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Abstract

In this thesis report, we consider certifying the robustness of pre-trained ReLU neural networks against
adversarial input perturbations. To be more specific, we only consider the semidefinite programming
(SDP) approach of certification in which the original non-convex certification problem is relaxed as a
SDP programming.

The SDP approach enjoys good certification percentage because the relaxation gap that it poses is
naturally smaller than that of other methods, including the Linear Programming (LP) based approaches
and the Mixed Integer Programming (MIP) based approaches. However, even SDP approaches suffer
from large relaxation gaps when used on large networks with many hidden layers. Towards this end, this
work proposes 2 theoretically sound and empirically proven techniques to further bridge this gap when
the network is large or when the current SDP approach is unsatisfactory. Both techniques can achieve
exact certification in the asymptotic regime with exponential complexity. Moreover we show that even
with polynomial complexity both techniques can greatly reduce the relaxation gap when compared to
the original method.

The first technique is partitioning the input uncertainty set and solving the convex relaxations on
each part separately. We show that this approach guarantees tightened relaxation error regardless of the
given neural network. We use the feasible set geometry to show that partitions should be uniform along
the coordinate axes of the input space. We then determine which coordinate best reduces the worst-
case SDP relaxation error for the case of a two-part partition. The proposed methods are illustrated
experimentally on IRIS classification networks and are shown to significantly reduce relaxation error,
even offering certificates that are otherwise void without partitioning.

The second technique we introduce to reduce the relaxation gap is to add linear constraints to the
SDP program that best approximates non-convex cuts via the use of disjunctive programming. The
proposed method amounts to a sequential SDP technique. We analyze the performance of this method
both theoretically and empirically, and show that it bridges the gap as the number of cuts increases.
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1 Introduction

When considering a neural network as a system, its robustness and sensitivity to input are some key aspects
with which the reliability can be determined. As a result, much effort has been placed on developing methods
to certify the robustness of neural networks to perturbations in their input data [1–8]. Posing this verification
problem as a mathematical programming requires us to cast the neural network mapping as a hard constraint.

A common deterministic certification procedure is to verify that all possible unknown inputs are mapped
to outputs that the network operator classifies as safe [1,7]. From this perspective, certification amounts to
certifying that the image of an input uncertainty set is a subset of the safe set. However, even when the
input uncertainty set is convex, its output set may be nonconvex, which renders the certification an NP-
complete nonconvex optimization problem [4, 9]. To address this challenge, recent works have proposed to
solve this nonconvex optimization through convexification, namely linear program (LP) relaxations (e.g., [1])
and semidefinite program (SDP) relaxations (e.g., [2, 6]).

LP-based techniques relax each ReLU function individually, thus introducing a relatively large relaxation
gap. Although some recent works, such as [10], proposed k-ReLU relaxations to consider multiple ReLU
relaxations jointly, the relaxation gap is still large. On the contrary, SDP-based relaxations naturally couple
ReLU relaxations together without any additional effort via a semidefinite constraint. Therefore, as the
number of hidden layers of the network under verification grows, the relative reduction in the relaxation
gap also grows when compared to LP-based methods. However, even with the power of SDP relaxation,
the relaxation gap is still significant under most settings. In this work, we address the issue with the SDP
relaxation and shrink the relaxation gap using 2 different approaches, namely by partitioning the input space
and applying nonconvex cuts.

In this report, we focus on feedforward ReLU networks, which are popular due to their simplicity, fast
training speeds, and non-vanishing gradient property [3].

1.1 Partition-Based Certification

The first approach to reducing the relaxation gap is based on partitioning the input uncertainty set and
solving simpler semidefinite programs over each input part. Partitioning heuristics have been applied in
areas such as robust optimization [11] and deep learning [12], and are often found to tighten bounds on
optimization objectives. Furthermore, partitioning naturally allows for parallelization of the optimization,
resulting in computational advantages over centralized methods.

In this work, through the analysis of the geometric properties of the SDP relaxation, methods to partition
the input space so that the relaxation gap can be reduced the most in a robust sense (i.e. in the worst case
scenario) are proposed. The main source of inspiration of this technique is [13], and we extended the
formalisms to adapt to SDP relaxations in this report.

Since this partitioning technique requires no added effort to implement, it can actually be used in harmony
with other techniques, like the second technique being proposed in this report.

1.2 Certification with added Nonconvex Cuts

To reduce relaxation gap in convex relaxations, the main idea is to reduce the search space, since relaxation
means finding a convex set that is a strict superset of the original feasible set and use this new convex set
as the feasible set of the relaxed problem. Therefore, to tighten the relaxation (synonymous to reducing
the relaxation gap), the primary concern is to make this overestimation as small as possible, and the only
explicit way to handle this is to add in more constraints into the relaxed problem, while still making sure
that the reduced search space remains a super set of that of the original problem.

One common technique of this constraint adding approach is called the reformulation-linearization tech-
nique (RLT) [14], and it adds in linearized quadratic constraints generated by multiplying existing linear
constraints in the relaxation. However, as can be formally shown in the later sections, this approach is not
going to work with the problem of neural network certification.

Towards this end, a method of adding nonconvex contraints into the relaxed problem to reduce relaxation
gap is proposed in this report, which is shown to be theoretically and empirically effective.

This work initially appeared in [15].
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2 Notations

We write the set of real-valued n-vectors as Rn and the set of real-valued m × n matrices as Rm×n. The
set of n × n symmetric matrices with real elements is Sn. For X,Y ∈ Rm×n, we write X ≤ Y to mean
Xij ≤ Yij for all i ∈ {1, 2, . . . ,m} and all j ∈ {1, 2, . . . , n}. We write the Hadamard (element-wise) product
between X and Y as X � Y and the Hadamard division of X by Y as X � Y . Furthermore, for f : R→ R,
we define f(X) to be an m × n matrix whose (i, j) element is equal to f(Xij) for all i ∈ {1, 2, . . . ,m} and
all j ∈ {1, 2, . . . , n}. In particular, let the ReLU function be denoted as ReLU(·) = max{0, ·}. We use I to
denote the indicator function, i.e., I(A) = 1 if event A holds and I(A) = 0 if event A does not hold. Finally,
we denote the n-vector of all ones by 1n, and for an index set I ⊆ {1, 2, . . . , n}, the symbol 1I is used to
denote the n-vector with (1I)i = 1 for i ∈ I and (1I)i = 0 for i ∈ Ic = {1, 2, . . . , n} \ I. Operator diag(·)
coverts its vector argument to a diagonal matrix. idx(A, a) denotes the position/index of element a in vector
or matrix A (e.g. idx([1, 2, 3], 3) = 3). † denotes the Penrose-Moore generalized inverse, and 〈A,B〉 denotes
tr(A>B) for square matrices A,B.

3 Backgrounds

3.1 Multi-Layer Perceptron (MLP) ReLU Network

Consider a K-layer ReLU neural network defined by

x[0] = x, x[k] = ReLU(W [k−1]x[k−1]) (1)

for all k ∈ {1, 2, . . . ,K}, where x ∈ Rnx is the input to the neural network, z , x[K] ∈ Rnz is the output, and
x̂[k] = W [k−1]x[k−1] + b[k−1] ∈ Rnk is the preactivation of the kth layer. The parameters W [k] ∈ Rnk+1×nk

and b[k] ∈ Rnk+1 are the weight matrix and bias vector applied to the kth layer’s activation x[k] ∈ Rnk ,
respectively. Without loss of generality, assume that the bias terms are accounted for in the activations x[k],
thereby setting b[k] = 0 for all layers k. Let the function f : Rnx → Rnz denote the mapping x 7→ z defined
by (1).

Following the spirits of [1,2], define the input uncertainty set X ⊆ Rnx using l∞ norms: X = {x ∈ Rnx :
‖x− x̄‖∞ ≤ ε}. Similarly, define S ⊆ Rnz as the safe set. For classification networks, safe sets are (possibly
unbounded) usually polyhedral sets defined as the intersection of a finite number of half-spaces:

S = {z ∈ Rnz : Cz ≤ 0},

where C ∈ RnS×nz is given. Any output z ∈ S is said to be safe. The safe set is assumed to be polyhedral
in the rest of this report.

3.2 Robustness Certification

The goal of certification is to ensure that f(x) ∈ S for all x ∈ X , which is equivalent to checking the
satisfaction of the following inequality:

max
i∈{1,...,nS}

{f∗i (X )} ≤ 0 (2)

where f∗i (X ) = sup{c>i z : z = f(x), x ∈ X} and c>i is the ith row of C. Thus, the certification procedure
amounts to solving an optimization problem corresponding to each ci. For the remainder of this report, the
objective is assumed to be supx∈X c

>f(x) for any generic c, since the generalization to the case nS > 1 is
straightforward.

In general, the optimization supx∈X c
>f(x) is a nonconvex problem and f(X ) is a nonconvex set, and

therefore computing a robustness certificate is intractable in polynomial time. To circumvent this issue, one
can instead certify that a convex outer approximation of f(X ) is safe, as this inherently certifies the safety
of the true nonconvex set f(X ), and hence certifies the robustness of the network. This process is illustrated
in Fig. 1.

4



X

f̂(X )

f(X )

f

Figure 1: The convex outer approximation of the nonconvex set f(X ) is f̂(X ). If the outer approximation

is safe, i.e., f̂(X ) ⊆ S, then so is f(X ).

3.3 SDP Relaxation

In this section, we present the SDP relaxation used for robustness certification. The details can be found
in [2]. The main idea is to convert the ReLU constraints to quadratic constraints and then reformulate
the non-convex certification problem (2) as a quadratically-constrained quadratic program (QCQP). Then,
the standard SDP relaxation of the resulting QCQP leads to checking whether the following inequality is
satisfied:

max
i∈{1,...,nS}

{f̂∗i (X )} ≤ 0 (3)

where f̂∗i (X ) = sup{c>i z : (x, z) ∈ NSDP, x ∈ X}. The notation (x, z) ∈ NSDP means that there exist
x̃ ∈ Rnx̃ and X̃ ∈ Snx̃ with z , x̃[x[K]] such that

x̃[x[0]] = x, X̃ � x̃x̃>, (X̃, x̃) ∈ N [k]
SDP ∀k = {1 . . .K} (4)

where the membership condition (X̃, x̃) ∈ N [k]
SDP is defined by the following conditions:

x̃[x[k]] ≥ 0,

x̃[x[k]] ≥W [k−1]x̃[x[k−1]],

diag(X̃[x[k](x[k])T ]) = diag(W [k−1]X̃[x[k−1](x[k])T ]),

diag(X̃[x[k−1](x[k−1])T ]) ≤ (l[k−1] + u[k−1])�
x̃[x[k−1]]− l[k−1] � u[k−1],

(5)

where nx̃ = ΣKj=0nj . l[k] and u[k] are the lower and upper bounds on x[k], respectively. In the following

sections, especially in section 5, l and u usually denotes l[0] and u[0], thus bounds for the input set X unless
specified otherwise. Given X , only l[0] and u[0] are known. The indexing notation in this report is inherited
from [2] to promote consistency. Namely, a[x[k]] = a[Σk−1

j=0nj + 1 : Σkj=0nj ] for any vector a ∈ Rnx̃ and

A[x[k](x[l])T ] = A[Σk−1
j=0nj + 1 : Σkj=0nj ,Σ

l−1
j=0nj + 1 : Σlj=0nj ] for any matrix A ∈ Snx̃ .

For the sake of brevity, henceforth we use the shorthand notations x̃[k] , x̃[x[k]], X̃[Ak] , X̃[x[k−1](x[k−1])T ],
X̃[Bk] , X̃[x[k−1](x[k])T ], X̃[Ck] , X̃[x[k](x[k])T ], and:

X̃[k] ,

[
X̃[Ak] X̃[Bk]

X̃[B>k ] X̃[Ck]

]
(6)

Furthermore, define

P ,

[
1 x̃>

x̃ X̃

]
(7)
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Note that X̃ � x̃x̃> if and only if P � 0. P ∗ denotes the optimal P that minimizes maxi∈{1,...,nS}{f̂∗i (X )}
The above relaxation implies that if f̂∗i (X ) ≤ 0, then it is guaranteed that f∗i (X ) ≤ 0. However, if

f̂∗i (X ) ≥ 0, it is impossible to conclude whether f∗i (X ) ≥ 0 or the relaxation is loose.

4 Tightness of SDP Relaxation

Compared to previous convex relaxation schemes (such as LP), SDP indeed yields a tighter lower bound [2].
However, according to the above report and the recent results in [16], SDP relaxations of Multi-Layer
Perceptron (MLP) ReLU networks are not tight even for single-layer instances. This issue will be elaborated
below.

Since P is positive-semidefinite, it can be decomposed as:

P = V V >, where V =


~e
~x>1
~x>2
...

~x>nx̃

 ∈ R(nx̃+1)×r (8)

Each vector ~xi has dimension r, which is the rank of P . Since ~e ·~e = 1, ~e is a unit vector in Rr. Furthermore,

we have~̃xi = ~e · ~xi for i ∈ {1, . . . , ñx}. The constraints in N [k]
SDP can be broken down into 2 parts:

1. Input constraints. The constraint diag(X̃[Ak]) ≤ (l[k−1] +u[k−1])� x̃[k−1]− l[k−1]�u[k−1] is equivalent
to ‖~xk‖2 ≤ (l[k−1] + u[k−1])~xi · e− l[k−1]u[k−1] for all k ∈ {1, 2, . . . , nx}. Geometrically, this constrains
each vector in the set {~xi|i ∈ idx(x̃, x̃[k − 1])} to lie in a circle centered at 1

2 (li + ui)~e with radius
1
2 (ui − li). This can be seen as follows:

(~xk − 1
2 (l[k−1] + u[k−1])e)>(~xk − 1

2 (l[k−1] + u[k−1])e) ≤ ( 1
2 (u[k−1] − l[k−1]))2

⇐⇒ ‖~xk‖22 − (l[k−1] + u[k−1])~xk · e+ 1
4 (l[k−1] + u[k−1])2‖e‖22 ≤ 1

4 ((l[k−1])2 + (u[k−1])2 − u[k−1]l[k−1])

⇐⇒ ‖~xk‖22 ≤ (l[k−1] + u[k−1])~xk · e− l[k−1]u[k−1].

2. ReLU constraints. The constraint diag(X̃[Ck]) = diag(W [k−1]X̃[Bk]) is equivalent to the condition that
‖~xj‖2 = ~χj · ~xj for all {j|j ∈ idx(x̃, x̃[k])}, where ~χj =

∑
i∈idx(x̃,x̃[k−1]) wij~xi and {wij}i∈idx(x̃,x̃[k−1])

is the jth row of W [k]. This implies (~xj − ~χj) · ~xj = 0, which translates to the geometric relationship
of ~xj lying on the circle with ~χj as its diameter for all {j|j ∈ idx(x̃, x̃[k])} (recall the basic fact that
angles formed by drawing lines from the ends of the diameter of a circle to its circumference form a
right angle). The added linear constraints x̃[k] ≥ 0 and x̃[k] ≥ W [k−1]x̃[k − 1] restricts the sphere to
the subset where the projection of ~xj on ~e is nonnegative and larger than the projection of ~χj on ~e.

As pointed out in Lemma 6.1 of [16], the SDP relaxation is tight if and only if ~e and all the vectors ~xi’s
are collinear. Since there is no constraint on the angle between ~xi and ~e, the resulting spherical cap (as
termed in Section 4 of the report) always exists, and the height of this cap will be an upper bound on the
relaxation gap of the corresponding entry in x̃. The following lemma makes this claim more concrete:

Lemma 1 (Rank-1 gap). The rank-1 gap is nonnegative:

g(P ) =

nx̃∑
i=1

(‖~xi‖22 − (~xi · ~e)2) ≥ 0 (9)

Proof. Since P � 0, Schur complements give that X̃− x̃x̃> � 0, and taking the trace of the LHS we get that
it has to be larger or equal to 0. The proof is concluded by noticing tr(X̃−x̃x̃>) =

∑nx̃

i=1(‖~xi‖22−(~xi ·~e)2).

Since g(P ) = 0 is necessary for P to be rank-1, this is a partial result of Lemma 6.1 of [16], stating that
if ~e and all the vectors ~xi’s are collinear, there will be a zero rank-1 gap, making the relaxation exact.
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5 Partitioned SDP Relaxation

In this section, we explore how to partition the input space X so that the relaxation gap can be reduced.
Before proceeding to the partitioning techniques, the motivation and notations of partitioning are made
exact through the following proposition:

Proposition 1 (Improving the SDP relaxation bound). Consider a one-layer feedforward neural network.
Let {X (j) : j ∈ {1, 2, . . . , p}} be a partition of X . For the jth input part X (j), denote the corresponding input
bounds by l ≤ l(j) ≤ x ≤ u(j) ≤ u, where x ∈ X (j) and l, u are assumed to be bounds for X . Then it holds
that

max
j∈{1,2,...,p}

f̂∗(X (j)) ≤ f̂∗(X ). (10)

Proof. Let j ∈ {1, 2, . . . , p}. From the definition of the partition, it holds that X (j) ⊆ X . What remains to

be shown is that N (j)
SDP ⊆ NSDP.

Let P ∈ N (j)
SDP. Define u′ = u(j) and l′ = l(j). Since P ∈ N (j)

SDP, it follows that

x̃[k] ≥ 0,

x̃[k] ≥W [k−1]x̃[k − 1],

diag(X̃[Ck]) = diag(W [k−1]X̃[Bk]),

diag(X̃[Ak]) ≤ (l′ + u′)� x̃[k − 1]− l′ � u′,
P1 = 1,

P � 0.

To show that P ∈ NSDP, we should show that the above expressions imply that diag(X̃[Ak]) ≤ (l + u) �
x̃[k − 1] − l � u. To do so, define ∆li ≥ 0 and ∆ui ≥ 0 such that l′i = li + ∆li and u′i = ui − ∆ui for all
i ∈ {1, 2, . . . , nk−1}. Note the subscript i denotes the ith entry of the vector. Then we find that

((l′ + u′)� x̃[k − 1]− l′ � u′)i = (l′i + u′i)(x̃[k − 1])i − l′iu′i
= (li + ui)(x̃[k − 1])i − liui + (∆li −∆ui)(x̃[k − 1])i − (∆liui −∆uili −∆ui∆li)

= ((l + u)� x̃[k − 1]− l � u)i + (∆li −∆ui)(x̃[k − 1])i − (∆liui −∆uili −∆ui∆li)

= ((l + u)� x̃[k − 1]− l � u)i + ∆i,

where ∆i := (∆li−∆ui)(x̃[k−1])i−(∆liui−∆uili−∆ui∆li). Therefore, it suffices to prove that ∆i ≤ 0 for all
i. Since −liui ≥ −l′iu′i by definition, it holds that ∆liui−∆uili−∆ui∆li ≥ 0. Thus, when (∆li−∆ui)(x̃[k−
1])i ≤ 0, it holds that ∆i ≤ 0, as desired. On the other hand, suppose that (∆li−∆ui)(x̃[k− 1])i ≥ 0. Then
we find two cases:

1. (∆li − ∆ui) ≥ 0 and (x̃[k − 1])i ≥ 0. In this case, the maximum value of (∆li − ∆ui)(x̃[k − 1])i is
(∆li −∆ui)u

′
i. Therefore, the maximum value of ∆i is

∆i = (∆li −∆ui)u
′
i − (∆liui −∆uili −∆ui∆li)

= ∆li(u
′
i − ui)−∆uiu

′
i + ∆uili + ∆ui∆li

= ∆li(−∆ui) + ∆ui∆li −∆uiu
′
i + ∆uili

= −∆uiu
′
i + ∆uili.

Both of the two final terms are nonpositive, and therefore ∆i ≤ 0.

2. (∆li − ∆ui) ≤ 0 and (x̃[k − 1])i ≤ 0. In this case, the maximum value of (∆li − ∆ui)(x̃[k − 1])i is
(∆li −∆ui)l

′
i. Therefore, the maximum value of ∆i is

∆i = (∆li −∆ui)l
′
i − (∆liui −∆uili −∆ui∆li)

= −∆ui∆li + ∆ui∆li + ∆lil
′
i −∆liui

= ∆lil
′
i −∆liui.

Both of the two final terms are nonpositive, and therefore ∆i ≤ 0.
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Hence, we find that (l′ + u′)� x̃[k − 1]− l′ � u′ ≤ (l + u)� x̃[k − 1]− l � u for all P ∈ N (j)
SDP, proving that

P ∈ NSDP, and therefore N (j)
SDP ⊆ NSDP.

Since X (j) ⊆ X and N (j)
SDP ⊆ NSDP, it holds that the solution to the problem over the smaller feasible set

lower bounds the original solution: f̂∗(X (j)) ≤ f̂∗(X ). Finally, since j was chosen arbitrarily, this implies
the desired inequality (10).

From the above proposition it is clear that any form of partitioning could potentially reduce relaxation
gap and that no harm could be incurred by doing so. Furthermore, this technique can be applied concurrently
with other techniques, and can be easily parallelized, making it an ideal way to tighten the relaxation.

Thus in the remainder of this section, we will develop the optimal partitioning strategy for our verification
problem.

5.1 Scaling of Objective via Partitioning

Before diving into the derivation of the optimal strategy, one natural question to ask is that if the input
bounds are reduced by a factor of t, how much will the objective decrease? It could guide us in the choice
of number of partitions when a specific reduction in objective is in mind.

When the weights of the neural network change, the exact scaling factor of the objective also changes, but
when the weights are uniformly distributed, we show that the scaling in objective is linear in expectation.

Note that, for all i ∈ idx(x̃, x̃[k − 1]), j ∈ idx(x̃, x̃[k]), for all k ∈ {1, . . . ,K}, since every ~xi is bounded
within a ball, ~χj is also bounded within a ball given that ‖W‖∞ < ∞, namely one of radius r̆j and center
c̆j . Those parameters can be arbitrarily chosen so that all possible ~χj are covered.

Now, let hj = (~χj)
>
e and denote by θj ∈ [0, 2π] the angle between ~χj and e. Then hj and θj uniquely

determine ~χj for a given e. Consequently, for fixed hj and θj , the largest possible relaxation error in

coordinate j is given by sup{~xj :P∈NSDP, e,h,θ fixed} (~xj − ~χj)> e. To simplify calculations in the following
sections, we introduce a parameter dj to parametrize θj such that dj = ‖~χj‖2. This is obvious since dj =
hj

cos(θj) . Using similar triangles, it is straightforward to show that sup{~xj :P∈NSDP, e,h,θ fixed} ~x
>
j e = 1

2hj + 1
2dj .

Therefore, for fixed hj and dj it holds that the maximum relaxation error in coordinate j is

ε(hj , dj) := sup
{~xj :P∈NSDP, e,h,d fixed}

(~xj − ~χj)> e =
1

2
hj +

1

2
dj − hj =

1

2
dj −

1

2
hj .

We now consider the effect of partitioning, namely, tightening the input bounds l, u. In particular,
consider the special scenario in which the input bounds are decreased to l′ = tl and u′ = tu for some
t ∈ (0, 1). Then the input constraint moves ~χj from a ball centered at 1

2 (u + l)e with radius 1
2 (u − l) to a

ball centered at t
2 (u + l) with radius t

2 (u − l). Effectively, the input constraint ball on ~χj moves closer to
the origin with decreasing radius, both effects changing linearly with t.

To quantify the change of ε(hj , dj) with respect to t, we need to have some kind of assumption on the
distribution of h. Namely, we assume that hj ∼ U(c̆j + r̆j , c̆j − r̆j), which is the uniform distribution, since
we don’t have a-priori information on the problem. In expectation, E[hj ] = c̆j . As for dj , it depends on

hj , and we again assume uniform distribution, namely [dj |hj ] ∼ U(hj ,
√
r̆2
j − c̆2j + 2c̆jhj). This is evident

from figure 2 since
√
r̆2
j − (c̆j − hj)2 + h2

j =
√
r̆2
j − c̆2j + 2c̆jhj . This bound is valid since regardless of the
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direction of ~χj vector, for the same ‖~χj‖2, ε(hj , dj) stays constant. Therefore, in expectation:

E[ε(hj , dj)] =
1

2

∫ c̆j+r̆j

c̆j−r̆j

1

2r̆j

∫ √r̆2j−c̆2j+2c̆jhj

hj

1√
r̆2
j − c̆2j + 2c̆jhj − hj

(dj − hj)ddjdhj

=
1

2

∫ c̆j+r̆j

c̆j−r̆j

1

2r̆j
(

√
r̆2
j − c̆2j + 2c̆jhj + hj

2
− hj)dhj

=
1

2

∫ c̆j+r̆j

c̆j−r̆j

1

2r̆j
(

√
r̆2
j − c̆2j + 2c̆jhj

2
)dhj −

c̆j
4

=
(r̆2
j + c̆2j + 2r̆j c̆j)

3
2 − (r̆2

j + c̆2j − 2r̆j c̆j)
3
2

24r̆j c̆j
− c̆j

4

(11)

After the scaling t is applied to l, u, denote the new c̆j , r̆j , hj , dj as c̆′j , r̆
′
j , h
′
j , d
′
j . Then, c̆′j = tc̆j , r̆

′
j = t̆rj .

Therefore

E[ε(h′j , d
′
j)] =

((r̆′j)
2 + (c̆′j)

2 + 2r̆′j c̆
′
j)

3
2 − ((r̆′j)

2 + (c̆′j)
2 − 2r̆′j c̆

′
j)

3
2

24r̆′j c̆
′
j

−
c̆′j
4

= t(
(r̆2
j + c̆2j + 2r̆j c̆j)

3
2 − (r̆2

j + c̆2j − 2r̆j c̆j)
3
2

24r̆j c̆j
− c̆j

4
)

= tE[ε(hj , dj)]

(12)

Since x̃j = 1
2hj + 1

2dj , utilizing the same arguments as above we also know that x̃j scales linearly with t.

5.2 Partitioning Strategy

5.2.1 Worst-Case Rank-1 Bound

We want to partition the input uncertainty set to minimize g(P ∗), in hopes to influence P ∗ to be of low rank.
However, there is a major hurdle with this approach. In particular, the optimal solution P ∗ depends on the
partition we choose, and finding a partition to minimize g(P ∗) in turn depends on P ∗ itself. To overcome
this cyclic dependence, we propose first bounding g(P ∗) by a worst-case sense upper bound. As we will see,
choosing an optimal partition to minimize the upper bound makes the partition design much more tractable,
resulting in a closed-form solution.

To derive the upper bound on the rank-1 gap at optimality, let {X (j) : j ∈ {1, 2, . . . , p}} denote the
partition of X . For the jth input part X (j), denote the corresponding input bounds by l(j), u(j). The upper
bound is given in the following lemma.

Lemma 2 (Rank-1 gap upper bound). The rank-1 gap at the solution P ∗ of the partitioned SDP satisfies

0 ≤ g(P ∗) ≤ 1

4

nx∑
i=1

max
j∈{1,2,...,p}

(u
(j)
i − l

(j)
i )2. (13)

Proof. The left inequality is a direct result of Lemma 1. For the right inequality, note that

g(P ∗) ≤ max
j∈{1,2,...,p}

max
P∈N (j)

SDP, x̃[k−1]∈X (j)

g(P )

≤
nx∑
i=1

max
j∈{1,2,...,p}

max
P∈N (j)

SDP, x̃[k−1]∈X (j)

(‖~xi‖22 − (~x>i e)
2).

(14)

Let us focus on the optimization over the jth part of the partition, namely,

max
P∈N (j)

SDP, x̃[k−1]∈X (j)

(‖~xi‖22 − (~x>i e)
2).
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0

e

u
(j)
i e

l
(j)
i e

1
2 (u

(j)
i + l

(j)
i )e

~xi
(~x>i e)e

‖~xi‖2

a b

r
(j)
i

Figure 2: Geometry of the SDP relaxation in coordinate i over part j of the partition. The shaded region
shows the feasible ~xi satisfying the input constraint. [2]

To bound this quantity, we analyze the geometry of the SDP relaxation over part j, following the methodology
of [2]; see Figure 2.

The shaded circle represents the set of feasible ~xi over part j of the partition, namely, those satisfying
the ith coordinate of the constraint diag(X̃[Ak]) ≤ (l(j) + u(j)) � x̃[k − 1] − l(j) � u(j). To see this, note

that the constraint is equivalent to ‖~xi‖22 ≤ (l
(j)
i + u

(j)
i )~x>i e − l

(j)
i u

(j)
i , or, more geometrically written, that

‖~xi − 1
2 (u

(j)
i + l

(j)
i )e‖22 ≤

(
1
2 (u

(j)
i − l

(j)
i )
)2

. This shows that ~xi is constrained to a 2-norm ball of radius

r
(j)
i = 1

2 (u
(j)
i − l

(j)
i ) centered at 1

2 (u
(j)
i + l

(j)
i )e, as shown in Figure 2.

The geometry of Figure 2 immediately shows that ‖~xi‖22 = a2 + (~x>i e)
2 and r

(j)2
i = (a + b)2 + (~x>i e −

1
2 (u

(j)
i + l

(j)
i ))2, and therefore

‖~xi‖22 − (~x>i e)
2 = a2

= r
(j)2
i − (~x>i e− 1

2 (u
(j)
i + l

(j)
i ))2 − 2ab− b2.

Since a and b are nonnegative,

max
P∈N (j)

SDP, x̃[k−1]∈X (j)

‖~xi‖22 − (~x>i e)
2 = max

P∈N (j)
SDP, x̃[k−1]∈X (j)

r
(j)2
i − (~x>i e− 1

2 (u
(j)
i + l

(j)
i ))2 − 2ab− b2

≤ max
P∈N (j)

SDP, x̃[k−1]∈X (j)

r
(j)2
i − (~x>i e− 1

2 (u
(j)
i + l

(j)
i ))2

≤ r(j)2
i

=
1

4
(u

(j)
i − l

(j)
i )2.

Thus, (14) gives

g(P ∗) ≤ 1

4

nx∑
i=1

max
j∈{1,2,...,p}

(u
(j)
i − l

(j)
i )2,
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as desired.

5.2.2 Form of Partitioning

With Lemma 2 in place, we now have an upper bound on the rank-1 gap at optimality, in terms of the
input bounds {l(j), u(j)}pj=1 associated with the partition. At this point, we now turn to minimizing the
upper bound over all valid choices of p-part partitions of the input uncertainty set. Note that, in order
for {l(j), u(j)}pj=1 to define valid input bounds for a p-part partition, it must be that the union of the
input parts cover the input uncertainty set. In terms of the input bounds, this leads to the constraint that

[li, ui] ⊆
⋃p
j=1[l

(j)
i , u

(j)
i ] for all i ∈ {1, 2, . . . , nx}. We now give the optimal partitioning scheme for the SDP

that minimizes the upper bound of Lemma 2.

Theorem 1 (Optimal SDP partition via rank-1 gap). Consider the optimization problem of finding the
partition to minimize the upper bound (13):

minimize
P={l(j),u(j)}pj=1⊆Rnx

h(P) =

nx∑
i=1

max
j∈{1,2,...,p}

(u
(j)
i − l

(j)
i )2

subject to [li, ui] ⊆
p⋃
j=1

[l
(j)
i , u

(j)
i ],

l
(j)
i ≤ u

(j)
i ,

for all i ∈ {1, 2, . . . , nx}, j ∈ {1, 2, . . . , p}.

(15)

Consider the uniform partition defined by P̄ = {l̄(j), ū(j)}pj=1 ⊆ Rnx , where

l̄(j) =
j − 1

p
(u− l) + l,

ū(j) =
j

p
(u− l) + l,

for all j ∈ {1, 2, . . . , p}. It holds that P̄ is a solution to (15).

Proof. To prove the result, we show that the proposed P̄ is feasible for the optimization, and that h(P̄) ≤
h(P) for all feasible P. First, note that

ū(j) =
j

p
(u− l) + l =

(j + 1)− 1

p
(u− l) + l = l̄(j+1),

and therefore [l̄
(j)
i , ū

(j)
i ]
⋃

[l̄
(j+1)
i , ū

(j+1)
i ] = [l̄

(j)
i , ū

(j+1)
i ] for all i ∈ {1, 2, . . . , nx}. Hence,

p⋃
j=1

[l̄
(j)
i , ū

(j)
i ] = [l̄

(1)
i , ū

(p)
i ] = [li, ui].

Furthermore, ū(j) − l̄(j) = 1
p (u− l) ≥ 0, and therefore we conclude that P̄ = {l̄(j), ū(j)}pj=1 is feasible.

Computing the objective at the proposed feasible point,

h(P̄) =

nx∑
i=1

max
j∈{1,2,...,p}

(ū
(j)
i − l̄

(j)
i )2

=

nx∑
i=1

max
j∈{1,2,...,p}

( 1
p (ui − li))2

=
1

p2

nx∑
i=1

(ui − li)2
.
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Now, let P = {l(j), u(j)}pj=1 be an arbitrary feasible point for the optimization (15). Then

h(P) =

nx∑
i=1

max
j∈{1,2,...,p}

(u
(j)
i − l

(j)
i )2

=

nx∑
i=1

(
max

j∈{1,2,...,p}
(u

(j)
i − l

(j)
i )

)2

≥
nx∑
i=1

1

p

p∑
j=1

(u
(j)
i − l

(j)
i )

2

=
1

p2

nx∑
i=1

 p∑
j=1

(u
(j)
i − l

(j)
i )

2

.

Since P is feasible, it holds that [li, ui] ⊆
⋃p
j=1[l

(j)
i , u

(j)
i ] for all i ∈ {1, 2, . . . , nx}. Therefore, by the

monotonicity and subadditivity of the Lebesgue measure µ on R,

ui − li = µ([li, ui]) ≤ µ

 p⋃
j=1

[l
(j)
i , u

(j)
i ]

 ≤ p∑
j=1

µ([l
(j)
i , u

(j)
i ]) =

p∑
j=1

(u
(j)
i − l

(j)
i ).

Substituting this into our above expressions, we conclude that

h(P̄) =
1

p2

nx∑
i=1

(ui − li)2 ≤ 1

p2

nx∑
i=1

 p∑
j=1

(u
(j)
i − l

(j)
i )

 ≤ h(P)

for all feasible P, i.e., P̄ = {l̄(j), ū(j)}pj=1 is a solution to the optimization.

Theorem 1 shows that by choosing the partition of the input set to be uniformly divided amongst the p
parts, we are choosing an optimal partition that minimizes the worst-case bound on the gap of the rank-1
necessary condition (9). This gives a well-motivated, yet simple way to design a partition of the input
uncertainty set in order to best push the SDP relaxation towards being rank-1, thereby reducing relaxation
error.

5.3 Best Axis of Partitioning

In this section, we turn our attention from the form of an optimal SDP partition to the coordinate of an
optimal partition. In particular, we seek to find the best two-part partition to minimize relaxation error of
the SDP. The results of Section 5.2 suggest using a uniform partition, and in this section we seek to find
which coordinate to apply the partitioning to. Similar to the LP relaxation, we derive an optimal partitioning
scheme by first bounding the relaxation error in the worst-case sense.

5.3.1 Worst-Case Relaxation Bound

We start with a short lemma which will be used in the proof of Theorem 2.

Lemma 3 (Bound on elements of PSD matrices). Let P ∈ Sn be a positive semidefinite matrix. Then
|Pij | ≤ 1

2 (Pii + Pjj) for all i, j ∈ {1, 2, . . . , n}.

Proof. Define x ∈ Rn by

xk =


1 if k = i,

−1 if k = j,

0 if k /∈ {i, j},

12



for all k ∈ {1, 2, . . . , n}. Evaluating the quadratic form of P at x gives

x>Px =
∑

k,l∈{1,2,...,n}

xkxlPkl = Pii − 2Pij + Pjj ≥ 0,

implying that

Pij ≤
1

2
(Pii + Pjj). (16)

On the other hand, define y ∈ Rn by

yk =

{
1 if k ∈ {i, j},
0 if k /∈ {i, j},

for all k ∈ {1, 2, . . . , n}. Evaluating the quadratic form of P at y gives

y>Py =
∑

k,l∈{1,2,...,n}

ykylPkl = Pii + 2Pij + Pjj ≥ 0,

implying that

Pij ≥ −
1

2
(Pii + Pjj). (17)

Inequalities (16) and (17) together imply the desired bound.

Assumption 1 (Normalized rows). In Theorem 2 below, we assume without loss of generality that the rows
of the weight matrix have been normalized in the `1-norm sense, i.e., that ‖wi‖1 = 1 for all i ∈ {1, 2, . . . , nz}.
In the case that this assumption doesn’t hold, the network architecture can be rescaled as follows:

z = ReLU(Wx)

= ReLU



w>1
w>2

...
w>nz

x


= ReLU

diag(‖w1‖1, ‖w2‖1, . . . , ‖wnz
‖1)


w>1
‖w1‖1
w>2
‖w2‖1

...
w>nz

‖wnz‖1

x


= Wscale ReLU(Wnormx),

where Wscale = diag(‖w1‖1, ‖w2‖1, . . . , ‖wnz‖1) ∈ Rnz×nz and

Wnorm =


w>1
‖w1‖1
w>2
‖w2‖1

...
w>nz

‖wnz‖1

 ∈ Rnz×nx

are the scaling and normalized factors of the weight matrix W , respectively. The scaling factor can therefore
be absorbed into the cost vector c, yielding a problem with normalized rows as desired.

Theorem 2 (Worst-case relaxation bound for SDP). Consider a one-layer feedforward neural network with
the input uncertainty set X . Assume the network weights are scaled according to Assumption 1. Let the
network have input bounds l, u ∈ Rnx and preactivation bounds l̂, û ∈ Rnz . Consider also the relaxation
error ∆f∗SDP(X ) := f̂∗(X ) − f∗(X ). Let P ∗ and (x∗, z∗) be optimal solutions for the relaxation f̂∗(X ) and
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the unrelaxed problem f∗(X ), respectively. Also, let ‖ · ‖ be a norm on Rnx . There exists ε ∈ R such that
‖P ∗x − x∗‖ ≤ ε and

∆f∗SDP(X ) ≤
nz∑
i=1

(
ReLU(ci)q(l, u) + ReLU(−ci) min{ûi, ε‖wi‖∗}

)
, (18)

where ‖ · ‖∗ is the dual norm of ‖ · ‖, and where

q(l, u) = max
k∈{1,2,...,nx}

max{|lk|, |uk|}.

Proof. First, since X is bounded, there exists ε ≥ 0 such that ‖x̃[0]∗ − x∗‖ ≤ ε. The definitions of x̃[0]∗ and
(x∗, z∗) give that

∆f∗SDP(X ) =

nz∑
i=1

ci((x̃[1]∗)i − z∗i ) ≤
nz∑
i=1

∆f∗i , (19)

where

∆f∗i = sup

{
ci((x̃[1])i − zi) : zi = ReLU(w>i x), x̃[1] ≥ 0, x̃[1] ≥Wx̃[0],

diag(X̃[C1]) = diag(WX̃[B1]), P1 = 1, P � 0, ‖x̃[0]− x‖ ≤ ε, x, x̃[0] ∈ X
}

for all i ∈ {1, 2, . . . , nz}. Defining the auxiliary variables Pẑ = Wx̃[0] and ẑ = Wx, this is equivalent to

∆f∗i = sup

{
ci((x̃[1])i − zi) : zi = ReLU(ẑi), x̃[1] ≥ 0, x̃[1] ≥ Pẑ, diag(X̃[C1]) = diag(WX̃[B1]),

P1 = 1, P � 0, ‖x̃[0]− x‖ ≤ ε, Pẑ = Wx̃[0], ẑi = w>i x, x, x̃[0] ∈ X
}
.

If x, x̃[0] ∈ X and ẑ, Pẑ satisfy ẑ = Wx, Pẑ = Wx̃[0], and ‖x̃[0] − x‖ ≤ ε, then |(Pẑ)i − ẑi| = |w>i (x̃[0] −
x)| ≤ ‖wi‖∗‖x̃[0] − x‖ ≤ ε‖wi‖∗ for all i ∈ {1, 2, . . . , nz} by the Cauchy-Schwarz inequality for dual norms.
Therefore,

∆f∗i ≤ sup

{
ci((x̃[1])i − zi) : zi = ReLU(ẑi), x̃[1] ≥ 0, x̃[1] ≥ Pẑ, diag(X̃[C1]) = diag(WX̃[B1]),

P1 = 1, P � 0, l̂ ≤ ẑ, Pẑ ≤ û, |(Pẑ)k − ẑk| ≤ ε‖wk‖∗ for all k ∈ {1, 2, . . . , nz}, ẑ, Pẑ ∈ Rnz

}
.

We now translate the optimization variables in the above problem from ẑ ∈ Rnz and P ∈ R1+nx+nz to
zi, (Pz)i ∈ R. To this end, we note that if P is feasible for the above supremum, then

diag(X̃[C1])i = diag(WX̃[B1])i

= w>i (X̃[B1])i

≤ ‖(X̃[B1])i‖∞‖wi‖1,

where (X̃[B1])i is the ith column of X̃[B1], and the inequality again comes from Cauchy-Schwarz. By the
weight matrix scaling assumption, this yields

diag(X̃[C1])i ≤ ‖(X̃[B1])i‖∞.
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Now, since P is positive semidefinite, Lemma 3 gives that

‖(X̃[B1])i‖∞ = max
k∈{1,2,...,nx}

|(X̃[B1])i|k

= max
k∈{1,2,...,nx}

|(X̃[B1])ki|

≤ max
k∈{1,2,...,nz}

1

2

(
(X̃[A1])kk + (X̃[C1])ii

)
=

1

2
(X̃[C1])ii +

1

2
max

k∈{1,2,...,nx}
(X̃[A1])kk.

Noting that (X̃[C1])ii = diag(X̃[C1])i, the bound of interest becomes

diag(X̃[C1])i ≤ max
k∈{1,2,...,nz}

(X̃[A1])kk.

We now seek to bound (X̃[A1])kk. Recall that (X̃[A1])kk = diag(X̃[A1])k ≤ (lk + uk)(x̃[0])k − lkuk. If
(lk + uk) ≥ 0, then (x̃[0])k ≤ uk implies that (lk + uk)(x̃[0])k ≤ (lk + uk)uk, and therefore (X̃[A1])kk ≤
(lk+uk)uk− lkuk = u2

k. On the other hand, if (lk+uk) < 0, then (x̃[0])k ≥ lk implies that (lk+uk)(x̃[0])k ≤
(lk + uk)lk, and therefore (X̃[A1])kk ≤ (lk + uk)lk − lkuk = l2k. Hence, in all cases, it holds that

(X̃[A1])kk ≤ I(lk + uk ≥ 0)u2
k + I(lk + uk < 0)l2k.

We can further simplify this bound as follows. If lk +uk ≥ 0, then uk ≥ −lk and uk ≥ lk, implying |lk| ≤ uk,
so l2k ≤ u2

k and therefore u2
k = max{l2k, u2

k}. On the other hand, if lk + uk < 0, then an analogous argument

shows that l2k = max{l2k, u2
k}. Hence, we conclude that the above bound on (X̃[A1])kk can be rewritten as

(X̃[A1])kk ≤ max{l2k, u2
k}.

Therefore, returning to the bound on (X̃[C1])i, we find that

diag(X̃[C1])i ≤ max
k∈{1,2,...,nx}

max{l2k, u2
k},

for all i ∈ {1, 2, . . . , nz}. Now, note that since P � 0, Schur complements give that[
X̃[A1]− x̃[0]x̃[0]> X̃[B1]− x̃[0]x̃[1]>

X̃[B1]> − x̃[1]x̃[0]> X̃[C1]− x̃[1]x̃[1]>

]
� 0,

which implies that
diag(X̃[C1]) ≥ diag(x̃[1]x̃[1]>) = x̃[1]� x̃[1].

Therefore, our upper bound on the diagonal elements of X̃[C1] yields that

(x̃[1])i ≤ max
k∈{1,2,...,nx}

max{|lk|, |uk|} = q(l, u).

Hence, we have derived a condition on the component (x̃[1])i that all feasible P must satisfy. The supremum
of interest may now be further upper bounded giving rise to

∆f∗i ≤ sup

{
ci((x̃[1])i − zi) : zi = ReLU(ẑi), (x̃[1])i ≥ 0, (x̃[1])i ≥ (Pẑ)i, (x̃[1])i ≤ q(l, u),

l̂i ≤ ẑi, (Pẑ)i ≤ ûi, |(Pẑ)i − ẑi| ≤ ε‖wi‖∗, ẑi, (Pẑ)i ∈ R
}
,

which is now in terms of the scalar optimization variables we desired.
We now turn to solving the above optimization. First, consider the case that ci ≥ 0. Then we seek

to maximize the difference (x̃[1])i − zi subject to the given constraints. Noting that (x̃[1])i ≤ q(l, u) and
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zi ≥ 0 on the above feasible set, we remark that the objective is upper bounded as ci((x̃[1])i−zi) ≤ ciq(l, u).
Indeed, this upper bound is attained at the feasible point defined by zi = ẑi = (Pẑ)i = 0 and (x̃[1])i = q(l, u).
Hence, we conclude that for all i ∈ {1, 2, . . . , nz} such that ci ≥ 0, it holds that

∆f∗i ≤ ciq(l, u). (20)

Now consider the case that ci < 0. Then we seek to minimize the difference (x̃[1])i − zi subject to the given
constraints. In this case, the optimal objective value depends on the relative sizes of ûi and ε‖wi‖∗. In
particular, when ûi ≤ ε‖wi‖∗, the constraint ẑi ≤ ûi becomes active at optimum, yielding a supremum value
of −ciui. Alternatively, when ε‖wi‖∗ ≤ ûi, the constraint |(Pẑ)i − ẑi| ≤ ε‖wi‖∗ becomes active at optimum,
yielding the supremum value of −ciε‖wi‖∗. Therefore, we conclude that for all i ∈ {1, 2, . . . , nz} such that
ci < 0, it holds that

∆f∗i ≤ −ci min{ûi, ε‖wi‖∗}. (21)

Substituting (20) and (21) into (19) gives the desired bound.

5.3.2 Proposed Partition

We now focus on developing an optimal two-part partitioning scheme based on the worst-case relaxation
bound of Theorem 2. We take ε ≈ 0 to simplify the analysis. However, we see that neither the preactivation
bounds nor the rows of the weight matrix affect the SDP relaxation bound when ε = 0. In particular, the
bound takes the form

∆f∗SDP(X ) ≤ q(l, u)

nz∑
i=1

ReLU(ci),

where
q(l, u) = max

k∈{1,2,...,nx}
max{|lk|, |uk|}.

Therefore, since the design of the partition amounts to choosing inputs bounds l, u for the input parts,
the input bounds serve as our optimization variables in minimizing the worst-case relaxation bound. In
particular, its clear from the form of q that partitioning along the coordinate with the loosest input bound
minimizes the worst-case relaxation bound. This observation is formalized in Theorem 3 that follows.

Theorem 3 (Optimal SDP partition). Consider the two-part partitions defined by uniform division of X
along the coordinate axes: {X (1)

i ,X (2)
i }, with X (1)

i = {x ∈ X : l
(1)
i ≤ x ≤ u

(1)
i } and X (2)

i = {x ∈ X : l
(2)
i ≤

x ≤ u
(2)
i }, where l

(1)
i = l, u

(1)
i = (u1, u2, . . . , ui−1,

1
2 (li + ui), ui+1, . . . , unx

), l
(2)
i = (l1, l2, . . . , li−1,

1
2 (li +

ui), li+1, . . . , lnx), and u
(2)
i = u, for all i ∈ {1, 2, . . . , nx} =: I. Let

i∗ ∈ arg max
k∈{1,2,...,nx}

max{|lk|, |uk|}, (22)

and assume |li∗ | 6= |ui∗ |. Then the partition {X (1)
i∗ ,X

(2)
i∗ } is optimal in the sense that the upper bound

factor q(l
(j)
i∗ , u

(j)
i∗ ) in (??) equals the unpartitioned upper bound q(l, u) on one part j of the partition, is

strictly less than q(l, u) on the other part, and q(l
(j)
i , u

(j)
i ) = q(u, l) for both j ∈ {1, 2} for all other i /∈

arg maxk∈{1,2,...,nx}max{|lk|, |uk|}.

Proof. First consider partitioning along coordinate i /∈ arg maxk∈{1,2,...,nx}max{|lk|, |uk|}. Then

q(l
(1)
i , u

(1)
i ) = max

k∈{1,2,...,nx}
max{|(l(1)

i )k|, |(u(1)
i )k|}

= max

{
|l1|, . . . , |lnx

|, |u1|, . . . ,
∣∣∣∣ li + ui

2

∣∣∣∣ , . . . , |unx
|
}

= max{|li∗ |, |ui∗ |}
= q(l, u),
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since |(li + ui)/2| ≤ (|li|+ |ui|)/2 < max{|li∗ |, |ui∗ |} and i 6= i∗ implies that

max{|li∗ |, |ui∗ |} ∈
{
|l1|, . . . , |lnx

|, |u1|, . . . ,
∣∣∣∣ li + ui

2

∣∣∣∣ , . . . , |unx
|
}
.

In an analogous fashion, it follows that

q(l
(2)
i , u

(2)
i ) = q(l, u).

Now consider partitioning along coordinate i∗. Note that either maxk∈{1,2,...,nx}max{|lk|, |uk|} = |li∗ | or
maxk∈{1,2,...,nx}max{|lk|, |uk|} = |ui∗ |. Suppose the first case holds true. Then

q(l
(1)
i∗ , u

(1)
i∗ ) = max

k∈{1,2,...,nx}
max{|(l(1)

i∗ )k|, |(u(1)
i∗ )k|}

= max

{
|l1|, . . . , |lnx |, |u1|, . . . ,

∣∣∣∣ li∗ + ui∗

2

∣∣∣∣ , . . . , |unx |
}

= |li∗ |
= q(l, u),

since |(li∗ + ui∗)/2| ≤ (|l∗i |+ |u∗i |)/2 < |l∗i | and

|li∗ | ∈ max

{
|l1|, . . . , |lnx

|, |u1|, . . . ,
∣∣∣∣ li∗ + ui∗

2

∣∣∣∣ , . . . , |unx
|
}
.

Over the second part of the partition,

q(l
(2)
i∗ , u

(2)
i∗ ) = max

k∈{1,2,...,nx}
max{|(l(2)

i∗ )k|, |(u(2)
i∗ )k|}

= max

{
|l1|, . . . ,

∣∣∣∣ li∗ + ui∗

2

∣∣∣∣ , . . . , |lnx
|, |u1|, . . . , |unx

|
}

< |li∗ |
= q(l, u),

since |(li∗ + ui∗)/2| < |li∗ | and

|l∗i | /∈
{
|l1|, . . . ,

∣∣∣∣ li∗ + ui∗

2

∣∣∣∣ , . . . , |lnx |, |u1|, . . . , |unx |
}

since |li∗ | 6= |ui∗ |. In the other case that maxk∈{1,2,...,nx}max{|lk|, |uk|} = |ui∗ |, it follows via the same
argument that

q(l
(1)
i∗ , u

(1)
i∗ ) < q(l, u),

q(l
(2)
i∗ , u

(2)
i∗ ) = q(l, u).

Since partitioning along any other coordinate i /∈ arg maxk∈{1,2,...,nx}max{|lk|, |uk|} was shown to yield

q(l
(1)
i , u

(1)
i ) = q(l

(2)
i , u

(2)
i ) = q(u, l), we conclude that the coordinate i∗ is optimal in the sense proposed.

Intuitively, the partitioning scheme defined in Theorem 3 is optimal because any other uniform partition
along a coordinate axis cannot tighten the worst-case relaxation error bound. On the other hand, Theorem 3
guarantees that using the partition coordinate in (22) results in a strict tightening of the worst-case relaxation
error on at least one part of the partition.
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6 SDP Relaxation with Nonconvex Cuts

6.1 Convex Cuts

As a well-known technique in nonlinear and mixed-integer optimization, adding valid convex constraints
(convex cuts) could potentially reduce the relaxation gap of the problem. The most effective cut for SDP
relaxation is based on the reformulation-linearization technique (RLT), which is obtained by multiplying
linear constraints and relaxing the product into linear matrix constraints [14].

In the formulation of N [k]
SDP, there are only 2 linear constraints: x̃[k] ≥ 0 and x̃[k] ≥W [k−1]x̃[k− 1]. The

RLT cuts associated with these linear constraints exist in the original constraint set N [k]
SDP, except for the

one obtained by the following multiplication:

(x̃[k]−W [k−1]x̃[k − 1])(x̃[k]−W [k−1]x̃[k])> ≥ 0 (23)

which leads to the relaxed cut:

diag(X̃[Ck]−W [k−1]X[Bk]−X[B>k ]W [k−1]>

+W [k−1]X[Ak]W [k−1]>) ≥ 0
(24)

Note that only the diagonal entries are of interest because the other terms do not appear in the original
QCQP formulation of the problem.

6.1.1 Deficiency of RLT

Although the above RLT reformulation seems to add new information to the SDP relaxation, a closer
examination reveals otherwise.

Proposition 2. Constraint set (5) implies the RLT inequality (24) for all k ∈ {1, . . . ,K}.

Proof. Since X̃ � 0, all principle submatrices X̃[k] are positive semidefinite for k ∈ {1, . . . ,K}. Then,
X̃[k] � 0 can be restated in terms of the general Schur’s complement:

X̃[k] � 0⇐⇒ {X̃[Ck] � 0,

X̃[Ak]− X̃[Bk](X̃[Ck])†X̃[B>k ] � 0,

(I − X̃[Ck](X̃[Ck])†)X̃[B>k ] = 0}

(25)

Now, one can write:

diag(W [k−1]X̃[Ak]W [k−1]>−

W [k−1]X̃[Bk](X̃[Ck])†X̃[B>k ]W [k−1]>) ≥ 0
(26)

After noticing that diag(X̃[Ck]) = diag(W [k−1]X̃[Bk]) and (I − X̃[Ck](X̃[Ck])†)X̃[B>k ] = 0, we obtain:

diag(W [k−1]X̃[Ak]W [k−1]> − X̃[B>k ]W [k−1]>) ≥ 0 (27)

By adding diag(X̃[Ck]−W [k−1]X̃[Bk]) = 0 to both sides of equation, the above inequality yields (24).

Therefore, adding convex cuts to (3) using RLT will only increase computation time without reducing
the relaxation gap.

6.2 Source of Relaxation Gap

The SDP relaxation is obtained by replacing the equality constraint X̃− x̃x̃> = 0 with the convex inequality
X̃ − x̃x̃> � 0. Hence, the non-convex constraint X̃ − x̃x̃> � 0 excluded in this formulation is the source of
the relaxation gap.
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One necessary condition for X̃ − x̃x̃> � 0 is:

φ>i (X̃ − x̃x̃>)φi ≤ 0 ∀i such that

{φ1, . . . , φnx̃}forms a basis in Rnx̃
(28)

However, since −‖φ>i x̃‖2 is concave in x̃, it is impossible to add this constraint under a convex optimization
framework.

A non-convex cut is defined to be a valid constraint that is non-convex. In this case, any constraint in
the form of (28) is a non-convex cut.

6.3 A Penalization Approach

Since directly incorporating any non-convex cut makes the resulting problem non-convex, one may resort to
penalization techniques. Explicitly, the objective of (3) can be modified as:

c>i z +

nx̃∑
i=1

φ>i (x̃x̃> − X̃)φi

Nevertheless, the constraint X̃ − x̃x̃> � 0 implies that c>i z+
∑nx̃

i=1 φ
>
i (x̃x̃>− X̃)φi ≤ c>i z, therefore making

the new problem not necessarily a relaxation of the original problem, i.e. the case f̂∗i (X ) ≤ f∗i (X ) is
possible. Moreover, this penalization approach adds a convex term (‖φ>i x̃‖2) to the maximizing objective,
which destroys the convexity of the problem.

To avoid this issue, one may use the technique proposed in [17]. That work penalizes a given QCQP
with a linear objective such that the problem remains a relaxation of the original problem after penalization.
The authors proposed a sequential SDP procedure to approximate f∗i (X ) for any i in (2) using the modified
objective p∗i (X ), defined as:

p∗i = sup
(x,z)∈NSDP, x∈X

c>i z +

√
c>i (x̃x̃> − X̃)ci (29)

it can be shown that p∗i (X ) remains a relaxation of the original problem (2), i.e. p∗i (X ) ≥ f∗i (X ).

6.3.1 Deficiency of Penalty Methods

The problem with the approach proposed in (29) is that the vector ci inside the square root must match
that of the original linear objective, making it practically limited. Arguing under the framework of adding
constraints in the form of (28), the method in [17] only enforces one of them, namely c>i (X̃ − x̃x̃>)ci ≤ 0.
Objective (29) ensures that c>i (X̃ − x̃x̃>)ci is as small as possible.

Although interior point methods are known to converge to maximum rank solutions, the relaxed matrix
is low rank in general. Therefore, it is likely that the constraint c>i (X̃ − x̃x̃>)ci ≤ 0 is already satisfied for
the unmodified solution. Simulations found in Section 6 corroborate this fact.

6.4 Secant Approximation

To address the above-mentioned issues, we leverage the method of secant approximation, inspired by [18].
Note that the constraint (28) can be written as:

−(φ>i x̃)2 ≤ −〈X̃, φiφ>i 〉

Graphically, the grey area in Figure 3 indicates the original feasible space of (x̃, X̃) constrained by
−(φ>i x̃)2 ≤ −〈X̃, φiφ>i 〉. Since the set is non-convex, we use secant lines to approximate it. The approxi-
mated feasible space contains every point above the 3 secant lines, namely the grey area plus the red area.
ξ1, ξ2 are the points by which the feasible space is divided. For each part of the space, we use a separate
line to lower-bound it. In other words, for each divided space, a necessary condition for (x̃, X̃) to lie in
the original feasible space is given. As observed in Figure 3, since secants are used for approximation, it is
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φ>i x̃

−〈X̃, φiφ>i 〉

l uξ2ξ1

Figure 3: l and u are lower and upper bounds of {φ>i x̃| (x̃, X̃) ∈ NSDP}, respectively. Red areas indicate
false feasible space induced by the secant approximation.

important that l and u be known in advance. For this certification problem, those bounds can be calculated
with auxiliary SDPs. More importantly, for any {(x̃, X̃) ∈ NSDP|X̃ = x̃x̃>}, (x̃, X̃) lies above exactly one
secant line.

In mathematical language, this means that∨
q∈{0,...,Q+1}

(x̃, X̃) ∈ Γq(φi) (30)

where Γq(φi) is defined as

∨
q∈{0,...,Q+1}

[
ξq ≤ φ>i x̃ ≤ ξq+1, and

ξqξq+1 − (φ>i x̃)(ξq + ξq+1) ≤ −〈X̃, φiφ>i 〉

]
(31)

and
∨

is a logical OR symbol commonly used in boolean algebra and ξ0 , l, ξq+1 , u, with Q being the

number of dividing points. This means that every pair (x̃, X̃) in {(x̃, X̃) ∈ NSDP|X̃ = x̃x̃>} belongs to only
one Γq(·) for some q, except when φ>i x̃ = ξq for q = {0, . . . , Q+ 1}.

Lemma 4. The secant approximations (30) exactly recovers the constraint −(φ>i x̃)2 ≤ −〈X̃, φiφ>i 〉 when
Q→∞.

Proof. As Q → ∞, ξq = φ>i x̃ = ξq+1 for q = {0, . . . , Q + 1}. Therefore, ξqξq+1 − (φ>i x̃)(ξq + ξq+1) =

(φ>i x̃)2 − 2(φ>i x̃)2 = −(φ>i x̃)2, resulting in −(φ>i x̃)2 ≤ −〈X̃, φiφ>i 〉

Of course, an infinite number of divisions is impractical from both a complexity standpoint and a nu-
merical standpoint. Thus, selecting ξq’s intelligently to minimize the red area in Figure 3 is critical.

Proposition 3. Given l and u for {φ>i x̃| (x̃, X̃) ∈ NSDP}, a secant approximation with Q division points

{ξq}Qq=1 achieves the best approximation when [l, u] is equally partitioned.

Proof. We optimize for the red area in Figure 3:

min
{ξq}Qq=1

Q+1∑
q=1

∫ ξq

ξq−1

−x2 − (ξq−1ξq − x(ξq−1 + ξq))dx

Since the objective f(·) is convex in {ξq}Qq=1, ∇f({ξq}Qq=1) = 0 implies that ξq = 1
2 (ξq−1 + ξq+1) for q =

{0, . . . , Q+ 1}. This further implies an equal partitioning of [l, u].
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6.5 Constructing Valid Cuts

Naturally, only φi’s for which the negative definite constraints are violated (φ>i (X̃ − x̃x̃>)φi > 0) are of
interest. Towards this end, we run the unstrengthened SDP problem (3) once to obtain a candidate solution
(x̃∗, X̃∗), and then find the eigenvectors corresponding to the positive eigenvalues of x̃∗(x̃∗)> − X̃∗.

However, if the candidate solution (x̃∗, X̃∗) lies in the false feasible space, then the secant approximation
may not cut off the candidate solution, making the added constraints redundant. This is well demonstrated
by Example 1 in [18].

Therefore, it is necessary to actively search for a valid cut with secant approximations. Formally, this
can be accomplished via disjunctive programming.

6.6 Disjunctive Programming

Theorem 3.1 in [19] serves as the basis to constructing families of valid inequalities from a disjunctive
programming problem, named Cut Generating Linear Programming (CGLP) [18]:

min
α,β,{µq},{νq}

α>χ∗ − β

s.t. A>µq +D>q ν
q ≤ α q ∈ {1, . . . , Q}

b>µq + d>q ν
q ≥ β q ∈ {1, . . . , Q}

µq, νq ≥ 0 q ∈ {1, . . . , Q}
Q∑
q=1

(κ>µq + η>q ν
q) = 1

(CGLP)

where χ is a vectorized version of the variables (x̃, X̃) with χ∗ = [x̃∗
>
, vec(X̃∗)>]>, {µq}, {νq} being vectors

of nonnegative entries, and κ, {ηq} being normalizing constants. κ, {ηq} are some constants to help with
numerical stabilities, and are not of theoretical interest.

Most importantly, Aχ ≥ b (Aχ is just matrix multiplication) is a reformulation of the constraint (x̃, X̃) ∈
NSDP, and D>q χ ≥ dq is a reformulation of the constraint (x̃, X̃) ∈ Γq(φi) for any φi. This is possible because

every constraint is affine after lifting (i.e. introducing X̃ in the place of x̃x̃>). That is, different CGLPs

exist for different φis. Moreover, note that given Q ∈ Z, {ξq}Qq=1 are calculated according to Proposition 3.
The following result is a modification of Theorem 1 in [18]:

Theorem 4. If the optimal value of (CGLP) is negative, then a valid cut αχ ≥ β is found that cuts off
the candidate solution (x̃∗, X̃∗). Conversely, if the optimal value is nonnegative, then no such cut exists for

{Γq(φi)}Q+1
q=0 .

Proof. According to Theorem 3.1 of [19], αχ ≥ β is a valid constraint for (3) with the secant approximations
(30) if and only if the first three lines of the CGLP constraints hold true. All alphas and betas for which
αχ ≥ β is a valid constraint is in the polyhedral search space of CGLP. If there exist α∗ and β∗ such that
α∗χ∗ < β∗, the optimal value of CGLP must be negative. On the other hand, if the optimal value of CGLP
is negative, such α∗ and β∗ must exist. In this case, α∗ and β∗ must also meet the condition α∗χ ≥ β∗ due
to the convexity of polyhedra. Then, χ∗ contradicts the requirements of χ, making the constraint αχ ≥ β a
valid cut.

Conversely, if no such α∗ and β∗ exist, then χ∗ already satisfies all valid constraints with respect to
{Γq(φi)}Q+1

q=0 since the polyhedral search space is convex, and convexity guarantees an exhaustive search.
Thus, no valid cut can be found.

Theorem 4 and Lemma 4 lead to the following result:

Corollary 1. If D>k χ ≥ dk corresponds to a set of constraints
∨
q∈{0,...,Q+1}(x̃, X̃) ∈ Γq(φi) with φi being

an eigenvector of x̃∗x̃∗> − X̃∗ associated with a positive eigenvalue, then a valid cut αχ ≥ β always exists if
Q→∞.
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6.7 A Sequential Algorithm

We propose Algorithm 1 to sequentially apply non-convex cuts to the verification problem.

Algorithm 1: Sequential SDP verification of NN Robustness by adding secant-approximated non-
convex cuts

1 verification (X ,S, {W 0 . . .WK−1}, Q,maxiter, γ);

Input : Input uncertainty set X , safe set S, trained network weights {W 0 . . .WK−1}, number of
partitions for the secant approximation, maximum number of iterations maxiter, and the
eigenvalue threshold γ.

Output: τr = maxC>r z for r ∈ {1, . . . , R}, where Cr is the rth row of C, and R is the number of
rows of C, as specified by the safe set S

2 for c = C1, . . . , CR do

3 (x̃∗, X̃∗)← arg max{c>z : (x, z) ∈ NSDP, x ∈ X} ;

4 α̃ = [], β̃ = [] ;
5 for i = 1, . . . ,maxiter do

6 (λ ∈ Rm, V ∈ Rnx̃×m)← eigenvalues of x̃∗x̃∗
> − X̃∗ bigger than γ, and with eigenvector

corresponding to the ith eigenvalue being ith column of V ;
7 for φ = V1, . . . , Vm do
8 (l, u)← {min,max}{φ>z : (x, z) ∈ NSDP, x ∈ X} ;
9 (α, β)← CGLP(Q,φ, u, l);

10 if α>χ∗ < β then

11 α̃ = [α̃;α>], β̃ = [β̃;β]
12 end

13 end

14 (x̃∗, X̃∗)← arg max{c>z : (x, z) ∈ NSDP, α̃χ ≥ β̃, x ∈ X} ;

15 end

16 τr = c>x̃∗[K];

17 end

The main result of this report is stated below.

Theorem 5. For every iteration i ∈ {2, . . . ,maxiter} in Algorithm 1, it holds that

f∗(X ) ≤ c>x̃∗i [K] ≤ c>x̃∗i−1[K] ≤ f̂∗(X ) (32)

with x̃∗i , X̃
∗
i , and by extention P ∗i being the optimizers of the ith iteration. The middle inequality becomes

strict if at least one of the optimal values of CGLPs in iteration i is negative and either of the following
holds:

• ĉ lies in the null space of Pi−1, where ĉ , [01×(nx̃−nK) c
>]>

• Q→∞

Proof. The inequalities c>x̃∗i [K] ≤ c>x̃∗i−1[K] ≤ f̂∗(X ) are due to the fact that a strict reduction in the
search space will not yield a higher optimal value. f∗(X ) serves as a lower bound since the constraints are
valid, according to Theorem 4.

Now, since the objective is linear, ĉ>x̃ = γ must be a supporting hyperplane for the spectrahedral (convex
body arising from linear matrix inequalities) feasible set at x̃∗i−1, where γ denotes as the constant c>x̃∗i−1[K].
By Proposition 2 in [20], the intersection of a closed convex set (e.g., this feasible set) and the supporting
hyperplane is an exposed face. Furthermore, by [21], it is known that any exposed face of a spectraheron
is a proper face, and the null space of P will stay constant over the relative interior of this face. Thus, the
intersection will consist of points (x̃, X̃) such that ĉ>x̃ = γ and N (P ) = N (Pi−1).
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Let a basis of N (Pi−1) be denoted as {ψj}, where each vector is partitioned as ψj , [ωj ψ̂>j ]>. There-

fore, ψ̂>j x̃ = −ωj for j ∈ {1, . . . , nx̃ + 1}. If ĉ ∈ N (Pi−1), the supporting hyperplane will intersect the

spectrahedron at exactly one point (the face is of affine dimension 0) because x̃ is already fixed in {ψ̂j}
coordinates, and γ can only take on one value. If the intersection only consists of one point, then a valid cut
will invalidate this point, and the objective value will strictly decrease.

On the other hand, if Q→∞, the original negative semidefinite constraint is recovered, as per Lemma 4.
Then, after using the valid cut, Pi will have a strictly lower rank than Pi−1. Since the intersection consists
of points such that N (P ) = N (Pi−1), all those points will not be in the feasible space anymore under the
presence of this valid cut. This leads to a strict decrease in objective value.

Since nx̃ is usually very large for multilayer networks, the first condition is often satisfied. However,
it is important to note that those 2 conditions are only sufficient conditions, and that in practice there is
normally a non-zero reduction in relaxation gap whenever a valid cut is calculated. Moreover, if a valid cut
is given, the algorithm will always reach new optimal points, thus avoiding the situation of repeating the
same search again and again.

This algorithm is asymptotically exact if an infinite number of iterations is taken, as explained below.

Lemma 5. The relation c>x̃∗i [K] = f∗(X ) holds as i→∞, provided that γ = 0 and Q→∞

Proof. The proof follows directly from Theorems 4, 5, and Corollary 1.

6.8 Geometric Analysis of Non-convex Cuts

In this section, we offer a geometric intuition into the success of non-convex cuts. We revisit (30) and write
it as:

ξqξq+1 − (φ>x̃)(ξq + ξq+1) ≤ −〈X̃, φφ>〉
⇔ 〈X̃, φφ>〉 ≤ (φ>x̃− ξq)(ξq+1 − φ>x̃) + (φ>x̃)2

(33)

Since there always exists a partition number Q large enough such that (φ>x̃− ξq)(ξq+1 − φ>x̃) ≤ ε, it is
possible to rewrite equation (33): ∑

i,j∈{nx̃}×{nx̃},i6=j

(φiφj)‖~xi‖‖~xj‖cos(θij) ≤

∑
i,j∈{nx̃}×{nx̃},i6=j

(φiφj)‖~xi‖‖~xj‖cos(θi)cos(θj) + ε
(34)

after substituting equation (8). Here, φi is the ith entry of φ (to be distinguished from φi, which is a vector
in the set of basis), and θij is the angle between the vectors ~xi, ~xj , and θi denotes the angle between ~e and
~xi for i ∈ {1, . . . , nx̃}.

Therefore, there must exist a pair (i, j) such that

cos(θij) ≤ cos(θi)cos(θj) +
ε

nx̃
(35)

Since nx̃ is usually large in multi-layer networks and ε is chosen to be very small, ε
nx̃

can be neglected for
practical purposes.

Recall from Section 4 that θi = 0 ∀i ∈ {1, . . . , nx̃} is both sufficient and necessary for the tightness of the
relaxation. Furthermore, in the following lemma we will show that any decrease in θi for any i can contribute
to a tighter relaxation.

Lemma 6. For any row vector ~x in V , as part of the factorization of X̃, any increase in the lower bound
for ~x·~e

‖~x‖ will decrease the upper bound on the relaxation gap for at least one entry in x̃.

Proof. Extending the results from Section 4, it can be verified that for a fixed θ, the angle between ~e and ~χ,
a decrease in ‖~χ‖ will lead to a smaller spherical cap. Now, consider a fixed ‖~χ‖. It can be shown that the

height of the spherical cap is ‖~χ‖2 (1 − cos(θ)). Therefore, any increase in cos(θ) will lead to a smaller cap.

Since ~χ is just a linear combination of different ~x, increasing the lower bound for ~x·~e
‖~x‖ will also increase the

lower bound for ~χ·~e
‖~χ‖ .
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Given any such pair (i, j), if cos(θij) is large, namely possibly close to one, the term cos(θi)cos(θj) will
have to be larger under the constraint cos(θij) ≤ cos(θi)cos(θj) + ε

nx̃
. This means that cos(θi) ≈ 1 and

cos(θj) ≈ 1, making both angles very small. Without this constraint, it is possible for ~xj , ~xi to be collinear,
but not collinear with ~e, thus making them have large angles θi and θj . Figure 4 graphically showcases this
difference.

~e
~xi

~xj

θiθj

θij

(a) cos(θij) ≤ cos(θi)cos(θj)

~e

~xj

~xi

θj

θi

θij

(b) cos(θij) ≥ cos(θi)cos(θj)

Figure 4: Illustration of possible configurations of ~xi, ~xj given a fixed θij

In particular, since ReLU only outputs positive values, we have θi ∈ [0, π2 ] for all i ∈ {1, . . . , nx̃}.
However, the vectors ~xi that correspond to the input layer are exceptions. Without loss of generality, it is
possible to also assume these to be nonnegative by changing the weight matrix of the first layer. Therefore,
cos(θi) ≥ 0 ∀i ∈ {1, . . . , nx̃}. Thus, when cos(θi)cos(θj) ≈ 1, we have θi ≈ 0 and θj ≈ 0. Without this
constraint, it is possible that θj ≈ π and θi ≈ π. In other words, with the ReLU constraints in place, the
non-convex cuts will push the vectors towards ~e instead of −~e.

If cos(θij) is small, then inequality (35) will not be binding, and the original semidefinite constraints will
work satisfactorily. Ideally, inequality (35) will hold for all pairs (i, j), but this is not guaranteed. However,
under the assumption that the weight matrices in the neural network are relatively well conditioned (no
large condition number) and that ε is negligible, a large number of the pairs (i, j) are expected to satisfy or
approximately satisfy inequality (35). The proof can be found in the supplementary material.

Proof. As explained, only those pairs (i, j) with a relatively large cos(θij) are of interest. Denote the
threshold as ρ ∈ [0.5, 1) such that cos(θij) ≥ ρ. We call a pair (i, j) to be valid if it satisfies inequality
(35) and invalid otherwise. In the worst case, cos(θi)cos(θj) − cos(θij) = 1 − ρ for all valid pairs and
cos(θi)cos(θj) − cos(θij) = −% < 0 for all invalid pairs. This leads to the case where the number of valid
pairs is the smallest (denoted as ϑ1) and the number of invalid pairs is the largest (denoted as ϑ2). The
other threshold % exists because a number cos(θij) too close to cos(θi)cos(θj) approximately satisfies the
inequality. Under the assumption that weight matrices are well conditioned, it implies that ‖~xi‖‖~xj‖s are
approximately the same amongst all (i, j) pairs. Thus, if ε is negligible:∑

i,j

(φiφj)‖~xi‖‖~xj‖(cos(θi)cos(θj)− cos(θij)) ≥ 0

=⇒ ϑ1(1− ρ)− ϑ2(%) ≈ 0 =⇒ ϑ1

ϑ2
≈ %

1− ρ

(36)

If ρ = 0.8 and % = 0.2, then at least half of all pairs such that cos(θij) ≥ ρ will be valid. As ρ increases, so
does ϑ1

ϑ2
. This means that almost all of the most important pairs (i, j) are valid.

Furthermore, the nature of a multi-layer setup means that if ~xi and ~xj are from different layers of the
network, they depend on each other. Figure 4 shows that the non-convex cut tends to make ~xi and ~xj lie
on different sides of ~e in the event of a large cos(θij). This means that as vectors build on each other (see
Figure 1 in [2]), they will revolve around ~e, instead of branching out into a certain direction. This further
implies a small angle with ~e for all ~x.
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7 Experiments

We certify the robustness of the IRIS dataset1 with pre-trained MLP classification network with 99% accuracy
on test data using the original SDP approach, the partitioning approach as outlined in section 5, Algorithm
1, and the penalization approach in Section 6.3. For all experiments, maxiter is set to 10. Moreover, the l∞
radius of X is set to 0.15 for networks with 5 and 10 hidden layers, and set to 0.075 for the other 2 networks.
This is because larger networks are naturally more sensitive to perturbation.

(a) 5 H-Layers, Q=10 (b) 10 H-Layers, Q=10

(c) 15 H-Layers, Q=10

Figure 5: f̂∗i (X ) for different certification methods and different networks

The objective f̂∗i (X ) of (3) for the aforementioned approaches is shown in Figure 5 for 5 data points each.
It can be observed that when the network is small, the original SDP procedure is already sufficient.

However, as the number of hidden layers grows, Algorithm 1 shows its strength by certifying more data
points. The penalization approach remains ineffective although sometimes it decreases the trace gap.

Moreover, it is apparent that when the network is small, the partitioning technique works better than
other techniques.

7.1 How to accelerate the computation

In order to accelerate the optimization process, one would often consider leveraging the low-rank nature of
the problem and use Monteiro-Burer method [22] to solve the SDP. This would reduce the complexity from
O(n2) to O(nr), where r is the rank of the true solution. Since the true rank is 1 in this case, this would
dramatically speed up the algorithm.

1https://archive.ics.uci.edu/ml/datasets/iris
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However, the increase in speed comes at the expense of global guarantee. When using the Monteiro-
Burer method, it essentially converts the convex SDP problem into a non-convex one, therefore making the
extraction of the true global optimum of the original SDP very hard. In some applications this would not be
the case, but again this is impossible to certify from a theoretical viewpoint generally. Given that the very
purpose of this optimization problem is about conservative certification, direct utilization of this method is
indeed inappropriate.

In [23], the author proposed a new low-rank optimization algorithm prepared for robotic perception
problems (It’s straight forward to show that (3) is in the form of Problem 1 in [23] by decomposing diag(·)
operator into separate sensing matrices). It iteratively solves low-rank instances of the original SDP problem
via the Burer-Monteiro method [22], and the algorithm can detect wether the local minimum attained in the
low-rank problem is indeed global minimum. If not, it will return to a higher-rank space and re-search.

By doing so, we can both retain the global guarantee and speed up the algorithm. Since the implemen-
tation of this algorithm is no yet released by the author, this is left as a future work.

8 Conclusions

This report studies the problem of neural network verification for which the existing SDP algorithm can fail
to provide meaningful certificates due to a large relaxation gap.

2 strategies are devised to counter this effect.
The first strategy is to partition the input space to decrease the relaxation gap. The partitions are derived

by minimizing the worst-case error induced by the corresponding convex relaxations, which is theoretically
justified by showing that minimizing the true relaxation error is NP-hard. The proposed techniques are
experimentally substantiated by demonstrating significant reduction in relaxation error on real and synthetic
networks, with only a 2× increase computation time. Our experiments show that the partitioning schemes
exhibit tradeoffs between different regimes, namely, as the input size and the number of layers is varied.

The second strategy is to approximate the effect of adding in non-convex constraints by using carefully
calculated linear surrogates. By actively constructing constraints using CGLP, we obtain provably valid cuts.
More importantly, a negative optimal value in CGLP also guarantees a nonzero reduction in the relaxation
gap. It is shown in the experiments that a relatively small number of partitions can help the algorithm
successfully reduce relaxation gap, while keeping the computation tractable. It is verified that the relaxation
gap for the existing methods is large when tested on large-scale networks, while the proposed algorithm
offers a satisfactory performance.

Both algorithms can give exact guarantees in the asymptotic regime. However, the focus here is how
to avoid going to the asymptotic regime and solve the problem in as few iterations as possible. Rigorous
theoretical and empirical findings corroborate the fact that it is indeed possible to solve many instances of
this problem in a few number of iterations by the utilization of theories presented in this report.
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