specified goal in an
unknown environment has also been studied in the robotic exploration literature for simpli-
fied kinematic motion models using frontier-exploration methods [306] and D* [175]. Other
works include sampling-based motion planners for drift-less dynamics [50] and dynamic ex-
ploration methods for vehicles with a finite stopping time [159]. Robotic exploration has been
also studied within the context of fully and partially observable Markov decision processes
[257, 227] and reinforcement learning [8, 165] to reduce collision probabilities; however, no
theoretical safety guarantees are typically provided.

Safe exploration has also been studied in terms of Lyapunov stability [55, 81]. Even
though stability is often desirable, it is insufficient to guarantee collision avoidance. In
contrast, our formulation uses a stronger definition of safety, and is more in line with the
run-time verification methods such as [118, 114, 95], which characterize safety using reachable
sets.

Contributions and Chapter Organization

In this chapter, we propose a safety framework for autonomous vehicles operating in a priori
unknown static environments. Our framework is based on Hamilton Jacobi (HJ) reachability
analysis. In particular, we treat the unknown environment at any given time as an obstacle
and use HJ reachability to compute the backward reachable set (BRS), i.e. the set of states
from which the vehicle can enter the unknown and potentially unsafe part of the environment,
despite the best control effort. The complement of the BRS therefore represents the safe set
for the vehicle and acts as a monitor for the overall feedback loop. With this computation,
we also obtain the corresponding least restrictive safety controller, which does not interfere
with the planner unless the safety of the vehicle is at risk. Use of HJ reachability analysis in



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 238

our framework allows us to ensure safety for general nonlinear vehicles, sensors, and planners,
including for learning and perception-based planners.

To overcome the challenge of run-time update of the monitor, we build on our work
on the local update of the BRS in light of new environment information (see Sec. 3.3.2).
We demonstrate our approach on different sensors and planners on a vehicle with nonlinear
dynamics in the presence of external disturbances, as well as on a hardware testbed using a
state-of-the-art, vision-based planner.

9.2 Problem Formulation

In this work, we study the problem of autonomous navigation in a-priori unknown static
environments. Consider a stable, deterministic, nonlinear dynamical model of the vehicle

ẋ = f(x, u, d), (9.1)

where x ∈ Rnx , u, and d represent the state, the control, and the disturbance experienced
by the vehicle. Here, d can include the effect of both the external disturbances or dynamics
mismatch. For convenience, we partition the state x into the position component p ∈ Rnp

and the non-position component h ∈ Rnx−np : x = (p, h). We also assume that the vehicle
state x can be accurately sensed at all times.

Let x0 and x∗ denote the start and the goal state of the vehicle. The vehicle aims to
navigate from x0 to x∗ in an a priori unknown environment, E , whose map or topology
is not available to the robot. At any time t and state x(t), the vehicle has a planner
Π(x(t), x∗, E), which outputs the control command u(t) to be applied at time t. This, for
example, could be a learning-based planner. The vehicle also has a sensor which at any given
time exposes a region of the state space St ⊂ Rnx , and provides a conservative estimate of
the occupancy within St. For example, if the vehicle has a camera sensor, St would be a
triangular region (prismatic in 3D) representing the field-of-view of the camera. We assume
perfect perception within this limited sensor range. Dealing with erroneous perception,
sensor noise, and dynamic environments are problems in their own right, and we defer them
to future work. Finally, we assume that there is a known initial obstacle-free region around
x0 given by Xinit ⊂ Rnx ; e.g. this is the case when the vehicle is starting at rest and its initial
state is collision-free.

Given x0, x∗, Xinit, the planner Π, and the sensor S, our goal in this chapter is to design a
least restrictive control mechanism to navigate the vehicle to the goal state while remaining
safe, which means avoiding obstacles at all times. Since the environment E is unknown, the
safety needs to be ensured given the partial observations of the environment obtained through
the sensor, which in general is challenging. We use the HJ reachability-based framework to
ensure safety despite only partial knowledge of the environment.



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 239

Example 5 To illustrate our approach and provide intuition behind the proposed
framework, we introduce a simple running example: a 3-dimensional Dubins’ car sys-
tem with disturbances added to the velocity. The dynamics of the system are given
by:

ṗx = v cosφ+ dx, ṗy = v sinφ+ dy, φ̇ = ω ,

v ≤ v ≤ v̄, |ω| ≤ ω̄, |dx|, |dy| ≤ dr
(9.2)

where x := (px, py, φ) is the state, p = (px, py) is the position, φ is the heading, and
d = (dx, dy) is the disturbance experienced by the vehicle. The control of the vehicle is
u := (v, ω), where v is the speed and ω is the turn rate. Both controls have a lower
and upper bound, which for this example are chosen to be v = 0.1m/s, v̄ = 1m/s,
ω̄ = 1rad/s. The disturbance bound is chosen as dr = 0.1m/s.
The environment setup for is shown in Figure 9.1. The vehicle start and the goal state
are given by x0 = [2, 2.5, π/2] (shown in black) and x∗ = [8.5, 3,−π/2] (the center of
the green area). The goal is to reach within 0.3m of x∗ (the light green area). However,
there is an obstacle in the environment which is not known to the vehicle beforehand
(shown in grey). At the beginning of the running example navigation task, we assume
that there is no obstacle within 1.5m of x0, and obtain the initial obstacle-free region
Xinit := {x : ‖p− p0‖ ≤ 1.5} (the area inside the dashed black line).
To demonstrate the sensor-agnostic nature of our approach, we simulate the Dubins’
car with two different sensors: a LiDAR and a camera. For a LiDAR, the sensing
region St is given by a circle of radius R centered around the current position p(t),
where R = 3m in this simulation (shown in Figure 9.1a). For a camera, the sensing
region St is determined by a triangular region with solid angle F (also called the field-
of-view) and apex at the current vehicle heading, and a maximum extent of R. We
use F = π/3 and R = 20m for our simulations (shown in Figure 9.1b). However,
part of the regions of St can be occluded by the obstacles, as would be the case for any
real-world sensors.
Additionally, for each sensor, we demonstrate our approach on two different planners
Π: a sampling-based planner and a model-based planner. For the sampling-based plan-
ner, we use a Rapidly-Exploring Random Tree (RRT) [191], and for the model-based
planner, we use a spline-based planner [300]. Our goal is to safely navigate to the goal
position despite the unknown obstacles.

9.3 Reachability-Based Safety Monitor in Unknown

Environments

We propose an HJ-reachability-based framework to ensure safety in an a priori unknown
environment. Our framework treats the unsensed environment at any given time as an



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 240

(a) LiDAR sensing region

(b) Camera sensing region

Figure 9.1: The initial setup for the running example. The goal is to safely reach the goal
(center of the green area) from the initial position (black marker) in the presence of an
unknown obstacle (the grey square). We also show the initial sensing region for the LiDAR
and camera sensors.

obstacle. The unsensed environment along with the sensed obstacles are used to compute
a safe region for the vehicle using HJI reachability. This ensures that the vehicle never
enters the unknown and potentially unsafe part of the environment, despite the worst case
disturbance.

Let Ft denote the sensed obstacle-free region of the environment at any time t. Given the
initial obstacle-free region F0 = Xinit, we compute the corresponding safe set K0 by solving
the HJI VI, assuming everything outside F0 is an obstacle. The safe set is given by the
viability kernel of F0. The HJI VI to compute the viability kernel (or safe set) is given as:

min{DtV (τ, x) +H(τ, x, V (τ, x)), l0(x)− V (τ, x)} = 0 ∀x, τ V (∞, x) = l0(x), (9.3)

where the terminal value function, V (∞, x) := l0(x) is positive inside F0 and negative
outside. For more details on the computation of viability kernel, we refer the interested
readers to Sec. 2.3.2.3.

Starting from l0(x), the HJI VI is solved to obtain the converged value function V0(x) :=
limτ→0 V (τ, x). V0(x) is then used to compute the safe region K0 as follows:

K0 = V0(x) > 0. (9.4)

As long as the vehicle is inside K0, a controller exists to ensure that it does not collide with
the known or unknown obstacles.



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 241

We next execute a controller on the system for the time horizon t ∈ [0, H) as per the
following control law:

u(t) =

{
Π(x(t), x∗, E), if x(t) ∈ Kt
u∗(t, x(t)), otherwise

(9.5)

where u∗(t, x(t)) is the optimal safe controller corresponding to Kt and is given by:

u∗(t, x) = sup
u∈U

inf
d∈D
〈DxV0(x), f(x, u, d)〉. (9.6)

Also, until the safe set is updated, we use the last computed safe set for finding the optimal
safe controller, i.e., Kt = K0 ∀t ∈ [0, H). The control mechanism in (9.5) is least restrictive
in the sense that it lets the planner execute the desirable control on the system, except
when the system is at the risk of violating safety. Note that the control horizon H in our
framework can be arbitrarily chosen by the system designer while still ensuring safety.

While the system is executing the control law in (9.5), it will obtain new sensor measure-
ments St at each time t, which is used to obtain Ft, the free space sensed at that time. If
the sensor is completely occluded by an obstacle at any time, the corresponding free space
is an empty set. Thus, the overall known free space at time t is given by:

Mt =
⋃
s∈[0,t]

Fτ . (9.7)

At the end of the control horizon, H, we compute another safe regionKH assuming everything
outside MT is an obstacle. This safe region is, once again, obtained by solving the HJI VI
until convergence. We then execute a control law similar to in (9.5), except that the safety
controller intervenes only when the system is at the boundary of KH . The entire procedure
is repeated until the system reaches the goal state.

Since the safety controller does not allow the system trajectory to leave the known free
space, the proposed framework is guaranteed to avoid collision at all times. However, the
safe set can be rather conservative especially early on when most of the environment is still
unexplored, which is a trade-off we make to ensure safety against all unexpected obsta-
cles. If additional information about the obstacles in the environment is known, it can be
incorporated and will only reduce the conservativeness of the safe set.

Note that the safe set does not necessarily need to be updated every H seconds. It can
be updated faster, slower or at the same rate as the control horizon. Essentially one can use
the most recent safe set in the control law in (9.5), and still ensure safety at all times. This
is because the safe set at any time t1 is only smaller than the safe set at time t2 when t1 < t2.
However, the safe set should be updated as quickly as possible to minimize interference with
the planner.

9.3.1 Updating Safe Set Using Warm-Start Reachability

To overcome the computational challenges associated with updating the safe set in real time,
we build upon our work on warm-start reachability and local update of reachable sets (see



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 242

Algorithm 9: Safe navigation using HJ reachability

1 x0, x
∗: Start and the goal states

2 F0 ←− Xinit: The initial obstacle-free region
3 E : The unknown environment
4 Π(·, x∗, E): The planner for the vehicle
5 H: The control horizon
6 K0: The initial safe region obtained by solving the HJI VI in (9.3)
7 Klast ←− K0; Vlast ←− Kc0; tlast ←− 0: The last computed safe set, BRS, and the

corresponding time
8 while the vehicle is not at the goal do
9 Obtain the current sensor observation St and free space Ft

10 Apply the least restrictive control u(t) given by (9.5)
11 for every H seconds do
12 Obtain the current map Mt of the environment using (9.7)
13 Warm-start the BRS computation using Vlast, M, and (9.8)
14 Obtain the new safe region, Kt, by solving the HJI VI with the warm-started

value function
15 Klast ←− Kt; Vlast ←− Kct ; tlast ←− t

Section 3.3). In particular, given the last computed safe set at time tlast, the maps at tlast,
and the current time t, we “warm-start” the value function for the BRS computation at time
t as follows:

Vt(∞, x) =

{
lt(x), if x ∈Mt ∩Mc

tlast

Vtlast
(x), otherwise

(9.8)

where lt(x) as before is defined such that it is positive inside Mt and negative outside. In-
tuitively, instead of initializing the value function with lt(x) everywhere in the state space,
(9.8) initializes it with the last computed value function for the states where no new in-
formation has been obtained since the last computation, and with lt(x) only at the states
which were previously assumed to be occupied but are actually obstacle-free. This leads
to a much faster computation of the BRS because the value function needs to be updated
only for a much smaller number of states that are newly found out to be free. At all the
other states, the value function is already almost accurate and only small refinements are
required. Interestingly, this procedure also maintains the conservativeness of the safe region,
which is sufficient to ensure collision avoidance at all times. We refer the interested readers
to Theorem 4 in Section 3.3 for a formal proof.

Our overall approach with warm-starting to update the safe set is summarized in Algo-
rithm 9. We start with the initial known free space Xinit and compute the initial safe set
K0 using the HJI VI (Line 6). The value function for this computation is initialized by the
signed distance to Xinit. We also maintain the last computed BRS Vlast, the safe set Klast, and



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 243

Algorithm 10: Local update of the BRS

1 Q ←−Mt ∩Mc
tlast

: Initialize list of states for which the value function should be

updated
2 Q ←− Q∪N (Q): Add neighboring states to Q
3 Warm-start the value for states in Q, Vt(0,Q), using (9.8)
4 Vold ←− Vt(0,Q): The last computed value function for states in Q
5 while Q is not empty do
6 Vupdated ←− Update the value function Vold for a time step ∆T
7 ∆V = ‖Vupdated − Vold‖: Change in the value function
8 Qremove ←− {x ∈ Q : ∆V = 0}: States with unchanged value
9 Q ←− Q−Qremove: Remove states with unchanged value

10 Q ←− Q∪N (Q): Add neighboring states to Q
11 Vold ←− Vupdated

the corresponding time tlast (Line 7). At every state, the vehicle obtains the current sensor
observation and extracts the sensed free space (Line 9 and 10). Next, a control command is
applied to the vehicle (Line 11). If the vehicle is inside Klast, the planner is used to obtain
the control command; otherwise, the safety controller is applied. Every H seconds, the safe
set and controller are updated based on the free space sensed by the vehicle so far using the
HJI VI (Line 15). The value function for this computation is warm-started with Vlast except
at the states which are discovered to be obstacle free since tlast as described in (9.8) (Line
14). The whole procedure is repeated until the vehicle reaches its goal.

9.3.2 Updating Safe Set Using Local Update

One can further accelerate the update of safe set using local update along with warm-start
reachability. Our safety framework is still same as what described in Algorithm 9—only
the computational procedure for the safe set computation (Line 15 in Algorithm 9) is being
modified to update the value function locally. We outline this procedure in Algorithm 10.

Algorithm 10 closely mimics Algorithm 1 in Section 3.3 by noting that L = Mt, L′ =
Mtlast

, and V ∗l (x) = Vtlast
(x) in Equation (3.66). However, we repeat the Algorithm here for

completeness. In Algorithm 10, we maintain a list of states Q at which the value function
needs to be updated in light of the new environment observations. Q is initialized to be the
set of states that are newly discovered to be free since tlast, i.e., Q =Mt ∩Mc

tlast
(Line 1).

Since the change in the value of the states in Q (compared to Vtlast
(x)) would also cause a

change in the value of the neighboring states, N (Q), we also add them to Q (Line 2). Thus,
Q = Q ∪ N (Q). Once the neighbors are added to Q, the value for all the states in Q is
initialized as per (9.8) (Line 3), and their value is updated using the HJI VI in (4.7) for some
time step ∆T (Line 6). This computation is much faster than a classical HJI VI computation
since it is typically performed for many fewer states. Next, we remove all those states from
Q whose value function hasn’t changed significantly over this ∆T (Line 8 and 9), as these



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 244

states won’t cause any change in the value function for any other state. The neighbors of the
remaining states are next added to Q (Line 10) and the entire procedure is repeated until
the value function is converged for all states. Note that Algorithm 10 still maintains the
conservatism of the safe set since it is just a different computational procedure for computing
the warm-started value function, which is still used within the safety framework in Algorithm
9.

9.4 Numerical Simulations

9.4.1 Running example revisited

We now return to our running example and demonstrate the proposed approach in simulation
(described in Example 5). We implement our safety framework with three different methods
to update the BRS: using the full standard HJI VI, the warm-start approach, and the local
update approach. The corresponding system trajectories for different planners and sensors
for all the three methods are shown in Figure 9.2. For all combinations of planners and
sensors, the proposed framework is able to safely navigate the vehicle to its goal position
despite the external disturbances and no a priori knowledge of the obstacle (none of the
trajectories go through the obstacle). As the vehicle navigates through the environment, the
planner makes optimistic decisions at several states that might lead to a collision; however,
the safety controller intervenes to ensure safety. States where the safety controller is applied
are marked in red. Note that the safety controller intervenes more frequently for the camera
sensor as compared to the LiDAR. This is because the field-of-view (FoV) of a camera is
typically much narrower than a LiDAR (which senses the obstacles in all directions within
a range). Given this limited FoV, the safety controller needs to account for a much larger
unexplored environment, which in turn leads to more cautious control.

We compare the computation time required for each of the three methods to compute
the BRS for the camera and LiDAR sensors in Table 9.1. All computations were done on a
MATLAB implementation on a desktop computer with a Core i7 5820K processor using the
Level Set toolbox [219]. As expected, across all scenarios, warm-starting the value function
for the BRS computation leads to a significant improvement in computation time compared
to the full HJI VI; however, the computation time might still not be practical for most real-
world applications. Only locally updating the value function in addition to warm-starting
leads to a significant further improvement in the computation time, and the BRS is updated
in approximately 1s on average for all sensors and planners. This improvement is impres-
sive considering that the computation was done in MATLAB without any parallelization of
BEACLS which is known to decrease the computation time by a factor of 100 (Section 3.4).

Theorem 4 indicates that the safe set obtained by warm-starting the value function is
conservative compared to the one obtained by the full HJI VI. Therefore, we also compare the
percentage volume of the states at which the safe set is conservative. This over-conservative



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 245

Figure 9.2: The vehicle trajectories for the problem setting in Figure 9.1 for both planners
(RRT and Spline planners) and both sensors (LiDAR and Camera sensors) with the safety
controller computed from each of the three candidate safety approaches. The proposed
framework is able to safely navigate the vehicle to the goal in all cases. When the planner
makes unsafe decisions, the safety controller intervenes (the states marked in red) to ensure
safety.

volume is typically limited to 0.5% which indicates that the warm-starting approach is able
to approximate the true value function quite well.

Finally, we take a closer look at how the safe control comes into play when the system is
operating with a range-limited sensor. Figure 9.3a showcases a Dubins’ car with a camera
sensor and an RRT planner, where the current robot state is shown in black, the corre-



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 246

Simulated Camera Results
Metric Planner HJI VI Warm Local

Average Compute Time (s)
RRT 45.688 26.290 0.596
Spline 51.723 12.489 0.898

% Over-conservative States
RRT 0.0 1.112 0.517
Spline 0.0 0.474 0.506

Simulated LiDAR Results
Metric Planner HJI VI Warm Local

Average Compute Time (s)
RRT 21.145 6.075 1.108
Spline 25.318 3.789 1.158

% Over-conservative States
RRT 0.0 0.032 0.290
Spline 0.0 0.024 0.240

Table 9.1: Numerical comparison of average compute time and relative volume of over-
conservative states for each planner and sensor across different BRS update methods. Local
updates compute an almost exact BRS in ≈1 second, and are significantly faster than both
a standard HJI VI and warm-start.

sponding sensed region is in dark blue, and the trajectory and corresponding sensed regions
are shown in grey and light blue respectively. Since the camera’s FoV is occluded by an
obstacle at the current state, it cannot sense the environment past the obstacle. Figure 9.3b
illustrates the corresponding current belief map of the environment which is the union of the
free space sensed by the vehicle so far (shown in white). Since the current sensed region is
contained within the sensed region at the previous state, no new environment information is
obtained and hence the BRS is not updated. The slice of the safe set at the current vehicle
heading is shown in Figure 9.3b (the area within the red boundary). Since the vehicle is
at the boundary of the safe set, the safety controller intervenes and applies a control u∗

that leads the system towards the interior of the safe set (the red arrow) to ensure collision
avoidance.

9.4.2 Safety for a learning-based planner

Since the proposed safety framework is planner-agnostic, we can use it to ensure safe naviga-
tion even in the presence of a learning-based planner. In particular, we use the vision-based
planner introduced in Chapter 7 for navigation in a priori unknown environment. The plan-



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 247

(a) (b)

Figure 9.3: (a) The sensed region by the vehicle at different states in time for the camera
sensor. (b) The overall free space sensed by the vehicle and the corresponding safe set
(interior of the red boundary). Since the vehicle is at the boundary of the safe set, the safety
controller u∗ is applied to steer the robot inside the safe set and ensure collision avoidance.

ner takes an RGB camera image and the goal position as input, and uses a Convolutional
Neural Network-based perception module to produce a desired next state that moves the
robot towards its goal while trying to avoid obstacles on its way. This desired next state
is used by a model-based low-level planner to produce a smooth trajectory from the vehi-
cle’s current state to the desired state. Even though we demonstrated that the proposed
planner can leverage robot’s prior experience to navigate efficiently in novel indoor cluttered
environments, it still leads to collisions in several real-world scenarios, like when the vehicle
needs to go through narrow spaces or around new objects that it hasn’t seen during train-
ing. We use the proposed safety framework to ensure both safe planning in such difficult,
out-of-distribution navigation scenarios.

The task setup for our simulation is shown in Figure 9.4a. The robot needs to go through
a very narrow hallway, followed by a door into the room to reach its goal (the green circle)
starting from the initial state (black arrow). At the beginning, the robot has no knowledge
about the obstacles (shown in dark grey). We simulate this scenario using the S3DIS dataset
which contains mesh scans of several Stanford buildings. By rendering this mesh at any
state, we can obtain the image observed by the camera (used by the planner) as well as the
occupancy information within the robot’s FoV (used for the safety computation). For the
robot dynamics, we use the 4D Dubins’ car model:

ṗx = v cosφ, ṗy = v sinφ, v̇ = a, φ̇ = ω (9.9)



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 248

(a) (b)

Figure 9.4: The proposed framework can be exploited to provide safety guarantees around
vision-based planners that incorporate learning in the loop. The vision-based planner plans
a path through the doorway. Without safety control (a) this results in collision, however
with safety (b) the robot avoids collision and reaches the goal.

where p = (px, py) is the position, φ is the heading, and v is the speed of the vehicle. The
control is u := (a, ω), where |a| ≤ 0.4 is the acceleration and |ω| ≤ 1.1 is the turn rate.

The trajectory taken by the learning-based planner in the absence of the safety module
is shown in Figure 9.4a. Even though the vehicle is able to go through the narrow hallway,
it collides with the door eventually. The trajectory taken by the vehicle when the planner
is combined with the proposed safety framework is shown in Figure 9.4b. When the planner
takes an unsafe action near the door, the safety controller intervenes (marked in red) and
guides the robot to safely go through the doorway. We also illustrate the image observed by
the robot near the doorway in Figure 9.4a. Even though most of the robot’s vision is blocked
by the door, the planner makes a rather optimistic decision of moving forward and leads to
a collision. In contrast, the safety controller makes a conservative decision of rotating in
place to explore the environment more before moving forward, and eventually goes through
the doorway to reach the goal. The planner-agnostic nature of our framework allows us to
provide safety guarantees around learning-based planners as well.

9.5 Hardware Experiments

We test the proposed approach in hardware using a TurtleBot 2 with a mounted stereo RGB
camera. For the vehicle state measurement, we use the on-board odometry sensors on the



CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 249

(a)

(b)

Figure 9.5: (Left) We show an application of our approach on a Turtlebot using a vision-
based planner. When the robot is at risk of colliding, the safe controller (u∗) keep the system
safe. (Right) We show the top-view of our experiment setting, and the corresponding system
trajectories with and without the proposed safety framework. Without the safety framework,
the robot collides into the chair. In contrast, our safety framework is able to safely navigate
the robot to its goal by intervening when the vehicle is too close to the obstacles.

TurtleBot. For more details on our hardware testbed, please refer to Sec. 7.3.4. Videos of
our approach and experiments are available on the project website1.

In our experiment, the vehicle needs to navigate through an unknown cluttered indoor
environment to reach its goal (shown in Figure 9.5a). For the BRS computation, we use the
dynamics model in (9.9). We pre-map the environment using an open-source Simultaneous
Localization and Mapping (SLAM) algorithm and the on-board stereo camera. This pre-
mapping step is used to avoid the significant delay and inaccuracies in the real-time SLAM
map update. However, the full map is not provided to the robot during deployment. Instead,
for the safe set computation at any given time, the current FoV of the camera is projected
on the SLAM map and only the information within the FoV is used to update the safe set.
This emulates the limited sensor range of the Turtlebot’s camera. Regardless, this alludes
to one of the important and interesting future research directions of ensuring safety despite
sensor noise.

For planning, we once again use the vision-based planner described in Chapter 7 that
uses the current RGB image to determine a candidate desired next state. A top-view of our
experiment setting is shown in Figure 9.5b. The vehicle starting position and heading are
shown in black, the goal region is shown in green, and the obstacles (unknown to the vehicle
beforehand) are shown in grey. We ran the experiment with and without the safety controller
and show the corresponding trajectories in Figure 9.5b. Without the safety controller, the
learning-based planner struggles with making sharp turns near the corner, and eventually

1Project website: https://smlbansal.github.io/website-safe-navigation/

https://smlbansal.github.io/website-safe-navigation/


CHAPTER 9. SAFE LEARNING-ENABLED PERCEPTION COMPONENTS 250

collides into the obstacle (the chair, in this case). For context, we also show the RGB
observation received by the planner near the corner. Even though the robot is very close to
the chair, the planner makes the unsafe decision of continuing to move forward. However,
when the learning-based planner is used within the proposed safety framework, the safety
controller is able to account for this unsafe situation and safely steer the vehicle away from
the obstacle. We show the corresponding safe set when the vehicle is at the obstacle boundary
and the corresponding vehicle trajectory obtained using the safety controller. Afterwards,
the planner takes over and steers the vehicle to the goal.

9.6 Chapter Summary

Even though vision-based planners might enable the autonomous systems to navigate in
completely new environments, they inevitably make prediction error when encountered with
out-of-distribution inputs. In this chapter, we propose an HJ reachability-based safety frame-
work for navigation in unknown environments that is applicable to a wide variety of planners
and sensors, including vision-based planners. The proposed framework acts as a monitor for
the vision-based planner and provide a corrective safe action whenever necessary, despite the
environment uncertainty. We demonstrate our approach to provide safety guarantees around
the state-of-the-art vision-based planner developed in Chapter 7 both in simulation and on
a hardware testbed.



251

Chapter 10

Towards a Synergistic Learning and
Control Future

It is an exciting and important time in robotics and automation, as robots are slowly but
steadily weaving their way from factory floors into our lives. However, ensuring a safe and
seamless integration of autonomous systems in our society is a complex problem, requir-
ing significant advances in several research domains. In this dissertation, we discussed how
we can combine tools from the areas of control theory, machine learning and computer vi-
sion, with the purpose of enabling experience-based scalable, structured and safety-aware
reasoning abilities in autonomous systems as they operate in unstructured and dynamic en-
vironments under real-time, limited-range perception constraints. Of course, there are still
lots of unsolved problems before we can have intelligent and safe controllers for real-world
autonomous systems!

Robust integration between perception and control. Learning-based perception com-
ponents will inevitably make prediction errors. These errors can be caused by imprecise
real-world perception sensors that result in incomplete, inaccurate, and intermittent sensor
data, or simply when the learning module encounters an out-of-distribution input. From
a control perspective, such prediction errors can be treated as sensor errors that affect the
feedback controller; therefore, in theory, tools from robust control can be used to design
feedback loops that are robust to such errors. However, a key challenge here is the reliable
estimation of prediction error that can be used during the controller design process. And
even though several sampling-based methods have been developed for uncertainty estimation
in the output of deep networks, the uncertainty bounds themselves are not reliable enough
for control.

Given the uncertainty, design of a robust controller is not trivial either. Existing methods
in robust control typically assume deterministic, worst-case bounds on the uncertainty. For
data-driven components, such bounds can be huge for out of distribution samples, rendering
the robust control impractical. In such cases, a probabilistic approach can be promising that
takes into account the distribution of uncertainty.



CHAPTER 10. TOWARDS A SYNERGISTIC LEARNING AND CONTROL FUTURE252

Representations for interfacing perception and control. One important question that
needs to be addressed to develop frameworks that seamlessly combine perception and control
is “what is the right representation to interface perception and control?” For example, the
waypoint representation used in this work to interface perception and control for naviga-
tion may not be sufficient for grasping and manipulation tasks, such as opening doors or
cutting onions. Even for the navigation tasks, it is unclear what a waypoint should consist
of. Position of the robot, its orientation, its speed, or a combination of the above? Should
this representation change with the autonomous system? For example, should the waypoint
representation be different for a wheeled robot vs a walking robot? In general, the represen-
tation should be such that it should be easily learnable from the perception point of view,
yet it should be sufficient for control purposes. It might be interesting to take inspiration
from humans to attack this problem and understand the kind of representations humans use
to solve different tasks flexibly. Another interesting direction could be to learn the correct
representations between perception and control, as done in end-to-end learning.

Scalable safety analysis of data-driven systems. A constant theme throughout my
work has been to develop scalable safety analysis methods for autonomous systems. Even
though I believe it is important to develop methods that can leverage the problem structure
to achieve scalable safety analysis wherever possible, for learning-enabled systems we will
need to go beyond the problem structure and bridge model-based analysis with statistical ap-
proaches for safety. Statistical approaches are naturally suitable for learning components that
are inherently data-driven and will inevitably fail outside their data distribution, whereas
model-based approaches have been very successful for dynamical systems. At the expense
of a small probability of failure, a rapprochement between the two has the potential to sig-
nificantly alleviate the computational complexity of the safety analysis. Our preliminary
results in Chapter 8 show that a sampling-based, data-driven approach can be combined
with model-based analysis to provide strong probabilistic safety guarantees on the closed-
loop system. It will be interesting to further explore these hybrid verification approaches for
safety analysis of learning-enabled systems.

Much of the work in this dissertation focuses on how to learn while satisfying safety con-
straints but less on developing learning approaches for safety. The same power of modern
compute and data that is fueling perception can also be leveraged to scale up verification
and synthesis. This will, however, require designing “correct-by-construction” learning com-
ponents to avoid circular reasoning. There are some promising initial results in this direction
[34, 39] that are worth investigate further in future.

Closing the loop between design and analysis of learning-enabled systems. During
runtime, learning systems might encounter out of distribution samples, which might lead to
a high uncertainty in the output of the learning system or even the failure of the overall
component. But this begs an important question “how can a learning system use these
samples in order to improve itself over time?” For example, the realization that a narrow



CHAPTER 10. TOWARDS A SYNERGISTIC LEARNING AND CONTROL FUTURE253

turn around the corner can lead to a collision with an unobserved obstacle can be used to
teach an autonomous car to make a wider turn and first examine the intersection scenario
in future. Currently, a popular mechanism to incite this improvement is to collect these
out-of-distribution samples and augment them to the training dataset. This approach will
at best correct the learning system behavior near the catastrophic failure; however, it does
necessarily correct the learning system behavior at the states that led it to this catastrophic
scenario in the first place. For instance, in the narrow turn around the corner example,
training on out-of-distribution samples will predict a hard stop in future if the car encoun-
ters an obstacle after turning; however, it does not necessarily incentivize the car to take a
wider turn. To actually enable improvement in the learning systems, we need to close the
loop between the analysis and training of a learning system, where failures detected during
analysis provide “feedback” for the kind of training data required for a learning system.

Safe online learning-enabled systems. In learning-enabled control feedback loops, if a
learning system is being adapted online, its output can change over time. This, in turn,
leads to the evolution of the overall control feedback loop. From a control standpoint, it is
important to understand which evolutions of the learning system might result in the maxi-
mum change in the overall performance of the autonomous system, and more importantly,
how to make sure that the overall system remains safe despite these changes in the learning
system.

For example, consider a robot navigating in the presence of a pedestrian, whose intent
is unknown to the robot. Moreover, suppose that the robot is using an online learning
mechanism to infer the intent of the human based on received observations. Based on the
inferred intent, the robot predicts the future motion of the pedestrian and plans a path
around it. Thus, depending on how the inference of the learning system changes over time,
the plan of the robot itself might change significantly. To ensure safety in this scenario,
it might be important to figure out all possible changes in the learning system based on
likely future observations, and to safeguard against these changes. Our preliminary results
indicate that this problem can be formulated as a reachability problem [37]. Possible future
human observations are treated as ‘input’ to a dynamical system, and how the human intent
parameters (i.e., learning parameters) change based on the data are the ‘dynamics’ of the
system. Preliminary simulations and experiments indicate that this introspective nature
of the human motion predictor with respect to the unobserved data enables safe planning
around humans while being resilient to the changes in the data-driven predictive model. In
future, it would be interesting to explore this direction further, particularly on how these
techniques can be used for active gathering of informative data samples to reduce uncertainty
in the learning system.



254

Bibliography

[1] 3D Robotics. Solo Specs: Just the facts. 2015. url: https://news.3dr.com/solo-
specs-just-the-facts-14480cb55722%5C#.w7057q926.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. “Tensorflow: a system for large-scale machine learning.” In:
Symposium on operating systems design and implementation. 2016.

[3] N. Abas, A. Legowo, and R. Akmeliawati. “Parameter identification of an autonomous
quadrotor”. In: International Conference On Mechatronics. 2011.

[4] A. Abate. “A contractivity approach for probabilistic bisimulations of diffusion pro-
cesses”. In: Conference on Decision and Control. 2009.

[5] A. Abate and M. Prandini. “Approximate abstractions of stochastic systems: A ran-
domized method”. In: Conference on Decision and Control and European Control
Conference. 2011.

[6] P. Abbeel, A. Coates, and A. Ng. “Autonomous helicopter aerobatics through ap-
prenticeship learning”. In: The International Journal of Robotics Research (2010).

[7] P. Abbeel, M. Quigley, and A. Ng. “Using inaccurate models in reinforcement learn-
ing”. In: International conference on Machine learning. 2006.

[8] J. Achiam, D. Held, A. Tamar, and P. Abbeel. “Constrained policy optimization”.
In: International Conference on Machine Learning. 2017.

[9] D. Adalsteinsson and J. A. Sethian. “A fast level set method for propagating inter-
faces”. In: Journal of computational physics 118.2 (1995), pp. 269–277.

[10] A. Agrawal and K. Sreenath. “Discrete Control Barrier Functions for Safety-Critical
Control of Discrete Systems with Application to Bipedal Robot Navigation.” In:
Robotics: Science and Systems. 2017.

[11] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. “Learning to poke by pok-
ing: Experiential learning of intuitive physics”. In: Advances in Neural Information
Processing Systems. 2016.

[12] A. Ahmadzadeh, N. Motee, A. Jadbabaie, and G. Pappas. “Multi-vehicle path plan-
ning in dynamically changing environments”. In: International Conference on Robotics
and Automation. 2009.

https://news.3dr.com/solo-specs-just-the-facts-14480cb55722%5C#.w7057q926
https://news.3dr.com/solo-specs-just-the-facts-14480cb55722%5C#.w7057q926


BIBLIOGRAPHY 255

[13] A. K. Akametalu, S. Ghosh, J. F. Fisac, and C. J. Tomlin. “A Minimum Discounted
Reward Hamilton-Jacobi Formulation for Computing Reachable Sets”. In: IEEE Trans-
actions on Automatic Control (2018).

[14] F. Alhwarin, A. Ferrein, and I. Scholl. “IR stereo kinect: improving depth images by
combining structured light with IR stereo”. In: Pacific Rim International Conference
on Artificial Intelligence. 2014.

[15] M. Althoff. “An Introduction to CORA 2015”. In: Proc. ARCH@ CPSWeek. 2015.

[16] M. Althoff. “Formal and compositional analysis of power systems using reachable
sets”. In: IEEE Transactions on Power Systems 29.5 (2014), pp. 2270–2280.

[17] M. Althoff and J. Dolan. “Set-based computation of vehicle behaviors for the online
verification of autonomous vehicles”. In: Conference on Intelligent Transportation
Systems. 2011.

[18] M. Althoff, O. Stursberg, and M. Buss. “Computing reachable sets of hybrid systems
using a combination of zonotopes and polytopes”. In: Nonlinear analysis: hybrid sys-
tems 4.2 (2010), pp. 233–249.

[19] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. “Discrete abstractions of
hybrid systems”. In: Proceedings of the IEEE. 2000.

[20] Amazon.com, Inc. Amazon Prime Air. 2016. url: http://www.amazon.com/b?node=
8037720011.

[21] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. “Control barrier function based
quadratic programs for safety critical systems”. In: IEEE Transactions on Automatic
Control 62.8 (2017), pp. 3861–3876.

[22] A. Amini, G. Rosman, S. Karaman, and D. Rus. “Variational End-to-End Navigation
and Localization”. In: arXiv preprint arXiv:1811.10119 (2018).

[23] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and S. Savarese.
“3D Semantic Parsing of Large-Scale Indoor Spaces”. In: Conference on Computer
Vision and Pattern Recognition. 2016.

[24] K. Åström and B. Wittenmark. Adaptive control. Courier Corporation, 2013.

[25] A. Aswani, H. Gonzalez, S. Sastry, and C. Tomlin. “Provably safe and robust learning-
based model predictive control”. In: Automatica 49.5 (2013), pp. 1216–1226.

[26] C. Atkeson. “Nonparametric model-based reinforcement learning”. In: Advances in
neural information processing systems. 1998.

[27] AUVSI News. UAS Aid in South Carolina Tornado Investigation. 2016. url: http:
//www.auvsi.org/blogs/auvsi-news/2016/01/29/tornado.

[28] C. Baier, J. Katoen, and K. Larsen. Principles of Model Checking. Cambridge, MA:
MIT Press, 2008.

http://www.amazon.com/b?node=8037720011
http://www.amazon.com/b?node=8037720011
http://www.auvsi.org/blogs/auvsi-news/2016/01/29/tornado
http://www.auvsi.org/blogs/auvsi-news/2016/01/29/tornado


BIBLIOGRAPHY 256

[29] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. Tomlin. “An Efficient Reachability-
Based Framework for Provably Safe Autonomous Navigation in Unknown Environ-
ments”. In: Conference on Decision and Control. 2019.

[30] S. Bansal, A. Akametalu, F. Jiang F.and Laine, and C. Tomlin. “Learning quadrotor
dynamics using neural network for flight control”. In: Conference on Decision and
Control. 2016.

[31] S. Bansal, R. Calandra, S. Levine, and C. Tomlin. “MBMF: Model-Based Priors for
Model-Free Reinforcement Learning”. In: arXiv preprint arXiv:1709.03153 (2017).

[32] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. Tomlin. “Goal-Driven Dynamics
Learning via Bayesian Optimization”. In: Conference on Decision and Control. 2017.

[33] S. Bansal, M. Chen, J. Fisac, and C. Tomlin. “Safe Sequential Path Planning of
Multi-Vehicle Systems Under Presence of Disturbances and Imperfect Information”.
In: American Control Conference. 2017.

[34] S. Bansal, M. Chen, S. Herbert, and C. Tomlin. “Hamilton-Jacobi Reachability: A
Brief Overview and Recent Advances”. In: Conference on Decision and Control. 2017.

[35] S. Bansal, M. Chen, K. T., and C. Tomlin. “Provably Safe and Scalable Multi-Vehicle
Trajectory Planning”. In: IEEE Transactions on Control Systems Technology (2020).

[36] S. Bansal, M. Chen, and C. Tomlin. “Safe and Resilient Multi-vehicle Trajectory
Planning Under Adversarial Intruder”. In: arXiv preprint arXiv:1711.02540 (2017).

[37] S. Bansal, A. Bajcsy, E. Ratner, A. D. Dragan, and C. J. Tomlin. “A Hamilton-
Jacobi reachability-based framework for predicting and analyzing human motion for
safe planning”. In: International Conference on Robotics and Automation (2020).

[38] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin. “Combining optimal control
and learning for visual navigation in novel environments”. In: Conference on Robot
Learning (2019).

[39] S. Bansal and C. Tomlin. “DeepReach: A Deep Learning Approach to High-Dimensional
Reachability”. In: arXiv preprint arXiv:2011.02082 (2020).

[40] E. Barron. “Differential games with maximum cost”. In: Nonlinear analysis: Theory,
methods & applications 14.11 (1990), pp. 971–989.

[41] A. Barry, A. Majumdar, and R. Tedrake. “Safety verification of reactive controllers
for UAV flight in cluttered environments using barrier certificates”. In: International
Conference on Robotics and Automation. 2012.

[42] T. Başar and G. J. Olsder. Dynamic noncooperative game theory. SIAM, 1998.

[43] A. Bayen, I. Mitchell, M. Osihi, and C. Tomlin. “Aircraft Autolander Safety Analysis
Through Optimal Control-Based Reach Set Computation”. In: Journal of Guidance,
Control, and Dynamics 30.1 (2007), pp. 68–77.



BIBLIOGRAPHY 257

[44] BBC Technology. Google plans drone delivery service for 2017. 2016. url: http:

//www.bbc.com/news/technology-34704868.

[45] R. Beard. “Quadrotor dynamics and control”. In: Brigham Young University 19.3
(2008), pp. 46–56.

[46] R. Beard and T. McLain. “Multiple UAV cooperative search under collision avoid-
ance and limited range communication constraints”. In: Conference on Decision and
Control. 2003.

[47] T. Beckers, S. Bansal, C. Tomlin, and S. Hirche. “Closed-loop model selection for
kernel-based models using Bayesian optimization”. In: Conference on Decision and
Control. 2019.

[48] T. Beckers and S. Hirche. “Equilibrium distributions and stability analysis of Gaussian
Process State Space Models”. In: Conference on Decision and Control. 2016.

[49] T. Beckers, D. Kulić, and S. Hirche. “Stable Gaussian Process based Tracking Control
of Euler-Lagrange Systems”. In: Automatica 103 (2019), pp. 390–397.

[50] K. E. Bekris and L. E. Kavraki. “Greedy but safe replanning under kinodynamic
constraints”. In: International Conference on Robotics and Automation. 2007.

[51] J. Bellingham, M. Tillerson, M. Alighanbari, and J. How. “Cooperative path plan-
ning for multiple UAVs in dynamic and uncertain environments”. In: Conference on
Decision and Control. 2002.

[52] R. Bellman. “On the theory of dynamic programming”. In: Proceedings of the National
Academy of Sciences of the United States of America 38.8 (1952), p. 716.

[53] C. Belta, B. Yordanov, and E. Gol. Formal Methods for Discrete-Time Dynamical
Systems. Vol. 89. Studies in Systems, Decision and Control. Springer International
Publishing, 2017.

[54] D. Bender and A. Laub. “The linear-quadratic optimal regulator for descriptor sys-
tems: discrete-time case”. In: Automatica (1987).

[55] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. “Safe model-based rein-
forcement learning with stability guarantees”. In: Conference on Neural Information
Processing Systems (2017).

[56] C. Bishop. Pattern recognition and machine learning. Vol. 4. Springer New York,
2006.

[57] O. Bokanowski and H. Zidani. “Minimal Time Problems With Moving Targets and
Obstacles”. In: IFAC Proceedings Volumes 44.1 (2011), pp. 2589–2593.

[58] M. Bolton, E. Bass, and R. Siminiceanu. “Using Formal Verification to Evaluate
Human-Automation Interaction: A Review”. In: IEEE Transactions on Systems,
Man, and Cybernetics: Systems 43.3 (2013), pp. 488–503.

http://www.bbc.com/news/technology-34704868
http://www.bbc.com/news/technology-34704868


BIBLIOGRAPHY 258

[59] P. Bouffard. “On-board Model Predictive Control of a Quadrotor Helicopter: Design,
Implementation, and Experiments”. MA thesis. University of California, Berkeley,
2012.

[60] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas. “Probabilistic data asso-
ciation for semantic slam”. In: International Conference on Robotics and Automation.
2017.

[61] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[62] A. Brunetti, D. Buongiorno, G. F. Trotta, and V. Bevilacqua. “Computer vision
and deep learning techniques for pedestrian detection and tracking: A survey”. In:
Neurocomputing (2018).

[63] M. L. Bujorianu, J. Lygeros, and M. C. Bujorianu. “Bisimulation for general stochastic
hybrid systems”. In: International Workshop on Hybrid Systems: Computation and
Control. 2005.

[64] A. Bull. “Convergence rates of efficient global optimization algorithms”. In: Journal
of Machine Learning Research 12.Oct (2011), pp. 2879–2904.

[65] G. C. Calafiore and M. C. Campi. “The scenario approach to robust control design”.
In: IEEE Transactions on Automatic Control. 2006.

[66] G. C. Calafiore and M. C. Campi. “Uncertain convex programs: randomized solutions
and confidence levels”. In: Mathematical Programming. 2005.

[67] R. Calandra, A. Seyfarth, J. Peters, and M. Deisenroth. “Bayesian Optimization for
Learning Gaits under Uncertainty”. In: Annals of Mathematics and Artificial Intelli-
gence 76.1 (2015), pp. 5–23.

[68] M. C. Campi and S. Garatti. “A sampling-and-discarding approach to chance-constrained
optimization: feasibility and optimality”. In: Journal of Optimization Theory and Ap-
plications. 2011.

[69] M. C. Campi, S. Garatti, and M. Prandini. “The scenario approach for systems and
control design”. In: Annual Reviews in Control. 2009.

[70] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and S. Levine. “Com-
bining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement
Learning”. In: arXiv preprint arXiv:1703.03078 (2017).

[71] C. Chen, Y. Liu, S. Kreiss, and A. Alahi. “Crowd-robot interaction: Crowd-aware
robot navigation with attention-based deep reinforcement learning”. In: International
Conference on Robotics and Automation. 2019.

[72] K. Chen, J. P. de Vicente, G. Sepulveda, F. Xia, A. Soto, M. Vazquez, and S. Savarese.
“A behavioral approach to visual navigation with graph localization networks”. In:
Robotics: Science and Systems. 2019.

arXiv:1606.01540


BIBLIOGRAPHY 259

[73] M. Chen, S. Bansal, J. Fisac, and C. Tomlin. “Robust Sequential Path Planning
Under Disturbances and Adversarial Intruder”. In: IEEE Transactions on Control
Systems Technology (2017).

[74] M. Chen, S. Herbert, and C. Tomlin. “Exact and efficient Hamilton-Jacobi-based
guaranteed safety analysis via system decomposition”. In: International Conference
on Robotics and Automation (2017).

[75] M. Chen, S. Herbert, M. Vashishtha, S. Bansal, and C. Tomlin. “Decomposition of
reachable sets and tubes for a class of nonlinear systems”. In: IEEE Transactions on
Automatic Control 63.11 (2018), pp. 3675–3688.

[76] M. Chen, Q. Hu, J. Fisac, K. Akametalu, C. Mackin, and C. Tomlin. “Reachability-
Based Safety and Goal Satisfaction of Unmanned Aerial Platoons on Air Highways”.
In: Journal of Guidance, Control, and Dynamics (2017), pp. 1–14.

[77] M. Chen, Q. Hu, C. Mackin, J. Fisac, and C. Tomlin. “Safe platooning of unmanned
aerial vehicles via reachability”. In: Conference on Decision and Control. 2015.

[78] M. Chen, J. Shih, and C. Tomlin. “Multi-Vehicle Collision Avoidance via Hamilton-
Jacobi Reachability and Mixed Integer Programming”. In: Conference on Decision
and Control. 2016.

[79] X. Chen, E. Ábrahám, and S. Sankaranarayanan. “Flow*: An Analyzer for Non-linear
Hybrid Systems”. In: International Conference on Computer Aided Verification. 2013.

[80] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis. “Learning navigation behaviors
end-to-end with AutoRL”. In: IEEE Robotics and Automation Letters 4.2 (2019),
pp. 2007–2014.

[81] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. “A lyapunov-based
approach to safe reinforcement learning”. In: Conference on Neural Information Pro-
cessing Systems. 2018.

[82] K. Chua, R. Calandra R.and McAllister, and S. Levine. “Deep reinforcement learning
in a handful of trials using probabilistic dynamics models”. In: Advances in Neural
Information Processing Systems. 2018.

[83] Y. Chuang, Y. Huang, M. D’Orsogna, and A. Bertozzi. “Multi-vehicle flocking: Scal-
ability of cooperative control algorithms using pairwise potentials”. In: International
Conference on Robotics and Automation. 2007.

[84] D. Clarke, P. Kanjilal, and C. Mohtadi. “A generalized LQG approach to self-tuning
control part i. aspects of design”. In: International Journal of Control 41.6 (1985),
pp. 1509–1523.

[85] E. Coddington and N. Levinson. Theory of ordinary differential equations. Tata
McGraw-Hill Education, 1955.

[86] S. Coogan and M. Arcak. “Efficient finite abstraction of mixed monotone systems”.
In: International Conference on Hybrid Systems: Computation and Control. 2015.



BIBLIOGRAPHY 260

[87] S. Coogan, M. Arcak, and C. Belta. “Formal Methods for Control of Traffic Flow:
Automated Control Synthesis from Finite-State Transition Models”. In: IEEE Control
Systems 37.2 (2017), pp. 109–128.

[88] M. Crandall and P. Lions. “Viscosity solutions of Hamilton-Jacobi equations”. In:
Transactions of the American mathematical society 277.1 (1983), pp. 1–42.

[89] C. Dabadie, S. Kaynama, and C. Tomlin. “A practical reachability-based collision
avoidance algorithm for sampled-data systems: Application to ground robots”. In:
Conference on Intelligent Robots and Systems. 2014.

[90] J. Darbon and S. Osher. “Algorithms for overcoming the curse of dimensionality
for certain Hamilton–Jacobi equations arising in control theory and elsewhere”. In:
Research in the Mathematical Sciences 3.1 (2016), p. 19.

[91] T. Dean and R. Givan. “Model minimization in Markov decision processes”. In:
AAAI/IAAI. 1997.

[92] W. DeBusk. “Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley”.
In: Infotech@ Aerospace Conferences. 2010.

[93] M. Deisenroth and C. Rasmussen. “PILCO: A model-based and data-efficient ap-
proach to policy search”. In: International Conference on Machine Learning. 2011.

[94] M. Deisenroth, D. Fox, and C. Rasmussen. “Gaussian Processes for Data-Efficient
Learning in Robotics and Control”. In: Transactions on Pattern Analysis and Machine
Intelligence (2015).

[95] A. Desai, S. Ghosh, S. A. Seshia, N. Shankar, and A. Tiwari. “SOTER: A Runtime
Assurance Framework for Programming Safe Robotics Systems”. In: International
Conference on Dependable Systems and Networks. 2019.

[96] J. Desharnais, A. Edalat, and P. Panangaden. “Bisimulation for labelled Markov
processes”. In: Information and Computation. 2002.

[97] J. Ding, J. Sprinkle, S. Sastry, and C. Tomlin. “Reachability calculations for auto-
mated aerial refueling”. In: Conference on Decision and Control. 2008.

[98] P. Donti, B. Amos, and J. Z. Kolter. “Task-based End-to-end Model Learning”. In:
arXiv preprint arXiv:1703.04529 (2017).

[99] T. Dreossi, T. Dang, and C. Piazza. “Parallelotope Bundles for Polynomial Reacha-
bility”. In: Conference on Hybrid Systems: Computation and Control. 2016.

[100] T. Dreossi, A. Donzé, and S. A. Seshia. “Compositional falsification of cyber-physical
systems with machine learning components”. In: Journal of Automated Reasoning
63.4 (2019), pp. 1031–1053.

[101] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh, M. Vazquez-Chanlatte,
and S. A. Seshia. “Verifai: A toolkit for the formal design and analysis of artificial
intelligence-based systems”. In: International Conference on Computer Aided Verifi-
cation. 2019.



BIBLIOGRAPHY 261

[102] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg. “Aggres-
sive Deep Driving: Combining Convolutional Neural Networks and Model Predictive
Control”. In: Conference on Robot Learning. 2017.

[103] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg. “Vision-
Based High-Speed Driving With a Deep Dynamic Observer”. In: IEEE Robotics and
Automation Letters (2019).

[104] P. Duggirala, C. Fan, M. Potok, B. Qi, S. Mitra, M. Viswanathan, S. Bak, S. Bo-
gomolov, T. Johnson, L. Nguyen, et al. “Tutorial: Software tools for hybrid systems
verification, transformation, and synthesis: C2E2, HyST, and TuLiP”. In: Conference
on Control Applications. 2016.

[105] P. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. “C2E2: A Verification Tool
for Stateflow Models”. In: Conference on Tools and Algorithms for the Construction
and Analysis of Systems. 2015.

[106] L. Evans. Partial differential equations. American Mathematical Society, 2010.

[107] M. Everett, Y. F. Chen, and J. P. How. “Motion planning among dynamic, decision-
making agents with deep reinforcement learning”. In: Conference on Intelligent Robots
and Systems. 2018.

[108] G. Fainekos, A. Girard, H. Kress-Gazit, and G. Pappas. “Temporal logic motion
planning for dynamic robots”. In: Automatica 45.2 (2009), pp. 343–352.

[109] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. Duggirala. “Automatic Reachability
Analysis for Nonlinear Hybrid Models with C2E2”. In: International Conference on
Computer Aided Verification. 2016.

[110] T. Fan, X. Cheng, J. Pan, P. Long, W. Liu, R. Yang, and D. Manocha. “Getting
Robots Unfrozen and Unlost in Dense Pedestrian Crowds”. In: IEEE Robotics and
Automation Letters (2019).

[111] F. Farshidian, M. Neunert, and J. Buchli. “Learning of closed-loop motion control”.
In: Conference on Intelligent Robots and Systems. 2014.

[112] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson, and L. Tapia.
“PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learn-
ing and Sampling-based Planning”. In: International Conference on Robotics and Au-
tomation. 2018.

[113] P. Fiorini and Z. Shiller. “Motion Planning in Dynamic Environments Using Velocity
Obstacles”. In: International Journal of Robotics Research 17.7 (July 1998), pp. 760–
772.

[114] J. Fisac, A. Akametalu, M. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin. “A
general safety framework for learning-based control in uncertain robotic systems”. In:
IEEE Transactions on Automatic Control (2018).



BIBLIOGRAPHY 262

[115] J. Fisac, M. Chen, C. Tomlin, and S. Sastry. “Reach-avoid problems with time-varying
dynamics, targets and constraints”. In: Conference on Hybrid Systems: Computation
and Control. 2015.

[116] J. Fisac, N. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. Tomlin. “Bridging Hamilton-
Jacobi Safety Analysis and Reinforcement Learning”. In: International Conference on
Robotics and Automation (2019).

[117] J. F. Fisac, A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, S. Wang, C. J. Tomlin, and
A. D. Dragan. “Probabilistically safe robot planning with confidence-based human
predictions”. In: Robotics: Science and Systems (2018).

[118] T. Fraichard and H. Asama. “Inevitable collision states-A step towards safer robots?”
In: Advanced Robotics 18.10 (2004), pp. 1001–1024.

[119] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A.
Girard, T. Dang, and O. Maler. “SpaceEx: Scalable Verification of Hybrid Systems”.
In: International Conference on Computer Aided Verification. 2011.

[120] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and
S. A. Seshia. “Scenic: a language for scenario specification and scene generation”. In:
Conference on Programming Language Design and Implementation. 2019.

[121] J. Fu, S. Levine, and P. Abbeel. “One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors”. In: arXiv preprint arXiv:1509.06841
(2015).

[122] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha. “Visual simultane-
ous localization and mapping: a survey”. In: Artificial Intelligence Review (2015).

[123] J. Gablonsky. “Modifications of the DIRECT Algorithm.” In: (2001).

[124] Y. Gal, R. McAllister, and C. Rasmussen. “Improving PILCO with Bayesian neural
network dynamics models”. In: Data-Efficient Machine Learning workshop, ICML.
2016.

[125] D. Gandhi, L. Pinto, and A. Gupta. “Learning to fly by crashing”. In: Conference on
Intelligent Robots and Systems. 2017.

[126] W. Gao, D. Hsu, W. S. Lee, S. Shen, and K. Subramanian. “Intention-net: Integrating
planning and deep learning for goal-directed autonomous navigation”. In: Conference
on Robot Learning. 2017.

[127] S. Garatti and M. Prandini. “A simulation-based approach to the approximation of
stochastic hybrid systems”. In: Analysis and design of hybrid systems. 2012.

[128] E. Garrido-Merchán and D. Hernández-Lobato. “Dealing with Integer-valued Vari-
ables in Bayesian Optimization with Gaussian Processes”. In: arXiv preprint arXiv:1706.03673
(2017).

[129] M. Gevers. “Identification for control: From the early achievements to the revival of
experiment design”. In: European journal of control 11.4-5 (2005).



BIBLIOGRAPHY 263

[130] M. Gevers, X. Bombois, B. Codrons, G. Scorletti, and B. D. O. Anderson. “Model
Validation for Control and Controller Validation in a Prediction Error Identification
framework-Part I: Theory”. In: Automatica. 2003.

[131] S. Ghosh, S. Bansal, A. Sangiovanni-Vincentelli, S. A. Seshia, and C. Tomlin. “A new
simulation metric to determine safe environments and controllers for systems with
unknown dynamics”. In: International Conference on Hybrid Systems: Computation
and Control. 2019.

[132] S. Ghosh, H. Ravanbakhsh, and S. A. Seshia. Counterexample-Guided Synthesis of
Perception Models and Control. 2019. arXiv: 1911.01523 [eess.SY].

[133] A. Giese, D. Latypov, and N. Amato. “Reciprocally-Rotating Velocity Obstacles”. In:
International Conference on Robotics and Automation. 2014.

[134] J. Gillula, G. Hoffmann, H. Huang, M. Vitus, and C. Tomlin. “Applications of hy-
brid reachability analysis to robotic aerial vehicles”. In: The International Journal of
Robotics Research 30.3 (2011), pp. 335–354.

[135] A. Girard. “Reachability of uncertain linear systems using zonotopes”. In: Interna-
tional Workshop on Hybrid Systems: Computation and Control. 2005.

[136] A. Girard and G. J. Pappas. “Approximate bisimulation relations for constrained
linear systems”. In: Automatica. 2007.

[137] A. Girard and G. J. Pappas. “Approximate Bisimulation: A bridge between computer
science and control theory”. In: European Journal of Control. 2011.

[138] A. Girard, G. Pola, and P. Tabuada. “Approximately bisimilar symbolic models for
incrementally stable switched systems”. In: IEEE Transactions on Automatic Control.
2010.

[139] D. González, J. Pérez, V. Milanés, and F. Nashashibi. “A Review of Motion Planning
Techniques for Automated Vehicles.” In: IEEE Transactions on Intelligent Trans-
portation Systems (2016).

[140] GPy. GPy: A Gaussian process framework in python. http://github.com/SheffieldML/
GPy. since 2012.

[141] M. Greenstreet and I. Mitchell. “Integrating Projections”. In: Workshop on Hybrid
Systems: Computation and Control. 1998.

[142] M. Grimble. “Implicit and explicit LQG self-tuning controllers”. In: Automatica 20.5
(1984), pp. 661–669.

[143] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. “Continuous deep Q-learning with
model-based acceleration”. In: arXiv preprint arXiv:1603.00748 (2016).

[144] S. Gupta, V. Tolani, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. “Cognitive
Mapping and Planning for Visual Navigation”. In: arXiv preprint arXiv:1702.03920
(2017).

https://arxiv.org/abs/1911.01523
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy


BIBLIOGRAPHY 264

[145] M. Hafner and D. Del Vecchio. “Computation of safety control for uncertain piecewise
continuous systems on a partial order”. In: Conference on Decision and Control held
jointly with Chinese Control Conference. 2009.

[146] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”.
In: Conference on Computer Vision and Pattern Recognition. 2016.

[147] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa. “Learning continu-
ous control policies by stochastic value gradients”. In: Advances in Neural Information
Processing Systems. 2015.

[148] M. Hehn and R. D’Andrea. “An iterative learning scheme for high performance, pe-
riodic quadrocopter trajectories”. In: European Control Conference. 2013.

[149] D. Henrion and M. Korda. “Convex computation of the region of attraction of poly-
nomial control systems”. In: IEEE Transactions on Automatic Control 59.2 (2014),
pp. 297–312.

[150] S. Herbert, S. Bansal, S. Ghosh, and C. Tomlin. “Reachability-Based Safety Guaran-
tees using Efficient Initializations”. In: Conference on Decision and Control. 2019.

[151] S. Herbert, M. Chen, S. Han, S. Bansal, J. Fisac, and C. Tomlin. “FaSTrack: a Mod-
ular Framework for Fast and Guaranteed Safe Motion Planning”. In: Conference on
Decision and Control. 2017.

[152] H. Hjalmarsson, M. Gevers, and F. De Bruyne. “For model-based control design,
closed-loop identification gives better performance”. In: Automatica 32.12 (1996).

[153] H. Hjalmarsson and L. Ljung. “Estimating model variance in the case of undermod-
eling”. In: IEEE Transactions on Automatic Control. 1992.

[154] W. Hoenig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian. “Mixed Reality
for Robotics”. In: IEEE/RSJ Intl Conf. Intelligent Robots and Systems. Sept. 2015,
pp. 5382–5387.

[155] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin. “Quadrotor helicopter flight
dynamics and control: Theory and experiment”. In: AIAA Guidance, Navigation, and
Control Conference. 2007.

[156] G. Hoffmann and C. Tomlin. “Decentralized cooperative collision avoidance for ac-
celeration constrained vehicles”. In: Conference on Decision and Control. 2008.

[157] W. Honig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian. “Mixed reality
for robotics”. In: Conference on Intelligent Robots and Systems. 2015.

[158] H. Huang, J. Ding, W. Zhang, and C. Tomlin. “A differential game approach to
planning in adversarial scenarios: A case study on capture-the-flag”. In: International
Conference on Robotics and Automation. 2011.

[159] L. Janson, T. Hu, and M. Pavone. “Safe Motion Planning in Unknown Environments:
Optimality Benchmarks and Tractable Policies”. In: arXiv preprint (2018).



BIBLIOGRAPHY 265

[160] S. Jha, V. Raman, D. Sadigh, and S. Seshia. “Safe Autonomy Under Perception
Uncertainty Using Chance-Constrained Temporal Logic”. In: Journal of Automated
Reasoning (2017).

[161] Joint Planning and Development Office. Unmanned Aircraft Systems (UAS) Compre-
hensive Plan. Tech. rep. Federal Aviation Administration, 2014.

[162] J. Joseph, A. Geramifard, J. Roberts, J. How, and N. Roy. “Reinforcement learn-
ing with misspecified model classes”. In: International Conference on Robotics and
Automation. 2013.

[163] A. A. Julius and G. J. Pappas. “Approximations of stochastic hybrid systems”. In:
IEEE Transactions on Automatic Control. 2009.

[164] S. Jung, S. Hwang, H. Shin, and D. H. Shim. “Perception, guidance, and navigation
for indoor autonomous drone racing using deep learning”. In: IEEE Robotics and
Automation Letters (2018).

[165] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine. “Uncertainty-aware re-
inforcement learning for collision avoidance”. In: arXiv preprint arXiv:1702.01182
(2017).

[166] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine. “Generalization through
Simulation: Integrating Simulated and Real Data into Deep Reinforcement Learning
for Vision-Based Autonomous Flight”. In: arXiv preprint arXiv:1902.03701 (2019).

[167] J. P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen. “Bisimulation minimisation
mostly speeds up probabilistic model checking”. In: International Conference on tools
and algorithms for the construction and analysis of systems. 2007.

[168] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun, and D.
Scaramuzza. “Beauty and the Beast: Optimal Methods Meet Learning for Drone
Racing”. In: International Conference on Robotics and Automation. 2019.

[169] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza.
“Deep drone racing: Learning agile flight in dynamic environments”. In: Conference
on Robot Learning. 2018.

[170] S. Kaynama and M. Oishi. “A Modified Riccati Transformation for Decentralized
Computation of the Viability Kernel Under LTI Dynamics”. In: IEEE Transactions
on Automatic Control 58.11 (2013), pp. 2878–2892.

[171] S. Kaynama and M. Oishi. “Schur-based decomposition for reachability analysis of
linear time-invariant systems”. In: Conference on Decision and Control held jointly
with Chinese Control Conference. 2009.

[172] D. Keil, J. Fisac, and C. J. Tomlin. “Safe and Complete Real-Time Planning and
Exploration in Unknown Environments”. In: arXiv preprint (2018).



BIBLIOGRAPHY 266

[173] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee. “Memory
Augmented Control Networks”. In: International Conference on Learning Represen-
tations. 2018.

[174] D. K. Kim and T. Chen. “Deep neural network for real-time autonomous indoor
navigation”. In: arXiv preprint arXiv:1511.04668 (2015).

[175] S. Koenig and M. Likhachev. “Fast replanning for navigation in unknown terrain”.
In: IEEE Transactions on Robotics 21.3 (2005), pp. 354–363.

[176] S. Kong, S. Gao, W. Chen, and E. Clarke. “dReach: δ-Reachability Analysis for
Hybrid Systems”. In: Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 2015.

[177] T. J. Koo and S. Sastry. “Differential flatness based full authority helicopter control
design”. In: Conference on Decision and Control. 1999.

[178] S. Kousik, S. Vaskov, F. Bu, M. J. Roberson, and R. Vasudevan. “Bridging the Gap
Between Safety and Real-Time Performance in Receding-Horizon Trajectory Design
for Mobile Robots”. In: arXiv preprint (2018).

[179] A. Krizhevsky, I. Sutskever, and G. Hinton. “Imagenet classification with deep con-
volutional neural networks”. In: Advances in neural information processing systems.
2012.

[180] B. Kuipers and Y.-T. Byun. “A robot exploration and mapping strategy based on a
semantic hierarchy of spatial representations”. In: Robotics and autonomous systems
(1991).

[181] A. Kupcsik, M. Deisenroth, J. Peters, A. Loh, P. Vadakkepat, and G. Neumann.
“Model-based contextual policy search for data-efficient generalization of robot skills”.
In: Artificial Intelligence (2014).

[182] A. Kurzhanski and P. Varaiya. “Ellipsoidal techniques for reachability analysis: in-
ternal approximation”. In: Systems & control letters 41.3 (2000), pp. 201–211. doi:
10.1016/S0167-6911(00)00059-1.

[183] A. Kurzhanski and P. Varaiya. “On Ellipsoidal Techniques for Reachability Analysis.
Part II: Internal Approximations Box-valued Constraints”. In: Optimization Methods
and Software 17.2 (2002), pp. 207–237.

[184] H. Kushner. “A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise”. In: Journal of Basic Engineering 86 (1964), p. 97.

[185] M. Labbé and F. Michaud. “RTAB-Map as an open-source lidar and visual simultane-
ous localization and mapping library for large-scale and long-term online operation”.
In: Journal of Field Robotics (2019).

[186] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit, and M. Vardi.
“Iterative Temporal Planning in Uncertain Environments with Partial Satisfaction
Guarantees”. In: IEEE Transactions on Robotics 32 (2016), pp. 583–599.

https://doi.org/10.1016/S0167-6911(00)00059-1


BIBLIOGRAPHY 267

[187] E. Lalish, K. Morgansen, and T. Tsukamaki. “Decentralized reactive collision avoid-
ance for multiple unicycle-type vehicles”. In: American Control Conference. 2008.

[188] B. Landry. “Planning and control for quadrotor flight through cluttered environ-
ments”. MA thesis. Massachusetts Institute of Technology, 2015.

[189] K. G. Larsen and A. Skou. “Bisimulation through probabilistic testing”. In: Informa-
tion and computation. 1991.

[190] S. LaValle. Planning algorithms. Cambridge university press, 2006.

[191] S. M. LaValle. “Rapidly-exploring random trees: A new tool for path planning”. In:
(1998).

[192] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (2015),
pp. 436–444.

[193] I. Lenz, R. Knepper, and A. Saxena. “DeepMPC: Learning deep latent features for
model predictive control.” In: Robotics: Science and Systems. 2015.

[194] S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-end training of deep visuomotor
policies”. In: Journal of Machine Learning Research (2016).

[195] A. Li, S. Bansal, G. Giovanis, V. Tolani, C. Tomlin, and M. Chen. “Generating Robust
Supervision for Learning-Based Visual Navigation Using Hamilton-Jacobi Reachabil-
ity”. In: Proceedings of Machine Learning Research 1 (2020), p. 11.

[196] M. Li, R. Jiang, S. S. Ge, and T. H. Lee. “Role playing learning for socially concomi-
tant mobile robot navigation”. In: CAAI Transactions on Intelligence Technology
(2018).

[197] F. Lian and R. Murray. “Real-time trajectory generation for the cooperative path
planning of multi-vehicle systems”. In: Conference on Decision and Control. 2002.

[198] Y. Lin and S. Saripalli. “Collision avoidance for UAVs using reachable sets”. In:
Conference on Unmanned Aircraft Systems. 2015.

[199] L. Ljung. “System identification”. In: Wiley encyclopedia of electrical and electronics
engineering (1999), pp. 1–19.

[200] L. Ljung. System identification: theory for the user. 1987.

[201] J. Lofberg. “YALMIP: A toolbox for modeling and optimization in MATLAB”. In:
International Conference on Robotics and Automation. 2004.

[202] J. Löfberg. Minimax approaches to robust model predictive control. Vol. 812. Linköping
University Electronic Press, 2003.

[203] A. Loquercio, A. I. Maqueda, C. R. del-Blanco, and D. Scaramuzza. “Dronet: Learning
to fly by driving”. In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 1088–
1095.



BIBLIOGRAPHY 268

[204] J. Maidens, S. Kaynama, I. Mitchell, M. Oishi, and G. Dumont. “Lagrangian methods
for approximating the viability kernel in high-dimensional systems”. In: Automatica
49.7 (2013), pp. 2017–2029.

[205] A. Majumdar, A. Ahmadi, and R. Tedrake. “Control design along trajectories with
sums of squares programming”. In: International Conference on Robotics and Au-
tomation. 2013.

[206] A. Majumdar and R. Tedrake. “Funnel libraries for real-time robust feedback motion
planning”. In: International Journal of Robotics Research 36.8 (2017), pp. 947–982.

[207] A. Majumdar, R. Vasudevan, M. Tobenkin, and R. Tedrake. “Convex optimization
of nonlinear feedback controllers via occupation measures”. In: International Journal
of Robotics Research. Vol. 33. 9. 2014, pp. 1209–1230.

[208] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. “Automatic LQR tun-
ing based on Gaussian process global optimization”. In: International Conference on
Robotics and Automation. 2016.

[209] K. Margellos and J. Lygeros. “Hamilton-Jacobi Formulation for Reach-Avoid Differ-
ential Games”. In: IEEE Transactions on Automatic Control 56.8 (2011), pp. 1849–
1861.

[210] R. Martinez-Cantin. “BayesOpt: a Bayesian optimization library for nonlinear op-
timization, experimental design and bandits.” In: Journal of Machine Learning Re-
search 15.1 (2014), pp. 3735–3739.

[211] R. Martın-Martın, H. Rezatofighi, A. Shenoi, M. Patel, J. Gwak, N. Dass, A. Feder-
man, P. Goebel, and S. Savarese. “JRDB: A Dataset and Benchmark for Visual Per-
ception for Navigation in Human Environments”. In: arXiv preprint arXiv:1910.11792
(2019).

[212] M. Massink and N. De Francesco. “Modelling free flight with collision avoidance”. In:
Conference on Engineering of Complex Computer Systems. 2001.

[213] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control for
quadrotors”. In: International Conference on Robotics and Automation. 2011.

[214] D. Mellinger, A. Kushleyev, and V. Kumar. “Mixed-integer quadratic program tra-
jectory generation for heterogeneous quadrotor teams”. In: International Conference
on Robotics and Automation. 2012.

[215] X. Meng, N. Ratliff, Y. Xiang, and D. Fox. “Neural Autonomous Navigation with
Riemannian Motion Policy”. In: arXiv preprint arXiv:1904.01762 (2019).

[216] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R.
Goroshin, L. Sifre, K. Kavukcuoglu, et al. “Learning to navigate in complex environ-
ments”. In: International Conference on Learning Representations. 2017.



BIBLIOGRAPHY 269

[217] I. Mitchell. “Scalable calculation of reach sets and tubes for nonlinear systems with
terminal integrators: a mixed implicit explicit formulation”. In: International confer-
ence on Hybrid systems: computation and control. 2011.

[218] I. M. Mitchell. “The flexible, extensible and efficient toolbox of level set methods”.
In: Journal of Scientific Computing. 2008.

[219] I. Mitchell. “A toolbox of level set methods”. In: Department of Computer Science,
University of British Columbia, Vancouver, BC, Canada, http://www. cs. ubc. ca/˜
mitchell/ToolboxLS/toolboxLS.pdf, Tech. Rep. TR-2004-09 (2004).

[220] I. Mitchell. “Application of Level Set Methods to Control and Reachability Problems
in Continuous and Hybrid Systems”. PhD thesis. Stanford University, 2002.

[221] I. Mitchell. “Comparing forward and backward reachability as tools for safety analy-
sis”. In: International Workshop on Hybrid Systems: Computation and Control. 2007.

[222] I. Mitchell, A. Bayen, and C. Tomlin. “A time-dependent Hamilton-Jacobi formu-
lation of reachable sets for continuous dynamic games”. In: IEEE Transactions on
Automatic Control 50.7 (2005), pp. 947–957.

[223] I. Mitchell and C. Tomlin. “Overapproximating Reachable Sets by Hamilton-Jacobi
Projections”. In: Journal of Scientific Computing 19.1-3 (2003), pp. 323–346.

[224] I. M. Mitchell, M. Chen, and M. Oishi. “Ensuring safety of nonlinear sampled data
systems through reachability”. In: IFAC Proceedings Volumes 45.9 (2012), pp. 108–
114. doi: 10.3182/20120606-3-NL-3011.00104.

[225] S. Mitsch, K. Ghorbal, and A. Platzer. “On Provably Safe Obstacle Avoidance for
Autonomous Robotic Ground Vehicles”. In: Robotics: Science and Systems. 2013.

[226] J. Močkus. “On Bayesian methods for seeking the extremum”. In: Optimization Tech-
niques IFIP Technical Conference. 1975.

[227] T. Moldovan and P. Abbeel. “Safe exploration in Markov decision processes”. In:
arXiv preprint (2012).

[228] M. Müller, A. Dosovitskiy, B. Ghanem, and V. Koltun. “Driving policy transfer via
modularity and abstraction”. In: arXiv preprint arXiv:1804.09364 (2018).

[229] R. Murray-Smith and D. Sbarbaro. “Nonlinear adaptive control using nonparametric
Gaussian process prior models”. In: IFAC Proceedings Volumes 35.1 (2002), pp. 325–
330.

[230] A. Nagabandi, G. Kahn, R. Fearing, and S. Levine. “Neural Network Dynamics for
Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning”. In: arXiv
preprint arXiv:1708.02596 (2017).

[231] A. Nagabandi, G. Yang, T. Asmar, G. Kahn, S. Levine, and R. Fearing. “Neural
Network Dynamics Models for Control of Under-actuated Legged Millirobots”. In:
arXiv preprint arXiv:1711.05253 (2017).

https://doi.org/10.3182/20120606-3-NL-3011.00104


BIBLIOGRAPHY 270

[232] New Atlas. Amazon Prime Air. url: http://newatlas.com/amazon-new-delivery-
drones-us-faa-approval/36957/.

[233] D. Nguyen-Tuong and J. Peters. “Model learning for robot control: a survey”. In:
Cognitive Processing 12.4 (2011), pp. 319–340.

[234] D. Nguyen-Tuong, M. Seeger, and J. Peters. “Computed torque control with non-
parametric regression models”. In: American Control Conference. 2008.

[235] D. Nguyen-Tuong, M. Seeger, and J. Peters. “Model learning with local Gaussian
process regression”. In: Advanced Robotics 23.15 (2009), pp. 2015–2034.

[236] P. Nilsson and N. Ozay. “Synthesis of separable controlled invariant sets for modular
local control design”. In: American Control Conference. 2016.

[237] R. Olfati-Saber and R. Murray. “Distributed cooperative control of multiple vehicle
formations using structural potential functions”. In: IFAC Proceedings Volumes 35.1
(2002), pp. 495–500.

[238] M. Osborne, R. Garnett, and S. Roberts. “Gaussian processes for global optimiza-
tion”. In: Learning and Intelligent Optimization (LION3). 2009, pp. 1–15.

[239] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-
Verlag, 2006.

[240] S. Osher, R. Fedkiw, and K. Piechor. “Level set methods and dynamic implicit sur-
faces”. In: Applied Mechanics Reviews 57.3 (2004), B15–B15.

[241] L. Pallottino, V. Scordio, A. Bicchi, and E. Frazzoli. “Decentralized Cooperative
Policy for Conflict Resolution in Multivehicle Systems”. In: IEEE Transactions on
Robotics 23.6 (2007), pp. 1170–1183.

[242] Y. Pan and E. Theodorou. “Probabilistic differential dynamic programming”. In:
Advances in Neural Information Processing Systems. 2014.

[243] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots. “Ag-
ile Off-Road Autonomous Driving Using End-to-End Deep Imitation Learning”. In:
Robotics: Science and Systems. 2018.

[244] A. V. Papadopoulos and M. Prandini. “Model reduction of switched affine systems”.
In: Automatica. 2016.

[245] E. Parisotto and R. Salakhutdinov. “Neural Map: Structured memory for deep rein-
forcement learning”. In: International Conference on Learning Representations. 2018.

[246] P. Parrilo. “Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization”. Ph.D. Dissertation. California Institute of Technology,
2000. url: http://resolver.caltech.edu/CaltechETD:etd-05062004-055516.

[247] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena. “From perception
to decision: A data-driven approach to end-to-end motion planning for autonomous
ground robots”. In: International Conference on Robotics and Automation. 2017.

http://newatlas.com/amazon-new-delivery-drones-us-faa-approval/36957/
http://newatlas.com/amazon-new-delivery-drones-us-faa-approval/36957/
http://resolver.caltech.edu/CaltechETD:etd-05062004-055516


BIBLIOGRAPHY 271

[248] A. Pokle, R. Martın-Martın, P. Goebel, V. Chow, H. M. Ewald, J. Yang, Z. Wang, A.
Sadeghian, D. Sadigh, S. Savarese, and M. Vázquez. “Deep Local Trajectory Replan-
ning and Control for Robot Navigation”. In: International Conference on Robotics
and Automation. 2019.

[249] G. Pola, A. Girard, and P. Tabuada. “Approximately bisimilar symbolic models for
nonlinear control systems”. In: Automatica. 2008.

[250] T. Prevot, J. Rios, P. Kopardekar, J. Robinson III, M. Johnson, and J. Jung. “UAS
Traffic Management (UTM) Concept of Operations to Safely Enable Low Altitude
Flight Operations”. In: AIAA Aviation Technology, Integration, and Operations Con-
ference. 2016.

[251] A. Punjani and P. Abbeel. “Deep learning helicopter dynamics models”. In: Robotics
and Automation (ICRA), 2015 IEEE International Conference on. IEEE. 2015, pp. 3223–
3230.

[252] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.
Ng. “ROS: an open-source Robot Operating System”. In: ICRA workshop on open
source software. 2009.

[253] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2006.

[254] B. Recht. “A tour of reinforcement learning: The view from continuous control”. In:
Annual Review of Control, Robotics, and Autonomous Systems (2018).

[255] M. Reynolds. “Continuous Temporal Models”. In: Australian Joint Conference on
Artificial Intelligence. 2001.

[256] A. Richards and J. How. “Model predictive control of vehicle maneuvers with guar-
anteed completion time and robust feasibility”. In: American Control Conference
(2003).

[257] C. Richter, W. Vega-Brown, and N. Roy. “Bayesian learning for safe high-speed nav-
igation in unknown environments”. In: Robotics Research. Springer, 2018, pp. 325–
341.

[258] J. Roberts, I. Manchester, and R. Tedrake. “Feedback controller parameterizations
for reinforcement learning”. In: Symposium on Adaptive Dynamic Programming And
Reinforcement Learning (ADPRL). 2011, pp. 310–317.

[259] U. Rosolia and F. Borrelli. “Learning model predictive control for iterative tasks. a
data-driven control framework”. In: IEEE Transactions on Automatic Control 63.7
(2018), pp. 1883–1896.

[260] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras.
“Human Motion Trajectory Prediction: A Survey”. In: arXiv preprint arXiv:1905.06113
(2019).



BIBLIOGRAPHY 272

[261] F. Sadeghi. “DIViS: Domain invariant visual servoing for collision-free goal reaching”.
In: Robotics: Science and Systems (2019).

[262] F. Sadeghi and S. Levine. “(CAD)2RL: Real Single-Image Flight without a Single
Real Image”. In: Robotics: Science and Systems. 2017.

[263] S. Sarid, B. X., and H. Kress-gazit. “Guaranteeing high-level behaviors while exploring
partially known maps”. In: Robotics: Science and Systems. 2012.

[264] S. Sastry and M. Bodson. Adaptive control: stability, convergence and robustness.
Courier Corporation, 2011.

[265] A. J. Sathyamoorthy, J. Liang, U. Patel, T. Guan, R. Chandra, and D. Manocha.
“DenseCAvoid: Real-time navigation in dense crowds using anticipatory behaviors”.
In: arXiv (2020).

[266] N. Savinov, A. Dosovitskiy, and V. Koltun. “Semi-parametric Topological Memory
for Navigation”. In: International Conference on Learning Representations. 2018.

[267] S. Schaal. “Learning robot control”. In: The handbook of brain theory and neural
networks 2 (2002), pp. 983–987.

[268] T. Schouwenaars and E. Feron. “Decentralized Cooperative Trajectory Planning of
Multiple Aircraft with Hard Safety Guarantees”. In: AIAA Guidance, Navigation and
Control Conference. 2004.

[269] J. Schreiter, P. Englert, D. Nguyen-Tuong, and M. Toussaint. “Sparse Gaussian Pro-
cess Regression for Compliant, Real-Time Robot Control”. In: International Confer-
ence on Robotics and Automation. 2015.

[270] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel. “Finding Lo-
cally Optimal, Collision-Free Trajectories with Sequential Convex Optimization.” In:
Robotics: Science and Systems. 2013.

[271] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. “Trust region policy
optimization”. In: International conference on machine learning. 2015.

[272] J. Schulman, P. Wolski F.and Dhariwal, A. Radford, and O. Klimov. “Proximal policy
optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017).

[273] S. A. Seshia, D. Sadigh, and S. S. Sastry. “Towards Verified Artificial Intelligence”.
In: arXiv:1606.08514. 2016.

[274] S. A. Seshia, A. Desai, T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, S. Shivakumar,
M. Vazquez-Chanlatte, and X. Yue. “Formal specification for deep neural networks”.
In: International Symposium on Automated Technology for Verification and Analysis.
2018.

[275] J. Sethian. “A fast marching level set method for monotonically advancing fronts”.
In: National Academy of Sciences 93.4 (1996), pp. 1591–1595.



BIBLIOGRAPHY 273

[276] B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. “Taking the human
out of the loop: A review of Bayesian optimization”. In: Proceedings of the IEEE
104.1 (2016), pp. 148–175.

[277] P. Y. Simard, D. Steinkraus, J. C. Platt, et al. “Best practices for convolutional neural
networks applied to visual document analysis.” In: ICDAR. 2003.

[278] S. Singh, M. Chen, S. Herbert, C. Tomlin, and M. Pavone. “Robust Tracking with
Model Mismatch for Fast and Safe Planning: An SOS Optimization Approach”. In:
International Workshop on the Algorithmic Foundations of Robotics. 2020.

[279] S. Singh, A. Majumdar, J. Slotine, and M. Pavone. “Robust online motion planning
via contraction theory and convex optimization”. In: International Conference on
Robotics and Automation. 2017.

[280] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout:
A simple way to prevent neural networks from overfitting”. In: Journal of Machine
Learning Research (2014).

[281] D. Stipanović, P. Hokayem, M. Spong, and D. Šiljak. “Cooperative Avoidance Control
for Multiagent Systems”. In: Journal of Dynamic Systems, Measurement, and Control
129.5 (2007), p. 699.

[282] S. Strubbe and A. Van Der Schaft. “Bisimulation for communicating piecewise deter-
ministic Markov processes (CPDPs)”. In: International Workshop on Hybrid Systems:
Computation and Control. 2005.

[283] R. Sutton. “Dyna, an integrated architecture for learning, planning, and reacting”.
In: ACM SIGART Bulletin 2.4 (1991), pp. 160–163.

[284] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[285] L. Tai, G. Paolo, and M. Liu. “Virtual-to-real deep reinforcement learning: Continuous
control of mobile robots for mapless navigation”. In: Conference on Intelligent Robots
and Systems. 2017.

[286] helperOC Team. helperOC Library. https://github.com/HJReachability/helperOC.
2019.

[287] R. Tedrake, I. Manchester, M. Tobenkin, and J. Roberts. “LQR-trees: Feedback Mo-
tion Planning via Sums-of-Squares Verification”. In: International Journal of Robotics
Research 29.8 (2010), pp. 1038–1052.

[288] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.

[289] B. Tice. “Unmanned Aerial Vehicles: The Force Multiplier of the 1990s”. In: Airpower
Journal (1991).

[290] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics engine for model-based
control”. In: Conference on Intelligent Robots and Systems. 2012.



BIBLIOGRAPHY 274

[291] V. Tolani, S. Bansal, A. Faust, and C. Tomlin. “Visual Navigation Among Humans
with Optimal Control as a Supervisor”. In: arXiv preprint arXiv:2003.09354 (2020).

[292] C. J. Tomlin, J. Lygeros, and S. Sastry. “A game theoretic approach to controller
design for hybrid systems”. In: Proceedings of the IEEE. 2000.

[293] C. J. Tomlin, G. J. Pappas, and S. Sastry. “Conflict resolution for air traffic manage-
ment: A study in multiagent hybrid systems”. In: IEEE Transactions on automatic
control. 1998.

[294] S. Trimpe, A. Millane, S. Doessegger, and R. D’Andrea. “A self-tuning LQR approach
demonstrated on an inverted pendulum”. In: IFAC Proceedings Volumes 47.3 (2014),
pp. 11281–11287.

[295] J. Van den Berg, L. Ming, and D. Manocha. “Reciprocal Velocity Obstacles for real-
time multi-agent navigation”. In: International Conference on Robotics and Automa-
tion. 2008.

[296] J. Van Den Berg, P. Abbeel, and K. Goldberg. “LQG-MP: Optimized path plan-
ning for robots with motion uncertainty and imperfect state information”. In: The
International Journal of Robotics Research (2011).

[297] H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double
q-learning”. In: AAAI conference on artificial intelligence. 2016.

[298] P. Varaiya. “On the existence of solutions to a differential game”. In: SIAM Journal
on Control 5.1 (1967), pp. 153–162.

[299] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, and C. Schmid.
“Learning from Synthetic Humans”. In: Conference on Computer Vision and Pattern
Recognition. 2017.

[300] R. Walambe, N. Agarwal, S. Kale, and V. Joshi. “Optimal trajectory generation
for car-type mobile robot using spline interpolation”. In: IFAC-PapersOnLine 49.1
(2016), pp. 601–606.

[301] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. “Embed to control: A
locally linear latent dynamics model for control from raw images”. In: Advances in
neural information processing systems. 2015.

[302] Webots. http://www.cyberbotics.com. Ed. by C. Ltd. Commercial Mobile Robot Sim-
ulation Software. 1998.

[303] Wikipedia. Beaufort scale. url: https://en.wikipedia.org/wiki/Beaufort-

scale.

[304] A. Wilson, A. Fern, and P. Tadepalli. “Using trajectory data to improve bayesian op-
timization for reinforcement learning”. In: The Journal of Machine Learning Research
15.1 (2014), pp. 253–282.

[305] A. Wu and J. How. “Guaranteed infinite horizon avoidance of unpredictable, dynam-
ically constrained obstacles”. In: Autonomous Robots 32.3 (2012), pp. 227–242.

https://en.wikipedia.org/wiki/Beaufort-scale
https://en.wikipedia.org/wiki/Beaufort-scale


BIBLIOGRAPHY 275

[306] L. Yoder and S. Scherer. “Autonomous exploration for infrastructure modeling with
a micro aerial vehicle”. In: Field and service robotics. 2016.

[307] M. Zeiler, R. Fergus. “Visualizing and understanding convolutional networks”. In:
European Conference on Computer Vision. 2014.

[308] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. “End-to-
end Interpretable Neural Motion Planner”. In: Conference on Computer Vision and
Pattern Recognition. 2019.

[309] M. Zhaowei, H. Tianjiang, S. Lincheng, K. Weiwei, Z. Boxin, and Y. Kaidi. “An
iterative learning controller for quadrotor UAV path following at a constant altitude”.
In: Chinese Control Conference. 2015.

[310] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager. “Fast, On-line Collision
Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells”. In: IEEE Robotics
and Automation Letters 2 (2017), pp. 1047–1054.

[311] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi.
“Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learn-
ing”. In: International Conference on Robotics and Automation. 2017.


	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Preliminaries
	System Dynamics and Feedback Control
	Optimal Control and Dynamic Games
	Hamilton-Jacobi Reachability
	Reinforcement Learning
	Neural Networks
	Gaussian Processes and Bayesian Optimization

	Safety Analysis for Robotic Systems
	Scaling Safety Analysis: Algorithmic and Computational Fronts
	Related Work
	Reachability Decomposition
	Run-Time Reachability in Dynamic Environments: Warm Start and Local Updates
	The Berkeley Efficient API in C++ for Level Set Methods (BEACLS)
	Chapter Summary

	Provably Safe and Scalable Multi-Vehicle Trajectory Planning
	Related Work
	Safe Multi-Vehicle Trajectory Planning
	Sequential Trajectory Planning
	Sequential Trajectory Planning With An Adversarial Intruder
	Chapter Summary


	Going Beyond Known Dynamics Models and Environments: Learning-Based Control for Unknown Models and Environments
	Learning for Unknown Dynamics Models: Indirect Learning-Based Control
	Related Work
	Problem Formulation
	Identification of Unmodeled Dynamics Using Deep Neural Networks
	Experiments: Learning Quadrotor Dynamics Using DNN
	Discussion
	Chapter Summary

	Learning for Unknown Dynamics Models: Direct Learning-Based Control
	Related Work
	Problem Formulation
	Goal-Driven Dynamics Learning (aDOBO)
	Going Beyond Linear Models: Learning Task-Driven Gaussian Process (GP) Models
	Combining Indirect and Direct Learning-Based Control
	Chapter Summary

	Learning for Unknown Environments: Perception-Based Control
	Related Work
	Problem Formulation
	Learning-Based Perception with Model-Based Control for Visual Navigation
	Visual Navigation in Dynamic, Human-Centric Environments
	Chapter Summary


	 Safety for Learning-Enabled Control Systems
	Safety Analysis Using Learning-Based Dynamics Models
	Related Work
	Problem Formulation
	SPEC: Specification Centric Simulation Metric
	Numerical Simulations
	Chapter Summary

	Safe Learning-Enabled Perception Components
	Related Work
	Problem Formulation
	Reachability-Based Safety Monitor in Unknown Environments
	Numerical Simulations
	Hardware Experiments
	Chapter Summary

	Towards a Synergistic Learning and Control Future
	Bibliography


